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Preface
This book has been written with a broad spectrum of readers in mind, which

includes anyone interested in secrecy and related issues. Thus, this is a tome
for the merely curious, as well as history-minded readers, amateur mathemati-
cians, engineers, bankers, academics, students, those practitioners working in
cryptography, specialists in the field, and instructors wanting to use the book
for a text in a course on a variety of topics related to codes. We will look at
this topic from all aspects including not only those related to cryptography (the
study of methods for sending messages in secret), but also the notion of codes
as removal of noise from telephone channels, satellite signals, CDs and the like.

The uninitiated reader may consider the following. Imagine a world where
you can send a secret message to someone, and describe to anyone listening
in precise detail how you disguised the message. Yet that person could not
remove the disguise from that message no matter how much time or how many
resources are available. Well, that world exists in the here and now, and the
methodology is called public-key cryptography. It permeates our lives, from the
use of a bank card at an automated teller machine ATM to the buying of items
or bank transactions over the Internet. You can even purchase items over the
Internet and do so anonymously, as you would using hard cash. In this book,
you will find out how this is done.

Do you ever wonder how secure your private conversation is over a cell phone?
In general, they are not secure at all. In this book, you will find out how they
can be made secure. And those transactions over the Internet, just how secure
are they? Can these methods be trusted? In this text, you will learn which
methodologies are secure and which are not. Here is an excerpt from the end
of Chapter 2 that is apt. “What made all of the above not just possible, but
rather a necessity — that good old mother of invention — was the advent of
the Internet. While information secrecy, as we have seen throughout history,
was strictly the purview of governments and their agents, the Internet, and its
associated e-mail and e-commerce activities, demanded a mechanism for the
ordinary citizen to have their privacy concerns addressed. ... Few of us actually
understand the mechanisms behind all of these protocols that we use every
day (although this book will foster that understanding), yet cryptography has
become everybody’s business, hence everybody’s concern. Therefore it is almost
a personal duty that each of us learn as much as possible about the underlying
mechanisms that affect our security, our privacy, and therefore our well-being.”

What are smart cards and how do they affect your life? This book reveals
the answers. What are biometrics and how do they affect you? Several of your
identity characteristics such as fingerprints, retinal data, voice prints, and facial
geometry, to mention a few, can be embedded in smart cards to identify you
to a bank, for instance. Perhaps you have allergies to some medicines, such as
penicillin, and this information can be embedded in a medical smart card so
that in the event of an accident, appropriate measures can be taken that may
save your life. Read this book to find out how this is done.
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How did all this begin and where is it headed? Read Chapter 1 to learn
about the rumblings of the art of secrecy carved in stone almost four millennia
ago and how it evolved to the present where it permeates nearly every aspect
of your life.

� Features of This Text

• The text is accessible to virtually anyone who wishes to learn the issues
surrounding secrecy. To this end, Appendix A contains all necessary mathe-
matical facts for the novice, or as a fingertip reference for the initiated. Other
appendices, such as Appendix E, contain the requisite probability theory for
background needed to understand Information and Coding Theory in Chapter
11, for instance. Moreover, the main text is geared to gently introduce the
necessary concepts as they arise. The more difficult or advanced topics are
marked with the pointing hand symbol � for the more advanced (or adventur-
ous) reader.
• There are nearly 200 examples, diagrams, figures, and tables throughout

the text to illustrate the history and concepts presented.
• More than 200 footnotes pepper the text as further routes for information-

gathering. Think of these as analogues of hyperlinks in the Internet (see page
328), where you can click on a highlighted portion to get further information
about a given topic, or ignore it if you already have this knowledge or are not
interested. These links provide avenues to pursue information about related
topics that might be of separate interest to a wide variety of readers.
• There are more than 80 mini bibliographies throughout the text of those

who helped to develop the concepts surrounding codes, as well as historical data
in general to provide the human side of the concepts introduced.
• There are just under 300 references for further reading in the bibliography.

This provides further pointers for the reader interested in pursuing topics of
interest related to what is presented herein. Moreover, it provides the foundation
for the facts presented.
• The index has nearly 5000 entries, and has been devised in such a way to

ensure that there is maximum ease in getting information from the text.
• To the instructor who wishes to give a course from this text: There are

more than 370 exercises in Appendix G separated according to chapter and even
the appendices A–F. (Some are marked with a ✰ symbol for those particularly
challenging problems.) The wealth of material in this book allows for more
than one course to be given on various aspects of secrecy and even a mini-
course in coding and information theory (see Chapter 11). With nearly 50
Theorems, Propositions, and related material, and more than 60 equations, the
background is amply covered. Moreover, this text is self-contained so that no
other reference is needed since the aforementioned appendices have all possible
background and advanced material covered in detail (see the Table of Contents
for the information covered in each appendix).
• The webpage cited below will contain a file for updates. Furthermore,

comments via the e-mail address below are also welcome.
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Chapter 1

From the Riddles of
Ancient Egypt to
Cryptography in the
Renaissance — 3500 Years
in the Making

It was the secrets of heaven and earth that I desired to learn.
Mary Shelly (1797–1851), English novelist

— from Frankenstein (1818), Chapter 4

1.1 Antiquity — From Phaistos

Imagine an inscription created some 3600 years ago that nobody, to this
day, has been able to decode! It exists and is carved on a clay disk, called
the Phaistos (pronounced feye-stos) disk, roughly 16 centimeters (6.3 inches) in
diameter, unearthed from the (old) palace of Phaistos, one of the most important
locations of Minoan culture on the island of Crete, now part of Greece.

The Messara Plain is the most sizable and fertile on Crete. Only five kilo-
meters (3.1 miles) from the coast, it ascends to form a chain of hills on the most
eastern of which sits Phaistos, which was, according to Greek mythology, the
residence of Rhadamanthys, one of Zeus’ sons. Another son of Zeus was Minos,
from which the name for the Minoan civilization derives. This civilization flour-
ished from approximately 3000 BC to 1100 BC. Crete was the principal location
of Bronze Age culture and centre of the eminent civilization in the Aegean Sea.

When this author visited Crete on a lecture tour in August of 2003, the
first sight of Phaistos was a phenomenal experience, but perhaps more subdued
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2 1. From the Riddles of Ancient Egypt

than that of Henry Miller, the famed American author who spent a few hours
there in 1939 during his five-month trip to Greece. He is purported to have
said: “God, it’s incredible! I turned my eyes away, it was too much to try to
accept at once .... I had reached the apogee, I wanted to give, prodigally and
indiscriminately of all I possessed .... I wanted to stay forever, turn my back
on the world, renounce everything.” These anecdotes serve to give the well-
deserved impression that Greece, in general, and Crete with the Phaistos site, in
particular, are cradles of civilization — deserve to be praised in the highest terms
— and a trip there is highly recommended. Now back to the Phaistos Disk itself.

Figure 1.1: View of hills and valley to
the west from Phaistos.
Figures 1.1–1.4 were photographed by
and courtesy of Bridget Mollin.

Sometime in the evening of July 3,
1908, an excavator was the first person
to unearth and view the the Phaistos
Disk. At the center of the (so-called)
A side or front side of the disk is an
eight-petalled rosette, whereas on the
B side there is a helmet sign. On both
sides are inscriptions, consisting of a
total of 242 symbols, 123 on the front
and 119 on the back, and they spiral
away from the center on the front and
toward it on the back. The problem
with finding the meaning of the sym-
bols is that the disk is unique in that
there are no other known texts written
in the script of the Phaistos Disk, and the shortness of the existing text means
that we do not have enough clues to achieve results with statistical methods.
(Later, we shall learn more about statistical analysis of disguised texts such as
these, called ciphertexts, in order to achieve the undisguised text, called plain-
text.) The uniqueness of the disk means that there are no deductions that can
be drawn from other objects in the Minoan culture as a means to begin deci-
phering, meaning the removal of the disguise to achieve the plaintext. Similarly,
enciphering (also called encrypting), means disguising, the turning of plaintext
into ciphertext. Later we will learn more about the difficulty of deciphering
when there is very little ciphertext available. There are those who believe it is
possible to decipher the disk, and several authors have published their versions
of what they believe the plaintext to be. These range from a methodology for
the execution of sexual rites at the palace of Phaistos to offerings to appease the
gods. However, there appears to be no general agreement. No doubt there will
be even more interpretations in the future. For the reader interested in more
detail on this fascinating story, see Ballister’s excellent and very readable, de-
tailed, and entertaining book [12], where he concludes with: “How much longer
the charming bearer of secrets and its potential solvers compete with one an-
other, and who in the end will win, only the future will show. Until then, I
recommend to everyone to visit the archeological museum in Heraklion to enjoy
the beauty and the (as yet) mysterious aura of the Phaistos Disk.”
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Figure 1.2: Phaistos disk.

(In the above figure, the A side is on the left, and the B side on the right.)
Earlier we made some references to Greek mythology. There are other

references in this type of myth to cryptography : the study of methods for
sending messages in secret, which we now understand to mean the study of
methods for transforming of plaintext into ciphertext. (The word “cryptog-
raphy” comes from the Greek kryptós meaning hidden and gráphein, mean-
ing to write.) We will learn a lot more about the cryptographic anecdotes
in Greek mythology in Section 1.2. For now, this is a convenient juncture
to introduce some terms related to cryptography, and discuss their origins.
Cryptanalysis is the study of methods for defeating cryptography. The ety-

Figure 1.3: Phaistos royal apartments.
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mology of the word is from the Greek kryptós, as above, and analýein, to untie.

Figure 1.4: Phaistos krater, Kamares style.

Therefore, to say someone crypt-
analyzed a text, means they deci-
phered it. (Later in the text, we
will learn a great deal about crypt-
analytic techniques.) The term
cryptology is used to encompass
the study of both cryptography
and cryptanalysis. The (English)
term “cryptography” was coined in
1658 by Thomas Browne, a British
physician and writer, whereas the
term “cryptology” was coined by
James Howell in 1645. Yet, the
modern usage of the word “cryp-
tology” is probably due to the ad-
vent of David Kahn’s encyclope-
dic book [131], The Codebreakers,
published in 1967, after which the
word became synonymous with the
embodiment of the studies of both
cryptography and cryptanalysis. Of course, cryptographers, cryptanalysts, and
cryptologists are those practicing cryptography, cryptanalysis, and cryptology,
respectively. Lastly, the term cipher (which we will use interchangeably with
the term cryptosystem) is a method for enciphering and deciphering. Later,
when we have developed more maturity in our cryptographic travels, we will be
more precise, but this will serve us for the current path we are traversing. Now
we continue with our discussion of antiquity and carry a new concrete set of
terms to help pave our way.

Not only do the Greeks of antiquity have stories about cryptography, but
also ancient Egypt has some fascinating history in the cryptographic arena. In
fact, the oldest text known to employ a deliberate disguise of writing occurred
almost 4000 years ago in Egypt. This is our next story.

Ancient Egypt

A nobleman, Khumhotep II, was responsible for the erection of several mon-
uments for the Pharaoh Amenemhet II. In around 1900 BC, a scribe used hi-
eroglyphic symbol substitution (which, in this case meant the replacing of some
ordinary hieroglyphic symbols with some more exceptional ones) in his writing
on the tomb of the nobleman to tell stories of his deeds. (The term hieroglyph
means secret carving and is actually a Greek translation of the Egyptian phrase,
the god’s words. Hieroglyphs are actually characters used in a system of picto-
rial writing, usually, but not always, standing for sounds.) The scribe was not
actually trying to disguise the inscription, but rather intended to impart some
prestige and authority to his writing. Think of this as resembling the use of
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flowery or legalistic language in a modern-day formal document. (As most of
us know, some modern-day legal documents might as well be enciphered since
the ordinary individual has a hard time understanding the legalese.)

Today, the primary goal of cryptography is secrecy, which was not the intent
of such scribes discussed above. The scribe’s method of symbol substitution is
one of the elements of cryptography that we recognize today. The use of sub-
stitutions without the element of secrecy, however, is called protocryptography.
Other scribes in later years did add the element of secrecy to their hieroglyphic
substitutions on various tombs. Yet, even here, the goal seems to provide a
riddle or puzzle, which would act as an enticement to read the epitaph, which
most readers could easily unravel. The obsession with the afterlife and the pro-
liferation of tomb inscriptions resulted in a propensity of the visitors to ignore
the inscriptions. When the scribes tried to revive a deteriorating interest in
their craft by making these puzzles more unintelligible, visitors to the tombs
eventually lost all interest, and the technique was abandoned. Thus, although
the scribes of ancient Egypt engaged in a sort of game playing involving rid-
dles, included were the basic elements of secrecy and symbol substitution, so we
conclude that cryptography was indeed born in ancient Egypt.

These early rumblings of cryptography can be said to have sown the seeds
that would develop later in various cultures. The ancient Assyrians, Babylo-
nians, Egyptians, and Hebrews (whose contributions we will discuss in Section
1.2, along with their influence on biblical interpretations from a cryptographic
point of view) all used protocryptography for the purpose of magnifying the
importance of the revealed writings. For instance, the Babylonian and Assyrian
scribes would often use unusual cuneiform symbols to sign off the message with
a date and signature, called colophons. Again, the intent was not to disguise but
to display the knowledge of cuneiform held by the individual scribe for future
generations to admire. (The etymology of cuneiform is from Latin and Middle
French origin meaning wedge-shaped.)

Now we turn to some other aspects of cryptographic finds from antiquity.
From ancient Mesopotamia, one of the oldest extant examples of cryptography
was found in the form of an enciphered cuneiform tablet, containing a formula
for making pottery glazes. This tablet, found on the site of Selucia on the banks
of the Tigris river, dates back to about 1500 BC. Mesopotamian scribes used
cuneiform symbols in these formulas to encrypt their secret recipes. However,
later, when the knowledge of the formulas for glaze making they were trying
to protect became widespread common knowledge, their cryptographic sleights
of hand became unnecessary and so later inscriptions were written in plaintext.
The Mesopotamian civilization actually exceeded that of Egypt in its crypto-
graphic evolution after having matched it in its early stages of development.

During the period of Mesopotamia under the Seleucids (312–64 BC), when
cuneiform writing was in its final period, some scribes would convert names to
numbers. Such cuneiform writing, in colophons, has been found in Urak, which
is in modern-day Iraq, and is known to have been written at the end of the
Seleucid period. This would be a major advance in cryptographic techniques if
it were not for the fact that these “codes” could be easily cryptanalyzed since
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colophons are well known with only a couple of numbers for many plaintexts.
In fact, some tablet pieces from this Mesopotamia period have been found in
Susa, in modern-day Iran, consisting of cuneiform numbers in a column next to
cuneiform symbols. Now, in modern-day terminology, if we have a column of
plaintext symbols next to a column of ciphertext numbers, that is an example
of a code-book, since you can look up the code and find the plaintext next to it.
Hence, if this find in Susa is what it purports to be, it is the oldest code book
in the known world. There are not enough of these tablet pieces for the experts
to make a definitive decision on the matter. It makes great fodder for stories
about antiquity, however.

Codes and the Rosetta Stone

We digress here for a moment to discuss the important term “codes”. At
the outset of the chapter, we cavalierly used the term “decode”. However, what
we really meant was “decipher” or “decrypt”, since ciphers are applied to plain-
text independent of their semantic or linguistic meaning. Throughout history
the term “code” has become blurred with that of “cipher” and has come to
mean (in many people’s minds) any kind of disguised secret. However, today
the word “code” has a very specific meaning in various contexts. It is usually
reserved for the kind of meaning we have given above when we defined a “code-
book”, a dictionary-like listing of plaintext and corresponding ciphertext. A
cryptographic code means the replacement of linguistic groups (such as groups
of words, or phrases) with numbers, designated words, or phrases, called code-
groups. This is the meaning that we shall use throughout. Moreover, today
there are error-correcting codes, which have nothing to do with secrecy, but
rather refer to the removal of “noise” from, say, a telephone line or satellite
signal; namely, these codes provide a means of fixing portions of a message that
were corrupted during transmission. We will look at such codes in Chapter 11.
The codes with which we are concerned here are the ones defined above, which
are cryptographic codes, since they have to do with secrecy. Now we return to
our historical narrative.

At the beginning of the second century BC, some stonework was created
in Egypt that would prove to be, some 2000 years later, the gateway to an
understanding of virtually all Egyptian hieroglyphs that came before it. It was
discovered in August 1779 by a Frenchman named Bouchard near the town,
known to the Europeans as Rosetta, which is 56 kilometers (35 miles) northeast
of Alexandria. It is called the Rosetta Stone, an irregularly shaped black basalt
stone about 114 centimeters (3 feet 9 inches) long by 72 centimeters (2 feet 4.5
inches) wide, and 28 centimeters (11 inches) thick. It was discovered with three
of its corners broken.

When the French surrendered to the British in Egypt in the spring of 1801, it
came into British possession and now sits in the British Museum. On it are three
different writing systems: Greek letters, hieroglyphics, and demotic script, the
language of the people, which is a cursive form of writing derived from hieratic, a
simplified form of Egyptian hieroglyphics. Hence, this provided an opportunity
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to decipher Egyptian hieroglyphic writing on a scale not seen before. Ostensibly,
the inscriptions were written by the priests of Memphis in the ninth year of the
reign of Ptolemy V Epiphanes (205–180 BC), in his honour for the prosperity
engendered by his reign. To celebrate, they made golden statues of him in
Egyptian temples, and made copies of the decree that his birthday be made a
“festival day forever”. This edict was cut into basalt slabs in the three writings
and placed in the temples near the statues. Hence, the presumption by scholars
was that the three writings were of the same plaintext — a code book — what
a wonderful opportunity!

The first major breakthrough was made by a British physician, Thomas
Young, in 1814. For him the sciences were a hobby. Nevertheless, his knowledge
of modern and ancient languages served him well. He managed to decipher
(correctly, it turns out) several of the hieroglyphs, but stopped there, since he
could see no further progress possible with what he knew.

In 1821, Jean-François Champollion (1790–1832) took up where Young left
off, and by 1822, this Egyptologist deciphered nearly the entire hieroglyphic
list with Greek equivalents. He was the first to discover that the signs fell into
three categories: (1) alphabetic; (2) syllabic; and (3) determinative (meaning a
mute explanatory sign). A symbol might stand for the object or idea expressed
(such as the English verb hear represented by the picture of an ear, or the verb
whine depicted by a bottle of wine). He also discovered the opposite of what
was expected, namely, he proved that the hieroglyphs on the Rosetta Stone
were a translation from the Greek, and not the converse. Thus, the work of
these two men, Young and Champollion, formed the seminal work upon which
all serious future work on deciphering hieroglyphic texts was based. The dis-
covery of the Rosetta Stone opened the door and let in the light to obliterate a
darkness that had held force for almost four millennia and unlocked the secrets
of the ancients. Even the very thoughts of Ramses II as he fought in battle,
inscribed on the walls of Luxor and Thebes, were revealed, theretofore having
only been meaningless ciphertext. It is an unfortunate end that young Cham-
pollion, the major contributor who truly saw the light, died in 1832, at the age
of forty-one. He was a brilliant young man, who at the age of seventeen, was
already reading papers on Egyptology. He later studied in Paris, learning Ara-
bic, Coptic, Hebrew, Persian, and Sanskrit, which served him well in his later
cryptanalysis of the hieroglyphs. In particular, his knowledge of Coptic allowed
him the final breakthrough that saw to the depths of the hieroglyphs with its
overlaid complexity of signs, sounds, and meaning. (Coptic is an Afro-Asian
language spoken in Egypt from about the second century AD, and is considered
to be the final stage of ancient Egyptian language.) He died too young to see
the full impact of his work, but lived long enough to appreciate the significance
of his breakthrough. As we proceed through the text, we will learn of other
contributors to cryptology whose work was of the greatest benefit, yet many
died in obscurity, their deeds mostly unnoticed. We will try to enlighten those
individuals’ lives, contributions, and humanity. For now, we move on to other
civilizations from antiquity.
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China

One of those great civilizations, China, did not develop any meaningful cryp-
tography. Perhaps the reason is that most messages were memorized and sent
in person to be delivered orally. Sometimes, if written, usually on rice paper,
the message was concealed by covering it with wax, then either swallowing it,
or concealing it elsewhere on the body. These techniques are examples, not of
cryptography, but rather of steganography , the concealment of the existence of
the message, sometimes called covert secret writing, whereas cryptography is
overt secret writing. (We will study this practice in detail in Section 1.3.) Due
to the ideographic (symbolic writing representing things or ideas) nature of the
Chinese language, ciphers are ruled out as unworkable. Furthermore, since most
of the populace of that time were illiterate, then the mere act of writing would
have been a sufficient form of encryption in itself.

India

The India of antiquity did have numerous forms of cryptographic commu-
nications that, ostensibly, were used in practice. We mention two of the out-
standing contributions from this civilization. One of them is still used today,
namely finger communications (which today would be recognized by hearing-
and speech-challenged people as sign language, or more commonly used today,
signing). Ancient India called this kind of communication “nirābhāşa”, where
joints of fingers represented vowels and the the other parts used for consonants.
The second contribution of Indian civilization of antiquity is that they are re-
sponsible for the first reference in recorded history for the use of cryptanalysis
for political purposes. A classic book on the craft of statehood, written at the
end of the fourth century BC by Kauţilya, called the Artha-śāstra, contained
suggestions for diplomatic types to use cryptanalysis for obtaining information
necessary to their trade. Although no mechanisms are given for carrying out
such suggestions, there is some cryptographic maturity seated in the knowledge
that such cryptanalysis could indeed be achieved. Later, in Section 1.4, we
will see how the Arabs were the first in recorded history to give a systematic
explanation of cryptanalysis.

The Spartans and Military Cryptography

The first to use military cryptography for correspondence were the Spar-
tans, who used a transposition cipher device. Before describing it, let us have a
look at this new term, “transposition” cipher. First let us clarify and distinguish
it from the earlier use of the term, “substitution” cipher. In the case of a substi-
tution, we replace plaintext symbols with other symbols to produce ciphertext.
As a simple example, the plaintext might be palace, and the ciphertext might be
QZYZXW when a,c,e,l,p are replaced by Z,X,W,Y,Q, respectively. (The cryp-
tographic convention is to use lower-case letters for plaintext and UPPER-CASE
letters for CIPHERTEXT.) However with a transposition cipher, we permute
the places where the plaintext letters sit. What this means is that we do not
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change the letters, but rather move them around, transpose them, without in-
troducing any new letters. Here is a simple illustration. Suppose that we have
thirteen letters in our plaintext, and the following is a permutation that tells
us how to move the thirteen positions around. The way to read the following
is that the symbol in the position number in the top row gets replaced by the
symbol in the position number below it in the second row.

(
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 10 7 8 9 5 6 11 12 13

)

Now, suppose that our plaintext is they flung hags. Then the ciphertext will
be THEY HUNG FLAGS . Notice that the first four and last three plaintext
letters remain in the same position as dictated by the above permutation, but
the f in position 5 gets replaced by the H in position 10; the l in position 6
gets replaced by the U in position 7; the u in position 7 gets replaced by the
N in position 8; the n in position 8 gets replaced by the G in position 9; the
g in position 9 gets replaced by the F in position 5; and the h in position 10
gets replaced by the L in position 6. So this is an easy-to-understand method of
depicting transposition ciphers that we will use throughout the book. We can
see that transposition ciphers depend upon the permutation given, such as the
one above, so often transposition ciphers are called permutation ciphers.

Now let us return to the Spartans, the great warriors of the Greek states. The
Spartans used a transposition cipher device called a skytale (also spelled scytale
in some sources). This consisted of a tapered wooden staff around which a strip
of parchment (leather or papyrus were also used) was spirally wrapped, layer
upon layer. The secret message was written on the parchment lengthwise down
the staff. Then the parchment was unwrapped and sent. By themselves, the
letters on the parchment were disconnected and made no sense until rewrapped
around a staff of equal proportions, at which time the letters would realign
to once again make sense. One use of the skytale was documented to have
occurred around 475 BC with the recalling of General Pausanius, who was a
Spartan prince. He was attempting to make alliances with the Persians, an act
the Spartans regarded as treasonous. Over one hundred years later, a skytale
was used to recall General Lysander to face charges of sedition. Thus, the Greeks
have been credited with the first use of a device employing a transposition cipher.

The earliest writings on cryptography, as instructional text, is credited to
the Greeks. In the fourth century BC, Aeneas Tacticus wrote a book on military
science, called On the Defense of Fortifications. In this book, an entire chapter is
devoted to cryptography. In this chapter, Tacticus also describes several clever
steganographic techniques. One of these techniques is to puncture a tiny hole
above or below letters in a document to spell out a secret message. Almost two
thousand years later, this method was used (with invisible ink and microdots
rather than pin pricks) by the Germans during the world wars in the twentieth
century.

More credit goes to the Greeks in terms of development of some of the first
substitution ciphers. Polybius who lived approximately from 200 to 118 BC was
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a Greek historian and statesman. He invented a means of enciphering letters
into pairs of numbers as follows.

The Polybius Square

Table 1.1

1 2 3 4 5
1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z

Label a 5 by 5 square with the numbers 1 through 5 for the rows and columns,
and string the English alphabet through the rows, considering “ij” as a single
letter, as given in Table 1.1.

Then, look at the intersection of any row and column (with row number
listed first and column number listed second) as the representation of the letter
in question. For instance, k is 25 and q is 41. Hence, the letters are plaintext
and the numbers are ciphertext. This device is called the Polybius checkerboard
or Polybius square. Polybius’ intended use of his square was to send messages
great distances by means of torches and hilltops. The sender would hold a torch
in each hand, then raise the torch in the right hand the number of times to signal
the row, and the torch in the left hand the number of times to signal the column.
There is no evidence that these were actually used in this fashion or any other in
ancient Greece. However, there are many variations of his cipher that have been
constructed. The reader may even concoct one by pairing different letters than
“ij”, and stringing the alphabet in a different way from the straightforward one
given in Table 1.1. One such interpretation of Polybius’ cipher involved turning
the digits into sounds. A known application in the twentieth century was the
one developed by Russian prisoners who used knocks to convey speech. For
instance, using Table 1.1, a prisoner might knock on a wall twice, followed by
three knocks for the letter “h”, then proceed in this fashion to send a complete
message. Hence, this came to be known as the knock cipher.

Polybius’ substitution cipher has found great acceptance among cryptogra-
phers up to modern times, who have used it as the basis for numerous ciphers.
We will mention some as we encounter them later in our cryptographic voyage.

Julius Caesar

Although the ancient Greeks made no claim to actually using any of the
substitution ciphers that they invented, the first use in both military and do-
mestic affairs of such a cipher is well documented by the Romans. In The Lives
of the Twelve Caesars [276, page 45], Suetonius writes of Julius Caesar: “.... if
there was occasion for secrecy, he wrote in cyphers; that is, he used the alpha-
bet in such a manner, that not a single word could be made out. The way to
decipher those epistles was to substitute the fourth for the first letter, as d for
a, and so for the other letters respectively.” What is being described here is a
simple substitution cipher used by Julius Caesar. He not only used them in his
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domestic affairs as noted above by Seutonius, but also in his military affairs as
he documented in his own writing of the Gallic Wars.

Table 1.2
Plain a b c d e f g h i j k l m
Cipher D E F G H I J K L M N O P
Plain n o p q r s t u v w x y z
Cipher Q R S T U V W X Y Z A B C

This substitution cipher is even easier to use than that invented by Polybius,
which we discussed above. In this case there is merely a shift to the right of
three places of each plaintext letter to achieve the ciphertext letters. This is
best illustrated by Table 1.2.

Table 1.2 is an example of a cipher table, which is defined to be a table
of (ordered) pairs of symbols (p, c), where p is a plaintext symbol and c is its
ciphertext equivalent. For instance, in the Caesar cipher table, (b, E) is the pair
consisting of the plaintext letter b together with its ciphertext equivalent E.
An example of a cryptogram made with the Caesar cipher is: brutus becomes
EUXWXV. Also, this simple type of substitution cipher is called a shift cipher.
Moreover, the mechanism for enciphering in the Caesar cipher is a shift to the
right of three letters. So the value 3 is an example of a key, which we may regard,
in general, as a shared secret between the sender and the recipient, which unlocks
the cipher. So 3, in this case, is the enciphering key. Since shifting 3 units left
unlocks the cipher, then 3 is also the deciphering key. This is an example of
a symmetric-key cryptosystem, namely, where one can “easily determine” the
deciphering key from the enciphering key and vice versa. (We will formalize this
notion in Chapter 3, when we study symmetric-key cryptosystems in detail,
but for now, this will suffice.) Thus, the key must be kept secret from all
unauthorized parties. (This is distinct from a cryptosystem, about which we
will learn in Chapter 4, where the enciphering key can be made publicly known!
Yet, nobody can determine the deciphering key from it.) There is a method of
employing the Caesar cipher with numbers that simplifies the process. Consider
Table 1.3 that gives numerical values to the English alphabet.

Now, if we take zebra as the plaintext, the numerical equivalent is
25, 4, 1, 17, 0, and using the Caesar cipher we add 3 to each number to get
the ciphertext. However, notice that when we get to x, y, z, adding 3 will take
us beyond the highest value of 25. The Caesar cipher, Table 1.2, actually loops
these three letters back to A, B, C.

Table 1.3

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Hence, what we have to do here is to throw away any multiples of 26 and
treat them as zeroes in our addition, and only accept nonnegative numbers (the
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positive integers and 0) in our scheme. (This is called modular arithmetic in
mathematical terms; in this case, modulo 26, and here 26 is called the modulus).
We perform modular arithmetic in our daily lives when we look at our clocks as
mod 24 arithmetic. Once the 24 hours are done, we begin again to count from
zero to the midnight hour. This is what we will do here modulo 26. We need
a symbol other than = to denote our addition since the outcome will not be
strict equality, but rather equality after throwing away multiples of 26. Since
we might change the value of 26 for some other ciphers, then we need to keep
track of it as well. We do this by writing

25 + 3 ≡ 2 (mod 26),

for instance, in our current example since 25 + 3 = 26 + 2, which is just 2
when the 26 is discarded. Continuing then, we get that the plaintext numerical
equivalents 25, 4, 1, 17, 0 become 2, 7, 4, 20, 3, and using Table 1.3, the ciphertext
message becomes CHEUD. Once sent, the recipient uses the key 3 to decipher
by first converting the ciphertext to letters via Table 1.3, then calculating, for
instance 2 − 3 ≡ 25 (mod 26), since 2 − 3 = −1 = 26 − 1 = 25, given that
multiples of 26 are treated as 0 and no negative numbers are allowed in our
arithmetic, described above. (In other words, −1 is the same as 25 modulo
26, and we must choose 25 since only the nonnegative numbers less than 26
are allowed.) Similarly, all other numbers are decrypted to yield 25, 4, 1, 17, 0,
which, via Table 1.2 becomes zebra.

The Caesar cipher is a simple example of more general ciphers called affine
ciphers about which we will learn when we revisit the Caesar cipher in Chap-
ter 3. The introduction of the Caesar cipher is an opportunity to solidify our
understanding of ciphers in general. First, we describe it verbally, followed by
an illustration. As we have seen, a cipher not only involves a set of plain-
text/ciphertext pairs (p, c), but also a key k used to encipher and decipher.
Moreover, the key has to satisfy certain properties. We want to ensure that
when we encipher a plaintext element using the key, there is only one possible
ciphertext element, and there is only one possible decryption to plaintext possi-
ble. (In mathematical terms each key is called a one-to-one function.) Thus, we
may describe a cipher or cryptosystem as a set (a collection of distinct objects)
of plaintext/ciphertext pairs (p, c) together with (one or more) enciphering keys
k, each having a corresponding deciphering key d, called the inverse of k, such
that k(p) = c and d(c) = p. In other words, the action of enciphering using
k, denoted by k(p) = c is “unlocked” by d when d is applied to c, denoted by
d(c) = p. Hence, the action of k followed by d has the unique result of doing
“nothing” to p, namely,

d(k(p)) = d(c) = p.

(In mathematical terms, this action is called an identity function since it iden-
tifies the original object with itself, p in this case.) These properties ensure a
well-defined cryptosystem, a definition that we will be using throughout.
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Diagram 1.1 A Generic Cryptosystem

(I): Encryption

Keysource�k

Plaintext: p
Encipher−−−−−−−−−→

k(p)

Ciphertext:
k(p) = c

k “locks” p

(II): Decryption

Keysource�d

Ciphertext: c
Decipher−−−−−−−−−→

d(c)

Plaintext:
d(c) = p

d “unlocks” c

Anglo-Saxon Britain and Scandinavia

Thus far, we have concentrated on the great civilizations of antiquity in
Rome, Greece, and Asia. However to the north, in Anglo-Saxon Britain and
Scandinavia, cryptographic finds were of high importance as well. We will now
look at one of them of note.

Figure 1.5: Rök stone.

In the Rök churchyard in Östergötland, Sweden
(dating from the beginning of the Viking era), a ninth-
century, thirteen-foot-high slab of granite was dis-
covered. It is known, therefore, as the Rök stone,
which has 725 legible texts from the runic language.
(See image on the right; courtesy of site owner at
http://www.deathstar.ch/security/encryption/.)

The runic alphabet was used by Germanic people
of Britain, northern Europe, Iceland, and Scandinavia
from approximately the third to the seventeenth cen-
tury AD. Although experts are uncertain, it is most
probable that runic was developed by the Goths (a
Germanic people) from the Etruscan alphabet of north-
ern Italy. The inscriptions on the Rök stone are of
secret formulas and epic tales. The wealth of letters
makes it a treasure chest for the cryptologist.

The Rök stone (see Figure 1.5) is perhaps the best known of the Teutonic
runes and Celtic oghams (pronounced oy-hams). This writing dates somewhere
from the first to the fourth century AD, used for (mostly) the Irish language
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in stone. Runes are abundant in Scandinavia and Anglo-Saxon Britain. (There
are approximately 3500 stones with runic inscriptions found in Europe, mostly
in Sweden and Norway.) However, there is an older runic stone, containing
the oldest extant runic inscription, called the Kylver Stone (see Figure 1.6).1.1

Figure 1.6: The Kylver stone.

This is a limestone slab
dating to the fifth century,
which was found in the
province of Gotland, Swe-
den. The inscriptions are
of the older runic alphabet,
sometimes called Futhark,
which is is both chronolog-
ically and linguistically the
oldest testimony to any Teu-
tonic language. (This earli-
est version of the runic lan-
guage had 24 letters, di-
vided into three sets, called
œttir, of 8 letters each. The
sounds of the first six letters
were f, u, th, a, r, and k, re-

spectively yielding Futhark.) The inscriptions on the Kylver stone are facing
inside the coffin, most likely to protect the gravesite as some incantation. It
contains a palindrome (any sequence of symbols that reads the same backward
or forward) on it, sueus, presumed to be some magical protection, but it has
not been deciphered.

These enciphered methods of rune writings are called Lønnruner in Norwe-
gian, meaning secret runes or coded runes. It is not clear that the intention
of the carvers was to secrecy, but perhaps, as we saw with the early stages of
writings on Egyptian tombs, the rune carver’s only purpose was to demonstrate
his skills for others to admire (perhaps as puzzles for learning Futhark). Known
Ogham writings number nearly 400 in Ireland. These extant examples of Ogham
are principally grave and boundary markers. However, there is some evidence of
its use by the Druids for documenting stories, poetry, etc. (The Druids were the
learned class of the ancient Celts, the first historically identifiable inhabitants
of Brittany. Druid is Celtic for knowing the oak tree. Moreover, Julius Caesar,
who is perhaps the main source of information about Druids, classified Celts
into druids as men of religion and learning, also eques as warriors, and plebes
as commoners.) It is uncertain if the Druids actually used enciphered oghams
for divination or magical purposes. Any carvings in wood have long ago rotted
away, leaving only the stone inscriptions. However, in the Book of Ballymote,
written in 1391 AD, are some fragments of writing, in another system, called
Bricriu’s Ogham, which may be interpreted as an enciphered ogham from an-

1.1This image from http://www.runewebvitki.com/index.html, courtesy of site owner, Rig
Svenson.
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cient Druid liturgy. (The Book of Ballymote, a collection of Irish sagas, legal
texts, and genealogies, along with a guide to the Ogham alphabet — from which
much of our present knowledge of Ogham derives — currently sits in the Irish
Academy in Dublin.) The main twenty letters of the Ogham alphabet represent
the names of twenty trees sacred to the Druids (for instance, A-Ailim for Elm
and B-Bithe for Birch). The Ogham alphabet was invented, according to the
Book of Ballymote, by Ogma, the Celtic god of literature and eloquence. In
Gaul, he was known as Ogmios, ostensibly identified with the Roman hero/god
Hercules.

Figure 1.7: An Ogham stone.

In its most rudimentary form, Ogham con-
sists of four sets of strokes, which appear like
notches in the rock inscriptions, each set con-
taining five letters comprised of between one
and five strokes, yielding a total of twenty let-
ters, mentioned above. These can be seen to be
carved into the stone from right to left, or on
the edge, in Figure 1.7. In a later development
of the language, a fifth set of five symbols were
added, called forfeda, an Irish term for extra let-
ters. Ogham is read from top to bottom, left to
right.

Ogham markings on standing stones (or
gallán) have been found as far as Spain and
Portugal, in an area once known as Celtiberia,
an area of north-central Spain occupied in the
third century BC by tribes of Celtic and Iberian
peoples. However, some of the inscriptions in
Spain date to 800 BC, quite a bit older than
the ones in Ireland. The Iberian Peninsula (oc-
cupied by Spain and Portugal in southwestern
Europe) was colonized by the Celts in 1000 BC.
It is part of conjecture that the Celts may have
found their way from Celtiberia across the Atlantic to the New World as early
as the first century BC. Evidence of this is the discovery of ogham-like carvings
in West Virginia in the United States. Readers interested in more detail on
Ogham can refer to the relatively recent, easy-to-read, and quite informative
book by Robert Graves [115], first published in 1948.

Perhaps one final comment on Druids is in order before we move on. The
archeological site in southern England, known as Stonehenge, could not have
been, as is often claimed, built as a temple for the Druids or Romans since
neither was in this location until long after the last stages of Stonehenge were
built. The initial stages date back to 3100 BC and were used by Neolithic man
who carved the stones with deer antlers, which ostensibly helped to (carbon-14)
date them. The final stages of Stonehenge were completed in about 1550 BC.
However, there is no cryptography there to interest us.
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The Mayan Civilization

Now it is time to leave the Old World and sail across the Atlantic to the
New World, where a great people reigned from 2000 BC to 1500 AD, the Mayan
civilization. (Mayan means Thrice built.)

Perhaps some of the most difficult of the languages that have yet to be deci-
phered, are the Mayan hieroglyphs, the only genuine writing system ever devised
in the pre-Columbian Americas. This writing system was used by the Mayan In-
dian peoples of Meso-America from roughly the third to the seventeenth century
AD. We use the term hieroglyph (see page 4) since the more than 800 symbols
are mostly representations of objects, namely, they are pictorial in nature, pic-
tograms, and typically we abbreviate this term and refer to them as glyphs. Up
to the middle of the twentieth century, only minute amounts of mostly numeric
data were decrypted. From the middle to the end of the twentieth century
progress was made in deciphering numerous Mayan inscriptions, so that by the
1990s a significant number of decipherings were achieved, but much remains to
be done. The complexity of the Mayan system is underscored by the fact that a
given symbol may represent a complete word. Such glyphs are called logographs.
A glyph that represents only a sound, syllable, or even just a part of a word
is called a phoneme. Yet, that is not all. A single logographic symbol might
have many meanings. Also, any given glyph could represent a sound, a concept,
or both. Hence, there are the interwoven problems of deciphering not only a
symbol’s logographic meaning — what it represents — but also its phonetic
meaning.

Although the reader may find similarities in what we are describing here
to what we described in the tackling of the Egyptian hieroglyphs, there are
two major differences. First, unlike the Egyptian hieroglyphs, where there were
Greek versions, such as on the Rosetta stone, there is no known conversion of
Mayan glyphs into another language. Secondly, there are no people alive today
who can read or write the glyphs. The Mayan glyphs are unlike the Phaistos
disk in that there are a substantial number of sources that have been recov-
ered. Mayan hieroglyphs have been found carved in stone monuments (called
stelae, meaning stone trees ), on pottery, jewellery, and to a far lesser extent,
in books. The books of the Mayans are called codices, most of which were de-
stroyed by Spanish priests, who considered them to be pagan in nature. Four
codices are extant. The oldest is the Paris Codex dating, it is believed, to the
fourth century AD. In Figures 1.8 and 1.9 are representations of two pages of
the Mayan zodiac from the Paris Codex, where the constellations are repre-
sented by zodiacal animals such as a bird, scorpion, snake, and turtle (there are
a total of thirteen zodiacal animals in the Mayan zodiac corresponding to their
thirteen constellations). (These digital representations were downloaded from
http://digital.library.northwestern.edu/codex/download.html, courtesy of North-
western University Library.)

The most recent codex, the Grolier Codex, dating to the thirteenth century,
contains exhaustive writings on the orbit of the planet Venus. However, it is
estimated that more than half its twenty pages are missing. The other two
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extant codices are the Dresden Codex ; and the Madrid Codex , dating from
about the eleventh and fifteenth centuries, respectively. Of the four codices, the
Dresden is the most deciphered. The physical appearance of the codices is quite
striking given that they were made of fig bark paper folded into an accordion
shape with outside covers of jaguar hide.

Figure 1.8: Paris Codex zodiac 1.
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Figure 1.9: Paris Codex zodiac 2.

Epigraphers (those who study ancient inscriptions), working on the Mayan
inscriptions are using the Internet and modern-day super-computers to house
and dissect the massive body of data gathered over the years. This may be
viewed as a task equivalent to trying to crack the code of the Mayans as they
would any contemporary cryptosystem. Given the wealth of talent and sophis-
tication of computing and cryptanalytic techniques available today (much of
which we will discuss in this book), the day of a complete understanding of the
ancient Mayan script and its civilization’s secrets may well be at hand.

In Figure 1.10 is a photograph of the Pyramid of the Magician in Uxmal, Yu-
catán, Mexico. This was built in Puuc style, an architecture used during 600–900
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AD, part of the late classic period. (The three periods of Mayan civilization are
Pre-Classic (2000 BC–250 AD); Classic (250–900 AD); and Post-Classic (900–
1500 AD).) This pyramid has representations of the rain god Chac. In fact, a
decryption of glyphs shows that the ruler of Uxmal took the name Lord Chac
in roughly 900 AD. As with many other cities, Uxmal was abandoned in about
1450 AD. After millennia, the Mayan civilization ceased to be, but nobody
knows why, albeit speculation abounds from natural disaster to invasions, one
of the great mysteries.

Figure 1.10: Pyramid of the Magician.

Easter Island

To close this section with another fascinating story, we head south, and west
to an isolated island 2200 miles west of Chile, now a Chilean dependency, Easter
Island. It is the easternmost of the Polynesian islands, famed for its giant stone
heads, standing three stories high, called moais or busts.

In 1722, a Dutch admiral, Jacob Roggeveen, was the first European to visit
the island. To commemorate the day of their arrival, the Dutch named it Paa-
seiland or Easter Island. However, to its inhabitants, largely of Polynesian
descent, it is known as Rapa Nui or Great Rapa, also Te Pi te Henua or Navel
of the World. Not only were the moais found, but also, tablets inscribed with a
language called rongorongo. This language still has not been deciphered. Ron-
gorongo is a pictographic language (such as the Egyptian hieroglyphs). More-
over, every other line is written upside down, meaning that the tablet would
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have to be turned upside down every time a line was read. Experts speculate
that the tablets were used by priests for purposes of worship, so they are of-
ten called sacred tablets. However, nobody really knows. Only some thirty or
so tablet fragments remain, so as with the Phaistos disk with which we began
this section, there is not enough data to make a definitive analysis of the script.
Thus, as with the Mayan mysteries, rongorongo remains one of the few languages
left that have not been deciphered. Some images of rongorongo inscriptions are
given in Figures 1.12 and 1.13. Figure 1.12 is a portion of a rongorongo tablet.
Figure 1.13 is the Santiago Staff , a walking stick. It was was obtained, in 1870,
from the French colonist Dutrou-Bornier. He maintained that it had belonged
to an ariki or king. It is entirely covered with rongorongo signs, inscribed along
its length.

Figure 1.11 is an image of one of the roughly 600 giant stone busts
that pepper the island. Although they were initially objects of wor-
ship by the inhabitants, when Captain James Cook reached the island in
1774, he found that most of them had been deliberately knocked over.

Figure 1.11: Easter Island Moais.

The population had been reduced from
3000 people to roughly 600 men and little
more than a couple dozen women. Os-
tensibly a civil war had taken its toll
on the aborigines there. Although the
population again reached 3000 by 1860,
a Peruvian-launched slave trade, coupled
with smallpox, nearly annihilated the
population, so that by 1877, there were
only 111 inhabitants left. The popula-
tion again increased by the end of the
nineteenth century. In 1888, Chile an-
nexed Easter Island, and turned it into
a sheep-raising community. In 1965, the
islanders became Chilean citizens, main-
taining their culture and ancestral affilia-
tions. In fact, each February the inhabi-
tants meet for celebrations of the island’s
past with a revival of old skills and cus-
toms.

Given the fact that antiquity refers to
times up to the Middle Ages and we have
covered both the Old and New worlds,
this is an appropriate juncture at which

to conclude this section. We have only barely scratched the surface of the history
of antiquity as it applies to cryptography, but the reader will have a sufficient
sense of our past to carry forward.
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Figure 1.12: Rongorongo tablet.

Figure 1.13: Santiago Staff Segment.
(Figures 1.12–1.13 are courtesy of http://www.rongorongo.org/, site owner.)
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1.2 Cryptography in Classical Literature

Classical quotation is the parole of literary men all over the world.
Samuel Johnson (1709–1784), English poet, critic, and lexicographer

The epic Greek poet Homer, perhaps one of the greatest literary figures of
all time, wrote the Iliad (among other great stories such as the Odyssey). In
it, a hero of Greek mythology, Bellerophon, son of Glaucus, and grandson of
Sisyphus, fled Corinth after having killed Bellerus, for which he acquired the
nickname Bellerophontes. He came, as a suppliant, to Proteus, King of Argos,
whose wife Anteia fell in love with the handsome hero at first sight. However,
he rejected her, and in the role of a “woman scorned”, she told the King that
Bellerophon had tried to seduce her. Believing his wife, but unwilling to risk the
Furies’ (goddesses of vengeance) wrath, the king sent Bellerophon to Anteia’s
father, Iobates, the King of Lycia, with an enciphered message in a folded tablet,
the plaintext of which said: “Pray remove the bearer from this world, he has
tried to violate my wife, your daughter.”

Iobates, for reasons similar to his son-in-law’s, was unwilling to directly
ill-treat a royal guest. Instead he asked Bellerophon to do him the favour of
slaying the Chimera, a rather nasty, fire-breathing, she-monster with the head
of a lion, body of a goat, and tail of a snake. However, Bellerophon, being
no fool, consulted the seer Polyeidus, who advised Bellerophon to first trap and
tame the winged horse Pegasus. Bellerophon had been given the gift of a golden
bridle by the goddess Athena (after which the city of Athens is named, and why
she is considered the city protectress, but more commonly, the goddess of war,
handicraft, and practical reason in Greek mythology). This gift proved to be
timely since Bellerophon, upon finding Pegasus drinking from a well at Periene,
on the Acropolis of Corinth, was able to throw the bridle over his head. Then
he was able to fly over the Chimera on Pegasus’s back, firing a volley of arrows,
and finally thrust a spear, which had a clump of lead affixed to it, into the
monster’s mouth. The Chimera’s fiery breath melted the lead, which flowed
into her throat, down into her body, searing and killing her.

Iobates was not done. He sent Bellerophon to war against the Solymians
and Amazons, but they too were defeated when he flew over them, dropping
large rocks on their heads. Before returning to Iobates, he was able to conquer
Carian pirates in the Lycian Plain of Xanthus. Iobates sent palace guards to
ambush him on his return. However, Bellerophon prayed to Poseidon (god
of the sea), to flood the Xanthian plain behind him as he advanced on foot.
Poseidon heeded the prayers and sent waves forward as Bellerophon approached
the palace where Iobates waited. Since no man or monster could stop him, the
Xanthian women offered themselves to him, if he would relent. Being far too
modest, Bellerophon turned and ran, the waves retreating along with him. Now,
finally, Iobates was convinced that the enciphered message must have been in
error. He then demanded the truth from Anteia and upon getting it, begged
forgiveness from Bellerophon, offered his daughter Philonoë in marriage, and
made him heir to the Lycian throne. Together with the fascinating aspects of
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Greek mythology that the above anecdote illustrates, it also shows that even
when a message is correctly deciphered, the plaintext message itself may be in
error.

Hebrew Literature and the Bible

In the Hebrew literature, the most common technique of letter substitution
is called atbash, in which the first and last letters of the Hebrew alphabet are
interchanged, and the remaining similarly permuted, namely, the penultimate
(second to last) letter and the second interchanged, and so on. In fact, the word
atbash itself is an example of what it denotes. The reason is that it is composed
of aleph, taw, beth, and shin, the first, last, second, and penultimate letters of
the Hebrew alphabet.

Atbash is used in the Bible, in order to add mystery rather than hide mean-
ing. The importance of its use therein is that it inspired the European monks
and scribes of the Middle Ages to rediscover and invent new substitution ci-
phers. Through this development, cryptography was reintroduced into Western
culture, and the modern use of ciphers may be said to have grown from this
phenomenon. An example of the use of atbash in the Bible is given in Jeremiah
25:26 : “All the kings of the north, near and far, one after the other; all king-
doms upon the face of the earth [and after them the king of Sheshach shall
drink].” Sheshach is formed from babel by substituting the letters of the Hebrew
alphabet in reverse order. The first letter of babel is beth, the second letter of
the Hebrew alphabet, and this is replaced by shin, the penultimate letter. The
last letter of babel is lamed, the twelfth letter of the Hebrew alphabet, and this
is replaced by kaph, the twelfth-to-last letter.

In the Bible, there is a well-known cryptogram (meaning the final message
after encryption, the ciphertext, encapsulated and sent), although this one does
not involve atbash. It occurs in the Old Testament in the Book of Daniel, which
was originally written in Aramaic, a language related to Hebrew, and generally
thought to have first appeared among the Arameans (a Semitic people of the
second millennium BC in Syria and Mesopotamia) roughly around the late
eleventh century BC. The setting is the great banquet given by Belshazzar,
the Chaldean king, for a thousand of his lords. As it says in Daniel 5:5–5:6,
“Suddenly, opposite the lampstand, the fingers of a human hand appeared,
writing on the plaster of the wall in the king’s palace. When the king saw the
wrist and hand that wrote, his face blanched; his thoughts terrified him, his hip
joints shook, and his knees knocked.” The king sought his wise men to decipher
the message. Either they could not or would not do so, since the message was
bad news for the king, who was slain that very night. In any case, Daniel
was brought before the king and easily interpreted the words for him. “This
is the writing that was inscribed: MENE, TEKEL, and PERES. Translation:
MENE: God has numbered your kingdom and put an end to it; TEKEL, you
have been weighed on the scales and found wanting; PERES, your kingdom has
been divided and given to Medes and Persians.”(Daniel 5:25–5:28 )

In the above, Daniel deciphers the three terms via a play on words. Mene
is associated with the verb meaning to number ; Tekel with the verb to weigh;
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Peres with the verb to divide. Moreover, there is an additional play on the last
term with the word for Persians. In any case, Daniel’s accomplishment made
him the first cryptanalyst, for which he became “third in the government of the
kingdom.” (Daniel 5:29 )

It is unknown why the king’s wise men, for the above-described biblical
cryptogram, could not interpret what is essentially a plaintext, so the only
answer can be their fear of revealing the bad news to the king. Of course,
interest in biblical cryptography has been a topic of interest for many to this
day. However, it can be argued that there is only the use of protocryptography
since the essential element of secrecy is missing.

Troy

We now return to Greek mythology as the backdrop to one of the greatest
decryptions in history. Homer’s Iliad and Odyssey, as well as Virgil’s Aeneid
contain accounts of a city named Troy, but were they all myths? Let us begin
with the account of the Trojan War, fought between the Greeks and Trojans.
There is no cryptography in this tale, so don’t look for any. This fascinating
story is presented here both to set the stage for the real-world attempt to find
the site of Troy, and the cryptographic secrets to which this quest finally led, as
well as to delineate the rich historical and cultural connections with the search
for this understanding.

King Priam of Troy and his wife Hecuba had a son Paris, whom Zeus invited
to judge a beauty contest between his wife Hera and two of his daughters, Athena
and Aphrodite. The scene of the contest is the celebration of the wedding of
Peleus, father of Achilles, and Thetis, the water nymph. The need for the contest
arose from the fact that Eris, goddess of strife, arrived at the celebration, despite
not having been invited. She brought a golden apple upon which was written
“For the fairest.” Hera, Athena, and Aphrodite all made claim to the apple,
appealing to Zeus for a decision; hence the invitation to Paris since Zeus did
not want to do it himself for obvious reasons.

Of course, each of the goddesses tried to curry favour with Paris by their
offerings. Hera offered power; Athena, military glory; and Aphrodite, a woman
as beautiful as herself, Helen of Sparta, for his wife. Paris gave the apple to
Aphrodite.

Helen was the only female child of Zeus, and was mortal, but her beauty was
world-renowned. She married Menelaus, King of Sparta, and as fate would have
it, Paris was sent as Trojan ambassador to Sparta. Paris and Helen instantly
fell in love, left Sparta for Troy, taking a great amount of wealth from the city’s
coffers with them. The Spartans appealed to Troy for return of the treasure, by
sending a delegation with Odysseus, King of Ithaca, and Menelaus, the betrayed
husband. The Trojans refused, and so the Spartans prepared for war.

The Greeks amassed a fleet of 1000 ships, the largest contingent of which
was led by the commander-in-chief, Agamemnon. The Greek army landed on
the beaches of Troy and settled down for a siege that lasted more than a decade.
Prince Hector, son of King Priam, and leaders of the Trojan army had much
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success against the Greek forces by breaking through their fortifications and
burning their ships. Among the battles was the famous showdown between
Achilles and Hector outside the walls of Troy. Achilles won, attached the corpse
to his chariot and dragged it away. Later, Priam went to the Greek encamp-
ments, pleading for the return of Hector’s body and Achilles returned it to
Priam for a ransom.

