Modern Binary Exploitation
CSCI 4968 - Spring.2015

Patrick Biernat

sub_31411B

sub_3140F3

First order of Business

. = -

loc_31306D
[ebp+arg_0]
loc_31308F
loc_313066
sub 31411B
loc 31306D
sub_3140F3
loc_31307D
sub_3140F3
loc 31308C

sub_3140F3

loc_31308C:

var

F’\rs’r order of Business

- % HIES.INMTFIIIIIEII l:nuiw

You probably feel like this

NELLS YOU TO PUT YOUR
AI%I:F IR ITMF e

DELETES /TMP

memegenerat

Lecture Overview

Al

An Introduction to the Kernel
General Exploitation Strategy
Kernel-Space Protections
Example

Conclusion

Jumping out of the Matrix

So far, we have been exploiting binaries running in -~
userspace.

Jumping out of the Matrix

So far, we have been exploiting binaries running in -~
userspace.

Jumping out of the Matrix

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

Filesystem 1/O

Privilege Levels (Per User/Per Group)
Syscalls

Processes

And so much more

A N

Jumping out of the Matrix

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

Filesystem I/O

Privilege Levels (Per User/Per Group)
Syscalls

Processes

And so much more

A N

These are all “services” provided by the Kernel

What’s a Kernel?

Low Level code with two major responsibilitiés‘[

1. Interact with and control hardware components .
2. Provide an Environment in which Applications can run

What’s a Kernel?

Low Level code with two major responsibiIit-:ie??S‘%w_

1. Interact with and control hardware components .
2. Provide an Environment in which Applications can run_

What’s a Kernel? - Ring Modéfi;fj

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

What’s a Kernel? - Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

What’s a Kernel? - Ring Mode

We’ve Been Here \

What’s a Kernel? - Ring Mode

Weve Been Here \

We’re Going Here

sub_ 314623
rt loc_31306D

cmp [ebp+arg 0], ebx

b o 21z short loc_ 313066
igator atrix Analogy . -

- e [ebp+var_ 84]

30 short loc_ 313066
sub e [ebp+var_ 84]

ax,
ax,
ax,
S1

“The Matrix is the world that has s |
been pulled over your eyes to b/ind
you from the truth.” - Morpheus |

loc_31308C:
[ebp+var 4], eax

Sub 314623

loc 31306D
[p+arg 0], ebx
loc_313066

Obligatory Matrix Analogy :;;;; =

p+var_84]

“The Matrix is the world that has e
been pulled over your eyes to blind e g
you from the truth.” - Morpheus

The kernel provides the “matrix”
your programs run in

loc_31308C: ; CODE XREF: sub 312FD8

sub 314623

loc_ 313f6
[ebp+arg O
lcc 313f66

Obligatory Matrix Analogy

lcc 313f66

“The Matrix is the world that has Ee=>
been pulled over your eyes to b//ndw = ,,,-e «-,‘;“ir Pus
you from the truth.” - Morpheus ‘

”

The kernel provides the “matrix
your programs run in

Break out of the Matrix, and you
pwn the entire system

loc_31308C:

Kernel Pwning in Popular Cultu

“Jailbreaking” or “rooting” devices
often depends on finding and
leveraging Kernel bugs

Kernel Pwning in Popular Cultu

“Jailbreaking” or “rooting” devices
often depends on finding and
leveraging Kernel bugs

Remember JailbreakMe?

Kernel Pwning in Popular Culture

“Jailbreaking” or “rooting” devices
often depends on finding and
leveraging Kernel bugs

Remember JailbreakMe?

It used a remote code execution
primitive inside Safari to trigger a
kernel-level exploit to bypass
Apple’s code-signing protection

Kernel Basics

Your Kernel is:

Managing your Processes
Managing your Memory
Coordinating your Hardware

Kernel Basics

Your Kernel is:

Managing your Processes
Managing your Memory
Coordinating your Hardware

A crash oftentimes means a reboot!

Kernel Basics

Your Kernel is:

Managing your Processes
Managing your Memory
Coordinating your Hardware

A crash oftentimes means a reboot!

In general, we want to spend as little time there as possible.

