

First order of Business

First order of Business

You probably feel like this

MBE TA’s

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

You already know how to find these!

You already know how to find these!

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

You already know how to find these!

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

1. Buffer Overflows
2. Signedness issues
3. Partial Overwrites
4. Use-After-Free

By now, finding these should be a familiar process

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs).

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs).

LKMs are like executables that run in Kernel Space.
A few common uses are listed below:

> Device Drivers
> Filesystem Drivers
> Networking Drivers
> Executable Interpreters
> Kernel Extensions
> (rootkits :P)

LKMs are just binary blobs like your familiar ELF’s, EXE’s
and MACH-O’s. (On Linux, they even use the ELF format)

LKMs are just binary blobs like your familiar ELF’s, EXE’s
and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into IDA and reverse-engineer them like
you’re used to already.

There’s a few useful commands that deal with LKMs on
Linux.

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
lsmod ---> List currently loaded modules

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
lsmod ---> List currently loaded modules

A general familiarity with these is helpful

Basic Exploitation Strategy
Elevate Privileges

Remember: The Kernel manages running processes

Basic Exploitation Strategy
Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

Basic Exploitation Strategy
Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

struct task_struct {
….

….
};

http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=comm
http://lxr.free-electrons.com/ident?i=comm
http://lxr.free-electrons.com/ident?i=TASK_COMM_LEN

Basic Exploitation Strategy
Elevate Privileges

Conveniently, the Linux Kernel has a wrapper for updating
process credentials!

Basic Exploitation Strategy
Elevate Privileges

Conveniently, the Linux Kernel has a wrapper for updating
process credentials!

Basic Exploitation Strategy
Elevate Privileges

Conveniently, the Linux Kernel has a wrapper for updating
process credentials!

We just need to create a valid cred struct!

Basic Exploitation Strategy
Elevate Privileges

The kernel is helpful again!

…

Basic Exploitation Strategy
Elevate Privileges

The kernel is helpful again!

…

Basic Exploitation Strategy
Elevate Privileges

Great! Now we can map out what we need to do

Basic Exploitation Strategy
Elevate Privileges

Great! Now we can map out what we need to do

1. Create a “root” “struct creds” by calling
prepare_kernel_cred(NULL);

2. Call commit_creds(root cred *);

Basic Exploitation Strategy
Elevate Privileges

Great! Now we can map out what we need to do

1. Create a “root” “struct creds” by calling
prepare_kernel_cred(NULL);

2. Call commit_creds(root cred *);
3. Enjoy our new root privileges!

Basic Exploitation Strategy
Returning To UserSpace

Why bother returning to Userspace?

Basic Exploitation Strategy
Returning To UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

Basic Exploitation Strategy
Returning To UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem
> Create a new process
> Create network connections

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

This will usually get you out of “Kernel Mode” safely.

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A segfault probably means a reboot!

Basic Exploitation Strategy
Enjoying our Root Privs

If we make it back to userland, our process should be
running with root privileges.

Basic Exploitation Strategy
Enjoying our Root Privs

If we make it back to userland, our process should be
running with root privileges.

We can do whatever we want!

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

DEP
ASLR
PIE
Canaries
RELRO
etc...

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
PIE Red: Not directly applicable
Canaries
RELRO
etc...

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
PIE Red: Not directly applicable
Canaries
RELRO
etc...
There’s a whole new alphabet soup for Kernel Mitigations!

Kernel Space Protections

Some new words in our soup

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Kernel Space Protections

Some new words in our soup (There’s plenty more...)

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Most of these will be off for the labs!

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low

Memory

0xffffffff

Malicious
Program

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel
Memory

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel starts executing malicious
Code

Kernel
Memory

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 mmap_min_addr disallows
programs from allocating low
memory.

Makes it much more difficult to
exploit a simple NULL pointer
dereference in the kernel.

Kernel
Memory

Kernel Space Protections
kallsyms

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an
info-leak!

Kernel Space Protections
kallsyms

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an
info-leak!

$: cat /proc/kallsyms | grep commit_creds

ffffffff810908c0 T commit_creds
ffffffff81b01390 R __ksymtab_commit_creds
ffffffff81b1cf38 r __kcrctab_commit_creds
ffffffff81b2c33b r __kstrtab_commit_creds

Kernel Space Protections
kallsyms

kallsyms used to be world-readable.

Now, it returns 0’s for unprivileged users

$: cat /proc/kallsyms | grep commit_creds

0000000000000000 T commit_creds
0000000000000000 R __ksymtab_commit_creds
0000000000000000 r __kcrctab_commit_creds
0000000000000000 r __kstrtab_commit_creds

Can still be a useful source of information on older systems

Kernel Space Protections
SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t
...
// Now we have root
system(“/bin/sh”);

}

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t()
...
// Now we have root
system(“/bin/sh”);

}

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t()
...
// Now we have root
system(“/bin/sh”);

}

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t()
...
// Now we have root
system(“/bin/sh”);

}

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t()
...
// Now we have root
system(“/bin/sh”);

}

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use ROP, or somehow get executable code into
kernel memory.

Example

We’ll walk through a short example of a backdoored LKM to
get a feel for dealing with the kernel.

Conclusion

Conclusion

Conclusion

Conclusion