The background of Achilles now comes into play. When he was an infant,
his mother bathed him in the waters of the river Styx, which according to
myth, resulted in his invulnerability to any weapon. However, his heel, which
the waters did not touch since his mother held him by one foot, was his one
vulnerable spot. In the tenth year of the war, Paris, with the help of Apollo,
killed Achilles with an arrow that pierced his heel. Later, Philoctetes, a leader
of a contingent of Greek ships, was able to kill Paris with an arrow shot from
the bow of Hercules.

There are many other battle stories, but the ultimate tells of the Greeks
contriving the scheme of building a wooden horse that they filled with armed
warriors. (In a sense, this was a steganographic technique!) To make it appear
that they were abandoning the war, the Greek army withdrew. To celebrate
their victory, the Trojans tore down part of their wall and dragged the horse
into the city. Later that night, when the Trojans had fallen asleep, the hidden
Greek soldiers emerged from within the horse, opened the gates, and signalled
the main army, which was in hiding. King Priam was slaughtered at the alter
by Achilles’s son Neoptolemus; Hector’s infant son, Astyanax, was thrown off
the walls; and the women, Hecuba, and Cassandra, the daughter of Priam, and
Andromache, the wife of Hector, were taken as prisoners.

After the war, the gods considered the sacking of Troy (the best account of
which is in Virgil’s Aeneid) a sacrilege, particularly in view of the desecration of
the temples. Thus, they punished many of the Greeks. For example, Menelaus’
ships wandered the seas for seven years, while Agamemnon returned to Argos
only to be murdered by his wife, Clytaemnestra, and her lover, Aegisthus. Of
particular importance (as we will see below) is that Odysseus (known as Ulysses
to the Romans) was forced to wander the seas for ten years before returning
home to Ithaca, alone. Poseidon had been so angered by Odysseus’ putting
out the eye of Polyphemus, the cannibal cyclops, and son of Poseidon, that all
his ships and all his men were lost on the voyage back to Ithaca. In Ithaca,
he disguised himself and killed the princes who were trying to seduce his wife,
Penelope, into marrying one of them, and trying to kill his son, Telemachus.
After so long an absence, Odysseus had to prove his identity by being able to
string the famous bow of Odysseus, which was a task no other man had been
able to accomplish. Moreover, he was able to tell Penelope the secret tale of
their marriage bed, which Odysseus had built around an olive tree. Numerous
other tales spring from the Trojan War, and it can legitimately be argued that
few stories in our culture have been the inspiration of so many artists, writers,
sculptors, and playwrights. It also inspired one particular archaeologist.

One person who believed that Troy was not myth made it his life’s goal to
prove it, and the story of Troy in the Iliad inspired him. Heinrich Schliemann
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was born in Mecklenburg, North Germany, on January 6, 1822. At the early age
of seven, he was given a book, Jerrer’s Universal History, by his father. The
book contained a painting of Troy in flames. Throughout his life he believed
that the Homeric versions were more than myth, and he became obsessed with
Troy and Homer.

After some early work of little significance, he ultimately managed to acquire
a huge fortune using his innate merchant skills, by the time he was thirty.
Then he married Katherina, a niece of a business acquaintance. Although the
marriage lasted fifteen years, and produced a son and two daughters, it was
filled with violent verbal arguments, separations, reconciliations, and ultimately
divorce.

He had an aptitude for languages, mastering fifteen by the age of thirty-
three, including ancient and modern Greek. In 1851, he first visited America,
became a U.S. citizen, and opened a bank in California during the gold rush,
which added to his fortune. In 1858, he took an extensive tour of the Middle
East, returning to America a second time in 1868, trying to reconcile with his
wife, but it was doomed to failure. He then began another extensive voyage of
wandering, this time setting foot for the first time on the island of Ithaca. Here
he began to dig and excavate, finding what he believed to be the remains of
Odysseus and his wife, Penelope. After Ithaca, he travelled to the Peloponnese,
Mycenae, the Dardanelles, and the Plain of Troy. Now he was ready to relinquish
his business ventures and settle into an extended search for Troy. He was also
ready for divorce and finding a new wife. This time, he would not leave it to
chance. He wrote a letter in the winter of 1868 to his old friend Vimpos, who
had taught him Greek earlier in his life. Now Vimpos was archbishop of Athens.
Schliemann appealed to him to find him a Greek wife. After his divorce from
Katherina the next year, he arrived in Athens in August and married his new
young bride, Sophie.

There had been speculation among scholars and archeologists that a probable
site of Troy could be the hill of Hisarl

¯
ik, in modern-day Turkey. Schliemann

had visited the area in 1868, and now was convinced of it. In 1870, with his
eighteen-year-old bride by his side, he made some preliminary excavations at
Hisarl

¯
ik. By late 1871, he and numerous workers under his command drove

deeply into the northern slope of the hill. Schliemann was a novice at this, and
there were little precedents in the archeological world to guide him at that time.
The scale and magnitude of the venture was unprecedented. So, believing that
Troy was at the lowest levels, when he encountered a building of relatively late
date that impeded his progress he demolished it without attempting to record
any of it (which would make modern-day archeologists shudder). By 1873, he
uncovered the ruins of a city, which he believed to be the Troy of Homer’s Iliad,
and what he thought was Priam’s gold.

Not wanting to part with the treasure, he smuggled the gold and jewellery
(some of which he believed to have been worn by Helen herself, and with which
he adorned Sophie) out of Turkey to Athens. In 1874, after numerous political
and legal problems, he was able to offer the Greek government a suggestion that
he be able to keep part of the treasure during his lifetime, but that it would revert
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to Greece after his death. Moreover, the government agreed to let Schliemann
dig at Mycenae, his next project, under the supervision of the Archeological
Society of Greece, at his own expense, conditional upon his handing over all the
finds. They did give him exclusive rights on publishing his discoveries for up to
three years.

After two years of legal battles with the Turks, which ended in his having
to pay them compensation, he finally began to dig at Mycenae. With Sophie
by his side and an entourage of workers, in the summer of 1876, Schliemann
began to dig in an area known as the Lion Gate, which is a gateway upon which
sit two lions carved in stone. This is a gateway to what Schliemann called the
Citadel of the Atridae, a flat top of a hill crowned with a vast ring of walls.
He found upright slabs 87 feet in diameter, beyond which there was a circular
stone altar, more gravestones, and a gold ring. At this point, the workers
were dismissed, leaving only Heinrich, Sophie, and Stamatkis, the ephor who
represented the archeological society. They uncovered a total of six graves within
the ring of stone slabs, a Grave Circle. Each grave was a shaft of varying depths,
containing a total of nineteen bodies of men, women, and children, many laden
with gold. Numerous treasures were uncovered, from bronze daggers inlaid with
gold designs having various engravings in the men’s graves, to engraved golden
crowns in the women’s graves, treasure of gold masks and crowns. He was certain
that he had found the tomb of Agamemnon and Cassandra, among others. Was
Schliemann right? Later dating techniques showed that if Agamemnon actually
lived, it would have been around 1180 BC, the presumed date of the Trojan
War. However, the finds at the Citadel were earlier, around 1600 BC. The
excavations Schliemann made at Hisarl

¯
ik turned out to be the site of Troy but

the dating was off by several hundred years. He had dug past the level on which
Troy itself did reside! He had dug through the very walls of Troy to get to where
he thought it was. One of the upper levels was Priam’s Troy. So if the treasure
found by Schliemann at the lower levels was from a much earlier age, who were
the owners? Scholars touted Schliemann for his intuitive acuity, but posed that
the objects were older than the period of the Trojan War, older than Homer.
There was someone else who shared that belief.

In 1882, a thirty-one year old Englishman, Sir Arthur Evans (1851-1941),
came to visit the Schliemanns in Athens, having been introduced by his father
whom Schliemann had met in England. He was interested in looking at some of
the bead seals and signet rings that Schliemann had found at Mycenae. He be-
lieved that they were Aegean, but they fascinated him because he saw elements
of ancient Egypt in them. He wanted to unravel the puzzle. Now we continue
with the fascinating story that will take us back full circle to Crete, and stories
surrounding it, that we discussed in Section 1.1, and a cryptological find that
stunned the world.

Evans was born in Nash Mills, England, the son of a paper manufacturer
and amateur archeologist of Welsh descent. He was educated principally at the
University of Oxford, England, and the University of Göttingen, Germany. He
was a recognized scholar who became the curator of the Ashmolean Museum at
the University of Oxford from 1884 to 1908, and was appointed as extraordinary
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professor of prehistoric archaeology at Oxford in 1909. He had a long-standing
interest in sealstones and ancient coins, one of the reasons he had sought out
Schliemann.

Knossos

Meanwhile, Schliemann was seeking out further diggings signalled by the
Homeric writings, this time on Crete. There was Idomeneus, leader of the
Cretan contingent at the siege of Troy, and many other Cretan stories to in-
spire him. Schliemann applied to the Turkish government, who then ruled
Crete, in 1883 to dig at the site of Knossos. When he had finished his
latest diggings three years later, at Tiryns, Schliemann arrived on Crete.

Figure 1.14: An
artist’s rendition of life
at Knossos.
This was photographed
by Bridget Mollin at
the Iráklion Archeolog-
ical museum, as were
Figures 1.15–1.19; see
Section 1.1.

He had sought to buy the site on which Knossos
sits, but got involved with a shady owner who was
trying to cheat him, so he broke off the negotia-
tions and never again considered it. In 1890, a year
after he had an operation on his ear, which had
been giving him great pain in the last few years,
Schliemann was travelling home to Athens across
Europe for Christmas. At Naples, his ear trou-
bles returned, so he consulted a doctor. Feeling
somewhat better, he visited the ruins of Pompeii,
mentioned to him by his father in his youth, but
the pain returned with a vengeance. The next day,
Christmas day, on his way to see the doctor whom
he had visited earlier, he collapsed on the street in a
state of paralysis. Eventually, he received medical
attention, but it was too late. The inflammation
had spread from his ear to his brain and he died
the day after Christmas.

However, Evans, who respected his predeces-
sor, and who had been so enchanted eight years
earlier when he and his wife visited Schliemann,
and viewed the Mycenaean treasures, would in-
deed carry the torch to unlock many theretofore
unsolved mysteries. However, whereas Schliemann
had been driven by a belief in the Homeric tales
as literal truth, Evans was guided by scientific cu-
riosity. He was drawn, in part, to Crete by the
milkstones, which are Minoan sealstones, engraved
with hieroglyphic symbols. According to folklore,
the Minoan women wore these after giving birth
with the expectation that this would increase their milk production for nursing.
Evans believed that they might be the key to unlocking the language of the
Minoan civilization.

In March of 1900, Evans began his excavations at Knossos. The site
of Knossos is slightly to the south of Iráklion. It is a quadrangular
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mound with two steep slopes to the east and south, but roughly level with
the surrounding terrain on the other two sides, a mound called Kephala.

Figure 1.15: Knossos
Linear B Tablet

By the end of the month he had the first inscribed
clay tablet in hand, and by the end of the first week
of April a wealth of them to behold, with the same
script as he saw on those sealstones that had lured
him there. But he found more than he had sought.
There were pieces of art, so refined and beautiful
that they could only have been created by a great
civilization. Evans hired more workers until those
under his command numbered over one hundred.
Then on April 5, his first — perhaps greatest —
visual find, a picture (see Figure 1.19, page 34) of
one of the peoples who had inhabited Knossos on
that mound at Kephala, and he named him a Mi-
noan after Minos, the presumed ruler of Crete, and
mythological son of Zeus. It was becoming increas-
ingly clear that the Kephala mound held majes-
tic palaces, ranging six acres in magnitude, truly
the remains of a magnificent civilization. The first
palaces at Knossos were believed to have been built
around 2000 BC. He had bored back two millennia
BC and saw the opportunity to unlock the mystery
of nearly 2000 years of human civilization. The key
was in the script.

Evans saw four distinct kinds of script, so he be-
gan to classify them. The oldest, the type he had
seen on the sealstones, was pictographic, and he
called these hieroglyphic script of class A. The styl-
ized form of this that he found on clay tablets, (of
which over 3000 were eventually unearthed), which
seemed to be an evolutionary spinoff of class A from
the Mycenaean period, he called hieroglyphs script
of class B. There were two further simplifications
of classes A and B, which were more linear than
the aforementioned hieroglyphic types. These he
dubbed linear script of class A and the most recent,

the linear script of class B. It turns out that linear B, as it eventually came to
be known, was found only at Knossos, but linear A, again a simplification as
it came to be known, could be found all over Crete. It was determined that
the two classes of linear A and B did not live together. Linear B had replaced
linear A. But the interrelationships were not clear among the four classes. Clas-
sification became more refined dividing symbols into sets based on agricultural
types, ideographs, phonetic, or numerical. However, all this classification was
not deciphering. He still could not read the language.

It should be noted that although Evans used the term “hieroglyphs” with



30 1. From the Riddles of Ancient Egypt

reference to the discovered Minoan scripts, they were not related to the Egyp-
tian hieroglyphs. However, it should also be noted that the stylized pic-
tures of Minoans that they found were the so-called Keftiu or people of
the islands, found on the walls of Egyptian tombs, of non-Egyptian type,
with whom the Egyptians both fought and traded. Vases (rhytons) were
found in Knossos exactly as depicted in the paintings on Egyptian tombs in
Thebes. The excitement among Egyptologists could be heard round the world.

Figure 1.16: A
Knossos symbol:
double axe.

Linear B was closely related to the writings discov-
ered on Cyprus dating to 2000 BC, known as Cyproti-
Minoan. On the other hand, linear A appears on the
Phaistos disk, discussed in Section 1.1. However, as
we have seen, the Phaistos disk appears to be unique.
Linear B consists of ideographs, 87 syllabic letters, nu-
merical symbols, and symbols of weights and measures
(the latter two in the decimal system), with the occa-
sional combination of ideographs and syllabic letters.
Evans did not decipher linear B. It took about half
a century for that to come to fruition, yet linear A
remains a mystery.

Evans received numerous honours for his discover-
ies including a knighthood in 1911. He died in 1941
before seeing the deciphering of the clay tablets that
he brought to light. That would be for another young
man to do.

In 1936, Michael Ventris was in the audience when
Sir Arthur Evans gave a lecture on Minoan writings.
Ventris was then only fourteen, but he developed an
enthusiasm for the challenge posed by the undeci-
phered Minoan script, which led him in later life to
contact experts, begin reading, learning, and working as a cryptanalyst would.

By 1952, Ventris, an architect, not an archeologist, had deciphered linear B.
Moreover, he verified that the language was indeed an early Greek dialect. This
demonstrated that during a disputed time period, 1400–1125 BC, the Greek
mainland dominated Crete. Hence, earlier versions of the Late Bronze Age of
the Aegean region had to be rewritten. When the clay tablets were deciphered,
they were found largely to be bureaucratic trivia concerning insignificant busi-
ness transactions. However, the value of the tablets is in that to which their
existence silently attests. They were 400 years older than Homer, and linear B
is the written form of the language spoken at the time of the Trojan War. Fur-
thermore, they help to separate the parts of Homer’s writings that are historical
from those embellished for the heights of mythological fame. Ventris’ cryptan-
alytic success took us back by more than 700 years from what had previously
been deciphered. Until his success, we only had evidence of Greek writing from
about 750 BC. Now we could go back to roughly 1500 BC. Moreover, it gives us
a glimpse of Greece in the Bronze Age, and clears up some previously unclear
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areas. Hence, the fact of the decryption and its methodology to obtain it, using
only analytic techniques, attests to its greatness. It may not have unlocked
secrets as great as the Pharos, as the Rosetta Stone allowed, but it gave us a
clearer picture of our shared history farther back than anyone before could ac-
complish, put the writings of Homer in a clearer light, and gave us the language
of ancient Troy.

Figure 1.17: Knossos fresco: blue dolphins.

Ventris, as so many others who contributed to our cryptological heritage,
died far too young. He had an accident while driving home late one night near
Hatfield, England, at the age of 34. Yet his contribution, another door opened
to the past, and the light it shines for us lives on.

For the reader interested in the words of the discoverers themselves, we
recommend Evans’ own work [78], and Schliemann’s works [233]–[234]. For an
account of Ventris’ cryptanalysis of linear B, see [52].

More From Greek Literature

We now look at three other figures from Greek literature, who lived much
later than Homer. Our first figure is Thucydides, who is considered to be one
of the greatest Greek historians, primarily for his writing of the History of the
Peloponnesian War between Athens and Sparta in the fifth century BC. His
work was divided into eight books ending in the events of the autumn of 411
BC, almost seven years before the end of the war. Yet his work stands tall as a
definitive record, presumed to be the first, of a political and moral analysis of
a country’s policies on war, (giving his viewpoint as a native Athenian). Our
interest in him here is a link with the previous section, since he wrote about
how, in 475 BC, the Spartan General Pausanias was recalled from the field using
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an enciphered skytale (page 9). In fact, it is only through his writings that we
know of this.

We also mentioned (page 9), that one hundred years later General Lysander
was recalled by a skytale. This, of course, we do not know from Thucydides, but
rather from Plutarch, who was the author of over 220 books, and 60 essays on
topics ranging from ethics and religion to the political and the literary. He can
be said to have had the earliest influence on the western concept of the essay,
the biography, and historical writing.

Our last Greek character for this section is Herodotus, who lived circa (484–
425 BC). He was the author of perhaps the first great historical text, Histories,
which dealt with the Greco-Persian Wars. He is believed to have been born in
Halicarnassus, a Greek city in southwest Asia Minor, under Persian rule. His
contribution to our topic was not so much to cryptology as to steganography,
which we have already encountered in our travels, and which we will study in
detail in Section 1.3.

Figure 1.18: Palace ruines at Knossos.

Herodotus’ first tale is that of General Harpagus, who served under Astyages,
king of the Median Empire (in modern-day Iran). (In fact, according to the writ-
ings of Herodotus, the creator of the Median kingdom was Deioces who reigned
from 728 to 625 BC, and founded the Median capital of Ecbanta, modern-day
Hamada

¯
n.) King Astyages sent Harpagus with an army to defeat King Cyrus

II of Persia. However, Harpagus wanted revenge for Astyages’ murder of his
son some years earlier and saw this as the golden opportunity. Thus, instead
of confronting Cyrus with his army, Harpagus inserted a message, proposing an
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alliance, inside the body of a slain rabbit. Then he had his messenger dress as
a hunter and sent him to deliver the missive in the unskinned hare, to Cyrus.
The hidden message was well received by Cyrus who immediately agreed to join
Harpagus as an ally. Together they deposed Astyages. Under Cyrus, Harpagus
was a potent military force, helping, among other feats, to conquer Asia Mi-
nor. An example of one of his escapades is the following. Harpagus besieged
Xanthus, the main city of Lycia, in 540 BC, killing the Lycians to the last man.

Herodotus tells another tale related to our discussions thus far. The ancient
Greek city, Miletus, of western Anatolia (30 kilometers (20 miles) south of the
modern-day Turkish city of Söke), came under Persian rule of king Darius I
in the latter part of the sixth century BC, as did the other Greek cities of
Anatolia. However, in 499 BC the tyrant, Histiaeus, led a revolt against Persia.
This revolt marked the beginning of the Greco-Persian Wars. One anecdote
from this period comes from Herodotus.

Histiaeus served Darius by ensuring that tyrants of other cities would not
destroy the Danubian bridge over which the Persians were to return from the
Scythian campaign (circa 513 BC). For this Darius rewarded Histiaeus with
Thracian territory. However, for good reason as it turned out, Darius became
suspicious of Histiaeus and recalled him to the Persian court at Susa. There
he became a prisoner, in effect, if not in fact. Darius installed Histiaeus’ son-
in-law Aristagoras as the new ruler of Miletus. Ostensibly, Histiaeus tattooed
a message on the shaven scalp of a trusted slave, kept him hidden until a new
head of hair grew back, then sent him off to his son-in-law with the message
to revolt against Persia. This marks the end of the steganographic part of the
story, but it is worth recalling what happened to Histiaeus.

Histiaeus tried to convince Darius that he could stop the revolt. Ultimately
he was successful and was allowed to leave Susa. However, when he returned to
the Lydian coast, the satrap or provincial governor, Artaphernes, was suspicious
of him, so he was driven out. Histiaeus became a pirate at Byzantium, and
after numerous unsuccessful forays to reestablish himself, he was captured. He
suffered the ignominious fate of being crucified at Sardis (capital of ancient
Lydia, near present Izmir, Turkey) by Artapherenes.

One last story from Herodotus, perhaps the most important from an histor-
ical viewpoint, should suffice before we turn our attention to another classical
instance of the use of cryptography. Again, it involves steganography. It follows
the death, in 486 BC, of Darius I, succeeded by his son, who came to be known
as Xerxes the Great (circa 519–465 BC), best known for his massive invasion of
Greece.

Herodotus tells us about Demaratus, former king of Sparta, who was de-
throned by Cleomenes I, on erroneous charges of illegitimacy, after which he
fled to Persia. After the death of Cleomenes, Leonidas became king of Sparta.
While in exile, Demaratus learned of Xerxes plans for invasion, and felt obliged
to warn Sparta. To do this, he scraped the wax off a pair of wooden folding
tablets, wrote on the wood that was thereby revealed, warning of the impending
invasion. Then he recovered the wood with wax, sealing the message, giving the
appearance of a blank folding tablet that would pass scrutiny, a fine stegano-
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graphic technique for that time. When the message was received, only Leonidas’
wife, and Clemenes’ daughter, Gorgo, discovered it. She told the others to scrape
off the wax to reveal the message on the wood underneath, and so the Greeks
were warned. The message turned out to be a death knell for Leonidas. He led
troops to defend the pass at Thermopylae where he died.

Figure 1.19: Prince of Knossos.

The details of the above battle are worth the telling for their historic impor-
tance. The battle took place in August of 480 BC, and the narrow pass (only
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6 kilometers (4 miles) in length), in which it was fought, has been immortal-
ized for this and subsequent conflicts. In this particular battle, Leonidas held
the Persians for three days in heroic fighting against unbelievable odds. The
Persians were eventually led along another mountain pass by the Greek traitor,
Ephialtes, allowing the Persians to outflank Leonidas’s troops. Leonidas sent the
majority of his men to safety, leaving only 300 Spartan soldiers and their helots
(state-owned serfs of the Spartans), and 1100 Boeotian troops (Boeotia was a
district in east-central Greece, which allied as the Beotian League in 550 BC
under the leadership of Thebes). All of the men died in that battle. The Per-
sian victory at Thermopylae cost them a very high price in lives lost. Moreover,
the vast majority of the Greek soldiers and their ships escaped to the Isthmus
of Corinth where they rejoined the main Greek forces. To commemorate this
battle (of great heroism against massive odds) a marble and bronze monument
was erected in 1955.

Another epic battle at Thermopylae occurred in 279 BC when the Greeks
held and delayed the invading Celts. Although the Celts sacked Delphi in Greece
that year, they suffered massive defeat against the Aetolians. The Aetolian
League was a federal state in ancient Greece, which developed into a leading
military power (having allied with Boetia around 300 BC), and can be said to be
responsible for the driving out of the invasion of 279. A related battle occurred
in the pass many years later. The Aetolians were one of the Greek powers not
happy with Rome’s growing power in Greece. They asked the Seleucid king
Antiochus III to be their commander-in-chief of the Aetolian League. With the
help of the Aetolians, Antiochus occupied Euboea in 192 BC, but by 191, the
Romans, outnumbering him with troops by two to one, cut off his reinforcements
in Thrace and outflanked his position at the Thermopylae pass, forcing him to
retreat. Later his fleet was wiped out. Eventually in defeat, his kingdom was
reduced to Syria, Mesopotamia, and western Iran. In 187, he was murdered
near Susa, where he was trying to extract tribute to keep his empire afloat.

The Kāma-sūtra

There are more snippets of cryptography in other classical texts upon which
we would like to touch before we close the door on this section. For instance, the
Kāma-sūtra of Vātsāyana lists cryptography as the forty-fourth and forty-fifth
of sixty-four arts or yogas of which people should not only be aware, but also
put into practice, according to the texts. The Kāma-sūtra was written near the
end of the fourth century AD or the beginning of the fifth century, but there is
no certainty. In fact, Vātsāyana says that his work is a compilation of earlier
works, so dating the cryptographic parts becomes even more problematic. A
rough translation of the relevant portions of the two aforementioned yogas is
given as follows: “The art of understanding writing in cipher, and the writing of
words in distinctive fashion. The art of speaking by altering the forms of words.
It is of various types. Some speak by altering the start and end of words, others
by adding superfluous letters between every syllable of a word, etc.”

Around a thousand years after the Kāma-sūtra appeared, cryptography was
used to conceal magical spells in a manuscript by Arnaldus de Bruxella. The
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manuscript dates to around 1473 AD, in Naples, Italy. In it is a spell for making
a philosopher’s stone, but the essential portion of the spell (about five lines) is
enciphered. In alchemy, a base metal was considered to be a state of “disease”
in a noble metal such as gold. Thus, to “cure” the disease was to turn the base
metal into gold. The philosopher’s stone was considered to be the vehicle for
actually transmuting base metals into gold. Hence, having the spell to create
the stone meant great power in the hands of those who held knowledge to do
so.

Casanova

An amusing anecdote concerning the breaking of a cipher in the eighteenth
century occurred in 1757 involving the famous Casanova, who received a cryp-
togram for safekeeping from his wealthy friend, Madame d’Urfé. She believed
that the cryptogram could never be cryptanalyzed given that she held the key-
word in her memory and had never written it down or disclosed it to anyone.
Nevertheless, Casanova was able to do just that. He determined the plaintext
of the enciphered manuscript, which contained a description for the transmu-
tation of baser metals into gold. He was also able to recover the key via his
calculations. She was incredulous at the revelation. Casanova later wrote in his
memoirs: “I could have told her the truth — that the same calculation which
had served me for deciphering the manuscript had enabled me to learn the word
— but on a caprice it struck me to tell her that a genie had revealed it to me.”
The keyword? NEBUCHADNEZZAR, or in Italian NABUCODONOSOR.

Shakespeare

The next story is about perhaps the greatest story-teller of all, William
Shakespeare, also known as the Bard of Avon. In 1878, Ignatius Donnely, an
American, self-styled, pseudo-scientist, began looking for steganographic evi-
dence in the Shakespearean works that the “real” author was Sir Francis Bacon.
Others, largely amateurs, followed in his footsteps looking for cryptographic ev-
idence, which of course, they found since in works as vast as Shakespeare’s, one
can devise schemes to read anything one wants into the works. There is even
speculation, and a kind of analysis (by Baconites) of passages from the original
folio: William Shakespeare’s Comedies, Histories, and Tragedies. published in
1623, that there is an enciphering of Sir Francis Bacon’s name (with various
spellings) therein. However, the vast majority of serious scholars see it as man-
ifest that Shakespeare is indeed the author of the works. We will learn more
about Sir Francis Bacon in Section 1.5. Shakespeare appears to have been aware
of the need for ciphers, since he was certainly aware that messages can be inter-
cepted by the unintended. In Henry V, a plot is being hatched against the king.
Henry uncovers the plot, ostensibly through an interception of letters written
by the traitors, proving their guilt, to which they confess, and they are put to
death. There is no evidence of cryptography here, but the clear need for it is
present, since interception of sensitive documents can lead to dire consequences,
such as the aforementioned executions.
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Edgar Allen Poe

We conclude this section with an American writer of the nineteenth century.
Edgar Allen Poe (1809–1849) gained fame for his tales of the macabre (see Figure
1.20). He initiated the genre of the detective story with his 1841 publication of
Murders in the Rue Morgue. Perhaps his best-known poem, which ranks high
in American literature, is The Raven, published in 1845.

He showed an early interest in cryptograms starting in 1839 when he wrote
articles on ciphers for Alexander’s Weekly Messenger, a Philadelphia newspaper.
All the cryptograms in his articles were simple substitution ciphers, and he
really did not have the cryptanalytic skill that would warrant the reputation he
developed. Yet he may be responsible for more people becoming interested and
learning about cryptography than the most skilled cryptanalyst. This is largely
due to turning his attention to literary cryptology in his story, The Gold Bug,
published in 1843. This story won him a prize of $100 from the Philadelphia
Dollar Newspaper, contributing to his fame. From a cryptographic viewpoint,
the latter is the most outstanding of his works since it revolves around the
cryptanalysis of a secret message. It was first published in book form in 1845
in a collection of his Tales. The Gold Bug may be considered to be one of his
detective stories, but it has the element of having added a seductive, bewitching
aspect to the cryptography used in the story. The solution of the cryptogram
in the story leads to great wealth and the one who breaks the cipher takes on
the role of sorcerer of a sort, since divination leads to the buried treasure, all
this from a manuscript with occult-like symbols. This helped to popularize the
story and thereby aided in increasing interest in the subject of cryptology itself.
Other writers followed in his footsteps with cryptographic detective tales, but
Poe created the template. Poe died on October 7, 1849 in Baltimore, Maryland,
and was buried in the Westminister Presbyterian churchyard there. (See [186]
for a collection of his works.)

We have only scratched the surface of the volumes of writers we could cite
here, yet what we have covered gives us a sufficient appreciation that allows us
to move on to other aspects. We now turn to a look at cryptology in the Europe
of the Middle Ages, and some occult associations.
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Figure 1.20: Edgar Allan Poe.
This photograph was taken in 1848. Courtesy of the Library of Congress,
Prints and Photographs Division, copyright by C.T. Tatman, 1904; repro-
duction no. LC-USZ62-10610.
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1.3 The Middle Ages

All historians have insisted that the soundest education and training for po-
litical activity is the study of history, and that the surest and indeed the only way
to learn how to bear bravely the vicissitudes of fortune is to recall the disasters
of others.

Polybius (ca. 200–118 BC), Greek historian and statesman

The Middle Ages refer to that period in Europe from roughly 500 to 1500
AD. (Historical scholars would put the end of the Middle Ages anywhere from
the end of the thirteenth to the fifteenth centuries since this is the beginning of
the Renaissance, but that depends on the area of Europe and other factors.) We
have already had an overlap with this period in Sections 1.1 and 1.2, wherein
we discussed, for instance, the runic stones dating back to the ninth century
AD, and the interest of the monks of the Middle Ages in ciphers inspired by the
Bible. Moreover, with the fall of the Roman empire, western Europe fell into
the Dark Ages (roughly 500–1000 AD), characterized by rampant illiteracy,
frequent warfare, and intellectual darkness, including the lack of any serious
development of cryptography. In Section 1.4, we will be able to fill in much of
the (non-European) time period with the contributions by the Arabs. For now
we begin with a philosopher of the thirteenth century.

Roger Bacon

Roger Bacon (1220–1292 AD) was a philosopher with the Franciscans whose
association began when he joined them in 1257. Among his interests were
alchemy, astronomy, languages, optics, and mathematics. He was truly a vision-
ary as evidenced by the fact that he considered the possibility of “flying ma-
chines”, “horseless carriages”, “motorboats”, “microscopes”, and “telescopes”
centuries before they were invented. Indeed he was one of the first medieval
advocates of experimental science. Our interest in him stems from his work,
Epistle on the Secret Works of Art and the Nullity of Magic, written around
1250. Seven simple ciphers are described therein. For instance, he suggests the
use of only consonants, or contrived symbols, and even shorthand. In fact he
wrote:

“A man is crazy who writes a secret in any other way than one which will
conceal it from the vulgar.”

Although it is a bit off the topic, it is worth mentioning the influence of Ba-
con’s ideas, even after his death. Bacon believed in the existence of a habitable
land to the west by sea and in the Aristotelian view of a short westward pas-
sage to India. These ideas were repeated also, to the word, by Cardinal Pierre
d’Ailley, bishop of Cambrai (1350–1420) in his work Imago mundi, an ency-
clopedic world geography. A copy of this book found its way into the hands
of Christopher Columbus, who was highly influenced by it. Columbus’ copy is
now kept (with several hundred of his marginal comments) at the Biblioteca
Columbina, Seville, Spain. Now we turn to a story about the first European
text on cryptography.
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The Western Schism

When Pope Urban VI (1378–1389) was elected pope in 1378, it began the
great Western Schism in the Roman Catholic Church, plaguing it for four
decades. Although competent, Urban became a tyrannical reformer, which led
to the revolt by the thirteen French cardinals led by Robert de Genève. They
left Rome and four months later declared Urban’s election “null”, because they
felt that it had been made under a cloud of fear. On September 20, 1378, they
elected Robert de Genève as Clement VII (1342–1394), the first antipope (one
elected to be pope in opposition to one canonically chosen, in this case, Urban).
The new antipope now saw a clear need for a cryptosystem for his new enter-
prise at his new home in Avignon, France. One of his secretaries was Gabrieli
di Lavinde, from Parma, who took up the task. In 1379, he devised a combi-
nation of code (book) and cipher. (Recall the definitions of cipher [page 4] and
code book [page 6].) He established not only a simple substitution cipher, but
also a list (code book) of plaintext words together with two-letter ciphertext
equivalents, which came to be known as a nomenclator, a cross-breeding of the
code (book) and the cipher. To envision this, think of a telephone book as half
of a nomenclator, with the telephone number as the code. The other half is
a means to turn a telephone number into the name without having to search
the entire book knowing only the phone number. Such mechanisms for reverse
directories would be the other half, or cipher half of the nomenclator, as a sim-
ple illustration. For more than four and a half centuries nomenclators would
be used throughout Europe. Although Lavinde’s code book consisted of only a
few plaintext/ciphertext pairs, it grew to more than several thousand over the
centuries.

It is worth mentioning the outcome of the schism. European countries were
divided over the pope/antipope dispute; the Aragon, Castile, France, Navarre,
Portugal, Savoy, and Scotland sided with Clement, while Bohemia, Flanders, the
Holy Roman Empire, Hungary, north/central Italy, and Poland backed Urban.
The Papal States fell into anarchy. When Urban died in Rome on October 15,
1389, it was suspected that he was poisoned. When Clement went to his grave
on September 16, 1394, in Avignon, he still believed in his legitimacy, and this
was echoed by King Charles V, who on that day, proclaimed him “the true
Shepherd of the Church.” In 1409, with the Roman pope, Gregory XII, and the
Avignon antipope, Benedict XIII, both in power, the cardinals met at a council
in Pisa, and elected a third pope Alexander V, succeeded shortly thereafter by
John XXIII. The German King Sigismund wanted an end to the schism, so he
convinced John XXIII, in 1414, to hold the Council of Constance. The council
deposed him, received the resignation of Gregory XII, and dismissed the claims
of Benedict XIII. In November of 1417, pope Martin V was elected, and the
schism ended.

Geoffrey Chaucer

Another of the few cryptographic authors of the Middle Ages, but perhaps
the most famous, was Geoffrey Chaucer (1342–1400), who was easily the most



1.3. The Middle Ages 41

prominent British poet before Shakespeare. In the 1390s he wrote his best-
known work, the unfinished Canterbury Tales. Our interest, however, comes
from a work written in 1392, namely, The Equatorie of the Planetis, which
was a supplement to his 1391 Treatise on the Astrolabe. In the Equatorie, he
included six passages written in cipher. The cryptosystem that he used consisted
of a substitution alphabet of symbols, where for instance, the letter h might be
represented by a symbol looking like the Greek letter σ, sigma. He also talks of
a cipher “using magic figures and spells.” This brings us to the association that
cryptography has had with the occult and black magic.

Codes and the Occult

One of the best-known enciphered magic writings is the Leiden papyrus,
which was actually written in the third century BC. It has both Greek and
demotic symbols as enciphering techniques to hide the “magic recipes”, among
which are spells for making potions that would give a man an incurable skin
disease, and another on how to make a woman desire a man. Of course, none
of these work. However, it is a precursor to the kinds of “magical” associations
that cryptography had in the Middle Ages.

Part of the reason for the lingering air of the occult attached to cryptog-
raphy today is due to the association with secret spells and incantations, the
history of which we will discuss. It was assumed, in the Middle Ages, that these
incantations bestowed power on the sorcerer who voiced them, and that the
removal of a disguise from a secret is somehow miraculous or magical. However,
the extraction of information by modern cryptographic techniques has become
an objective science, whereas the unfortunate association with divination, or
insight into the future, is subjective and at best an amusing distraction in our
modern world. Through education about cryptology, we can remove this aura
of the occult and better understand it as a science with a fascinating history.
Now let us learn more about why such an aura lingers.

In the late Middle Ages, February 2, 1462, Johannes Trithemius was born in
Trittenheim, Germany. In 1482, subsequent to attending school in Heidelberg,
he entered the Benedictine monastery of Saint Martin in Sponheim, Germany.
In a very short time he was designated abbot, probably due to the recognition
of his clear and outstanding brilliance. He became a prolific writer, known
for his biographical dictionaries, and an encyclopedic bibliography, Liber de
scriptoribus ecclesiasticus, published in 1494, which earned him the title of the
Father of Bibliographies. This has become a reference work on church writers
that is used to this day. However, Trithemius had interests on the darker side.

Trithemius authored books on alchemy, witchcraft, planetary angels, and
general topics of the occult. In particular, in his book Steganographia,
Trithemius describes techniques that we today call aspects of steganography, the
etymology of which is from the Greek steganos meaning impregnable, and from
a secrecy point of view, this means concealing the very existence of the message
itself, rather than the cryptographic goal of disguising the message. We have
actually encountered various uses of steganography in earlier sections (pages 8
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and 32–34). He began writing Steganographia in 1499, intending it to become
an eight-volume series. For over a century the manuscript was circulated before
it was finally printed in 1606. The Roman Catholic Church, in 1609, seeing the
text as sorcery, placed it on its index of Prohibited Books, where it remained for
over two centuries. Nevertheless, other printings occurred, including as late as
1721. Yet, this book, above all others, solidified the common belief, especially
among his colleagues, that Trithemius was a “wonder-working magician”. This
gave him the reputation as a sorcerer, which lingers to this day.

In modern books, Trithemius is grouped with other famous occultists such
as Paracelsus (1493–1541), a German-Swiss physician and alchemist, who iron-
ically, established the role of chemistry in medicine. Another of his contempo-
rary occultists with whom Trithemius is compared today is Heinrich Cornelius
Agrippa von Nettesheim (1486–1535), who was an acknowledged expert on the
occult, as well as court secretary to Charles V, and among many other activities,
university teacher, and public advocate at Metz, at least until he was condemned
for defending an accused witch. One of his books, De occulta philosophia, in-
cluded numerology and fostered magic as the highest road to knowing God.
Ultimately, he was imprisoned and branded a heretic. From a historical view-
point and to better understand Trithemius’s writings, it is worth discussing
other items in Agrippa’s book. His notion of God as magician is called hermeti-
cism (from Hermes Trismegistus, mythical inventor of a magic seal for keeping
vessels airtight, and thus the origin of the modern phrase hermetically sealed).
Hence, many hermeticists’ goal was to reinterpret the Bible using ciphers. Such
writings were held to include the wisdom of Egyptians at the time of Moses,
and ostensibly written by an ancient Egyptian purported to have received divine
knowledge about the physical world at the time Moses received his knowledge
from God about the moral world. Along with the numerology in Agrippa’s book
(one of the components of hermeticism) is also an explanation of the world in
terms of cabalistic1.2 analysis of Hebrew letters (another aspect of hermeticism).
Hebrew letters were believed to have magical powers when arranged in certain
combinations. Hermeticists believed that breaking the “code of the Bible” would
reveal all the secrets of the universe. In the late Middle Ages, the resurgence
of neo-Platonism provided an acceptance by increased followers of hermetic be-
liefs. Later, when the beliefs were largely proved to be fraudulent, hermeticism
still had some followers and even influenced thinkers of the Renaissance, and
beyond, including Sir Isaac Newton.

In Steganographia, Trithemius describes only some elementary stegano-
graphic techniques, and much of it has nothing at all to do with cryptography,
but rather with magical incantations, thought transference, computation of nu-
merical values of the names of angels, and other concepts from the beliefs of
hermeticism.

Trithemius did turn to more serious cryptography later, but we are going to
save a discussion of these accomplishments until Section 1.5, where we will be

1.2Cabalism refers to a system of Jewish mysticism and magic using ciphers as a device for
interpretation of scripture.
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looking at the Renaissance influences. This is fitting since Trithemius is both a
man of the (end of) the Middle Ages, as well as a man of the (beginning of) the
Renaissance, given the fluid borders between these two time lines discussed at
the outset of this section. We will see that the above work pales in comparison
to what he contributed later. Stay tuned for more on this fascinating historical
figure in our cryptographic overview.

Figure 1.21: A modern-day steganographic device.
Courtesy of the CIA website. See

http://www.cia.gov/cia/information/artifacts/dollar.htm,
where it is stated: “This hollow container, fashioned to look like an Eisen-
hower silver dollar, is still used today to hide and send messages or film
without being detected. Because it resembles ordinary pocket change, it is
virtually undetectable as a concealment device.”
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1.4 Cryptology and the Arabs

He shall live, and unto him shall be given all the gold of Arabia.
The Book of Common Prayer (1662), Psalm 72, v. 15

In this section, we will learn how the flourishing Arab civilization discovered
cryptanalytic techniques and published the first systematic analysis of it and
of cryptology proper. The earliest known contribution from Arab civilization
comes from an author of 725 (unless otherwise specified, we will be talking about
dates AD, henceforth), Abū ‘Abd al-Rah.mān al-Kahal̄ıl ibn Ah.mad ibn ‘Amr
ibn Tammām al Farāh̄ıd̄ı al-Zad̄ı al Yah.mad̄ı, who wrote the Kitāb al-mu‘ammā.
This writing was inspired by a cryptogram, written in Greek, sent to him by
the Byzantine emperor. It is purported that his reasoning for its solution went
along the lines of assuming that the cryptogram began with words similar to
“In the name of God...” and he was able to deduce the first few letters based
upon this assumption. He worked from there to decrypt the entire message.
Ostensibly, this took him one month to solve. Arab cryptanalysis was in its
infant stages, but that would change.

The Arabs’ invention of cryptanalysis was rooted in religious scholarship
where theologians analyzed the Koran, trying to establish the time line of events,
by counting the frequencies of words contained in each of Muhammad’s reve-
lations. Their reasoning was that if a high frequency of certain more recently
evolved words were found in a given revelation, then that would be one to place
later in the time line. They also looked at the commonality of letters, among
other aspects of cryptanalysis that we consider to be fundamental today. Their
earliest known description of such letter frequency analysis was created in the
ninth-century by the author Abū YūsūfYa‘qūb ibn Is-hāq ibn as-Sabbāh ibn
‘omrān ibn Ismāıl al-Kind̄ı (but, we will just call him al-Kind̄ı). His treatise
is entitled A Manuscript on Deciphering Cryptographic Messages, rediscovered
in the Sulaimaniyyah Ottoman Archive in Istanbul in 1987. Although al-Kind̄ı
wrote nearly three hundred books on various topics including mathematics and
medicine, our interest is in the cryptanalytic text since it represents the first
recorded instance of a treatise on cryptanalysis involving “letter frequencies”.

In order to understand what al-Kind̄ı discovered in the realm of letter fre-
quency analysis and to set up our discussions for later analysis in the text, let us
look at the English language from the perspective of most frequently occurring
words, and letters.

The statistical data shown in Table 1.4 are taken from this author’s book
[170, page 203]. The most common words in order of frequency distribution are:

Frequency of Words in English

Table 1.4 THE, OF, ARE, I, AND, YOU, A, CAN, TO, HE,

HER, THAT, IN, WAS, IS, HAS, IT, HIM, HIS
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Frequency of Letters Ending Words in English

Table 1.5 E, T, S, D, N, R, Y

Table 1.5 is a list of the most common letters to end a word, in order of
frequency distribution, which is an example of positional frequency , wherein the
frequency count of the position of a given letter is taken in ratio with the total
number of letters occurring in that position over all English texts.

Now to illustrate al-Kind̄ı’s idea, suppose that we have the letter g occurring
most often (in word endings) in a ciphertext for a plaintext known to be in
English. Then we would deduce that the letter e is the most likely candidate
for the plaintext letter. If the second most frequently occurring letter is k in
ciperhtext, then we would guess, via Table 1.5, that the corresponding plaintext
letter is t, and so on. Similarly, one could use Table 1.4 on the most frequently
occurring words to deduce the plaintext.

Of course, the above tables are not written in stone. There can be the
problem of too little ciphertext to make any reasonable statistical inferences (as
with the Phaistos disk, see page 2). Moreover, it could be a specialized language
about some esoteric subject in which case the frequencies will deviate from the
standard. There is no table, or perhaps even set of tables, which can definitively
lay claim to being the one that is canonical for all situations in a given language.
Yet, the above tables will provide us with a general overview and therefore a
working template to discuss cryptanalytic matters throughout the text as they
arise, and we will bring more to the fore as we need them.

Another contribution from Arab civilization, albeit of less significance than
that of al-Kind̄ı, dates to 855. The author Abū Bakr Ah.mad ben ‘Ali ben
Wahh. shiyya an-Nabat̄i published his book, Kitāb shauq almustahām f̄i ma‘rifat
rumūz al-aqlām, or Book of the Frenzied Devotee’s Desire to Learn About the
Riddles of Ancient Scripts, in which numerous cipher alphabets were included
that were typically used for magic spells. Almost five hundred years later, in
1350, ‘Abd al-Rah.mān Ibn Khaldūn created his work, The Muqaddimah, an
historical survey detailing how government bureaucrats used symbols including
“the names of perfumes, fruits, birds, or flowers” as a code for regular let-
ters in order to encipher correspondence among officials of the tax and army
bureaus. The name of this particular kind of cryptography was called qirmeh,
which sprang up later in sixteenth-century Egypt, and even was used in financial
record-keeping of Istanbul and Syria as late as the nineteenth century.

Another major work to come out of the Arab influence on cryptology was
completed in Egypt in 1412 by an author named, Shihāb al-Dı̄n abu ‘l-‘Abbās
Ah.mad ben ‘Ali ben Ah.mad ‘Abd Allāh al-Qalqashandi. (We will just call him
Qalqashandi.) His work was a prodigious fourteen-volume encyclopedia called
S. ubh. al-a ‘sha. Our interest is in the section on cryptology. Some parts of the
section deal with steganographic techniques, such as invisible ink, and the hiding
of messages within letters. Qalqashandi claimed that most of his cryptological
ideas came from an author of the fourteenth century, none of whose writings are
extant, but cites a list of seven cryptosystems deriving from these writings. The
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list is of historical significance insofar as it marked the first intermingled use of
both substitution and transposition ciphers (a common feature of modern-day
cryptosystems). Furthermore, it provided the first cipher ever to have more than
one ciphertext for a given plaintext symbol. Of greatest note are the tables of
letter frequency analysis and other cryptanalytic analyses such as letters that
cannot occur together in the same word. Here, again, is a contribution from the
Arab civilization to cryptanalysis. Such cryptanalytic techniques are the reason
that, for instance, simple substitution ciphers (the monographic ones) are so
easy to cryptanalyze, because the frequency of letters in the ciphertext is the
same as the frequency of letters in the plaintext. Thus, once the language is
known, the plaintext can usually be relatively easily deduced. Hence, from the
above, we may conclude that cryptanalysis was therefore born with the Arabs.

Outside cryptography, Arab scholars enlightened Europe’s exit from the
Dark Ages by preserving much of the mathematics from antiquity. One of
the major reasons for this was a vision had by Caliph al-Ma‘mu

¯
n (809–893). In

this epiphany, he was visited by Aristotle, after which he was compelled to have
all the Greek classics translated into Arabic.

Another story is that of the Persian mathematician and astronomer,
Muh

¯
ammed ibn Mu

¯
sa
¯

al-Khwa
¯
rizmi

¯
, who lived under the caliphate of al-

Ma‘mu
¯
n. We owe al-Khwa

¯
rizmi

¯
for the introduction of the Hindu-Arabic num-

ber system. Around roughly 825, he completed a book on arithmetic, which
was later translated into Latin in the twelfth century under the title Algorithmi
de numero Indorum. This book was one of the principal means by which the
Hindu-Arabic number system was introduced to Europe after being launched
in the Arab world. This accounts for the widespread, but mistaken, belief that
our numerals are arabic in origin. (Numerals dating from 150 BC have been
found inscribed in a cave at Nana Ghat, close to Bombay, India. Moreover,
the first documented appearance of a zero,1.3 as we know it, is an inscription
on a birch-bark manuscript dated 400 AD, discovered in 1881 at Bakhashali,
a village in northwest India.) Not long after the Latin translations appeared
in Europe, readers began contracting al-Khwa

¯
rizmi

¯
’s name until it became the

norm to associate algorithm with these numerals. (Today we use the term “al-
gorithm” to mean any methodology following a set of rules to achieve a goal.)
Al-Khwa

¯
rizmi

¯
also wrote a book on elementary algebra, Hisab al-jabr wa’l-

muqābala. The word algebra is derived from al-jabr or restoration.1.4 His third
major work was Kita

¯
b s
¯
u
¯
rat al-ard

¯
, which translates best as Geography. This

assisted in his construction of a world map for al-Ma‘mu
¯
n, including a determi-

nation of the circumference of the earth by measuring the length of a degree of
a meridian through the Plain of Sinja

¯
r in Iraq, amazing achievements!

1.3The goose-egg symbol 0 for the zero is sifr in Arabic, from which our zero is ultimately
derived. In the thirteenth century AD, the term sifra was introduced into the German language
as cifra, from which we get our present-day word cipher.

1.4In the Spanish work Don Quixote (Part I in 1605, and Part II in 1615), by Miguel de
Cervantes, the term algebrist is used for bone-setter or restorer.
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1.5 Rise of the West

Oh, East is East, and West is West, and never the twain shall meet,
Till Earth and Sky stand presently at God’s great Judgement Seat...

Rudyard (Joseph) Kipling, (1865–1936), English writer and poet
— from The Ballad of East and West (1892)

The word Renaissance literally means rebirth. It was coined by fifteenth-
century scholars to separate the fall of ancient Greece and Rome from its rebirth
and rediscovery in the middle of their own century. The fall of Constantinople
in 1453 may be considered one of the dividing lines since scholars fled to Italy,
bringing with them knowledge, irreplaceable books and manuscripts, as well as
the classical Greek tradition of scholarship. The earliest sign of the Renaissance
was the intellectual movement called humanism, perhaps given its biggest surge
by the aforementioned influx of scholars. Humanism, born in Italy, had as its
subject matter: human nature, unity of truth in philosophy, and the dignity
of man. Perhaps most importantly, humanism yearned for the rebirth of lost
human spirit and wisdom. While medieval thinkers preferred the idea of “one
man, one job”, the Renaissance man was a versatile thinker, thirsting for an
education in all areas of knowledge, and becoming an expert in many. It is one
of those men with whom we begin our discussion.

Leon Battista Alberti

If there is to be a holder of the title Father of Western Cryptography, it
must go to Leon Battista Alberti (1404–1472). He was not only an architect,
sculptor, writer, and all round-scholar, but also one of the prime movers in
the development of the theory of art in the Renaissance, not to mention his
contributions to cryptology, a true Renaissance man.

Alberti was born on February 14, 1404, in Genoa, Italy, the illegitimate son of
a wealthy banker, Lorenzo di Benedetto Alberti. Yet, in this time of Florentine
Italy, illegitimacy was less of a burden, and more of a reason to succeed. Alberti
was raised as Battista in Venice where the family moved shortly after he was
born. (He adopted the name Leon later in life.) At the age of 10, he had
already learned Latin and his father was teaching him mathematics. His formal
education was at the University of Bologna, where he ultimately earned a degree
in law. However, he quickly turned his interests to artistic, and ultimately
scientific thought. Alberti not only taught himself music, became an expert
at playing the organ, and wrote sonnets, but also wrote on art, criminology,
sculpture, architecture, and mathematics. In 1432, he went to Rome where
he became a secretary in the Papal Chancery, and he remained in the arms
of church for the rest of his life. In 1434, he went to Florence as part of the
papal court of Eugenius IV. It was in the papal secretariat that he became a
cryptographer. In fact, he was a friend of Leonardo Dato, a pontifical secretary
who might have instructed Alberti in the state of the art in cryptology.

In order to understand Alberti’s contributions, we need to examine some
concepts first. A homophone is a ciphertext symbol that always represents the
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same plaintext symbol. For instance, with the Caesar cipher in Table 1.2 (page
11), the letter D is always the ciphertext for the plaintext letter a, so D is a
homophone in the monoalphabetic cipher known as the Caesar cipher. Here
“monoalphabetic” means that there is only one cipher alphabet, which means
the set of ciphertext equivalents used to transform the plaintext. The row of
ciphertext equivalents below the plaintext in Table 1.2, for instance, is the cipher
alphabet for the Caesar cipher. A polyphone is a ciphertext symbol that always
represents the same set of plaintext symbols, typically a set consisting of at most
3 plaintext symbols. With homophones or polyphones, there is no option for
change since the relationship between plaintext and ciphertext is fixed. However,
a cipher is called polyalphabetic if it has more than one cipher alphabet. In this
type of cipher, the relationship between the ciphertext substitution for plaintext
symbols is variable. Thus, since each cipher alphabet (usually) employs the same
symbols, a given symbol may represent several plaintexts.

Alberti conceived of a disk with plaintext letters and numbers on the outer
ring and ciphertext symbols on an inner movable circle. Alberti divided his ring
and corresponding circle into 24 equal segments, called cells, each containing a
symbol.

A representation of Alberti’s disk is pictured in Figure 1.22. We have altered
his original presentation since he had ciphertext in lower case and plaintext in
upper case, the reverse of what we have as a convention.

Figure 1.22: Alberti disk.
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In Figure 1.22 the plaintext letter z is enciphered as V, so in this setting (one
of the 26 possible cipher alphabets), the plaintext zebra, for instance, would be
enciphered as VZLYD. However, there is nothing new at this juncture that is
any different from, say, the Caesar cipher with the cipher alphabet having the
letter c below the Z. Alberti had an idea, however (which is why he wanted
the inner circle to be able to rotate). This idea would revolutionize the forward
movement of cryptological development. After a random number of plaintext
words had been enciphered, usually three or four, Alberti would move the inner
disk to a new setting. Hence, he would now be using a new cipher alphabet.
Suppose that he moved the inner circle so that z sits over K. Then zebra would
be enciphered as KADTR, a new ciphertext for the same plaintext as above since
we have a new cipher alphabet. This is polyalphabeticity in action, literally!
In fact, with his cipher disk, Alberti invented the first polyalphabetic cipher in
history. Yet, he did not stop there.