Basic Exploitation Strategy

The Kernel is typically the most powerful place we
can find bugs “

Basic Exploitation Strategy

The Kernel is typically the most powerful place we
can find bugs

But, how do we go from “vulnerability” to “privileged
execution” without bringing down the rest of the
system?

The Big Picture

Al

Find vulnerability in kernel code
Manipulate it to gain code execution
Elevate our process’s privilege level
Survive the “trip” back to userland
Enjoy our root privileges

The Vulnerabilities

You already know how to find these}!_:::;

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

Basic Exploitation Strategy
The Vulnerabilities

You already know how to find these!

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

Buffer Overflows
Signedness issues
Partial Overwrites
Use-After-Free

N =

By now, finding these should be a familiar process

The Vulnerabilities

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs).

Basic Exploitation Strategy
The Vulnerabilities

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs). 1306

LKMs are like executables that run in Kernel Space
A few common uses are listed below: 146

> Device Drivers

> Filesystem Drivers

> Networking Drivers

> Executable Interpreters
> Kernel Extensions

> (rootkits :P)

LKMs are just binary blobs like your familiar ELF's; EXE's
and MIACH-O’s. (On Linux, they even use the ELF format)

Basic Exploitation Strategy
The Vulnerabilities

LKMs are just binary blobs like your familiar ELF's; EXE's
and MIACH-O’s. (On Linux, they even use the ELF format)

You can drop them into IDA and reverse-engineer them like
you're used to already.

The Vulnerabilities

There’s a few useful commands that deal with LKMs on
Linux. toc_s13061

The Vulnerabilities

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
Ismod ---> List currently loaded modules

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
Ismod ---> List currently loaded modules

ccccccc

Basic Exploitation Strategy
Gaining Code Execution

You already know how to do this too!

loc_31306D

sub_314623

You already know how to do this too!

The same basic exploitation techniques apply to Kernelspace
(After all, it’s just x86 code!) 5

Basic Exploitation Stratééi‘;;
Gaining Code Execution

You already know how to do this too!

The same basic exploitation techniques apply to Kernelspace
(After all, it’s just x86 code!)

Shellcoding, ROP, Pointer Overwrites,
Type Confusion, etc can all be used to
execute code in Kernel Land.

Basic Exploitation Stratég;
Gaining Code Execution -

You already know how to do this too!

The same basic exploitation techniques apply to Kernelspace
(After all, it’s just x86 code!)

Shellcoding, ROP, Pointer Overwrites,
Type Confusion, etc can all be used to
execute code in Kernel Land.

10C oSl1oUOL.

Basic Exploitation Strategy

Gaining Code Execution -

Common Library calls are sometimes different , so there'is
a slight learning curve involved. il

Basic Exploitation Strategy

Gaining Code Execution ::

Common Library calls are sometimes different , so there'is
a slight learning curve involved.

printf() —--> printk()
memcpy() > copy_from_user()/copy_to_user()

malloc() —--> kmallog():

Basic Exploitation Strategy

Gaining Code Execution

Common Library calls are sometimes different , so there'is
a slight learning curve involved.

printf() ---> printk()
memcpy() > copy_from_user()/copy_to_user()
malloc() —--> kmallog().:

Typically, whatever you want to know is a quick gOOg_lejsearch or
man page away.

Basic Exploitation Strategj‘;;
Gaining Code Execution =

Debugging kernel code can be difficult

Basic Exploitation Stratééy;

Gaining Code Execution -

Debugging kernel code can be difficult

We can’t just run the kernel in

Gaining Code Execution

Debugging kernel code can be difficult

We can’t just run the kernel in
You will often have to rely on stack dumps, error messages, and

other “black box” techniques to infer what’s going on-inside the
kernel.

Gaining Code Executlon%‘

FID:

0

This is an example of whatyou
might see if you getacrashin *
the kernel.

