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THE W I L E Y  BICENTENNIAL-KNOWLEDGE FOR GENERATIONS 

ach generation has its unique needs and aspirations. When Charles Wiley first 
opened his small printing shop in lower Manhattan in 1807, it was a generation 
of boundless potential searching for an identity. And we were there, helping to 
define a new American literary tradition. Over half a century later, in the midst 
of the Second Industrial Revolution, it was a generation focused on building the 
future. Once again, we were there, supplying the critical scientific, technical, and 
engineering knowledge that helped frame the world. Throughout the 20th 
Century, and into the new millennium, nations began to reach out beyond their 
own borders and a new international community was born. Wiley was there, 
expanding its operations around the world to enable a global exchange of ideas, 
opinions, and know-how. 

For 200 years, Wiley has been an integral part of each generation’s journey, 
enabling the flow of information and understanding necessary to meet their needs 
and fulfill their aspirations. Today, bold new technologies are changing the way 
we live and learn. Wiley will be there, providing you the must-have knowledge 
you need to imagine new worlds, new possibilities, and new opportunities. 

Generations come and go, but you can always count on Wiley to provide you the 
knowledge you need, when and where you need it! 
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Preface 

To paraphrase Barbie, “cryptanalysis is hard” [6]. Unfortunately, many 
cryptanalysis papers seem to be written in their own impenetrable secret 
code, making the subject appear to be even more difficult than it really is. 

In this book, we strive to present applied cryptanalytic attacks in an acces- 
sible form. Here, we are focused on practical attacks that actually break real- 
world systems, not attacks that merely indicate some theoretical weakness 
in a cipher. Consequently, we consider real ciphers and, primarily, modern 
ciphers. Many attacks that satisfy our criteria are scattered throughout the 
literature.’ With a few notable exceptions, these papers require a Herculean 
effort to digest and understand. One of our goals is to lift this unintentional 
veil on the exciting and fascinating field of cryptanalysis. 

Most of the topics presented in this book require only a modest math- 
ematical background. Some of the public key topics are inherently more 
mathematical, but in every case we have strived to minimize the advanced 
mathematics. We also believe that we have provided enough background in- 
formation so that the book is essentially self-contained. Some of the more 
advanced mathematical topics are treated briefly in the Appendix. Any moti- 
vated upper-division undergraduate student-in any technical field of study- 
should be able to tackle this book. Some of the material is not easy, but those 
who persist will be rewarded with a solid understanding of cryptanalysis, as 
well as the knowledge, tools, and experience to confidently explore cutting- 
edge cryptanalytic topics. 

We have provided an extensive set of problems for each chapter. A few of 
these problems are relatively easy, but most range from moderate to some- 
what challenging. Generally, we have tried to avoid obvious problems of the 
“implement such-and-such attack” variety. Of course, it is useful and instruc- 
tive to implement an attack, but the problems are intended to reinforce and 
expand on material presented in the text, without placing an overwhelming 
burden on the reader. A fairly complete solutions manual is available to 
instructors directly froni your Wiley representative. 

’A large percentage of the cryptanalysis literature is informal in the sense that many 
papers never receive any formal peer review. Although the academic peer-review process 
suffers from a multitude of sins, no peer review is no better. 

xiii 



xiv PREFACE 

To really understand the material in this book, i t  is necessary to work a 
significant number of the problems. Cryptarialysis is definitely not a spectator 
sport. We believe that the computer is an essential cryptanalytic tool. It is 
riot coincidental that many of the homework problems require some computer 
programming. 

For the terminally cryptanalytically insane, we have created it collection 
of challenge problems. These problems, which are posted on the textbook 
website at 

http://cs.sjsu.edu/faculty/stamp/crypto/ 

consist primarily of cryptanalytic challenges based on the ciphers and attacks 
presented in the text. A few research-oriented problems are also included. 
Each problem carries a difficulty rating so that you will have some idea of 
what you might be getting into. For each challenge problem, a small prize2 is 
offered to the first solver. We promise to update the website as the challenge 
problems are solved. The website includes source code arid test vectors for 
many of the ciphers discussed here. In addition, a complete set of quality 
PowerPoint slides is available. 

The text is organized around four major themes, namely, classic ciphers 
(Chapters 1 and a ) ,  symmetric ciphers (Chapters 3 and 4), hash functions 
(Chapter 5 ) ,  and public key crypto (Chapters 6 and 7). The specific topics 
covered in each chapter are summarized below: 

Chapter Topics 
1. Classic Ciphers Pen-and-paper systems 
2. World War I1 Ciphers 
3 .  Stream Ciphers 

4. Block Ciphers 

5. Hash Functions 

6. Public Key Systems 

7. Public Key Attacks 

Enigma, Purple, Sigaba 
Shift registers, 
correlation at tacks, 
ORYX. RC4, PKZIP 
Block cipher modes, 
MAC, Hellman's TMTO, 
CMEA, Akelarre, FEAL 
HMAC, birthday attacks, 
Nostrasamus at tack, 
MD4, MD5 
Knapsack, Diffie-Hellman, 
Arithmetica, RSA 
Rabin, NTRU, EIGamal 
Factoring, discrete log, 
RSA timing attacks, 
RSA ditching attack 

Y - 
'The emphasis here is on '?,mall '' 



PREFACE xv 

The first author wrote Chapters 2 through 5 and 7, while the second 
author wrote the majority of Chapters 1 and 6. The first author extensively 
edited all chapters to give the book a more consistent “look and feel.” The 
first author did his best to resist including too many bad jokes, but some 
proved irresistible. Most of these have, mercifully, been relegated to footnotes. 

The majority of the book consists of a series of cryptanalytic vignettes, 
organized by topic. Chapters 3, 4, and 5 each begin with a relatively generic 
method of attack (correlation attacks, Hellman’s TMTO and birthday at- 
tacks, respectively). These attacks are interesting in their own right, but 
each also serves as an introduction to the type of cipher under consideration. 
Each of these chapters then segues into the cryptanalysis of specific ciphers. 

For public key crypto, the introductory material has been expanded to 
an entire chapter. In Chapter 6, several public key systems are introduced 
and discussed from the perspective of relatively straightforward attacks or 
implementation issues that can lead to weaknesses. Then selected public key 
attacks are covered in depth in Chapter 7. 

The chapters are highly independent of each other, as are many of the sec- 
tions within chapters. The most dependent chapters are 6 and 7, which cover 
public key crypto. In addition, some familiarity with hashing (Chapter 5) 
would be useful before diving into the public key material. The terminology 
and background covered in Chapter 1 is used throughout the text. Regardless 
of your background in cryptography, we recommend that you read Chapter 1 
first, since terminology is not consistent throughout the crypto world. Not 
only is crypto terminology inconsistent, but notation is even worse. Notation- 
wise, we have tried to be as internally consistent as possible. Consequently, 
our notation often differs from the original source. 

The first author’s information security textbook [142] covers four ma- 
jor topics, one of which is cryptography. The only significant overlap be- 
tween [142] and this book is Hellman’s time-memory trade-off attack, dis- 
cussed here in Section 4.4. A brief section on the knapsack attack is also 
included in both books; here, in Section 6.2. 

Finally, we apologize in advance for the inevitable “bugs” in this book. 
Any computer program of sufficient size has bugs and it is more difficult to 
debug a textbook than a program, since there is at least some hope of getting 
a program to misbehave during testing. There is no method to “exercise” a 
textbook other than to proofread it and to teach from it,-the more times the 
better. The first author has taught virtually all of the material in this text, 
and several careful proofreadings have been done. Nevertheless, it is a sure 
bet that errors remain. Please tell us of any bugs you find. We would also 
appreciate any other comments you have regarding this book. 

Mark Stamp 
Richard M,  Low 

San Jose State University 
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Chapter 1 

Classic Ciphers 

You are in a maze of twisty little passages, all alike. 
- Adventure 

1.1 Introduction 

Most of this chapter is devoted to introducing terminology and discussing a 
select few classic “pen and paper” ciphers. Our goal here is not to cover clas- 
sical cryptography in detail, since there are already many excellent sources of 
information on such ciphers. For example, Kahn’s history [74] has a general 
discussion of virtually every cipher developed prior to its original publica- 
tion date of 1967, Barr [7] presents a readable introduction to cryptography, 
Spillman [139] nicely covers the cryptanalysis of several classic cipher systems 
and Bauer [8] provides rigorous coverage of a large number of classical crypto 
topics. The ciphers we discuss in this chapter have been selected to  illustrate 
a few important points that arise in upcoming chapters. 

Even if you are familiar with classical cryptosystems, you should read 
the next two sections where terminology is discussed, since the terminology 
in cryptography is not always consistent. In addition, the material in Sec- 
tions 1.4.3 and 1.4.4 is directly referenced in upcoming chapters. 

1.2 Good Guys and Bad Guys 

In cryptography, it is traditional that Alice and Bob are the good guys who 
are trying to communicate securely over an insecure channel. We employ 
Trudy (the “intruder”) as our generic bad guy. Some books have a whole 
cast of bad guys with the name indicating the particular evil activity (Eve, 
the eavesdropper, for example), but we use Trudy as our all-purpose bad 
“guy” . 

1 
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Since this is a cryptanalysis book, we often play the role of Trudy. Trudy 
is an inherently more interesting character than boring old Alice and Bob, and 
this is part of what makes cryptanalysis so much more fun than cryptography. 
Trudy does not have to play by any preconceived set of rules. However, it 
is important to remember that attacks on real systems are almost certainly 
illegal, so do not attempt to play Trudy in the real world. 

1.3 Terminology 

Oryptology is the art and science of making and breaking “secret codes.” 
Cryptology can be subdivided irito cryptography (the art and science of mak- 
ing secret codes) and cryptanalysis  (the breaking of secret codes). The secret 
codes themselves are known as ciphers  or cryptosystems.  In this book, we are 
focused on cryptanalysis, but many topics in cryptography naturally arise. 

It is common practice to use the term cryptography as a synonym for 
cryptology, and we generally follow this practice. In fact, we often use crypto  
as shorthand for cryptology, cryptography, cryptanalysis, or any variety of 
other crypto-related topics. The precise meaning should be clear from the 
context. 

The original readable message is the plaintext ,  while the ciphertext  is the 
unreadable text that results from encrypt ing the plaintext. Decrypt ion  is the 
inverse process, where the ciphertext is converted into plaintext. 

A k e y  is used to configure a cryptosystem. All classic systems are s y m -  
m e t r i c  c iphers ,  meaning that the same key is used to encrypt as to decrypt. 
In so-called public  k e y  cryptography the encryption and decryption keys are 
different, which means that the encryption key can be be made public, but 
the decryption key must remain private. We cover public key cryptosystems 
in Chapters 6 and 7, while all of the remaining chapters--including the re- 
maining sections of this chapter~---deal with symmetric ciphers. 

Note that decryption is distinct from cryptanalysis, since cryptanalysis 
implies an attack of some sort has been used to read the messages, while 
decryption implies that the plaintext has been retrieved using the key by the 
expectcd process. Of course, if Trudy recovers the key via cryptanalysis, then 
she can simply decrypt a particular ciphertext. 

The typical encryption and decryption process is illustrated in Figure 1.1, 
where Pi is the ith unit of plaintext (which may be a bit, a letter, a word, or 
a la.rger block, depending on the particular cipher), Ci is the corresponding 
unit of ciphertext, and the squiggly line represenh the transmission of the 
ciphertext over an insecure channel. 

In a ciphertext  
only attack, the attacker attempts to recover the key or plaintext from the 
ciphertext. In particular, in a ciphertext-only attack, the cryptanalyst does 

There are several generic types of attacks on ciphers. 
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I w d ~ p  plaintext plaintext Pi encryption 
algorithm 

I 
ciphertext 

Figure 1.1: Encryption and decryption. 

not know any of the underlying plaintext. A basic assumption is that the 
ciphertext is always available to an attacker. After all‘ if the ciphertext is not 
available to the attacker, why bother to encrypt? 

In a known plaintext attack, Trudy has the ciphertext as well as some of 
the corresponding plaintext. This might give the attacker some advantage 
over the ciphertext only scenario-certainly the attacker is no worse off with 
known plaintext. If Trudy knows all of the plaintext, there is probably not 
much point in bothering to attack the system, so the implicit assumption is 
that the amount of known plaintext is relatively limited. 

As the name implies, in a chosen plaintext attack, an adversary can choose 
the plaintext and then obtain the corresponding ciphertext. This can only 
help the attacker, as compared to a known plaintext scenario. Similarly, in 
a chosen ciphertext attack, the cryptanalyst chooses ciphertext and gets to 
see the corresponding plaintext. There are also related key attacks, where the 
attacker can break the system if two keys are used that happen to be related 
in some very special way. While this may seem somewhat esoteric, we will 
see an example of a real-world related key attack in Chapter 3. 

In most cases, recovering the key is Trudy’s ultimate goal, but there are 
attacks that recover the plaintext without revealing the key. A cipher is 
generally not considered secure unless it is secure against all plausible attacks. 
Cryptographers are, by nature, a paranoid bunch, so “plausible” is usually 
defined very broadly. 

Kerckhoffs ’ Principle is one of the fundamental concepts underlying cryp- 
tography. This principle states that the strength of a cryptosystem depends 
only on the key and, in particular, the security does not depend on keeping 
the encryption algorithm secret. This principle is generally construed even 
more broadly to imply that the attacker knows the protocols and overall sys- 
tem in which a cryptosystem is used. Adherence to Kerckhoffs’ Principle 
should ensure that the security of a cryptosystem does not depend on the 
much-dreaded “security by obscurity”, since the security does not depend 
on a secret algorithm. Unfortunately, there are many real-world pressures 
that can lead to violations of Kerckhoffs’ Principle, usually with disastrous 
consequences. 
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Why do we insist on Kerckhoffs’ Principle? After all, the attacker’s job 
certainly must be more difficult if the crypto algorithm is unknown. In part, 
the answer is that Kerckhoffs’ Principle is just a codification of reality- 
algorithms never remain secret for long so it is far better to find flaws before- 
hand, rather than after an algorithm is embedded in millions of applications 
dispersed across the globe. It also happens to be true that designing a secure 
cipher is not easy, and it is made all the more difficult when efficiency is an 
issue, which is usually the case. An extensive peer review process is essential 
before any algorithm can be considered sufficiently secure for use. We will 
see several real-world examples that illustrate the wisdom of Kerckhoffs in 
upcoming chapters. 

Suppose that Alice encrypts a message and sends the ciphertext to Bob. 
Figure 1.2 illustrates what information is available to Alice, Bob and the 
attacker, Trudy. At a minimum we assume that Trudy has access to the 
ciphertext and, by Kerckhoffs’ Principle, she also knows how the crypto al- 
gorithm works. In some cases, Trudy may have additional information, such 
as known plaintext, chosen plaintext, etc. 

, ,  I .  .~.................................................. .......................... . 

Figure 1.2: Who knows what. 

In the next section we highlight a few selected classic crypto topics. We 
also discuss some important cryptanalytic principles arid we provide details 
on a few specific ciphers that are relevant to later chapters. 

1.4 Selected Classic Crypto Topics 

If you have done much traveling, you know that it is almost impossible to 
see everything, and if you try, you are bound to regret it. It is usually far 
more productive to avoid the “tourist death march” and instead focus on a 
few specific interesting locations. We will take a similar approach here as we 
peruse selected classic crypto topics, stopping at a few points of interest, but 
making no attempt to cover every possible topic along the way. Since our 
focus in the remainder of the book is cryptanalysis, we emphasize attacks on 
the classic ciphers that we cover. 
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Since ancient times, cryptography has been used for military and diplo- 
matic purposes. In the remainder of this chapter we consider a few specific 
examples of classic ciphers. These ciphers have been carefully selected to il- 
lustrate important topics that arise in the study of modern ciphers presented 
in subsequent chapters. 

The history of crypto is itself a fascinating topic, but it is not our focus 
here. For more crypto history, a good crypto timeline can be found at [lo41 
and there is always Kahn’s book [74]. For a more in-depth technical look at 
classic ciphers, see Bauer’s fine book [8]. 

1.4.1 Transposition Ciphers 

Transposition ciphers jumble the letters of the message in a way that is de- 
signed to confuse the attacker, but can be unjumbled by the intended recipi- 
ent. The concept of transposition is an important one and is widely used in 
the design of modern ciphers, as will be seen in subsequent chapters. Note 
that the key must provide sufficient information to unscramble the ciphertext. 

Scytale 

One of the earliest recorded uses of cryptography was the Spartan scytale 
(circa 500 B.C.). A thin strip of parchment was wrapped helically around a 
cylindrical rod and the message was written across the rod, with each letter 
on a successive turn of the parchment. The strip was unwound and delivered 
to the receiver. The message could then be decrypted with the use of an 
identical cylindrical rod. To anyone who intercepted the message, and did 
not understand the encryption technique, the message would appear to be a 
jumble of letters. A clever cryptanalyst with access to a number of rods of 
various diameters will soon recover the plaintext. 

For the scytale cipher, which is an example of a transposition cipher, the 
key is the rod (or its diameter). This is a very weak cipher since the system 
could be easily broken by anyone who understands the encryption method. 

Columnar Transposition 

Suppose we have plaintext SEETHELIGHT and we want to encrypt this using 
a columnar transposition cipher. We first put the plaintext into the rows of 
an array of some given dimension. Then we read the ciphertext out of the 
columns. The key consists of the the number of columns in the array. For 
example, suppose we choose the key to be four, which means that we write 
the plaintext in four columns as 

S E E T  
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where the final X is used as to fill out the array. The ciphertext is then read 
from the columns, which in this case yields SHGEEHELTTIX. The intended 
recipient, who knows the number of columns, can put the ciphertext into an 
appropriate-sized array and read the plaintext out from the rows. 

Not surprisingly, a columnar transposition is not particularly strong. To 
perform a ciphertext only attack on this cipher, we simply need to test all 
possible decrypts using c columns, where c is a divisor of the number of 
characters in the ciphertext. 

Keyword Columnar Transposition 

The columnar transposition cipher can be strengthened by using a keyword, 
where the keyword determines the order in which the columns of ciphertext 
are transcribed. We refer to this as a keyword columnar transposition cipher. 
For example, consider encrypting the plaintext CRYPTOISFUN using a keyword 
columnar transposition cipher with keyword MATH, again using four columns. 
In this case, we get the array 

M A T H  

The ciphertext is read from the columns in alphabetical order (as determined 
by the keyword), so that, in this example, the ciphertext is ROUPSXCTFYIN. 

Is it possible to conduct a ciphertext-only attack on a keyword columnar 
transposition cipher? It is certainly not as straightforward as attacking a 
non-keyword columnar cipher. Suppose we obtain the ciphertext 

VOESA IVENE MRTNL EANGE WTNIM HTMEE ADLTR NISHO DWOEH 

which we believe was encrypted using a keyword columnar transposition. 
Our goal is to recover the key and the plaintext. First, note that there are 45 
letters in the ciphertext. Assuming the array is not a single column or row, 
the array could have any of the following dimensions: 9 x 5. 5 x 9. 15 x 3 
or 3 x 15. Suppose that we first try a 9 x 5 array. Then we have the ciphertext 
array in Table 1.1. 

We focus our attention on the top row of the array in Table 1.1. If we 
permute the columns as shown in Table 1.2, we see the word GIVE in the first 
row and we see words or partial words in the other rows. Therefore, we have 
almost certainly recovered the key. 

This method is somewhat ad hoc, but the process could be automated, 
provided we can automatically recognize likely plaintexts. In this example, 
we have recovered the encryption key 24013 and the plaintext is 

GIVE ME SOMEWHERE TO STAND AND I WILL MOVE THE EARTH. 
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Table 1.1: Ciphertext Array 

0 1 2 3 4  
V E G M I  
O M E E S  
E R W E H  
S T T A O  
A N N D D  
I L I L W  
V E M T O  
E A H R E  
N N T N H  

Table 1.2: Permuted Ciphertext Array 

G I V E M  
E S O M E  
W H E R E  
T O S T A  
N D A N D  
I W I L L  
M O V E T  
H E E A R  
T H N N N  

There are many ways to systematically mix the letters of the plaintext. 
For example, we can strengthen the columnar transposition cipher by allowing 
the permutation of columns and rows. Since two transpositions are involved, 
this is known as a double transposition cipher, which we briefly describe next. 

Double Transposition Cipher 

To encrypt with a double transposition cipher, we first write the plaintext 
into an array of a given size and then permute the rows and columns accord- 
ing to specified permutations. For example, suppose we write the plaintext 
ATTACKATDAWN into a 3 x 4 array: 
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Now if we transpose the rows according to (0,1,2) + (2,1,0) and then trans- 
pose the columns according to (0,1,2,3) --j (3 ,1 ,0,2) ,  we obtain 

A T T A  D A W N  N A D W  

[: :: :: ;I+ :: ; :I-[: :: : :I. 
The ciphertext is read directly from the final array: 

NADWTKCAATAT. 

For the double t,ransposition, the key consists of the size of the matrix and 
the row and column permutations. The recipient who knows the key can 
simply put the ciphertext into the appropriate sized matrix and undo the 
permutations to recover the plaintext. 

If Trudy happens to know the size of the matrix used in a double transpo- 
sition, she can insert the ciphertext into a matrix of the appropriate size. She 
can then try to unscramble the columns to reveal words (or partial words). 
Once the column transposition has been undone, she can easily unscramble 
the rows; see Problem 12 for an example. This attack illustrates the fun- 
damental principle of divide and conquer. That is, Trudy can recover the 
double transposition key in parts, instead of attacking the entire key all at 
once. There are many exarnples of divide and conquer attacks throughout 
the remainder of this book. 

in spite of the inherent divide and conquer attack, the double transposi- 
tion cipher is relatively strong---at least in comparison to many other classic 
cipher. The interested reader is directed to [88] for a thorough cryptanalysis 
of the double transposition. 

1.4.2 Substitution Ciphers 

Like transposition, substitution is a crucial concept in the design of modern 
ciphers. in fact, Shannon’s [133] two fundamental principles for the design 
of symmetric ciphers are confusion and diflusion, which, roughly, correspond 
to the classic concepts of substitution and transposition, respectively. These 
are still the guiding principles in the design of symmetric ciphers. 

In this section we discuss several classic substitution ciphers. We highlight, 
some of the clever techniques that can be brought to bear to attack such 
ciphers. 

Caesar’s Cipher 

in 50 R.C., Gaius Julius Caesar described the use of a specific cipher that, 
goes by the name of Caesar’s c2pher.l In Caesar’s cipher, encryption is ac- 

‘Historians generally agree that the Caesar’s cipher was named after the Roman dictator. 
not the salad. 
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complished by replacing each plaintext letter with its corresponding “shift- 
by-three” letter, that is, A is replaced by D, B is replaced by E, C is replaced 
by F, and so on. At the end of the alphabet, a wrap around occurs, with X re- 
placed by A, Y replaced by B and Z replaced by C. Decryption is accomplished 
by replacing each ciphertext letter with its corresponding left-shift-by-three 
letter, again, taking the wrap around into account. 

Suppose we assign numerical values 0 ,1 , .  . . ,25 to the letters A, B, . . . , Z, 
respectively, Let pi  be the ith plaintext letter of a given message, and ci the 
corresponding ith ciphertext letter. Then Caesar’s cipher can be mathemat- 
ically stated as ci = pi + 3 (mod 26) and, therefore, pi = ci - 3 (mod 26). 
In Caesar’s cipher, the key is “3”,  which is not very secure, since there is 
only one key-anyone who knows that the Caesar’s cipher is being used can 
immediately decrypt the message. 

Simple Substitution 

A simple substitution (or mono-alphabetic substitution) cipher is a general- 
ization of the Caesar’s cipher where the key can be any permutation of the 
alphabet. For the simple substitution, there are 26! = 288 keys available. 
This is too many keys for any attacker to simply try them all, but even with 
this huge number of keys, the simple substitution cipher is insecure. Before 
we discuss the attack on the simple substitution, we consider a few special 
types of related ciphers that have been used in the past. 

Nomenclator 

Circa 1400, a type of cipher known as a nomenclator was invented and came 
into widespread use by trading states in Europe and by the Catholic Church. 
A nomenclator is a book that describes how letters, syllables, and words are 
converted into ciphertext and vice versa. In effect, this is a hybrid between 
a simple substitution and a codebook cipher (described below), and it has 
a larger number of possible keys than a simple substitution cipher. All else 
being equal (which it never is), this should make the cryptanalyst’s job more 
difficult. 

Poly-alphabetic Substitution 

During the Renaissance, the first poly-alphabetic substitution cipher was in- 
vented by one Leon Battista Alberti (1404-1472). Such a cipher is essentially 
a variable simple substitution cipher, that is, a different substitution alpha- 
bet is used for different parts of the message. In Alberti’s cipher, this was 
accomplished by use of a device that included an inner and outer cipher wheel 
with the alphabet written in particular ways on each wheel. The inner wheel 
freely rotated allowing the two alphabets to be aligned in any fashion, with 
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each alignment generating a different (simple) substitution. As the message 
was encrypted, differing substitution alphabets could be used, as determined 
by both parties in advance, or as specified within the message itself. 

In his book Traict6 des Chaffres, Blaise de Vigenkre (1585) discusses a 
poly-alphabetic substitution that uses a 26 x 26 rectangular array of letters. 
The first row of the array is A ,  B, C, . . . , Z, and each succeeding row is a cyclic 
left shift of the preceding one. A keyword can then be used to determine 
which of the cipher alphabets to use at each position in the text. In this 
way, all “shift-by-n” simple substitutions are readily available for use. The 
Vigenkre cipher, and its cryptanalysis, is discussed below. 

Affine Cipher 

An ajJine cipher is a simple substitution where ci = api + b (mod 26). Here, 
the constants a and b are integers in the range 0 to 25 (as are p ,  and ci). 
To decrypt uniquely--always a nice feature for a cipher system--we must 
have gcd(a, 26) = 1. Consequently, there are 26.4(26) = 312 affine ciphers for 
the English language, where 4 is the Euler-phi function (see the Appendix for 
a definition of the 4 function). The decryption function for the affine cipher 
is pi = aP1(ci - b)  (mod 26), where aa-l = 1 (mod 26), that is, u p 1  is the 
multiplicative inverse of a, modulo 26. 

Affine ciphers are weak for several reasons, but the most obvious problem 
is that they have a small keyspace. A ciphertext only attack can be performed 
by conducting a brute force search of all 312 possible key pairs ( a ,  b) .  This 
attack is trivial, provided we can recognize the plaintext when we see it (or, 
better yet, automatically test for it). 

Simple Substitution Cryptanalysis 

Trying all possible keys is known as an exhaustive key search, and this attack 
is always an option for Trudy. If there are N possible keys, then Trudy will, 
on average, need to try about half of these, that is; N/2 of the keys, before she 
can expect to find the correct key. Therefore, the first rule of cryptography 
is that any cipher must have a large enough keyspace so that an exhaustive 
search is impractical. However, a large keyspace does not ensure that a cipher 
is secure. To see that this is the case, we next consider an attack that will 
work against any simple substitution cipher and, in the general case, requires 
far less work than an exhaustive key search. This attack relies on the fact 
that statistical information that is present in the plaintext language “leaks” 
through a simple substitution. 

Suppose we have a reasonably large ciphertext message generated by a 
simple substitution, and we know that the underlying plaintext is English. 
Consider the English letter frequency information in Table 1.3, which was 
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compiled from a 7834-letter sample of written English. By simply computing 
letter frequency counts on our ciphertext, we can make educated guesses 
as to which plaintext letters correspond to some of the ciphertext letters. 
For example, the most common ciphertext letter probably corresponds to 
plaintext E. We can obtain additional statistical information by making use 
of digraphs (pairs of letters) and common trigraphs (triples). This type of 
statistical attack on a simple substitution, is very effective. After a few letters 
have been guessed correctly, partial words will start to appear and the cipher 
should then quickly unravel. 

Table 1.3: English Letter Frequencies as Percentages 

Relative 1 1  Relative 

B 1.442 
C 2.527 
D 4.800 
E 12.15 
F 2.132 
G 2.323 
H 6.025 
I 6.485 
J 0.102 
K 0.689 
L 4.008 
M 2.566 

N 6.778 
0 7.493 
P 1.991 
4 0.077 
R 6.063 
S 6.319 
T 8.999 
U 2.783 
V 0.996 
W 2.464 
X 0.204 
Y 2.157 

0.025 

Vigenere Cipher 

Recall that a poly-alphabetic substitution cipher uses multiple simple substi- 
tutions to encrypt a message. The Vigenkre cipher is a classic poly-alphabetic 
substitution cipher. The World War I1 cipher machines discussed in Chap- 
ter 2 are more recent examples of poly-alphabetic substitutions. 

In the Vigenkre cipher, a key of the form K = (ko, k l ; .  . . , k n - l ) ,  where 
each ki E {0,1, .  . . ,25}, is used to encipher the plaintext. Here, each ki 

represents a particular shift of the alphabet. To encrypt a message, 

CZ = Pi + ki (mod n) (mod 26) 

and to decrypt 
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For example, suppose K = (12,0,19,7) ,  which corresponds to the keyword 
MATH (since M corresponds to a shift of 12, A corresponds to a shift of 0, and 
so on). Using this keyword, the the plaintext SECRETMESSAGE is encrypted 
as EEVYQTFLESTNQ. 

Next, we cryptanalyze the Vigenkre cipher. But first, note that a poly- 
alphabetic substitution (such as the VigenBre cipher) does not preserve plain- 
text letter frequencies to the same degree as a mono-alphabetic substitution. 
Furthermore, if the number of alphabets is large relative to the message size, 
the plaintext letter frequencies will not be preserved at all. Therefore, the 
generic simple substitution attack discussed above will not work on a poly- 
alphabetic substitution. 

However, the VigenBre cipher is vulnerable to a slightly more sophisticated 
statistical attack. To see how this works, first consider a VigenBre cipher with 
a small keyword. Suppose that the following ciphertext was created using a 
VigenBre cipher with a three-lettered keyword: 

RLWRV MRLAQ EDUEQ QWGKI LFMFE XZYXA QXGJH FMXKM QWRLA 
LKLFE LGWCL SOLMX RLWPI OCVWL SKNIS IMFES JUVAR MFEXZ 
CVWUS MJHTC RGRVM RLSZS MREFW XZGRY RLWPI OMYDB SFJCT 
CAZYX AQ. 

(1.1) 

To recover the key and decrypt the message, we can make use of the fact that 
the ciphertext is composed of three simple substitutions. To accomplish t,his, 
we tabulate the letter frequencies for the sets 

SO = {co,c:~, cg,. . . }, 5�1 = {Q, c 4 , ~ 7 , .  . . }, and 5�2 = {c2, cg, ex.. . . }. 

where c, is the i th ciphertext letter. 
Tables 1.4, 1.5, and 1.6, respectively. 

Doing so, we obtain the results in 

Table 1.4: Letter Frcquericics in So 

Letter I R  Q U K F E Y J M L G P C N I Z W B  
I 

Freauencv110 4 3 1 2  3 2 3 3 4 2 2 4 1 I 1  1 1 

Table 1.5: Letter Frequencies in S1 

Letter IL v E w I M x Q K S H R Y C A 
Frequency 16 5 4 2 4 4 7 1 1 6 1 2 1 1 1 

From the So ciphertext in Table 1.4, we might reasonably guess that 
ciphertext R corresponds to plaintext E. T, N, 0, R, I. A or S. which gives 11s 
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Letter 
Frequency 

Table 1.6: Letter Frequencies in S2 

W M A D Q G L F Z K C 0 X S J T Y 
6 4 5 2 1 3  3 5 4 2 1 3  1 2  1 2  1 

candidate values for ko, namely ko E {13,24,4,3,0,9,17,25}. Similarly, for 
set S1, ciphertext X niight correspond to plaintext E, T, N, 0, R, I, A or S, 
from which we obtain likely values for k l ,  and from set Sz, ciphertext W 
likely correspond to plaintext E, T, N, 0, R, I, A or S. The corresponding likely 
keyword letters are tabulated in Table 1.7. 

Table 1.7: Likely Keyword Letters 

ko k1 k2 
N T S  
Y E D  
E K J  
D J I  
A G F  
J P 0 
R X W  
Z F E  

The conibinations of likely keyword letters in Table 1.7 yield 83 = 2’ 
putative keywords. By testing each of these putative keyword on the first 
few letters of the ciphertext, we can easily determine which, if any, is the 
actual keyword. For this example, we find that (ko ,  k l ,  k2) = (24,4,18), 
which corresponds to  YES, and the original plaintext is 

THE TRUTH IS ALWAYS SOMETHING THAT IS TOLD, NOT 
SOMETHING THAT IS KNOWN. IF THERE WERE NO SPEAKING 
OR WRITING, THERE WOULD BE NO TRUTH ABOUT ANYTHING. 
THERE WOULD ONLY BE WHAT IS. 

This attack provides a significant shortcut, as conipared to  trying all possi- 
ble 263 M 214 keywords. 

Knowing the length of the keyword used in a Vigenkre cipher helps greatly 
in the cryptanalysis. If the keyword is known, and the message is long enough, 
we can simply perform letter frequency counts on the associated sets of ci- 
phertext to  begin solving for the plaintext. However, it is not so obvious 
how to determine the length of an unknown keyword. Next, we consider two 
methods for approximating the length of the keyword in a Vigenhre cipher. 
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Friederich W. Kasiski (1805-1881) was a major in the East Prussian in- 
fantry regiment and the author of the cryptologic text Die Geheimschriflen 
und die Dechiger-kunst. Kasiski developed a test (amazingly, known as the 
Kasiski Test), that can sonietimes be used to find the length of a keyword 
used in a cipher such as the Vigenkre. It relies on the occasional coincidental 
alignment of letter groups in plaintext with the keyword. To attack a periodic 
cipher using the Kasiski Test, we find repeated letter groups in the ciphertext 
arid tabulate the separations between them. The greatest common divisor of 
these separations (or a divisor of it) gives a possible length for the keyword. 

For example, suppose we encrypt the plaintext 

THECHILDISFATHEROFTHEMAN 

with a Vigenkre cipher using the keyword POETRY. The resulting ciphertest is 

IVIVYGARMLMYIVIKFDIVIFRL. 

Notice that the second Occurrence of the ciphertext letters IVI begins ex- 
actly 12 letters after the first, and the third occurrence of IVI occurs exactly 
six letters after the second. Therefore, it is likely that the length of the 
keyword is a divisor of six. In this case, the keyword length is exactly six. 

Index of Coincidence 

W-hile working at the Riverbank Laboratory, William F. Friedman (1891L 
1969) developed the index of coincidence. For a given ciphertext, the index 
of coincidence I is defined to be the probability that two randomly selected 
letters in the ciphertext represent, t.he same plaintext symbol. 

For a given ciphertext, let no, 121, .  . . ,1225 be the respective letter counts 
of A ,  B, C,  . . . , Z in the ciphertext, and set 71 = n o  + 111 + . . . + r125. Then, the 
index of coincidence can be computed as 

To see why the index of coincidence gives us useful information, first note 
that the empirical probability of randomly selecting two identical letters from 
a large English plaintext is 

25 

1=0 

where po is the probability of selecting an A, p l  is the probability of selecting 
a B, and so on, and the values of p ,  are given in Table 1.3. This implies that 
an (English) ciphertext having an index of coincidence I x 0.065 is probably 
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associated with a mono-alphabetic substitution cipher, since this statistic will 
not change if the letters are simply relabeled (which is the effect of encrypting 
with a simple substitution). 

The longer and more random a Vigenkre cipher keyword is, the more 
evenly the letters are distributed throughout the ciphertext. With a very 
long and very random keyword, we would expect to find 

I 26 (4) 2 1  = E 0.03846. 

Therefore, a ciphertext having I E 0.03846 could be associated with a poly- 
alphabetic cipher using a large keyword. Note that for any English ciphertext, 
the index of coincidence I must satisfy 0.03846 5 I 5  0.065. 

The question remains as to how to determine the length of the keyword 
of a Vigenkre cipher using the index of coincidence. The main weakness of 
the Vigenkre (or any similar periodic cipher) is that two identical charac- 
ters occurring a distance apart that is a multiple of the key length will be 
encrypted identically. In such cryptosystems, the key length k can be ap- 
proximated by a function involving the index of coincidence I and the length 
of the ciphertext R. The following example illustrates this technique. 

Suppose an English plaintext containing n letters is encrypted using a 
VigenBre cipher, with a keyword of length k ,  where, for simplicity, we as- 
sume R is a multiple of k .  Now suppose that we arrange the ciphertext 
letters into a rectangular array of n / k  rows and k columns, from left to right, 
top to bottom. If we select two letters from different columns in the array, 
this would be similar to choosing from a collection of letters that is uniformly 
distributed, since the keyword is more-or-less “random”. In this case, the 
portion of pairs of identical letters is, approximately, 

n2(k  - 1) 

2k . 
0.03846 (i) (:) = 0.03846 

On the other hand, if the two selected letters are from the same column, 
this would correspond to choosing from ciphertext having a symbol distribu- 
tion similar to printed English plaintext, since, in effect, a simple substitution 
is applied to each column. In this case, the portion of pairs of identical letters 
is approximately 

n 

0.065 (5) k = 0.065 (f) (f - 1) k = 0.065 
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Therefore, the index of coincidence satisfies 

n ‘ ( k - 1 )  0.03846 2k: + 0.065 (w) 
I %  

(3 
O.O3846n(k - 1) + (0.065)(n - k )  

(1.3) 
- - 

k ( n  - 1) 

The attacker, Trudy, does not know k ,  but she can solve for k in (1.3) to 

0.02654n 
(0.065 - I )  + n ( I  - 0.03846) ‘ 

obtain 

k =  (1.4) 

Then given n and I ,  which are easily computed from the ciphertext, Trudy 
can approximate k ,  the number of letters in the keyword of the underlying 
Vigenkre cipher. 

The index of coincidence was a cryptologic breakthrough, since it can be 
used to gain information about poly-alphabetic substitution ciphers. Fried- 
man’s work on the index of coincidence was one of his most important contri- 
butions to cryptology, and it provided invaluable information to cryptanalysts 
during WWII, where poly-alphabetic ciphers played a major role. 

Hill Cipher 

As a final example of a substitution cipher, we consider the Hill cipher, which 
was introduced by mathematician Lester Hill in 1929 [67]. The Hill cipher 
is interesting since it is a pre-modern block cipher. The idea behind the Hill 
cipher is to create a substitution cipher with an extremely large “alphabet”. 
Such a system is more resilient to cryptanalysis that relies on letter frequency 
counts and statistical analysis of the plaintext language. However, the cipher 
is linear which makes i t  vulnerable to a relatively straightforward known 
plaintext attack. The description of the Hill cipher requires some elementary 
linear algebra; see the Appendix for the necessary background information. 

Suppose that Alice wants to send a message to Bob and they have decided 
to use the Hill cipher. First, the plaintext is divided into blocks po,pl,pz, . . ., 
each consisting of n letters. Alice then chooses an ri x n invertible matrix A, 
with the entries reduced modulo 26, which acts as the key. Encryption is 
accomplished by computing the ciphertext as ci = Api (mod 26) for each 
plaintext block pi. Bob decrypts the message by computing A-lci (mod 26), 
for each ciphertext block c i ,  where A-’ is the inverse of A, modulo 26. 

For example, suppose Alice wants t,o send the plaintext MEETMEHERE, using 
the encryption matrix 

A = [:? y ]  
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Converting letters to  numbers, Alice finds 

MEETMEHERE = (12,4,4,19,12,4,7,4,17,4). 

Next, she divides the plaintext into blocks of length two and then represents 
each block as a column vector, which yields 

To encrypt, Alice computes ci = Api (mod 26) for each column vector p i .  
In this example, the resulting ciphertext is 

co = [t2] , c1 = r;] , c2 = [;2] , c3 = [;4 , c4 = [;;I 
Converting into letters, we have 

(4,22,23,9,4,22,24,19,10,25) = EWXJEWYTKZ, 

which Alice sends to Bob. When Bob receives the ciphertext, he breaks it into 
blocks ci of length two and treats these as column vectors. He then decrypts 
the message by computing pi = A-lci (mod 26) for each ciphertext block ci .  

The Hill cipher, with an invertible matrix A (mod 26) and block length n, 
can be viewed as a substitution cipher utilizing an alphabet of 26n possible 
“letters” and the expected letter frequency distribution in the ciphertext is 
far more uniform than that of the plaintext. This makes a ciphertext only 
attack generally impractical. However, the Hill cipher is highly vulnerable to 
a known plaintext attack. 

Suppose that Trudy suspects Alice of using a Hill cipher with an n x n 
encryption matrix A.  Further, suppose that Trudy can obtain ciphertext 
blocks c i ,  for i = 0,1 , .  . . , n - 1, where each block is of length n, as well as 
the corresponding plaintext blocks, that is, pi, for i = 0,1 , .  . . , n - 1. Then 
Trudy may be able to  recover t,he key A as follows: Let P and C be the n x n 
matrices whose columns are formed by the plaintext pi  and ciphertext ci, 
respectively. Then A P  = C and if it is the case that gcd(det(P),26) = 1, 
the matrix P-’ (mod 26) exists. If the inverse matrix exists, Trudy can 
compute P-l and from P-’ she can determine A via A = CP-l .  Once 
Trudy finds A ,  the decryption matrix A-’ is easily calculated. 

The Hill cipher is an example of a linear cipher. The linearity of the Hill 
cipher effectively creates a large number of substitutions, which is desirable. 
However, the linear structure can be exploited, since linear equations are easy 
to solve. The lesson here is that a cipher must have some nonlinear compo- 
nent. However, linear components are useful and, in fact, modern ciphers 
combine both linearit,y and nonlinearity. In Shannon’s terminology [ 1331, lin- 
earity provides an effective method to increase diffusion while nonlinearity is 
essential for confusion. 
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Letter 
Binary 

1.4.3 One-Time Pad 

I11 1917, Gilbert Vernam and Joseph Mauborgne invented a cipher system 
which would eventually become known as the one-time pad. When correctly 
used, this system is invulnerable to a ciphertext only attack. This is the only 
real-world cipher that is provably secure. 

Suppose Alice wants to send a message to Bob and she wants to encrypt 
her message using a one-time pad. Alice first converts her plaintext message P 
into binary. She then generates a random binary key K of the same length 
as P.  Encryption is accomplished by adding K to P ,  bit by bit, modulo 2,  
to obtain the ciphertext C. That is, C = P @ K ,  where “@” is XOR. 

To recover the plaintext P from the ciphertext C, Bob, knowing the key K ,  
computes C @ K = ( P  @ K )  @ K = P.  For example, suppose P = 01001100 
and K = 11010110. Then 

C A T D 0 G E N 
000 001 010 100 011 101 110 111 

c = P CB K = 01001100 CE 11010110 = 10011010 

and P can be recovered from C via 

P = c @ K = 10011010 CB 11010110 = 01001100. 

The one-time pad is immune to a ciphertext only attack, since the ci- 
phertext yields no information about the plaintext, other than its length. To 
see why this is true, consider the eight-letter alphabet in Table 1.8, with the 
given binary encodings. 

The plaintext message CAT is encoded as 000 001 010. Suppose the 
key K = 110 100 001 is used for encryption. Then the ciphertext is given 
by C = 110 101 111 which corresponds to EGN. Now, suppose Trudy inter- 
cepts C and she guesses the putative key K’ = 010 110 010. Using K’, Trudy 
computes the putative plaintext 

P’ = c 69 K’ = 110 101 111 @ 010 110 010 = 100 011 101 

which corresponds to the message DOG. Based on the ciphertext and the pu- 
tative plaintext, Trudy has no way to judge whether the message DOG is any 
more likely than the message CAT, or any other three letter message that car1 
be spelled from the eight letters in Table 1.8. That is, “decrypting” C with 
any one of the possible 83 = 512 keys gives one of the 512 possible plaintext 
messages and the ciphertext itself gives no hint as to which of these is correct. 
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The “one-time” in the one-time pad is crucial. If a key K is used more 
than once, then the one-time pad (which is, technically, no longer a one-time 
pad) is subject to an attack. Different messages encrypted with the same key 
are said to be in depth. 

Suppose that plaintext messages Po and PI are in depth, that is, both 
are encrypted with a one-time pad using the same key I(, yielding cipher- 
texts Co and C1, respectively. Then if Trudy obtains both ciphertexts, she 
can compute 

that is, Trudy can obtain the XOR of the two plaintexts. It might then 
be possible for Trudy to “peel apart” these two messages, depending on the 
properties of the plaintext. The fundamental issue here is that the attacker 
can, in effect, use one of the messages as a check on any guess for the other 
message (or the key). Consequently, the ciphertext now provides information 
about the underlying plaintext and the security can no longer be assured. 
The problem only gets worse (or, from Trudy’s perspective, better) the more 
the one-time pad is reused. 

An obvious practical problem with the one-time pad is that a key having 
the same length as the plaintext must be securely transmitted to the recipient, 
and this key can only be used once. If the key can be securely distributed, 
why not send the message by the same means, in which case there is no need 
to encrypt? 

However, it is important to note that there are some cases where a one- 
time pad is practical. In some situations it may be easy to send the key at 
a particular time, and then use it at a later time when it would be difficult 
or impossible to communicate securely. For example, in the 1930s and 1940s, 
the Soviet Union used a one-time pad cipher to t,ransmit intelligence gathered 
from spies in the United States. Soviet agents would simply bring their one- 
time pads with them when entering the United States, then use these to en- 
crypt sensitive messages as necessary. In fact, these one-time pads were often 
used more than once and, as a result, many of the messages were eventually 
broken by United States cryptanalysts. The famous Project VENONA [151] 
details this impressive cryptanalytic success. The VENONA decrypts pro- 
vide tremendous insight into Soviet spying in general, and nuclear espionage 
in particular. 

Modern stream ciphers are a generalization of the one-time pad, where 
provable security is traded for practicality. In a stream cipher a short secret 
key is “stretched” into a long pseudo-random string of bits, which is then used 
just like a one-time pad. The provable security is lost since the number of 
possible keys is much smaller than the number of possible messages. Stream 
ciphers are discussed in Chapter 3. 
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1.4.4 Codebook Ciphers 

Finally, we discuss codebook ciphers, which are, literally, books filled with 
“codes”. In a classic codebook cipher, there are two books, one of which has 
the plaintext words (or phrases) listed in alphabetical order, each of which 
is adjacent to its corresponding codeword. A particular word or phrase is 
encrypted by looking it up in the codebook and replacing it with the appro- 
priate codeword. A corresponding codebook indexed by codewords is used to 
decrypt. For example, Table 1.9 contains an excerpt from a famous (encryp- 
tion) codebook of World War I. In fact, this excerpt is froni the codebook 
that was used to encrypt the infamous Zimmermann Telegram [149]. In this 
particular codebook, the plaintext consists of German words and the cipher- 
text consists of 5-digit numbers. The inverse codebook, where the words are 
indexed by the Corresponding 5-digit codewords, would be used to decrypt. 

Table 1.9: Excerpt from World War I German Codebook 

plaintext ciphertext 
Februar 13605 
f est 13732 
finanzielle 13850 
f olgender 13918 
Frieden 17142 
Friedenschluss 17149 

The security of a classic codebook cipher depends heavily on the physical 
security of the book itself. That is, the book must be protected from capture 
by the enemy. In addition, statistical attacks such as those described above 
for the simple substitution cipher apply equally to codebooks, although the 
arnount of data required to attack a codebook would be much larger. This 
is due to the fact that the size of the “alphabet” is larger for a codebook, 
arid consequently much more data must be collected before the statistical 
information can rise above the noise. 

As late its World War 11, codebooks were in widespread use. Cryptogra- 
pliers realized that these ciphers were subject to statistical attack, so code- 
books were regularly replaced with new codebooks. Since this was an expen- 
sive and risky process, it was necessary to extend the life of a codebook as 
milch as possible. To this end, an additive book was generally used. 

Suppose that for a particular codebook cipher, the codewords are all 5- 
digit numbers. Then the additive book would consist of a long list of randomly 
generated 5-digit numbers. After a plaintext message had been converted to 
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a series of 5-digit codewords, a random starting point in the additive book 
would be selected, and the subsequent 5-digit additives would be added to  the 
codewords to create the ciphertext. For a codebook with 5-digit codewords, 
the addition would be taken modulo 100,000. In this case, the i t h  ciphertext 
word would be 

Ci = F(Pi)  + Aj (mod 100,000), 

where F ( X )  is the result of looking up plaintext word X in the codebook, Aj 
is the additive and Pi is the plaintext. To decrypt, 

Pi = Fpl(Ci - Aj (mod 100,000)), 

where F - l ( Y )  is the plaintext word that corresponds to  codeword Y .  Note 
that the additive book is required to  encrypt or decrypt a message. 

Often, the starting point in the additive book was selected at random by 
the sender and sent in the clear (or in a slightly obfuscated form) at the start of 
the transmission. The additive information was part of the message indicator 
(MI). In general, an MI includes any information (other than the key) needed 
by the recipient to  decrypt the message correctly. More examples of MIS 
appear in the next chapter, where we discuss World War I1 cipher machines. 

Note that if the additive material were only used once, the resulting cipher 
would be a one-time pad and therefore, provably secure. However, in prac- 
tice, the additive was reused multiple times and, therefore, any messages sent 
with overlapping additives would have their codewords “encrypted” with the 
same additives. Therefore, any messages with overlapping additive sequences 
could be used to  gather the statistical information needed to attack the un- 
derlying codebook. In effect, the additive book simply increased the amount 
of ciphertext required to  mount a statistical attack on the codebook, which 
is precisely the effect, the cryptographers hoped to  achieve. 

Modern block ciphers are, in a sense, the descendants of classic codebook 
ciphers. In addition, the concept of an additive also lives on, in the form of 
a so-called initialization vector (IV), which is often used with block ciphers 
(and sometimes with stream ciphers as well). The use of IVs in block ciphers 
is discussed in detail in Chapter 4. 

1.5 Summary 

In this chapter, we introduced the basic terminology used in the remaining 
chapters, and we gave an overview of a few selected classical cryptosystems. 
These classic systems illustrate many of the important concepts seen in later 
chapters where we analyze modern ciphers. 

We also considered various aspects of elementary cryptanalysis. Specifi- 
cally, we mentioned attacks based on each of the following: 
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0 Exhaustive key search 

0 Divide and conquer 

0 Statistical weaknesses. 

Linearity of the underlying cipher. 

These same crypt analytic principles appear in various forms throughout the 
subsequent chapters of this book. 

The remaining chapters are primarily focused on case studies illustrating 
thc cryptadysis of specific real-world ciphers. In the next chapter we dis- 
cuss the cryptanalysis of the three most famous cipher machines from World 
War 11. Then we turn our &tention to modern ciphers, including examples 
of stream ciphers, block ciphers, hash functions and public key systems. All 
of these attacks are “applied” in the sense that they are realistic attacks that 
can be used to  break the security of real ciphers. 

1.6 Problems 

1. Many companies use proprietary cryptosystems. Google to find a spe- 
cific example of a company that has violated Kerckhoffs’ Principle. 

2. Edgar Allan Poe’s 1843 short story. “The Gold Bug,” features a crypt- 
analytic attack. What type of cipher is broken and how? 

3.  Solve the following congruence: 19, = 3 (mod 26). 

4. Fill in the missing steps in the derivation of the formula for the index 
of coincidence in (1.2). 

5. Consider the ciphertext QJKES REOGH GXXRE OXEO, which was gener- 
atcd using an affine cipher. Recover the decryption function and de- 
ciplicr the message. Hint: Plaintext T encrypts to ciphertext H and 
plaintext 0 encrypts to ciphertext E. 

6. Decrypt the ciphertext 

TNFOS FOZSW PZLOC GQAOZ WAGQR PJZPN ABCZP QDOGR AMTHA 
RAXTB AGZJO GMTHA RAVAP ZW. 

Hint: This is from a simple substitution cipher and the word “liberty” 
appears in the plaintext. 

7. Cryptanalyze the following message, which is from a Vigenkre cipher 
with a :<-letter English keyword: 

CTMYR DOIBS RESRR RIJYR EBYLD IYMLC CYQXS RRMLQ FSDXF 
OWFKT CYJRR IQZSM X. 
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8. Write a comput,er program to calculate the index of coincidence for an 
English ciphertext. Compute the index of coincidence for the ciphertext 
in (1.1). 

9. Using the result of Problem 8, compute k in (1.4) for the ciphertext 
in (1.1). 

10. Write a computer program to approximate the key length for a VigenGre 
ciphertext. Verify your program on the ciphertext in (1.1). 

11. The following ciphertext is from a columnar transposition cipher: 

TSEHVAIESSRYIYQ. 

Find the corresponding plaintext. 

12. The following ciphertext is from a double transposition cipher, where 
the encryption matrix is 10 x 11: 

TNOSSKAIMAGAEITMHETHTSRHXXIHEUXDX 
NUEIDSATDTDDSARAHHENTTTDSOUIOEART 
FHDAOMWYWFERTNEONFDYAHSEIMEDGRWTA 
TISURUARTH J . 

Find the corresponding plaintext. 

13. Verify the derivation of (1.4), which can be used to find the number of 
letters in the keyword of a Vigenkre cipher. 

14. Consider the Hill cipher with matrix A as given in (1.5). 

a. Find A-’ (mod 26). 

b. Using the result of part a, decrypt the ciphertext EWXJEWYTKZ and 

c. Using the same A matrix as in part a, decrypt the ciphertext 

verify that the corresponding plaintext is MEETMEHERE. 

QCNDVUHLKGANIYVUWEGMWTNHHXXD. 

15. Consider a onetime pad using the letter encodings in Table 1.8. Sup- 
pose that Trudy intercepts C = 110 101 111. 

a. Find a putative key K’ such that the corresponding putative plain- 

b. Find anot,her putative key K” such that the corresponding putative 

text P’ yields the word GET. 

plaintext is TAG. 
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16. Using the codebook excerpt in Table 1.9 and the additive sequence 

A0 188,900, A1 = 92,331, A2 = 23,546 

encrypt and decrypt the plaintext message 

folgender Frieden Februar. 

Assume that the additive arithmetic is taken modulo 100,000. Show all 
intermediate steps. 

17. Consider two ciphers, Cipher A and Cipher B, and suppose that Ci- 
pher A has a 64-bit key, while Cipher B has a 128-bit key. Alice prefers 
Cipher A, while Bob wants the additional security provided by a 128-bit 
key, so he insists on Cipher B. As a compromise, Alice proposes that 
they use Cipher A, but they encrypt each message twice, using two in- 
dependent 64-bit keys. Assuming that no shortcut attack is ava.ilable 
for either cipher, is Alice’s approach sound? 



Chapter 2 

World War I1 Ciphers 

. . .obstacles do not exist to be surrendered to, but only to be broken. 
- Adolf Hitler, Mein Kampf 

2.1 Introduction 

In the previous chapter, we covered a few classic “pen and paper” cipher 
systems. In this chapter we discuss the three most famous World War I1 
era cipher machines. We first consider the German Enigma and we present 
enough cryptanalysis to illustrate a serious weakness in the cipher. Then 
comes the Japanese Purple cipher and its cryptanalysis. Finally, we con- 
sider the American Sigaba machine which was never broken during its service 
lifetime. We present an attack on Sigaba that would have been impractical 
using WWII technology, but nicely illustrates the strong points of the cipher 
as compared to the Enigma and Purple. 

It is important to remember that World War I1 was the first significant 
use of cryptographic machines. This was necessitated by the vast increase 
in the volume of communication required for modern, highly mobile military 
operations. Prior to WWII, most military cipher systems were codebooks, 
with additives used to increase the amount of data required to successfully 
recover the codebook. Obviously, the security of a codebook depends on the 
physical security of the book itself. With the advent of machine cryptosys- 
tems, much more ciphertext was available to the cryptanalyst, which changed 
the nature of the threat considerably. With a cipher machine, physical se- 
curity of the machine was almost irrelevant in comparison to the statistical 
properties of the cipher itself. However, the developers and users of these 
early machine systems failed to fully grasp the changed nature of the threat, 
since their thinking was grounded in the earlier codebook era. Consequently, 
they tended to overemphasize the importance of the physical security of the 

25 
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machine, as opposed to the stat)istical security of the ciphertext, as discussed 
in some detail in [23 ] .  We return to this theme a t  the end of the chapter after 
we have analyzed the most famous cipher machines of the war. 

While there are many sources of information on WWII ciphers, much of 
the information is unreliable. Among the best sources are [23, 291. 

2.2 Enigma 

It 1na.y well be doubted whether human ingenuity can construct an enigma.. . 
which human ingenuity may not, by proper application. resolve. 

~ Edgar Allen Poe. The Gold Bug 

The Enigma cipher was used by Germany prior to and throughout World 
War 11. The forerunner of the military Enigma machine was originally devel- 
oped by Arthur Scherbius as a commercial device. The Enigma was patented 
in the 1920s but i t  continued to evolve over time. However, all versions of 
the Enigma a,re “rotor” machines, and they share certain additional common 
features. 

The German military eventually become interested in the Enigma and, af- 
ter further modifications, it became the primary cipher syst,em for all bmnches 
of the German military. The German government also used the Enigma 
for diplomatic communications. It is estimated that approximately 100,000 
Enigma machines were constructed, about 40,000 of those during World 
War 11. The version of Enigma that we describe here was used by the German 
military throughout World War I1 [47]. 

The Enigma was broken by the Allies, and the intelligence it provided 
was invaluable--as evidence by its cover name, ULTRA. The Germans had an 
unwavering belief in the security of the Enigma, and they continued to use it 
for vital communications long after there were clear indications that i t  had 
been compromised. Although it, is impossible to precisely quantify the effect 
of Enigma decrypts on the outcome of t.he war, it is not. farfekhed t.o suggest’ 
that the intelligence provided by Enigma decrypts may have shortened the 
war in Europe by a year, saving hundreds of thousands of lives. 

2.2.1 Enigma Cipher Machine 

An Enigma cipher machine appears in Figurr 2.1. where the keyboard 
essentially, a mechanical typewriter ~ arid “light board” are visible. The front 
panel consists of cables plugged into what appears to be an old-fashioned 
telephone switchboard. This switchboard (or plugboard) is known by its 
German name, stecker. There are also three rotors visible near the top of the 
machine. 
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Figure 2.1: Enigma cipher [46]. 

Before encrypting a message, the operator had to initialize the device. The 
initial settings include various rotor settings and the stecker cable pluggings. 
These initial settings constitute the key. 

Once the machine had been initialized, the message was typed on the 
keyboard, and the as each plaintext letter was typed, the corresponding ci- 
phertext letter was illuminated on the lightboard. The ciphertext letters 
were written down as they appeared on the lightboard, to be subsequently 
transmitted, typically by radio. 

To decrypt, the recipient’s Enigma had to be initialize in exactly the same 
way as the sender’s. Then when the ciphertext was typed into the keyboard, 
the corresponding plaintext letters would appear on the lightboard. 

The cryptographically significant components of the Enigma are illus- 
trated in Figure 2.2. These components and the way that they interact are 
described below. 

To encrypt, a plaintext letter is entered on the keyboard. This letter first 
passes through the stecker, then, in turn, through each of the three rotors, 
through the reflector, back through each of the three rotors, back through 
the stecker, and, finally, the resulting ciphertext letter is illuminated on the 
lightboard. Each rotor-as well as the reflector-consists of a hard-wired 
permutation of the 26 letters. Rotors as cryptographic elements are discussed 
in detail in Section 2.2 .3 .  

In the example illustrated in Figure 2 . 2 ,  the plaintext letter C is typed on 
the keyboard, which is mapped to S due to the st,ecker cable connecting C to S. 
The letter S then passes through the rotors, the reflector, and back through 
the rotors. The net effect of all the rotors and the reflector is a permutation 
of the alphabet. In the example in Figure 2.2, S has been permuted to Z, 
which then becomes L due to the stecker cable between L and Z. Finally, the 
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rotors 
J 4 I 

ref lector 

Figure 2.2: Enigma diagram [142] 

letter L is illuminated on the lightboard. 
We use the following notation for the various permutations in the Enigma: 

R, = rightrnost rotor 

R,, = middle rotor 

Re = leftmost rotor 

T = reflector 

S = stecker. 

If plaintext letter LC encrypts to ciphertext letter y, from Figure 2.2, we have 

= S - ~ R - I R - ~ R - ~  
T m e TRFR,RTS(X) 

= ( R! R, R, s) - T ( R! R, R ~ )  s ( X) . (2.1) 

If that is all there were to the Enigma, it would be nothing more than a 
glorified siniple substitution (or mono-alphabetic substitution) cipher, with 
the initial settings determining the permutation. However, each time a key- 
board letter is typed, the rightmost rotor steps one position, and the other 
rotors step in an odometer-like fashion --almost [26, 631 .l That is, the middle 

‘The “alniost” is due to the mechanical system used to step the rotors, which causes the 
iriiddle rotor to occasioriitlly step twice in succession. Whenever a rotor steps, it causes the 
rot,or to its right to also step. Suppose that the rniddle rotor just stepped to the position 
that engages the ratchet, rnech;tnisrn that will cause the leftniost rotor to step when the next 
letter is typed. Then when the next, letter is typed, the left rotor will step, and this will also 
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rotor steps once for each 26 steps of the right rotor and the left rotor steps 
once for each 26 steps of the middle rotor. The reflector can be viewed as 
a fixed rotor since it permutes the letters, but it does not rotate. The net 
effect is that the overall permutation changes with each letter typed. Due to 
the odometer effect, the permutations R,, R,, and Re vary with time, but T 
and S do not. 

Figure 2.3 illustrates the stepping of a single Engima rotor. This example 
shows the direction that the rotors step. Note that to the operator, the letters 
appear in alphabetical order. 

step, 

a 
R 
S 
T 
U 

step 

Figure 2.3: Enigma rotor. 

The Enigma is a substitution cipher where each letter is encrypted based 
on a permutation of the alphabet. But the Enigma is far from simple since 
whenever a letter is encrypted (or decrypted), the permutation changes. That 
is, the Enigma is a poly-alphabetic substitution cipher, with an enormous 
number of possible alphabets. 

2.2.2 Enigma Keyspace 

The cryptographically significant components of the Enigma cipher are the 
stecker, the three rotors, and the reflector. The Enigma key consists of the 
configuration of the cipher used to encrypt and decrypt a particular message. 
The variable settings that comprise the key are the following: 

1. The choice of rotors. 

2. The position of a movable ring on each of the two rightmost rotors. 
This ring allows the outer part of the rotor (labeled with the 26 letters) 
to rotate with respect to the inner part of the ring (where the actual 
permutation is wired).2 Rotating this ring shifts the permutation and 

cause the middle rotor to step again. The middle rotor thereby steps twice in succession, 
violating the odometer effect. Note that this same ratcheting mechanism causes the right 
rotor to step whenever the middle rotor steps, but since the right rotor already steps for 
each letter typed, there is no noticeable effect on the right rotor. 

'This is analogous to rotating the position of a car tire relative to the rim. 
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the point at which the odometer effect occurs relative to the letters on 
the rotors. 

3 .  The initial position of each rotor 

4. The number and plugging of the wires in the stecker. 

5. The choice of reflector 

As mentioned above, each rotor implements a permutation of the 26 letters 
of the alphabet. The movable rings can be set t,o any of the 26 positions 
corresponding to the letters. 

Each rotor is initially set to one of the 26 positions on the rotor, which are 
labeled with A through Z. The stecker is similar to an old-fashioned telephone 
switchboard, with 26 holes, each labeled with a letter of the alphabet. The 
stecker can have from 0 to 13 cables, where each cable connects a pair of 
letters. The reflector implements a permutation of the 26 letters, with the 
restriction that no letter can be permuted to itself, since this would cause a 
short circuit. Consequently, the reflector is equivalent to a stecker with 13 
cables. 

Since there are three rotors, each containing a permutation of the 26 
lettcrs, there are 

26! . 26! . 26! M 2265 

ways to select and place rotors in the machine. In addition, the number of 
ways to set the two movable rings--which determine when the odometer-like 
effects occurs-is 26 . 26 M 2’.*. 

The initial position of each of these rotors can be set to any one of 26 
positions. so there are 26.26.26 = 214.1 ways to initialize the rotors. However, 
this mimber should not be included in our count, since the different initial 
positions are all equivalent to some other rotor in some standard position. 
That is, if we assume that each rotor is initially set to, say, A then setting a 
particular rotor to, say, B is equivalent to some other rotor initially set to A. 
Consequently, the factor of 2265 obtained in the previous paragraph includes 
all rotors in all possible init’ial positions. 

Finally, we must consider the stecker. Let, F ( p )  be the number of ways to 
plug p cables in the stecker. From Problem 2, we have 

The values of F ( p )  are tabulated in Table 2.1. 
Summing the entries in Table 2.1, we find that there arc more than 248 ’ 

possible stecker configurations. Note that maximum occurs with 11 cables and 
that F(10)  As mentioned above. the Enigma reflector is equivalent 247 
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Table 2.1: Stecker Combinations 

to a stecker with 13 cables. Consequently, there are F(13) = 242.8 different 
reflectors. 

Combining all of these results, we find that, in principle, the size of the 
Enigma keyspace is about 

2265 . 29.4 , 248.9 , 242.8 2366. 

That is, the theoretical keyspace of the Enigma is equivalent to a 366 bit 
key. Since modern ciphers seldom employ more than a 256 bit key, this 
gives some indication as to why the Germans had such great-but ultimately 
misplaced-confidence in the Enigma. 

However, this astronomical number of keys is misleading. From Prob- 
lem 3 ,  we see that under the practical limitations of actual use by the German 
military, only about 277 Enigma keys were available. This is still an enormous 
number and an exhaustive key search would have been out of the question 
using 1940s technology. Fortunately for the civilized world, shortcut attacks 
exist. But before we discuss an attack, we first take a brief detour to consider 
rotors as cryptographic elements. 

2.2.3 Rotors 

Rotors were commonly employed in cipher machines during the first half of the 
20th century. The Enigma may be the most fanlous rotor machine, but we will 
see another when we discuss the Sigaba cipher. From a crypto-engineering 
standpoint: the appeal of a rotor is that it is possible to generate a large 
number of distinct permutations in a robust mariner from a relatively simple 
electro-mechanical device. Such considerations were particularly important 
in the pre-computer era. In fact, the Enigma was an extremely durable piece 
of hardware, which was usable for tactical military communications. 

The Japanese Purple cipher-discussed in Section 2.3-is a non-rotor 
polyalphabetic cipher that was a contemporary of the Enigma. In contrast 
to the Enigma, Purple was a bulky and fragile device that could never have 
survived under battlefield conditions. 
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Hardware rotors are easy to understand, but it is slightly awkward to 
rnathernatically specify the permutations that correspond to the various po- 
sitions of the rotor. A good analysis of these issues can be found in [go]; here 
we briefly discuss some of the main points. 

For simplicity, consider a rotor with four letter, A through D. Assurning 
the signa,l travels from left to right, the rotor illustrated in Figure 2.4 per- 
mutes ABCD to CDBA, that is, A is permuted to  C, B is permuted to D, C is 
permuted to  B and D is permuted to A. The inverse permutation, DCAB in 
our notation, can be obtained by simply passing a signal through the rotors 
from right-to-left instead of left-to-right. This is a useful feature, since we 
can decrypt with the same hardware used to encrypt. The Enigma takes this 
one step further-it is its own inverse, so that the same machine with exactly 
the same settings can be used to encrypt and decrypt (see Problem 6). 

Figure 2.4: Rotor. 

Now suppose that the rotor in Figure 2.4 steps once. Note that only the 
rotor itself-represented by the rectangle-rotates, not the electrical contacts 
at the edge of t,he rotor. We assume that the rotor steps “up,” that is, the 
contact that was at B is now at A and so on, with the contact that was at A 
wrapping around to D. The shift of the rotor in Figure 2.4 is illustrated in 
Figure 2.5. The resulting shifted permutation is CADB, which is, perhaps, not 
an obvious shift of the original permutation, CDBA. 

Figure 2.5: Stepped rotor. 

In general, i t  is not difficult to determine the rotor shift of a permutation. 
The crucial point is that it is the offsets, or displacements, that shift. For 
cxample, in the permutation CDBA, the letter A is permuted to C, which is an 
offset of 2 positions, the letter B is permuted to D, which is an offset of 2, the 
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letter C is permuted to B which is an offset of 3 (around the rotor) and D is 
permuted to A which is an offset of 1, so the sequence of offsets for the per- 
mutation CDBA is (2,2,3,1). Cyclically shifting this sequence yields (2,3,1,2) 
which corresponds to the permutation CADB, which is the rotor shift that 
appears in Figure 2.5. Problem 1 provides more details on rotor shifting. 

As mentioned above, one of the primary advantages of rotors is that they 
provide a simple electro-mechanical means to generate a large number of dif- 
ferent permutations. Combining multiple rotors in series increases the num- 
ber of permutations exponentially. For example, in Figure 2.6, C is permuted 
to A, while a shift of rotor L,  denoted by a ( L )  and illustrated in Figure 2.7, 
causes C to be permuted to B. That is, stepping any single rotor changes the 
overall permutation. 

A -+ 

B 

C 

D 

L M R 

Figure 2.6: Three rotors. 

A 

B- 

C 

D 

Figure 2.7: Rotor L steps. 

With this simple three rotor scheme, we can generate a cycle of 64 permu- 
tations of ABCD by stepping through the 64 settings for the three rotors. Of 
course, not all of these permutations will be unique, since there are only 24 
distinct permutations of the four letters ABCD. But the sequence of permu- 
tations is at least as significant as the actual generated permutations. Also, 
selecting different initial settings for the rotors, we can generate a dfferent 
sequence of permutations, and by selecting a different set of rotors, we can 
generate different sequences of permutations. As with a single rotor, it is easy 
to obtain the inverse permutations from a series of rotors by simply passing 
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i 
Plaintext 

Ciphertext 

the signal through the rotors in the opposite direction. Of course, the inverse 
permutations are needed for decryption. 

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223 
0 B E R K 0 M M A N D 0 D E R W E H R M A C H T 
Z M G E R F E W M L K M T A W X T S W V U I N Z 

2.2.4 Enigma Attack 

Polish cryptanalysts led by Marian Rejewski, Henryk Zygalski, and Jerzy 
R6iycki were the first to successfully attack the Engima; see [148] for a good 
discussion of the details of their attack. Their challenge was greatly compli- 
cated by the fact that they did not know the rotors in use. Through some 
clever mathematics, and a small, but crucial, piece of espionage [a], they were 
able to recover the rotor permutation from ciphertext. This certainly ranks 
as one of the greatest cryptanalytic successes of the entire war. 

When Poland fell to the Nazis in 1939, Rejewski, Zygalski and R6zycki 
fled to France. After France fell under the Nazi onslaught the Poles auda- 
ciously continued their cryptanalytic work from unoccupied Vichy France. 
The brilliant cryptanalytic work of Rejewski’s team eventually made its way 
to Britain, where the British were rightly amazed. A group of British crypt- 
analysts that included Gordon Welchman and computing pioneer Ala,n Turing 
took up the Enigma challenge. 

The Enigma attack that we describe here is similar to one developed by 
Turing, but much simplified. Our attack--which relies on known plaintext--is 
easily implemerited on a modern computer, but would have been impractical 
using WWII technology. The essential idea is that, initially, we can ignore 
the stecker and make a guess for the remainder of the key. From Problem 3, 
there are less than 230 such guesses. For each of these, we use information 
derived from known plaintext (a “crib” in WWII terminology) to eliminate 
incorrect guesses. In the process, the stecker is only a minor nuisa.nce and, 
in fact? when we complete the attack, we will have recovered most-if riot 
all--of the stecker scttings as well. 

Suppose that for a given ciphertext, we know the plaintext arid corre- 
sponding ciphertext in Table 2.2. We make use of this data in the attack 
described below. 

Let S(z) be the effect of the stecker when a letter J’ passes through tjhe 
stecker from the keyboard. Then Spl(ll:) is the effect of the stecker when 11: 

passes through the stecker in the other direction. For a given initial setting, 
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let Pi be the permutation at step i ,  that is, Pi is the permutation determined 
by the composition of the three rotors, followed by the reflector, followed by 
the three rotors-in the opposite direction--at step i. Using the notation 
in (2.1), we obtain 

F, = s-~R,~R,~R~~TR~R,R,s ,  

where, to simplify the notation, we ignore the dependence of Re, R,, and R,r 
on i. 

Since Pi is a permutation, its inverse, Pcl exists. Due to the rotation of 
the rotors, the permutation varies with each letter typed. Consequently, Pi 
does indeed depend on i. 

The Enigma attack we present here exploit,s “cycles“ that occur in the 
known plaintext and corresponding ciphertext. Consider, for example, the 
column labeled “8” in Table 2.2. The plaintext letter A passes through the 
stecker, then through Pg and, finally, through S-’ to yield the ciphertext M, 
that is, S - l P g s ( A )  = M which we can rewrite as P g S ( A )  = S(M). Then from 
the known plaintext in Table 2.2, we have 

which can be combined to yield the cycle 

Suppose that we select one of the possible initial settings for the machine, 
neglecting the stecker. Then all Pi and PtF1 that correspond to this setting 
are known. Now suppose that we guess, say, S(E)  = G ,  that is, we guess that E 
and G are connected by a cable in the stecker plugboard. If it is actually the 
case that the stecker has a wire connecting E and G, and if our guess for the 
initial settings of the machine is correct, then from (2.2) we must have 

If we try all 26 choices for S ( E )  and (2.2) is never satisfied, then we 
know that our guess for the rotor settings is incorrect and we can eliminate 
this choice. We would like to use this observation to reduce the number or 
rotor settings, ideally, to just one. However, if we find any guess for S(E) 
for which (2.2) holds, then we cannot rule out the current rotor settings. 
Unfortunately, there are 26 possible guesses for S ( E )  and for each, there 
is a 1/26 chance that (2.2) holds at random. Consequently, we obtain no 
reduction in the number of possible keys from this one cycle. 
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Fortunately, all is not lost. We can easily find an additional cycle in- 
volving S ( E ) ,  which can then be used in combination with (2.2) to reduce 
the number of possible rotor settings. For example, we can combine the four 
equations 

S(E)  = P3S(R) 

s(w) = P 1 4 S ( R )  

s ( W )  = P7S(M) 

S (E)  = P6;S(M) 

to obtain 
S(E)  = P&'P7PC1S(E). 

Now if we guess, say, S ( E )  = G, we have two equations that must hold if 
this guess is correct. There are still 26 choices for S(E) ,  but with two cycles, 
there is only a (1/26)2 charice that they both hold at random. Therefore, 
with two cycles in S(E) ,  we can reduce the number of viable machine settings 
(that is, keys) by a factor of 26. We can easily develop an attack based on 
this observation. Using only two cycles, the attack is outlined in Table 2.3 .  
However, several additional cycles would be required to uniquely determine 
the key. 

Table 2.3: Enigma Attack 

/ /  Given: Cycles Co and C1 for S ( E )  

/ /  (Lo, LI ,  . . . , L25) = (A,  B, . . . , Z) 
f o r  each rotor setting 

Conipute required permutations to test Co and C1 
f o r  j = 0 to 25 

S ( E )  = L, 
i f  Co and CI hold then 

end i f  

save putative rotor settings arid S(E)  value L, 

next j 
- 

next rotor setting 

To reiterate, the crucial observation here is that once we specify the rotor 
settings, all permutations Po, P I ,  Pl,.  . . and P i 1 ,  P;', P;', . . . are known. 
Then if we substitute a putative value for S (E) ,  we can imniediately check the 
validity of both cycle equations. For an incorrect guess of S (E)  (or incorrect 
rotor settings) there is a 1/26 chance any given cycle will hold true. But with 
two cycles, there is only a ( 1/26)2 chance that both cycle equations will hold 
true. Consequently, with two cycles involving S ( E ) ,  we can reduce the number 
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of possible initial rotor settings by a factor of 26. Since there are about 230 
rotor settings, after completing the “attack” in Table 2.3, we expect to have 
about 230/26 M 225.3 putative rotor settings remaining. 

The attack in Table 2.3 can be extended to more than two cycles, in which 
case we obtain a proportionally greater reduction in the number of surviving 
keys. With a sufficient number of cycles, we can uniquely identify the initial 
rotor settings. In fact, with n pairs of cycles we expect to reduce the number 
of possible keys by a factor of 26”. Therefore, with a sufficient number of 
cycles, we can recover the key. 

Amazingly, by recovering the initial rotor settings in this manner, stecker 
values are also recovered-essentially for free. However, any stecker values 
that do not contribute to a cycle will remain unknown, but once the rotor 
settings have been determined, the remaining unknown stecker settings are 
easy to determine; see Problem 9. It is interesting to note that in spite of 
an enormous number of possible settings, the stecker contributes little to the 
security of the Enigma. 

2.2.5 More Secure Enigma? 

Several of the design features of the Enigma conspired to create weaknesses 
that were exploited by the Allies. For example, the fact that the right rotor 
is the “fast” rotor (i.e., the right rotor steps with each letter typed) was said 
to be crucial in one particular attack. If instead, the left rotor had stepped 
with each letter-and the designers of the Enigma could just as easily have 
chosen any of the rotors as the fast rotor--this particular attack would not 
have succeeded [23]. 

The attack described in this section would still work, regardless of which 
rotors are fast, medium, and slow. However, in spite of it being extremely 
efficient by modern standards, the attack presented here would have been 
impractical using 1940s technology. The practical attacks of World War I1 
required that the cryptanalyst reduce the number of cases to be tested to a 
small number. Many clever techniques were developed to squeeze as much 
information as possible from the messages before attempting an attack. In 
addition, much effort was expended finding suitable cribs (known plaintext) 
since all of the practical attacks required known plaintext. 

Is there any relatively simple modification to the Enigma that would pre- 
vent the attack discussed in this section? We leave this as an exercise (Prob- 
lem 13). It is important to note that our attack exploits the fact that the 
rotors can, in a sense, be isolated from the stecker. Any modifications de- 
signed to prevent this attack must take this fact into account. 
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2.3 Purple 

The .Japanese Government regrets to have to 
notify hereby the American Government that in view of the attitude 

of the Arnerican Government it cannot hut consider that it is impossible 
to reach ari agreement through further negotiations. 

- From the “14-part message” [72] 

The World War I1 era Japanese cipher machine Angooki Tuipu B was known 
to Allied cryptanalysts as Purple--due to the color of the binders used to 
hold information on the cipher. The Japanese used Purple to encrypt diplo- 
matic traffic and it was in use from the late 1930s until the end of the war. 
Contrary to some reports, Purple was not used to encrypt tactical Naval 
commuriications-that was the role of the JN-25 cipher [23 ] .  In particular, it 
was JN-25 decrypts (not Purple decrypts, as is sometimes claimed [75]) that 
provided the information enabling American pilots to shoot down Admiral 
Yamamoto’s airplane in 1943. 

2.3.1 Purple Cipher Machine 

No intact Purple cipher machine was ever captured by the Allies. Figure 2.8 
shows a fragment of a Purple machine that was discovered in Berlin at the 
end of WWII. 

Figure 2.8: Fragment of a Purple cipher machine [117] 

The most, famous Purple ciphetext was the so-called 1Qpart mcssage, sent 
from Tokyo to Washington on December 6, 1941, in which Japan broke off ne- 
gotiations with the United States. The .Japanese ambassador was instructed 
to present the message to U.S. officials at 1:OOpm (Washington time) on De- 
cember 7, 1941, but due to difficulties with the decryption and translation 
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to English, the message was not delivered to Secretary of State Cordell Hull 
until 2:30 pm. By the time Hull was handed the message, he knew of the 
attack on Pearl Harbor, which had begun an hour earlier. Hull’s blistering 
response to the Japanese ambassador included the following [71] : 

In all my 50 years of public service I have never seen a document 
that was more crowded with infamous falsehoods and distortions 
. . . on a scale so huge that I never imagined until today that any 
Government on this planet was capable of uttering them. 

American cryptanalysts led by Frank Rowlett had previously broken Pur- 
ple3 and the Americans actually decrypted the 14-part message before the 
Japanese diplomats in Washington had done so. Although the message con- 
tained no specific threat, it clearly represented a serious change in the status 
quo. The codebreakers’ report reached General George Marshall who sent 
a warning to Hawaii on the morning of December 7. However, due to vari- 
ous delays, the warning did not reach the commanders in Hawaii until after 
the Japanese attack was over. These events have fueled endless conspiracy 
theories to the effect that political leaders in Washington knowingly let the at- 
tack occur as a way to obtain public backing for war. What these conspiracy 
theorists lack in fact, they more than compensate for in paranoia. 

Purple is inherently weaker than Enigma. Nevertheless, the successful 
cryptanalysis of Purple is sometimes regarded as the greatest cryptanalytic 
triumph of World War 11. The reason for this apparent contradiction is that 
while the Enigma machine was known to the Allies, the Purple machine was 
not-in fact, no intact Purple cipher machine was ever recovered, before, 
during, or after the war. In comparison, even the Polish cryptanalysts who 
recovered the Enigma rotors by analyzing ciphertext knew the inner workings 
of the device. Before Purple could be attacked, its operation first had to be 
diagnosed based primarily on observed ciphertext. This remarkable diagnos- 
tic effort is what people are referring to (implicitly, in many cases) when they 
discuss the great cryptanalytic success in breaking Purple. 

Here, we provide a complete description of the cryptographic functions 
of the Purple cipher, but we do not attempt to give precise details on the 
mechanical operation of the actual cipher machine that was used by the 
Japanese. From the fragments of Purple machines that were found after 
the war, most of the details of the machine are known. It was a complex and 
intricate piece of engineering, with a “rat’s nest” of nearly 2000 wires used to 
implement its various permutations. For details on the mechanical operation 
of the Purple machine, see the article [52]. 

The Purple cipher (in encryption mode) is illustrated in Figure 2.9. When 
a plaintext letter is typed on the input keyboard, it passes through a plug- 

31’he intelligence garnered from Purple decrypts was given the cover name MAGIC, which 
is an indicator of its perceived value. 
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board which permutes the letters. The permuted letters are then split into a 
group of six letters-the “sixes”--and a group of 20 letters-the “twenties.” 
Internally, the sixes consist of the vowels 

AEIOUY, (2.4) 

while the twenties are the consonants 

BCDFGHJKLMNPQRSTVWXZ. (2.5) 

We refer to this unusual feature of Purple as the “6-20 split.” 
The input plugboard permutation enables any six letters to be connected 

to the internal sixes in (2.4). If, after passing through the input plugboard, 
the resulting letter is permuted to one of the sixes, it then passes through 
a permutation, denoted by S in Figure 2.9, before being permuted by the 
output plugboard. The resulting letter is then sent to the output device. If, 
on the other hand, the plugboard permutation yields a twenties letter, the 
letter passes through three permutations, denoted L ,  M ,  and R in Figure 2.9, 
before being permuted by the output plugboard. Again, the resulting letter 
is then sent to the output device. 

As used by the Japanese, the output plugboard and input plugboard per- 
mutations were always the same. In fact, the Purple simulators built by the 
Allies used only a single physical plugboard, which could not have accurately 
modeled Purple if the input and output permutations were different. 

As can be seen in Figure 2.9, internally the sixes are permuted to sixes 
and the twenties are permuted to twenties. This was a major flaw that was 
carried over from a predecessor of Purple, a cipher known as Red. Why it 
was carried over is not clear, since there was no inherent limitation of Purple 
that necessitated such a split. In fact, two variants of Purple were used 
by the Japanese (Coral and Jade) that did not employ the 6-20 split. As 
discussed below, the 6-20 split was a crucial weakness that was exploited by 
the cryptanalysts who broke Purple. 

Each of S ,  L ,  M ,  and R cycle thorough a series of 25 fixed permutations, 
with S stepping once for each letter typed, and exactly one of L ,  M ,  or R 
stepping for each letter-which of these steps is determined by S as will be 
described shortly. Each of the S permutations is a permutation of the six 
vowels in (2.4), while each of t.he L ,  M ,  and R permutations is a permutation 
of the twenty consonants in (2.5). 

Like Enigma, Purple is a poly-alphabetic substitution cipher. However, 
the mechanisms employed by the two ciphers are completely different. Re- 
call that Enigma is a rotor machine, where each rotor has a single hardwired 
permutation, and as a result of the rotor motion, the overall Enigma per- 
mutation changes with each letter. In contrast, Purple uses switches, where 
each step of a switch changes to a different permutation. That is, instead 
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input keyboard 

Figure 2.9: 

output keyboard 

Purple encryption. 

of using permutations wired to rotors-which only requires one permutation 
per rotor-each step of Purple’s S ,  L ,  M ,  and R “switches” to  a different, 
unrelated, hardwired permutation. Consequently, we refer to S ,  L ,  M ,  and R 
as switches and Purple as a stepping switch machine. 

While the distinction between rotors and switches might seem relatively 
minor, it is actually a major difference. For one thing, a stepping switch 
machine like Purple is inherently more complex and difficult to engineer than 
a rotor machine. From a cryptanlytic point of view, a rotor machine pro- 
vides an elegant way to generate a large number of permutations, while a 
comparable stepping switch machine must be far more complex. There are 
also significant differences between the types of permutations that can be 
generated by Purple and Enigma, as discussed below and in Problem 16. 

The Purple encryption formula depending on whether the letter being 
encrypted corresponds to a “six” or “twenty”. Let x be the given input 
letter and let y be the corresponding output letter. Then we can denote the 
encryption by 

where PI is the input plugboard permutation (when going from the input 
keyboard to the switches), PO is the output plugboard permutation (from 
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the output keyboard to the plugboard). Note that PI and PG1 follow the 
direction of the arrows in Figure 2.9. Also, PL, P ~ I ,  and PR are the left, 
middle, and right twenties permutations, respectively, and Ps is the sixes 
permutation. As mentioned above, the Japanese always selected PI = PO. 

A major practical difference between Purple and Enigma is that Purple 
is not its own inverse (Problem 6 asks you to show that Enigma is its own 
inverse). This means that decryption with Purple is more complicated than 
with Enigma. Since decryption requires the inverse permutations, Purple 
can be decrypted by reversing the flow through the diagram in Figure 2.9, as 
illustrated in Figure 2.10. This implies that the output plugboard is used for 
input and the input plugboard for output. Of course, if the plugboards have 
identical permutations (as, apparently, was always the case with Purple), 
then it does not matter which plugboard is used for input and which is used 
for output. 

output keyboard input keyboard 

Figure 2.10: Purple decryption. 

The decryption formula corresponding to (2.6) is 

nI P;lPo(y) if Po(y)  is one of the twenties 
if Po(y)  is one of the sixes. p; p i  PO (Y) 

Since the decryption formula works for any choice of PI and PO, why did 
the Japanese always select PI = PO? If PI = PO, then a single plugboard 
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can be used. Assuming there were two physical plugboards present in Pur- 
ple, perhaps it was the case that it was easy to  swap the input and output 
keyboards, but not the plugboards. If so, then it would still be possible to  
decrypt when PI # Po, but the plugboards would have to  be wired with the 
inverse permutations to  do so. This would have necessitated different encryp- 
tion and decryption settings and, in particular, would have made it difficult 
to  do trial encryptions and decryptions, which could be used to  verify the key 
settings. 

In contrast to  the Enigma, Purple plugboards are not necessarily their 
own inverse, since the plugboards do not connect pairs of letters, as is the 
case with Enigma. Instead, the Purple plugboards connect 26 letters to  26 
letters so they can implement any permutation. 

Since there are 25 steps on each of the switches S, L,  M ,  and R, each 
switch has a cycle length of 25. Since exactly one of the switches L,  M ,  or R 
steps with each letter, overall, the twenties have a cycle length of 25‘25.25 = 
15,625, while the sixes have a cycle length of 25. As mentioned above, the S 
switch determines which of L ,  M ,  or R steps. When setting the Purple cipher, 
it is necessary to  specify which of L ,  M and R are “fast,” “medium,” and 
“slow” switches. The fact that only one of the twenties switches steps with 
each letter leads to  a somewhat complicated stepping process, which we now 
describe. 

The specification of fast, medium, and slow switches is part of the keying 
process and does not change during the encryption of a message. The sixes 
switch, S ,  simply steps once for each letter encrypted, cycling through its 25 
permutations. Exactly one of L,  M ,  and R steps with each encryption, with 
the stepping determined as follows. Number the permutations on each of the 
switches 0 through 24. The fast twenties switch steps each time, except for 
the following two cases: 

0 If the sixes switch S is in position 24, then the medium switch steps. 

0 If the S switch is in position 23 and the medium switch is in position 24, 
then the slow switch steps. 

The result is that the S switch and exactly one of the twenties switches step 
for each letter typed, and both the S switch and the selected twenties switch 
step simultaneously. 

Two examples of switch stepping appear in Table 2.4, where L is the fast 
twenties switch, M is the medium twenties switch, and R is the slow twenties 
switch. The left-hand example in Table 2.4 illustrates the case where the 
medium switch steps: while the right-hand example illustrates the stepping 
of the slow switch. 

Purple stepping is more complicated than the simple odometer effect em- 
ployed by the Engima rotors. But the ever-so-slight advantage of the Pur- 
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Table 2.4: Medium Switch Steps and Slow Switch Steps 

__ 
~ 

S 
20 
21 
22 
23 
24 
0 
1 
2 
3 

__ 

__ 
~ 

L M R  
0 10 7 
1 10 7 
2 10 7 
3 10 7 
4 10 7 
4 11 7 
5 11 7 
6 11 7 
7 11 7 

__ 
~ 

S 
20 
21 
22 
23 
24 
0 
1 
2 
3 

__ 

~ 

~ 

L M R  
0 24 4 
1 24 4 
2 24 4 
3 24 4 
3 24 5 
3 0 5  
4 0 5  
5 0 5  
6 0 5  

ple stepping method is that  the period length of the twenties is maximized, 
whereas in Enigma, the period length is reduced slightly, since more than one 
rotor steps a t  the rollover points. However, the additional complexity of the 
Purple stepping more than offsets any possible advantage due to the greater 
period length. 

2.3.2 Purple Keyspace 

Now we consider the size of the Purple keyspace. Suppose for a moment that 
the permutations on the switches were selectable. Then the Purple keyspace 
would be enormous-just the selection of the S, L ,  M ,  and R permutations 
would give 

(6! )25 .  (26!)7~5 2237. 26628 = 26865 

possihlc kcys. 
However, givcn the design of Purple, it was not possible to  change the 

hardwired Permutations, so we compute the keyspace assuming that the per- 
mutations are fixed. Under this restriction, the Purple key consists of the 
following: 

1. Initial settings of the switches S. L,  M ,  and R: There are 254 E 2 l X 6  
ways to  initialize thesc switches. 

2. Choose fast, medium and slow switches from L ,  M ,  and R: Since these 
can tie selected in any order, there are 6 = 22.6 combinations. 

3 .  Select input and output plugboard permutations: If the input and outj- 
put plugboards can be chosen independently, there arc (26!)’ = 21763.8 
combinations. 
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Therefore, the theoret,ical keyspace for Purple is approximately of size 21g8, 
equivalent to a 198-bit key. However, all but a factor of 221.2 of this comes 
from the plugboard settings. In fact, the Japanese always used the same 
plugboard for both input and output, which immediately reduces the keyspace 

The Purple plugboard is a very weak cryptographic element and, conse- 
quently, the effective keyspace is little more than 221. However, this presup- 
poses that the switch permutations are known to the cryptanalyst, which was 
not the case when Rowlett and his team began their analysis of Purple. Con- 
sequently, the real cryptanalytic challenge for the Allies was to understand 
the inner workings of Purple and to recover the internal permutations-all 
without ever having seen the machine. Once this was accomplished, the ac- 
tual decryption would not be difficult. 

In fact, the Japanese only used a very small fraction of the (already small) 
effective keyspace. Once the machine had been diagnosed, and a relatively 
simple message indicator (MI) system had been broken, the Allies could de- 
crypt messages as quickly as-and sometimes faster than-the Japanese. In 
effect, maintaining the secret design of Purple was essential to maintain its 
security. It is hard to imagine a more striking violation of Kerckhoffs’ Prin- 
ciple. The fact that the Allies were able to break Purple without ever laying 
hands on an actual machine argues strongly for the wisdom of Kerckhoffs. 

