
Miscellaneous Concepts

Modern Binary Exploitation

CSCI 4968 - Spring 2015
Austin Ralls

MBE - 04/14/2015 Miscellaneous Concepts 1

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

2MBE - 04/14/2015 Miscellaneous Concepts

Misc Concepts

• There’s a lot of smaller bits and pieces to this
class that are important, but too small to
warrant their own lectures

MBE - 04/14/2015 3Miscellaneous Concepts

Misc Concepts

• There’s a lot of smaller bits and pieces to this
class that are important, but too small to
warrant their own lectures

• Also, this lecture should have come before
spring break but got displaced till now

MBE - 04/14/2015 4Miscellaneous Concepts

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

5MBE - 04/14/2015 Miscellaneous Concepts

Integers in C

• We haven’t even mentioned signedness yet

MBE - 04/14/2015 6

int var1 = 0;
unsigned int var2 = 0;

Miscellaneous Concepts

Integers in C

• We haven’t even mentioned signedness yet

MBE - 04/14/2015 7

int var1 = 0;
unsigned int var2 = 0;

What’s the difference between an
int and an unsigned int?

Miscellaneous Concepts

Signed Integers

MBE - 04/14/2015 8

• A signed integer can be interpreted as positive
or negative

• int
– range: –2,147,483,648 to 2,147,483,647

Miscellaneous Concepts

Unsigned Integers

MBE - 04/14/2015 9

• An unsigned integer is only ever zero and up

• unsigned int
– range: 0 to 4,294,967,295

Miscellaneous Concepts

Unsigned Integers

MBE - 04/14/2015 10

• An unsigned integer is only ever zero and up

• unsigned int
– range: 0 to 4,294,967,295

Twice the range of a signed integer

Miscellaneous Concepts

Signedness Naming

MBE - 04/14/2015 11

• The name signed or unsigned comes from
whether or not the type can carry a sign (+/-)

Miscellaneous Concepts

Common Names

MBE - 04/14/2015 12

• Signed
– int
– signed int
– long

• Unsigned
– uint
– unsigned int
– unsigned long

Miscellaneous Concepts

Visualizing Signedness

MBE - 04/14/2015 13

• A signed int uses the top bit to specify if it is a
positive or negative number
– 0x7FFFFFFF = 2147483647

• 01111111111111111111111111111111

– 0x80000000 = -2147483647
• 10000000000000000000000000000000

– 0xFFFFFFFF = -1
• 11111111111111111111111111111111

Miscellaneous Concepts

Two’s Complement

MBE - 04/14/2015 14

• To make a number negative:
– Invert all bits
– Add 1

Miscellaneous Concepts

Two’s Complement

MBE - 04/14/2015 15

• To make a number negative:
– Invert all bits
– Add 1

eg: 0x00031337
 = 201527
 = 00000000000000110001001100110111
 ~= 11111111111111001110110011001000
 += 11111111111111001110110011001001
 = -201527 (0xFFFCECC9)

Miscellaneous Concepts

Tracking Signedness

MBE - 04/14/2015 16

• How does your program track signedness?

Miscellaneous Concepts

Tracking Signedness

MBE - 04/14/2015 17

• How does your program track signedness?
– Variable types are known at compile time, so

signed instructions are compiled in to handle
your variable

• You probably didn’t realize this, but you can
determine integer types at the assembly level

Miscellaneous Concepts

Signed instructions

MBE - 04/14/2015 18

• Some common signed instructions
– IDIV - Signed divide
– IMUL - Signed multiply
– SAL - Shift left, preserve sign
– SAR - Shift right, preserve sign
– MOVSX - Move, sign extend
– JL - Jump if less
– JLE - Jump if less or equal
– JG - Jump if greater
– JGE - Jump if greater or equal

Miscellaneous Concepts

Unsigned instructions

MBE - 04/14/2015 19

• Some common unsigned instructions
– DIV - Unsigned divide
– MUL - Unsigned multiply
– SHL - Shift left
– SHR - Shift right
– MOVZX - Move, zero extend
– JB - Jump if below
– JBE - Jump if below or equal
– JA - Jump if above
– JAE - Jump if above or equal

Miscellaneous Concepts

Minimum Size

MBE - 04/14/2015 20

• Minimum sizes
– char 8 bits
– short 16 bits
– int 16 bits
– long 32 bits
– long long 64 bits

• These are MINIMUM sizes, can vary from
system to system!