Alberti had 20 letters, as depicted in Figure 1.221.5 and including the num-
bers 1 through 4 in the outer ring of his original disk. In a book, he used
these numbers in two-, three-, and four-digit sets from 11 to 4444 yielding 336
(= 42 + 43 + 44) codegroups. Beside each digit he would write a phrase such as
“Launch the attack” for the number 21, say. Then, with the setting in Figure
1.22, the code group 21 is enciphered as &P, enciphered code. Alberti was the
first to discover it, and it is a testimony to his being centuries ahead of his time
that enciphered code, when it was rediscovered at the end of the nineteenth
century, was simpler than that of Alberti!

Johannes Trithemius

Polyalphabeticity had another ally, and we have already met him in Section
1.3. In early 1508, Trithemius turned himself to the task of writing a book
dedicated solely to a serious cryptographic analysis, called Polygraphia, with
the official title, Polygraphiae libri sex, Ioaonnis Trihemii abbatis Peopolitani,
quondam Spanheimensis, ad Maximilianum Caesarem, or Six Books of Polyg-
raphy, by Johannes Trithemius, Abbot at Wurzburg, formerly at Spanheim, for
the Emperor Maximilian. However, Trithemius died on December 15, 1516, in
Wurzburg before the book was published. In July of 1518 it finally went to press,
and was reprinted (and plagiarized) many times after that. Polygraphia can be
said to be the first printed book on cryptography. In his book, he invented a
cipher where each letter was represented as a word taken from a sequence of
columns. The resulting sequence of words turned out to be a legitimate prayer.
Perhaps more importantly, from the viewpoint of the advancement of cryptog-
raphy, he also described a polyalphabetic cipher. Another way to think of such
a cipher is that there is more than one enciphering key, namely, that a given
symbol may be encrypted in different ways depending upon where it sits in the
plaintext. An accepted modern form for displaying this type of cipher is a rect-
angular substitution table, about which we will learn a great deal more as we

1.5This excludes the letters h, k, and y, deemed to be unnecessary, and since j, u, and w
were not part of his alphabet, this left 20 letters. The inner circle consists of the 24 letters of
the Latin alphabet, put in the cells at random, including &.
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Figure 1.23: Leon Battista Alberti.
(Courtesy of the Archaeological Museum of Bologna, Italy.)
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continue our journey. Given below is the Trithemius tableau where all possible
shifts (modulo 24) appear as rows below the plaintext, each row representing
a distinct cipher alphabet (key), a total of 24 cipher alphabets (keys) in all,
polyalphabeticity! Trithemius used 24 letters, excluding the letters j and v.

The Trithimius Tableau

a b c d e f g h i k l m n o p q r s t u w x y z

a A B C D E F G H I K L M N O P Q R S T U W X Y Z

b B C D E F G H I K L M N O P Q R S T U W X Y Z A

c C D E F G H I K L M N O P Q R S T U W X Y Z A B

d D E F G H I K L M N O P Q R S T U W X Y Z A B C

e E F G H I K L M N O P Q R S T U W X Y Z A B C D

f F G H I K L M N O P Q R S T U W X Y Z A B C D E

g G H I K L M N O P Q R S T U W X Y Z A B C D E F

h H I K L M N O P Q R S T U W X Y Z A B C D E F G

i I K L M N O P Q R S T U W X Y Z A B C D E F G H

k K L M N O P Q R S T U W X Y Z A B C D E F G H I

l L M N O P Q R S T U W X Y Z A B C D E F G H I K

m M N O P Q R S T U W X Y Z A B C D E F G H I K L

n N O P Q R S T U W X Y Z A B C D E F G H I K L M

o O P Q R S T U W X Y Z A B C D E F G H I K L M N

p P Q R S T U W X Y Z A B C D E F G H I K L M N O

q Q R S T U W X Y Z A B C D E F G H I K L M N O P

r R S T U W X Y Z A B C D E F G H I K L M N O P Q

s S T U W X Y Z A B C D E F G H I K L M N O P Q R

t T U W X Y Z A B C D E F G H I K L M N O P Q R S

u U W X Y Z A B C D E F G H I K L M N O P Q R S T

w W X Y Z A B C D E F G H I K L M N O P Q R S T U

x X Y Z A B C D E F G H I K L M N O P Q R S T U W

y Y Z A B C D E F G H I K L M N O P Q R S T U W X

z Z A B C D E F G H I K L M N O P Q R S T U W X Y

To illustrate its use, we suppose that the plaintext is maximilian, then the
ciphertext is achieved by looking at the first row for the first letter under the
letter m, which is M, then for the second letter a of the plaintext look at the
letter below it in the second row, which is B, for the third letter of the plaintext
x, look at the letter below it in the third row, Z, and so on to get the ciphertext
MBZMQORQIX. If we have plaintext that is longer than 24 letters, then we can
start over again in the first row and repeat the process, (mod 24 arithmetic in
action). Notice that unlike a simple monoalphabetic substitution cipher, such
as the Caesar cipher, having only one cipher alphabet — the row below the
plaintext — a given plaintext in a polyalphabetic letter does not always go to
the same ciphertext letter. For instance, in our plaintext, the letter i goes to
M in the first instance, O in the second instance, and Q in the third instance,
since i sits in the fourth, sixth, and eighth places of the plaintext corresponding
to the fourth, sixth, and eighth row entries of ciphertext (in other words in the
corresponding cipher alphabet determined by that row) sitting below i, namely,
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M,O, and Q, respectively. Later, we will see how another later cryptographer,
Blaise de Vigenère (see page 55), was inspired by this tableau to create one that
took the idea further.

Figure 1.24: Polygraphia.
Image courtesy of the National Cryptologic Museum of
The National Security Agency, Rare Books Collections.
See http://www.nsa.gov/museum/books.html.

The attentive reader will have noticed that the Trithemius tableau (neces-
sarily a square since there are exactly as many rows (cipher alphabets) as there
are letters in the alphabet) has an advantage over Alberti’s method since the
cipher alphabet is changed with each letter enciphered, rather than after an
arbitrary number of enciphered words as with Alberti’s method. Moreover, the
ordered table makes a quick look-up possible at a glance for each of the cipher
alphabets.

Trithemius also gave examples where he switched alphabets after exhausting
24 letters of plaintext rather than starting over with the first row of the above
tableau again. This is a variation of the above simple scheme. Moreover, the
aforementioned method is the first cipher to use a progressive key where all
possible cipher alphabets are exhausted before any are used again. Modern
ciphers have used more variations on this theme since we now have computers
to employ such key progressions. Moreover, the substitution table that he used
is now a standard feature of modern-day cryptography.

Giovanni Battista Belaso

Our next ally and proponent of the advancement of polyalphabeticity is
another from Italy, Giovanni Battista Belaso. Neither Alberti nor Trithemius
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conceived of using a key or key words in their polyalphabetic ciphers. The first
in recorded history to do so was Belaso in 1553. His idea was to use a keyphrase,
which he called a countersign, repeated as often as needed, to select the cipher
alphabets. (We may think of this as the modern invention of the notion of a
password.) Here is how his countersign works. First, we are going to be using
Trithemius’s table (page 51).

BELASO’S KEYPHRASE POLYALPHABETIC CIPHER
To employ Belaso’s idea, we do three things to encipher.

(a) Put the plaintext letters in a row.

(b) Above each plaintext letter place the keyphrase letters, repeated as often
as necessary, to cover all the plaintext.

(c) Replace each letter of the plaintext with the letter at the intersection of the
row labelled by the keyphrase letter and column labelled by the plaintext
letter in Trithemius’s table.

We illustrate these rules with the following.

Example 1.1 We will suppose the keyphrase, used by Belaso, is OPTARE ME-
LIORA, and the plaintext is countersign is key. Then one places the keyphrase
over the plaintext, repeated until the plaintext runs out as illustrated below.

o p t a r e m e l i o r a o p t
c o u n t e r s i g n i s k e y
Q D O N L I D X T P B A S Y T R

For example, the letter o labels the row that intersects the column headed by
the letter c at the ciphertext letter Q, and so on.

To decipher using the Trithemius square, we do three things.

(a) Put the ciphertext letters in a row.

(b) Put the keyword letters above the ciphertext letters, repeating them as
required, to cover all ciphertext.

(c) Locate the column labelled by each keyword letter, and find the row in
which the ciphertext letter sits below it. Then the label of that row is the
plaintext.

Applying these rules to Example 1.1, we get the following.

Example 1.2
o p t a r e m e l i o r a o p t
Q D O N L I D X T P B A S Y T R
c o u n t e r s i g n i s k e y

For instance, since the letter o sits over the ciphertext letter Q, the row of
which is labelled by c, then this is the first letter of plaintext, and so on.
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Employing standard alphabets in his use of a keyphrase, Belaso created
a polyalphabetic cipher with much greater flexibility than that of Alberti or
Trithemius. With this use of a keyphrase, Belaso ensured that, instead of re-
peating the enciphering of each letter with 24 standard cipher alphabets, as
Trithemius proposed, the key could be changed at will. For example, if the key
were compromised in some fashion, it could be discarded and a new one issued
to, say, diplomats of the day for their correspondence. Even with keys of length
13, as in the above keyphrase from Belaso, there are 2413 possible encipherments
of a given plaintext letter, more than a hundred quadrillion choices. Quite an
advancement! Nevertheless, however prodigious this contribution seems to be,
it would be for another individual to put together all the pieces in order to
create the first forerunner of a modern polyalphabetic cipher.

Porta and Cardano

Giovanni Battista Porta (1535–1615) was born in Naples, Italy, in 1535.
At the age of 22, he published his first book, Magia Naturalis, or Natu-
ral Magic, a text on “experimental magic”. However, in 1563, he pub-
lished De Furtivis Literarum Notis, which contained the cryptographic ad-
vances in which we are interested. In this book is the first appearance of a
digraphic cipher, meaning a cipher in which two signs represent a single symbol.

Figure 1.25: Natural Magic.
Image courtesy of Scott Davis:
http://homepages.tscnet.com
/omard1/jportat5.html .

(Later, we will see how this notion was rein-
vented in the twentieth century by Lester Hill
using only elementary matrices (page 111), and
how the first literal digraphic cipher was in-
vented much later. Here Porta is using signs
rather than letters.) Moreover, he introduced
some of the modern fundamentals of cryptog-
raphy, namely a separation of transposition ci-
phers and substitution ciphers, as well as sym-
bol substitution (substituting an unusual symbol
for a letter). Porta also looked at methods, al-
beit elementary by modern standards, of crypt-
analyzing polyalphabetic ciphers. In fact, in a
second edition of his book, published in 1602,
Porta added a chapter with these cryptanalytic
observations. Although Porta also ultimately
did glue together the ideas of Alberti, Belaso,
and Trithemius, by adding mixed alphabets and
shifts, to produce what we consider to be a ba-
sic polyalphabetic substitution cipher, there was
work to be done to make polyalphabetic ciphers
more secure, the essence of which was in how
the key was used.

The first to see how this could be accomplished was Girolamo Cardano
(1501–1576). Cardano was born on September 24, 1501, in Pavia, Duchy of
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Milan, Italy. In his younger years, he assisted his father who was a lawyer and
a mathematics lecturer primarily at the Platti foundation in Milan. Cardano
himself came to be known as one of the greatest mathematicians of his time.
He wrote more than 130 books in his lifetime. The two that are best known for
his mathematical contributions are Liber de ludo aleae, or Book on Games of
Chance, considered to be the first book on probability theory, and Ars Magna
(1545), considered to be one of the great books in the history of algebra. The
ones of interest to us from a cryptographic perspective were his books, De
Subtilitate (1550), and a follow-up called, De Rerum Varietate (1556). In these
two books, he introduced the idea of an autokey, meaning that the plaintext,
itself, is used as its own key. However, Cardano implemented the idea in a flawed
manner, which allowed for multiple possible decryptions as well as the fact that,
in his implementation, the receiver of the message was in no better position
than a cryptanalyst at trying to determine the first plaintext word, from which
there would be total decryption. Thus, the idea of an autokey has not been
attributed to Cardano. He is remembered for an invention of a steganographic
device, which we call the Cardano grille. Cardano’s idea involved the use of a
metal (or other rigid substance) sheet consisting of holes about the height of a
written letter and of varying lengths. The sender of a message places the grill
on a piece of paper and writes the message through the holes. Then the grille is
removed and the message is filled in with some innocuous verbiage. Use of the
Cardano grille continued well into the seventeenth century, and has even popped
up in various places in modern times. Thus, it is the case that due to his flawed
idea for an autokey, he is remembered largely for his steganographic device. He
died on September 21, 1576, in Rome with his fame not attached to the greater
cryptographic record that he sought. That fame would go to another.

Blaise de Vigenère

Blaise de Vigenère (1523–1596) had his first contact with cryptography at
age 26 when he went to Rome on a two-year diplomatic mission. He familiar-
ized himself with the works of his predecessors, Alberti, Belaso, Cardano, and
Trithemius. His own work, published in 1585, containing his contributions to
cryptography, is called Traicté des Chiffres. Vigenère discussed steganographic
techniques, and a variety of cryptographic ideas. Among them was the idea for
an autokey polyalphabetic substitution cipher.

He employed the idea that Cardano had invented of using the plaintext as
its own key. However, he added something new, a priming key, which is a single
letter (known only to the sender and the legitimate receiver), that is used to
decipher the first plaintext letter, which would, in turn, be used to decipher the
second plaintext letter, and so on. To understand the details of how this works,
we use a Vigenère square, given on page 56, with the full 26-letter alphabet, as
opposed to Trithemius’ use of 24. It rightfully deserves to be called a Trithemius
square, as the reader will note, but history has deemed it to have Vigenère’s
name attached to it.
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THE VIGENÈRE TABLEAU

a b c d e f g h i j k l m n o p q r s t u v w x y z

a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

m M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

THE VIGENÈRE AUTOKEY POLYALPHABETIC CIPHER

(a) Put the plaintext letters in a row.

(b) Place the priming key letter below the first plaintext letter. Then put the
first plaintext letter below the second, the second below the third, and so
on to the penultimate below the last.

(c) Replace each letter of the plaintext with the letter at the intersection of
the row labelled by the plaintext letter and column labelled by the key
letter.

Example 1.3 Let us first choose a priming key, say x, and assume that the
plaintext is form secret diction.

f o r m s e c r e t d i c t i o n
x f o r m s e c r e t d i c t i o
C T F D E W G T V X W L K V B W B
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For instance, the row labelled f intersects with the column labelled x at the
ciphertext letter C, and so on. To decipher, the receiver knows the priming
key x, so this letter is placed above the ciphertext letter C and looks in the row
labelled x to find the letter C, then the label of the column in which C sits is the
plaintext, namely f, and so on, as follows.

x f o r m s e c r e t d i c t i o
C T F D E W G T V X W L K V B W B
f o r m s e c r e t d i c t i o n

Unfortunately, as is the case too often, Vigenère’s idea was forgotten and
reinvented at the end of the nineteenth century. However, what was rediscovered
was a weakened version of his idea. Essentially it amounted to exactly what
Belaso has discovered, which we discussed on page 53, applied to the Vigenère
square rather than that of Trithemius, so we need not replay it here.

One obvious improvement to the above is to have not a single priming key
letter, but rather a priming keyphrase. Moreover, in the interests of security,
the keyphrase should be as long as possible and feasible. Later we will see a
very secure cipher where the key is as long as the plaintext itself, called the
one-time pad (page 83). For instance, consider the following depiction of the
more general idea of extending Vigenère’s idea to a keyphrase.

Example 1.4 Suppose that we want to encipher, again: form secret diction,
but this time using the priming keyphrase: “xanadu”. Then we proceed as in
steps (a)–(c) on page 56, this time with our more general keyphrase sitting below
plaintext letters before introducing the plaintext into the key, as follows.

f o r m s e c r e t d i c t i o n
x a n a d u f o r m s e c r e t d
C O E M V Y H F V F V M E K M H Q

Then to decipher, we proceed as in Example 1.3, but with the full keyphrase
this time, rather than the key letter, as follows.

x a n a d u f o r m s e c r e t d
C O E M V Y H F V F V M E K M H Q
f o r m s e c r e t d i c t i o n

The Vatican and Cipher Secretariats

Before we meet our next character, who will help us close the door on the
Renaissance and this section, we must backtrack a bit in time to set the stage
in another scene populated by the Italian City States, the Vatican, and Cipher
Secretariats.

In Pavia, Italy on July 4, 1474, Cicco Simonetta, secretary to the Dukes of
Sfoza, oligarchs of Milan, wrote the first known manuscript devoted solely to
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cryptanalysis. He wrote thirteen rules for symbol substitution ciphers. Later,
another Italian, Giovani Soro, was appointed Cipher Secretary for Venice in
1506. Soro’s cryptanalytic prowess gained him two assistants and an office in
the Doge’s Palace above the Sala di Segret, in 1542. (The Doge’s Palace was
the official residence of the doges in Venice. The Doge (from the Latin dux or
leader, or duke, in English) was the highest official of the republic of Venice for
more than a millennium (roughly 800–1800 AD). They represented the virtual
emblem of the sovereignty of the Venetian State.) Soro, and his highly placed
assistants, worked on the most elevated level of security, deciphering all messages
from foreign powers, intercepted by the Venetians.

Cryptographic assistants were also available at the Vatican. The practice
became of such high consequence to the popes that the office of Cipher Sec-
retary to the Pontiff was established in 1555. The first of these was Triphon
Benicio de Assisi. Assisi assisted Pope Paul IV during warring times with King
Philip II of Spain. In 1557, Assisi was adept at deciphering the King’s cryp-
tograms. By September 12, 1557, peace was made, due in no small measure to
the cryptanalytic skills of Assisi.

In the late 1580s, the Argentis, a family of cryptologists, took over the cipher
secretariat. They were the first to institute certain cryptanalytic methods, use
of which later became widespread. This included a mnemonic or memory aid
key to mix a cipher alphabet. Of great interest to us is Matteo Argenti, who
wrote a 135-page book on cryptology, which many consider to be the height of
Renaissance cryptography. The Argentis distributed polyalphabetic ciphers to
cardinals for their personal use, but failed to trust them for the bulk of their
cryptographic traffic. When they used these ciphers, they employed relatively
long keys, for reasons cited below.

It was Matteo Argenti who laid claims to being able to cryptanalyze certain
autokey polyalphabetic ciphers. Yet part of this success was due to the use
of “weak keys”, some of which could be easily guessed. However, by the time
Vigenère had developed his ideas and they were refined, the methods of mix-
ing alphabets and using large keys was sufficient to thwart the cryptanalysts of
the day. Nevertheless, the nomenclators (discussed earlier, see page 40), held
sway for three more centuries over its more powerful cousin, the polyalphabetic
autokey cipher. The reasons for this stem from the user more than the cipher.
Cryptographers of the day were not enamored with the slowness of polyalpha-
betic ciphers, of having to always keep track of cipher alphabets, and what they
perceived as a lack of precision, too much room for errors, and so on. Although
not popular in the main, polyalphabetic ciphers did play a role, often a vital
one at the time. We will learn more about this in the next section.

We close this section with Sir Francis Bacon, (1566–1626) whom we already
discussed on page 36. He developed a steganographic device where one sim-
ply changes the typeface of random text to hide the existence of a message.
He also invented a cipher, called the bilateral cipher (which today would be
known as 5-bit encryption), in which he used a combination of substitution and
steganography.

In the Chapter 2, we have another 500 years to put under the microscope.



Chapter 2

From Sixteenth-Century
Cryptography to the New
Millennium — The Last
500 Years

The age of chivalry is gone. That of sophists, economists, and calculators,
has succeeded; and the glory of Europe is extinguished forever.

Edmund Burke (1729–97), Irish-born whig politician and writer
— from Reflections on the Revolution in France (1790)

2.1 Three Post-Renaissance Centuries

We begin with cryptographic tales surrounding the French, British, and
Spanish monarchs in the sixteenth century. In 1556, Philip II of Spain ascended
to the throne. In that year, he decided to discard the (deeply compromised)
ciphers used by his father Charles V. Philip turned to an idea of Giovani
Soro (a cryptographer we discussed in Section 1.5 (see page 58), by dividing his
cryptosystems into two sets: cifra general, used for communications between the
king and his ambassadors; and cifra particular, used by an individual messenger
and the king. Philip’s use of Soro’s ideas became the template for Spanish
cryptography well into the seventeenth century.

Meanwhile, in France there was a mathematician named François Seigneur
De La Bigotiere Viète, (1540–1603). Viète, as shown in Figure 2.1, is known
as the father of modern algebraic notation, largely due to his book, In Artem
Analyticem Isagoge, or Introduction to the Analytical Art, published in 1591.
This book could actually pass as a modern text in elementary algebra. His
ability at cryptanalysis, however, is our chief interest. He was an assistant
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to King Henry IV (Henry de Bourbon-Navarre) of France, and a Huguenot
sympathizer. (The Huguenots were the Protestants in France in the six-
teenth and seventeenth centuries.) Henry had come to the throne in 1589,
but it would take him almost a decade to secure his kingdom. The problem
was La Sainte Liguea, or the Holy League, a French Catholic faction opposed
to the protestant king. Philip supported the Holy League for which reason
Henry declared war on Philip in January of 1595. Viète was brilliant in his
cryptanalysis of Spanish letters from Philip, destined for the Holy League.

Figure 2.1: François Viète.
From Galérie Française, ou Collec-
tion des Portraits (Didot, 1842), I,
plate 24.

When Philip found out about Viète’s
cryptanalysis of his letters to com-
manders in France, he was absolutely
stunned, having had the firm belief that
his ciphers were unbreakable. He looked
for other reasons, even going so far as to
complain to the pope that “black magic”
was being used against him and Spain.
He was rebuked, since the pope had Gio-
vanni Batista Argenti in his employ (see
page 58), who was a powerful cryptana-
lyst, so he understood the real nature of
the cryptological world, something that
Philip sorely lacked. This lack would
come back to haunt him.

Ultimately, Henry defeated the Holy
League and their Spanish allies at
Fontaine-Française in Burgundy in June
of 1595, and retook Amiens from Spanish
control in September of 1597. On May 2
of 1598, the Peace of Verins was reached
between France and Spain on May 2 of 1598. In that year, Henry ended more
than four decades of persecution against the Huguenots, by putting forth the
Edict of Nantes, which was their charter of religious and political freedom.

Mary, Queen of Scots

Philip was going to encounter even more trouble, largely due to his inabil-
ity to understand the powerful cryptanalytic techniques available. Philip had
a dream to overthrow Queen Elizabeth I of England, establish a marriage with
Mary Queen of Scots, and thereby secure a shared Catholic throne with her.
However, letters written between Philip and his half-brother Don Juan of Aus-
tria, detailing his invasion plans for England, were intercepted by William of
Orange, who was leader of the Dutch and Flemish revolt against Spain. William
gave the missive to his cipher secretary, Philip van Marnix van Sint Aldegonde
(1540–1598), a brilliant cryptanalyst, whose decryption of the correspondence
revealed Philip’s planned invasion of England. William then gave the plain-
text to an English agent in the employ of Sir Francis Walsingham, Principal
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Secretary to Queen Elizabeth. This cryptanalysis of Philip’s intentions was ac-
complished in 1577, but Philip did not invade until 1588, during which time the
English were able to fortify their defenses substantially. In fact, of the so-called
invincible armada of Spain, numbering about 130 ships and around 19, 000 men,
only 69 ships returned to Spain and as many as 15, 000 men perished, either in
battle or on the long voyage home. This was the first major strike at the heart
of the most powerful European power of that age, ensured by the actions of a
cryptanalyst.

Meanwhile, back in England in 1577, after receiving the deciphered cryp-
togram revealing Philip’s plans for invasion, Walsingham set about to establish
a cipher school in London. He employed a man named Thomas Phelippes, as
his cipher secretary. Phelippes was destined to be the first eminent cryptanalyst
in England’s history, and the downfall of Mary Queen of Scots.

After Mary lost her own throne in Scotland, and failed in a final attempt
to regain her crown, in 1568, she made the crushing mistake of fleeing south
to her cousin Queen Elizabeth hoping for asylum. (Mary Stuart was the only
child of King James V of Scotland and his French wife, Mary of Guise.) The
Queen merely imprisoned Mary, since she was too much of a threat, given that
English Catholics considered Mary to be the rightful Queen of England. Mary
spent 18 years in various prisons (actually in castles and manors, where she was
under house arrest and heavy guard). Moreover, all of her ingoing and outgoing
correspondence did not reach their destinations, that is, until January 6 of 1586,
when Gilbert Gifford, a former seminarian, smuggled a pile of correspondence
in to her that had accumulated at the French Embassy in London. The embassy
had kept the letters fearing that if sent, they would not reach Mary. Gifford
fixed that problem. Moreover, he began smuggling out letters from Mary to
others.

A young Catholic man named Anthony Babington hated Queen Elizabeth for
the atrocities committed against his family and Catholics in general at the time.
Anti-Catholic policies included public disemboweling of live victims, accused of
being traitors for the mere fact of being a loyal Catholic, or even for just being
a priest, loyal to the Vatican. Babington hatched a plot to assassinate Queen
Elizabeth and wanted Mary’s blessing to do so. Gifford delivered an enciphered
letter from Mary to Babington revealing that she had heard about the plot from
her friends in France, and that she wanted to hear from him. Babington put
together an encrypted letter, outlining the details of the plot, and even added
the steganographic benefit of placing the message in a beer barrel to get past
the guards. However, all this was for naught since Gifford had been recruited
and was working for Walsingham from the outset. All Mary’s correspondence
had been brought to him for Phelippes to cryptanalyze, then sealed again and
sent to their destinations with nobody in Mary’s camp being any wiser.

When Gifford brought Babington’s letter to Walsingham, and Phelippes
deciphered it, the plot was revealed. Yet, Walsingham was biding his time. He
let the letter go to Mary and when she responded to Babington, and Phelippes
decrypted it, this spelled the end for her. Yet, Walsingham wanted to get
everyone involved in the plot, so he had Phelippes forge a P.S. asking Babington
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to name those “best suited” for the assassination. Ultimately, Babington and
his cohorts were caught, and put to death by being, among other atrocities,
disemboweled alive. Mary went on trial and met the headman’s axe (an axe in
no small part set in motion by a cryptanalyst) on February 6, 1587.

Antoine Rossignol

Now we turn to cryptographic developments in seventeenth century Europe.
France’s first recognized full-time cryptologist was Antoine Rossignol who served
both Louis XIII and Louis XIV. In fact, on his deathbed, Louis XIII insisted to
his Queen that Rossignol be kept at court as a man necessary to the security of
the state. Rossignol also used his cryptanalytic skills to assist Cardinal Richelieu
(1585–1642). (Perhaps the quote that best epitomizes both the political bent
and character of Richelieu is: “If you give me six lines written by the most
honest man, I will find something in them to hang him.”) Rossignol’s initial rise
to prominence is due to the following anecdote. In 1626, the French intercepted a
cryptogram, carried by a messenger from the city of Réalmont, which was being
held by the Huguenots. Rossignol cryptanalyzed it. The plaintext revealed
that the Huguenots were on the edge of collapse. Rossignol had the letter sent
back to the city together with the plaintext beside it. With their secret plight
revealed, the Huguenots surrendered without more fighting, again the result of
a cryptanalyst’s skills.

Perhaps of greatest technical importance were Rossignol’s improvements to
the nomenclators of the time (see page 40). These consisted of only one part,
meaning a single list of plaintext and code in alphabetical (or numerical) order.
In other words, they were listed in parallel, a system that was in place since
the start of the Renaissance. Rossignol determined that this parallel order
allowed for a means of cryptanalysis just by looking at what numbers stood for
which words. For instance, if he were able to find that 64 stood for launch and
98 stood for lethal, then no number between 64 and 98 could represent letter
since its code would have to be higher than 98 given the parallel matching of
code and plaintext. Also, if he wanted to find the code for legal, he knew it
had to be between 64 and 98, again because of the parallel matching. This
allowed a cryptanalyst too much advantage. He devised a method to thwart
such attempts. Rossignol insisted upon two lists, a tables à chiffer, consisting of
plaintext letters in alphabetical order, and code numbers in random order; and
the second part, used for decoding, called the tables à déchiffer , with plaintext
letters randomized and codes symbols in numerical order, the birth of two-
part nomenclators. (Think of these as similar to a bilingual dictionary.) The
revised and improved nomenclators were vital components of cryptology for
over four centuries. It is a testimony to Rossignol’s cryptanalytic skills that
the word “rossignol” has entered the vocabulary of French slang to mean “a
tool that picks locks”. Rossignol also was a prime mover in the establishment
of the Cabinet Noir, or Black Chamber — a headquarters for cryptanalysis
and intelligence gathering — which began France’s firm grip on cryptography,
reading cryptograms of foreign countries throughout the seventeenth century.
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John Wallis and the Black Chambers

The origins of the black chambers in England can be attributed to
John Wallis (1616–1703), (see Figure 2.2) who may be considered Rossig-
nol’s contemporary. Wallis was cofounder (along with John Wilkins2.1 (1616–
1703)) of the Royal Society. Wallis was primarily a mathematician, per-
haps one of the very best England had seen up to that time. For in-
stance, his book, Arithmetica Infinitorum (1656), had a profound influence
on Sir Isaac Newton’s invention of the calculus. Wallis also invented the
symbol ∞ for infinity, and numerous other contributions may be cited, but
our primary interest is in his cryptological interests, and he had many.

Figure 2.2: John Wallis.

In 1640, Wallis was ordained by the
Bishop of Winchester, and in that same
year received his Master’s Degree. In
his twenties, Wallis began looking at ci-
phers. In fact, in 1642, at the time of the
Civil War between the Royalists and the
Parliamentarians, he was cryptanalyzing
Royalist messages for the Parliamentari-
ans. As a reward, he was given charge of
the Church of Saint Gabriel in London in
1643. In that year, his mother died, leav-
ing him an independently wealthy man
with a substantial estate in Kent where
he was born on November 23, 1616. In
1645, he began meeting with a group (in-
cluding Wilkins) that would eventually
lead to the establishment of the Royal So-
ciety in England.

As further reward for using his cryptanalytic skills in support of the parlia-
mentarians, he was appointed to the Savilian Chair of geometry at Oxford in
1649, a position he held for over half a century until his death. However, he
engaged in many other activities.

His greatest cryptological efforts came late in his life. He was employed in
1689 as a cryptanalyst by King William III (1650–1702), and Mary II (1662–
1694), reporting to their Secretary of War, the Earl of Nottingham. (William
ruled jointly with Mary from 1689 until her death in 1694, then solely until his
death in 1702. He came to the English throne from the house of Orange, in the
Netherlands, and thus he is often called William of Orange.)

In the summer of 1689, Wallis cryptanalyzed intercepted cryptograms
(largely nomenclators) that had been sent between Louis XIV and his ambas-
sador in Poland. This included Louis’ attempts to instigate a war between

2.1Wilkins, in his book Mercury, or the Secret and Swift Messenger, introduced into the
English language, the terms cryptologia, or secrecy in speech and cryptographia, or secrecy in
writing. He also introduced the term cryptomeneses as a general term for secret communica-
tion.
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Poland and Prussia, and promoting a marriage between the Prince of Poland
and the Princess of Hanover, which would have been advantageous to Louis.
Wallis continued his cryptanalysis including the breaking of important cryp-
tograms for the king, all of which earned him the title of Father of Cryptology
for England (as had Rossignol earned such a title in France). Wallis died on
October 28, 1703, in Oxford, England.

The most iron-clad, efficient, and effective of the black chambers during
eighteenth-century Europe was that of Vienna, called the Geheime Kabinets-
Kanzlei. As an illustration, the cryptograms were usually deciphered, resealed,
and sent on to their destinations within three hours of their having been dropped
off at the chamber at their usual arrival time of 7 in the morning. The chamber
was effectively compartmentalized so that one section might contain language
experts, or translators, and another might contain people copying letters or
stenographers, all working in concert. Moreover, to reduce stress among their
cryptanalysts, they were given staggered working times, one week on and one
week off. It is due to the effectiveness of these black chambers that cryptogra-
phers, by the end of the century, began turning to polyalphabetic ciphers. The
monoalphabetic ones were falling like dominos in the face of the concentrated
and talented efforts of these centers of cryptanalysis and intelligence gathering.

In England, certain individuals were appointed as Decypherers for the En-
glish crown. In 1703, the Decyphering Branch was established, to decrypt doc-
uments as a means of uncovering plots and schemes against the state. They
had no fixed location, but mostly worked at home and submitted their find-
ings. They were indeed more secret than the U.S. Secret Service. They were
funded by the secret-service money issued to the Secretary of the Post Office
from Parliament. The first to bear the title of Decypherer was Wallis’s grand-
son, William Blencowe. He was also the first Englishman to be paid a regular
wage for cryptanalysis. One of his successors was Edward Wiles who was ap-
pointed as Decypherer to the crown in 1719. Wiles decrypted a cipher that
revealed Sweden’s plan to create an uprising in England. For this and other
cryptanalytic feats, he ascended to become Canon of Westminister. By 1742,
he had been appointed Bishop of St. David’s. He brought his two sons, Edward
Jr. and William, into the cryptanalysis sector of the decyphering branch in the
middle 1750s. Although he died in 1773 (buried in Westminister Abbey), his
sons carried on his work and dominated the cryptanalytic sector after his death.

By 1714, the decyphering branch was collaborating with the black chamber
at Nienburg, Germany, which was supported by George I (1714–1727) of Eng-
land. (George I was Georg Ludwig, elector of Hanover (1698–1727), who was
the first Hanoverian king of Great Britain.) During the eighteenth century the
decyphering branch cryptanalyzed the dispatches of roughly sixteen countries
with an average output reaching as high as one per day.

By the middle of the eighteenth century, the decyphering branch was prepar-
ing England’s diplomatic nomenclators. Typically, these nomenclators had four-
figure code groups and various homophones. Despite weaknesses in their system,
their use continued well into the end of the century.
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2.2 The American Colonies

The sun of Great Britain will set whenever she acknowledges the indepen-
dence of America ... the independence of America would end in the ruin of
England

Lord Shelburne (1737–1805), British Whig politician, Prime Minister
— spoken in the House of Lords (October, 1782)

Figure 2.3: George Washington.

In the eighteenth-century American
colonies, cryptology was not as sophisticated
as that in Europe. Certainly there were no
black chambers, and really no organized ef-
fort to do research into intelligence gather-
ing, develop cryptanalytic skills, or anything
of the sort. Nevertheless, a development did
begin with some early tentative baby steps.
We will review them by starting at the end
of the eighteenth century.

During the American revolution, there
was virtually no cryptanalysis being done
until near the end of the war since there were
virtually no interceptions of cryptograms.
However, most of what was deciphered at the
end of the conflict was accomplished by one
man, James Lovell, a member of the Continental Congress, who may rightly be
considered to be the pioneer of American cryptanalysis.

Washington and Jefferson

By 1781, Lovell had already been using a version of the Vigenère cipher
(see pages 55 and 56). In that same year, when colonial forces intercepted a
British cryptogram, Lovell was given the task of breaking it. It proved to be
an easy task for Lovell. However, by the time the information was revealed
it was too late to be of any military value. Yet, Lovell decrypted keys, which
he kept in anticipation of their being of use later on. Indeed, George Wash-
ington (1732–1799), (see figure 2.3)2.2 the commander-in-chief of the colonial
armies (1775–83), and subsequent first president of the United States (1789–
97), was able to use them. Washington had been able to surround the British
commander in the southern colonies, Lord Cornwallis, (1738–1805) at York-
town. His forces intercepted a British letter, which he gave to his secretary
to decrypt. Washington had received the keys from Lovell’s earlier decryption
and the letter was easily deciphered using them. This gave Washington im-
portant information about the British positioning and strengths. Later, when
more British cryptograms were intercepted, Lovell was able to easily break the

2.2The lithograph above is courtesy of the Library of Congress, reproduction no. LC-USZ62-
117116, Prints and Photographs Division, created/published around 1828.
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code since the British were still using the same keys. This allowed the colonial
forces to prevent reinforcements from reaching Cornwallis, who surrendered five
days later on October 19, 1781. This victory at Yorktown ended the fighting and
ensured Washington’s victory at the end of the American War for Independence.

Figure 2.4: Thomas Jefferson.

One of the founding fathers who sought to
improve the means of secret communications
was certainly the most forward-thinking of
them all, Thomas Jefferson2.3 (1743–1826),
(see Figure 2.4) the draftsman of the Decla-
ration of Independence of the United States,
the nation’s first secretary of state (1789–
1794), its second vice-president (1797–1801),
and its third president (1801–1809). In
1785, he compiled a nomenclator to aid in
his correspondence with Madison and Mon-
roe, a method that he used until 1793.
Perhaps Jefferson’s most important crypto-
graphic contribution was what he called his
wheel cypher, (see Figure 2.5) invented in the
1790s.2.4 This device consisted of 36 concen-
tric wooden disks, each approximately 1/6 of
an inch thick, and 2 inches in diameter with

a mix of the English alphabet inscribed on the outer edge. Moreover, each
disk had its own number, and the key consisted of an agreed-upon sequence of
these numbers for correspondents to use. The correspondent would assemble
their disks in this (key) sequence on a metal spindle. Here is how it worked.

Figure 2.5: Wheel cypher.

To encrypt the first 36
letters of the plaintext, the
sender found the first letter
on the first wheel, second
letter on the second wheel,
lined up with the first, then
the third in the third wheel
lined up with the first two,
and so forth. The ciphertext
consisted of any of the 25 re-
maining parallel rows of let-
ters on the disk. The sender
would select one of them,
write it down as the cipher-
text for the first 36 letters of
plaintext, then repeat the above process for each remaining block of 36 plaintext

2.3The above lithograph of Thomas Jefferson is courtesy of the Library of Congress, repro-
duction no. LC-USZ62-117117, Pictures and Photographs Division, created around 1828.

2.4The above replica of Jefferson’s wheel cypher is courtesy of the National Cryptologic
Museum of the National Security Agency. See http://www.nsa.gov/museum/wheel.html.



2.2. The American Colonies 67

letters until the cryptogram was completed.
The recipient would align the first 36 letters of ciphertext parallel to his

spindle as had the sender. Then at one of the other 25 rows would sit the
(obvious) plaintext. The process would be repeated for the remaining blocks of
36 letters each until the entire cryptogram was turned into the original plaintext.

Given the above delineation of how it worked, Jefferson’s wheel cypher was
therefore a polyalphabetic cipher with the plaintext as the key, quite an amazing
invention for that time and, as we shall see, for some time to come.

His wheel cypher and his idea were filed away and completely forgotten until
1922 when it was rediscovered in the Library of Congress. It had been reinvented
many times and one of the forms was the U.S. Navy Strip Cipher, M-138-A,
used in World War II. In fact, many cryptanalysts in U.S. government agencies
in the early twentieth century could not cryptanalyze Jefferson’s system! Thus,
Jefferson truly deserves the title Father of American Cryptography.

Wadsworth, Wheatstone, and Playfair

Yet another American invented a cipher disk, this one with gears. In 1812,
Colonel Decius Wadsworth was given a position as the first chief of ordnance
of the U.S. Army, a post he held until 1821. In 1817, while at this post, he
invented a device that was a brass cipher disk in a wooden container 6 and 1/2
inches in diameter and roughly 3 inches high. The outer alphabet had 26 letters
together with the integers 2 through 8 inclusive (33 symbols in all); and the
inner alphabet had just the original 26 letters. He included a brass plate with
two small openings that align to identify the plaintext and ciphertext equiv-
alents. The container itself enclosed two gears, (one with 33 and the other
with 26 teeth) to rotate the disks. To set up correspondence, the sender and
recipient merely agree on a sequence for the ciphertext and a starting point,
which would be a symbol in the brass plate opening for both plaintext and its
ciphertext chosen equivalent. For instance, W might be in the opening at the
outer disk, while a is at the opening of the inner disk. This introduced differ-
ing numbers of symbols for plaintext and ciphertext resulting in a progressive
cipher in which alphabets are used irregularly, depending on the plaintext used.
Thus, Wadsworth’s device was a progressive system that was polyalphabetic.
The reader will recall that Trithemius also introduced a progressive key (see
page 52). However, Trithemius’ progression was regular on 24 cipher alphabets,
whereas Wadsworth’s progression was irregular on 33 cipher alphabets, much
more secure. Unfortunately for Wadsworth, his idea died with him, and credit
went to someone across the Atlantic.

Charles Wheatstone (1802–1875) worked on many areas from acoustics to
inventing the electric telegraph before Morse. His many achievements earned
him a knighthood in 1868. He also delved into the cryptographic arena. In
1867, at the Exposition Universelle in Paris, Wheatstone unveiled his crypto-
graph, which was essentially the same as Wadsworth’s gear cipher, only a weaker
version. Wheatstone’s device had an outer ring consisting of 27 plaintext sym-
bols (26 letters and a blank), and an inner ring with mixed ciphertext alphabet
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consisting of 26 letters. He put two clock-style hands over them, one long and
one short, which were employed in unison to choose plaintext and ciphertext
equivalents. However, given that there is 27 − 26 = 1 unit difference between
plaintext and ciphertext in his device, while Wadsworth had 33− 24 = 9 units
difference meant that Wheatstone’s apparatus was far less secure than that of
Wadsworth. In another, perhaps fitting, misattribution, a cipher that Wheat-
stone did create and which was far superior to the device for which he is known,
has been attributed to another. In 1854, Wheatstone invented the first literal
digraphic cipher in history. (The attentive reader will recall that on page 54 we
mentioned that Porta created the first digraphic cipher, but with signs, rather
than letters.) However, Wheatstone’s friend Lord Lyon Playfair, who sponsored
it at the British Foreign Office, has his name attached to it. This is how it works.

Consider the Table 2.1 (where the letters WX are considered as a single
symbol):

The Playfair Cipher

Table 2.1

A Z I WX D
E U T G Y
O N K Q M
H F J L S
V R P B C

Pairs of letters are enciphered according to the following rules.

(a) If two letters are in the same row, then their ciphertext equivalents are
immediately to their right. For instance, VC in plaintext is RV in cipher-
text. (This means that if one is at the right or bottom edge of the table,
then one “wraps around” as indicated in the example.)

(b) If two letters are in the same column, then their cipher equivalents are the
letters immediately below them. For example, ZF in plaintext is UR in
ciphertext, and XB in plaintext is GW in ciphertext.

(c) If two letters are on the corners of a diagonal of a rectangle formed by
them, then their cipher equivalents are the letters in the opposite corners
and the same row as the plaintext letter. For instance, UL in plaintext
becomes GF in ciphertext and SZ in plaintext is FD in ciphertext.

(d) If the same letter occurs as a pair in plaintext, then we agree by convention
to put a Z between them and encipher.

(e) If a single letter remains at the end of the plaintext, then a Z is added to
it to complete the digraph.

One merely reverses the rules to decipher.

Example 2.1 Suppose that we know the following was enciphered using the
Playfair cipher.
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EJ DJ DJ EJ GA VO IE JY NK YV TI VO ZU
To illustrate each of the rules for columns, rows, and diagonals, we choose

certain groupings. For instance, the first pair EJ occurs on a diagonal with TH
as the opposite ends (respectively) of the diagonal. The VO in the sixth grouping
have letters that are in the same column, so we choose the letters above them
HE (respectively). The letters in NK, the ninth grouping, are in the same row,
so we choose the letters to the left of them ON (respectively), and so on to get:

THIS IS THE WHEATSTONE CIPHER,
where the last letter Z is ignored as the filler of the digraph.

In the end, the Playfair cipher was adopted as the British army’s field cipher,
so the war office kept it a secret. Although Playfair himself did not claim the ci-
pher to be his own invention, it has come to be known as his. The misattribution
has to do with Playfair’s unbridled promotion of Wheatstone’s cipher, especially
to the British Foreign Office, where they began to refer to it as Playfair’s cipher.

Now it is time to cross back over the Atlantic and resume our analysis of
cryptology in the American colonies.

Samuel Morse and His Code

Samuel Finley Breese Morse (see figure 2.6) was born on April 27, 1791 in
Charlestown, Massachusetts, to Reverend Jedediah Morse and Elizabeth Breese.
Jedediah was also known as the “father of American geography” and was the
author of the first text on the subject, Geography Made Easy, published in 1784,
followed by 24 editions.

Samuel got his education in Massachusetts, and graduated from Yale Col-
lege in 1810. After going to England to study painting, he returned in 1815,
becoming a wayfaring portrait painter and settling finally in New York in 1825.
He founded the National Academy of Design and was its first president, from
1826 to 1845. Although Samuel had no formal training in electricity, he came
to the realization that electric current could be used to convey information over
wires.

In 1832, he first conceived of a telegraph and had developed a working model
by 1837, almost simultaneously with Wheatstone, cited above, and his associate
Sir William Cook. Cook and Wheatstone took out a joint patent in 1837 for the
first electric telegraph put in use by the British railway system. By 1838, Samuel
had invented Morse Code (as it has come to be known) of dots and dashes as
a convenient method of representing letters for sending telegraphic messages.
In 1854 he was granted patent rights by the U.S. Supreme Court. Moreover,
Morse’s method became more popular than the Cook-Wheatstone system, and
eventually by the mid-nineteenth century, Europe had its own version of Morse
code.

In 1844, a telegraph line between Baltimore and Washington was completed,
and the first message sent on May 24 was “What has God wrought!” By 1861,
the United States was linked coast to coast by telegraph. Morse died on April
2, 1872, in New York City.
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Figure 2.6: Samuel Morse.
This daguerreotype portrait is courtesy of the Library of Congress, reproduc-
tion no. LC-USZ62-110084, created between 1844 and 1860 from the studio
of M.B. Brady (circa 1823–1896), photographer. Morse first met Daguerre in
Paris, and according to the Library of Congress, this may be the earliest da-
guerrotype made in America. Louise-Jacques-Mandé Daguerre (1787–1851)
was the French painter and physicist who invented the first practical method
for photography.
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The American Civil War

Since telegraph operators would necessarily have to read the messages they
were sending, the original sender would often want to encipher it. Then the
telegraph operator would send the cryptogram in Morse Code. During the Civil
War, the U.S. Military Telegraph Corps used route ciphers, meaning words
transposed with codes they called arbitraries thrown in to confuse cryptanalysts.
They would often use nulls, nonsense words, to thwart cryptanalysis. President
Abraham Lincoln (see Figure 2.7) had young cipher operators in their early
twenties who were adept at cryptanalyzing Confederate correspondence. Some
Confederate commanders used a form of Vigenère cipher, but they used it badly.
In fact, some officers were given the choice of cipher, and it is known that
Confederate General Albert S. Johnson decided to use a Caesar cipher on one
occasion!

Figure 2.7: Abraham Lincoln.

Courtesy of the Library of
Congress, reproduction no.
LC-USZ61-1938, Pictures and
Photographs Division. It was
the last sitting, four days
before Lincoln’s assassination.

Lincoln’s cryptanalysts had no trou-
ble in deciphering the messages, but the
same could not be said of the Confed-
erates. Sometimes they made such bad
use of their own ciphers, the recipients
could not decipher them, nor could they
even come close to decrypting the Union
correspondence. Lincoln’s assassin, John
Wilkes Booth, was known to have used
a Vigenère cipher, which was actually in-
troduced at his trial. Although no con-
nection could be made between Booth,
his associates on trial with him, and the
cipher, they were all put to death. Even
at the end of the war, roughly two weeks
after General Lee surrendered, a Vigenère
cipher was used by Jefferson Davis and
the key he used was COME RETRIBU-
TION to send the incredibly defiant mes-
sage active operations to be resumed in
forty-eight hours.

We close this section with an interest-
ing anecdote of a noncryptographic na-
ture about Booth. On April 15, 1865,
Dr. Samuel A. Mudd treated Booth’s broken leg early on the morning after the
assassination. He also provided a place for Booth to rest. Mudd was arrested,
found guilty of aiding and abetting the assassins, and sentenced to life in prison
at Fort Jefferson in the Dry Tortugas. Four years after he went to prison, Pres-
ident Andrew Johnson pardoned him and he was released. However, to this
day, his name has gone down in ignominy. The standard modern-day phrase,
“Your name is Mudd”, means that a person’s actions have made him persona
non grata, Latin for an unacceptable or unwelcome person.
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Figure 2.8: Confederate cipher.

Courtesy of the National Security Agency Public Photo Gallery.
See http://www.nsa.gov/gallery/photo/photo00020.jpg.

Figure 2.9: Confederate cipher disk.

Courtesy of the Confederate Secret Service Camp 1710.
See http://home.earthlink.net/˜ cssscv/index.html.
Original on display at the NSA museum at Fort Meade, MD.
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Figure 2.10: Codebook.

Courtesy of the National Cryptologic Museum of the National Security
Agency. See http://www.nsa.gov/gallery/photo/photo00041.jpg.
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2.3 Nineteenth-Century Cryptography

Thought can with difficulty visit the intricate and winding chambers which it
inhabits. Percy Bysshe Shelly (1792–1822)

English poet, husband of Mary Shelly
— from Speculations on Metaphysics (1815)

In the nineteenth century, one man may be said to have been the vision-
ary pioneer when it comes to foreseeing the modern-day automatic electronic
computer, Charles Babbage (1791–1871). Babbage was born in the Walworth,
Surrey area, in London, England on December 26, 1791 to Benjamin Babbage
and Elizabeth Teape. Benjamin was a wealthy banker, who left Charles a size-
able fortune upon his death. This financed his many lifelong interests, from
areas as diverse as archeology, to submarine navigation, mathematics in gen-
eral, and cryptology in particular.

In 1810, he attended Trinity College, Cambridge, and by 1817 had received
his master’s degree. In 1816, Babbage was elected as a fellow of the Royal
Society. He had lived at Devonshire Street in London until 1828 when he took up
a position as Lucasian Professor of Mathematics at the University of Cambridge.
Then he moved to 1 Dorset Street, Manchester Square, London, where he lived
until his death. Babbage held the position at Cambridge until 1839.

It was in the mid-1830s that Babbage envisioned a machine (which he called
the analytical engine) executing arithmetical operations via instructions from
punched cards, having memory to store data, and other fundamental aspects
of modern computers that developed more than a century after he conceived of
them. He started on what he called the Difference Engine Number 1 in 1823,
but abandoned it after a decade of work. By the end of 1834, he had conceived
of his analytical engine, but he began work on a less ambitious project, his
Difference Engine Number 2. However, the government had been funding his
project from the outset, and by this time with no concrete results, they withdrew
their support, so his design was not completed. Yet, although he never published
his notebooks, they were discovered in 1937. By 1991, at the British Science
Museum, the Difference Engine Number 2 was built to original designs in order
to commemorate the bicentennial of Babbage’s birth. It is accurate to 31 digits,
as Babbage had envisioned, and it is the first of his machines to be completed.

Another important factor in Babbage’s failure to complete the construction
of any of his devices must certainly have been that the technology of the day
was woefully insufficient to make the precision parts that his designs required.
That it took roughly 150 years for one of them to be built is probably testimony
to that statement. Although Babbage never completed any of his machines, his
conception of the analytical engine is the vehicle for his fame as a visionary of
the modern digital computer.

More important for us, Babbage is also known for his penetrating crypt-
analytic skills. The Vigenère cipher was considered, up to the mid-nineteenth
century, to be unbreakable, and it achieved the title of the chiffre indéchiffrable.
However, in the mid-1850s, Babbage cryptanalyzed the Vigenère cryptosystem.
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Yet, as with most of his discoveries, he did not publish this fantastic break-
through. There is speculation that since the breaking of the chiffre indéchiffrable
occurred after the start of the Crimean War, British intelligence may have
wanted Babbage to keep it a secret. (The Crimean War, October 1853 to Febru-
ary 1856, was fought primarily on the Crimean peninsula between the Russians
and the British, French, and Ottoman Turks.) The British felt that this secrecy
would give them an advantage over the Russians for several years. Thus it is
that Babbage died on October 18, 1871 in London, without it being revealed
that he broke the Vigenère cipher. That credit would go to another.

Frederich W. Kasiski (1805–1881) was born on November 29, 1805, in West-
ern Prussia. He enlisted in East Prussia’s thirty-third infantry at the age of 17,
and retired in 1852 as a major. Although interested in cryptography during his
military career, he did not publish any of his ideas until after his retirement. In
1863, he published Die GeheimschRiften und die Dechiffrir - Kunst, a general
solution to cryptanalyzing polyalphabetic cryptosystems with repeating key-
words, including the famed Vigenère cipher, a long-sought-after breakthrough.

The central idea behind Kasiski’s attack is the keen observation that re-
peated portions of plaintext enciphered with the same part of a key must result
in identical ciphertext patterns. Hence, barring coincidence, one would expect
that the same plaintext portions corresponding to repeated ciphertext were en-
ciphered with the same position in the key. Therefore, the number of symbols
between the start of repeated ciphertext patterns should be a multiple of the
keylength (the number of characters in the key). For example, if the repeated
ciphertext is ABC, called a trigram, and if the number of letters between the
C and the occurrence of A in the next trigram ABC is, say, 15, and this is
not an accident, then 18 is a multiple of the keylength. Since it is possible
that some of the repeated ciphertext segments are coincidental, a method of
analyzing them, called a Kasiski examination, is to compute the greatest com-
mon divisor (gcd)2.5 of the collection of all the distances between the repeated
sections. Then choosing the largest factor occurring most often among these
gcds is (probably) the keylength. Once a probable keylength �, say, is obtained,
a frequency analysis can be performed on a breakdown of the ciphertext into �
classes (with an individual class containing every �-th character) to determine
the suspected key. The following is an illustration of the Kasiski method for
finding the keylength.