In the next section we consider the diagnosis of Purple. This was the 
crucial cryptanalytic challenge in breaking Purple. 

to 2109.6 

2.3.3 Purple Diagnosis 

No Purple cipher machine was available to Frank Rowlett, the American 
cryptanalyst most closely associated with the cryptanalysis of Purple. This 
meant that he first had to diagnose the machine before he could hope to break 
it. That is, he had to reconstruct the inner workings of the machine using 
the only available information, namely, intercepted ciphertext and knowledge 
of prior Japanese cryptosystems. In some cases, known plaintext was also 
available, and this would prove crucial to the diagnostic effort. 

Recall that ciphertext messages are said to be in depth if they are en- 
crypted using the same key. If n, messages are all encrypted with the same 
key, then we refer to this as a depth of n legs. It is also possible to have 
an offset depth, where the messages do not begin on the same key, but from 
some point onward the messages go into depth. 

Suppose that the matched plaintext and ciphertext message snippets in 
Table 2.5 were generated by a cipher that uses a time-varying permutation of 
the alphabet. The Enigma cipher, for example, works in this manner. Purple 
is slightly more complicated due to the 6-20 split, but we ignore this issue for 
now. 
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i 
Plaintext 

Ciphertext 
Plaintext 

Ciphertext 
Plaintext 

Ciphertext 

Table 2.5: Matched Plaintext and Ciphertext 

0 1 2  3 4 5 6 7 8 9 1 0 1 1  
P E A R L H A R B 0 R X 
J K F H N V P G P G P Y 
T 0 R A T 0 R A T 0 R A 
K P L T H D W V J L 0 P 
M I D W A Y I S L A N D 
X H T E S A G N K 0 L I 

Furthermore, suppose the messages in Table 2.5 form a 3-legged depth. 
Then the permutation at each position of the three messages is the same. 
Let Pi be the ith permutation generated by this cipher for this particular 
key. Then we have some information on the first several permutations. For 
example, we know that Po maps plaintext P to ciphertext J ,  plaintext T to 
ciphertext K and plaintext M to ciphertext X. Also, PI maps E to K and 0 to P, 
and I to H, and so on. In this way, we can partially reconstruct the permu- 
tations, and the more legs of depth that are available, the more information 
on each permutation we obtain. 

While it was clear to Rowlett and his team that Purple was a substi- 
tution cipher, it was unclear how the permutations were generated. The 
cryptanalysts had knowledge of previous Japanese cipher machines, as well 
as knowledge of other cryptographic devices of the time, including rotor ma- 
chines. The knowledge of an earlier Japanese cipher known as Red proved 
most valuable. 

The Red cipher employed an unusual split of the alphabet into sixes and 
twenties, which was carried over into Purple. Initially, the Red cipher split 
the alphabet into the six vowels, AEIOUY, and the remaining twenty conso- 
nant. Substituting vowels for vowels and consonants for consonants was also 
used in some other ciphers of the time. This split reduced the cost of ca- 
bling the ciphertext messages, since the resulting messages were considered 
“pronounceable”---even though the ciphertext was gibberish--and therefore 
were charged a lower rate than messages consisting of random letters [52]. 
But encrypting vowels to vowels is a serious weakness, since some niessages 
can be inferred simply based on the placement of vowels within the cipher- 
text. The Japa,nese apparently realized this was a weakness and usage of the 
Red cipher was modified so that any six letters could act as the sixes. This 
is precisely the same situation as with Purple. 

The ciphertext sixes would be expected to each occur with the average 
probability of the corresponding plaintext sixes, and similarly, each cipher- 
text twenties let,ter would occur with t,he average probability of the plaintext 
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twenties. For most random selections of six letters from the alphabet, the 
selected letters will occur at either a higher or lower average frequency than 
the remaining letters (see Problems 14 and 15). For example, if the plain- 
text letter E is among the sixes, and the other sixes are all letters of average 
frequency, then the expected frequency of each of the ciphertext sixes will be 
higher than the expected frequency of each of the ciphertext twenties. There- 
fore, the ciphertext sixes can usually be determined simply from a frequency 
count of individual ciphertext letters. That is, the six highest-frequency or 
six lowest-frequency letters are most likely the sixes. Once the sixes have 
been isolated, it is relatively easy to determine the sixes permutations from 
a small amount of known plaintext, since in Purple there are only 25 sixes 
permutations. 

Using their knowledge of the Red cipher, Rowlett’s team was quick to 
realize that Purple also employed a 6-20 split. They were then able to recon- 
struct the sixes permutations. But the twenties proved far more difficult to 
crack. 

The output permutations generated by a switch-based cipher, such as 
Purple, have certain identifiable characteristics. For example, consider the 
permutations in Table 2.6, which were generated by a process analogous to 
that used by Purple to generate its twenties permutation. In this example, 
there are three banks of permutations, as with the twenties permutations in 
Purple, but here each of the switches contains just three permutations (as 
opposed to 25 for Purple), giving a cycle length of 33 = 27. 

Table 2.6: Successive Permutations 

5 0 6 1 3 2 4  

0 4 5 2 3  

p 9  

Pl 0 i Pl 1 

m 2  1 6 5 0 3  
6 O m 1 2 5 3  
6 1 5  2 3 0 4  
6 2 1 5 0 3 4  
5 3 2 6 0 1 4  

0 4 A 5 1 0 2  
5 O w 6 4 1 2  
2 1 3  4 6 0 5  

Consider permutations P4 and Ps in Table 2.6. The element in position 0 
That is, the first element of P 4  is 4, while the 4 is in position 2 of P5. 
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of P4 is offset by 2 in Ps. The element in position 1 of P4 is a 2 and the 2 
appears in position 4 of Ps, so these have an offset of 3. Continuing in this 
manner, we see that. the offsets, or differences, between the elements of P4 
and the corresponding elements of Ps are (2 ,3 ,1 ,4 ,1 ,  3,O). As explained 
in Section 2.2.3, consecutive permutations from a rotor all share the same 
difference sequence. The difference sequence for Ps and Ps: is different than 
between P4 and P5, so we can be sure that these three permutations were not 
generated by consecutive shifts of a single rotor. 

Now if we compute the difference sequence for permutations P8 and PCJ, 
we see that it is the same as for P4 and Ps. This is not coincidental. In 
fact, it is consistent with these two pairs being compositions of (non-rotor) 
permutations; see Problem 17. It was precisely this sort of observation that 
was the crucial breakthrough in the diagnosis of Purple. 

Once we realize that the permutations in Table 2.6 are conipositions of 
permutations, we can solve for the individual permutations (or an equivalent 
set) as follows. Most. likely, P4 and Ps are consecutive “fast.” permutations 
with the same settings for the medium and slow permutations. Suppose the L 
switch is the fast switch arid let LO be the fast permutation in P4 and L1 
be the fast permutation in Ps. Then RiMjLo(0) = RihfjL1(2), for some i 
and j ,  which implies that Lo(O) = Ll(2) .  Continuing, we can determine the 
permutation L1 in terms of Lo. Using the appropriate rows from Table 2.6, we 
can also determine L2 in terms of LO. Then we are free to arbitrarily select Lo, 
thereby fixing L1 and L2. With the L permutations determined, we can 
similarly determine the A!! permutations. Finally, when determining the R 
permutations, there will be no freedom to specify one of the permutations; 
see Problem 18 at the end of this chapter for more details on this particular 
example. 

Is it feasible to obtain data analogous to  that in Table 2.6 for the Purple 
cipher? If there happens to he a large number of messages in depth with 
known plaintext, then the encryption permutations are at least partially ex- 
posed by the various legs of depth, and the more legs of depth available, the 
more information there is on the underlying permut,ation at each position. In 
fact, this is essentially what occurred and this is what enabled Rowlctt and 
his team to diagnose Purple. The American cryptanalysts had deduced the 
gencral structure of Purple, but it took a large volume of messages in depth, 
with known plaintext, before they could recover the actual permutations [23]. 
The American cryptanalysts were then able to construct machines that were 
functionally equivalent to Purple--one such Purple “analog” is pictured in 
Figure 2.11. 

R.ecal1 thatj Polish cryptanalysts were able to  recover the Enigma rotor 
wirings from ciphertext analysis. But the Poles knew how the Enigma worked, 
whereas in the case of Purple, the cryptanalysts did not know the inner 
workings of the machine. However! Purple is, from a cryptanalytic point 
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Figure 2.11: Purple analog [105]. 

of view, a simpler device than Enigma. 
comparison between Purple and Enigma in Section 2.3.5, below. 

We have more to say about the 

2.3.4 Decrypting Purple 

Once Purple had been diagnosed, reading messages was relatively easy. The 
Japanese restricted the number of initial switch settings to a very small num- 
ber (originally, 120 and later 240), presumably, to  avoid offset depths. In 
addition, only about 1000 plugboard settings were ever used. Consequently, 
analysts could build a dictionary of possible settings from a relatively small 
number of broken messages. However, not even this much work was required, 
since the switch settings were transmitted in a message indicator (MI) that 
was sent with the ciphertext. The indicators were obfuscated, but this system 
was relatively easy to break. Given the extremely limited keyspace used in 
practice, after a small number of successful decryptions, the Allies were able 
to decrypt received messages as quickly as the Japanese. In fact, the 14-part 
message was decrypted by American cryptanalysts before the Japanese had 
done so. 

Even if the full keyspace had been used, the Purple machine would have 
been extremely weak once it had been diagnosed. There are only 6.254 M 221.2 
initial switch settings. The number of plugboards, at 26! = 288.4, appears to 
be daunting, but, as with the Enigma stecker, tjhis is highly misleading. As 
a cryptographic element, the Purple plugboard is fundamentally flawed. As- 
suming that the switch settings are correct, putative plugboard settings that 
are close to the actual plugboard setting yield putative plaintext that is close 
to the actual plaintext. For a well-designed modern cipher, we require that 
any change to the key--no matter how minor-yields a putative decryption 
that is statistically indistinguishable from that generated by a randomly se- 
lected key. 

In [52] a straightforward “hill climbing” attack is given that exploits the 
weakness of the Purple plugboard. This attack recovers the plugboard set- 
tings with a relatively small amount of work. 
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2.3.5 Purple versus Enigma 

It is interesting to compare Enigma and Purple. Although Enigma had a 
large theoretical keyspace of some 380 bits, practical issues cut this number 
dmstically. In particular, due to the fact that only a small number of rotors 
were available in practice, and the fact that the stecker adds little to the 
security, the number of keys that a World War I1 cryptanalyst had to be 
concerned with was about, 22y. However, if we implement a modern version 
of the Enigma in software, then any rotor is readily available and the number 
of effective keys rises to somewhere near 2'". 

In contrast, the Purple design is fundamentally flawed due to the 6-20 
split. Given a fair amount of known plaintext, the sixes are easily recovered, 
and some messages can be read simply from knowledge of the sixes. As we 
observed above, with sufficient messages in depth, it is possible to diagnose 
Purple. If the switch settings were selected at random, without varying the 
plugboard settings, the limited number of such settings would result in many 
messages in offset depth. 

It is also interesting that both the Enigma and Purple plugboards are of 
virtually no cryptographic value. In spite of the huge numbers of possible 
plugboard settings for each, they effectively add little to the keyspace. 

The Purple permutations were not designed to be changed, and if we 
maintain that restriction, this is another major weakness of the design. But 
in it software version of Purple, we could easily allow the permutations to 
change based on the key. This would increase the keyspace by some 265 bits, 
which would put Purple roughly on par with the Enigma. However, the sixes 
could still be easily recovered, which is a serious weakness. 

Consider a new cipher, M a r o o ~ i , ~  which eliminates the obvious weaknesses 
of Purple but retains the basic design. Like Purple, Maroon is a stepping 
switch cipher, with four switches, which we denote S ,  L ,  M ,  and R. But 
unlike Purple, Maroon does not use the 6-20 alphabet split. Instead, each of 
t,he permutations in the switches L,  M ,  and R is a permutation on 26 letters. 
We have also increased the number of permutations per switch from 25 to 26. 

As with Purple, the S switch of Maroon steps once for each input letter, 
but, since there are no sixes, the S switch is only used to determine the 
stepping of the other switches. The switch stepping follows the same pattern 
as in Purple. The Maroon cipher is illustrated in Figure 2.12. 

Maroon was designed to be comparable to Enigma, with the essential 
difference being that Maroon employs switched permutations instead of rotors 
to determine the permutation. Some comparisons of Enigma and Maroon are 
explored in the homework problems. 

The bottom line is that, in spite of its flaws, Enigma was a much superior 

4 0 ~ r  Maroon cipher appears to be similar to the Japanese World War I1 ciphers known 
as Jade and Coral, but precise details on these machines are somewhat sketchy. 
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t 
I 

output plugboard 1 

input keyboard output keyboard 

Figure 2.12: Maroon encryption. 

design in comparison to Purple. The inherent flaw of the 6-20 alphabet split is 
a major shortcoming of Purple. Also worth noting is that Enigma machines 
are virtually indestructible, whereas the complexity and fragility of Purple 
greatly limited its potential uses. 

The diagnosis problem makes the story of Purple cryptanalytically in- 
teresting. Since the cryptanlysts did not have access to a Purple machine, 
they were forced to reconstruct the inner workings of the device based on 
intercepted ciphertext. Certainly this ranks as a phenomenal cryptanalytic 
success. Of course, the successful attacks on Enigma-first by the Poles and 
then the British-also rank as amazing cryptanalytic success stories. 

Comparing the diagnosis of Purple and the cryptanalysis of Enigma is 
somewhat ridiculous s i n c e  they are entirely different problems-but that 
will not prevent us from doing so. Purple was clearly the weaker machine. 
However, the internals of the machine were unknown to the American crypt- 
analysts, making it extremely challenging to diagnose, even taking into ac- 
count the prior knowledge of Japanese ciphers such as Red.5 On the other 

‘The 6-20 alphabet split, which was carried over from Red, was the most significant 
hint that was gained from previous Japanese ciphers. However, the 6-20 split would have 
been relatively easy to diagnose from Purple ciphertext, even without knowledge of previ- 
ous Japanese ciphers. The fact that Purple uses a stepped switch design was the crucial 
observation needed to break the cipher. 
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hand, the inner workings of Enigma were completely known (at least to the 
British), but Enigma was inherently stronger than Purple, making any suc- 
cessful attack a challenging and delicate affair. So which was the greater 
challenge? Take your pick -you will have solid arguments in your favor no 
matter which you choose. 

2.4 Sigaba 

Remove the Cipher Unit from the machine, 
withdraw the Index Maze Spindle and remove the Index Wheels. 

Destroy the Index Wheels by smashing them with a heavy hammer. 
- Sigaba operating instructions [lll] 

Sigaba was developed by American cryptographers-including Friedman and 
Rowlett--prior to World War II.6 As far as is known, no successful attack on 
Sigaba was every conducted during its service lifetime. During WWII, the 
Germans are said to have quit collecting Sigaba intercepts since they deemed 
the problem hopeless [ 2 3 ] .  

In this section we first give a detailed description of the cipher. Sigaba is a 
rotor machine, but its inner workings are far more complex than thc Enigma. 
Then we consider the size of the Sigaba keyspace in some detail, followed 
by an outline of an attack on the machine. As we describe it, the attack is 
impractical-and it would have been even more so using WWII technology. 
Some of the problems at the end of this chapter point to improvements in 
the attack, which make it far more practical, but still beyond the realm of a 
realistic WWII-era attack. This attack highlights the crucial features of the 
Sigaba that make it so much more secure than Enigma or Purple. 

2.4.1 Sigaba Cipher Machine 

There were several variants of the basic Sigaba design, and to further muddy 
the water, different branches of the military used different names for the same 
machine. The Sigaba machine in Figure 2.13 is thought to be equivalent to the 
CSP-889 (used by the Navy) and the Converter M-134C or Sigaba (different 
mines, but the same device, used by the Army). In addition, the name ECM 
Mark I1 wa.s used during the development of the machine that would become 
Sigaba. Here, we stick with the name Sigaba. 

The Sigaba cipher includes a typewriter keyboard for entering the plain- 
text (or ciphertext), and a.n output device for printing t.he corresponding 
~- 

'Rowlett cited the design of Sigaba as his proudest accomplishment, not the breaking 
of Purple as might have been expected "231. 
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Figure 2.13: A Sigaba machine [105]. 

ciphertext (or plaintext). Like the Enigma, Sigaba is a rotor machine, but 
there arc several important differences between the two. Cryptographically, 
the most significant differences are that whereas Enigma uses three rotors, 
Sigaba employs five rotors to permute the letters, and whereas Enigma rotors 
step like an odometer, the Sigaba cipher rotor motion is controlled by a set of 
ten additional rotors, for a total of 15 rotors. In effect, it is as if the motion 
of the Sigaba encryption rotors is controlled by another rotor cipher machine. 
This causes the Sigaba rotors to step irregularly, which is a major improve- 
ment over the Enigma and other regularly stepping rotor machines. Sigaba 
also lacks the Enigma’s reflector and stecker. The use of irregularly step- 
ping rotors and the lack of a reflector and Enigma-like stecker make Sigaba 
a stronger cipher than Enigma (the attack in Section 2.2 points to some of 
the weaknesses of the Enigma design). The Sigaba rotors are illustrated in 
Figure 2.14. 

Figure 2.14: Sigaba rotors [126]. 

The fifteen Sigaba rotors consist of five cipher rotors, five control rotors, 
and five in,dez rotors, where the cipher rotors permute the input letters and 
the othcr two banks of rotors drive the cipher rotors. The cipher and control 
rotors are interchangeable, and these rotors are also designed so they can 
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be inserted backwards. The cipher and control rotors each permute the 26 
letters. The five index rotors each permute the numbers 0 through 9 and, of 
course, the index rotors are not interchangeable with the other rotors. Unlike 
the cipher and control rotors, the index rotors cannot operate in the reverse 
orientation. Figure 2.15 illustrates the cryptographic components of Sigaba 
in encryption mode. 

input keyboard output device 

Figure 2.15: Sigaba cncryption. 

After a. letter is encrypted or decrypted, from one to four of the cipher ro- 
tors st.cp. The nuniber and selection of the stepping cipher rotors is controlled 
by thc other two banks of rotors, that is, the control and index rotors. 

For each letter typed, the rightmost control rotor receives four simultanc- 
ous inputs, which we assume to be F, G, H, and I. These four letters are per- 
niutetl xcording to the five control rotors and the resulting four permutation- 
dcpcrident output letters are combined before being input to the index rotor 
bank. Let I, denote t>he input to element j of the leftmost index rotor and A 
through Z the outputs of the control rotors. Then 

1 1  = B I d = F V G V H  17 = P V  Q V R V  S V T  

1 2  = c I s =  I V  J V K  I , = u v v v w v x v Y v z  (2.7) 
1 ; 3 = D V E  I 6 = L V M V N V O  I g = A  

where (2.7) is interpreted to mean that, for example, input 3 of the leftmost 
index rotor is active if output D or E (or both) results from the control rotors; 
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otherwise input 3 is inactive. Note that 10 is missing, which implies that 
input 0 is always inactive. Since four values are input to the control rotors, 
due to the “OR” of the outputs, anywhere from one to four of the inputs to 
the index rotors are active at each step. 

The middle three control rotors step in an odometer-like fashion-almost. 
The fast, medium, and slow control rotors are indicated by F, hl, and S, 
respectively, in Figure 2.15, where the fast rotor steps with each letter, the 
mcdium rotor steps once for each 26 steps of the fast rotor, and the slow 
rotor steps once for each 26 steps of the medium rotor. The stepping of these 
three rotors differs from an odometer only in the order of the fast, medium 
and slow rotors. The initial setting of all five control rotors is adjustable, but 
the leftmost and rightmost control rotors do not step during encryption or 
decryption. 

The output of the control rotor bank enters the index rotor bank. The 
index rotors do not step, but their order and initial positions are adjustable. 
For a particular message, the index rotors effectively implement a simple 
substitution on 0 through 9 (i.e., a fixed permutation of 0 through 9). From 
one to four (inclusive) of the inputs to the index rotor bank are active, and 
the number of active outputs is equal to the number of active inputs. 

As mentioned above, the cipher and control rotors are interchangeable. In 
addition, each of these rotors can be inserted in either of two orientations-- 
forward or reverse. In the reverse orientation, the letters on the cipher wheel 
will appear upside down to the operator. 

When a rotor is in its forward orientation, the shifting is, for example, 
from 0 to N to M and so on. Figure 2.16 illustrates successive shifts of a sin- 
gle Sigaba cipher (or control) rotor in its forward orientation. Note that the 
direction of rotation of the Sigaba rotors is the same as that of the Enigma ro- 
tors. However, the labeling on the Sigaba rotors goes in the opposite direction 
as the Enigma; compare Figure 2.16 to Figure 2.3. 

c 

Q 
P 
0 
N 
M 

P 
0 
N 
M 
L 

step 
c 

Figure 2.16: Sigaba rotor in forward orientation. 

In the reverse orientation the cipher (or control) rotor shifting is from 0 
to P to Q,  with the letters appearing upside down on the rotors. The stepping 
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of a rotor in reverse orientation is illustrated in Figure 2.17. As discussed 
in Section 2.2.3, implementing rotors in software requires some care, and re- 
versed rotors create an additional complication (see Problem 21). Also, from 
Figure 2.15 we see that the signal passes through the control rotors from 
right-to-left, while, in encrypt mode, it passes through the cipher rotors from 
left-to-right, which creates yet another slight complication when implement- 
ing Sigaba in software. 

N 
0 
d 
0 
tl 
-- 

~ 

0 
d 
U 
tl 
S 

-- 

. 

Figure 2.17: Sigaba rotor in reverse orientation 

Curiously, the Sigaba index rotors are labeled in the opposite direction of 
the cipher and control rotors. That is, the numbers increase in the downward 
direction as illustrated in Figure 2.18. Since the index rotors do not step 
during operation of the cipher, this is not a significant issue. 

c 

Figure 2.18: Index rotor. 

An interesting quirk of Sigaba is that the letter Z is changed to X before 
encrypting, and a space is changed to a Z before encrypting. If the rcsult of 
dccryption is a Z, a space is output. In this way, messages can be encrypted 
and decrypted with word spaces included, which makes parsing the decrypted 
message easicr. The only drawback is that both plaintext X and Z will be 
decrypted a.s X. For example, for some setting of Sigaba, the plaintext message 

ZEROuONEuTWOuTHREEuFOURuFIVEuSIX 

encrypts as 
IEQDEMOKGJEYGOKWBXAIPKRHWARZODWG 
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and this ciphertext decrypts as 

where “ul’ is a word space. 
We assume that the odometer effect of the middle three control rotors oc- 

curs when a rotor steps from 0 to the next letter, regardless of the orientation 
of the rotor. For example, if the fast rotor is at 0, then the fast and medium 
rotors will both step when the next letter is typed on the k e y b ~ a r d . ~  

The output value (or values) of the index rotors determines which of the 
cipher rotors step. Let 

CO = 0 0  v 0 9  

c, = 0 5  v 0 s  

C3 = 0 3  v 0 4  

c4 = 01 v 0 2  

c1 = 0 7  V 0 s  

where Oi is the output from contact i of the index rotor bank. Then the 
leftmost cipher rotor steps if Co is active, the second (from left) cipher rotor 
steps if C1 is active and so on. Since there are from one to four active outputs 
of the index rotors, anywhere from one to four of the cipher rotors will step 
with each letter typed. 

To decrypt with Sigaba, all of the rotors are initialized and stepped pre- 
cisely as in encryption mode, as described above. However, the inverse cipher 
rotor permutation must be used. This can be accomplished by feeding the 
ciphertext letters through the cipher rotors in the opposite direction, as illus- 
trated in Figure 2.19. 

2.4.2 Sigaba Keyspace 

The Sigaba key is specified by the choice of rotors and their initial positions. If 
we assume that all possible rotors are available, then a different initial position 
simply corresponds to a different rotor. Consequently, for the calculation of 
the theoretical size of the Sigaba keyspace, we can assume that the rotors are 
all set to some standard position. Then the number of keys depends only on 

1. The choice of the five cipher rotors. 

2. The choice of the five control rotors. 

3. The choice of the five index rotors. 

7Some of the details mentioned in this section were derived from studying Sigaba software 
simulators, so it is possible that there are minor discrepancies with the way that an actual 
Sigaba machine operates. However, none of these details appear to  have any significant 
effect on the analysis or attack discussed here. 
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cipher rotors 

;stepping: 

index rotors 

input keyboard output device 

Figure 2.19: Sigaba decryption. 

As with the Enigma rotors, there are 26! choices for each of the cipher and 
control rotors. Similarly, there are lo! choices for each of the index rotors. 
This gives a total keyspace of about 

(261910. (10!)5 2884 . 2109 2993 

However, as is the case with the Enigma and Purple ciphers, the size 
of the practical Sigaba keyspace is far less than this astronomical riurnber 
woiild indicate. In practice, only ten rotors were available for the ten cipher 
and control rotor slots. Each of these rotors can be inserted forwards or 
backwards. The order of thesc ten rot,ors and their orientations (forward or 
rcvcrse) must be included in the practical keyspace calculation. In addition, 
each of the five index rotors can be set to any of 10 positions, and each of the 
control rotors can be set to any of 26 positions. 

In principle, each of the five cipher rotors could also be set to any of 26 po- 
sitions. However, the usual Sigaba keying procedure set these rotors to a de- 
fault value, then stepped the rotors in a nonstandard manner-- simultaneously 
stepping the control rotors to their actual starting positions. In addition, the 
indcx rotors generally were inserted in one fixed order, in which case only 
their initial settings were variable. Ta,king these restrictions into account, it 
would appear that for Sigaba, as used in WWII, the keyspace was of size 
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as claimed in [go]. 
However, a careful reading of the Sigaba manual [113] reveals that the 

setting of the control rotors was sent in the clear as a message indicator 
or MI. Therefore, assuming the MI was intercepted and its meaning was 
known to the attacker, the actual keyspace for Sigaba-as it was generally 
used in WWII-was of size 

lo! . 210 . 105 248.4 (2.8) 

as (correctly) stated in the article [lag]. But, on the POTUS-PRIME' link 
between Roosevelt and Churchill, the control and cipher rotor settings were 
set independently, and neither was sent in the clear, which implies a keyspace 
in excess of 95 bits [l28]. In the next section we provide a precise calculation 
of the keyspace for this particular case. 

A keyspace of size 248.4 is small enough that today it is susceptible to 
an exhaustive key ~ e a r c h . ~  But a keyspace of this magnitude would have 
been unassailable using 1940s technology, provided no shortcut attack was 
available. 

2.4.3 Sigaba Attack 

For this attack, we assume that all three banks of rotors are set independently. 
We also assume that there is only one set of index rotors, and that these five 
rotors can be placed in any order, and that a total of ten rotors are available 
for use as cipher and control rotors. The control and cipher rotors can be 
inserted in any order and there are two orientations for each of these rotors. 
Under these assumptions, the keyspace is apparently of size 

However, due to the fact that pairs of index rotor outputs are ORed together 
to determine the cipher rotor stepping, effectively only 

10!/32 = 113,400 x 216.8 

distinct index permutations can occur. This reduces the feasible keyspace 
size to 

lo! . 210 . 2G10 . 216.8 M 295.6 

or less. 
This full keyspace of size 295.6 was used on the POTUS-PRIME link be- 

tween Roosevelt and Churchill, but not on other links. Again, this represents 

8President - Qf The United States ~ PRIME Minister. 
'The Data Encryption Standard (DES) has a 56-bit key and it has been successfully 

attacked by an exhaustive key search. 
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the largest Sigaba keyspace that was available in WWII. That is, it repre- 
sents the largest practical keyspace, given the hardware that was typically 
available with a Sigaba machine in WWII. Increasing the number of available 
rotors would increase the keyspace, but we limit ourselves to the number of 
rotors that will fit in the device at one time, since this is typically all that 
was available with the cipher. Finally, we assume that all of the rotors and 
the inner workings of the device are known to the cryptanalyst. 

Our attack requires some amount of known plaintext. This attack occurs 
in two phases--a primary phase and a secondary phase. In the primary phase, 
we try all cipher rotor settings, retaining those that are consistent with the 
known plaintext. Then in the secondary phase, we guess the control and 
index rotor settings, and again use the known plaintext, this time to whittle 
down the number of possible keys to a very small number of candidates. 

Suppose that we have a Sigaba-encrypted ciphertext message, where the 
first several letters of the corresponding plaintext are known. Our goal in 
the primary phase is to recover the cipher rotors, their order, orientations 
and initial settings. Collectively, we refer to these cipher rotor initializations 
as the cipher rotor settings. In the primary phase, we strive to reduce the 
number of cipher rotor settings to a small number--ideally just one. We refer 
to an incorrect choice of cipher rotor settings as a random setting, while the 
correct setting is said to be causal. 

For each cipher rotor setting that survives the primary phase, a secondary 
phase is required. This secondary phase consists of trying all possible control 
and index rotor settings to determine which are consistent with the known 
plaintext. In this way, the random primary survivors are eliminated and, in 
the causal case, we determine the key. 

Primary Phase 

We are assuming that ten different cipher rotors are available. Also, each 
cipher rotor has two possible orientations and 26 possible initial positions. 
Therefore. the number of ways to select and initialize the five cipher rotors is 

For each of these choices, we determine whether the setting is consistent with 
t,he known plaintext as follows. 

Recall that for each letter typed, from one to four of the cipher rotor 
rotates. This implies that once we specify the cipher rotors, their orientations 
and their initial settings, the number of possible new permutations at any 
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Now suppose that we correctly guess the cipher rotor settings at some point in 
time. We can then generate each of the 30 possible subsequent permutations 
and determine which are consistent with the next known plaintext letter. 
That is, we can test each of these 30 subsequent permutations to  see which (if 
any) encrypt the next known plaintext letter to the corresponding ciphertext 
letter. For each surviving permutation, we can repeat this process using the 
next known plaintext letter and so on. 

Modeling the encryption permutations as uniformly random, the matches 
follow a binomial distribution with p = 1/26 and n = 30, yielding an expected 
number of matches of 30/26 x 1.154 per step. This can be viewed as a 
branching phenomenon, where the number of possible paths tends to increase 
with each known plaintext letter analyzed. That is, at each step, the number 
of possible paths increases, which seems to be the opposite of what we would 
like to see occur. Nevertheless, we can obtain useful information from this 
process, as outlined below, but first we consider a simple example. 

Suppose we have selected five of the ten available candidate rotors as 
cipher rotors, and we have placed them in a specified order and selected their 
orientations. This, together with the initial positions of the selected cipher 
rotors constitutes a putative setting. Consider, for example, the case where 
these cipher rotors are set to AAAAA, that is, each of the five cipher rotors is 
initialized to A. Then we know the putative encryption pcrmutation and if it 
does riot encrypt the first known plaintext to the first known ciphertext, this 
cipher rotor setting is not causal and we can discard it. This immediately 
reduces the number of candidates by a factor of 26, since there is only a 1/26 
chance of a letter matching at random. 

Suppose that the first letter does match. Then we must try all 30 possible 
steps of the five cipher rotors arid save any of these that encrypt the second 
plaintcxt letter to the second ciphertext letter. Since we make 30 comparisons, 
The expected number of matches that occur at random is, as mentioned 
above, 30/26 M 1.154. An example of this process is illustrated in Figure 2.20. 
In this example, the first letter is consistent with the initial setting AAAAA, 
and the first three letters are consistent with each of the given paths. 

Note that at the third plaintext letter in Figure 2.20 we have two paths 
ending at BBBBA. Since the next step depends only on the current cipher rotor 
settings, and since we are only interested in the initial setting (not the entire 
path), we can merge these paths as illustrated in Figure 2.21. This merging 
is useful since it effectively reduces the number of paths under consideration, 
while riot degrading the success of this phase of the attack. 

In the random case, the analysis above holds, so that at each step we 
expect an increase by a factor of 1.154 (before merging). In contrast, the 
causal case provides a slightly higher increase on average, since we are assured 
one causal match, with the remaining elements matching as in the random 
case; see Problem 31. This gives us a method to distinguish random from 
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AAAAA 1st plaintext letter 

BBABA ABABA 2nd Dlaintext letter 

BBBBA BBBBA ACBBA 3rd plaintext letter 

T T v 

Figure 2.20: Example of consistent paths. 

AAAAA 1st plaintext letter 

2nd plaintext letter 
Y A 

BBABA ABABA 

BBBBA ACBBA 3rd plaintext letter 

i 

Figure 2.21: Merged paths 

causal and thereby reduce the number of random cases. Note also that only 1 
in 26 of the random paths survive the first test, and many more vanish at 
later steps. 

Suppose we are in a random case and the first plaintext letter happens 
to encrypt to the first ciphertext letter. Then the probability that none of 
the 30 possible steps yields a match for the second letter is (25/26)" zz 0.31, 
and this holds for each subsequent letter. While the total number of paths 
increases, the number of distinct merged paths decreases; see Problems 31 
and 32. 

The results in Table 2.7 illustrate typical numbers for the random case, 
while the results in Table 2.8 illustrate typical numbers for the causal case. 
For both cases, we have merged paths, as discussed above (and illustrated 
in Figures 2.20 and 2.21). Table 2.7 indicates that using 30 known plaintext 
letters, we expect only a fraction of about 0.000427 of the random cases 
to survive, and each of these survivors will have expanded to an average of 
about 16.5 paths, with a maximum for the cases tested of 84. In contrast, 
Table 2.8 shows that with 30 known plaintext letters, we expect the causal 
path to have generated about 29.6 consistent branches, with, for the 10.000 
cases tested, a maximum of 151 and a minimum of one consistent path. 
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Steps 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Steps 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Table 2.7: Random Case 

Average Maximum Tests Nonzero 
6.5 27 100,000 763 
11.8 
16.5 
20.8 
28.4 
38.8 
47.1 
71.3 
77.6 
100.5 

56 
84 
105 
194 
163 
415 
524 
486 
1005 

100,000 
100,000 
100,000 
100,000 
100,000 
100,000 
100,000 
100,000 
100.000 

516 
427 
324 
290 
275 
269 
212 
216 
203 

Table 2.8: Causal Case 

Average Maximum Minimum Tests 
10.2 51 1 10,000 
19.6 94 1 10,000 
29.6 151 1 10,000 
40.1 237 1 10,000 
54.1 404 1 10,000 
69.2 566 1 10,000 
85.0 689 1 5,000 
105.0 829 2 5,000 
130.4 1152 1 3,000 
161.1 1926 1 3,000 

The results in Table 2.7 show that we can eliminate the vast majority 
of random cases using a small amount of known plaintext. Combined with 
the causal results in Table 2.8, we can further reduce the number of random 
cases by saving only those cases that are, say, above the expected mean in 
the corresponding causal case. Of course, this latter refinement implies that 
we will sometimes discard the causal case, with the probability depending on 
the selected threshold. This approach provides a method for further reducing 
the number of primary phase survivors, at the expense of a lower probability 
of success. Unfortunately, Tables 2.7 arid 2.8 indicate that the variance is 
high, so a significant number of random cases will remain for any reasonable 
probability of success. 

The work for this part of the attack is on the order of 243.4, since most 
random paths do not survive the first known plaintext test (see Problem 23 
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for a slightly more precise estimate). We would like to minimize the amount of 
known plaintext required, but we need to reduce the number of primary phase 
survivors as much as possible. Using the approach outlined here, it appears 
impractical to reduce the number of primary phase survivors by more than 
factor of about 220, which leaves a large number of survivors (more than 2”) 
that must be tested in the secondary phase (set: Problem 32) .  However, 
Problem 33 gives a more effective method for reducing the number of primary 
survivors. The paper [28] contains more information on this attack, including 
several further refinements. 

Secondary Phase 

For each of the cipher rotor settings that survived the primary phase, a sec- 
ondary test is required. This secondary test will determine whether the cipher 
rotor sctting is consistent with any setting of the control and index rotors. In 
the process, we eliminate random survivors from the primary phase and for 
the causal survivor we determine the rotor settings and thereby recover the 

For the secondary test, we choose the order and initial positions of the 
index rotors and the order, orientation and initial positions of the control 
rotors- -given the putative cipher rotor settings from the primary phase. The 
number of settings for the index and control rotors appears to be 

key. 

Howevcr, as noted above, there arc only about 21”.8 distinct index perniuta- 
tions. which reduces the overall work factor to 

That is, the work factor for the secondary part of the attack appears to he on 
the order of 252.2 for each putative setting that survived the primary phase. 
Fortunately, we can improve on this nai’ve implementation of the secondary 
phase. 

Secondary Phase Refinement 

To reduce the secondary work factor requires some amount of known plain- 
text. Here, we only outline the plan of attack, leaving the details as a challenge 
problem. 

Thv irit,eraction of the control rotors and the index rotors is illustrated 
in Figure 2.22. where we have collapscd the five control rotors into a single 
permutation (denoted as “control”) and, similarly, the five index rotors are 
corisidcred as a single permutation (denoted as “index”). The four inputs 
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to the control permutation, F, G, H, and I, are activated at each step. This 
results in four active outputs, which are combined as indicated before being 
fed into the index permutation. At least one-and at most four-inputs to the 
index permutation will be active. The outputs from the index permutation 
are combined in pairs, as indicated, and these determine which of the cipher 
rotors, CO through C4, step. At least one cipher rotor will step, and at niost 
four will step. 

F 
G 
H 
I 

C o n t r o l  

Figure 2.22: Control and index permutations. 

In Figure 2.22, the control permutation changes with each letter typed, 
but the index permutation is fixed for the entire message. Since the control 
permutations are changing, we model their output as uniformly random, that 
is, we assume that each of the (246) combinations of output letters is equally 
likely at each step. Then, due to the way that the control rotor outputs are 
ORed together, the inputs to the index permutation are not uniform. For 
example, input 8 will be active much more often than inputs 1, 2, or 9 and 
input 0 is never active. 

The outputs of the index rotors are ORed in pairs, and the results deter- 
mine the cipher rotor stepping. Therefore, if we have sufficient information on 
the frequency of the stepping of individual cipher rotors-which is available 
from known plaintext using the putative cipher rotor settings obtained in the 
primary phase of the attack-we can assign probabilities to the index per- 
mutations. For example, suppose that the index permutation is 5479381026, 
that is, input 0 is mapped to output 5, input 1 is mapped to output 4, and 
so on. Then by considering the pairs of outputs that determine the cipher 
rotor stepping, we can see that some cipher rotors will step more often than 
others. The data in Table 2.9 makes this more precise. For example, cipher 
rotor C d  steps if either output 1 or 2 (or both) of the index permutation is 
active. For the index permutation in Table 2.9, inputs 6 and 8 are mapped 
to outputs 1 and 2, respectively. Inputs 6 and 8 of the index permutation 
correspond to outputs 6 and 8 of the current control permutation, and at 
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index rotor outputs 

least one of these outputs is active if one or more of the 10 letters L, M ,  N,  
0, U, V, W, X, Y, or Z, which are connected to  these outputs, are active. On 
the other hand, CZ steps only when output A of the control permutation is 
active. As a result, C4 will step much more often than Cz. 

Cipher Rotor 

(1,2) (3,4) (5,6) (7,8) (9,O) 
c4 c3 cz c1 co 

Table 2.9: Index Permutation 5479381026 

index rotor inputs I (6,8) (4 , l )  (O,9) (2,5) (3,7) 
control rotor count I 10 4 1 4 7 

Assuming the control rotors generate random permutations, the expected 
number of steps for cipher rotor i depends solely on the number of control 
rotor output letters that feed into C,, as illustrated in Figure 2.22. All of 
the 45 possible input pairs and the corresponding number of control rotor 
output letters are tabulated in Table 2.10. 

Table 2.10: Index Permutation Input Pairs 

Letters Count Pairs 

1 3 (0?1) (0?9) 

If we have sufficimt known plaintext available, we obtain information on 
the “count” column of Table 2.9 for each cipher rotor simply based on a 
count of the number of times that cipher rotor i steps. Then from the “pairs” 
column, we obtain putative restrictions on the index permutation. Other 
restrictions apply which further reduce the number of cases that must be 
considered; see Problem 27. 

Using the available information, we can reduce the number of possible 
index perniutations to a small fraction of the 10!/32 216 permutations that 



2.4 SIGABA 67 

we would otherwise need to consider. In fact, with sufficient known plaintext, 
the average number of permutations that we need to check is about 27 (the 
range is about 24 to 21°). However, there is significant variability in the 
amount of known plaintext required to distinguish the control rotor counts, 
depending on the actual underlying index permutation. 

With this refinement, the average work factor for the secondary phase of 
the attack is about 

27 . 5!  . 25 . 2G5 N 242.4 

which is somewhat less than the primary phase of the attack. However, this 
work factor applies to each survivors from the primary phase, and we expect 
a large number of primary survivors. Consequently, we could improve the 
attack by either reducing the number of primary survivors or making the 
secondary phase more efficient (or both). 

Note that in this secondary phase, the actual index rotor settings are 
not-and in fact cannot be--recovered. Several details of this phase of the 
attack are explored more fully in Problems 27 and 28. 

Thc typical secondary work factor for each primary survivor is on the 
order of 243, assuming sufficient known plaintext is available. This amount of 
work is clearly feasible, although the attack is not trivial to implement. The 
primary phase of this attack has a similar work factor and it is also feasible. 
However, for the attack described in this chapter, the primary phase yields 
a larger number of survivors, which makes the overall cost of the secondary 
phase high. In any case, either phase of this attack would have been far 
beyond the realm of 1940s technology. Nevertheless, the attack outlined above 
offers a dramatic shortcut as compared to an exhaustive key search, which, 
under the assumptions of this section, would have a work factor of about 295. 

Problem 33 suggests one method for improving the attack described in 
this chapter. For the definitive treatment of this attack-including several 
improvements over the outline given in this chapter-see [28]. 

2.4.4 Sigaba Conclusion 

Recall from (2.8), above, that Sigaba, as typically used in WWII, had a 
keyspace of size 248.4, which implies that an exhaustive key search has a 
work factor of 247.6. However, the Sigaba-encrypted POTUS-PRIME link 
between Roosevelt and Churchill used the full keyspace of more than 95 bits. 
It is ciirious that keyspaces of these sizes were chosen. From the designers’ 
perspective, there would be no incentive to have a keyspace that is larger than 
a known shortcut attack, since a larger keyspace entails more secret settings 
and consequently more chance for errors and miscommunication. 

In WWII, a work factor of 247.6 would certainly have been untouchable, 
particularly for tactical communications. Nevertheless, for the strategically 
important communication between Allied leaders, it would be reasonable to  
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use a larger key size, provided that the larger key actually yields additional 
security. Based on this logic, it would seem likely that the designers of Sigaba 
believed that the cipher provided a full 95 bits of security. However, in this 
section, we have outlined an attack that requires much less than 95 bits of 
work. and it is possible to improve on the attack presented here: see [as]. In 
any case, it would be interesting to know more about the Sigaba attacks that 
were considered by Rowlett and Friedman, and their reasons for choosing the 
key sizes as they did. 

2.5 Summary 

In this chapter we considered three of the most famous pre-modern cipher 
machines. It is striking that the vast majority of cipher machines of the World 
War I 1  era (and earlier) proved to be insecure, and most were shockingly 
weak, at least by modern standards. As mentioned in the introduction to 
this chapter, this was due in part to a failure to appreciate the differences 
between machine systems and their predecessors, which consisted largely of 
codebooks. One important difference is that the amount of data that was 
encrypted with a machine was typically far greater than that which could be 
processed using a codebook. Although by modern standards, the quantity of 
data generated by these machines was miniscule, it was far greater than was 
possible using labor intensive manual systems. As a result, the cryptanalysts 
had a. relatively large amount of data to analyze, which allowed statistical 
weaknesses of a cipher to be exploited. Of course, there are statistical attacks 
on codebook ciphers, and these were well understood. The protection of a 
codebook relied first and foremost on ensuring the physical security of the 
codebook itself. Secondarily, the use of additive sequences could extend the 
useful life of the codebook. 

Whereas the security of a codebook depended primarily on the physical 
security of the book, the security of a machine system depends almost entirely 
on its statistical security, that is, it depends on the lack of any useful statis- 
tical information “leaking” to the attacker through the ciphertext. This was 
not well understood during WWII and, in fact, much effort was expended 
trying to maintain the physical security of cipher machines, and compara- 
tively little was done to probe for potential statistical weaknesses. Even with 
the relatively secure Sigaba, it, was considered absolutely essential that the 
machine not fall into enemy hands. 

For modern cipher design, Kerckhoffs’ Principle reigns suprenie--at least 
in principle, if not always in practice. Consequently, any respectable cipher 
must go through an open and cxtensive peer-review process before it can be 
considered secure, with the theory being that ”more eyes” will lead to “more 
security”, particularly if those eyes belong to skilled cryptanalysts. It is also 
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assumed that the crypto algorithm is known to the attacker. Furthermore, a 
cipher must be resistant to a variety of attacks, including known plaintext, 
chosen plaintext, adaptively chosen plaintext, and so on, even if these attacks 
do not seem particularly realistic in a specific application. This is all in stark 
contrast to the situation in WWII, where a secret design was considered 
essential. The bottom line is that the machine ciphers of WWII were often 
viewed as little more than glorified codebook ciphers, which obscured the 
fundamental distinctions between manual and machine cryptanalysis. 

In fairness to WWII cipher designers, cryptology was not entirely scientific 
at the time, in part due to the lack of any solid foundation for the field. 
That situation began to change during WWII, and with the publication of 
Shannon’s classic 1949 paper [133], cryptography finally emerged from the 
realm of “black art” into a genuine scientific discipline. 

2.6 Problems 

1. Consider a rotor with permutation P of { 0 , 1 , 2 , .  . . , n - l}. Suppose 
that P permutes i to pi .  Let di be the displacement of p i ,  that is, 
di = p i - i  (mod n). Find a formula for the elements of permutation 4, 
the kth rotor shift of P, where the shift is in the same direction as the 
rotors described in Section 2.2.3. Your formula must be in terms of pi 
and di .  

2. Let F ( p ) ,  for p = 0,1,2,  . . . ,13, be the number of ways to plug p cables 
into the Enigma stecker. Show that 

F ( p )  = (;;) . (2p - 1) . (2p - 3) . ’ .  . . 1. 

3. In World War 11, the German’s usually used 10 cables on the stecker, 
only five different rotors were in general use, one reflector was in com- 
mon use, and the reflector and five rotors were known to the Allies. 
Under these restrictions, show that there are only about 277 possible 
Enigma keys. Also show that if we ignore the stecker, under these 
restrictions there are fewer than 230 settings. 

4. In the Enigma attack described in the text, we give the cycles 

S(E)  = p6p8p13s(E)  

and 
s( E) = P6Pi1 q p &  ‘s( E) . 

Find two more independent cycles involving S(E)  that can be obtained 
from the matched plaintext and ciphertext in Table 2.2. 
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5. 

6. 

7. 

8.  

9. 

10. 

How many pairs of cycles are required in order to uniquely determine 
the Enigma rotor settings? 

Prove that the Enigma is its own inverse. Hint: Suppose that the ith 
plaintext letter is II:, and that the corresponding ith ciphertext letter 
is y. This implies that when the ith letter typed into the keyboard is II:, 

the letter y is illuminated on the lightboard. Show that, for the same 
key settings, if the ith letter typed into the keyboard is y, then the 
letter II: is illuminated on the lightboard. 

What is the advantage of a cipher (such as the Enigma) that is its 
own inverse, as compared to a cipher that is not (such as Purple and 
Sigaba)? 

For the Enigma cipher. 

a. Show that a ciphertext letter cannot be the same as the corre- 

b. Explain how this restriction gives the cryptanalyst an advantage 

sponding plaintext letter. 

when searching for a suitable crib.” 

Consider the Enigma attack discussed in the text and suppose that 
only cycles of S(E)  are used to recover the correct rotor settings. Then, 
after the attack is completed, only the stecker value of S (E)  is known. 
Using only the matched plaintext and ciphertext in Table 2.2 ,  how many 
additional stecker values can be recovered? 

Write a program to simulate the Enigma cipher. Use your program to 
answer the following questions, where the rotor and reflector perrnuta- 
tions are known to be 

Re = EKMFLGDQVZNTOWYHXUSPAIBRCJ 

R, = BDFHJLCPRTXVZNYEIWGAKMUSQO 

R, = ESOVPZJAYQUIRHXLNFTGKDCMWB 

T = YRUHQSLDPXNGOKMIEBFZCWVJAT 

where Re is the left rotor, R,, is the middle rotor, R, is the right rotor, 
and T is the reflector. Thc “notch” that causes the odometer effect is 
at position Q for Re, V for R,, and J for R,. For example, the middle 
rotor steps when the right rotor steps from V to W. 

a,. Recover the initial rotor settings given the following matched plain- 
text and Ciphertext. 

“’In rriodcrn parlance, a crib is kriown as known plaintext. 



2.6 PROBLEMS 71 

i 
Plaintext 

Ciphertext 
i 

Plaintext 
Ciphertext 

0 1 2 3 4 5 6 7 8 9 101112131415161718192021 
A D H 0 C A D L 0 C 9 U I D P R 0 9 U 0 S 0 
S W Z S 0 F C J M D C V U G E L H S M B G G 

22 23 242526 27 28 293031 32 333435 36 3738394041 42 43 
L I T T L E T I M E S 0 M U C H T 0 K N 0 W 
N B S M q T 9 Z I Y D D X K Y N E W J K Z R 

11. Suppose that the same Enigma rotors (in the same order) and reflector 
are used as in Problem 10, and the stecker has no cables connected. 
Solve for the initial rotor settings and recover the plaintext given the 
following ciphertext. 

ERLORYROGGPBIMYNPRMHOUqYqETRqXTWGGEZVBFPRIJGXRSSCJTXJBMW 
JRRPKRHXYMVVYGNGYMHZURYEYYXTTHCNIRYTPVHABJLBLNUZATWXEMKRI 
WWEZIZNBEOqDDDCJRZZTLRLGPIFYPHUSMBCAMNODVYSJWKTZEJCKP4YYN 
ZqKKJRQqHXLFCHHFRKDHHRTYILGGXXVBLTMPGCTUWPAIXOZOPKMNRXPMO 
AMSUTIFOWDFBNDNLWWLNRWMPWWGEZKJNH 

Hint: The plaintext is English. 

12. Develop a ciphertext only attack on the Enigma, assuming that all you 
know about the plaintext is that it is English. Analyze the work factor 
of your proposed attack and also estimate the minimum amount of 
ciphertext necessary for your attack to succeed. Assume that Enigma 
rotors, the rotor order, the movable ring positions, and the reflector 
are all known. Then you need to solve for the initial settings of the 
three rotors and the stecker. Hint: Since E is the most common letter 
in English, guess that the plaintext is EEEEEE.. . and use this “noisy” 
plaintext to solve for the rotor and stecker settings. 

13. Suggest niodifications to the Enigma design that would make the attack 
Your objective is to make minor discussed in Section 2.2 infeasible. 

modifications to the design. 

14. Suppose that the “sixes” in the Purple cipher consist of the vowels, 
AEIOUY. What is the expected frequency of each of the sixes and what 
is the expected frequency of each of the twenties? Suppose instead that 
the sixes consist of JKQVXZ. What is the expected frequency of each of 
the sixes and what is the expected frequency of each of the twenties? 
To answer these questions, use the English letter frequency distribution 
given in Table 1.3 in Chapter 1. 

15. Consider the Purple cipher. For each of the ( y )  = 217.8 choices for the 
“sixes,” let E6 be the average frequency for each of the sixes letters and 
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the let Ezo be the average frequency for each of the corresponding twen- 
ties letters. For how many of these 217.8 selections is - E201 < 0.1? 
To answer this question, use the English letter frequency distribution 
in Table 1.3 in Chapter 1. 

16. Suppose that we have two ciphers, both of which encrypt elements 
of {0,1,2, .  . . ,7} using permutations, where the permutation varies 
with each step. One of these, known as cipher A, is a rotor machine, 
analogous to the Enigma, while the other, known as cipher B ,  is a 
switch-based machine, analogous to Purple. Which of the permuta- 
tions P, Q, . . . , W ,  below, could have been generated by the A cipher 
and which could have been generated by the B cipher? In each case, 
justify your answer. y W 

0 1 2 3 4 5 6 7  
5 2 1 7 6 0 4 3  
3 4 7 0 1 6 5 2  
7 4 6 5 2 0 1 3  
1 3  5 0 6 4 7 2 
3 5 6 2 1 0 7 4  
2 5 0 6 7 1 3 4  
7 4 2 0 6 5 3 1  
6 2 1 5 7 3 0 4  

17. Define the permutations P = 1203, Q = 2031, A = 0213 and B = 3021. 

a. Compute PA, QA, P B  and QB, where, for example. P A  denotes 
the permutation A followed by the permutation P. Find the dif- 
fwence sequence (as discussed in Section 2.3.3) for the pair PA, 
QA and also for thc pair PB,  QB. 

b. Explain the results in part a. 

c. Why are these results relevant to the diagnosis of Purple? 

18. The permutations in Table 2.6 were generated from switched permu- 
tations using a niethod analogous to that used in the Purple cipher. 
Recover the L ,  M and R permutations (or an equivalent set of per- 
mutations). Hint: There are three permutations per switch. Use the 
permutations in lines 3, 4 and 5 to solve for the L permutations, lines 4, 
I ;  and 9 to solve for the M permutations, and lines 0, 10 and 11 to solve 
for the R permutations. 

19. Consider the putative matched plaintext and ciphertext pairs in Ta- 
ble 2.5. Explain why these could not have resulted from a 3-legged 
depth of either the Enigma or Purple ciphers. 
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20. Suppose that a permutation P is wired to a rotor. Define n(P)  to be the 
resulting permutation when the rotor is shifted one step. For example, 
if P maps 0123456 to 6504213, then a ( P )  maps 0123456 to 4061532, 
n z ( P )  maps 0123456 to 3510264, and so on (see Section 2.2.3 and Prob- 
lem 1). Consider the Maroon cipher that we invented in Section 2.3. 
Let PL, PM and PK be given permutations of the 26 letters. Suppose 
that the permutations on switch L are selected to be 

Similarly, let the rotor permutations of PM be the permutations on the 
switch M and the rotor shifts of PR be the permutations on switch R. 

a. With this choice of permutations, how is Maroon similar to-and 
different from--Enigma? 

b. Suppose we choose the switched permutations of Maroon to be the 
“rotor shifts” of a given permutation, as described above. Then 
Maroon generates permutations similar to those produced by a 
rotor machine, such as Enigma. It might, therefore, be argued 
that Maroon is, in some sense, more general than the Enigma, and 
therefore it must be at least as secure. What is wrong with this 
line of reasoning? 

21. The Sigaba cipher rotors and control rotors can each be inserted in a 
forward or reverse orientation. In this problem we consider the permu- 
tation generated by a rotor inserted in a reverse orientation. 

a. Suppose that we have a rotor analogous to a Sigaba cipher rotor, 
except that it is labeled with 0 through 6 instead of A through Z. If 
the permutation on this rotor in its forward orientation is 3164205, 
show that the corresponding permutation when the rotor is in- 
serted in its reverse orientation is 5263041. 

b. Given the permutation of a rotor in its forward orientation, explain 
how to derive the corresponding reverse rotor permutation. 

22. This problem deals with the Sigaba cipher. 

a. Let P(n)  be the probability of exactly n active inputs to the index 
rotors, assuming that the control rotors generate random permu- 
tations. Find P(n)  for n = 1,2,3,4.  

b. If there are n active inputs to the index rotors, then there are (f) 
possible distinct active outputs. For n = 1,2,3,4,  determine the 
number of these (:) outputs that result in 1, 2, 3, and 4 of the 
cipher rotors stepping. 
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c. Let S(n)  be the probability that exactly n cipher rotors step. As- 
suming that the outputs in part b are uniformly distributed, cal- 
culate S ( n )  for n = l, 2 ,3 ,4 .  

23. In the primary phase of the Sigaba attack, using n known plaintext 
letters, the expected work factor is z . 243.4 for some z. Suppose 

n: zz 1 + p + p2 + . . . + pn-l , 

where p = (25/26)”, that is, p is the probability that no consistent 
extension of a path exists (in the random case). Under this assumption, 
show that the primary phase work factor is less than 245.1 for any choice 
of n. 

24. Write a program to generate empirical results analogous to those in 
Tables 2.7 and 2.8. 

25. Consider a three rotor version of Sigaba, that is, assume that there are 
three cipher rotors, three control rotors, and three index rotors, where 
the rotors are the same as the actual Sigaba rotors. Assume that the 
stepping maze has been modified so that from one to three of the cipher 
rotors step with each letter encrypted or decrypted. 

a. What is the size of the theoretical keyspace for this Sigaba variant? 

b. Under assumptions analogous to those in Section 2.4.3, what is the 
size of the keyspace? That is, assume that only the six rotors in the 
machine are available for use as cipher or control rotors, the cipher 
and control rotors each have two orientations, only three index 
rotors are available, an itnalogous keying procedure is followed, 
the index rotors are inserted in a fixed order, and so on. 

26. Consider a three rotor version of Sigaba, as described in Problem 25. 
Assume that the control rotors step in the same way as the three middle 
Sigaba rotors. Also, assume that the active inputs to the control rotors 
are F, G and H (that is, three inputs are active, not four, as is the case for 
Sigaba) and the output of the control rotors are combined as in (2.7). 
Also, the output of the index rotor bank is combined according to 

c, = 0 0  v 0 3  v 0 9 ,  c1 = 0 2  v 0 4  v 0 s  v 0 8 ,  c2 = 0 1  v 0 5  v 0 7 .  

With these settings, at least onc of the cipher rotors will step, and at 
most, all three will step. Suppose that the following cipher and control 
rotors are available. 



Rotor 
0 
1 
2 
3 
4 
5 

Permutation 
XQKTZMJBCWRHLGUEOIYAPDVSNF 
FJQHVBKNMGTWLDSPZRCXYEUIOA 
AIYOEUNPJDKSTHFZCGBLXWMRVQ 
QJLPUOEYIAZTRMXHBCNFGDWVKS 
KDPZWHJRQBGXNFCYEUIOALTSVM 
EKMFLGDQVZNTOWYHXUSPAIBRCJ 

i 
Plaintext 

a 
Plaintext 

i 
Plaintext 

0 1 2 3 4 5 6 7 8 9 1011121314151617181920 
I A M H E A S Y 0 U A R E H E 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
A S Y 0 U A R E M E A N D 

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 
W E A R E A L L T 0 G E T H E R 
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Furt,herniore, suppose the following index rotors are available. 

a. Calculate the work factor for an attack on this three rotor Sigaba, 
using the analogous assumptions and approach a s  the Sigaba at-  
tack discussed in this chapter. Specify the primary work and the 
secondary work. Also estiniate the number of known plaintext 
letters required. 

b. Implement this three rotor Sigaba and encrypt the message below. 
where aiu” represents a blank space. Use thc following settings: 
cipher rotors 233, cipher rotor orientations 101 (where 0 is the 
forward orientation and 1 is reverse orientation). cipher rotor ini- 
tializations ABC. control rotors Ol5> control rotor orientations 110, 
control rotor initializations ZYX, index rotor ordering 201, index 
rotor initialization 965. 

c. Iniplenient the attack in part a. Show that you can recover the 
settings used to encrypt the message given in part b. 

27. This problem deals with the secondary phase of the Sigaba attack dis- 
cussed in the text. 

a. For any pair of iiiputs to the index rotors, the corresponding num- 
ber of control rotor output letters ranges from 1 to 11. All pairs 
and their corresponding values are listed in Table 2.10. Any index 
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permutation yields five pairs of outputs, one pair for each C, in 
Figure 2.22. These five output pairs correspond to five input pairs. 
Since the index permutation is a permutation, the five input pairs 
must include each of 0 through 9 exactly once, and all 26 letters 
from the output control rotors must appear. Count the number of 
valid sets of five pairs, using Table 2.10. 

b. How many distinct groupings are there in a., where groupings are 
considered distinct only if the numbers are different, not just the 
ordering? 

28. Consider the Sigaba attack discussed in the text. There are ( y )  = 45 
choices for the pairs of index permutation inputs that get mapped to 
the C,. As discussed in the text and in Problem 27, the probability 
that C, is active (and, therefore, rotor i steps) is determined by the 
number of control rotor letters that feed into the pair of outputs that 
determine C,. The number of letters that can feed into a C, is in the 
range of 1 ,2 ,3 , .  . . , 11. 

a. For each value k = 1,2 ,3 , .  . . ,11, determine the “stepping percent- 
age” for Ci when it is connected to exactly k control rotor letters. 
These percentages will sum to much more than one, since more 
than one rotor generally steps. Hint: Assume all outputs of the 
control rotors are equally likely. Generate all ( y )  of these equally 
likely outputs, map these to the corresponding index perniutation 
inputs, and count the number of times that at least one element 
of each of the pairs in Table 2.10 occurs. Use this information to 
answer the question. 

b. Suppose that only one cipher rotor, say, i steps. What do you 
irnmediatcly know about the index permutation inputs that are 
combined to form Ci? 

c. Suppose that exactly two cipher rotors, say, i and j step. What do 
you immediately know about the index permutation inputs that 
are combined to form Ci and Cj? 

29. For each letter encrypted by the Sigaba cipher machine, all five cipher 
rotors step and three of the five control rotors step. The two remaining 
control rotors and all five index rotors do not step. Since the cipher and 
control rotors each permute 26 letters, the maximum possible period for 
Sigaba is 268. However, in [146] it is claimed that the Sigaba cipher has 
a period of just 264, regardless of the initial settings. Write a program 
to determine the period of Sigaba for a given key. Use your program to 
verify that the Sigaba period is 264 for each of 100 randomly selected 
keys, or find a key that does not yield a period of 264. 
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30. Suppose that we create a new cipher, Sigaba Lite (SL), which is similar 
to Sigaba with the exception that SL uses only four cipher rotors. As 
with Sigaba, in SL from one to four (inclusive) of the cipher rotors steps 
with each letter encrypted. All other components of SL are the same 
as those of Sigaba. Also, SL is equipped with nine cipher and control 
rotors, that is, the number of rotors that will fit in the device (as is the 
case for Sigaba). Show that if sufficient known plaintext is available, 
then there is an attack on SL requiring work of about 2*' or less. Hint: 
Mimic the Sigaba attack outlined in this chapter. 

31. For the primary phase of the Sigaba attack: 

a. Determine the expected number of consistent paths (without merg- 

b. Determine the expected number of consistent paths (with merging) 

ing) in the random case and the causal case. 

in the random case and the causal case. 

32. Consider the Sigaba attack discussed in this chapter. 

a. Using the results in Table 2.7, estimate the number of survivors 
from the primary phase, assuming that 40 know plaintext letters 
are available and paths are merged, but otherwise all surviving 
paths are saved. 

b. What is the work factor for the primary phase using the method 
in part a? 

c. What is the total work, including the secondary phase, for the 
attack as outlined in this problem? 

33. This problem deals with the Sigaba attack discussed in this chapter. 

a. Compute the average probability p,, for i = 1 , 2 , 3 , 4 ,  that pre- 
cisely i cipher rotors step, where the average is taken over all pos- 
sible index permutations and all possible control rotor outputs. 
Hint: Model the control rotor outputs as uniformly random. Then 
there are (7) equally likely outputs of the control rotors and these 
outputs are combined as indicated in (2.7). Test each of these with 
each of the 10!/32 distinct index permutations (see Section 2.4.3). 
Compare your results to Problem 22, part c. 

b. How can you use the result of part a of this problem to improve 
on the Sigaba attack described in this chapter? 
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Chapter 3 

Stream Ciphers 

If we are carried along the stream we fear nothing, 
and it is only when we strive against it, 

that its progress and power are discernible. 
- John Owen 

3.1 Introduction 

Stream ciphers are a class of symmetric ciphers that operate something like 
a one-time pad. The crucial difference is that a stream cipher only requires 
a small key, whereas a one-time pad cipher requires a key that is the same 
length as the original message. While a one-time pad cipher is provably secure 
(provided it is used correctly), it is generally impractical since the key is the 
same length as the message. After all, if Alice and Bob can securely distribute 
a key that is the same length as the message, why not simply distribute the 
message by the same means as the key and do away with the cipher? 

In a stream cipher, a relatively small key is “stretched” into a long 
keystream that can then be used just like a one-time pad. A stream ci- 
pher has far fewer keys than the number of possible keystreams, so we cannot 
prove that such a cipher is secure-at least not using a similar argument as 
is used to prove the one-time pad is secure. In effect, a stream cipher trades 
the provable security of a one-time pad for practicality. 

A generic stream cipher is illustrated in Figure 3.1, where the key is 
input to the stream cipher algorithm, which then generates the keystream ki ,  
for i = 0, 1 , 2 , .  . .. This keystream can be generated in bits, bytes, or other 
sized chunks. Encryption is accomplished by XOR of the keystream ki with 
the plaintext pi to yield the ciphertext ci. To decrypt, the same key is input 
to the stream cipher algorithm, so that the same keystream is generated. 
Then the keystream bits are XORed with the ciphertext to yield the original 

79 
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plaintext. As with the one-time pad, this decryption relies on the fact that 
if c, = p ,  @ k,  then c, @ k, = ( p ,  fB k , )  @ k,  = p,. That is, regardless of the 
value of the bit k, ,  we have k,  @ k ,  = 0. 

-L- 
stream 

1 cipher --- 
I ki 
I 

L-, 
stream 
cipher 

ciphertext 

Figure 3.1: Generic stream cipher. 

We must assunie that Trudy, the cryptanalyst, knows (or can guess) some 
of the plaintext. For a stream cipher, known plaintext and the corresponding 
ciphertext immediately enables Trudy to recover part of the keystream. If 
Trudy can recover more of the keystream from such a captured segment: 
then the stream cipher is insecure. Therefore, the security of a stream cipher 
depends on properties of the generated keystream. 

But what properties should a keystreani ideally satisfy? The keystream 
needs to be “random,” but there are many definitions of randomness, and 
many of these “random” sequences would be poor keystreams. For example, 
a common method for generating pseudo-random sequences is to employ a 
linear congruential generator (LCG). The output from these generators satisfy 
many statistical properties that make them excellent random sources for a 
variety of applications (for exaniple, simulations). The bits generated by an 
LCG could be used as a keystream, with the seed value acting as the key. 
However, an LCG would make a very poor stream cipher, since given a sniall 
section of the keystreani it is not difficult to determine the entire sequence [9]. 
This is exactly what we must avoid with a stream cipher keystream. In 
other words, statistical randomness is insufficient to ensure the security of a 
keys t rcarn. 

The crucial property required of a keystream sequence is that it be unpre- 
dictable, or cr?gptop-aphically strong. Intuitively, i t  is clear what we mean by 
unpredictable, but there is no entirely satisfactory technical definition. We 
discuss this problem briefly in the ncxt section. 

In this chapter we first discuss linear feedback shift registers (LFSRs), 
which are often used as building blocks for stream ciphers. We also consider 
correlation attacks against a particular class of LFSR-based stream cipher. 
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Then we discuss attacks on three specific stream ciphers, namely, ORYX, 
RC4 and PKZIP. Although many (if not most) stream ciphers generate their 
keystreams one bit at a time, coincidentally, all three of these ciphers generate 
their keystreams one byte at a time. 

The ORYX cipher is based on shift registers. Its design is inherently weak 
and we present a relatively straightforward attack. 

Although most stream ciphers are designed to be efficient in hardware, 
RC4 was specifically designed to be efficient in software implementations. 
The RC4 attack that we cover relies on a specific weakness in the way that 
the key is used. This attack is a serious concern in WEP, a wireless protocol 
that we briefly discuss. However, a minor modification to the way that RC4 is 
used in WEP renders this attack ineffective and, consequently, RC4 itself can 
be considered secure (when properly used) in spite of this particular attack. 

PKZIP is an interesting cipher. As with RC4, the design of PKZIP is not 
based on shift registers, and it was designed to be highly efficient in software. 
The PKZIP cipher is somewhat weak, but the attack is relatively complex 
and involved. 

3.2 Shift Registers 

“Give your evidence,” said the King; 
“and don’t be nervous, or I’ll have you executed on the spot.” 

This did not seem to encourage the witness a t  all: 
he kept shifting from one foot to the other and in his confusion 

he bit a large piece out of his teacup instead of the bread-and-butter. 
- Alice in Wonderland 

A shift register consists of a series of memory elements or stages, each capable 
of containing a single bit. The register stages are initialized with an initial 
f i l l ,  then at each step, the contents are shifted one position to the left’, with 
a new bit shifted into the rightmost position. The bit that is shifted off the 
left end is usually taken as the output. For the shift registers we consider, the 
new rightmost bit is calculated as a function of the current fill of the register. 
Appropriately, this function is known as the feedback function. 

For example, consider the shift register in Figure 3.2. If the function f is 
given by 

f(G, Zi+l ,  G + 2 )  = 1 CE 52 CE 2i+2 CE %+lZi+2 

and the initial fill is 111, then one period of the output sequence is given 

‘Of course, shift registers can also be viewed as shifting to the right, but for our purposes 
it is more convenient to consider left-shifting shift registers. 
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by 11100010, which happens to be a de Bruijn sequence.' 

Figure 3.2: Shift register. 

If a shift register has a linear feedback function, that is, if the function 
involves only XOR operations, not multiplication (equivalently, AND oper- 
ations), then it is known as a linear feedback shift register (LFSR). For our 
purposes, LFSRs are the most important shift registers. Historically, stream 
ciphers employed in high data-rate systems were based on LFSRs, since shift 
registers are easily implemented in hardware and they can produce keystream 
bits at ,  or near, the clock speed. Today, software-based systems are capable 
of encrypting at  extremely high data rates, which is one reason why stream 
ciphers in general, and LFSR-based cryptosystems in particular, are on the 
decline. In the realm of symmetric ciphers, software-based block ciphers 
are in the ascendancy, and this trend appears certain to continue. How- 
ever, there remain applications where stream ciphers are preferable, such as 
error-prone wireless environments and some extremely resource-constrained 
environments. 

A simple LFSR is illustrated in Figure 3.3.  This type of LFSR is some- 
times referred to as a Fibonacci register. There is another common type of 
linear shift register known as a Galois register, where the shifting and the 
feedback is slightly more complex. We do not discuss Galois registers further 
here; see [57] for more details on these two types of LFSRs. 

Figure 3.3: A linear feedback shift register. 

The feedback function for the LFSR. in Figure 3.3 is 

It is standard practice to  denote linear feedback functions as polynomials, 
where the indices become exponents. For example, xi+’ is represented by z2; 

'A de Bruijn sequence is a binary sequence of period 2" in which each binary n-tuple 
appears exactly once, provided we consider the sequence as a cycle. 
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while xi+5 is represented by x5 and xi by xo = 1. 
as zi+5 @ xi+2 @ xi = 0, we have the equivalent polynomial representation 

Then rewriting (3.1) 

x5 + x2 + 1. 

Such a polynomial is known as the connection polynomial of the LFSR, since 
it compactly represents the “connections” required to implement the LFSR. 

There is a rich mathematical theory applicable to connection polynomi- 
als, which enables us, for example, to determine the period of the sequences 
generated by an LFSR. For an introduction to this mathematical theory and 
further pointers to the literature, see Rueppel’s book [125]. There is also a 
corresponding theory for so-called feedback with carry shift registers (FCSRs, 
also known as 2-adic shift registers). An introduction to FCSRs can be found 
in [61]. 

3.2.1 Berlekamp-Massey Algorithm 

Given a binary sequence, the Berlekamp-Massey Algorithm provides an effi- 
cient method to determine the smallest LFSR that can generate the sequence. 
Here, “size” refers to the number of stages in the LFSR. The size of the mini- 
mal LFSR is known as the linear complexity (or linear span) of the sequence. 

Due to the threat of known plaintext attacks, a keystream must have a 
large period. Furthermore, due to the Berlekamp-Massey Algorithm, there 
must not exist any small LFSR that can generate a given keystream sequence. 
We expand on this point below, after we have discussed the Berlekamp- 
Massey Algorithm and some of its implications. 

The Berlekamp-Massey Algorithm appears in Table 3.1, where 

s = (so, s1,. . . ,  Sn-1) 

denotes the binary sequence under consideration, L is the linear complexity 
and C ( x )  is the connection polynomial of the minimal LFSR. Note that the 
coefficients of all polynomials are to be taken modulo 2 .  Also, d is known as 
the discrepancy, and the connection polynomial is of the form 

C ( x )  = co + q x  + c2x2 f . .  . + c&. 

The Berlekamp-Massey Algorithm processes the sequence s sequentially 
and at step k ,  the polynomial C ( x )  is the connection polynomial for the 
first k + 1 bits of s and L is the corresponding linear complexity. At step k ,  if 
the discrepancy is d = 0, then the connection polynomial C ( x )  computed at 
step k - 1 is also the connection polynomial for so, s1,. . . , s k  and no change 
to C ( x )  or L is required. If, on the other hand, the discrepancy is d = 1, 
then C ( x )  must be modified, and the linear complexity L increases if the 
current value of L lies below the n/2 line. 
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Table 3.1: Berlekamp~-Massey Algorithm 

// Given binary sequence s = ( S O ,  S I ,  s2,. . . , ~ ~ - 1 )  

// Find linear complexity L and connection polynomial C(z) 

B W s )  
C(z) = B ( z )  = 1 
L = N = O  
m = -1 
while N < n // n is length of input sequence 

d = SN CB CISAT- 1 CB C ~ S N - ~  @ . . . @ C L S N - L  
if d == 1 then 

T ( z )  = C(z) 
C ( x )  = C ( x )  + B(z):CN-T'L 

if L 5 N/2 then 
L = N + l - L  
m = N  
B ( z )  = T ( z )  

end if 
end if 

end while 
return(L) 

N = N + l  

end BM 

Next, we illustrate the Berlekamp-Massey Algorithm. Consider the peri- 
odic sequcnce s, with one period given by 

s = ( S " , S 1 , .  . . , s7)  = 10011100. ( 3 . 2 )  

For this sequence, the first few steps of the Berlekamp-Massey Algorithm are 
illustrated in Table 3.2. 

For the periodic sequence ( 3 . 2 ) ,  the linear complexity is L = 6 (Problem 1 
asks for the connection polynomial). Therefore, if we let 10011 be the ini- 
tial fill of the LFSR corresponding to the connection polynomial determined 
by the Berlekamp-Massey Algorithm, the LFSR generates the sequencc s 
in (3.2). 

Here, we do not attempt to prove the validity of the Berlekarnp-Massey 
Algorithm. but we note in passing that the algorithm is closely related to 
the extended Euclidean Algorithm and continued fraction algorithms. We 
also note one important- but non-obvious--fact, namely, that any 2L con- 
secutive bits can be used to completely determine a sequence that has linear 
complexity L. That is, after processing 2L bits through the Berlekamp- 
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Table 3.2: Berlekamp--Massey Example 

sequence: s = (SO, s1,. . . , s7) = 10011100 
initialize: C(5)  = B ( z )  = 1, L = N = 0, m = -1 

N = O  
d = s o = l  
T ( 5 )  = 1, C(5)  = 1 + z 
L = 1, m = 0, B ( z )  = 1 

N = l  
d = SI CB cis0 = 1 
T ( z )  = 1 + 5 ,  C(2)  = 1 

N = 2  
d = s 2  CB cis1 @ ~ 2 ~ 0  = 0 

N = 3  
d = s3 CB c i s 2  C€ ~ 2 ~ 1  CB CQSO = 1 

L = 3 ,  m = 3,  B ( z )  = 1 
T ( 5 )  = 1, C ( 5 )  = 1 + 5 3  

N = 4  

Massey Algorithm, the minimal LFSR will have been obtained. Below, we 
see that this property has implications for stream cipher design. 

It is not too difficult to show that the Berlekamp-Massey Algorithm re- 
quires on the order of n2 operations [62],  where n is the number of bits 
processed and the operations are XOR. This is the most efficient known gen- 
eral algorithm for solving the shift register synthesis problem. However, there 
are more efficient algorithms for certain special cases; see Problem 4 for an 
example of such an algorithm. 

3.2.2 Cryptographically Strong Sequences 

Before illustrating the use of LFSRs in stream ciphers, we first take a slight 
detour to briefly consider some of the properties that keystrearn sequences 
must satisfy. Here, we relate these properties to shift registers. 

Keystream sequences that are unpredictable, according to some speci- 
fied set of conditions, are said to be cryptographically strong. However, it is 
important to realize that this definition is relative to the specified criteria. 
While we can specify necessary conditions that a keystream sequence must 
satisfy, there are no known sufficient conditions that ensure that a sequence 
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is cryptographically strong. In a sense, this situation parallels cryptography 
in general, where the best that can be said about any practical cipher is that, 
as far as we know, nobody has found an efficient attack. That is, we can 
never prove that a cipher is absolutely secure, but we can show that it satis- 
fies certain criteria that give us some confidence that is likely to be secure in 
practice. 

Note that if at some point, the fill of an LFSR is all zero, then the register 
fill will be all zero at every subsequent step. Therefore, an upper bound on the 
period length of any LFSR sequence is 2n - 1, where n is the number of stages 
in the LFSR. In fact, it is possible for an LFSR to attain this upper bound, 
and the resulting maximal length sequences are known as m-sequences. For 
example, a 3-stage LFSR with connection polynomial C ( x )  = 1 + x2 will 
generate a sequence of period length seven for any nonzero initial fill. In 
general, if C ( x )  is a primitive polynomial [43], then the resulting LFSR will 
yield m-sequences for all nonzero initial fills. 

While m-sequences have many nice statistical properties [59], they would 
be poor choices for keystream generators. Suppose we have a 32-bit key 
and we decide to use a stream cipher that consists of a 32-stage LFSR, with 
the connection polynomial chosen so that the resulting keystream is an m- 
sequence. Then if Trudy is able to obtain just 64 consecutive keystream 
bits, she can use the Berlekamp-Massey Algorithm to determine the entire 
keystream, which is of length 232 - 1. Recall that with a stream cipher, known 
plaintext reveals the keystrearn, so for this example, a very small amount of 
known plaintext completely breaks the cipher. Consequently, a single shift 
register that generates an m-sequences would be an extremely poor stream 
cipher, in spite of its excellent statistical properties and long period length. 

In a sense, m-sequences are among the worst keystream sequences. How- 
ever, it is possible to combine m-sequences to generate usable keystreams. 
We give examples of such keystream generators in the next section. 

This discussion of rn-sequences highlights the fact that, as a consequence 
of the Berlekamp-Massey Algorithm, a cryptographically strong keystream 
must have a high linear complexity. But is this sufficient'? That is, if we 
have a sequence with a high linear complexity, can we be certain that it is 
a cryptographically strong keystream? In fact, it easy to see that this is not 
the case, since any sequence of the form 

000. . . 00 1 (3 .3 )  - 
n.- 1 

has linear complexity n, which can be seen from the Berlekamp--Massey Algo- 
rithm, or simply by rioting that the only LFSR capable of generating (3.3) is 
necessarily of length n. Note that n is the maximum possible linear complex- 
ity for a sequence of period n. Nevertheless, the sequence in (3.3) obviously 
would not make a good keystream. 
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One problem with the sequence in (3.3) is that the linear complexity is, 
in a sense, concentrated in just a single bit. That is, the linear complexity 
is zero, until the last bit is processed, then the complexity jumps from the 
minimum to the maximum possible value. Recognizing this, Rueppel [125] 
proposes the linear complexity profile as a practical measure of the quality 
of a keystream. This profile is simply the graph of the linear complexity L 
of S O ,  s1,. . . , s k  for each k = 0 ,1 ,2 , .  . .. The required L values are obtained 
when the linear complexity of s is computed using the Berlekamp-Massey 
Algorithm, so it is efficient to determine such a profile. Rueppel has shown 
that most sequences have a linear complexity profile that follows the n/2 line 
“closely but irregularly,” and he proposes this as a criteria for judging the 
quality of a keystream. Figure 3.4 illustrates a linear complexity profile that 
satisfies Rueppel’s criteria and would therefore be considered cryptographi- 
cally strong by his definition. 

0 10 20 30 40 50 60 

k 

Figure 3.4: Linear complexity profile. 

In [141] a different criteria for cryptographically strong sequences is con- 
sidered. Although the keystream in (3.3) has the highest possible linear com- 
plexity, it differs by only one bit from the all-zero sequence, which has the 
minimum linear complexity. That is, the sequence in (3.3) is “too close” (in 
Hamming distance) to a sequence with small linear complexity. In general, if 
a sequence is close to a sequence with a relatively low linear complexity, then 
regardless of the linear complexity of the original sequence, it is an undesir- 
able keystream. The k-er ror  linear complexity is defined to be the smallest 
linear complexity that can be obtained when any k or fewer bits in one period 
of a sequence are changed from 0 to 1 or vice versa. 
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Given a sequence, we can plot the k-error linear complexity versus k ,  and 
for a cryptographically strong sequence, the graph should not have any large 
drops, particularly for relatively small k ,  since any such drop would indicate 
that a sequence with much smaller linear complexity lies close to the given 
keystream. We refer to the graph of the k-error linear complexity as the 
k-error linear complexity profile. 

In Figure 3.5 we have illustrated an undesirable k-error linear complexity 
profile. This profile shows that the sequence is close to a sequence with a 
much smaller linear complexity, as indicated by the sharp drop below the 
dotted line for a relatively small value of k .  

I 

0 5 10 15 
K 

Figure 3.5: k-Error linear complexity profile. 

In fact, the linear complexity profile in Figure 3.4 and the k-error linear 
complexity profile in Figure 3.5 were both obtained from the periodic sequence 
with period 

s = 0001 1010 1001 1010 1000 1010 1001 1010. 

The linear complexity profile of this particular sequence appears to satisfy 
Rueppel’s criteria, since it follows the n/2 line closely and no regular pattern 
is evident. However, the k-error linear complexity profile indicates that this 
particular sequence is probably not a strong keystream, since it lies “close” to 
a keystream with low linear complexity. For this example, the k-error linear 
complexity is more informative than the linear complexity profile. 

In the general case, no efficient algorithm for computing the k-error linear 
complexit,y is known. However, for the special case where s is periodic with 
period length 2n, an efficient algorithm is given in [141]. 
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3.2.3 Shift Register-Based Stream Ciphers 

Due to the Berlekamp-Massey Algorithm, we cannot directly use the output 
of an LFSR as a stream cipher. The fundamental problem lies with the 
linearity of LFSRs. However, LFSRs have useful mathematical and statistical 
properties, so it would be desirable to construct stream ciphers based on 
LFSRs. 

There are two generic approaches that are often used to create keystream 
generators based on LFSRs. One such approach is illustrated in Figure 3.6, 
where a nonlinear combining function f is applied to the contents of a shift 
register to yield the keystream sequence. The combining function is intended 
to mask the linearity of the LFSR, while taking advantage of the long period 
and good statistical properties of LFSR sequences. 

I LFSR I 
I I 

7 
f 

ki 

Figure 3.6: Stream cipher using one LFSR. 

A second approach to constructing a keystream generator from LFSRs 
is illustrated in Figure 3.7. Again, the purpose of the nonlinear combining 
function f is to effectively hide the linearity of the underlying LFSRs. In 
both of these examples, the key is the initial fill of the LFSR or LFSRs. 

I 

LFSR, I 

I 

Figure 3.7: Stream cipher using n LFSRs. 

The keystream generator in Figure 3.6 is actually a special case of the 
generator in Figure 3.7. To see that this is indeed the case, suppose that all 
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LFSRs in Figure 3.7, are identical to the single LFSR in Figure 3.6, except for 
the initial fills. Let the initial fill of LFSRo be identical to the initial fill of the 
LFSR in Figure 3.6, while LFSRl has as its initial fill the initial fill of LFSRo 
stepped once and, in general, the initial fill of LFSRi is the initial fill of LFSRo 
stepped i times. Then the nonlinear combining function f in Figure 3.7 has 
access to precisely the same bits at each step as t,he function f in Figure 3.6. 
That is, the stream cipher in Figure 3.6 is a special case of that in Figure 3.7. 
Consequently, in the discussion below, we restrict our attention to the more 
general case, as represented by Figure 3.7. 

3.2.4 Correlation Attack 

In this section we discuss a correlation attack on a shift register-based stream 
cipher. Consider the keystream generator in Figure 3.8, which consists of 
three small shift registers and a nonlinear combining function f. The feedback 
functions of the shift registers X ,  Y ,  and 2 are 

respectively. Suppose that the function f ,  which determines the keystream 
bits k 2 ,  is given by 

t 

Figure 3.8: Keystream generator. 

Lct Ix he the length of the cycle grrierated by the shift register X ,  and 
define l y  and tz  similarly. Then the keystream generated by stream cipher in 
Figure 3.8 has a cycle length of lcm(i?x, ty , i?z) .  For the registers in Figure 3.8, 
the cycle length are i?,y = 7, l y  = 15, and l ,  = 31, provided that none of the 
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initial fills are all zero and, consequently, the cycle length of this keystream 
generator is 3255. 

To use the keystream generator in Figure 3.8 as a stream cipher, we require 
a 12-bit key, which is used to determine the initial fills of the registers, with 
the restriction that no initial fill can be all zero. If Trudy can recover the 
initial fills, then she has broken the stream cipher. Of course, in this example, 
Trudy can simply use an exhaustive search to recover the initial fills, but we 
use this simple example to illustrate a shortcut attack. 

Suppose that the initial fill of register X is 011, register Y is 0101 and 
register 2 is 11100. Then the key that Trudy wants to recover consists of 
these 12-bits of initial fill. For these initial fill bits, the first 31 output bits 
for registers X ,  Y ,  and 2 in Figure 3.8 are given in the first three rows of 
Table 3.3, with the keystream given in the fourth row. 

Table 3.3: Register Bits and Keystream 

Bits i = 0,1 ,2 , .  . . ,29,30 

0101100100011110101100100011110 

1111001001100101100010110101011 

By Kerckhoffs’ Principle, we assume that Trudy knows the LFSR feedback 
functions and the nonlinear boolean function f .  Trudy’s attack will take 
advantage of certain properties of the function f .  

The truth table for the boolean function f(z, y, z )  = zy @ yz @ z is given 
in Table 3.4. Note that f ( z , y , z )  = z and f ( z , y , z )  = z both occur with 
probability 314. Trudy can take advantage of this fact to efficiently recover 
the initial fills (that is, the key) for the keystream generator in Figure 3.8. 

Table 3.4: Truth Table for f (z ,  y, 2 )  = zy @ yz @ z 

x g z  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

“y yz 
0 0  
0 0  
0 0  
0 1  
0 0  
0 0  
1 0  
1 1  

- - 
f 
0 
1 
0 
0 
0 
1 
1 
1 
- - 



92 STREAM CIPHERS 

The attack we consider here requires known plaintext. Since we are deal- 
ing with a stream cipher, known plaintext immediately gives Trudy the cor- 
responding bits of the keystream. 

Suppose that Trudy, via known plaintext, recovers the 31 keystream bits 
in the last row of Table 3.3. Trudy can then simply try all possible initial 
fills for the X register, and for each of these, she can generate the first 31 
bits of the corresponding X sequence. For the correct initial fill of X she 
expects to find Ici = xi with probability 3/4, and for an incorrect initial fill 
she expects that the keystream will match the X register sequence with a 
probability of about l /2.  Therefore, Trudy can recover the X register initial 
fill by simply trying all 23 possibilities and computing the correlation with 
the known keystream bits for each putative fill. 

For example, suppose that Trudy guesses the initial fill of X is 111. Then 
the first 31 bits of X would be 

1110010111001011100101110010111. 

If we compare these bits to the keystream bits Ici in Table 3.3, we find 15 
of the 31 bits match, that is, about 1/2 of the bits match, which implies 
that, 111 is not the correct initial fill of X .  On the other hand, if Trudy tries 
the correct initial fill for X ,  namely, 011, she finds 26 matches, as can be 
seen in Table 3.3. Since this is close to the expected number of matches for 
the correct initial fill, Trudy can assume that she has found the initial fill 
of X .  For this particular combining function f, Trudy can apply the same 
technique to recover the initial fill of 2, and with knowledge of the X and 2 
fills, she can easily recover the initial fill of Y .  

In this example, the work required for the correlation attack is on the 
order of 

2 2  + 2 4  + 23 < 25, 

while a nai've exhaustive key search attack has a work factor if 2". In general, 
if there are n shift registers of sizes No, N1,. . . , Nn-l, respectively, then the 
work for an exhaustive key search attack is 

2 IV,, + N ,  + . . . + N,, .~ 1 - 1 

while, in the ideal case, the work factor for a correlation attack is 

which highlights the strength of this method of attack. This type of correla- 
tion attack is a classic divide and conquer approach. 

Stream ciphers based on designs such as that in Figure 3.8 must) be corre- 
lation immune, that is, the conibining function f must not leak information 
about, the individual shift registers. Many techniques have been proposed 
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to combine shift registers in ways that are intended to frustrate correlation 
attacks. For example, in A5/1 (used in the GSM cell phone system), the 
shift registers step irregularly, while in Eo (used in Bluetooth) the stepping 
function includes memory of previous stepping, again, creating irregular mo- 
tion. For more information on correlation attacks, see [77, 991, Siegenthaler's 
original paper [135] or Golit's survey in [58]. 

Next, we turn our attention to three specific stream ciphers. The first of 
these, ORYX, is based on shift registers. However, the attack on ORYX that 
we consider does not rely on any correlation properties or similar features 
of the shift registers. Instead, other weaknesses in the design of ORYX are 
exploited. This attack is relatively straightforward, but is does require that 
we delve into the inner workings of the cipher. 

Neither RC4 nor PKZIP-the other two stream cipher we discuss in this 
chapter-are based on shift registers. Instead, these ciphers are designed 
to be implemented in software, which makes them somewhat unusual in the 
world of stream ciphers. The attacks on these two ciphers are both relatively 
complex, with the PKZIP attack being the more intricate of the two. 

3.3 ORYX 

Oryx \O"ryx\, n. A genus of African antelopes which includes the gernsbok, 
the leucoryx, the bisa antelope (0. beisa), 

and the beatrix antelope (0. beatrix) of Arabia. 
- dictionary.net 

ORYX is a stream cipher developed by the Telecommunications Industry 
Association (TIA) as part of an overall cell phone security a r~hi tec ture .~  The 
TIA system was briefly used in the late 1990s until its many security flaws 
were exposed. Before considering the ORYX cipher, we briefly discuss cell 
phone security in general. 

TIA is not the only flawed cell phone security architecture. The Global 
System for Mobile Communications (GSM) is another cellular system that 
has more than its share of security issues. In GSM there are several cryp- 
tographic weaknesses, along with protocol-level flaws that open the door to 
many different feasible attacks [142]. The cryptographic flaws include attacks 
on the encryption algorithms (specifically, A5/1 and A5/2), as well as serious 
problems with the hash function (COMP128) that is used for authentication 
and key generation. These crypto problems in GSM can be traced to the fact 
that Kerckhoffs' Principle was violated, since the GSM crypto algorithms 

3The all-uppercase rendering of ORYX is standard, but it is a mystery, since ORYX is 
not an acronym. 
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never received public scrutiny before they were installed in millions of cell 
phones. 

In defense of GSM, it should be noted that it was designed early in the cell 
phone (and wireless networking) era, and it was designed with very limited se- 
curity goals. In fact, contrary to what you are likely to read elsewhere, it is not 
unreasonable to consider GSM security a modest practical success, since none 
of the many potential attacks ever became a serious issue in practice [142]. 
However, the GSM security design goals were clearly too limited, and this is 
the root cause of most of the exploitable flaws. So-called “third generation’’ 
cell phones, as defined by the Third Generation Partnership Project (SGPP), 
have a security architecture modeled on GSM, with all of the known flaws 
patched [I]. 

The TIA cell phone security architecture was developed after most of the 
flaws in GSM were well-known, so you might expect that TIA would have 
learned from the crypto mistakes of GSM. If so, you would be mistaken. 

Like GSM before it, TIA violated Kerckhoffs’ Principle, with predictable 
results. The weak ORYX cipher discussed here is one of the consequences of 
the decision to use ciphers that had not been thoroughly reviewed-the weak 
Cellular Message Encryption Algorithm (CMEA) discussed in Chapter 4 is 
yet another. 

The ORYX cipher was designed to encrypt data sent to and from cellular 
phones. Here, “data” includes voice and other messages sent over the phone. 
This is in contrast to “control” or signaling information, such as the number 
called, which was not encrypted using ORYX. Instead, the CMEA block 
cipher mentioned above was used to protect the confidentiality of the control 
information. A practical attack on CMEA is given in the next chapter. 