Miscellaneous Concepts

Fixed Sizes

MBE - 04/14/2015 21

• Fixed size format
– int[# of bits]_t
– uint[# of bits]_t

• eg int8_t, uint16_t, int32_t

• Guaranteed size across systems
– Defined in stdint.h
– Also check out limits.h

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 22

• Imagine a simple uint8_t that is being ++’d
– 0x00
– 0x01
– 0x02
– ...

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 23

• Imagine a simple uint8_t that is being ++’d
– 0x00
– 0x01
– 0x02
– ...
– 0xFE
– 0xFF
– ????

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 24

• Imagine a simple uint8_t that is being ++’d
– 0x00
– 0x01
– 0x02
– ...
– 0xFE
– 0xFF
– 0x00 <-- overflows!
– 0x01

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 25

• This obviously applies to any size of integer!
– 0xFFFFFFFD
– 0xFFFFFFFE
– 0xFFFFFFFF
– 0x00000000
– 0x00000001
– 0x00000002

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 26

• Don’t forget multiplying!
0x00120000 * 0x00123456
= 0x00000147AE0C0000 (long long)
= 0xAE0C0000 (long)

Miscellaneous Concepts

Integer Overflows

MBE - 04/14/2015 27

• Don’t forget multiplying!
0x00120000 * 0x00123456
= 0x00000147AE0C0000 (long long)
= 0xAE0C0000 (long)
or
0x40000123 * 4
= 0x000000010000048C (long long)
= 0x0000048C (long)

Miscellaneous Concepts

0-loop_exerpt.c

MBE - 04/14/2015 28

short int bytesRec = 0;
char buf[SOMEBIGNUM];

while(bytesRec < MAXGET)
 bytesRec += getFromInput(buf+bytesRec);

(https://www.owasp.org/index.php/Integer_overflow)

Miscellaneous Concepts

0-loop_exerpt.c Solution

MBE - 04/14/2015 29

short int bytesRec = 0;
char buf[SOMEBIGNUM];

while(bytesRec < MAXGET)
 bytesRec += getFromInput(buf+bytesRec);

If getFromInput() returns enough bytes
to overflow bytesRec, the loop will

continue and overflow buf

Miscellaneous Concepts

1-OpenSSH3.3_exerpt.c

MBE - 04/14/2015 30

nresp = packet_get_int();

if(nresp > 0)
{
 response = xmalloc(nresp*sizeof(char*));
 for (i = 0; i < nresp; i++)
 response[i] = packet_get_string(NULL);
}

(https://www.owasp.org/index.php/Integer_overflow)

Miscellaneous Concepts

1-OpenSSH3.3_exerpt.c Solution

MBE - 04/14/2015 31

nresp = packet_get_int();

if(nresp > 0)
{
 response = xmalloc(nresp*sizeof(char*));
...

nresp is a signed int, what happens when
packet_get_int() returns INT_MAX/sizeof

(char*)?

Miscellaneous Concepts

1-OpenSSH3.3_exerpt.c Solution

MBE - 04/14/2015 32

nresp = packet_get_int();

if(nresp > 0)
{
 response = xmalloc(nresp*sizeof(char*));
...

nresp is a signed int. what happens when
packet_get_int() returns INT_MAX/sizeof

(char*)?

Probably allocates a 0 size buffer

Miscellaneous Concepts

2-variable-length_exerpt.c

MBE - 04/14/2015 33

char* processNext(char* strm) {
 char buf[512];
 short len = *(short*) strm;
 strm += sizeof(len);
 if (len <= 512) {
 memcpy(buf, strm, len);
 process(buf);
 return strm + len;
 } else {
 return -1;
 }
} (https://www.owasp.org/index.php/Integer_overflow)

Miscellaneous Concepts

2-variable-length_exerpt.c Solution

MBE - 04/14/2015 34

char* processNext(char* strm) {
 char buf[512];
 short len = *(short*) strm;
 strm += sizeof(len);
 if (len <= 512) {
 memcpy(buf, strm, len);
...