Example 2.2 Suppose that “keys” is the keyphrase and “these are the safest
aims” is the plaintext. Then consider the following Vigenère enciphering.

k e y s k e y s k e y s
t h e s e a r e t h e s
D L C K O E P W D L C K

2.5For the reader unfamiliar with this concept and related notions, see Definition A.11 in
Appendix A on page 470.
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k e y s k e y s k
a f e s t a i m s
K J C K D E G E C

Notice that DLCK is a block that occurs twice, at the beginning and end of the
first table, and the distance between the occurrence of the first D and the second
(in the second block) is 8. Also, the diagram CK occurs at the end of the first
table and again 4 units away in the second table. Hence, since gcd(8, 4) = 4, this
is the probable keylength by the Kasiski examination, which is indeed correct.

Toward the end of the nineteenth century, another book, which may be seen
as taking the torch passed by Kasiski, was published. In 1883, La Cryptographie
militaire was published by Jean-Guillaume-Hubert-Victor-François-Alexandre-
Auguste Kerckhoffs von Nieuwenhof (but we will just call him Kerckhoffs).

Kerckhoffs was born on January 19, 1835, of Flemish descent, in Holland. His
education involved almost two years of study in England plus degrees obtained
at the university in Liège. After some teaching positions and some travelling,
Kerckhoffs married and settled down in a town outside Paris. He taught lan-
guages there for a number of years. By 1876, he had earned his Ph.D. and
by 1881 became a professor of German in Paris. While there, he wrote the
aforementioned book, which many consider to be the most succinct text on
cryptography ever written.

In his book, Kerckhoffs elucidated several basic tenets. In modern times,
one of these has come to be known as Kerckhoffs’ Principle and has been incor-
porated into modern cryptographic methodology.

Kerckhoffs’ Principle
In assessing the security of a cryptosystem, one should always assume
the enemy knows the method being used.

The telegraph had made possible the introduction to cryptology of a new
device, the field cipher, a rapid means for the military to send secure, secret
messages in a theater of war. Kerckhoffs also instituted several tenets for field
ciphers (from which his above principle has been gleaned).

Kerckhoffs’ Principles for Field Ciphers

1. The cryptosystem should be practically unbreakable (breakable in theory,
perhaps, but not in practice).

2. A compromised cryptosystem should not inconvenience the correspondents.
(This is the one from which his aforementioned principle seems to be
derived since it says that the enemy may know the cryptosystem, but one
should still be able to send messages since the enemy cannot cryptanalyze
with this knowledge and without the key.)

3. The key should be easy to both remember, and change at will.
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4. Cryptosystems must be amenable to being sent by telegraph.

5. The mechanisms of the cryptosystem must be easily portable and entirely
operable by a single entity.

6. The cryptosystem must be easy to use, without reference to any manuals, or
the need for deep mental effort.

These six tenets are, of course, utopian in nature. Even modern-day ciphers
would struggle to achieve all six conditions (where we can replace telegraph by
computer in condition 4). Also, the second condition basically says (and this is
implicit in his aforementioned principle) that secrecy lies in the keys and not
in the cipher itself. Later, when we delve into modern ciphers, we will see that
this is as true today as ever. “Key Management”, as it has come to be known,
is essential since a cryptanalyst who can break a key is better off than one who
knows only the cryptosystem itself. Kerckhoffs’ book stands tall as one of the
great books on cryptology.

We close this section with a story about a French military officer at the end
of the nineteenth century, wherein cryptology played a crucial role.

The Dreyfus Affair

On October 15, 1894, Captain Alfred Dreyfus was arrested and charged
with high treason by the French government which claimed evidence that he
had given military secrets to German and Italian officials. An Italian military
attaché, Colonel Alessandro Panizzardi, later sent a cryptogram to Rome, which
was intercepted by French cryptanalysts. Part of the deciphered message said:
“If Captain Dreyfus has not had relations with you, it would be wise to have
the ambassador deny it officially, or avoid press comment.” This seemed to
indicate that Panizzardi disavowed any contact with Dreyfus. In order to be
certain, the French decided to trick Panizzardi into sending a telegram whose
contents were known to them, for then they would have the key to decryption
of what he had sent. Panizzardi bought the ruse, enciphered the telegram, and
sent it to Rome. Subsequently, the French were able to verify the deciphering
of the original message. Nevertheless, this failed to exonerate Dreyfus, since
certain individuals would rather have had an innocent man go to prison than to
admit an error had been made in his arrest. Thus, they prevented the telegram
from being admitted at his trial. Hence, Dreyfus was convicted of treason, and
sent to Devil’s Island. Upon appeal, the telegram was admitted, but it would
take several years before he would see justice. When exoneration did come, it
included reinstatement in the Legion of Honour. The true criminal in the matter
was arrested. Major Ferdinand Walsin Esterhazy had used several cardboard
(Cardano) grilles that implicated him in having secret correspondence with a
German attaché.

We now turn to the dawn of the twentieth century, with a world war brewing
and a major sequence of turning points for the advancement of cryptology. Stay
tuned, for the stories get better.
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2.4 Two World Wars

Whosoever, in writing a modern history, shall follow truth too near the heels,
it may happily strike out his teeth. Walter Raleigh (1552–1618)

English explorer and courtier
— from The History of the World; Preface (1614)

On December 12, 1901, Guglielmo Marconi (1874–1937) (see Figure 2.11) re-
ceived signals from atop a hill in St. John’s, Newfoundland across the Atlantic
from Poldhu in Cornwall, England. This great achievement created a worldwide
sensation, the first trans-Atlantic radio message. It marked the beginning of the
era of wireless communication. The next several decades would see an explosion
of development of radio communication, broadcasting, and navigation applica-
tions. For cryptography, however, it presented the problem of ease of intercep-
tion by unintended recipients. However, despite the lack of security, there was
often no alternative to wireless transmission, since it allowed central authorities
to communicate with their armed forces. When the “Great War”, World War I,
broke out in 1914, all the main countries involved in the war were using wireless.

Figure 2.11: Guglielmo Marconi.

The photograph of Marconi is courtesy
of the Library of Congress, Reproduction
no. LC-USZ62-39702, Prints and Pho-
tographs Division, Copyright 1908.

In 1916, the British army suf-
fered losses in the thousands dur-
ing the battle to take Ovillers-
la-Boiselle on the Somme. The
British were eventually successful
in capturing it, but in the en-
emy trenches they found a com-
plete plaintext of their orders to
take the objective! It seems that
a brigade major had read the or-
ders, in plaintext, over a field tele-
phone, despite protests from sub-
ordinates. This flagrant disregard
for the need for secrecy, and there-
fore disregard for the lives that
would be lost, led to the devel-
opment of trench codes for field
armies.

In early 1916, the French
began to develop trench codes,
which began as telephone codes,
due to indiscretions such as the
above. General Dubail requested
that trench codes be implemented,
which dictated that in normal
phone conversations, certain words
would be spelled out in code rather
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than spoken. Originally, these telephone codes had a small collection of two-
letter codewords, which eventually grew to three-letter code words. These were
subsequently adopted for wireless where early one-part codes grew into two-part
codes in later implementations.

By 1917, the Germans were using trench codes, which evolved into enci-
phered code, as we shall see later. Ultimately, when the Americans joined the
fray, they too adopted trench codes. Moreover, they had a brilliant cryptolo-
gist at their disposal, named Parker Hitt, who had worked as a Signal Corps
instructor. In 1915, Hitt published an influential booklet on cryptology called
Manual for the Solution of Military Ciphers. This was a practical manifestation
of how cryptology should be used in the field. Also, in 1913, Hitt rediscovered
the wheel cipher in strip form, and this led to the Navy strip cipher M-138-A
(see page 66 for comparison with Jefferson’s original invention). In 1916, Major
Joseph O. Mauborgne put Hitt’s strip cipher back into the intended Jeffersonian
cylindrical form, strengthened the alphabet construction, and produced what
came to be known as the M-94 device, which remained in service until the early
part of World War II.

Britain did not have a formal cryptology bureau. However, with interception
of German cryptograms, they quickly saw the need for one. A group was put
together by Sir Alfred Ewing, the admiralty’s director of naval education. They
initially operated out of Ewing’s office at the admiralty, but as the group grew
and their activities increased, they were moved into Room 40 of the Admiralty
Old Building. They became legendary as the Room 40 Group for their remark-
able cryptanalytic feats. In [131, Chapter 9], Kahn devotes an entire chapter to
them.

One of the major intelligence coups of the Room 40 Group occurred in 1917.
They had intercepted a telegram sent by the Germans over Swedish and Amer-
ican cables routed through Britain. When deciphered, it indicated that the
telegram was from the new German Foreign Minister, Arthur Zimmermann, to
the German embassy in Mexico City. It proposed to the Mexican government
that they invade the United States to reclaim territories lost in the 1848 war.
Germany was offering military assistance. This was an insane move since Mex-
ico could not possibly have the capacity to attack the United States under any
circumstances. The Room 40 Group saw the provocative nature of the tele-
gram, but ultimately the Zimmermann Telegram, as it went down in infamy,
was handed to the American ambassador to Britain on February 23, 1917. Of
course, the Americans were outraged, especially when Zimmermann admitted
the validity of the telegram. It contributed to the United States’ declaration of
war against Germany that April.

The breaking of the Vigenère cryptosystem in the nineteenth century, cou-
pled with the advent of radio, and the looming First World War, in the early
twentieth century, brought into sharp focus the need for the development of new,
strong, and effective cryptosystems. Nothing much happened in this arena until
the dying days of World War I. It is worth noting that in the last year of World
War I, 1918, the Americans employed eight American Indians from the Choctaw
tribe to convey vital messages across insecure communication channels in their
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native tongue. The native American languages are extremely complex, difficult
to learn, and certainly for the Germans, nearly impossible to understand, so it
was an effective means of enciphering important data. In World War II, the
Americans similarly employed Navajos to transmit important messages in their
native language. They became known as the Windtalkers, the name of a Holly-
wood film, released in 2002, celebrating their achievements. The enemy never
broke the native codes.

On March 5, 1918, the famous German ADFGVX cipher went into service.
It was invented by Colonel Fritz Nebel, who was a communications officer in the
Kaiser’s army. The cipher got its name from the fact that these were the only
six letters used in the cipher. These specific six letters were chosen since their
Morse code equivalents were sufficiently dissimilar so as to minimize errors. To
convolute the cryptosystem, the Germans used a combination of substitution
and transposition techniques. This it how it worked.

THE GERMAN ADFGVX FIELD CIPHER

The Germans used a table (see Table 2.2) where the twenty-six letters of the
alphabet plus the ten digits (with 10 represented by φ) populate the six-by-six
square, where the coordinates of each letter and digit are uniquely determined
by the six letters. For instance, the coordinate of H is FX.

Table 2.2

A D F G V X
A B 3 M R L I
D A 6 F φ 8 2
F C 7 S E U H
G Z 9 D X K V
V 1 Q Y W 5 P
X N J T 4 G O

Thus, for instance, The Germans are there would be enciphered as:

XF FX FG XV FG AG AF DA XA

FF DA AG FG XF FX FG AG FG

However, this is only the transitional ciphertext, which was then placed in
another rectangle to be transposed into the final ciphertext using a numerical
key as follows. We think of the letters of the key RADIOS as having numerical
equivalents according to the alphabetic order of the letters, namely A corre-
sponds to 1 since it is the letter in RADIOS that appears first in the alphabet,
then D corresponds to 2, and so on. Then place the above transitional ciphertext
by rows into a matrix as follows in Table 2.3.
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Table 2.3

R A D I O S
5 1 2 3 4 6
X F F X F G
X V F G A G
A F D A X A
F F D A A G
F G X F F X
F G A G F G

Now the final ciphertext is obtained by “peeling off” the columns in the
above rectangle according to the order of the numbers as follows and grouping
the letters in convenient six-letter pieces.

FVFFGG FFDDXA XGAAFG

FAXAFF XXAFFF GGAGXG

To decipher, we reverse the process.

Example 2.3 Suppose that we want to decipher the following, assuming that it
was encrypted using the above cipher.

FAXAAF FAFAAF XVGGVG

FAFFXA XDADFF GVFGXG

First, we place each group in the RADIOS table according to its position,
the first going under column A, the second under column D and so on, as in
Table 2.4.

Table 2.4

R A D I O S
5 1 2 3 4 6
X F F X F G
D A A V A V
A X F G F F
D A A G F G
F A A V X X
F F F G A G

Then we unravel by taking them out by rows into groups, as follows.

XFFXFG DAAVAV AXFGFF

DAAGFG FAAVXX FFFGAG

Now, we look up each digraph in Table 2.3, to get the plaintext:

THE ALLIES ARE CLOSER
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In the spring of 1918, the Germans were planning a major offensive, presum-
ably to ensure the defeat of the Allies before the arrival of American troops.
The ADFGVX cipher turned out to be the toughest field cipher known up to
that time, and the Allies could not break the initial cryptograms. Then some
of those cryptograms were brought to the attention of the best cryptanalyst
in France’s Bureau du Chiffre, Georges Jean Painvin (1886–1980) (see Figure
2.12).2.6 The Bureau du Chiffre was considered to be one of the best black
chambers of the day, and Painvin was one of their top stars. The Allies needed
to know where the Germans were planning to make their major thrust in the
upcoming invasion. They needed Painvin to break the ADFGVX cipher.

Figure 2.12: Georges Painvin.

2.6The photograph of Painvin is courtesy of the site owner who cited it as public domain at
http://www.annales.org/archives/x/painvinimages.html.
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On March 21, 1918, the German offensive began with punishing ferocity,
forcing the retreat of British and French troops. Painvin was under incredible
pressure to find the key. He worked day and night, by his own admission,
losing 10 kilograms (22 pounds), but by the evening of June 2, he had broken
the cryptosystem. Now the French military knew where the Germans would
attack and they did so on June 9. The French held their own and the Germans
suffered heavy casualties. Once American forces arrived, the Germans were on
the defensive, and ultimately by November, they had to admit defeat.

The One-Time Pad

In 1918 another event occurred that would have massive cryptological conse-
quences. Gilbert S. Vernam, a cryptologist working for the American Telegraph
and Telephone Company (AT&T) came to the realization that if the Vigenère
cipher were used with a truly random key, with keylength the size of the plain-
text, called a running key, then the Babbage/Kasiski attack would fail. At this
time, AT&T was working closely with the armed forces, so the company re-
ported this to the Army. It came to the attention of Major Mauborgne, head of
the Signal Corps’ research and engineering division. (When Mauborgne was still
just a first lieutenant in 1914, he had published the first solution of the Playfair
cipher, see page 68. Also, see page 79 for his refinement of Hitt’s rediscovery.)
He played with Vernam’s idea and saw that if the key were reused, then a crypt-
analyst could piece together information and recover the key. Hence, he added
the second component to the Vernam idea. The key must be used once, and
only once, then destroyed. Now, the idea was complete. Use the Vigenère ci-
pher with a truly random running key that is used exactly once, then destroyed.
The system is called the one-time pad, and sometimes, perhaps inappropriately
in view of Mauborgne’s contribution, the Vernam cipher. Since the key is as
long as the plaintext, and the key selected is truly random, and used exactly
once, then the ciphertext is completely random as well. Thus, the one-time pad
is unbreakable. In other words, it is impossible to crack by any cryptanalytic
methods.

It would take until 1949 with Shannon’s concept of perfect secrecy (which we
will discuss in Chapter 11) that the one-time pad was proved to be unbreakable
(see page 440). In other words, the one-time pad is not only experimentally and
practically unbreakable, but theoretically proven to be so. This was the goal
of cryptography, absolute secrecy. Yet, perfection has a price; there are two
distinct problems it faces. Finding truly random keys is not as easy as it might
seem. Even modern-day computers cannot generate truly random numbers
since they are finite-state devices, meaning that eventually they repeat, and so
are predictable. The best that one can expect from computers is what is called
pseudorandomness, which is a computer’s simulation of a random number in the
sense that, at least in appearance, they have the statistical properties of truly
random numbers. This in itself is an entire area of study. (Knuth [138, pages
149–189] spends some 40 pages discussing the very definition of randomness!)
Moreover, to generate random sequences in such a fashion that they must be
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produced for each message is a monumental task, especially since each one has
to be the size of the plaintext, which is the second problem. To have keys the
size of the plaintext creates unwieldy key management problems. Yet, it is a
completely provable secure cryptosystem. Thus, it is used by those who need it
for absolute secrecy, such as, for instance, the protection of missile launch codes.
Then it is practicable, but for low-level security such as e-mail messages between
government officials for the day-to-day running of business, other means must
be used.

It is part of the folklore that Soviet spies used one-time pads to send mes-
sages, and that they were also used in German diplomatic systems starting in
the late 1920s.

In our modern computer age, one can translate all plaintext and ciphertext
into numerical data, in particular, into binary.2.7 Since we have a sequence of
zeros and ones now, we can perform addition modulo 2, so we again end up
with zeros and ones, ideal for transmission. This is how the one-time pad was
used in the legendary hot line between Washington and Moscow, inspired by the
Cuban missile crisis of the 1960s. They used what was called the one-time tape,
which was a physical manifestation of the Vernam cipher. At the American end,
this took the form of the ETCRRM II or Electronic Teleprinter Cryptographic
Regenerative Repeater Mixer II. The manner in which the one-time tape worked
was that there existed two magnetic tapes, one at the enciphering source, and
one at the deciphering end, both having the same running key on them. To
encipher, one performs addition modulo 2 with the plaintext and the bits on the
tape. To decipher, the receiver performs addition modulo 2 with the ciphertext
and the bits on the (identical) tape at the other end.2.8 Thus, they had instant
deciphering and perfect secrecy if they used truly random keys, each used only
once, and the tapes were burned after each use. The same keys cannot be used
twice since the one-time pad would then be open to an attack since the key k
can be computed by addition modulo 2 of the plaintext with the ciphertext.2.9

Thus, we see that today one-time pads are most practicable for military and
diplomatic purposes when unconditional security is of the utmost importance.

Vernam is known for other discoveries. A patent was filed in September of
1918 (and granted with issuance in July 1919) for a cipher that Vernam invented,
which was the first polyalphabetic cipher automated using electrical impulses.
For this, he has earned the title of the Father of Automated Cryptography.

2.7Recall that any n ∈ N can be represented in the form n = a0 + 2a1 + 22a2 + · · · + 2tat

where aj ∈ {0, 1} and t is a nonnegative integer. The ajs are called bits, which is a contraction
of binary digits. Typically, we will use the notation throughout for this binary representation
as: n10 = (atat−1 . . . a1a0)2 to denote that our base 10 integer n has a binary representation
as given. For instance, the binary representation of 100 is: (100)10 = (1100100)2 since
100 = 26 ·1+25 ·1+24 ·0+23 ·0+22 ·1+21 ·0+20 ·0. See Appendix A for more information
on basic mathematical facts.

2.8This process is often called XORing since it is use of exclusive or, which we will denote
later in the text by ⊕ (see page 116).

2.9This is an example of what is called a known-plaintext attack, which means an attack where
a cryptanalyst has both some plaintext and its corresponding ciphertext from an intercepted
cryptogram from which to deduce the plaintext in general, or the key.
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However, not only was the device a commercial failure, but the stock market
crash caused Vernam to lose his job at AT&T. He then went to work for an
organization that later merged with Western Union. From that time, he was
granted some sixty-five patents, among which was the fully automated telegraph
switching system. He was even visionary enough to have invented one of the
first versions of a binary digital enciphering of pictures. However, for all these
amazing achievements, he died in relative obscurity on February 7, 1960, in
Hackensack, New Jersey, after years of battling Parkinson’s disease.

The Friedmans

Others who had been on the periphery of the discovery of the one-time
pad also had a major impact. William Frederick Friedman2.10 (1891–1969)
(see Figure 2.13) was born in Kishinez, Russia, on September 14, 1891. In
1892, his father fled the antisemitic regulations in Czarist Russia, and his fam-
ily joined him in Pittsburgh the following year. (Actually, William had been
born with the name Wolfe, but his father changed it to William after he became
an American citizen.) William obtained his bachelor’s degree from Cornell,
then joined the Riverside Laboratories (which today would be considered to
be a “think tank”), outside Chicago, in 1915. There Friedman met Elizabeth
Smith (1892–1980), whom he married in 1917 (see Figure 2.14). One of the
projects being researched at Riverside was the contention that hidden messages
in Shakespeare’s works proved that Bacon was the real author (see page 36).2.11

However, the Friedmans soon turned their attention to cryptology. William
was training cryptologists at Riverbank, and for course material he wrote
eight publications (which are collectively known as the Riverbank Publications).

Figure 2.13: William Friedman.

Today they are highly regarded as containing
the basic essentials of cryptological material.
Perhaps his greatest cryptological contribu-
tion (and he thought so himself when he was
looking back over his career) was his con-
ceiving of the Index of Coincidence, which
appeared in his monograph no. 22 of the
numerous ones that he published. The im-
portance of this discovery was not only that
it introduced a statistical methodology for
cryptanalyzing polyalphabetic ciphers, but
also, it demonstrated the intimate link be-
tween cryptology and mathematics, a link
that would get more entwined as the twen-
tieth century unfolded. Friedman’s Index of
Coincidence (for a ciphertext C) is defined as

2.10Figures 2.13–2.14 are courtesy of the National Security Agency Hall of Honor. See:
http://www.nsa.gov/honor/index.html.

2.11Friedman and his wife debunked this claim in an excellent book [98], called Shakespearean
Ciphers Examined, published in 1958.
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the probability that two letters selected at random from C are identical. Be-
low we show how to mathematically demonstrate that the index of coincidence
for a monoalphabetic cipher is about 0.065, and the index of coincidence for a
polyalphabetic cipher is somewhere between 0.0385 and 0.065. For very long
keywords, the index of coincidence for polyalphabetic ciphers will be closer to
0.0385. Hence, by a simple analysis of intercepted ciphertext, a cryptanalyst can
relatively easily determine the type of cryptosystem being used. This was quite
a breakthrough. Moreover, his idea contained a mechanism for determining the
probable keylength, as had Kasiski. Here is how it works.

Figure 2.14: Elizabeth S. Fried-
man.

First we need a table of letter frequencies
for the English alphabet. This well-known,
standard table (presented here as Table 2.5)
augments Tables 1.4 and 1.5, which we pre-
sented on pages 44 and 45, when we dis-
cussed letter frequencies in Section 1.4.

Now suppose that n stands for the num-
ber of letters in a ciphertext, C, and nj

stands for the number of letters in the j-th
position of the English alphabet. In other
words, n1 is the number of occurrences of
the letter a in C, n2 is the number of occur-
rences of the letter b in C, and so on. With-
out getting into the reasons for it, the Index
of Coincidence, IC, is given as approximately
the following.

IC ≈
(n1

n

)2

+
(n2

n

)2

+ · · ·+
(n26

n

)2

.

So if we want to compute IC for the En-
glish language from Table 2.5, and since each of the numbers in the table is a
percentage, then we divide each by 100, and get: IC ≈ (0.8167)2 + (0.01492)2 +
· · · + (0.00074)2 = 0.065, which explains the aforementioned Index of Coinci-
dence for monoalphabetic ciphers, since the frequency is invariant. (Note that
the symbol ≈ means “approximately equal to”. It is not a strict equality but
this is good enough since we are dealing with a statistical analysis wherein
approximations are good enough for our investigations.)

Relative Letter Frequencies for English
Table 2.5

a b c d e f g h i
8.167 1.492 2.782 4.253 12.702 2.228 2.015 6.094 6.966

j k l m n o p q r
0.153 0.772 4.025 2.406 6.749 7.507 1.929 0.095 5.987

s t u v w x y z
6.327 9.056 2.758 0.978 2.360 0.150 1.974 0.074
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Now for any language, such as English, with a twenty-six-letter alphabet, in
which each letter has the same frequency, we get

IC = 26(1/26)2 = 0.038,

which is approximately half of the above Index of Coincidence for English.
Hence, the Index of Coincidence helps us in determining if the ciphertext comes
from a monoalphabetic or polyalphabetic cipher in the following manner. The
closer the IC is to 0.065, the more likely it is that the message came from a
monoalphabetic cipher. If the IC is much less than 0.065, the cipher is most
likely polyalphabetic since frequencies are evened out by polyalphabetic cryp-
tosystems. Hence, the closer the IC is to 0.038, the greater the chance is that
the cipher is polyalphabetic. This was a major contribution by Friedman since
he tied a mathematical tool, statistical analysis, to the study of cryptography.
Another young professor did the same in another area of mathematics.

Lester S. Hill published a short paper [123] in which he put a cipher, known
today as the Hill Cipher (which we will study in detail on page 111), into an
algebraic framework. This was a reinvention and expansion of Porta’s idea (see
page 54). Hill obtained his Ph.D. in mathematics from Yale in 1926. He was
hired to teach mathematics at Hunter College in New York in 1927, and he
remained there until his retirement in 1960. He was the first to successfully
use general algebraic concepts to reveal cryptography through mathematics.
A.A. Albert (see Footnote 2.15 on page 97) was so impressed with Hill’s ideas
that he used them in some simple cryptosystems with his own tailoring to suit
the situation at hand. Hill’s rigorous mathematical approach was certainly
one of the pioneering efforts that helped to build today’s solid grounding of
cryptography in mathematics. Hill died in Lawrence Hospital in Bronxville,
New York, after suffering though a lengthy illness.

Now we return to the life of the Friedmans. Soon after his marriage to
Elizabeth, William became the director of the Department of Codes and Ci-
phers, among his other duties, at Riverbank. After the outbreak of World War
I, Riverbank offered its services to the government, and since no such federal
agency existed at the time, Riverbank became the de facto cryptographic center
for the American government. One of the first accomplishments the Friedmans
achieved was the following. The Germans had been encouraging Hindu radicals
to work toward independence from Britain in the hopes of diverting attention
and strength from the war effort. Some of these radicals, who lived in the United
States, were sending messages about arms shipments. It turns out they were try-
ing to buy arms in the United States and ship them from the West Coast. The
Friedman’s deduced that the codebook used by these radicals was a German-
English dictionary published in 1880. This aided William in his testimony given
at the trial of 135 Hindu radicals in San Francisco.

The Friedmans quit Riverbank toward the end of 1920. In 1921, Friedman
joined the American Black Chamber, where he eventually headed the Research
and Development Division and stayed there until its dissolution in 1929. One
man may be said to be chiefly responsible for the creation and (possibly) the
dissolution of the American Black Chamber.
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After World War II, Friedman continued in government signals intelligence
until 1949 when he became head of the code division of the new Armed Forces
Security Agency, which evolved into the National Security Agency (NSA). At
NSA he became the chief cryptologist. By the late 1960s his health faded.
He died in 1969 in Washington, D.C., and was buried at Arlington National
Cemetery. For all his accomplishments and pioneering efforts, he has been
dubbed America’s greatest cryptologist.

Elizabeth Friedman largely worked on the civilian side. She gained some
initial fame when she broke the codes and ciphers of “rum runners” in the 1920s
during Prohibition. By 1927 she had been hired by the U.S. Coast Guard, and
broke thousands of codes for them. During World War II she joined the Office of
Strategic Studies (OSS), where she was one of their outstanding cryptologists.
After her husband’s death in 1969, she retired and lived until 1980. She is buried
with her husband at Arlington.

Herbert Yardley2.12 (see Figure 2.15) was born on April 13, 1889 in Wor-
thington, Indiana. As a young man, he recognized his gift for cryptanalysis
when he was hired as a “code clerk” in the State Department at the age of
twenty-three.

Figure 2.15: Herbert Yard-
ley.

After the declaration of war in April 1917
by the United States, Yardley was made head
of the newly established cryptology section of
the Military Intelligence Division, MI-8. In May
of 1919, he submitted his idea with a plan for
a permanent cryptology establishment, which
came to be known as the American Black Cham-
ber. Its operation was exceptional, cryptana-
lyzing more than 45, 000 enciphered telegrams
from various countries. By 1929, however, the
Black Chamber was shut down by the Secretary
of State, Henry L. Stimson, who disapproved
of the Chamber saying “Gentlemen do not read
each other’s mail”. In 1931, Yardley published
a book entitled The American Black Chamber,
which was an exposé of the United States’ weak,
if not defenseless, status in the arena of cryptol-
ogy. It caused a furor in many circles. In fact, when he tried to publish a second
book, Japanese Diplomatic Secrets, it was suppressed by the U.S. government.
He involved himself in real estate speculations in the late 1930s, and served as
enforcement agent in the Office of Price Administration during World War II.
He died of a stroke on August 7, 1958, in Silver Spring, Maryland.

After his service in the American Black Chamber, Friedman moved to the
Army’s Signals Intelligence Service (SIS), and by 1935 was replaced by Ma-
jor Haskell Allison as head of SIS. Meanwhile, Elizabeth was employed as a
2.12Figure 2.15 is courtesy of the National Security Agency Hall of Honor. See:

http://www.nsa.gov/honor/index.html.
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cryptologist for the Treasury Department. Her picture now sits along with her
husband’s in the N.S.A. Hall of Fame for her cryptological contributions.

By 1938, Joseph Mauborgne, now a two-star general, was heading a group
at SIS to look at Japanese cipher systems, since it was beginning to look
like a new war was brewing. He asked Friedman to head up the new divi-
sion at SIS, and Friedman agreed. The Japanese cipher machine was called
Purple, given its name from the Japanese cipher of the same name in which
their correspondence was written. It proved to be incredibly difficult, but
by August of 1940, Friedman’s team had constructed an exact replica of the
Purple machine,2.13 (see Figure 2.16) allowing them to decipher an increas-
ing amount of Japanese traffic. (Copies of the machine were also given to
the British to decrypt correspondence between the Japanese and the Ger-
mans.) However, Friedman suffered a nervous breakdown and was hospital-
ized on January 4, 1941, after which his work schedule was severely cut back.

Figure 2.16: Purple machine replica.

The information that
was obtained from break-
ing Purple, the Ameri-
cans called MAGIC. This
name was given by Rear
Admiral Walter S. Ander-
son, probably for reasons
surrounding the associa-
tions with the occult that
we discussed in Section
1.3. MAGIC has come
to be known as the code
name for the joint Army
and Navy operation, first
set up in 1939 to break
Japanese codes.

Pearl Harbour, Midway, and Post–World War II

On December 7, 1941, a message to the Japanese Embassy in Washington
was intercepted. The decryption showed that the Embassy was being ordered to
end all negotiations with the United States. The implication of impending war
was crystal clear, and this message was to have been delivered to the American
State Department only hours before the attack on Pearl Harbour. However,
the ruse — to come as close to the attack before giving formal notice — failed
since the embassy’s first secretary Katzuso Okumura, was still typing the formal
notification for the State Department when the bombs began raining down on
Pearl Harbour. They had started a war without formal declaration, a failure
that would be part of the charges against Japanese war criminals on trial after
2.13Figure 2.16 is a representation of the 1941 Purple Machine Replica, courtesy of the CIA
website http://www.cia.gov/cia/publications/facttell/intel overview.html.
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the war. Later a Joint Congressional Committee met for an investigation of the
Pearl Harbour attack and concluded that the war efforts of America’s cryptan-
alysts had shortened the war, and saved thousands of lives. We will now have
a look at how some of that was accomplished.

American cryptanalysts were able to decipher a highly secret cryptogram
detailing the itinerary of the Japanese Navy Admiral Isoruko Yamamoto’s plane
tour of the Solomon Islands. Thus, the Americans were able to pinpoint his
whereabouts and shoot down his plane. American cryptanalysts also helped
to ensure that Japan’s lifeline was rapidly cut, and the German U-boats were
defeated. Perhaps the best-known and most vital success was the Battle of
Midway. The cryptanalysts were able to give complete information on the size
and location of the Japanese forces advancing on Midway. This enabled the
Navy to concentrate a numerically inferior force in precisely the right place at
the right time that turned the tide of the Pacific War. This was a stunning
victory for American cryptanalysts.

Another outcome of World War II was an outstanding advance in cryptanal-
ysis by the Americans. To discuss it, we must go back to the invention of the
electric typewriter, which opened the way for electromechanical enciphering.
The first electric contact rotor machine was invented by Edward Hugh Hebern
in 1915. He used two electric typewriters randomly connected by twenty-six
wires. Hence a plaintext letter key hit on one typewriter would yield a cipher-
text letter to be printed on the other machine. These wire connections were
the seminal idea for the idea of a rotor, namely, a way of varying the monoal-
phabetic enciphering. By 1918, Hebern had a device that embodied the rotor
principle. He filed a patent in 1921, but did not receive it until 1924. In 1919,
patents were also filed for rotor enciphering machines by Alexander Koch and
Avrid Gerhard Damn, the latter for half rotors. Damn owned a company called
Aktiebolaget Cryptograph or Cryptograph Incorporated. In 1922, Emanuel No-
bel, nephew of the famed Alfred Nobel, put Boris Caesar Wilhelm Hagelin to
work in Damn’s company. Hagelin simplified and improved one of Damn’s ma-
chines. This was such a success that the Swedish army placed a large order
with Damn’s firm. When Damn died in 1927, Hagelin took over the operation
of the firm. Later, he developed the rotor-based cipher machine, called the Con-
verter M-209 by the American military; this was so successful that in the early
1940s more than 140, 000 were manufactured. Hagelin’s M-209 used a version
of the self-decrypting Beaufort cipher. (The Beaufort cipher was a variant of
the Vienère cipher, and was published by Admiral Beaufort’s brother after his
death in 1857, in the form of a four by five inch card. Admiral Sir Francis Beau-
fort (Royal Navy), was also the creator of the Beaufort scale, an instrument
used by meteorologists to indicate wind velocities on a scale from 0 to 12, where
0 is calm and 12 is a hurricane.) Royalties from the sales of Hagelin’s cipher
machine made him the first millionaire of cryptography. Perhaps, Hagelin had
Thomas Jefferson to thank since his wheel cypher inspired the development of
rotor machines (see page 66).

In 1918, the German Arthur Scherbius applied for a patent on a rotor en-
ciphering machine using multiple rotors. In 1923, a corporation was formed



2.4. Two World Wars 91

to manufacture and sell his machine, which he called Enigma. In 1934, the
Japanese Navy bought the Enigma for their own use, and developed it into the
Japanese cryptosystem called Purple, which we discussed above. However, the
Japanese version was unlike Enigma in that it used stepper switches, similar to
those used in telephone exchanges. When the SIS built a machine to replicate
Purple, they made the unwitting decision to use exactly the same telephone
stepper switch used by the Japanese designer! This accounts for Friedman’s
group at SIS being able to duplicate a machine they had never seen.

In 1932 Hebern designed a machine with five rotors, the HCM. In 1936, a
rotor machine, based on the Hebern machine, called the SIGABA (see page 93),
or M-134-C was developed and used with great success by the U.S. military in
World War II. (It was also called the CSP-889, or ECM Mark II, by the Navy.) It
was so well designed that all the efforts by the Army’s cryptanalysts to break it
failed. As it would be learned later, the Germans also could not break the Ameri-
cans’ cryptograms enciphered with the ABAs, as they were nicknamed. The fun-
damental idea of electronically controlled rotors was created by William Fried-
man, and he implemented it in the original M-134 device, which had five rotors
that encrypted plaintext, the motion of which was controlled by a paper tape.

Figure 2.17: Frank Rowlett.

Then Frank Rowlett2.14 (1908–1998) (see Figure
2.17) created the vital concept of the SIGABA,
namely, the idea of using rotors to control the
rotors that enciphered the plaintext. Rowlett
was one of Friedman’s earliest assistants, since
1929, and was part of the team that broke Pur-
ple at SIS. The SIGABA had fifteen rotors, ten
of which were conventional 26-contact rotors,
and five of which had smaller rotors with only
ten contacts on each side. Moreover, the rotors
were divided into three sets. Five of the 26-
contact rotors, called cipher rotors, encrypted or
decrypted a message in the same fashion as the
Hebern rotor machine. Another five 26-contact
rotors were called control rotors, and the five 10-
contact rotors were called index rotors. In the
1940s the SIGABA would prove to be the securest of the machines developed
in the West, and it never fell into enemy hands.

When Hitler came to the stage, the cryptographers of the Wehrmacht made
the decision to use the Enigma, upon which they made improvements for their
security purposes. However, the German Enigma cryptosystem was cryptan-
alyzed by British researchers at Bletchley Park, which is a Victorian country
mansion in Buckinghamshire, halfway between Oxford and Cambridge. In Au-
gust of 1939, the Government Code and Cypher School was seconded there.
Perhaps one of the most important among these researchers was Alan Mathison
2.14Figure 2.17 is courtesy of the National Security Agency Hall of Honor. See:

http://www.nsa.gov/honor/index.html.
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Turing (1912–1954).
Turing was born on June 23, 1912 in London. He studied under Alonzo

Church (1903–1995) at Princeton and obtained his doctorate in 1938. During
World War II, he was employed in the British Foreign Office, where he got
involved in cryptanalyzing the Enigma cryptosystem. Toward this end, he con-
ceived of a machine called the BOMBE , the first prototype of which arrived at
Bletchley on March 14, 1940. However, it was not as successful as they had
hoped and to compound the problem, the Germans had changed the method of
how they managed keys, deleting repetitions, so decryptions dropped dramat-
ically. They needed a new improved BOMBE, which was not delivered until
later that year, on August 8. In less than two years there were eighteen work-
ing versions of the BOMBE at Bletchley Park. By September of 1941, Field
Marshal Rommel’s Enigma cryptograms to Berlin were being cryptanalyzed. In
fact, William Friedman visited Bletchley Park in 1941, exchanging information
on techniques for attacking Purple for British information on breaking Enigma.
By 1942, they had dug deeply into cryptanalyzing Enigma, which played a major
role in the Allied victory.

Figure 2.18: Midway exhibit.

(Courtesy of the National Security Agency Public Photo Gallery.
See http://www.nsa.gov/gallery/photo/photo00010.jpg.)
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Figure 2.19: SIGABA.

(Courtesy of the National Cryptologic Museum of the National Security Agency.
See http://www.nsa.gov/museum/big.html.)
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Figure 2.20: Purple cipher switch.

(Courtesy of the National Security Agency Public Photo Gallery.
See http://www.nsa.gov/gallery/photo/photo00016.jpg.)
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Figure 2.21: BOMBE.

(Courtesy of the National Security Agency Public Photo Gallery.
See http://www.nsa.gov/gallery/photo/photo00013.jpg.)
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Figure 2.22: Enigma.

(Courtesy of the National Cryptologic Museum of the National Security Agency.
See http://www.nsa.gov/museum/enigma.html.)



2.5. The Postwar Era and the Future 97

2.5 The Postwar Era and the Future

We shall see that cryptography is more than a subject permitting mathemati-
cal formulation, for indeed it would not be an exaggeration to state that abstract
cryptography is identical with abstract mathematics.

Abraham Adrian Albert2.15 (1905–1972)

Host Feistel may be considered to be one of the early pioneers in the drive
to secure privacy for the public at large using cryptography. Born in Germany
in 1914, he emigrated to the United States in 1934, but would not obtain a U.S.
citizenship for another decade. In fact, in 1941, with Germany having declared
war on America, he was placed on a (sort of) house arrest, where his movements
were restricted to the Boston area where he lived. Yet, surprisingly, on January
31, 1944, the house arrest was lifted, he was granted U.S. citizenship, and the
very next day he was given security clearance that allowed him to work at the Air
Force Cambridge Research Center (AFCRC).2.16There he set up a cryptography
research group that developed some outstanding cryptographic algorithms. In
particular, they developed the MARK XII, which is widely used in American
aircraft. It is known that the NSA had an ambivalent attitude toward Feistel’s
group. On the one hand, they exerted pressure to steer his work, while at the
same time they considered his group to be a threat. Consequently his group was
dissolved in the late 1950s. Then Feistel moved to MIT’s Lincoln Laboratory,
followed by a move to MITRE Corporation, a spinoff of the MIT lab. When
he tried to form a cryptography group there, again NSA exerted pressure on
MITRE, so his efforts failed, and his group did not materialize.

A.A. Albert, a friend of Feistel, advised him to go to IBM, since they were
hiring the brightest scientists to do their own innovative work, a kind of think
tank. Feistel began work at their Watson Laboratory in Yorktown Heights, New
York. There he created a cryptosystem used in the IBM2984 banking system,
known today as the Alternative Encryption Technique, but then it was called
Lucifer.2.17 This cryptosystem was the predecessor of the first commercially
2.15Albert was born in Chicago, Illinois, on November 9, 1905. He studied under L.E. Dickson
at the University of Chicago, receiving his Ph.D. in 1928. His elegant work on the classification
of division algebras (see Appendix A, page 484) earned him a National Research Council
Fellowship. This provided him with the opportunity to secure a postdoctoral position at
Princeton, after which he spent a couple of years at Columbia University, then returned
to Chicago in 1931. His book, Structure of Algebras, published in 1939, remains a classic
today. The events of World War II induced Albert to take an interest in cryptography.
The above quote is taken from his lecture on mathematical aspects of cryptography at the
American Mathematical Society meeting held in Manhattan, Kansas, on November 22, 1941.
His numerous achievements would take several pages to describe. Suffice it to say he has had
a lasting influence. He died on June 6, 1972, in Chicago.
2.16There is speculation that something may have been going on behind the scenes between
Feistel and the U.S. government (see Levy’s excellent book Crypto [151] for an account of
some of these possible scenarios as well as with other related cryptographic activities).
2.17Years later, Feistel said that if it had not been for the Watergate scandal that rocked
Washington, the NSA would probably have shut down the Lucifer project, as they had so
many of his earlier efforts. In fact, in the early 1970s, patent secrecy orders were placed on
some of Feistel’s inventions by the U.S. government.



98 2. From Sixteenth-Century Cryptography

available algorithm (namely for use with unclassified computer data) officially
announced in 1977 as the Data Encryption Standard (DES).2.18

DES is an example of a block cipher, about which we will learn the details
in Chapter 3 (as well as an entire class of ciphers, called Feistel ciphers, in
honour of the groundbreaking work he did in those early years). Basically,
block ciphers encipher fixed size blocks of data. For DES this is a block size of
56 bits, which is too small for modern-day data transfer. Its key size, at 56 bits,
is also inadequate for modern usage, as we shall demonstrate below.

Lucifer was modified by the NSA, before it became the Data Encryption
Standard. There was, and in some circles still is, controversy that the NSA had
slipped in a “back door” into the standard, which would allow them an easy
method for deciphering messages encrypted with DES. This suspicion was even
investigated in 1978 by the U.S. Senate Select Committee on Intelligence, the
findings of which are, of course, classified. However, an unclassified summary
of their investigation stated that the NSA had no improper involvement in the
design of DES. Yet, many remain skeptical since the details of the investigation
were not made public. Despite such concerns, DES was used by banking, com-
merce, and industry until the end of the twentieth century, when it reached the
end of its tenure as a secure cryptosystem.

At the CRYPTO2.19 conference, in 1993, M.J. Weiner presented an efficient
key-search design that would have taken 3.5 hours (at that time) on a machine
costing one million U.S. dollars to do an exhaustive search of the keyspace, also
called a brute force attack, which means that all possible keys are tried to see
which one is being used by the communicating entities. We will come back to
this issue when we look at the replacement for DES, the new AES (see Footnote
3.10 on page 150). By 1998, the 56-bit keylength used by DES was becoming
increasingly under attack by modern methods. In that year, a group led by
Paul Kocher (about whom we will learn more later when we talk about security
issues, see page 176), custom-built a computer for about a quarter of a million
U.S. dollars, which they used to find a DES key in roughly fifty-six hours. The
plaintext read: “It’s time for those 128-, 192-, and 256-bit keys.” Six months
later, in January 1999, the same team did this in less than twenty-four hours.
This and other developments spelled the end for DES since the keylength was
just too small to withstand cryptanalytic advances. By August of 2000, DES
was replaced with a non-Feistel cryptosystem called the Advanced Encryption
Standard (AES), which allowed for 128-, 192-, and 256-bit keys. We will discuss
it in detail in Section 3.5.

The 1970s also saw a revolutionary change in the manner in which keys were
handled. Cryptography was about to go public. In a paper [69], published in
2.18A complete description of DES is given in the U.S. Federal Information Process-
ing Standards Publication number 46 (or FIPS-46) Springfield, Virginia, April 1977. It
was updated to FIPS-1 in 1988, then again to FIPS-2 in 1993 — see the FIPS home-
page: http://www.itl.nist.gov/fipspubs/. The American National Standards Institute (ANSI)
approved DES as a private sector standard in 1981 — see the ANSI homepage at:
http://www.ansi.org/.
2.19CRYPTO is a conference on cryptology held annually in late August at the University of
California at Santa Barbara.
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1976, Whit Diffie and Martin Hellman conceived of a method for two entities,2.20

who have never met in advance or exchanged keys, to establish a shared secret
key by exchanging messages over an open (unsecured) channel.2.21 We will learn
the mathematical means for how this works in Chapter 4. Up to the time of
this idea, all cryptosystems, including DES, were looking for mechanisms to
securely distribute secret keys. This is because once a symmetric enciphering
key is known, an entity can easily deduce the deciphering key from it. Now,
with the introduction of the Diffie-Hellman idea, which has come to be known as
the Diffie-Hellman Key-Exchange,2.22 entities could exchange keys in the open
and ensure privacy. It seems contrary to the very notion of secrecy. However,
that is the brilliance of the scheme, use two essentially different keys, one for
enciphering that can be made public, and one for deciphering that can be kept
private, a key pair. No longer would the key be symmetric (the deciphering key
easily determined from the enciphering key and vice versa). Now there would
be an asymmetric key pair, the advent of public-key cryptography (PKC). How
could this possibly work?

Public-Key Cryptography (PKC)

Before giving an introduction to the Diffie-Hellman idea, let us look at an
analogy, a standard one, for PKC, which will provide an easy-to-understand
scenario to give the reader an understanding of how a public key can work.
First we will introduce the first two characters (entities) in our cryptographic
cast, Alice and Bob. Suppose that Bob has a public wall safe with a private
combination known only to him. Moreover, the safe is left open and made
available to passers-by. Then, anyone, including Alice, can put messages in the
safe and lock it. However, only Bob can retrieve the message, since, even Alice,
who left the message in the safe has no way of retrieving it.

In order to give a general overview of the basic Diffie-Hellman idea, we need
the notion of a one-way function, which we may view, at this juncture, as a
method of enciphering that cannot be reversed. For instance, if you write a
message on a piece of paper, then burn it, that is an example of a one-way
function since retrieving the message is impossible. One says, in mathematical
terms, that this is a function whose values are easy (computationally feasible)
to compute, but calculating that inverse is computationally infeasible, meaning
2.20Henceforth, by an entity we will mean any person or thing, such as a computer terminal,
which sends, receives, or manipulates information.
2.21From now on, by a channel we will mean any means of communicating information from
one entity to another. A secure channel is one that is not physically accessible to an adversary,
whereas an unsecured channel is one from which entities, other than those for whom the
information was intended, can delete, insert, read, or reorder data.
2.22In some parts of the literature, this is called the Merkle-Diffie-Hellman Key-Exchange
since R.C. Merkle was working on these same ideas at that time. Merkle was a graduate
student at the University of California at Berkeley, and was working on an idea for a one-way
function involving certain puzzles. This would evolve later into what we now call the knapsack
ciphers, none of which have survived cryptanalysis today. We will come back to this topic
in later chapters. Merkle actually proposed joint work in a letter he wrote to Hellman in
February 1976. However, it turned out that the Diffie-Hellman idea was both more efficient
and more secure than Merkle’s idea.
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that the task cannot be carried out in reasonable computational time. As Diffie
and Hellman put it in [69], a computationally infeasible task is one whose “cost
as measured by either the amount of memory used or the runtime is finite but
impossibly large.” (Typically, this means that it would take hundreds, if not
millions, of years on the fastest computer known.) However, if you burn the
paper, how does the intended recipient read the message? You need additional
information built into your one-way function so that the intended recipient can
recover the message. This additional information is called a trapdoor. Mathe-
matically speaking, a trapdoor in a one-way function is additional information
that makes the finding of the inverse a feasible task, but without the trapdoor
information, the task is computationally infeasible (see Chapter 4). For now,
think of a trapdoor as information that allows you to invert the function (de-
crypt the message), but if you do not know it, you cannot invert the function. It
is easy enough, as our paper-burning example indicated, to find one-way func-
tions, but getting those with trapdoors requires a bit more effort. So now let us
see how the Diffie-Hellman idea works.

Alice and Bob have never met, but want to establish a secret means of
communicating with one another. Bob and Alice both have unique public keys,
which we may envision as long strings of bits, published in some public data base
of keys that anyone can look up. Both Alice and Bob also have private keys that
they keep secure and known only to themselves, namely, only Bob knows his
private key2.23 and only Alice knows her private key. Now, Alice takes a message
and uses Bob’s public key via a one-way function to encipher the message in
a manner that only Bob’s private key can decipher. So when Alice sends the
cryptogram, the only person in the world who can decipher it is Bob, with his
private key. Now suppose that another of our cast of characters, eavesdropping
adversary Eve, intercepts the message. Without Bob’s private key, she has
only trial and error at her disposal to try to cryptanalyze it, probably taking
millions of years, so her interception is useless. Thus, since Bob is the only
person who has both elements of the key pair, he can decipher the message
instantly. The message might contain the symmetric-key k, say, and a reference
to the symmetric-key algorithm, such as DES, say. Similarly, Bob uses Alice’s
public key and a one way function to encrypt a response, which would say
that he agrees to use DES with symmetric-key k for their correspondence, and
sends this to Alice, who uses her private key to decrypt, and she is the only
one who can do so. In the Diffie-Hellman scheme, k is the shared secret key
independently generated by both Alice and Bob. The key exchange is complete
since Alice and Bob are in agreement on k. Hence, over an unsecured channel,
they have established a secure means of communicating.

The observant reader may wonder why they do not just use this key pair for
2.23We use the convention that the term private key is reserved for use in association with
public-key cryptography, also called asymmetric-key cryptography, whereas the term secret
key is reserved for symmetric-key cryptography. The cryptographic community has adopted
this convention since it takes two or more entities to share a secret (such as the symmetric
secret key), whereas it is truly private when only one entity knows about it (such as with the
asymmetric private key).
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all of their correspondence rather than using it to set up a key exchange for use
with a symmetric-key cryptosystem. The reason has to do with efficiency, as we
will see in detail in Chapter 4. Public-key methods are extremely slow compared
to symmetric-key methods. In later discussions, we will see how both the public-
key and symmetric-key cryptosystems come to be used, in concert, to provide
the best of both worlds combining the efficiency of symmetric-key ciphers with
the increased security of public-key ciphers, called hybrid cryptosystems.

The Diffie-Hellman paper [69] was the “door-opener” to public-key cryptogra-
phy in that it was the landmark, since it had the first cryptographic protocol2.24

with public-key properties including the idea of a trapdoor one-way function,
a partial solution to the public-key cryptosystem, and digital signatures (see
Chapter 4). At the end of their paper Diffie and Hellman state: “Skill in pro-
duction cryptanalysis has always been heavily on the side of the professionals,
but innovation, particularly in the design of new types of cryptographic systems,
has come primarily from amateurs.” They even go on to mention the “crypto-
graphic amateur”, Thomas Jefferson, and his wheel cypher and the fact that it
was used two centuries after its invention (see pages 66 and 67). Also, they talk
about the amateurs responsible for the rotor ciphers (see page 90).

In summary, the Diffie-Hellman key exchange allowed two entities to set
up a shared secret symmetric key, but they did not provide any method for
enciphering messages, or any way to extend to digital signatures, digital data
strings that associate a given message with its sender. As Diffie and Hellman
put it at the outset of their paper, “We propose new techniques for developing
public key cryptosystems, but the problem is still largely open.” This would
take a couple more years.

RSA and PKC

In 1978, a paper [230] was published by R. Rivest, A. Shamir, and L. Adle-
man. In this paper they describe a public-key cryptosystem, including key
generation and a public-key cipher, whose security rests upon the presumed
difficulty of factoring integers into their prime factors.2.25 This cryptosystem,
which has come to be known by the acronym from the authors’ names, the RSA
cryptosystem has stood the test of time to this day, where it is used in cryp-
tographic applications from banking, and e-mail security to e-commerce on the
Internet. We will be discussing all these applications as we progress through
the text, and we will provide the details of the RSA algorithm in Chapter 4.
The astonishing aspect of the RSA cipher is that it rests upon mathematical
developments from the eighteenth century, merely updated to our modern-day
information-based computer world. In the RSA paper [230], Alice and Bob

2.24By a protocol, in general human terms, we will mean prearranged etiquette such as under-
stood behavior at a formal dinner party. On the other hand, a cryptographic protocol means
an algorithm, involving two or more entities, using cryptography to achieve a security goal,
which might involve issues of authentication, privacy, and secrecy, all of which we will discuss
in detail later in the text.
2.25See theorem A.1 on page 469 in Appendix A.
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make their first appearance as sender and recipient of messages. These charac-
ters were quickly adopted by the cryptographic community, and were expanded
to include a family of characters, such as Eve, and a host of others whom we
will meet as our horizons broaden in our travels.

As the following diagram illustrates, if Alice wants to send a message to Bob,
she looks up his public key eB in a public data base and encrypts her message
m with it to get eB(m) = c, as ciphertext. If Eve is listening in, she has only
question marks in her head since she does not have access to Bob’s securely
protected private key dB , which is required to decipher the cryptogram. Of
course, for this to work, dB(eB(m)) = m must hold for all messages m, and
it must be impossible (or computationally infeasible) for anyone to decipher m
from eB without knowledge of dB , to which only Bob has access. (Think of
dB as Bob’s trapdoor information (his unique key) for unlocking the encrypting
(one-way) function eB , to recover m. Using the analogy described on page
99, eB(m) is his wall safe, which Alice locked with the message m inside, and
to which only he has the combination (key).) Hence, unlike a symmetric key
cryptosytem, an asymmetric key cryptosystem or PKC, has two distinct keys
for each person, a public one, such as Bob’s eB , which everyone can access, and
a truly private one, such as Bob’s dB , which he and only he knows, and keeps
secure. Hence, we make the distinction between asymmetric-key encryption or
PKC, and secret-key encryption or SKC, as illustrated on page 13 where both
the enciphering and deciphering keys must be kept secret.

Diagram 2.1 A Generic Public-Key Cryptosystem

(I): Encryption

Public Data Base
Bob’s Public Key�eB

Alice: m

EVE

?

�?