The definitive cryptanalysis of ORYX appears in [153], where it is shown 
that the entire 96-bit key can be recovered with a minimal work factor, given 
about 25 bytes of known plaintext. The fundamental weakness in ORYX 
arises from the fact that, for efficiency, it generates a keystream byte at each 
step. when a single bit (or perhaps two) would probably be more realistic 
given the inherent limitations of the algorithm. 

3.3.1 ORYX Cipher 

The ORYX cipher employs three shift registers, which we label X ,  A,  and B.  
Each register holds 32 bits. Denote the current bits of register X (that is, 
the fill of X )  as 20: 2 1 , 2 2 ,  . . . , 2 3 1 .  Similarly, let a0 through a31 be the fill 
of register A, and bo through b ~ 1  be the fill of register B. At each step of a 
register, a single bit, say, y is computed as a function of the current register 
fill, then each bit in the register is shifted one position to the right, with the 
bit formerly in position 31 being discarded, and the bit y is then inserted into 
position 0. For more information on shift registers and their role in stream 
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ciphers, see Section 3.2 or Rueppel’s classic book [125]. 
When register X steps, the following sequence of operations occur 

Y = PX(X) 
zi = xi-1 for i = 31,30,29,. . . , I  

2 0  = Y 

where 

pX(x) = 2 0  @ x4 @ 2 5  @ 2 8  @ 29 @ 210 @ 213 @ 215 @ 217 

@ 218 @ 227 @ 231. 

Note that the feedback function Px is linear and, consequently, X is a linear 
feedback shift register (LFSR). Recall that LFSRs were discussed in some 
detail in Section 3.2. 

For register A we have 

Y = PA(A) 
ai = ai-1 for i = 31,30,29,. . . , 1  

a0 = Y 

where PA is either 

PAO(A) = a0 @ a 1  @ a 3  @ a4 @ a 6  @ a7 @ a9 @ a10 @ all @ a15 

@ a21 @ a22 @ a25 @ a31 

or 

PAI(A) = a0 @ a1 @ a 6  @ a7 @ a8 @ a9 @ a10 @ a12 @ a16 @ a21 

@ a22 @ a23 @ a24 @ a25 @ a26 @ a31, 

depending on whether bit 229 of register X is 0 (in which case the feedback 
function PAO is selected) or 1 (in which case PA1 is selected). Note that this is 
somewhat analogous to the way that the Sigaba cipher uses one set of rotors 
to determine the stepping of another set of rotors. 

For register B ,  a step consists of the sequence of operations 

!/ = pB(B)  
bi = bi-1 for i = 31,30,29,. . . , 1 

bo = Y 

where the (linear) feedback function PB is defined by 

PB(B) = bo @ b2 CE b5 CE b14 @ b15 @ b1g @ b20 CE b30 CE b31. 

We define one iteration of ORYX as follows: 
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1. Register X steps. 

2. If 229 = 0, then register A steps using PA, to generate the feedback bit. 
Otherwise register A steps using  PA^. 

3 .  If 5 2 6  = 0, then register B steps once, otherwise register B steps twice. 

4. Finally, a keystream byte is generated as 

keystreamByte = ( H ( X )  + L [ H ( A ) ]  + L [ H ( B ) ] )  (mod 256), 

where H selects the “high” byte of the current fill of a register (in 
our notation, bits 24 through 31) and L is a known permutation of 
the numbers { 0 , 1 , 2 , .  . . ,255}. The permutation L is variable, but it 
remains fixed for the duration of a given message, and L is known 
to the cryptanalyst. The permutation L plays a similar role to the 
initialization vector (IV) in RC4 or the message indicator (MI) in the 
WWII cipher machines discussed in Chapter 2. 

Note that in ORYX, one iteration occurs before the first keystream byte is 
generated. 

The ORYX keystream generator is illustrated in Figure 3.9, where S signi- 
fies the selection between feedback polynomials PAO and  PA^ , and C controls 
whether register B is “clocked” (that is, stepped) once or twice. 

Figure 3.9: ORYX cipher. 

The ORYX key consists of the initial fills of the three registers X ,  A,  
and B ,  while L is the (non-secret) IV. Given the initial fills, the corresponding 
keystream can be generated, as described above. Since each register holds 32 
bits, the key is 96 bits. 
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Like RC4, the ORYX cipher generates its keystream one byte at a time. 
This improves the efficiency of the cipher, but, in the case of ORYX, it creates 
a serious weakness. 

Denote the ORYX keystream bytes as ko, k l ,  k 2 , .  . .. Let X ,  A ,  and B be 
the initial fills of the registers. Then the entire keystream is determined by 
these fills and the known permutation L. As mentioned above, the ORYX 
registers step before a keystream byte is generated. Consequently, the first 
keystream byte is 

ko = ( H ( X )  + L [ H ( A ) ]  + L [ H ( B ) ] )  (mod 256), (3.4) 

where X ,  A ,  and B represent the register fills after one iteration of ORYX. 

3.3.2 ORYX Attack 

The ORYX attack discussed here requires that some number of keystream 
bytes are known. Since ORYX is a stream cipher, known plaintext together 
with the corresponding ciphertext would yield the necessary keystream bytes. 
In practice about 25 known keystream bytes suffices to recover the entire key. 

The attack proceeds by trying each of the 2'' possible values for the 
pair ( H ( A ) ,  H ( B ) )  in (3.4). Given a putative value for ( H ( A ) ,  H ( B ) ) ,  and 
assuming ko is known, we can solve for H ( X )  as 

H ( X )  = (ko - L [ H ( A ) ]  - L [ H ( B ) ] )  (mod 256). 

Then we attempt to extend A and B by one iteration. To do so, we use the 
known keystream byte k l ,  and solve for 

Y = (k l  - L [ H ( A ) ]  - L [ H ( B ) ] )  (mod 256). (3.5) 

If the value Y can be obtained as a shift of X ,  then A ,  B ,  and X are consistent 
with the first two keystream bytes, and these partial fills are retained for the 
next iteration, where we attempt to further extend A and B so that they 
are consistent with k2. If the value of Y in (3.5) cannot be obtained by an 
extension of X then the partial fills A and B are discarded. 

How many ways are there to  extend a given pair A and B to the next 
i t e r a t i ~ n ? ~  Register A always shifts one position to the right so that a single 
new bit appears at the leftmost position in H ( A ) .  Register B can shift once, 
in which case one new bit appears in H ( B ) ,  or it can shift twice, in which 
case two new bits appear in H ( B ) .  This gives a total of 12 possible ways to 
extend the current fills of registers A and B. These 12 possible extensions are 
listed in Table 3.5. We denote the j t h  extension of A as e ( A , j )  and similarly 
for B. 

4Let me count the ways 
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Table 3.5:  Extensions of A and B 

Extend Extend 
Shift A Shift B Fill A Fill B 

0 1  1 0 0 
1 
2 
3 

9 
10 !! 11 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

1 
0 
1 

00 
01 
10 
11 
00 
01 
10 
11 

Now we consider an example that illustrates the steps in the attack. Sup- 
pose the key-that is, the initial fills of the registers X ,  A, and B--is given 
by the register fills 

( X ,  A, El) = (Oxdeadbeef, 0x01234567,0x76543210). 

Since one iteration occiirs before the first keystream byte is generated, we 
do not directly recover the initial register fills, but instead, we recover the 
register fills after the first iteration. Let ">>" be the right shift operator. 
Then t,he at,tack will recover X >> 1, A >> 1 and either B >> 1 or B >> 2, 
depending on whether B shifts once or twice in the first iteration. In this 
example, these fills are 

( X  >> 1) = 0~6f56df77 

( A  >> 1) = Ox0091a2b3 

(I? >> 1) = Ox3b2a1908 

(I? >> 2) = Oxld950~84. 

Once the appropriate shifted fills have been recovered, it is a simple matter to 
step them back to the actual initial fills and thereby recover the original 96 
bit key, if desired. However, this is not necessary if the goal is simply to 
decrypt the message. 

Trudy the cryptanalyst does not know the register fills, but we assume 
that she docs know approximately 25 consecutive keystream bytes, and she 
knows the table L used for the ~nessage under consideration. Here, we only 
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illustrate the first two steps in the attack, so we only utilize the first and 
second keystream bytes. 

For this example, suppose 

ko = Oxda and kl =Ox31 (3.6) 

and the permutation L given in Table 3.6 was used to encrypt the message. 
Then, for example, L[Oxa2] = 0x95 since 0x95 appears in row Oxa and col- 
umn 0x2 of Table 3.6. 

- 

- 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 

d 
e 
f 

C 

- 

Table 3.6: Example ORYX Permutation L 

0 1 2 3 4 5 6 7 8 9 a b c d e f  
ed 3e Od 20 a9 c3 36 75 4c 2c 57 a3 00 ae 31 Of 
19 4d 44 a0 11 56 18 66 09 69 6e 3d 25 9c db 3f 
65 58 l a  6d f f  d7 46 b3 b l  2b 78 cf be 26 42 2f 
d8 d4 8e 48 05 b9 34 43 de 68 5a aa  9d bd 84 a2 
3c 50 ce 8b c5 dO a5 77 If 12 6b c2 b5 e6 ab 54 
81 22 9f bb 5c a8 dc ec 2d l e  ee d6 6c 5f 9a f d  
c8 d5 94 f c  Oc l c  96 4f f 9  51 da 9b df e l  47 37 
d l  eb af f 7  a4 03 fO c7 60 e4 f 4  b4 85 f 6  62 04 
71 87 ea  17 99 Id 3a 15 52 Oa 07 35 eO 70 b6 f a  
cb bO 86 a6 92 f b  98 55 06 4b 5d 4a 45 83 bf 16 
7c 10 95 28 38 82 f 3  6a f 8  f e  79 39 27 2a 5e e7 
59 b8 l b  ca 8d d3 7b 30 33 90 d2 d9 ac 76 8f 5b 
a7 Oe 63 c4 b2 e9 97 91 53 7a Ob 41 08 c l  8c 7d 
88 24 f 5  f 2  01 72 e8 80 49 13 23 9e c6 14 73 ad 
8a 29 ef e5 67 61 ba e2 7e 89 64 02 c0 21 6f f l  
dd b7 c9 e3 cd 3b 93 2e 40 bc 4e a1 cc 74 32 7f 

In this attack, Trudy will try all 2“ guesses for the 16 bits ( H ( A ) ,  H ( B ) )  
that were used to generate ko. Consider the case where Trudy selects 

( H ( A ) ,  H ( B ) )  = (Oxb3 ,0~84) ,  (3.7) 

which is one of the 2“ values that she will test. In this case, Trudy computes 

H ( X )  = (ko - L [ H ( A ) ]  - L[H(B)]) (mod 256) 

= (Oxda - L[Oxb3] - L[Ox84]) (mod 256) 

= (Oxda - Oxca - 0x99) (mod 256) 

= 0x77. 

Now Trudy must attempt to extend the fills X ,  A, and B to the next 
iteration by trying each of the 12 extensions listed in Table 3.5. For example, 
for j = 2 in Table 3.5, Trudy shifts each of A and B by one, and chooses 1 
for the next bit of A and 0 for the next bit of B. Then the resulting “high” 
bytes are 

H ( A )  = Oxd9 and H ( B )  = 0x42. 
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Using these values Trudy solves for 

H ( X )  = (k l  - L [ H ( A ) ]  - L [ H ( B ) ] )  (mod 256) 

= (0x31 - L[Oxd9] - L[Ox42]) (mod 256) 

= (0x31 - 0x13 - Oxce) (mod 256) 

= 0x50. 

However, the previous H ( X )  is 0x77 which can only be extended to ei- 
ther Ox3b or Oxbb. Therefore, this particular extension is inconsistent with 
the assumed ( H ( A ) ,  H ( B ) ) .  

On the other hand, consider (3.7) again, and consider the case where 
Trudy tries to extend this fill using j = 8 in Table 3.5. Then she shifts A by 
one and B by two, choosing 0 for the next bit of A and 00 for the next two 
bits of B.  In this case, the extensions are 

H ( A )  = 0x59 and H ( B )  = Ox21 

and using these bytes Trudy solves for 

H ( X )  = ( k l  - L[H(A)] - L [ H ( B ) ] )  (mod 256) 

= (0x31 - L[Ox59] - L[Ox21]) (mod 256) 

= (0x31 ~ Oxle - 0x58) (mod 256) 

= Oxbb. 

This is consistent with shifting the previous value of H ( X )  one position and 
filling in the new bit with 1. Therefore, Trudy retains this fill and tries to 
extend it further at the next iteration. 

For any initial guess ( H ( A ) ,  H ( B ) )  Trudy can solve for a consistent value 
of H ( X ) .  Consequently, Trudy can only discover whether any guess was 
correct or not when she tries to extend the fills beyond the first byte. And 
it is possible that that some “false positives” will occur, that is, some fills 
will be consistent with the keystream for a few steps before failing. We 
carefully analyze these probabilities below. Note that, in effect, the attack 
we have described performs a breadth-first search. However, a depth-first 
search works equally well. 

The attack algorithm is outlined in Table 3.7. This algorithm must be 
repeated for each of the 2’’ guesses for the initial 16 bits of ( H ( A ) ,  H ( B ) ) .  
Recall that e ( A , j )  is our notation from Table 3.5 for the j t h  extension of 
register A. 

Once an iteration of the attack in Table 3.7 returns a solution, there is no 
need to continue searching, provided that a sufficient number of keystream 
bytes are provided to uniquely determine the key. Below, we show that with 
just six keystream bytes we only expect one surviving set of initial fills, and 
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Table 3.7: Outline of ORYX Attack 

// Given: keystream bytes ko, k l ,  k 2 , .  . . , kiv, 
// table L,  and a guess for initial ( H ( A ) ,  H ( B ) )  
H ( X )  = (ko - L[H(A)] - L [ H ( B ) ] )  (mod 256) 
for i = 1 to N // for each keystream byte 

for each (X, A ,  B )  // putative fill 
TO = extend X with 0 
TI = extend X with 1 
for j = 0 to 11 // for each possible extension 

Tx = (ki - L[H(e(A,j))l - L[H(e(B, j ) ) l )  (mod 256) 
if Tx == H(T0) then 

end if 
if TX == H(T1) then 

end if 

save (To,e(A,j), e ( B , j ) )  for next iteration 

save ( T I ,  e (A , j ) ,  e ( B , j ) )  for next iteration 

next j 
next putative fill 

next i 

after 25 bytes we expect to have determined all of the bits of the (shifted) 
initial fills. 

Finally, we analyze the performance of this attack. For any initial choice 
of H(A)  and H ( B ) ,  we can use ko to solve for a consistent value of H ( X ) .  
This implies that with just a single keystream byte available, we would ob- 
tain 65,536 consistent fills. In other words, the first keystream byte yields no 
reduction in the number of potential fills. However, if we have ko and k l ,  then 
for each of the 65,536 fills (X, A, B )  obtained in the first step, the pair ( A ,  B )  
can be extended in 12 different ways, and for each of these, the implied 
extension of X is computed. Each valid extension must match in the seven 
rightmost bits of the shifted H ( X ) .  Consequently, on average, only one in 128 
of the extensions will survive, assuming we can model the byte comparisons 
as random. Since L is a permutation it is reasonable to  model the computed 
value as a random selection from {0,1,2,. . . ,255). The bottom line is that 
using only ko and k l ,  the expected number of valid fills remaining is 

12.65,536 
= 6144. 

128 

If we extend the attack to include k2, then the expected number of sur- 
viving fills is 

12.6144 
= 576 

128 
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Keystream 
Bytes 

1 
2 
3 
4 
5 
6 

and so on. These results are tabulated in Table 3.8 along with a set of 
empirically obtained results. It is interesting that the empirical results match 
the theoretical results so closely. 

Expected Computed 
Fills Fills 

65,536 65,536 
6144 6029 
576 551 
54 47 
5 3 
1 1 

The results in Table 3.8 show that Trudy can expect to reduce the num- 
her of surviving fills to one single candidate using only six keystream bytes. 
However, to completely determine the 32 bits in each register will require at 
least 25 keystream bytes, since ko is used to determine bits 24 through 31, 
while each subsequent k ,  determines only a single bit of registers A and X ,  
while, on average, each keystream byte determines 1.5 bits of register B. 

Since t,he registers step before the first keystream byte is generates, this 
attack does not recover the original fills ( X ,  A ,  B ) ,  but instead, it recovers the 
fills ( X  >> l , A  >> l , B  >> s ) ,  where s is one or two, depending on whether B 
steps once or twice on the first iteration. In any case, given the recovered 
fills, it is a simple matter to determine the actual initial fills-although it is 
not necessary to do so to  decrypt the message. 

Assuming that ! keystream bytes are used, the expected work required 
for this attack is 

1 2 .  (65,536 + 6144 + 576 + 54 + l) < 22" 

This is an extremely efficient attack to recover a 96 bit key. The space 
requirement for the attack is also minimal, as explored further in Problem 13 
at the end of this chapter. 

3.3.3 Secure ORYX? 

As mentioned above, the fundamental problem with ORYX is that it attcmpts 
to generate a byte of keystream at each iteration. While this makes for an 
efficient cipher, it exposes far too much of the internal state to thc attackcr. 

Can we modify ORYX so that it is more secure? If, at each itcration, we 
output a single bit instcad of a byte, that would probably improve the security 
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significantly. For example, suppose we were to compute each keystream bit 
as 

keystreamBit = s ( X )  @ s ( L [ H ( A ) ] )  @ s ( L [ H ( B ) ] ) ,  

where s selects, say, the high (rightmost) bit of a word or byte. Provided 
that a complete iteration occurs between each keystreamBit computation, 
this modification would frustrate the attack discussed above-even if much 
more known plaintext were available-since the number of candidates to be 
considered would grow rapidly, instead of being reduced at each iteration. 
However, this modification would make the cipher eight times slower, which 
is almost certainly not practical for its intended application. Also, other 
attacks on this “secure” version of ORYX would need to be considered. 

3.4 RC4 

Suddenly she came upon a little three-legged table, all made of  solid glass: 
there was nothing on it but a tiny golden key.. . 

- Alice in Wonderland 

RC4 was invented by Ron Rivest in 1987. The “RC” is reputedly for “Ron’s 
Code,” although officially it is “Rivest Cipher.” RC4 is without doubt the 
most widely used stream cipher in the world today. It is used, for example, 
in the Secure Socket Layer (SSL), which is the de facto standard for secure 
transactions over the Internet, and in Wired Equivalent Privacy (WEP), a 
widely deployed networking protocol that purports to semi-secure a wireless 
local area network (LAN). 

The RC4 algorithm is considered secure, if used properly. However, 
WEP--the Swiss cheese of security protocols--somehow managed to imple- 
ment nearly all of its security functions insecurely, including RC4. As a result, 
there is a feasible attack on RC4 encryption as used in WEP. But before we 
discuss this cryptanalytic attack, we briefly mention a few of the many other 
security issues with WEP. 

Perhaps the most egregious security problem with WEP is that it uses 
a cyclic redundancy check (CRC) for “integrity” protection. The primary 
purpose of integrity protection is to detect malicious tampering with the 
data-not just to detect transmission errors. While a CRC is an excellent 
error detection method, it is useless for cryptographic integrity, since an in- 
telligent adversary can alter the data and, simultaneously, the CRC value so 
that the “integrity check” is passed. This is precisely the attack that a true 
cryptographic integrity check, such as a MAC or HMAC, will prevent [142]. 
Furthermore, since RC4 is a stream cipher, WEP encryption is linear, which 
allows changes to be made directly to the ciphertext--by an attacker who 
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does not know the key or plaintext-and to the CRC value so that the re- 
ceiver will not detect the tampering. The bottom line is that this supposed 
“integrity check” provides no cryptographic integrity whatsoever. Perhaps a 
CRC was used in WEP due to resource limitations, but that is no excuse for 
promoting the CRC calculation as an integrity check. 

WEP encrypts data with the stream cipher RC4 using a long-term key 
that seldom (if ever) changes. To avoid repeated keystreams, an initialization 
vector, or IV, is sent in the clear with each message, where each packet is 
treated as a new message. The IV is mixed with the long-term key to produce 
the message key. The upshot is that the attacker, Trudy, gets to see the IVs, 
and any time an IV repeats, Trudy knows that the same keystream is being 
used to encrypt the data. Since the IV is only 24 bits, repeated IVs will occur 
relatively often, which implies repeated keystreams. Since a stream cipher is 
used; a repeated keystream is at  least as bad as reuse of a one-time pad. That 
is, a repeated keystream provides statistical information to the attacker who 
could then conceivably liberate the keystream from the ciphertexts. 

However, in WEP, there are several possible shortcuts that make an at- 
tacker’s life easier. For example, if the attacker Trudy can send a message over 
the wireless link and intercept the ciphertext, then she knows the plaintext 
and the corresponding ciphertext, which enables her to immediately recover 
the keystream. This same keystream will be used to encrypt any message 
that bears the same IV, provided the long-term key has not changed-which 
it seldom does, since a key change is manual, and the key must be shared 
with all users of a particular wireless access point. 

How realistic is it for Trudy to send a known message over the wireless 
link? As long as she can contact someone on the wireless LAN (for exam- 
ple, by sending an email message), she can potentially accomplish this trick. 
The primary practical difficulty for Trudy is to determine which intercepted 
message corresponds to her chosen plaintext. 

There are many more WEP security vulnerabilities. For example, sup- 
pose that Trudy knows (or can guess) the destination IP address of a given 
WEP-encrypted packet. Then-without knowing the key-she can change 
the destination IP address to an IP address of her choosing (for example, 
her own IP address), and change the CRC “integrity check” so that her tani- 
pering goes undetected. WEP traffic is only encrypted from the host to the 
wireless access point (and vice-versa). Therefore, when the altered packet 
arrives at the access point, it will be decrypted and forwarded to Trudy’s 
preferred IP address. Note that this attack is made possible by the lack of 
any real integrity check. 

Below, we discuss a cryptanalytic attack on the RC4 stream cipher as it is 
used in WEP. This attack succeeds due to the specific way that WEP creates 
the session key from an initialization vector IV and the long-term key, not 
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due to any inherent weakness in the RC4 algorithm i t ~ e l f . ~  The attack has a 
small work factor, and it will succeed provided that a sufficient number of IVs 
are observed. This clever attack, which can be considered a type of related 
key attack, is due to Fluhrer, Mantin, and Shamir [51]. 

3.4.1 RC4 Algorithm 

RC4 is simplicity itself. At any given time, the state of the cipher consists of 
a lookup table S containing a permutation of all byte values, 0 ,1 ,2 , .  . . ,255, 
along with two indices i and j .  When the cipher is initialized, the permutation 
is scrambled using a key which can be of any length from 0 to 256 bytes. In 
the initialization routine, the lookup table S is modified (based on the key) 
in such a way that S always contains a permutation of the the byte values. 
The RC4 initialization algorithm appears in Table 3.9. 

Table 3.9: RC4 Initialization 

f o r  i = 0 t o  255 
Si = i 
Ki = key[i (mod N ) ]  

next i 

f o r  i = 0 t o  255 
j = O  

j = ( j  + Si + Ki) (mod 256) 
swap(S2, S j )  

next i 
i = j = o  

The RC4 keystream is generated one byte at a time. An index is deter- 
mined based on the current contents of s, and the indexed byte is selected 
as the keystream byte. Similar to the initialization routine, at each step 
the permutation S is modified so that S always contains a permutation of 
{0,1,2, . . . ,255). The keystream generation algorithm appears in Table 3.10. 

3.4.2 RC4 Attack 

In 2000, Fluhrer, Mantin, and Shamir [51] published a practical attack on RC4 
encryption as it is used in the Wired Equivalent Privacy (WEP) protocol. In 
WEP, a non-secret 24-bit initialization vector, denoted as IV, is prepended 
to a long-term key and the result is used as the RC4 key. Note that the 
role of the IV in WEP encryption is analogous to the role that the message 
indicator (MI) plays in the World War I1 cipher machines discussed in the 

‘The attack does highlight a shortcoming in the RC4 initialization process-a shortcom- 
ing that can be fixed without modifying the underlying RC4 algorithm. 
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Table 3.10: RC4 Keystream Generator 

106 STREA.LI CIPHERS 

Table 3.10: RC3 Keystreani Generator 

previous chapter. As with the 511 in the WWII cipher machines. the WEP IV 
is necessary to  prevent messages from being sent in depth. Recall that two 
ciphertext messages are in depth if they were encrypted using the same key. 
Alessages in depth are a serious threat to  a stream cipher. 

In WEP. Trudy, the crypt analyst, knows many ciphertext messages (pack- 
ets) and their corresponding IVs, and she would like to  recoaw the long-term 
key. The Fluher-Mantin-Shamir attack provides a clever. efficient, and el- 
egant way to do just that. This attack has been successfully used to  break 
real WEP traffic [145]. 

Suppose that for a particular message, the three-byte initialization vector 
is of the form 

(3.8) 

where V can be any byte \-due. Then thcse three IV bytes become KO, Kl 

and Kz in the RC-2 initialization algorithm of Table 3.9, while K3 is the first 
byte of the unknown long-term key. That  is. the message key is 

11 here V is known to Trudy. but K 3 ,  K4, K j .  are unknown. To understand 
the attack. we need to  carefull\ consider what happens to the table S during 
the RC4 initialization phase when K is of the foiin in (3.9). 

In the RC4 initialization algorithm in Table 3.9 we fir5t set S to  the 
identity permutation, so that we have 

Suppose that K is of the form in (3.9). Then at the i = 0 initialization step. 
we compute the index j = 0 + SO +KO = 3 and elements i and j are swapped. 
resulting in the table 

At the next step, i = 1 and j = 3 + S1 t K1 = 3 + 1 + 255 = 3, since the 
addition is modulo 256. Elements i and j are again swapped, giving 
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i 

s, 
0 1 2  3 4 5 . . .  
3 0 2 1 4 5 . . .  . 

i 
s, 

assuming that, after reduction modulo 256, we have 6 + V + K3 > 5 + V .  If 
this is not the case, then 6 + V + K3 will appear to the left of 5 + V ,  but this 
has no effect on the success of the attack. 

Now suppose for a moment that the RC4 initialization algorithm were to 
stop after the i = 3 step. Then if we generate the first byte of the keystream 
according to the algorithm in Table 3.10, we find i = 1 and j = Si = S1 = 0, 
so that t = S1 + SO = 0 + 3 = 3. Then the first keystream byte would be 

0 1 2 3 4 5 . . .  5 + v  . . .  
3 0 5 + v  1 4 5 . . .  2 . . .  . 

keystreamByte = S3 = (6 + V + K3) (mod 256). (3.10) 

Si 

Assuming that Trudy knows (or can guess) the first byte of the plaintext, she 
can determine the first byte of the keystream. If this is the case, Trudy can 
simply solve (3.10) to obtain the first unknown key byte, since 

K3 = (keystreamByte - 6 - V )  (mod 256). (3.11) 

Unfortunately (for Trudy), the initialization phase is 256 steps instead of 
just four steps. But notice that as long as SO, S1 and S3 are not altered in any 
subsequent initialization step, then (3.11) will hold. What is the chance that 
these three elements remain unchanged? The only way that an element can 
change is if it is swapped for another element. From i = 4 to i = 255 of the 
initialization, the i index will not affect any of these elements since it steps 
regularly from 4 to 255. If we treat the j index as random, then at each step, 
the probability that the three indices of concern are all unaffected is 253/256. 
The probability that this holds for all of the final 252 initialization steps is, 
therefore, 

2 0 1  2 3 4 5 . . .  
3 0 5 + V  6 + V + K 3  4 5 . . .  

(E?) 252 = 0.0513. 

i 
si 

. . .  5 + V  . . .  6 + V + K : 3  . . .  

. . .  2 . . .  1 . . .  
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i 

s, 

Consequently, we expect (3.11) to hold slightly more than 5% of the time. 
Then with a sufficient number of IVs of the form (3.8) Trudy can determine K3 
from (3.11), assuming she knows the first keystrearn byte in each case. 

What is a sufficient number of IVs to recover K3? If we observe n en- 
crypted packets, each with an IV of the form (3.8),  then we expect to solve 
for the actual K3 using (3.11) for about 0 . 0 5 ~ ~  of these. For the remain- 
ing 0.95n of the cases, we expect the result of (3.11) to be a random value 
in {0,1,2. .  . . ,255}. Then the expected number of times that any particular 
value other than K3 appears is about 0.95n/256 and the correct value will 
have an expected count of 0.05n + 0.95n/256 E 0.05n. We need to choose n 
large enough so that we can. with high probability, distinguish K3 from the 
random “noise”. If we choose n = 60, then we expect to see K3 three times, 
while it is unlikely that we will see any random value more than twice (see 
also Problem 7). 

This attack is easily extended to recover the remaining unknown key bytes. 
Wc illustrate the next step, that is, assuming that Trudy has recovered K3, 
we show that she can recover the key byte K4. In this case, Trudy will look 
for initialization vectors of the form 

0 1 2  3 4 5 . . .  
4 1 2 3 0 5 . . . .  

IV = (4,255, V ) ,  (3.12) 

2 

sz 
0 1 2 3 4 5 . . .  
4 0 2 3 1 5 . . .  . 

S, 
i 0 1  2 3 4 5  . . .  6 + V  . . .  

4 0 6 + V  3 1 5 . . .  2 . . .  

Si 
i 0 1  2 3 4 5 . . .  

4 0 6 + V  9 + V + K 3  1 5 . . .  

i 

sa 
. . .  6 + V  . . .  9 + V + K 3  . . .  
. . .  2 . . .  3 . . .  

nhere V can be any value 
,I = 0 + So + I<" = 3 and elcnients 7 and j are snapped, resulting in 

Then at the 1 = 0 step of the  initialization. 

At the next step. i = 1 and j = 4 + S1 + A', = 4 (since tlie addition is 
mod 256) and elements S1 and 5’~ are swapped. giving 

At step i = 2 we liavc j = 3 -I- S2 + = G - V and after thc swap 

A t  tl ic ricxt step, i = 3 and j = t5 + 1' + S:j -I- 1<:3 = 9 + V + K;<* and K:c is 
knowri. Aft or swapping 
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Sa 

assuming that 9 + V + K3 > 6 + V when the sums are taken mod 256. 
Carrying this one step further, we have i = 4 and 

i o 1  2 3 4 5 .  
4 0 6 + V  9 + V + K 3  1 0 + V + K 3 + K 4  5 . . .  

i 

sa 
. . .  6 + V  . . .  9 + V + K 3  . . .  l O + V + K 3 + K q  . . .  
. . .  2 . . .  3 . . .  1 . . .  . 

sz 
2 0 1 2  3 4 . . .  3+K3 . . .  

0 2 1 3+K3 4 . . .  3 . . .  . 

If the initialization were to stop at this point (after tho i = 4 step) then 
for first byte of the keystrcam we would find i = 1 and j = S, = 5’1 = 0, so 
that t = 5’1 + 5’0 = 4 + 0 = 4 .  The rcsulting keystreani byte would be 

kcystrcamI3yte = Sq = (10 + V + K 3  + K.1) (mod 256), 

where the only iiiikiiowri is I<l. 11s it rc.siilt 

A’d = (keystreaninytc - 10 - I -  - K : ] )  (rriod 256). (3.13) 

Of course. thc initialization does not stop after the i = 4 step, but, as 
in th: K:$ (xw. the chanco that (3.13) holds is h o i i t  0.05. Chsoquently. 
with a sufficient riiimbcr of IYs of the forni (3.12), ‘I’rudy can detcrmiric K;1. 
Coiitiiiiiirig in this way, any nwribcr of key hytes call hc recovered, provided 
enough IVs of the correct form (about 60 for cacti key byto) arc availablr and 
‘I’rudy knows tho first keystreani hytc of oach corresponding packet. 

This same tcchnique can h! extended to rccovcr additional key bytes, 
Ks,  Ktj,. . . .  In fact, if a sufficient riiiinber of packets arc availablc, ti key of 
any lcrigth can t)c rccovered with a trivial amoiirit of  work. This is one reason 
why WEP is said to be “uiisaf<’ at any koy size“ [154]. 

Coiisider oiicc again the attilck to rewvor thr: first uiikrion.n key byte Ks. 
It is worth notirig that soine IVs that arc riot of the form (3 ,  255, V )  will 
be uscful bo Trudy. For examplc. supposc the I V  is (2,253,O). ‘Then after 
the i : 3 initialization step. the array S is 

If S1, 5’2, and $3 arc not altcrcd in t.ho remaiiiiiig iiiitialization steps, thc first 
keystrcmii t)ytv will be 3 +  K:<, frorn which Trudy  can rcc‘over I<:<. Notice that 
for a givexi three-byte IV, Trudy caxi coniputc’ t hc initialization up through 
the i = 3 step ilnd, by doing so. she can easily tictc~rminr: whether a given IV 
will bc useful for her attack. Siriiilar commciits hold for siibscquent key bytes. 
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By using all of the useful IVs, Trudy can reduce the number of packets she 
must observe before recovering the key. 

Finally, we mention that it is also possible to attack RC4 if the IV is 
appended to  the unknown key instead of being prepended (as in WEP); 
see [51, 961 for the details. 

3.4.3 Preventing the RC4 Attack 

It is easy to prevent the WEP-RC4 attack, and similar attacks that target 
the RC4 initialization. The standard suggestion is to add 256 steps to the ini- 
tialization process. that is. after the initialization in Table 3.9 has completed. 
generate 256 keystream bytes according to the RC4 keystream generation al- 
gorithm in Table 3.10, and discard these bytes. Then generate the keystream 
in the usual way. As long as both the sender and receiver follow this proce- 
dure, no modification to t,he inner workings of RC4 are required. There are 
many other ways that thc key and IV could be combined that would effec- 
tively prevent the attack described in this section; Problem 11 asks for such 
met hods. 

3.5 PKZIP 

I f  you fail to abide by the terms of this license, 
then your conscience will haunt you for the rest of  your life. 

- ARC shareware licensv [66] 

In the late 1980s, Phil Katz invented the ZIP file format and made it publicly 
available. Due to its clear superiority over the competition, the ZIP format 
quickly became a de facto standard-which it remains to this day. When you 
create, send, or receive a compressed file, you are almost certainly using Phil 
Katz’s ZIP format. 

PKZIP is an acronym for “Phil Katz’s ZIP program” [114]: which is a util- 
ity created by (no surprise here) Phil Katz to manage ZIP archives. PKZIP, 
which first appeared in 1989, was much superior to AR.C, the leading com- 
pression tool of the tirric. ARC was developed by System Enhancement As- 
socia.tcs, Iric., or SEA, and sold as shxeware. Today we “ZIP” files, whereas 
for much of the 1980s people would “ARC” their files. 

Prior to creating the ZIP format and his PKZIP utility, Phil Katz had 
developed utilities to handle ARC cornpressed files--tools that were, by all 
accounts, better then those provided by SEA. This competition did not 
please SEA, and they siiccessfiilly sued. Shortly after these legal wranglings, 
Katz developed his ZIP format, and PKZIP soon far outpaced SEA’S ARC 
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utility.6 The company Katz created, PKWare, Inc., still exists. Tragically, 
Phil Katz died in 2000, a t  age 37, as a result of alcohol abuse [106]. 

PKZIP is primarily a compression utility, but since ARC provided an 
encryption option, PKZIP needed one as well. ARC encryption was trivial- 
simply a repeated XOR with the password-and Katz wanted something 
stronger. The obvious cipher choices were DES or triple-DES, but efficiency 
was a major issue, as were concerns over export controls, which limited the 
strength of encryption that could be used on products destined for non-US 
markets. As a result, PKZIP used its own “homebrew” cipher, designed by 
Roger Schlafly [78]. 

Although the PKZIP cipher is weak, it is not trivial to  break. Export 
controls in force at the time limited key sizes to 40 bits or less, and the work 
factor to break the PKZIP cipher is close to  that limit, unless a large amount 
of known plaintext is available, in which case the work factor can be reduced 
significantly. 

The PKZIP cipher employs an interesting and unorthodox design. For 
one thing, it may be one of the first ciphers to  use “mixed-mode” arithmetic 
as an efficient way to  achieve a degree of nonlinearity. This is a common 
strategy today, employed in such well-known and respected ciphers as IDEA 
and TEA. However, it is clear that there was little, if any, peer review of the 
PKZIP cipher, in violation of Kerckhoffs’ Principle. Not surprisingly, PKZIP 
proved to  be weak when exposed to  the light of day. 

Biham and Kocher [13] developed a known plaintext attack on the PKZIP 
cipher which we discuss in this section. However, the paper [13] is itself diffi- 
cult to decipher-Conrad’s implementation [30] is the key to understanding 
the Biham-Kocher attack. Attacks that require slightly less known plaintext 
are known [143]. 

3.5.1 PKZIP Cipher 

We ignore the PKZIP compression process and instead focus on the encryp- 
tion. Here, we are concerned with the so-called “internal representation” of 
the key, a 96-bit quantity derived from a user-supplied password [13]. We de- 
note this key as three 32-bit words, X ,  Y ,  and 2. The attack will recover this 
key, which enables us to decrypt the message, as well as any other messages 
encrypted under the same password. 

The PKZIP stream cipher generates one byte of keyst,ream at  each step. 
Being a stream cipher, the keystream is XORed with the plaintext to  produce 
the ciphertext. The same keystream is XORed with the ciphertext to  recover 
the plaintext. 

‘The success of ZIP and the rapid demise of ARC was not only due to the technical 
superiority of the ZIP format. Another factor was the widespread belief amongst nerds 
that Phil Katz had been persecuted by SEA. 
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Below, we follow the convention that upper case letters represent 32- 
bit words, while lower case represent 8-bit bytes- for the one require 16-bit 
quantity, we also use lower case. All arithmetic is to be taken modulo 232. As 
in other sections of this book, we adopt the convention that bits are numbered 
from left-to-right, beginning with 0. In the PKZIP attack discussed below, 
we often need to  specify a range of bits within a byte or a 32-bit word. We 
use the notation (A)i,..j, where j 2 i ,  for the string of bits of length j - i + 1 
beginning with bit i and ending with bit j of A. 

The PKZIP encryption algorithm appears in Table 3.11. Here, p is the 
current plaintext byte, c the resulting ciphertext byte, and k is the keystream 
byte. 

Table 3.11: PKZIP Encryption 

/ /  encrypt plaintext byte p 
/ /  result is ciphertext byte c 
/ /  given current X ,  Y,  Z 
k = getKeystreamByte(2) 
c = p @ k  
update(X, y, 2, P )  

The functions getKeystreamByte and update are defined in Tables 3.12 
and 3.13, respectively. The decryption process is easily derived from these 
encryption routines. 

Table 3.12: PKZIP getKeystreamByte 

getKeystrciamByte( 2) 
t 
k = ( ( t .  ( t  @ 1)) >> 8)24  ... 31 

r e t u r n  Ic 

(2 V 3)16...31 // 16-bit quantity 

end getKeystreamByte 

The CRC function in Tahle 3.13 is a cyclic redundancy check, which can 
be computed as shown in Table 3.14. This is the same CRC calculation used 
for error detection in the ZIP compression process and, undoubtedly, it is 
reused here for efficiency. 

A more efficient way to  carry out the CRC calculation in Table 3.14 is dis- 
cussed in Problem 18, where it is shown that there exists a table, CRCtable[b], 
where for any byte b, we have 
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Table 3.13: PKZIP update 

// update values of X ,  Y,  2 
update(X, y, 2, P )  

X = C R C ( X , p )  
Y = (Y + (X)24...31) . 134,775,813 + 1 
Z = CRC(Z,(Y)o ... 7)  

end uDdate 

Table 3.14: PKZIP CRC Calculation 

// X is a 32-bit integer 
// b is a byte 
CRC(X,b)  

X = X @ b  
f o r  i = 0 t o  7 

i f  X is odd then 
X = ( X  >> 1) CE Oxedb88320 

else // X is even 
x = x > > 1  

end i f  

next i 
return X 

end CRC 

Problem 19 shows that there is a table, CRCinverse, that is the inverse 
of CRCtable in the sense that if 

B = (A)0 ... 23 CE CRCtable[(A) 2 ~ 3 1  CE b] ,  (3.14) 

then 
A = ( B  << 8) CE CRCinverse[(B)o...7] @ 6. (3.15) 

Let (Xi, y Z ,  Zi) denote the 32-bit words (X, Y, 2) used to generate the ith 
keystream byte and let ki be the i th keystream byte, for i = 0,1 ,2 , .  . .. We 
are now in a position to discuss the Biham-Kocher attack. 

3.5.2 PKZIP Attack 

We first summarize the PKZIP attack, then we provide details for each of the 
points in the summary. We call ko,  k l ,  k2, . . . , k,  a k-list. Define plist,  X -  
list, Y-list, and Z-list similarly. The attack assumes known plaintext, which 
implies that the k-list and plist are both known. 
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If we can recover any valid triple (Xi ,X,&),  then the internal state of 
the keystream generator is known and we can determine the keystream k j  for 
all j 2 i .  This attack will enable us to  find such a triple (Xi, y ,  2i) with a 
nontrivial, but, feasible, amount of work. 

In outline form, the attack c0nsist.s of t,he following steps: 

1. Use the k-list to find a set of putative 2-lists. 

2. For each putative 2-list, we find rnultiple putative Y-lists. 

3. For each putative Y-list, we use the p-list to  obtain a single putative 
X-list. 

4. The true X-list must be among the putative X-lists. By using the p-list, 
we can determine the correct X-list, and once we find the correct X-list, 
we know thc corresponding Y-list and 2-list, so we can determine the 
keystream. 

A total of n + 1 known plaintext bytes are r e q ~ i r e d . ~  We number the known 
plaintext bytes from 0 to  n. These plaintext bytes must be consecutive, 
but need not be the first n + 1 bytes. Then each list (k-list, X-list, etc.) 
contains n + 1 elements, which are numbered from 0 to  n, even though these 
might not represent the first n + 1 el~rnents generated. Eventually, we will 
show that 13 consecutive known plaintexts is sufficient (that is, rb = l a ) ,  but 
for now we leave n unspecified. 

Next,, we expand on each of the points in thc attack outlined above. For 
this attack, we assurne that we have available the p l i s t ,  that is, we have p,, 
for z = 0,1 ,2 .  . . . , n, which implies that we also know the corresponding k-list. 
We number the steps in the attack below to correspond with the numbers in 
the outline of the attack, above. 

1. Problem 20 shows that given a key byte k, there are 64 choices for the 
value t in Table 3.12, which, in turn, gives 64 possible values for the 14 
bits ( 2 ) 1 ~ , , , 2 9 .  Consequently, given any k i ,  we have 64 putative values 

We use k ,  to  determine 64 putative values for (Zn)16. . .2g and we use k,-l 
to  determine 64 putative values for (Zn-l)l6,,.2g. Next, we loop over 
the 216 possible choices for (Zn)o...15 . For each of these, we have 64 puta- 
tive ( Z 7 2 ) 1 6 . . . 2 y ,  which implies that we have 222 candidates for (Zn)o ...29. 

From update in Table 3.13, we have 

for (ZZ)lS ... 29. 

2.i = CRC(Zi-i,(X)o ... 7 )  

71n PKZIP, the plaintext bytes are actually cornprctssfd text. This has no effect on the 
attack discussed here, except that we are implicitly assuming that the compressed bytes 
are known 
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and from the inversion formula in (3.15) it follows that 

ZZ.-I = (ZZ. << 8) @ CRCinverse[(Zi)o ...7] @ (K)o ... 7. (3.16) 

Let i = n in (3.16). Then given a candidate (2,)0...29, we know bits 0 
through 21 on the right-hand side of (3.16). On the left-hand side, there 
are 64 possible values for (Zn-l)16. . .29.  For the correct 2,-1 and Z,, 
bits 16 through 21 on both sides of (3.16) must match. For any given Z,, 
there is a probability of about 1/64 that a given Zn-l matches in these 
six known bit positions. Since we have 64 putative (Zn-1)16 ...29, we 
expect, on average, one of these 64 to match in the corresponding bits 
of the given 2,. 

Once we find a ( Z ,  -1)16...29 that is consistent with a putative Z,, we 
can then fill in bits 0 through 15 of 2,-1 based on the right-hand side 
of (3.16). At this point, we have found a (putative) pair consisting 
of (Zn-l)0. . .2g and (Zn)0. . .2g,  and we expect to find the same number of 
such pairs as we have putative (Zn)o. . .29 . We can repeat this process 
for n - 1, n - 2, n - 3, . . ., and thereby obtain complete putative 2-lists 
of the form (Z~.)0. . .29,  for i = 0 ,1 , .  . . ,n. 
We can extend each putative 2, from 30 known bits to its full 32 bits 
as follows. From (3.16), we have 

(ZZ << 8) = ZZ.-1 @ CRCinverse[(Z,)o ... 71 @ (K)O ... 7. (3.17) 

In this form, bits 22 and 23 are known on the right-hand side. But 
these correspond to bits 30 and 31 of 2i on the left-hand side, which 
allows us to fill in these (previously) unknown bits on the left-hand 
side. In this way, for each putative 2-list, we can determine bits 30 
and 31 of Zi, for i = 1 , 2 , .  . . , n, and we can thereby complete each ZZ., 
except for 2 0 .  Note that we cannot determine bits 30 and 31 of 20 
using (3.17), since ZZ.-~ is required on the right-hand side. Also note 
that the expected number of putative 2-lists is equal to the number of 
putative Z,, that is, about 222. 

The number of putative 2-lists can be reduced as follows. For all pu- 
tative ZZ., we can determine the corresponding values, then sort 
the resulting lists based on Zz-1, removing any duplicates. The sav- 
ings provided by this refinement are explored further in Problem 29. 
In [13] it is suggested to carry out this reduction for 28 steps, which, 
it is claimed, reduces the expected number of 2-lists from 222 to 218. 
While this reduces the work by a factor of 24, the price that is paid is 
that 28 additional known plaintext bytes must be available. 

For simplicity, in the remainder of our discussion of this attack, we ig- 
nore this duplicate-reduction step. Consequently, we expect to have 222 
putative 2-lists. 
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2 .  At this point we have about 222 putative 2-lists, each of which is of the 
form Z1,Z2,. . . ,Z,. Now we rewrite (3.16) as 

(K)o ... 7 = (zi << 8) @ Zi-i @ CRCinverse[(Z,)o ...7], (3.18) 

which, for each 2-list, immediately gives us (Y)o...7 of the corresponding 
Y-list, that, is, we obtain bits 0 through 7 of each of Y2, Y3,. . . , Y,. Note 
that Y1 cannot be recovered using (3.18) since Zi-1 is required to  find K, 
and 20 was not recovered. 

From update in Table 3.13, we have 

Y ,  = (x-1 + (Xi)24...:31) . 134,775,813 + 1, (3.19) 

which we rewrite as 

(x - 1) ' C = x-1 + ( x z ) 2 4  ... 31, (3.20) 

whcre C = 134775813-1 = 3645876429 (mod 232). From this equation 
and Problem 23, it, follows that with high probability we have 

((K - 1) . c)O ... 7 (K-1)O ... 7. (3.21) 

Letting i = n in (3.21) we have 

((yn - 1) ' C)O ... 7 = (yn-1)O ... 7. 

Since (Yn)o...7 and (Yn-1)o...7 are known, we can test all 224 choices 
for (Yn)8...31 against the known right-hand side. The probability of a 
match is 1/28, so we expect to  find 216 putative Y,. Note that we obtain 
this number of Y, per putative 2-list, since the (y2)0...7 are derived based 
on a particular 2-list. Since there are about 222 2-lists, a t  this point 
we have about 238 partial Y-lists, each consisting of just Y,. 

Now from (3.20), we have 

Y,-l = (Y7, - 1) .  c - a (3.22) 

for some unknown a E { 0 , 1 , 2 , .  . . ,255). Given a putative YTL, we sub- 
stitute each choice for a into (3.22) and obtain a putative Y,-l. Each 
of these is then is tested to  determine whether 

((Yi-1 - 1) ' c)O ... 7 = ( y n - 2 ) O  ... 7 

holds; if so, Yn-l is saved, and if not, it is discarded. Since (Yn-2)o...7 
is a known 8-bit quantity, on average, we expect one of the 256 corm 
puted Y,- 1 to  pass this test. That is, the number of Y-lists docs not 
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expand at this step, where we extend each putative Y-list from Y, 
to Yn-l. Consequently, we expect to find about 238 partial Y-lists, each 
consisting of Y, and Y,-l. 

Now for each Y,-1, there are 256 possible Y,-z from 

Yn-2 = (Yn-l - 1) .  c - a 

and, on average, only one of these will satisfy 

((yn-2 - 1) ' c)O ... 7 = (Yn-3)O ... 7. 

In this way we extend the putative Y-lists to include Yn-2, without 
increasing the number of lists to more than 238. Continuing, we obtain 
about 238 putative Y-lists, each consisting of y Z ,  for i = 3,4 ,5 , .  . . , n. 
Note that we cannot find Y2 by this method, since (Y1)0...7 would be 
required, which is not known. 

The computation of Y-lists discussed here can be made more efficient 
by using lookup tables. Specifically, given the byte (yZ-1)0...7, we would 
simply look up the corresponding ( ( y Z  - 1) . C)O...~, saving the cost of 
many multiplications. 

3. At this point, we have about 238 putative Y-list, each of the form 
Y3, Y4, . . . , Y,. For each of these we determine one corresponding X -  
list as follows. We rewrite (3.20) as 

( x z ) 2 4  ... 31 = (X - 1) . c - x-1, (3.23) 

from which we immediately obtain 

(X4)24  ... 31, ( x 5 ) 2 4  ... 31,. . . , (Xn)24 ... 31, 

but not (X3)24 ... 31. 

Now from update in Table 3.13 together with (3.14), we have 

Xi = (XZ-1)O ... 23 @I CRCtable[(Xi-1)24 ... 31 @pZ].  (3.24) 

A consequence of (3.24) is that if we know one complete Xi, we can 
compute all bits of X j ,  for j > i, assuming that the corresponding 
plaintexts p j  are known. By using the CRC inversion formula, we can 
also use this Xi to recover Xj for j < i ,  again, provided that the 
corresponding plaintexts p j  are known. 

To determine one complete X i ,  first note that according to (3.24) we 
have 

(xz)O ... 23 = Xi+i @ CRCtable[(Xi)24 ...31 @ pi+1] 

(Xi+l)O 2 3  = Xi+2 @ CR,Ctable[(Xi+l)24 ... 31 @ pi+2] 

(Xi+z)o ... 23 = Xi+3 @ CRCtable[(Xi+z)z4 ...31 @ pi+3] .  

(3.25) 

(3.26) 

(3.27) 
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Since we know (Xi+3)24...31 and (Xi+2)24...31, frorn (3.27) we can de- 
termine (Xi+2) 16.,.2:3 which gives us (Xi+2) 16 . . .31 . Combining this result 
with (3.26), we find (Xi+1)8...31, which, together with (3.25), allows us to 
determine all bits of Xi. We can now use this recovered X i  and (3.24) to 
firid putative X-lists, of the form X4, Xg, . . . , X,,, as discussed, above.8 
We obtain one putative X-list for each putative Y-list, so that the ex- 
pected number of X-lists is 238. 

4. Finally, to determine the correct X-list from the collection of putative 
X-lists, we compare the values of (Xz)24 31 obtained from (3.24) with 
the values obtained from (3.23). We expect each such comparison to 
reduce the number of remaining lists by a factor of 256. Since we have 
about 238 X-lists, we need to make five such comparisons before we 
expect to obtain the correct X-list. 

At this point we have a single X-list along with the corresponding 
Y-list and 2-list. Given any triple (X,,Y,,Z,) we can compute the 
keystream kJ for all 3 2 z and therefore decrypt the ciphertext to recover 
the (compressed) plaintext. 

The overall work factor for this att,ack is on the order of 238 (the number 
of lists generated). The work factor can be reduced by using more known 
plaintext, as discussed in [13] and Problem 29. 

We still need to precisely determine the minimum number of known plain- 
text bytes required, that is, the smallest value of n for which the attack 
will succeed. From (3.25), (3.26), and (3.27), we see that four consecu- 
t,ive (XL)24...31 are needed to completely determine the X-lists. Also, five 
additional Xi arc needed to find the correct X-list from the set of 238 lists. 
This means nine X-list elements must be available. However, each X-list is 
only determined for i = 4,5, . . . , ri, which implies n = 12 is the smallest value 
for which we obtain the required nine X-list elements. Since our indexing 
begins at 0, we need a minimum of 13 consecutive known plaintext bytes for 
the attack described here. 

Finally, we describe a slightly different implementation of this PKZIP 
attack, which is easier to program. The attack discussed above requires that 
we store all putative 2-lists and so on. This is essential if want to do the 
duplicate-reduction step, where the number of of 2-lists is reduced from 222 
to some smaller number using additional known plaintext (see Problem 29). 
But if wc do not employ this reduction step, we can obtain an algorithm 
that is easier t,o implement. The idea is essentially to turn the breadth-first 
approach described above into a depth-first attack. 

'We could use (3.24) to  solve for additional X , ,  but only Xq through X,, are requird 
for this attack. 
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Instead of generating all of the putative 2-lists, then all of the Y-lists, 
followed by all of the X-lists, we generate a single 2-list, then all of the Y- 
lists that are consistent with this 2-list, then the X-lists that are consistent 
with the Y-lists. The resulting X-lists are then tested to determine whether 
we have found the correct list, and the entire process is repeated for each 
putative 2-list until the solution is found. In this way, we only need to store 
a relatively small set of lists at any given time--not the entire set of 238 lists. 
This simplified attack is outlined in Table 3.15. 

Table 3.15: Outline of PKZIP Attack 

// given keystream bytes Ico, Icl, . . . , kl2 

f o r  i = 0,1, .  . . , 1 2  

next  i 
Find (Zi)l6...29 consistent with ki // expect 64 

f o r  each (212)16  ... 29 // expect 64 
f o r  each (212)0...15 // 216 choices 

f o r  i = 11,10,. . . , O  
Find (Zi)16...29 consistent with (Zi+l)o ... 29 

Extend (Zz)l6 ... 29 to ( 2 i ) O  ... 29 

next  i 
Complete to 2-list: 2, = (Zi)O,,,31, i = 1 , 2 , .  . . , 1 2  
Solve for (K)o ...7, i = 2,3, .  . . , 12 
Solve for Y-lists: x, i = 3,4 , .  . . , 1 2  // expect 2" lists 
f o r  each Y-list // expect 2" 

Solve for (Xi)24 . . .3 1, i = 4 ,5 , .  . . , 1 2  
Solve for Xg using (X9)24  ... 31, (x10)24  ... 31, 

(xll) 2 4 . 3  and (x12) 24 ... 31 

Solve for X-list: X i ,  i = 4 ,5 , .  . . , 1 2  
i f  (Xi)24,..31 f o r  i = 8,7 ,6 ,5 ,4  verified then  

r e t u r n  X-list, Y-list, 2-list 
end i f  

next  Y-list 
next (212)O ... 15 

next  (212)16 ... 29 

Note that for the attack in Table 3.15, the maximum number of ( X ,  Y, 2)- 
lists generated is 238, so that the expected number of lists generated before 
the solution is found is 237. The price we pay for this simplification is that we 
cannot implement the duplicate-reduction step which reduces the number of 
putative 2-lists, and thereby reduces the overall work factor. If more than 13 
bytes of known plaintext is available, the simplified attack given here will have 
a higher work factor than the nonsimplified attack discussed above, provided 
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that the duplicate-reduction step is implemented. 

3.5.3 Improved PKZIP? 

Unlike the ORYX cipher, for example, the Achilles’ heel of the PKZIP cipher 
is not immediately obvious. It seems that many aspects of the design are 
slightly weak, and these combine to create an overall weak cipher. 

However, the use of the CRC appears to be the weakest link in the chain. 
The problem with the CR.C is that there exists a relatively simple inversion 
formula. Perhaps if we replace the CRC with some other operation that is 
harder to invert, the resulting cipher would be st,ronger. 

Recall that the CRC calculation is of the form Y = CRC(X,b), where X 
and Y are 32-bit integers, and b is a byte. So to replace the CRC, we need a 
function that takes as input a 32-bit word and a byte, and generates a 32-bit 
output. We also want our function to be hard to invert. A cryptographic hash 
function would seem to be the ideal choice here (see Chapter 5), where we 
let Y = h ( X ,  b )  for some hash function h,, with the output truncated to 32 bits, 
if necessary. Then we would expect about 256 collisions for each possiblc Y .  
In fact, a CRC is sometimes mistakenly used where a cryptographic hash is 
required (sce t,he discussion of WEP in Section 3.4, for example), arid this 
may explain why a CRC was used in PKZIP. However, it is more likely that 
the CR.C was used in the PKZIP cipher since it was already available as part 
of the ZIP compression routine, and it was necessary to minimize the overall 
size of the code. 

In keeping with the spirit of PKZIP, we should replace the CRC with 
something that does not have much computational or coding overhead. This 
might preclude a sophisticated cryptographic hash function, which makes the 
problem more challenging (see Problem 30). 

3.6 Summary 

RC4, ORYX and PKZIP present interesting but very different cryptanalytic 
challenges. For RC4 (as used in WEP), a subtle issue in the method used 
to conibiiie the IV and the long-term key leads to a devastating attack. A 
slight modification to the usage of RC4 renders this attack infeasible. In 
stark contrast, ORYX is a fundamentally flawed cipher. If known plaintext 
is available, the work factor to break ORYX is trivial. Not surprisingly, there 
is also a ciphertext-only attack on ORYX [153]. 

Of the three attacks considered in this chapter, the PKZIP attack is the 
most challenging. It is not particularly difficult to see that PKZIP has an 
exploitable weakness, but working through the details is not for the faint of 
heart. 
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3.7 Problems 

1. Complete steps N = 4 through N = 15 of the Berlekamp-Massey Al- 
gorithm for the example in Table 3.2. Give the connection polynomial 
and verify that your answer is correct by generating the first 16 fills of 
the LFSR corresponding the your claimed connection polynomial, with 
initial fill 10011. Hint: The linear complexity is L = 6. 

2. Illustrate the smallest LFSR (including the initial fill) that can generate 
the sequence in (3.3). 

3 .  Suppose that K = (ko ,  k l ,  . . .) is a keystream bit sequence. If there ex- 
ists a bit sequence I? = (,&, &, . . .) that differs in only a few elements 
from K and I? has a small linear complexity, why is K a cryptograph- 
ically weak keystream sequence? 

4. The Chan--Games Algorithm [141] is more efficient than the Berlekarnp- 
Massey Algorithm, for the special case where the binary sequence s has 
period 2n. The Chan-Games Algorithm computes the linear complex- 
ity L of s as follows: 

a = s ,  L = 0 ,  m=2n 
while m > 1 

m = m/2 
e = aoa1 . . . a,- 1 

r = a,a,+l.. . a2,-1 
b = t c B r  
if b == 00. .  . 0  then 

else 
a = e  

L = L + m  
a = b  

end if 
end while 
if wo == 1 then 

end if 
L = L + 1  

Note that t is the left half of the sequence a and T is the right half. Use 
the Chan-Games Algorithm to determine the linear complexity of the 
sequence with period s = 10011100. 

5. Recall the correlation attack discussed in Section 3.2.4. Consider the 
stream cipher in Figure 3.8, and suppose that Trudy recovers the con- 
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seciitive keystream bits 

(ko ,  k l ,  . . . , k30) = 0000110011001001011101100010010. 

Determine the initial fills of registers X ,  Y ,  and 2 

6. Show that the size of the state space of the RC4 cipher is bounded 
216 . 256! 21700. 

7. In the RC4 attack, suppose that 60 IVs of the form (3,255,V) are 
available. Empirically determine the probability that the key byte A'3 
can be distinguished. What is the sniallest number of IVs for which 
this probability is greater than 1 /2?  

8. In (3.11) and (3.13) we showed how to recover RC4 key bytes K3 and Ks, 
respectively. 

a. Assuniing that key bytes K:3 through Kn-l have been recovered, 
what is the desired form of the IVs that will be used to recover Kn? 

b. For I(, what is the formula corresponding to (3.11) and (3.13)'? 

9. For the attack on RC4 discussed in Section 3.4, we showcd that the 
probability that (3.11) holds is (253/256)"'. What is the probabil- 
ity that (3.13) holds? What is the probability that the corresponding 
equation holds for K,? 

10. In the discussion of the attack on RC4 keystream byte K3 we showed 
that IVs of the form ( 3 , 2 5 5 , V )  are useful to the attacker. We also 
showed that IVs tha.t are not of this form are sometimes useful to the 
attacker, and we gave the specific example of the (2,253,O). Find an- 
other 1V r i o t  of the form (3,255, V )  that is iisefiil in the attack on A'3. 

1 I .  The attack on RC4 discussed in this section illustrates that preperiding 
an IV to a long-term key is insccure. In [51] it is shown that appending 
the IV to the long-term key is also insecure. Suggest more secure ways 
to employ RC4 when a long-term key is combined with an IV. 

12. In the ORYX attack, suppose that the recovered bits (using the first 29 
keystream bytes) are 

( X  >> 1) = 0~9b874560b 

( A  >> 1) = Oxacd789046 

( B  >> e) = Ox19910954207e2 

and that KO = Ox9f. Find t? and the initial fills of ( X ,  A, B ) .  
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13. This problem deals with the branching that occurs in the ORYX attack. 

a. How much branching is expected at the K1 step of the ORYX 
attack? Hint: After the KO step, there are 65,536 putative fills. At 
the next iteration, we test 12 extensions of each of these putative 
fills. How many of these 65,536 produce more than one result that 
is consistent with an extension of X ?  

b. What is the expected branching at each of steps K1 through KN? 
c. Suppose that we implement the ORYX attack without branching. 

That is, no more than one valid extension of any given fill is re- 
tained. If this is the case, what is the probability that the solution 
is found? 

14. When analyzing the ORYX attack, we assumed that the permutation L 
acts as a “random” permutation of the values {0,1,2,. . . ,255). Suppose 
that instead, L is the identity, that is, L[i] = i ,  for i = 0 ,1 ,2 , .  . . ,255. 
In this case, explain why the ORYX attack given in this chapter will 
fail and describe an alternative attack that will succeed. 

15. Discuss possible ways that the ORYX keystream generator can be modi- 
fied to prevent the attack given in this chapter. Consider methods that 
result in a more efficient cipher than the modifications mentioned in 
Section 3.3.3. 

16. Analyze the modified version of ORYX discussed in Section 3.3.3 for 
potential weaknesses. You may assume that unlimited known plaintext 
is available. 

17. Give the PKZIP decryption routine that corresponds to the encryption 
routine in Table 3.11. 

18. For b = 0 ,1 ,2 , .  . . ,255, define 

CRCtable[b] = CRC(O,b), 

where CRC(X,b) is defined for the PKZIP stream cipher in Table 3.14. 
Show that 

19. For b = 0, 1 ,2 , .  . . ,255, define 

CRCinverse[(CRCtable[b])24 . . . 3  I] = (CRCtable[b] << 8) @ b, 

where CRCtable[b] is defined in Problem 18. Show that if 

y = (x)O ... 23 @ CRCtable[(X)24 ... 31 @ b] ,  
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then 
X = (Y << 8) @ CRCinverse[(Y)o.,,7] @ b. 

20. Consider the getKeystreamByte function of the PKZIP cipher, which 
appears in Table 3.12. Verify that for any value of the keystream byte k ,  
there are precisely 64 distinct values t that yield k .  

21. Verify that for 32-bit integers X and Y ,  

(X)O ... 7 - ( y ) O  ... 7 

(X)o ... 7 - (Y)o ... 7 - 1 
if X 2 Y (mod 224) 
if X < Y (mod 224) (x - y)O ... 7 = { 

22. a. Verify that 134,775,813-1 = 3,645,876,429 (mod 2 3 2 ) .  

b. Let C = 134,775,813-1 = 3,645,876,429 (mod 2 3 2 ) .  Show that for 
any byte values a and b, 

(ac  f b)0 ... 7 (aC)0 ... 7,  (3.28) 

where the addition is modulo 232 

c. For which 32-bit integers C does (3.28) hold for all byte values a 
and b? 

23. Suppose that 
A .  C = B + u (mod 232), 

where A, B and C are 32-bit words, with C = 3,645,876,429 and a is 
a byte. Then what is the probability that ( A  . C)O. . .~  = (B)0...7? The 
motivation for this choice of C can be found in Problem 22. 

24. Use the results of Problenis 21 and 22, along with (3.19), to show that 

(((x - l )  ' C - 1) ' c)O ... 7 ~ ( ( X i ) 2 4  ... 3 1  . C)O ... 7 

(((x - ( X - 2 ) O  ... 7 = { 
' c - 1) ' c)O ... 7 - ((xi)24 ... 31 ' c ) O  ... 7 - 1 

where the conditions that determine which half of the equation applies 
are analogous to those in Problem 21. 

25. Suppose that A and B are randomly sclected 32-bit integers. Let 

x = A + ( w 2 4  ... 31,  

where the addition is taken modulo 232 .  What is the probability that 

(x)O ... 7 # (A)0 ... 77 

26. In the PKZIP attack, show that if you are given (y2-1)0...7 and (x)0...7, 
then the riurnber of 32-bit values K-1 + (Xi-1)24...31 and J' that sat- 
isfy (3.19) is in the range of 65,534 to 65,538, inclusive. 
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27. In step 1 of the PKZIP attack, as specified beginning on page 114, 
we explain how to recover Zi-1 given 2,. Give precise equations for 
(zi-1)0 ... 2 3 ,  (zi-1)24 ... 29, and ( ~ 2 - 1 ) 3 0 . . , 3 1 ,  given Zi. 

28. As a function of x, find the precise distribution on the number of solu- 

x={ aC 

where a and x are bytes with x given, and C = 3,645,876,429. Also 
give the average number of solutions. 

tions a to  the equation 

a C + 1  

29. For the PKZIP attack, experimentally determine the expected num- 
ber of surviving Z-lists when n additional keystream bytes are used 
in the duplicate-reduction step, for n = 0,1,2,  . . . , m, where m is at 
least 10,000. For each n, run at  least 100 trials. Plot your results on a 
graph. 

30. In Section 3.5.3 it is suggested that the weakest component in the 
PKZIP cipher is the use of the cyclic redundancy check (CRC), and 
we argue that a cryptographic hash function would be ideal. Suggest 
a possible replacement F for the CRC in PKZIP, where Y = F ( X ,  b ) ,  
where X and Y are 32-bits, and b is a byte. Your function F must be 
computationally efficient and only require a small number of lines of 
code. Explain why your suggested replacement is better than the CRC 
used in PKZIP. 
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Chapter 4 

Block Ciphers 

Through block play, children are confronted with man,y mental challenges 
having to do with measurement, equality, balance, shape, 

spatial relationships and physical properties. 
- Creativity and Play [I121 

4.1 Introduction 

Recall that a classic codebook cipher uses books filled with “codes” to encrypt 
and decrypt messages. Such codebooks have some inherent weaknesses. For 
example, any known plaintext immediately gives away part of the codebook. 
Also, information about the codebook can be obtained based on a statisti- 
cal analysis of the ciphertext, in much the same way that information leaks 
through a simple substitution (although far more data is required to attack a 
respectable codebook than a simple substitution). Due to the threat of such 
attacks, new codebooks would have to be issued on a regular basis. 

Modern block ciphers can be viewed as roughly the electronic equivalent 
of classic codebooks. In block ciphers, a block of n plaintext bits is encrypted 
to a block of n ciphertext bits. Provided that the same key is used, the same 
plaintext block will always be encrypted to the same plaintext block, and vice 
versa. This is analogous to a classic codebook, except that the “book,” which 
would contain the binary n-tuples, is virtual in the sense that the lookups are 
accomplished using an algorithm that computes the required bits. That is, 
the entries of the codebook are computed as needed instead of being stored 
in an actual book. 

In a block cipher, the key determines the codebook. Consequently, if we 
change the key, we have, in effect, switched codebooks. If the key is k bits, 
then the block cipher algorithm can be viewed as 2k codebooks, indexed by 
the key. Therefore, by occasionally changing the key, we can avoid the classic 
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codebook attack mentioned above. 
A generic block cipher is illustrated in Figure 4.1, where P, is the ith 

block of plaintext and C, is the corresponding block of ciphertext,. The inner 
workings of the block cipher can be complex, but when encrypting, the net 
effect, is simply to “lookup” the ciphertext block that corresponds to the given 
plaintext block in the specified codebook, where the codebook is determined 
by the key. 

Figure 4.1: Generic block cipher. 

Next, we consider some of the different ways that a block cipher can be 
used in practice. This further highlights the connection between modern 
block ciphers and codebooks. Then we discuss one popular rnethod of block 
cipher design before we consider the cryptanalysis of some particular block 
ciphers. 

4.2 Block Cipher Modes 

Classic codebook ciphers often employed a so-called additive to make code- 
book attacks more difficult, and thereby extend the useable lifetime of the 
codebook. Typically, a codebook would convert words or phrases to  strings 
of decimal digits. An additive book was filled with random string of digits. 
For each message, a random point in the additive book was selected, and 
subsequent entries in the additive book were added to the ciphertext before 
it) was transmitted. The starting point in the additive book was usually sent 
in the clear (or slightly obfuscated) at the start of the message. 

For modern block ciphers there is a somewhat analogous concept to the 
additive. But before we get to that, we consider an example to show why 
sornetliing like this is necessary for block ciphers. 

Alice and Bob can use a modern block cipher as if i t  were a codebook. To 
(lo so, they must first agree on a key K ,  which they share and nobody else 
knows. This key distribution problem (which we discuss in Chapter 6) is a 
major issue in practice, but in this chapter, we assume that Alice and Bob 
know K ,  and nobody else knows K .  

Given that Alice and Bob share the key K ,  then Alice can encrypt the 
plaintext block by block, and send the resulting ciphertext to Bob. We call 
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this method of encrypting with a block cipher electronic codebook mode, or 
ECB mode, since it is the “electronic” equivalent of a classic codebook cipher. 

When a block cipher is used in ECB mode, a problem arises that can have 
disastrous consequences for security. The problem is that as long as the key 
has not changed, the same plaintext block will be encrypted to the same ci- 
phertext block. If this is the case, then whenever the attacker, Trudy, observes 
that ciphertext blocks Ci is the same as Cj, she immediately knows Pi = Pj. 
If Trudy should happen to know Pi then she knows Pj, and even if she does 
not know Pi, some information about the plaintext has leaked. 

While this ECB issue may not seem like a serious concern, Figure 4.2 
illustrates a case where it is devastating. In this example, an (uncompressed) 
image file has been encrypted using ECB mode. However, the encrypted file 
clearly does not protect the confidentiality of the data. This result occurs 
simply because plaintext blocks that are the identical, encrypt to the same 
ciphertext block, which allows patterns in the plaintext to bleed through into 
the ciphertext. For this reason, ECB mode should generally be avoided. 

Figure 4.2: Trudy lovcts ECB mode [142]. 

An “additive” would solve the problem inherent in ECB mode, since iden- 
tical plaintext blocks would then result in distinct ciphertext blocks. But is 
there a practical way to implement an electronic equivalent of an additive? 
In fact, there is a surprisingly straightforward technique that will achieve the 
desired result. 

We define cipher block chaining mode, or CBC mode, as follows. Let IV 
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be a non-secret initialization vector, which is n bits in length, where n is the 
size of a plaintext or ciphertext block. Then CBC encryption is defined as 

C, = E(P, @ Cz--l, K ) ,  for i = 0 ,1 ,2 , .  . . , 

where thc first block, Co, requires special handling, since there is no C-1. 

This is where we use the IV by defining C-1 = IV. It is necessary that we 
can decrypt, which is accomplished via 

Pi = D(Ci ,K)  CE Ci-1, for i = O , 1 , 2 , .  . . , 

where, again, C-1 = IV. Since the IV is playing the role of a ciphertext 
block, it need not be secret-in practice, the IV is often sent as the first 
hlock, immediately before the first ciphertext block. 

With CBC mode, if Pi = Pj, we almost certainly have Ci # Cj. This is 
the same effect that would be achieved by an additive in a classic codebook 
cipher. To see that this actually works, consider Figure 4.3, which shows 
Alice‘s image encrypted in CBC mode. Comparing this to Figure 4.2, the 
value of CBC mode is readily apparent. 

Figure 4.3: Trudy hates CBC mode [142] 

CBC mode can also be used to provide data integrity. A message authen- 
tication code (MAC) consists of only the final block of CBC mode encryption, 
and this can be used to detect unauthorized changes to the data. Suppose 
Alice has plaintext blocks Po, PI .  . . . , Pp and Alice and Bob share a symmetric 
key K .  Then Alice generates a random IV and CBC “encrypts” her blocks 
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of plaintext using this IV and the key K .  She saves only the final ciphertext 
block Ce, which is the MAC. Alice can then send Ce, the IV and her plaintext 
message to Bob. Upon receiving the message, Bob uses the IV and the shared 
key K to CBC “encrypt” the received data. He compares the final ciphertext 
block with the received MAC, and if they agree he can be virtually certain 
that the data he has received is the data that Alice sent (see Problem 2 ) .  The 
MAC computation works because any change to a plaintext block will almost 
certainly propagate through the CBC encryption, resulting in a different fi- 
nal ciphertext block. Note that this is in stark contrast to CBC decryption, 
where changes do not propagate, as discussed above. 

There are, in fact, many other block cipher modes.’ One of the most 
useful modes is counter mode, or CTR mode (see Problem 3), which allows 
a block cipher to be used like a stream cipher [142]. 

4.3 Feistel Cipher 

Before we dive into the cryptanalysis of specific block ciphers, we briefly 
consider one popular block cipher design strategy, due to Horst Feistel [70]. 
In a Feistel Cipher the plaintext block P is split into a left half LO and a right 
half Ro, that is, 

p = (Lo, Ro). 
Then for each round i = 1 , 2 , .  . . , n a new left half Li and a new right half Ri 
are computed as 

where Ki is the subkey for round i ,  and F is the round function. The sub- 
key Ki is derived from the key K ,  via a key schedule algorithm. The cipher- 
text C is the output of the final round, that is, 

To decrypt, we can simply solve for Li-1 and Ri-1 and run the Feistel 
process backwards from n to 1. More precisely, starting with C = (Ln,  Rn), 
for i = n, n - 1,. . . ,I, we computc 

and the result is the corresponding plaintext P = ( L O ,  Ro). 

‘But, so far as the authors are aware, there is no block cipher & la mode. 
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Mathematically, any round function F that outputs n/2 bits will work. 
However, it is also clear that the security of a Feistel Cipher depends on F ,  and 
not every F will result in a secure cipher. For example, F(Ri-1, Ki)  = Ri-1 
will yield an insecure cipher. One nice feature of a Feistel Cipher is that all 
questions of security boil down to questions about the round function F .  The 
round function may be simple or complex, but at least the analyst knows to 
focus on F .  

Many well-known block ciphers are Feistel Ciphers. For example, the most 
famous block cipher in history, the Data Encryption Standard (DES), is a 
Feistel Cipher. Even today, many block ciphers follow Feistel’s approach, and 
many others (such as TEA [158]) vary only slightly from the strict definition 
given here. In an effort to decrease the number of rounds required, some 
recent block cipher designs (such as the AES) differ significantly from the 
standard Feistel approach. 

Next, we turn our attention to Hellman’s time-memory trade-off attack. 
This is an interesting attack method that can be applied to any block cipher. 
Then for the remainder of this chapter, we focus on the cryptanalysis of 
three specific block ciphers, namely, CMEA, Akelarre and FEAL. These three 
ciphers are each weak enough to be broken with a relatively small amount of 
work, and each attack has some interesting and noteworthy aspects. 

The CMEA cipher is extremely simple, at least by block cipher standards. 
We discuss a chosen plaintext attack on CMEA, as well as a more realistic 
known plaintext attack. The known plaintext attack is particularly interest- 
ing, since it lends itself well to several algorithmic techniques that significantly 
improve the attack. 

Akelarre combines important features from two different highly-regarded 
Mock ciphers. In spite of these “two rights,” Akelarre is a “wrong’? [82], since 
it is very weak. 

FEAL is a seriously flawed cipher that, nevertheless, proved extremely im- 
portant in the development of modern cryptanalysis. While there are many 
versions of FEAL, in this chapter we only consider the original version, now 
known as FEAL-4. We discuss both linear and differential cryptanalytic 
attacks on FEAL-4. In fact, differential cryptanalysis was originally devel- 
oped to attack FEAL, and it later proved its true worth when applied to t,he 
cryptanalysis of the Data Encryption Standard (DES). In a sense, linear and 
differential cryptanalysis form the foundation on which modern block ciphers 
are constructed, since all block ciphers are designed to withstand attacks 
based on these two powerful techniques. Generally, these techniques arc only 
of theoretical interest, but in the case of FEAL they yield practical attacks. 

Differential crypt,analysis is also particularly well-suited for attacking hash 
functions. In Chapter 5, we present attacks on two well-known hash functions 
(MD4 and MD5) and both of these attacks rely on differential cryptanalytic 
techniques. 
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4.4 Hellman’s Time-Memory Trade-off 

I t  usually takes a long time to find a shorter way. 
- Anonymous 

The objective of a time-memory trade-off (TMTO) is to do some one-time 
work so that each time the algorithm is executed it is more efficient. A TMTO 
is a general technique that can be applied to improve the performance of many 
types of algorithms. 

In this section, we present Hellman’s cryptanalytic TMTO, which was 
developed to attack the Data Encryption Standard (DES), but the approach 
will work against any block cipher. Our discussion here closely follows that 
given in [142]. 

4.4.1 Cryptanalytic TMTO 

Martin Hellman describes his namesake cryptanalytic TMTO attack in [65]. 
Hellman’s TMTO is a generic attack on a block cipher, but it is particularly 
effective against the Data Encryption Standard (DES) due to the small key 
size of 56 bits. Hellman’s TMTO is a chosen plaintext attack. 

Let P be a specified chosen plaintext block, and let C = E ( P , K )  be 
the corresponding ciphertext block. We assume that whenever Trudy wants 
to attack this cipher, she can specify the plaintext block P and obtain the 
corresponding ciphertext block C.  Trudy’s goal is to recover the key K .  

The most obvious way to attempt to break a cipher is an exhaustive key 
search. If the block cipher key K consists of k bits, then there are 2k keys 
and via an exhaustive key search, Trudy would expect to find K after trying 
about half of the keys. Then the exhaustive key search attack has a “time” 
requirement of about and no “memory” (pre-computation) requirement. 

Since we are assuming a known plaintext attack is possible, Trudy could 
instead pre-compute the ciphertext C for every possible key K for her spec- 
ified chosen plaintext P.  This attack requires a one-time pre-computation 
of 2k encryptions and storage of these 2k results. Then each time Trudy ex- 
ecutes the attack, only a single table lookup is required, provided that the 
pre-computed list is sorted. Neglecting the one-time work, the time per at- 
tack is negligible. However, the one-time work is significantly larger than 
an exhaustive key search, so unless the attack is conducted many times, an 
exhaustive key search is more efficient. 

Hellman’s TMTO attack achieves a middle ground between the exhaustive 
key search and the massive pre-computation (and sorting) of all possible 
ciphertexts for a given plaintext. The TMTO attack requires some one-time 
work to generate a table of results (the “memory” part of the TMTO) that 
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is then used to  reduce the amount of work required (the “time” part of the 
TMTO) each time the attack is executed. 

Suppose that, Trudy wants t o  attack a block cipher where the block size 
is n = 64 bits and key is k = 64 bits. Since the key is 64 bits, t,here are 264 
distinct keys. Trudy first chooses a fixed plaintext P and she obtains the 
corresponding ciphertext C = E(P,  K ) .  Trudy wants to  recover the unknown 
key K .  

Trudy first randomly select a 64-bit “starting point,” denoted SP.  She 
then constructs a chain, of encryptions beginning from S P  as follows. Trudy 
chooses a positive integer t and she successively computes 

where El’ = Kt-1 is the “ending point” of the chain of encryptions of length t .  
Note that Trudy uses the ciphertext generated at one step as the key for the 
next step. Since the block size and the key size are identical, this works. 

Figure 4.4 illustrates this the process of generating a chain of encryptions 
from S P  to EP.  To construct such a chain requires no knowledge of the inner 
workings of the block cipher. The only fact we have used here is that the 
block size and the key size are the same, but the process is easily modified if 
this is not the casc. 

P P P P 

Figure 4.4: A chain of encryptions. 

Another view of an encryption chain is given in Figure 4.5. Here, we have 
illustrated the chain as a path in the keyspace of the given block cipher. 

Continuing with the example above, Trudy will generate m encryption 
chains, each of length t .  Now suppose that Trudy computes m = 232 encryp- 
tion chains, each of length t = 232 ,  and none of the resulting chains overlap. 
This is unrealistic, since the chains essentially select elements o f  t>he keyspace 
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Figure 4.5: Chain of encryptions in the keyspace. 

at random, but this assumption allows us to easily illustrate the concept be- 
hind Hellman’s TMTO (below we consider a more realistic scenario). Then 
each of the 264 keys lies within one exactly one chain. This idealized situation 
is illustrated in Figure 4.6. 

Figure 4.6: Trudy’s ideal scenario. 

Only the starting points and ending points of the chains are savec., that 
is, Trudy stores 

For m = 232, the storage requirement is 2 m  = 233 words, where each word 
is 64 bits. In general, 2 m  words must be stored, where each word is n bits. 
Generating the starting points and computing the corresponding end points 
is one-time work. The set of starting points and end points will be used each 
time Trudy conducts the attack to recover an unknown key K ,  so the pre- 
computation work can be amortized over the number of times the attack is 
conducted. 

Once the pre-computation is completed, the attack is implemented as 
follows. Trudy chooses the same plaintext P that was used in the pre- 
computation phase, and she obtains the corresponding ciphertext C. To 
find the key K ,  Trudy computes an encryption chain beginning with C of 
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maximum length t .  That is, Trudy computes 

and at each step i = 1 , 2 , .  . . (up to a maximum of t steps), she compares X i  
to each of the stored endpoints 

Since C is itself a possible key value, by our idealized assumption, C lies 
somewhere within exactly one chain. Suppose C is on chain j .  Then for 
some i E (0, l , . .  . , t  - l}, Trudy will find X i  = EP,. This situation is 
illustrated in Figure 4.7. 

Figure 4.7: Path from C to EPj. 

Once Trudy has found i and j such that X ;  = EPj, she can reconstruct 
the initial part of chain j from SPj as 

Since C = Xo = E(P,  K ) ,  we have K = Yt-,-l, as illustrated in Figure 4.8. 
In this unrealistic example, the pre-computation phase of the attack re- 

quires about trn = 264 work. Having paid this initial price, each time Trudy 
executes the attack, she can expect that about 231 encryptions will be required 
before an endpoint is found and another Z3' encryptions (approximately) will 
be needed until C is recovered from the starting point of the chain, giving a 
total work factor of 232 per attack. 
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Figure 4.8: Finding K from SP,. 

If the attack is only to be executed once then an exhaustive key search, 
with an expected work of 263, would be more efficient. But if the attack is to 
be conducted many times, the pre-computation work can be amortized, since 
the work of 232 per attack is negligible in comparison to the pre-computation. 

Several refinements are possible. For example, Trudy could reduce the 
pre-computation work by computing chains that only cover a part of the key 
space. Then the probability of successfully finding an unknown key would 
precisely equal the percentage of the key space that is covered by chains. 
Necessarily, this is the way that Hellman’s cryptanalytic TMTO attack works 
in practice. 

4.4.2 Bad Chains 

In reality, encryption chains are far different from the idealized case described 
above. Instead of obtaining chains that nicely partition the keyspace, Trudy 
will instead find chains that frequently merge with other chains or cycle. 
Chains that misbehave (from Trudy’s perspective) in this way, create extra 
work during the labor intensive pre-computation phase, since beyond the 
point of a merge (or cycle), all encryptions are duplicating previous work. 
Merging and cycling chains are illustrated in Figure 4.9. 

Figure 4.9: Bad chains. 

In the pre-computation phase work is wasted due to cycling and merging. 
In addition, during the attack phase, cycles and merging lead to false alarms. 
To see why this is the case, suppose Trudy executes a TMTO attack beginning 
from C in Figure 4.9. Following the algorithm outlined above, she eventually 
arrives at the endpoint E P .  She then starts from corresponding SP and 
reconstructs the chain that ends at EP,  and she expects this to lead to the 
key K .  In this case, she does not find K since C does not lie on the (SP,  E P )  
chain. 

If she can decrease the cycling and merging of chains, Trudy can reduce the 
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number of false alarms, and thereby reduce the work effective factor during 
the pre-computation phase. To accomplish this, a “random function” F is 
used. With such a function, a chain is computed as 

When n = k ,  we can choose F to be a permutation. 
The advantage of using random functions is apparent if we compare Fig- 

ures 4.10 and 4.11. In Figure 4.10, where no random function (or the same 
random) is used, once the two chains collide, they merge into a single chain. 
The points on the merged chains represented duplicated work which makes 
the pre-computation phase more expensive while not increasing the success 
rate in the attack phase. 

Figure 4.10: Merging chains. 

On the other hand, in Figure 4.11 we see the effect of using different 
random functions. In this example, the functions Fo and FI cause the chains 
to (almost certainly) diverge immediately after a collision. Consequently, 
with the use of different random functions, collisions can still occur, but the 
effects of merging and cycling are mitigated. 

F,, chain 

SPI Fl chain 

Figure 4.1 1: Non-merging chains. 

Trudy could use a different random function for each chain, but it would 
be resource intensive to store all of these functions. Instead. she can obtain 
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reasonable results by choosing r different functions, that is, we choose func- 
tions Fi, for i = O , 1 ,  . . . , T - 1, and for each of these construct m chains, each 
beginning from a random starting point. As above, each chain is of length t. 
The set of chains that correspond to a specific function is known as a table. 
To summarize, we have r tables, m chains per table and t is the length of 
each chain. 

The pre-computation will cover some percentage of the key space with 
chains. The resulting TMTO attack will find any key that lies within some 
chain, but it cannot recover any key that is not within a t  least one chain. 
The attack is therefore probabilistic and Trudy’s objective is to maximize the 
probability of success for a given amount of work. This is accomplished by 
reducing merging and cycling as much as possible. 

As above, we assume that the key length k is equal to  the cipher block 
length n. Then the algorithm for pre-computing T tables of chains, each table 
having m chains, with each chain of length t ,  is given in Table 4.1. 

Table 4.1: Algorithm to Find (SP,  E P )  Pairs 

// Find (SPij,EPij), i = O , 1 , .  . . , r  - 1 and j = O , l , .  . . , m  - 1 
findchains 

f o r  i = 0 t o  r - 1 
Choose a random function Fi 
// Generate table i 
f o r j = O t o m - 1  

Generate a random starting point SPij 
KO = SPij 
f o r  e = 1 to t - 1 

next e 
K!! = Fz(E(P, Ke-1)) 

EPij = Kt-1 
next j 

next i 
end findchains 

The findchains algorithm in Table 4.1 finds a set of starting points and 
ending points for r m  chains, each of length t .  Consequently, at most rmt 
different keys could be recovered in the attack phase although, due to the 
inevitable cycling and merging, the actual number will be significantly less 
than rmt, as discussed below. If the desired key K is within one or more of 
the chains, then it will be found following the algorithm in Table 4.2. 

The definition of the function findKey in Table 4.2 is given in Table 4.3. 
Note that findKey corresponds to the steps illustrated in Figure 4.8, while 
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Table 4.2: Algorithm to Find E P  from C 

// Given C ,  search for an endpoint E P  
findEP( C) 

f o r  i = 0 t o  r - 1 

f o r  j = 1 t o  t 
Y = F,(C) 

f o r  t = 0 t o  m - 1 
i f  Y == EPie t hen  

found = findKey(i,l,j) 
i f  not found then  

false alarm 
e lse / /  found = K 

r e t u r n (  found) 
end i f  

end i f  
next  t 
Y = Fz(E(P, Y ) )  

next  j 
next  i 
re turn(key not found) 

end findEP 

the algorithm in Table 4.2 corresponds to the steps illustrated in Figure 4.7. 
Recall that r is the number of tables, m is the number of chains per table 
and t is the length of each chain. Also note that searching for a matching 
endpoint EPij in Table 4.2 can bc made considerably more efficient if the 
pairs (SPij, EPij) within each table are sorted by endpoints. That is, we sort 
the pairs (SPij, EPij) by EPij, where j = 0 , 1 , .  . . , m  - 1. 

In Trudy’s ideal world, all of the rmt chain elements would be distinct,. If 
this werc the case, then the chance of finding a randomly selected key would 
he r m t / 2 k  (assuming rmt 5 2 k ;  otherwise the probability would be one). 
Due to the merging and cycling discussed above, the real world is not so kind 
tjo Trudy (which is fortunate for Alice and Bob). While random functions 
help: they can only reduce the severity of the problem. Below we consider 
the probability of success in more detail. 

For many block ciphers k # n; DES has ri = 64 and k = 56, for exam- 
ple, while AES offers several combinations of block and key lengths. If the 
hlock length is not equal to thc key length, then we cannot directly use the 
Ciphertext C as a key K .  This situation is only a minor nuisance which is 
easily resolved in practice by either truncating or expanding the ciphertext 
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Table 4.3: Algorithm to Find the Key from SP 

// Is key K at position t - j - 1 in chain t of table i? 
findKey(i,l,j) 

Y = Spa& 
for Q =  1 t o t  - j  - 1 

next q 

i f  c = E ( P , K )  then 
r e tu rn (K)  

e l s e / /  false alarm 
re tu rn (  not found) 

end i f  

Y = Fz(E(P, Y ) )  

K = Y  

end findKey 

block as necessary. In contrast, the issue of merging and cycling chains is of 
fundamental importance in this TMTO attack. 

4.4.3 Success Probability 

What is Trudy’s probability of success when she uses Hellman’s TMTO at- 
tack? The fundamental problem is that keys can appear within more than 
one chain. Therefore, estimating the probability of success is equivalent esti- 
mating the probability of such duplication. 

Perhaps the easiest2 way to estimate the success probability for Hellman’s 
TMTO attack is to use the classic occupancy problem, which is described 
nicely by Feller [49]. The details of the derivation are left as a homework 
problem, but the result is that Trudy’s probability of successfully finding a 
key is approximately 

P(success) = 1 - e--mt+“. (4.3) 

The probabilities given by (4.3) for various choices of mtr are given in Ta- 
ble 4.4. Hellman suggests choosing 

(4.4) m = t = r = 2‘13 

and, as can be seen in Table 4.4, the estimated probability of success for this 
choice of parameters is about 0.63. 

In general, the cryptanalytic TMTO pre-computation requires mtr en- 
cryptions. The necessary storage is proportional to rm; the number of chains. 

“Easiest” is not necessarily the same as “easy.” 
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Table 4.4: Approximate TMTO Success Probabilities 

mtr P(success) 
0 0 

2 k - 5  0.03 
21;-4 0.06 
21;-3 0.12 
2k-2  0.22 
21;-1 0.39 

21; 0.63 
2 k r l  0.86 
2k+2 0.98 

00 1 .00 
2 k + 3  0.99 

If key K lies on one of the pre-computed chains then the time required when 
the attack is executed is about t (that is, t / 2  steps, on average, are needed to 
find the matching E P  and then another t / 2  steps are required. on average, to 
find K ) .  For the parameters in equation (4.4), this gives a pre-computation 
of 2k encryptions, a memory requirement of 2 2 k / 3 ,  and a time requirement 
of 22k/“. For example for DES-the cipher for which Hellman originally de- 
veloped his attack --this yields a costly pre-computation of 256, but then the 
resulting time and memory requirements for each instance of the attack phase 
are both less than 238, with a high probability of success. Although the at- 
tack is only probabilistic, the probability of success is high, provided that the 
necessary pre-computation is feasible. 

4.4.4 Distributed TMTO 

Hellman’s TMTO is easily adapted to a distributed attack. This version of 
the attack employs “distinguished points” \20]. The crucial insight is that 
we need not use fixed-length chains, but, instead, we can simply construct 
it chain until some easily distinguished point is found. For example, we can 
construct each chain until we obtain an output of the form 

( 2 0 , q . .  . . , Zs-1, 0 , 0 ,  . . . , 0 ) .  - 
n-s 

Then each chain will, on average, be of length 271-s.  In practice we would 
want to set a limit, on the maximum length of a chain and reject, any chain 
that exceeds the limit. 