#1
#5
#6
#1
#8
£9
#10

#11

0 TASK: ffff81121ff987b0 CPU: 2 COMMAND: "swapper"™
[f£££81011£££3b80] crash kexec at EfEffffffB00D1287
[ffEFRI011fEE3c40] die at fEEEFFFFA0065137
[fEE£81011f£E3cB0] ag_page_fault at ffffffffa006741e
[EEEERI01I1EEE3470] errar_axit at fEEfFFEFR00544F9
[exception RIP: uwhci scan schedule+162]

RIP: fffffffFRA0218ee RSP:
RRX: 0000002019105000 RBX:
BDX: 0000000000000000 BRSI:
RBP: IfffB81011fff3ed0 RE:
R10: 0000Q0OCOO0O000001 RI1L:
R13: 0000000000000286 RI14:

ORIG RA¥: fffffffrfffffees

fEEFA1011FFF3e20 RFLAGS: 00010007
@000002019105000 RCX: TfffBl121ff8che8
0000000000000000 RDI: E£f£ffR1091fe27950
0000000000000000 RB: TLLf81012b4AL7d41I8
00000000af482ded R12: £fFFR1091£227950
[fffa1091fe27000 R15: IfLTLLETR0200367
C3: 0010 s5: 0018

[EE£E81011£££3e98] uhei hub_status data at ffffffffEB0232da [uhci_hecd]
[f£££81011ff£3ech] ush | hed poll rh status at fEEFEEEFRO200275
[ffff81011f£E3f08] run timer softqu at FEEEFFEFRO09aB19
[EEE£81011E££3E58] dn softqu at ffffffEfRO00125a9

[EEEFS1011FFFIFRR] call softirg at fEfEEEEFRO05230c

[££££81011£££3£a0] do_sEftirq at ffffffffan0edesn

[EE£E£81011E£E3ED0] apic_timer_interrupt at fEffEEFFB005dche

<IRQ stackr ---

[ff£f81011ffefdfe] apic timer interrupt at FEfFFFFTE005dcoe
[exception RIP: acpl safe halt+37]

RIP: FEfFFFFFR01a62ab RSP:
RAX: 0000000000000000 RBX:
RDX: 0000000000000000 RSI:
RBP: Ifff81011ffefeef RE:
R10: £fffA1091fdcd008 RI11:
R13: 0000000000402040 RI14:

ORIG RAX: fEffffffffffffll

ffffa1011ffefeal RFLAGS: 00000246
Ifffa1121ff1f8al RCK: 0000000000000000
0000000000000001 RDI: 0000000000000001
ffff81011ffee000 R9: 000000000000003f
00000000af4B2ded R12: £fffR111846700cO
g000000000000000 R15: EfffB8111846700cO
C5: 0010 s5: 0014

#12 [ffff81011ffefeal] acpi processor idle simple at fEffffff801aéb29

Gaining Code Executlon%‘

This is an example of what you
might see if you get a crash in
the kernel.

Call Trace
Register Dump
Stack Dump

FID:

0
Fl
$2
#3

#1
#5
#6
#1
#8
£9
#10

#11

0 TASK: ffff81121ff987b0 CPU: 2 COMMAND: "swapper"™
[f£££81011£££3b80] crash kexec at EfEffffffB00D1287
[ffEFRI011fEE3c40] die at fEEEFFFFA0065137
[fEE£81011f£E3cB0] ag_page_fault at ffffffffa006741e
[EEEERI01I1EEE3470] errar_axit at fEEfFFEFR00544F9
[exception RIP: uwhci scan schedule+162]

RIP: fffffffFRA0218ee RSP:
RRX: 0000002019105000 RBX:
BDX: 0000000000000000 BRSI:
RBP: IfffB81011fff3ed0 RE:
R10: 0000Q0OCOO0O000001 RI1L:
R13: 0000000000000286 RI14:

ORIG RA¥: fffffffrfffffees

fEEFA1011FFF3e20 RFLAGS: 00010007
@000002019105000 RCX: TfffBl121ff8che8
0000000000000000 RDI: E£f£ffR1091fe27950
0000000000000000 RB: TLLf81012b4AL7d41I8
00000000af482ded R12: £fFFR1091£227950
[fffa1091fe27000 R15: IfLTLLETR0200367
C3: 0010 s5: 0018