Encipher Message−−−−−−−−−−−−−−−−−−−→
eB(m)

Ciphertext:
eB(m) = c

(II): Decryption

Secure Keysource
Bob’s Private Key�dB

Ciphertext: c
Decipher−−−−−−−−−→

dB(c)

Plaintext:
dB(c) = m
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The Secret Development of PKC

Now that we have learned about the pioneering efforts of Diffie, Hellman, and
Merkle in establishing PKC, it is time to remind ourselves that there is always
activity behind the shroud of government agencies involved in cryptology. It
is now public knowledge that the notion of PKC had already been discovered
years earlier by British cryptographers, but not officially released until relatively
recently. In December of 1997, five papers, [58], [76], [77], [281], [292], were
released by the Communications-Electronics Security Group (CESG), which is
the technical authority on official cryptographic applications for the British
Government Communications Headquarters (GCHQ), whose duty is to ensure
information security for their government.

Public-key methodologies were first discovered by the CESG in the early
1970s. We begin by talking about the author of two of the aforementioned
papers, who may be seen as the prime motivator. James H. Ellis (1924–1997)
was born in Australia, but his parents returned to London when he was still a
baby. After graduating from the University of London, he was employed at the
Post Office Research Station at Dollis Hill, whose cryptography section moved to
join the (newly formed) CESG in GCHQ in 1965. There Ellis became a leading
figure in British cryptography. The British government asked Ellis to investigate
the key-distribution problem since management of large amounts of key material
needed for secure communication was problematic for the military. In January
of 1970, Ellis established the fundamental ideas behind public-key cryptography
in [76]. He called his method nonsecret encryption (NSE). Hence, the discovery
of the idea of public-key cryptography predated Diffie, Hellman, and Merkle by
more than a half dozen years. In [77], published (internally) in CESG in 1987,
Ellis describes the history of NSE. In this paper, he says: “The task of writing
this paper has devolved to me because NSE was my idea and I can therefore
describe their developments from personal experience.” Also, in this paper Ellis
cites the 1944 publication [282] (by an unknown author for Bell Laboratories),
which he describes as an ingenious idea for secure conversation over a telephone.
This was his inspiration for NSE. Ellis states, in the aforementioned paper, that
this is how the idea was born, that secure communication was possible if the
recipient took part in the encryption process. At the end of his paper Ellis
concludes that the Diffie-Hellman idea “was the start of public awareness on
this type of cryptography and subsequent rediscovery of the NSE techniques I
have described.” Shortly after his death in 1997, GCHQ/CESG released the five
publications cited above. According to a spokesman for the British government,
the release of the papers was a “pan-governmental drive for openness” by their
Labour party.

Another author of one of the aforementioned papers is the second on the
scene. Clifford Cocks joined CESG in September of 1973, where he became
acquainted with Ellis’s ideas for NSE. He naturally moved to the idea of a one-
way function since he had studied number theory at the University of Cambridge
as a student. Cocks claimed that it took him only a half hour to invent the notion
in [58], dated November 20, 1973, wherein he essentially describes what we now
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call the RSA cryptosystem, with any differences being entirely superficial.
Our last character authored two of the papers under discussion. Malcolm

Williamson joined CESG in September of 1974. He learned from Cocks about
the NSE idea, but found it difficult to believe. By trying to disprove the ex-
istence of NSE, he discovered a notion equivalent to the Diffie-Hellman key-
exchange protocol. This means that the discovery of (a notion equivalent to)
RSA preceded that of (a notion equivalent to) Diffie-Hellman, which is the op-
posite of what occurred in the public domain. In [281], dated January 24, 1974,
Williamson describes what we now call the Diffie-Hellman key-exchange proto-
col, and in [292], dated August 10, 1976, Williamson improved upon the ideas
[281] he put forth in 1974.

In an interview in the the New York Times in December of 1997, Williamson
said that he felt bad knowing that others were taking credit for solutions found
at CESG. However, he concluded that this was just one of the restrictions to
which you agree and accept when you work for a government agency on secrecy
projects. On the other hand, Hellman has said that these things are like stubbing
your toe on a gold nugget left in the forest: “If I’m walking in the forest and stub
my toe on it, who’s to say I deserve credit for discovering it?” Hellman also stated
that he, Diffie, and Merkle were all “working in a vacuum”. He claimed that if
they had had access to the classified documents over the previous three decades,
it would have been a great advantage. Diffie commented that the history of ideas
is hard to write because people find solutions to different problems and later find
out that they have discovered the same thing as someone else. In fact, Diffie did
have meetings with Ellis in 1982, but Ellis never once disclosed his discoveries.
It is up to historians to sort out the details and the claims, but it is certain that
the ideas for public key cryptography were known (in the classified domain)
well in advance of the (publicly acknowledged) efforts of Diffie, Hellman, and
Merkle.

Perhaps the big difference between the CESG discoveries and those in the
public sector is that the individuals at CESG were “government-tied”. In other
words, they were extremely reluctant to develop their ideas since, first it went
against established practice, and second, even though they verified the validity
of public key, they knew it was far too slow compared to symmetric-key methods.
Thus, they never considered the use of hybrid cryptosystems that evolved in the
public domain, since the “cryptographic amateurs” were willing to take their
ideas to the limit, and they did so with amazing success.

After the introduction of the RSA public-key cipher, numerous other PKC
schemes came into being, which we will discuss in later chapters, along with
associated digital signature schemes, and other related schemes that we will
discover in due course. Some of these schemes had false starts and some had
weaknesses that it took years to discover and for attacks to be developed to
which they finally succumbed. One such type of cryptosytem is the knapsack
cryptosystem. In the late 1970s, these cryptosystems came into being with the
work of Merkle and Hellman (see [160]), but this was broken by Shamir (see
[247] and [248]) in the early 1980s. Also, in 1982, a new knapsack public-key
cipher, the Chor-Rivest knapsack cryptosystem, was introduced (see [56] and
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[57]). It took nearly two decades for this one to be broken, but it was cracked
in 2001 by S. Vaudenay (see [285]). It sometimes takes many years for attacks
to be developed so that a given cryptosystem will succumb, and the knapsack
family is a good example. Chor-Rivest was the last-standing secure knapsack
cryptosystem, so now they are chiefly of theoretical interest.

What made all of the above not just possible, but rather a necessity —
that good old mother of invention — was the advent of the Internet. While
information secrecy, as we have seen throughout history, was strictly the purview
of governments and their agents, the Internet, and its associated e-mail, and
e-commerce activities, demanded a mechanism for the ordinary citizen to have
their privacy concerns addressed. We now have personal identification numbers
(PIN)s to identify ourselves to automated teller machines (ATM)s as well as to
engage in banking on secure Web pages, all of which use public-key cryptography
to guarantee that credit cards, banking, and other sensitive personal data travels
securely to the intended target. Few of us actually understand the mechanisms
behind all of these protocols that we use every day (although this book will
foster that understanding), yet cryptography has become everybody’s business,
hence everybody’s concern. Therefore it is almost a personal duty that each of
us learn as much as possible about the underlying mechanisms that affect our
security, our privacy, and therefore our well-being.

Wireless telephones and e-mail traffic are notoriously insecure. Anyone with
minimal technology can “listen in” on electronic and voice conversations. There
are ways to ensure privacy in these matters and we are going to learn about
them.

By the mid-1990s, we had the standardization of digital signature algorithms
such as the Digital Signature Standard (DSS), and Internet cryptographic algo-
rithms for protecting e-commerce, such as Rivest’s RC4 algorithm, and others
about which we will learn the details later. There is much information for us to
process.

The Future

By the time the light of the twenty-first century shone upon us, we had the
new AES, and a promise of outstanding, if not, incredible possibilities for the
future. We will learn all about smart cards, including methods for storing your
medical data in such a fashion that if you were in an accident, the information on
the card could save your life. We will learn about secure methods of protecting
medical data bases, as well. There are numerous levels and types of cards, all
of which will be our tools and we will understand them. As well, there is the
area of biometrics such as fingerprints, eye retina scans, voice patterns, and
facial geometry, that can be used for identification, including fighting terrorism.
All will be ours to understand and appreciate. Then there is the realm of the
fantastic, what has not yet come to pass, but which has the potential to do so.

Quantum cryptography means the possibility of using quantum mechanical
properties of subatomic particles to give us encryption on a scale that, if it
ever came into being, would eliminate all classical symmetric and asymmetric
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cryptosystems as if they were an extinct species of dinosaur. The reason is that
the existence of a true quantum computer could not only outperform classical
computers (for instance, breaking RSA since it could factor integers efficiently!),
but also do things that classical computers cannot do, such as generating truly
random numbers! We would even be on the brink of such phenomena as tele-
portation! We will understand how this has been done already on a subatomic
level. But we will leave this topic for the last chapter of the book. We have a
lot to learn before we get there.

We now have an overview of our history under our belts, a bird’s-eye view
of how we got here crytoplogically. In the next chapter, we begin to learn the
details of all the mechanisms we have talked about to this point. Let us get
started.

Figure 2.23: The Cray XMP
The above image is courtesy of the National Cryptologic Museum. See
http://www.nsa.gov/museum/cray.html where the following caption is given:
“This Cray XMP was donated to the museum by Cray Research, Inc. It de-
notes the newest era of partnership between NSA and the American computer
industry in the employment of computers for cryptologic processes.”



Chapter 3

Symmetric-Key
Cryptography

Nature is a temple, where, from living pillars
confused words are sometimes allowed to escape;
here man passes, through forests of symbols, which
watch him with looks of recognition.

Charles Baudelaire (1821–67), French poet and critic
— translated from Les fleurs du mal (1857), correspondence no. 4

3.1 Block Ciphers and DES

In Chapters 1 and 2 we saw, through the vehicle of historical discourse, a
fair amount of cryptological terminology. We now review and summarize parts
of this as a background to our discussion of block ciphers in general, and DES
in particular.

On page 3, we began to learn about the very basic notions of cryptogra-
phy, and we developed more detailed knowledge as we learned about various
cryptosystems that were developed throughout history. However, the notions
in Chapters 1 and 2 were introductory and informal. Although those concepts
were sufficient to give us a vehicle for understanding the evolution of the subject
of cryptology, we need more. Now we strive for a clearer mathematical picture,
since in the final analysis, as we saw in these chapters, cryptology evolved, and
its modern-day manifestation is deeply rooted in a mathematical framework. If
we wish to have any concrete understanding of cryptology today, we are obliged
to understand its inner mathematical structures. We begin our quest for more
precision by formalizing the definition of cryptosystem given informally on page
4.

The reader unfamiliar with some of the background required may review
Appendix A, which has all the material required to understand what follows.
In particular, the reader unfamiliar with the notions of congruences, modular
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inverses, greatest common divisors, classes, prime factoring and related ideas,
should digress, at this juncture, to review the material presented for them in
order to ease their introduction to the following topics.

First we introduce some preliminary terminology. Both plaintext and cipher-
text are written symbols from some finite set A, called the alphabet of definition,
which may consist of letters from an alphabet such as English, Greek, Hebrew,
or Russian, and may include symbols such as ✃, ➫, �, ✆, ✇, or any symbols
we choose to use to send messages. The message space, which we will denote
by M from now on, is a finite set of strings of symbols from the alphabet of
definition, which we will denote by A henceforth. If m ∈ M, then m is called
a plaintext message unit. The ciphertext space, which we will denote by C in
what follows, consists of strings of symbols from A for the ciphertext. If c ∈ C,
then c is called a ciphertext message unit. The symbol, K called the keyspace,
will be used to denote the set of parameters from which we choose our keys for
a given cryptosystem.

On pages 12 and 13, we introduced the notion of a generic cipher and il-
lustrated the process of encryption and decryption. We also gave an informal
verbal description of the enciphering and deciphering transformations. The
reader needing a refresher of these concepts should review those pages before
proceeding to the following formal definition.

� Ciphers/Cryptosystems
An enciphering transformation (also called an enciphering function or en-

cryption function) is a bijective function

Ee : M→ C

where the key e ∈ K uniquely determines Ee acting upon plaintext message
units m ∈ M to get ciphertext message units Ee(m) = c ∈ C. A deciphering
transformation (also called a deciphering function or decryption function) is
a bijective function determined by a given key d ∈ K, acting upon ciphertext
message units c ∈ C to get plaintext message units Dd(c) = m. The application
of Ee to m, namely, the operation Ee(m), is called enciphering m ∈ M. The
application of Dd to c is called deciphering c ∈ C.

A cryptosystem or cipher consists of a set of enciphering transformations

{Ee : e ∈ K}

and the corresponding set of deciphering transformations

{Dd : d ∈ K} = {E−1
e : e ∈ K}.

In other words, for each e ∈ K, there exists a unique d ∈ K such that Dd = E−1
e ,

with
Dd(Ee(m)) = m for all m ∈M.

The keys (e, d) are called a key pair. The pairs of plaintext symbols and their
ciphertext equivalents:

{(m,Ee(m)) = (m, c) : m ∈M} is called a cipher table.
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A cryptosystem is called symmetric-key (also called single key, one key,
and conventional) if, for each key pair (e, d), it is computationally easy3.1 to
determine d knowing only e and to determine e knowing only d. (Often e = d in
symmetric-key ciphers, adding more justification for the term “symmetric-key”.)

Remark 3.1 We caution the reader that the term “cipher” is not used uni-
formly throughout the literature. We have clarified and set our meaning here
so there is no confusion. Moreover, as discussed on page 6, the term “codes”
was historically blurred with the notion of “cipher”. However, we maintain the
definition of “cryptographic codes” given on page 6 to distinguish them from “ci-
phers” and non-cryptographic codes described therein. Lastly, the term “cipher
table” is sometimes used in the literature and throughout history to mean what
we have defined to be a “cryptosystem”. However, the more precise meaning
we have given to the term “cipher” here makes the context clear, and the term
“cipher table” is also well defined. For instance, cipher Table 1.2 on page 11
for the Caesar cipher is such an example, whereas the description of the enci-
phering and deciphering transformations that make up the Caesar cipher itself
are components of the cryptosystem established in this definition.

In Chapter 1, we encountered the notion of monoalphabetic ciphers (those
with a single-cipher alphabet/key, as we determined therein), with the Caesar
cipher as a worked example. Then we witnessed the evolution of the polyal-
phabetic cipher (those with more than one cipher alphabet), with Trithemius’s
tableau as a vivid example.

With monoalphabetic ciphers, an alteration of one letter in plaintext alters
exactly one letter in ciphertext. This makes the finding of the key by a frequency
analysis of the ciphertext a relatively easy task. In polyalphabetic ciphers, such
as the Vigenère cryptosystem, which we also studied in detail in Chapter 1,
for instance, the use of blocks of letters corresponding to the keylength makes
this more difficult, but still feasible since there is no interaction among the
characters in each block. The following more general type of cryptosystem
avoids these failings by enciphering blocks of many characters simultaneously,
so that changing a symbol in one plaintext block, should (potentially) result in
a corresponding change in all symbols in the corresponding ciphertext block.

We have already encountered an example of a “block cipher” on page 98.
Here we present a formal definition for the sake of completeness and for easy
reference.

� Block Ciphers
A block cipher is cryptosystem that separates the plaintext into strings,

called blocks, of fixed length n ∈ N, called its blocklength, and enciphers one
block at a time.

An example of one of the most basic kinds of block ciphers is the Caesar
cipher discussed on pages 11 and 12. We now look at a class of ciphers of which

3.1A computationally easy problem means one that can be solved in expected polynomial
time (see the section on complexity in Appendix A, especially page 501.)
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the Caesar cipher is a simple example. Before giving the formal definition,
we may think of the following type of cipher as a combination of an additive
modular cipher, such as the Caesar cipher where we add a fixed amount, say,
b, to the plaintext numerical equivalent, m, to get m + b (mod n), for a fixed
modulus n ∈ N; and a multiplicative modular cipher, where we take a plaintext
message unit and multiply it by a fixed amount, say, a, to get ciphertext given
by am (mod n). Each of these values a, b, may be regarded as keys, so that used
in combination we get that the pairs (a, b) make up the keyspace. When we
combine all of this into one cryptosystem, we get the following type of cipher.

� Affine Ciphers
An affine cryptosystem is a symmetric-key block cipher, defined as follows.

Suppose that both the message space M and ciphertext space are both Z/nZ

for some integer n > 1, and let the keyspace be given by

K = {(a, b) : a, b ∈ Z/nZ and gcd(a, n) = 1}.

Then for e, d ∈ K, and m, c ∈ Z/nZ, the enciphering and deciphering transfor-
mations are given, respectively, by the following:

Ee(m) ≡ am+ b (mod n), and Dd(c) ≡ a−1(c− b) (mod n).

The Caesar cipher is the simple application of an affine cipher, where n = 26,
a = 1, and b = 3. Here is a slightly more complicated example.

Example 3.1 Let n = 26, and M = C = Z/26Z. Define an affine cipher via,

Ee(m) ≡ 5m+ 11 ≡ c (mod 26), and Dd(c) ≡ 21(c− 11) (mod 26),

since 21 ≡ 5−1 (mod 26). Now suppose that we are aware of the following cipher-
text having been enciphered with the above cryptosystem (Kerckhoff’s Principle
in action, see page 76).

c = (11, 10, 10, 25, 24, 5, 21, 25, 8, 20, 5, 18, 23, 11, 18, 5, 5, 11, 23, 1).

Then to decipher, we use Dd on each ciphertext message unit. For instance,

Dd(11) ≡ 21(11− 11) ≡ 0 (mod 26), Dd(10) ≡ 21(10− 11) ≡ 5 (mod 26),

and so on, (where the reader can now fill in the blanks), to achieve the plaintext,

m = (0, 5, 5, 8, 13, 4, 2, 8, 15, 7, 4, 17, 18, 0, 17, 4, 4, 0, 18, 24).

Now, if we want the plaintext in English, we go to Table 1.3 on page 11, to get

affine ciphers are easy.



3.1. Block Ciphers and DES 111

Affine ciphers are just special cases of the following, which we informally
encountered on page 8. This can now be put into a well-defined mathematical
notion. The reader unfamiliar with, or in need of a reminder of at least the no-
tation for, the notion of permutations should review page 9 where we introduced
the informal notion therein.

� Substitution Ciphers
A substitution cipher is defined as follows. Let A be an alphabet of definition

consisting of n symbols, and M be the set of all blocks of length r ∈ N over
A. The keyspace, K, consists of all ordered r-tuples e = (σ1, σ2, . . . , σr) of
permutations σj on A. The enciphering and deciphering transformations are
defined by the actions below, respectively. If e ∈ K and m = (m1m2 . . .mr) ∈
M, then

Ee(m) = (σ1(m1), σ2(m2), . . . , σr(mr)) = (c1, c2, . . . , cr) = c ∈ C,

and for d = (d1, d2, . . . , dr) = (σ−1
1 , σ−1

2 , . . . , σ−1
r ) = σ−1,

Dd(c) = (d1(c1), d2(c2), . . . , dr(cr)) = (σ−1
1 (c1), σ−1

2 (c2), . . . , σ−1
r (cr)) = m.

If all the keys are the same, namely, σ1 = σ2 = · · · = σr, then this cryp-
tosystem is called a simple substitution cipher or monoalphabetic substitution
cipher. If the keys differ, we call this cryptosystem a polyalphabetic substitution
cipher.

Thus, we know that the Caesar cipher is an example of a block cipher that
is a monoalphabetic substitution, whereas the Vigenère cipher, studied earlier
(see page 56), is an example of a polyalphabetic substitution.

As we have seen in Chapters 1 and 2, simple substitution ciphers suffer from
the inherent weakness that a frequency analysis can be done on the ciphertext,
whereas polyalphabetic substitution ciphers are more secure than the monoal-
phabetic ones.

When a substitution block cipher replaces one or more symbols by groups of
ciphertext symbols, we call this a polygram substitution cipher. We encountered
one of these already on page 68, namely, the Playfair cipher, which is an exam-
ple of a digraphic cipher. In fact, as we saw therein, this was the first literal
digraphic cipher. Another polygram substitution cipher we have already men-
tioned in our historical travels is the Hill cipher. We now describe this cipher
in detail.

The reader will need a tiny bit of elementary matrix theory, all of which is
supplied in Appendix A (see pages 491–494).

The Hill Cipher
Choose fixed r, n ∈ N and let the keyspace

K = {e ∈Mr×r(Z/nZ) : e is invertible},

and let the message space, M and ciphertext space C, both be (Z/nZ)r. This
stands for r copies of the integers Z/nZ, meaning ordered r-tuples of integers
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modulo n (see Definition A.20 in Appendix A on page 477). Then for m ∈ M,
e ∈ K, c ∈ C, the enciphering transformation is given by

Ee(m) = me = c,

and the deciphering transformation is given by

Dd(c) = cd = ce−1.

Note that

e is invertible, namely, d = e−1 exists if and only if gcd(det(e), n) = 1.

(See Appendix A, page 493.)

The above definition tells us that changing one character of plaintext will
usually change r letters of ciphertext. Hence, frequency analysis of ciphertext
is less effective, especially for large r. However, the Hill cipher succumbs to
known plaintext attacks (see Footnote 2.9 on page 84). Now we illustrate it
with a simple example, which is intended for the uninitiated reader. Merely
revisit pages 491–493 in Appendix A to see the simple methods for two-by-two
matrices illustrated there.

Example 3.2 Let n = 26 and r = 2, so

A = Z/26Z, M = C = (Z/26Z)2,

and K consists of invertible 2 × 2 matrices with entries from Z/26Z. Thus, if
e ∈ K, then gcd(det(e), 26) = 1 (see part (b) of Theorem A.25 on page 493).
For instance, take

e =
(

2 5
3 4

)

for which det(e) = −7. Suppose that we want to encipher the plaintext:

message by matrix.

First we get the numerical equivalents from Table 1.3 on page 11:

12, 4, 18, 18, 0, 6, 4, 1, 24, 12, 0, 19, 17, 8, 23. (3.1)

Thus, we may set

m1 = (12, 4), m2 = (18, 18), m3 = (0, 6), m4 = (4, 1), m5 = (24, 12),

m6 = (0, 19), m7 = (17, 8), and m8 = (23, 25),

where we have used a “z” with numerical value 25 to make up the last ordered
pair m8. Now use the enciphering transformation defined in the Hill Cipher.
(Remember that once we get the entries in the final ciphertext matrix, we have
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to reduce modulo 26, namely, throw away all multiples of 26 until we are left
with a nonnegative numerical value less than 26.)

Ee(m1) = (12, 4)
(

2 5
3 4

)
= (10, 24) = c1,

Ee(m2) = (18, 18)
(

2 5
3 4

)
= (12, 6) = c2,

Ee(m3) = (0, 6)
(

2 5
3 4

)
= (18, 24) = c3,

Ee(m4) = (4, 1)
(

2 5
3 4

)
= (11, 24) = c4,

Ee(m5) = (24, 12)
(

2 5
3 4

)
= (6, 12) = c5,

Ee(m6) = (0, 19)
(

2 5
3 4

)
= (5, 24) = c6,

Ee(m7) = (17, 8)
(

2 5
3 4

)
= (6, 13) = c7,

and

Ee(m8) = (23, 25)
(

2 5
3 4

)
= (17, 7) = c8.

Now we use Table 1.3 to get the ciphertext letter equivalents and send

KYMGSYLYGMFYGNRH.

as the cryptogram. Now we show how decryption works. Once the cryptogram
is received, we must calculate the inverse of e, which is

e−1 = d =
(

18 23
19 22

)
.

To see why this is the case, see Example A.12 on page 493 in Appendix A, and
note that the multiplicative inverse of

det(e) = −7

modulo 26 is given by
(−7)−1 ≡ 11 (mod 26),

from Example A.5 on page 478 in Appendix A. Now apply the deciphering trans-
formation to the numerical equivalents of the ciphertext as follows:

Dd(c1) = De−1(10, 24) = (10, 24)
(

18 23
19 22

)
= (12, 4) = m1,

Dd(c2) = De−1(12, 6) = (12, 6)
(

18 23
19 22

)
= (18, 18) = m2,

and so on until we achieve the original plaintext numerical equivalents. The
letter equivalents now give us back the original plaintext message via Table 1.3.
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On page 9, we looked at the concept of transposition/permutation ciphers.
We can now formalize this definition as well. First, as an introductory mecha-
nism, think of the following type of cipher as one in which the characters of the
plaintext are reordered according to some agreed-upon procedure by, say, Al-
ice and Bob, who are corresponding with one another (securely). For instance,
as we saw on page 9, the skytale is an historical example of such a cipher.
A modern-day example is in most local newspapers, namely, an anagram puz-
zle, which is a meaningful rearrangement of an already meaningful plaintext.
The clear conclusion, from the fact that these are solved on a regular basis by
ordinary readers, is that these kinds of ciphers are easily cryptanalyzed.

To informally introduce the notion of a “permutation” f on a set S =
{1, 2, . . . , r}, we may think of f as a bijective function from S to itself. A naive
question that arises is: How many such permutations are there? We see that
for the first element 1, of S there are r choices to which it can be mapped, and
for the second choice, 2, there remain r − 1 choices to which it can be mapped
(since we cannot map the first element to more than one element given that f
is a function), and similarly for the third element, 3, there are r− 2 elements to
which we can map it, and so on. Hence, the total number of such permutations
is r!. This explains the cardinality of the keyspace below.

� Permutation/Transposition Ciphers
A simple transposition cipher or simple permutation cipher is a symmetric-

key block cryptosystem having blocklength r ∈ N, with keyspace K being the
set of permutations on {1, 2, . . . , r}. The enciphering and deciphering transfor-
mations are given as follows, respectively:

For each m = (m1,m2, . . . ,mr) ∈M, and e ∈ K,

Ee(m) = (me(1),me(2), . . . ,me(r)),

and for each c = (c1, c2, . . . , cr) ∈ C,

Dd(c) = De−1(c) = (cd(1), cd(2), . . . , cd(r)).

In the above, notice that e implicitly defines r since e is a permutation on
r symbols. Moreover, in such cryptosystems, the cardinality |K| = r!. The
following is a simple, perhaps amusing, illustration of how such permutation
ciphers work in transposing the places where the plaintext letters sit.

Example 3.3 Suppose that r = 13 and M = C = Z/26Z. We apply the key

e =
(

1 2 3 4 5 6 7 8 9 10 11 12 13
9 12 6 13 1 7 4 10 2 3 11 5 8

)

to the plaintext,

m = (m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13) =

(b, r, i, t, n, e, y, s, p, e, a, r, s),
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to get

Ee(m) = (me(1),me(2),me(3),me(4),me(5),me(6),me(7),me(8),me(9),me(10),

me(11),me(12),me(13)) =

(m9,m12,m6,m13,m1,m7,m4,m10,m2,m3,m11,m5,m8) =

(P,R,E, S,B, Y, T,E,R, I, A,N, S).

On pages 45 and 46, we learned that Qalqashandi was the first to introduce
the intermingled use of substitution and transposition in a single cipher. In a
more modern-day setting, we saw how such a combination of substitution and
transposition was used in the World War II ADFGVX field cipher, whose use
is illustrated on page 80. Even closer to the modern day is the DES cipher,
which employs some of the best combinations of transposition and substitution.
Although we mentioned DES on page 98, we gave no indication of how this
block cipher works. It is now time to learn about this cryptosystem in detail.
Although this cryptosystem is no longer used as the standard, the fact that this
block cipher ruled the roost for about a quarter century makes it deserving of
a closer look, if for no other reason than historical, in keeping with Chapters 1
and 2. Moreover, certain stronger ciphers derived from it are still valid and in
use.

DES is a symmetric-key block cipher, encrypting octograms of bytes3.2 with
a key based on a permutation, then sixteen substitutions followed by another
permutation. This is another way of saying that DES enciphers 64-bit blocks of
plaintext to produce 64-bit blocks of ciphertext, using the same key for encryp-
tion and decryption, a key that is based on a combination of substitution and
permutation techniques. However, in the interests of ease of presentation, we
are going to illustrate DES in a simplified form introduced by Ed Schaefer [232]
in 1996. This version uses only 8-bit plaintext and 10-bit keys to produce 8-bit
ciphertext, not secure, but pedagogically more satisfying for our purposes. (For
a complete description of the entire DES algorithm, see [169, pages 86–99].) We
look at each component of DES and build the edifice until the final construction
of the cryptosystem, dubbed S-DES.

3.2A byte is an 8-bit binary integer, see Footnote 2.7 on page 84. Therefore, an octogram of
bytes is a collection of eight bytes, or a block consisting of a 64-bit integer. In what follows,
we will suppress base-integer subscripts. For example, (110)2 will be written as (110) with
the context understood.
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3.2 S-DES and DES

Pass then through this moment of time in harmony with nature, and end
your journey in content, as an olive falls when it is ripe, blessing nature who
produced it, and thanking the tree on which it grew.

Marcus Aurelius (121–180 AD), Roman philosopher and emperor
— from Marcus Aurelius and His Times (see [11, page 43]).

We begin with an informal overview to describe the mechanisms behind S-
DES, which is a simplified version of DES, presented for pedagogical purposes.
Although DES reached the end of its cryptographic usefulness by the beginning
of the twenty-first century, it is valuable to look at its design and implementation
in order to understand how it stood the test for roughly a quarter century before
the cryptanalytic onslaught brought on by new mathematical and computational
power caused it to fall from grace.

� Overview of S-DES

As with any cipher, the encryption function takes the plaintext m and the
key k as input. For S-DES, m has bitlength 8 and k has bitlength 10.

First, m is put through what is called an initial permutation IP, followed by
two rounds of the same function (described below), which uses both permutation
and substitution in its execution, the first round followed by a swap of the left
and right 4 bits of the output. The 8-bit output of round two is put through
the inverse permutation IP−1 to form the 8-bit ciphertext.

Each round of S-DES is described as follows. The 8-bit input is split into
left and right 4-bit blocks, L and R. Then there is an expansion of R to 8 bits
via an expansion permutation E, to get E(R). The 8-bit result, E(R), is added
modulo 2, denoted by ⊕, to an 8-bit subkey SK, generated from k in a separate
S-DES key generation stage; see Footnote 2.8 on page 84 for a motivation of
the use of ⊕ with the one-time pad.3.3 The resulting 8-bit output E(R) ⊕ SK
is separated into left and right 4-bit strings, L1 and R1, which are fed into two
separate substitution boxes, S1 and S2, respectively, called S-boxes (described
in detail below), which are publicly known lookup tables that take 4-bit inputs
and output 2-bit strings, L′1 and L′2. The resulting 4-bit string, (L′1, L

′
2), is

put through a permutation P, to produce a 4-bit output Z. Last, Z is added
modulo 2 with L to form L′, and (L′, R) is the output of the round.

All of the above is illustrated in Diagram 3.1, which is a single round of the
S-DES cipher. Then, before giving a detailed description of S-DES that will
extrapolate the above to a full explanation of all the detailed features of the
(simplified) cipher, we look at the motivations behind the design of DES itself.

3.3For the reader needing a reminder, see the detailed treatment of modular arithmetic
on pages 475–478 in Appendix A. We also had a brief elementary introduction to modular
arithmetic on page 12. As mentioned in Footnote 2.8, addition modulo 2 is often called
XORing in the computer science community since addition modulo 2 is bit by bit exclusive
or addition.
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Diagram 3.1 An S-DES Round

E −−−−→
E(R)

SK

�
⊕ −−−−−−→

E(R)⊕SK

↗
↘

L1−−−−→
R1−−−−→

S1

S2

L′
1−−−−→

L′
2−−−−→ (L′1, L

′
2)

R

�
�

INPUT
L−−−−−−−−−−−−−−→ ⊕ Z←−−−−−−−−−−−−−−−− P

�
R R−−−−−−−−−−−−−−→

L′
�

(L′, R) −−−−→ OUTPUT

� DES Design Principles
In a 1994 publication, [60], Coppersmith described the criteria used in the

design of DES. The focus is principally upon the design of the S-Boxes and
the permutation function that processes their outputs. There is an interesting
story behind this publication and what led up to it. Almost twenty years before
Coppersmith decided (or rather was allowed), to publish this knowledge, it was
known that IBM researchers had discovered an attack on DES, later known as
differential cryptanalysis (see Footnote 3.4 on page 127). This was, let us say,
not met with great joy by the NSA, since they had known about it for some
time and it was classified information. Moreover, added to this lack of joy at
NSA was the fact that IBM researchers had discovered methods for thwarting
the attack. Hence, the NSA went out of its way to sanction IBM and classify
the IBM discoveries. Not only was this attack a powerful tool against DES,
but also many other ciphers, and the NSA did not want this information to be
leaked. Coppersmith was one of the IBM researchers who worked on the meth-
ods for combating the attack. The compliance by IBM to the NSA demands for
secrecy only contributed to the speculation about potential secret back doors
through which NSA could cryptanalyze the DES cryptosystem. This is part of
the background to the controversy we discussed on page 98, which led to investi-
gations mentioned therein. Ultimately, the information became public through
independent discoveries, and as we have seen, the governmental agencies, such
as NSA, could no longer control the flow of information. The advent of the In-
ternet, public-key cryptography, and all the interrelated activities in the public
domain saw to that.

One important aspect of block ciphers, especially DES, that requires eluci-
dation is the notion of linearity. A linear cipher is one for which each output
bit is a linear combination of the input bits. An example of such a cipher is the
Hill cipher discussed on pages 111–113. The Hill cipher is easily broken with
a known-plaintext attack. The reason is that since a key matrix e acts upon
a plaintext matrix m to produce a ciphertext matrix c via c = me, then this
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can be analyzed in such a fashion that ultimately an inverse matrix m−1 can be
found, so that

e = m−1c

and the key is recovered.
The only non-linear aspect of DES are the S-Boxes. Hence, an inherent

design of DES stipulates that no output bit of an S-Box can be a linear function
of the input bits. If they were, then the entire cryptosystem would be linear
and could be broken with a known-plaintext attack.

Now we list the principles that were revealed by Coppersmith in his article,
which concentrated upon the S-Boxes and their output. Thus, ensuring non-
linearity was the key to ensuring that the cryptosystem could not easily be
broken.

1. Linearity in the S-Box construction must be avoided. In other words, no
bit output by an S-Box is allowed to be anywhere near a linear function
of the input bits.

2. Each row of an S-Box should include all possible output bit combinations.

3. If two inputs to an S-Box differ in precisely one bit, or by exactly two middle
bits, then the outputs must differ in a minimum of two bits.

4. If two inputs to an S-Box differ in their first two bits, but have identical
last two bits, the two outputs must be distinct.

5. There are other criteria such as 2–4, which were designed to thwart differ-
ential cryptanalysis, and pertain primarily to the permutations that take
the outputs of the S-Boxes. Since these criteria are very technical, we do
not go into the details for the sake of efficiency. The reader may consult
Coppersmith’s paper [60] directly for the specifics, if necessary.

Now, we are ready for a detailed description of S-DES. First, recall our dis-
cussion and notation for permutations given on page 8, and the follow-up given
in the preceding section. The enciphering and deciphering in S-DES requires
several basic components. We begin with two of them that are permutations.

� Initial Permutation

Let m = (m1m2m3m4m5m6m7m8) be the byte of plaintext input. Then the
initial permutation IP acts according to the following transposition of places
where the plaintext sits, namely, IP retains all the plaintext bits, but merely
permutes them according to the rule given below.

IP
j 1 2 3 4 5 6 7 8

IP(j) 2 6 3 1 4 8 5 7
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Therefore, the action of IP on x is given in the following.

IP
j 1 2 3 4 5 6 7 8

mIP(j) m2 m6 m3 m1 m4 m8 m5 m7

Hence, IP(m) = (m2m6m3m1m4m8m5m7). For instance, if m =
(10010111), then IP(m) = (01011101).

The next component is also a permutation used at various stages of S-DES.

� Expansion Permutation

This permutation, denoted by EP, takes a bitstring (binary number) of
length 4 (its bitlength), and expands it into a byte according to the following.

EP
j 1 2 3 4 5 6 7 8

EP(j) 4 1 2 3 2 3 4 1

For instance, if x = (x1x2x3x4) is the input, then the following table gives
us the action of EP on it.

EP
j 1 2 3 4 5 6 7 8

xEP (j) x4 x1 x2 x3 x2 x3 x4 x1

Hence, EP(x) = (x4x1x2x3x2x3x4x1). For example, if x = (1001), then
EP(x) = (11000011).

A very important aspect of S-DES is the key schedule. In other words, we
need to understand how the keys are used and generated in the cipher.

� S-DES Key Generation

S-DES uses a 10-bit secret (shared) symmetric key

k = (e1e2e3e4e5e6e7e8e9e10),

say, and employs k to generate two 8-bit (sub)keys for deployment at various
stages of the encryption and decryption process. Here is how that is accom-
plished.

First, a permutation P10 is applied to k according to the following.

P10

j 1 2 3 4 5 6 7 8 9 10
P10(j) 3 5 2 7 4 10 1 9 8 6
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Thus, P10(k) = (e3e5e2e7e4e10e1e9e8e6).
Secondly, there is a circular left shift of 1 place, denoted by LS1, on each

of the left five bits and the right five bits, as follows. LS1(e3e5e2e7e4) =
(e5e2e7e4e3), and LS1(e10e1e9e8e6) = (e1e9e8e6e10). Hence, under this shifting
process, (e3e5e2e7e4e10e1e9e8e6) becomes

(e5e2e7e4e3e1e9e8e6e10). (3.2)

Then we apply yet another permutation called P8, which selects 8 of the 10
bits and permutes them as follows.

P8

j 1 2 3 4 5 6 7 8
P8(j) 6 3 7 4 8 5 10 9

Applying P8 to (3.2) yields

P8(e5e2e7e4e3e1e9e8e6e10) = (e1e7e9e4e8e3e10e6) = k1,

where k1 is now our first subkey for use later.
Now, we return to (3.2) and perform a left shift of two places, denoted by

LS2, on both the left and right 5-bit pieces to get

LS2(e5e2e7e4e3) = (e7e4e3e5e2), and LS2(e1e9e8e6e10) = (e8e6e10e1e9),

yielding (e7e4e3e5e2e8e6e10e1e9) to which we apply P8 to get

P8(e7e4e3e5e2e8e6e10e1e9) = (e8e3e6e5e10e2e9e1) = k2,

where k2 is our second subkey for use in the S-DES cipher.

The next essential component of the S-DES cryptosystem is an important
method of substitution, and an innovation of Feistel in his development of the
original DES. (However, it is believed, in some quarters, that Feistel got the
idea from the NSA; see [151, page 42]).

� S-Boxes
An S-Box or substitution box for S-DES is a 4× 4 matrix with entries from

Z/4Z (put into binary) with rows and columns labelled from 0 to 3 (put into
binary), that takes a 4-bit input and outputs a 2-bit string as follows.

If (x1x2x3x4) is the input, then the output is given by one of the two S-Boxes
used in S-DES, defined as follows.

S0 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 01 00 11 10
0 1 11 10 01 00
1 0 00 10 01 11
1 1 11 01 11 10

and

S1 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 00 01 10 11
0 1 10 00 01 11
1 0 11 00 01 00
1 1 10 01 00 11
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Thus, for example if x = (x1x2x3x4) = (1101) is our input bitstring of
length 4, then if we wish to employ the first S-Box, we get S0(1101) = (11),
since (x1x4) = (11) represents the fourth row, and (x2x3) = (10) represents the
third column, the entry at the intersection of which is 11. Similarly, if we want
to use the S-Box S1, then S1(1101) = (00).

Perhaps the most complicated part of S-DES is the function that does the
combining of permutation and substitution.

� The S-DES Round Function

First, we need to describe a mapping F that takes bitstrings of length 4
using a subkey SK, and outputs bitstrings of length 4.

Let x = (x1x2x3x4) be the input. Then F first uses the expansion EP to
produce EP(x), as described on page 119. Then this 8-bit result is added to the
subkey SK, modulo 2. Recall that addition modulo 2 is denoted by ⊕. Thus,
this result is denoted by EP(x) ⊕ SK = (y1y2y3y4y5y6y7y8) = y. For the sake
of convenience, we will denote the left four bits of a given byte, such as y, by

L(y) = (y1y2y3y4) and the right four bits by R(y) = (y5y6y7y8).

The next action of F is to feed L(y) into S0 to produce S0(L(y)) = (z1z2), and
feed R(y) into S1 to get S1(R(y)) = (z3z4). Thus, under this action y gets
sent to (S0(L(y))S1(R(y))) = (z1z2z3z4) = z. Next, we apply the following
permutation to z.

P4

j 1 2 3 4
P4(j) 2 4 3 1

Therefore, we get P4(z) = (z2z4z3z1) = Z, which is the final outcome for F ,
namely, F (x, SK) = Z.

Now, the definition of the round function, denoted by fSK , which takes an
8-bit plaintext t and a subkey SK, is given as follows.

fSK(t) = (L(t)⊕ F (R(t), SK),R(t)).

Thus, the round function only alters L(t), the left four bits of t, leaving R(t)
unaltered. However, there is a reason for fSK being called a round function,
since there are two rounds. The next mechanism, the penultimate one, is a
means of swapping left and right bits.

� The Switch/Swap Function

The switch function, denoted by SW, merely exchanges the left and right
four bits of an input m. Hence, if m = (L(m),R(m)) is an 8-bit input, then

SW(m) = (R(m),L(m)).
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The last aspect of S-DES is the inverse of the initial permutation.

� The Inverse of IP

The inverse of IP, naturally denoted by IP−1, is given by the following.

IP−1

j 1 2 3 4 5 6 7 8
IP−1(j) 4 1 3 5 7 2 8 6

An easy means for finding the inverse of any permutation is as follows. Take
the table for IP on page 118, for instance. To find the inverse, just read off in
numeric order (determined by the second row), the terms in the first row. For
instance, the term in the first row sitting above 1, in the aforementioned table
for IP, is 4, so 4 is the first term in the table for IP−1. The term in the first
row sitting above 2 is 1, so 1 is the second entry in the table for IP−1, and so
on, to construct the above. Note that the reason for the above to work is that
IP(IP−1(j)) = j for all j under consideration. So since IP takes 1 to 2, then
IP−1 must take 2 to 1, and so forth. (See Definition A.5 on page 467.)

Now, we are in a position to describe the totality of the S-DES cipher.

� The S-DES Cryptosystem

Given a 10-bit key k and an 8-bit plaintext m, to encipher, we execute the
following.

� S-DES Encryption

1. Apply IP to m.

2. Apply fk1 to the output from step 1. (This is round 1.)

3. Apply SW to the output of step 2.

4. Apply fk2 to the output of step 3. (This is round 2.)

5. Apply IP−1 to the output of step 4.

Hence, the plaintext 8-bit message unit m gets sent to the 8-bit ciphertext
message unit c, the output of step 5, under this sequence of steps of the S-DES
cipher. To decrypt, we perform the following.

� S-DES Decryption

1. Apply IP to c.

2. Apply fk2 to the output from step 1. (This is round 1.)

3. Apply SW to the output of step 2.
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4. Apply fk1 to the output of step 3. (This is round 2.)

5. Apply IP−1 to the output of step 4.

The following is derived from Ed Schaefer, the creator of S-DES, [232].

Example 3.4 Suppose we are given plaintext bitstring m = (10100101) and key
bitstring k = (0010010111). First we generate our subkeys as follows.

1. P10(k) = 1000010111.

2. LS1(10000) = (00001) and LS1(10111) = (01111).

3. P8(0000101111) = (00101111) = k1.

4. LS2(00001) = (00100) and LS2(01111) = (11101), (applying LS2 to the
output of step 2.)

5. P8(0010011101) = (11101010) = k2, (applying P8 to the output of step 4.).

Now we encrypt as follows. First we calculate IP(m) = (01110100). Then
we need to calculate the round function for the first round fk1(01110100) =
(L(01110100)⊕ F (R(01110100), k1),R(01110100)). We do this as follows.

1. EP(0100) = (00101000).

2. EP(0100)⊕ k1 = (00101000)⊕ (00101111) = (00000111).

3. S0(0000) = (01) and S1(0111) = (11).

4. P4(0111) = (1110) = F (R(01110100), k1).

5. L(01110100)⊕ F (R(01110100), k1) = (0111)⊕ (1110) = (1001).

6. fk1(01110100) = (10010100).

Now we apply the switch function, SW(10010100) = (01001001). The reader
may now verify the second round, namely,

fk2(01001001) = (L(01001001)⊕F (R(01001001), k2),R(01001001)) = (01101001).

Last, we apply the inverse of the initial permutation, IP−1(01101001) =
(00110110), which is the ciphertext.

To decrypt, we reverse the process. First feed c into IP to get

IP(c) = (01101001),

then apply fk2 to get (with the reader filling in the details),

fk2(0110⊕ F (1001, k2), 1001) = (01001001).

Then SW(01001001) = (10010100). Next,

fk1(1001⊕ F (0100, k1), 0100) = (01110100),

then the final application yields the original plaintext, IP−1(01110100) =
(10100101) = m.
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Diagrams 3.2 and 3.3 give a succinct presentation of S-DES.

Diagram 3.2 The S-DES Encryption Flow Chart

input: m = (m1m2m3m4m5m6m7m8)
�
IP�

m2m6m3m1 m4m8m5m7�
�

✄

✂

�

✁
+ ← F (m4m8m5m7, k1)

�
↘ ↙
u1u2u3u4 m4m8m5m7

↘ ↙
SW�

m4m8m5m7 u1u2u3u4�
�

✄

✂

�

✁
+ ← F (u1u2u3u4, k2)

�
↘ ↙
v1v2v3v4 u1u2u3u4�

IP−1

�
output: c = (c1c2c3c4c5c6c7c8)

The action between IP and SW is round 1, namely, the execution of fk1 ,
and the action between SW and IP−1 is round 2, the action of fk2 .
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Diagram 3.3 The S-DES Decryption Flow Chart

input: c = (c1c2c3c4c5c6c7c8)

�
IP�

c2c6c3c1 c4c8c5c7
� ↘

✄

✂

�

✁
+ ← F (c4c8c5c7, k1)

�
↘ ↙
m4m8m5m7 c4c8c5c7

↘ ↙
SW�

c4c8c5c7 m4m8m5m7

�
�

✄

✂

�

✁
+ ← F (m4m8m5m7, k1)

�
↘ ↙

m2m6m3m1 m4m8m5m7

�
IP−1

�
output: m = (m1m2m3m4m5m6m7m8)
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� Analysis of S-DES and Comparison to DES

Schaefer relabeled S-DES as baby DES since it is a much simpler block cipher
than the full-blown DES. S-DES will encipher one block at a time and there are
28 possible plaintext blocks since we are dealing with 8-bit plaintext bitstrings.
In terms of composition of functions, all of the above discussion of S-DES can
be encapsulated in the following (see Definition A.5 on page 467 in Appendix
A).

(IP−1 ◦ fk2 ◦ SW ◦ fk1 ◦ IP)(m) = IP−1(fk2(SW(fk1(IP(m)))) = c.

Full DES takes 64-bit plaintext blocks, a 56-bit key, from which sixteen 48-bit
subkeys are generated, and sixteen round functions, which we will label fkj

for
j = 1, 2, . . . , 16. Hence, we may specify (full) DES now as a single composition
of functions.

(IP−1 ◦ fk16 ◦ SW ◦ fk15 ◦ SW ◦ · · · ◦ fk1 ◦ IP)(m) = c.

Moreover, in DES, we have eight S-Boxes Sj for j = 1, 2, . . . , 8, each having 4
rows and 16 columns, where

Sj(m1m2m3m4m5m6)

picks out the entry in row (m1m6) and column (m2m3m4m5), which represents
16 possible entries, in binary, for each such row. Also, P4 in S-DES, is replaced
by P32 in DES, which is half the bitlength of the input in either case.

One of the weaknesses of DES that makes it unsuitable for use, and ranks it
as below standard for the modern day are its weak keys, which are keys k such
that

Ek(Ek(m)) = m for all m ∈M.

DES has four of these as follows, where an exponent means the repetition of
that bitstring the number of times the exponent dictates.

k ∈ {(028, 028), (128, 128), (028, 128), (128, 028) ∈ Z
28 × Z

28}.

With these keys, encryption is the same function as decryption, so these keys
must be avoided. There are also semiweak keys, which are key pairs (k1, k2)
such that

Ek1(Ek2(m)) = m for all ∈M.

There are six of them. They are listed as follows:

((01)14(01)14, (10)14(10)14),

((01)14(10)14, (10)14(01)14),

((01)14(0)28, (10)14(0)28),

((01)14(1)28, (10)14(1)28),
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((0)28(01)14, (0)28(10)14),

and
((1)28(01)14, (1)28(10)14).

Each of these 56-bit key pairs will encipher plaintext to identical ciphertext. In
other words, one key in the pair can decipher messages enciphered with the other
key in the pair. Hence, these key pairs generate only two different subkeys, each
of which is used eight times in the DES algorithm. They have to be avoided.

Another weakness of DES is the complementation property, described as
follows. Let c(k) denote the bitwise complementation of an input key k in
DES. In other words, replace all 0’s with 1’s and all 1’s with 0’s. DES satisfies
the following, which the reader may verify by trying this complementation on
Diagram 3.1 on page 117.

DES Complementation Property

Ec(k)(c(m)) = c(Ek(m)).

In plain words, if one enciphers the complement of the plaintext with
the complement of the key (the left side of the equation), then one
gets the complement of the original ciphertext (the right side of the
equation).

This says that complementation of the plaintext yields complementation in
the ciphertext, and this means that a chosen-plaintext attack3.4 against DES
only has to test half of the keyspace of 256 keys, namely, 255 of them.

As mentioned in Chapter 2 (see page 98), DES reached the end of its abil-
ity to deliver as a secure cryptosystem by the end of the twentieth century,
and, of course, S-DES is a a weaker version intended only to display the basic
principles behind its construction. In Section 3.5, we study its successor, the
Advanced Encryption Standard (AES). For now, we need to look more deeply
into the design principles underlying DES since they are important from several
perspectives for an understanding of symmetric-key block ciphers.

� Feistel Ciphers
A Feistel cipher is a block cipher that inputs a plaintext pair (L0, R0), where

both halves L0 and R0 have bitlength b ∈ N and outputs a ciphertext pair
(Rr, Lr), where Rr and Lr have bitlength b ∈ N for each r ∈ N, according
to an iterative process, making it what is called an iterated block cipher. A

3.4A chosen-plaintext attack means that a cryptanalyst chooses plaintext, is then given the
corresponding ciphertext, and analyzes the data to determine the encryption key. One of the
best-known chosen plaintext attacks against iterated block ciphers is differential cryptanalysis
(DC). The original idea was developed by Murphy [175] in 1990, as an attack on another block
cipher. It was improved and perfected by Biham and Shamir [23] and [24] in 1993, who used it
to attack DES. DC involves the comparisons of pairs of plaintext with pairs of ciphertext, the
task being to concentrate on ciphertext pairs whose plaintext pairs have certain “differences”.
Some of these differences have a high probability of reappearing in the ciphertext pairs. Those
which do are called “characteristics”, which DC uses to assign probabilities to the possible
keys, with an end-goal being the location of the most probable key.
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key k is input and subkeys kj for j = 1, 2, . . . , r are generated from it via a
specified key schedule. Generally, kj �= ki for j �= i, and k �= kj for any j. A
function F , called a round function (iterated over r rounds, all of which have
the same construction, described below), acts on plaintext pairs (Rj−1, kj) for
j = 1, 2, . . . , r in a prescribed fashion, in concert with a switching function. The
ciphertext output is (Lj , Rj), where Lj = Rj−1 and

Rj = Lj−1 ⊕ f(Rj−1, kj). (3.3)

In other words, if
(L0, R0) = (R−1, R0)

is the initial input plaintext, then for rounds j = 1, 2, . . . , r+ 1, (Lj−1, Rj−1) =
(Rj−2, Rj−1) is input and

(Lj , Rj) = (Rj−1, Lj−1 ⊕ f(Rj−1, kj)) (3.4)

is output.
The methodology prescribed for each round is that a substitution is executed

on the left-hand data, from the previous round, via the action in the right-hand
side of (3.3), to yield

(Lj−1 ⊕ f(Rj−1, kj), Rj−1). (3.5)

This is followed by a permutation yielding (3.4), which essentially results from
a swap of the two halves of the data in (3.5). This process turns out to be
a configuration of a methodology called the substitution-permutation network
(SPN) put forth by Shannon, [250], about whom we will say more below.

The above Feistel encryption is essentially the same algorithm as the de-
ciphering scheme. To decipher, one inputs the ciphertext, with the use of the
subkeys in the reverse order. Hence, we have a nice feature for implementation in
that essentially the same algorithm is used for both encryption and decryption.

We now look at some design features of Feistel ciphers. We outline only the
barest of statements about each principle, which we will expand in the section
immediately following this list.

� Feistel Design Principles

1. Block Size: A large blocklength is chosen for increased security, with
a 64-bit blocklength having been common, but blocklengths of 128 bits
or more, becoming standard due to modern demands stemming from in-
creased cryptanalytic developments.

2. Keylength: When first developed, a 64-bit keylength was used, but, as
we have seen, this has not survived the cryptanalytic onslaught. Now
typically 128-bit keylengths are becoming standard.

3. Rounds and Round Functions: More rounds mean more security, with
typically sixteen rounds being most common. A round function with in-
creased complexity adds to the security.
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4. Subkeys: Generation of subkeys from an input key during the operation
of the algorithm aids in thwarting cryptanalysis.

S-DES and DES are examples of Feistel ciphers (with the only deviation
from the above being that DES and S-DES begin and end with permutations).
S-DES has a round function given above with r = 2, and subkey generation
described in the above key schedule. DES is a Feistel cipher with r = 16.

Now we are in a position to explain the intimate details of just how the
substitutions and permutations are used in Feistel ciphers in general, and DES
in particular.

� Confusion and Diffusion

DES is basically a block cipher combining fundamental cryptographic tech-
niques, confusion and diffusion. Confusion obscures the relationship between
the plaintext and the ciphertext, which thwarts a cryptanalyst’s attempts to
study the ciphertext by looking for redundancies and statistical patterns. The
best way to cause confusion is through the use of a complex substitution algo-
rithm. (Note that a simple linear substitution such as some we have studied
earlier, would add negligible confusion. It is necessary to have a deeply complex
substitution algorithm in order to cause confusion.)