Using distinguished points, the pre-computation is similar to the case 
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described above, except that we now retain triples 

where l j  is the length of chain j (that is, the number of elements computed 
before a distinguished point was found). We must also keep track of the 
maximum length of any chain within a table; for table i, denote this as Mi. 

Now suppose that r computers are available. Then each computer can 
search one of the T tables of chains. Computer i only needs to know the 
function Fi along with the ciphertext C and Mi, as well as the definition of a 
distinguished point. In particular, the triples in equation (4.5) do not need to 
be transmitted to any of the r computers, saving significant bandwidth and 
reducing the storage requirement on the individual computers. 

Each computer then proceeds with the attack as described above, with the 
exception that instead of looking for a matching EPj at each step, a distin- 
guished point is sought. If computer i finds such a point within Mi iterations, 
the distinguished point is returned. Then secondary testing is necessary to 
determine whether the putative solution is an actual endpoint from table i 
or a false alarm. This secondary testing requires access to  all (SPj, EPj , l j )  
triples in (4.5). Note that the overall work for secondary testing can be ad- 
justed by selecting the definition of a distinguished point appropriately. If 
an endpoint is found, the process of attempting to recover K from the cor- 
responding starting point proceeds exactly as in the non-distinguished point 
case discussed above. 

4.4.5 TMTO Conclusions 

Hellman’s cryptanalytic TMTO does not rely on any particular properties 
of the underlying block cipher. But for the attack to be worth the effort, 
the keyspace must be small enough that the TMTO has a reasonable chance 
of success for a feasible pre-computation. Hellman’s TMTO attack can be 
applied to any block cipher, provided there is sufficient computing power 
available for the initial pre-computation and enough storage to effectively 
deal with the tabulated results. Perhaps the most interesting aspect of this 
TMTO attack is that it requires no knowledge of the internal workings of the 
underlying block cipher. 

In the remaining section of this chapter, we analyze attacks on three 
specific block ciphers, namely, CMEA, Akelarre, and FEAL. Each of these 
attacks depends heavily on the details of the underlying algorithms and it is 
therefore necessary to dig into the inner workings of these ciphers. While each 
of these ciphers is relatively weak, the attack methods differ considerably. 
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4.5 CMEA 

PLEASE! DON’T VIOLATE THE LAW! 
~ TIA/EIA Standard [147] 

According to United States patent 5,159,634, the Cellular Message Encryp- 
tion Algorithm, or CMEA, was developed by James A. Reeds3 CMEA is 
a block cipher that was employed in the Telecommunications Industry As- 
sociation (TIA) cell phone security architecture. Yes, this is the same TIA 
that was responsible for the deeply flawed ORYX stream cipher discussed in 
Chapter 3 .  

In this section we first describe a chosen plaintext attack on a simplified 
version of CMEA. Then we show that this attack can be extended to the real 
CNIEA cipher. Finally, we discuss an interesting--and more realistic-known 
plaintext attack on our simplified version of CMEA and we show that, this 
attack is also easily extended to the real CMEA cipher. The CMEA attacks 
presented here follow those given by Wagner, Schneier, and Kelsey in [152]. 
Legend has it that these attacks (or similar) originated with Greg Rose,4 who 
was mysteriously forbidden from publishing his work [124]. 

4.5.1 CMEA Cipher 

The CMEA cipher employs a 64-bit key and a variable block size, where the 
block size is specified in bytes. Typical block sizes are said to be two to six 
bytes [152]. 

The cipher utilizes a fixed 256-byte lookup table known as the Cave Table, 
which appears in Table 4.5. Contrary to what might be expected, the Cave 
Table is not a permutation and, in fact, only 164 distinct byte values appear. 
Furthermore, the distribution of the 164 values that do appear is not close to 
uniform: 97 of the bytes occur only once, while 44 appear twice, 21 appear 
three times and the remaining two both occur four times. 

Given a byte that consists of hex digits 11: and y, let C[zy] be the entry 
in row 11: and column y of the Cave Table. For example, C[Ox4e] = 0x09, 
since Ox09 is in row 0x4 and column Oxe of Table 4.5. 

Let KO, K1,. . . , E(7 be the eight byt,es of the 64-bit CMEA key. Given the 

‘In 1998, Reeds deciphered Trithemius’ Stegunogruphia, a cryptanalytic challenge that 

‘This is the same Greg Rose whose work figures proniinently in Section 5.4.5. 
had stood for nearly 500 years [119]. 
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- 

- 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 

d 
e 
f 

C 

- 

Table 4.5: Cave Table 

0 1 2 3 4 5 6 7 8 9 a b c d e f  
d9 23 5f e6 ca 68 97 bO 7b f2 Oc 34 11 a5 8d 4e 
Oa 46 77 8d 10 9f 5e 62 fl 34 ec a5 c9 b3 d8 2b 
59 47 e3 d2 ff ae 64 ca 15 8b 7d 38 21 bc 96 00 
49 56 23 15 97 e4 cb 6f f2 70 3c 88 ba dl Od ae 
e2 38 ba 44 9f 83 5d lc de ab c7 65 fl 76 09 20 
86 bd Oa fl 3c a7 29 93 cb 45 5f e8 10 74 62 de 
b8 77 80 dl 12 26 ac 6d e9 cf f3 54 3a Ob 95 4e 
bl 30 a4 96 f8 57 49 8e 05 If 62 7c c3 2b da ed 
bb 86 Od 7a 97 13 6c 4e 51 30 e5 f2 2f d8 c4 a9 
91 76 fO 17 43 38 29 84 a2 db ef 65 5e ca Od bc 
e7 fa d8 81 6f 00 14 42 25 7c 5d c9 9e b6 33 ab 
5a 6f 9b d9 fe 71 44 c5 37 a2 88 2d 00 b6 13 ec 
4e 96 a8 5a b5 d7 c3 8d 3f f2 ec 04 60 71 lb 29 
04 79 e3 c7 lb 66 81 4a 25 9d dc 5f 3e bO f8 a2 
91 34 f6 5c 67 89 73 05 22 aa cb ee bf 18 dO 4d 
f5 36 ae 01 2f 94 c3 49 8b bd 58 12 eO 77 6c da 

key, succcssively define 

and, finally, 

T ( z )  z= c[(s(x) @ K6) + K7] + 2, (4.7) 

where x is a byte and the additions are all taken modulo 256. By the definition 
of T ,  it is apparent that T ( x )  - J: is in the Cave Table for any byte x and the 
same is true of S ( x )  - 2 ,  R ( x )  -z, and Q ( x )  -x. We niake use of these facts- 
and the fact that the Cave Table is heavily biased-in the attacks discussed 
below. 

As mentioned above, the CMEA block length is a variable number of 
bytes. Let n the number of bytes in the CMEA block. Then the CMEA 
encryption routine appears in Table 4.6. 

Interestingly, the CMEA cipher is its own inverse. As a result, the en- 
cryption routine in Table 4.6 is also the decryption routine. That is, if we 
input the ciphertext to the algorithm, we obtain the corresponding plaintext. 

Recall that the Enigma cipher is also its own invcrse. For Enigma, there 
was a clcar advantage to being self-inverse, since the same settings could 
be used for encryption and decryption. However, for CMEA-and modern 
ciphers in general-it is not clear that there is any significant advantage 
gained by being self-inverse. 
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Table 4.6: CMEA Encryption 

// all arithmetic is mod 256 and “V” is OR 
// ( c [0 ] ,  c[l], . . . , c[n - 11) = output block of ciphertext bytes 
1. (p[O],p[l], . . . , p [ n  - 11) = input block of plaintext bytes 
2 .  z = o  
3.  f o r i = O t o n - 1  

5. 

6 .  z= z + p [ i ]  
7. next  i 
8. h = Ln/2] 
9. f o r i = O t o h - 1  

4 .  k = T ( z @ i )  
p[i] = p[i] + k 

10. 

11. next  i 
1 2 .  z = 0  
13. f o r i = O t o n - l  
14. 

15. z = z + p [ z ]  

17. next  

p [ i ]  = p[i] 8 ( p [ n  ~ 1 - 21 v 1) 

k = T ( z  @ i) 

16. ~ [ i ]  = p [ i ]  - k 

From the definition of CMEA in Table 4.6, we see that if the cryptanalyst, 
Trudy, can determine the function T ,  defined in 4.7, then she does not need to  
recover the key. The chosen plaintext attack discussed below does just that, 
while in the known plaintext attack, discussed further below, we recover the 
key. Provided that sufficient plaintext (chosen or known, as the case may be) 
is available, both attacks are extremely efficient. 

The value T(0)  plays a special role in CMEA. Below, we show that in the 
chosen plaintext attack, once T(0)  is known. then T( i ) ,  for i = 1 , 2 , .  . . , 255,  
can be recovered easily. In the known plaintext attack it is slightly more 
subtle, but T(0)  again is the linchpin of the attack. Consequently, in both of 
these attacks, the first priority is to  determine T(0) .  

For simplicity we restrict our attention to  the case where the block size 
is n = 3 bytes. Analogous results hold for any block size. 

4.5.2 SCMEA Cipher 

Before attacking CMEA, we first present a slightly simplified version of the 
cipher, which we call simplified CMEA, or SCMEA. Our SCMEA cipher is 
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identical to the CMEA cipher in Table 4.6 except that line 10 is replaced by 

10.� p [ i ]  = p [ i ]  a3 P[” - 1 - il 

that is, the “V 1” has been eliminated. 
Next, we present a chosen plaintext attack on SCMEA. This attack will 

then be extended to an effective attack on the (nonsimplified) CMEA cipher. 
After analyzing the chosen plaintext attack, we turn our attention to a more 
realistic -but more complex-known plaintext attack. 

4.5.3 SCMEA Chosen Plaintext Attack 

Suppose the plaintext block is of the form 

for some e and j .  Then it is not difficult to show that the first byte of SCMEA 
ciphertext is 

co = ( e  c€ 1 c€ T ( j ) )  - T(0).  (4.9) 

We can use this fact to develop an efficient chosen plaintext attack on the 
SCMEA cipher. In this attack, we first determine T(O), then use T(0) to 
obtain the remaining T ( j ) ,  for j = 1 , 2 , .  . . ,255. 

We encrypt chosen plaintext blocks of the form 

(PO,Pl,PZ) = (1 - Zo, 1 - Z0,O) 

until we obtain a ciphertext byte co that satisfies 

(4.10) 

Then according to (4.8) and (4.9), with l = 0 and j = 0, any zo for 
which (4.10) holds is consistent with zo = T(0) .  Since T(0)  = T(0)  - 0, 
and we know that T ( z )  - z is always in the Cave Table, we can restrict our 
attention to zo that are among the 164 distinct values that appear in the 
Cave Table. 

Consider an 20 for which (4.10) holds. Then 20 is a putative value for T(0).  
Now for each j = 1,2 ,3 , .  . . ,255 we choose 

(PO,Pl,PZ) = (1 - 2 0 ,  ( j  @ 2) - 2 0 , O )  

and compute the corresponding ciphertext. 
from (4.8) and (4.9) with t = 0, we have 

If, in fact, 20 = T(O), then 

co = (1 CE Zj) - 2 0 ,  (4.11) 
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where xj = T ( j ) .  If (4.11) holds, we can solve for xj = (cg + 20)  @ 1. Now, if 
it is the case that xo z T(O), we have xj = T ( j )  and we know that T ( j )  - j 
is in the Cave Table. Therefore, for each j ,  we check whether xj - j is in the 
Cave Table. If for any j we find xj - j is not in the Cave Table, we know 
that xo # T(0)  and we must, continue to  search for T(0).  If, on the other 
hand, xj - j  is in the Cave Table for all j ,  then with high probability we have 
found T(0) .  

Since there are 164 elements in the Cave Table, and since T(0)  must be in 
the Cavc Table, we expect to  find T(0)  using about 82 chosen plaintexts. Once 
we have determined T(O), we can find all T ( j ) ,  for j = 1 , 2 , 3 , .  . . ,255, with 
another 255 chosen plaintexts using (4.11). Consequently, the total chosen 
plaintext requirement is about 337 blocks. In addition, a small number of 
chosen plaintexts are required to resolve any false alarms. We give a careful 
analysis of these false alarms when we consider the corresponding CMEA 
attack below. 

4.5.4 CMEA Chosen Plaintext Attack 

Now consider the CMEA cipher. As in the SCMEA attack, above, we choose 
plaintext of the form 

(PO,Pl,PZ) = ( ( ( @ I )  - T ( O ) , ( j @ 2 )  -(4?@1) -T(t) ,O).  (4.12) 

From the algorithm in Table 4.6, it can be shown that CMEA encryption 
of (4.12) yields 

co = ( ( e  @ 1 CE ( T ( j )  v 1)) - T(0)  (4.13) 

and 

c1 = ( j  CE 2) - ( l @  1) - T ( l  @ (T(.j) V 1)). (4.14) 

The corresponding equation for c2 is slightly more complicated and somewhat 
more difficult to  derive; see Problem 11. 

Analogous to  the SCMEA attack discussed abovc, in the CMEA attack we 
use (4.13) to  determine whether a byte xo is consistent with xg = T(0) .  Once 
we find a putative T(O), we can then use (4.13) to find all putative T ( j )  V I, 
for j = 1 , 2 , .  . . , 255. However, due to the “V” we can only determine 7 ’ ( j )  
up to  ambiguity in the low-order bit position. Fortunately, we can make use 
of (4.14) to resolve this ambiguity in the recovered T ( j ) ,  as discussed below. 
how eve^., before we consider this issue, we first provide more details on the 
recovery of T(0) .  

To find T(O), we let l = j = 0 in (4.12) in which case the plaintext is 
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and, according to (4.13), (4.14), and the solution to Problem 11, the corre- 
sponding ciphertext is 

co = ((1 CB (T(0) v 1)) - T(0)  
c1 = 1 - T(T(0)  v 1) 

c2 = T(0)  - T(((1 CE (T(0) v 1)) + 1) @ 2). 

We therefore encrypt chosen plaintexts of the form 

and any of these that satisfy 

0 and 2 0  is even 
255 and xo is odd 

cg = (1 @ (20 V 1)) - 2 0  = 

are consistent with xo = T(0).  To further reduce the false alarm rate, we use 
the fact that if zo = T(0)  then 

1 - ~1 - ( 2 0  v 1) (4.15) 

and 
zo - c2 - (((1 @ ( 2 0  v 1)) + 1) CB 2) (4.16) 

must both be in the Cave Table. Any false alarms that survives these tests 
will be discovered quickly. 

After having found a putative 2 0  = T(O), we choose plaintext using (4.12), 
with e = 0 for j = 1,2 ,3 , .  . . ,255. For each j ,  we recover a putative value 
for xj = T ( j )  V 1 from (4.13). If neither xj - j  nor (xj @ 1) - j is in the Cave 
Table, then we have detected a false alarm, and we discard zo and continue 
searching for T(0).  Assuming that 2 0  = T(O), then if only one of xj - j 
or (xj @ 1) - j is in the Cave Table, we have unambiguously determined T ( j ) .  
On the other hand, for each case where both xj - .j and (zj CB 1) - j are in 
the Cave Table, the low-order bit of T ( j )  is ambiguous. 

To resolve the ambiguous low-order bit of a recovered T ( j ) ,  we can make 
use of (4.14). First, we recover all T ( j ) ,  for j = 1 ,2 , .  . . ,255, using T(0)  and 
the method described in the previous paragraph. We also maintain an auxil- 
iary array, A, where Aj = 0 if the low-order bit of T ( j )  is known, and Aj = 1 
if the low-order bit of T ( j )  is ambiguous. We can use A to resolve the am- 
biguous cases as follows. 

Suppose that the low-order bit of T ( k )  is ambiguous, that is, T ( k )  - k 
and ( T ( k )  @ 1) - k are both in the Cave Table. Then we set A k  = 1. Now 
we find a t and j such that 

k = t @ ( T ( j )  V 1) and At = 0 (4.17) 
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(that is, T ( t )  is not ambiguous). If such a t and j are found, we then set 

po = ( t  CE 1) - T(0)  
p1 = ( j  69 2) - ( t  @ 1) - T ( t )  
P2 = 0 

and encrypt this plaintext block using CMEA, to obtain the the corresponding 
ciphertext block (co, el,  c2). From (4.14), we have 

T( t  Q ( T ( j )  V 1)) = ( j  @ a )  - ( t  CB 1) - C I ,  

which. by our choice of t and j gives 

T ( k )  = ( j  (2 2) - ( t  CE 1) - c1. 

There is no ambiguity in this equation, and consequently we have resolved 
the low-order bit of T ( k ) .  Problem 14 explores the probability that this 
part of the attack will fail. Note that this part of the attack fails if for an 
ambiguous T ( k ) ,  we cannot find t and j satisfying (4.17). 

Now we provide a careful analysis of the expected number of chosen plain- 
texts required in this attack. Each time we test an element in the Cave Table 
to see whether it is a possible T(O), there is a chance of a false alarm. As 
noted above, letting ! = j = 0 in (4.12), a plaintext of the form 

(PO,Pl,lnZ) = (1 - T(O), 1 - T(O),O) 

yields 
0 if T(0)  is even 
255 if T(0)  is odd. co= { 

Another interesting and related property of CMEA encryption is considered 
in Problem 12. 

Since, on average, we require 82 iterations before we can determine T(O), 
the probability of false alarms can be approximated by a binomial distribu- 
tion with n = 81 and p = 1/128. Therefore, the expected number of false 
alarms is about n p  = 81/128 M 0.63. If we include a check that both (4.15) 
and (4.16) are in the Cave Table, then the expected number of' false alarms 
drops to 0.63( 164/256)' M 0.258. 

Recall that 164 of the 256 elenients in the Cave Table are distinct. Also, 
we have that T( i )  - i is in the Cave Table, for i = 0 ,1 ,2 , .  . . ,255. Since T(0)  
is in the Cave Table, about 82 chosen plaintexts are required before we expect 
to find T(0) .  Once T(0)  has been recovered, one chosen plaintext is required 
to determine each of the remaining values T ( i ) ,  for i = 1 , 2 , 3 , .  . . ,255. This 
gives a total of 337 chosen plaintexts. 

However, some of the recovered T ( i )  will be ambiguous in the low order 
bit. The low order bit of T ( i )  is known if either T( i )  - i or (T( i )  @ 1) - i 
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Trials 

106 

is not in the Cave Table. It can be shown (see Problem 9) that given any z 
in the Cave Table, the probability that ((z + i)  @ 1) - i is in the Cave Table 
is approximately 0.6. Consequently, we expect to find about 0.6. 255 M 153 
ambiguous entries, and for each of these, one additional chosen plaintext is 
required. Note that if neither T( i )  - i nor (T( i )  @ 1) - i is in the Cave Table, 
then a false alarm has occurred, that is, the putative value of T(0)  is incorrect. 

Assuming z E {0,1,2, .  . . ,255}, is selected uniformly it can be shown (see 
Problem 10) that the probability that z and z @ 1 are both not in the Cave 
Table is about 0.11. A false alarm for T(0)  is detected as soon as such a 
value is generated. Each additional step that is needed before detecting a 
false alarm requires one chosen plaintext, so the expected number of chosen 
plaintexts per false alarm is about 9. Overall, we expect false alarms to 
require about 0.258 . 9  z 2.3 additional chosen plaintexts. 

Combining these results, we find that the total expected number of chosen 
plaintexts is 82 + 255 + 153 + 2.3 z 492.3. This accords remarkably well with 
the empirical data in Table 4.7, which is the average of lo6 trials, using a 
randomly generated key for each trial. 

Average to Find Average Average 
Find T(0)  T ( j )  V 1 Ambiguous False Alarms Total 

81.84 255 152.89 2.43 492.16 

In practice, this chosen plaintext attack is likely to be unrealistic, due to 
the relatively large number of plaintext blocks required, and, especially, due 
to the fact that we must choose the plaintext. Next, we consider a known 
plaintext attack which is much more likely to be practical. First, we apply 
the attack to SCMEA, then we explain how the attack can be extended to 
CMEA. This known plaintext attack (for CMEA) appears in [152]. 

4.5.5 SCMEA Known Plaintext Attack 

As with the chosen plaintext attack, above, this attack relies on the fact 
that T(0) plays a special role in the CMEA cipher (and also in SCMEA). 
The known plaintext attack we describe here has two phases, a primary 
phase and a secondary phase, where the objective of the primary phase is 
to determine T(O), or a small number of candidates for T(0) .  Then in the 
secondary phase, we determine the key, and simultaneously eliminate any 
invalid put,ative T(0)  that survived the primary phase. 

We briefly outline each of the two phases of the SCMEA attack before 
providing more details on both phases. Then we extend the attack to CMEA. 
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Outline of Attack 

In the primary phase of the attack, we make use of the fact that if we 
know T(O), then known plaintext-ciphertext pairs place restrictions on the 
possible values of other T ( j ) .  In fact, we can show that each known plaintext 
gives us three tests that can be used to check the validity of other puta- 
tive T ( j ) .  If any of these tests fail, then the computed value of T ( j )  must be 
incorrect, which implies that the assumed value of T(0) is incorrect. 

For the primary phase of the attack, we guess each possible value for T(O), 
and use the known plaintext to deduce information about other T ( j )  bytes. 
If our guess for T(0)  is incorrect, given sufficient known plaintext, we are 
highly likely to arrive at a contradiction, at which point we can eliminate our 
current putative T(0)  as a candidate for T(0) .  

Once all possible T(0)  have been tested in the primary phase, we will 
have determined T(O), or a small number of candidates for T(O), depending 
on the number of known plaintext blocks available. We then move on to the 
secondary phase, where we use a combinatorial search technique known as 
backtracking [87] to recover the key. This secondary phase relies on informa- 
tion accumulated during the primary phase-information gleaned from the 
known plaintext. The success of the secondary phase depends not only on 
the fact that T ( j )  - j  is in the Cave Table, as can be seen from (4.7), but also 
on the fact that the intermediate values, & ( j )  - j ,  R ( j )  - j ,  and S ( j )  ~ j ,  are 
in the Cave Table, as can be seen in (4.6). 

Of course, we want to minimize the amount of known plaintext that is 
needed. But as we reduce the amount of known plaintext, we are increasingly 
likely to find additional putative values for T(0)  that survive the primary 
phase of the attack, and we are more likely to lack sufficient information to 
trim the keys found in the secondary phase to a sufficiently small number. 

However, by using another combinatorial search technique, it is possible 
to further reduce the known plaintext requirement. Provided that we have 
uniquely determined a few T ( j )  values in the primary phase, a meet - in - the -  
m i d d l e  approach can be used to dramatically reduce the number of putative 
keys recovered, as compared to the simpler (and more intuitive) backtrack- 
ing method mentioned in the previous paragraph. Meet-in-the-middle is a 
standard technique from the field of combinatorial search, where it goes by 
the clever name of meet-in-the-middle. When it is applicable, a meet-in-the- 
middle attack can essential provide a square root improvement in the work 
fador, but it is can be relatively complex to implement. 

Next, we describe this known plaintext attack in more detail. For sim- 
plicity, we initially focus on the SCMEA cipher, then we show that the attack 
extends easily to CMEA-although significantly more known plaintext is re- 
quired to obtain comparable results. 
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Primary Phase 

Our first objective is to determine T(0).  Since T(0)  is in the Cave Table, 
T(0)  is limited to one of the 164 distinct bytes that appear in the Cave Table. 

For each of the 164 possible choices for T(O), we construct a 256 x 256 
table A, such that Ai,j = 1 if it is possible that T ( i )  = j ,  and Ai,j = 0 if 
it is not possible that T ( i )  = j .  To begin, we initialize Ai,j = 1 for all i 
and j .  Then we make use of the restrictions inherent in the Cave Table 
to find impossible entries in A, that is, we find i and j for which we must 
have Ai,j = 0 due to the st,ructure of the Cave Table. Finally, we use the 
known plaintext to mark additional impossible entries in the A table. 

Denote the 164 distinct Cave Table bytes as 

Since T ( j )  - j is in the Cave Table for j = 0,1 ,2 , .  . . ,255, we have 

This immediately places 92 zeros in row j of A. We repeat this for each 
row of A, so that each row has 164 ones and 92 zeros. Note that this is 
independent of the known plaintext or any assumption on the value of T(0) .  

Now for a given putative T(O), we can use the known plaintext to deduce 
additional information about various T ( j )  and, in the process, place addi- 
tional 0s in the table A. Ideally, for any incorrect choice of T(O), we will 
arrive at a contradiction from the entries in A. In practice, it is sufficient to 
simply reduce the number of possible choices for T(0)  to a small number. 

As above, we are assuming that the block size is three bytes. Denote a 
known 3-byte plaintext block as P = (po,pl,p2) and let C = ( C O , C ~ , C ~ )  be 
the corresponding ciphertext block. 

By carefully stepping through the SCMEA algorithm, where we are as- 
suming a block size of n = 3, it can be shown that 

which we rewrite as 

Now if we are given a known plaintext block P = ( p o , p l , p ~ )  and the corre- 
sponding ciphertext byte CO, we can use (4.18) to eliminate some potential 
values of T ( j ) .  
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For example, suppose the (po,pl,p2) = (Oxai, Ox95,0x71) and the corre- 
sponding ciphertext block has co = 0x04. Further, suppose that for this key, 
we guess T(0)  = 0x34. Then (4.18) reduces to 

Ox7c = T (  (Ox6a + T(Oxd4)) 63 2) 

As rioted above, there are 164 possible value for T(Oxd4). Once we specify 
one of these values for a putative T(Oxd4), the argument to the “outer” T 
function is known, as is the value of the “inner” T function. 

Now let y = (Ox6a + T(Oxd4)) @ 2. If Ay,Ox~c = 0, then this impossible 
critry in the table immediately implies that our guess for T(Oxd4) is incorrect, 
and we mark it as such in the A table. 

For example, since 0 is in the Cave Table, we guess T(Oxd4) = Oxd4 to 
see if an impossibility arises. In this case, (Oxd4 + Ox6a) @ 2 = Ox3c and we 
test whether T(Ox3c) = Ox7c is possible, based on the current, A table, that 
is we check the value of A0x3c,0x7c. If this is 0, we know that T(Oxd4) # Oxd4 
a.nd we specify this in the A table by set.ting AOxd4,0xd4 = 0. We then continue 
to tcst each of the remaining 163 choices for T(Oxd4) in a similar mariner. 

If it should happen that all of the 164 possible choices for T(Oxd4) are 
impossible, then we know that our guess for T(0)  is incorrect and we proceed 
to our next guess for T(0) .  In any case, we have almost certainly placed 
additional impossible entries in the A table, thereby increasing our knowledge 
of T ,  assuming that the T(0)  assumption is correct. 

We must repeat this for each known plaintext block. Furthermore, if any 
new impossible entries are added to A, we must then repeat the entire process 
for all of the known plaintext again. This must be iterated until no changes 
are made to A during one entire pass through the known plaintexts. 

With enough known plaintexts, we will uniquely determine T(O), and in 
the process, we might uniquely determine additional values of T ( j ) .  We will 
also be able to place significant restrictions on many of the T ( j )  that have 
riot been uniquely determined. 

Unfortunately, the amount of known plaintext to uniquely determine T(0)  
by this approach is large. However, we are not using all of the available in- 
formation. Forniulas analogous to (4.18) can be found for both c1 and c2 

(see Problem 15). By using this additional information, we can dramatically 
reduce t,he known pla,intext required to uniquely determine T(0) .  Ernpiri- 
cal estimates of the number of plaintext blocks required are summarizcd in 
Table 4.8. 

Secondary Phase: Backtracking 

After successful completion of the primary phase, we will have recovered T(O), 
or a small number of candidates. We now discuss a method for determining 
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Ciphertext bytes used 
Known plaintext blocks 

co only co and c1 co,c1 and c2 

300 90 60 

the key from the information accumulated to this point. For the remain- 
der of this section, we assume that in the primary phase we uniquely deter- 
mined T(0) ;  if not, we simply repeat this secondary phase for each candi- 
date T(0).  

In the chosen plaintext attack, discussed above, we recovered T ,  without 
finding the key. In contrast, in the secondary phase of the known plaintext 
attack presented here, we recover the key, using the A table obtained in the 
primary phase. 

From (4.7) we have 

T ( z )  = c[(s(z) @ K6) + K7] + z 

and S(z) - IC is an element of the Cave Table. Consequently, 

T ( z )  = c [ ( ( V  + x) @ K6) + K7] + z 

for some z1 in the Cave Table. We select a putative (KG,  K7), and a particu- 
lar z. Then we test each z1 that is in the Cave Table, by computing 

= c [ ( ( v  + x) @ K6) + K7] + 2 

and looking up the value of Ax,u. If for any z we find that every z1 in the Cave 
Table yields Ax,v = 0, then the choice of ( K G , K ~ )  must be incorrect. This 
will reduce the number of possible partial keys (K6, K7), with the number of 
survivors depending on the amount of information available in A, which, in 
turn, depends on the number of known plaintexts. Typical results for this 
secondary phase of the SCMEA attack are given in Table 4.9. 

Known plaintext blocks 
Partial keys (K6, K7) 

Table 4.9: Number of Surviving (K6, K7) 

50 75 100 150 
19800 2002 42 2 

For each putative ( K G , K ~ ) ,  we can determine putative (K4,Ks) values 
from the pair of equations 

S(z) = C[(R(Z)  @ K4) + K5] + 5 

T ( z )  = c[(s(Z) @ K6) + K7] + z. 
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To accomplish this, for each candidate (K4, Ks), we compute 

and we use the putative pair (KG,  K7) to find 

We are now in precisely the same position as discussed above, except that 
here we rule out (K4, K s )  key pairs instead of ( K G ,  K7) pairs. 

Suppose that we find a total of n pairs (Kfi,K7). Then for each of these 
we would expect to find about the same number of (K4,Ks)  pairs, since we 
are relying on the same A table in both cases. The attack can be extended to 
find putative (K2, Ks)  and putative (KO,  K l ) ,  which enables us to obtain pu- 
tative keys (KO,  K I ,  . . . , K7). The expected number of such keys is about n4, 
where n is the number of (K6,K7) pairs. Of course, n depends on the num- 
ber of known plaintext blocks available. From Table 4.9 we see that if we 
have 150 known plaintext blocks available, then we can expect to recover 16 
putative keys. This clearly shows that the SCMEA cipher is extremely weak, 
and in the next section we show that these results are easily extended to 
CMEA-although the known plaintext requirement increases significantly. 

However, 150 known plaintext bytes niay be unrealistic in practice. With 
just 75 known plaintext blocks available, the number of putative keys would 
be almost 244. While this is a significant improvement over an exhaustive 
search, where there are 264 possible keys, it is worth considering whether we 
can do better, particularly since the equivalent CMEA attack will require 
more known plaintext. 

We now discuss an alternative approach to the secondary phase of this 
attack. This alternative is slightly more complex, but it results in a lower 
known plaintext requirement. 

Secondary Phase: Meet-in-the-Middle 

An alternative way to complete the secondary phase is a meet-in-the-middle 
attack, as discussed in 11521. For this attack to be practical, we must have 
determined T ( j )  for at least four distinct values of j during the primary phase. 
This would be indicated by four rows of the A table that each contain a single 
one. The expected number of such rows depends on the number of known 
plaintext blocks available-  typical numbers appear in Table 4.10. From these 
tabulated results, we see that this attack will be possible provided somewhat 
more than 50 known plaintext blocks are available. However, the attack can 
also be used if wf: do not have four uniquely determined values, provided 
that we have at least four rows of A, each of which has a small number of 
possible T ( j ) .  
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Table 4.10: Number of Uniquely-Determined T Elements 