[EE£E81011£££3e98] uhei hub_status data at ffffffffEB0232da [uhci_hecd]
[f£££81011ff£3ech] ush | hed poll rh status at fEEFEEEFRO200275
[ffff81011f£E3f08] run timer softqu at FEEEFFEFRO09aB19
[EEE£81011E££3E58] dn softqu at ffffffEfRO00125a9

[EEEFS1011FFFIFRR] call softirg at fEfEEEEFRO05230c

[££££81011£££3£a0] do_sEftirq at ffffffffan0edesn

[EE£E£81011E£E3ED0] apic_timer_interrupt at fEffEEFFB005dche

<IRQ stackr ---

[ff£f81011ffefdfe] apic timer interrupt at FEfFFFFTE005dcoe
[exception RIP: acpl safe halt+37]

RIP: FEfFFFFFR01a62ab RSP:
RAX: 0000000000000000 RBX:
RDX: 0000000000000000 RSI:
RBP: Ifff81011ffefeef RE:
R10: £fffA1091fdcd008 RI11:
R13: 0000000000402040 RI14:

ORIG RAX: fEffffffffffffll

ffffa1011ffefeal RFLAGS: 00000246
Ifffa1121ff1f8al RCK: 0000000000000000
0000000000000001 RDI: 0000000000000001
ffff81011ffee000 R9: 000000000000003f
00000000af4B2ded R12: £fffR111846700cO
g000000000000000 R15: EfffB8111846700cO
C5: 0010 s5: 0014

#12 [ffff81011ffefeal] acpi processor idle simple at fEffffff801aéb29

Basic Exploitation Strategj‘;
Gaining Code Execution

314623

This is an example of what you
might see if you get a crash in
the kernel.

Call Trace
Register Dump
Stack Dump

You might be able to see this
with dmesg if the crash is not
fatal.

FID:

0
#1
$2
#3

#1
$5
#6
#1
#8
£9
#10

#11

#12

0

TASK: fIff81121ff%87h0

CEy: 2

COMMAND.

"swapper"

[EEEE81011EE£E3DB0O] crash_kexec at ffffffffa00bl1287
[EfEf81011fff3c40]
[EEL£f81011f££3cB80] aa_page_fault at ffffffffa006741e
[fEE£B1011FFF3470) error exit at fEFFFFFFRO0SA4E0

[exception RIP: uhci_;caﬁ;schedule+152]

RIP:
RAX:
BDX:
RBF:
R10:
R13:

fEFFFFFFRA02] B
0000002019105000
0000000000000000
fEff81011£1f3edl
0000000000000001
0000000000000286

RSP:
REX:
RSI:

RE:
R11:
R14:

ORIG RA¥: fffffffrfffffees

[FEE£81011££F3e98]
[£EEFA1011FFF3ech]
[FE£FB1011FFE3F08]

[fEEER1011FEEIE5E]

[EfEFAI011FEFITAR]
[ff££81011f££3fal]
[EEEERI011EEE3ER0)

<IRQ stackr ---

[ffffai011ffefdfR]
[exception RIP:
RIP:
RAX:
RDX:
RBEF:
R10:
R13:

fEffffffR0lat2ab
0000000000000000
0000000000000000
Ifff31011ffefeed
fE££81091fdca08
0000000000402040

ORIG RAX: fEffffffffffffll
[ffff81011ffefeal] acpi processor idle simple at ffffffff801a6b29

die at fEffFfFFA0065137

fEEFA1011FFF3e20
¢000002019105000
0000000000000000
0000000000000000
00000000af482ded
[fffa1091fe27800

C3: 0010 338: 0018
uhci hub status data at ffffffffE80232da [uhci hcd]
usb | hed pﬂll rh status at fEEEFEFFRO200275
run_ timer softqu at frffffffe009ag1s
do softqu at fffEffffR00125a9
call softirg at fEfEEEEFRO05230c
do_sEftirq at fELfLffff8006d630
apic_timer_interrupt at fEffEEFFB005dche

ffffa1011ffefeal
[fffal121fr1feab
0000000000000001
[fff81011ffeel00
G0000000afeE2ded
g000000000000000