len is signed short, any negative len
will pass the if-statement

Miscellaneous Concepts

2-variable-length_exerpt.c - Solution

MBE - 04/14/2015 35

char* processNext(char* strm) {
 char buf[512];
 short len = *(short*) strm;
 strm += sizeof(len);
 if (len <= 512) {
 memcpy(buf, strm, len);
...

len is signed short, any negative len
will pass the if-statement

memcpy takes an unsigned int
underflow -> large copy -> stack corruption

Miscellaneous Concepts

Integer Problems

MBE - 04/14/2015 36

• It’s very common to see modern bugs stem
from integer confusion and misuse

• Know when to use signed/unsigned!

Miscellaneous Concepts

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

37MBE - 04/14/2015 Miscellaneous Concepts

Uninitialized Data

• Uninitialized data is a subtle vulnerability that
can leak information or cause undefined
behavior in an application

MBE - 04/14/2015 38Miscellaneous Concepts

Uninitialized Data

• Uninitialized data is a subtle vulnerability that
can leak information or cause undefined
behavior in an application

• The bug manifests when variables are not
properly initialized before use

MBE - 04/14/2015 39Miscellaneous Concepts

Spot the Bug

MBE - 04/14/2015 40

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

Spot the Bug

MBE - 04/14/2015 41

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

i is never initialized
to anything

Spot the Bug

MBE - 04/14/2015 42

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

i is never initialized
to anything

So what is i?

Spot the Bug

MBE - 04/14/2015 43

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

i is never initialized
to anything

So what is i?

The variable will be whatever data
happens to be left on the stack frame

from a previous function call of any sort

Spot the Bug

MBE - 04/14/2015 44

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

So can you exploit this function?

Spot the Bug

MBE - 04/14/2015 45

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

So can you exploit this function?
Probably.

Spot the Bug

MBE - 04/14/2015 46

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

So can you exploit this function?
Probably.

If you can control i, you can reliably write
20 A’s anywhere on the stack.

Spot the Bug

MBE - 04/14/2015 47

int do_work()
{
 int i;
 char buf[20];

 while(i < 20){
 buf[i] = ‘A’;
 i++;

}

return 0;
}

Miscellaneous Concepts

So can you exploit this function?
Probably.

If you can control i, you can reliably write
20 A’s anywhere on the stack.

(do a partial overwrite or corrupt
something more meaningful)

More Subtle

MBE - 04/14/2015 48

#include <stdio.h>

#include <stdlib.h>

void take_ptr(int *bptr) {

 printf(“%lx”, *bptr);

}

int main(int argc, char **argv) {

 int b;

 take_ptr(&b);

 printf(“%lx”, b);

}
(https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf)

Miscellaneous Concepts

#-uninitialized_data.c

• on warzone
• http://www.exploit-db.com/docs/99.pdf

MBE - 04/14/2015 49Miscellaneous Concepts

#-uninitialized_data.c - Solution

• char *err, *mesg;
• easy to exploit with ASLR off

MBE - 04/14/2015 50Miscellaneous Concepts

Uninitialized Data

• Keep in mind this can happen on the heap too!

• There’s no knowing what’s going to be on the
other end of the pointer you get back from
something like malloc()

MBE - 04/14/2015 51Miscellaneous Concepts

Uninitialized Data

• Pretty common in amateur development,
smaller software projects, CTF problems

• Less common in industry as this is an easy
issue to detect statically (in source and binary)

MBE - 04/14/2015 52Miscellaneous Concepts

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

53MBE - 04/14/2015 Miscellaneous Concepts

#-struct-heap2.c

while(1) {
 if(fgets(line, sizeof(line), stdin) == NULL) break;
 if(strncmp(line, "auth ", 5) == 0) {
 auth = malloc(sizeof(auth));
 memset(auth, 0, sizeof(auth));
 if(strlen(line + 5) < 31)
 strcpy(auth->name, line + 5);
 }
 if(strncmp(line, "service", 6) == 0)
 service = strdup(line + 7);
 if(strncmp(line, "login", 5) == 0) {
 if(auth->auth)
 printf("you have logged in already!\n");
 else
 printf("please enter your password\n");
 }
 }