Known Dlaintext blocks I 50 75 100 150 
~~~ 

Number uniquely determined 1 3 6 15 45 

First, we provide an intuitive description of the meet-in-the-middle attack. 
Then we consider a more efficient implementation. 

Suppose that from the A table, we have uniquely determined T(w), T ( b ) ,  
T ( c ) ,  and T ( d ) ,  for some a ,  b, c, and d. Then for each of the 232 choices for 

(KO, K1, K2, K3), we compute 

and similarly for b, c, and d. Then we store R = (R(a) ,R(b) ,R(c) ,R(d))  
and the putative key bytes (KO,  K1, K2, K3) in a row of a table M .  Then M 
has 232 rows, which we sort on R. 

Next, we work backwards from the T ( a ) ,  T(b),  T ( c ) ,  and T ( d ) ,  searching 
for a matching R in the table. More precisely, for each I? = (K4, K5, K6, K7), 
we find all pairs ( S  (u) , R( a ) ) ,  such that 

(and similarly for b, c, and d ) ,  which gives us fi = ( R ( a ) ,  R(b), R(c) ,R(d)) .  If 
we find R in the table M ,  then we have met-in-the-middle, and thereby found 
a key KO, K1,. . . , K7 for which T ( a )  matches the known value a (according to 
the A table), and also for b, c, and d. We can then test each of these putative 
keys via trial decryption using known plaintext blocks. 

The only tricky part of this attack is that we must invert the Cave Table 
entries, and this will often generate more than one possible input value. In 
such cases, we need to try them all. Nevertheless, by this approach, the work 
factor is essentially the square root of the work required for an exhaustive 
search. All that is needed to apply this attack is a set of four T values, 
which, given sufficient known plaintext, will be obtained from the primary 
phase. 

A more clever (and more practical) approach to the meet-in-the-middle 
attack is given in [152]. As above, we assume that T ( a ) ,  T ( b ) ,  T ( c ) ,  and T ( d )  
are known. Then for each possible (KO, K1, K2), we compute 
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and similarly for b’, c’, and d’. Next, we create a table 211 with rows of the 
forin 

a’, b’, c’, d’, KO, KI, K2, 

which are indexed by the 3-byte quantity (u’ - d‘, b‘ - d’, c’ - d’ ) ,  where the 
subtractions are each niod 256. The reason for this strange choice of indexing 
will become clear shortly. 

Note that the table 211 only has 224 rows, so it is efficient to construct 
and requires minimal storage. When the table M is completed, then for 
each (K4, K5, KG, K7), we find u“ such that 

R ( u )  = C[a”] + a 
S ( a )  = C[(R(a )  63 K4) + K5] + a 
T ( a )  = C [ ( S ( a )  CI3 K G )  + K7] + a 

and similarly for b”, c”, and d”.  From the definition of a’, we see that 

R ( U )  = C[U’ + K ~ ]  + 
and, therefore, we have a” = a’ + K3. It follows that 

‘ I  a’’ - d” = (u’ + K3) ~ (d’ + Ks) = a - d 

and, similarly, 

(a” - d” , b” - d” , c” - d”) = (a’ - d’ , 6’ - d’ , c’ - d’) , 

Consequently, we can use a”, b”, c”, and d” to form an index into the table M 
corresponding to a’, b’, c’, and d’. Furthermore, assuming that we find a match 
in M ,  we can immediately find a putative K3 from the equation K:$ = a” -a‘, 
at which point we have recovered the entire putative key KO, K1,. . . , K7. We 
must test each putative key by trial decryption (or encryption) using the 
known plaintext to eliminate false alarms. 

Note that the meet-in-the-middle and backtracking attacks can be com- 
bined. That is, we could use the backtracking attack to determine puta- 
tive (Kb, K7) pairs (and perhaps, also (K4, Ks) ,  depending on the number 
of (Ks ,  K7) obtained), then do the meet-in-the-middle attack restricted to 
these candidate partial keys. 

4.5.6 CMEA Known Plaintext Attack 

The known plaintext attack on CMEA is almost identical to the SCMEA 
known plaintext attack discussed above. In fact, once the A table has been 
constructed, the attacks are identical. However, the construction of the A 
table is slightly more complex for CMEA and it requires significantly more 
known plaintext. 
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To construct the A table for CMEA, we guess a T(0)  and use the restric- 
tions inherent in the Cave Table to mark 92 entries of each row as impossible 
values. This is precisely the same strategy that was employed in the SCMEA 
attack discussed above. 

For SCMEA, we used (4.18) (and analogous equations involving c1 and c2) 
to further increase the density of impossible entries in A.  For CMEA, the 
approach is the same, except that the equation that corresponds to (4.18) is 
slightly more complicated. Specifically, we have 

The “V 1” implies that we cannot determine the low-order bit. This reduces 
the number of impossible values for a given amount of known plaintext, since 
both 0 and 1 must be tested in the low-order bit, and both must be ruled out 
before we can mark an entry as impossible. A similar situation holds for the 
equations involving c1 and c2. Again, once the A table has been constructed 
the attack is the same as the SCMEA attack described above. 

It is claimed in [152] that this attack (using the meet-in-the-middle sec- 
ondary phase) will succeed on CMEA provided “50 to 80” known plaintext 
blocks are available. Problems 16 and 17 ask for more precise empirical esti- 
mates. Using only cg, we have found that about 420 known plaintext blocks 
are required to uniquely determine T(0) .  From Table 4.8 we see that the 
comparable number for SCMEA is 300 blocks. Obtaining analytic results for 
the number of required plaintexts would be an interesting and challenging 
exercise. 

4.5.7 More Secure CMEA? 

Is it possible to slightly modify the CMEA cipher and significantly increase 
the security of the cipher? The attacks presented here rely heavily on the fact 
that the distribution of the Cave Table entries is highly skewed. Consequently, 
if we replace the Cave Table with a fixed permutation of the byte values, these 
attacks would likely fail. 

There are many other possible modifications of CMEA that might yield 
a stronger cipher. For example, one alternative would be to  make the Cave 
Table key-dependent. Of course, this could be combined with the previous 
suggestion, replacing the Cave Table with a key-dependent permutation. This 
would seem to greatly complicate the cryptanalysis of the CMEA cipher. It 
might also be interesting to consider whether it is possible to modify the 
cipher so that it is reasonably secure, yet the Cave Table remains as it is 
currently configured. 
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4.6 Akelarre 

It was said in the trials that Akerbeltz presided over the witches’ gatherings, 
which happened every Monday, Wednesday and Frida,y. 

These gatherings came to  be called akelarre, the “goat meadow.” 
- Secret History of the Witches [33] 

Akelarre is a block cipher that combines features of two strong block ciphers 
with the goal of producing a more efficient strong cipher. Specifically, Ake- 
larre uses mixed mode arithmetic, which is a primary cryptographic feature 
of the highly respected IDEA cipher, and Akelarre also makes heavy use of 
rotations, which are a crucial element in RC5, another highly-regarded block 
cipher. By combining important elements from two strong ciphers, you might 
expect that Akelarre would itself be a strong cipher. If so, you would be sadly 
mistaken. 

The Akelarre cipher was proposed in 1996 [3] and within a year, devastat- 
ing attacks had been discovered [82]. In fact, Akelarre is an extremely weak 
cipher -in spite of (or, more likely, because of) its relatively complex design. 
Below, we describe a known plaintext attack, but there is also a ciphertext 
only attack, which is only slightly more complex. 

4.6.1 Akelarre Cipher 

Akelarre is defined for any number of rounds, but its developer conjectured 
that i t  is secure with four rounds. Amazingly, the cipher is insecure for any 
number of rounds. The attack we describe is given in [82], and this attack 
requires a small amount of work, regardless of the number of rounds. The 
weaknesses in Akelarre are also discussed in [50]. 

The Akelarre block size is 128-bits. The key length can be any multiple 
of 64 bits, but for simplicity, we assume here that the key size is the same 
as the block length, that is, 128 bits. The difficulty of the attack does not 
increase if the key size is increased. 

A key schedule algorithm is used to  expand the key into the required 
number of 32-bit subkeys, where this number of subkeys depends on the 
number of rounds. In Akelarre, the input, output, subkey and all intermediate 
calculations employ 32-bit words. In particular, the 128 bit input block is 
treated as four 32-bit sub-blocks, the output consists of four 32-bit sub-blocks 
and all subkeys are 32 bits. 

The encryption algorithm consists of an input transformation, followed 
by R rounds, and, finally, an output transformation, as illustrated in Fig- 
ure 4.12. The key schedule is also specified as part of the cipher algorithm. 

The plaintext block first passes through the input transformation in Fig- 
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Figure 4.12: Akelarre. 

ure 4.12, where mixed mode arithmetic operations are employed to combine 
the subkey with the four 32-bit sub-blocks of plaintext. In Figure 4.12, “@” 
is XOR, while the other “plus” operation represents addition modulo 232.  

The Akelarre round function is also illustrated in Figure 4.12. We use T 

to denote the current round, where r = 0,1 , .  . . , R - 1. 
Each round begins with a “keyed rotation,” where the right 7 bits of 

the 32-bit subkey K13r+4 are used to determine the size of the rotation. 
That is, (K13~+4)25...31, interpreted as an integer, is the amount that the 
input is rotated left. Recall that “<<<” is our notation for a left cyclic shift. 
Let (Ao, A l ,  A2, A3) be the 128-bit input to round T (written as four 32-bit 
words) and let (Bo, B1, Ba, B3) be the output of the keyed rotation at the 
beginning of round r. Then 

(Bo, Bi, Bz, B3) = (Ao, A1, A2, A3) <<< (K13r+4)25 ... 31. 

Let (TO, T I )  be the output of the box labeled “AR” in Figure 4.12. Then 
for a given 128-bit block (Bo, B1, B2, Bs), we have 

(To, Ti) = AR(Bo CE B2, Bi CE B3), 

where we have ignored the dependence on the subkey. The AR function is 
defined below. 
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Let (DO,  D1, D2,Ds) be the output of round T .  Then given B, and T, as 
defined above, we havc 

( D O ,  D1, D 2 , 0 3 )  (Bo 69 TI, B1 C3 TO, B2 C€ Tl, B3 Q TO).  

The Di are the inputs to  the next round, except for the final round, where 
they become the inputs to  the output transformation. 

After R rounds, there is an output transformation, which consists of an- 
other keyed rotation, followed by XOR and addition of subkey words, as 
illustrated in Figure 4.12. The result of the output transformation is four 
32-bit words which form the ciphertext block. 

The heart of Akelarre is the addition-rotation (AR) structure, the details 
of which appear in Figure 4.13. One pass through the AR structure can be 
viewed as 14 addition-rotations, each applied to a 32-bit sub-block. Each 
addition consists of subkey added to the current sub-block, with the addition 
taken modulo 232.  Each rotation affects 31 bits, as explained below, with the 
amount of the rotation determined by the inputs to the AR structure. 

Typically, iterated block ciphers split the input in half and then oper- 
ate on these halves. Since the AR structure in Akelarre operates on 32-bit 
quarter-blocks instead of 64-bit half-blocks, Akelarre’s additiori-rotations can 
be viewed as 14 half-rounds. Consequently, it could be argued that one pass 
through the AR structure is roughly equivalent to seven rounds of a typical 
block cipher, but this is somewhat misleading since each Akelarre addition-.. 
rotation operation is extremely simple. 

In Figure 4.13, we denote the two 32-bit. input.s to the AR structure as WO 
and W1 and the output 32-bit words as 20 and 21. Note that Wl is processed 
first,; with the bits of WO used to determine the required rotations, and the 
resulting output is 21. Then WO is processed, with the bits of 21 used to 
determine the rotations, and the resulting output is 20. 

The rotations in thc AR structure are left rotations, but they are slightly 
different than the standard rotations used in the Akelarre round function 
and output transformation. In each AR rotation, either the low-order or 
the high-order bit remains fixed (as indicated by a 1 in Figure 4.13) and the 
remaining 31 bits (indicated by a 31) are rotated. The amount of the rotation 
ranges from 0 to 31 in some steps, and from 0 to 15 in other steps, depending 
on whether five or four bits are used to determine the rotation. For example, 
the first step in the AR structure consists of a left rotation of bits 0 through 30 
of Wj, with the rightmost bit (bit 31 in our notation) remaining fixed and 
the size of the rotation determined by (W0)27...31 . In our standard notation, 
this rotation can be written as 

(((w1)O ... 30 <<< (W0)27 ... 31)j (W1)31 ... 31). 

This result is then added (modulo 2 3 2 )  to subkey K13,.+5. After six more 
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Figure 4.13: Akelarre addition-rotation structure. 

steps, we obtain 2 1 ,  which is then used to  determine the rotations to  apply 
to  WO to generate 20. 

The final piece of the Akelarre algorithm is the key schedule. The precise 
details of the key schedule are inconsistent between various documents, so we 
follow the algorithm given in the original Akelarre paper [3]. 

A diagram of the key schedule algorithm appears in Figure 4.14. The key 
can be any multiple of 64 bits, but, as mentioned above, we assume a 128-bit 
key. The key is split into 18bi t  quantities which we label si, for i = 0 ,1 , .  . . ,7 .  

Define constants 

A0 = Oxa49ed284 and A1 = Ox735203de 

and let 

t l i  = s,” + A0 (mod 232)  and ui = sf + A ,  (mod 232) 
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Figure 4.14: Akelarre key schedule (128-bit key). 

for i = 0 , 1 , .  . . ,7. Then, for i = 0,1 , .  . . ,7, subkey Ki is given by 

(Kz)O ... 7 = (ui)24 ... 31 

( K z ) ~  ... 15 = ( ~ ) n  ... 7 

(Ki)16 ... 23 = (v i+1)24  ... 31 

(K2)24 ... 31 = (vi+1)0 ... 7. 

Note that the indices on the vi are taken modulo 8. 
Next, for i = 0,1 , .  . . ,7, update ui and vi according to 

ui = u& + An (mod 232) and vi = v$ + A1 (mod 232), 

where u, = (ui)8...24 and v, = (vi)8...24, that is, u, consists of the middle 16 
bits of the old ui and v, consists of the middle 16 bits of the old vi. Then 
we compute subkey Ki as 

(Ki)n ... 7 = ( u i ) z 4  ... 31 

(Kz)8 ... 15 = ( % ) O  ... 7 

(Kz)16 ... 23 

(KZ)24 ... 31 = (W+I)O ... 7 

(v i+1)24 ... 31 

for i = 8 , 9 , .  . . ,15, where, again, the index on vi must be taken modulo 8. We 
continue iterating this process until subkeys Ki, for i = 0 ,1 ,2 , .  . . ,13R + 8, 
have been computed, where R is the number of rounds. 

More generally, if the key consists of n 64-bit blocks, a similar process is 
used except that we generate 4n subkeys at each level of the key schedule 
algorithm, until the requisite 13R + 9 subkeys have been computed. 

The precise details of the key schedule algorithm are irrelevant for the 
&tack described below. In the attack we will determine certain subkeys, 
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Transformation 
Input 

Round 
T = 0,1 , .  . , , R - 1 

output 

then we can recover plaintext using these subkeys without knowledge of the 
underlying Akelarre key. 

Finally, we need to describe the decryption algorithm. Akelarre is not 
a Feistel Cipher, but it is designed so that the same logic can be used to 
encrypt and decrypt. However, unlike a Feistel Cipher where we simply need 
to use the subkeys in reverse order, in Akelarre, more substantial changes to 
the subkeys are required. 

Consider a 32-bit word A. Let II: = (A)25,,.31, where II: is interpreted as an 
integer, and let y = -x (mod 128). Let neg(A) be the 32-bit word obtained 
by replacing (A)25,,.31 with the the seven bits represented by y (with leading 0s 
included, if necessary). For example, neg( Oxa5b5c5d5) = Oxa5b5c5ab. 

Now consider subkey KISr+4 in Figure 4.12. The rightmost seven bits 
of this subkey are used to determine the rotation of the 128-bit block. By 
using neg(K1sr+4) in place of K1sr+4 during decryption, we can effectively 
undo the rotation, since a rotation of 128 is equivalent to no rotation at all. 

Using this notation, the encryption subkeys and the corresponding decryp- 
tion subkeys are specified in Table 4.11, where T = 0,1, .  . . , R - 1, and -X 
is to be taken modulo 232. Then the Akelarre encryption algorithm in Fig- 
ure 4.12 is also the Akelarre decryption algorithm, provided the subkeys are 
modified as indicated in Table 4.11. 

Encryption Decrypt ion 
Subkeys Subkeys 

KO -K13R+5 
K1 K13R+6 
K2 K13Rt7  

K3 -K13R+8 
K13r+4 neg(K13(R-r)+4) 
K13~+5 K13(R--r-1)+5 
K13rf6 K13(R-r-1)+6 

K13r+16 K13(R--r-1)+16 
K13R+4 neg(K4) 
K13Rt5  -KO 
K13R+6 Ki 
K13R+7 K2 

K13R+8 -K3 
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4.6.2 Akelarre Attack 

The attack we discuss in this section is similar to that in [82].  This attack 
requires that we have a small amount of known plaintext available, and that 
some statistics of the plaintext are known. For example, it is sufficient if we 
know that the plaintext is English, or that the plaintext is ASCII. Given this 
information, we can recover part of the key, and we can then recover plaintext 
from ciphertext. The paper [82] also contains a ciphertext only attack, which 
is only slightly more complex than the attack presented here. 

Consider a single round of Akelarre, neglecting the input and output trans- 
formations. Let T be the round number, and let A = (Ao,Al ,Az,As)  be the 
input to round r ,  where each A, is a 32 bit word. We denote the bits of 
each A, as 

At = ((132.1, a322+1, . . . , a 3 2 ~ + 3 1 ) ,  

that is, the bits of A are numbered consecutively from left-to-right, beginning 
with 0. 

For a given round, let U = (UO, U I ,  U2, U s )  be the output of the keyed 
rotation, let B = (Bo,Bl,Ba,B3) be the output of the round and, finally, 
let 7' = (To, T I )  the output of the AR structure. These U ,  B and T variables 
are illustrated in Figure 4.15. The individual bits of U ,  B and T are numbered 
in a similar manner as the bits of A. 

round r i 
t t 
80 Bl 

Figure 4.15: Akelarre round T .  

Let e be the size of the keyed rotation. Then U = A <<< ! and 



4.6 AKELARRE 167 

It immediately follows that 

Note that the output of the AR structure does not appear in either of these 
equations. However, in this form, the equations are not particularly useful, 
since U is an intermediate step of the algorithm. However, if we can write B 
in terms of A, then perhaps we can relate the input of the round to the 
output, effectively bypassing the complexity of the AR ~ t r u c t u r e . ~  

We have 
u = A <<< /? = (at, a t+ l , .  . . > at+127), 

where the indices are all computed modulo 128. It follows that 

and 

and, therefore, 

where the “mod 64” in the final term follows from the fact that 

is only 64 bits in length. In this way, we can relate the input of a round to 
the output simply by 

(Bo CE Ba, Bi 69 B3) = (A0 C€ A2, A1 @ As) <<< /? (mod 64). (4.20) 

Since the key and the AR structure do not appear in this equation, we have, 
in effect, bypassed the AR structure. Furthermore, we can easily extend this 
through all R rounds, since the output of one round is the input to the next 
round. 

Let /?, be the size of the keyed rotation in round r ,  for r = 0,1, .  . . , R - 1, 
and define 

R- 1 

L = CeT. 
r=O 

5This is an example of foreshadowing. 
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Now let A be the 128-bit input to  round 0 and let C be the output of the 
final round. Then A is the output of the input transformation and C is the 
input to  the output transformation.6 From (4.20) and Problem 19, it follows 
that 

(Co @ ( 3 2 ,  C1 @ C:<) = (Ao CB A2, A1 @ As) <<< L (mod 64). (4.21) 

In this form, we have the XOR of output bits written in terms of the XOR 
of input bits, with an unknown rotation L. 

If Akelarre did not employ its input and output transformations, then 
in (4.21), A would be plaintext and C would be the corresponding ciphertext, 
and the ciphertext would immediately provide some information about the 
plaintext. 

Of course, we must take the input and output transformations into ac- 
count. As in Figure 4.12, we denote the plaintext block as X and the corre- 
sponding ciphertext block as Y .  As above, A is the input to  the first round 
and C is the output of the last round. Let D be the result after C passes 
through the keyed rotation in the output transformation, but before the key 
is added and XORed. Let lo be the amount of the rotation in the output 
transformation. Then from (4.21) we have 

( D O  Dz, 01 CB 0 3 )  = (Ao CE A2, A1 @ As) <<< L’ (mod 64), (4.22) 

where L‘ = L + lo. 
Now from Figure 4.12 we have 

arid 

Substituting these results into (4.22), we find 

which relates the plaintext X to  the ciphertext Y ,  modulo the unknown 
rotation L’ arid the unknown subkey words KO, K1, Kz, Ks, K13~+5, K I ~ R + ~ ,  

Given sufficient known plaintext, we can solve for the unknown shift and 
subkey words in (4.23). Since each known plaintext yields one 64-bit equation, 
in principle, we can solve for the eight unknown 32-bit subkey words using 

K13Rf7 ,  and KI:WM. 

‘Try saying that three times. fast. 
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four known plaintexts. Then one additional known plaintext will enable us to 
solve for the rotation, for a total requirement of five known plaintext blocks. 

Suppose we have the required five known plaintexts. Then we can solve for 
the Ki and L’ in (4.23) as follows. For each of the 64 possible choices for L’, 
we solve for one bit at a time, beginning from the low-order bit position. It is 
necessary to keep track of carry bits and at some steps we must save multiple 
possible solutions (i.e., some branching occurs). Also, it is not possible to 
uniquely recover all of the subkey words using this approach. We can always 
recover KO, K2, K 1 3 ~ + 5 ;  and K13R+8, but we only determine K1 CB K13R+6 

and K2 @ K13~+7, or K1 @ K13~+7 and K2 @ K13R+6, depending on the 
rotation L’. See Problem 20 for a slightly simplified version of this subkey 
recovery problem. 

Once we have recovered the subkey words and the shift, we are then in a 
situation similar to (4.21). At this point, if we are given any ciphertext, we use 
the recovered subkey words to obtain the XOR of words of the corresponding 
plaintext. This is somewhat analogous to a one-time pad cipher where the 
key has been used more than once. At a minimum this leaks information 
about the plaintext, and it may be possible to recover the plaintext directly 
from the ciphertext, provided that we have sufficient information about the 
plaintext. In [82] it is claimed that if we simply know the plaintext is English, 
or random ASCII text, then it is possible to recover the plaintext. 

The recovery of the plaintext from the ciphertext is considered in Prob- 
lem 21, where a slightly simplified version of the problem is given. In practice, 
a similar approach could be used on actual Akelarre ciphertext. 

4.6.3 Improved Akelarre? 

It is interesting that the designers of Akelarre had great confidence in the 
security of t’he algorithm [3], primarily because it combines features found in 
two highly-respected crypto algorithms. Furthermore, the overall design of 
Akelarre is relatively complex. But since the complexity of the cipher is easily 
bypassed, it provides no real security. Akelarre illustrates the point that in 
cryptography, complexity is no substitute for careful analysis. In any case, 
the attack presented here highlights the fact that designing a secure cipher is 
a challenging and subtle art. 

Akelarre is such a fundamentally flawed cipher that it is difficult to imag- 
ine a minor modification that could significantly improve its security. Virtu- 
ally the entire complexity of the algorithm lies in the AR structure, which 
can, in effect, be bypassed. Any modification that improves the security of 
the algorithm would have to force the attacker to deal with the AR structure. 
We leave the problem of possible modifications to Akelarre as an exercise (see 
Problem 25). 
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4.7 FEAL 

. . .an encipherrnent algorithm that has the safety equal to  DES 
and is suitable for software as well as hardware implementation is needed. 

The FEAL (Fast data Enciphernient ALgorithm) fills this need. 
- Fast Data Encipherment Algorithm FEAL [134] 

FEAL-4 is breakable with 5 known plaintexts in 6 minutes. 
- A New Method for Known Plaintext Attack on FEAL Cipher [98] 

The Fast data  Encryption ALgorithm, or FEAL, is a block cipher developed 
by Shimizu and Miyaguchi [134] and announced publicly in 1987. The original 
version of the algorithm, which is now known as FEAL-4, consists of four 
rounds, and it was designed to  be extremely efficient, with a modest degree 
of security. However, devastating attacks on FEAL-4 were soon discovered, 
rendering the algorithm insecure for virtually any conceivable application. 
The developers of FEAL responded by adding more rounds-first eight rounds 
(FEAL-8), then a variable number of rounds (FEAL-N)-and with a larger 
key (FEAL-NX). 

All versions of FEAL are insecure. Nevertheless, FEAL is an historically 
important cipher, since it spawned many developments in the field of crypt- 
analysis. In particular, Biham and Shamir's differential cryptanalysis [14] was 
specifically developed to  attack FEAL. Differential cryptanalysis was then fur- 
t,hered honed on the Data Encryption Standard (DES), and it was ultimately 
discovered that DES was designed to  resist such attacks. Apparently, differ- 
ential cryptanalysis was known by someone involved in the development of 
DES (namely, the National Security Agency [140]) almost 20 years before it 
was, independently, rediscovered by Biham and Shamir, and it was considered 
it serious threat. 

In the next section, we consider the original and simplest version of FEAL, 
now known as FEAL-4. In Section 4.7.2 we present a differential attack 
that can recover the 64-bit key with a work factor of about 2'' and only 
requires four pairs of chosen plaintext blocks. Similar attacks succeed against 
FEAL-8 (and other versions of FEAL), but the work factor is higher and the 
implementations are more complex. 

In Section 4.7.3 we discuss the linear cryptanalysis of FEAL-4. Linear 
cryptanalysis was invented by Matsui [97], originally as a way to  attack DES. 
Linear cryptanalysis is also highly effective against FEAL-4. 

Today, linear and differential cryptanalysis are standard tools used to  
analyze all block cipher designs. These powerful techniques can be used to  
probe for potential weaknesses. However, neither technique is generally useful 
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for practical attacks on ciphers. Partly, this is due to the fact that modern 
block ciphers are designed with linear and differential attacks in mind, but it 
is also due to the fact that these attacks are inherently impractical. 

The primary reason for the impracticality of differential and linear crypt- 
analysis is that they require large amounts of chosen plaintext (differential 
cryptanalysis) or known plaintext (linear cryptanalysis). For example, practi- 
cal attacks against DES invariably rely on an exhaustive key search to recover 
the 56-bit key, even though linear cryptanalytic attacks with significantly 
lower work factors are known. It is simply more effective in practice to pay 
the price of a higher work factor rather than to deal with the huge volumes 
of data required by these advanced cryptanalytic techniques. Also, it would 
generally be impractical to expect to collect huge amounts of known (or cho- 
sen) plaintext. In this regard, FEAL is an exceptional block cipher, since 
practical linear and differential attacks are possible. Nevertheless, even for 
FEAL-4, linear and differential attacks are not trivial, and considerable care 
is required to actually implement these attacks to recover the key. 

4.7.1 FEAL-4 Cipher 

There are several equivalent descriptions of the FEAL-4 cipher. In this sec- 
tion, we present a description that is suited for differential and linear attacks; 
see Problem 27 for the original description of FEAL-4. 

FEAL-4 is a four-round Feistel Cipher with a block size of 64 bits and 
a 64-bit key [134]. In our description of the cipher, the key is expanded 
into six 32-bit subkeys (the original description uses twelve 16-bit subkeys). 
Our version of FEAL-4 appears in Figure 4.16. We ignore the key schedule 
algorithm, which is used to derive the subkeys from the 64-bit key, since the 
attacks discussed here will directly recover the subkeys. Once the subkeys 
have been recovered, i t  is straightforward to recover the original key, see [14] 
for the details. 

The FEAL round function F is illustrated in Figure 4.17. The 32-bit 
input to F consists of the four bytes (zg,z1,z~,zg) and the 32-bit output is 
given by the four bytes (yo, y1, ~ 2 ,  y3). The functions Go and GI each take two 
bytes of input and each generates a single byte of output. These functions 
are defined as 

(4.24) Go(a, b)  = (a + b (mod 256)) <<< 2 

and 
GI(u ,  b )  = ( u  + b + 1 (mod 256)) <<< 2, 

where "<<<" is the left cyclic shift operator. For example, 

(4.25) 

G~(10000010,lOOlOlOO) = (130 + 148 + 1 (mod 256)) <<< 2 

= 23 <<< 2 = 00010111 <<< 2 = 01011100. 



172 BL 0 CK CIPHERS 

Figure 4.16: FEAL-4. 

The F function in Figure 4.17 can be computed as 

(4.26) 

Of particular interest is the fact that y1 and ~2 are computed from thc 16 
bits of 50 @ 5 1  and 2 2  @ 2 3 .  We make use of this fact in the differential attack 
on FEAL-4. 

4.7.2 FEAL-4 Differential Attack 

Differential cryptanalysis is R chosen plaintext attack, where we choose pairs 
of plaintext messages whose “diffcrence” satisfies a particular property. The 
definition of difference can vary, depending on the attack, but for for FEAL- 
4, we use XOR as the difference operation. By considering the XOR of 
two inputs, the FEAL-4 cipher is greatly simplified. In particular, since the 
key is the same for the two encryptions, the XOR of the subkey effectively 
vanishes when considering XOR differences instead of individual encryptions. 
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Yo Yl Y2 Y3 

Figure 4.17: FEAL F function. 

Of course, we are trying to recover the subkey, so at some point we must 
use our knowledge of the difference along with the individual encryptions to 
determine the subkeys. 

A specific input difference is known as a characteristic. A useful char- 
acteristic will yield information about the subkey when the characteristic is 
pushed through several rounds of the cipher. In this way, we can recover 
some information about the subkey. 

An example should make the process clear, but before we present our 
example, we must establish two facts concerning the FEAL F function. First, 
note the obvious fact that if we have A0 = A l ,  then F(A0)  = F(A1) .  A less 
obvious fact is that if 

A0 @ A1 = 0~80800000,  

then 
F(Ao)  CB F(A1) = OXO~OOOOOO 

That this holds with probability 1 is somewhat surprising, but not difficult to 
establish; see Problem 28. This is the crucial fact that enables the differential 
attack to succeed. 

Now suppose we choose plaintext messagc PO at random and we then 
choose plaintext PI so that 

= Po @ 0~8080000080800000. (4.27) 

Then PO @ PI = 0x8080000080800000. Since differential cryptanalysis is a 
chosen plaintext attack, by assumption, we have the corresponding cipher- 
texts, CO and C1. 
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Let P� = Po @ PI and C’ = Co @ C1, and use similar notation for the 
intermediate steps of the FEAL-4 algorithm. Then by carefully examining 
the differences at the intermediate steps of FEAL-4, we obtain the results in 
Figure 4.18. 

Figure 4.18: FEAL-4 differential analysis. 

Note that Figure 4.18 represents the XOR of the plaintexts Po and P I ,  as 
well as the XOR of the ciphertexts, and the XOR of all intermediate values. 
The fact that the subkeys do not appear in Figure 4.18 is not an error. 
The subkeys are identical for the two encryptions, and since the difference 
operation is XOR, the subkeys drop out of the diagram. 

For any selected pair PO and PI such that P’ = 0x8080000080800000, 
Figure 4.18 holds. We now “back up’’ from the ciphertext to meet-in-the- 
middle. The ciphertexts Co and C1 are known, as are C’, L‘, and R’. From 
Figure 4.18 we see that 

L’ = 0x02000000 @ z�, (4.28) 

from which we can solve for 2�. We also have 

R‘ = L‘ @ Y�, 

which allows us to solve for 

Y’ = 0~80800000 @ X’.  
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Also note that if we know the ciphertext C = ( L ,  R) ,  then we compute Y as 

Y = L @ R ,  (4.29) 

as can be seen from Figure 4.19. 

Figure 4.19: FEAL-4 last round. 

We are now in a position to  solve for putative values of subkey K3. Sup- 
pose we have one pair of chosen plaintexts PO and PI that satisfy (4.27), and 
we have the corresponding ciphertexts Co and C1. For these ciphertexts, we 
compute 2� from (4.28). Then we compute Yo and Y1 (corresponding to  Co 
and C1, respectively) via (4.29). 

There are 232 possible values for subkey K3. Denote a putative value 
of K3 as K3. We know YO from (4.29). Then given k3, we can determine 20 
(a putative value for ZO), and 2 1 ,  (a putative value for 20). If we find 
that 2� = 20@21, then I?3 is a possible value for K3 and we save it; otherwise 
we know that K3 # K 3  and we discard this choice of K 3 .  Using only a single 
pair of chosen plaintexts, we will find many putative l?3 that pass this test, 
but with four pairs, we expect only the correct K3 to  survive; see Problem 29. 

Following the method described in the previous paragraph, the work factor 
to  recover K3 is on the order of 232 and four pairs of chosen plaintexts are 
required. However, due to  the structure of the F function, it, is possible to  
reduce this work factor t o  about 217 as discussed below. But first we require 
some additional notation. As in other sections of this book, we adopt the 
convention that bits are numbered from left to  right, beginning with 0, and 
we use the notation (A)i...j, where j > i ,  for the string of bit of length j-z+l 
beginning with bit i and ending with bit j of A.  Let z be the all-zero byte. 
Then for a 32-bit word A ,  define 

M ( A )  = M(ao, a1, a21 a3) = (2 ,  a0 CB a1, a2 CE a3, 2). 

The improved attack to  recover K:< consists of a primary and a secondary 
phase. In the primary phase, for each possible A = ( z ,  ao, a l ,  z ) ,  we compute 

QO = F(M(Yo)  @ A )  and Q1 = F ( M ( Y 1 )  @ A ) .  
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From the definition of F in (4.26), we see that if A = M(K3) ,  then 

We can use this fact to determine a set of A = ( 2 ,  ao, a l ,  2 )  that are candidate 
values for M(K3) .  This allows us to, in effective, determines 16 bits of K3. 
IJsing four pairs of chosen plaintexts, we expect to reduce the number of such 
candidates to a small number. 

For the secondary phase, each survivors of the primary phase is further 
tested and in the process we determine the entire subkey K3. Given a siir- 
vivor A = ( z , a o , a l , z )  from the primary phase, we can easily determine the 
full K3 as follows. First, generate a 16-bit value B = (bo ,b l ) ,  and test a pu- 
tativ: subkey I?3 = (bo,  a0 @ b ~ ,  a1 @I b ~ ,  b ~ )  as discussed previously. That is, 
use K3 as the putative subkey K:3 and compute 20 and 21, and test whether 
the condit,ion 2� = 20 @ 2 1  holds. If so, then save E ( 3  as a possible K3, 
otherwise we know that K3 # K 3  and we select another B. In this way, we 
recover K3, or a small number of candidate subkeys. 

Assuming that a single chosen plaintext pair PO and PI is, used, the pri- 
mary phase of this differential attack appears in Table 4.12 and the secondary 
phase is given in Table 4.13. However, using only a single pair of chosen plain- 
texts, the number of putative K3 will be large. As mentioned above, we need 
to use four chosen plaintext pairs to reduce the number of putative K3 to 
one (or a very small number). When more than one chosen plaintext pair is 
used, the primary and secondary attacks in Tables 4.12 and 4.13, respectively, 
both require slight modifications. In the primary phase, we want to save only 
those (ao, u l )  that satisfy the necessary conditions for all plaintext and ci- 
phertext pairs. Then in the secondary phase we will have a small number 
of survivors (ideally, only one) and these, again, must satisfy the necessary 
conditions for all of the plaintext and ciphertext pairs. The precise details of 
this attack are left as an exercise; see Problem 30. 

After successful completion of this differential attack, we will have re- 
covered K3, or a small number of putative K3 values. For simplicity, we 
assume a single K3 is obtained. Now we must recover the remaining subkey 
values. This can be accomplished by “unzipping” the cipher to successively 
obtain K2, K1, KO,  and, finally, K4 and Kg. With K3 available, we can deter- 
mine the input and the output to the third F function in Figure 4.16 and we 
can then determine K2 in a similar manner as was used to find K3. Once K3 
and K2 are known, we can then effectively rcniove the last two rounds of 
the cipher and attack K1, and so on. There are several subtle points to this 
attack that we leave as exercises; see Problem 31 for more details. 

Before we move on to consider linear cryptanalysis, there is one issue re- 
garding differential cryptanalysis that is worth pondering. In this differential 
attack on FEAL-4, the characteristic we used to determine K:i occurs with 
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Table 4.12: Primary Phase of Differential Attack for K3 

// Characteristic is 0x8080000080800000 
PO = random 64-bit value 

= Po @ 0~8080000080800000 
// Given corresponding ciphertexts 
// co = (Lo,Ro) and c1 = (L1,Rl) 
Yo = Lo CB Ro 
Yi = Li CB Ri 
L’ = Lo @ L1 
2� = L’ @ 0x02000000 
for (ao, a l )  = (OXOO,OXOO) to (Oxff, Oxff) 

Qo = F(M(Y0)  CB (0x00, ao, (~1,oxoO)) 
&I = F(M(Yi) @ (0x00, ao, air  0x00)) 
if (Qo CB Ql)8  ... 23 == (2’)8 ... 23 then 

Save (ao,al) 
end if 

next (ao,ai) 

probability one. Since the invention of differential cryptanalyis, block ciphers 
have been designed with differential attacks in mind. Consequently, differcn- 
tials that occur with a high probability are unlikely to be found in practice. 
Nevertheless, given a differential that occurs with some positive probability p ,  
it is still possible to determine information about the subkey. However, the 
smaller the value of p ,  the larger the number of chosen plaintexts that will 
be required to determine subkey bits (that is, the larger the amount of data 
that is required) and the higher the work factor. Ideally, the designer of a 
block cipher would like to make the work for any differential attack at least 
as high as that of an exhaustive key search. 

4.7.3 FEAL-4 Linear Attack 

The attack described here is similar to that given by Matsui and Yamagishi 
in [98], with the exception of notation and the format that we use to present 
the FEAL-4 cipher. There are several equivalent ways to describe FEAL-4, 
and we have chosen a format that is more similar to that given in the previous 
section than that used in [98]. 

For the linear cryptanalysis of FEAL-4 it is convenient to rewrite the 
cipher in a slightly different form than was used in the differential attack. 
In Figure 4.20, the subkey K4 and K5 appear to have migrated south, as 
compared to Figure 4.16. It is not difficult to show that the two formulations 
are equivalent, although the values of the subkeys will differ; see Problem 32. 
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Table 4.13: Secondary Phase of Differential Attack for K3 

// Po, PI , Co, C1, Yo, Y1, Z’ as in primary 
// Given list of saved (UO,  al) from primary 
for each primary survivor (ao,  a l )  

for (co, c1) = (OXOO,OXOO) to (Oxff, Oxff) 
= (co, a0 a3 co, a1 CE c1, c1) 

20 = F(Yo @ D )  
2, = F(Y1 CE D )  
if 20 @ 21 == 2� then 

end if 
Save D // candidate subkey K3 

next (co,c1) 
next ( a g ,  al)  

For the linear attack, some additional notation is needed. We denote the 
bits of a 32-bit word X as X = ( x o , x ~ , .  . . , 2 3 1 ) .  Then let Sz , , (X)  be the XOR 
of bit i and bit j of X ,  that is, Sz,J ( X )  = 2, @ x9. We can extend this to sum 
more than two bits, and we also define S z ( X )  = 2,. 

This linear attack exploits the fact that the low-order bit of x + y is the 
same as the low-order bit of x @ 9. Consequently, 

so that 

S5Go(a, b)  = Ss( (a  + b (mod 256)) <<< 2) = S7(a CE b) .  (4.31) 

Siniilarly, we have 

SSGl(a, b)  = S7(a b)  CB 1. (4.32) 

Let X be the 32-bit input to the F function of FEAL-4, and Y the corre- 
sponding 32-bit output, where the bits are numbered 0 through 31, from left 
to right. Then from (4.31) and (4.32) and the formulas for F in (4.26), it is 
not difficult to show that 
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Figure 4.20: Another view of FEAL-4. 

Taking all terms involving Y to the left-hand side, we find 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

Now consider the FEAL-4 diagram in Figure 4.21, which is the same as 
that in Figure 4.20, except that we have added labels to  the intermediate 
steps. These labels will be used in the analysis below. 

Using the notation in Figure 4.21, we have 

We now expand each term on the right-hand side of this expression. First, 
we find 

s23 ,29(xO)  = s23,29(LO @ RO). 
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I 1 

Figure 4.21: FEAL-4 intermediate steps. 

Then from (4.36), we have 

and 

and we also have 

Combining all of these results and rearranging terms, wc obtain the expression 
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where a is a constant bit, independent of the given plaintext and ciphertext. 
The precise value of a is 

a = S31(K1 @ K3 @ K4 @ K5) @ s23,29(K4),  

but this constant is unknown in the linear attack, since we are trying to 
recover the subkeys. We are able to take advantage of the fact that a is 
constant in spite of the fact that it is unknown. 

Given a set of known plaintexts and the corresponding ciphertexts, we 
can use (4.37) to determine bits of subkey KO as follows. The left-hand side 
of (4.37) is unknown, but it is constant. Given a known plaintext, we then 
know LO, Ro, L4, and R4, so that the right-hand side of (4.37) is known, 
with the exception of KO. We exhaust over all possible choices for KO and 
for each choice, we substitute each of our known plaintexts into (4.37). If the 
putative KO is correct, then the right-hand side of (4.37) must be constant for 
all of the known plaintexts. Consequently, given a sufficient number of known 
plaintexts, we can determine a small number of candidate values for KO. This 
attack is outlined in Table 4.14. 

Table 4.14: Linear Attack to Find Candidates for Subkey KO 

// Given (plaintext,ciphertext) pairs (Pi, CZ), i = 0,1 ,2 , .  . . ,n - 1 
f o r  K = 0 t o  232 - 1 // putative KO 

count[O] = count[1] = O 
f o r  i = 0 t o  R - 1 

j = bit computed in right-hand-side of (4.37) 
count [ j ]  = count [ j ]  + 1 

next i 
i f  count[O] == n o r  count[I] == n then 

end i f  
Save K // candidate for KO 

next K 

The attack in Table 4.14 is feasible, but we can reduce the work factor 
considerably. Here, we only outline this improved attack-the details are left 
as an exercise. 

We first derive expressions analogous to those in (4.37), using (4.33), 
(4.34), and (4.35). Then by combining some of these, we obtain 

a = s5,13,21(LO CB RO CB L4) @ Si5(Lo @ L4 Q R4) 

@ S15F(LO @ RO CE KO) ,  (4.38) 

where a is a fixed, but unknown, constant. Now let 

KO = ((K0)O ... 7 @ (K0)8 ... 15, (K0)16 ... 23 @ (KO)24 ... 31). 
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From the first line in (4.26), we see that S15F(Lo@Ro@Ko) of (4.38) depends 
only on the bits (J?~)~...15,17...~3. In addition. it follows from (4.30) that bits 9 
and 17 of I?o are XORed in the right-hand side of (4.38), so these bits can be 
taken to the left-hand side of (4.38) and treated as constant (but unknown) 
values. Then we are left with an expression that depends only on the twelve 
unknown key bits ( ~ 0 ) 1 ~ . . . 1 5 , 1 8 . . . ~ 3 .  This allows for an exhaustive search for 
twelve bits of PO. Similar expressions can be derived that allow for an ex- 
tremely efficient attack to recover almost all of the bits of KO, and the few 
remaining bits are easily found by a final exhaustive search. The overall work 
factor for this attack is far less than the 232 required for the attack given in 
Table 4.14. 

The linear crytanalytic attack on FEAL-4 described here is explored fur- 
ther in the problems at the end of the chapter. Specifically, Problems 33 
through 35 deal with this attack. 

4.7.4 Confusion and Diffusion 

In his classic paper [133], Shannon discusses confusion and diffusion in the 
context of symmetric ciphers. These two fundamental concepts are still guid- 
ing principles of symmetric cipher design. Roughly speaking, confusion ob- 
scures the relationship between the plaintext and the ciphertext, while dif- 
fusion spreads the plaintext statistics through the ciphertext. The simple 
substitution and the one-time pad can be viewed as confusion-only ciphers, 
while transposition ciphers are of the diffusion-only variety. 

Within each block, any reasonable block cipher employs both confusion 
and diffusion. To see, for example, where confusion and diffusion occur in 
FEAL-4, first note that FEAL-4 is a Feistel Cipher (see Problem 26), where 
the Feistel round function is simply F ( X i  @ Ki) ,  with F illustrated in Fig- 
ure 4.17, and defined in (4.26). 

The FEAL-4 function F does employ both confusion and diffusion, but 
only to a very limited degree. The diffusion is a result of the shifting within 
each byte, and also the shifting of thc bytes themselves (represented by the 
horizontal arrows in Figure 4.17). The confusion is primarily due to the XOR 
with the key, and, to a lesser extent, the modulo 256 addition that occurs 
within each Gi function. However, in FEAL-4, both the confusion and dif- 
fusion are extremely weak as evidenced by the relatively simple linear and 
diffcrential attacks presented above. 

Later members of the FEAL family of ciphers improved on FEAL-4, with 
the stronger versions having better confusion and diffusion properties, thereby 
making linear and differential attacks more difficult. However, attacks exist 
for a,ll versions of FEAL, indicating that the cipher design itself is fundamen- 
t,ally flawed. 
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4.8 Summary 

Block cipher design is relatively well understood. Consequently, it is not too 
difficult to design a plausible block cipher-although, by Kerckhoffs’ Princi- 
ple, such a cipher would not be trusted until it had received extensive peer 
review. For example, if we create a Feistel Cipher with a round function 
that has reasonable confusion and diffusion properties, and we iterate the 
round function a large number of times, it is likely that any attack will be 
nontrivial. However, things are much more challenging if we try to design a 
block cipher that is as efficient as possible. Two of the three ciphers discussed 
in this chapter are weak primarily because they were designed for extreme 
efficiency-Akelarre is a notable exception, since it is weak regardless of the 
number of rounds. 

4.9 Problems 

1. Suppose that we use a block cipher to encrypt according to the rule 

What is the corresponding decryption rule? 
advantages or disadvantages to this mode compared to CBC mode? 

Are there any security 

2. Suppose Alice has four blocks of plaintext, PO, P I ,  P2, and P3, and she 
computes a MAC using the key K .  Alice sends the initialization vector, 
denoted IV, the plaintext blocks and the MAC to Bob. However, Trudy 
intercepts the message and replaces PI with X so that Bob receives IV, 
PO, X ,  P2, P3, and the MAC. 

a. Precisely what does Bob compute when he attempts to verify the 
MAC? 

b. Show that Bob will almost certainly detect Trudy’s tampering. 

c. What is the probability that Bob does not detect Trudy’s tamper- 
ing? 

3 .  Counter (CTR) mode allows block ciphers to be used like stream ci- 
phers. The CTR mode encryption formula is 

Ci = Pi Bs E(1V + 2 ,  K )  

and decryption rule us 

Pi = ci @ E(1V + i ,  K ) .  
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a. Explain how to do random access on data encrypted using CTR 

b. Explain how to do random access on data encrypted using CBC 

c. Which is “better” for random access, CTR mode or CBC mode, 

mode. 

mode. 

and why? 

4. Suppose that Alice and Bob always choose the same IV. 

a. Discuss one security problem this creates if CBC mode is used. 

b. Discuss one security problem this creates if CTR mode is used (see 

c. If the same IV is always used, why is CBC mode preferable to 

Problem 3 for a definition of CTR. mode). 

CTR mode? 

5. Consider a Fcistel Cipher with four rounds. Then P = (Lo,Ro) is the 
plaintext. What is the ciphertext C = (L4, R4), in terms of (LO,  Ro), 
for each of the following round functions? 

a. F(Ri-1, Ki) = X ,  where X is a constant 

b. F(Ri- l ,Ki )  = Ri-1 

C. F(R,-1, Ki) = Ri-1 @ Ki 

d. F(Ri-1, Ki) = Ri-1 +Ki (mod 232), where Ri-1 and Ki are 32-bit 
quantities 

6. Trudy wants to attack a block cipher that has a 64-bit key and 64-bit 
blocks. Each time she attacks this cipher, she can conduct a chosen 
plaintext attack and the cipher is used in ECB mode. 

a. Suppose Trudy does an exhaustive key search each time she attacks 
the ciphcr. If she conducts the attack 220 times, what is the total 
work, the storage requirement and the success probability? 

b. Suppose Trudy pre-computes E ( P , K )  for a selected plaintext P 
and every possible kcy K .  For cacti attack, Trudy chooses the same 
plaintext P and obtains the corresponding ciphertext C. Then she 
simply looks up C in her pre-computed list to obtain the key K .  
If she again conducts the attack 2” times, what is thc total work, 
the storage requirement and the success probability? 

c. Suppose Trudy implements Hellman’s TMTO attack and, as sug- 
gested in the text, she chooses T = m = t = 264/3. If she conducts 
the attack 220 times, what is the total work, the storage require- 
ment and the success probability? 
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7. The key size of CMEA is k = 64 bits and the block size n is variable. 
Suppose the key is restricted to 32 bits by setting all of the first 32 bits 
of any key equal to 0. Then, effectively, Ic = 32. Choose the block size 
to be n = 32 bits. Implement Hellman’s TMTO attack on this version 
of the CMEA block cipher. In the TMTO attack, let m = t = T = 215. 
Empirically determine the probability of success. 

8. Derive the formula in equation (4.3) for the success probability in Hell- 
man’s TMTO. Hint: See the “occupancy problem” in Feller [49]. 

9. Let C be the Cave Table of the CMEA cipher. Precisely determine 
the probability that (x + i) @ 1 E C for a randomly selected x E C 
and i E {1,2,. . . ,255). 

10. Let xi, for i = 0,1,2, .  . . ,255, be the Cave Table entries for the CMEA 
cipher. Show that for 28 of these, xi @ 1 is also in the Cave Table. Con- 
sequently, for a randomly selected x in the Cave Table, the probability 
that x @ 1 is also in the Cave Table is about 0.11. 

11. Find the value of c2 corresponding to co and c1 in (4.13) and (4.14), 
respectively. 

12. Consider the CMEA cipher with block size n = 3. Suppose that we 
choose plaintext blocks of the form (po,pl,p2) = (1 - x, 1 - x,O), 
where x E {0,1,2, .  . . ,255}. Show that 

a. If 2 is even, then ciphertext co is even 

b. If x is odd, then ciphertext co is odd. 

13. For the CMEA cipher with block size n = 3, suppose that 

a. Apply the algorithm in Table 4.6 to determine the resulting ci- 

b. Describe a chosen plaintext attack that uses this result to deter- 

phertext (co, el, cz). 

mine T(O). 

14. The purpose of this problem is to determine the probability that the at- 
tack on the CMEA cipher will succeed. Let n = 3 be the block size. In 
the CMEA attacks discussed in this chapter, we first determine a puta- 
tive T(O), then for each j = 1 , 2 , .  . . ,255, we attempt to recover T ( j ) .  If 
for any j we find xj - j  # C and (xj @ 1) - j  # C ,  then we know that the 
putative T(0)  is incorrect. If this does not occur, then we assume T(0) 
is correct and for each j we have recovered either T ( j )  or T ( j )  @ 1. 
Let zj E { T ( j ) , T ( j )  @ 1) be the recovered value. If xj - j E C but 



186 BLOCK CIPHERS 

(zj  @ 1) - j # C, then we know that x j  = T ( j )  and, similarly, if 
(xj @ 1) - j E C but xj - , j  # C ,  then we know that xj @ 1 = T ( j ) .  
However, if ( z j e 1 )  - j  E C and xj - j  E C, then we cannot, immediately 
determine the value of T ( j )  from xj. 

Let A be the set of j E {0)1,2, .  . . ,255} for which T ( j )  cannot he 
uniquely determined. Also, let U be the set of indices for which T ( j )  
has been uniquely determined. Then A U U = {0,1,2,  . . . ,255}, and A 
and U are disjoint. Note that 0 E U .  

a. Determine E(IA1) and E ( I U ( ) ,  where 1x1 is the cardinality of the 
set X, and E is the expected value. Write a program to empirically 
verify your results. 

b.” Let a = IAJ and u = 256 - a = IUI. Let k E A. What is the 
probability that we can find some C E U and an index j such 
that l@ (zj V 1) = k .  Note that if no such e and j can be found, 
the CMEA chosen plaintext attack described in this chapter cannot 
resolve the ambiguity in the low-order bit of T ( k ) .  

15. For the SCMEA cipher, find the equations for c1 and c2 that correspond 
to the equation for cg in (4.18). 

16. The results in Table 4.8 refer to the known plaintext attack on SCMEA. 
Empirically determine the analogous results for the known plaintext 
attack on CMEA. 

17. Implement the CMEA known plaintext attack in a way that minimizes 
the amount of known plaintext required. Empirically determine the 
minimum number of known plaintext blocks required to correctly de- 
termine the key. Your results should be based on at least 1000 successful 
attacks. Hint: A successful attack may need to be repeated multiple 
times to determine the precise minimum number of known plaintext 
blocks required. 

18. For the Akelarre cipher, let X O ,  XI, X2,  X s  be the input to round T and 
Z,,Z1,22, Z, be the output of round T ,  let X <<< l denote a left rota- 
tion of X by l. Also, let AR(X, Y )  be the addition--rotation structure. 
R,ecall that the inputs to the addition-rotation structure are two 32- 
bit words and tht: output consists of two 32-bit words. Next, define 
(Uo, U1, U2, U s )  = ( X o , X I ,  X2,  X s )  <<< lT, where l, is the rotation in 
round T ,  and define (To, T I )  = AR(U0 @ U2, U1 @ Us) .  
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19. Show that rotation and XOR commute, that is, show 

( X  @ Y) <<< n = ( X  <<< n) @ (Y <<< n) 

for any 32-bit words X and Y and for any rotation n. 

20. A crucial step in the Akelarre attack is solving (4.23) for the subkey 
words. In this problem, we consider a similar equation, but to  simplify 
the problem, we use 8-bit bytes instead of 32-bit words. Let a,  b, c,  
d,  el f ,  g and h be bytes and let X and Y be 32-bit words, where 
X = (zo,z1, z2, z3) and Y = (yo, y1, 9 2 ,  7 ~ 3 )  and each zi and yi is a byte. 
Consider 

((Yo - e )  @ Y2 @ 9, Yl 69 f @ (Y3 - h)) 
= ((20 + a )  @ 2 2  EE c, 2 1  @ b @ ( ~ 3  + d ) ) .  (4.39) 

Note that this equation is a 16-bit version of (4.23), with a shift of 0, 
and a through h playing the role of the unknown subkeys, and with X 
and Y playing the role of the plaintext and ciphertext, respectively. 
Solve for a through h, given the following five pairs of X and Y .  

Xo = (Ox53,0x8d, Ox86,Ox80), YO = (Ox74,Ox2i,Ox9c, OxOa) 

x1 = (Ox54,0~77,Oxd5,0~2b), Y1 = (Oxf 7,Ox92,0x4d, Oxee) 

x2 = (Ox21,0~32, OxfO, 0~7f), Y;! = (0~75,Oxb9,0~3f, OxfO) 

X3 = (Oxea, 0x75, Oxaa, Oxd3), Y3 = (0x39, Oxif , 0x22, Oxlb) 
X4 = (Ox27,0~95,Oxb7,0~2d), Y4 = (0x19, Oxbc, Oxa2, OxcO). 

21. Consider an equation of the form (4.39), and suppose that we know the 
values of a through h are given by 

( a ,  b, c,  d,  e ,  f ,  g, h) = (Oxdb, Ox2a, Oxcd, 0x43, Oxbl, Ox46,0x07,0x79). 

Suppose also that we suspect that the bytes of each X consist only of 
lower-case ASCII characters, that is, each byte is in the range of 0x61 
through 0x7a1 inclusive. 

a. Determine the number of four-byte X i  that are consistent with 
each of the following Y,. 

Yo = (Ox22,0~78,0x9f, 0x52) 

Yi = (0~7d, 0 ~ 3 f ,  0 ~ 3 f ,  0x00) 

Y 2  = (Oxlb, 0 ~ 7 3 , 0 ~ 9 1 , 0 ~ 4 b )  

Y3 = (0x28, Oxf d, Ox8e, Oxca) 

Y4 = (0~30,0~7b, 0 ~ 9 5 , 0 ~ 4 c )  
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b. What do these results imply about the Akelarrt: attack discussed 
in this chapter? 

22. Consider an equation of the form (4.39), where all quantities are 32-bit 
words instead of bytes. Suppose that we know that a through d are 

( a ,  b ,  c ,  d )  = (Ox14dbde7d, 0x84aec735,0x6d66ff0l,Oxa533ee71) 

and e through h are 

( e ,  f , g ,  h )  = (Oxed541eOf, Ox94c94221,0x94f a57bd, Ox48d082c7). 

Suppose also that we suspect that the bytes of each X consist only of 
lower-case ASCII characters, that is, each byte is in the range of 0x61 
through Ox7a, inclusive. 

a. Determine the number of corresponding X i  that are consistent 
with each of the following Y,. 

YO = (0x241fb061,0x6b119143,Oxd4021163,0x4f73aca9) 

Y1 = (Ox47dc28e3,0~424f e3bf, Oxb4498cd8,0~75b4ddef) 

Y2 = (Oxlb72328c, Ox4a05f 4c8,0x39a9974f, 0x72750024) 

b. Describe a practical attack that, could be used to  recover a plaintext 
message consisting of multiple blocks, provided that you know the 
underlying message consists of English text, represented as ASCII. 

23. The purpose of this problem is to explore the subkey recovery in the 
Akelarre attack. Show that in (4.23) it is possible to recover L’ and 
either 

KO, K3, K4, K7 and K1 @ Ks, K2 @ Ktj (4.40) 

or 
KO, K3, K4, K7 and K1CE K6, K2 G3 K5 (4.41) 

assuming that a sufficient number of known plaintext blocks are avail- 
able. In which cases do we obtain the results in (4.40) and in which 
cases do we obtain the results in (4.41)? 

24. Suppose that L’ = 0 in (4.23). 

a. Show that 
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Show that 

where A and B can be any 32-bit words. 

25. Modify the Akelarre cipher so that it is more secure. As noted in the 
text, any such modification must force the attacker to deal with the AR 
structure. 

26. Show that FEAL-4 is a Feistel Cipher. 

27. The original description of FEAL-4 differs from that given in this chap- 
ter. The purpose of this problem is to show that the two descriptions 
are equivalent. The original encryption diagram for FEAL-4 can be 
given as 

In this schematic, each subkey Ki for i = 0,1 ,2 , .  . . ,11 ,  is 16 bits. The 
diagram corresponding to the function f is 
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Yo Y i  Yz Y3 

The functions Go and GI are defined in (4.24) and (4.25), respectively. 

a. Give equations for yi, for i = 1,0 ,2 ,3 ,  analogous to those in (4.26). 

b. Denote the 32-bit keys in Figure 4.16 as ~ ? i ,  for i = 0 ,1 ,2 , .  . . ,5 .  
Write the Ki in terms of the 16-bit keys Ki, for i = 0 ,1 ,2 , .  . . , 11, 
in the diagram above so that any plaintext P yields the same 
ciphertext C in both versions of the FEAL-4 cipher. 

28. Consider the F function for the FEAL-4 cipher. This function is illus- 
trated in Figure 4.17 and an algebraic description appears in (4.26). 

a. Show that if A0 @ A1 = 0x80800000, then with a probability of 
one we have F(A0) @ F(A1) = 0x02000000, regardless of the k q .  

b. Show that if A0 @ A1 = Oxa0008000, then with probability 1/4, 
we have F(A0)  @ F(A1)  = 0x80800000, regardless of the key. 

29. Consider the differential attack on FEAL-4 discussed in this chapter. 
Determine the expected number of surviving putative values of K3 when 
exactly k pairs of chosen plaintexts are used, for k = 1,2 ,3 ,4 .  where 
each pair of chosen plaintexts satisfies (4.27). 

30. A differential attack on FEAL-4 to recover the subkey Ks is discussed in 
this chapter. Pseudo-code for the primary phase and secondary phase 
of this attack appears in Tables 4.12 and 4.13, respectively, but each of 
these assume that a single chosen plaintext pair is used. If available, we 
would use four chosen plaintext pairs in this attack. Give pseudo-code 
for both phases of the attack assuming that multiple chosen plaintext 
pairs are used. 

31. In Section 4.7 a differential attack on the FEAL-4 cipher is discussed 
and the recovery of subkey K3 is discussed in detail. 
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a. Complete the attack by giving pseudo-code to recover K2, then K1, 
then KO, and finally, K4 and Kg. Hint: To find K2, use the char- 
acteristic 0xa200800022808000. Then to recover the remaining 
subkeys, arbitrary chosen plaintext pairs can be used. 

b. The same characteristic that was used to recover K3 cannot be 
used to recover K2. Why not? 

complete the attack? 
c. What is the minimum number of chosen plaintexts required to 

32. Consider the two formulations of FEAL-4 given in Figures 4.16 and 4.20. 
Denote the subkeys in Figures 4.16 as l?i, for i = 0,1, .  . . ,5.  Show 
that these two formulations of FEAL-4 are equivalent by writing each 
subkey Ki in Figure 4.20 in terms of the subkeys Ki in Figure 4.16. 

33. In the linear cryptanalytic attack on FEAL-4, the fundamental equa- 
tion (4.37) was derived from (4.36). Find the analogous equations for 
each of (4.33), (4.34), arid (4.35). 

34. Implement the linear cryptanalytic attack on FEAL-4 given in Ta- 
ble 4.14. Augment the attack by including the results of Problem 33. 

a. Estimate the time required to exhaust over all 232 choices for KO. 
Specify the hardware used to obtain your timings. 

b. How many known plaintexts are required to minimize the number 
of surviving putative KO, and what is this minimum number of 
survivors? 

35. Using the results of Problem 33, implement the improved linear attack 
on FEAL-4 discussed at the end of Section 4.7.3. 

a. Describe each step of the attack and give the overall work factor. 
How efficient is this attack as compared to the attack in Prob- 
lem 34? 

b. Determine the number of known plaintext required to complete 

c. Implement this attack and verify your answers to parts a and b. 

this attack. 

36. Could you improve the linear attack on FEAL-4 if you were able to 
choose the plaintext, instead of just using known plaintext? 
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Chapter 5 

Hash Functions 

HASH, x. There is no definition for this word-nobody knows what hash is. 
- Ambrose Bierce, The Devil’s Dictionary 

5.1 Introduction 

A cryptographic hash function, denoted by h(z ) ,  must provide all of the 
following. 

0 Compression: For any input z, the output y = h(x) is small. In practice, 
cryptographic hash functions produce a fixed size output, regardless of 
the length of the input, with typical output lengths being in the range 
of 128 to 512 bits. 

0 Eficiency: It must be efficient to compute h(z )  for any input x. Of 
course, the computational effort depends on the length of z, but the 
work should not grow too fast, as a function of the length of z. 

0 One-way: It is computationally infeasible to invert the hash, that is, 
given y, we cannot find a value x such that h(z )  = y. 

0 Weak collision resistance: Given x and h(x), it is computationally in- 
feasible to find any w, with w # z, such that h(w)  = h(x). 

0 Strong collision resistance: It is computationally infeasible to find any 
pair x and w, with z # w, such that h(x) = h(w). 

It might seem that there is a hierarchy among the hash function require- 
ments, in that strong collision resistance implies weak collision resistance 
which implies one-way. The reality of the situation is not so simple; see 
Problem 1 and [130]. Also, note that the terms pre-image resistance, second 
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pre-image resistance and collision resistance are often used for one-way, weak 
collision resistance and strong collision resistance, respectively. 

Note that collisions do exist--lots of thern-but we require that it is com- 
putationally infeasible to find any collision. If one collision is found, a hash 
function is considered broken. This is certainly a conservative definition of 
“broken”, but, as we show in Section 5.4, there are legitimate real-world 
concerns when even one collision is known. 

In hash function design, the goal is to have a large and rapid aualanche 
eflect, meaning that any small change in the input should quickly propagate 
into a large change in the intermediate steps. This is comparable to what 
happens in so-called chaotic systems, where a small change in initial condi- 
tions results in a large change in the result. Another (imprecise) analogy is 
that a strong avalanche effect is, intuitively, the opposite of continuity [34]. 
For a continuous function, small changes in the input will result in small 
changes in the output, but for cryptographic hash functions, we want a small 
change in the input to result in a large change in the output. Furthermore, 
for a hash function, we want this large change to occur in just a few steps, 
since it is often possible for the attacker to, in effect, reduce the number of 
steps where the avalanche can occur. Reducing the effective number of hash 
function steps is a crucial part of the attacks covered later in this chapter. 

We require so much of a cryptographic hash function that it is somewhat 
surprising that any exist. But, in fact, practical cryptographic hash functions 
do exist. The number of clever--and often not-so-intuitive-uses for crypto- 
graphic hash functions is truly amazing. Yet another surprising fact about 
cryptographic hash functions is how often they are not used when they should 
be; see the discussion of WEP in Section 3.4 for a prime example. 

Next, we briefly give some background on hash functions, and we discuss 
two cryptographic uses for such functions. The applications mentioned here 
are only the tip of the iceberg when it comes to uses for hash functions. Then 
in the next two sections, we dive head first into hash function cryptanalysis. 

A hash function provides a “fingerprint” of data, in the sense that if two 
files differ at all, their hash values will differ in a seemingly random way. For 
one thing, this allows us to make digital signatures more efficient, since we 
can sign t’he hash value, instead of the full message.’ 

Here, we adopt the notation used in [79] for public key encryption, de- 
cryptlion, and signing: 

0 Encrypt message M with Alice’s public key: C = { M } ~ l i ~ ~ .  

0 Decrypt ciphertext C with Alice’s private key: M = [C]*lice. 

‘Hashing is not just. for efficiency-it is actually necessary for the security of many 
sigriat,ure schemes. For example, the ElGamal signat.ure scheme discussed in Section 6.8 is 
insecure if the message is not hashed before signing. In this section, we ignore the security 
implications of hashing before signing. 
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0 Signing and decrypting are the same operations, so the notation for 
Alice signing message M is S = [M]Alice,  where S is the signed message. 

Encryption and decryption are inverse operations so that 

[{M)AlicelAlice {[MIAlice)Alice = kf. 

Since Alice’s public key is public, anyone can compute C = { M } ~ l i ~ ~ .  

However, only Alice can compute 111 = [ C ] ~ l i ~ ~  or the signature S = [M]*lice, 

as Alice is assumed to be in sole possession of her private key. That is, anyone 
can encrypt a message for Alice, but only Alice can decrypt the ciphertext. 
Furthermore, only Alice can sign a message but anyone can verify the signa- 
ture by using Alice’s public key. 

Suppose that M is a message that Alice wants to sign. Then Alice could 
compute the signature as S = [ M ] ~ l i ~ ~  and send S and 111 to Bob. Suppose 
Bob receives S’ and M’, which may or may not equal S and M ,  respectively. 
Then Bob checks whether M’ = {S’}Alice, and, if so, he has verified the 
integrity of the received message. That is, Bob knows with virtual certainty 
that M‘ = M .  

While it is also possible to provide integrity using symmetric key cryptog- 
raphy (see the discussion of MAC in Section 4.2 and the discussion of HMAC, 
below), digital signatures provide integrity and non-repudiation. With sym- 
metric keys, both Alice and Bob share the key, so Alice can claim that Bob 
forged the integrity operation, and thereby repudiate the message. But Alice 
cannot repudiate a message she digitally signed, since only she has access to 
her private key. 

However, private key operations are costly to compute and sending both S 
and M requires twice as much bandwidth as sending M .  To reduce the 
bandwidth usage, Alice could instead compute S = [h(M)]Al ice  and send M 
and this small S to Bob. In this case, when Bob receives M’ and S’ he must 
verify that h(M’) = { S t } ~ l i c e .  Assuming that hashing is more efficient than 
private key operations, we not only save bandwidth, but we also increase 
signing efficiency. In fact, hashing is orders of magnitude more efficient than 
private key operations. Consequently, this method of signing the hash of M 
is virtually always used in practice. 

However, it is important to note that by signing the hash, the security 
of the signature now depends not only on the security of the public key 
system, but also on the security of the hash function. To see why this is 
so, suppose that Alice computes S = [ h ( M ) ] ~ l i , ,  and sends M and S to 
Bob. If Trudy can find a collision with M ,  that is, if Trudy can find M‘ 
such that h ( M )  = h(M’) ,  then Trudy can replace M with M’, and Bob will 
erroneously verify the integrity of M’. 

Before considering collision attacks on particular hash functions, we men- 
tion one more cryptographic application of hashing. Suppose Alice wants 
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to send a message M to Bob, and she wants to ensure the integrity of the 
message. That is, Alice wants Bob to be able to automatically check that 
the message he receives is the message that was actually sent. Alice has the 
clever idea that she will compute y = h ( M )  and she will send y and M to 
Bob. Then Bob can compute the hash of the received message and compare 
it to y. Bob can thereby verify the integrity of the message, that is, Bob can 
be confident that he actually received M .  

There is a serious problem with Alice’s integrity scheme. If Trudy inter- 
cepts M and y, she can replace M with M’, and replace y with y’ = h(M’).  
Then when Bob computes the hash of the received message, it will match 
the received hash value, and he will not suspect that the message has been 
altered. 

Seeing the flaw in her scheme, Alice decides instead to compute a keyed 
hash, that is, y = h ( M ,  K ) ,  where K is a symmetric key that Alice and Bob 
share and ( M ,  K )  denotes the concatenation of M and K .  Then, provided 
that Trudy does not know K ,  she cannot change the message without the 
change (almost certainly) being detected. 

To eliminate some possible attacks, Alice really should compute a so- 
called HMAC instead of simply appending (or prepending) the key to the 
message and hashing the result [142]. To understand the potential problem 
with appending or prepending the key, we need to delve a little deeper into 
the way that hash functions perform their magic. 

Most cryptographic hash functions process the message in blocks through 
several rounds in a manner analogous to the way that block ciphers work. 
For the two hash functions we consider in this chapter, each round consists 
of several steps, with each individual step performing a relatively simple op- 
eration. The overall hash operation is similar to the way that block cipher 
CBC mode encryption works (see Section 4.2 for a discussion of CBC mode), 
since the hash function processes the current block together with the output 
of the previous block to generate the output for the current block. For the 
first block, a fixed constant is used in place of the output of the previous 
block (since there is no previous block), and the output from the last block 
is the hash value. 

For the hash functions we consider, the block size is 512 bits, and the 
hash result is 128 bits. To hash a multi-block message, the 128-bit output of 
the compression function for block i is added2 to the initial value for block i ,  
and this is used as the “initial value” when compressing block i + 1. The 
output from the final block is the hash value. Also, the initial value to the 
first block is denoted as “IV,” which is a fixed value that is specified as part 
of the algorithm. The process used to hash multiple blocks is illustrated 

‘The 128-bit blocks are treated as four 32-bit words and the addition is computed per 
word. mod1110 z3’. 
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in Figure 5.1. This method of hashing is known as the MerkleeDamghrd 
construction (or Damg8rd-Merkle construction, depending on who you ask). 
It can be shown that if the compression function is collision resistant, then 
so is the corresponding hash function. This is somewhat analogous to the 
Feistel construction for block ciphers (see Section 4.3), where the security of 
the resulting cipher essentially reduces to the security of the round function. 

IV 

51 2 compression M~-l function I I 128 

Ml 512 {TI 1 
function 128 

128 

c 
hash value 

Figure 5.1: Hashing multiple blocks. 

Suppose that a message consists of one 512-bit block M .  Let IV be 
the constant initial value for the first block. Then the hash is computed 
as h ( M )  = f ( IV,M),  where f is a known function. For the hash func- 
tions MD4 and MD5 we consider later in this chapter, the output h ( M )  is 
always 128 bits, as is the initial constant IV. Then f corresponds to the 
compression function together with the addition operation as illustrated in 
Figure 5.1. 

On the other hand, suppose that M = (Mo,  M I )  consists of exactly two 
512-bit blocks. Then f is applied twice and we have3 

3For both MD4 and MD5, the message is padded before hashing-even if the message 
is already a multiple of 512 bits. Here, we implicitly assume that the message A 4  includes 
the padding. 
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This easily generalizes to any number of blocks, so that for a given message 
of the form M = (Mo, M I , .  . . , Mn-l), we apply the function f a total of n 
times. It is easy to  verify that 

h ( M )  = f(h(Mo, M1,. . . ,  Mn--2),Mn-l). 

One consequence of this approach to hashing is that if we have any two 
messages M and M’ with h ( M )  = h(kJ’), then h ( M , X )  = h ( M ’ , X )  for 
any X. That is, given a collision, we can extend the colliding messages with 
any common value. 

Now consider the keyed hash problem mentioned above. In this case, 
Alice wants to incorporate a key into the hash of the message M .  Alice 
decides to compute the keyed hash of her message M as y = h ( K ,  M )  and 
she sends y and M to Bob. Suppose that the length of ( K ,  M )  happens to be 
a multiple of 512 bits. Now suppose that Trudy intercepts the message and 
she replaces M with M’ = ( M , X ) ,  where X consists of exactly one block. 
Since Trudy does not know the key K ,  it appears that her tampering will be 
detected. However, since Trudy knows h(K,  A[), she can use the fact that, 

h(K,  M’) = h ( K ,  M ,  X )  = f ( h ( K ,  M ) ,  X) 

to conipute y’ = h(K,  M’) ,  without knowledge of the key K .  This defeats the 
purpose of the keyed hash. 

Suppose that instead of pre-pending the key, Alice appends the key to 
the message before hashing. Then Alice sends y = h ( M ,  K )  along with M to 
Bob. If it should happen that there is a collision for M ,  that is, if there exists 
some M� with h(M’)  = h ( M ) ,  then, assuming the message M is a niultiple 
of the block length, 

h ( M ,  K )  = f(h(AJ), K )  = f ( h ( M ’ ) ,  K )  = h(M’, K ) .  

In this case, Trudy can replace M with M’ and the resulting keyed hash value 
would not need to be altered. Again, this defeats the purpose of the keyed 
hash. 

Although this second attack is perhaps less serious than the first -since 
a collision must be found, in which case we consider the hash broken-both 
attacks are easily prevented by computing a hashed message authentication 
code, which is mercifully shortened to  HMAC. In effect, the HMAC more 
thoroughly mixes the key into the hash value. 

HMAC is defined in RFC 2104 [86] as follows. Let B be the number of 
bytes in a hash block. For most popular hash functions, B = 64. Define 

ipad = 0x36 repeated U times 

and 
opad = Ox5C repeated B times. 
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Then the HMAC of the message M is 

HMAC(M, K )  = h(K @ opad, h(K C€ ipad, M ) ) ,  

where h is a cryptographic hash function. For the HMAC, two hashes are 
computed, but the outer hash is only computed over a small input, not the 
entire message M (which could be extremely large). An HMAC can be used 
to provide message integrity, as can a MAC or a digital signature. However, 
an HMAC has many other nifty uses as well. 

Note that an HMAC can be used to detect errors that occur in trans- 
mission. However, as with any cryptographic integrity protection scheme, 
the HMAC provides much more than any error detection method (such as 
a cyclic redundancy check, or CRC) can provide. By using a cryptographic 
hash, the HMAC is resistant to attack by an intelligent adversary, whereas 
any error detection scheme can be defeated by such an adversary. See Sec- 
tion 3.4 and [142] for examples of the perils of using an error detection scheme 
when a cryptographic integrity check (such as HMAC) is required. 

We note in passing that a symmetric cipher can be used as a hash function 
and vice versa. For 
example, a block cipher that is used as a hash function must resist certain 
attacks that are not relevant when it is used as a cipher; see Problem 2. 

In the next two sections we consider the cryptanalysis of the hash func- 
tions MD4 and MD5. The function MD4 was designed to be fast and in hash 
function design, as with most crypto, there is an inherent tradeoff between 
speed and security. It did not take long before fundamental weaknesses in 
MD4 were discovered, but it still took some time before anyone was able 
to produce an actual collision. We discuss Dobbertin’s original attack on 
MD4 [42], which is a very clever and elegant piece of work. 

MD5 is a much different story. After some chinks were visible in the MD4 
design, it was modified and strengthened (at the expense of some speed) 
and the result was dubbed MD5. The hash function MD5, and its close 
cousin SHA-1, proceeded to become the mainstays of hashing. Recently, 
an MD5 collision was found due to some extraordinary cryptanalysis, which 
we outline in this chapter. However, the cryptanalysis of MD5 is not so 
elegant as that of MD4, and the attack has never been clearly explained by 
its inventor (or anyone else, for that matter). At the time of this writing, 
the kinks are still being worked out of the MD5 attack. In spite of this, 
many computational improvements to the original attack have been found 
recently. Whereas the original attack took several hours on a supercomputer, 
the current best attacks take about two minutes (on average) on a PC. 

Another significant difference between the MD4 and MD5 attacks is that 
the former can be used to find a “meaningful” collision, while the latter 
cannot. However, we present an example that shows that both the MD4 
attack and the MD5 attack create realistic security threats. 

However, there are certain subtle issues that arise. 
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5.2 Birthdays and Hashing 

“HOW many days are there in a year?” 
“Three hundred and sixty-five, ” said Alice. 

“And how many birthdays have you?” 
“One.” 

“And i f  you take one from three hundred and sixty-five, what remains?” 
“Three hundred and sixty-four, o f  course. ” 

Hurnpty Dumpty looked doubtful. 
‘(I’d rather see that done on paper,” he said. 

~ Through the Looking Glass 

In this section we discuss the so-called birthday problem and its implications 
for hashing. The birthday problem provides the necessary background for 
a discussion of brute force attacks on hash functions, which are roughly the 
equivalent of exhaustive key search attacks on symmetric ciphers. We also 
consider a clever hashing attack that relies on the birthday problem to create 
a shortcut attack for certain applications, provided the hash function employs 
the IllerkleeDamg8rd construction. 

5.2.1 The Birthday Problem 

Suppose that Trudy is in a room containing a total of N people (including 
herself). What is the probability that at least one of the other N - 1 people 
has the same birthday as Trudy? Assuming that birthdays are uniformly dis- 
tributed among the 365 days in a year, the answer is not difficult to compute. 
As with many discrete probability problems, it is easier to compute the prob- 
ability of the complement and subtract t h e  result from one. In this case, the 
complement is that none of the other N - 1 people have the same birt,hday 
as Trudy. For each person this probability is 364/365, so that for all N - L 
people, the probability is (364/365)N-1. Consequently, the probability we 
want is 

1 - (364/365)Ne1. (5.1) 

By setting (5.1) equal to 1/2 and solving for N ,  we can find the number 
of people that must be in a room before we expect someone to have the same 
birthday as Trudy. Doing so, we find that if N 2 254, then the probability 
is greater than 1 /2  and we therefore expect to find someone with the same 
birthday as Trudy. Intuitively, the answer should be about the number of days 
in a year, and since there are 365 days in a year, the answer 254 is reasonable. 
Note that in this version of the birthday problem we are comparing every 
birthday to one specific birthday, namely, Trudy’s. Also note that, more 
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generally, if there are 111 possible outcomes, we expect to need about 111 
comparisons before we find a “collision”. 

On the other hand, suppose that we want to find the probability that 
any two (or more) people in a room share the same birthday, where there 
are N people in the room. It is again easier to compute the probability of the 
complement and subtract from one. Here, the complement is that all people 
have different birthdays, so that the desired probability is given by 

1 - 365/365 .364/365 .363/365.. ‘ (365 - N + 1)/365, (5.2) 

provided that N 5 366. 
In this case, to find the number of people that must be in the room before 

we expect two or more to share the same birthday, we set (5.2) equal to 1/2 
and solve for N .  Doing so, we find that if N 2 23, then the probability 
in (5.2) is greater than l/2. That is, provided that there are at least 23 
people in a room, we expect two or more to share the same birthday. 

This fact is sometimes referred to as the “birthday paradox” because, at 
first glance, it appears paradoxical that only 23 people suffice when there 
are 365 days in a year. However, this result is not as paradoxical as it might 
seem. We are comparing every birthday to every other birthday, so with N 
people in the room, we are making (:) comparisons, and once we have made 
about 365 comparisons, we expect to find a match. By this logic, the solution 
to this version of the birthday problem is the smallest value of N for which 

which yields N = 28. This is close to the precise value of N = 23. As 
an approximation we often use m, where M is the number of possible 
outcomes. For actual birthdays, 111 = 365 and we have = 19, which is 
indeed a good approximation to the precise result N = 23. 

5.2.2 Birthday Attacks on Hash Functions 

Recall that a cryptographic hash function must provide weak collision resis- 
tance and strong collision resistance. If we are given a particular hash value, 
h(z)  and we can find a w such that h(w) = h(z )  then we have “broken” the 
hash function, since we have violated the weak collision resistance property. 
The brute force attack is to randomly generate w, compute the hash and 
compare the result to h ( z ) ,  repeating until a collision is found. If the hash 
function h generates an n-bit output, the first version of the birthday problem 
discussed above implies that we will need to compute about 2n hashes before 
we expect to find such a w. Therefore, for h to be considered secure, it is 
necessary (but not sufficient) that it is infeasible for Trudy to compute 2” 
hashes. This is comparable to an exhaustive search for a cryptographic key. 
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If we can find a pair x and w such that h(x) = h(w) then we have broken 
the hash h,  since we have violated the strong collision resistance property. 
In this case, Trudy can conduct a brute force attack by randomly generating 
values, computing the hash, and comparing the result to  all previously com- 
puted results. From the second version of the birthday problem discussed 
above, the number of hashes required to find a collision is about @ = 2n/2. 
Consequently, a hash function that generates an n-bit output can, at best, 
provide a level of security comparable to a symmetric cipher with an n/2-bit 
key. In [110] the authors discuss how to use parallel computation to gain a 
significant improvement in this birthday attack on a hash function. 

Of course, it is always possible that a cryptanalyst will find a shortcut 
attack. In any case, these two birthday attacks give upper bounds on the 
theoretical security of a hash function. 

Next, we discuss two attacks that illustrate the way that these birthday 
attacks could be put to practical use. First we consider a generic attack on 
digital signatures. Then we outline a birthday attack that applies to any hash 
function h that employs the Merkle-Damggrd construction. 

5.2.3 Digital Signature Birthday Attack 

The important role of hashing in the computation of digital signatures is 
discussed in Section 5.1, above. Recall that if M is the message that Alice 
wants to sign, then she computes S = [h(M)],41ice and sends S and A4 to  
Bob, where [X]*lice denotes “encryption” with Alice’s private key. 

Suppose that the hash function h generates an n-bit output. As discussed 
in [162], Trudy can, in principle, conduct a birthday attack as follows: 

0 Trudy selects an “evil” message E that she wants Alice to sign, but 
which Alice is unwilling to sign. For example, the message might state 
that Alice agrees to  give all of the money in her bank account to Trudy. 

0 Trudy also creates an innocent message I that she is confident Alice is 
willing to sign. For example, this could be a message that appears to 
be routine business of the type that Alice regularly signs. 

0 Then Trudy generates 2n/2 variants of the innocent message by making 
minor editorial changes. These innocent messages, which we denote 
by Ii,  for i = 1 , 2 ,  . . . , 2n/2, all have the same meaning as I ,  but since 
the messages differ, their hash values differ. 

0 Similarly, Trudy creates 27L/2 variants of the evil message, which we 
denoted by Ei, for i = 1 , 2 , .  . . , 2n/2.  These messages all have the same 
meaning as the original evil message E ,  but their hashes differ. 
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Trudy hashes all of the evil messages E, and all of the innocent mes- 
sages Ii. By the birthday problem, she can expect to find a collision, 
say, h(Ej )  = h ( l k ) .  Given such a collision, Trudy sends I ,  to Alice, 
and asks Alice to sign it. Alice agrees to do so and she returns I ,  
and [h(lk)]*lice to Trudy. Since h(Ej)  = h ( l k ) ,  it therefore follows 
that [ h ( E j ) ] ~ l i ~ ~  = [h(lk)]Alice and, consequently, Trudy has effectively 
obtained Alice’s signature on the evil message Ej. 

Note that in this attack, Trudy has obtained Alice’s signature on a mes- 
sage of Trudy’s choosing without recovering Alice’s private key, or attacking 
the underlying public key system in any way. This attack is a brute force 
attack on the hash function h, as it is used for computing digital signatures. 
To prevent this attack, it is necessary (but not sufficient) that n, the number 
of bits the hash function generates, is large enough so that Trudy cannot 
compute 2n/2 hashes. 

5.2.4 Nostradarnus Attack 

Finally, we describe an interesting attack due to Kelsey and Kohno [80] that is 
applicable to any hash function that employs the Merkle-Damggrd construc- 
tion (see Figure 5.1, above). The hash functions MD4 and MD5 discussed 
later in this chapter are of this type, as are the popular SHA-1 and Tiger 
hashes. 

Hash functions are often used in practice to prove prior knowledge or 
to commit to something without revealing the “something.” For example, 
suppose that Alice, Bob and Charlie want to place sealed bids online. Since 
they do riot trust that their bids will remain secret, neither Alice, Bob nor 
Charlie wants to submit their bid until the other two have submitted theirs. 
One possible solution to this problem is the following. First, Alice determines 
her bid A, Bob determines his bid B and Charlie determines his bid C. Then 
Alice submits h(A) ,  Bob submits h(B) ,  and Charlie submits h(C).  Once all 
three bids have been received, they are posted online, at which point Alice, 
Bob and Charlie can submit their respective bids, namely, A, B ,  and C. If 
the hash function h is one-way, there should be no disadvantage to submitting 
a bid before the other bidders. Also, if h is collision resistant, it should not 
be possible for Alice to change her bid once B and C have been revealed (and 
similarly for Bob and Charlie).4 

Now consider the following scenario [80]. Trudy claims that she can pre- 
dict the future. To prove it, on January 1, 2008 she publishes y, which she 
claims is h(z), where 2 gives the final Standard and Poor’s 500 (S&P 500) in- 
dex5 for December 31, 2008, along with various other predictions about events 

“However, without modification, this protocol is insecure; see Problem 6. 
‘The S&P 500 is a well-known stock market index. 
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that will occur in 2009 and beyond. Suppose that on January 1, 2009, Trudy 
reveals a message z such that y = h ( z )  and z correctly predicts the S&P 500 
index for December 31, 2008, followed by a rambling set of predictions about 
future events that have not yet occurred. 

Does this prove that Trudy can foretell the future? It would seem that 
by publishing y in advance, Trudy is committed to a specific x, unless she 
can violate the one-way property of the hash function h. It is generally much 
more difficult to violate the “one-way-ness” of a hash function than to find 
collisions. Barring any shortcut attack, if h generates an n-bit hash, then 
about 2n hashes need to be computed before Trudy could expect to find a 
message x that hashes to a specified value y, while only about 2n/2 hashes 
need to be computed to find a collision. So, in the scenario outlined in the 
previous paragraph, it would seem that if n is sufficiently large so that it is 
infeasible for Trudy to compute 2n hashes and no shortcut attack on h exists, 
then Trudy can legitimately clairn to be thc new Nostradamus.‘ 

However, in [SO] it is shown that, Trudy can cheat, provided the hash 
function h uses the Merkle-Damggrd construction and that Trudy is able to 
compute collisions. By the birthday problem, if 2n/2 is a feasible amount of 
work (where the hash h generates an n-bit output), Trudy can find collisions. 
Of course, if there is a shortcut collision attack on h, then Trudy may be 
able to compute collisions even more efficiently than via the birthday attack. 
But for the remainder of this discussion, we assume that Trudy computes 
collisions by the birthday attack and that 2”12 is a feasible amount of work, 
while 2n is not. Under these assumptions, we describe how Trudy can cheat. 

Trudy must specify the value y in advance. Then when she knows the 
S&P 500 index for December 31, 2008, she wants to create a message that 
includes the S&P 500 result and hashes to y. More precisely, on January 1, 
2009 Trudy knows the final S&P 500 index for December 31, 2008, and she 
sets P ,  the prefix, equal to this index result. Then Trudy must determine a 
suffix S so that h(P, S) = y, where y is the previously specified “hash” value. 
That is, the prefix P and y are specified, but Trudy is free to choose the 
suffix S so that y = h(P, S). Of course, if Trudy can randomly 2n suffixes S 
arid compute the corresponding hashes, then she would expect to find one for 
which y = h(P, S ) .  But we assume that this is an infeasible amount of work, 
that is, Trudy cannot perform a brute force pre-image attack. 

Kelsey and Kohno [80] describe their attack as a “herding” attack, since 
a specified prefix P is “herded” into the specified hash value by selecting 
suffixes S and computing collisions (as opposed to pre-images). Furthermore, 
in this attack Trudy can has considerable control over S ,  so that it is possible 
for her to construct meaningful suffixes-instead of random gibberish, which 

His modern supporters 
clairn that he predicted most of the major events of recent history. Ironically, Nostradamus’ 
predictive powers seen1 to work best in retrospect. 

‘Nostradamus (1503 ~1566) published numerous prophecies. 
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might raise suspicions about her prognosticating abilities. 
The attack relies on a data structure, the “diamond structure”, which 

is essentially a cleverly constructed directed tree. An example of a small 
diamond structure appears in Figure 5.2. In this figure, the vertices di j  rep- 
resent intermediate hash values (that is, compression function results) and IV 
is the IV associated with the hash h (although any compression function out- 
put could be used in place of the IV in the diamond structure). The edges all 
represent messages, and the edges that meet at a vertex represent a compres- 
sion function collision. The message blocks MO through M7 can be selected 
arbitrarily, but the blocks Mij must be chosen so that the denoted collisions 
occur. For example, in Figure 5.2, we have 

dlo = f ( do0 ,  Moo) = f ( f ( I V ,  Mo), Moo) 

dlo = f (do1, MOl) = f ( f ( IV,  Ml), MOl), 
and 

where f is the compression function of the hash h, See Figure 5.1 and the sub- 
sequent discussion for more details on the compression function f in relation 
to h. 

f 

% M07 d,, 1 Ml, d,, 

\ 

\ 

Figure 5.2:  A small diamond structure. 

Note that in Figure 5.1 the messages in the rightmost diamond must 
include any necessary padding so that d30 is a legitimate hash value. For 
hash functions such as MD4 and MD5 this is easily accomplished. 

By the birthday problem we expect to find a collision within any diamond 
if we generate 2n/2 + an/’ messages. To see why this is the case, consider, for 
example, the diamond corresponding to 

dl0 = f(doo, Moo) = f(do1, Moll. (5.3) 

When determining a pair of message blocks Moo and for which (5.3) 
holds, we only compare the hashes computed using putative Moo with those 
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computed from putative M o ~  and vice versa. A collision between two hashes 
with different putative MOO values (or two different putative Mol) is of no 
use since such a collision would not yield the “diamond” that we seeks. Con- 
sequently, to generate the necessary 2n comparisons, it is most efficient to 
conipute 2n/2 putative M o o  and 2n/2 putative M o ~  and compare the resulting 
hashes. 

Thc “height” of the diamond structure is the number of doj elements in 
the directed graph. For example, the diamond structure in Figure 5.2 has 
a height of eight. Suppose that the height of a given diamond structure 
is 2 k .  Then there are 2k - 1 diamonds, so the work required to construct the 
structure is, by the birthday problem, about 

2 . 27L/2(2k - 1) 2n/2+k+l 

It is claimed in [80] that this work factor can be reduced to about 2n/2+k/2+2. 
Now we have the necessary machinery to describe the Nostradamus attack 

in detail. The attack consists of two phases. In the first phase, Trudy con- 
structs a diamond structure and she determines the value y that she will claim 
as the hash of her prediction. Then in phase 2 ,  a prefix P is given (consisting 
of Trudy’s prediction) and Trudy must choose ;t suffix S so that, y = h(P, 5�). 

In phase 1 of the attack, Trudy constructs a diamond structure of height 2k 
and she claims that the hash of her stock market prediction is d k ~ ,  the right- 
most value in the diamond structure. That is, Trudy claims that y = &” is 
the hash of 2 ,  whcre 5 includes her prediction for the closing S&P 500 index 
on December 31, 2008, along with other unspecified predictions for 2009 and 
beyond. 

Then on January 1, 2009, Trudy is ready to begin phase 2 of the attack. 
Trudy creates the prefix P which consists of the closing S&P 500 index for 
Decernber 31, 2008. She then creates a series of suffixes S�, each consisting 
of some vague prediction of future events, and for each of these she applies 
the compression function of h to (P ,  S�). Assuming that (P,  5�) is a single 
message block, let u’ = f(IV, P, S’), where f is the compression function 
of h,. Trudy compares each computed u’ to all 2k of the doj and she repeats 
this until a mat’ch is found. Once Trudy finds such a match, she simply 
extends (P ,  5��) by following the directed edges in thc diamond structure until 
she arrives at y = dkO. Appending the block on the traversed edges of the 
directed graph to (P,  S�), Trudy obtains a message M that hashes to y. Most 
importantly, the message M contains P ,  the S&P 500 index for December 31, 
2008, along with other predictions of future events. This is precisely what 
Trudy promised to deliver. 

For example, suppose Figure 5.2 is Trudy’s diamond structure. Further, 
suppose that, Trudy determines S’ such that f ( IV,  P, S�) = d02. Then 

h(P,  s�, M02, m111, fi120) = y 
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and Trudy’s “prediction” is the message 

In [go], the authors refer to the process of following the directed path in the 
diamond structure as “herding” the prefix to the desired hash value. 

Since the diamond structure is of height 2k and h is an n-bit hash, the 
expected work for phase 2 of the attack is 2n-k. As mentioned above, the 
claimed work for phase 1 is 2n/2+k/2+2. To minimize the total work, we set 
the phase 1 and phase 2 work factors equal to each other and solve for k .  
Doing so, we find 

n - 4  k = - .  
3 

Note that the message (P,  S’) is padded with k additional blocks to obtain M 
so that the overall message consists of k + 1 messages. It would be possible to 
insert additional blocks, but it is probably desirable to minimize the overall 
size of the message. 

Suppose the Nostradamus attack is applied to  the MD5 hash function, 
which generates a 128-bit output. Then 

which implies that the diamond structure has a height of 241 and the overall 
work for the attack is about 2n-k = 287. While this is an enormous amount 
of work, it is far less than the 212’ work that would be required in a naive 
brute force pre-image attack. 

There are several possible refinements to this attack. For example, Trudy 
has a great deal of control over the message blocks, so that when creating 
the diamond structure, she can choose messages that provide meaningful 
predictions. That is, Trudy can use a similar approach to  that discussed in 
Section 5.2.3, above, to make the messages meaningful. 

In [80],  several interesting potential applications for the Nostradamus at- 
tack are discussed. These attacks include stealing credit for an invention, 
editing a message without changing the hash (which has unpleasant implica- 
tions for digital signatures) and random number “fixing”, among many oth- 
ers. In effect, any application where a hash is used to commit to something 
is potentially susceptible to this attack. 

In the remainder of this chapter, we discuss cryptanalytic attacks on two 
well-known hash functions, namely, MD4 and MD5. Although the MD4 at- 
tack is more efficient, both of these attacks provide highly efficient methods 
for generating collisions. Unlike the more generic attacks presented in this 
section, to understand the attacks in the next two sections, we must dig deep 
into the internal workings of the MD4 and MD5 hash functions. 
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5.3 MD4 

“My dear! I really must get a thinner pencil. I can’t manage this one a bit; 
it writes all manner of  things that I don’t intend--” 

- Through the Looking Glass 

Message Digest 4 ,  or MD4, is a hash algorithm proposed by Rivest in 1990. 
MD4 was designed to be fast, which necessitated taking a few risks, with re- 
spect to security. By 1992 significant weaknesses had been found (although no 
true collision was forthcoming) which led Rivest to produce a strengthened- 
but slower--version known as MD5. 

In 1998, Dobbertin [34, 41, 421 found the first true MD4 collision, and he 
gave an extremely clever and efficient algorithm for generating such collisions. 
Furthermore, Dobbertin demonstrated that his algorithm can be used to find 
collisions that might actually matter in the real world. In this section, we 
describe Dobbertin’s attack on MD4. Other attacks on MD4 are now known, 
but none provide as much insight into the underlying weakness of the hash 
function as the attack presented liere. 

Part of Dobbertin’s attack relies on differential cryptanalysis, while the 
heart of the attack depends on finding a solution to a system of nonlinear 
equations. The attack is fairly technical and involved, but the resulting al- 
gorithm is practical, with a work factor that is approximately equal to  the 
computation of 220 MD4 hashes. 

5.3.1 MD4 Algorithm 

The MD4 algorithm is described by Rivest in RFC 1320 [ la l ] ,  where an 
efficient implementation (in C) is given. Here, we only provide enough details 
to implement the attack described below, and we use different notation than 
is found in [ la l ] .  

MD4 operates on 32-bit words. The four bytes of each word are inter- 
preted so that the leftmost byte is the low-order (least significant) byte. That 
is, a little-endian convention is followed. This is not a concern for the attack 
described here, but it does become an issue if we want to construct meaningful 
collisions. 

Let M be the message to  be hashed. The message M is padded so that 
its length (in bits) is equal to 448 modulo 512, that is, the padded message 
is 64 bits less than a multiple of 512. The padding consists of a single 1 bit, 
followed by enough zeros to pad the message to the required length. Padding 
is always used, even if the length of M happens to equal 448 mod 512. As a 
result, there is at least one bit of padding, and at most 512 bits of padding. 
Then the length (in bits) of the message (before padding) is appended as a 



5.3 MD4 209 

64-bit block. Padding is not a concern for the attack presented here; for the 
precise details, see [lal] .  

The padded message is a multiple of 512 bits and, therefore, it is also 
a multiple of 32 bits. Let M be the message and N the number of 32-bit 
words in the (padded) message. Denote the message words as Y,, so that 
M = (Yo,Yl,. . . , Y N - ~ ) .  Due to the padding, N is a multiple of 16. 

Define the three functions 

F ( A , B , C )  = ( A A B ) v ( ~ A A C )  (5.4) 

G ( A , B , C )  = ( A  A B )  v ( A  A C )  v ( B  A C) (5.5) 

H ( A , B , C )  = A @ B @ C  (5.6) 

where is the bitwise AND operation, “V” is the bitwise OR operation, 
‘‘@’ is the XOR, and “1A” is the complement of A. Each of these functions 
has a simple interpretation. The function F uses the bits of A to select 
between the corresponding bits of B and C ,  the function G is a “majority 
vote” in each bit position, while H can be viewed as a bitwise parity function. 

The MD4 hash algorithm appears in Table 5.1. In this algorithm, addition 
of 32-bit words are to be taken modulo 2”. 

In MD4, each 512-bit block is processed through three rounds, denoted 
as RoundO, Roundl, and Round2 in Table 5.1. Taken together, these three 
round functions and the final addition operation comprise the MD4 compres- 
sion function, since they compress the 512-bit block and the 128-bit initial 
value into a 128-bit result. Table 5.2 shows how each of the three rounds is 
expanded into 16 steps, where the function F is used in round 0, the func- 
tion G in round 1, and the function H in round 2, and “<<<” is a left rotation. 
Round i use the constant Ki, where 

KO = 0x00000000, K1 = Ox5a827999, and K2 = OxGed9ebal. 

Note that KO = 0, but we include it here to simplify some of the notation. 
The three rounds give a total of 48 steps, each involving one application 

of F ,  G or H .  We number these steps consecutively, from 0 through 47, where 
in round 0, steps 0 through 15 occur, in round 1, steps 16 through 31 occur, 
and round 2 consists of steps 32 through 47. 

The shift for step i is denoted s i .  The values of s i ,  for i = 0,1 , .  . . ,47, 
are listed in Table 5.3. In Table 5.1, the permutation of the input words is 
denoted by 0, that is, Wi = Xa(z ) .  The values of CJ(~), for i = 0, 1 ,2 , .  . . ,47, 
are given in Table 5.10. 

At step i of MD4, only the 32-bit value Qi changes. A single MD4 step is 
illustrated in Figure 5.3, where 

F ( A ,  B ,  C )  + KO 

H ( A ,  B ,  C )  + K2 

if 0 5 i 5 15 
if 16 5 i 5 31 
if 32 5 i 5 47. 

G ( A , B , C )  + K1 
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<<< s. 

Table 5.1: MD4 Algorithm 

// iLf = (Yo, Y1,. . . , Y N - ~ ) ,  message to hash, after padding 
// Each Y, is a 32-bit word and N is a multiple of 16 
MD4(111) 

/ /  initialize (A,  B, C,  D )  = IV 
( A ,  B,  c, D )  = (0x67452301, Oxef cdab89,Ox98badcf e, 0x10325476) 
for i = 0 t o  N/16 - 1 

// Copy block i into X 
X j  = Yl~i+j, for j = 0 t o  15 
// copy x to w 
Wj = Xocj,, f o r  j = 0 to 47 
/ /  initialize Q 
(Q-4, Q-3, Q-2, Q-1) = (A,  D ,  C,  B )  
/ /  Rounds 0, 1 and 2 
RoundO(Q, X )  
Roundl(Q, X )  
Round2(Q, X )  
// Each addition is modulo 232 

(A,  B ,  C,  D )  = (Q44 + Q-4, Q47 + Q-I, Q46 + Q - 2 ,  Q45 + Q - 3 )  

next i 
return A, B! C, D 

end MD4 

5.3.2 MD4 Attack 

The attack described in this section is due to Dobbertin [42]. Our descrip- 
tion uses different notation than the original, and we have rearranged and 

Q i - 2  Qi-3 Qi-4 

I 

<<< si 

Wi 

Qi Qi- 1 Qi-2 Qi-3 

Figure 5.3: MD4 step. 
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Step i 
Shifts, 

Step i 
Shift s7 

Table 5.2: MD4 Rounds 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
3 5 9 13 3 5 9 13 3 5 9 13 3 5 9 13 

32 33 35 35 36 37 38 39 40 41 42 43 44 45 46 47 
3 9 11 15 3 9 11 15 3 9 11 15 3 9 11 15 

RoundO(Q, W )  
// steps 0 through 15 
for i = 0 t o  15 

next i 
Qi = (Qi-4 + F(Qi-I, Qi-2, Qi-3) + Wi + KO) <<< ~i 

end Round0 

Roundl(Q, W )  
// steps 16 through 31 
for i = 16 to 31 

next  i 
Qi = (Qi-4 + G(Qi-1, Qi-2, Qi-3) + Wi + ~ 1 )  <<< si 

end Round1 

Round2(Q, W )  
// steps 32 through 47 
for i = 32 t o  47 

next i 
Qi = (Qi-4 + H(Qi-1, Qi-2, Qi-3) + Wi + K2) <<< si 

end Round2 

expanded on the exposition at several points. 

This attack finds two distinct 512-bit blocks that hash to the same value, 
thereby yielding a collision. As noted in Section 5.1, if any common bit 
string is appended to two colliding blocks, the resulting strings will also yield 
a collision. 

Dobbertin’s attack includes a differential phase, where we require that the 
pair of 512-bit inputs satisfy a certain differential property at an intermediate 
stage of the algorithm. When this differential property holds, then with a 

Table 5.3: MD4 Shifts 

S t ep i  1 0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Shift s;I 3 7 11 19 3 7 11 19 3 7 11 19 3 7 11 19 
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Step i  

~ ( i )  
Step i 
o(z) 

Step i 
~ ( i )  

Table 5.4: MD4 Input Word Order 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  12 1 3 1 4 1 5  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
0 4 8 12  1 5 9 13 2 6 10 14 3 7 11 15 

32 33 35 35 36 37 38 39 40 41 42 43 44 45 46 47 
0 8 4 12  2 10 6 14 1 9 5 13 3 11 7 15 

probability of about 1/222, we obtain a collision for the full hash. The trick 
then is to efficiently find a sufficient number of pairs of inputs that satisfy 
this differential property. 

After describing the differential phase of the attack, we then specify a 
systeni of nonlinear equations, any solution of which will satisfy the desired 
differential property. For the attack to be practical, we must be able to 
efficiently solve this system of equations, and we explain how to accomplish 
this. 

There is also a third phase of the attack that connects the second phase to 
the initial steps of the hash algorithm. This third phase is relatively simple. 

Before we dive into the computational details behind the attack, we try 
to motivate Dobbertin’s approach to the problem. Here, we only provide a 
quick overview -for inorc details see Daum [34]. 

Motivation 

Dobbertin’s attack yields a colliding pair of messages, denoted 