C5: 0010 ss8: 0014

RFLAGS: 00010007

RCK: ffff8ll21fiBches

BRDI: ffffR1091f=e27950
R9: fIff81012b4f7d18

R12: ffffR1091£227950

R15: TELITLETR0200367

apic timer interrupt at fEEFFFFFR005dcTe
acpi safe halt+37]
RS5P:
REX:
R5I:

RB:
Rll:
R14:

RFLAGS: 00000246

RCK: 0000000000000000

RDI: 0000000000000001
R9: 0000000000000031

R12: ffff8111846700c0

R15: ffff8111846700c0

sub 314623

Basic Exploitation Strategy
Elevate Privileges

Remember: The Kernel manages running processes

sub_ 314623

sub_31411B

Basic Exploitation Strategy
Elevate Privileges -

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

Basic Exploitation Strategy

o A

Elevate Privileges

Remember: The Kernel manages running processes
Therefore: The Kernel keeps track of permissions

struct task_struct {

/* process credentials */
const struct cred __rcu *real cred;
const struct cred __rcu *cred;
char comm|TASK COMM LEN];

http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=__rcu
http://lxr.free-electrons.com/ident?i=cred
http://lxr.free-electrons.com/ident?i=comm
http://lxr.free-electrons.com/ident?i=comm
http://lxr.free-electrons.com/ident?i=TASK_COMM_LEN

Conveniently, the Linux Kernel has a wrapper for:

updating
process credentials! AR

Conveniently, the Linux Kernel has a wrapper for updating
process credentials! =

int commit_creds(struct cred *new) {

)

Elevate inleges

Conveniently, the Linux Kernel has a wrapper for updatlng
process credentials!

int commit_creds(struct cred *new) {

)

We just need to create a valid cred struct!

Basic Exploitation Strategy
Elevate Privileges -

The kernel is helpful again!

}

The kernel is helpful again!

struct cred *prepare_kernel cred(struct task_struct *daemon) {

}

o”

If @daemon is supplied, then the security data will be derlved from that;
otherwise they'll be set to 0 and no groups, full capabilities and no keys.

o“

- source/kernel/cred.c

Basic Exploitation Strategy
Elevate Privileges

Great! Now we can map out what we need todo

Great! Now we can map out what we need todo

1. Create a “root” “struct creds” by calling
orepare kernel cred(NULL);
2. Call commit creds(root cred *);

Elevate Privileges

Great! Now we can map out what we need to do

1. Create a “root” “struct creds” by calling
orepare kernel cred(NULL);

2. Call commit creds(root cred *);

3. Enjoy our new root privileges!

Basic Exploitation Strategy
Returning To UserSpace

Why bother returning to Userspace?

Basic Exploitation Strategy

Returning To UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

Basic Exploitation Strategy
Returning To UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:
> Modify the filesystem

> Create a new process
> Create network connections

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

push $SS_USER_VALUE
push SUSERLAND STACK
push SUSERLAND EFLAGS

push SCS_USER_VALUE

push SUSERLAND_FUNCTION_ADDRESS

swapgs

iretq ok e

10C oSl1oUOL.

Basic Exploitation Strategy
Returning To UserSpace

How does the kernel do it?

push SSS USER_VALUE

push SUSERLAND_STACK

push SUSERLAND_EFLAGS

push SCS_USER_VALUE

push SUSERLAND_FUNCTION_ADDRESS

swapgs loc_313066
iretq

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking.
execution, and letting the kernel return by itself.

> Function Pointer Overwrites

> Syscall Table Highjacking
> Use-After-Free

Basic Exploitation Strategy
Returning To UserSpace

For exploitation, the easiest strategy is highjacking:
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A segfault probably means a reboot!

Basic Exploitation Strategy

Enjoying our Root Privs

If we make it back to userland, our process should be
running with root privileges. e s1306

Enjoying our Root Pr|vi?ii'2

If we make it back to userland, our process should be
running with root privileges. e s1306

We can do whatever we want!

Kernel Space Protections

By now, you're familiar with the alphabet soup of epr0|t
mitigations toc_s13061

Kernel Space Protectlons

By now, you're familiar with the alphabet soup of epr0|t
mitigations toc_s13061

DEP

PIE
Canaries

RELRO

etc...