Diffusion dissipates the redundancy of the plaintext by spreading it over
the ciphertext, which frustrates a cryptanalyst’s attempts to search for redun-
dancies in the plaintext through observations of the ciphertext. The simplest
manner in which we can cause diffusion in a binary block cipher is through re-
peatedly performing a permutation on the data followed by the application of
a function to that permutation. This results in bits from different positions in
the plaintext contributing to the same position in the ciphertext. Since DES in-
volves an initial permutation followed by sixteen rounds of substitution, then a
final permutation, DES essentially employs a sequence of confusion and diffusion
techniques.

In 1949, Shannon published [250] in which the terms “confusion” and “dif-
fusion” were introduced. His idea was to thwart frequency analysis by cryptan-
alysts, such as those we have studied in Chapters 1 and 2. We will learn more
about Shannon later; see Section 11.1, pages 425–426.

The plaintext block size in DES of a 64-bit key input (reduced to 56-bit in
the algorithm, since eight of the bits are parity check bits that are discarded)
proved to be insecure for modern purposes. The new AES, which we will study
in Section 3.5, has a 128-bit keylength, which is common in much of modern-day
cryptosystems. (Many of us will see at the bottom of our browsers, when logging
into a secure Web site such as online banking, something akin to “connection
secure — RC4: 128-bit encrypted.” This is referring to Rivest’s secure 128-bit
RC4 cipher, a “stream” cipher, which we will study in Section 3.7.) The greater
the number of rounds in a Feistel cipher, the greater the security. Today, sixteen
rounds is typical. Of course, the greater the complexity of the round function,
the greater the difficulty for a cryptanalyst à la Shannon [250]. In fact, Shannon
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laid down commandments in the 1940s for secure symmetric-key cryptosystems.
He first echoed Kerchoff’s Principle (see page 76). Furthermore, he stipulated
that any secure cipher must include both confusion and diffusion techniques, as
does DES, for instance.

Let us now review classical ciphers in this light. Monolaphabetic substitution
ciphers fail Shannon’s criterion on both counts since no confusion or diffusion
exists, given that all plaintext symbols are sent to the same ciphertext symbols
and there is no transposition. With polyalphabetic substitution ciphers such as
Vigenère, there is the use of confusion, since plaintext letters do not go to the
same ciphertext letters, but they fail at diffusion since there is no transposition.
Transposition ciphers use diffusion by definition but confusion is not necessarily
employed, certainly not often effectively if it is. Now, we return to to DES.

� Double DES
One may strengthen DES by multiple encryptions (which means the applica-

tion of the encryption algorithm several times, in the same fashion as we would
compose functions numerous times). For instance, there is double DES wherein
we have two keys k1 and k2 so that encryption is given by

Ek2 ◦ Ek1(m) = Ek2(Ek1(m)) = c for any m ∈M,

and decrypt via
m = Dk1(Dk2(c)) = Dk1 ◦Dk2(c).

On the surface, it would seem that the ostensible keylength in the double DES
scheme involves 2 × 56 = 112 bits, which would be a significant increase in
security over DES. However, reality has a way of interfering with expectations.
Double DES has only a 56-bit keylength security level (which makes it only neg-
ligibly better in use than the original DES, which has 55-bit keylength security
due to the complementation property described on page 127). This weakness
of double DES was proved by Merkle and Hellman [161] in 1981. They show
that the security is reduced from 112 bits to 56 bits by making use of the meet-
in-the-middle attack, which we now describe in the interest of completeness.
Moreover, this form of attack is closely related to another attack (called the
“birthday attack”, which we will study in Section 7.1).

The meet-in-the-middle attack was introduced in 1977 by Diffie and Hellman
[70]. It is based upon the following simple observation. Since

Ek2(Ek1(m)) = c, then Dk2(c) = Ek1(m),

given that Dk2 ◦Ek2 is the identity function, by definition. The way the attack
works is that we are given a known plaintext/ciphertext pair (m1, c1), and we
set up a table, which we will call T1, of (sorted) values consisting of all 256

possible values of Ek1(m). Now we start calculating another table consisting of
all possible values of Dk2(c), one at a time, checking each one against the values
in table T1. If there is a match, say (K1,K2), then we take another known
plaintext/ciphertext pair (m2, c2), and check for the equality:

EK1(m2) = DK2(c2).
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If so, we accept this key pair as the legitimate keys.
To see why this works, and to set up our discussion of the so-called birthday

attack later, consider the following. Suppose that we have an N -element set of
values and we want to find a match of two of them. We split the values into two
sets of n1 and n2 values, say. There are n1n2 pairs of elements and each pair
has a chance of 1/N in matching up. Hence, the match will likely occur when
(n1n2)/N is close to 1. Thus, if we choose

n1 ≈ n2 ≈
√
N,

we achieve maximum efficiency in this search. Now, go back to the specific situ-
ation with double DES. Since N = 2112 and

√
N = 256, we see why the effective

keylength security of double DES is 256. This level of multiple encryption is
therefore insufficient. We need more.

At the end of the twentieth century when DES had reached the end of its
reign, and before the AES came into effect, the National Institute of Standards
and Technology (NIST)3.5 proposed an interim standard as follows; see [94].

� Triple DES
Let Ee andDd denote the DES enciphering and deciphering transformations,

respectively, and let k denote a DES key. We employ three keys kj for j = 1, 2, 3.
Then enciphering of plaintext is achieved via

Ek3(Dk2(Ek1(m))) = c,

and deciphering occurs via

Dk1(Ek2(Dk3(c))) = m.

Multiple encryptions strengthen the cipher so long as we do not have k1 = k2

or k2 = k3, since then,

either Dk2 ◦ Ek1 or Ek2 ◦Dk3 is the identity function

so we are back at square one with single DES. It is allowed that k1 = k3, or
that all are distinct.

It turns out that multiple encryption of DES would be rendered useless if
it were the case that for any given keys k1 and k2, there existed a key k3 such
that

Ek3(m) = Ek2(Ek1(m))

for all plaintext inputs m. (This property, if it held, would be tantamount to
DES permutations being closed under composition, and this would happen if
DES satisfied the property that the set of permutations is closed as a group
under composition.) Then multiple encryptions would be reduced to single
encryptions and again we would be back to square one. However, in 1992,

3.5See the NIST homepage: http://www.nist.gov/.
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Campbell and Weiner saved the day by proving, in [51], that DES is not a group.
In fact, they showed that a lower bound on the size of the group generated by
composing the set of permutations is 102499. Thus, since we are safe on these
issues, then with the proper choice of three keys triple DES has the effective
keylength of 168 bits, making it a reasonable alternative, and triple DES is
resistant to the meet-in-the-middle attack. That being said, triple DES still
inherits the disadvantages of DES, such as weak keys, semiweak keys, and the
complementation property mentioned earlier. (It should be pointed out, in
anticipation of the next section, that part of the ANSI X59.52 Triple DES
Modes of Operation Standard, involving the CBC mode described on the next
page, was cryptanalyzed in 2002 (see [22]). As a result, ANSI removed this
mode from the proposed standard.)

There are other strengthenings of DES possible. Rivest developed a provably
strong improvement to DES, called DESX. It simply does the following. Choose
three keys k1, k2, k3, and encipher by executing

k1 ⊕ Ek2(k3 ⊕m).

In other words, we add a 64-bit key k3 modulo 2 to the input plaintext m before
encryption, then we encipher the result with key k2, and lastly add the 64-bit
key k1, modulo 2, to the ciphertext. In 1996, both Killian and Rogaway [136]
and Rogaway [231] demonstrated the improved security of DESX over DES.
The security of DESX against the DC attack (see Footnote 3.4 on page 127) is
roughly equivalent to that of DES.

An attack developed more recently than DC is one by Matsui [156] in 1994,
called linear cryptanalysis (LC). This is one of the most prominent known-
plaintext attacks3.6 against block ciphers. (See [122] for a nice tutorial treatment
of both LC and DC.) LC uses linear approximations to describe the behavior
of the block cipher under attack. Matsui successfully used LC against DES to
obtain a key with 243 known plaintexts (see [157]).

In general, block ciphers with larger S-boxes are less susceptible to DC and
LC attacks. The next block cipher that we describe is therefore stronger than
DES since it has larger S-boxes. First, we look at “modes of operation” for
block ciphers, which allows us to apply them to a variety of situations.

3.6A known-plaintext attack occurs when a cryptanalyst has both ciphertext and plaintext
from intercepted cryptograms as data from which to deduce the plaintext in general, or the
key. In the case of a simple cipher such as the Caesar cipher, for instance, only one plaintext-
ciphertext pair needs to be known to determine the key, which is instantly known to be the
distance the enciphered symbol is shifted from the plaintext symbol, namely 3 units.
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3.3 Modes of Operation

In architecture as in all other operative arts, the end must direct the opera-
tion. The end is to build well. Well building hath three conditions. Commodity,
firmness, and delight.

Henry Wotton (1568–1639), English poet and diplomat
— from Elements of architecture (1624, page 1)

We need to examine how block ciphers, such as DES, may be applied to a
variety of situations, called modes of operation. Symmetric-key block ciphers
have five modes of operation recommended by NIST, and defined in FIPS 81,
December 2, 1980, as well as in ANSI X3.106−1983, with the number of modes
expanded from four to five in Special Publication 800 − 38A, December 2001.
These modes (initially intended for DES) are meant to address every conceivable
application for cryptology to which block ciphers can be applied.

Before describing the formal details of each mode, we present a brief verbal
introduction.

� Block Cipher Modes — Overview

1. Electronic Codebook (ECB): Each 64-bit block of plaintext is enci-
phered with the same key, albeit independently. This mode is typically
used to send small amounts of data such as a symmetric key.

2. Cipher Block Chaining (CBC): The input is the addition, modulo 2,
of the previous 64 bits of ciphertext with the succeeding 64 bits of plain-
text. Normally, this mode is used as a general-purpose block-transport
mechanism, but also may be employed for authentication purposes.

3. Cipher Feedback Mode (CFB): This mode employs a chaining mecha-
nism similar to CBC. It uses prior ciphertext as input and outputs pseu-
dorandom strings that are added, modulo 2, with plaintext to produce the
next quantity of ciphertext. This mode is employed as a stream-cipher-
oriented means for general-purpose messaging since it processes n ∈ N bits
at a time.

4. Output Feedback (OFB): This is comparable to CFB mode with the
exception that its input is the prior block cipher’s output. This mode is
usually employed for stream-cipher-oriented communications, especially
those requiring message authentication, such as a MAC (see Chapter 7).

5. Counter Mode (CTR): The ciphertext is formed via a modulo 2 addition
of a plaintext block with an enciphered counter, which is updated for each
succeeding block. This mode is remarkably easy to use, and is typically
utilized for high-speed transmission. In fact, this is the least-known of the
modes, but is rapidly gaining ground with working cryptographers in the
field as an excellent means of using block ciphers in a variety of situations.
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� Block Cipher Modes — Details
In what follows Ek is the enciphering function for the block cipher E using

the key k, whereas Dk = E−1
k denotes the decryption function.

� Electronic Code Book (ECB)
We begin with the simplest of the modes. In ECB mode, we input a sequence

mj for j ≥ 1, of 64-bit plaintext blocks, each of which is enciphered with the
same key, producing a string of ciphertext blocks cj . In other words,

enciphering is Ek(mj) = cj and deciphering is E−1
k (cj) = mj .

The problem with this is that two identical plaintext blocks get sent to identical
ciphertext blocks, which can be exploited by a cryptanalyst. Some experts feel
that this weakness is sufficient to render it insecure for any use, while others
feel that it is ideal for sending small amounts of data such as the sending of a
DES key. It certainly should not be used for sending large amounts of data in
any case. The aforementioned weakness of ECB is overcome in the next mode.

� Cipher Block Chaining (CBC)
In CBC mode, we first let IV be an initialization vector (meaning a 64-bit

input bitstring), set c0 = IV , and let k be the 64-bit input key. Given a sequence
mj of 64-bit plaintext blocks, for j ≥ 1, we recursively define

encryption by cj = Ek(cj−1 ⊕mj), and decryption by mj = E−1
k (cj)⊕ cj−1.

Thus, the weakness of ECB mode is eliminated by the modulo 2 addition of
plaintext blocks with previous ciphertext blocks, thereby randomizing the plain-
text with the previous ciphertext. Essentially, this means that we have “chained
together” the sequence of enciphering plaintext blocks. This obscures the rela-
tionship between the plaintext and ciphertext, substantially reducing the data
for a cryptanalyst to use effectively.

Next is the not-so-obvious problem of how to choose IV . Most texts rec-
ognize the problems with leaking information about IV , and therefore suggest
keeping it as secure as the key, since a cryptanalyst can derive information from
it by posing as a sender using the man-in-the-middle attack.3.7 However, few
cite the best solution to this problem. We should not have a fixed IV or even a
randomized IV since there remains the problem (the one for which it is deemed
necessary to keep IV a secret), namely, either method requires that the recip-
ient of the message has to know this IV . In the case of a fixed IV we return
to the ECB problem in encryption of the first block of each message. With
the randomized IV , we require a secure randomizer at hand, for each message,
which adds more effort in the use of the cipher, since as we will discover later,

3.7To describe this attack, we introduce another of our cryptographic cast of characters,
Mallory, the malicious active attacker. (This is as opposed to Eve, our passive eavesdropper.)
The principal idea in the man-in-the-middle attack is that Mallory assumes a position between
Alice and Bob. Mallory can stop all or parts of messages being sent between them and
substitute his own data. In this way, he impersonates Alice and/or Bob who believe they are
communicating with each other, while they are really talking to Mallory.
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obtaining secure randomizers is a difficult task. There is a better method, which
essentially uses the idea behind the one-time-pad (see page 83).

First, a nonce is a unique number used exactly once in a given protocol.
(This is derived from number used once.) As with the one-time-pad, a nonce
should never be used more than once. In this fashion, we eliminate the need to
keep the nonce secret. A nonce-generated IV is one where the IV is enciphered
with the block cipher in CBC mode as follows.

1. Using a counter that starts at 0, assign a number to the message and use
this number to generate a (unique) nonce.

2. Encipher the nonce with the block cipher, such as DES, to generate the IV .

3. Encipher the message in CBC mode using the IV .

4. Instead of sending c0 = IV as above, add the message number appended to
the front of the ciphertext.

5. To ensure that there is a safeguard built in to guarantee the nonce is
never accepted more than once by a recipient, the receiver will not accept
messages with an assigned number less than or equal to the previously
assigned message numbers.

If there were a popularity contest among the modes, CBC would probably
win as the most utilized of them all. It certainly is an excellent all-purpose
application for sending block data. However, others are gaining ground.

� Cipher Feedback Mode (CFB)
In CFB mode, again we input IV , mj as above, and set c0 = IV . Then we

produce subkeys by enciphering the previous ciphertext block. In other words,
for j ≥ 1,

Ek(cj−1) = kj , then produce ciphertext: cj = mj ⊕ kj .

CFB encryption is similar to CBC encryption in that the chaining mechanism
causes ciphertext block cj to depend on mk for k ≤ j. Moreover, the same issues
with the IV remain.

� Output Feedback Mode (OFB)
In OFB mode, we input IV , k, mj for j ≥ 1 as above, and set k0 = IV .

Then subkeys are computed by repeatedly encrypting the initialization vector,
in a mechanism described by the following.

OFB Feedback Mechanism

kj = Ek(kj−1)

Then mj is enciphered via

cj = mj ⊕ kj for j ≥ 1.
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In ECB and OFB modes, changing one input block mj causes exactly one
ciphertext block cj to be changed. This is valuable in such applications as the
encryption of satellite transmissions. In CBC and CFB modes, a change to
input block mj changes cj , cj+1, . . . . This turns out to be useful in applications
involving message authentication. In other words, these latter two modes can
be used to produce a message authentication code (MAC). What this means
is that the MAC can be used as an electronic signature (or digital signature,
which we will study in Section 4.3), that will convince the receiving party of the
authenticity of the message.

In OFB mode, the block cipher is used to generate a pseudorandom stream
of keys. This is an example of a keystream about which we will learn much
more in Section 3.6, when we study stream ciphers. The IV has to be random,
so it can either be chosen randomly or generated as a nonce as in CBC mode.
Moreover, only the enciphering function is needed since enciphering is exactly
the same method as deciphering. Also, since the keystream is generated in the
above fashion, then there is no padding3.8 required. In other words, one needs
only send a ciphertext as long as the plaintext (and not have to pad to fill in
the blocklength).

A major weakness of OFB mode is that if the same IV is ever used for two
different messages, then a cryptanalyst, Eve say, can add ciphertext modulo 2
to recover plaintext. To see why, assume that ci and cj were enciphered using
the same keystream, ki. Then

ci ⊕ cj = mi ⊕ ki ⊕mj ⊕ ki = mi ⊕mj ,

and now Eve has a means of computing the difference between two plaintexts.
This is a disaster if Eve knows one of the plaintexts already since then she
readily gets the other. Moreover, even if she does not know either one, there are
means of recovering both from information about the differences between them
(see [130], as well as [286] for active attacks on OFB). We will return to OFB
when we study stream ciphers in Section 3.6.

� Counter Mode (CTR)

Counter mode (CTR) has been around since 1980 or so, but was not stan-
dardized until December of 2001 by NIST, as mentioned at the outset of this
section (see [73]). Thus, it has not appeared in most textbooks as a mode of op-
eration. However, it has recently been gaining in popularity and many consider
it to be the best mode. As with OFB, it is a stream cipher, the methodology
for which we now describe.

A nonce n is concatenated with the counter i and enciphered to form a single
block of key for i = 1, 2, . . .,

ki = Ek(n, i);

3.8Padding means appending a randomly generated bitstring of suitable length to the plain-
text prior to encryption, a practice also called salting, since we change the “taste” of the
message, so the result is called a salt. Moreover, the random bitstring must be independently
generated for each separate encryption.
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and ciphertext is obtained via

ci = mi ⊕ ki for given plaintext blocks mi.

Therefore, the counter and nonce must fit into a single block (for instance, a
128-bit block in most modern-day ciphers would not present a problem). For
reasons discussed in above modes, the nonce must be used exactly once for each
plaintext block encrypted.

To decipher, the same set of nonce/counter concatenated values are used as
follows to recover plaintext:

For each i = 1, 2, . . . , execute ki = Ek(n, i), then mi = ci ⊕ ki.

CTR does not suffer the problems cited for other modes because all the ki

are distinct since they are encipherings of a concatenation of nonce and counter,
used only once. Then all plaintextmi get enciphered via ki to distinct ciphertext
values, so two keyblocks (formed by the ciphertext values) are never the same.

CTR is an all-purpose block-oriented method that is highly useful for high
speed transmissions, the reason being that the keystream can be paralleled to
any desired level. The structure of CTR, moreover, ensures that its use is as
secure as that of the underlying block structure.

CTR, as with OFB, does not require padding, whereas CBC does. CTR
may, in fact, be considered to be a simplification of OFB, which solves one of the
problems inherent in the latter. The counter replaces the feedback mechanism
in OFB, discussed earlier, and this provides a formidable feature of CTR.

CTR Random Access Property
A ciphertext block cj need not be deciphered in order to decipher cj+1.

With the chaining modes such as CBC, one must decipher cj in order to
decipher cj+1.

CTR, due to its high speed configurations, is used in network security appli-
cations, such as IPSec, or IP security, which we will study in detail in Section 8.3.
Another palatable feature of CTR is its simple structure in that, unlike ECB and
CBC, CTR requires only the implementation of the enciphering scheme, not the
deciphering algorithm. For instance, if the underlying block cipher were AES,
this matters a lot since the encryption and decryption transformations differ so
greatly, as we will see later in the chapter (see also page 308, where we discuss
the use of AES-CTR in IPSec). This simplifies matters since key scheduling for
deciphering is not needed in the CTR implementation. Perhaps, from a security
viewpoint, the greatest selling feature of CTR is that it is provably secure. For
all these reasons, it appears that CTR is on its way to dominance as the mode
of choice.
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3.4 Blowfish

If plans related to secret operations are prematurely divulged the agent and
all those to whom he spoke of them shall be put to death.

Sun Tzu (ca. 400 B.C.), Chinese warrior and philosopher
— from The Art of War ([279, page 147, no. 15])

In 1994, Bruce Schneier developed the formidable Blowfish cryptosystem.
Schneier obtained his bachelor’s degree in physics from the University of
Rochester, and his master’s degree in computer science from American Uni-
versity. Currently he is president of Counterpane Systems, a consulting firm in
Minneapolis, which essentially deals with computer security, and specializes in
cryptography. He is the author of several books [238]–[240], as well as numer-
ous publications on cryptological issues. He has written a number of articles
for magazines and is a contributing editor to Dr. Dobb’s Journal, editing the
Algorithms Alley column. Additionally, he serves on the boards of directors
of the International Association of Cryptologic Research and the Voter’s Tel-
com Watch. He is considered to be a leading influence in today’s cryptographic
community, with sought-after opinions on cryptological matters.

Below, we will describe the Blowfish cipher briefly without details about,
for instance, the specific initialization strings used and the like. We gave an
exhaustive description of S-DES and its analysis in the previous section to give
us sufficient background to appreciate this symmetric-key block cipher. For
Schneier’s comments see, [235]–[237].

� The Blowfish Cipher

The Blowfish cipher encrypts 8-byte blocks of plaintext into 8-byte blocks
of ciphertext. It has a key k, with keylength variable from 32 to 448 bits,
namely, from one to fourteen 32-bit strings, stored in a K-array,K1,K2, . . . ,K14.
The key k is used to generate eighteen 32-bit subkeys (precomputed before any
encryption or decryption occurs), and stored in a P-array, P1, P2, . . . , P18. There
are four 8×32 S-boxes with 256 entries each, denoted by Sj,0, Sj,1, . . . , Sj,255, for
j = 1, 2, 3, 4. These make up the S-array. We let EP,S(m) denote the ciphertext
that results from using Blowfish to encipher m with arrays P and S.

� Subkey Generation

1. Initialize P1 and the four S-boxes with a fixed string (in a fashion that
utilizes the fractional part of π.)

2. Perform Pj ⊕ Kj for j = 1, 2, . . ., as often as needed to exhaust the P-
array, reusing the elements of the K-array, if necessary. For example, if
the keylength is 448 bits, then the full fourteen units of the K-array will
be utilized as follows. Pj ⊕ Kj for j = 1, 2, . . . , 14, Then reuse the first
four to get, P15 ⊕K1, P16 ⊕K2, P17 ⊕K3, and P18 ⊕K4.

3. Using the subkeys in steps 1 and 2, encrypt the 64-bit block consisting of
all zeros.
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4. Replace P1 and P2 with the output of step 3, namely, EP,S({0}64) = P1P2.

5. Encrypt the output of step 3 with the modified subkeys, namely, the current
P and S arrays.

6. Replace P3 and P4 with the output of step 5, namely, EP,S(P1P2) = P3P4.

7. Continue the above process until all entries of the P-array have been re-
placed, namely, EP,S(Pj−1Sj) = Pj+1Pj+2 for j = 4, 5, . . . 16. Then re-
place all four S-boxes in order, starting with EP,S(P17P18) = S1,0S1,1,
EP,S(S1,0S1,1) = S1,2S1,3, and continue until EP,S(S4,252S4,253) =
S4,254S4,255.

In total, there are 521 iterations required to generate all the subkeys. Hence,
to test for a single key there would be a total of 522 executions of the encryp-
tion algorithm to test for a single key, making a brute-force attack much more
difficult. In fact, with the use of a 448-bit keylength, the cipher is virtually
unbreakable in the face of brute-force attacks.

Next, as with DES, there is a complicated function to iterate over sixteen
rounds.

� Round Function

The round function F takes a 32-bit input m that is divided into 4 bytes,
which we will label a, b, c, d. Then F acts on them as follows:

F (m) = ((S1,a + S2,b (mod 232))⊕ S3,c) + S4,d (mod 232).

� Encryption and Decryption

To encipher, we first separate the 64-bit plaintext into 32-bit left and right
blocks L(e)

0 and R(e)
0 , respectively. Let R(e)

j and L(e)
j be the right and left halves

after round j and execute, for j = 1, 2, . . . , 16,

1. R(e)
j = L

(e)
j−1 ⊕ Pj .

2. L(e)
j = F (R(e)

j )⊕R(e)
j−1.

3. SW(R(e)
j , L

(e)
j ).

After the sixteenth round is completed, perform a switch on R(e)
16 and L(e)

16

to undo the last swap. Then execute, L(e)
17 = R

(e)
16 ⊕ P18 and R(e)

17 = L
(e)
16 ⊕ P17.

To decipher, we do the same as we did for enciphering, with the exception
that the Pj are used in reverse order. In other words, to decipher, execute the
following (where R(d)

j and L(d)
j are the right and left halves after round j), for

j = 1, 2, . . . , 16,

1. R(d)
j = L

(d)
j−1 ⊕ P19−j .



140 3. Symmetric-Key Cryptography

2. L(d)
j = F (R(d)

j )⊕R(d)
j .

3. SW(R(e)
j , L

(e)
j ).

Lastly, unswap the last pair, then execute, L(d)
17 = R

(d)
16 ⊕ P1 and R

(d)
17 =

L
(d)
16 ⊕ P2. Diagrams 3.4 and 3.5 illustrate Blowfish encryption/decryption.

Diagram 3.4 Blowfish Encryption

Plaintext (64 bits)
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Ciphertext (64 bits)
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Diagram 3.5 Blowfish Decryption

Ciphertext (64 bits)

↓

L
(d)
0 (32 bits) R

(d)
0 (32 bits)
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Plaintext (64 bits)
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� Analysis and Summary

Blowfish differs in its decryption from most block ciphers, such as DES,
in that it does not reverse the order of encryption but follows it. The sub-
keys are, as is usual with most block ciphers, used in reverse order. Also,
unlike DES, the S-boxes in Blowfish are key-dependent, and subkeys as well as
S-boxes are created by repeated execution of the Blowfish enciphering trans-
formation itself. This has proven to be a strength against cryptanalysis. In
comparison with how most Feistel ciphers work on only one half of the blocks
in each round, Blowfish works on both halves in each round, again adding to
strength against cryptanalysis. This would explain why the cipher is being
used in over 150 products thus far. (This is according to Schneier’s Web site
http://www.schneier.com/blowfish.html. The reader may also download a free
source copy of Blowfish from the site, since it is unpatented, royalty-free, and no
license is required, all of which were part of Schneier’s intentions in the design
of Blowfish.) Additionally, Blowfish is extremely fast to execute, much faster
than DES, or triple DES. (To see timings and verify this, see Schneier’s Web
site referenced above.)

There is a notion shared by DES and other block ciphers such as Blowfish,
called the avalanche effect, which means that the change of a single input bit
amplifies into a change in about half the bits of ciphertext. The way this works
in a block cipher with many rounds is that a change in a single bit of input
generally results in many bit changes after one round, even more bit changes
after another round, until, eventually, about half of the block will change. The
analogy from which the name is derived is to an avalanche involving snow, where
a tiny preliminary snowslide can result in a dramatic deluge of snow. Perhaps
Feistel said it best in the 1973 Scientific American article [81, page 22]: “As the
input moves through successive layers the pattern of 1’s generated is amplified
and results in an unpredictable avalanche. In the end the final output will have,
on average, half 0’s and half 1’s. . .”. Blowfish has a very strong avalanche effect
since, in the jth round, every bit of the left side of the data affects every bit of
the right, and every subkey bit is affected by every key bit. The result is that
the function F has the best possible avalanche effect between the key Pj and the
right half of the data after each round. Moreover, Schneier deliberately made
F independent of the rounds since the P -array already is round-dependent.

Since the Blowfish S-boxes are key-dependent, every bit of the input to F
is used as input to only one S-box. DES, on the other hand, has several inputs
to two S-boxes, but the DES S-boxes are not key-dependent.

From Blowfish evolved a cipher designed by Schneier, and a team of others.
They called it Twofish. It became one of the five finalists for the successor to
AES, announced on August 9, 1999 by NIST (in round two of their competition).
In [85], Schneier and Ferguson (a member of the Twofish design team) make
arguments for the advantages of Twofish. Moreover, the entire team wrote a
book on the cipher [241] to which the reader is referred for details. Yet, it was
not chosen as the AES. That distinction went to a non-Feistel cipher, which we
will present in the next section.
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3.5 	 The Advanced Encryption Standard

Not to go back, is somewhat to advance,
And men must walk at least before they dance.

Alexander Pope (1688–1744), English poet
— from Imitations of Horace (1738, Bk. 1, Epistle 1)3.9

On November 26, 2001, NIST announced, in FIPS 197 (see [93]), that the
Advanced Encryption Standard (AES) would be Rijndael, and that it would
take effect on May 26, 2002. The name “Rijndael” (just call it “Rain Doll”)
was derived from the names of Rijndael’s Belgian designers, Vincent Rijmen
and Joan Daemen.

Joan Daemen was born in Belgium in 1965. In 1988 as a member of the
research group COmputer Security and Industrial Cryptography (COSIC), he
began a Ph.D. in cryptography, which he completed in 1995. By the spring
of 1998, he joined the newly formed Proton World International, a Brussels-
based company whose focus is on high-level banking security applications, and
he remains there to this day. He is currently designing protocols for smart cards,
and related applications. Moreover, he continues, on occasion, to collaborate
with his former COSIC colleague, Vincent Rijmen.

Vincent Rijmen was born in Belgium in 1970. After obtaining a degree in
electrical engineering at the Katholieke Universiteit Leuven, he joined COSIC,
where he, too, was working on his Ph.D., which he obtained in 1997. His
preferred area of research has always been cryptanalysis of block ciphers. In fact,
the title of his Ph.D. thesis is Cryptanalysis and design of iterated block ciphers.
Among his pursuits has been the evolution of computer security systems.

The Rijndael cipher is based upon the 128-bit block cipher, called Square,
which Rijmen and Daemen originally designed with a concentration on resis-
tance against LC (see page 132). Later Lars Knudsen engaged in more crypt-
analysis of the Square cipher. A paper by these three authors, describing the
details of Square, was presented at the workshop for Fast Software Encryption
in the spring of 1997 in Haifa, Israel. (Consequently, Rijndael has been called
Son of Square and alternatively Square has been called Mother of Rijndael by
their creators.) In that spring of 1997, Daemen and Rijmen began working on
a variant of the Square cipher that would allow for key and block lengths of
128, 192, and 256 bits. They called their new cipher design “Rijndael” and
submitted it to NIST by the June 1998 deadline. The rest, as noted above, is
history.

The first item of importance is that Rijndael is not a Feistel cipher. Yet, the
reader will recognize similarities to DES. We will see that the modulo 2 addi-
tions, ⊕, will add key material to the data. As with DES, the S-boxes will add
nonlinearity. However, the S-boxes were designed so that the complementation
property suffered by DES is avoided (see page 127).

We begin by providing a preliminary verbal introduction to the AES cipher,
before presenting the details of the Rijndael mechanisms in action.

3.9The symbol 	 will denote advanced material henceforth.



144 3. Symmetric-Key Cryptography

� AES — Preliminary Overview
1. Non-Feistel Structure: As noted in the leadup to this overview, AES is

not of a Feistel construction. Instead, the entire data block is processed
in parallel, during each round, using a combination of substitution and
permutation.

2. Keys: The input key, which may be variable in length as we shall see,
will be assumed, for the purposes of this introductory discussion, to be
of keylength 128 bits. This key is expanded into a matrix of forty-four
4-byte words, wherein four distinct words play the role of the round key
for the succeeding round.

3. Rounds: For both encryption and decryption (see Diagrams 3.6 and 3.7
on pages 148 and 149, with Nr = 10), the AES cipher begins with an add
round key stage, followed by nine rounds, each round having four stages,
which in addition to the add round key stage, are called, bytesub, shift
rows, and mix columns (all described in the detailed delineation of AES
below). This is followed by a tenth round having three stages (with the mix
columns eliminated for this round, since its inclusion would unnecessarily
slow the algorithm).

4. Round Stages: Only the add round key stage uses the key. The other three
stages provide confusion (bytesub), diffusion (mix columns), and nonlin-
earity (S-boxes). These three stages do not add security by themselves
since they do not use the key. Moreover all stages are reversible.

5. Decryption: The decryption uses the expanded key in reverse order. How-
ever, the decryption algorithm is not the same as the encryption algo-
rithm. One needs the inverse lookup table of the S-box, and the inverse
mix columns, which is distinct from the enciphering mix column opera-
tion. It is this fact that causes decryption to be slower than encryption,
namely, the inverse mix columns operation is a more complex operation
that can take a third longer than encryption on 8-bit processors. Yet, this
is not seen as a disadvantage since many implementations do not need
deciphering, such as CFB mode (see page 135).

6. S-boxes: The S-boxes are all identical, and map bytes to bytes. The AES
S-box was designed to be highly resistant to cryptanalytic attacks. In
particular, the designers ensured that there is a low correlation between
the input bits and the output bits. This is the reason, cited on page 143,
that AES does not have the DES complementation property. The S-boxes
are also invertible, but not self-inverses.

7. Last Add Round Key Stage: Since only the add round key stage uses
the key, the cipher begins and ends with this stage. By itself, the add
round key stage (a virtual one-time-pad) will not add enough security,
but its interaction with the other three stages provides a highly efficient
and secure cryptosystem.
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� AES — Detailed Description

Much of the following description is taken from this author’s book [169], since
we maintain that it remains the best explanation at this level. The mathematics
required for this section is contained in Appendix A.

� The Advanced Encryption Standard (AES) — Rijndael

In order to give even a brief description of Rijndael, we need to describe the
essential components of it.

� The State

The state is the intermediate cipher resulting from application of the round
function. The state can be depicted as a 4×Nb matrix, with bytes as entries,
where Nb is the block length divided by 32. For instance, if the input block
has 256 bits, then Nb = 8 = 256/32, and the state would appear as a matrix

(ai,j) ∈M4×8((Z/2Z)8)

of bytes. In this case, the state has 32 bytes. For an input block of 192 bits,
the state would have 24 bytes as a 4 ×Nb = 4 × 6 matrix, and for a block of
length 128, it would have 16 bytes as a 4×Nb = 4× 4 matrix. Thus, we have
variable state size.

Note that the input block (or plaintext if the mode of operation is ECB) is
put into the state (matrix) by column: a0,0, a1,0, a2,0, a3,0, a0,1, a1,1 . . ., and at
the end of the execution of the cipher the bytes are taken from the state in the
same order.

� The Cipher Key

As with the state, the cipher key is portrayed as a 4×Nk matrix of bytes,
where Nk is the keylength divided by 32. For instance, if the key length is 128
bits, then the cipher key is (ki,j) ∈ M4×4((Z/2Z)8). Hence, we have variable
key size 16, 24, or 32 bytes, depending on key length 128, 192, or 256 bits.

� Key Schedule and Round Keys

The round keys can be derived from the cipher key by means of the following
key schedule. There are two parts.

(1) The total number of round key bits equals B ·(Nr+1), where B is the block
length and Nr is the number of rounds defined for each case in Table 3.1
on page 146. For instance, if the block length is 128 bits and Nr = 12,
then 1664 round key bits are required.

(2) The cipher key is expanded into the expanded key in the following fashion.
The expanded key is a linear array of 4-byte words (i.e. columns of the
key matrix), where the first Nk words contain the cipher key. All other
words are defined recursively in terms of previously defined words.
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� The AES S-Box

For the sake of convenience, ease of presentation, and due to the highly
technical nature of the S-box in AES, the details are in Appendix D on page
527.

� Round Function

Most block ciphers employ the Feistel structure in the round function. How-
ever, the round function used by Rijndael does not have the Feistel structure.
Instead, the round function in Rijndael is comprised of three distinct invertible
functions, the details of which we will learn in what follows.

First, we note that the number of rounds, denoted by Nr, is defined via
Table 3.1.

Table 3.1

Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14

In Table 3.1, we are including the final round, (described below), which
slightly differs from the other rounds in that step (3) below is eliminated.

The round function consists of four steps, each with its own name and its
own particular function.

(1) Bytesub (BSB): In this step, bytes are mapped by an invertible S-box,
and there is only one single S-box for the complete cipher. Thus, for
instance, the state (position) matrix,

(ai,j) = (8i+ j − 9) (for 1 ≤ i ≤ 32, 1 ≤ j ≤ 8)

would be mapped, elementwise, by the S-box to the state matrix (bi,j) via

ai,j −−−−→ S-box −−−−→ bi,j .

This guarantees a high degree of nonlinearity by operating on each of the
state bytes ai,j independently.

(2) Shift Row (SR): In this step, depending upon the value of Nb, row j for
j = 2, 3, 4 of the state matrix is shifted xj units to the right, where xj is
defined by Table 3.2.

Table 3.2

Nb x2 x3 x4

4 1 2 3
6 1 2 3
8 1 3 4
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For instance, if Nb = 4, then



a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3



−−−−→
SR




a0,0 a0,1 a0,2 a0,3

a1,3 a1,0 a1,1 a1,2

a2,2 a2,3 a2,0 a2,1

a3,1 a3,2 a3,3 a3,0




The SR step introduces high diffusion over multiple rounds and interacts
with the next step.

(3) Mix Column (MC): As with the S-box description, the MC description is
given in Appendix D on page 529 for the sake of simplicity of presentation.
All one needs to know about this step, at this juncture, is that it linearly
combines bytes in the columns, and creates high intracolumn diffusion.

(4) Round Key Addition (RKA): In this step, a round key is added modulo
2 to the state. For example,

(ai,j)⊕ (ki,j) = (bi,j),

where ⊕ is addition modulo 2, (ai,j) is the state matrix, (ki,j) is the round
key matrix, and (bi,j) is the resulting state matrix. Thus, this step makes
the round function key dependent.

There is significant parallelism in the round function. All four steps of a
given round operate in parallel on bytes, rows, or columns of the state.

Then round keys are extracted from the expanded key as follows. The first
round key consists of the first Nb words, the second round key consists of the
following Nb words, and so on.

� Stepwise Description of the Rijndael Cipher

Step 1 (Initial Addition Round) There is an initial RKA step.
Step 2 (Rounds) There are Nr− 1 rounds executed.
Step 3 (Final Round) A final round is executed (omitting the MC step).

Hence, the detailed sequence of steps for Rijndael is an initial round key
addition, then Nr−1 rounds of BSB, SR, MC, RKA each, followed by a final
round consisting of BSB, SR, RKA. Unlike DES, Rijndael does not require a
“swapping step” in its rounds since the MC step causes every byte in a column
to alter every other byte in the column.

Deciphering Rijndael is executed by reversing the steps using inverses and
a modified key schedule. Encryption and decryption diagrams are given in
Diagrams 3.6 and 3.7.
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Diagram 3.6 AES Encryption
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Diagram 3.7 AES Decryption
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� Security of Rijndael
The design of Rijndael practically eliminates the possibility of weak or semi-

weak keys, which exist for DES. Moreover, the design of the key schedule vir-
tually eliminates the possibility of equivalent keys. Although the mechanisms
of LC and DC can be adjusted to present attacks on Rijndael, it appears that
Rijndael’s design is sufficient to withstand these cryptanalytic onslaughts, since
its S-box is nearly perfect for resistance to DC and the F28 equivalent of LC.

A chosen plaintext attack, called the square attack , which is a dedicated
attack on the Square cipher, can be used as well, since Rijndael inherited many
features from Square. However, for seven or more rounds in Rijndael, no such
attack, faster than exhaustive key search,3.10 has been found. Other attacks,
such as Biham’s related-key attack, or the interpolation attacks introduced by
Jakobsen and Knudsen have little chance of success against Rijndael due to
the diffusion and nonlinearity of Rijndael’s key schedule and the complicated
construction of the S-box.

The S-box was designed to avoid any suspicions of a trapdoor being built
into the cryptosystem. (Recall that this was a problem with DES; see page 98).

� Concluding Comments
Unlike the Feistel structure of the round function, such as in DES, where

some of the bits of the intermediate state are simply put into a different po-
sition unchanged, the Rijndael round function is comprised of three different
invertible transformations, called layers, through which every bit of the state
is treated in a similar fashion, called uniformity. The BSB step in each round
is a nonlinear mixing layer (confusion). SR is a linear mixing layer (inter-
column diffusion), and MC is also a linear mixing layer (interbyte diffusion
within columns). Then there is the key addition layer. These layers ensure that
the Rijndael round does not have a Feistel structure. The layers are predom-
inantly based upon the application of what the designers call the Wide Trail
Strategy, which is a devised system for providing resistance against LC and DC,
discussed in Daemen’s doctoral dissertation of March 1995. Essentially this
strategy means that MC makes it impossible to find LC and DC attacks that
involve “few” active S-boxes.

For further information on Rijndael, such as attacks on reduced rounds and
alternative mathematical methods for describing AES, see [83] and [84]. Also,
for further, relatively recent research on security of AES against LC, see [132].

Rijndael is well tailored to modern processors (Pentium, RISC, and parallel
processors). It is also ideally suited for ATM, HDTV, Voice, and Satellite. Uses
for Rijndael include MAC by employing it in a CBC-MAC algorithm. It is
also possible to use it as a synchronous stream cipher, a pseudorandom number
generator, or a self-synchronizing stream cipher (the latter, by using it in CFB
mode), and we will learn about all of these concepts in the next section.

3.10An exhaustive search of the keyspace or brute force attack, means that all possible keys
are tried to see which one is being used by communicating parties.
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3.6 Stream Ciphers

Some people seem to think that stream ciphers are bad in some way. Not at
all! Stream ciphers are extremely useful, and do their work very well.

Neils Ferguson and Bruce Schneier
— from Practical Cryptography (see [85, page 73])

Up to this juncture, we have studied the first kind of symmetric-key cryp-
tosystem, the block cipher. This section is devoted to the second kind, stream
ciphers. First, we need the following.

� Keystreams, Seeds, and Generators

If K is the keyspace for a set of enciphering transformations, then a sequence
k1k2 · · · ∈ K is called a keystream. A keystream is either randomly chosen, or
is generated by an algorithm, called a keystream generator, which generates
the keystream from an initial small input keystream called a seed. Keystream
generators that eventually repeat their output are called periodic.

Finding sources of truly random numbers is a difficult task at best. In
fact, it is impossible to generate arbitrarily long bitstrings and prove they are
random. Hence, we settle for what computers can give us. Pseudorandom
(recall the discussion on page 83) number generators (PRNG)s are a topic for
an entire text. However, we will not be concerned with the intricacies of such
investigations. We will assume that we have at our disposal a cryptographically
secure pseudorandom number generator (CSPRNG) ; see Appendix B on page
506.

� Cryptographically Secure Pseudorandom Number Generators

A bit-producing number generator algorithm is a CSPRNG if the sequences
of bits produced satisfy the following properties.
1. The sequence of bits must be statistically random. One way of stating

this mathematically is that no polynomial-time algorithm can distinguish
the output of this number generator from that of a truly random num-
ber generator with probability greater than 1/2. This makes the number
generator a PRNG.

2. For every given output bit, the next output bit must be computationally
infeasible (see page 99) to predict, even given knowledge of all previous
bits, knowledge of the algorithm being used, and knowledge of the hard-
ware. This is the property that make the PRNG cryptographically secure,
so this turns it into a CSPRNG.

With truly random sequences of numbers, each number is statistically inde-
pendent of other numbers in the sequence, so they are unpredictable. However,
with PRNGs, care must be taken to ensure that they are cryptographically se-
cure, namely, that they are unpredictable in the sense of property 2 above. We
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will assume henceforth, that this has been done. Hence all of our keystreams
will be assumed to be generated by keystream generators that are CSPRNGs.

Now we are ready to look at the topic of this section. Before the formal
definition, think of a stream cipher as a cryptosystem where plaintext messages
are encrypted character by character, just before sending the cryptogram.

� Stream Ciphers

Let K be a keyspace for a cryptosystem and let k1k2 · · · ∈ K be a keystream.
A cryptosystem is called a stream cipher if encryption upon plaintext strings
m1m2 · · · is achieved by repeated application of the enciphering transformation
for j ≥ 1,

Ekj (mj) = cj ,

and deciphering occurs as repeated application of the deciphering transforma-
tion for j ≥ 1,

Dk−1
j

(cj) = mj .

If there exists an - ∈ N such that kj+� = kj for all j ∈ N, then we say that the
stream cipher is periodic with period -.

Generally speaking, stream ciphers are faster than block ciphers, and are
easier to describe, since stream ciphers encrypt individual plaintext message
units, usually one bit at a time.

All keystream generators are periodic except for one-time pads. This is the
cryptosystem where the (randomly generated) key (used only once) is the size
of the plaintext. (Recall the discussion on pages 83 and 84).

� The One-Time-Pad

The one-time-pad is a stream cipher with alphabet of definition A = {0, 1}
that enciphers in the following fashion.

Given a bitstring m1m2 · · ·m� ∈M, and a keystream k1k2 · · · k� ∈ K,

the enciphering transformation is given by

Ekj
(mj) = mj ⊕ kj = cj ∈ C,

and the deciphering transformation is given by

Dkj
(cj) = cj ⊕ kj = mj ,

for all j = 1, 2, . . . , - ∈ N. The keystream is randomly chosen and never used
again.

The one-time-pad is a stream cipher wherein the keystream does not repeat,
so it is not periodic. Moreover, it is an example of another notion we encountered
on page 83, namely, that of a running-key, a notion shared by a cipher we
described on page 56, namely, the Vigènere cipher (translated into arithmetic
modulo n). Recall that this is the cryptosystem where there is a keyphrase used
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as a priming key with which to encipher the plaintext. Formally, this is given
as follows.

� Vigenère Ciphers
Fix r, n ∈ N, and let M = C = (Z/nZ)s, the elements of which are ordered s-

tuples from Z/nZ, and K = (Z/nZ)r where s ≥ r. For e = (e1, e2, . . . , er) ∈ K,
and m = (m1,m2, . . . ,ms) ∈M, let

Eej (mj) = mj + ej (mod r) (mod n) for all j = 1, 2, . . . , s,

and for c = (c1, c2, . . . , cs) ∈ C, let

Ddj (cj) = cj − ej (mod r) (mod n) for all j = 1, 2, . . . , s.

This cryptosystem is called the Vigenère cipher with period r, which is why
the subscript on the key is taken modulo r (where we choose r rather than 0 in
order to keep all subscripts positive). If r = s, then this cipher is an example
of a running-key cipher.

Thus, the one-time-pad is an simple example of a running-key cipher. (Note
that this also says that the Vignère cipher becomes a Vernam cipher if we
assume that the keystream is truly randomly generated and never repeated.)
The Vigenère cipher is an example of a stream cipher with period length r,
where the key e = (e1, e2, . . . , er) provides the first r elements of the keystream
kj = ej for 1 ≤ j ≤ r, after which the keystream repeats itself, until the
plaintext is exhausted. Now, we turn to a general discussion of stream ciphers,
but will revisit our two examples later. Typically, stream ciphers are classified
as follows.

� Synchronous and Asynchronous Ciphers
A stream cipher is said to be synchronous if the keystream is generated

without use of the plaintext or of the ciphertext. This is called keystream
generation independent of the plaintext and ciphertext. A stream cipher is
called self-synchronizing (or asynchronous) if the keystream is generated as a
function of the key and a fixed number of previous ciphertext units. If the
stream cipher utilizes plaintext in the keystream generation, then it is called
nonsynchronous.

The distinctions between block and stream ciphers are more readily seen in
practice than in theory. Stream ciphers encrypting one bit at a time are not
suitable for software implementation since bit manipulation is time-consuming.
Where stream ciphers win out is in the arena of error propagation. Obviously,
with a block cipher, a single error will corrupt at least a block’s worth of data,
whereas implementation of a synchronous stream cipher can guarantee that a
single bit error will result in only a single bit of corrupted plaintext. Thus,
synchronous stream ciphers would be useful where lack of error propagation is
critical. However, use of self-synchronizing stream ciphers can result in error
propagation. If the keystream is acting on the nth ciphertext digit and an error
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occurs, then the deciphering of up to n subsequent ciphertext digits may be
incorrect.

An example of a synchronous stream cipher is DES operating in OFB mode,
whereas an example of an asynchronous stream cipher is DES in CFB mode.
An example of a nonsynchronous cipher is given by reinterpreting an idea of
Vigenère.

� The Autokey Vigenère Cipher
Let n = |A| where A is the alphabet of definition. We call k1k2 · · · kr for 1 ≤

r ≤ n a priming key. Then given a plaintext message unitm = (m1,m2, . . . ,ms)
where s ≥ r, we generate a keystream as follows:

k = k1k2 · · · krm1m2 · · ·ms−r.

Then we encipher via

Ekj
(mj) = mj + kj (mod n) = cj for j = 1, 2, . . . , r,

and
Ekj

(mj) = mj +mj−r (mod n) = cj for j > r,

and decipher via

Dkj
(cj) = cj − kj (mod n) = mj for j = 1, 2, . . . , r,

and
Dkj (cj) = cj −mj−r (mod n) = mj for j > r.

This cipher is nonsynchronous since the plaintext serves as the key from the
(r + 1)th position onward, with the simplest case being r = 1. Here is a simple
example.

Example 3.5 Given a priming key k = k1k2 = 72 and n = 26 in the autokey
Vigenère cipher, suppose we want to decrypt the Vigenère ciphertext

LPXEHGM,

using Table 1.3 on page 11. Converting ciphertext to numerical equivalents, we
have

11, 15, 23, 4, 7, 6, 12.

Thus, we compute the following:

m1 = c1 − k1 = 11− 7 = 4, m2 = c2 − k2 = 15− 2 = 13,

m3 = c3 −m1 = 23− 4 = 19, m4 = c4 −m2 = 4− 13 ≡ 17 (mod 26),

m5 = c5−m3 = 7−19 ≡ 14 (mod 26), m6 = c6−m4 = 6−17 ≡ 15 (mod 26),

and
m7 = c7 −m5 = 12− 14 ≡ 24 (mod 26).

Via Table 1.3, the letter equivalents give us
ENTROPY



3.6. Stream Ciphers 155

This now gives us the opportunity to see the formulation of the notion of an
autokey cipher that we first discussed when we met Cardano on page 55.

� Autokey Ciphers
An autokey cipher is a cryptosystem wherein the plaintext itself (in whole

or in part) serves as the key (usually after the use of an initial priming key).

As is the case with the autokey Vigenère cipher, the plaintext is introduced
into the key generation after the priming key has been exhausted.

Perhaps the most common of the stream ciphers is the following type.

� Binary Additive Stream Ciphers
A binary additive stream cipher is a synchronous stream cipher for which all

of the digits in the ciphertext, keystream, and plaintext are binary, and output
is achieved by addition modulo 2.

Many, if not most, keystream generators have the following as their basic
component. We will discuss the uses for the following after we have described
and illustrated the concept. The following notion is a mechanism for sender and
receiver to agree upon an easy way to generate long bitstrings.

� Linear Feedback Shift Registers

A linear feedback shift register (LFSR) is a mechanism for providing fast
number generation, but is not cryptographically secure. We provide a brief de-
scription here for completeness and to illustrate why it is both fast and insecure,
yet is a building block for more secure schemes. An LFSR is comprised of three
parts.

1. A shift register of length - ∈ N, consists of a sequence of - registers (memory
cells) labelled 0, 1, 2, . . . , - − 1, each capable of holding one bit and each
having one input and one output.

2. A tap sequence is an --tuple of bits:

(c1, c2, . . . , c�),

with c� = 1.

3. A state sj , of the LFSR is the bitstring describing the contents of the
registers for states numbered, j ∈ {0, 1, . . . , -− 1}, given by

sj = (k(�−1,j)k(�−2,j) . . . k(0,j)),

namely, register i has bit k(i,j) in state j, so the first coordinate of the
subscript denotes the register, and the second coordinate determines the
state of the bit. For instance, the initial state is given by the bitstring,

s0 = (k(�−1,0)k(�−2,0) . . . k(0,0)),

called the seed.
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� LFSR Operation

0. Input the seed, and set j = 1.

1. The bit, k(0,j−1), in register 0 is output as the next bit in the keystream.
In other words, k(0,j−1) is tapped as the next keystream bit, and becomes
part of the output sequence, and we store it with the label Kj−1.

2. The bit in register i, for i = 0, 1, . . . , - − 2, is shifted one register to the
right, namely, the contents of register i becomes k(i−1,j−1).

3. Register -− 1 is given as the following input,

k(�−1,j) = c1k(�−1,j−1) ⊕ c2k(�−2,j−1) ⊕ · · · ⊕ c�k(0,j−1). (3.6)

This step is called the linear feedback.

4. If s0 �= si, set i = i+1 and go to step 1. Otherwise, set i = L, and terminate
the algorithm, with output keystream given by

k = (KL−1KL−2 . . .K0),

which is said to have period length L.

Diagram 3.8 shows the result of the first bit iteration.

Diagram 3.8 A Linear Feedback Shift Register

↙ ⊕ ←−−−− ⊕ ← · · · ←− ⊕ ← ⊕

k�−1,1

�
�c1

�c2 · · ·
�c�−1

�c�

↘ ✄

✂

�

✁
k�−1,0 →

✄

✂

�

✁
k�−2,0 · · · →

✄

✂

�

✁
k1,0 →

✄

✂

�

✁
k0,0 → output: K0

Thus, the state after the completion of the first bit-iteration given in Diagram
3.8 is

s1 =
(
k(�−1,1), k(�−2,1), k(�−3,1), . . . , k(0,1)

)
=(

k(�−1,1), k(�−1,0), k(�−2,0), . . . , k(1,0)

)
,

where,
k(�−1,1) = c1k(�−1,0) ⊕ c2k(�−2,0) ⊕ · · · ⊕ c�k(0,0).

A very simple illustrating instance of the LFSR is given in the following.
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Example 3.6 Suppose that we have an LFSR with - = 4, and tap sequence

(c1c2c3c4) = (0101)

and initial state
s0 = (k(3,0)k(2,0)k(1,0)k(0,0)) = (1101).

Then we calculate the following.

j k(3,j) k(2,j) k(1,j) k(0,j)

0 1 1 0 1
1 0 1 1 0
2 1 0 1 1
3 1 1 0 1

For instance, for j = 1, the state after the first bit iteration is given by

s1 = (k(3,1)k(2,1)k(1,1)k(0,1)) = (0110),

where from (3.6),

k(3,1) = c1k(3,0) ⊕ c2k(2,0) ⊕ c3k(1,0) ⊕ c4k(0,0) =

0 · 1⊕ 1 · 1⊕ 0 · 0⊕ 1 · 1 = 0,

k(2,1) = k(3,0) = 1, k(1,1) = k(2,0) = 1,

and
k(0,1) = k(1,0) = 0.