each consisting of a single 512-bit block. The two messages are chosen to be as 
similar as possible with respect to the difference operation, which is defined to 
he subtraction modulo 232. More precisely, only one word differs between M 
and M’, and the modular difference in that word is 1. Furthermore, the 
particular word where this difference occurs is chosen so that, in effect, we 
only need to worry about the avalanche effect for steps 12 through 19. This 
essentially reduces the most difficult part of the attack to just 8 of the 48 
steps. Then a system of equations is derived for these 8 steps, and some 
clever insights make it. possible to efficiently solve the resulting equations. 
The real beauty of Dobbertin’s a.ttack is that these equations can be solved 
so efficiently, that a collision can be generated in about two seconds on a PC. 

While the attack does have a differential phase, the critical issue is the 
equation solving phase. The system of equations is solved using a method 
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that relies on the fact that a small change in the input will usually result in 
a small change in the output. This, in turn, only holds because the number 
of steps is small, which implies that the avalanche effect is relatively small. 
Furthermore, it is crucial that a large number of different inputs compress 
to the same output, making a solution that much easier to find. In short, 
the attack uses a very specialized method of equation solving that takes full 
advantage of the structure of the MD4 hash. 

Notation 

Let MD4i..,j(A, B ,  C,  D ,  M )  be the result of steps i ,  i f l ,  i+2,. . . , j  of the MD4 
hash, where the arguments (A, B ,  C,  D )  are the “initial values” at step i 
and M is the data array (where M consists of sixteen 32-bit words). Then 
MD4i,,,j(A, B ,  C,  D ,  M )  yields the four 32-bit words that result from applying 
steps i through j to the initial values (A ,B ,C ,D) ,  using M as the data. 

four 32-bit words that result from applying steps 14 through 18 (inclusive) 
using the specified initial values, and using the data array M .  The only words 
of M that will be used in steps 14 through 18 are words 14, 15, 0, 4 and 8, 
respectively, as can be seen from Table 5.3. Consequently, the other words 
of M are irrelevant in the computation of MD414 ...18( A, B,  c, D,  M ) .  

We denote the initial values for step 0 as “IV”; that is, IV is the MD4 
initialization vector. As indicated in Table 5.1, the initialization vector is 

For example, MD41 4... 18(A, B, C, D ,  M )  will yield the (Q18, Q17, Q16, Q15)r the 

IV = (0x67452301, Oxef cdab89,Ox98badcf e, 0x10325476). (5.7) 

The attack presented here would work for any choice of IV, but we must use 
the IV in (5.7) to obtain an MD4 collision. 

Note that even if the correct MD4 initialization vector is used, 

MD40 ... 47(IV, M )  # h ( M ) ,  

where h is the MD4 hash function, since there is a final transformation in MD4 
that is not accounted for in M D ~ o . . . ~ ~ ( I V ,  X ) .  This final transformation con- 
sists of adding the initial values to the output of the function and rearranging 
the order of the output words-see Table 5.1. The MD4 padding is also not 
considered in this attack. But any collision found by this attack will result 
in a collision for the full MD4 hash without any modification to M or M’. 

Suppose 
( Q j ,  Qj-1, Qj-2, Qj-3) = MD40 ...j (IV, M )  

and 
(Qi, Qi-11 Q I - 2 ,  Q i - 3 )  = MD40...j(IV, M’). 

Then define 

Aj = ( Q j  - QI, Qj-1- Qi-1, Q j - 2  - Qg-2, Qj-3  - Qi-31, 
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where, as usual, the arithmetic is taken modulo 232. 

and -271 represent -2n (mod 232). Then, for example, 
We use 2n to  denote the 32-bit word which has decimal value 2n (mod 232), 

2’’ = 0x02000000 and - 25 = Oxf f f f f f eO. 

Now we have all of the notation and niachinery necessary to  describe 
Dobbertin’s clever attack, which determines two distinct 512-bit inputs, M 
and M’, such that MD40...47(IV, M )  = MD40...47(IV, MI) .  As mentioned 
above, this implies h ( M )  = h(M’) where h is the MD4 hash function. 

Although the differential phase of Dobbertin’s attack occurs last in prac- 
tice, we describe it first, since it motivates the remainder of the attack. Then 
we work our way backwards to  the start of the attack, and at each phase we 
consider the probability of success and the work factor. 

Given a 512-bit input M ,  we have M = ( X o , X l , .  . . , X I S ) ,  where each X ,  
is a 32-bit word. Given M ,  define M’ by 

As with all arithmetic operations in this section, the addition is taken mod- 
ulo 2”. 

The input word X12 last appears in step 35 of the MD4 hash. Conse- 
quently, if we can find M and 11.1� that satisfy (5.8) for which A35 = ( O , O ,  O , O ) ,  
then we have found a collision. That is, if A35 = ( O , O ,  0,O) then the internal 
state of MD4 for inputs M and M’ coincide at step 35, and all input values 
for steps 36 through 47 are the same, so the resulting MD4 hash values must 
be equal. Our goal is to  find such a pair M and M’. 

Given this observation concerning Ass, Dobbertin’s attack consists of the 
following three phases. 

1. First, we show that if 

al, = (0, 225, -25, o), (5.9) 

then, with a probability of at least 1 / 2 ” ,  we obtain the desired result, 
that is, we have A35 = ( O , O , O , O ) .  This phase is the differential attack 
mentioned above. 

2. Then we “backup” to  step 12, that is, we show how to determine initial 
values for step 12 that will force (5.9) to  hold. This second phase of the 
attack requires a solution to a nonlinear system of equations. 

3 .  Then we complete the attack by backing up further, all the way to  
step 0. This last phase of the attack is relatively straightforward. 
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At each of the three phases of the attack, some of the 32-bit words Xi of 
the message M are determined. When the attack has successfully completed, 
we will have specified a full 512-bit M and M‘ can be computed from (5.8). 
Then M # M’, but they have the same MD4 hash value and we have found 
the desired collision. 

Steps 19 to 35 

First, we describe the differential phase of the attack, which begins at step 19 
and concludes at step 35. Often, differential cryptanalytic attacks use XOR 
as the difference operation, but here the difference is defined as subtraction 
modulo 232. 

We assume that (5.9) is satisfied and, furthermore, that 

G(Q19, Q18, Q I ~ )  = G(Q’,,, Q’,,, Q’,7). (5.10) 

If both of these assumptions hold, then the probabilities in Table 5.5 can be 
shown to hold. Recall that Qj is the only output that changes at step j. Also, 
in Table 5.5, the column labeled p gives the probability that A j  holds, given 
that A,-1 holds. The i column indicates the round-and therefore whether 
function G, or H is used in the calculation of the corresponding row. Note 
that the data blocks M and M‘ are the same at each step, except for step 35, 
where Xi2 = X12 + 1. This is indicated by the two inputs for the j = 35 
step. The �2 elements in Table 5.5 indicate entries that are not relevant to 
the differential attack. 

Consider, for example, the j = 35 row in Table 5.5. Assuming that 
the j = 34 row holds true, then A34 = (0 ,0 ,  0 , l )  and it follows from the 
definition of step 35 in Table 5.2 that 

Q35 = (Q31 + H(Q34, Q33, Q32) + Xi2 + K2) <<< 15 

= ((Q’,, + 1) + H(Q’,,, Q&, Q i 2 )  + X12 + K2) <<< 15 

= ( Q ~ I  + H(Q$,, Q$3, Q$2) + (X12 + 1) + K2) <<< 15 

= Q& 

which implies that A35 = (0 ,0 ,  0,0),  with probability 1. This is summarized 
in the j = 35 row of Table 5.5. 

Each of the remaining probabilities in Table 5.5 can also be verified di- 
rectly, although some of the counting arguments are fairly technical. In Prob- 
lems 11 and 12 we outline a straightforward computational approach that can 
be used to determine the analogous probabilities for 8-bit words. These 8-bit 
probabilities are essentially identical to those obtained using 32-bit words. 

The product of the probabilities in Table 5.5 is about 1/230, which implies 
that if we find about 230 inputs M that satisfy (5.9)--with the correspond- 
ing M’ defined by (5.8)-then we can expect to obtain a pair of inputs for 
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J 
19 
20 
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22 
23 
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25 
26 
27 
28 
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31 
32 
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34 
35 
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~ 

Table 5.5: Differential Attack on MD4 

A; 

0 225 

0 0 

26 -214 

0 26 

0 0 
- 223 0 
219 - 223 

0 0 
-1 0 
1 -1 
0 1 
0 0 
0 0 
0 0 

-214 o 

0 219 

-25 0 

0 225 

0 0 
-214 0 

26 -214 

0 26 

0 0 
- 223 0 
219 - 223 

0 219 
0 0 

-1 0 
1 -1 
0 1 
0 0 

225 -25 

i sj y Input 

1 3  1 x1 

1 5 1/9 XS 

1 9 1/3 X9 

1 13 1/3 XI 3 

1 3 1/9 x2 

1 5 1/9 X s  
1 9 1/3 XlO 

1 3 1/9 X:1 

1 5 1/9 x7 

1 9 1/3 x11 

2 3 1/3 XO 
2 9 1/3 X8 
2 11 1/3 x4 

2 15 1 X12,X12+ 1 

* *  * * 

1 13 1/3 x14 

1 13 1/3 x15 

which A35 = (0, 0, 0,O). Given such a pair, we will have found a collision and 
thereby have broken MD4. 

Below, we show that there is a computationally efficient method to gener- 
ate messages M for which the differential condition (5.9) holds. As a result, 
an efficient attack exists for finding collisions. In [42], i t  is claimed that 
the actual siiccess probability of the differential phase of this MD4 attack is 
about 1/222, as opposed to 1/230, which is the probability indicated by the 
approximations in Table 5.5. Assuming the higher probability holds, if we can 
find 222 data values that satisfy the initial conditions of the differential at- 
tack, then we expect to find a collision. In fact, i t  is easy to show empirically 
that the higher probability does hold. 

For the differential attack in Table 5.5, there are no restrictions on M .  In 
the remaining phases of the attack, we determine 111 so that A19 = (0,0, 0,O) 
and the technical condition (5.10) holds, in which case the analysis in Ta- 
ble 5.5 is valid. 

This completes our description of the differential phase of the attack. In 
the next phase of the attack, we backup to step 12 and force the necessary 
differential condition at step 19 to hold. This next phase is the most complex 
part of the attack. 
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j 
12 
13 
14 
15 
16 
17 

19 
18 

Steps 12 to 19 

In this phase of the attack, we consider steps 12 through 19. This is simpler 
than attempting to deal with steps 0 through 19 all at once. And if we can 
solve the problem for steps 12 through 19, then, intuitively, it should be easy 
to solve for steps 0 through 11, since Xj = Xi for all j # 12 and Xl2 first 
appears in step 12. 

Table 5.6 contains the relevant information for steps 12 through 19. Here, 
i = 0 indicates that the function F is used, while i = 1 indicates that G is 
used. 

i sj M Input M' Input 
0 3 x12 Xl2 + 1 
0 7 x13 x13 

0 11 Xi4 x14 

0 19 Xi5 x15 

1 3 XO XO 
1 5 x4 x4 

1 13 Xi2 x12 + 1 
1 9 x8 x8 

To apply the differential attack in Table 5.5, it is necessary that the dif- 
ferential condition A,, = (0, 225, -25, 0) is satisfied, which means that 

Q16 = Qi6 

(5.11) 

We want to derive equations involving Qj and Qi, for j = 12,13,. . . , 19. We 
can obtain eight equations by combining the corresponding equations in Qj 
and Qi. For example, at step 12 we have 

Q12 = (Q8 + F(Qi1, Qio, Qg) + X12) <<< 3 (5.12) 

and 
QL = (Qk + F(Q:i, Q',,, Qk) + XIZ) <<< 3. (5.13) 

Since Xj = Xi for j = 0,1,2,. . . ,11, and these are the only data values used 
in steps 0 through 11, we must have A11 = ( O , O ,  O , O ) ,  which implies that 

(Qx, Q9, QIO, Q11) = (Qk,  Q$, Qh, Qii). (5.14) 
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Consequently, subtracting (5.12) from (5.13) and simplifying yields 

( Q i Z  <<< 29) - (Q12 <<< 29) = 1. 

As another example; consider step 18, where we have 

Q18 = (Q14 + G(Q17, Q16, Q15) + X g )  <<< 9 (5.15) 

Subtracting (5.15) from (5.16) and simplifying yields 

Combining the corresponding equations for Qj and Ql, and making use 
of (5.11) and (5.14), we obtain the system of equations 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

To solve these equations: we must find fourteen 32-bit words 

so that all of the equations (5.17) through (5.24) are satisfied. Given such a 
solution, then from the definition of steps 12 through 19, it is easy to verify 
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that the desired condition on A19 will hold provided wc selcct 

That is; given a solution of the form (5.25) to the system of equations that 
appears in (5.17) through (5.24), if we choose Xj, for j = 13,14,15,0,4,8,12, 
and Q g  and QS as specified in (5.26), then we can begin at step 12 and 
arrive at step 19 with the necessary differential condition on A19 ~a t i s f i ed .~  
Consequently, this phase of the MD4 attack reduces to finding a solution to 
the system of equations in (5.17) through (5.24). 

If we choose 

Q12 = -1 = Oxffffffff, Qi2 = 0, and Qii = 0, (5.27) 

then (5.17) is satisfied, and equations (5.24), (5.23), (5.19), (5.22), and (5.18): 
respectively, can be rewritten as8 

Most of these equations follow immediately from the corresponding equation 
above, but (5.30) and (5.32) require somewhat more work; see Problem 13. 
With thc equations in this form, it is apparent that 

7Whew! 
‘Hopefully, we have corrected a couple of very annoying typos that appear in [42]. 
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can be chosen arbitrarily, thereby determining 

(5.34) 

The two remaining equations, (5.21) and (5.20), can be rewritten, respec- 
t>ively, as 

We refer to these as the “check” equations, and, of course, these check equa- 
tions milst both be satisfied before we have found a solution to the original 
system of equations in (5.17) through (5.24). 

Finally, a solution is said to be admissible if it satisfies the additional 
constraint 

G(Q19, Q18, Q17) = G(Qi9, Qi8, Q I ~ ) .  (5.37) 

If a solution is not admissible, then the j = 20 step of the differential attack in 
Table 5.5 will fail, so we want to restrict our attention to admissible solutions. 

To solve this system we proceed as follows. First, we randomly select val- 
ues for the free variables in (5.33) and substitute these into equations (5.28) 
through (5.32), thereby determining the values in (5.34). At this point, we 
have determined values for all of the variables that appear in the the check 
equations (5.35) and (5.36) and we can verify whether both of these required 
conditions hold. If so, we have found a solution to the system of equations. 
In this case, we can then verify whether the solution is admissible, that is, 
whether (5.37) holds. If the solution is admissible, then the solution is a can- 
didate for the differential phase of the attack. If any of these three conditions 
fail, we can start over with another choice for the free variables in (5.28) 
through (5.32). 

Each iteration of this process is efficient, but it appears that an inordi- 
nately large number of trials might be required before we can expect, to find 
a solution that satisfies both of the check equations (5.35) and (5.36) and is 
admissible, that is, (5.37) also holds. In fact, random 32-bit words would only 
be expected to match with a probability of 1/232, and if these three equations 
each hold with such a probability, thtm 296 trials would be required before 
before i t  single admissible solution could be found. This would give an overall 
work factor much higher than an exhaustive collision search, which, by the 
birthday paradox, has an expected work factor of about 264. 

Here, Dobbertin cleverly makes use of what, he calls a “continuous ap- 
proximation”, that is, he uses the fact that input values for F and G that 
are “nearby” will generate output values that are “nearby” (see Problem 14). 
This reduces the work required to solve the system of equations to a very 
small arnount. which takes less than one second on a modern PC. 
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Recall that the notation (Y)i.,.j is used to represent bits i through j of Y ,  
where the bits are numbered from left-to-right, beginning with 0. Also, we 
use the notation (Y = 0)i...j to denote that bits i through j of Y are all 0. 
Dobbertin’s continuous approximation algorithm can be stated as follows: 

1. Let Q11 = 0, Q12 = -1, and Qi2 = 0, as specified in (5.27). 

2. Select Q14, Q15r Ql61  Q17, Q18, and Q19 at random. 

3. Compute Qi5, Q:4, Q13, Q;3, and Qlo using (5.28) through (5.32), 
respectively. 

4. If the check condition (5.35), holds, goto 5; otherwise goto 2. 

5. At this point, all of the equations (5.28) through (5.32) are satisfied, 
as well as the check condition (5.35). We now find a sequence of so- 
lutions that converge to a solution that also satisfies the second check 
condition (5.36). Denote the values specified in step 2 as the “basic” 
variables and let j be the smallest index for which 

(F’ - F - (QiS <<< 13) + (Q15 <<< 13) = 0)j.,.31, (5.38) 

where we have let F’ = F(Qi4,  Qt3, 0) and F = F(Q14, Q13, -1). Also, 
we let j = 32 if the rightmost bit of (5.38) is not zero. If j = 0, 
then we are finished. If not, transform the solution by changing one 
randomly selected bit in each of the basic variables. Compute Qi5, Q’,,, 
Q13, Qi3, and Qlo from (5.28) through (5.32), respectively, using these 
transformed values. If the first check equation (5.35) is still satisfied, 
and if (5.38) holds for a smaller value of j ,  set the basic variables equal 
to the transformed variables, and update j accordingly. Repeat this 
process until j = 0. 

6. We have now solved the system of equations. If the solutions is admis- 
sible, that is, if the additional constraint (5.37) holds, then substitute 
into (5.26) to obtain the X j  values and the initial values Q 8 ,  &9, &lo,  

and &11. If the solution is not admissible, goto 2. 

As mentioned above, this phase of the attack takes less than a second 
to complete. However, the work factor is not obvious. In the homework 
problems, the work factor for the various parts of this equation solving attack 
are estimated empirically. 

For any solution found using the algorithm above, we obtain 512-bit mes- 
sages M and MI, with M # MI, and initial values for step 12 so that we can 
begin at step 12 and arrive at step 19 with the two conditions 

A19 = (0, 225, -25, 0) 

G(Q19, Q18, Q17) = G(Q’,g, &is, Q17) 
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satisfied. Any such solution is a candidate for the differential attack discussed 
above. Arid once we find about 222 such solutions, we expect that one of these 
will satisfy the differential condition A35 = (0, 0, 0, 0),  in which case we will 
have found a collision. Dobbertin’s algorithm, as described in this section, is 
extremely clever and extremely efficient. 

Steps 0 to 11 

Suppose that we have successfully completed the first two phases of the attack. 
Then we have found ( Q g ,  Qg,  Q10, Q11) such that 

MD412 ... 47(&8, Q9, QIO, Q ~ I ,  X )  = MD412 ... 47(&8r Q9, Q ~ o ,  Q11, XI). 

All that remains is to show that we can satisfy the condition 

where IV is the MD4 initialization vector. Recall that X j  = X i ,  except 
for j = 12, and that Xi2 = Xlz + 1. Also, from Table 5.4 we see that X12 

first appears in step 12. 
In the previous phases of the attack we have determined input blocks X j ,  

for j = 0,4,8,12,13,14,15. Therefore, we are free to choose each of the re- 
maining Xj, that is, for j = 1,2 ,3 ,5 ,6 ,7 ,9 ,10 ,11 ,  so that (5.39) holds. All of 
these X j  appear in the first 11 steps, so we will have completely determined M 
when this phase of the attack is completed. 

The only data values that appear in (5.39) which have been previously 
determined are Xo, Xq,  and Xg. Given the large number of free parameters 
(that is, the X j  values which are yet to be determined) it appears that it 
should be relatively easy to complete this final phase of the attack, and, in 
fact, that is the case. 

First, we select XI, X2, X s ,  and X5 at random and compute the vrtl- 
ues ( Q 2 ,  Q3, Q 4 ,  Q5), using the MD4 initialization vector, IV. Next, we want 
to select X j ,  for j = 6,7,9,10,11, so that 

MD46 ... 11(&2,  Q3,  Q4, Q5, X) = (Qii ,  Q i o ,  Qg, Q s ) ,  

where ( Q 8 ,  Q 9 ,  Q10, Qll) were found in the previous phase of the attack. Since 

Qi1 = (Q7 + F(Qio, Q9, Q s )  + X11) <<< 19, 

if we sclect 
Xi1 = (Qil <<< 13) - Q7 - F(Qlo, Q9, Q g )  

we obtain the desired value for Q11. Similar equations hold for Xl0 and X y .  

However, Xg was prcviously specified, so we are not free to select X s  in step 8. 
Fortunately, all is not lost. We have 

Qs = (Q4 + F(Q7,  Qs, Q s )  + X g )  <<< 3. (5.40) 
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From basic properties of the function F ,  we see that if 

Q7 = -1 and Q 6  = ( Q 8  <<< 29) - Q 4  - XS, (5.41) 

then (5.40) holds for any Xg. We can force the conditions in (5.41) to hold 
by selecting 

and 

we are assured that 

where (Qs ,  Q g ,  Q10, Q11) were computed in the previous phase of the attack. 
This solution can then be tested to see whether the condition A35 = (0, O , O ,  0) 
is satisfied, and, if so, we have found a collision. 

All Together Now 

Here, we describe the complete MD4 collision attack. Recall that X i  = X j ,  
for j # 12, and Xi2 = Xl2 + 1, so if we determine M = (Xo, XI,. . . , X I S ) ,  we 
will also have determined M’ = (Xh, Xi, . . . , X;5). Therefore, we ignore M’ 
in this description. 

The attack proceeds as follows: 

1. Find (&a, Q g ,  Q ~ o ,  Q11) and Xj, for j = 0,4,8,12,13,14,15 as specified 
in the section labeled Steps 12 to 19, above. This phase of the at- 
tack also determines the initial values required in the next phase of the 

attack, namely, (Q16, Q17, Q18r Q19) and (Qifj, Q{7> QiS ,  Qig) ’  
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2. Complete the attack described in the section labeled Steps 0 to 11, 
In this phase, X j ,  for j = 1 , 2 , 3 , 5  are selected at random, above. 

and X j ,  for j = 6,7 ,9 ,10 ,11  are determined. 

3.  Check whether the differential condition in the section labeled Steps 19 
to 35, above, is satisfied. That is, compute 

and if A35 = ( O , O ,  0,O) we have found a collision; if not goto 2. 

There are several ways to improve the efficiency of this attack, the most 
significant of which involves number 3, above. Instead of computing all the 
way from step 20 to step 35 before checking the validity of the result, we 
can instead check at each intermediate step j = 21,22,23, .  . . whether the 
corresponding Aj  condition in Table 5.5 holds. Given the probabilities in the 
table, the vast majority of trials will terminate within a few steps. With this 
modification, the attack is so efficient that other improvements are probably 
not worth the additional effort. 

Notice that the continuous approximation phase of the attack only needs 
to be completed once per collision. Dobbertin’s equation solving method is 
so efficient that the overall work factor for the attack is dominated by the 
testing of the differential condition in number 3 ,  above. Empirically, it can 
be shown that about 222 iterations are required before we expect to find a 
collision. This gives an overall work factor equivalent to  the computation of 
about, 2” MD4 hashes; see Problem 17. 

5.3.3 A Meaningful Collision 

In [42], Dobbertin gives a meaningful collision that was generated with a 
modified version of his attack. The two messages in Figure 5.4 yield a collision, 
where each “*’’ represents a “random” bytes. The attacker might claim that 
these random-looking bytes are present for security purposes, but these bytes 
would actually be selected so that the resulting messages generate the same 
MD4 hash values; see Problem 19 for more details of this particular collision. 

If MD4 were used in practice, the attack illustrated in Figure 5.4 would 
be a serious issue. Since MD4 is not used today, the attack is not a practical 
concern, but it does illustrate the dangers inherent from meaningful collisions. 

Below, we consider a collision attack on MD5-a hash function which is 
widely used in practice. However, the MD5 attack is far costlier and more 
restrictive than this MD4 attack presented here. Consequently, i t  is unclear 
whether any meaningful MD5 collision could ever be constructed using such 
an attack. For this reason, it is often claimed that the collision attack on 
MD5 is of little consequence in the real world. However, after we present the 
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. . . . . . . . . . . . . . . . . . . .  
CONTRACT 

At the price of $176,495 Alf Blowfish 

sells his house to Ann Bonidea . . . 

. . . . . . . . . . . . . . . . . . . .  
CONTRACT 

At the price of $276,495 Alf Blowfish 

sells his house to Ann Bonidea . . . 

Figure 5.4: MD4 collision [42]. 

MD5 attack, we give an example that shows how a meaningless collision can 
be used to break security in a very meaningful way. 

5.4 MD5 

“I can’t explain myself, I’m afraid, Sir,” said Alice, 
“because I’m not myself, you see.” 

- Alice in Wonderland 

Message Digest 5, or MD5, is a strengthened version of MD4. Like MD4, 
the MD5 hash was invented by Rivest [122]. Also, MD5 was obviously used 
as the model for SHA-1, since they share many common features. It is un- 
doubtedly the case that MD5 and SHA-1 are the two most widely used hash 
algorithms today, but use of MD5 will certainly decline over time, since it is 
now considered broken. At the time of this writing, it appears certain that 
SHA-1 will soon share the same fate as MD5. 

5.4.1 MD5 Algorithm 

MD5 is similar to MD4 and in this section, we often refer to our previous 
discussion of MD4. It is important to read Section 5.3 carefully before at- 
tempting this section, since both the operation of MD4 and various aspects 
of the MD4 attack will be referenced here. 
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Define the four functions 

F ( A ,  B, C )  = ( A  A B )  V ( 1 A  A C )  (5.42) 

G(A,  B, C )  = ( A  A C )  V ( B  A -C) (5.43) 

H ( A , B , C )  = A @ B @ C  (5.44) 

I ( A ,  B, C) = B @ ( A  V -C) (5.45) 

where A, B and C are 32-bit words, “A” is the AND operation, “V” is the 
OR operation, “@” is the XOR, and “1A” is the complement of A. 

The MD5 algorithm pads the message using the same rnethod as MD4. 
As in the MD4 attack, the padding is not important for the attack we discuss 
here. And, as with MD4, the MD5 hash operates on 512-bit blocks of data, 
with the 128-bit output of one block being used as the initial value for the 
next block. The IV used in MD5 is the same as that used in MD4, which 
appears in (5.7) in Section 5.3 .  

The MD5 algorithm is given in Table 5.7 and the four MD5 round func- 
tions are given in Table 5.8. Here, we number the steps consecutively from 0 
to 63, with the i t h  output denoted by Qi. These Q values correspond to  
the A, B ,  C and D values in [122]. 

Each step of MD5 has its own additive constant. We denote the constant 
for step i as Ki. Although these constants play no role in the attack, for 
completeness, the I(, are given in the Appendix in Table A-1. The shift for 
step i is denoted si and the values of si are listed in Table 5.9. 

In Table 5.7, the permutation applied to the input blocks is denoted by a, 
that is, Wi = X,,(i). The values of ~ ( i ) ,  for i = 0 , 1 , 2 , .  . . ~ 63, are given in 
Table 5.10. 

The significant differences between MD4 and MD5 are the following [122]: 

1. MD5 has four rounds, whereas MD4 has only three. Consequently, 
the MD5 compression function includes 64 steps, whereas the MD4 
compression function has 48 steps. 

2. Each step of MD5 has a unique additive constant, whereas each round 
of MD4 uses a fixed constant. 

3 .  The function G in the second round of MD5 is less symmetric than 
the G function in MD4. 

4. Each step of MD5 adds the result of the previous step, which is not the 
case with MD4. The stated purpose of this modification is to produce 
a faster avalanche effect. 

5. In MD5, the order in which input words are accessed in the second and 
third rounds is less similar to  each other than is the case in MD4. 
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Table 5.7: MD5 Algorithm 

// M = (Yo, Y I ,  . . . , YN-~), message to hash, after padding 
// Each Y, is a 32-bit word and N is a multiple of 16 
MD5(M) 

// initialize ( A ,  B ,  C, D )  = IV 
(A ,  B,  c, D )  = (0x67452301, Oxef cdab89,Ox98badcfe, 0x10325476) 
f o r  i = 0 to N/16 - 1 

// Copy block i into X 
xj = Y16i+j, f o r  j = 0 t o  15 
// Copy X to W 
Wj = X g ( j l ,  for j = 0 to 63 
// initialize Q 
(Q-4, Q-3, Q-2, Q-1) = (A, D ,  C,  B) 
// Rounds 0, 1, 2 and 3 
RoundO(Q, W )  
Roundl(Q, W )  
Round2 (Q , W )  
Round3(Q, W )  
// Each addition is modulo 2‘” 
( A ,  B, C,  D )  = (Q6o + Q-4, Q63 + Q-I, Q6z + Q-2, Q6i + Q - 3 )  

next i 
return A, B ,  C,  D 

end MD5 

6. It is claimed in [122] (without further explanation) that in MD5, “the 
shift amounts in each round have been approximately optimized, to 
yield a faster ‘avalanche effect’.’’ Also, the shifts employed in each 
round of MD5 are distinct, which is not the case in MD4. 

A single MD5 step is illustrated in Figure 5.5, where 

F(A,  B ,  C )  if 0 5 i 5 15 
G(A,B,C)  if 16 5 i 5 31 
H ( A , B , C )  i f 3 2 5 i 5 4 7  { I ( A ,  B ,  C )  if 48 5 i 5 63. 

f i (A,  B, C )  = 

It may be instructive to compare Figure 5.5 to a step of the MD4 algorithm, 
which is illustrated in Figure 5.3. 

As in the MD4 attack of Section 5.3, here we denote rounds i through j 
of the MD5 function as MD5i..,j(A, B ,  C,  D ,  M ) ,  where (A ,  B, C,  D )  are the 
“initial values” at step i and M is a 512-bit input block. Similar to MD4, we 
have 

MD5o ... 6 3 w ,  MI # h ( M ) ,  
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Table 5.8: MD5 Rounds 

RoundO(Q, W )  
// steps 0 through 15 
f o r  i = 0 to 15 

next i 
Qi = Qi-1+ ( ( Q i - 4  + F(Qi-1, Q i - 2 ,  Qi-3) + Wi + Ki)  <<< s i )  

end Round0 

Roundl(Q, W )  
// steps 16 through 3 1  
f o r  i = 16 to 31 

next i 
Qi = Qi-1 + ((Qi-4 + G(Qi-1, Qi -2 ,  Qi-3) + Wi + Ki)  <<< ~ i )  

end Round1 

Round2(Q, W )  
// steps 32 through 47 
f o r  i = 32 to 47 

next i 
Qi = Qi-1 + ( (Q i -4  + H(Qi-1, Qi-2, Qi-3) + Wi + Ky) <<< s i )  

end Round2 

RoundS(Q, W )  
// steps 48 through 63 
f o r  i = 48 to 63 

next i 
Qi = Qi-1+ ((Qi-4 + I(Qi-1, Qi-2, Qi-3) + 

end Round3 

ra + &) <<< S i )  

where h is the MD5 hash function. In other words, the hash value is not 
just the output of this function, since there is a final transformation and the 
message is padded. Next, we consider the final transformation; for details on 
the padding, see Section 5.3. 

Define 

f(Iv, nil) = ( Q ~ o ,  Q63, Q62, Q61) + IV, 

where (Qfjg, Q 6 2 ,  Q61, &so) = MD50 ..63(IV, M )  and the addition is computed 
modulo 2'32, per 32-bit word. Then f is the MD5 compression function. If we 
hash a message M = (Mo, M I )  consisting of two 512-bit blocks, we have 

h ( M )  = f ( f ( I V ,  b f o ) ,  Ml). 

In effect, f ( IV,  Mo) acts as the IV for the second iteration of the compression 
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S t e p i  
Shift si 
S t e p i  

Shift si 
Step i 

Shift si 

SteD i 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20 

32 33 35 35 36 37 38 39 40 41 42 43 44 45 46 47 
4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23 

48 49 50 51 52 53 54 55 56 57 58 58 60 61 62 63 
Shift s,I 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21 

a(z) 
SteD i 

Table 5.10: MD5 Input Word Order 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

S tep i l  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ ( i )  
Step i 

1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12 

32 33 35 35 36 37 38 39 40 41 42 43 44 45 46 47 

a(;)  
Step i 
a( i )  

5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2 

48 49 50 51 52 53 54 55 56 57 58 58 60 61 62 63 
0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 

function f .  Figure 5.1 illustrates the general case. 
At this point we have the necessary notation and background to begin 

discussing the MD5 attack. The MD4 attack in the previous section finds 
two 512-bit blocks that have the same MD4 hash value. The MD5 attack 
presented here, which is due to Wang [157], finds a pair of 1024-bit messages 
that have the same MD5 hash value. We denote the two 1024-bit messages 
as M‘ = (M,’,,Mi) and 111 = (Mo,  M I ) ,  where each Ml and Mi is a 512-bit 
block. As with MD4, each 512-bit block consists of 16 words, where each 
word is 32 bits. 

Initially, Wang gave a collision [155, 1561 without providing any expla- 
nation of the underlying technique. This lack of information led to an im- 
pressive attempt to reverse engineer the “Chinese method” [64]. Incredibly, 
this reverse engineering was successful enough that it yielded a more effi- 
cient attack [81] than Wang’s, and it has provided the basis for subsequent 
improvements in the attack. 

The Chinese team did eventually release some details of their attack [157]. 
Minor flaws and incremental improvements have been reported by various 
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Qi-2 Qi-3 Q i a  

f f \i 
Qi Qi-1 Qi-2 Qi-3 

Figure 5.5: MD5 step. 

authors in subsequent papers [94, 127, 1611. To date, the most thorough 
and insightful description of the MD5 attack methodology was published by 
Daurri in his PhD dissertation [34].’ 

Below, we describe the MD5 attack which originally appeared in [157]. As 
mentioned above, this attack can be used to efficiently find a pair of 1024-bit 
messages whose MD5 hashes are the same. But before giving details of the 
attack, we first present some background and motivation. This background 
material relies primarily on information in Wang’s paper [157] and in Daum’s 
PhD dissertation [34]. 

A Note on Notation 

Unfortunately, everyone who writes about Wang’s attack seems to have their 
own pet notation. Even more unfortunately, we are no exception. Our no- 
tation is closest to that in [16], with the only major difference being that 
we number bits from left-to-right-in our notation, the high-order (leftmost) 
bit is bit 0, while the low-ordw (rightmost) bit of a 32-bit word is bit num- 
ber 31. As noted above, we denote the step outputs for a message block as QO 
through Q 6 3 ,  with the IV consisting of Q - 4 ,  Q-1, Q - 2 ,  Q-3. In contrast, in 
several papers, including [81, 1441, the IV is denoted Q - 3 ,  Qo, Q-1, Q - 2  and 
the computed outputs are Q1 t,hrough Q 6 4  (but, as if to  further confuse mat- 
ters, these authors number thc message words 0 through 63). 

and various other authors, use a 
completely different numbering of the outputs. Instead of Qj, the outputs 
arc denoted as a j ,  b j ,  cj, or d j ,  where j = 1 , 2 , .  . . ,16 (or, in some cases, 
j = 0,1, .  . . , 15) depending on the round. While this is more consistent with 

The papers of Wang [155, 156, 1571 

“Daurn’s work was supervised by Hans Dobbertin, whose MD4 attack is discussed in 
Section 5.3.2. 
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the notation used in the original description of MD5 [122], it is awkward for 
analysis of the algorithm. Strangely, Wang numbers the bits of 32-bit words 
from 1 to 32 (right-to-left). Some authors use 6 for the modular difference 
and A for the XOR difference, while we use A for the modular difference. 
The bottom line is that considerable care must be taken when attempting to 
analyze results culled from a variety of papers, since it is not a trivial task to 
translate the results into a consistent notation. 

5.4.2 A Precise Differential 

Wang’s MD5 attack is a differential attack. Recall that Dobbertin’s MD4 
attack [42] uses subtraction modulo 232 as the difference operator. Wang’s 
attack uses this same modular difference for inputs. However, some parts 
of the MD5 attack require more detailed information than modular subtrac- 
tion provides, so a “kind of precise differential” [157] is also employed. This 
differential combines modular subtractions with information on the precise 
location of the bit differences. In effect, this precise differential includes both 
a modular difference and an XOR difference, and also provides additional 
information beyond what these two standard differentials provide. 

To motivate this precise differential, consider the pair of bytes given 
by y’ = 00010101 and y = 00000101 and another pair of bytes z’ = 00100101 
and z = 00010101. Then 

y i  - = z /  - = O O O ~ O O O O  = 24, 

which implies that with respect to the modular difference, these two pairs are 
indistinguishable. However, in the MD5 attack, we must distinguish between 
cases such as these, and to do so, we need more information than modular 
subtraction can provide. To this end, we employ a differential that includes 
modular subtraction along with an explicit specification of the bit positions 
that differ between the two terms. 

While an XOR difference specifies the bit positions that differ, we actu- 
ally require even more information than modular subtraction and the XOR 
together can provide. Specifically, we need to know whether the difference in 
each bit position corresponds to  a +1 or -1 in the modular difference, and 
this level of detail is not provided by the XOR. 

Let y = (yo, y1,. . . , y7) and y’ = (yb, y;, . . . , yb), where each yi and yi is a 
bit. Using the same example as above, we have 

y i  - y = oooioioi - O O O O O ~ O ~  = 24 

and 

y’ CE y = 00010101 @ 00000101 = 00010000. 
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In this case, the nonzero bit in the XOR difference occurs since y$ = 1 
and y3 = 0. However, the same XOR difference in bit 3 would result if y$ = 0 
and y3 = 1. For Wang’s attack, we need to distinguish between cases such 
as these. To do so, we use a “signed” difference that is essentially a signed 
version of the XOR difference. That is, when there is a 1 in bit i of the XOR 
difference, we put a “+” if yk = 1 and yi = 0 and we put a “-” if yi = 0 
and yi = 1. We use a “.” to indicate those bits that are 0 in the XOR 
difference, which simply means that y; = yi. We use the notation Vy this 
signed difference.” As in the MD4 attack, we denote the modular difference 
as Ay. Then for y’ = 00010101 and y = 00000101 and we have Ay = 24 
and Vy is given by “. . . + . . . . ’ I .  

Now consider 

z~ - = 00100101- 00010101= 24. (5.46) 

In this case we have 

z� €3 2 = 00100101 00010101 = 00110000, 
> ?  . and hence Vz is “. .+-. . . . , since zh - 2 2  = 1 - 0 and zh - z3 = 0 - 1. 

From Vx, the XOR difference is easily computed. In addition, Problem 21 
shows that Vx determines the modular difference. Consequently, all of the 
relevant difference information is contained in Vz. However, for convenience 
we retain the modular difference. 

We refer to Wang’s precise differential as the signed differential. This 
differential provides more information than the modular and XOR differential 
combined, and, therefore, it allows us to have correspondingly greater control 
over the results at each step. However, it is important to realize that there 
is still a great deal of freedom in choosing values that satisfy a given signed 
differential. Consider, for example, 8-bit bytes y’ and y. Then the modular 
difference is y’ - y (mod a8) .  Suppose Vy is specified. Then for each “+” 
in Vy, the corresponding bit of y’ must be 1, and the corresponding bit of y 
rnust be 0. Similarly, for each “-” in Vy, the corresponding bit of y’ must 
be 0, and the corresponding bit of y must be 1. But for any bit position that 
is not a 1 in y’ @ y the bits of y’ and y must agree, and the value, of the bits 
in each such position is arbitrary. That is, we have one bit of freedom for 
each ”. ” in  Vy, and no freedom whatsoever for each “+” and “-”. 

To make this more concrete, suppose we require that Vz be “. . +-. . . .” . 
Then z� and z in (5.46) satisfy this requirement, as do each of t’he pairs 

(zh, 2 0 )  = (10100101,10010101) 

(Zi, 21) = (11100000,11010000) 

(zk ,zz)  = (11101111, 11011111) 

“’The symbol “0” is usually pronounced as “nabla” or “del”, but feel free to call it 
“upside-down triangle” if you prefer. 
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and many others. The point here is that while the signed differential is 
more restrictive than either a modular difference or an XOR difference (or a 
combination of the two), it still allows for considerable freedom in the choice 
of values that satisfy a given differential. 

5.4.3 Outline of Wang’s Attack 

Here, we attempt to provide some motivation for Wang’s attack. However, it 
appears that the actual development of the attack was essentially ad hoc.” 
Consequently, the motivation is not always clear, but Daum [34] has pulled 
together enough threads to provide a plausible explanation for much of the 
reasoning that most likely went into the development of the attack. The 
remainder of this section draws primarily on material found in Daum’s dis- 
sertation [34]. 

Below, we distinguish between input differences and output differences. 
Input differences are modular differences between input words of messages M’ 
and M ,  whereas output differences are differences between corresponding in- 
termediate values, Q: and Qi. The output difference operator is the signed 
difference discussed above, which is more restrictive than the modular differ- 
ence or the XOR difference, but offers correspondingly greater control. 

Recall that Dobbertin’s MD4 attack discussed in Section 5.3.2 includes 
a differential phase, but the attack is primarily based on a clever equation 
solving technique. In the differential phase of Dobbertin’s attack, the input 
modular difference is specified, but the output differences are not highly con- 
strained. This is crucial since the continuous approximation technique (the 
equation solving phase) makes heavy use of the fact that the output values 
can be altered. 

In contrast, Wang’s MD5 attack is more of a “pure” differential attack. 
Wang’s attack completely specifies the input differences. In addition, Wang 
places significant constraints on the output differences--in fact, the output 
differences are much more tightly constrained than the input differences, since 
the signed difference is applied to the outputs. 

At a high level, Wang’s attack can be viewed as consisting of two phases. 
First, appropriate input and output differential patterns must be found. Then 
the computational part of the attack consists of finding messages that satisfy 
the given patterns. These two phases can be further broken down as follows: 

1. Specify an input differential pattern that behaves nicely in the later 
rounds. Here, the modular difference is used. 

2. Specify an output differential pattern that is easily satisfied in the early 
rounds. For the output differential, the more restrictive signed differ- 

Wang’s approach has also been described as “intuitive” and “done by hand” by other 11 

baffled authors. 
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ence is used. This is the part of the attack that is most shrouded in 
mystery, but we provide some hints on the methodology, below. In any 
case, finding useful difference patterns is obviously extremely challeng- 
ing, since all MD5 attacks to date are based on Wang’s lone differential 
patterns. 

3.  Given the differential patterns, derive a set of sufficient conditions on 
the outputs (along with a few necessary conditions on intermediate 
values). Provided all of these conditions are met, the differential path 
will hold and we will therefore obtain a collision. 

4. Finally, we must determine a pair of 1024-bit messages for which all of 
the sufficient conditions are satisfied. This is the computational part of 
the attack and Wang’s approach for solving it consists of the following. 

Generate a random 512-bit message Mo. 
Use “single-step modifications” (as described below) to modify Mo 
so that all of the sufficient conditions in the early steps are forced 
to hold. This is accomplished via a direct modification of mes- 
sage words, and it can be done in a way that preserves the input 
differential conditions and any previously satisfied conditions. 

Use “multi-step modifications” (as outlined below) to force some 
of the sufficient conditions in the middle steps for Mo to hold. This 
a more complex modification technique than the single step modi- 
fication. The difficulty arises since we must satisfy the differential 
conditions while maintaining all previously-satisfied sufficient con- 
ditions. 

Check the conditions for all of the remaining steps. If any of these 
conditions are not satisfied, goto 4b. These remaining sufficient 
conditions are satisfied probabilistically, that is, the attack is iter- 
ated until all of these probabilistic sufficient conditions hold. These 
iterations can be done efficiently and, since the input differential 
was chosen to behave nicely in the later steps, the probability of 
success is relatively high. 

Once Mo has been found, generate a random 512-bit message M i .  
Use single-step modifications to modify M1 so that all of the con- 
ditions for the early steps are satisfied. Note that the initial values 
for M I  are not the MD5 initial values. Instead, the MD5 output 
from processing Mo must be used for the initial values. 

Use multi-step modifications to force the sufficient conditions in 
the middle steps for M I  to hold. 

Check the conditions for all of the remaining steps. If any of these 
conditions are not satisfied, goto 4f. 
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(i) Compute MA = MO + AM, and Mi = M I  + AM1. The precise 
values of AM0 and AM1 are specified by the input differential. 
For Wang’s differential, these values are given in the next section. 

(j) The MD5 hash of message M = ( M 0 , M l )  is equal to the MD5 
hash of the message M’ = (MA, M i ) .  

See Problem 25 for one simple improvement to the computational phase of 
the attack as described here. 

For Wang’s differential, the work factor for the computational part of the 
attack is dominated by finding Mo. The work factor for finding MO is on 
the order of 2n MD5 hashes, where n is the number of conditions for MO 
that are not satisfied by the modification techniques mentioned above (and 
described in more detail, below). As originally implemented by Wang, the 
computational phase had a work factor significantly greater than 240. Subse- 
quent improvements have steadily lowered the work factor and, to date, the 
best claimed work factor is on the order of about 232.25 MD5 hashes [144]. It 
is possible that this will be reduced further by incremental improvements to 
Wang’s attack. 

Below, we discuss each part of the attack, with the emphasis on the com- 
putational aspects. But before diving into the details, we mention an interest- 
ing insight due to Daum [34]. Suppose we have an MD-like hash function that 
only has three rounds--such as MD4 but not MD5. Then we would expect 
to find a collision using Wang’s technique, since, roughly speaking, the input 
differential can be selected so that the third round conditions hold, single- 
step modifications can then be used to ensures that the first round conditions 
hold, and, finally, multi-step modifications can ensure that the second round 
conditions hold. However, MD5 has four rounds, so some special property of 
MD5 must be exploited to make Wang’s attack succeed. We briefly consider 
this “special feature” after discussing the attack outlined above. 

5.4.4 Wang’s MD5 Differentials 

Here, we describe the theoretical part of Wang’s attack--at least we attempt 
to do so. This is the least well-understood part of the attack, and Wang 
has provided little information, which has led many people to conjecture on 
possible motivations for the attack. We give Wang’s differentials and attack, 
then we consider some of the explanations offered by cryptographers who 
have attempted to analyze Wang’s methodology. 

Input Differential Pattern 

Denote the MD5 initialization vector as IV = (A,  B,  C, D )  and denote the 
initialization vector for the second block (assuming that MO is the first block) 
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as IV1 = (AA,  BB,  CC, D D ) .  Note that 

where 

(Q63,  Q62 ,  Q61, Q6o) = MD50...63(IV, Mo) 
Then the hash value of (Mo, M I )  is given by 

h = (Q60, Q63,Q62, Q t j 1 )  + ( A A ,  BB, CC, D D ) ,  

where ( 0 6 3 ,  Q62,Q6l1  0 6 0 )  = MD50.,.63(IV1, M I ) .  Define IV; and h’ similarly 
using MA and Mi.  

For Wang’s attack, the input modular differences are specified as 

AM0 = MA - Mo = ( O , O ,  O , O ,  231, O , O , O ,  O , O ,  0, 215, O , O ,  231, 0) (5.47) 

(5.48)  AM^ = M ;  - M~ = (o,o, o ,o ,  231,0, o , o ,  o ,o ,  0, -215, O , O ,  231, 0). 

That is, messages Mo and Mh differ only in words 4, 11, and 14, and M I  
and Mi also differ in the same words-with the differences being the same as 
for the first pair of blocks, except at word 11. 

We also require that 

AIV, = IV; - I V ~  = p 3 1 ,  225 + 231, P5 + 231, 225 + 231) 

Ah = h’ - h = ( O , O ,  0,O). 

The idea here is that if we can specify the initial value for the second block 
(more precisely, the value of AIV,), then we can construct a collision in the 
second block. In this way, we hope to force the Ah condition to hold, which 
simply states that we have found a collision. 

0 utput Differential Pat tern 

Wang’s output differential corresponding to the input differentials in (5.47) 
and (5.48) appear in the Appendix in Tables A-2, A-3, A-4, and A-5. The 
columns in Tables A-2 and A-3 have the following meaning: The j column 
specifies the step, “Output” refers to the output when processing Mo, Wj 

is the data element used at the given step, AW, is t.he modular difference 
between the input for Mh arid Mo, AOutput is the modular difference in the 
outputs for MA arid MO (the output is Qj in all but the last four rounds), 
arid VOutput is the signed differential term corresponding to the modular 
difference AOutput. Note that in these tables we use a compact notation 
for sums of powers of two which is also used in Table 5.11 and defined on 
page 239. In Tables A-4 arid A-5, the columns have the same meaning as 
t,hose appearing in Tables A-2 and A-3. 
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Both the modular difference and the XOR difference are easily computed 
from the signed difference. Consequently, the AOutput column is not strictly 
necessary in Table A-2, A-3, A-4, or A-5. However, it is convenient to have 
the modular difference available. 

Derivation of Differentials 

Wang has not provided much information about several crucial points in her 
attack, and from the brief descriptions provided, it appears that her approach 
was largely intuitive. But that has not prevented people from offering various 
theories as to how the differential patterns were derived. 

To date, the most ambitious attempt to analyze the “Chinese method” 
has been provided by Daum [34], who also gives many interesting ideas for 
analyzing hash functions in general. Although Daum’s analysis of Wang’s 
method is indeed interesting, he focuses primarily on MD4, not the more com- 
plex MD5, and in some cases it is not obvious how the techniques translate to 
MD5. In contrast to Daum’s relatively exhaustive approach, Black, Cochran, 
and Highland [16] provide a brief, analysis and conjecture on possible moti- 
vations for some aspects of the attack. Here, we attempt to summarize the 
crucial points of the attack, primarily following Daum. 

First, it is interesting to consider the development of attacks on ciphers 
in the MD4 family-which includes MD5. Dobbertin applied the method he 
used to attack MD4 to MD5. He had considerable success against MD5, as 
indicated by the discussion in [34]. However, Dobbertin was unable to obtain 
a collision for the full MD5 hash function. Dobbertin’s technique is based on 
modular differences and equation solving. 

Chabaud and Joux [27] had success against SHA-0 using XOR differences. 
In their method, the analysis is accomplished by approximating the nonlinear 
parts of the hash by XOR. This technique is somewhat analogous to what is 
done in the linear cryptanalysis of block ciphers. 

Wang’s attack [157] on MD5 uses the modular difference for inputs and 
the “more precise” signed differences for outputs. In this way, Wang has 
considerable control over the outputs, yet she is still able to work with the 
actual step functions, not approximations. Another important feature of 
Wang’s attack is that the colliding messages she finds consist of two message 
blocks. In this way, the attack on the second block becomes, in effect, a 
chosen IV attack. 

But the real magic in Wang’s attack lies in the selection of the difference 
patterns. Apparently, the input differences were selected so as to behave 
nicely in the later rounds. More precisely, Wang takes advantage of the 
fact that an output difference of 2” “is propagated from step to step with 
probability 1 in the third round and with probability l / 2  per step in a large 
part of the fourth round” [34]. In fact, this is precisely the “special property” 
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of MD5 alluded to in Section 5.4.3 that allows Wang’s method-which would 
be expected to work on any three-round MD-like hash-to succced on the 
four-round MD5 hash. 

The choice of the output differences is the greater mystery. Perhaps the 
best that can be done is to analyze the bit differences, as per 1641, in an effort 
to gain some insight into the Wang’s approach. We delve into this analysis 
tielow. 

There is no known method for automatically generating useful difference 
patterns. Daum 1341 suggests building a “tree of difference patterns”, in- 
cluding both input and output differences. Specifying the input difference 
pattern would limit the branching to something more manageable, but the 
the tree must still be pruned since the growth is exponential. However, most 
branches would have low probabilities, so a cost function that incorporates 
probability could be used for pruning. The suggestion is to  use use a meet- 
in-the-middle approach to find “inner” collisions, that, is, collisions after a 
few steps. Then, presumably, these inner collisions could be strung together 
to create a collision for an entire message block. However, Daum’s approach 
has not yet produced a useful difference pattern, and neither has any other 
approach other than Wang’s intuition--at least not yet. 

In spite of the fact that the mechanics behind Wang’s attack are now 
relatively well-understood, and several incremental improvements in the at- 
tack have been made, nobody has been able to produce a different useful 
differential pattern. This is perhaps the strongest indication of the extreme 
cleverness that underlies Wang’s attack, even if Wang herself cannot fully 
explain it. 

5.4.5 Reverse Engineering Wang’s Attack 

As mentioned above, when Wang’s team initially revealed an AID5 collision, 
t,hey provided virtually no information on how the collision was obtained. 
This led Hawkes, Paddon, and R.ose [64] to do some extremely detailed de- 
tective work, based entirely on the one published collision. This work is 
interesting in its own right, but it is also significant since the most efficient 
a.tt,acks are based on this work, not on the limited details provided by Wang. 
Amazingly, this reverse engineering effort discovered iiseful information on 
the computational part, of the attack that was apparently unknown to Wang’s 
teairi. In addition, this analysis provides the best hope of obtaining additional 
insight into the constriiction of output differentials. 

In 1641, the authors began with the only MD5 collision known at that 
timc, and carefully analyzed the intermediate values (the outputs) that are 
generated when these two inputs are hashed. By carefully analyzing the 
differential conditions at each step, they werct able to derive conditions on the 
the outputs and thereby obhiri a set of conditions that, if satisfied, will yield 
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a collision. Remarkably, this reverse-engineering work is the basis for all of 
the fast MD5 collision attacks developed to date. Here, we only consider the 
first few steps for the first message block Ado. 

Conditions on Tj 

In this section. we use the notation 

Tj = F ( Q j - 1 ,  Q j - 2 ,  Q j - 3 )  + Qj-4 + Kj + Wj 
Rj = Tj <<< s j  

Q j  = Q j - i +  Rj 

which is valid for the first round, j = 0 , 1 , .  . . ,15,  since the function F is 
specified. Here, each Q j ,  K j ,  Wj,  and sj are identical to  those given in the 
description of the MD5 algorithm as presented above, and the initial values 
are denoted Q - 4 ,  Q - 3 ,  Q - 2 ,  and Q-1. 

Define A to  be the modular difference operator, AX = X’ - X ,  where 
the difference is taken modulo 2”. For j = 0, 1, . . . ,15,  we have 

AT’ = A F ( Q j - 1 ,  Q j - 2 ,  Q j - 3 )  + A Q j - 4  + AWj (5.49) 

ARj (ATj) <<< sj (5.50) 

A Q j  = AQj-1 + ARj (5.51) 

where the approximation in the second line holds with a high probability (see 
Problem 23) and 

AF(Qj-11 Qj-2, Q j - 3 )  = F(QS-1, Qi-2,  Qi-3) - F ( Q j - 1 ,  Q j - 2 ,  Q j - 3 ) .  

We use AFj as shorthand for A F ( Q j ,  Q j - 1 ,  Q j - 2 ) .  

Using the only MD5 collision available a t  the time, the authors of [64] 
computed AQj, AFj,  AT,, and A Rj for each j .  Then they were able to  derive 
conditions on the the bits of AT, that ensure the desired differential path 
will hold. These conditions for the first round of the message block Ado are 
summarized in Table 5.11. To save space, in Table 5.11 and in the remainder 
of this section, we put “+” on top of n to  indicate 2n, “-” to  indicate -2n 
and �P to indicate that the number could be 2n or -2n. Then, for example, 

(31 23 6 )  = f 2 3 1  + 223 - 26. 
f f -  

This compact notation appears in several MD5 papers. 
Next, we analyze the first few rows of Table 5.11 in some detail to de- 

termine conditions on Tj that will ensure the rotation yields the desired ef- 
fect. The rotation requires careful analysis. For example, suppose T’ = 2z0 
and T = 219 and s = 10. Then AT = 219 and 

(AT)  <<< s = (TI  - T )  <<< = (T’ <<< s) - (T <<< s )  = 229. 
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Table 5.11: First Round of Mo [64] 
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23 17 8 
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- + + + -  

22 27 24 17 15 6 1 

7 3 1 2 3 1 7 1 5 6  

12 62 8 0 

7 2+41+3$ 

+ - 

30 12 
- - -  

17 

22 3013 7 

In this example, the difference and rotation commute, that is, it does not 
matter whether the difference or rotation is applied first. But this is not 
always the case. Consider, for example, T' = 222 and T = 221 + 220 + 2". 
Then. as in the previous example, AT = 2'", and hence for s = 10, 

(AT)  <<< s = 229, 

but 
(T' <<< s) - (T <<< s) = 2 O  ~ (2"1 + 230 + 22") = 229 + 1 

Now consider another example involving negative numbers. Suppose that 
wc have T' = 2" and T = 220 and s = 10. Then 

(AT)  <<< Ly = ( T I  <<< s )  - (T <<< s )  = -229. 

However, if's = 17, 
(AT)  <<< s = -25 

but 
(T' <<< S )  - (T <<< = 24 - 25 = -24. 

These examples illustrate that when AT is specified, we can still obtain 
differcnt values for AR = AT <<< s by placing various restrictions on T .  
In particular, it is possible to specify T so that bits propagate via the left 
rotation into lower-order bit positions, regardless of the magnitude of the 
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rotation s. This fact can be used to determine conditions on Tj that must be 
satisfied for the required differential path to  hold. 

Next, we outline a few steps in the process whereby restrictions on Tj are 
deduced from a given collision. But first note that -2"' = 231 (mod 232) 
always holds and, modulo 232, we also have 231 + 231 = 0. We make use of 
these facts below. 

Now consider the second row of Table 5.11 (step 4). From the known 
collision we find AQ3 = 0, for AQ4 = -26. From (5.51), we have 

6 AQ4 = AQ3 + ARq = -2 , 

which implies that with high probability 

6 AR4 = (AT4 <<< 7 )  = -2 . 

Since AT4 = Ti - T4 = -231, the condition (T4 = l ) ~  is sufficient to  ensure 
that AT4 = -231. As in the MD4 attack, here we use the notation (Y = a) i  
to indicate that bit i of Y is a ,  and (Y = ~ ) i , , . ~  denotes that bits i through j 
of Y are all set to  a. 

Step 5 is also reasonably straightforward to analyze. In this step, we 
have AT, = 219 + 211. Also, we have 

AQ4 = -26 and AQs = 1 t 2 ~ ~ + 2 ~ ~  - 26, 

and it follows that 

Since sg = 12,  we want 

which holds provided that AT, = 2'' + 2l' does not propagate into higher- 
order bit positions. For example, we cannot have AT5 = 220 - 2'' + 211, since 
this would cause bits to  "wrap around" after the shift by 12, resulting in an 
incorrect value for ARs. We see that the condition (Ts = 0)12 is necessary, 
as is a more complex condition that will restrict borrows; see [64] for details 
on this latter condition. 

For step 6, the situation is slightly more complicated. At this step, we 
have AT,; = -214 - 21°. Since we have s6 = 17, we want 

But if we simply rotate AT6 = -2'* - 21° by 17, we obtain -231 - 227, which 
is not the desired result. In this case, we must rewrite AT6 so that a bit 
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wraps around into the low-order position after the rotation. This is easily 
accomplished by rewriting AT, as 

AT, = -215 + 214 - 2 ’ O .  

Among other conditions, this implies we must have (Tb = 0)17; again, see [64] 
for more details on the additional restrictions. 

Continuing in this nianner, it is possible to obtain a set of conditions on 
the T3 that must be met for the differential to hold. These conditions are 
specified in  excruciating detail in [64]. It is interesting to note that prior to 
Stevens’ work [144], these conditions were not used directly in the collision- 
finding attack. We briefly discuss Stwens‘ implementation of Wang’s attack 
after analyzing the outputs. 

Conditions on Qj 

Next, we consider conditions on the outputs, that is, the Qj. These arc the 
conditions that all attacks to date attempt to satisfy--the rnore of these con- 
ditions that can be satisfied deterministically, the more efficient the resulting 
a,tt,ack will be. For this analysis, we again restrict our attention to the first 
few rounds. 

To analyze the output differences, we require a difference operator that 
is rnore “precise” than either the modular difference or the XOR difference. 
Here, we use the signed difference, VX,  discussed above. Recall that this 
difference operation provides more information than the modular difference 
arid the XOR difference combined. 

WC consider 32-bit words so that, for example, if 

x� = 0x02000020 and X = 0x80000000, 

then V X  is given b y  

. . . . . + .  . . . . . . . .  . . . . . . . .  . . + . . . . . ”  ‘i- 

For all steps of the MD5 collision provided by Wang, the authors of [64] 
computed the values of AQj and 0Q.j. In Table 5.12 we have reproduced 
these results for the first round of Mc,, translated into our notation. Of course, 
this MD5 collision was generated using h’ang’s method, so an analysis of this 
collision should provide clucs as to Wa,ng’s approach. 

Also, for this same &ID5 collision, the authors of [64] found the values 
of AFj arid V F j  for all steps. III Table 5.13 we have reproduced these resiilts 
for t,lie first round. The results in Table 5.13 were computed from the same 
WID5 collision that was used to generate the data in Table 5.12. 

Here, we only consider the first rouiitl; where the function F is used. 
Recall that 

F ( A ,  B, C )  = (A A B) V (1A  A C ) .  
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Table 5.12: First Round Output Differences [64] 
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. . . . . . . .  .-++t+++ ++++++++ - I - t . . . . . .  

* . . . . . . .  + . . . . . . . . . . . . . . .  . - . . . . . .  
*+tttt-- -. ,  . . . . .  . . . . -  +++ ++-+++++ 
. . . . . . . . .  - .-+++- + . . . . . . . . . . . . . .  + 

* . . . . . . . . . . . . . . .  . . . . . . . -  ++....+- 

* . . . . . . . . . . . . . . .  . .+- . . . .  . . . . . . . .  
*+... . . .  . . . . . . . . . . . . . . . . . . . . . . . .  
* . . , . , . . . . . . -+  + t +++....- + . . . . . . .  
* . . . . .  +- . . . . . . . . . . . . . . . . . . . . . . . .  
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
zk . . . . . . . . . . . . . . .  - . . . . . . . . . . .  f . . .  

This function uses the bits of A to choose between the corresponding bits 
of B and C. That is, if bit i of A is 1, then bit 1; of F ( A , B , C )  is bit i 
of B;  otherwise, bit i of F ( A , B , C )  is bit i of C. Using the information in 
Tables 5.12 and 5.13, and the definition of F ,  we can derive conditions on the 
bits of the Qj.  

For j I 3 we have AQj = AQj-1 = AQj-2 = 0 which implies AFj = 0, 
that is, Fj = Fj. Using the notation defined above, it follows that V F j  is 

L L  > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

for j 5 3 .  This imposes no restrictions on the corresponding Qj. Conse- 
quently, no conditions are imposed on any Qj based on the analysis of steps 0 
through 3 .  

Now consider F4. In this case, the attacker has AQ2 = AQ3 = 0 
and AQ4 = -26, and wants to obtain AFq = 219 + 2“. From the collision 
results in Tables 5.12 and 5.13, the relevant information for F4 is collected in 
Table 5.14. 

From VQ4 in Table 5.14, it immediately follows that 

(Q4 = 1 ) g  and (Q4 = o ) ~ ~ . . . ~ ~ .  

We refer to bits 9,10,.  . .  , 2 5  as the L‘nonconstant” bits of Q 4 ,  while the re- 
maining bits are the “constant” bits of Q 4 .  That is, Q& = Q 4  on the constant 
bits, while Q& # Q 4  on the nonconstant bits. 
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j l  A F,  VF7 
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Tablc 5.14: F4 Computation 

First, we consider the constant bitas of Q 4 .  l l i e  function F(Q4,  QR, Q z )  
selects the bits of Q:j or Q 2  based on the hits of Q4. From VQ4, we have 

( Q 4  = Q&)0...8,2(j...31 and for each of these bits of Q 4  it, follows that: 

0 If (Q.1 = l)j,  then (Fa = Q 3 ) j  and (F i  = Qi)j. 
0 If ( Q 4  = 0 ) j ,  then (F4 = Q 2 ) . j  and (Pi = Q’,),?. 

Siiicc: Q 2  = Qh arid Q:j = Q:%, we have (F i  = F4)j for each constant bit j .  
From Table 5.14 we see that this is the desired condition, since each of tllc 
constant bit,s of Q d  is also a constant bit of F4. Conscquently, the desircd 
coiidit,ions on F4 arc rnet, and no restrictions on Qj are implied. 

Next, we deal with the noiicorista,rlt bits of Q4. Note that VQ4, which 
appears in Table 5.14: immediately implies 
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Also, on the nonconstant bits of Q 4 ,  we have: 

0 If ( Q 4  = l) j ,  then (F4 = Q 3 ) j  and (F i  = Q’,)j. 

0 If ( Q 4  = O ) j ,  then (F4 = Q 2 ) j  and (F i  = Q k ) j .  

For VFq in Table 5.14 to hold, it is necessary that (Fi = F 4 ) l o , l l , l 3  ... 19,21 ... 25. 

But, we have (Q& = 1)10,11,13 ... 19,21 ... 25 so that (Fi = Q ~ ) i o , i i , i  3. . .  19,21 -25. 

Since (Q4 = 0)10,11,13 ... 19,21 ... 25 it follows that ( F 4  = Q2)10,11,13 ... 19,21 ... 25. Fur- 
thermore, since Q3 = Q’,, for the V F 4  condition to hold for bits 10, 11, 13 
through 19 and bits 21 through 25, the conditions 

(Q3 = Q2)10,11,13 ... 19,21 ... 25 

are sufficient. 
We still must consider the nonconstant bits in positions 12 and 20. Here, 

we require that (Fi  = 1)12,20 and (F4 = 0)12,20. From V Q 4  it follows 
that (Qk = 1)12,20 and (Q4 = 0)12,20, which implies that (F i  = Qk)12,20 

and (F4 = Q2)12,20.  Since Q‘, = Qs, the desired condition on F 4  holds pro- 
vided that 

(Q3 = 1)12,20 and (Q2 = 0)12,20. 

Finally, we have to deal with bit 9. From V Q 4  we have (Q& = O)g 

and ( Q 4  = 1 ) 9  which implies (8’; = Q k ) g  and (F4 = Q 3 ) g .  From VF4, 
the desired condition is (F i  = F 4 ) g .  Since Q 2  = QL, the required condition 
here is 

(Q2 = Q3)9.  

All of the conditions derived at  step 4 are listed in Table 5.15 

Table 5.15: Step 4 Conditions 

(Q4 = 0) io  ..., 25 

(Q4 = 1 ) 9  

(Q3 = 1)12,20 

(Q2 = 0)12,20 

(Q2 = Q 3 ) i o , i i , i 3  ... 19,21 ... 25 

Next, we analyze one more step in this process. Note that all of the steps 
for both message blocks are analyzed in [64]. 

From Tables 5.12 and 5.13, we have extracted the relevant information 
for step 5 and collected it in Table 5.16. In this case, the attacker knows 
that AQs = 0, A Q 4  = -26 and A Q 5  = f 2 3 1  + 223 - 26, and he wants to 
ensure AF, = -214 - 21°. 
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Table 5.16: F:, Computation 

I n 1  v 

From VQs, we have (Q5 = 0 ) 8  and (Q5 = l ) 2 5 .  Here, no restriction 
is implied on ( Q 5 ) O  (although we do obtain a restriction on this bit in the 
analysis below). 

Now consider the constant bits of Q5, that is, those bits where Qk = Q5. 
From Table 5.16, we have (Qk = Q5)1.  ..7,9...24,26...31. The function F5 selects 
between the bits of Q 4  and Q 3 ,  depending on the corresponding bits of Qj, 
with Q 3  selected if the bit of Q5 is 0, and Q 4  selected if the bit of Qs is 1. 
The analogous statement holds for Fi on the constant bits of Q 5 .  

From Table 5.16, we see that the desired condition on VF:, is g’ riven 
by (VF5 = VQ4)9 ... 16.18...21 and this will hold provided FA selects Q& and F5 
selects Q 4  on these bits. Since we have (Qk = Q5)9...16,18...21, (i.e., these 
bits are among the constant bits of Q5) this will hold true provided that 
we have ( Q 5  = 1 ) 9  ...16,18...21. Also, (VF5 = VQ3)17 ,22 ,23 ,24  and this holds 
provided FA selects QL and F5 selects Q 3 .  Since these are also among the 
constant bits of Q5,  we require t,hat ( Q 5  = 0)17,22,23,24. 

For the remaining constant bits of Q5 we want (I$ = F5)j. But each such 
constant bit of Q5 is also a constant bits of Q 4  and Q3, that is, (Qi = Q 4 ) j  

and (QS = Q3)j .  Consequently, on these bits it does not matter which bits 
arc selected, and therefore, no additional restrictions are implied. 

Now consider the nonconstant bits of Q5, that is, (Q5)0,8.25.  Since we 
havc (Qh = 1)s and ( Q 5  = 0)s. it follows that (I$ = Q&)8 and (F5 = Q:3)8. 

From Table 5.16, the desired condition here is (F; = F5)8. Since (Qi = Q4)8, 

wc require that ( Q 4  = Q:3)8.  

Also, we want (F; = F,)25. From VQ5 in Table 5.16 we havc: the condi- 
tions (Qk = 0 ) 2 5  and ( Q 5  = 1 ) ~ s .  Therefore, (F’; = Qi)2:, and ( f ~  = Q4)25. 

Sincc we have (Q3 How- 
ever, from V Q 4  in Table 5.16, we have ( Q 4  = 0)25 (which was already noted, 
above), and, consequently, the new condition here is ( Q 3  = 0)25. 

Finally, we have (Qk # Q 5 ) 0  arid we want to  ensure that (F i  = F5)o. 

Sirice (QL = Q 3 ) o  and (Q& = Q 4 ) 0 ,  the desired condition will hold provided 
that ( Q 4  = Q s ) ~ .  In Table 5.17 we list all of the conditions derived based on 

Q!3)25r this yields the condition (Q3 = Q 4 ) 2 5 .  

of the constant and nonconstant bits in step 5. 
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Table 5.17: Step 5 Conditions 

Continuing in this manner, it is possible to obtain a set of conditions on 
the outputs Qj. If these conditions are all satisfied, then a collision will result. 
Each such condition can be expected to hold, at random, with a probability of 
about 1/2. Based on the examples presented here, it is apparent that there 
will be a large number of conditions that must be satisfied. In fact, there 
are over 300 conditions on the first message block that must be satisfied. 
If the attacker simply generates randoin messages and checks whether the 
conditions are met, the “attack” would be much worse than the birthday 
attack. 

Fortunately, all conditions that occur in the first round (that is, within 
the first 16 steps) can be satisfied simply by directly modifying the message 
words. In addition, some conditions in later steps can be satisfied by a more 
complex modification procedure. It is critically important that the differential 
has been constructed so that the number of conditions is large in the early 
steps, but very small in the later steps. In this way, the number of conditions 
that can be satisfied deterministically is large, while the number that must be 
satisfied probabilistically--which determines the work factor of the attack-is 
much smaller. 

The work presented in [64] (and outlined above) can be used to  develop an 
efficient attack to find MD5 collisions, as suggested in the previous paragraph. 
The idea behind the attack is straightforward. First, we choose the message 
words so that all of the conditions on Q j ,  for j = 0, 1,. . . ,15, are satisfied 
using a “single-step modification” technique (as explained below). Then we 
use a “multi-step modification” technique, due to Wang, whereby some of the 
conditions on Qj for j > 15 can be forced to hold, while all of the conditions 
on the Qj, for j 5 15, still hold (this is outlined below). Then we test all 
of the remaining &;I conditions. If all of these are satisfied, then we have 
found a collision; if not, we generate another candidate message that satisfies 
all of the deterministic conditions (that is, the conditions in the early steps) 
and again test the probabilistic conditions (that is, the conditions in the later 
steps), and we repeat this until it collision is found. 

The Q j  conditions that are satisfied probabilistically each hold with a 
probability of about 1/2. Consequently, the work factor for the attack is de- 
termined by the number of conditions that must be satisfied probabilistically. 
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Of course, this entire process needs to  be repeated for both message blocks, 
A40 and MI. With some refinements, this is the path that all of the MD5 
collisioii attacks have followed up to the time of this writing. 

All iniprovements in the collision attack to date revolve around providing 
a way to det.erministically satisfy more conditions by choosing the incssage 
block appropriately, thereby reducing the number of conditions that must be 
satisfied probabilistically. Before leaving this part of the attack, we show that 
it is also possible to force some of the conditions on the Tj to hold, that is, 
some of the Tj conditions can be satisfied deterministically. 

Stevens [144] observes that 

antl he notes that this opens the possibility of specifying conditions on Qj 
antl Q,i-1 that will force conditions on Tj to hold. For example, above we 
derived the condition (T4 = 1)". Since 7-4 = 7, we have (T4)o = (R4)25 and 
from the analysis above, ( Q 4  = 0)25, ( Q 4  = O ) ~ S  and (Q4 = 1)26 .  With the 
additional condit,ions (Q3 = l ) 2 7 ,  ( Q 3  = 1 ) 2 6  and ( Q 4  = 0)25, we are assured 
that ( 8 4  = 1 ) 2 5 ,  and hence (T4 = l ) ~ ,  as desired. To see that this is the case, 
riotc that the subtraction is given by 

010 . . . * (Q4)25,26,27 

* (Q3)25,26,27 

. . . IIx.. . t--f (R4)253,27 

where (R, = l ) 2 5  follows since a borrow from higher-order bit positions must 
occur. 

Continuing in this manner, Stevens [144] is able to derive conditions that 
force several of the Tj conditions to hold. This work yields the fastest MD5 
attack as of the time of this writing. Using a typical modern PC, Stevens' 
attack takes about, two minutes, on average, to find a collision. We give 
Stevens' a.lgorithni, below. 

The conditions for the first message block, as specified by Stevens' attack, 
are given in the Appendix in Tables A-6 and A-7. For Q,j, a "^" indicates 
that, thc specified bit must agree with the corresponding bit of Qj-1, while 

bit of Qj-1. On the other hand, a "." indicates that there is no restriction 
on that, particular bit. 

The corresponding tables for the second message block M I  are due to 
Klima [81] and these tables can also be found in [144]. For completeness, we 
reproduce these in the Appendix in Tables A-8 antl A-9. The attack to find 
the first message block, A[", is more costly than the attack for the second 
rnessagc hlock, MI, so the overall work is dominated by finding a 512-bit 
rriessagc block satisfying the conditions in Tables A-6 and A-7. 

L( I . " indicates that the specified bit must not agree with the corresponding 
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Single-step Modification 

The idea behind the single-step modification technique (also known as single- 
message modification) is straightforward. We simply use the fact that each 
of the 16 message words appears once in the first 16 steps, and the fact that 
by modifying a message word Wj, we can change the output Qj.  An example 
should make the process clear. 

As mentioned in the previous section, we first select the message block at 
random. Then we use the single-step modification technique to force all of 
the conditions on Qj to hold, for j = 0,1 , .  . . ,15, by modifying the message 
words. Next, we show precisely how this works, but first note that if 

then from Table 5.10 we have Wi = X i ,  for i = O,l , .  . . ,15. 
Suppose that we have randomly selected &fo = ( X o ,  Xi,. . . , X I S )  as the 

first message block. Let mi, for i = 0,1, .  . . ,63  be the corresponding input 
words to the MD5 algorithm. Our goal is to modify &fo to obtain a mes- 
sage block Mo = (Xo ,  X I , .  . . , X i s )  for which all of the first round output 
conditions hold, that is, all of the conditions on Qi for i < 16 hold. 

Now suppose that we have already found Xo and X1 and consider step 2. 
Recall that the IV is denoted Q-4 ,  Q - 1 ,  Q-2, Q-3 .  Then using A&, we com- 
pute 

Q2 = Qi + (fi + Q-2 + W2 + K2) <<< SZ, (5.52) 

where fi = F(Qj ,Qo ,Q- l ) .  We want to transform Q 2  to QZ so that the 
conditions in the Q 2  row of Table A-6 hold, namely, (Qz = 0)12,20,25. For 
each i = 0 ,1 , .  . . ,31, let Ei be the 32-bit word defined by 

(Ei = l ) i  and (Ei = 0) j  for j # i, (5.53) 

that is, Ei is 0 except for bit i ,  which is 1. Then we have Ei = 231-i. Denote 
the bits of Q 2  as 

Q 2 =  (qo,qi,q2,...,qx). 

Let D = -412E12 - q20E20 - q25E25.  Then the desired conditions on Q 2  are 
satisfied by letting 

- 

Q z  = Q 2  + D. (5.54) 

Now suppose that we replace 1?/2 in (5.52) with the value of W2 for which 

Then this value W2 can be determined algebraically. Doing so, we find 
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From (5.54), we see that, Q2 is known, and all other terms on the right-hand- 
side of (5.55) arc known, so we have determined W2. Then letting Xz = W2, 

we obtain Qz which satisfies the required output conditions at step 2. 
After repeating a similar process for each of steps 0 through 15, we will 

have determined a message Mo = (Xo ,  X I ,  . . . , X I S )  for which all of the output 
conditions in these steps hold. We could then simply test the remaining 
conditions and if all hold, we have found a collision. If any condition beyond 
step 15 does not hold, then we could select a new random A& and repeat 
the entire process. Since each condition is expected to hold at random with 
a probability of about 1 /2 ,  this yields an attack with a work factor on the 
order of 2': where c is the number of conditions in steps 16 through 63. 

Using only single-step modificat,ions provides a feasible shortcut attack. 
However, it is possible to fiirt,her reduce the work factor by using the multi- 
st>ep modification technique described in the next section. 

Multi-step Modification 

Wang's multi-step modifications (also known as multi-message modifications) 
make it possible to satisfy some of the conditions in steps beyond 15. It is 
critical that when we satisfy conditions by this approach, we do not violate 
the out,put conditions from previous steps. This makes the multi-step modi- 
fication more complex than the single-step modifications. 

There are actually several multi-step modification techniques, some of 
which are very convoluted, and some of which are not entirely deterniinis- 
tic, that is; the condition can fail with some small probabilit,y. Here, we 
describe the simplest example of a multi-step modification. The paper [16] 
discusses some other multi-step modifications, while Daum [34] provides a 
good description of several such techniques. 

modifications. Consider 
by ( Q l 6  = 0)" to hold (see the Qle row of Table A-6). We have 

Let, if" = (XO, X I ,  2 1 5 )  be the message block h f ~  after single-step 
p 16, where we want the output condition specified 

Q1(; Q15 + (f15 + Q I ~  + w1(i + Kls )  <<< SIA: 

where I ~ ~ I o .  - = X i  and f 1 5  = G(Q15, Q 1 4 ,  Q I : ~ ) .  
? q : % l )  and define D = -qoEo, where Ei is given 

in (5.53). Then it is easy t,o verify that Q16 = Qls+D will satisfy the required 
condition at step 16. As with the singlestep modification, we replacc 
with W1(; so that 

Let Ql(j = (qO,ql, 

Qic, = Qi5 + ( f i 5  + Q12 + w~c, + KIG) <<< SIF  

Solving, we find 

Wici = ( (QIA - Q I ~ )  >>> c51s) - f 1 5  - Q12 - KIG. 
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Since W ~ S  = XI, we must ensure that all of the conditions in the first round 
involving X1 still hold. Since Qi, for i = 1,2,3,4,5,  also depend on XI, we 
must carefully consider each of these steps. However, since no conditions were 
previously specified on Q1, the i = 1 case is not a concern. 

We have determined a new input at step 16, namely, W ~ S  = XI. From 
the single-step modification, we have 

Q1 = Qo + (.fo + Q - 3  + X i  + K1) <<< ~ 1 .  

Now compute 

= QO + (fo + Q-3 + Xi + Ki) <<< S I ,  

that is, 2 is the new Q1 that results from the modified X1 computed in 
step 16. Since no conditions were specified on Q1, we will not violate any 
previous conditions by letting Q1 = 2. 

Next, recall that 

Q2 = z + (fl(Q1, Qo, Q-I) + Q-2 + 2;. + K2) <<< ~ 2 .  

Using the same approach as the single-step modification, we choose X 2  so 
that 

Q2 = z + ( f l (z ,  Qo, Q-1) + Q-z + X2 + K2) <<< 5 2 ,  

which implies that 

X2 = ((Qz - 2) >>> s2) - f l ( z ,  Qo, Q-I) - Q-2 - K2. 

Observe that by selecting X2 in this way, the modification we made when 
selecting XI, as required for step 16, will not affect any of the output condi- 
tions from step 2. That is, all of the conditions on Q 2  that hold as a result 
of the single-step modifications still hold true. 

Similarly, we choose 

X3 = ((Q:< - Q2) >>> ~ 3 )  - f 2 ( Q 2 , z ,  Qo) 

and 

X4 = ((624 - Q 3 )  >>> s4) - f 3 ( Q 3 ,  Q2 ,  

and, finally, 

X5 = ((Q5 - Q 4 )  >>> ~ 5 )  - f 4 ( Q 4 ,  Q 3 ,  Q2)  - 2 - K5. 

Since Z (the new Q1) is not used in the calculation of any other Qi ,  no 
other X i  must be modified. 

The bottom line here is that we now have deterministically satisfied the 
conditions on step 16, while maintaining all of the conditions on steps 0 
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through 15 that resulted from the single-step modifications. The multi-step 
modification considered here is the sirnplest case. Several other methods have 
been developed in an effort to  slightly reduce the work factor of Wang’s attack. 
The evolution of Wang’s attack seems to  have reached the point wherc the 
attack is so efficient (about two minutes for Stevens [144] implementation) 
and the difficulty and complexity of finding improved multi-step modifications 
is now so high and many of the more advanced modification techniques only 
hold probabilistically-that it appears likely that further improvement along 
these lines will be incremental, a t  best. 

5.4.6 

Stevens [144] gives the algorithm in Table 5.18 for finding a message block n/l, 
satisfying Wang’s differential conditions. This attack is based on the set of 
output conditions given in Tables A-6 and A-7, which appear in the Appendix. 

Stevens’ Implementation of Wang’s Attack 

Table 5.18: Efficient Algorithm to Find hf(, 

// Find 1110 = ( X ” ,  X I , .  . . , X I S ) ,  where “all 1110 conditions” refers to: 
// all Table A-7 conditions, 

// 
// 
Find Al� 

all IV conditions for M I  (see Table A-8), 
both (T21 = 0)14 and (TJ~  = O ) , G  

repeat  
Choose Qo, Q 2 ,  Q3, .  . . , Q15 satisfying conditions in Table A-6 
Compute Xo,  X s ,  X i , .  . . , Xi5 

repeat 
Choose Q ~ G  satisfying conditions 
Compute X I  using j = 16 
Compute Q1 and X2,  X:$,  X4, X s  
Compute Q17, Q I ~ ,  QN, Q ~ o  

u n t i l  QlH, Q17 ,  . . . , Q20 satisfy conditions in Table A-6 
f o r  ( Q 8 ,  Q9) consistent with X I  1 

Compute Xx? Xg,  Xio, Xi2, Xi:$ 
Compute Q21, Q 2 2 ,  . . . , Qss 
i f  all A40 conditions arc satisfied then 

end i f  

next ( Q x , Q g )  

r e t u r n  M 

u n t i l  all 1110 conditions are satisfied 
end Find 

Strveris also presents ail efficient algorithm for the second block, All ,  
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which we give in Table 5.19. This is identical to the algorithm given by 
Klima in [81]. However, finding MO dominates the overall collision-finding 
work, so all efforts to improve Wang’s attack have been focused on the first 
message block, Mo. 

Table 5.19: Efficient Algorithm to Find M1 

// Find M1 = (XO, X I , ,  . . , XIS), where “all MI conditions” refers to: 
// all Table A-9 conditions, 

// 
Find M1 

both (7’21 = 0)14 and (T33 = 0)ls 

repeat 
Choose Q1, Q 2 ,  . . . ,6215 satisfying conditions in Table A-8 
Compute Xd, Xg , . . . , XI4 

repeat 
Choose Qo satisfying conditions 
Compute Xo, XI, XZ , X3, X ,  
Compute Q16, Qi7, Ql81 Q19, Q20 

until Q16, Q17, .  . . , Q 2 0  satisfy conditions in Table A-8 
f o r  (Q8, Qs) consistent with X11 

Compute Q21, Q22, . . . , Q63 

i f  all M1 conditions are satisfied then 

end i f  

next (Q8,Qg)  

Compute X8rXS,XlOrX12,X13 

return M 

until all M I  conditions are satisfied 
end Find M I  

5.4.7 A Practical Attack 

It is sometimes claimed that most hash collision attacks are of little or no 
practical significance. For the MD5 attack, it is presently not possible to 
produce arbitrary collisions, so it seems highly improbable that a meaningful 
collision can be constructed. However, there are cases where an apparently 
useless collision can be used to create a security vu1nt:rability. Here, we con- 
sider one such scenario; see Daum and Lucks [35] for the original description 
of this clever attack. 

Suppose that Alice wants to digitally sign the letter of “recommendation” 
shown in Figure 5.6, which is in the form of a postscript file, rec.ps. Alice 
carefully reads the letter, which was created by her new secretary, Trudy, then 
Alice digitally signs it. As usual, the signature is computed by first hashing 
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the file and the resulting hash value is signed. Suppose that the MD5 hash 
function is used in this signing operation. In this case, Alice computes 

s = [h(rec.Ps)lAlice. 

where h is the MD5 hash, and [M]Alice denotes the digital signature of M 
using Alice’s private key. Then S and the original letter, r e c  .ps ,  can be sent 
to the intended recipient, who can verify the signature using Alice’s public 

key. 

To Whom it May Concern: 

Tom Austin and Ying Zhang have demonstrated decent programming 
ability. They should do OK in any programming position, provided that 
the work is not too complex, and that the position does not require 
any independent thought or initiative. 

However, I think they like to steal office supplies, so I would keep 
a close eye on them. Also, their basic hygiene is somewhat lacking 
so I would recommend that you have them telecommute. 

Sincerely, 

Alice 

Figure 5.6: Recommendation letter. 

Now consider the letter in Figure 5.7, which was printed from the file 
au th .ps .  This letter is obviously much different than the letter in Figure 5.6, 
hut,  incrcdibly, the files auth . p s  and rec .ps have the same MD5 hash valucs. 
For the specific files used in this example, 

h,(rec .ps) = h(auth.ps)  = Oxc3261825f 024565d0731f a07ed660f 22, 

where h is the MD5 hash. 
How can these two very different letters have the same MD5 hash? After 

all, in the MD5 collision attack discussed above, the colliding messages are 
almost identical, with the precise bit difference per 512-bit message block 
specified by (5.47) and (5.48). It would seem that these two messages could 
riot possibly have been generated using the MD5 attack outlined above. 

In fact, the messages in Figures 5.6 and 5.7 were not directly generated 
using the attack above and, furthermore, the printed text from these two 
letters does not yield an MD5 collision. The identical hash values of the two 
files-- as distinct from the actual displayed text -is made possible by the fact 
that postscript has a conditional statement, which enables Trudy to include 
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To Bank of America: 

Tom Austin and Ying Bang are authorized access to all of my account 
information and may make withdrawals or deposits. 

Sincerely, 

Alice 

Figure 5.7: Authorization letter. 

the text of both letters in both postscript files. Trudy can use a “meaningless” 
MD5 collision to force the hashes of the two files to be the same, even though 
the hashes of the actual printed text is not the same. To see how this works, 
we need to examine the postscript inside these files. 

Figure 5.8 contains excerpts of rec .ps. These excerpts have been slightly 
modified for clarity. Also, “u’’ represents a blank space inserted so that the 
header information is precisely 64 bytes. 

The postscript conditional statement is of the form 

where TO is processed if the text X is identical to Y and TI is processed 
otherwise. Let W be the first 64 bytes of the file in Figure 5.8. Then W 
consists of all bytes up to and including the opening ‘‘(” in “ ( X )  (Y>eq{�. 
Now let 2 = R/ID50,..63(IV,W), that is, 2 is the result of compressing the 
initial block of the file. Using the MD5 attack discussed above, we find a 
collision where 2 is used as the IV (the MD5 attack can be modified to work 
for any IV). Denote the resulting pair of 1024-byte values as M and 111�. 

Let L be the file obtained by letting X = Y = M in Figure 5.8, and let L‘ 
be the file obtained by by letting X = M’ and Y = M in Figure 5.8. Then for 
the file L,  the two strings before the �eq� are identical (since both are M ) ,  
which causes the postscript interpreter to only display (or print) the text in 
Figure 5.6. On the other hand, in the file L’ the two strings before the �eq� 
differ and therefore the else condition holds, which implies that only the text 
in Figure 5.7 will be visible when the file is processed through postscript. 
Furthermore, the MD5 hashes of the files L and L’ are identical. This follows 
from the fact that M and M’ have the same MD5 hash (since the initial block 
is W for both files), and from the fact that all bits after X are identical in 
both L and L‘. Letting rec.ps = L and auth.ps = L‘ yields the results 
displayed in Figures 5.6 and 5.7, with the two files having identical MD5 
hashes. 
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%!PS-Adobe-1.0 
%%BoundingBox: 0 0 612 792, II IuI II ,I ,I I (x) ( Y )  eq{ 
/Times-Roman findfont 20 scalefont setfont 
25 450 moveto (To Whom it May Concern:) show 
25 400 moveto 
(Tom Austin and Ying Zhang have demonstrated . . .  

(Sincerely, 
show 
25 150 moveto 
(Alice) 
show 
}{/Times-Roman findfont 20 scalefont setfont 
25 450 moveto (To Bank of America:) show 
25 400 moveto 
(Tom Austin and Ying Zhang are authorized access 

(Sincerely,) 
show 
25 250 moveto 
(Alice) 
show 
}ifelse 
showpage 

Figure 5.8: Postscript file. 

Of course, anyone who examines either of the postscript files in a text 
editor will quickly realize that something is amiss. But the whole point of 
a c-ryptographic integrity check is that integrity problems can be detected 
automatically, without human intervention. To detect this particular attack 
aiitornatically is possible, but to deal with all possible attacks of this type 
would be a challenge. Consequently, this attack is a realistic threat and 
it nicely illustrates that there is a potential risk when any hash collision is 
known, whether or not the collision itself is meaningful. 

5.5 Summary 

For many years, it seems that hash functions had been largely ignored by 
cryptographers. But with the successful attack on MD5, and similar results 
for SHA-1 pending, hash functions have moved from a sleepy cryptographic 
backwater to the forefront of research. It is likely that new hashing techniques 
that thwart differential attacks like those described in this chapter will soon 
ernrrge. This might occur through the usual research process, or there might 
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be an organized “bake off” similar to the process that produced the Advanced 
Encryption Standard (AES). 

Finally, we note that MD5 and SHA-1 are not only the two most widely- 
used hash functions, but they are also very similar in design. This was prob- 
ably not a major issue when both hash functions were considered secure, but 
when MD5 was broken, it became clear that this lack of “genetic diversity” in 
hashing was a potential problem. It is worth noting that public key cryptog- 
raphy suffers from a similar lack of diversity. Today, almost all of t,he public 
key cryptosystems used in practice rely on the difficulty of factoring or the 
difficulty of the discrete log problem (or the elliptic curve equivalents). If 
a significant shortcut is found for either of these problems, it would leave a 
gaping hole in the realm of public key cryptography, which would be far more 
severe than the temporary turmoil in the world of hashing that was created 
by Wang’s MD5 attack. 

5.6 Problems 

1. Justify the following statements regarding cryptographic hash func- 
tions. 

a. Strong collision resistance implies weak collision resistance. 

b. Strong collision resistance does not imply one-way. 

2. Suppose that we have a block cipher, where C = E(P ,  K ) ,  and want to 
use this block cipher as a hash function. Let X be a specified constant 
and let M be a message consisting of a single block, where the block 
size is the size of the key in the block cipher. Define the hash of M 
as Y = E ( X , M ) .  

a. Assuming that the underlying block cipher is secure, verify that 
this hash function satisfies all of the requirements of a hash func- 
tion as listed at the start of this chapter. 

b. Extend the definition of this hash so that messages of any length 
can be hashed. 

c. Why must a block cipher used in this way be resistant to a “chosen 
key” attack‘? Hint: Suppose that if we are given plaintext P ,  we 
can find two keys KO and K1 such that E(P,Ko) = E(P ,Kl ) .  
Show that this block cipher is insecure for use as a hash function. 

3.  Suppose that a hash function h has M different possible outputs. In 
Section 5 .2  we showed that about M hashes must be computed before 
we expect to find a w such that h(w) = h(z).  In terms of M ,  precisely 
how many hashes must, we compute before we expect to find such a w? 
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4. Suppose that a hash function h has A4 different possible outputs. In 
Section 5.2 we showed that about hashes must be computed before 
we expect to find a collision, that is, before we can expect to find x and w 
such that h(x) = h ( w ) .  In t,erms of M ,  give an explicit and simple 
formula that is more accurate than for the number of hashes that 
must be computed before we expect to  find such a x and w? 

5. How could the digital signature attack discussed in Section 5.2.3 be 
prevented? 

6. Recall the online bid scheme discussed in Section 5.2.4. 

a. Describe a forward search attack (see Section 6.5.1 for a definition) 
against this scheme. 

forward search attack 
b. Describe a simple modification to this scheme that will prevent a 

7. The Nostradamus attack is discussed in Section 5.2.4. We showed that 
to apply this attack to MD5, which generates a 128-bit hash, the dia- 
mond structure has a height of 2‘’ and the work factor is on the order 
of 2x7. 

a. What is the height of the diamond structure arid what, is the work 
factor to apply this attack to the Bobcat hash, which generates a 
48-bit output (Bobcat is a “toy” hash function discussed in [142])? 

b. What is the height of the diamond structure arid what. is the work 
factor to apply this attack to the SHA-1 hash, which generates a 
160-bit output? 

c. What is the height of the diamond structure arid what is the work 
factor to apply this attack to the Tiger hash, which generates a 
192-bit output? 

ti. Suppose that the Nostradarnus attack in Sect,ion 5.2.4 uses the diamond 
structure in Figure 5.2. Then the “predicted” hash value is y = d:(o. 
If f ( IV,  P, S’) = dos, what is the resulting message M .  in terms of P ,  
S’ and Mi,, such that h ( M )  = y? 

9. Write computer programs to verify the following, where a ,  b and c are 
%bit bytes (as opposed to the 32-bit words used in MD4). 

a. For F ( a ,  b, c) = (a, A b )  V ( l a .  A c ) :  
i. F ( a ,  b, c) = F ( l u ,  b, c )  if and only if b = c 

ii. F ( a ,  b,  c )  = F ( a ,  -h, c )  if and only if a = Ox00 

iii. F ( a ,  b, c )  = F ( a ,  b,  i c )  if and only if a = Oxff. 
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b. For G(u, b, c) = (u A b)  V (u A c) V ( b  A c), 

i. G(a,  b, c) = G ( l u ,  6 ,  c) if and only if b = c 
ii. G(a,  b, c) = G(a, -b, c )  if and only if a = c 

iii. G(a, b, c) = G(a,  b, y e )  if and only if a = b. 
c. For H ( a ,  b, c) = a @ b @ c, 

i. H ( u ,  b, c) = -H(-a ,  b,c) = y H ( a ,  -b, c )  = -H(u ,  b, y e )  

ii. H ( a ,  b, c )  = H ( l a ,  4 , c )  = H ( i u ,  b, ye) = H ( a ,  4, -c). 

10. Recall that for the differential attack on MD4 (which is outlined in 
Table 5.5), the only difference between M and M‘ is in word X12, 
and Xi2 = X12 + 1. Assuming that a similar attack could succeed 
using a different word, why would it make sense to focus the attack on 
word 12? 

11. Show that the following statements are true, where “steps” refer to the 
steps of the differential attack on MD4, as given in Table 5.5. Also, G 
and H are defined in (5.5) and (5.6), respectively. 

a. To verify steps 22, 23, 26, 27, 30, and 31 it is sufficient to show 
that 

G(X, Y, 2) = G(X, Y, 2 + ( f l  << n)), 

with a probability of about p = 1/3 for any n E {0,1,2,. . . ,31}. 

b. To verify steps 24, 25, 28 and 29 it is sufficient to show that 

G ( X ,  Y, 2) = G ( X ,  Y + ($1 << n) ,  2 + ( ~ l < <  m)) ,  

with a probability of about p = 1/9 for any n, m E {0,1 ,2 , .  . . ,31} 
with n # m. 

c. To verify steps 32 and 33 it is sufficient to show that 

H ( X ,  Y, 2) = H ( X ,  Y + l ,z - l),  

with a probability of about p = 1/3. 

d. To verify steps 34 it is sufficient to show that 

H ( X ,  Y,  2) = H ( X ,  Y, 2 + 1) - 1, 

with a probability of about p = 1/3. 

12. Consider the formulas given in Problem 11. Suppose that we replace 
the 32-bit words X, Y ,  and Z with 8-bit bytes x, y and z .  Then we can 
compute the probabilities exactly. Write a computer program to verify 
the claimed probability in each part of Problem 11 using 8-bit words 
instead of 32-bit words. 
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13. Verify equations (5.30) and (5.32). 

14. The continuous approxiniation phase of the MD4 attack relies on the 
fact that for the functions F and G in (5.4) and (5.5), nearby inputs 
produce nearby outputs. Suppose that the 32-bit words A ,  B and C are 
rcplaced with 8-bit bytes a ,  b and c. Furthermore, suppose that a’ differs 
from u in exactly one randomly selected bit position, b’ differs from b 
in exactly one randomly selected bit position, and c’ differs from c in 
exactly one randomly selected bit position. Write computer programs 
to answer the following. 

a. Find the probability that F ( u ,  b. c )  and F(a’, b’, c’) differ in ex- 

b. Find the probability that G(a,b .c )  and G(a’,b’,c’) differ in ex- 

c. Find the probability that H ( a , b , c )  and H(a’,b’,c’) differ in ex- 
actly k bit positions, for k = 0 , 1 , 2 , .  . . ,8 ,  where H is defined 
in (5.6). 

actly k bit positions, for k = 0 , 1 , 2 , .  . . .8. 

actly k bit positions, for k = 0 , 1 , 2 , .  . . ,8.  

15. Implement tho continuous approximation equation solving phase of the 
MD4 attack. Use your program to provide empirical estimates of the 
following. 

a. How many iterations, on avcrage, are required before the chcck 
condition in (5.35) holds? 

b. In the continuous approximation, on average, how many iterations 
are required before the solution converges? That is, given a so- 
lution to (5.35)? how many iterations are needed before (5.36) is 
satisfied? 

c. The continuous approximation can sometinies fail to converge. Us- 
ing a cutoff of 100,000 iterations, what is the probability that the 
continuous approximation fails to converge? 

fore one admissible solution is found? 
d. How marly nonadmissiblc solutions are computed, on average, be- 

16. mJrite a program to implement the differential phase of the MD4 attack. 
Use your program to empirically estimate the probabilities that appear 
in Table 5.5. 

17. Dobbertiri [42] claims that the probability of siiccess of the differential 
phase of the MD4 attack is 1/222. Assuming this is the case, show 
that the work factor for Dobbertin’s attack is roughly equivalent to the 
cornputation of 220 h4D4 hashes. 
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18. Approximately how many MD4 collisions can be found using Dob- 
bertin’s attack‘? 

19. Let M = ( X O ,  X i , .  . . , X i s ) ,  where 

Xo = 0~9074449b, 
X2 = Ox8bf37fa2, 
X ,  = Ox63247e24, 
X ,  = 0x43415254, 
X s  = 0x68742074, 

Xi0 = 0x20656369, 
Xi2 = 0 ~ 2 ~ 3 6 3 7 3 1 ,  
Xi4 = 0 ~ 2 0 6 6 6 ~ 4 1 ,  

X i  = 0~1089fc26,  
X3 = Oxld630daf, 
X s  = 0x4e4f430a1 
X7 = Ox410aOa54, 
Xg = 0x72702065, 

Xi1 = 0~2420666f ,  
Xi3 = 0x20353934, 
Xi5 = 0 ~ 7 7 6 f 6 ~ 4 2 .  

a. Compute the MD4 hash of M .  
b. Let MI be the same as M ,  with the exception that Xi2 is replaced 

by X i 2  = X12 + 1, that is, X i 2  = 0x2~363732. Compute the MD4 
hash of MI. 

c. Interpret 111 arid M’ as ASCII text, where the byte order of each X i  
is little endian. Then, for example, X6 consists of the bytes 

(0x54,0x52,0x41,0x43) 

which represents the ASCII text “TRAC”. 

20. Let 
F ( A , B , C )  = (AA B )  V (’A A C )  

and 
$(A,  B ,  C )  = (A A B )  (’A A C ) .  

Suppose that A, B and C are 32-bit words selected at random. Then 
what is the probability that F ( A ,  B,  C) = F(A,  B, C)? 

21. In Section 5.4.2 we described Wang’s “precise differential,” which we 
Given 32-bit words X’ and X ,  let U = XI A 1 X  denoted by V X .  

and L = 1X’ A X .  Then it is easy to see that X’ @ X = U 6 L.  

a. Show that for U and L defined in this way, 

X’ - X = U - L (mod 232). (5.56) 

b. Given U = ( u o , u ~ , .  . . , u g l ) ,  L = ( t o ,  e l , .  . . , t : 3 1 )  and X’ and X as 
defined above, define a string S = ( S O ,  s1,. . . , s31) with a “+” in 
precisely those positions j where uj = 0, a LL-” in precisely those 
positions where ej = 0, and a “.” in all other positions. Show 
that S = V X .  
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c. Verify that (5.56) holds for every line in Tables A-2, A-3, A-4, 
and A-5, that is, show that 

AOntput = U - L (mod 2 ” ) ,  

where U arid L are determined from the VOutput. That  is, U 
has a 1 in each position where there is a “+” in VOutput and 0 
elsewhere, and L has a 0 in each position where there is a “-” 
in VOutput and 0 elsewhere. 

22. This problem deals with some properties of cyclic rotations with respect 
to the signed differential. 

a. Vmify that 

b. Suppose that we have X‘ - X = U - L ,  where U = X’ A - X ,  
and L = 1X‘  A X .  Then, in addition to  the differences being 
equal, we have X’ @ X = U @ L ,  each 1 in U corresponds to  a 1 
in X’ and a 0 in X ,  each 1 in L corresponds to a 1 in X and a 0 
in X’. and U and L are “disjoint”, in the sense that U A L = 0. 
Givcn such X’,  X ,  U and L ,  verify that 

(X’  <<< n) ~ ( X  <<< n) = (U <<< n)  - ( L  <<< n). 

Either prove this in general, or verify that it holds for all choices 
of 1-byte values and for all n = 0 , 1 , 2 , .  . . ,7.  

c. Let X’, X ,  U and L be as in part h. Let 2 = X’ - X .  Give an 
example for which 

( Z  <<< n) # (U <<< n) ~ ( L  <<< n)  

23. Lct T and y be randomly selected bytes. For each k = 0 . 1 , 2 , .  . . ,7.  
what is the probability pk that 

( J  - y) >>> k = (. >>> k )  - (y  >>> k ) ,  

where the subt,raction is taken modulo 256? 

24. This problem analyzes sonic issues related to the MD5 single-step mod- 
ificat ions techiiique. 
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a. Let X and Y be 32-bit words and n E {0,1,2,. . . , 31}  and compute 

2 = X + (Y <<< n) (mod 232). 

Denote the bits of 2 as (zo,  21,. . . ,231). Let in ,  i l ,  . . . , ik be a set 
of k distinct elements of the set {0,1,2,. . . ,31}.  Let E, be the 
byte that is all 0, except for a 1 in bit i .  Then Ei = 231-i. Let 

A = (2 - ziOEi,, - zilE,il - .. .  - zikEik)  (mod 232)  (5.57) 

and 
Y = ( ( A  - 2) >>> n)  + Y (mod 2”). 

Show that 2 = X + (p <<< n) (mod 232)  has zero bits in po- 
sitions i n ,  i ~ ,  . . . , ik. Either prove this in general, or show that it 
holds for all 1-byte values, with n and k modified accordingly. 

b. Suppose that we want to force some bits of 2 to be 1 instead of 0. 
How can be accomplish this by modifying (5.57)‘? 

25. Consider the MD5 attack, as described in this chapter. Suppose we are 
trying to find a collision for the first message block Mo. When we test 
the probabilistic conditions, and the test fails, why does it suffice to 
only modify the last two words of Mn instead of computing an entirely 
new Mn? 

26. This problem asks you to demonstrate that a meaningless MD5 collision 
can be used in a meaningful attack. 

a. Verify that the following two 1024-bit messages (given in hexadeci- 
mal) differ, specify the bit positions where the messages differ, and 
verify that the two messages have the same MD5 hash value. 

dl 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 
2f ca b5 87 12 46 7e ab 40 04 58 3e b8 fb 7f 89 
55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a 
08 51 25 e8 f7 cd c9 9f d9 Id bd f2 80 37 3c 5b 
96 Ob Id dl dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 
35 73 9a c7 fO eb fd Oc 30 29 fl 66 dl 09 bl 8f 
75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 cc 15 5c 
ed 74 cb dd 5f c5 d3 6d bl 9b Oa d8 35 cc a7 e3 

and 
dl 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 
2f ca b5 07 12 46 7e ab 40 04 58 3e b8 fb 7f 89 
55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 fl 41 5a 
08 51 25 e8 f7 cd c9 9f d9 Id bd 72 80 37 3c 5b 
96 Ob Id dl dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 
35 73 9a 47 fO eb fd Oc 30 29 fl 66 dl 09 bl 8f 
75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 4c 15 5c 
ed 74 cb dd 5f c5 d3 6d bl 9b Oa 58 35 cc a7 e3 
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b. Use the collision in part a to construct two files that display very 
different text when viewed or printed, yet have identical MD5 
hashes. Hint: Mimic the attack outlined in Section 5.4.7. 

27. In Section 5.4.5 we determined conditions on T 5  and T6 that must he 
met for Wang's MD5 attack to succeed. Perform a similar analysis to 
determine conditions on T7. 

28. In Section 5.4.5 we analyzed steps four and five of the MD5 hash to 
determine conditions on the QJ that must be met for Wang's MD5 
attack to succeed. Perform a similar analysis for step six. 



Chapter 6 

Public Key Systems 

It is generally regarded as self-evident, that, in order to prevent an interceptor 
from understanding a message which is intelligible to the authorised recipient, 

it is necessary to have some initial information known to the sender 
and to the recipient but kept secret from the interceptor.. .. 

This report demonstrates that this secret information 
is not theoretically necessary.. .. 

- James Ellis [45] 

6.1 Introduction 

All of the cryptosystems discussed in previous chapters are examples of sym-  
metric key ciphers. In this type of system, both parties use a common key 
to encrypt and decrypt messages. In public key cryptography, each user has 
a key pair consisting of a public key and a private key. Not surprisingly, Al- 
ice’s public key is public, while Alice’s private key is known only to Alice. 
Anyone can use Alice’s public key (since it is public) to send encrypted mes- 
sages to her, but only she can decrypt such messages since only she has the 
corresponding private key. Whereas symmetric key cryptography has been 
used since antiquity, public key cryptography came into being in the 1970s. 
Perhaps the most remarkable thing about public key crypto is that it exists 
at all. 

A public key cryptosystem is based on a “trap door one-way function.” 
The security of a public key cipher rests on this function, which is easy to 
compute in one directlion but difficult to compute in the other direction. 
Furthermore, the trap door feature ensures that an attacker cannot obtain 
information about the secret decryption key from knowledge of the public 
encryption key. Examples of trap door one-way functions used in public key 
cryptography include factoring (RSA), discrete logarithms (Diffie-Hellman), 
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and finding the nearest codeword in a linear binary code (McEliece). Finding 
a trap door one-way function suitable for use in a public key cryptosystem is 
riot an easy task. Consequently, the number of sensible public key cryptosys- 
tenis is far smaller than the number of strong symmetric cipher systems. 

Digital  s igna tu res  can also be implemented using public key cryptography. 