(https://exploit-exercises.com/protostar/heap2/)

MBE - 04/14/2015 54Miscellaneous Concepts

#-struct-heap2.c

MBE - 04/14/2015 55Miscellaneous Concepts

...
 if(strncmp(line, "auth ", 5) == 0) {

 auth = malloc(sizeof(auth));
 memset(auth, 0, sizeof(auth));
 if(strlen(line + 5) < 31)
 strcpy(auth->name, line + 5);
 }
 if(strncmp(line, "service", 6) == 0)
 service = strdup(line + 7);
...

• sizeof(auth) doesn’t return size of struct
• In this case, it returns 16
• service makes new buffer over name/auth
• Use sizeof(struct auth)

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

56MBE - 04/14/2015 Miscellaneous Concepts

File Descriptors

MBE - 04/14/2015 57Miscellaneous Concepts

• In Linux, everything is a file
• When opening a file, it gets a number
• You use some frequently

• 0 STDIN
• 1 STDOUT
• 2 STDERR

• open returns a file descriptor

#-fd.c

MBE - 04/14/2015 58Miscellaneous Concepts

• On the warzone

#-fd.c - Solution

MBE - 04/14/2015 59Miscellaneous Concepts

• file descriptors from parent processes are
inherited by children

• fd to password file wasn’t closed

Lecture Overview

• Miscellaneous Concepts
– Integers in C
– Uninitialized data
– Structs
– File Descriptors
– Stack Cookies

60MBE - 04/14/2015 Miscellaneous Concepts

Stack CanariesMBE - 04/14/2015

Stack Canaries

Modern Binary Exploitation

CSCI 4968 - Spring 2015
Sophia D’Antoine

61

Stack CanariesMBE - 04/14/2015

Lecture Overview

1. How do we protect against overflows?
2. Different Types
3. Guarding the Stack
4. Ways to Leak Information
5. When All Else Fails

62

Stack CanariesMBE - 04/14/2015

Overflow Protections

63

Before the Overflow (program and compiler)
- program well strcpy v strncpy v strlcpy
- validate input ASCII
- static/ dynamic analysis LLVM or SAT Solvers

After the Overflow (OS level)
- intercept function calls Link Libsafe
- turn off execution NX bit / DEP
- randomize the addresses ASLR

Avaya Labs ⇒ http://directory.fsf.org/wiki/Libsafe

Stack CanariesMBE - 04/14/2015 64

Stack CanariesMBE - 04/14/2015

…. Stack Canaries!

65

+ After the Overflow (Compiler and OS level)

- sometimes called Stack Guards or Cookies

- embed random “canaries” in stack frames

- verify their integrity PRIOR to Function RETURN

Stack CanariesMBE - 04/14/2015

…. Stack Canaries!

66

Locals of DrawLine

Canary

Parameters for DrawLine

Locals of DrawDot

Canary

Parameters for DrawDot

Top of Stack
SP

FP Return Address

Return Address

Stack
Frame

for
Subroutine

Stack CanariesMBE - 04/14/2015

…. Stack Canaries!

67

+ What is a canary?
- its a random integer
- pushed onto stack after certain triggers are pushed
- popped off stack and checked before the trigger is

read from
- valued saved as global variable padded by unmapped

pages

Stack CanariesMBE - 04/14/2015

…. Stack Canaries!

68

+ Drawbacks
1. adds overhead (huge cache footprint)
2. only defends against stack overflows
3. NULL canaries can potentially be abused
4. Random canaries can potentially be learned

a. format string vulns
b. information leak

Stack CanariesMBE - 04/14/2015

Lecture Overview

1. How do we protect against overflows?
2. Different Types
3. Guarding the Stack
4. Ways to Leak Information
5. When All Else Fails

69

Stack CanariesMBE - 04/14/2015

Terminator Canaries

The Canary = 0 (null), newline, linefeed, EOF, -1
- targets string functions

- they will stop copying at the terminator

- attackers cannot use string functions as the attack
vector

- ignores rest of program security

70

Stack CanariesMBE - 04/14/2015

Terminator Canaries

How to Defeat This:

- if input is treated as binary data and not text
- overwrite the canary with its known value, passing

the canary check code
- control information with mismatched values
- executed soon before the return instruction

71

Stack CanariesMBE - 04/14/2015

Terminator Canaries

Seems like a bad idea, who would use this…..