The LFSR has period length L = 3, since

s3 = sL = (1101) = s0.

The output bitstring consists of the rightmost entry in each of the above table’s
rows for each (distinct) bit iteration j = 0, 1, 2, namely,

k = (K2K1K0) = (101).

There is a very palatable, simple, easy-to-understand matrix method of de-
scribing the above. Consider the following tap matrix derived from the tap
sequence, and state matrix derived from the states.

C =




c1 c2 c3 · · · c�−1 c�
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0




and Si =




k(�−1,i)

k(�−2,i)

k(�−3,i)

...
k(0,i)



,



158 3. Symmetric-Key Cryptography

so,
CSi = Si+1 for i = 0, 1, . . . , L− 1.

For instance, take the case in Example 3.6.

C =




0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 and S2 =




1
0
1
1


 ,

so

CS2 =




1
1
0
1


 = S3 = SL = S0.

LFSRs are amenable to hardware implementations, the costs of which are
low, and LFSRs are extremely fast. The choice of the bits to be tapped can
ensure a statistically random appearance of output bits. Thus, an LFSR can
be used as a PRNG, but not a CSPRNG, since LFSRs are very susceptible to
known-plaintext attacks. All a cryptanalyst needs is a few bits of consecutive
plaintext and corresponding ciphertext, then by adding modulo 2, eventually the
bits of the key are determined. Bitstrings output by a single LFSR are not secure
since sequential bits are linear, so it only takes 2- output bits of the LFSR to
determine it, even if the feedback scheme is unknown to the cryptanalyst. Thus,
LFSRs become a trade-off between speed and security. If one is not concerned
with security, but rather speed, such as in cable television transmission, then
LFSRs are a good bet. For systems of communications requiring high security,
they are not. However, they can be built into non-linear PRNGs. For examples
of this and a deeper insight into LFSRs, see [111], [169, pages 119–126], and
[283], as well as [287] for a cryptanalytic perspective.

In the concluding section of this chapter, we will look at the most popular
and highly secure stream cipher.

Diagram 3.9 A Generic Linear Feedback Shift Register

�
←−−−− ⊕ ←−−−−�

⊕ ←−−−−�
�

−−−−→ −−−−→ −−−−→



3.7. RC4 159

3.7 RC4

If we could find the answer to that [why it is that we and the universe exist],
it would be the ultimate triumph of human reason — for then we would know
the mind of God.

Stephen Hawking
— from A Brief History of Time (see [121, page 175])

RC4 is a stream cipher invented by Rivest in 1987 for Data Security. Ronald
L. Rivest received a B.A. in mathematics from Yale University in 1969 and a
Ph.D. in computer science from Stanford university in 1974. He is a co-inventor
of the RSA public-key cryptosystem (nongovernmental version, see pages 101–
104) and founder of RSA Data Security (now called RSA Security after having
been bought by Security Dynamics). Among his numerous, outstanding hon-
ours and positions are Fellow of the American Academy of Arts and Science;
Fellow of the Association for Computing Machinery; member of the National
Academy of Engineering; Director of the the Financial Cryptographic Associa-
tion; Director of the International Association for Cryptologic Research; Fellow
of the World Technology Network; member of MIT’s Laboratory for Computer
Science; member of MIT’s laboratory’s Theory of Computing Group; a leader of
the MIT Cryptography and Information Security Group; and currently the An-
drew and Erna Viterbi Professor of Electrical Engineering and Computer Science
at MIT. He, together with Adleman and Shamir, was awarded the 2000 IEEE
Koji Kobayashi Computers and Communications Award, as well as the Secure
Computing Lifetime Achievement Award. Moreover, he founded PeppercoinTM,
a company that provides a digital payment service for merchants, which osten-
sibly allows merchants to process small digital transactions for only pennies. He
is widely respected as an expert in cryptographic design and cryptanalysis.

RC4 was kept a secret, but in 1994 it was somehow leaked to the cyberpunks
remailers list on the Internet. Then it quickly spread to the sci.crypt newsgroup,
then to numerous other sites on the Internet. It is probably safe to say that
RC4 is the most widely used stream cipher in existence today (see page 129).

� The RC4 Cryptosystem
As usual, we describe the cipher via each of its components, which in this

case is minimal, and easy to understand.
� The State Vector
The state vector (row matrix) is a 256-byte vector labelled

S[j] for j = 0, 1, 2, . . . , 255.

We initialize S by setting

S[j] = j for each j = 0, 1, 2, . . . , 255.

The keylength k of the input (unique) nonce, or key, K, may vary from 1 to 256
bytes.
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� Initial Permutation of the State Vector
Set i = j = 0. Then execute the following.

1. Set j ≡ j + S[i] +K[i (mod k)] (mod 256).

2. SW(S[i], S[j]). (Swap the components.)

3. Set i = i + 1. If i �≡ 0 (mod 256), go to step 1. Otherwise, terminate the
initial permutation.

After the initial permutation, the key K is discarded/destroyed since it is a
unique key to be used only once. Next, we describe the actual streaming.

� Keystream Generation
Set i = j = 0. Then execute the following.

1. Set i ≡ i+ 1 (mod 256).

2. Set j ≡ j + S[i] (mod 256).

3. SW(S[i], S[j]).

4. If i �≡ 0 (mod 256), go to step 1. Otherwise go to step 5.

5. Set KS ≡ S[S[i] + S[j]] (mod 256)].

Use KS to encipher/decipher the next byte of plaintext/ciphertext by ad-
dition modulo 2. Then go to the keystream generation to get the next key to
encipher/decipher the next plaintext/ciphertext byte, and continue until the
entire message is encrypted/decrypted.

� Analysis and Summary
As we shall see in Chapter 10, RC4 is used for secure wireless transmission

(badly as it turned out, at first, but only because the keys for RC4 were gen-
erated and used improperly, so the RC4 cipher is not at fault, but rather the
implementation). In fact, RC4, as with all stream ciphers, is easily cryptana-
lyzed if the same input key is used more than once. Sometimes this problem can
be eradicated by “hashing” (which we will study in Chapter 4) the key with a
nonce each time it is used and sending the nonce along with the message. RC4
is used in the SSL/TLS (See Section 5.7) standard for communication between
Web browsers and servers. When RC4 is compared, in terms of speed, to block
ciphers, it wins hands down.

On a Pentium II, RC4 operates at 45 Mbps3.11 whereas DES operates at 9
Mbps and triple DES at a mere 3 Mbps. Thus, using a CSPRNG will ensure
that a stream cipher is as secure as a block cipher, and, as with RC4, typically
much faster. This may explain the release in the mid-1990s, by Netscape, of
a browser with RC4 as its encryption function utilizing a 128-bit key, which is
typically employed today for much of the Internet traffic in electronic commerce,
especially banking.
3.11This means megabits per second where a megabit is 106 bits.



Chapter 4

Public-Key Cryptography

A golden key can open any door.
Late sixteenth-century proverb

4.1 The Ideas behind PKC

We were first introduced to Alice and Bob on page 99, where we described the
idea behind public-key cryptography (PKC) by using the “open safe” analogy.
It is now time to give this a mathematical context.

� Public-Key Cryptosystems (PKC)
A cryptosystem consisting of a set of enciphering transformations {Ee} and

a set of deciphering transformations {Dd} is called a public-key cryptosystem
or an asymmetric cryptosystem if, for each key pair (e, d), the enciphering key
e, called the public key, is made publicly available, while the deciphering key
d, called the private key (see page 100), is kept secret. The cryptosystem must
satisfy the property that it is computationally infeasible to compute d from e.

In order to motivate the study of PKCs, rather than leave the issue to the
end, we begin by comparing the two types of cryptosystems, SKCs and PKCs,
and their mutual interdependence in the modern world, with some illustrations
before we begin to describe the various types of PKCs and their uses.

� PKCs and SKCs — A Comparison

1. Security: With a PKC only the private key needs to be kept a secret,
concealed by one entity, and public keys may be distributed freely. With
an SKC there must be a shared secret key known by at least two entities.
No PKC has been proven secure, yet except for the one-time-pad, this is
also true for SKCs.

2. Longevity: With PKCs, key pairs may be used without change in most
cases over long periods of time, years in some situations. With SKCs,
there may have to be a change of keys for each session.

161
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3. Key Management: If a multiuser large network is being used (without a
key server) then fewer private keys will be required with a PKC than with
an SKC. For instance, if n ∈ N entities are communicating, using DES,
say (see page 98), then the number of keys required to allow any two
entities to communicate is n(n− 1)/2. Also, every user on the system has
to store n − 1 keys. This is called key predistribution. With a public-key
cryptosystem, only n keys are required for any two entities to communicate
since only one (public) key for each entity has to be stored. Hence, SKC,
by itself, on the Internet is completely unworkable. Internet e-commerce
cannot be supported by SKCs alone.

4. Key Exchange: In a PKC, no (private) key exchange between communi-
cating entities is necessary. (Note that this tells us that the Diffie-Hellman
key-exchange protocol, discussed on page 166, is not a public-key cryp-
tosystem, although it contained the basic original ideas for it.) With an
SKC, it is difficult and risky to exchange a secret key. In fact, one of the
principal uses of PKC is for the exchange of a secret symmetric key, an
important point to which we will return before we conclude this chapter.

5. Digital Signatures and General Authentication: Another of the prin-
cipal roles played by PKC is that of providing digital signatures since they
offer virtually the only means for securely doing so. On the other hand,
the principal use of SKCs is bulk data enciphering.

6. Efficiency: PKCs are slower than SKCs. For instance, the RSA cryptosys-
tem is roughly a thousand times slower than DES.

7. Key sizes: The key sizes for a PKC are significantly larger than that re-
quired for an SKC. For instance, the private key in the RSA cryptosystem
should be 1024 bits, whereas with an SKC, generally 128 bits will suffice.
Usually, private keys are ten times larger than secret keys. PKC key sizes,
for such ciphers as RSA for instance, are getting so huge that some PKC
implementations are switching to ECC (see page 190). An example is that
Motorola uses ECC in its wireless phones; see Section 9.2.

8. Nonrepudiation: This means that the sender of a message cannot deny
having sent it. With PKCs we can ensure nonrepudiation with digital
signatures, whereas with SKCs, we need Trent as a trusted third party.

We may summarize one salient point derived from the above: PKC is not
meant to replace SKC, but rather to supplement it for the goal of achieving max-
imum security and efficiency. This is done as follows. The general motivation
behind modern cryptographic usage, especially on the Internet for e-commerce,
is to employ PKC to obtain symmetric keys, which are then used in an SKC.
Such cryptosystems are called hybrid cryptosystems or digital envelopes, which
have the advantages of both types of cryptosystems. Here is how they work in
practice.
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Alice and Bob have access to an SKC, which we will call S. Also, Bob has
a public-private key pair (e, d). In order to send a message m to Bob, Alice
first generates a symmetric key, called a session key or data encryption key, k
to be used only once. (The property of producing a new session key each time
a pair of users wants to communicate is called key freshness.) Alice enciphers
m using k and S obtaining ciphertext Ek(m) = c. Using Bob’s public key e,
Alice encrypts k to get Ee(k) = k′. Both of these encryptions are fast since S
is efficient in the first enciphering, and the session key is small in the second
enciphering. Then Alice sends c and k′ to Bob, who deciphers k with his private
key d, via Dd(k′) = k. Then Bob easily deduces the symmetric deciphering key
k−1, which he uses to decipher, Dk−1(c) = Dk−1(Ek(m)) = m.

Hence, the PKC is used only for the sending of the session key, which provides
a digital envelope that is both secure and efficient, a very nice and elegant
resolution of the above problems.

Diagram 4.1 (Digital Envelope — Hybrid Cryptosystem)
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Dk−1(c) = m

Example 4.1 Suppose that the symmetric-key cryptosystem, S, that Alice and
Bob agree to use is a permutation cipher (see page 114) with parameters r = 7,
M = C = Z/26Z, and key

k =
(

1 2 3 4 5 6 7
3 4 7 6 5 1 2

)
.

Alice wants to send
m = travels

to Bob. Alice converts m to numerical equivalents via Table 1.3 on page 11 to
get m = (19, 17, 0, 21, 4, 11, 18) to which she applies k to get

c = Ek(m) = (0, 21, 18, 11, 4, 19, 17).

She then proceeds to encipher k using Bob’s public key as follows.
Since m has seven letters, then we may encipher the key k (second row) as

a 7-digit, base 10 integer:

k = 3 · 106 + 4 · 105 + 7 · 104 + 6 · 103 + 5 · 102 + 1 · 10 + 2 = 3476512. (4.1)
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Using a modulus,

n = pq = 8179 · 9547 = 78084913,

with public key e = 7, and private key d = 22304911, Alice then enciphers k as

k′ = Ee(k) = ke = 34765127 ≡ 62221916 (mod 78084913),

and sends the pair (k′, c) = (ke, c) to Bob. Bob receives the pair and makes the
following calculations.4.1

He computes

Dd(k′) = (k′)d ≡ 6222191622304911 ≡ 3476512 ≡ k (mod n).

Bob then converts this back to its original format via (4.1), and is able to easily
deduce the deciphering key

k−1 =
(

1 2 3 4 5 6 7
6 7 1 2 5 4 3

)
,

which he applies to c to get

Dk−1(Ek(m)) = Dk−1(0, 21, 18, 11, 4, 19, 17) = (19, 17, 0, 21, 4, 11, 18) = travels.

Now we are ready to look at the various PKCs. The ideas behind the most
famous PKC, namely, RSA, about which we will learn the details in the next
section, is based upon the simple mathematical idea of exponentiation and re-
lated matters. The first of the related matters is a notion that we need to set up
the first exponentiation cipher. The security of many cryptosystems depends
upon the difficulty of solving certain problems such as the following.

If we are dealing with real numbers then finding e from αe is called the
logarithm function. In F

∗
p (or more generally in any finite group) this is called

the discrete logarithm problem (DLP). Thus, we present the problem formally
as follows.

Discrete Log Problem (DLP):

Given a prime p, a generator m of F
∗
p, and an element c ∈ F

∗
p, find the unique

integer e with 0 ≤ e ≤ p− 2 such that

c ≡ me (mod p). (4.2)

4.1What Bob does is to employ Euler’s theorem (see Theorem A.14 on page 479). This
motivates what we will study in the next section.
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The DLP is often called simply discrete log. Here e ≡ logm(c) (mod p−1). If
p is “properly chosen”, this is a very difficult problem to solve. One of the ways
that p has to be properly chosen is to insist upon p−1 having at least one large
prime factor. This is due to the Silver-Pohlig-Hellman algorithm, which allows
for efficient calculation of discrete logs when p− 1 has only small prime factors.
Due to the technical nature of the algorithm, we have placed a description of it
in Appendix D on page 530.

It can be shown that the complexity of finding e in (4.2) when p has n digits
is roughly the same as factoring an n-digit number (for instance, see [183]).
Therefore, computing discrete logs is virtually of the same degree of difficulty
as factoring, and since there are no known tractable factoring algorithms, we
assume that the integer factoring problem (IFP) is intrinsically difficult (see
page 509). Hence, cryptosystems based upon the discrete log problem are as-
sumed to be secure. Yet, there is no verification of this abstractly in the sense
that no nontrivial lower bounds have been found for the complexity of integer
factorization. (See the discussion of complexity on pages 500–505 in Appendix
A.)

A symmetric-key cipher whose security depends upon the discrete log prob-
lem is our next topic. It involves the name of a contributor whom we will see
often; a brief discussion of his achievements follows.

Martin E. Hellman was born on October 2, 1945. He obtained all his aca-
demic degrees in electrical engineering: his bachelor’s degree from New York
University in 1966; his master’s degree in 1967; and his Ph.D. in 1969, the lat-
ter two from Stanford. He was employed at IBM and at MIT, but returned
to Stanford in 1971. He remained there until 1996, when he received his Pro-
fessor Emeritus status. We already learned on page 99 that he was one of the
pioneers of PKC. He has been involved in computer privacy issues going back
to the debate over the DES keylength in 1975 (see Levy’s book [151] for some
background to this fascinating story). He has not only demonstrated his schol-
arship with numerous publications, but also has excelled in teaching. He was
recognized with four teaching awards; three of these were from minority-student
organizations. He is now retired from research and teaching. He and Dorothie,
his wife of some 35 years, live on campus at Stanford.

Now it is time for us to go back to symmetric-key cryptography (SKC) and
learn about an exponentiation cipher that will help us to set the stage for PKC
in general and RSA in particular.

� The Pohlig-Hellman Symmetric-Key Exponentiation Cipher

(a) A secret prime p is chosen and a secret enciphering key e ∈ N with e ≤ p−2.

(b) A secret deciphering key d is computed via ed ≡ 1 (mod p− 1).

(c) Encryption of plaintext message units m is: c ≡ me (mod p).

(d) Decryption is achieved via m ≡ cd (mod p).
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Example 4.2 Let p = 167, and set e = 69, with plaintext 12, 4, 18, 0, 6. Then
we encipher each by exponentiating as follows, where all congruences are modulo
167.

1269 ≡ 85; 469 ≡ 50; 1869 ≡ 96; 069 ≡ 0; 669 ≡ 27.

Then we send off the ciphertext. To decipher, we need the inverse of e modulo
166 = p−1, and this is achieved by using the Euclidean algorithm (see Theorem
A.3 on page 470) to solve

69d + 166x = 1,

which has a solution d = 77 for x = −32, and this is the least positive such value
of d. So we may decipher via, 8577 ≡ 12 and so on to retrieve the plaintext.

� Analysis

Since knowledge of e and p would allow a cryptanalyst to obtain d, then
both p and e must be kept secret. The security of this cipher is based on the
difficulty of solving the DLP, namely, an adversary, without knowledge of e or
d, would have to compute e ≡ logm(c) (mod p− 1).

The Pohlig-Hellman cipher is an example of the use of fixed-exponent ex-
ponentiation where the base may vary but the exponent is fixed. The next
algorithm, which we mentioned briefly on page 99, is an example of the use of
fixed-base exponentiation where the exponent may vary but the base is fixed.
This algorithm is a prime motivator for PKC, and its security depends upon
the DLP.

� The Diffie-Hellman Key Exchange Protocol

Suppose that Alice and Bob have not yet met nor exchanged keys, but
they want to establish a shared secret key k by exchanging messages over an
unsecured channel. First Alice and Bob agree on a large prime p and a generator
α of F

∗
p (2 ≤ α ≤ p − 2). These need not be kept secret, so Alice and Bob can

agree over an unsecured channel. Then the protocol proceeds as follows.

(1) Alice chooses a random (large) x ∈ N and computes the least positive
residue X of αx modulo p, then sends X to Bob (and keeps x secret).

(2) Bob chooses a random (large) y ∈ N and computes the least positive
residue Y of αy modulo p, then sends Y to Alice (and keeps y secret).

(3) Alice computes the least positive residue of Y x modulo p, and Bob com-
putes the least positive residue of Xy modulo p. Since

Y x ≡ αyx ≡ αxy ≡ Xy ≡ k (mod p),

they have a shared secret key k.
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Example 4.3 Suppose that the parameters are p = 1187, α = 2, x = 285, and
y = 781. Then X ≡ 2285 ≡ 1013 (mod p); Y ≡ 2781 ≡ 7 (mod p); Y x ≡ 7285 ≡
870 (mod p); and Xy ≡ 1013781 ≡ 870 (mod p). Hence, k = 870 is the shared
secret key.

� Analysis

In the Diffie-Hellman protocol, k is the shared secret key independently
generated by both Alice and Bob. The key exchange is complete, since Alice
and Bob are in agreement on k. The Diffie-Hellman Protocol differs from the
Pohlig-Hellman cipher in that the latter requires that both p and e be kept
secret since d could be deduced from them, whereas in the former p and α may
be made public due to the intractability of the DLP. However, there is a subtler
problem here that we need to discuss, not only in reference to the above, but
also for later use (see page 186).

A cryptanalyst, Eve, listening to the channel would know p , α, X, and Y ,
but neither x nor y. Thus, Eve faces what is called the

Diffie-Hellman Problem (DHP):

find αxy (mod p) given α, αx (mod p) and,

αy (mod p) (but not x or y).

If Eve can solve the DLP, then she can clearly solve the DHP. Whether the
converse is true or not is unknown. In other words, it is not known if it is possible
for a cryptanalyst to solve the DHP without solving the DLP. Nevertheless, the
consensus is that the two problems are equivalent. Thus, for practical purposes,
one may assume that the Diffie-Hellman Key Exchange Protocol is secure as
long as the DLP is intractable.

Given that we have discussed the achievements of one of the developers of
this algorithm, it is now time to talk about the other.

Bailey Whitfield Diffie was born on June 5, 1944. Diffie, by his own admis-
sion, was not a good student in high school, but it was not for lack of ability,
rather lack of focus. His ability did shine brightly when his less-than-stellar high
school performance was overshadowed by his strikingly high marks on entrance
examinations for MIT. He entered MIT in 1961 and graduated in 1965, later
accepting a job at Mitre Corporation. There he worked under the tutelage of
Ronald Silver, (one of the authors of the algorithm we describe on page 530).
He worked on development of the mathematical symbolic manipulation package
Mathlab, which later developed into the powerful symbolic mathematical soft-
ware package called MACSYMA. Silver taught Diffie a great deal and inspired
him to look further into cryptographic issues. In 1969, Diffie left Mitre and
joined John McCarthy’s Artificial Intelligence Lab at Stanford. By 1975, as
described on page 99, the collaboration with Hellman, with input from Merkle,
created the breakthrough. For his involvement, along with Hellman and Merkle,



168 4. Public-Key Cryptography

in the discovery of the notion of PKC, he was awarded a Doctorate in Techni-
cal Sciences (Honoris Causa) by the Swiss Federal Institute of Technology in
1992. His current position is Chief Security Officer at Sun Microsystems, in Palo
Alto, California, where he has been since 1991. He has numerous awards from
the Association of Computing Machinery (ACM), IEEE, NIST, NSA, and the
Franklin Institute. The reader wanting more details of his involvement in public
policy concerning cryptography, and his opposition to limitations on the use of
cryptography by individuals and corporations, should consult Levy’s book [151],
wherein Diffie is a central character.

There are two more ingredients for the RSA recipe that we need before we
close this section. The first we encountered briefly on page 99, and we now
formalize the notion.

� One-Way Functions

A one-to-one function f from a set M to a set C is called one-way if f(m) is
“easy” to compute for all m ∈M, but for a randomly selected c in the image of
f , finding an m ∈M such that c = f(m) is computationally infeasible. In other
words, we can easily compute f , but it is computationally infeasible to compute
f−1.

Diagram 4.2 One-Way Function
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←−−−−−−−−−−−−−−−−−−−−−−−−
f−1: computationally infeasible

☛

✡

✟

✠
f (m) ∈ C

One-way functions have a plethora of cryptographic uses. For instance, we
talked about PRNG earlier and mechanisms for making CSPRNGs (see page
151). One means of creating a CSPRNG using a one-way function is as follows.
Let f be a one-way function and assume a nonce n is known to us. Then define

f(n + j) = rj for j = 1, 2, . . . .

If bj is the least significant bit4.2 of rj , then the sequence b0b1 . . . will be a
CSPRNG.

Another use of one-way functions, about which we will see more later, is
password security. Suppose that Alice has a password p and f is a one-way
function. Then p can be stored as f(p) on a computer. When Alice logs in to
her account, the computer takes p, calculates f(p), and checks that it matches
the stored value. A cryptanalyst who gets hold of the password file will have
only the f(p) value for each user, and obtaining p is computationally infeasible.

The above being said, there is no rigorous mathematical proof that one-way
functions actually exist. Yet, as we saw on page 99, we have working definitions,

4.2In a given base-b representation of a ∈ N, a = (an, an−1, . . . , a1, a0)b, the digit a0 is called
the least significant digit, and an is called the most significant digit.
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pragmatic ones, that serve us well. Moreover, we now have “candidate” one-
way functions such as the DLP and the IFP, discussed on page 165 — see also
Appendix C on page 509. The reader interested in a deeper analysis of this
issue may consult books on complexity theory that go well beyond the basics
covered in Appendix A (see [101] for instance).

The reader may wonder at this point how it is that we could devise a cryp-
tosystem using one-way functions. The recipient of a message enciphered with
a one-way function would ostensibly be no better off than a cryptanalyst at
finding the plaintext since computing the inverse is computationally infeasible.
This is correct, so the recipient needs more information, the idea for which is
contained in the next notion.

� Trapdoor One-Way Functions
A trapdoor one-way function or public-key enciphering function is a one-way

function,
f : M 
→ C,

satisfying the additional property that there exists information, called trapdoor
information, or simply trapdoor, that makes it feasible to find m ∈M for a given
c ∈ img(f) such that f(m) = c, but without the trapdoor this task becomes
infeasible.

Diagram 4.3 Trapdoor One-Way Function
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trapdoor ❐

The essential idea behind the Diffie-Hellman key exchange is the use of trap-
door one-way functions. The Diffie-Hellman Protocol, discussed earlier in this
section, allows for entities who have never met or exchanged information to es-
tablish a shared secret key by exchanging messages over an unsecured channel.
Since exponentiation modulo p is polynomial time, then enciphering is easy.
However, finding the inverse, solving the DLP, is computationally infeasible,
without the trapdoor, namely, one of the secret pair (x, y). This can be made
to work in a more general context, using the IFP, that is most germane to our
discussion of RSA in the next section, and will provide a nice motivator.

Example 4.4 Let f(x) ≡ xe (mod n) where n = pq with p �= q primes, and
suppose that

de ≡ 1 (mod (p− 1)(q − 1)).

Then applying f is computationally, easy but finding

f−1(xe) ≡ f−1(f(x)) ≡ xed ≡ x (mod n) (4.3)

is computationally infeasible without the trapdoor d.
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� Analysis
First, we note that (p− 1)(q − 1) in Example 4.4 is just the Euler function

(see page 479) applied to pq, since φ(n) = φ(pq) = (p − 1)(q − 1), and the
application of f−1 in Equation (4.3) is just Euler’s generalization of Fermat’s
Little Theorem (see Theorem A.14 on page 479). This little bit of elementary
number theory is really all that is behind the RSA cipher, so understanding this
is sufficient to understand the entire cryptosystem.

In order to show that the finding of the trapdoor d in Example 4.4 is based
upon the IFP, in this case factoring n, we need to show that computing d is
“as hard as” factoring n. Determining what as hard as means will involve some
discussion of probabilities.

If we can factor n, obviously we can compute (p − 1)(q − 1). Then we can
use the Euclidean algorithm to find d from e (in computationally feasible time),
since we need merely solve ed + x(p − 1)(q − 1) = 1 for x and d. A simple
example is e = 7, p = 101 and q = 167. Then solving 7d + 100 · 166 · x = 1
is easily achieved, with x = −2, and d = 4743. In fact, it can be shown that
being able to compute d can be converted (with an arbitrarily high probability)
into an algorithm for factoring n (see [170, page 65] for instance). In other
words, knowledge of d can be converted into an algorithm for factoring n (with
an arbitrarily small probability of failure to do so). Thus, to say that finding
d is as hard as factoring the modulus is not a proven fact, rather a conjecture
based upon some (rather solid) evidence. We will formalize this conjecture in
the next section.

Note, as well, that if we have φ(n) and n, then we can factor n. The reason
is that we can find p and q by successively computing

p + q = n− (p− 1)(q − 1) + 1 and p− q =
√

(p + q)2 − 4n, (4.4)

so we get

p =
1
2

[(p + q) + (p− q)] and q =
1
2

[(p + q)− (p− q)] .

Hence, finding d or finding φ(n) means we can factor n.
The next topic is a mechanism for creating a digital “fingerprint” of data.

� Hash Functions

A hash function is a computationally efficient function that maps bitstrings
of arbitrary length to bitstrings of fixed length, called hash values. A one-way
hash function is a hash function that is a one-way function as described above.
The process of using a hash function on a message is called hashing the message.

In order for a hash function to be cryptographically viable, it must be a
one-way hash function to prevent easy unauthorized retrieval of the original bit-
string. Thus, one-way hash functions are called cryptographic hash functions.
Hash values produced by such functions are used as a concentrated represen-
tative of the original bitstring, so they can be used as a unique identifier of
it. Thus, this type of hash value is called a message digest, imprint, or digital
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fingerprint. We will mean a cryptographic hash function when we use the term
hash function henceforth.

There is a special terminology for one-way hash functions. A hash function
h is called weakly collision resistant if it is computationally infeasible to find
for a given x1, a value x2 �= x1 such that h(x1) = h(x2). A hash function
h is called strongly collision resistant if it is computationally infeasible to find
any pair of values (x1, x2) such that x1 �= x2 and h(x1) = h(x2). The reader is
cautioned that these collision-related terms are not used consistently throughout
the literature.

We will be looking at hash functions from numerous perspectives, some of
the most important of which are in message authentication, as one might expect
from a device that mimics a “fingerprint”. We study hash function in depth
later (see page 252).

We conclude this section with an important algorithm that is essential to
the efficiency of many cryptosystems including RSA. It is our last example of
yet another kind of exponentiation algorithm, called basic exponentiation, which
can be used with any base b and any exponent r.

Our basic goal is to calculate the least positive residue of xd modulo n for
any given x, d ∈ N. To do this with a single exponentiation would overflow the
memory of most computers for sufficiently large d. We could reduce memory
requirements by starting with x and multiplying by x, d − 1 times, reducing
modulo n at each step, but even here, for large d, the methodology is still
too slow. Fortunately, there is an efficient algorithm of squaring and reducing
modulo n in successive steps, that is quite efficient.

The Repeated Squaring Method

Given d, n ∈ N, d > 1, and

d =
k∑

j=0

dj2j , dj ∈ {0, 1},

the goal is to find xd (mod n).
First, we initialize by setting c0 = x if d0 = 1, and set c0 = 1 if d0 = 0. Also,
set x0 = x, j = 1, and execute the following steps:

(1) Compute xj ≡ x2
j−1 (mod n).

(2) If dj = 1, set cj = xj · cj−1 (mod n).

(3) If dj = 0, then set cj ≡ cj−1 (mod n).

(3) Reset j to j + 1. If j = k + 1, output ck ≡ xd (mod n), and terminate
the algorithm. Otherwise, go to step (1).
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4.2 RSA

If in other sciences we should arrive at certainty without doubt and truth
without error, it behooves us to place the foundations of knowledge in mathe-
matics

Roger Bacon (ca. 1214–1292), English philosopher and scientist
— from Opus Majus (bk. 1, ch. 4)

We have given some biographical information for one of the three gentle-
men who make up the acronym for this section (see page 159). It is time to
give some information about the the other two. Adi Shamir is an Israeli cryp-
tographer, who is currently the Borman Professor in the Applied Mathematics
Department of the Weizman Institute of Science in Israel. He obtained his Ph.D.
from Stanford in 1977 after which he did postdoctoral work at Warwick Univer-
sity in England. Shamir’s name is attached to a wide variety of cryptographic
schemes, many of which we will study in this text, including the Fiat-Shamir
identification protocol, RSA, DC (see Footnote 3.4 on page 127), and his poly-
nomial secret-sharing scheme, to mention only a few. On April 14, 2003, the
ACM formally announced that the A.M. Turing Award (essentially the “Nobel
Prize of computer science”) would go to Adleman, Shamir, and Rivest for their
developmental work on PKC.

Leonard Adleman was born on December 31, 1945, in San Francisco, Cali-
fornia. He received his B.Sc. in mathematics from the University of California
at Berkeley in 1972 and his Ph.D. there in 1976. His doctoral thesis was done
under the guidance of Manuel Blum, and was titled, Number Theoretic As-
pects of Computational Complexity. He is married with three children, and
is currently Henry Salvatori Professor of Computer Science and Professor of
Molecular Biology at the University of Southern California Los Angeles, Cali-
fornia, where he has been since 1980. His professional interests are algorithms;
computational complexity; computer viruses; cryptography; DNA computing;
immunology; molecular biology; number theory; and quantum computing. His
most recent activity is the building of a DNA computer, which has the potential
for a vastly faster computation for the future. He noticed that a protein, called
polymerase, which produces complementary strands of DNA, resembles the op-
eration of a Turing machine (see page 503). Adleman reached the conclusion
that DNA formation essentially functions in a fashion similar to a computer, so
he is interested in constructing a viable DNA computer.

Although the Diffie-Hellman key-exchange protocol, discussed on page 166,
was the genesis of a profound investigation into the notion of PKC, their scheme
did not provide a complete solution to the establishment of a complete PKC.
They only provided a mechanism for the exchange of keys, and by the authors’
own admission, left open the problem of establishing a working secure PKC (see
page 99). The first to (publicly) do this, as we know, have their names attached
to the acronym that did provide such a solution.
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� The RSA Public-Key Cryptosystem

We break the algorithm into two parts with the underlying assumption that
Alice wants to send a message to Bob.

(I) RSA Key Generation
1. Bob generates two large, random primes p �= q of roughly the same size,

and computes both n = pq and

φ(n) = (p− 1)(q − 1).

The integer n is called his (RSA) modulus.

2. He selects a random e ∈ N such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.
The integer e is called his (RSA) enciphering exponent. Then using the
extended Euclidean algorithm (see page 471), he computes the unique
d ∈ N with 1 < d < φ(n) such that

ed ≡ 1 (mod φ(n)).

3. Bob publishes (n, e) in some public database and keeps d, p, q, and φ(n)
private. Thus, Bob’s (RSA) public-key is (n, e) and his (RSA) private key
is d. The integer d is called his (RSA) deciphering exponent.

(II) RSA Public-Key Cipher

enciphering stage:
In order to simplify this stage, we assume that the plaintext message m ∈M

is in numerical form with m < n. Also, M = C = Z/nZ, and we assume that
gcd(m,n) = 1.

1. Alice obtains Bob’s public key (n, e) from the database.

2. She enciphers m by computing c ≡ me (mod n) using the repeated squaring
method given on page 171, and sends c ∈ C to Bob.

deciphering stage:
Once Bob receives c, he uses d to compute m ≡ cd (mod n).

Example 4.5 Suppose that Bob chooses (p, q) = (9221, 7489). Then n =
69056069 and φ(n) = 69039360. If Bob selects e = 7, then solving 1 = 7d+φ(n)x
(for x = −4), he gets d = 39451063, his private key. Also, (69056069, 7) is
his public key. Alice obtains Bob’s public key and wishes to send the message
m = 7289258. She enciphers using Bob’s public key to get

c ≡ m7 ≡ 19407420 (mod n),

which she sends to Bob. He uses his private key d to decipher via

cd ≡ 1940742039451063 ≡ 7289258 ≡ m (mod n).
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� Block Size

We cannot properly encipher the plaintext message unit if it is a numerical
value m ≥ n. (The reader may try an example, say, m = 72892588, in Example
4.5, and see that information is lost (under modular reduction) and the system
fails.) When m ≥ n, we must subdivide the plaintext numerical equivalents into
blocks of equal size, a process called message blocking. If we are dealing with
numerical equivalents of the plaintext in base N integers for some fixed N > 1,
then message blocking is accomplished by choosing that unique integer � such
that N 	 < n < N 	+1. Then we write the message as blocks of �-digit, base
N integers (with zeros packed to the right in the last block if necessary), and
encipher each separately. Since N 	 < n, each block of plaintext corresponds to
an element of Z/nZ. Therefore, since n < N 	+1, then each ciphertext message
unit can be uniquely written as an (�+1)-digit, base N integer in C = Z/nZ = M.

� Modulus Size

For the modern day and the near future, an RSA modulus of 1024 to 2048
bits would be considered secure. Certain RSA moduli of n digits that are a
product of two primes of approximately the same size are denoted by RSA-n,
called an RSA challenge number. These are published on the Internet and the
reader may request the list from challenge-rsa-list@rsa.com. These are numbers
for which rewards are offered to factor them. We will return to some concrete
examples of these numbers shortly.

� Security

In the RSA cipher, the four items d, p, q, φ(n) form the trapdoor and knowl-
edge of any one of them reveals the remaining three items. In other words, they
are not independent items. Also, to ensure a secure cryptosystem, there must be
“preprocessing” of plaintext message units before the enciphering stage. In [37],
it is shown that implementing the RSA cryptosystem as described on page 173,
which we will call plain RSA (namely, without any preprocessing of plaintext
message units) is insecure in the following sense. The attack against plain RSA
given in [37] shows that even though an m-bit key is used in plain RSA, the
effective security is m/2 bits. Hence, it is essential that, before encryption, a
preprocessing step be implemented that uses the Optimal Asymmetric Encryp-
tion Padding (OAEP) (introduced in [15]) such as [185], a recent standard from
RSA Labs. There are methods for adding randomness to the enciphering stage
in RSA (see [15] for instance). In order to obtain a secure RSA cryptosystem
from a plain RSA cryptosystem, there should be an application of a preprocess-
ing function to the plaintext before enciphering. In [15], there are new standards
for “padding” plain RSA so that it is secure against certain chosen ciphertext
attacks (see Footnote 4.3 on page 176).

One example that is pertinent at this juncture is the following. Suppose
that Alice and Bob use the RSA cryptosystem but they choose the same
RSA modulus n, and enciphering (public) keys eA and eB , respectively, with
gcd(eA, eB) = 1. Suppose that Eve intercepts two cryptograms meA and meB ,
enciphering the same message m, sent by a third entity to Alice and Bob, re-



4.2. RSA 175

spectively. Given that gcd(eA, eB) = 1, the extended Euclidean algorithm allows
Eve to solve eAx + eBy = 1 for some x, y ∈ Z. Then, Eve calculates:

cx
Acy

B ≡ (meA)x(meB )y ≡ meAx+eBy ≡ m (mod n),

and this is done without knowledge of a factorization of n or of knowledge of
either private keys. This is called common modulus protocol failure (CMPF).
This is not a failure of the RSA cryptosystem, rather a very bad implementation
of it. In fact, the CMPF shows, in no uncertain terms, that an RSA modulus
should never be used by more than one entity. The CMPF illustrates the fact
that no matter how strong a cipher might be, a bad implementation of it will
render the scheme to be insecure, and useless. The true security of RSA requires
a proper implementation. For instance, even the RSA modulus size of 2048 bits
suggested above, is useless in the face of a bad implementation such as the
CMPF. We will come back to implementation issues below.

On pages 169 and 170, we discussed an instance that is tantamount to the
encryption and decryption of the RSA cipher. Therein, we talked about a notion
that we can now name.

The RSA Conjecture
Cryptanalyzing RSA must be as difficult as factoring.

Although there is no proof of this conjecture, the aforementioned discussion
in the previous section tells us that the evidence is strong and the general
consensus is that the conjecture is valid. A good reason for believing this is
that the only known method for finding d given e is the extended Euclidean
algorithm applied to e and φ(n). Yet, to compute φ(n), we need to know p and
q, namely, we need to know how to factor n.

Given the above statement, it is worth a few more words on the extended
Euclidean algorithm. This algorithm calculates the gcd(e, φ(n)), and when
gcd(e, φ(n)) = 1, it calculates the e−1 (mod φ(n)). This is accomplished rel-
atively quickly.

Although factoring is indeed an intrinsically difficult problem, it is nowhere
nearly as hard as it was at the inception of RSA. In Martin Gardiner’s Scientific
American article [100], in 1977, it was trumpeted that it would take millions
of years to factor the RSA-129 challenge number. A reward of $100 (U.S.) was
offered at that time (see page 174). In 1994, however, reality got in the way of
that perception. After only eight months of trying, the authors of [10] factored
it. They used a variation of a factoring algorithm called the Multipolynomial
Quadratic Sieve (MPQS) (the details of which we discuss, along with other
factoring issues, in Appendix C. In fact, the reader desiring an in-depth look
at factoring and its consequences should consult this appendix for the details.)
The authors used over 600 researchers by distributing their quadratic sieve op-
erations to hundreds of physically separated computers all over the world. The
term for this is factoring by electronic mail coined by Lenstra and Manasse
in [148]. The lesson here is that we should never underestimate the potential
breakthroughs in mathematical factoring techniques such as CFRAC (1970) and
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MPQS (1985). Ironically, this possibility was addressed in the aforementioned
article: “Rivest and his associates have no proof that at some future time no
one will discover a fast algorithm for factoring composites as large as .... [but]
they consider the possibility extremely remote.” What was a problem that could
take millions of years in 1977; was reduced to mere months by 1994 owing to
such breakthroughs.

This is an appropriate juncture to introduce the notion of a mips year which
is defined to being equivalent to the computational power of a computer rated
at one million instructions per second (mips) and used for one year, which
is tantamount to approximately 3 · 1013 instructions. The RSA-129 challenge
number took 5000 mips years.

There are numerous cryptosystems that are called equivalent to the difficulty
of factoring. For instance, there are RSA-like cryptosystems whose difficulty to
break is as hard as factoring the modulus. It can be shown that any cryptosys-
tem for which there is a constructive proof of equivalence to the difficulty of
factoring, is vulnerable to a chosen-ciphertext attack.4.3 We have already seen
that factoring an RSA modulus allows the breaking of the cryptosystem, but
the converse is not known. In other words, it is not known if there are other
methods of breaking RSA, but some new attacks presented concerns.

� Attacks on RSA

In what follows, the attacks on RSA must really be seen as attacks on par-
ticular implementations of RSA. Hence, taken together, the following present a
cogent argument and criteria for secure implementations of RSA.

In 1995, Paul Kocher, then a Stanford undergraduate, (see [139]) discovered
that RSA could be cryptanalyzed by recovering the decryption exponent through
a careful timing of the computation times for a sequence of decryptions. This
weakness was a surprising and unexpected discovery,4.4 and although there are
means of thwarting the attack, it was another wake-up call. This is another
lesson for cryptographers: never to be overconfident, and always be alert to the
unexpected.

In order to understand this new attack, we need some statistical notions and
probabilistic notions; see Appendix E. Let R be a randomized algorithm (see
page 500) that produces t ∈ R as output where t is the amount of time it takes for
the computer to complete a calculation for a given input. We record the outputs
t1, t2, . . . , tr for given inputs and compute the mean m = (t1 + t2 + · · · tr)/r.

4.3In a chosen-ciphertext attack, the cryptanalyst chooses the ciphertext and is given the
corresponding plaintext. This attack is most effective against public-key cryptosystems, but
sometimes is effective against symmetric-key ciphers as well. One way of mounting a chosen-
ciphertext attack is to obtain access to the machinery used to do the encryption. This was
accomplished prior to World War II when the Americans were able to replicate the Japanese
cipher machine, Purple (see page 89).

4.4Two of the major reasons this attack was so stunning were that it came from a completely
unexpected area, and it is a ciphertext-only attack, which means the cryptanalyst has access
only to the ciphertext, obtained through interception of some cryptograms, from which to
deduce the plaintext, without any knowledge whatsoever of the plaintext.
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The variance of the {tj} is defined to be

var
(
{tj}rj=1

)
=

(t1 −m)2 + (t2 −m)2 + · · · (tr −m)2

r
,

and the standard deviation is just the square root of the variance. It can be
shown that for another set of outputs s1, s2, . . . , sr,

var
(
{sj}rj=1

)
+ var

(
{tj}rj=1

)
≈ var

(
{sj}rj=1 + {tj}rj=1

)
. (4.5)

An analogue for the following attack is for a thief to watch someone turning
the lock on a safe and measuring the time it takes to go to each combination
number in order to guess the combination, quite clever.

� Timing Attack
Here is what Eve knows: the hardware, such as a smart card or computer,

that is being used; the RSA modulus n; and prior to her attack, Eve has mea-
sured the time values that it takes the hardware to compute xd

i ≡ ci (mod n) in
the repeated squaring method (given on page 171) for some large number r of ci-
phertexts xi. Eve wants to obtain the RSA decryption exponent d =

∑k
j=0 dj2j ,

which she knows is odd, so she already has d0 = 1. Suppose that she has ob-
tained d0, d1, . . . , d	−1 for some � ∈ N. Since Eve knows the hardware, she
therefore knows the time ti (for each xi) that it takes the hardware to compute
c	, . . . , ck in the repeated squaring method. She now wants to determine d	. If
d	 = 1, then the multiplication x	 · x (mod n) is calculated for each ciphertext
xi, and Eve knows that this takes time qi, say. However, if d	 = 0, this multi-
plication does not take place. Now suppose it takes time si for the computer
to complete the calculation after the multiplication. Then by Equation (4.5), if
d	 = 1,

var ({ti}ri=1) ≈ var ({qi}ri=1) + var ({si}ri=1) > var ({si}ri=1) , (4.6)

and if d	 = 0, then this fails to hold. Hence, Eve can determine d	, and similarly
dj for each j > �. This simple observation allows for Eve to find d without having
to factor n.

To summarize: the attack essentially consists of simulating the computation
to some point, then building a decision criterion (4.6), with only one correct
interpretation possible, depending on the selected value, and finally deciding
the bit value by observing whether (4.6) holds. This attack is most effective
against smart cards and such devices where timing measurements can be ob-
tained precisely.

So how do we defend against Eve’s (passive) attack? There are two basic
methods for defense against Kocher’s timing attack. The simplest is to ensure
that the modular exponentiation being used always takes a fixed amount of
time. This may be accomplished by adding a suitable delay factor in each
operation. The second method of defense is attributable to Rivest. The method
is called blinding. Suppose that b is the ciphertext and e is the RSA encryption
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exponent. Then prior to deciphering b, a random r ∈ (Z/nZ)∗ is chosen and
b′ ≡ b · re (mod n) is computed, followed by c′ ≡ (b′)d (mod n). Then the
computer sets c = c′ · r−1 (mod n) thereby exponentiating a random b′ with d
that is totally unknown to Eve, thereby thwarting her attack.

� Power Cryptanalysis Attack

A section, albeit small, is deserving for another outstanding idea from
Kocher, called power cryptanalysis. By a very careful measurement of the com-
puter’s power consumption during decryption, Eve could recover the secret key.
This works since during multiprecision multiplications the computer’s power
consumption is necessarily higher than it would normally be. Hence, if Eve
measures the length of these high consumption episodes she can easily decide
when the computer is performing one or two multiplications, and this gives away
the bits of d. The only protection is some kind of physical shielding of the power
output. See http://www.cryptography.com/resources/whitepapers/DPA.html.

� Low Public RSA Exponent Attacks

For the sake of efficiency, one would like to use small public RSA exponents.
However, one has to be careful not to compromise security in so doing. One
typically used public exponent is, surprisingly, e = 3. However, if the same
message m, in a single block, is sent to three different entities, having pairwise
relatively prime RSA moduli nj , with m < nj for j = 1, 2, 3, this allows recovery
of the plaintext. Here is how it is done. Using the Chinese remainder theorem,
there is a solution to x ≡ ci ≡ m3 (mod ni) for each i = 1, 2, 3. Since m3 <
n1n2n3, then x = m3. By computing the cube root of the integer x, we retrieve
m. Furthermore, this attack can be generalized to show that a plaintext m
can be recovered if e is the RSA enciphering exponent and m is sent to k ≥ e
recipients with pairwise relatively prime RSA moduli ni such that m < ni for
i = 1, 2, . . . , k. Recognizing these issues, certain experts have suggestions.

The authors of [149] suggest: “Values such as 3 and 17 can no longer be
recommended, but commonly used values such as 216 +1 = 65, 537 still seem to
be fine. If one prefers to stay on the safe side one may select an odd 32-bit or 64-
bit public exponent at random.” One of the reasons they suggest 216 +1 is that
(65537)10 = (10000000000000001)2, so encryption using the repeated squaring
method needs only 16 modular squarings and 1 modular multiplication; and
here to recover the plaintext by the generalized method of the above paragraph
would require sending the same message to 216+ 1 entities, not likely to occur.
In any case, this generalized method of attack can be thwarted by padding a
randomly generated bitstring of suitable length to the plaintext message prior to
encryption. In fact, this is something discussed in the security section on page
174, namely, the necessity of preprocessing plaintext before the RSA cipher is
employed. However, one has to be careful that the padding itself is secure.
For instance, the attack in the paragraph above works because the messages
are linearly related, allowing use of the Chinese Remainder Theorem. In fact,
a generalization of results by Coppersmith (see [61]), were given by Hastad in
[120], called the Strong Hastad Broadcast Attack.. He proved that any fixed
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polynomial applied as padding is insecure. Therefore, to defend against his
attack is to pad with a randomized polynomial, not a fixed one.

There are also attacks against naive padding algorithms. Let us enlist Alice,
Bob, and Mallory to describe one such method. Alice pads a message m that she
wants to send to Bob, then enciphers it, and transmits it. However, malicious
Mallory, applying a classic case of the man-in-the-middle attack, intercepts the
message and prevents it from reaching Bob. When Bob does not respond to her
message, Alice assumes he did not receive it, so she decides to randomly pad
m again, encrypts it, and sends it to him. Now Mallory intercepts the second
message and has two different encipherments of m using different random pads.
In [61], Coppersmith describes a method for Mallory to retrieve m. For instance,
if e = 3, then when the pad has maximum bitlength less than a ninth that of
the message length, Mallory can efficiently recover m (see [170, page 117] for
illustrations and a deeper discussion).

Perhaps the most powerful attack developed by Coppersmith is his partial
key exposure attack (see [61]), which can be described as follows. Given an
RSA modulus n = pq of bitlength �, the bitlength of either p or q is about �/2.
Knowledge of either the �/4 most significant bits of p or the �/4 least significant
bits of p, can be shown to allow one to efficiently factor n. There is another
related attack (see [36]), which says that knowledge of the �/4 least significant
bits of the decryption exponent d, allows one to find d in O(e log2(e)) steps.
Thus, if e is small, a cryptanalyst can deduce d from just a few bits. Thus, we
have another lesson for the cryptographer: ensure that all bits of d are secure.

� Low Secret RSA Exponent Attacks

Again, as with the reason for choosing small public exponents, we want
increased efficiency in the decryption process, so we choose small secret expo-
nents. For instance, given a 1024-bit RSA modulus, the decryption process can
have efficiency increased ten-fold with the choice of small d. However, Weiner
[280] developed an attack that yields a total break of the RSA cryptosystem,
(by a total break, we mean that a cryptanalyst can recover d, hence retrieve all
plaintext from ciphertext).

Weiner’s Attack
If n = pq where p and q are primes such that q < p < 2q and d < n1/4/3,

then given a public key e with ed ≡ 1 (mod φ(n)), d can be efficiently calculated.

We conclude that use of small decryption exponents, in the sense given
by Weiner above, lead to a total loss of security in the RSA cryptosystem.
Weiner’s method was improved in [35] by Boneh and Durfee who showed that
RSA is insecure if d < n0.292. Hence, the gain in efficiency for using such small
decryption keys is a cryptographically lethal exercise.
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4.3 Digital Signatures

Language is only the instrument of science, and words are but the signs of
ideas; I wish, however, that the instrument might be less apt to decay, and the
signs might be permanent, like the things which they denote.

Samuel Johnson (1709–84), English poet, critic, and lexicographer
— from preface of A Dictionary of the English Language (1755)

We had a brief introduction to the notion of a digital signature when we
mentioned applications of OFB mode on page 136. Now it is time to dig deeper
into this significant application. First, we ask: Why do we want a digital
signature in cryptography? This is best answered by bringing in Alice, Bob, and
Mallory to give us an illustration. They will demonstrate the issues surrounding
entity authentication, meaning verification of the identity and data origin of a
legitimate entity in a protocol by another legitimate entity; and impersonation,
meaning the assumption of the identity of a legitimate entity by an adversary.

Suppose that Alice wishes to send a message m to Bob, whose public key is
e, using a PKC. Suppose further that Mallory, impersonating Bob, sends Alice
his public key e′ and Alice assumes this is Bob’s public key. She sends me′

,
which Mallory intercepts, and using his private key d′ computes (me′

)d′
= m.

Then he encrypts m with Bob’s public key and sends me to Bob. Neither Alice
nor Bob knows that they have been duped by Mallory. This is illustrated in
Diagram 4.4.

Diagram 4.4 (Impersonation Attack on PKCs)

✞

✝

�

✆Alice
e′←−−−−−−−−−

−−−−−−−−−→
Ee′(m) = c′

Dd′(c′) = m☛

✡

✟

✠
Mallory −−−−−−−−→

Ee(m) = c

✞

✝

�

✆Bob

This provides an answer to our question above. We need a mechanism for
authentication to thwart impersonation; we need digital signatures, which are
formally defined below.

� Digital Signature Schemes (DSS)
Let M be a message space, K a keyspace, and S a set of bitstrings of fixed

length, called a signature space. For k ∈ K, to produce a digital signature, we
have a digital signature algorithm,

sigk : M 
→ S.

To verify the signature, we have a digital verification algorithm,

verk : M× S 
→ {0, 1} = F2,

where verk(m, c) = 1, when sigk(m) = c is authentic, and verk(m, c) = 0 when
it is not. A digital signature scheme (DSS) is comprised of a digital signature
algorithm and a digital verification algorithm.

� Criteria for a Secure DSS
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1. If Alice signs a message m with sigk(m), it must be computationally infeasi-
ble for an adversary to retrieve the pair (m, sigk(m)), called the unforgeable
property.

2. If Bob receives sigk(m) = c from Alice, then Bob must be able to verify
that this is Alice’s signature using verk(c), called the authentic property.

3. After being transmitted, neither Bob nor Mallory can alter m, called the
not alterable property ;

4. Bob must be able to instantly detect if an m is being resent, called the not
reusable property.

� DSS Types

1. A DSS with message recovery means that the message being sent is not
required as input to the verification algorithm.

2. A DSS with appendix means that the message is required as input for the
verification algorithm.

A significant benefit of RSA is that it can be used for both enciphering
plaintext and signing messages. Thus, our first DSS is naturally derived from
the RSA cipher, and it is an example of the first type of scheme, one with
message recovery (see [206]). Before explaining it in formal terms, we give a
brief introductory explanation.

The executions for encryption and signing involve the same RSA calculations
modulo the given RSA modulus n. For instance, if Alice wants to sign a message
m, she easily computes c ≡ mdA (mod n) using her private RSA key, dA, and
sends (c,m) to Bob. Bob, or anyone in possession of her public key eA, uses
it to verify the signature via ceA ≡ m (mod n). Formally, this is presented as
follows.