Alice can digihlly sign a message by “encrypting” it with her private key. 
Then, anyone can “decrypt” the message using Alice’s public key, thereby 
verifying that only Alice could have signed the message. In fact, the ability 
to create digital signatures is a very useful feature of public key cryptography, 
for which there is no analog in the realm of symmetric ciphers. 

Alice’s digital signature is similar to her handwritten signature in the 
sense that only she can create i t ,  but, in principle, anyone can verify whether 
or not the signature is Alice’s. However, digital signatures offer some signif- 
icant advantages over handwritten signatures. For example, when correctly 
implemented, a digital signature cannot be forged, in stark contrast to a 
handwritten signature. Also, a digital signature is tied directly to the signed 
document. Whereas a handwritten signature can be photocopied onto differ- 
ent documents, a digital signature cannot be duplicated in such a manner. 

As discussed in Section 5.1, digital signatures provide integrity. That is, 
if Alice signs a message M ,  the recipient can automatically verify that the 
received message is the message that was actually sent. Another important 
property of digital signatures is that they provide non- repud ia t ion .  When 
Alice digitally signs a message, it guarantees that she actually signed the 
message and she cannot later claim that she did not do so. That is, Alice 
cannot repudiate the signature. While it is possible to provide integrity using 
symmetric key cryptography, it is not possible to achieve non-repudiation 
using symmetric keys. This follows from the fact that Alice’s private key is 
known only to Alice. On the other hand, if Alice wants to communicate with 
Bob using a symmetric key, the key must he known to both Alice and Bob. 
Since Bob has the symmetric key, he can do anything with the key that Alice 
can do. Consequently, if Alice “signs” with the symmetric key, she can later 
repudiate the signature, claiming that Bob forged her signature. Although 
Bob knows that he did not “sign” for Alice, he cannot prove it .  

In this chapter, we examine several public key systems, including the 
Merkle-Hellman knapsack cipher, the Diffie-Hellnian and Arithmetica key 
exchange protocols, the RSA, Rabin and NTRU public key cryptosystems, 
rind the ElGamal signature scheme. All of these systems have played (and in 
some instances, continue to play) an important role in the fascinating field of 
public key cryptography. 

Our primary goal in this chapter is to int,roduce the variety of public key 
syskrns and to emphasize some of the relatively subtle mathematical issues 
that arise in public key Cryptography. In keeping with the theme of the book, 
we present these math issues as “attacks,” although many of the attacks 
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discussed in this chapter would never be a serious threat in practice. However, 
the attacks on the Merkle-Hellman knapsack discussed in the next section, 
and some of the attacks on NTRU mentioned in Section 6.7 are exceptions, 
since these raise serious cryptanalytic issues. However, the coverage of these 
attacks is less detailed than those presented in previous chapters. Chapter 7 
is more in tune with the previous chapters of the book, since it contains a 
more in-depth treatment of a few cryptanalytic attacks on public key systems. 

6.2 Merkle-Hellman Knapsack 

Every private in the French army carries a. Field Marshal wand in his knapsack. 
- Napoleon Bonaparte 

The Merkle-Hellman knapsack cryptosystem [loo] was one of the first pro- 
posed public key cryptosystems. This cipher utilizes a few elementary, but 
nonetheless clever mathematical ideas. Because of its historical significance 
and since it is easy to understand, we examine it first. The cipher is based 
on a mathematical problem which is known to be NP-complete [55]. 

The subset sun1 or knapsack problem can be stated as follows: Given a 
set of r weights 

w = (wo, W l ,  . . . , WT-1) 

and a sum X, find zo, 21, .  . . , ~ ~ - 1 ,  where each zi E (0, l}, so that 

x = z o w o + z ~ w ~  +. . .+  Xr- lWT- l ,  

provided that this is possible. Note that the zi simply select a subset of the 
weights. 

For example, suppose that the weights are W = (4,3,9,1,12,17,19,23) 
and the given sum is X = 35.  Then, a solution to the subset problem exists 
and is given by z = (01011010), since 

0 . 4  + 1 . 3  + 0 . 9  + 1 . 1  + 1 . 1 2  + 0 . 1 7  + 1 . 1 9  + 0.23  = 35. 

For this set of weights, if X = 6, the problem does not have a solution. 
While the general knapsack problem is NP-complete, a special type of 

knapsack known as a superincreasing knapsack can be solved efficiently. A 
superincreasing knapsack is a set W that, when ordered from least to greatest, 
has the property that each weight is greater than the sum of all the previous 
weights. For example, 

W = (2; 3,6; 13,29,55,112,220) (6.1) 

is a superincreasing knapsack. 
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It is straightforward to solve a superincreasing knapsack problem. For 
example, suppose that we arc given the set of weights in (6.1) and the 
sum X = 76. Since X is less than 112, we must have 2 7  = 2 6  = 0. Then, 
since X > 55 and we have 2 + 3 + 6 + 13 + 29 < 55, it must be the case 
that 2 5  = 1. That is, if we do not select the weight 55, then we cannot 
possibly reach the desired sum, since the sum of all remaining weights is less 
than 55, due to the superincreasing property. 

Now, let X I  = X-55 = 21. Since 13 < XI < 29, we must have that 2 4  = 

0 and = 1. Continuing in this manner, we find z = (10110100) which is 
casily verified to be correct since 76 = 2 + 6 + 13 + 55. This process yields 
an efficient (linear time) algorithm to solve any superincreasing knapsack 
problem. 

Merkle and Hellman’s [lo01 idea was to disguise a superincreasing knap- 
sack S through the use of a mathematical transformation to make it look 
like an arbitrary knapsack T .  The disguised knapsack T is made public by 
Alice and T acts as Alice’s public key. When Alice receives a ciphertext, she 
applies the inverse of the transformation to convert the problem back to the 
superincreasing case. Alice decrypts by solving the resulting superincreas- 
ing knapsack problem. Without knowledge of the transformation, it would 
appear that a cryptanalyst must solve a general knapsack, which is a hard 
prohlein. However, there is a shortcut attack, which we describe below. But 
first we discuss the the knapsack cryptosystem in more detail. 

To creatc her public and private keys, Alice first chooses a superincreasing 
knapsack S = (so, s1,. . . s,~). To convert S into T ,  she also chooses a 
coriversion factor m and a modulus n, where gcd(m,n) = 1 and n is greater 
than the sum of all elements of 5’. The transformed knapsack is computed as 

T = (sonz (mod n ) ,  s1m (mod n) .  . . . , s , - l m  (mod n ) )  

arid T is made public. Alice’s private key consists of S and m-l (mod n).  
Suppose Bob wants to send a message of T bits to Alice. Bob first converts 
his plaintext into a binary block B. He then uses the 1 bits of B to select thc 
elerrient,~ of T ,  which are then summed to give the ciphertext block C. Alice 
recovers the plaintext B ,  by using the private key to compute Cm-’ (mod n ) ,  
arid solves using her superincreasing knapsack. To encrypt longer messages, 
inult,iple blocks are encrypted. 

To make things more concrete, consider the following example. Suppose 
that Alice chooses the superincreasing knapsack 

S = (2.3.7,14, 30,57.120,251), 

aloiig with ni = 41 and moduli~s n = 491. To transform S into a general 
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knapsack T ,  Alice performs the following computations 

2m = 2.41  = 82 (mod 491) 

3m = 3 . 4 1  = 123 (mod 491) 

7m = 7 . 4 1  = 287 (mod 491) 

14m = 14.41 = 83 (mod 491) 

30m = 30.41 = 248 (mod 491) 

57m = 57.41 = 373 (mod 491) 

120m = 120.41 = 10 (mod 491) 

251m = 251 .41 = 471 (mod 491). 

Then Alice's public key is 

T = (82,123,287,83,248,373,10,471). 

Alice's private key consists of 

S = (2,3,7,14,30,57,120,251) 

and 
m-' (mod n) = 41-l (mod 491) = 12. 

Now; suppose that Bob wants to  encrypt the message M = 150 for Alice. 
He first converts 150 to  binary, that is 10010110. He then uses the 1 bits 
to  select the elements of T that are summed to give the ciphertext. In this 
example, Bob computes the ciphertext 

C = 82 + 83 + 373 + 10 = 548 

and sends C to  Alice. To decrypt this ciphertext, Alice uses her private key 
to compute 

Cm-l (mod n) = 548.12 (mod 491) = 193. 

She then solves the superincreasing knapsack S for 193 and she recovers the 
message in binary 10010110 or, in decimal, 111 = 150. 

That this decryption process works can be verified by using elementary 
properties of modular arithmetic. In the particular example considered above, 
we have 

548m-' = 82m-' + 83m-' + 37m-I + 10m-1 

= 2mm-' + 14mm-' + 57mm-' + 120mm-' 

= 2 + 14 + 57 + 120 

= 193 (mod 491). 



270 PUBLIC KEY SYSTEMS 

In general: due to the linearity of the process used to convert from the sii- 
perincrcasing knapsack S into the public key knapsack T ,  knowledge of rri,-l 

makes it easy to convert the ciphertext to the superincreasing case. With- 
out Alice’s private key, (S,m-’ (mod n,)), t,he attacker Trudy needs to find 
a subset, of T which sums to the ciphertext’ value C.  This appears to be a 
general knapsack problem, which is intractable. 

By converting the superincreasing knapsack into the general knapsack 
through the use of modular arithmetic, it trapdoor is introduced into the 
knapsack. Without rn, it is not clcar how to find the conversion factor nb-�. 
The one-way feature results from the fact that it is easy to encrypt with 
the general knapsack, but it is (hopefully) difficult to decrypt without the 
private key. But with the private key, the problem can bc converted into a 
superincreasing knapsack, which is easy to solve and thus enables the intended 
recipient t,o easily decrypt. 

However, this cryptosystem was shown to be insecure by Shamir [132] in 
1983. It turns out that the ”general knapsack” (the public-key) which arisos 
in the Merkle-Hellman cryptosysteni is not general enough. Instead, it is a. 
highly structured case of the knapsack and Shamir’s lattice reduction attack 
is able to take advantage of this fact. Shamir’s ingenious method of attack is 
dicussed in the next section. 

6.2.1 Lattice-Reduct ion Attack 

Lattice reduction is it powerfiil technique which can be used to solve many 
different t,ypes of combinatoria.1 problems. We first describe the lattice re- 
duction method, as discussed in [142], and then illustrate how it can be used 
to attack thc hlerkle~-Hellman knapsack cryptosysteni. Some elementary lin- 
ear dgebra is used in this section; scc the Appendix for an overview of the 
necessary linear algebra. 

Consider: for example, the vectors 

Since cg arid c1 are linearly independent, any point in the plane can be 
uniquely represented by NOCO + Q I C I ,  where 00 and are real numbers. 
If we restrict the coefficients to integers, that is, we require tha,t a0 and a1 
are integers, then we obtain a lattice consisting of discrete points in thc plane. 
Figure 6.1 illustrates the lattice spanned by co and c1. In general, a lattice C 
is thc set of all linear combinations of a set of column vectors ci with integer 
coefficients. 

Given an m x n matrix A and an r n  x 1 matrix B ,  suppose we want to 
find a solut,ion U to  t,he matrix equation AU = B ,  with the restriction that U 
consist,s cntirely of 0s and 1s. I f  U is a solution to AU = B> then the block 
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Y 

Figure 6.1: A lattice in the plane. 

matrix equation 

holds true, since M V  = W is equivalent to U = U and AU - B = 0. Con- 
sequently, finding a solution V to the block matrix equation M V  = W is 
equivalent to finding a solution U to the original matrix equation AU = B.  
Note that the columns of M are linearly independent, since the n x n identity 
matrix appears in the upper left and the final column begins with n zeros. 

Let CO, c1, c2,. . . , c ,  be the n + 1 columns of the matrix M in (6.2) and 
let v g ,  v1, v2, .  . . , vn be the elements of V. Then 

w = uoco + V l C l  + . . . + ?Jncn. (6.3) 

We have M V  = W ,  where 

W =  
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and we want to determine U .  Instead of solving linear equations to obtain 
V ,  we will find U by determining W .  Note that because of (6.3), W is in the 
lattice C. spanned by thc columns of M .  

The Euclidean length of a vector Y = [yo, y ~ ,  . . . , ylL+nL- , I T  is 

However, the length of a vector W in (6.4) is 

which is much “shorter” than a typical vector in C. Furthermore, W has a 
very special form, since its first nl entries consist of 0s and 1s with its last m 
cntries I-xing all 0. Is it possible to take advantage of this special structure 
to  find W ?  

In 1982, Lenstra, Lenstra and Lov&sz [91] discovered the so-called LLL 
Algorithm, which provides an efficient method to  find short vectors in a lat- 
tice. In Table 6.1, we give an outline of their algorithm in pseudo-code, 
where GS(M) refers t o  the Grarn--Schmidt process, which returns an or- 
thonormal basis for the subspace spanned by the columns of M .  The Gram- 
Schmidt process appears in Table 6.2. Note that a small number of lines of 
pseudo-code suffices to  specify the entire LLL Algorithm. 

With clever insight, Shaniir [I321 realized that lattice reduction could 
be used to  attack the Merkle-Hellman knapsack cryptosystern. Suppose that 
Bob’s public knapsack is given by T = (to,  t l ,  . . . , t r - l ) ,  and Alice sends Bob a 
ciphertext block C, encrypted with Bob’s public knapsack. Since the attacker, 
Trudy, knows the public knapsack T and C, she can break the system if she 
is able to  solve the matrix equation TU = C ,  where U is an T x 1 column 
matrix consisting of 0s and 1s. 

Trudy can rewrite the matrix equation T U  = C in block matrix form as 

arid apply the LLL Algorithm to the matrix A f .  The resulting short vectors 
which are obtained can be checked to  see if they have the special form required 
of W ,  which is a column vector where the first T entries are all 0 or 1 and last 
entry is 0. The LLL Algorithm will not always produce the desired vector 
and therefore, the attack is not always successful. However, in practirp, the 
lattice reduction attack is highly effectivc against the original Merkle-Hellman 
knapsack. 

To illustrate the lattice reduction attack, suppose Alice constructs her 
knapsack key pair from the superincreasing knapsack 

S = ( S O ,  ~ 1 . .  . . , ~ 7 )  = (2,3.7,14,30,57,120,251), 
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Table 6.1: LLL Algorithm 

// find short vectors in the lattice spanned 
// by the columns of M = (bo, b l ,  . . . , b,) 
repeat 

( X , Y )  = G S ( M )  
f o r  j = 1 to n 

f o r  i = j  - 1 to 0 
i f  Iyijl > 1/2 then 

end i f  
bJ = bj - Lyij + 1/2]bi 

next i 
next j 
( X , Y )  = G S ( M )  
f o r  j = 0 t o  n - 1 

if (Izj+l + yj, j+lzj(I2 < $ ( l ~ j ( ( ~  then 

SW"P(bj, b+l) 
goto abc 

end i f  
next j 
re turn(  M )  

abc: continue 
forever 

with m = 41 and modulus n = 491. Then, m-l = 12 (mod 491). The corre- 
sponding general knapsack T is obtained by computing ti = 41si (mod 491), 
for i = 0 , 1 , 2 , .  . . ,7 ,  which was found above to  be 

T = ( to , t l , .  . . , t 7 )  = (82,123,287,83,248,373,10,471). 

Alice's knapsack key pair is defined by 

Public key: T 

and 
Private key: S and rr-’ (mod n).  

Suppose Bob wants to  encrypt the message M = 10010110 for Alice. 
Then, as discussed above, Bob computes 

and sends ciphertext C = 548 to Alice. 
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Table 6.2: Gram-Schmidt, Process 

// Gram--Schmidt M = (bo,  b l ,  . . . , b,) 
GS(Rf) 

20 = bo 
f o r  j = I t o  n 

2;  = b .  
.I 3 

f o r  i = 0 t o  j - 1 
yl/ij = (x i  . bj)/\lx:l/il12 
n:j = . Ic.. ,] - yzjzi 

next i 
next j 
r e t u r n ( X ,  Y )  

end GS 

Now, suppose that Trudy wants to recover the plaintext that corresponds 
to ciphertext C = 548. Since Trudy knows the public key T and cipher- 
text C = 548, she needs to firid a set of u l ,  for i = 0 , 1 , .  . . , 7 ,  with the 
rcstrictiori that each u, E (0, l}, and 

This can be written as the matrix equation 

T . U = 548. 

where T is Alicc's public knapsack and U = ( 2 1 0 ,  u1,.  . . , u7),  arid the a, are 
unknown. but earh must be cither 0 or 1. This is of the form AU = B (as 
discussed above), so Trudy rewrites the matrix equation as AJV = W and 
applies the LLL Algorithm to 12.1. In this case, Trudy firids 

- 1  0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0  
0 0  1 0 0 0 0 0  
0 0  0 1 0  0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  
0 0  0 0 0  0 0 1  

- 8 2  123 287 83 248 373 10 471 

0 
0 
0 
0 
0 
0 
0 
0 

-548 

The LLL Algorithm outputs a matrix h1’. consisting of short vectors in the 
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M’= 

- - 1 - 1  0 1 0  1 0  0 1 
0 - 1  1 0  1 - 1  0 0 0 
0 1 - 1  0 0 0 - 1  1 2  
1 -1 -1 1 0 -1 0 -1 0 
0 0 1 0 - 2 - 1  0 1 0  
0 0 0 1 1  1 1 - 1  1 
0 0 0 1 0  0 - 1  0 - 1  
0 0 0 0 0 0 1 1 - 1  

- 1 - 1  1 0  0 1 - 1  2 0 

The entries in the fourth column of M’ have the correct form to be a solution 
to this knapsack problem. Therefore, Trudy obtains the putative solution 

u = (1 ,0 ,0 ,1 ,0 ,1 ,1 ,0)  

Using the public key and ciphertext C = 548, she can easily verify that U is 
indeed the original plaintext sent by Bob. 

6.2.2 Knapsack Conclusion 

Much research has been done on the knapsack problem since the Merkle- 
Hellman cryptosystem was broken. Several different knapsack variants have 
been created and some of these appear to yield secure cryptosystems. How- 
ever, people have been reluctant to use these systems, since “knapsack” con- 
tinues to be equated with “broken,” even to this day. For more information 
on knapsack cryptosystems, see [37, 89, 1091. 

6.3 Diffie-Hellman Key Exchange 

[If] you look right under the center of a streetlight, 
you don’t find anything that wasn’t known before. 

I f  you look out into the darkness, you don’t discover anything, 
cause you can’t see anything. 

So you’re always working at the edge o f  the streetlight, 
trying to find your keys. 
- Whitfield Diffie 

In symmetric key cryptography, both parties use a common key to encrypt 
and decrypt messages. However, when using such a system, there is a critical 
issue that needs to be dealt with, that is, how can Alice and Bob agree upon 
a key? Can this be accomplished in a secure manner over a public channel? 
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These and related questions were on the minds of Diffie, Hellman and Merkle 
during the 1970s. At the time, there was no solution in sight for this vexing 
kxy distribution problem. 

In 1976, Diffie arid Hellman published their seminal paper [38] which made 
the case that public key cryptography should be possible and proposed the 
Diffie~-Hellman key exchange protocol as a solution to the key distribution 
problem; see also [l20]. Ironically, the first to discover DiffieeHellman was 
actually Malcolm Williamson of GCHQ (roughly, the British equivalent of 
NSA) [93]. However, this does nothing to diminish the accomplishment of 
Diffie and Hellman, since Williamson's work was classified. 

The Diffie-Hellman key exchange, as illustrated in Figure 6.2; opemtes in 
the following way. Let p be a large prime and g an integer, where 2 5 g 5 p-2.  
Both the prime p and generator g are publicly known. Alice chooses a random 
niiniher a ,  where 1 5 a 5 p - 2 and calculates a = ga  (mod p ) .  She 
then serids Q to Bob. The number a is private, that is, a is known only 
to Alice. Bob also chooses a random number b,  where 1 5 b 5 p - 2 and 
calculates f i  = 9' (mod p )  and sends /3 to Alice. The number b is private, 
known only to Bob. Alice t,lien calculates 

0" (mod p )  = (mod p )  = gab (mod p )  

arid Bob computes 

a' (mod p )  = (g" )b  (mod p )  = g a b  (mod p ) .  

Alice and Bob now share gab (mod p ) ,  which can be used as a symmetric key. 

Figure 6.2: Difie Hellman key exchange. 

Trudy sees ga (mod p )  and g6 (mod p )  and she breaks the key exchange 
protocol if she can find gab (mod p ) .  To do 50, it appears that she must find a 
from ga (mod p )  or b from gb (mod p ) .  Therefore, the strength of the Diffie- 
Hcllinan key exchange protocol is believed to depend on the computational 
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complexity of solving the discrete logarithm problem. That is, there is no 
efficient solution to the problem of finding y given ICY (mod p ) ,  the base z 
and the modulus p .  

Suppose, for example, we want to solve the equation 2" = 9 (mod 11). 
Since the numbers are so small, this is easy to solve by exhaustively searching 
through all of the possible exponents. We see that 

2'= 1 (mod 11) 

2l = 2 (mod 11) 

22 = 4 (mod 11) 

23 = 8 (mod 11) 

24 = 16 = 5 (mod 11) 

25 = 5 . 2  = 10 (mod 11) 

= 1 0 . 2  = 9 (mod 11) 

and, therefore, II: = 6 is the desired solution. However, for large p ,  an ex- 
haustive search is not feasible. Although there are some efficient methods 
for solving certain classes of discrete logarithm problems, there is no known 
efficient algorithm for solving g z  = t (mod p )  for z in general, where g, t 
and p are given. Some of the current discrete log algorithms are analyzed in 
Section 7.3. 

6.3.1 Man-in-the-Middle At tack 

The Diffie-Hellrnan key exchange is subject to a man-in-the-middle attack 
if there is no procedure to authenticate the participants during the key ex- 
change. Suppose that Trudy wants to read messages that are being sent 
between Alice and Bob, where Alice and Bob use the Diffie-Hellman key ex- 
change. First, Trudy chooses an exponent t .  She then intercepts ga (mod p )  
and gb (mod p )  and sends g t  (mod p )  to Alice and Bob. At this point, Alice 
believes gt (mod p )  came from Bob, and Bob believes gt (mod p )  came from 
Alice. Now Trudy computes K A  = ( g a ) t  (mod p )  and K B  = (gb) t  (mod p ) .  
Alice, not realizing that Trudy is in the middle, follows the Diffie-Hellman 
protocol and computes KA. Similarly, Bob computes Kg.  Then when Alice 
sends a message to Bob (encrypted with K A ) ,  Trudy can intercept it, decrypt 
it and re-encrypt it (or encrypt a different message) with KB before sending 
it on to Bob. In this manner, Trudy can read (and alter, if she so desires) all 
messages between Alice and Bob, and neither Alice nor Bob will suspect that 
there is any problem. Figure 6.3 illustrates this man-in-the-middle attack. 

The man-in-the-middle attack on the Diffic-Hellman key exchange can be 
prevented provided the parties are properly authenticated. For example, an 
authentication protocol that uses digital signatures would assure Alice and 
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Figure 6.3: Man-in-the-middle attack on Diffie-Hellniari 

Bob that the received messages originated from the correct person. Since 
Trudy cannot forge Alice’s or Bob’s signatures, her man-in-the-middle attack 
would be thwarted. In addition, such a protocol will prevent a replay attack. 

There are several ways to prevent the man-in-the-middle attack on Diffie- 
Hellrnan. For example, the Station-to-Statzon protocol, devised by Diffie, 
van Oorschot and Wiener [39], could be used for authentication purposes. 
Problem 3 gives a simple example illustrating a technique that prevents the 
man-in-t he-middle attack. 

6.3.2 Diffie-Hellman Conclusion 

Diffic-Hellman provides an elegant solution to one of the most challenging 
problems in all of cryptography-the so-called key estaOlishmen,t problem (or 
key distribution problem), thiLt is, how to securely agree on a shared sym- 
metric key. Prior to the development of public key cryptography, the most, 
common method of key establishment was via a human courier. Obviously, 
this was not a desirable situation. 

Care must be taken when using Diffic-Hellman, since the man-in-thc- 
middle attack is a serious threat. But the man-in-the-middle attack can be 
prcvmted in many important applications. Consequently, the Diffie-Hellman 
key exchange is one of the most useful-and widely used-public key cryp- 
tosysterns. 

Diffie-Hellrnan is used, for example, in the IPSec protocol to provide 
perfect forward secrecy (PFS); see Problem 4. To achieve PFS, an ephemeral 
Dzfic-Hellman key exchange is used. In some situations, Diffie-Hellman can 
be used to make a weak PIN-based or password-based authentication protocol 
relatively secure; see [ll] and Problem 5 for more details. 
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6.4 Arithmetica Key Exchange 

To divide a cube into two other cubes, 
a fourth power or  in general any power whatever into two powers 

of the same denomination above the second is impossiblc, 
and I have assuredly found an admirable proof of this, 

but the margin is too narrow to contain if;. 
- in the margin of Pierre de Fermat's 

copy of Diophantus' Arithmetica 

Arithmetica is a relatively new key exchange mechanism which was invented 
in 1999 by Anshel, Anshel and Goldfeld [5]. Although it serves the same 
purpose as the Diffie-Hellman key exchange, Arithnietica uses an entirely 
different approach than Diffie-Bellman. The Arithmetica key exchange relies 
on some of the most sophisticated mathematics that we discuss in this book. 
However, the reader should not feel intimidated since the basic ideas underly- 
ing the system are relatively easy to understand. We assume that the reader 
is familiar with the basic notion of a group. Section A-2 in the Appendix 
provides enough group theory background to understand all of the material 
in this section. 

The material in this section is a little more abstract than most of the 
other sections in this book, so we begin with some examples. Along the way, 
relevant definitions and concepts will be introduced. For our first example, 
consider the set G consisting of all finite words using the alphabet 

Typical elements of G include 

The letter 1~ can be thought of as the empty  word in G. Here, it is important 
to  note that the order in which letters appear in a word matters so that, for 
example, ub and ba are two different words in G. When working with elements 
of G, we use exponent notation and its properties. Consequently, the elements 
in (6.6) can be rewritten as 

aba2bK2, b3a, b4, nbP1a2b, aba-lb-’, a, b-’, l ~ ,  

respectively. A binary operation V' , which is the concatenation operator, 
can be defined on G. For example, 
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The set, G of all finite words using the alphabet in (6.5), along with the 
concatenation operator "*", is a group (see Section A-2 in the Appendix). In 
fact, this group is known as the free group o n  two genw-ators and it is denoted 

by 
G = ( u , b ) .  (6.7) 

The elenicrits u and b are the generators of G, since all nori-empty words in G 
are formed using a and b (along with u-' and b - l ) .  The term "free" refers to  
the fact that there are no relations between a ,  b, a- ' ,  and b- ' .  For example, 
ab cannot be written as, say, bn. 

We can impose relations on G = ( a ,  h) .  For example, consider the set G as 
in (6.7) with the concatenation operator "*" (as in our first example), along 
with the relations 

Then the identity element 1~ can be expressed in an infinite number of ways, 
including 

1~;  = a 2 , 1~ = b2,  1~ = ababF’a-lb-l, and 1~ = a3bbabnP1b, 

arid concatenation between words in G can be rewritten, as dictated by thc 
relations. For example, 

abn-' * ab = a b l c b  = ah 2 = a l ~  = a .  

Our set G. along with concatenation operator '.*" and these relations, is also 
a group. Let us denote this group as 

This notation gives a finite presentation of the group 5'3, which is a well- 
known symmetric group. It is important to note that a group G rnay have 
many different finite presentations. For example, Problem 6 asks the reader 
to show that 

'I 2 2 s:j = (x,y I Z' , y  , (n:y) ) .  

Sometimes, thc relations in a finite presentation can be used to  rewrite 
cvery possible word into a canonical form. For example, using the finite prc- 
smtatiori S;( = (z, y I 2': y2,  ( z ~ ) ~ ) ,  we see that the clernent zyzy = Is:, can 
be rcwrittcm as z-'(xy;my) = :cP1 . lLy:,, which simplifics to yzy = zP1(:c3), 
whicli, in turn, simplifies to yxg = x2 and, finally, yx  = :c2y. Using the fact 
that yx = x2y, along with the fact that z 3  = y2 = 1 sZJ, we can write cvery 
word in 5’3 in the form zi:yj, where i E (0, 1 ,2}  arid j E (0, l}. Consequently, 
tlic group ~ : j  cim he viewed as t,Iie set, of elements { l s , , ~ , 2 2 , y , z y . x ' y } ,  
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together with the binary operation of concatenation, and subject to  the rela- 
tions z3 = y2 = zyzy = lss. 

We are now ready to  give a description of Arithmetica. Suppose that Alice 
and Bob want to establish a symmetric key. A finitely presented, infinite non- 
abelian group G is made public. Alice and Bob create their public keys to be 
subgroups of G, say, 

SA = (so, s1,. . . , s,-l) and Sg = ( t o , t l , .  . . tm-l) ,  

respectively, and these are made public knowledge. The subgroups SA and 
Sg can be thought of as being the sets of all formal words in the alphabets 
si and t j  respectively, with the binary operation of concatenation, subject to  
the relations of G. Alice and Bob select their private keys 

si(n-li an-1 
E SA and b = t" . . . tjmpl r (0)  7(m-1) SB, a = s ~ ~  . . .  

4 0 )  

respectively. 
Then Alice computes the set of elements {a-ltoa, . . . , a-lt,-la) and 

sends the result to  Bob. Bob computes the set {b-ls lb ,  . . . , b-'s,-lb} and 
sends it to  Alice. Before transmission, each of these sets are rewritten (using 
the specified relations) so as to obscure the private keys a and b. With the 
information received from Bob, Alice is able to  compute b-lab since 

b b-lab = b-lSi0 . . . Zn-1 

u(0)  So(,-1) 

b = b-1s2(o)bb-1s2(l)b.. . b- 1 s ~ ( ~ - ~ )  2,-1 

= (b-ls,(o)b)z" . . . (b- l~o(n-l)b)znpl .  

Similarly, Bob can compute a-'ba. Using their respective private keys, Alice 
and Bob each compute a-lb-lab, which can serve as a shared symmetric key. 

Although this seems very complicated, in fact it really is not, as a sim- 
plified example will illustrate. Suppose Alice and Bob decide to  establish a 
common key, using the Arithmetica key exchange. They first select a group, 
say, 

G = (z, Y I z4, Y2, P Y z )  

and make it public. Alice chooses her public key to be 

S A  = ( S O ,  S1) = (z2, Y) = { I G ,  5 ' 9  z2Y}  

and Bob chooses his public key to  be 

2 SB = ( t o )  = (z) = { l G , z , Z  , x 3 } ,  

which are also made public. Now, Alice generates her private key 

a = (z 2 2  ) . (y) - l  = .4y-1 = I G .  y-1 = y-1 
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and Bob generates his private key 

b = (x)" = x:3. 

Next, Alice computes a-ltoa = y-lzy and rewrites it as yzy. She then sends 
{yzy} to Bob. In a. similar manner, Bob coniputes (and rewrites) 

and 
bP1s lb  = x-'yx3 = q x 3  = x . ~ ~ ' y  = xP2y = x 2 y. 

He then sends { x P 2 ,  z2y}  to Alice. 
To establish a common key, Alice computes 

b-lab = (x?)*(x*y)-I = ( 2 ) 2 ( y p x - * )  
= x 4 y -1 x -2 - - 1c; ' y-1.c-2 = yx 2 2  = x y 

Finally, she computes a-l(b- 'ab) = (y-’)-’(x2y) = yx2y = x2. Similarly, 
Bob computes 

-1 a, ba = (yxy)" = yxy ' yxg . yxy 
2 2  yxy x?J xy = 2/X ' 1G ' x . 1G . xy 

3 = yJ' y = 2:. 

Bob then computes the value a-’b-’a = ( a -  'ba)-' = x-’, which he uses to 
obtain the shared secret (a- 'b- 'a)b = xP1 . 2' = x2. Alice and Bob can then 
compute a shared symmetric key based on this shared secret. 

In our example, a small finite non-abelian group was used to illustrate the 
ideas underlying Arithmetica. In a real-world implementation of Arithinetica, 
G, SA, and Sg are chosen to be infinite non-abelian groups, each having a 
large number of generators. 

Before outlining an attack on Arithmetica, we mention some important 
observations concerning the algorithm. First, thc security of Arithmetica 
is based on t,he computational complexity of the conjugacy problem. For a 
finitely represented group G, there is no known efficient algorithm to solve 
t,he following problcm: Given two words z and y in G, does there exist a word 
g t G so that y = y-lxg? If the attacker Trudy is able to efficiently solve the 
cori.jugacy problem, she would be able to recover the private keys a and b by 
solving the associated systems of conjiigacy equations (from SA and SB). 

Also in the Arithmetica key exchange, it is very likely that the established 
key will be written in different ways for Alice and Bob. Therefore, it is nec- 
essary to extract an identical element from the common key a-lb-lah. One 
way to do t,his is if every element in G can be put into a unique canonical 
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form. If this is the case, then Alice and Bob simply convert their shared 
key into canonical form. In [15], Birman, KO, and Lee showed that for the 
braid groups, there is a polynomial-time algorithm for converting the group 
elements into a canonical form. Furthermore, the conjugacy problem is seem- 
ingly intractable for this class of groups. Consequently, a braid group is often 
used in the implementation of Arithmetica. 

6.4.1 Hughes-Tannenbaum Length Attack 

It is somewhat ironic that the necessity of being able to convert the group 
elements into a canonical form in Arithmetica also opens the door to an attack 
on the system. Introduced by Hughes and Tannenbaum [69], the basic idea of 
the attack on Arithmetica (and other similar systems) is that group elements 
with long lengths--which is well-defined since every element has a canonical 
form-have a higher probability of not combining with other factors. This 
allows an attacker to recover information about the shared secret. Here, we 
give a very brief description of the length attack on Arithmetica. 

For any element w E G, define the length of 20 to be 

where 
ko ki . ,  . k N - 1  

w = sio gz, giN--l  

is in canonical form. Then for any two words x, y E G, we see that the lengths 
satisfy l ( x y )  5 l ( x )  + !(y). If some of the parts of x and y cancel, then it 
may be that the length of xy is much shorter than the sum of the lengths of 
x and y. 

As above, let 
0, E S A  = (5'0, s1,. . . , sn-1) 

be Alice's private key. For purposes of this discussion, we assume that the 
factors si have lengths which are large, relative to the length of a .  From Bob's 
public key, 

SB = ( t o ,  t l , .  . . , tm- l ) ,  

Alice computes u, = u-lt,u, for r = 0,1, .  . . , m - 1, and transmits these to 
Bob. The attacker Trudy performs the length attack by repeatedly computing 

If she finds that 
qs;l(u,)srl) < l (u r ) ,  

Trudy infers that s" is a factor of a on the left--not with certainty, but with 
some positive probability. Once a factor is recovered, the attack is similarly 
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applied again to recover another factor of a arid this process is repeated 
to recover all of a ,  with some positive probability. The length attack is 
effective when the . t (sL)  are large. Experimental evidence [5] suggests that if 
the generators so, s1,. . . , s T L - l  arc each of length less than ten (for the Artin 
generators of the braid group G) then the length attack is thwarted. This 
attack is very new and is the subject of ongoing research. 

6.4.2 Arithmetica Conclusion 

In comparison to many of the cryptosystems discussed in this book, Arith- 
rnetica uses some very sophisticated matheniatics. However, it is not particu- 
larly unusual in the world of public key cryptography, where advanced math- 
ematics plays a significant role in the design and analysis of cryptosystems. 
For example, ongoing research in elliptic curve cryptography, group-based 
cryptosystems and lattice-based encryption schemes illustrate this point. The 
interested reader is directed to [17, 84, 1021, respectively, for more information 
or1 these mathematically sophisticated types of cryptosystems. Undoubtedly, 
advanced mathematics will play a central role in the design and analysis of 
future public key cryptosystems. 

6.5 RSA 

Using RSA in the manner I used for this example 
woiild rcwult in a system that would be no harder to break 
than those fanious qiiotation puzzles in the Sunday paper. 

- Ben Goren [60] 

In 1973, Clifford Cocks, a cryptologist in the British government agency 
GCHQ, wrote an  internal document describing a practical public kcy cryp- 
tosystcm [93]. This was a significant, accomplishment as Cocks had found 
an appropriatc mathematical one-way function for such a cryptosystern. Its 
sccurity was based on the idea that factoring an integer into its prime divi- 
sors is a computationally difficult task. In 1978, Rivest, Shamir, and Adel- 
man [123] published thcir ground-breaking paper, stunning the cryptographic 
comnuinit,y at large. Essentially, tlieir paper rediscovered Cocks’ cryptosys- 
t,cni: which had been classified five years earlier by the British government. 
Of course, this docs nothing to diminish Rivest , Shamir, and Adelman’s tlis- 
covcry, sirice i t  was accomplished independently of Cock’s work. 

In the RSA cryptosystcm, Alice’s public--private key pair is generated as 
follows: First, generate two large distinct primes, p arid q ,  and let N = pq. 
Then. choose e so that gcd(e,d(N)) = 1 and let d = e-’ (mod q5(N)), 
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where 4 ( N )  denotes the Euler phi function (this function is defined in Sec- 
tion A-2 of the Appendix). Alice's public key is ( e , N )  and her private key 
is d. Below, we make use of the fact that 4 ( N )  = ( p  - l ) ( q  - 1). 

To send a message, an agreed-upon protocol for converting text into a 
sequence of positive integers (each less than N )  must first be established. 
The public key ( e , N )  is made public and used to send messages to Alice. 
Only Alice knows her private decryption key d. Encryption of a message M 
is accomplished by C = M e  (mod N )  and decryption of the ciphertext C is 
M = Cd (mod N ) .  

Why does this work? To verify that RSA works, we must show that for 
any integer M ,  where 1 5 M < N ,  we have ( M e ) d  (mod N )  = M .  First, 
if gcd(M, N )  = 1, then 

( M e ) d  = Med = M1+k4(N)  = M ( M 4 ( N ) ) k  (mod N ) .  

By Euler's Theorem, which appears in Section A-2 of the Appendix, we 
have = 1 (mod N )  so that 

M ( M 4 ( N ) ) k  = M . lk (mod N )  = M (mod N ) ,  

as desired. On the other hand, if gcd(M, N )  = p ,  then 

( M y  = M1+""() 

- - Ml+(P- l ) (q- - l )k  

= M(M4-l)"P-l) 

- - M(l)k(ppl) = M (mod q ) ,  

again: by Euler's Theorem. Also note that in this case, M = 0 (mod p ) ,  
which implies ( M e ) d  = 0 (mod p ) .  It follows that ( M e ) d  = M (mod N ) ;  see 
Problem 14. 

In the next section, we consider some mathematical and implernentation 
issues related to RSA. Then in Chapter 7 we discuss implementation-related 
attacks on RSA. 

6.5.1 Mathematical Issues 

There is large body of literature focusing on the cryptanalysis of RSA. An 
excellent source of information is Boneh's survey [19]. In this section, we 
mention a few mathematical issues related to the security of RSA. Our in- 
tent is to illustrate some of the issues that can lead to attacks on flawed 
implementations of RSA. 

First, we mention a generic attack that applies to public key systems (and 
hash functions in some situations) but not to symmetric ciphers. We state the 
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attack in the context of RSA, but it applies to other public key cryptosystems 
as well. 

Suppose that Alice encrypts the secret message 

M = “Attack at dawn” 

using Bob’s public key ( e , N ) ,  that is, she computes C = M e  (niod N ) ,  and 
she sends C to Bob. Suppose Trudy intercepts C. Since Bob’s public key is 
public, Trudy can try to guess messages M’ and for each guess compute the 
putative ciphertext C’ = (M’)‘ (mod N ) .  If Trudy ever finds a message M’ 
for which C’ = C, then Trudy knows that M’ = M and she has broken the 
RSA encryption. 

This method of attacking public key encryption is known as a forward 
search. It does not apply to symmetric ciphers, since Alice and Bob’s shared 
symmetric key would not be available to Trudy, so she could not try to en- 
crypt likely messages. Obviously, for both synirnetric key and public key 
cryptography, the size of the key space must he large enough to prevent a 
brute-force exhaustive search. However, the forward search attack shows that 
for public key encryption, the size of the plaintext space must be sufficiently 
large that an attacker cannot simply try to encrypt all likely messages. In 
practice, it is easy to prevent the forward search attack by padding messages 
with a sufficient number of raridorn bits, thereby increasing the size of the 
plaint,ext space. 

RSA is also susceptible to a chosen ciphertext attack in the following 
sense. Suppose that Alice will decrypt an innocent-looking ciphertext of 
Trudy‘s choosing and return the result to Trudy. Then Trudy can recover the 
plaintext for any ciphertext that was encrypted with Alice’s public key; see 
Problem 1 3 .  

An interesting mathematical fact regarding RSA is that the factors p arid q 
of N a.re easily obtained if we know q5(N). To see why this is so, suppose 
that 4 ( N )  is known, where 1v = pq with r). < p .  Then 

4qN) = ( p  ~ l ) ( q  - 1) = pq  ~ ( p  + q )  + 1 = N - ( p  + 4 )  + 1 

arid this implies 
p +  y = N ~ d ( N )  + 1. 

Also, 

2 2  
( P  + 4 )  = P + 2PY i- q2 = p2 ~ 2pq + q2 + 4pq = ( p  - 4)’ + 4 N ,  

which implies 
p - q = J ( p  + q ) 2  - 4N. 

From (6.8) and (6.9), we can easily compute 
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and we have factored N .  
In addition, if 4 ( N )  is known, the private key d is easily recovered by 

using the Euclidean Algorithm (see Section A-2 in the Appendix), since the 
encryption exponent e is public knowledge. Since d is the multiplicative 
inverse of e modulo 4 ( N ) ,  the process to determine d is precisely the same as 
that used in the construction of the key pair. 

Clearly, the numbers p ,  q and d must be “large,” so as to prevent a brute- 
force attack, but what other properties should they (and e) have? When 
constructing the modulus N ,  the prime numbers p and q need to be chosen 
carefully. A s t rong  prime p is a prime number such that p - 1 has a large 
prime factor r ,  p + 1 has a large prime factor, and T - 1 has a large prime 
factor. Strong primes p and q should always be used in any implementation 
of RSA to thwart the factorization of N through the use of Pollard’s p - 1 
Algorithm [all. 

If the modulus N is misused, then RSA is easily compromised. Suppose 
that ( e j , N )  are the RSA public keys of j parties. That is, each user has 
the same modulus N ,  but a different public encryption exponents e j  (and, 
therefore, different private decryption exponent dy). With the knowledge 
of a single private decryption exponent d,, we can efficiently factor N ,  as 
explained below. Then the Euclidean Algorithm can then be used to recover 
all of the other decryption keys. 

Given a decryption exponent d and the corresponding public key ( e ,  N ) ,  
we can determine the factors of N as follows [19]. First, we compute the 
number k = de - 1. Because of the way d and e are constructed, we know 
that k is a multiple of 4 ( N ) ,  say, k = & ( N )  for some l. Since 4 ( N )  is even, 
so is k .  Then k = 2tr, for some odd T and t 2 1. By a similar argument as 
that used above to show that the RSA algorithm works, we have 

g k  = g e d ( N )  = 1 (mod N )  

for every g E { 1 , 2 , .  . . , N - l} and, therefore, 9‘1’ is a square root of unity, 
modulo N ,  that is, (g‘/’)* = 1 (mod N ) .  The number 1 has four square 
roots, modulo N = pq. Two of these square roots are *1 and the other two 
(which can be found using the Chinese Remainder Theorenl-see Section A-2 
in the Appendix), are fz, where z satisfies the conditions z = 1 (mod p )  
and IC = -1 (mod 4) .  Using either one of these last two square roots, the 
factorization of N is revealed by computing gcd(n:- 1, N). l  A straightforward 
argument [19] shows that if g E {1 ,2 , .  . . , N - 1) is chosen at random, then 
with probability at least 1/2 one of the elements in the sequence 

g‘/’, g k I 4 ,  . . . , g‘l’‘ (mod N )  

‘See Section 7.2.2 for an explanation of why this technique yields the desired factoriza- 
tion. 
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is a square root of unity that reveals the factorization of N. All elements in 
the sequence can be efficiently computed in time on the order of n3, where we 
have ri = log2 N ,  that is, n is the number of bits in the binary representation 
of N .  

If a small decryption exponent is used, then an attack due to Wiener [159] 
can break RSA. Let N = pq,  where p and q are primes with q < p < 2q and 
suppose that the decryption exponent satisfies d < $N'/4. Wiener showed 
that under these conditions, there is an efficient algorithm for computing d ,  
assuming that the public key (e, N )  is known. 

A conirrion small encryption exponent e can be (and often is) used. That 
is, all users can share the same encryption exponent e ,  but have different N 
and d. Often, e = 3 or e = 216 + 1 are used in practice, since these values 
make public key operations extremely efficient.' But this efficiency does not 
carry over to the corresponding private key operations. 

Suppose that Alice wishes to send the same message M to Bob, Carol 
and Dave, whose respective public keys are (3,  Ni) ,  for i = 0, I ,  2. We as- 
sume that gcd(Ni,Nj) = 1 for i # j ,  since otherwise an attacker could 
factor Ni and Nj by simply computing gcd(Ni, Nj). Given this scenario, 
Alice scnds Co = M" (mod No) to Bob, C1 = M' (mod N1) to Carol 
and C2 = M3 (mod N2) to Dave. If Trudy is eavesdropping and ob- 
tains Co, C1 arid Cz, then she can use the Chinese Remainder Theorem to 
compute hf3 (mod NoNlNz). Since M 3  < NoNlN2, Trudy can obtain A 4  
by simply computing the ordinary (non-modular) cube root of M" (sec Prob- 
lem 16). In practice, this cube root attack (and analogous attacks when a 
comnion encryption exponent othcr than e = 3 is used) is easily prevented 
by padding the message M .  Provided that, as numbers, we have n/f > N1/", 
the cube root attack will not succeed. 

6.5.2 RSA Conclusion 

RSA has proven to be remarkably robust. Having been carefully scrutinized 
by many researchers, it has remained secure since its invention more than 
thrcc decadcs ago [19]. Timing attacks represent the only publicly-known 
practical attacks on soiind implementations of RSA, and these do not result 
from any weakness in the underlying algorithms, and, furthermore, there are 
straightforward defenses against such attacks. 

Thc ItSA algorithm is the "gold standard" in public key cryptography. 
Unlike other more specialized systcms, it provides both encryption and signa- 
tures. The algorithm is also widely deployed and freely available (the patent,s 

'Recc,nt,ly. Bleiclrenbachcr has shown t.hat, if f: = 3 is used, a simple signature forgery a,- 
t,ack cxxist,s a.gainst certain incorrect implementations of RSA. For this reason, it is generally 
recoriin1c:ircietl to avoid using c = 3 as an encryption exporimt. 
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have expired). For example, most secure transactions on the Internet use the 
Secure Socket Layer (SSL), which uses RSA. 

Undoubtedly it is for these reasons that RSA is the de facto standard in 
public key cryptography. Baring some major breakthrough in factoring, or 
some unexpected attack by other means, RSA appears certain to remain a 
de-facto standard for the foreseeable future. 

6.6 Rabin Cipher 

And one of the elders saith unto me.. . 
the Root of David, hath prevailed to open the book, 

and to loose the seven seals thereof. 
- Revelation 5:5 

As we saw in Section 6.5, solving the factoring problem breaks RSA. Although 
it is generally believed that the most efficient possible way to break RSA is 
by factoring the modulus, no proof of this is known. Rabin [118] proposed 
a cryptosystem where the underlying encryption algorithm is provably as 
difficult to break as the factorization of large numbers. 

In Rabin's clever (and simple) cryptosystern, Alice's public and private 
keys are generated in the following way: Let N = pq,  where p and q are 
distinct primes. Although the scheme works for arbitrary primes, to simplify 
the exposition we will assume that p = 3 (mod 4) and q = 3 (mod 4). Alice's 
public key is N and her private key consists of p and q. 

An agreed-upon protocol for converting text into a sequence of positive 
integers (each less than N )  is established. Then to encrypt message M ,  
compute C = M 2  (mod N ) .  Decryption is accomplished by the computation 
of square roots of the ciphertext C modulo N ,  one of which yields the message 
M .  

How does Alice compute the square roots of ciphertext C modulo N? 
We first examine the case where we want to compute the square roots of C 
modulo a prime p .  The case where C = 0 (mod p )  is trivial, so we assume 
that C # 0 (mod p ) .  Then we set y = C(P+')/4 (mod p ) ,  and by Euler's 
Theorem, CPpl = 1 (mod p ) ,  and therefore, 

y4 = CP+l = C2Cpp1 = C2 (mod p ) .  

This implies 
y4 - C2 = (y2 - C)(y2 + C) = 0 (mod p ) ,  

and hence y2 = fC (sce Problem 17). From this, we deduce that C is a square 
modulo p or that -C is a square modulo p ,  but not both (see Problems 18 
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and 19). In the case where C is a square modulo p ,  the square roots of C 
are fy; otherwise, the square roots of -G modulo p are *y. 

For example, suppose we want to find tlie square roots of 3 (mod 11). 
Sincc ( p  + 1)/4 = 3, we have 

y~ = 3(pf')/' = 33 = 27 = 5 (mod 11). 

So, either &5 are the square roots of 3 (mod 11) or f5 are the square roots 
of -3 (mod ll), but not both. In this particular example, it is easily verified 
that (*5)2 = 3 (mod 11). 

Now we consider the computation of square roots, modulo N ,  where, as 
usual: N = pq. In this slightly more complicated situation, we begin with 
a concrete example. Suppose that we want to solve x2 = 16 (mod 33). 
Any solution of this equation satisfies x2 = 16 + 3(11)k and, in addition, 
x2 = 16 = 1 (mod 3) and x2 = 16 = 5 (mod 11). Using the method 
described in the previous paragraph, we find that f l  are the square roots of 
1 (mod 3) and that f 4  are the square roots of 5 (mod 11). These can be 
combined in any of four ways: 

IC = 4 (mod 11) and 2 = 1 (mod 3) 

17: = 4 (mod 11) and z = -1 (mod 3 )  

z = -4 (mod 11) and z = 1 (mod 3 )  

IC = -4 (mod 11) and z = -1 (mod 3 )  

Using the Euclidean Algorithm, we find integers T and s so that 1lr+3s = 1. 
In this case. we see that 

11 = 3 . 3 + 2  

3 = 2 . 1 +  1 

2 = 1 . 2 + 0 .  

By back-substituting, we find 11(-1) + 3(4) = 1. The Chinese Remainder 
Theorem provides the unique solution (mod p q )  for the system 

IC = a, (mod p )  
z = h (mod q )  

(6.10) 

namely, z = b p ~  f a q s ,  where pr+qs  = 1. So, in our example, we have p = 11, 
q = 3. 7' = -1 and s = 4. Therefore, the unique solution to the system 

n. = 4 (mod 11) 

.r = 1 (mod 3) 

is L = (1)(11)(-1) + (4)(3)(4) = -11 + 48 = 37 = 4 (mod 33). In a 
similar fashion, we find that the solutions to the other three systems are given 
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by z = 26 (mod 33) ,  z = 7 (mod 33) and z = 29 (mod 33), respectively, 
and we have that the square roots of 16 (mod 33) are 4, 7, 26, and 29. 

In summary, to compute square roots of C (mod N ) ,  we first conipute 
the square roots of C, modulo p and q .  Then all systems of the form (6.10), 
where a is a square root of C (mod p )  and b is a square root of C (mod q )  are 
created. Using the Chinese Remainder Theorem, solutions to these systems 
are found. These solutions are the square roots of C (mod N ) .  

Once the square roots of C (mod N )  have been computed, Alice needs to 
decide which one of the square roots corresponds to the original plaintext M .  
If the message is written in some natural language, it is easy for her to choose 
the right one. In the case where the message is less structured, the sender 
might add a header to the message. Such additional information would allow 
Alice to easily determine the correct square root of C. 

6.6.1 Chosen Ciphertext Attack 

If the attacker Trudy is able to compute square roots modulo N ,  then she 
can factor N and thereby break the Rabin cryptosystem. To see why this is 
the case, consider the modulus N = p q ,  where p > 2 and q > 2 are distinct 
primes. Let u and u be square roots of C (mod N ) ,  and assume that u # fv. 
It is easily verified that either p = gcd(u+w, N )  or q = gcd(u+u, N )  as follows. 
Since u2 = v2 = c (mod N ) ,  we have that N divides (u2-u2)  = (u+u)(u-u) .  
But, N does not divide u + v and N does not divide u - u. Therefore, from 
the Euclidean Algorithm, we compute gcd(u + u, N )  which is one of the prime 
factors of N .  

This fact allows Trudy to perform the following chosen ciphertext attack 
on the Rabin cryptosystem. Suppose that Trudy has access to Alice’s de- 
cryption machine (as a black box). Trudy chooses M ,  where 0 < M < N and 
computes C = M 2  (mod N ) .  She then uses Alice’s decryption machine to 
decrypt C, yielding y. The probability that M # f y  (mod N )  is l / 2 ,  and 
if this is the case, Trudy finds the prime factors of N and is able to read all 
messages sent to Alice; see Problem 23. 

By applying some appropriate message preprocessing, this attack can be 
thwarted. For example, optimal  asymmetr ic  encrypt ion padding (OAEP) [lo] 
is a padding scheme that can be used to encode a message before asymmetric 
encryption is applied. Through the use of such a scheme, two goals are 
achieved. First, an element of randomness is introduced, which converts a 
deterministic encryption scheme into a probabilistic one. Secondly, partial 
decryption of ciphertexts is made more difficult. 

The OAEP scheme works as follows [36]. Here, we assume that binary 
strings of length n are used by the bijective trapdoor function f of a cryp- 
tosystem. Along with this, OAEP utilizes a pseudorandom bit generator G 
that maps k-bit strings to k-bit strings and a hash function h mapping !-bit 
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strings to k-bit strings, where n = k + I?. 

chosen. Then, we set 
To encrypt a message M E (0, l}', a random bit string T E (0, l}k is first 

z = ( M  @ G ( r ) )  1 1  (T  @ h(k1 @ G(T) ) ) ,  

where the "/ l ' .  indicates concatenation and "@" denotes the bitwisc XOR 
operator. The first I? bits of z, that is, 
M @ G(T),  are obtained from the mixing of M and the pseudorandom bits 
G(T).  The last k bits of z arise from the mixing of random seed T and masked 
h ( M  @ G(T)) .  Therefore, a single message M can (and will) yield different 
cipliertexts, given different random bit strings T .  

To decrypt ciphertext C ,  we use f - ' ,  the same pseudorandoni bit gener- 
ator G, and the same hash function 11 as above. First, we computc f - ' (C)  
which is o f  the form a 1 1  b, where the length of a is J? and the length of b is k .  
Next, we compute T = h(a )  @ b. Then to recover the original message M ,  we 
use the fact that 

Finally, C = f ( z )  is computed. 

A1 = M @ G(T) @ G(T) = k1 @ G(T) @ G(h(a)  @ b)  = a @ G(T).  

In order for attacker Trudy to recover plaintext M from ciphertext C = f ( z ) ,  
she must determine all of the bits of n: from C. She needs the first I? bits to 
compute h(a )  and the last k bits to get T .  Consequently, partial decryption of 
cipliertexts (by exploiting some partial knowledge of z) is made more difficult. 

6.6.2 Rabin Cryptosystem Conclusion 

Although the Rabiri cryptosystem is effective and it was developed shortly 
after RSA, it has never enjoyed anything like the popularity of RSA. Per- 
haps, this is because only one of the four possible decrypts of a ciphertext 
corresponds to the plaintext. However, this issue is easily resolved.3 

It is easily verified that the security of the Rabin cryptosystem is equiva- 
lent to factoring, while this is not known to be the case for RSA. Consequently, 
it is conceivable that RSA could be compromised without solving the factor- 
ing problem. Viewed in this light, it is not unreasonable to argue that the 
Rabin cryptosystem rests on a somewhat more secure foundation than RSA. 
Of course, to date, thc most significant general attack on RSA is to factor 
thc modulus. So, in a practical sense, thc security of RSA and Rabin are 
indistinguishable today. Without an overwhelming reason to abandon the 
gold st,aridard o f  RSA, it is unlikely that the Rabin cryptosysteni will gain a 
1110rc significant following in the public kcy arena. 

"HSA was patented (the patents have now expired) and promoted by RSA Security, Inc. 
Jri contrast, thc Rahin cipher had no comparable corporate hacking. 
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6.7 NTRU Cipher 

“That’s a great deal to make one word mean,” 
Alice said in a thoughtful tone. 

“When I make a word do a lot of work like that,” 
said Humpty Durnpty, ‘(I always pay it extra.” 

- Through the Looking Glass 

Relative to many other public key cryptosystems, the NTRU cipher, rumored 
to stand for “Nth-degree TRUncated polynomial ring” or “Number Theorists 
aRe Us,” is young. Invented in 1995 by Hoffstein, Pipher, and Silverman [68], 
it is somewhat more complicated than RSA or the Rabin cryptosystem. The 
security of NTRU derives from the difficulty of a certain factoring problem 
in a polynomial ring. We have more to say about this below, but first we 
describe the NTRU system and give an example. 

The NTRU cipher depends on three positive integer parameters ( N ,  p ,  Q) 

and four sets of polynomials of degree N - 1 with integer coefficients. The 
sets if polynomials are denoted L f ,  L,, L,, and L,. The parameters p and g 
are chosen so that gcd(p,q) = 1 and q > p ,  where q must be much larger 
than p .  

All of the NTRU polynomials are in the set of truncated polynomials of 
degree N - 1 having integer coefficients. That is, an NTRU polynomial is of 
the form 

2 N-1 u(x) = uo + a12 + a2x + ’ .  . + uN-2xN-2 + U N - l X  , 
where the ai are integers (taken modulo p or g, depending on the specific 
polynomial). Polynomials are added in the usual way. Multiplication is per- 
fomed modulo xN - 1, meaning that polynomials are multiplied in the usual 
way, but xN is replaced by 1, xNfl  is replaced by x, xN+2 is replaced by x2 
and so on. We use the symbol LL*” to denote this type of polynomial mul- 
tiplication. In mathematical terms, all of the NTRU polynomials are in the 
quotient ring 

Z [ X l  

(XN - 1 )  ’ 
R =  

The message space L, consists of all polynomials in R modulo p .  Assum- 
ing that p is odd, we define the message space as 

L, = {M(x) E R I all coefficients of M lie in [ - (p  - 1 ) / 2 ,  ( p  - 1)/2]}. 

As a notational convenience, let L(d0 ,  d l )  be the set of polynomials in R 
with do coefficients that are +1 and dl coefficents that are -1, and all re- 
maining coefficients are 0. For example, 

-1 + x2 + x3 - x5 + x9 E L(3,2) ,  
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since the nonzero coefficients consists of three +Is and two -1s. 
Given the NTRU parameters ( N ,  p ,  (I), we must select three additional 

parameters, denoted d f ,  d,: arid d, which should be selected from the recom- 
mended NTRU parameters (the current set of recommended paranieters can 
be found at [108]). These additional parameters are used to  define the sets 
of polynomials 

L f  = L ( d f ,  d f  - l),  L, = L(d,, d,), and L,, = L ( d , d ) .  

Now Alice generates her NTRU key pair as follows. She first chooses two 
polynomials f ( z )  and g(z)! where f ( z )  E L f  and f ( x )  is invertible modulo p 
and modulo q ,  and g(z) E L,. She can find a suitable f ( z )  using the algorithm 
in Table 6.3 [137]. 

Table 6.3: Algorithm to Find Inverse Polynomial 

// Input: polynomial u ( J ) ,  primc p 
// Output: b ( r )  = u(z)p l  in (2 /p2 ) [z ] / ( zN - 1) 
// Initialization 

// find inverse 
repeat 

k = 0, b(z) = 1, .(z) = 0, f ( z )  = u ( z ) ,  g(z) = zN - 1 

while .fo = 0 
f(.) = f ( r ) / r  
c(z) = c(z) * 1 

k = k + l  
end while 

if deg(f) = 0 then 
b(z)  = f r l b ( z )  (mod p )  
return rN - 'b(z)  mod (z" - 1) 

end if 

if deg(f) < dcg(g) then 

swap(f. 9) 
swap(b, c) 

end if 
u = fog;' (mod p )  
f ( z )  = f(x) - u*g( . r )  (mod p )  
b(z)  = h(x)  - 7~ * c ( r )  (mod p )  

forever 

Denote the inverses of f ( z )  modulo p and q ah f,(z) and fq (z )  respectively, 
SO that 

f,,(a) * f ( z )  = 1 (mod p )  and f(,(.~) * f(1) = 1 (mod (I) 
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Then Alice’s public key is the polynomial h(z )  = fq(z) *g(z) (mod q ) .  The 
ploynomial h(z ) ,  along with the parameters N ,  p ,  and 4 ,  are made public. 
Alice’s private key consists of t.he polynomials f(x) and f,(z). To summarize; 
we have 

Public key: h(z) 

Private key: ( f ( z ) ,  f,(z)) 

where h(z) = fq(z) * g(z) (mod q )  and f (z)  * f,(z) = 1 (mod q ) .  
Bob first selects a polyno- 

mial M ( z )  E L, that represents the plaintext message. Recall that the 
coefficients of the message ploynomial M ( z )  are in the range - ( p  - 1)/2 
and ( p  - l ) / 2  and that q is much larger than p .  Consequently, the mes- 
sage M ( z )  can be viewed as a “small” polynomial modulo q ,  in the sense 
that the vector of coefficients has small Euclidean length. 

Bob then chooses a random “blinding” polynomial r ( z )  E L, and uses 
Alice’s public key to compute the ciphertext message C(z) (also a polynomial) 
as 

C(z) = r(x) * h(z) + M ( z )  (mod q ) ,  

Bob sends Alice an encrypted as follows. 

which he sends to Alice. 
To decrypt Bob’s message, Alice computes 

The coefficients of a(.) are chosen to be in the interval -4/2 to q / 2  (it is 
crucial that the coefficients be taken in this interval before the next step in 
the decryption). Then Alice computes b(z) = u ( z )  (mod p ) .  Although it is 
not obvious, Alice recovers the message M ( z )  by computing 

Below we give an intuitive explanation why NTRU decryption works, but 
first we give an example. 

To illustrate the NTRU algorithm, we use the example found at [108]. 
Suppose that we select NTRU parameters N = 11, q = 32, p = 3, and the 
sets of polynomials L f  = L(4,3) ,  L, = L ( 3 , 3 ) ,  and L, = L(3,3) .  Then to 
generate her private key, Alice selects a polynomial f(z) E L f ,  that is, a 
polynomial of degree ten with four +1 coefficients and three -1 coefficients, 
and all remaining coefficients set to 0. She also chooses a polynomial g(z), 
where g(z) E L,. Suppose that the selected polynomial are 

f (z)  = -1 + z + x2 - z4 + z6 + 2 9  - z10 E L f  
g(z)  = -1 + x2 + z3 + z5 - 2 8  - 510 E L,. 
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Next, Alice computes f,(z) and f q ( . ? : ) ,  the inverses of f ( x )  modulo p and q. 
respectively. Using the algorithm in Table 6.3, she finds 

f,(.) = 1 + 2x + 2 ~ 3  + z r 4  + 2c5 + 2x7 + 28 + 229 

f ,(x) = 5 + 9x + 6.r2 + 162' + 4x4 + 15x5 + 162' + 22x7 
+ 2 0 2  + 18rY + 302". 

Alice's private key consists of the pair of polynomials ( f ( z ) ,  f , (z)) .  To gen- 
erate her public key h ( z ) ,  Alice computes 

h(x) = P f & )  * s ( x )  

= 8 + 252 + 22x2 + 2 0 2  + 12x4 + 24x5 + 15x6 

+ 19z7 + 12x8 + 19zy + 16x1" (mod 32). 

Now: suppose that Bob wants to send the message 

M ( x )  = -1 + - x4 - 2' + x9 + X I "  E L, 

to  Alice. He first chooses a random blinding polynomial r(x) of degree ten 
(or less) with thrce $1 coefficients and three -1 coefficients, say, 

r ( x )  = -1 + 2 + 2 + x4 - .r5 - x7 E L,. 

Bob computes the ciphertext polynomial C(z) as 

C ( x )  = ,r(x) * h ( x )  + M ( x )  

= 14 + ll.?: + 2 6 2  + 24x3 + 14x4 + 16x5 + 3 0 ~ ~  
+ 7x7 + 252' + 62" + 1 9 ~ ' "  (mod 32), 

which he sends to Alice. 

her private key f ( x )  to  compute 
When Alice receives the ciphertext polyriornial C(z) from Bob, she uses 

a(.) = f ( x )  * C ( x )  
= 3 - 72 - lox2 - l lz3 + lox4 + 7z5 + 6x6 

+ 72 + 52' - 3xY - 72'" (mod 32), 7 

where the coefficients of a(.) havc been chosen to lie between -4/2 and y/2 
(in this example, from -15 to  + 1 G ) .  Alice then reduces the coefficicnts of a(.?:) 
modulo p = 3 to obtain 

b ( x )  = -2 - :z2 + x3 + x4 + x5 + x7 - x8 - do  (mod 3). 

She finds the plaintext message M by computing 

f p ( x )  b ( 2 )  = -1 + x3 - x4 - x' + xg + zl" (mod 3) .  
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Why does NTRU work‘? Consider C(z) = r ( z )  * h(z )  + M ( z )  (mod q ) ,  
where h(z )  is, say, Alice’s public key. Recall that h(z )  = p f q ( z ) * g ( z )  (mod q ) .  
For the first step in the decryption, Alice computes 

u(z )  = f ( z )  * C(z) = f ( z )  * r ( z )  * h(z )  + f ( z )  * M ( z )  (mod q )  

= P f ( X )  * .(.) * f q b )  * d z )  + f(.) * M ( 2 )  (mod 4 )  
= p r ( z )  *g(z) + f ( z )  * M ( z )  (mod q ) .  

The polynomials ~ ( z ) ,  g(z) ,  f(z), and M ( z )  all have coefficients that are 
small, relative to q .  Therefore, the polynomial p r ( z ) * g ( z )  + f ( z ) * M ( z )  (not 
taken modulo q )  is most likely the same as the polynomial 

P T ( X ’ )  * g(z) + f(.) * M ( z )  (mod 4 ) .  

If this is the case, the “mod q” in the computation of u ( x )  has no effect and 
it follows that 

b(z) = u(z )  (mod p )  = f ( z )  * M ( z )  (mod p ) ,  

as desired. Then since f p ( z )  * f ( z )  = 1 (mod p ) ,  Alice can easily recover the 
plaintext M ( z )  from b(z).  However, if p r ( z )  *g(z) + f ( x )  * M ( z )  (not taken 
modulo q )  does not equal the polynomial p r ( z ) * g ( z )  + f ( z ) * M ( z )  (mod q ) ,  
then the decryption can fail. Therefore, the NTRU decryption process is 
probabilistic-although it does succeed with a very high probability for ap- 
propriately chosen parameters. 

Before considering attacks, we briefly discuss the underlying hard problem 
that is the basis for the security of NTRU. The NTRU public key is the 
polynomial h( z), where 

h(z )  = f&) * d z )  (mod 4 )  

and the corresponding private key consists of the pair of polynomials f ( z )  
and fq(z) ,  where f ( z )  * f,(z) = 1 (mod q ) .  Note that this implies 

h ( 2 )  * f ( z )  = g(z)  (mod q ) .  

If the attacker, Trudy, can determine f ( 5 )  or fq(z)  from h(z ) ,  she can recover 
the private key and thereby break NTRU. 

We have 
h(z)  = ho + hlz + h2x2 + . . . + hN-1ZN-’, 

with f ( z )  and g(z) defined similarly. Let f be the column vector of coefficients 
of f ( z )  and g the coefficients of g(z), also given as a column vector. Next, 
define the N x N matrix 
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Then by t.he definition of .‘*’‘, we have 

We can now state the problem of recovering f ( r )  from h ( r )  as a lattice 
reduction problem. Given the public key h ( z ) ,  we have the block matrix 
equ. d t 1011 ’ 

where V and W are unknown. This block matrix equation simply states 
that f = f and Hf + qs = g (mod 4 ) .  From this latter equation it follows 
that H f  = g (mod q ) ,  regardless of s. Since H only depends on the public 
key h, (z ) ,  if we can determine V or W, then we can break NTRU. But W is 
in the lattice spanned by the columns of AJ (note that, due to the identity 
matrices on the diagonal, the columns of M are linearly independent). Fur- 
thermore, W has a very special form, since it is a “short” vector in the lattice 
(recall that both f (z )  and g(z) are chosen to be small relative to q ) ,  and the 
clenients of W consist of a known number of f l s ,  -1s and 0s (as determined 
hy the parameters d f  and d g ) .  

This lattice reduction problem is very similar to that used to successfully 
attack the knapsack; see Section 6.2. Therefore, we could use lattice reduc- 
tion techniques, such as the LLL Algorithm in an attempt to break NTRU. 
However. the NTRU lattice problem is believed to t ic very difficult to solve, 
arid no efficient algorithms are known. In fact, the security of the NTRU ci- 
pher is intentionally based on the difficulty of this particular lattice reduction 
problem. It is somewhat ironic that the very technique that leads to  a dev- 
astating attack on the knapsack can, in a slightly modified setting, become 
the basis for constructing a public key system. 

It is worth noting that there is one significa.nt difference between the 
NTRU lattice problem in (6.11) and the knapsack lattice problem considered 
in Section 6.2. The successful knapsack attack breaks a single message, but it 
does not enable the attackcr to recover the private key. However, in (6.11) we 
are trying to recover the private key from the public key, and, intuitively, this 
should be a much harder problem. So it might seem to be unfair to compare 
this NTRU lattice problcni to the knapsack lattice problem. It is possible 
to give a lattice reduction attack on a single NTRU message, which is more 
analogous to the knapsack setting. However, the NTRU lattice reduction 
attack is intractable (as far as is known), even in this seemingly simpler 

The primary claim to fame for NTRU is its eficiency~-the encryption, 
decrypt,ion. and the key generation process are all very fast by public key 

CRSC [ lo l l .  
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standards. The inventors of NTRU claim that when comparing a moder- 
ate NTRU security level to RSA with a 512-bit modulus, NTRU is approxi- 
mately 5.9 times faster for encryption, 14.4 times faster for decryption and 5.0 
times faster during key creation [68]. In addition, when comparing the high- 
est NTRU security level to RSA with a 1024 bit RSA modulus, it is claimed 
that NTRU is the same speed for encryption, 3.2 times faster for decryption, 
and 5.3  times faster for key creation. For this reason alone, NTRU might be 
an attractive cryptosystem to use in resource constrained environments such 
as embedded systems. 

NTRU is somewhat unique since there have been several published at- 
tacks, but yet the cipher is not considered broken. In the next sections, we 
briefly outline a few attacks against NTRU. Some of these attacks have led 
to modifications in the suggested parameters for NTRU. 

6.7.1 Meet-in-the-Middle Attack 

The NTRU cipher is susceptible to a meet-in-the-middle attack. Andrew 
Odlyzko first pointed out that if a polynomial s(z) is chosen from a space 
with 2n elements, then a brute-force search can be conducted on a space 
of size 2n/2 to recover s(z). His argument was then adapted by Silverman 
in [136], where it is shown that if the private key f(x) is chosen from a space 
of 2n elements, then the security level of NTRU is 2r1/2 .  Here, we outline how 
this attack works. 

Let N ,  q, d f ,  f ( z ) ,  g(z), and h(z)  be defined as above. To illustrate 
the attack, we assume that N and d f  are even. The modifications to the 
attack for odd values are straightforward. All polynomials are expressed as 
ascending sums of powers of x. Let k and ! be positive int,egers chosen by 
the attacker, Trudy, so that 

where the left-hand side of the inequality is much greater than the right-hand 
side (by, say, a factor of 100). 

Let the symbol “ I / ) ’  denote concatenation. Trudy searches for the private 
key f ( z ) ,  where f ( x )  E L ( d f , d f  - 1) is of the form fo(z) /I f ~ ( z ) ,  and fo(z)  
(of length N / 2 )  has d f / 2  coefficients of +1 and d f / 2  coefficients of -1 (and 
the rest, zeros) and fi(x) (of length N / 2 )  has d f / 2  ones, d f / 2  - 1 negative 
ones (and the rest, zeros). She wants to find f~fbx) and f l  (z) such that 

has coefficients in {-1,0, 1). If this is the case, then g(z) (mod y) is of the 
correct form and therefore fo(x) 1 )  f l ( z )  is a candidate for the private key. 
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First, Trudy lists the polynomials fo (x ) ,  which are of length N/2 .  We 
identify these polynomials with the length-N vectors formed by append- 
ing N / 2  zeros. This requires 

steps and is done in the following manner. The fo (x )  polynomials are stored 
in bins based on the first k coordinates of f o ( x )  * h(x) (mod 4 ) .  To form the 
tins, divide the interval [0, y - 11 into subintervals of length 2e and call this 
set of subintervals I, that is, the set I is composed of the subintervals 

Y .  e . I, = 12 j , 2  (j + 1) + 11, where o I j < y/2'. 

A bin is a k-tuple of intervals chosen from I .  If the first k coordinates 
of fO(z) * h(z)  (mod y) are, respectively, (ao, u l , .  . . , U k - l ) ,  then fo(x)  is 
stored in bin (I",. . . , I k - l ) ,  where ai E Ii, for i = 0 ,1 , .  . . , k: - 1. Note that 
the storage location of an f o ( x )  depends only on its first k coordinates and 
therefore, a bin may contain multiple f 1  (x) polynomials. 

In a similar manner, Trudy lists the polynomials fl(z), which are also 
of lcngtli N/2 .  In this case, we identify the polynomials with the length-N 
vectors formed by prepending N / 2  zeros. This requires 

steps. The f l ( x )  polynomials are stored in bins based the first k coordinates 
of each polynomial - f l ( z )  * h(z) (mod q ) .  However the bins which are 
formed for the f l  (x) polynomials are slightly larger than the f o ( z )  bins. More 
precisely, let ,I be the set of subintervals 

J:, = [2';j - 1,2'( j  + 1) - 11, where 0 I j < q/2'.  

The subintervals Jj  overlap. so some f l  ( x )  polynomials will go into more t,han 
m e  bin. 

Finally, Trudy finds the non-empty, overlapping fo(x)  and f 1  ( x )  bins. In 
this case. for each 

it is very likely that (fo(z) 1 1  fl(:x))*h(.~:) (mod q )  has coefficients in (-1: 0: l}. 
Therefore. fo (x )  I /  f l ( x )  is a candidate for the private key f ( z ) ,  which follows 
from the fact that (.fo(x) I /  f l ( : r ) )  * h(z) (mod q )  is of the correct form. 

A few remarks might help to clarify the attack. Although the private 
kcy f ( : r )  may not, have the property that half of its ones (that is, d f / 2  of 
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its ones) fall in the first N / 2  bits, there is at least one rotation of f ( z )  
which has this property and any rotation of f ( z )  can serve as the private key 
(see Problem 26). In [136], it is assumed that f ( z )  is chosen with d f  ones 
and N - d f  zeros and some technical conditions on g(z) are satisfied. Under 
these conditions, Silverman showed that the time required for the attack is 
on the order of 

time fi ( f > k  

and that the storage necessary for the bins is on the order of 2(q /2 ' )2k .  Fur- 
thermore, Silverman provides experimental results for various values of N ,  q, 
df, k ,  and e. 
6.7.2 Multiple Transmission Attack 

Suppose that Trudy conducts a denial-of-service attack on Alice. During this 
time, Bob sends Alice an NTRU encrypted message using her public key h(z) .  
Because of Trudy's attack, his message never reaches Alice. Since Bob is not 
aware of Trudy's attack, he assumes that the message was lost and he resends 
the same message, again using Alice's public key h(z ) ,  but a different blinding 
polynomial ~ ( z ) .  Suppose that this scenario is repeated a few more times, 
with Bob sending the same message M ( z )  to Alice n times, using the same 
public key h(z )  but each time using a different r ( z ) ,  where the i,th choice 
of ~ ( z )  is denoted r i (z) .  

Under this scenario, Trudy can attack NTRU. The outline of the attack 
is as follows. Trudy intercepts the encrypted messages 

Ci(z) = r i (z)  * h(z )  + M ( z )  (mod q ) ,  for i = 0,1 , .  . . , n. 

Assuming that hp l (z )  (mod 9) exists, she then computes 

Ci(z) - Co(z) = pr i ( s )  * h(z )  - pro(z)  * h(z )  (mod q )  

= P ( T i ( 2 )  - To(.)) * h(z )  (mod q ) ,  

for i = 1 , 2 , .  . . , n, and Trudy thereby obtains 

z i ( z )  = ppl(Ci(z) - Co(z)) * h- l (z )  (mod y) 

= ~ i ( 2 )  - T ~ ( x )  (mod y), 

for i = 1 , 2 , .  . . , n. Trudy reduces the coefficients of zi(z) so that they lie 
between - q / 2  and q / 2 .  Since the coefficients of the r i (z)  are small (relative 
to q ) ,  she recovers r i (z)  - rg(z),  for most (if' not all) i = 1 , 2 , .  . . ,n. From 
this, many (if not all) of the coefficients of ~ ( z )  can be obtained (see Prob- 
lem 28). If Trudy can recover enough of ~ ( z )  in this way, then she can recover 
the remaining coefficients by brute force. Once ~ ( z )  is known, Trudy com- 
putes Co(z) - ~ ( z )  * h(z )  (mod y) and thereby recovers the message M ( z ) .  
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6.7.3 Chosen Ciphertext Attack 

In 2000, Jaulrnes and Joux [73] developed a clever chosen-ciphertext attack on 
NTRU. Their discovery resulted in changes to the recommended parameter 
sets by NTRU Cryptosystems, Inc. Since the attack also is effective on OAEP- 
likc padding, which was originally proposed for use with NTRU, other padding 
methods are now used with NTRU. For our overview of the attack, we will 
reference the NTRU parameter sets given in [138] and reproduced here in 
Table 6.4. 

Table 6.4: Previous Recommended NTRU Parameters 

Recall that the NTRU decryption process consists of first computing 

a(.) = f(.) * M ( T )  

= f ( ~ )  * r ( r )  * h(z) + f ( x )  * M ( x )  (mod 4 )  
= f ( z )  * p r ( ~ )  * f,(x) * g(z) + f ( x )  * M ( z )  (mod q )  
= p r ( r )  * g ( x )  + f ( ~ )  * M(.) (111od s ) ,  

followed by f p ( x )  * u ( x )  (mod p )  which usually yields the plaintext mes- 
sage M ( z ) .  For appropriate parameter choices. the coefficients of the polyno- 
mial pr(x)  *y(x) + f ( z )  * M ( x )  lie iii the range -q/2 and q/2.  Consequently, 
the polynomial pr*g(cr)  + f(x) * M ( z )  (mod q )  is the same as the truc (riori- 
modular) polynomial, that  is; the mod q has no effect. The idea of Jaulmes 
and Joux's chosen-ciphertext attack is to construct ciphertexts, which result 
in intermediate polynomials whose modular values differ from the true values. 

For cxample, suppose Trudy cliooses a ciphcrtext polynomial which is of 
tlic form C ( x )  = yh(5) + y, where y is an integer and h(z) is Alice's public 
key. The NTRU decryption algorithm yields 

a(.) = f ( x )  * C(n:) = f ( x )  * yh(z )  + yf(z) (mod q )  
= yyf(.z.) * h(z)  + y f ( ~ )  (mod q )  

= ?/dJ..) + y f ( x )  (mod 411 

where f ( x )  and g(z) both have coefficients in (0, 1, -I}. It follows that the 
polynomial ?jy(z) + y f ( z )  has coefficicnts in (0, y, -y, 2y, -2y}. If Trudy has 
chosen y so that> y < q / 2  arid 2y > q / 2 .  then the decryption process reduces 
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only the coefficients equal to f 2 y  modulo q and these coefficients are selected 
so as to lie between -q /2  and q/2.  Now suppose that a single coefficient 
of u(z )  is f 2 y ,  say, ai = +2y. Then u ( z )  (mod q )  = yg(z) + yf(z) - qzz, and 
the final decrypted output is 

f p ( 4  * 4.1 = Y f p ( Z )  * S ( % )  + Y - f p ( 4  * 4x2 (mod 

Furthermore, if Trudy chose y to be a multiple of p ,  then the final decrypted 
output collapses to 

z ( z )  = - f p ( x )  * 9x2 = -qfp(z)  * zz (mod p ) .  

Trudy then recovers Alice’s private key f ( x )  by computing 

f ( z )  = -422 * Y1(z) (mod p ) .  

In general, the polynomial y f ( z )  + yyg(z) may have none or several co- 
efficients equal to f 2 y .  In these cases, the above attack would not work. 
However, this chosen-ciphertext attack can be generalized and it can be prac- 
tical, even for stronger security parameters [138]. 

The intersection polynomial w(x) of polynomials u(x) and u(x) is defined 
to be 

2 W(.) = wo + W 1 2  + 2022  + . . . + wN-IxN-l ,  

where 

We say that polynomials u(x )  and v ( x )  have a collision when they have the 
same non-zero coefficient in a corresponding term. 

In the attack discussed above, the intersection polynomial of f ( x )  and g ( 2 )  
was the polynomial w(x) = xi, that is, f ( x )  and g(z) had one collision. Using 
the security parameters corresponding to N = 107 in Table 6.4, Jaulmes 
and Joux found that the probability of one collision occurring between f ( x )  
and g ( 2 )  was 0.13. Therefore, for this particular choice of parameters, the 
chosen ciphertext attack using C ( x )  = yh(z)  + y is successful approximately 
thirteen percent of the time and, in these instances, it easily recovers f ( z ) .  

For higher security parameters, the number of expected collisions be- 
tween f ( x )  and g(%) is too high and Alice’s private key f ( x )  cannot be re- 
covered in this manner when using the chosen ciphertext C(z) = yh(z) + y. 
In these cases, chosen ciphertext messages of the form 

.(%) = yh(z)ziO + . . . + yh(z)zZf-’ + yzjo + . . . + yzjs-1, 

where y is a multiple of p with 

(t + s - 1)y < q / 2  and (t + s l y  > q / 2  
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can be used to  attack NTRU. The numbers t and s are chosen so that the 
average number of collisions between 

t -  1 s - I  

E=O P=O 

is approxiniately one. Jaulmes and ,Joux give the heuristic approxiniation of 
t,hc riiimber of collisions as 

2d;db 
Nt+S-1 ’ 

When this number is near one, appropriate values for t and s have been 
deterrnined for the chosen-ciphertext attack. In [73] ,  the authors present an 
example of complete key recovery, using the highest security set of parameters 
described in [138]. They also provide estimated running times for different 
sets of parameters using different, values o f t ,  s ,  and y. 

Although we will not discuss it here, Jaiilmes and Joux also shows that 
this attack ca,n be modified so that it is effective against OAEP-like padding 
within NTRU. One way to thwart, this chosen-ciphertext attack is to  use othcr 
padding methods as described in [54]. 

6.7.4 NTRU Conclusion 

Like any respectable cryptosysteni, NTRU has been under close scrutiny 
sirice its invention. As attacks arid weaknesses have been discovered, the 
implementation-as well as the recommended security parameters N ,  p ,  q ,  
L j .  L,, and L,r--have evolved over time. In fact, NTRU encryption is now 
in its third major revision, due to  viable attacks on earlier v e r ~ i o n s . ~  

Of course, Kerckhoffs’ Principle dictates that a cryptosystem must be 
subject to  extensive investigation. However, the evolution of NTRU is in 
stark contrast to, say, RSA, which has undergone no significant revisions 
since its invention. Given these track records, it could be argued that RSA 
likely rests on a sounder foundat,ion than NTRU. Nevertheless, there are no 
known weaknesses in the current version of NTRU encryption [ lol l .  

In any case, it appears t,hat NTRU is a crypt,osystt:m with a future, in 
contrast to many other proposed public key systems-although a cynic might 
argue that this has as much to  do with patents and the heavy corporate 
backing NTRU has received than with any inherent technical superiority. 
Tirnc will tell whether the current version of NTRU proves more durable 
than its predecessors. 

‘Note  that thesc revisions are rriiich more significant than simply increasing the size of 
t l icx parameters. 
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6.8 ElGamal Signature Scheme 

Drink nothing without seeing it; sign nothing without reading it. 
- Spanish Proverb 

Public key cryptography can be used to create digital signatures. If properly 
implemented, when Bob receives a message digitally signed by Alice, he is 
assured that it was composed by Alice--assuming that Alice’s private key is 
private. 

Several different digital signature schemes have been proposed. For exam- 
ple, RSA can be used for signing by simply using the private key to “encrypt” 
and the public key to verify the signature. ElGamal is another signature 
scheme, which we discuss in this section. 

In this section, we employ the public key notation defined previously in 
Section 5.1. That is, we use the following notation: 

0 Encrypt message M with Alice’s public key: C = { M } ~ l i ~ ~ .  

0 Decrypt ciphertext c with Alice’s private key: M = [C]Alice. 

0 Signing and decrypting are the same operations, so the notation for 
Alice signing message M is S = [M]*lice, where S is the signed message. 

Encryption and decryption are inverse operations so that 

[{M)AlicelAlice = {[MIAlice)Alice = M .  

It is important to remember that only Alice can sign since the signature 
requires Alice’s private key. However, anyone can verify Alice’s signature, 
since that is a public key operation. 

We can define confidentiality as “no unauthorized reading” and integrity 
as “no unauthorized writing” [142]. By using Bob’s public key, Alice can send 
encrypted messages to Bob and be assured of confidentiality. For integrity, 
Alice can use a digital signature, as discussed in Section 5.1. Both integrity 
and confidentiality can be achieved by using symmetric key cryptography, but 
a digital signature also provides non-repudiation, which cannot be achieved 
with symmetric keys. 

How can Alice have confidentiality, integrity and non-repudiation using a 
public key cryptosystem? There are two natural strategies which Alice might 
use to accomplish this, that is, she can sign the message M and then encrypt 
the result before sending it to Bob or she can encrypt M and then sign the 
result before sending it to Bob. 

Using scenarios found in [142], we will show that both of these strategies 
have potential pitfalls. First, suppose that Alice and Bob are romantically 
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involved. Alice decides to send the message 

Af = “I love you” 

to Bob. Using sign and encrypt, she sends Bob 

Not long after, Alice and Bob have an argument and Bob, in an act of spite, 
decrypts the signed message to obtain [I\/!]Alice and re-encrypts it as 

before sending it on to Charlie. Upon reading the message, Charlie thinks 
that Alice is in love with him. causing great embarrassment for both Alice 
arid Charlie. 

Having learned her lesson, Alice vows to never sign and encrypt again. 
Instead, she will encrypt and then sign. Some time later, after Alice and Bob 
have resolved their earlier dispute, Alice discovers a solution to a difficult 
math problem arid she wants to inform Bob. This time, her message is 

= “Factoring is easy arid I have assuredly found an admirable 

algorithm, but the margin is too narrow to contain it.” 

which she then encrypts and signs 

before sending to Bob. 
However, Charlie, who is still angry with both Alice and Bob, has set 

himself up  as a man-in-the-middle arid he is able to intercept all traffic be- 
tween Alice and Bob. Charlie uses Alice’s public key to compute { M ) B ~ ~ ,  
which he then signs 

[{ h4} Bob] Charlie 

antl sends to Bob. When Bob receives the message, he verifies Charlie’s 
signature and assumes that Charlie has made this astounding discovery. Bob 
immediately promotes Charlie. Note that in this scenario Charlie cannot read 
t)he message, but, regardless of the message; he can at least cause confusion. 

In the first scenario, Charlie can be certain that Alice signed the message. 
However, Charlie does not know who encrypted the message (since encryption 
is a public key operation) arid he cannot, know whether or not he was the 
int,ended recipient of the original message. 

In the second scenario, Bob can be certain that Charlie signed the mes- 
sage. However, this does not imply that Charlie encrypted the message (since 
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encryption is a public key operation), or even that Charlie knows the content 
of the message. 

In both of these scenarios, the public key operations were exploited, which 
illustrates a fundamental issue in public key cryptography, namely, that any- 
one can encrypt a message and anyone can verify a signature. The underlying 
problem in both scenarios is that the recipient is making assumptions about 
digital signatures that are not valid. 

Now, let us examine the ElGamal signature scheme [44]. As with Diffie- 
Hellman, the security of ElGamal rests on the presumed intractability of the 
discrete logarithm problem. 

Suppose that Alice wants to create a digital signature to protect the in- 
tegrity of messages that she sends to Bob. To generate her private and public 
keys, Alice chooses a large prime p and a base s, where 2 5 s 5 p - 2. 
She then chooses a private key a ,  where 2 5 a 5 p - 2, and she com- 
putes a = sa (mod p ) .  Alice makes the triple ( p ,  s, a )  public. 

Now suppose that Alice wants to sign a message A 4  E (0, 1, . . . , p -  l}. She 
first selects a random session key k ,  with 1 5 k 5 p -  2 and gcd(k,p- 1) = 1. 
Alice then uses k to compute 

T = sk (mod p )  and t = k-l(A4 - ~ a )  (mod ( p  - 1)). 

The signed message consists of the triple ( M ,  T ,  t ) ,  which Alice sends to Bob. 
When Bob receives (Ad, T ,  t ) ,  he checks to see whether 1 5 T 5 p-1 .  If not, 

the signature is rejected. If this test is passed, Bob computes v = sM (mod p )  
and w = a' . rt (mod p ) .  If v = w (mod p ) ,  the signed message is accepted 
and otherwise it is rejected. 

Why does the ElGamal signature scheme work? Is this scheme secure? 
To answer the first question, suppose that Alice signs the message (M, r , t )  
as described above. Then we have v = U J  (mod p ) ,  where 

'u = sM (mod p )  and 7u = a' .  rt (mod p ) ,  

which follows from 

w = a' . rt (mod p )  = (s")'(sk)' (mod p )  

(mod P )  - - s r a .  Skkp ' (n / l - ra )  

M = s  (mod p )  
= v (mod p ) .  

If the attacker Trudy is able to compute discrete logarithms efficiently, 
then she would be able to recover Alice's private key a from 0. In order for 
Trudy to forge Alice's signature on a message M ,  she would need to find 
elements T and t such that sM = aT .rt.  It is not known whether this problem 
is equivalent to the computation of discrete logarithms. However, no efficient 
algorithm for this problem is known. 
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6.8.1 Mathematical Issues 

As in the RSA cryptosystem, some care needs to be taken when using the 
ElGamal signature scheme. We now give an overview of some niathematical 
issues that arise with ElGamal. 

If all of the prime factors of p - 1 are small, then t,here is an efficient 
algorithm for computing discrete logarithms [83]. Consequently, at least one 
of the prime factors of p - 1 must be “large.” 

Alice should use a “good” random number generator to create k .  If Trudy 
is able to guess k for a signed message (M, T ,  t ) ?  then she is able to com- 
pute T U  = M - k t  (mod ( p -  1)). Since it is very likely that gcd(r,p- 1) = 1, 
Trudy can then readily obtain Alice’s secret key a (see Problem 3 2 ) .  

Alice must use a different session key k for each signed message. To see 
why this is the case, suppose Alice uses k to sign messages M and M‘, where 
izf # M’. Then Trudy can compute t - t’ = k- ’ (  M - M’) (mod ( p  - 1)) and, 
t,hereby obtain k ,  since 

k = (AT - A f ’ ) ( t  ~ t’)-’ (mod ( p  - 1)). 

Orice Trudy has k ,  she can obtain Alice’s secret key a (see Problem 3 3 ) .  
As with most other signahre schemes, Alice should hash her message 

and sign the hashed value. This is not) just a matter of efficiency~p~if Alice 
signs the message instead of its hash, Trudy can forge Alice’s signature on a 
message (see Problem 31). That is, Trudy can construct a message hf and 
valid signature ( M ,  ~ , t ) .  To accomplish this, Trudy first chooses b and c, 
where gcd(c,p - 1) = 1. She then sets T = sbaC (mod p )  and computes the 
value t = --?.c-l (mod ( p  - 1)). Finally, M = -rbc-’ (mod ( p  - 1)) yields a 
valid signed message (Aff? T ,  t )  , since 

a‘ . rt (mod p )  = (s”)‘ . ( ~ ~ a “ ) ~ ‘ ‘ ~ ~  (mod p )  

(mod P )  = ( s ( L I ‘ )  . ,’pc)--rc-’ 

~ - ( p r )  ( -brc - ’  )(s-�) (mod p )  
- r bc ~ 

A 1  = s (mod p ) .  
(mod P )  - 

6.8.2 ElGamal Signature Conclusion 

Since its invention, the ElGamal signature scheme has generated continued 
interest within the cryptologic community. Research on the cryptosystem, 
as well as real-world usage of ElGamal, continue to this day. In addition, 
the ideas underlying ElGamal form the basis of other important signature 
schemes such as the Digital Signature Standard (DSS) and the Schnorr sig- 
nature schcme. 
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6.9 Summary 

In this chapter, we briefly considered seven public key cryptosystems. The 
MerkleeHellman knapsack provides a nice introduction to public key cryptog- 
raphy. After giving an overview of this cryptosystem, we presented Shamir’s 
ingeniuous lattice-reduction attack on the knapsack. This attack clearly 
shows that the Merkle-Hellman knapsack is insecure and it also highlights 
the difficulty of finding secure trap door one-way functions for use in public 
key cryptography. 

The Diffie-Hellman key exchange was then examined, along with a man- 
in-the-middle attack on the system. Our overview of the recently introduced 
Arithmetica key exchange illustrates the role of sophisticated mathematics in 
the design of public key cryptosystems. We also briefly described the heuristic 
(and probabilistic) length attack of Hughes and Tannenbaum on Arithmetica. 

The de facto standard in public key cryptography, RSA, was presented. 
A few mathematical issues related to RSA were considered. The important 
practical issue of implementation attacks on RSA is discussed in some detail 
in Chapter 7. 

The Rabin cryptosystem and an easily thwarted chosen ciphertext attack 
were discussed. The Rabin cipher is at least as secure as RSA, since breaking 
Rabin is mathematically equivalent to solving the factoring problem, and this 
is not known to be the case for RSA. 

We then consider the NTRU cipher and we mentioned several attacks on 
it. Lastly, the ElGamal signature scheme was studied and some implementa- 
tion issues were discussed. 

6.10 Problems 

1. Suppose that the published Diffie-Hellman prime and generator are 
given by p = 37 and g = 6, respectively. If Alice sends Bob the num- 
ber ct = 36 and Bob sends p = 31 to Alice, find the key on which they 
agreed. What makes the recovery of this key so easy? From Alice and 
Bob’s viewpoint, what would be a better choice of 9? 

2. In the Diffie-Hellman key exchange, g is chosen so that 2 5 g 5 p - 2. 
Why is g = p - 1 not a good choice? 

3. In the text we mentioned that digital signatures can be used to prevent 
the man-in-the-middle attack on Diffie-Hellman. Suppose that Alice 
and Bob already share a symmetric key K before they begin the Diffie- 
Hellman procedure. Draw a diagram to illustrate a simple method Alice 
and Bob can use to prevent a man-in-the-middle attack. 
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4. Suppose that Alice and Bob each have a public-private key pair, and 
Alice and Bob encrypt all communications to and from each other. 
Trudy records all encrypted messages between Alice and Bob. Later, 
Trudy breaks into Alice and Bob's computers and steals Alice's private 
key and Bob's private key. If Trudy cannot decrypt the messages that 
she previously recorded: we say that Alice and Bob have perfect forward 
secrecy (PFS). Explain how Alice and Bob can use Diffie-Hellman to 
attain perfect forward secrecy. Hint: Use an ephemeral Difie-Hellman 
cxchangc, where Alice forgets her secret, exponent a after she no longer 
needs it and Bob forgets his secret, exponent b after he no longer needs 
it. You must also prevent a man-in-the-middle attack. 

5. Suppose that Alice and Bob share a 4-digit PIN,. Consider the authen- 
t,ication protocol below, where RA is ;L random challenge, (or nonce) 
selected by Alice, and Rg is a random challenge selected by Bob. The 
response is h( "Bob", RA, PIN) , which is sent in message two and is 
intended to authenticate Bob to Alice, since the creator of the message 
must know the PIN, and the nonce RA prevents a replay attack. Sinii- 
larly, message three is intended to authenticate Alice to Bob. However, 
if Trudy observes, say, the first two messages, she can do an offline PIN 
cracking attack. That is, Trudy can simply try each possible 4-digit PIN 
and easily determine Alice and Bob's shared PIN. 

a. Slightly modify the protocol to make it resistant to an offline PIN- 
cracking attack. Note that Alice arid Bob only share a PIN and no 
pnblic/private key pairs are available. Hint: Use Diffie -Hellman, 
while preventing a man-in-the-middle attack. 

arid third messages. respectively? 
b. Why are the identifiers .'Bob" and "Alice" necessary in the second 

6. For S,, the symmetric group on three elements, the underlying set con- 
sists of the permutations on t,hree elements. Show that S3 has the 
following finite presentation: 

s:j = (2,y I X 3 , y 2 ,  (2y)". 

7. Show that Ss (see Problem 6) can be interpreted as the set of rigid 
motions of an equilateral triangle in 3-space. 
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8. Is the Arithmetica key exchange susceptil.de to  a man-in-the-middle 
attack? Why or why not? 

9. Use the Euclidean Algorithm to find the greatest common divisor of 
12,345 and 67,890. 

10. Suppose 1500 soldiers arrive in training camp. A few soldiers desert the 
camp. The drill sergeants divide the remaining soldiers into groups of 
five and discover that there is one left over. When they divide them 
into groups of seven, there are three left over, and when they divide 
them into groups of eleven, there are again three left over. Determine 
the number of deserters. 

11. In the RSA cryptosystem, it is possible that 111 = C ,  that is, the plain- 
For modulus N = 3127 and text and the ciphertcxt are identical. 

encryption exponent e = 17, find a message M that encrypts to itself. 

12. Suppose that Bob uses the following variant of RSA: He chooses N 
and two encryption exponents el and e2. He asks Alice to  encrypt 
her message M to him by first computing C1 = Me' (mod N ) ,  then 
encrypting C1 to  get C2 = C:' (mod N ) .  Alice then sends C2 to Bob. 
Does this double encryption increase the security over single encryption? 
Why or why not? 

13. Alice uses RSA to receive a single ciphertext C (encrypted using her 
public key), corresponding to  plaintext M from Bob. To tease her 
nemesis, Alice challenges Trudy to  recover M .  Alice sends C to  Trudy 
and agrees to decrypt one ciphertext from Trudy, as long as it is not C ,  
and return the result. Is it possible for Trudy to  recover M? 

14. Suppose N = pq with p and q prime. Let e be the corresponding RSA 
public encryption exponent and d the private decryption exponent. Use 
the fact that 

( M e ) d  = 111 (mod p )  and ( M e ) d  = M (mod q )  

to  show that 
( M e ) d  = M (mod iV) 

15. Let ( e l , N )  and (e2,N) be the RSA public keys of Alice and Bob, re- 
spectively. Using the attack discussed in Section 6.5.1 beginning on 
page 287, write a computer program to show that Alice can read en- 
crypted messages which are sent to  Bob (and vice-versa). 

16. Construct a specific example that illustrates the cube root attack dis- 
cussed in Section 6.5.1. Does this mean that a small encryption expo- 
nent e should never be used in RSA? Why or why not? 
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17. Let p be prime. Suppose that a and b are integers with ab = 0 (mod p ) .  
Show that either a = 0 (mod p )  or b = 0 (mod p ) .  

18. Let p = 3 (mod 4) be prime. Show that x2 = -1 (mod p )  has no 
solutions. Hint: Suppose that x exists. Raise both sides to the power 
( p  - 1)/2 and use Euler’s Theorem. 

19. Let p = 3 (mod 4) be prime. Using Problem 18, show that x2 = f y  
cannot occur simultaneously. Hint: Assume that y = u2 (mod p )  and 
t,hat -y = b2 (mod p )  and reach a contradiction. 

20. For the Rabin cryptosystem, write a computer program to calculate the 
square roots of C ,  modulo a prime p .  Assume that p = 3 (mod 4). 

21. Let N = pq ,  where p arid q are distinct primes. Give an example to 
show that if p divides C and q does not divide C, then there are two 
(and not four) distinct square roots of C in ZN. 

22. Set up a Rabiri encryption scheme for Alice, by generating a public- 
private key pair. Playing the role of Bob, choose a suitable plaintext 
and encrypt it. Now, playing the role of Alice, decrypt the ciphertext 
message. 

23. Construct an example that illustrates a chosen-ciphertext attack on the 
Rabin cryptosystem, as discussed in Section 6.6.1. 

24. In the NTRU cipher, the encryption and decryption processes use the 
associative, commutative and distributive properties of �t� arid “*” . 
Verify that these properties arc valid in 

25. For NTRU, write a computer program to perform the operations of 
addition and multiplication, mod ( X N  ~ l),  in R. Use your program to 
verify the first example given in Section 6.7. 

26. In NTRU, suppose that ( f , g )  is Alice’s secret key which she uses for 
decryption. Show that Alice can also use ( f / z z , g / x z )  to  decrypt mes- 
sages. 

27. In the NTRU cipher, Alice must keep both f and g secret. Suppose 
that Trudy discovers g. How can she use this knowledge to decrypt 
messages sent to Alice? 
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28. Consider the multiple transmission attack against NTRU discussed in 
Section 6.7.2. Suppose that each r, is a polynomial of degree four or 
less and 

- = -1 + - 2 2  + x4 

2 r2(z) - q(z )  = x + 2 

Q(2)  - ro(x) = -2 + x + 2x2 - x3 + x4. 

a. Determine as many coefficients of rg(x) as you can 

b. Give a general procedure for determining the coefficients of q ( x )  
from a set of polynomials of the form ri(x) - rg(x). 

29. Suppose we select NTRU parameters are N = 11, q = 32, p = 7 ,  
and the sets of polynomials are given by L f  = L(4 ,3 ) ,  L, = L(3 ,3 ) ,  
and L,  = L(3,3) .  Suppose Alice chooses 

f(x) = -1 + x + x2 - x4 + z6 + x9 - do E L f  
g ( x )  = -1 + x2 + x3 + x5 - x8 - E L,. 

Then 

fq(x) = 5 + 9x + 6x2 + 16x3 + 42" + 15x5 + 16x6 + 22x7 

+ 2 0 2  + 182' + 3 0 ~ ~ ' .  

Recall that NTRU decryption does not always succeed. 

a. Use the algorithm in Table 6.3 to find f p ( x ) .  Give Alice's public 
and private keys. 

b. Give an example of a message Mo(x) E L,, and the corresponding 
ciphertext Co(x) obtained by encrypting Mo(x) with Alice's public 
key, such that Co(x) decrypts to Mo(x) using Alice's private key. 

c. If possible, give a message Ml(x) E L,, and the corresponding 
ciphertext C1 (x) obtained by encrypting M I  (x) with Alice's pub- 
lic key, such that Co(z) does not decrypt to M l ( z )  using Alice's 
private key. 

30. Write a computer program to implement the meet-in-the-middle attack 
on the NTRU cipher. To verify that your program is working, it should 
output the recovered key as well as the approximate number of opera- 
tions performed and computation time. 

31. Set up an ElGamal signature scheme for Alice. 

a. Assume that Alice pre-processes her messages with a hash function 
before signing them. Generate an ElGamal signed message from 
Alice. Playing the role of Bob, verify the signed message. 
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b. Now, assume that Alice does not prc-process her messages before 
signing them. Playing the role of the attacker Trudy, forge n signed 
message. 

32.  If Trudy can guess the session key k in the ElGamal signature scheme, 
she can recover Alice’s secret key a. Construct a specific example that 
illustrates this implcmentation attack, as discussed in Section 6.8.1. 

33. In the ElGarrial signature scheme, a different session key must be used 
for each signed message. If k is used to sign multiple messages, then an 
implementation attack can be initiated, as described in Section 6.8.1. 
Construct an example to illustrate this attack. 



Chapter 7 

Public Key Attacks 

There is always more spirit in attack than in defence. 
- Titus Livius 

7.1 Introduction 

In this chapter, we cover some attacks on public key systems in detail. The 
most widely used public key cryptosystems rely on the difficulty of factoring 
(RSA) and the discrete log problem (Diffie-Hellman and ElGamal). So we 
first discuss factoring algorithms and algorithms for solving the discrete log 
problem. These represent fundamental attacks on the underpinnings of the 
most widely used public key systems. These attacks are roughly the public 
key equivalents of an exhaustive key search attack on a symmetric cipher. 

Then we present a fascinating set of attacks on RSA that are, in a sense, 
the polar opposite of factoring, since these do not directly attack the RSA 
algorithm. Instead, these attacks take advantage of implementation issues 
that, under some circumstances, allow an attacker to recover the private key 
without breaking the RSA algorithm per se. First, we discuss three different 
timing attacks on RSA. These attacks are examples of side-channel attacks, 
where an attacker gains information about an underlying computation which, 
in turn, leaks information about the key. Such attacks have dramatically 
changed the nature of crypt,analysis and the development of cryptography in 
general. 

We also discuss a devastating glitching attack on RSA, where a single 
induced error can enable an attacker to recover the private key. This at- 
tack, which is an example of a fault  induction attack [107], is amazing and 
amazingly simple. 

Implementation attacks have more than proven their value in the crypt- 
analysis of smartcards. In fact, in any scenario where the attacker has physical 

315 
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a w e s  to the crypto device holding the key, such attacks are a serious threat. 
Consequently, these attacks are certain to play a role in the emerging field of 
trusted computing [4, 481. A practical timing attack has recently been devel- 
oped which can be used to recover an RSA private key from a Web server [22]. 
This particular attack is covered in Section 7.4. 

7.2 Factoring Algorithms 

The o bvjo u$ math ern a tical breakthrough 
would be cleveloprricnt of ari eas,y n a y  to factor large prime iiumbers. 

- Bill Gates [56] 

The RSA public key cryptosystem is the “gold standard” by which all other 
public key systems are measured. The security of RSA is thought to rest 
squarely on the difficulty of factoring large integers. More precisely, given N ,  
where N = py,  with p and q prime, if we can determine p or q ,  then we can 
break RSA. Consequently, a tremendous amount of effort has been devoted 
to developing efficient factoring methods. 

In this section we consider several integer factorization methods. First, 
we briefly discuss the obvious approach, that is, trial division by numbers up 
to m. Then we present Dixon’s Algorithm, followed by the quadratic sieve, 
which is a refinement of Dixon’s Algorithni. Like trial division, these algo- 
rithnis are guaranteed to find the factors of N ,  provided enough computing 
power is available. The quadratic sieve is the best available factoring algo- 
rithm for numbers having about 110 decimal digits or less, arid it has been 
used to successfully factor numbers with about 130 decimal digits. For inte- 
gers with more than about 110 decimal digits, the number field sieve reigns 
supreme, and we briefly mention this more complex factoring method a t  the 
crid of this section. 

7.2.1 Trial Division 

Given a compositc integer N ,  one obvious way to factor it is to simply try to 
divitlc it by each of the numbers 

2 ,  3,5,7,9:  11,. . . , [JN] 

Any of thesc that divides N is a factor. The work required is on the order 
of 0 1 2 .  

‘In corit,rast to RSA, the security of  the R;tbiri crypt,osystern is easily proven to he 
rquivaleiit to factoririg. 
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We can improve on this simple method by only testing the prime numbers 
up to n, instead of testing all odd integers. In this case, the work factor is 
on the order of ~ ( m ) ,  where ~ ( x )  is the function that counts the number 
of primes less than or equal to  x, assuming we can efficiently generate the 
required primes. For large N ,  the approximation T ( N )  z N/ ln (N)  holds. 
Consequently, the work to factor N by trial division is, a t  best, on the order 
of N /  ln(N). 

7.2.2 Dixon’s Algorithm 

Suppose we want to  factor the integer N. If we find integers x and y such 
that N = x2 - y2, then N = (x - y)(x + y)  and we have found factors of N .  
More generally, suppose we can find x and y such that x2 - y2 is a multiple 
of N ,  that is, 

x2 = y2 (mod N ) .  (7.1) 

Then x2 - y2 = k N  for some k # 0, so that (x - y)(x + y) = k N ,  which 
implies that N divides the product (x  - y) (x + y). If we are unlucky, we could 
have z - y = k and x + y = N (or vice versa), but with a probability of a t  
least 1/2 we can obtain a factor of N [40]. If this is the case, then gcd(N, x-y) 
and gcd(N, x + y)  reveal factors of N .  

For example, since 100 = 9 (mod 91), we have lo2 = 32 (mod 91) and 
hence 

(10 - 3)(10 + 3) = (7)(13) = 0 (mod 91). 

Since 91 = 7 .  13, we have obtained the factors of 91. However, in general 
we must compute gcd(x - y , N )  or gcd(x + y,N)  to  obtain a factor of N .  
To see that the gcd is necessary, consider 342 = 82 (mod 91). In this ex- 
ample, we have 26 . 42 = 0 (mod 91) and the factors of 91 are found by 
computing gcd(26,91) = 13 and gcd(42,91) = 7. 

Since the gcd is easy to compute (using the Euclidean Algorithm), we can 
factor N provided we can find 2 and y satisfying (7.1). But finding such x 
and y is difficult. We can relax these conditions somewhat, thereby making 
it easier to find the required pair of values. For example, 

412 = 32 (mod 1649) and 432 = 200 (mod 1649) (7.2) 

and neither 32 nor 200 is a square. However, if we multiply these two equa- 
tions, we find 