Kernel Space Protectlons

By now, you're familiar with the alphabet soup of epr0|t
mitigations toc_s13061

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
PIE Red: Not dlrectly appllcablﬁeAﬁ:
Canaries T

RELRO

etc...

Kernel Space Protections

By now, you're familiar with the alphabet soup of epr0|t
mitigations 0c_n1308

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
PIE Red: Not directly applicable: =
Canaries o "
RELRO

etc...

There’'s a whole new alphabet soup for Kernel Mltlgatlons'

Kernel Space ProtectiOhs

Some new words in our soup

MMAP_MIN_ADDR

KALLSYMS

RANDSTACK

STACKLEAK

SMEP / SMAP .

Kernel Space ProtectiOhs

Some new words in our SOUP (There’s plenty more...)

MMAP_MIN_ADDR

KALLSYMS

RANDSTACK

STACKLEAK

SMEP / SMAP .

Most of these will be off for the labs! e

Kernel Space Protectlo,v;;;s

This makes exploiting NULL pointer dereferences-harder.

sub_314623

Kernel Space Protectloﬂs
mmap_min_ addr

This makes exploiting NULL pointer dereferencg$ harder.

loc_31306D
2ax, [ebp+arg 0]
[ebp+arg_4]
sub_314623
loc_31306D

[ebp+arg 0], esi
loc_31308F

loc_313066:
Malicious call sub 31411B
Program loc_31306D:
sub_3140F3
: Vlcc_313073
sub_3140F3
loc_31308C
loc_31

sub_3140F3

loc_31308C:

sub_31462

Kernel Space Protectloﬂs
mmap_min_addr

This makes exploiting NULL pointer dereferencgj@;zh;arder.

0x000000 Program does mmap(0, ...}

[‘ +arg_4]
LOW 7: sul‘:f314623
Memory

loc_31306D
[+arg 0], es
loc_31308F

loc 31306
Malicious 1 sub 314118
Program loc_31306D:
sub_3140F3
loc 31307D
sub_3140F3
loc 31308C
lo 1
sub_3140F3
loc 31

sub_31462

Kernel Space Protectloﬂs
mmap_min_addr -

This makes exploiting NULL pointer dereferencgg;;jgarder.

0x000000 Program does mmap(0, ...)0

Program writes mallc:|ous Code

LOW u%’31463
Memory e

loc_31308F

Malicious a1 sub_314118
Program loc_31306D:
sub_3140F3
’ loc_31307D
sub_3140F3
loc_31308C
OxfFfffff Loc_31307D: : CoDE XREF: sub 31280

sub_3140F3

Kernel Space Protectlois

This makes exploiting NULL pointer dereferences-harder.

0x000000 Program does mmap(0, ::..)-sso
Kernel _ -
Memory Program writes malicious Code
Program trlggers Kernel Bij%g
Malicious
Program

Kernel Space Protectlois

This makes exploiting NULL pointer dereferences-harder.

0x000000 Program does mmap(0, ::..)-sso
Kernel _ -
Memory Program writes malicious Code
Program trlggers Kernel Bij%g
Malicious Kernel starts executlng malieious
Program Code

Kernel Space Protections
mmap_min_addr

This makes exploiting NULL pointer dereferences-harder.

0x000000 mmap_min_addr dlsallows

Kernel programs from allocating Iow
Memory memory sub_ 314623

Makes it much more diffiCGi?fijibj;

exploit a simple NULL pointer
Malicious dereference in the kernel. -
Program loc_31306D

Kernel Space Protectlons
kallsyms

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable epr0|ts W|thout an
info-leak!

Kernel Space Protectlons
ka"SymS

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable epr0|ts W|thout an
info-leak!

$: cat /proc/kallsyms | grep commit_creds

fiffffff810908c0 T commit creds loc_313061
fiffffff81b01390 R _ ksymtab commit creds
fiffffff81b1cf38 r _ kcrctab _commit creds
fiffffff81b2c33b r _ kstrtab _commit creds

kallsyms

kallsyms used to be world-readable.