GCC

“If a random generator can't be used, the protector
switches the guard to the terminator canary.”

72

Stack CanariesMBE - 04/14/2015

Randomized Canaries

Most popular (GCC uses them)
- random number chosen at program startup

- attacker must be dynamic

- inserts into every stack frame
- trigger: return addresses
- Some possibilities

- NULL canaries

- gcc on a typical 32-bit machine
is ⇒ 4 byte canary

73

Stack CanariesMBE - 04/14/2015

Safeguarding the Return Addresses

74

Locals of DrawLine

Canary

Parameters for DrawLine

Locals of DrawDot

Canary

Parameters for DrawDot

Top of Stack
SP

FP Return Address

Return Address

Stack
Frame

for
Subroutine

Stack CanariesMBE - 04/14/2015

Randomized Canaries

75

 GCC
-fstack-protector-all
-fstack-protector

+ char array of 8 bytes or
more declared on the stack

+ --param=ssp-buffer-size=N

 -fstack-protector-strong

+ declaration of type or length of local
arrays

+ local var addresses or local register
variables

Stack CanariesMBE - 04/14/2015

Randomized Canaries

76

Stack CanariesMBE - 04/14/2015

Random XOR Canaries

- They are still random!

- XOR-ed with all or part of the control data

- if altered, the canary value is immediately invalidated

- same vulnerabilities as random canaries in reading off stack

http://lwn.net/1999/1111/a/stackguard.html

http://deployingradius.com/pscan/stackguard.txt

77

http://lwn.net/1999/1111/a/stackguard.html
http://lwn.net/1999/1111/a/stackguard.html
http://deployingradius.com/pscan/stackguard.txt
http://deployingradius.com/pscan/stackguard.txt

Stack CanariesMBE - 04/14/2015

Random XOR Canaries

- To Bypass: read value from the stack

- get the canary value

- the control data

- the algorithm

⇒ RE the XOR-ed canary

⇒ spoof custom canary for shellcode

78

Stack CanariesMBE - 04/14/2015

Random XOR Canaries

- Benefits

- same protection as basic random canaries

- defends against specific attacks involving control data or return

value changes without overflowing the canary (invalidates it)

- XOR’s the canary with the return address

- protect against overflowing buffers in structures

- attacker tries to make pointer point at control data

79

Stack CanariesMBE - 04/14/2015

Random XOR Canaries

- Downsides

+ more overhead means more security

- # of canaries (StackGuard uses 128 static) & complexity of algorithm

+ only protects control data from being altered

IF the attacker is overwriting pointers

+ still allows overwrite of data and the pointers themselves

- function pointers can be victimized

⇒ overflow into them and call to execute shellcode

80

Stack CanariesMBE - 04/14/2015

Random (XOR) Canaries

Moral of the Story:
everything relies on good crypto

For Both Random and Random XOR, the main
security element relies on good random number
generation. Pseudorandom sequences can be
learned. Cryptographic PRNG can be found.

81

Stack CanariesMBE - 04/14/2015

Lecture Overview

1. How do we protect against overflows?
2. Different Types
3. Guarding the Stack
4. Ways to Leak Information
5. When All Else Fails

82

Stack CanariesMBE - 04/14/2015

Guarding the Stack

StackGuard - Used in patches of GCC

- started in 1998 as static canaries
- original prototype written in a few days by an

intern
- promptly patched into GCC
- first canary was hardcoded

83

Stack CanariesMBE - 04/14/2015

Guarding the Stack

StackGuard - The first canary

 0xDEADBEEF

84

Stack CanariesMBE - 04/14/2015

Guarding the Stack

StackGuard

- terminator canary
- CR, LF, 00, -1

- single random canary
- using /dev/random

- single XOR random canary
- xor-ed return address

85

Stack CanariesMBE - 04/14/2015

Guarding the Stack

StackGuard - Extra Benefits

- implemented as modified assembler
- single XOR random canary

- stores the valid return address in safe
memory

86

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - PointGuard

- does everything StackGuard does but is
newer and slower

- allows canaries to be added to different data
items,
- automatically: FP and longjump buffers
- requires users to specify which data items

they think will be exploited

87

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - ProPolice

- also at the compiler level (a patch to GCC)
- does everything StackGuard does
- enhancements:

- variable sorting
⇒ buffers sorted to top of local variables, means

they can’t overflow important values

88

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - ProPolice

...so this sounds like a good idea, is it even used?
- Visual Studios 2003 and higher
- GCC uses it with the feature

–fstack_protector

89

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - ProPolice
{ GCC 3.4.1 –fstack_protector }

90

Locals of DrawLine

Canary

Parameters for DrawLine

Top of Stack
SP

FP Return Address

Stack
Frame

for
Subroutine

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - ProPolice
{ From ProPolice Documentation }

91

Before After

Stack CanariesMBE - 04/14/2015

Guarding the Stack

Modding StackGuard - ProPolice
{ MS Visual Studio 2003+ /GS }

92

Locals of DrawLine

Canary

Parameters for DrawLine

Top of Stack
SP

FP

Stack
Frame

for
Subroutine

Return Address

Exception Handlers

Stack CanariesMBE - 04/14/2015

Lecture Overview

1. How do we protect against overflows?
2. Different Types
3. Guarding the Stack
4. Ways to Leak Information
5. When All Else Fails

93

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Focus on Random Canaries
- Overwrite the Canary with the same

value
- brute force
- learnable random numbers
- unprotected data type
- reading off of the stack

94

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Brute Force
- cool example attack: http://vagmour.

eu/persistence-1/
- requires same canary for each thread

so can’t call execve()
- overwrite canary byte by byte

95

http://vagmour.eu/persistence-1/
http://vagmour.eu/persistence-1/
http://vagmour.eu/persistence-1/

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Learnable Random Numbers
- GS calculate the canary 2007

http://uninformed.org/?v=7&a=2&t=sumry

- Android PRNG example 2014 (IBM):

https://www.usenix.
org/system/files/conference/woot14/woot14-
kaplan.pdf

- bad crypto for random generator
- if /dev/random is not found, sometimes

pseudo-random generators are used
96

http://uninformed.org/?v=7&a=2&t=sumry
http://uninformed.org/?v=7&a=2&t=sumry
https://www.usenix.org/system/files/conference/woot14/woot14-kaplan.pdf
https://www.usenix.org/system/files/conference/woot14/woot14-kaplan.pdf
https://www.usenix.org/system/files/conference/woot14/woot14-kaplan.pdf
https://www.usenix.org/system/files/conference/woot14/woot14-kaplan.pdf

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Unprotected Data Item
- usually if it isn’t a string buffer, there

will not be a canary

97

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Reading Off of the Stack
- buffer overflow

- overwrite null terminator

⇒ read past the end of array

- format string vulnerabilities
http://www.exploit-monday.com/2011/06/leveraging-
format-string.html

98

http://www.exploit-monday.com/2011/06/leveraging-format-string.html
http://www.exploit-monday.com/2011/06/leveraging-format-string.html
http://www.exploit-monday.com/2011/06/leveraging-format-string.html

Stack CanariesMBE - 04/14/2015

Ways to Leak the Canary

- Reading Off of the Stack
- information leaks /memory leaks (out of scope)

- more complicated attack
- useful against the stack reordering done by

StackGuard/ ProPolice
- pointers dangling /writing or reading after free
- http://phrack.org/issues/56/5.html

99

http://phrack.org/issues/56/5.html
http://phrack.org/issues/56/5.html

Stack CanariesMBE - 04/14/2015

Terminator Canaries

Exercise
Terminator Canary Bypass

ssh lecture@warzone.rpis.ec

100

mailto:lecture@warzone.rpis.ec

Stack CanariesMBE - 04/14/2015

Lecture Overview

1. How do we protect against overflows?
2. Different Types
3. Guarding the Stack
4. Ways to Leak Information
5. When All Else Fails

101

Stack CanariesMBE - 04/14/2015

Remember...

No canaries on the heap!

102