412 . 432 = 32.200 = 6400 (mod 1649), (7.3) 

which yields 
(41 . 43)2 = 802 (mod 1649), 

and we have obtained the much-coveted congruence of squares. We have 
that 41 . 4 3  = 114 (mod 1649) and 114 - 80 = 34. In this example, we find 
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a factor of 1649 from the gcd computation gcd(34,1649) = 17. It is easily 
verified that 1649 = 17.97.  

In ( 7 . 3 ) ,  we combined two nonsquares to  obtain a square. To see why this 
works in this particular case, note that 

32 = 25 .5' and 200 = 23 . S2, 

so that the product is given by 

32.200 = 28 . 5' = (a4 . 51)2 = 80'. 

This example illustrates that we can obtain a perfect square from non-square 
congruence relations such as those in (7.2). To find these perfect squares, 
we only need to  concern oiirselves with the powers in the prime factorization 
of the relations under consideration. Also, by properties of exponentiation, 
the corresponding powers add when we multiply terms. Furthermore, any 
time we multiply terms and all of the resulting powers arc even, we obtain a 
perfect square. Consequently, we only need to  be concerned with whether the 
powers are even or odd, that is, we only need to  know the powers modulo 2. 

We can associate each number with a vector of the powers in its prime 
factorization, and we obtain a perfect square by multiplying corresponding 
t'crins whenever the siirri of these vectors contain only even numbers. In the 
exarnple above we have 

3 2 +  [ ] = [ :I ] (mod 2),  

where the numbers in the vector represent the powers of the prinie factors 2 
and 5, respectively, in the prime decomposition of 32. Similarly. 

The product therefore satisfies 

Since the powers are all even, we know that 32 . 200 is a perfect square 
modulo 1649. Furthermore, from (7.2), we know that  this square is equal 
to (41 . 43)2 (mod 1649), giving us the desircd congruence of squares. While 
the actual powers are required to determine the value that is squared (80 in 
this example), to determine whether or not we have a congruence of squares, 
wc only require the mod 2 vectors of powers. 

We can multiply any number of relations to obtain a perfect square. Also, 
the number of distinct primes in the factorizations of the numbers under 
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consideration determines the size of the vectors. Since we ultimately want 
to factor large numbers, it is imperative that we keep the vectors small. 
Consequently, we will choose a bound B and a set of primes, where each 
prime is less than B. This set of primes is our factor base. While all primes 
in the factor base are less than B, generally not every such prime will be 
included in the factor base (see Problem 7). 

A number that factors completely over the given factor base is said to 
be B-smooth. Smooth relations (or, more precisely, B-smooth relations) are 
those relations that factor completely over the factor base. By restricting our 
attention to B-smooth relations, we restrict the size of the vectors of powers. 
The fewer elements in the factor base, the smaller the vectors that we need 
to deal with (which is good), but the harder it is to find B-smooth values 
(which is bad). 

An example should illustrate the idea. Suppose we want to factor the 
integer N = 1829 and we choose B = 13, as in the example given in [92]. 
Since we want numbers with small factors, it is advantageous to deal with 
modular numbers between - N/2 and N/2, instead of in the range 0 to N - 1. 
This creates a slight complication, since we must include -1 in our factor base, 
but this is easily managed. In this example, B = 15 and we take 

-1,2,3,5,7,11,13 

as our factor base. 
Now we could simply select a random r and check whether r' (mod N )  

is B-smooth, repeating this until we have obtained a sufficient number of 
B-smooth values. Instead, we use a slightly more systematic approach. We 
select the values Lm] and Im1, for k = 1,2,3,4,  and test whether the 
square of each, modulo 1829, is B-smooth. For this example we obtain 

422 = 1764 = -65 = -1 . 5 .  13 (mod 1829) 

43' = 20 = 2' . 5  (mod 1829) 

60' = 1771 = -58 = -1 ' 2 . 2 9  (mod 1829) 

61 = 63 = 3' ' 7  (mod 1829) 

742 = 1818 = -11 = -1.11 (mod 1829) 

752 = 138 = 2 . 3 . 2 3  (mod 1829) 

852 = 1738 = -91 = -1 . 7 . 1 3  (mod 1829) 

862 = 80 = 24 . 5  (mod 1829). 

2 

All of these values are B-smooth except for 60' and 752, giving us six useful 
relations. 

For each of the six B-smooth values we obtain a mod 2 vector of of length 
seven, where the first entry represents the sign bit (1 represents "-", while 0 
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2 74 = -11 + 

represents "+" ) and the remaining positions correspond to the factor base 
elements 2,3,5,7,11, and 13, respectively. In this case, we have 

- 1  
0 
0 
0 
0 
1 

- 0  

42' = -65 + 

- 1 -  - 0 -  
0 0 
0 0 

@ 0 = 0  
1 0 
0 0 
1 0 

and 

- 1  
0 
0 
1 
0 
0 

- 1  

1 '  
0 
0 
1 
0 
0 

1 .  

, 43* = 20 

, 852 = -91 f 

0 
0 
0 
1 
0 
0 
0 

1 
0 
0 
0 
1 
0 
1 

Any combination of these vectors that sum t 

, 61' = 63 + 

, 862 = 80 + 

(7.4) 

. (7.5) 

thc zero vector, modulo 2, will 
yicld the desired modular squares and, with high probability, a factor of N .  
Notc that the sign bits must also sum to 0 modulo 2, since an even number 
of sign bits imply that the product is positive. In this example, we can sum 
the vectors corresponding to 42', 43', 612, and 85', modulo 2, to obtain the 

CE 

This yields the congruence 

422 . 432 . 612 . 852 = (-65) . 2 0 .  63. (-91) 

= (-1 . 5 .  13) . ( 2 2  . 5) . (3' . 7) . (-1 . 7 .  13) 

= 22 . 32 . S2 . 7' . 132 (mod l829), 

which can be rewritten as 

( 4 2 . 4 3 ' 6 1 .  85)' = ( 2 . 3 ' 5 '  7 .  13)2 (mod 1829). 
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- 1  
0 
0 
1 
0 
0 
1 

This simplifies to 

145g2 = 9012 (mod 1829) 

0 -  
0 
0 
1 
0 
0 
0 -  

and, since 1459 - 901 = 558, we determine the factor 31 of 1829 via the 
calculation of gcd(558,1829) = 31, which can be computed efficiently using 
the Euclidean Algorithm. It is easily verified that 1829 = 59 .31. 

This example raises a few questions. For example, can we be sure of 
obtaining a solution? And, if so, how many relations are required before we 
can be certain of obtaining a solution? These questions can be answered 
positively with some basic linear algebra. 

While in the example above we found a solution by simply “eyeballing” 
the vectors in (7.4) and (7.5), a more systematic approach is possible. Let M 
be the matrix with columns given by the vectors in (7.4) and (7.5). Then 
a solution is given by any vector x satisfying Mx = 0 (mod 2), that is 
the 1s in z determine which of the vectors in (7.4) and (7.5) to sum to obtain 
a mod 2 sum equal to the 0 vector. In linear algebra terms, we seek a 
linear combination of the columns of M that sum to 0, that is, we seek a 
linearly dependent set of columns. In the example above. we want to find a 
solution ( ~ 0 ~ x 1 , .  . . , z g )  to the matrix equation 

- 
xo 
x1 
x2 

x3 

z4 

- z 5  

0 0  
0 0  
0 0  
1 0  
0 1  
0 0  
0 0  

1 1  
0 0  
0 0  
0 0  
0 1  
1 0  
0 1  

(mod 2). 

In general, if n is the number of elements in the factor base (including -l), 
then n is also the number of elements in each column vector, and, therefore, 
the matrix M has n rows. It is a theorem from linear algebra that if there are 
at least R + 1 columns in 111, then we can find a linearly dependent collection 
of the columns. Furthermore, this can be done efficiently using standard 
techniques from linear algebra. This implies that with with n + 1 or more 
B-smooth relations, we will obtain a congruence of squares and thereby, with 
a high probability, a factor of N .  Note that in the example above, n = 7 
and we only had six relations. In this case, we were lucky since we did find a 
solution, although we lacked a sufficient number of relations to be guaranteed 
of doing so. 

In effect, we have reduced the problem of factoring to the problem of 
finding a sufficient number of B-smooth relations and then solving a system 
of linear equations, modulo 2. Dixon’s Algorithm, as given in Table 7.1, uses 
a very simple approach to find the necessary B-smooth relations, while the 
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Table 7.1: Outline of Dixon's Algorithm 

// Given integer N ,  find a nontrivial factor 
Select B and factor base of primes less than B 
n = number of elements in factor base (including -1) 
/ /  Find relations 
nL = 0 
while m 5 n 

y = r2 (mod N )  // r' can be selected at random 
i f  y factors completely over the factor base then 

Save mod 2 exponent vector of y 
Save r2 and y 
m = m + l  

end if 
end while 
// Solve the linear system 
A1 = matrix of mod 2 exponent vectors 
Solve Mn: = 0 (mod 2) for vector x = (xo, XI,. . . , x,) 

We have congruence of squares: n, r$ = n, yt (mod N )  
Conipute required gcd and check for nontrivial factor of N 

I = { i  I z, = l} 

quadratic sieve (discussed in Section 7.2.3) uses a more efficient but inore 
complex approach. 

It is worth emphasizing that by increasing B ,  we can find B-smooth rela- 
tions more easily, but the size of the vectors will increase, making the resulting 
linear algebra problem more difficult to solve. Determining an opt,imal B is 
challenging since it depends, among other things, on the efficiency of the 
implementation of the various steps of the algorithm. Another interesting 
feature of this factoring algorithm is that the problem of finding B-smooth 
relations is reasonably parallel, since given k different comput'ers, each can 
test a disjoint subset of random values T for B-smoothness. However, the 
linear equation solving is not parallel. 

In the next section we describe the quadratic sieve factoring algorithm, 
which is a refinement of Dixon's Algorithm. The quadratic sieve is the fastest 
known algorithm for factoring large integers up to about 110 to 115 decimal 
digit,s. We briefly 
mention the number field sieve before leaving the topic of factoring. Then 
in Section 7.3 we consider algorithms for solving the discrete log problem. 
Some of these discrete log algorithms use similar techniques to  the factoring 
algorithms considered below. 

Beyond that point, the number field sieve is superior. 
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7.2.3 Quadratic Sieve 

The quadratic sieve (QS) factoring algorithm is essentially Dixon’s Algorithm 
on steroids. In particular, finding B-smooth relations is beefed up in QS as 
compared to the more-or-less random approach followed in Dixon’s Algo- 
rithm. In both algorithms, the linear algebra is identical, so here we ignore 
the linear algebra phase. In this section, we assume that the reader is familiar 
with Dixon’s Algorithm, as presented in Section 7.2.2. 

As in Dixon’s Algorithm, we first choose a bound B and a factor base 
containing primes less than B. Given this factor base, we must find a sufficient 
number of B-smooth relations. 

Define the polynomial 

Q(2) = (LJN] + x ) ~  - N .  (7.6) 

We use this quadratic polynomial to generate the values to be tested for B- 
smoothness. The word “quadratic” in quadratic sieve comes from the fact 
that Q(z) is a quadratic polynomial. 

To obtain smooth relations, we choose an interval containing 0, say, 
[ -M,  MI, and for every integer n: E [ -M,  M] we compute y = Q(z). Then, 
modulo N ,  we have y = 3?, where 5 = L f l J  + n:. Consequently, we are 
in the same situation as with Dixon’s Algorithm, that is, we test whether y 
is B-smooth and, if so, we save the mod 2 exponent vector for the linear 
equation solving phase. The advantage of QS over Dixon’s Algorithm arises 
from the fact that we can sieve, as described below. Sieving greatly reduces 
the work factor. 

A variety of tricks are used to speed up the relation-finding part of the QS 
algorithm--the most significant of these is a sieving method. That is, the QS 
algorithm utilizes a method whereby the smooth numbers eventually “fall 
through” while the non-smooth numbers are filtered out. The process is 
somewhat analogous to the sieve of Eratosthenes [25], which is used to find 
all primes less than a given bound. Before discussing the sieve used in the QS 
algorithm, we review the sieve of Eratosthenes. 

Suppose that we want to find all primes less than 31. First, we list all of 
the numbers 2 through 30: 

2 3 4 5 6 7 8 9 10 

21 22 23 24 25 26 27 28 29 30. 
11 12 13 14 15 16 17  18 19 20 (7.7) 

Then we cross out every other number beginning with 4, since all of these have 
a factor of 2. Next, we cross out every third number beginning with 6, since 
these all have a factor of 3, and so on. At each step, the smallest number not 
yet considered that has not been crossed out must be prime, and we remove 
all factors of that number from the list. 
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For the numbers in (7.7), wc begin by marking every number in the list 
that has a factor of 2 (other than 2 itself). This is easily accomplished by 
simply marking every other number with ‘‘- ”. beginning from 4, to  obtain 

2 3 4 - 5 + 7 + 9 w  
11 X2 13 44 15 46 17 48 19 2% 
21 ?? 23 ?4 25 ?6 27 ?8 29 30. 

The next unmarked number after 2, which is 3,  must be prime. To remove all 
nunibers with a factor of 3 (other than 3 itself), we mark every third number, 
beginning from 6, with “/” to  obtain 

2 3 4 5 5 $ + 7 i & g w  
11 @ 13 M 45 46 17 @ 19 28 
2/1 ?? 23 q 25 ?6 v ?8 29 $. 

The next unmarked number, 5, must be prime, so we mark every fifth number 
beginning frorn 10 with “\” , giving 

2 3 4 5 + 7 4 g I , \ g  
11 @ 13 f4 @ 3% 17 19 

?2 23 % 2fi ?6 ?8 29 @. 

Continuing, we inark numbers having a factor of 7 with “/”, 

2 3 4 5 + 7 + g q  

WI ?? 23 + % ?6 v + 29 3Q 
11 $? 13 @ f6 17 l@ 19 % 

and numbers having a factor of 11 arc marked with “ I / ” ,  

2 3 4 & 5 9 7 4 - g 4 y 3  

W 1 4 P  23 % 45 26 v + 29 ;Pg 
11 $2 13 I)$ &6 17 +$ 19 % 

and. finally. numbers with a factor of 13 are marked with “n”. 

2 3 4 5  + 7 3 - g 4 p  
11 3$ 13 I)$ L6 17 4j8 19 @ (7 .8)  
WI 41 23 + 45 z-6 v + 29 w. 

Since the next unmarked number is 17, which is greater than 30/2, we are 
finished. The primes less than 31, namely, 

2 ,3 ,5 ,7 ,11,  13,17,19,23,29 

have passed through the “sieve.” 
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While the sieve of Eratosthenes gives us the primes, it also provides con- 
siderable information on the non-primes in the list, since the marks through 
any given number tell us the prime factors of the number. However, the 
marks do not tell us the power to  which a given prime factor occurs. For 
example, in (7.8), the number 24 is marked with "-" and "/", so we know 
that it is divisible by 2 (due to  the "--") and 3 (due to  the "/"), but from 
this information we do not know that 24 has a factor of 23. 

Now suppose that instead of crossing out the numbers, we divide out the 
factors (here, we also divide the prime by itself). Then, beginning again from 

2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 

after dividing every other number by 2, beginning from 2, we have 

1 3 2 5 3 7 4 9 5  
11 13 1 15 8 17 9 19 lo 
21 11 23 12 25 13 27 14 29 15 

where the numbers that were divided by 2 at this step are underlined. Next, 
we divide every third number by 3, beginning with 3 (again, underlining the 
numbers that were divided at  this step), to obtain 

1 1 2 5 1 7 4 3 5  
11 2 13 7 5 8 17 3 19 10 
- 7 11 23 4 25 13 9 14 29 5. 

Then we divide every fifth number by 5, beginning with 5, 

1 1 2 1 1  7 4 3 1  
11 2 1 3 7 1  8 17 3 1 9 2  
7 11 23 4 5 13 9 14 29 1. 

Dividing every seventh number by 7 yields 

1 1 2 1 1 1 4 3 1  
11 2 1 3 1 1  8 1 7 3 1 9 2  
- 1 1 1 2 3 4 5 1 3  9 2 2 9 1  

and suppose that we stop at  this point. Then the numbers that correspond 
to  the positions now occupied by the 1s in this array are 7-smooth, that is, 
they have no prime factors greater than 7. However, some of the numbers 
that correspond to  non-1s are also 7-smooth, such as 28, which is represented 
by the number 2 in the last row. The problem here is that we need to divide 
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by the highest prime power at  each step, which slightly complicates the siev- 
ing. This is essentially t.he principle--with some significant computational 
rcfiriements-that is followed in the QS algorithm to obtain B-smooth rela- 
tions. 

It is costly to  test each candidate Q ( x )  for B-smoothness by trial divi- 
sion. Suppose that we find that, the prime p ,  where p is in the factor base, 
divides Q(x ) .  Then it is easy to  verify that. p also divides Q(x  + k p ) ,  for 
any k # 0 (see Problem 6). That  is, once we determine that, Q ( x )  is divisible 
by p ,  we know that Q of each of the following 

,x - 2 p , x  -p,x,x + p , z  + 2 p , .  . . 

is also divisible by p ,  so we can save the work of testing whether each of 
these Q values is divisible by p .  By repeating this for other choices of .T and 
other primes in the factor base, we can eventually “sieve” out the B-smooth 
integers in the interval [ -A[ ,  A l l .  This process is somewhat analogous to  the 
sieve of Eratosthenes, as discussed above. This sieving process is where the 
“sieve” in quadratic sieve comes from. 

Sieving in the most costly part of the QS algorithm, and several tricks 
are used to speed up the process. For example, suppose y = Q(z) is divisible 
by p .  Then y = 0 (mod p )  and from the definition of Q, we have 

( x  + = N (mod p ) .  (7.9) 

Therefore, given p in our factor base, we can compute the square roots 
of N (mod p ) ,  say, s?, arid p - sp ,  and use these to immediately determine 
the sequence of values of z E [-M, Ad] such that the corresponding Q ( x )  arc 
divisible by p .  Since there exists an efficient algorithm (the Shanks--Tonelli 
Algorithm [131]) for finding the square roots implied by (7.9), this approach 
is efficient,. 

The actual sieving could proceed as follows. Create an array containing 
the values Q(z), for x = - A I ;  -A1 + 1,.  . . , - 1 , O .  1,.  . . , Af - 1, AT. For the 
first prime p in the factor base: generatc the sequence of z E [ -A [ ,  1\41 that 
are divisible by p ,  as described in the previous paragraph. For each of these, 
wc know that the corresponding array element is divisible by p ,  so deteririine 
t,hc highest, power of p that divides i,he array element, and store this powcr, 
rctluced niodulo 2, in a vector of powers Corresponding tjo the given array 
clenieiit. Also divide the array element by this highest power of p .  R.epeat 
t,his process for each of the remaining primes p in the factor base. 

When we have completed the sieving, those array elements that are 1 will 
have factored completely over t,he factor base, and these are precisely the 
B-smooth elements. Retain t,he vectors of powers mod 2 for the B-smooth 
elements and discard all remaining elements and vectors. These retained vec- 
t,ors of powers will be wed in the linear algebra phase, precisely as described 
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for Dixon’s Algorithm in Section 7.2.2 above. Provided we have found enough 
B-smooth elements, we will obtain a solution to the linear equations, and with 
high probability this will yield the factors of N. 

There are some fairly obvious improvements to the sieving process as we 
have described it. However, there are also several not-so-obvious, but criti- 
cally important improvements that are used in practice. Most significantly, 
it is possible to use an inexpensive approximate “logarithm” calculation to 
avoid the costly division operations [99]. The results are only approximate, so 
that the survivors of the sieving that have been reduced to “small” values will 
require secondary testing to determine whether they are actually B-smooth. 
It is also possible to use a similar technique to avoid the costly process of 
determining the highest power of p that divides a given value. 

We want to restrict the sieving interval [ -M,  MI to be small, so that the 
resulting Q values are more likely to have small factors (and therefore to be 
B-smooth). In practice, it is difficult to obtain enough smooth relations using 
only the polynomial Q(x )  as defined in (7.6). Therefore, multiple quadratic 
polynomials of the form Q(x )  = ( a x  + b)’ - N are used. This variant is given 
the name multiple polynomial quadratic sieve (MPQS) to distinguish it from 
the regular quadratic sieve. Certain choices of the parameters a and b will 
give better results; see [115]. 

Note that in the sieving process as we have described it, we only retain 
the powers modulo 2. This is sufficient for the linear algebra phase of the 
attack, but, as with Dixon’s Algorithm, once a congruence of squares has 
been found, it is necessary to know the actual factorization of the elements. 
Since all of these are B-smooth, we know the factors are small and, therefore, 
Pollard’s Rho Algorithm [32] can be used to factor these numbers, since this 
algorithm is particularly efficient at finding small factors. 

In summary, the QS algorithm can be viewed as an improved version of 
Dixon’s Algorithm. The speedup due to sieving is significant and with mul- 
tiple polynomials, the sieving interval [-M, MI can be made much smaller. 
This leads to a better parallel implementation where each processor sieves 
over the entire interval, but with a different polynomial. Recent factoring at- 
tacks have made use of the parallelizability of the sieving phase by distributing 
the work over a large number of computers (which is relatively easy, thanks 
to the Internet) and then gathering the exponent vectors before doing the 
equation solving phase on a supercomputer. 

7.2.4 Factoring Conclusions 

Currently, the number field sieve is the best available algorithm for factoring 
integers having more than 110 decimal digits or so. While the quadratic sieve 
is relatively straightforward, the number field sieve relies on some advanced 
mathematics. For a brief and readable introduction to both of the quadratic 
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sieve and the number field sieve, see [ 1 161. 
Finally, we mention the work factor of factoring. Recall that for trial divi- 

sion as described above, the work to  factor N is on the order of N /  ln(iV), For 
the quadratic sieve, the work factor is on the order of e(ln N)1/2( ln  'rlN)'''. For 
the number field sieve, the work factor is on the ordm of ec(ln N)L'3(1n 1nN)2'3, 

where c FZ 1.9223. Note that the dominant term of ( lnN) l / ,  in the work 
factor for the quadratic sieve has been reduced to (1nN)'l3 in the number 
field sieve. However, thc relatively largc constant c in the numbcr field sievc: 
is the reason that the quadratic sieve is faster for N below a threshold of 
about 110 decimal digits. 

We consider these functions for the work factors a little more closely. 
First; note that the number of bits in N is z = log,N. Since we measure 
the work required to break a symmetric cipher in terms of bits, it appears 
that 11: is the "right" parameter for measuring the work required to  break 
a public system. Up to  constant factors: we can rewrite the work factor 
functions as in Table 7.2, whcre f ( x )  is the work factor for an integer N ,  
with z = log, N .  The final column in Table 7.2 gives the logarithm, hase 2. 
of tlie work factor f(11:). 

In Figure 7.1 we have plotted the function 

z - log:, 2 ,  

which is the logarithm (base 2) of the work factor for trial division, alongside 
the funct'ions 

5 ' ( log, z) 112 

and 
1.9223 z'/'(log, x ) ~ / ' < ,  

which represent the logarithrn (base 2) of the work factors for the quadratic: 
sieve and thc number field sieve? respectively. These same functions appear 
in the final column of Table 7.2. The work factor for trial division is ex- 
ponential in z, while work factors for tlie two sieving methods are said to  
be subexponential. A subexponential algorithm has a work factors that is 
asymptotically better than any fully exponential algorithm, but slower than 
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any polynomial-time algorithm [99]. The dominant term in the quadratic 
sieve work factor function is z1l2, while the dominant term for the number 
field sieve is z1/'3. However, due to the larger constant, the number field 
sieve function is larger than the quadratic sieve function for small z. But, 
regardless of constants, these functions are both smaller than any polynomial 
in z for sufficiently large values of z. This is precisely what it means for an 
algorithm to have a subexponential work factor. 

It is instructive to compare thc results in Table 7.2 with the work re- 
quired for an exhaustive key search attack on a symmetric cipher. Consider 
a symmetric cipher with an z-bit key. Then an exhaustive key search has an 
expected work factor of 2I-l and taking the logarithm, base 2, gives z - 1. 
From Table 7.2, we see that factoring is asymptotically easier than an ex- 
haustive key search (provided one of the sieving methods is used), regardless 
of any constants that are involved. This implies that to obtain a comparable 
level of security for, say, RSA as is provided by a secure symmetric cipher, the 
RSA modulus N must have far more bits then the corresponding symmetric 
key; see Problem 8. 

Note that the quadratic sieve is superior to the number field sieve for 
integers N up to about 390 bits, and from that point on, the number field 
sieve has the lower work factor. Since a 390-bit integer has about 117 decimal 
digits, this is consistent with the often stated claim that the quadratic sieve 
is more efficient for factoring large integers up to about 115 decimal digits. 
Also, from Figure 7.1 we can roughly compare the number of bits in a the key 
of a secure symmetric cipher to the number of bits in an RSA modulus. For 
example, a 390-bit RSA modulus requires about the same amount of work 
to factor (and thereby recover the private key) as an exhaustive search to 
recover a 60-bit symmetric key. 

I I I I r I I I I r 
0 m 400 BM) em loo0 

X 

Figure 7.1: Comparison of factoring algorithms. 
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7.3 Discrete Log Algorithms 

111 pioneer days they  used oxen for  heavy pulling, 
and when one ox couldn't budge a log, 

the,y didn't t ry  to grow a larger ox. 
- G. Hopper 

The security of the Diffie-Hellman key exchange and the ElGamal signature 
scheme are believed to rest on the difficulty of the discrete logarithm problem. 
That is, given p ,  g and ga  (mod p ) ,  where a is unknown, if we can determine a ,  
then we can break Diffie-Hellman and ElGamal. 

In this section, we give a brief overview of three methods of solving the 
discrete log problem. First, we present the nai've method of trial multiplica- 
t ion,  which is the analog of trial division for the factoring problem (factoring 
is discussed in Section 7.2). Then we discuss the baby-step giunt-step method, 
which is a fairly straightforward time-memory trade-off (TMTO) extension of 
trial multiplication. Finally, we discuss the index calculus, which is roughly 
the discrete log analog of Dixon's Algorithm for integer factorization. Varia- 
tions of the index calculus algorithm are the most efficient known algorithms 
for solving the discrete log problem that arises in Diffie-Hellman arid other 
public key systems. 

7.3.1 Trial Multiplication 

Suppose we are given a generator g, a prime p and ga  (rnod p ) ,  and we want 
to determine a. We can compute the sequence 

g2 (mod p ) ,  g 3  (mod p ) ,  g4 (mod p ) ,  . . . 

until we find g' (mod p ) .  As mentioned above, this method of solving the 
discretc log problem is essentially the analog of trial division for factoring. 

For example, suppose we are given g = 3 ,  p = 101, and we want to find 
the exponent a such that g a  (mod p )  = 94. Then we would compute 

32 (mod 101) = 9 

3'3 (rrlod 101) = 27 

34 (rriod 101) = 81 

(rnod 101) = 41 

3" (rriod 101) = 94. 

Alternatively, we could bcgiri at yk (mod p ) ,  for any given k .  In any case. 
the cxpected number of multiplications is about p / 2 .  
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3-102 (mod 101) 
37.3-loi (mod 101) 

7.3.2 Baby-S tep Giant-S t ep 

1 14 95 17 36 100 87 6 84 65 
37 13 81 23 19 64 88 20 78 82 

The baby-step giant-step algorithm provides an improvement over trial multi- 
plication based on a time-memory trade-off [99]. Again, we are given a gener- 
ator g,  a prime p and x = ga (mod p ) ,  and we want to determine a. First, we 

selectm= [JX].  T h e n w e h a v e a = i m + j f o r s o m e i E  {0,1, . . . ,  m-1} 
and j E {0,1, .  . . , m - l}. For this choice of i and j ,  it follows that 

and therefore 
g j  = xg-ZnL (mod p )  (7.10) 

If we can determine i and j so that (7.10) holds, then, since a = im+j, we 
have found a. To determine a we proceed as follows. Given II: = ga  (mod p ) ,  
we compute xg-Zm (mod p )  for i = 0,1, . . . , m- 1 (recall that g and p are pub- 
lic and m, is known). Then for each j = 0 ,1 , .  . . , m-1, we compute g j  (mod p )  
and compare the result to all of the computed xg-i7n (mod p )  values. When 
we find a match, we have found i and j such that (7.10) is satisfied and, 
therefore, we have recovered a. Note that in this algorithm, the g j  (mod p )  
represent the “baby steps,” while the xgPim (mod p )  are the “giant steps.” 

An example should clarify the algorithm. Suppose that g = 3, p = 101 
and we want to solve for the discrete log of x = ga (mod p )  = 37. Then we 
select m = = 10 and note that gpm = 3-l’ = 14 (mod p ) .  Next, we 
compute 

II:g-Zm = 37. 3-loi = 37.142 (mod lol) ,  

for i = 0, 1 , 2 , .  . . , m - 1, and save the results in a table. This phase of the 
computation is summarized in Table 7.3. 

Table 7.3: Example Giant-Step Computation 

giant step i 1 0 1 2 3 4 5 6 7 8 9 

Next, we compute 3j (mod 101), for j = 0,1, .  . . ,9 ,  until we obtain a 
value that appears in the third row of Table 7.3. For j = 0,1,2,3 we do not 
find such a match, but for j = 4 we have 34 = 81 (mod 101) which appears 
in the third row of the i = 2 column in Table 7.3. Consequently, (7.10) holds 
with m = 10, i = 2, and j = 4, that is, 

34 = 37.  3T2.10 (mod 101). 
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Therefore, 324 = 37 (mod 101) and we have solved this particular discrete 
log problem. 

In general, for the giant-step phase, we compute about fi values and 
store these in our table. Then in the baby-step phase, after trying about J?r/2 
choices for we expect to have found a solution. Assuming the table lookups 
do not carry any cost (the table could be sorted or a hash table used), this 
algorithm requires about 1.5J?r niultiplications and it also requires storage 
(or space) of about &. Assuming the storage requirement is feasible, this is 
A significant improvement over the nai've method of trial multiplication, but 
still an cxponential work factor. 

7.3.3 Index Calculus 

As above, we are given the generator 9. a prime p ,  and x = ga  (mod p ) ,  and 
we want to find a. Analogous to Dixon's factoring algorithm, we first select a 
bound B and a factor base of primes less than B. Then we pre-compute the 
discrete logarithms to the base y of the elements in the factor base and we 
save the logarithms of these elements. These logarithms of the factor base can 
he found efficiently by solving a system of linear equations; see Problem 11. 

Once the logarithms of the elements in the factor base are known, the 
attack is straightforward. We have 11: = g" (mod p ) ,  and we want to find a. 
Let { p ~ . p l , .  . . ,p , - l}  be the set of primes in the factor base. We randomly 
select k E (0 , l .  2 , .  . . , p  - 2 }  and compute y = J:. gk (mod p )  until we find 
a y that factors completely over the factor base. Given such a y we have 

where each di 2 0. Taking log, on both sides and simplifying, we find 

u = log,q z = (do log, po + dl log,q p1 
+ . . . + 4 - 1  log, pT1- l  ~ k )  (mod p ~ 1). (7.11) 

Assuming that the logarithms of the elements in the factor base are known, we 
have determined a. Note that the mod p - 1 in (7.11) follows from Ferniat's 
Little Theorem, which is given in Appendix A-2 and, for example, in [as]. 

An example should clarify the algorithm. Suppose g = 3,  p = 101 and we 
are given z = 3" = 94 (mod 101) and we want to determine a. As our factor 
base we choose the set of primes { 2 , 3 , 5 , 7 }  and by solving a system of linear 
equations (see Problem l l) ,  we determine 

log3 2 = 29, log;3 3 = 1, log, 5 = 96, log3 7 = 61. 

Next, we randomly select k until we obtain a value 94 .  3' (mod 101) which 
factors completely over the factor base. For example, if we choose k = 10 
tl.1er1 

(7.12) 9 4 .  3"' = 50 (mod 101). 
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and 50 = 2 . 52 factors over our factor base. Taking logarithms of both sides 
of (7.12) yields 

log, 94 = log, 2 + 2 log, 5 - 10 (mod 100). 

Substituting the values for the logarithms of the primes in the factor base, 
we have 

log, 94 = 29 + 192 - 10 = 11 (mod loo), 

which implies that 311 = 94 (mod 101). Then a = 11 and we have solved 
this particular discrete log problem. 

The index calculus provides the most efficient method for solving a general 
discrete log problem. The work factor for the index calculus is subexponential; 
more precisely, the work is on the order of e(1np)'/2('n 1np)'/2. The form of this 
work factor is the same as that given for the quadratic sieve factoring method 
in Section 7.2.4, which is, perhaps, not surprising since both rely on finding 
smooth integers. For more information on the index calculus, a good source 
is [99]. 

7.3.4 Discrete Log Conclusions 

There are many parallels between the discrete log algorithms discussed in this 
section and the factoring algorithms in Section 7.2. In particular, Dixon's 
factoring algorithm and the index calculus discrete log algorithm have many 
similarities. Both algorithms have an equation finding phase and a linear 
algebra phase. 

For properly chosen parameters, the costliest part of the index calculus 
algorithm is solving for the logarithms of the elements in the factor base. As 
with Dixon's Algorithm, the equation finding part of the index calculus algo- 
rithm can be distributed among multiple processors, but the linear algebra 
part cannot. 

There exists another class of algorithms for factoring and discrete log- 
arithm which are known as collision search techniques. The best general 
collision search method is Pollard's Rho Algorithm [32]. However, collision 
search algorithms have an exponential work factor, while the quadratic sieve 
and index calculus are subexponential (see Section 7.2.4 for a discussion of 
the work factor for the quadratic sieve). 

Finally, it is worth noting that there is no analog of the quadratic sieve 
or index calculus for elliptic curve cryptosystems since, for elliptic curves, 
there is no analog of a factor base. Consequently, collision search is the best 
available technique for breaking systems based on elliptic curves, and this is 
why smaller parameters sizes can be used with elliptic curve cryptosystems 
without sacrificing security. 
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7.4 RSA Implementation Attacks 

Timing is ever,ytbing. 

- Anonymous 

If factoring and discrete log algorithms represent classical attacks on pub- 
lic key systems, then the attacks in this section are strictly “punk rock.” 
The attacks discussed here do not follow the usual cryptanalytic approach of 
analyzing the underlying crypto algorithm for weaknesses. Instead, the crypt- 
analyst looks for any weak link in the overall implementation that might allow 
information about the private key to leak. 

First, we discuss three different timing attacks. By exploiting small timing 
differences that occur in specific met hods of modular exponentiation, the 
attacker can gain information about the private key. Then we consider a 
“glitching” attack, where the attacker induces an error in a computation 
(for example, by abusing a smartcard). For a particular method of modular 
exponentiation, a single induced error can enable an attacker to easily recover 
the private key. Both timing and glitching attacks are practical and it is 
therefore critical that cryptosystems are built to resist such attacks. 

It is important to emphasize that the attacks discussed in this section do 
not exploit any inherent weakness in the RSA algorithm itself. Instead, these 
attacks exploit specific implementation issues that allow information to leak 
out -with potentially devastating consequences. 

7.4.1 Timing Attacks 

At one time, it was widely believed that if RSA was implemented correctly, 
thc only realistic way to attack it was by factoring the modulus. In 1996 Paul 
Kocher [85] surprised the crypto world when he demonstrated a practical side- 
channel attack on RSA. 

A side channel is an unintended source of information. In the crypto cow 
tcxt , side channels sometimes leak information about a computation, which 
in turn reveals information about the key. For example, careful measurements 
of the amount of current used by smartcards have been used to recover keys. 

Kocher’s side-channel attack on RSA is based on a careful timing of var- 
ious cryptographic operations. Using selected inputs, he was able to recover 
the private keys from smartcards which used a relatively simple method of 
modular exponentiation. Kocher conjectured that his technique could also be 
used in settings where the modular exponentiation was computed using more 
efficient means, but other researchers soon discovered this was not the case. 

Schindler [129] was able to develop a timing attack that succeeds when 
modular exponentiation is computed in a more optimized fashion than the 



7.4 R S A  IMPLEMENTATION ATTACKS 335 

case where Kocher’s attack applies. Brumley and Boneh [22] have pushed 
Schindler’s results much further, developing a successful timing attack against 
the highly optimized RSA implementation in OpenSSL. This attack is suf- 
ficiently robust that it can be conducted over a network, illustrating that 
timing attacks are a serious threat to real-world RSA implementations. 

In this section we discuss Kocher’s attack, Schindler’s attack, and the 
Brumley-Boneh attack. We also consider defenses against timing attacks. 
But first, we introduce the t,echniques used to compute modular exponenti- 
ation which are employed in efficient implementations of RSA. Specifically, 
we discuss repeated squaring, the Chinese Remainder Theorem, Montgomery 
multiplication, and Karatsuba multiplication. 

Modular Exponentiation 

Suppose we want to compute 620 (mod 29). The obvious approach is to 
raise 6 to the 20th power, then compute the remainder when this number is 
divided by 29. For this particular example, we have 

620 = 3,656,158,440,062,976 = 24 (mod 29). 

However, this approach is not feasible when the base and exponent are large- 
as is the case in RSA-since the intermediate result is too large to compute 
and store. And even if we could somehow deal with such enormous numbers, 
computing the remainder by long division would be costly. 

An improvement would be to do a modular reduction after each multi- 
plication, which would eliminate the problem of large intermediate results. 
However, there is a better way. A method known as repeated squaring al- 
lows us to compute a modular exponentiation without having to deal with 
any extremely large intermediate values and it also dramatically reduces the 
number of multiplications as compared to the nai’ve approach. In repeated 
squaring, we “build up’’ the exponent one bit at a time, from high-order bit 
to low-order bit. For example, the exponent 20 is, in binary, 10100, and we 
have 

1 = 0 . 2 + 1  

2 = 1 . 2  

5 = 2 . 2 + 1  

1 0 = 5 . 2  

20 = 10 .2 .  
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Then to find 620 (mod 29) by repeated squaring, we compute 

6l = (6')' . 6  = 6 (mod 29) 

6 = (6 ) = 6 = 36 = 7 (mod 29) 

6 = (6 ) . 6  = 7 ' 6  = 294 = 4 (mod 29) 

2 1 2  2 

5 2 2  2 

5 2  2 6'" = (6 ) = 4 = 16 (mod 29) 

620 = (610)2 = 162 = 256 = 24 (mod 29). 

Note that this computation requires five multiplications (as opposed to 20 for 
the naive approach) and five modular reductions, and all intermediate values 
are less than N 2 .  The repeated squaring algorithm is given in Table 7.4. 

Table 7.4: Repeated Squaring 

/ /  Compute y = xd (mod N ) ,  
/ /  where d = ( d o , d l , d 2 , .  . . ,&) in binary, with do = 1 

f o r  i = 1 t o  n 
s = x  

s = s2 (mod N )  
if di == 1 then 

end if 
s = s . x  (mod N )  

next i 
r e tu rn (  s ) 

While repeated squaring is clearly preferable to  the naive approach of ex- 
ponentiation followed by long division, there are many additional refinements 
that can further irnprove the efficiency of modular exponentiation. These im- 
provements are necessary for efficient RSA implementations due to the large 
numbers that arise in RSA. Repeated squaring without further refinements 
is only used in RSA implementations in extremely resource-constrained envi- 
ronments, such as smartcards. 

Another trick that is conmionly used to speed up modular exponentia- 
tion employs the Chinese Remainder Theorem (CRT). The precise statement 
of the CRT is given in the Appendix. To see how the CRT applies specifi- 
cally to RSA, first recall that for an RSA decryption (or signature), we must 
coniput,e a modular exponentiation of the form Cd (mod N ) ,  where N = pq  
arid p and q are large primes. Using the CRT, we can compute the modular 
exponentiation modulo p and modulo y, then "glue" the two results together 
to obtain the desired result modulo N .  Since p and q are each much smaller 
than N (each is on the order of m), it is much more efficient to do two 
modular exponentiations with these relatively small moduli than to do one 
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modular exponentiation with modulus N .  The use of CRT provides a speedup 
of about a factor of four when computing Cd (mod N ) .  

This CRT trick works as follows. Suppose we know C, d,  N ,  p ,  and q,  and 
we want to  compute Cd (mod N ) .  First, we pre-compute 

d, = d (mod ( p  - 1)) and d, = d (mod ( q  - 1)) 

and we determine a satisfying 

a = 1 (mod p )  and a = 0 (mod q )  

and b satisfying 

b = 0 (mod p )  and b = 1 (mod q ) .  

(7.13) 

(7.14) 

Then for the given ciphertext C, we compute 

C, = C (mod p )  and C, = C (mod q )  

and 
d 

z, = (2,". (mod p )  and zq = Cqq (mod q ) .  

The desired solution is given by 

Cd (mod N )  = (uq, + bz,) (mod N ) .  (7.15) 

To see that this actually works, consider the case where N = 33, p = 11, 
q = 3, d = 7 (then e = 3, but we do not need the encryption exponent 
here). Suppose we want to  decrypt C = 5, that is, we want to  deter- 
mine 57 (mod 33). We have 

d, = 7 (mod 10) = 7 and d, = 7 (mod 2) = 1 

and we find that a = 12 and b = 22 satisfy the required conditions given 
in (7.13) and (7.14), respectively. Then 

C, = 5 (mod 11) = 5 and C, = 5 (mod 3) = 2 

and, therefore, 

z, = (3,". = 57 = 3 (mod 11) and zq = C,". = 2l = 2 (mod 3). (7.16) 

Finally, we have 

Cd (mod N )  = 57 = 1 2 . 3  + 2 2 . 2  (mod 33) = 14, 

which shows that, at least for this simple example, (7.15) holds. 
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Another significant speedup in modular exponentiation is provided by 
Montgomery multiplication [ 1031. Our discussion here follows the brief but 
excellent description given in [24]. 

Suppose we want to compute ab (mod N). The most expensive part of 
this operation is the modular reduction, which, in the nai've approach, requires 
a division. However, in some cases, modular reduction can be accomplished 
without division. 

One case where the modular reduction is easy occurs when the modulus 
is of the special form N = mk - 1 for some m and k .  Suppose we have a 
modulus N of this form and we want to determine, say, ab = c (mod N). 
Then there exists co and c1 such that c = e lmk  + co, with 0 5 co < mk. If 
we can find such co and el ,  then wc have 

c = c l m k  ~ c1 + c1 + CO 

= c l ( m  - 1) + c1 + co k 

= c1 + cg (mod (m k - 1)). 

That is, if we can find integers co and c1 such that c = elmk + cg, then we 
have c (mod N) = co + c1, provided N = mk - 1. In some cases, it is easy to 
find the required co and c1. Consider, for example, 3089 (mod 99). For this 
example we have 

3089 = 30.  100 + 89 

= 30.100 - 30 + 30 + 89 

30(100 ~ 1) + (30 + 89) 

= 30.99 + 119 = 119 (mod 99). 

Here, we need one final step where we subtract 99 from 119 to obtain the 
desired result, namely, 3089 = 20 (mod 99). Provided that c = ab satisfies 
the condition c < N2 (which will be the case if a < N and b < N),  the desired 
result is either co + c1 or, if this sum is greater than N, the desired result 
is co + c1 - N .  In this latter case, we say that an extra reduction is required. 

The Montgomery multiplication algorithm is somewhat analogous to thc 
process in the previous paragraph, but it works for any modulus N .  Again, 
supposc we warit' to compute 

crb (rnod N ) .  (7.17) 

Iri  the Montgomery algorithm, we choose R = 2 k ,  where k is large enough 
so t,hat we have R > N, and gcd(R, N )  = 1. Since R is a power of two, 
determining any result modulo R is trivial-at least for a computer, where 
numbers are in binary. Also, since R and N are relatively prime, we can 
find N' and R’ such that 

R R ' ~  N N '  = 1. 



7.4 RSA IMPLEMENTATION ATTACKS 339 

Now, instead of dealing directly with a and b we work with the num- 
bers a’ = a R  (mod N )  and b’ = bR (mod N ) .  We say that u’ and b’ are in 
Montgomery form. Converting a and b t o  Montgomery form appears to  be a 
step backwards, since in (7.17) we only have a single mod N operation, and 
we now have two such operations (at least). However, dealing with numbers 
in Montgomery form will actually prove to  be highly advantageous when do- 
ing modular exponentiation, where repeated multiplication is required. We 
return to  this point below, but for now we simply want to  show that we can 
efficiently multiply two numbers in Montgomery form and obtain a result in 
Montgomery form. 

Observe that 
a’b’ = abR2. 

We would like this result to  be in Montgomery form, that is, we want to  
have abR (mod N ) ,  not abR2. Since RR’ = 1 (mod N ) ,  multiplication by R’ 
yields abR2R’ = abR (mod N ) ,  that is, we can obtain the desired result 
by multiplying by R’ and reducing the result modulo N .  However, we want 
to  avoid mod N operations, if possible. Therefore, what we chiefly need 
is an efficient method to  convert abR2 to  abR (mod N ) .  The Montgomery 
algorithm provides just such a method. 

Let X = ubR2 and compute 

m = ( X  (mod R))  . N’ (mod R),  (7.18) 

which is efficient, since all mod R operations are efficient. Next, let 

I(: = ( X  + m N ) / R  (mod R) (7.19) 

and return x, unless x 2 N ,  in which case return x - N ,  that is, an extra 
reduction may be required. 

We now want to  verify that the algorithm in the previous paragraph 
gives us abR (mod N ) .  To see that this is the case, first observe that m 
is the product of N’ and the remainder that results when X is divided by R. 
Also, from the definition of N’ we have NN’ = -1 (mod R). Consequently, 
X + m N  = X - ( X  (mod R ) ) ,  and, therefore, X + mN is divisible by R. 
Furthermore, since R = 2 k ,  this division is, in binary, simply a shift by k 
bits and, consequently, the division in (7.19) is trivial to  compute. It follows 
that xR = X + m N  = X (mod N )  and, therefore, xRR’ = XR’ (mod N ) .  
Finally, from the definition of R’ we have RR’ = 1 (mod N )  so that 

x = xRR’ = XR’ = abR‘R’ = abR (mod N ) ,  

as desired. 
An example should clarify the Montgomery algorithm [24]. Suppose that 

we have N = 79 and a = 61 and b = 5. Since humans prefer powers of 10 
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to powers of two, and this example is intended for human consumption, we 
choose R = 102 = 100. Then 

a' = 61.100 = 17 (mod 79) and b' = 5.100 = 26 (mod 79). 

Via the Euclidean Algorithm, we find 

6 4 .  100 - 81 ' 79  = 1. 

which implies R' = 64 and N' = 81. 
In Montgomery form, we have 

a' = aR (mod N )  = 17 and b' = bR (mod N )  = 26 

and we want to determine abR (mod N),  which is in Montgomery forrn. 
From (7.18) we compute X = 17.26  = 442, and 

rn = ( X  (mod R ) )  . N' (mod R) 
= (442 (mod 100)) '81 (mod 100) 

= 42 . 81 = 3402 = 2 (mod 100). 

Then from (7.19) we have 

z = ( X  + r n N ) / R  (mod R) 
= (442 + ( 2 .  79))/100 (mod 100) 

= 600/100 = 6. 

It is easily verified that this is the correct result, since 

abR = 61 . 5 .  100 = 30,500 = 6 (mod 79). 

Conversion from Montgomery form into regular (non-Montgomery) forrn 
is straightforward, at the cost of one mod N reduction. Given abR (mod N ) ,  
since RR' = 1 (mod N ) ,  we have 

abRR' (mod N) = ub (mod N). 

In the example above, R' = 64 and we have 

(abR)R' = 6 .  64 = 384 = 68 (mod 79). 

We can directly verify that this is the correct answer since 

ab (mod N) = 6 1 . 5  = 305 = 68 (mod 79). 

Montgomery multiplication is certainly more work than it is worth in the 
simple example considered above. However, suppose that instead of ~0x1- 
puting ab (mod N ) ,  we want to compute ad (mod N). Then to use the 
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Montgomery algorithm, we must pay the price of converting a into Mont- 
gomery form, but having done so, all of the multiplications required in the 
computation of ad (mod N )  can be computed using (7.18) and (7.19) (and 
extra reductions, as required), without any expensive division operations. 
The final result must be converted from Montgomery form back into non- 
Montgomery form, which requires one additional mod N operation. The 
bottom line is that only two expensive mod N operations are required, since 
the multiplications are all computed in Montgomery form which only requires 
efficient mod R operations. With respect to the timing attacks discussed be- 
low, the extra reduction step provides a crucial timing difference that an 
attacker can exploit in some circumstances. 

Other tricks are also used to speed up modular exponentiation. Of these, 
the sliding window and Karatsuba multiplication are the most significant. 
A sliding window is a straightforward time-memory trade-off applied to the 
repeated squaring algorithm. That is, instead of processing each bit individ- 
ually, we process the bits in blocks (say, blocks of five consecutive bits) and 
use pre-computed tables containing the required factors. 

Karatsuba multiplication [76] is the most efficient method to multiply two 
numbers with the same number of digits-assuming that addition is much 
cheaper than multiplication. The work factor for Karatsuba multiplication is 
on the order of nlog2 = n1.585 multiplications, where n is the number of bits 
in each of the numbers to be multiplied, whereas normal “long multiplication” 
has a work factor on the order of n2. 

The Karatsuba algorithm is based on a simple observation. The naive 
approach to computing the product (a0 + a1 . 10)(b, + bl . 10) is 

(a0 + a1 . lo)@, + bl . 10) = aobo + (a& + U l b 0 ) l O  + albl .102, 

which requires four multiplications to determine the coefficients of the powers 
of ten. However, the same can be accomplished with just three multiplica- 
tions. since 

(a0 + a1 . 10)(bo + bl . 10) 

= aobo + [(a0 + a l ) (bo  + b l )  - ~ o b o  - ~ l b l ] l O  + albl . lo2 (7.20) 

and this is the essential idea behind Karatsuba multiplication. 

example, suppose that we want to find the product 
The Karatsuba technique can be used for numbers of any magnitude. For 

( c ~  + c1 . l o  + c2 . lo2 + c : ~  . 103)(do + dl . l o  + d2 . lo2 + d 3 .  lo3). 

We can rewrite the first term as  
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where Co = co + c1 . 10 and C1 = c2 + c3 . 10. Similarly, we can rewrite the 
second term as 

(do + dl ’ 10) + (d2 + d3.10)102 = Do + D1 . l 0 2 ,  

where Do = do + d l  . 10 and D1 = d2 + d3 . 10. In this case, the Karatsuba 
product is given by 

(CO + c1 ’ 102)(Do + D1 ’ 102) 

= C o ~ o  + [(co + C ~ ) ( D ~  + a)  - cono ~ c 1 ~ l ] 1 0 2  + c l ~ ,  . lo4 .  

Here, the three products involving the Ci and 0 3  are computed as in (7.20). 
Consequently, given any product, we can recursively apply the Karatsuba 
multiplication technique. At each step in the recursion, three multiplications 
are required, and the numbers are half as big as at the previous step. A 
straightforward analysis yields the claimed work factor of n1.585. 

Note that the Karatsuba algorithm holds if the base 10 (or lo2)  is replaced 
by any other base. Also, the algorithm is most efficient if the two numbers 
to be multiplied are of about the same magnitude. 

At this point, we have more than enough background to discuss the 
three timing attacks mentioned above. First, we consider Kocher’s attack, 
which only applies to systems that use repeated squaring, but not CRT 
or Montgomery multiplication. Kocher’s attack has been successfully ap- 
plied to smartcards. Then we discuss Sdiindler’s method, which can be used 
when CRT and Montgomery multiplication are employed. Finally, we present 
the justifiably famous Brumley-Boneh attack, which succeeds against RSA 
as implemented in a version of OpenSSL in a realistic scenario (over a net- 
work). The OpenSSL implementation of RSA is highly optimized, using CRT, 
Montgomery multiplication, sliding windows and Karatsuba’s algorithm. As 
of this writing, the Brurnley-Boneh attack stands as the greatest success in 
the relatively young field of timing attacks. We note in passing that timing 
attacks have recently been directed at symmetric ciphers [la] but, to date, 
these have proven far less of a realistic threat than timing attacks on public 
kcy cryptosystenis. 

Kocher’s Attack 

The basic idea behind Kocher’s tiniirig att,ack [85] is elegant, yet reasonably 
straightforward. Suppose that the repeated squaring algorithm in Table 7.4 
is used for modular exponentiation in RSA. Also, suppose that the time 
taken by the multiplication operation, s = s . J: (mod N )  in Table 7.4, varies 
depending on the values of s and J:. Furthermore, we assume the attacker 
is able t,o determine the timings that will occur, given particular values of s 
m d  .I.. 
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Given this scenario, Kocher views the problem as a signal detection prob- 
lem, where the “signal” consists of the timing variations (which are dependent 
on the unknown private key bits di, for i = 1 ,2 , .  . . , n).  The signal is cor- 
rupted by “noise,” which is the result of unknown private key bits, di .  The 
objective is to recover the bits di one (or a few) at a time, beginning with 
the first unknown bit, d l .  In practice, it is not necessary to recover all of the 
bits, since an algorithm due to Coppersmith [31] is feasible once a sufficient 
number of the high-order bits of d are known. 

Suppose we have successfully determined bits do, d l ,  . . . , dk-1 and we want 
to determine bit d k .  Then we randomly select several ciphertexts, say, Cj, 
for j = 0,1,2, .  . . , m - 1, and for each we obtain the timing T(Cj)  for the 
decryption Cj” (mod N ) .  For each of these ciphertext values, we can precisely 
emulate the repeated squaring algorithm in Table 7.4 for i = 1 ,2 , .  . . , k - 1, 
and at the i = k step we can emulate both of the possible bit values, d k  = 0 
and dk = 1. Then we tabulate the differences between the measured timing 
and both of the emulated results. Kocher’s crucial observation is that the 
variance of the differences will be smaller for the correct choice of dk than for 
the incorrect choice. 

For example, suppose we are trying to obtain a private key that is only 
eight bits in length. Then 

d = ( d o , d l ,  dp ,  d3,d4, dg, dg, d7) with do = 1. 

Furthermore, suppose that we are certain that 

d”dld2d3 E (1010, l O O l } .  

Then we generate some number of random ciphertexts Cj, and for each, we 
obtain the corresponding timing T(Cj) .  We can emulate the first four steps 
of the repeated squaring algorithm for both 

dodldpds = 1010 and dodldpd3 = 1001 

for each of these ciphertexts. For a given timing T(Cj) ,  let te be the actual 
time taken in step ! for the squaring and multiplying steps of the repeated 
squaring algorithm. That is, t e  includes the timing of s = s2 (mod N )  and, 
if de = 1, it also includes s = s . Cj (mod N )  (see the algorithm in Table 7.4). 
Also, let t“e be the time obtained when emulating the square and multiply 
steps for an assumed private exponent bit !. For m > !, define the shorthand 
not at ion 

tE ... m = tE + te+l  + . ’ ’ + Em. 

Of course, it depends on the precise bits emulated, but to simplify the no- 
tation we do not explicitly state this dependence (it should be clear from 
context). 

- - I  
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Emulate 1010 

Now suppose we select four ciphertexts, CO, C1, ( 3 2 ,  C3, and we obtain the 
timing results in Table 7.5. In this example we see that for dodld2d3 = 1010 
we have a mean timing of 

Emulate 1001 

E(T(Cj)  - to,,.y) = (7 + 6 + 6 + 5)/4 = 6, 

1 11 
2 12 
3 13 

while the corresponding variance is 

5 6 4 7 
6 6 7 5 
8 5 6 7 

var(T(Cj) - i 0 . . . 3 )  = (12 + O2 + O2 + (-1)2)/4 = 1/2 

On the other hand, for dodld& = 1001, we have 

E(T(C,) - t o  ... 3 )  = 6, 

but the variance is 

var(T(Cj) - i0...3) = ((-1)2 + l2 + (-1)2 + 12)/4 = 1. 

Although thc mean is the same in both cases, Kocher’s attack tells us that 
the smaller variance indicates that dodld2d3 = 1010 is the correct answer. 
But this begs the question of why we should observe a smaller variance in 
case of a correct guess for dodld’td3. 

Consider T(Cj), the timing of a particular computation Cf (mod N )  in 
Table 7.5. As above, for this T(C,y), let be the emulated timing for the 
square and multiply steps corresponding to the l t h  bit of the private ex- 
ponent’. Also, let tp be the actual timing of the square and multiply steps 
corresponding to the t t h  bit of the private exponent. Let u include all tim- 
ing not accounted for in the te .  The value u can be viewed as representing 
the measurement “error”. In the example above, we assumed the private 
exponent d is eight bits, so for this case 

T(Cj)  = t o  + t l  + t‘t + ’ .  . + t7 + u. 
Now suppose that the high-order bits of d are dodld2d3 = 1010. Then for 

the timing T(Cj )  we have 

var(T(Cj) - to...:<) = var(t4) + var(t5) + var(t6) + var(t7) + var(u), 
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since = te, for e = 0,1 ,2 ,3  and, consequently, there is no variance due 
to these emulated timings it. Note that here, we are assuming the te are 
independent and that the measurement error u is independent of the te, which 
appear to be valid assumptions. If we denote the common variance of each te 
by var(t), we have 

var(T(Cj) - to...3) = 4var(t) + var(u) 

However, if dodld2d3 = 1010, but we emulate dodld2d3 = 1001, then 
from the point of the first d j  that is in error, our emulation will fail, giving 
us essentially random timing results. In this case, the first emulation error 
occurs at d2 so that we find 

var(T - to...3) = var(t2 - &) + var(t3 - t 3 )  + var(t4) + var(t5) 

+ var(t6) + var(t7) + var(u) 

M 6var(t) + var(u), 

since the emulated timings & and i3 can vary from the actual timings t 2  
and t 3 ,  respectively. 

Although conceptually simple, Kocher’s technique gives a powerful and 
practical approach to conducting a timing attack on an RSA implementation 
that uses repeated squaring (but not CRT or Montgomery multiplication). 
For the attack to succeed, the variance of the error term u must not vary too 
greatly between the different cases that are tested. Assuming that a simple 
repeated squaring algorithm is employed, this would almost certainly be the 
case since u only includes loop overhead and timing error. For more advanced 
modular exponentiation techniques, var (u) could differ greatly for different 
emulated bits, effectively masking the timing information needed to recover 
the bits of d. 

The amount of data required for Kocher’s attack (that is, the number of 
chosen decryptions that must be timed) depends on the error term u. Note 
that timings can be reused as bits of d are determined, since, given additional 
bits of d,  only the emulation steps need to  change. Therefore, the required 
number of timings is not nearly as daunting as it might appear at first blush. 

The major limitation to Kocher’s attack is that repeated squaring, with- 
out CRT or Montgomery multiplication, is only used in RSA implementations 
in highly resource-constrained environments, such as smartcards. In [85], 
Kocher argues that his timing attack-as discussed in this section--should 
work for RSA implementations that employ CRT. However, Schindler [129] 
(among others) disputes this assertion. The next two timing attacks we dis- 
cuss will succeed against RSA implementations that utilize more highly op- 
timized modular exponentiation techniques. 
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Schindler’s Attack 

Schindler [lag] gives a timing attack that succeeds against RSA implementa- 
tions that employ repeated squaring and both CRT and Montgomery niulti- 
plication (but not both Karatsuba multiplication and long multiplication). 
First, we describe the precise modular exponentiation scenario for which 
Schindler’s attack will succeed. Then we discuss Schindler’s attack in some 
de t ai 1. 

We assume that the Montgomery multiplication algorithm is implemented 
as given in Table 7.6. The repeated squaring algorithm using Montgomery 
multiplication is given in Table 7.7. 

Table 7.6: Montgomcry Multiplication 

/ /  Find Montgomery product n’b’, 
/ /  where a’ = aR (mod N )  and b’ = bR (mod N )  
// Given RR’- NN‘ = 1 
Montgomery(a’, 6’) 

z = a’b’ 
T = ( 2  (mod R))N’ (mod R) 
s = ( z  + r N ) / R  (mod N )  
i f  s 2 N then 

end i f  
r e tu rn (  s) 

end Montgomery 

s = s - AT // extra reduction 

Table 7.7: Repeated Squaring with Montgomery Multiplication 

// Find y = zd (mod N ) ,  
// where d = (do, d l ,  dz, . . . , d n - l )  with do = 1 
t’ = XR (mod N )  / /  Montgomery form 
sf = t‘ 
f o r  i = 1 t o  12 - 1 

s� = h/Iontgomery(s’, s’) 
i f  di == 1 then 

end i f  

.s’ = Montgomery(s’, t’) 

next i 
t = s’R’ (mod N )  / /  convert to non-Montgornery form 
r e  turn(  t )  
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Suppose that the RSA system we want to attack uses the repeated squar- 
ing algorithm in Table 7.7 (which relies on the Montgomery multiplication 
algorithm in Table 7.6). Also, suppose that the RSA system uses CRT. Then 
for each mod N reduction, where N = pq ,  we compute a mod p reduc- 
tion and a mod q reduction, using the algorithm in Table 7.7 for both. We 
combine these two results to obtain the desired mod N reduction, as dis- 
cussed above in Section 7.4.1. We assume that the attacker is able to choose 
ciphertext messages Cj and accurately time the decryption, that is, the com- 
putation C j  (mod N ) .  Of course, the objective is to determine the private 
key d. 

Schindler’s timing attack [lag] takes advantage of the extra reduction step 
in the Montgomery algorithm. Schindler derives precise probabilities that an 
extra reduction occurs when using the Montgomery algorithm. Suppose that 
we compute Montgomery(a’, B )  using the algorithm in Table 7.6, assuming 
that a’ = aR (mod N )  and B is randomly-selected in {0,1,2,. . . , N  - 1). 
Then Schindler shows that for each application of the Montgomery algorithm, 
the probability of an extra reduction is 

(7.21) 
a‘ 

P(extra reduction in Montgomery(a’, B)) = - 
2R’ 

This gives us a useful probability for an extra reduction in the “multiply” step 
of the repeated squaring algorithm in Table 7.7. For the “square” step, where 
the element to be squared, say B ,  is selected at random in {0,1,2, .  . . , N- l}, 
Schindler is able to show that 

N 
P(extra reduction in Montgomery(B, B ) )  = -. 

3R 
(7.22) 

When computing a modular exponentiation ud (mod N )  using the CRT 
approach, we first compute ad, (mod p )  using the repeated squaring algo- 
rithm in Table (7.7), where d, = d (mod ( p  - 1)). Suppose that when 
computing u d p  (mod p ) ,  we have ko multiply steps and kl squaring steps. 
Note that ko and kl depend only on d, and, therefore, only on d and p ,  and 
not on a. Since the probability (7.21) holds for each multiply, and the prob- 
ability (7.22) holds for each square, the expected number of extra reductions 
is 

a’ (mod p )  P + k 1 - .  IC0 2R 3R 
(7.23) 

As a function of a’, the expression in (7.23) is piecewise linear-more 
precisely, it is a linear function with discontinuities a t  integer multiples of p .  
Qualitatively, the graph of (7.23) is similar to that in Figure 7.2 (see Prob- 
lem 2). Note that the total number of extra reductions in the calculation 
of Cd (mod N) also include extra reductions due to the factor q. Nev- 
ertheless, there would still be a discontinuity in the total number of extra 
reductions at every integer multiple of p (and also q ) .  
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Figure 7.2: Expected number of extra reductions. 

The idea behind Schindler’s timing attack follows directly from the graph 
in Figure 7.2. Suppose we select ciphertexts CO and C1, with Co < C1. 

Let T(Co) and T(C1) be the timing measurements for the decryption of Co 
and C1, respectively. Assuming that timing differences are dominated by the 
number of extra reductions, we would generally expect T(C1) - T(C0) to be 
relatively small, since the number of extra reductions grows slowly (linearly) 
from Co to C1. 

However, suppose that Co and C1 bracket a multiple of p .  For example, 
suppose that we have Co = 2p  - k and C1 = 2p + l ,  where k and e are 
reasonably small. Then due to the discontinuity in the number of extra 
reductions at 2p, the expected difference T(Co) - T(C1) would be relativcly 
large. Therefore, we can select an initial value z and an offset A and let 

Ce = x + PA, for P = 0,1 ,2 ,  

Then we compute 

T(Ce) - T(Ct+l), for e = O , 1 , 2 , .  . . 

using the chosen ciphertexts Cp. Eventually, we will have Cp < k p  < C!+l for 
some k and l, and when this occiirs we should detect a significant increase 
in T(Cp) -T(Cp+l). Once we have bracketed k p  in this manner, we can simply 
compute gcd(n, N )  for every 

n t ( 2  + l A , 2  +ea + I , 2  + ea + 2 . .  . . , 2  + ( e +  l)A}. 

If k p  is actually in the interval, we find it following this approach, since we 
have gcd(kp,N) = p while for other values in the interval, gcd(n,N) = 1. 
Of coiirse. a similar statement holds if we happen to  bracket a multiple of q 
instead of p .  
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There are several possible refinements to this attack. For example, since 
the graph in Figure 7.2 represents the expected value (i.e., the average be- 
havior) we would want to test several nearby values before deciding whether 
we had bracketed a multiple of k p  or not. Also, once we have bracketed a 
multiple of Icp, we could use a binary search approach to reduce the size of 
the interval over which we need to compute the gcds. Determining an opti- 
mal size for the increment and good initial starting points are also important 
issues. These topics are discussed in Schindler’s paper [129]. Schindler also 
gives a detailed analysis of his attack. 

It is important to note that in [129], Schindler does not apply his attack 
to any real-world RSA implementation. Instead, he simulates an RSA de- 
cryption routine that uses repeated squaring and Montgomery multiplication 
as described in this section and he gives empirical results showing that his at- 
tack succeeds in every case tested. Also, it is interesting to note that whereas 
Kocher’s timing attack recovers the bits of the private key one (or a few) at 
a time, Schindler’s attack recovers the private key essentially all at once. 

Next, we present a timing attack that builds on Schindler’s work. This 
attack, which is due to Brumley and Boneh, succeeds against a sophisticated 
real-world implementation of RSA. 

Brumley-Boneh At tack 

Brumley and Boneh [22] consider a timing attack against RSA as implemented 
in OpenSSL. The attack they develop is practical and sufficiently robust that 
it can recover a private key over a network that includes several routers and 
switches between the endpoints, which introduces a significant random timing 
variation. 

The RSA implementation in OpenSSL is highly optimized, using CRT 
with repeated squaring, Montgomery multiplication and a sliding window 
(with a window of size of five for a 1024-bit modulus). In addition, the 
OpenSSL implementation of RSA employs Karatsuba multiplication to com- 
pute the product rcy whenever I(: and y consists of the same number of words, 
and it uses ordinary “long multiplication” when IC and y are not of the same 
word-size. Repeated squaring, CRT, Montgomery multiplication, sliding win- 
dow and Karatsuba multiplication are all discussed in Section 7.4.1, above. 

Kocher’s original RSA timing attack [85] does not work when CRT is em- 
ployed, and Schindler’s timing attack [129] does not succeed when Karatsuba 
multiplication is used (below, it will become clear why Schindler’s attack 
fails in this case). Consequently, Brumley and Boneh had to significantly 
extend Schindler’s approach to successfully attack OpenSSL. Their attack is 
undoubtedly the most advanced practical timing attack developed to date. 

In the OpenSSL implementation of modular exponentiation, there are 
two algorithmic issues that create significant timing differences. First, there 
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are the extra reductions in the Montgomery algorithm. This is precisely the 
issue that Schindler exploits in his attack [129]. Second, the use of Karatsuba 
and normal multiplication creates significant timing differences. However, the 
timing attack is great,ly complicated by the fact that these two timing effects 
tend to counteract each other. 

Suppose we want to decrypt C using the OpenSSL implementation of 
RSA. When the Montgomery form of C is close to p ,  but less than p ,  then 
the number of extra reductions will be large--as can be seen from Figure 7.2% 
and therefore the decryption time will increase. On the other hand, if the 
Montgomery form of C is slightly larger than p ,  then the number of extra re- 
ductions will be relatively small and the decryption time will decrease (again, 
see Figure 7.2). 

When the Montgomery form of C is slightly less than p ,  then many of the 
multiplication operations in (7.6) will involve numbers that are of about the 
same magnitude. Consequently, Karatsuba multiplication will predominate 
in this case, which reduces t)he time as compared to normal multiplication. 
On the other hand, when the Montgomery form of C slightly exceeds p ,  
then C is small (due to the mod p reduction) so that more of the multipli- 
cation operations in (7.6) will involve numbers of significantly differing size. 
Consequently, the slower normal multiplication rout.ine will predominate. 

The Brumley-~Boneh attack relies on the fact that these two effects (extra 
reductions and normal versus Karatsuba multiplication) each dominate dur- 
ing different parts of the attack. This implies that Schindler’s attack could 
riot. be used to recover those bits where the Karatsuba versus normal multipli- 
cation t h i n g  effect dominates. Therefore, Schindler’s timing attack cannot 
succeed against the OpenSSL implementation of RSA. 

Building on Schindler’s work, Brurnley and Boneh were able to develop a 
timing attack against, RSA decryption in OpenSSL. Chosen ciphertext mes- 
sages arc decrypted and timing information is obtained. This timing informa- 
tion is used to  recover a factor p of the modulus N ,  where N = p q  with p < q.  

Unlike Schindler’s attack (but similar to Kocher’s attack), the Brumley-- 
Boneh attack recovers the unknown bits of p = ( P O ,  p l ,  . . . , p n ) ,  where po = 1, 
one at a time, from the most significant bit to the least significant bit (in our 
notation, p l  to pn) .  It is not necessary t,o recover all of the bits of p ,  since 
given half of the bits, an algorithm due to Coppersmith [31] can be used to 
efficiently compute the factorization of N .  Of course, the private key d is 
easily obtained from p ,  q and the public encryption exponent e. 

The Bruniley-Boneh attack [22] can be summarized as follows: 

1. Suppose that bits p l , p 2 , .  . . , p i - ]  of p have been determined. Let 

co = (PO,Pl,. . . . P i & l >  . . , O ) ,  

that is? Co consists of the known high-order bits of p with the remaining 
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bits all set to 0. Similarly, let 

If the unknown bit pi is 1, then we have CO < C1 5 p ;  otherwise, we 
have Co 5 p < C1. 

2 .  For CO and C1, the decryption times T(C0) and T ( C l ) ,  respectively, are 
measured and we let A = JT(C0) - T(C1)J. If Co < p < C1, then A 
will be “large”, indicating that pi  = 0. If CO < C1 < p ,  then A will be 
“small,” and we infer that p ,  = 1. Previous values of A are used to set 
thresholds for “large” and “small.” Note that this presumes that either 
the extra reductions or the multiplication (normal versus Karatsuba) 
predominates at each step. For the 0 bits of p ,  at those steps where 
the extra reductions predominate, we have T(C0) - T(C1) > 0 (as 
indicated in Figure 7.2), while for those steps where the multiplication 
effect predominates, we have T(C0) - T(C1) < 0 (as discussed above). 

3. This process is repeated to successively obtain bits pi+l ,  pi+2, pi+3, . . . 
of p ,  until half of the bits of p have been recovered. Then Coppersmith’s 
algorithm is used to determine p and q ,  from which d is easily computed. 

One complication that arises in this attack is due to the use of sliding win- 
dows in OpenSSL, since it greatly reduces the number of multiplications-and 
thereby the amount of timing information available. In [22 ] ,  statistical meth- 
ods are used to compensate for the smaller number of multiplications by C 
due to sliding windows (in comparison to repeated squaring), as well as for 
the effects of a networked environment, where timings are inherently less 
accurate. This compensation is accomplished by performing multiple decryp- 
tions for each bit of p .  The decryption time is measured for a neighborhood 
of values, C, C + 1,.  . . , C + k, and for each C + j in the neighborhood, the 
decryption time is measured repeatedly to obtain an average time. While 
this requires more decryptions, sufficient timing information can be accumu- 
lated to exploit small timing differences, in spite of the sliding window and 
network-induced timing variations. 

The neighborhood size and the number of times a decryption is repeated 
must be large enough to yield a A value which strongly indicates the private 
key bit. Otherwise, the A values corresponding to private key bits 1 and 0 
will have roughly the same order of magnitude and it will be impossible to 
discern the bit correctly with a high probability. In Brumley and Boneh’s 
attack [ 2 2 ] ,  private keys corresponding to 1024-bit moduli were recovered, 
using about 1,433,600 chosen ciphertexts over a realistic network that in- 
cluded several routers and switches. Each attack took about two hours to 
complete. 
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It is not too difficult to simulate this timing attack. For example, in [150], 
the Briimley-Boneh attack was simulated and, using a sample size of seven 
and a neighborhood size of 3200, many bits of one factor of a 1024-bit modulus 
were recovered. 

Preventing RSA Timing Attacks 

A strong defense against timing attacks is provided by RSA blinding, which 
is implemented as follows. To decrypt ciphertext C ,  we first compute the 
intermediate value Y = reC (mod N ) ,  where T is a randomly-selected value 
and e i s  the RSA ellcryption exponent. Then Y is decrypted in the usual way, 
followed by multiplication by T - ~  (mod N ) .  This yields the desired result 
since 

T -1 Y d = T - ’ ( T ‘ C ) ~  = r-‘rC“ = Cd (mod N ) .  

Since T is random, Y is random and measuring the decryption time for Y 
does not reveal any information about the private key d. It is important that 
a ncw random T be used for every decryption. 

Inst,ead of blinding, an alternative would be to always carry out the ex- 
tra reduction in the Montgomery algorithm where, if‘ no extra reduction is 
required, a dummy extra reduction is used. This approach is championed by 
Schindler [ lag] .  In addition, it is possible to use Karatsuba multiplication in 
cvery case. While these modifications would seem to stifle any timing attack, 
Brumley and Boneh [22] argue against this approach, since, for example, the 
dummy extra reduction might, be optimized into oblivion by an optimizing 
compiler. 

Another approach that has been suggested [18] is to “quantizt:” RSA de- 
cryption, that is, to make all decryptions take some multiple of a specified 
amount, of time (a time “quantum”). Brumley and Boneh [22] note that 
for this to be completely effective, all decryptions must take the maximum 
amount of time of any decryption, so the performance penalty might be sub- 
stantial. 

RSA blinding is the preferred method to prevent timing attacks. The 
drawbacks include a slight performance penalty and the need for a reasonably 
good source of randomness to generate the blinding factors. 

Timing Attacks Conclusion 

Timing attacks vividly illustrate that when analyzing the strength of a cryp- 
tosystem, all aspects must be considered. In particular, it is not sufficient 
for a cipher to be mathematically secure, or even secure against “standard” 
cryptanalytic attacks. Attackers will always look for the weakest link, and 
thcy are not obliged to play by any set of presumed rules. 



7.4 RSA IMPLEMENTATION ATTACKS 353 

Timing attacks are just one example of a general class of attacks known 
as side-channel attacks. A side channel is a source of information that- 
based solely on an analysis of the underlying algorithm-is not supposed 
to be available to the attacker. Side-channel attacks have been developed 
which rely on power analysis, fault analysis and electromagnetic fields (EMF). 
These types of attacks have been very significant recently, particularly in 
the design of smartcards. Side-channel attacks will undoubtedly continue to 
play an important role in the design and implementation of systems that use 
public key cryptography. As mentioned above, timing attacks have recently 
been developed for symmetric ciphers [la], but, so far at least, these attacks 
appear to be considerably less practical than timing attacks on public key 
cryptosyst ems. 

7.4.2 Glitching Attack 

In some situations, it is possible to induce a “glitch” or error in an RSA com- 
putation. For example, if a srnartcard is abused in some way, it might flip a 
bit or cause some other type of error in the resulting computation. Any sys- 
tem that is in the attacker’s possession is potentially subject to such a glitch. 
An NGSCB “trusted computing” system is one non-smartcard example of 
such a system [142]. 

Surprisingly, in some RSA implementations, a single glitch can enable an 
attacker to factor the modulus, and thereby recover the private key. Specifi- 
cally, an RSA implementation that employs the CRT (as discussed above) is 
potentially subject to a glitching attack. 

Suppose that an RSA signature is computed for the message M in a 
system that uses CRT. Then the signature is computed as follows. First, 

Mp = M (mod p )  and Mq = M (mod q ) ,  

followed by 

xp = M$’ (mod p )  and zq = M$ (mod Q), 

where d p  = d (mod ( p  - 1)) and d, = d (mod ( q  - 1)). The desired signature 
is given by 

S = M d  (mod N )  = (uzp + bz,) (mod N ) ,  

where the constant a satisfies 

a = 1 (mod p )  and a = 0 (mod q )  

and b satisfies 
b = 0 (mod p )  and b = 1 (mod q ) .  
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Now suppose that this system is subject to glitching, and the attacker 
forces an error in the computation. Suppose that this error occurs so that xh 
is computed instead of .rq, but xp is correct. That is, the glitch forces an 

error in the computation Mq = 111 (mod q )  or xq = 1112 (mod q ) ,  but the 
remaining computations are unaffected. Then 

S� = (uzp + bx:,) (mod N )  

is returned instead of S. 
The attacker can easily verify that the “signed” value is incorrect, since we 

have (S’)e (mod N )  # A[. But, since xp = A@’ (mod p ) ,  by the definitions 
of a and b, 

It follows (see Problem 15) that 

(5�)� = M (mod p ) .  

Then the attacker can compute (S’)f’ and (5�)� - M is a multiple of the 

factor p .  Also, since xh # A4$ (mod q ) ,  by the definitions of a and b, 

(S’)e # A4 (mod q ) ,  

which implies that (S’)‘-M is not a multiple of q and therefore not a niultiple 
of N .  Consequently, the attacker can compute gcd(N, (S’). - M )  to reveal a 
nontrivial factor of N .  

The bottom line here is that a single glitch can break RSA in certain 
realistic implementations. Boneh [19] points out that random faults can also 
bc used to attack many RSA implementations that do not employ CRT. 

7.4.3 Implementation Attacks Conclusions 

RSA has proven to be remarkably robust. Having been carefully scrutinized 
by niariy researchers, the underlying algorithm has remained secure since its 
invention more than three decades ago [19]. Tiniing attacks and glitching 
attacks are arnong the very few known realistic attacks on sound implemeri- 
tat,ions of RSA, and these do not result from any weakness in the underlying 
algorithms, and, furthermore, there are straightforward defenses against such 
attacks. TJndoubtedly it is for these reasoi1s that RSA is the de facto stan- 
dard in public key cryptography, and it appears likely to remain so for the 
foreseeahle future. 
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7.5 Summary 

Factoring and discrete log algorithms represent fundamental attacks on the 
most popular public key systems. Advances in factoring or computing discrete 
logarithms could significantly change the nature of public key cryptography. 
At the least, advances in this area would require that larger parameters be 
used to achieve the same level of security. It is also conceivable that a break- 
through (such as quantum computers) could render entire classes of public 
key systems vulnerable. 

Timing and glitching attacks represent cutting-edge attacks, where cryp- 
tography is attacked indirectly. These attacks have proved to be extremely 
important recently, and there is every indication that this trend will continue. 
It is important to be aware of the overall system in which cryptography is 
employed, since seemingly extraneous issues can lead to devastating attacks. 

7.6 

1. 

2 .  

3 .  

4. 

5 .  

6. 

7. 

Problems 

Construct a simple example (other than the one given in the text) to 
illustrate the Montgomery multiplication algorithm as discussed in Sec- 
tion 7.4.1. 

Let p = 123 and R = 128. For each x = 0,1 ,2 , .  . . , 5 p  let f ( z )  be 
the number of extra reductions that occur when using the algorithm in 
Table 7.7 to compute x31 (mod p ) .  Plot f ( z ) .  

Consider the congruence of squares in (7.1). 

a. Show that we cannot be “unlucky” when x # f y  (mod N ) .  That 
is, if x # f y  (mod N )  then the congruence x2 = y2 (mod N )  
must reveal a nontrivial factor of N .  

b. Suppose x2 = y2 (mod N )  but x = fy. Why can we not factor N? 

Suppose that in Dixon’s Algorithm or the quadratic sieve we are un- 
lucky, that is, II: - y and x + y do not reveal a factor of N .  Is it necessary 
to start over and redo all of the work? 

Empirically estimate the probability that for a given pair x and y that 
satisfy x2 = y2 (mod N ) ,  we have z # fy. 

Suppose that the prime p divides Q ( x ) ,  where Q(z) is defined in (7.6). 
Show that p divides Q(x + k p )  for all integers k # 0. 

For Dixon’s Algorithm or the quadratic sieve, when determining the 
factor base, we should exclude any primes p for which 
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wherc ($) is the Legendre symbol [95]. Why is this the case? 

8. Consider the RSA public key cryptosystem. Suppose that the best 
available attack is to factor the modulus N ,  and the best available 
factoring algorithm is the number field sieve. Also assume that the best 
available attack on a symmetric cipher is an exhaustive key search. 

a. A 1024-bit modulus N provides roughly the same security as a 

b. A 2048-bit modulus N provides roughly the same security as a 

symmetric key of what length? 

symmetric key of what length? 

c;. What size of modulus N is required to have security roughly com- 
parable to a 256-bit symmetric key? 

9. The algorithm described in Section 7.3.2 is actually "giant-step baby- 
step," since the giant steps are done first. Is there any advantage or 
disadvantage to  doing the baby steps first and the giant steps second? 

10. Compute 31°i (mod 101) for i = I, 2 , .  . . , 10 and compare your results 
to the second row in Table 7.3. Explain. 

11. Consider the index calculus method of computing the discrete loga- 
rithm. 

a. Show that it is possible to find the logarithnis, base g1 of the 
elements in the factor base by solving a system of linear equations. 
Hint: Let { p o , p l , .  . . ,p,-l} be the elements of the factor base. 
Randomly select lc E (0, 1 , 2 , .  . . , p  - a}, compute y = gk (mod p )  
arid try to write g as a product of elements in the factor base, that 
is ? 

;y = p F  . p'l" . ph' . . . pn-l cn-I , 

where each ci 2 0. Take log,g of both sides. 

b. Let 9 = 6 and p = 229 and let the factor base consist of the prime 
numbers less than 12. Select random values of lc as in part a, 
until you obtain a system of linear equations that can be solved 
to determine the logarithms, base g ,  of the elements in the factor 
base. Solve the system to find the logarithms. 

12. Recall the repeated squaring, Montgomery multiplication and CRT 
methods for efficient niodular exponentiation, which are discussed in 
Section 7.4.1. 

a. Computc 537 (mod 33) by repeated squaring. 
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b. Compute 537 (mod 33) using repeated squaring, with Montgomery 
multiplication and CRT. How many extra reductions occur? 

13. Let u = 31 and b = 25. 

a. Find ab (mod 79) using the Montgomery algorithm. 

b. Find ab (mod 79) using the Montgomery algorithm. 

14. Use two iterations of the Karatsuba algorithm to compute the prod- 
uct 337 .521. Clearly show the intermediate steps. 

15. Suppose that the RSA signature is computed using CRT as follows. 
Let M be the message, 

Mp = M (mod p )  and M, = M (mod q )  

and 
d 

xp = M$ (mod p )  and 5,  = M,' (mod q ) ,  

where d p  = d (mod ( p  - 1)) and d, = d (mod ( q  - 1)). Then the 
signature is given by 

S = M d  (mod N )  = (uxp + bz,) (mod N ) ,  

where the constant a satisfies 

a = 1 (mod p )  and n = 0 (mod q )  

and b satisfies 

b = 0 (mod p )  and b = 1 (mod q ) .  

Suppose that due to a glitch, xh # x, is computed but xp is computed 
correctly. Let 

s" = (axp  + bxb) (mod N ) .  

(S ' )e  = M (mod p ) .  
Show that 

16. Write a computer program to implement the following timing attack 
on RSA [160]. Assume that the repeated squaring algorithm is used 
(without CRT, Montgomery multiplication or a sliding window), and 
the decryption exponent is of the form 

where do = 1. 
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Algorithm 
A 
B 
C 
D 
E 

i. Trudy believes she can recover d one bit a t  a time. To accomplish 
this, Trudy chooses messages y Z ,  where y3 < N and has Alice 
decrypt each of them. For each i ,  let yyi be the time required to  
decrypt Y,. Trudy computes y, the average of the times yi. 

ii. Trudy then chooses messages Zi, where 2," < N < 2," and has 
Alice sign each of them. For each i ,  let zi be the time required to  
sign Zi. Trudy computes the average z of the times z i .  

iii. If d l  = 1, then zi > yi for each i .  On the other hand, if d l  = 0, 
tjhen zi z yi for each i .  Thus if 2 is sufficiently larger than y, Trudy 
deduces that d ,  = 1. Otherwise, she concludes that dl  = 0. 

iv. Having recovered d l  , Trudy uses an analogous process to find dz, 
where, in this case, the Yi and 2, are chosen to satisfy different 
criteria, depending on the recovered value of d l .  Once, d2 is known, 
Trudy proceeds in similar fashion to  recover additional bits of d. 

Use your program to answer the following questions. 

a. Verify that the attack can be used to recover private key bits dl  
and d2 for the case where the modulus is N = 36,355,783, the 
encryption exponent is e = 3, and the decryption exponent is 
given by d = 24,229,147. Also, show that you can recover bits dl  
and d2 for N = 13,789,777, e = 3, and d = 9,188,011. 

b. What percent of the time does this method work? Is it a practical 
method? 

Work Factor 

f ( N )  = N 
f ( N )  = JN 

f ( N )  = 2'0g2'0g2 N 

f ( N )  = 2 k  N 

f ( N )  = 2(log, N)1'2(log2 log2 N)1'2 

Hint: For part a. instcad of trying to actually tiiiic t t i c  prograiii. yoti 
(.ail "chcat" , and siiiiply count the niiinber of niodular retluct ion s t e p  
t tiat occiirs. 

17. Slippost. Alice's public kq-  i \  (1%'. P )  = (667. 3)  

a. Fiiid Aliw's private key d. 
I ) .  I<ii(.rypt A 1  -- 17. 

c. I)c.ciypt thc result of part t) using t lie blinding factor r = 1). Show 
;dl interincdiate steps. 

18. Supposc that t hc  work factors for factoring algorithrris A tlirorigh F arc 
given by the following functions. whwc N is the integer to  he factortd. 
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Time 

T(C0) 
T(C1) 

Which of the algorithnis A through E have a polynomial work factor, 
which have an exponential work factor and which have a subexponential 
work factor? Recall that the work is determined as a function of the 
number of bits in N ,  that is, as a function of J: = log,(N). 

19. Suppose that in Kocher’s timing attack, we obtain the timings T(Cj )  
and the emulated timings & . . 2  for dodld2 E (100,101,110, 111}, as given 
in the table below. 

Bit 
1 2  3 4 5 6 7 8 9 

98 96 90 85 96 90 80 73 78 
91 84 75 88 80 94 95 85 84 

I - t o  ... 2 
100 101 110 111 
5 7 5 8  
4 7 4 1  
1 6 4 7  
2 8 5 2  
1 0 6 8 8  
1 1 5 7 7  
1 1 6 5  
7 1 2 3  

a. What is the most likely value of dodld2 and why? 

b. Why does this attack not succeed if CRT or Montgomery multi- 
plication is used? 

20. Suppose that for Schindler’s timing attack, we obtain the the following 
timing data. 

C; I 80 85 90 95 100 105 110 115 120 125 
T(C,) 1 50 52 51 56 60 50 52 55 63 55 

a. Which interval is most likely to  contain a factor p of N? 
b. Suppose N = 12,423. For every n in the interval you selected in 

part a, compute gcd(n, N ) .  Use this information to  factor N .  

21. In the Brumley-Boneh attack, the bits are recovered one at a time. 
Suppose that the following timing information, with a threshold value 
of A = 10, was used to  recover private key bits d l  through dg. 
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22. 

a. What values for the private key bits d l  through dg were recovered‘? 

b. For which bits does the extra reduction in the Montgomery algo- 
rithm dominate, and for which bits does the normal versus Karat- 
suba multiplication effect dominate? 

Suppose Alice’s public key is (N,  e )  = ( 3 3 , 3 ) .  Then Alice’s private key 
is d = 7. As discussed in the example on page 337, we can use the Chi- 
nese Remainder Theorem (CRT) met hod of modular exponentiation, 
with a = 12, b = 22, d p  = 7 and d, = 1. Suppose 11.1 = 5. Then to 
sign Ad, we compute Alp = 5 and My = 2 and, as in (7.16), we compute 

xJ1 = M? = 57 = 3 (mod 11) and zq = M,d“ = 2’ = 2 (mod 3) .  

Finally, we comput,e the signature as 

S = M d  (mod N )  = 57 = ( 3 .  12 + 2 2 . 2 )  (mod 33)  = 14. 

Siipposc that an attacker forces a glitch error in the computation so 
that xb = 1 is computed instead of x, = 2, but all other intermediate 
quantities are computed correctly. 

a. Find S�, the “signature” that is computed using zb instead of xy. 
How would the attacker know that an error has occurred? 

b. Determine the factors of N from S’. 
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A-1 MD5 Tables 

The following tables are contained in this appendix. A brief description of 
each table is provided. 

0 Table A-1 contains the step constants for the MD5 hash algorithm. The 
precise values of these constants are not needed to understand the MD5 
attack described in the text, but they are necessary to implement the 
algorithm or the attack. 

0 Tables A-2 and A-3 give Wang’s output differential for the first message 
block, Mo. The input differential can be deduced from this table and it 
is also given in (5.47) in Section 5.4. In these tables we use a compact 
notation for sums of powers. This notation is also used, for example, in 
Table 5.11 in the text and it is defined on page 239. 

0 Tables A-4 and A-5 give Wang’s output differential for the second mes- 
sage block, M I .  The input differential can be deduced from this table 
and it is also given in (5.48) in Section 5.4. In these tables we use a 
compact notation for sums of powers. This notation is also used, for 
example, in Table 5.11 in the text and it is defined on page 239. 

0 Table A-6 contains the sufficient conditions for the first message block, 
Mo, that are satisfied deterministically in Stevens’ attack. Note that 
the conditions on the Qi, for i = 0,1 , .  . . , 15  are satisfied by single-step 
modifications, while the conditions on the Qi, for i = 16,17, .  . . ,20  are 
satisfied by multi-step modifications, as discussed in Section 5.4.5. In 
this table, a 0 indicates that the particular bit must be a 0, and a 1 
indicates the bit is a 1. The character “^” indicates that the bit must 
equal the bit in the corresponding position of the preceding row, while 
a “ ! ”  indicates that the bit must not equal the bit in the corresponding 
position of the preceding row and a “.” indicates that there is no 
restriction on the bit. 
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Kj 
Oxf 61e2562 
Oxc040b340 
Ox265e5a51 
Oxe9b6c7aa 
Oxd62f 105d 
0x02441453 
Oxd8ale681 
Oxe7d3f bc8 
Ox2lelcde6 
Oxc33707d6 
Oxf 4d50d87 
Ox455a14ed 
Oxa9e3e905 
Oxf cef a3f 8 
Ox676f 02d9 
Ox8d2a4c8a 

0 Table A-7 contains the sufficient conditions for the first message block, 
Mo, that are satisfied probabilistically in Stevens’ attack. That is, for 
each putative solution, these conditions are tested. If any of these con- 
ditions fail, the putative solution is discarded. In this table, we have 
the restriction that I, J,  K E {0, l}, with I # K. 

0 Table A-8 gives information analogous to Table A-6 for M I ,  the sec- 
ond message block. See the description of Table A-6, above, for more 
information on this table. 

j 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

0 Table A-9 gives information analogous to Table A-7 for M I  the sec- 
ond message block. See the description of Table A-7, above, for inore 
information on this table. 

Oxe8c7b756 
Ox242070db 
Oxclbdceee 
Oxf 57cOf af 
Ox4787c62a 
Oxa8304613 
Oxf d469501 
Ox698098d8 
Ox8b44f 7af 
Oxf f f f 5bbl 
Ox895cd7be 
Ox6b901122 
Oxf d987193 
Oxa679438e 
Ox49b40821 

Table A-1: MD5 Step Constants 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

__ __ 
j 

~ 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
1 4  
15 

~ 

~ 

v Oxd76aa478 
KJ 

Oxf f f a3942 
Ox8771f681 
Ox6d9d6122 
Oxfde5380c 
Oxa4beea44 
Ox4bdecfa9 
Oxf6bb4b60 
Oxbebfbc70 
Ox289b7ec6 
Oxeaal27fa 
Oxd4ef3085 
Ox04881d05 
Oxd9d4d039 
Oxe6db99e5 
Oxlf a27cf 8 
Oxc4ac5665 

- - 
j - 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
- - 

Kj 
Oxf4292244 
Ox432aff97 
Oxab9423a7 
Oxfc93a039 
Ox655b59c3 
Ox8fOccc92 
Oxffeff47d 
Ox85845ddl 
Ox6f a87e4f 
Oxfe2ce6eO 
Oxa3014314 
Ox4e081lal 
Oxf7537e82 
Oxbd3af 235 
Ox2ad7d2bb 
Oxeb86d391 
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j 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Table A-2: Wang's AM0 Differential (Part 1) [157] 

Output Wj AWj AOutyut VOutput 
- 

Q~ x, 231 B . . . . . . . .  .-++++++ ++++++++ ++.. . . . .  

Q 6  X6 0 27236  0 ++++++-- -. . . . . . . . .  ..-+++ ++-+++++ 
Q7 X7 0 2317150  . . . . . . . .  -..-+++- + + 

Qs Xg 0 3 1 6 0  - . . . . . . . . . . . . . . . . . . . . . .  - ++ . . . .  +- 

+ + -  
- + - -  

- +  

Q 5  X5 0 3 1 2 3 6  + . . . . . . .  + . . . . . . .  . . . . . . . .  . - . . . . . .  

- _  
. . . . . . . . . . . . . .  

+ - +  

Q9 Xg 0 $i c2 +.. . . . . . . . . . . . . . .  .+-. . . . . . . . . . . .  
Qlo Xl0 0 &3$0 ++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Qll Xll 1'5 31 1 3 7  +.. . . . . . . . . .  -+++ +++. . . . -  + . . . . . . .  
Q I 2  XI2 0 &$I +.. . .  .+- . . . . . . . . . . . . . . . . . . . . . . . .  

+ - -  

+ 

24 

25 

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . .  - . . . . . . .  . . . .+. . .  
+ . - . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . .  +. . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Q24 x9 

Q25 x14 3'; 
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j 

34 

35 

36 

37 

38 

44 

45 

46 

47 

48 

49 

50 

51 

57 

58 

59 

60 

61 

62 

63 

Table A-3: Wang's A M ,  Differential (Part 2 )  [157] 

Output Wj AWj AOlltput VOutput 

Q34 XII 1'5 3 t l i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Qs:, XI* $1 21 *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6236 x1 0 $1 *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

$1 *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 + 1 *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t 
Q37 X4 $1 

Qs X7 0 31 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(244 x9 0 

Qu Xi2 0 

(246 x 1 5  0 

(2.17 x2 0 

(248 Xo 0 31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Q49 x7 0 

(251 x:, 0 

Q57 x15 0 

Q:,8 X6 0 31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Q59 x13 0 31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Q f j o + A  X4 31 31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ 
+ 
+ 
+ 

31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3 1  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

$1 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(25" x14 31 $1 +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ 
+ 
31 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ 
+ 
+ 

31 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ + 
+ + +  

+ +  
+ +  

. . .  . . . . . . . . . . . . . . . . . . . . . . . .  Q 6 ,  + D  Xi1 15 31 25 + .  .+.  

Q(jz + C  X2 0 3125 + . .  . .+-. . . . . . . . . . . . . . . . . . . . . . . . .  
Q63 + B  X!, 0 3125 -. . . .  .+.  . . . . . . . . . . . . . . . . . . . . . . . .  
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j 

0 

Output Wj AWj AOutput VOutput 

3’;k - . . . . .  +. . . . . . . . . . . . . . . . . . . . . . . . .  Qo Xo 0 

6 

7 

8 

9 

10 

24 

25 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Qzs x9 0 

&a5 x14 $1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 1 2 7 6  -..-+. . . . . . . . . . . . . . . .  .-+ ++. . . . . .  Q6 x6 0 
Q7 X7 0 31231715 -....-++ + . . . . . -  + - . . . . . . . . . . . . . . .  

.+- Q8 xi? 0 

+ - - +  

+- -- 2166 - . . . . . . . . . . . . . . . . . . . . .  . . .  
Q9 Xg 0 &I3 - . . . . . . . . . . . . . . .  . . . + . . . .  . . . . . . . .  

3i - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6210 Xl0 0 
- . . . . . . .  ....-+++ +++... . .  . . . . . . . .  
++------ 

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . .  + . . . . . . .  . . . . + . . .  
+ . - . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . .  +. . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

7 

31 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3+l + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3i + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3 f i  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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__ - 

j - 

34 

35 

36 

37 
38 

48 

49 

50 

51 

58 

59 

60 

61 

62 

6 3 

- 

- - 

Table A-5: Wang’s AM, Differential (Part 2) [157] 

Output W, AW, AOiitput VOutput 

Q34 

Q35 

QSti 

Q37 

Q 3 X  

(248 

Q49 

Q50 

QT, 1 

Q58 

Qm 

~ 

15 $1 

$1 $1 
L 

0 3‘1 

3i 21 
0 ii 

0 3’i 
0 $l 

ii 3i 
L 

0 31 

0 $1 

0 $1 

* . . . . . . . . . . . . . . . . . . . . . . .  
i. . . . . . . . . . . . . . . . . . . . . . .  
f . . . . . . . . . . . . . . . . . . . . . . .  
i . . . . . . . . . . . . . . . . . . . . . . .  
f . . . . . . . . . . . . . . . . . . . . . . .  

+ . . . . . . . . . . . . . . . . . . . . . . .  
- . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . .  
- . . . . . . . . . . . . . . . . . . . . . . .  

+ . . . . . . . . . . . . . . . . . . . . . . .  
+ . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  
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Table A-6: A40 Deterministic Sufficient Conditions [ 1441 

~ 

~ 

~ 

Q2 

Q3 

Q4 

Q5 

Qs 
Q7 

Qs 
Q9 

Qio  
Qii 

Q12 

Q13 

Q14 

Q15 

QlS 

Q17 

Qis 
Q i 9  

&ao 
~ 

~ 

Conditions on I Number 
. . . . . . . . . . . .  o . . .  . . . .  o . . .  . o . . . . . .  

-011.. . .  
1000100. 01..0000 00000000 0010.1.1 
0000001- 01111111 10111100 0100-0-1 
00000011 11111110 11111000 00100000 
00000001 1..10001 0.0.0101 01000000 
11111011 . . .  10000 0.1-1111 00111101 
0111 . . . .  0..11111 1101 . . .  0 01 . . . .  00 
00100000 1.. .0001 11000000 11000010 
000 . . .  00 . . . .  1000 0001 . . .  1 0 . . . . . . .  
01 . . . .  01 . . . .  1111 111 . . . .  0 O...l... 
0 . 0  . . .  00 . . . .  1011 111 . . . .  1 1...1... 
0.1 . . .  01 . . . . . . .  0 1 . . . . . . . . . . .  o . . .  
0!1 . . . . . . . . . . .  ! .  . . . . . . . . . . . . . . . .  
O !  . . . . . . . . . . . .  0 .  - . . . . . . .  . . . . - . . .  
0 . - . . . . .  . . . . . .  1. . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . . .  0 .  . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . .  ! . .  . . . . . . . . . . . . . . . .  
0 . . . . . . .  . . . . . . - .  . . . . . . . . . . . . . . . .  

Subtotal 

. . . . . . .  o---l--- --^^l^^^ ‘ 3  
21 
27 
32 
32 
28 
28 
19 
29 
15 
14 
14 
7 
4 
5 
3 
2 
2 
2 

287 
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Table A-7: n/r, Probabilistic Sufficient Conditions [ 1441 

Q a i  

Q22 

Q23 

Q24 ~ Q44 

Q45 

Q4fi 

Q47 

Q48 

Q49 

Q50 

Q5i 

Q52 

&5:3 

Q54 

Q55 

Q5O 

Q57 

Q5S 

QSI 

QbO 

(261 

Q62 

Qfxi 

Coritlitions 011 A40 

0 . . . . . . .  
0 . . . . . . .  
1 . . . . . . .  
. . . . . . . .  
I . . . . . . .  
J . . . . . . .  
I . . . . . . .  
J . . . . . . .  
K . . . . . . .  
J . . . . . . .  
K . . . . . . .  
J . . . . . . .  
K . . . . . . .  
J . . . . . . .  
K . . . . . . .  
J . . . . . . .  
K . . . . . . .  
J . . . . . . .  
I . . . . . . .  
J . . . . . . .  
I . . . . . . .  
J . . . . . . .  
. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  
Subtotal 

Number 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
19 
2 
8 

316 
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Table A-8: M I  Deterministic Sufficient Conditions [144] 

~ 

~ 

__ 
Q-3 

&-a 
&-1 

Qo 
Qi 

Q2 

Q3 

Q4 

Q 5  

Q6 

Q7 

Qs 
Q9 

Qio  
Qi i  

& i n  

~ 

~ 

Q13 

Q14 

Q15 

Q16 

Q17 

Qi8 

Q i 9  

Q20 
~ . 

Conditions from Mn 
. . . . . .  0 . . . . . . . . . . . . . . . . . . . . . . . . .  
- . . . .  01 . . . . . . . . . . . . . . . . . . . . . . . . .  
- . . . .  00 . . . . . . . . . . . . . . . . . . .  0 . . . . .  

Coiiditions on MI 
! . . .  01 0. . .  1 . . . .  0 . . . .  0 . . .  .10 . . . . .  

110 . . o - - - -  0 1 . . -  l... -10 . . o  0. 
-011111 . . .  011111 0 ..Ol.. 1 011--11 . 
-011101 . . .  000100 . . .  00-- 0 0001000- 
!loo10 . . . .  101111 . . .  01110 01010000 
- ..001 0. 1.10 . .  10 11.01100 01010110 
! ..lo1 1- 1.00 . .  01 10.11110 00 . . . . .  1 
- . .  00100 0.11 . .  10 1 . . . . .  11 111 . . . -  0 
- . .  11100 0 . . . . .  01 0 . . - . .  01 110 . . .  01 
- . . . .  111 1 . . .  1011 11001.11 11 . . . .  00 
- . .  00 . . . . . . .  1101 11000.11 110 . . .  11 
- - -oo---  . . . .  1000 0001 . . . .  1 . . . . . . .  
!0111111 0 . . .  1111 111 . . . . .  0 . . .  l... 
-1000000 1 . . .  1011 111 . . . . .  1 . . .  l... 
01111101 . . . . . . . .  00 . . . . . . . . . .  0 . . .  
0.10 I 

O !  . . . . . . . . . . . .  0 . - . . . . . . .  . . . . - . . .  
0.- . . . . . . . . . . .  1 . . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . .  
0 . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  
0 . . . . . . .  . . . . . . - .  . . . . . . . . . . . . . . . .  

- -  . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Number 

(1) 
(3) 
(4) 
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24 
26 
25 
25 
21 
19 
18 
20 
19 
17 
18 
18 
11 
4 
5 
3 
2 
2 
2 

309 
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Table A-9: M I  Probabilistic Sufficient Conditions [144] 
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Q 6 O  

d Z ( j  1 
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K . . . . . . . . . . . . . . .  
J . . . . . . . . . . . . . . .  
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Subtotal 

TJ restrictions 
Total conditions 

Number 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
19 
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A-2 Math 

A-2.1 Number Theory 

For a positive integer n, the Euler phi function (or totient function), de- 
noted $(n),  gives the number of positive integers less than n that are relatively 
prime to n. 

It is not difficult to show that if n = py'p;' . . .pEk is the prime factorization 
of the positive integer n, then 

$(n) = n (1 - i) (1 - ;). . . (1 - ;) 
Another important fact is that the element x E {0 ,1 ,2 , .  . . , n - l} has a 
multiplicative inverse modulo n if and only if gcd(x, n) = 1. 

Fermat's Little Theorem. If p is a prime number and p does not divide a ,  
then c2-l = 1 (mod p ) .  

Euler's Theorem. If' gcd(a, n) = 1, then a@(n) = 1 (mod n). 

Chinese Remainder Theorem. Let mo, ml , . . . , m k - 1  be positive inte- 
gers such that for i # j ,  we have gcd(mi,mj) = 1. Then given inte- 
gers ao, a l , .  . . , a k - 1 ,  there is a unique solution x (mod moml.. . m k - i )  to 
the system of simultaneous congruences 

x = a o  (mod mo), x = a l  (mod ml),  . . . ,  x = a k - l  (mod m k - 1 ) .  

Example. Find x that satisfies the system of congruences 

x = 1 (mod 3),  x = 2 (mod 5), z = 3 (mod 7). 

We first set M = 3 .  5 .  7 = 105, MO = 105/3 = 35, M1 = 105/5 = 21 
and M2 = 105/7 = 15. Then we need to solve the congruences 

35yo = 1 (mod 3) 

21y1 = 1 (mod 5) 

15y2 = 1 (mod 7). 

Easy calculations yield yo = 2 (mod 3 ) ,  gl = 1 (mod 5) and y2 = 1 (mod 7). 
Then the desired solution to the system of congruences is given by 

x =  1 . 3 5 . 2 + 2 . 2 1 . 1 + 3 . 1 5 . 1 =  157=52 (mod 105) 

Euclidean Algorithm. Let TO = a and T I  = b be non-negative integers 
with b # 0. Suppose that the division algorithm is successively applied to 
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obtain T, = r,+lq,+l + r,+2 with 0 < r,+2 < rJ+l, for j = 0 , 1 , .  . . , n  - 2, 
wherc T, = 0. Then gcd(a, b)  = r,-1, the last non-zero remainder. 

Example. Find the greatest common divisor of 27 and 48. Express this gcd 
as a linear combination of 27 and 48. 

From the Euclidean Algorithm, we have 

48 = 2 7 . 1  + 21 

27 

21 = 6 . 3 + 3  
6 = 3 . 2 + O  

21 . 1 + 6 

which implies gcd(27,48) = 3 .  Using back-substitution, we obtain 

3 = 21 - 6 . 3  

= 21 - (27 ~ 21 . 1) ' 3  

= (48 - 2 7 .  1) - (27 - (48 - 27)) . 3  

= 48 - 27 - (27) . 3  + (48) . 3  ~ (27) ' 3  

= (48) . 4 - (27) . 7. 

A-2.2 Group Theory 

A group (G. *) is a non-empty set G, together with a binary operation * on G, 
such that the following axioms are satisfied: 

0 The binary operation * is associative. 

0 There is an element e E G such that e * I(: = .?: * e = z, for all z E G. 

0 For each a E G, there is an element a' E G such that a' * a = a * a' = e.  

A group (G, *) is abelian (or commutative) if a * b = b * a ,  for all a ,  b E G. 

A-2.3 Ring Theory 

A r m g  (R ,  +, .) is a non-empty set R, together with two binary operations + 
arid . (called addition and multiplication, respectively) defined on R such that 
the following axioms are satisfied: 

0 (R ,  +, .) is an abelian group. 

0 LIiiltiplication is associativc. 

0 For all a ,  b,  c E R, we have a(6 + c )  = ab + ac and ( a  + b)c = ac + bc 
hold. 
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A-2.4 Linear Algebra 

Matrix Operations 

Addition of matrices is performed elementwise. For example, 

[: 211 + [4 ;:I = [; 111 

If the matrices A and B do not have the same dimensions, then A + B is 
undefined. 

Suppose A is an m x r matrix, denoted A,,,, and B is an r x n matrix, 
denoted B,,,. Then the product C = AB is an m x n matrix, that is, 
C,,, = AmX,BTXn. The entry in row i and column j of C is given by the 
formula 

aioboj + ai lbl j  + ai2bzj + . . . + ai,r-lbT-l,j,  

where aij is the element in row i and column j of A, and similarly for bij. 
For example, [' " 1  [" -11 = [ 9  13 -11 -3 ' 

3 - 1  2 0 

A set of vectors z o , z 1 ,  . . . , xn_l is linearly independent  if 

n- 1 

i=O 

implies that a0 = a1 = .. .  = an-l = 0. If the vectors zi are not linearly 
independent, then we say that they are linearly dependent. 

Example. Consider the set of vectors 

These are linearly dependent, since 

[I] + [;’I - [:] = [8] 
However, the set 

is linearly independent, since 
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In, rf = 

implies that  a0 = a1 = 0. 

-; ; :: I : :  1 
. 

0 0 0 ' . .  1 - 

Inverse Matrix 
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