Now, it returns O’s for unprivileged users

$: cat /proc/kallsyms | grep commit_creds

0000000000000000 T commit creds
0000000000000000 R __ ksymtab _commit Creds
0000000000000000 r __ kecrctab_commit creds
0000000000000000 r __ kstrtab _commit creds

Can still be a useful source of information on-older-systems

Kernel Space Protections

SMEP: Supervisor Mode Execution Protection -

Introduced Iin Intel IvyBridge

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your own “get

root” code. -.
0x000000

Kernel

§ Malicious
Program

w w U‘

OxfFfffff

Sub

Kernel Space Protections
SMEP / SMAP

_“

Common Exploitation Technique: Supply your ownE
root” code.

get

0x000000

void get_r00t() {

commit_creds(prepare_kernel_cred(0)); Kernel
} # Memory
iInt main(int argc, char * argv) {

trigger_fp_overwrite(&get_r00t); 106_315B8E

)/.t.rigger fp use § Malicious

trigger_vuln_fp(); 200 3130 Program

// Kernel Executes get _r00t

}}.Now we have root
system(“/bin/sh”);

loc_31307D i ffffff

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your owné‘“get
root” code.
0x000000
void get_r00t() {
commit_creds(prepare_kernel_cred(0));
} # Memory

iInt main(int argc, char * argv) {

i.r.i991el'_fID_overwrite(&get_rOOt); Loc_3Teg

)/.t.riggerfpuse . | Malicious
trigger_vuln_fp(); - Program

/I Kernel Executes get_r00t() .
| Oxfffrfif

/l Now we have root
system(“/bin/sh”);

Kernel Space Protections
SMEP / SMAP

Common Exploitation Technique: Supply your owné‘“get
root” code.
0x000000
void get_r00t() {
commit_creds(prepare_kernel_cred(0));
} # Memory

iInt main(int argc, char * argv) {

i.r.i991el'_fID_overwrite(&get_rOOt); Loc_3Teg

)/.t.rigger fp use | Malicious
trigger_vuln_fp(); Program
Il Kernel Executes get_r00t()

/I Now we have root

} | loc_31307D ffffff

system(“/bin/sh”)

Kernel Space Protections
SMEP /SMAP

Common Exploitation Technique: Supply your own get
root” code.

onvw 0000
void get_r00t() {
commit_creds(prepare_kernel_cred(0)); Kernel
} # Memory
int main(int arge, char * argv) {

i.r.igger_fp_overwrite(&get_rOOt);

)/.t.rigger fp use | Malicious
trigger_vuin_fp(); Program
Il Kernel Executes get_r00t()

// .Now we have root -
tem(“/bin/sh”);
} system(“/bin/sh”) . ffffff

Kernel Space Protections
SMEP /SMAP

Common Exploitation Technique: Supply your own get
root” code.

<~wv 0000
void get_r00t() {

commit_creds(prepare_kernel_cred(0)); Kernel
} # Memory

iInt main(int argc, char * argv) {

trigger_fp_overwrite(&get_r00t);

)/.t.rigger fp use N i Malicious
trigger_vuln_fp(); o —— Program
Il Kernel Executes get_r00t()

// .Now we have root
system(“/bin/sh”); - OXFFFEFFFF

Kernel Space Protections

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”. :

SMEP/SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0.

SMAP works similarly, but for data access in general

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 07.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

Kernel Space Protections
SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
If the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use ROP, or somehow get executable code into
kernel memory.

Example

We'll walk through a short example of a backdoored LKM to
get a feel for dealing with the kernel.

Conclusion

Conclusion

Kernel Exploitation is weird, but extremely-powerful

As userland exploit-dev becomes more challenging and more
expensive, kernelspace is becoming a more attractive target.

Conclusion

Kernel Exploitation is weird, but extremely-powerful

As userland exploit-dev becomes more challenging and more
expensive, kernelspace is becoming a more attractive target.

A single bug can be used to bypass sandboxes, and gain root
privileges, which may otherwise be impossible

Conclusion

The book on Kernel Exploitation:

Copmailisdd Mgler el

A Guipe 10
¥ KERNEL E}EFLDITATIDN

Aftackmg the Core

/\

Mazsimiliana mu