� RSA Signature Scheme

Setup Stage: Alice wishes to send a message m ∈ M = Z/nZ = C to
Bob. She selects an RSA modulus n = pq and an RSA key pair (e, d) obtained
via the RSA key generation algorithm given on page 173. The keyspace is
K = {k = (n, p, q, e, d) : ed ≡ 1 (mod φ(n))}, where n, e are public and p, q, d
are private.

Signing Stage: Alice’s private digital signature sigk is given by

sigk(m) ≡ md ≡ c (mod n),

and verk ≡ ce (mod n) is her public verification algorithm. She sends (m, c) to
Bob.

Verification Stage: Bob obtains Alice’s public (e, verk), and computes
verk(m, c) which is 1 precisely when m ≡ ce (mod n), in which case he accepts
the signature, and rejects it otherwise.
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Example 4.6 If Alice generates n = pq = 3023 · 3359 = 10154257, e = 7,
d = 7248483, then φ(n) = 10147876. If she wishes to send m = 1111101 to
Bob, she computes sigk(m) ≡ 1111101d ≡ 5134234 (mod n) and sends (m, c) =
(1111101, 5134234) to Bob. After getting Alice’s public data (e, verk), he com-
putes verk(m, c) = 1 since ce ≡ 51342347 ≡ 1111101 ≡ m (mod 10154257).

A real-world analogue of the above RSA DSS is Alice’s signing a postcard
and sending it to Bob. Alternatively, Alice could write a letter on paper, sign
it, and put it in an envelope, which gets sent to Bob. There is a variant of the
RSA DSS given above, which has this as its analogue, namely, to digitally sign
the message, then encrypt it. This variant of the RSA DSS is an example of the
second kind of DSS, namely, one with an appendix.

Thus, after the above signing stage, she would add an encryption stage, where
she enciphers with Bob’s public exponent eB , so (m, c)eB is sent. Then Bob uses
his private RSA exponent dB to calculate ((m, c)eB )dB ≡ (m, c) (mod n), and
he uses Alice’s public RSA exponent to compute ce ≡ m (mod n). This further
encryption of the entire message with Bob’s public key ensures confidentiality,
as does the analogue of sending a sealed letter, rather than a postcard. This
variant of the RSA signature scheme can be applied to any DSS with message
recovery, namely, by hashing the message and signing the hash, thereby turning
it into a DSS with an appendix.

� Analysis
As with the RSA cipher itself, we must ensure that the above DSSs are

properly set up and the private data is kept secure. We assume this has been
done.

The first thing that we observe in the RSA DSS with message recovery is that
anyone can verify Alice’s signature since e is made public, but only Alice can
sign the message since sigk = d is private. This also ensures that Alice cannot
deny later that she sent the message, since nobody else could have computed
md. This is an example of nonrepudiation (see page 162). Another safeguard
is to ensure that a digital signature is not reused, which can be ensured by
appending a timestamp. For instance, instead of just sending the message m,
Alice would have a message with a timestamp t, so the original message would
be M = (m, t).

If we choose a small public exponent (see page 178) the verification is con-
siderably faster than the signing. Thus, the RSA DSS is well suited to circum-
stances where signature verification is the primary operation used. In order to
make it even more efficient, we must introduce another in our cast of crypto-
graphic characters, Trent, the trusted third party (TTP). If we enlist Trent to
create a certificate of identification for Alice, which he has to do only once, then
verification may take place numerous times by Bob and other entities with whom
Alice has communication. It can be shown that for messages no longer than half
the RSA modulus, the RSA DSS with message recovery is most efficient, whereas
if message blocking is required, then the most bandwidth-efficient4.5 method is

4.5Bandwidth is the width of the range of frequencies that an electronic signal occupies on
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the RSA signature scheme with appendix.
We close this section with a description and discussion of the first DSS rec-

ognized by any government. In August of 1991, NIST proposed the Digital
Signature Standard (DSS) and in May of 1994, it became FIPS 186, (see [91]).
Although this evolved into a new standard in the twenty-first century, for sim-
plicity, we present the original standard here, (see [92] for the current DSS,
which uses key sizes of 1024 bits or more).

� Digital Signature Algorithm (DSA — the DSS)

Setup Stage:

1. Alice selects a prime q with 160 bits. Then she selects a prime p with
bitlength a multiple of 64 between 512 and 1024, satisfying the property
that q divides p− 1.

2. She chooses an α ∈ F
∗
p of order q modulo p. This can be done, for instance,

by selecting a primitive root a modulo p and setting α ≡ a(p−1)/q (mod p).

3. A cryptographic hash function h : F
∗
q 
→ B160 (bitstrings of length 160) is

selected. She chooses a private key e ∈ N such that e < q and computes
β ≡ αe (mod p).

4. She publishes (p, q, α, β) and keeps private her key e.

Signing Stage: Alice performs the following in order to sign a message
m ∈ F

∗
q . In what follows, we will assume that any powers of α or β have been

reduced modulo p before being used in any congruence modulo q:

1. Select a random r ∈ N such that r ≤ q − 1.

2. Compute γ ≡ αr (mod q).

3. Compute σ ≡ r−1(h(m) + eγ) (mod q).

4. Alice sends m and sigk(m, r) = (γ, σ) to Bob.

Verification Stage: Bob executes the following steps:

1. Obtain Alice’s public data (p, q, α, β).

2. Compute δ1 ≡ σ−1h(m) (mod q) and δ2 ≡ σ−1γ (mod q).

3. Compute δ ≡ αδ1βδ2 (mod q).

4. verk(m, (γ, σ)) = 1 if and only if δ ≡ γ (mod q), in which case Bob accepts,
and rejects otherwise.

a given transmission medium. In other words, it is the speed of data on a given transmission
path, usually measured in Mbps (see Footnote 3.11, page 160).
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� Analysis
First we show why, in step 4 of the verification stage, the criterion actually

verifies Alice’s signature. It does so since, first of all,

δ1 + eδ2 ≡ σ−1h(m) + eσ−1γ ≡ σ−1(h(m) + eγ) ≡ r (mod q),

then

γ ≡ (αr (mod p)) ≡ (ασ−1h(m)+eσ−1γ (mod p)) ≡ (αδ1βδ2 (mod p)) ≡ δ (mod q).

Of course, the key e must be kept private or the scheme can be broken, since
anyone in possession of e can sign any data and thereby impersonate Alice.
Moreover, if r is used more than once, e can be recovered by a cryptanalyst
(easily verified, given our many previous related discussions on such matters).

In order to see why the DSA depends upon the DLP for its security, we look
at step 2 of the setup stage. Since the Silver-Pohlig-Hellman attack (discussed
on page 530) is useless against large prime factors of p−1, then this is sufficient
to thwart such attacks, and computing r from knowledge of the public γ is
deemed to be computationally infeasible. This is the DLP. Moreover, the reader
may wonder why we did not just choose a primitive root a modulo p rather
than α ≡ a(p−1)/q (mod p). The reason is that it is a generally held opinion
that many pieces of information about divisors of p − 1 can collectively add
up to something useful, so DSA avoids this potential problem by keeping all
congruences as modulo q data in the signing and verification stages.

An advantage of DSA is that in a precomputation stage, the exponentiation
of α can be done offline and need not be part of the signature generation.
Another positive feature is that DSA has relatively short signatures of 320 bits
so the signing can be done efficiently. Some disadvantages of DSA include the
fact that it cannot be used for key exchange. Moreover, the modulus at a
mere 512 bits can be a drawback for security, so the prime p should actually
be chosen such that 21023 < p < 21024 for long-term security. There is another
potential problem that one would not imagine and is difficult to detect, namely,
the building of a subliminal channel into DSA. This is a method of signing
an innocuous message with subliminal bits hidden in it. This could be as little
as one bit per message or as much as two bytes per message. For the reader
interested in how this is done in detail see [287, pages 300 and 301].

DSA evolved into the new Digital Signature Standard in FIPS 186-1 an-
nounced by NIST on December 15, 1998, and this included the RSA DSS.
On February 15, 2000, NIST announced the approval of FIPS 186-2, and this
included the upgraded DSS, the RSA DSS, and the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA), about which we will learn later in the text.

The governmental plans for DSA are akin to that of the role played by
DES. They include applications such as cash transactions, data exchange, data
storage, electronic mail, and software distribution, to mention a few.

In the next section, we learn about the DSS upon which the DSA was based.
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4.4 ElGamal

The best laid schemes o’ mice and men Gang aft a-gley.
Robert Burns (1759–96), Scottish poet

— from Death and Dr. Hornbrook (1787, st. 3)

The title for this section is the name of a major contributor to several cryp-
tographic schemes. Taher ElGamal was born in Cairo, Egypt, on August 18,
1955. He obtained his bachelor’s degree in electrical engineering from Cairo
University, in 1977. Both his master’s degree and his Ph.D. were obtained from
Stanford University in 1981 and 1984, respectively. His doctorate was done un-
der the supervision of Martin Hellman (see page 165). While at Stanford, he
helped to pioneer digital signatures and PKC. He founded Security Inc. in 1988,
which later became the Kroll-O’Gara Information Security Group, where he be-
came president of its Information Security Group. From 1991 to 1993, ElGamal
was the Director of Engineering at RSA Security, Inc., where he produced the
RSA cryptographic toolkits and the initial VeriSign certificate issuance prod-
ucts. From 1993 to 1995, he was Vice President of Advanced Technologies
at OKI Electric. From 1995 to 1998, he held the position of Chief Scientist of
Netscape Communications where he pioneered Internet security technology such
as Secure Sockets Layer (SSL), the standard for Web security, to be discussed in
Section 5.7. Other accomplishments include development of Internet credit card
payment schemes. He also serves on the boards of directors of Phoenix Tech-
nologies; RSA Security, Inc.; hi/fn, Inc.; Security Dynamics; ValiCert Inc.; and
Register.com, and is a member of the technical staff at Hewlett-Packard Labo-
ratories since 1984. ElGamal is a respected leader in the worldwide information
security industry.

The following cryptographic scheme bases its security upon the DLP (see
(4.2), page 164). The cryptosystem was first published in [74] in 1985.

The following is performed assuming that Alice wants to send a message m
to Bob, and m ∈ {0, 1, . . . , p− 1} (equivalent to the actual plaintext).

(I) ElGamal Key Generation
1. Bob chooses a large random prime p and a primitive root α modulo p.

2. Bob then chooses a random integer a with 2 ≤ a < p − 1 and computes αa

(mod p).

3. Bob’s public key is (p, α, αa) and his private (session) key is a.

(II) ElGamal Public-Key Cipher
Enciphering stage:

1. Alice obtains Bob’s public key (p, α, αa).

2. She chooses a random natural number b < p− 1.

3. She computes αb (mod p) and mαab (mod p).
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4. Alice then sends the ciphertext c = (αb,mαab) to Bob.

Deciphering stage:

1. Bob uses his private key to compute (αb)−a ≡ (αb)p−1−a (mod p).

2. Then he deciphers m by computing (αb)−amαab (mod p).

Example 4.7 Suppose that Alice wants to send the message m = 1010 to Bob
using the ElGamal cipher. Bob chooses p = 1481, α = 3, and a = 7, his
private key. He computes αa ≡ 37 ≡ 706 (mod p). Bob’s public key is therefore
(p, α, αa) = (1481, 3, 706), which Alice downloads from some public database.
She chooses b = 96 and computes both αb ≡ 396 ≡ 737 (mod p) and mαab ≡
1010 · 70696 ≡ 521 (mod p). The ciphertext is c = (737, 521), which Alice sends
to Bob. He uses his private key to compute

(αb)p−1−a ≡ 7371473 ≡ 940 (mod p),

and
(αb)−amαab ≡ 940 · 521 ≡ 1010 (mod p),

thereby recovering m.

� Analysis

Key Generation Options: Although it is preferable in step 1 of key gen-
eration, one need not choose a primitive root, provided one chooses an element
α ∈ (Z/pZ)∗ whose order is close to the size of p. In other words, the smallest
r ∈ N such that αr ≡ 1 (mod p) must be nearly as large as p. Such α are called
near-primitive roots. In the case of a primitive root, r = p− 1.

Security Issues: The random number b generated by Alice in step 2 of the
enciphering stage must be kept secret since one can recover m = mαab(αa)−b

from knowledge of it, given that mαab and αa are made public. Furthermore, b
should never be used twice. Suppose that Alice uses b for two different messages
m1 and m2, and Eve knows m1. Then this is how Eve can obtain m2. The two
ciphertexts are c1 = (αb,m1α

ab) and c2 = (αb,m2α
ab). Then she calculates

that
m2α

abm−1
1 m1α

−ab = m2.

We conclude the discussion of security issues with a detailed argument to
show that indeed the security of the ElGamal cipher is based upon the DLP.
To see this, we demonstrate first that the ElGamal cipher is equivalent to the
Diffie-Hellman key-exchange protocol. Assume Eve can solve the DHP (see
page 167), and she desires to get m from c = (αb,mαab). Since she can solve
the DHP, she can determine β ≡ αab (mod p) from αa and αb. Therefore, she
can reconstruct the message m ≡ β−1mαab (mod p), In other words, if Eve can
break the Diffie-Hellman cipher, she can break the ElGamal.
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Now assume that Eve can cryptanalyze the ElGamal cipher above. Then
she can obtain any message m from knowledge of p, α, αa, αb, and mαab. If Eve
wants to get αab from p, α, αa, αb, she computes (mαab)m−1 ≡ αab (mod p).
In other words, we have shown that cryptanalyzing ElGamal is tantamount
to cryptanalyzing Diffie-Hellman. In fact, the ElGamal cipher may be viewed
as a Diffie-Hellman key exchange on k = αab, which is used to encrypt m in
step 3 of the enciphering stage. Thus, we have demonstrated that although
Diffie-Hellman is not itself a public-key cryptosystem, it is the basis for the
ElGamal public-key cryptosystem. Furthermore, ElGamal’s cipher has difficulty
equivalent to the Diffie-Hellman key-exchange. Moreover, as noted on page 167,
if Eve can solve the DLP, she can solve the DHP. The converse is not known,
but the consensus is that it is true. Hence, we assume that the security of the
ElGamal cipher is based upon the DLP. Last, as with RSA, a modulus of 1024
to 2048 bits is recommended for long-term security.

Deciphering Verification: The reason Bob’s deciphering stage works is
due to the fact that

(αb)−amαab ≡ mαab−ab ≡ m (mod p).

In 1985, ElGamal developed a DSS (see [74] and [75]). It turns out that
these publications were perhaps a little hasty since he had not applied for patent
rights, thereby forfeiting his rights to those patents. Variations of ElGamal’s
scheme did get patented by others such as Schnorr (see [151, pages 180 and
181]), whose identification scheme we will study in Chapter 5. The RSA DSS
studied on pages 181–183 is deterministic, whereas the following is a randomized
algorithm. Also, RSA is a DSS with message recovery, whereas ElGamal’s is a
DSS with appendix.

� ElGamal Signature Scheme

The goal is for Alice to sign and send a message to Bob for verification.
The message should be hashed before signing, but for the sake of simplicity,
we will not do this and leave the issue for a discussion in the analysis after the
description of the DSS.

Key Generation Stage: First Alice engages in ElGamal key generation
as described on page 185 for Bob. Thus, Alice’s public key is (p, α, y), α being
a primitive root modulo a large random prime p (with intractable DLP in Fp)
and her private key is a, where y ≡ αa (mod p). The message to be signed is
m ∈ F

∗
p.

Signing Stage: Alice performs each of the following:

1. Select a random r ∈ (Z/(p− 1)Z)∗.

2. Compute β ≡ αr (mod p) and γ ≡ (m− aβ)r−1 (mod p− 1).

3. For k = (p, α, a, y) the signed message sigk(m, r) = (β, γ) is sent, along with
m, to Bob.
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Verification Stage: Bob does each of the following:

1. Using Alice’s public key (p, α, y) verify that β ∈ F
∗
p and reject if not.

2. Compute δ ≡ yββγ (mod p), and σ ≡ αm (mod p).

3. verk(m, (β, γ)) = 1 if and only if σ ≡ δ (mod p). Otherwise reject.

Example 4.8 Let p = 5531, with primitive root α = 10. Alice selects a = 351
as her private key and computes αa ≡ 10351 ≡ 3122 ≡ y (mod 5531). Thus, her
public key is (p, α, y) = (5531, 10, 3122). If m = 1129, and she chooses r = 151,
then she computes β ≡ 10151 ≡ 1257 (mod 5531). Then she computes

γ ≡ (m− aβ)r−1 ≡ (1129− 351 · 1257) · 151−1 ≡ 52 (mod 5530),

and sends sigk(1129, 151) = (β, γ) = (1257, 52) to Bob. First Bob verifies that
β ∈ (Z/pZ)∗, then computes,

δ ≡ yββγ ≡ 31221257125752 ≡ 3865 ≡ 101129 ≡ αm (mod 5531),

so Bob accepts the signature as valid.

� Analysis

Suppose that Mallory tries to forge Alice’s signature on m by choosing a
random r1 ∈ (Z/(p− 1)Z)∗ and computing β′ ≡ αr1 (mod p). Mallory is now in
the position of having to compute

γ′ ≡ (m− aβ′)r−1
1 (mod p− 1).

However, if the DLP in Fp is intractable, then this computation is infeasible so
only a guess at the value of γ′ is possible with a probability of success being
1/p. For large p, this is insignificant.

As noted prior to the description of the ElGamal scheme, we purposely did
not hash the message. However, one must hash the message or else Mallory can
forge a signature on a random message. Here is how he does it.

Suppose that Mallory selects r1, r2 ∈ (Z/(p− 1)Z)∗. He then computes

β1 ≡ αr1yr2 (mod p) and γ1 ≡ −β1r
−1
2 (mod p− 1).

Now we show that (β1, γ1) is a valid signature for the message

m1 ≡ γ1r1 (mod p− 1).

We have, yβ1βγ1
1 ≡ αaβ1α(r1+ar2)γ1 ≡ αaβ1α(r1+ar2)(−β1r−1

2 ) ≡

αaβ1α−β1r1r−1
2 −β1a ≡ α−β1r1r−1

2 ≡ αγ1r1 ≡ αm1 (mod p).
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In any case, a hash function h must be applied to the original message,
and the hash is signed. Thus, Mallory would have to find a message m′ such
that h(m′) = m, which he has a very low probability of doing if h is strongly
collision-resistant. However, if step 1 of the verification stage is not enforced,
then Mallory can forge certain signatures of his own choosing if he has a previous
legitimate message signed by Alice, as demonstrated in the following.

Suppose that a previous legitimate signature by Alice for a message m is
(β, γ). Furthermore, suppose that Mallory is lucky and m−1 (mod p− 1) exists,
and Mallory chooses a message m1 to forge. Mallory computes both congruences
t ≡ m1m

−1 (mod p − 1) and γ1 ≡ tγ (mod p − 1). By the Chinese remainder
theorem, he can also compute a solution x = β1 to the congruences:

x ≡ βt (mod p− 1) and x ≡ β (mod p).

Thus,

yβ1βγ1
1 ≡ αaβ1βtγ ≡ αaβtαrtγ ≡ αt(aβ+rγ) ≡ αtm ≡ αm1mm−1 ≡ αm1 (mod p).

Hence, (β1, γ1) is accepted as a valid signature by the verification stage for m1,
if step 1 in that stage is ignored. The essential nature of step 1 in the verification
stage was first observed in [26].

The value r chosen by Alice in the signing stage has to be kept secret, or
there is a total break of the system since Mallory can get a from knowledge of r.
Since β, γ, and m are known, then knowledge of r means that he may compute
a ≡ (m− rγ)β−1 (mod p− 1).

Also, if Alice is careless and uses r for the signing of two different messages,
then Mallory can get r and break the system as above. Here is how he gets r.

If sigk(m1, r) = (β, γ1) and sigk(m2, r) = (β, γ2), then

yββγ1 ≡ αaβ+rγ1 ≡ αm1 (mod p),

and
yββγ2 ≡ αaβ+rγ2 ≡ αm2 (mod p).

Therefore,
αm2−m1 ≡ βγ2−γ1 ≡ αr(γ2−γ1) (mod p).

Hence,
m2 −m1 ≡ r(γ2 − γ1) (mod p− 1).

If gcd(p− 1, γ2 − γ1) = g, then

m2 −m1

g
≡ r(γ2 − γ1)

g
(mod (p− 1)/g).

Thus,

r ≡
(
m2 −m1

g

) (
γ2 − γ1

g

)−1

(mod (p− 1)/g),

since gcd((γ2−γ1)/g, (p−1)/g) = 1, and once we have r we can get a as above.



190 4. Public-Key Cryptography

We close this section with some advanced material for which the reader will
need some knowledge of elliptic curves. We have presented all necessary material
in Appendix A (see page 498).

� ElGamal Public-Key Elliptic Curve Cryptosystem (ECC)

We assume that E is an elliptic curve over Fp where p is prime and H is a
cyclic subgroup of E(Fp) generated by a point P ∈ E(Fp). Alice wants to send
a message to Bob whose public key is (E,P, aP ) and whose private key is the
natural number a < p− 1. Alice executes the following.

Enciphering stage:

1. Choose a random natural number b < p− 1.

2. Consider the plaintext message units embedded as points m on E.

3. Compute β = bP and γ = m + b(aP ).

4. Send the ciphertext Ee(m) = c = (β, γ) to Bob.

Deciphering stage:

Once Bob receives the ciphertext, the plaintext m is recovered via the private
key as

Dd(c) = m = γ − aβ.

Example 4.9 Consider the elliptic curve group E given by y2 = x3 + 4x + 4
over F13. It can be shown that |E(Fp)| = 15, which is necessarily cyclic. Also,
P = (1, 3) is a generator of E. Assuming that Bob’s public key is (E,P, 4P )
where a = 4 is the private key and m = (10, 2) is the message that Alice wants to
send to Bob, then Alice performs the following. Alice chooses b = 7 at random.
Then she calculates

Ee(m) = Ee((10, 2)) = (bP,m + b(aP )) = (7P, (10, 2) + 7(4P )) =

((0, 2), (10, 2) + 7(6, 6)) = ((0, 2), (10, 2) + (12, 5)) = ((0, 2), (3, 2)) = (β, γ) = c.

Then Alice sends c to Bob who uses the private key to recover m via

Dd(c) = (3, 2)− 4(0, 2) = (3, 2)− (12, 5) = (3, 2) + (12, 8) = (10, 2) = m.

The ElGamal cipher given on page 185 has what is called a message expan-
sion factor of 2 over Fp, meaning that the ciphertext is roughly twice the size
of the plaintext. However, an elliptic curve implementation of ElGamal has a
message expansion factor of approximately four, because there are p plaintexts,
but each ciphertext is comprised of four field elements. Moreover, and perhaps
more seriously, plaintext message units m lie on E and there does not exist
an appropriate (both theoretically and practically) method of deterministically
generating such points. A more workable scheme is the Menezes-Vanstone ECC,
which is described in [169, pages 245 and 246] from which the above example
was adapted. A big advantage of PKC ECCs is that key sizes are much smaller
than, say, RSA.



Chapter 5

Cryptographic Protocols

The shadow cloaked from head to foot,
Who keeps the keys of all the creeds.

Alfred Lord Tennyson (1809–1892), English poet
— from In Memoriam A.H.H. (1850), canto 23

5.1 Introduction

The term cryptographic protocol was briefly introduced to us in footnote
2.24 on page 101. This chapter is devoted to studying several particular such
protocols including: key establishment; key agreement; identification; commit-
ment; secret sharing; electronic voting; protocol layer analysis with SSL as an
Internet protocol providing authentication and secrecy for session-based com-
munications; and we conclude with digital cash schemes and e-commerce.

Before presenting the wealth of information listed above, we need an
overview. In any interaction among people, there is a certain level of risk,
trust, and expected behavior implicit in the interchange. This may be inspired
to be conducted properly for any reason ranging from fear of prosecution un-
der the law, to the desire to act in an ethical manner due to societal influences.
However, in a cryptographic protocol, trust has to be kept to the lowest possible
levels. In any such protocol, if there is an absence of a mechanism for verify-
ing, say, authenticity, one must assume that other participants are dishonest,
if for no other reason than self-preservation (or in the case of e-commerce, the
preservation of a positive balance in one’s bank account). One must take this
approach as a default, unless there is a clearly specified secure interface to deal
with authentication of the entities with whom one is communicating.

In Section 5.7, we will discuss the various layers that make up the hierarchy
of communications within a given protocol. These layers allow each level to
speak to the next level up. Moreover, any alteration on one protocol layer does
not affect other layers. This setup greatly eases the burden of work in creating
and maintaining communications networks. We leave the actual details of these
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mechanisms for Section 5.7. We concentrate on some other features to occupy
this section, including some types of protocols that we will not cover in the
succeeding sections, but rather highlight them here as an introductory feature
of this chapter.

One aspect, not explicitly described in the following sections of this chap-
ter, but deserving of some preliminary commentary, is the notion of a sublimi-
nal channel, meaning covert methods for an adversary to send missives hidden
within a legitimate message. Perhaps the most widely-known such example is
the hiding of bits in a digitized photograph, or commercial digital television
message. Much of this type of subliminal message protocoling is accomplished
via steganography. The reader is referred to the book [137], which is devoted
entirely to steganographic methodologies, for such information. Some modern
schemes use nonces, such as the DSA (discussed on page 184), and the ElGa-
mal signature scheme. We will encounter subliminal channels again when we
describe the topic of nuclear test ban treaty compliance in Section 9.6.

Two other intertwined types of protocols with which we end this section are
of value in many situations. For instance, suppose that Bob is a CIA agent and
he wants to buy secrets from Alice who is a Russian double agent. Bob does
not want to reveal what he knows and what he does not, since the consequences
could range from the merely embarrassing to the downright dangerous. Hence,
he would like to buy secrets from Alice, but not have her know, in advance, which
ones. In other words, Alice transfers information, containing one or more secrets,
to Bob in such a way that upon completion of the protocol, Alice does not know
(is “oblivious” as to) which of the secrets Bob received. This mechanism has a
name.

� Oblivious Transfer Cryptographic Protocol
We deal with the simplest scenario where only one secret is transferred, but

this is easily extrapolated to numerous secrets. Alice sends Bob two messages,
only one of which he receives, and Alice does not know which one. The PKC
and SCK used are RSA and Rijndael, respectively.
1. Alice generates two RSA key pairs and sends the two public keys to Bob.

2. Bob selects a Rijndael key, k, and chooses, at random, one of Alice’s public
keys to encrypt it, and sends this to Alice.

3. Alice uses her two private keys to attempt to decipher the cryptogram, only
one of which is successful, but she does not know which one, since she
does not know the secret Rijndael key. So one is binary gibberish and the
other is the legitimate Rijndael key, k.

4. Alice enciphers her two secret messages, one with k, and the other with the
binary gibberish key, and sends both to Bob. (For the sake of simplicity,
we will assume that the two secret messages are indeed distinct, that is,
that Alice is not trying to cheat Bob.)

5. Bob uses his secret Rijndael key on both messages, but only one is successful
in yielding one of the secrets, and Alice does not know which one.
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To see how this works with symbols, suppose that Alice’s RSA key pairs
are (e1, d1) and (e2, d2), and Bob’s Rijndael key is k. Assume he chooses e1

to encipher k and sends Ee1(k) to Alice, who forms Dd1(Ee1(k)) = k and
Dd2(e1(k)) = k2, but she does not know which of k or k2 is the legitimate
key. She forms Ek(m1) and Ek2(m2), which she sends to Bob. Once Bob re-
ceives these, he uses k−1 to get Dk−1(Ek(m1)) = m1, and Dk−1(Ek2(m2)) = m′,
where the latter is gibberish and the former is the legitimate secret. Alice, how-
ever, does not know which one he received. (If Bob needs to verify that Alice
did not cheat in step 4, then he asks Alice for her private keys so he can verify
the outcome of both possible transfers.)

This is only one of numerous oblivious transfer protocols, some of which are
noninteractive. This, however, gives the reader a flavour of the methodology
involved. Now we turn to the use of oblivious transfer within the scope of yet
another type of protocol.

� Cryptographically Secure Contract Signing Protocol

Alice and Bob want to sign an important contract, and they are using Rijn-
dael keys.

1. Alice and Bob, independently, select a set of n ∈ N key pairs,

S = {(	j , rj) : 1 ≤ j ≤ n; 	j , rj ∈ K},

where 	j and rj are from the keyspace K. (These pairs are randomly
selected, so there is no special relationship between the left and right
sides of any given pair.)

2. Alice and Bob, independently, generate n pairs of signatures,

M = {Sj = (Lj , Rj) : 1 ≤ j ≤ n},

where Lj and Rj are the left and right halves of their respective signatures.
Also, each Sj , for the sake of simplicity, will be assumed to be accompanied
by a time stamp and a digital signature of the contract itself. The contract
will be considered to be signed if both Lj and Rj for a given message pair,
can be produced by each of them.

3. Alice and Bob, independently, sign each message as follows:

C = {(	j(Lj), rj(Rj)) : 1 ≤ j ≤ n},

then they send each other their respective pairs of encrypted messages,
namely, 2n keys in the form of n pairs sent to each other, ensuring that
they tell each other which is left and which is right for each pair.

4. Using the oblivious transfer protocol, Alice and Bob send each other exactly
one half of each key pair, namely, either 	j or rj , so neither of them knows
which half they have.



194 5. Cryptographic Protocols

5. Alice and Bob independently decrypt what messages they can, ensuring as
they do so that they do indeed have a legitimate message in each case.

6. Alice and Bob alternate in sending the bit for each of their 2n keys until
all verifying bits have been received by both of them.

7. Once step 6 is complete, they can each decrypt the other half of each
message and the contract is signed.

If there is a question of cheating, Alice and Bob can exchange private RSA
keys at the end of the contract signing as mentioned in the oblivious transfer
protocol to provide a verification step. However, cheating would likely be de-
tected at step 5 since for large enough n, each has only a 1 in 2n chance of
escaping detection. Hence, both have incentive to complete the protocol fairly.
There is an additional problem if either Alice or Bob has significant resources
over the other. For instance, if after sending a sufficient number of bits in step
6, Alice has the computing power to get the rest of the bits, and Bob does not,
she is at an advantage since she can stop sending bits, and claim the contract to
be signed since she can produce the signed portions of both halves. Hence, this
protocol should not be implemented unless both Alice and Bob have roughly
equal resources in computing power.

In general, the building of cryptographic protocols relies upon the building
bricks, called primitives, by which we mean cryptographic tools used to ensure
information security. For instance, SKC primitives consist of symmetric-key
ciphers (both block and stream ciphers); MACs; digital signatures; pseudoran-
dom sequences; and identification tools. PKC primitives consist of public-key ci-
phers; digital signatures; and identification tools. Primitives not involving keys
are hash functions (unkeyed); one-way permutations; and random sequences.
When building a protocol, it is essential that all possible hypotheses used in the
design are explicitly identified, and an analysis is made of what effect a breach
of any of those hypotheses might have upon the security of the protocol. A
protocol failure occurs when it is possible for an adversary, such as Mallory, to
manipulate the protocol to his advantage without breaking any of the underly-
ing primitives such as the encryption scheme. In this case, the protocol fails to
meet the goals for which it was intended. Typically, a protocol failure occurs
when there is a weakness in one of the underlying primitives that is magnified by
the protocol; or there is an oversight in the implementation of the protocol that
allows manipulation without the breaking of the primitive itself. For instance,
if the one-time pad is used in a careless fashion, then there could be protocol
failure, even though the one-time pad is itself secure. As always, a bad imple-
mentation or improper use of a secure mechanism can compromise the entire
enterprise.
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5.2 Keys

You know everyone is ignorant, only on different subjects.
Will Rogers (1879–1935), American actor and humorist

The term key agreement refers to a protocol where two entities, acting in
concert, contribute to the generation of a symmetric key. We have seen one of
the most famous of these in the Diffie-Hellman key-exchange protocol discussed
on page 166. This brings up the topic of the less accurate term key-exchange,
which is often used in reference to key agreement, the reason being that two
entities perform an exchange of information resulting in their agreement on a
shared key. Key establishment is a means of using cryptography to establish a
shared secret (symmetric) key.

Key distribution, also called key transfer or key transport, is a protocol where
one entity generates a symmetric key and sends it to other entities, usually
over a network. On page 162, we discussed key predistribution and the issues
surrounding it from both perspectives of SKCs and PKCs. With an SKC, there
is the so-called n2-problem, on an n-user network, where the number of keys
required is n(n− 1)/2. To avoid this problem in an SKC, we can employ Trent
who needs only a single key shared with each user. Also, we want protocols to
do more than just establish shared keys. We need to avoid impersonation, since
for instance, the Diffie-Hellman protocol is open to an impersonation attack (see
page 180), so we require protocols that play both roles of establishing keys for
users and mutual entity authentication.

The following is a key authentication and establishment protocol using only
SKC, and the employment of Trent, plus the introduction of some new characters
in our cryptographic play.

Kerberos is the three-headed dog of Greek mythology that stood guard at
the gates of Hades. It is also the name of an authentication protocol developed
at MIT in 1989. According to MIT, the initial intent was to have not only
authentication, but also accounting and auditing features. However, the last
two “heads” were never added. The Kerberos project originated from a larger
endeavor at MIT, called Project Athena, the purpose of which was secure com-
munication across a public network for student access of their files. Kerberos
is the authentication protocol aspect of Project Athena, and is based upon a
client-server-verifier model described as follows. (In Section 8.5, we look at the
client-server model as a general architecture, but for now, we will be content
with the informal description given below.)

We require the introduction of more in our cast of cryptographic characters.
First, a client, Carol, is a user (which might in reality be software or a person)
with some goal to achieve, which could be as simple as sending e-mail or as
complex as installation of a system’s software. A server (and verifier), Victor,
provides services to clients, which might involve anything from e-commerce to
accessing personal files.
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� Kerberos
Kerberos was designed with a goal of authenticating clients who desire access

to servers in a network. We prepare for the formal, but simplified, description
by giving a brief introductory overview. We will be describing a basic version of
Kerberos that provides both entity authentication and key establishment using
an SKC, denoted by E, that we assume has built-in data integrity features, and
Trent, as our trusted third party.

� Preliminary Description
Carol sends a request to Trent to establish a session key (see page 163),

which she can use to communicate with Victor, and includes her identity data
in the request. Using the key he shares (only) with Victor, Trent generates an
E-encrypted ticket, t, for Victor, which includes Carol’s identity data, certain
time constraints, and a copy of the session key. He also uses the key he shares
(only) with Carol to encipher a message, m, containing a copy of the session
key, Victor’s identity data, and some time constraints. He sends t and m to
Carol.

She cannot alter t, without being detected, since it is enciphered with a key
known only to Trent and Victor. Carol verifies time constraints, and decrypts m
using the key she shares with Trent. Then she uses the copy of the session key
to E-encrypt an authenticator, a, which contains her identity data, and some
fresh time constraints. She sends a and t to Victor.

He decrypts t with the key that he shares with Trent. This gives him the
copy of the session key, which he now uses to decrypt a, where he checks both
time constraints and the identity data in a and t. If they match, and the time
constraints are valid, Carol is verified to Victor. He uses the session key to
encipher the time data she sent in the authenticator and sends it to her.

Carol decrypts using the session key and if the time data matches, Victor is
authenticated to her. Hence, they have a established a session key with which
to securely communicate.

� Kerberos Authentication Protocol — Simplified
Basic Assumptions: Trent selects a random key k, a timestamp t, and a

validity period L, called a lifetime. Carol and Trent share a secret symmetric key
kC,T , and Victor and Trent share one, kV,T . Also, IC , IV , and IT are identity
strings for Carol, Victor, and Trent, respectively. Moreover, at the outset, Carol
and Victor share no secrets.

Protocol Activities:
1. Carol sends her request for a session key to use with Victor, together with

her identity string IC to Trent, who computes mC = EkC,T
(k, IV , t, L).

He also computes
mV = EkV,T

(k, IC , t, L),

called a ticket for Victor, and sends both mC and mV to Carol.

2. Carol uses E−1
kC,T

to retrieve k, IV , t, and L from mC . She verifies that t and
L are valid, and that IV is the identity of Victor. She then creates a fresh
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timestamp tC , and computes

m′V = Ek(IC , tC),

called the authenticator, which she sends to Victor along with mV .

3. Victor uses E−1
kV,T

to get k from the ticket, mV . Then he uses E−1
k to decrypt

m′V . He checks that the two copies of IC from mV and m′V match. He
checks that tC is valid. Then he checks that his current time is within the
lifetime L specified by mV . If these three facts hold, he declares Carol to
be authentic, and he computes m′C = Ek(tC), which he sends to her.

4. Carol applies E−1
k to m′C , and checks that tC matches the value she created

in step 2. If it does, she declares Victor to be authentic and now has a
session key k to communicate with him.

� Analysis
Any timestamp in the protocol must be within the expiration window, which

can be any agreed fixed amount. Also, checking that a given time t is within
the expiration window can be accomplished by subtracting t from the current
time, which must be within some mutually accepted fixed time interval. The
role of the timestamp t and the lifetime L is to thwart Mallory from storing old
messages for retransmission at a later time (a replay attack).5.1 If any of the
checks against t in the above protocol fail, then the protocol terminates since
a stale timestamp has been discovered. The lifetime L also has the advantage
of allowing Carol to reuse Victor’s ticket without contacting Trent, so step 1
can be eliminated over the lifetime of the ticket. However, each time Carol
reuses the ticket, she must create a new authenticator with a fresh timestamp,
but the same session key k. The use of timestamps means that there must
be synchronized clocks in the network. Cryptanalysts must be prevented from
modifying clocks to guarantee the security of the scheme.

In the full version of Kerberos, there is another entity who grants the tick-
ets, and Trent’s role is merely to authenticate. Thus, in the full Kerberos
model, Trent is a trusted authority, called the Kerberos authentication server.
The Kerberos protocol is based upon predistribution protocols of Needham and
Schroeder (see [177] and [178]), full descriptions and analysis of which can be
found in [170, pages 167–169]).

In the above scheme, we used only an SKC and Trent to establish a shared
secret key as well as mutual authentication. However, the scheme heavily de-
pends upon synchronized clocks, which is difficult to achieve. When synchro-
nized clocks are not available, the following scheme is required.

The next protocol uses a PKC and ensures both key agreement and mu-
tual entity authentication. The scheme involves what is known as a challenge-
response protocol, which we now describe.

5.1A replay attack (also called a playback attack) on a protocol involves the use of information
gathered from a previous execution of the protocol in an attempt to deceive.
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On page 180, we discussed and illustrated an impersonation attack on PKCs.
One mechanism for thwarting such attacks is for Alice to get a random number
r from Bob, sign it with her private key d, which Bob can then verify. This is
illustrated in Diagram 5.1.

Diagram 5.1 (Challenge-Response Protocol)

✞

✝

�

✆Alice
r←−−−−

−−−−→
d(r)

✞

✝

�

✆Bob −−−−−−−−−→
e(d(r)) = r

The random number r is the challenge from Bob to which Alice returns the
response d(r).

� Three-Way Authentication and Key Agreement

Basic Assumptions: In order to describe the scheme we need a PKC,
whose encryption we will denote by E and whose decryption we will denote by
D. We also need a DSS with signature and verification pair (sig, ver). Moreover,
Alice and Bob have two key pairs, their PKC key pairs (eA, dA), (eB , dB),
respectively, and their DSS key pairs (sA, vA) and (sB , vB), respectively. Also,
IA and IB are their respective identity data strings. The goal is for Alice and
Bob to agree on a session key and mutual authentication.

Protocol Steps:

1. Alice selects a nonce rA and sets t = (IB , rA), signs it, sigsA
(t), and sends

m1 = (t, sigsA
(t)) to Bob.

2. Bob verifies Alice’s signature, and chooses a nonce rB and a random session
key k. He enciphers k with Alice’s public key, EeA

(k) = c, sets

t1 = (IA, rA, rB , c),

and signs it, sigsB
(t1). Then he sends m2 = (t1, sigsB

(t1)) to Alice.

3. Alice verifies Bob’s signature, and checks that her rA matches the one
she generated in step 1. Once verified, she now is convinced that she is
communicating with Bob. She gets k via

DdA
(c) = DdA

(EeA
(k)) = k,

sets t2 = (IB , rB) and signs it, sigsA
(t2). Then she sends m3 =

(t2, sigsA
(t2)) to Bob.

4. Bob verifies Alice’s signature and checks that rB matches his choice in
step 2. If both verifications pass muster, Alice and Bob have mutually
authenticated each other’s identities and have agreed upon session key k.
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� Analysis
The checks by Alice in step 3 and Bob in step 4, that their unique random

number choices match, are intended to thwart replay attacks. The built-in
challenge-response protocol is given as follows. Alice’s challenge number rA is
sent to Bob, who responds with his signature affixed to it, thereby verifying
himself to her. Bob then sends his challenge rB to Alice, who responds with her
signature affixed, thereby verifying her identity to him. The protocol gets its
name from the fact that three messages m1, m2, m3 are exchanged, sometimes
called the three-pass authentication and key-agreement protocol. This is similar
to what is called the X-509 strong three-way authentication protocol (see Section
7.4).

We have seen key establishment, key agreement, and entity authentication
schemes based strictly on SKC and strictly on PKC. An example of a hybrid key
agreement and authentication protocol, called Encrypted Key Exchange (EKE),
was introduced by Bellovin and Merritt [17] in 1992, with a patent granted to
the inventors in 1993 (see [18]). For a full description and analysis of EKE,
see [170, pages 169–171]. Since the inception of EKE, it has evolved into a
family of protocols most of which are stronger than the original. For instance,
in 1996, the Simple Password Exponential Key Exchange (SPEKE) was devel-
oped (see [129]). Both EKE and SPEKE allow use of a small password to
provide authentication and key agreement over an unsecured channel. However,
password-based protocols are subject to password sniffing, which is an attack
in which an adversary listens to data traffic that includes secret passwords in
order to capture and use them at a later time. To give an example from the
Internet, we need to define TCP/IP , which is the acronym for Transmission
Control Protocol/Internet Protocol, the set of communications protocols used to
connect hosts on the Internet. Hosts are those computers that provide services
to other computers and to users on a network (such as the Internet). The In-
ternet itself is the globally interconnected network of computers using, mainly,
the set of Internet protocols. TCP/IP uses several protocols, the two main ones
being TCP and IP. TCP/IP is used by the Internet, and is considered to be the
de facto standard for transmitting data over networks. We will discuss these
protocols in Section 5.7. Now we return to the issue of password sniffing.

Eavesdropping on a TCP/IP network can easily be accomplished against
protocols that transmit passwords in the clear. In addition, if password pro-
tocols require the passwords to be stored in the host, usually hashed, then for
it to be revealed would compromise security. The biggest problem with the
EKE family is that they require what is called plaintext-equivalence meaning
that both the client and the server/host are required to have access to the same
secret password or hash thereof. There are versions such as Augmented EKE
A-EKE (see [19]) making EKE a verifier-based protocol. We will use the pass-
word/verifier terminology to mean the same as the private/public key pairs in
PKC with the modification that the verifier is stored and kept secret by the
server/host. The verifier is similar to the public key in that it can easily be
computed from the password, but it is computationally infeasible to compute
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the password from the verifier. Thus, the verifier-based protocols are those that
only require the verifier to be stored (not the password). However, in rectifying
the password-storage problem inherent in EKE, A-EKE destroys a desirable
property that is possessed by EKE, namely forward secrecy, which means that
revealing the password to a cryptanalyst does not help in obtaining session keys
of past sessions (see [272]). To address these problems and create a protocol
that has all the positive and none of the negative features of the EKE fam-
ily, a new protocol was developed at Stanford University in 1997, called Secure
Remote Protocol (SRP). SRP differs from the EKE family in that instead of re-
lying on shared secrets such as passwords or their equivalents stored by a server,
SRP mandates that the server store a salt value (see Footnote 3.8 on page 136)
and a verifier. Without password storage, SRP is more secure than password
schemes, performing a secure key exchange in the authentication process. We
now describe this protocol as a closing feature of this section.

� Secure Remote Protocol (SRP-6) — Latest Version
Carol will interact with Victor to establish a password k, and upon mutual

authentication, a session key S will be used to establish a key K to be used to
encrypt all future traffic.

Background Assumptions: All computations are carried out modulo a
preselected large prime p, and α is a primitive root modulo p, also preselected.
The prime p must be a safe prime, which means that (p−1)/2 must be a prime.
These are public values. H is a hash function (typically SHA-1 is used with
SRP-6; see page 255). To establish a password k with Victor, Carol picks a
random salt s and computes v ≡ αd (mod p), where d = H(s, k), her private
key. Victor stores v and s as Carol’s password verifier and salt. All equalities
below are assumed to be reductions modulo p for convenience.

Protocol Steps:

1. Carol sends IC and A = αa (where a is a nonce) to Victor.

2. Victor looks up her password entry, retrieves s and v from the database,
and sends both s and B = 3v + αb (where b is a nonce) to Carol.

3. Both Carol and Victor, independently, compute u = H(A, B).

5. Carol computes her private key d = H(s, k), then she calculates S =
(B − 3αd)(a+ud). Victor independently computes S = (Avu)b.

6. Both Carol and Victor apply the hash to get K = H(S), the session key.

7. To verify that she has the correct key, Carol sends

h1 = H(H(p⊕H(α)), H(IC), s, A, B, K)

to Victor, where ⊕ is addition modulo 2.

8. Victor computes h1 and verifies that it matches the value of h1 sent by
Carol, then he sends h2 = H(A, h1, K) to her.
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9. Upon receipt of h2 Carol verifies that K is the correct key. If all is valid,
then they have a shared session key K.

� Analysis:
The exchange may be seen as a type of Diffie-Hellman exchange, since the pri-

vate values a and b correspond roughly to the private values in the Diffie-Hellman
key-exchange, and they have similar properties. In fact, the exponentials used
in the protocol have been modified over the SRP-3 version to counter dictionary
attacks5.2 as well as casual password sniffing. In SRP-6, this is accomplished by
introducing the coefficient 3 of v in step 2 (which was 1 in SRP-3), as well as the
addition of sending A in step 1 (whereas only IC was sent in SRP-3). Adding
the coefficient of 3 to v removes a symmetry property in SRP-3 that made it
easier to launch a dictionary attack. Moreover, the computation of u as a hash
in step 3 (whereas the related variable was sent unhashed in SRP-3), thwarts
impersonation attacks. In SRP-3, the order of sending messages and revelation
of the related u parameter, before certain steps were executed, opened the pro-
tocol to such impersonation attacks. This introduction of the hash eliminates
this problem. If Mallory wants to find a value of u for which u = H(αav−u, B),
then it is infeasible (with a hash function such as SHA-1, for instance), for him
to pick a value of u and work back to find an appropriate value of a.

From the above, we see that SRP-6 is designed to thwart dictionary attacks
since even if Victor’s password database is publicly disclosed, Mallory, for in-
stance, would need an exponential computation to validate a guess, which is
more time consuming than he can afford. In any case, Victor uses SRP-6 to
store passwords in a form not directly attainable by Mallory.

SRP is relatively immune to the man-in-the-middle attack (see Footnote 3.7
on page 134) because, without Carol’s password, Mallory cannot deceive both
Carol and Victor. Without Carol’s private key, Mallory cannot deceive Victor
into thinking he is communicating with Carol. Without v as well, Mallory has
no hope of masquerading as Victor to fool Carol. Hence, properly implemented,
SRP is perhaps the most secure of authentication schemes with password entry.
It is part of a new family of verifier-based protocols, called Asymmetric Key
Exchange (AKE), where password and verifier are integrated into a single key
exchange round. One protocol wherein the use of SRP-6 would be particularly
useful is SSL/TLS (see Section 5.7 on page 218), since the server can send its
(initial) messages in one pass, rather than than two (for both client and server)
as was the case with SRP-3.

SRP solves the long-standing problem of having both ease-of-use and se-
curity without sacrificing performance. Also, it has the advantage of forward
secrecy. SRP is ideal for a number of applications for which secure password
authorization is required. For more technical information, see Internet draft:
draft-ietf-tls-srp-08 at the IETF website (see Footnote 5.3 on page 219):

http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-08.txt.
5.2A dictionary attack occurs when an adversary takes a list of probable passwords, hashes

all the entries on the list, and compares this list to the list of actual enciphered passwords in
an effort to find a match.
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5.3 Identification

Two things are identical if one can be substituted for the other without af-
fecting the truth.

Gottfried Wilhelm Leibniz (1646–1716), German Philosopher
— translated from Table de définitions (1704) in L. Coutourat (ed.)

Opuscules et fragments inédits de Leibniz (1903)

In order to describe our first identification scheme, we need to discuss how
the participants interact. For instance, Alice and Bob will interact in such a
way that Alice is able to “prove” her identity to Bob by convincing him that
she knows a secret without revealing anything about that secret. This type of
identity authentication is valuable in such instances as Alice having to convince
a merchant that she is the owner of a credit card without revealing the password
or PIN for that card. This is important since revealing the PIN, for instance,
would allow someone to impersonate Alice. (In the modern day, this has come
to be known as identity theft, where a criminal obtains a person’s financial
information and uses it to withdraw funds from bank accounts or uses credit
cards to fraudulently acquire goods and services.) In other words, we need
mechanisms for authentication that will not give the authenticator the ability
to impersonate you.

A challenge-response protocol is an interactive proof of knowledge involving
two participants, Alice and Bob, say, where Alice is the prover, and Bob is
the verifier. Alice knows a secret S and must convince Bob of knowledge of
this secret. If she reveals nothing about the secret in so doing, it is called a
zero-knowledge proof of knowledge. However, there are rigorous mathematical
constraints in defining such systems into which we will not delve here. For our
needs, the above and what follows are sufficient. For a mathematical analysis
of the theory of zero-knowledge concepts, see [169, pages 252–261].

We are ready for our first protocol introduced in 1987 by Fiat and Shamir as
an authentication and digital signature scheme in [87]. Later, it was modified
by Feige, Fiat, and Shamir to an identification protocol (see [79] and [80]). For
ease of presentation, we supply a simplified version and we employ Trent to set
the stage for us.

� (Simplified) Feige-Fiat-Shamir Identification Protocol

Background Assumptions:
First, Trent chooses an RSA modulus n = pq, where p and q are large primes

of roughly the same size to be kept secret. Also, a parameter a ∈ N is chosen.
Next, Alice and Bob, respectively, randomly select secret sA, sB ∈ (Z/nZ)∗.
Then they compute, respectively, the least residues tA and tB modulo n where

tA ≡ s2
A (mod n) and tB ≡ s2

B (mod n).

They register their secrets sA and sB with Trent, whereas tA and tB do not need
to be kept secret. The goal is for Alice to prove her identity, via demonstration
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of knowledge of sA to Bob, without revealing anything about sA, called a zero-
knowledge proof of a modular square root of tA.

Protocol Steps
1. Alice selects an m ∈ (Z/nZ)∗ and sends w ≡ m2 (mod n) to Bob. (The

value m is called a commitment and w is called a witness.)

2. Bob chooses c ∈ {0, 1} and sends it to Alice. (The value c is called a
challenge.)

3. Alice computes r ≡ mscA (mod n) and sends it to Bob. (The value r is called
the response.)

4. Bob computes r2 modulo n. If r2 
≡ wtcA (mod n), then terminate the
protocol with Bob rejecting the proof. Otherwise go to step 5.

5. Reset a’s value to a− 1 and go to step 1 if a > 0. If a = 0, then terminate
the protocol with Bob accepting the proof.

� Analysis
The above protocol is a three-pass protocol in the sense that three messages

are exchanged, w, c, and r. (Compare with the analysis of the three-pass pro-
tocol discussed on page 199.) The process in steps 1 and 2 is an instance of the
cut-and-choose protocol, whereas the process in steps 2 and 3 (given a witness
from step 1), is an instance of a challenge-response protocol. Moreover, each
iteration of these rounds (namely, for each value of a used), are sequential and
independent. In other words, there is a variation from one round to the other,
with the initial randomness giving the guarantee that they will be so. The pro-
tocol is designed to ensure that only the prover, Alice, with knowledge of the
secret sA is capable of answering all of the challenges with correct responses,
and none of these responses give away any information about the secret.

Interactive proof (of knowledge) systems have to satisfy certain properties in
order to be valid. One of them is called (knowledge) completeness, which means
that if Alice actually knows the secret, sA in this case, then Bob will always
accept Alice’s proof. We now demonstrate that the above protocol satisfies this
property. If Alice knows sA, then the response r ≡ mscA (mod n) is a square
root of wtcA (mod n) (for any c) so Bob will accept.

Another property that interactive proof (of knowledge) systems must satisfy
is that of (knowledge) soundness, which means that if Alice can convince Bob
with reasonable probability, then she must know the secret. We now show that
the above protocol is sound. It is easily seen, from the choice of the challenge c,
that Eve can convince Bob, with probability of 50%, that she is Alice if a = 1.
However, this is the highest probability that a cheating prover such as Eve can
achieve in this protocol. To see this, suppose that Eve can actually convince
Bob that she is actually Alice, with probability greater than 1/2. What this
means in the protocol is that Eve knows a value of w for which she can answer
both challenges c = 1 and c = 0. Hence, Eve can find r1 and r2 such that

r2
1 ≡ w (mod n) and r2

2 ≡ wtA (mod n).
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Therefore, Eve can find a square root of tA, namely, r2r−1
1 (mod n). In other

words, if she can successfully impersonate Alice, Eve must know the prover’s
secret. Hence, the protocol is in possession of the soundness property.

The above being said, the probability of 1/2 is still too high for a cheater
such as Eve. Thus, the parameter a, if set sufficiently high, can reduce this
probability to negligible levels. In other words, for a > 1, the probability is
reduced to 2−a, which for sufficiently high a means that Eve has near zero
chance of success. Also, in order to maintain security in the protocol, Alice
must respond to at most one challenge for a given witness; she should never
reuse a given witness.

Since Alice has communicated only that she has knowledge of a square root
of tA, then the protocol has the zero-knowledge property, which means that the
verifier, Bob, learns nothing from the prover, Alice, that could not have been
learned without Alice’s participation. The zero-knowledge property ensures that
interacting with Alice, as described in the protocol, does not leak information
that can be used to impersonate her.

We conclude the analysis with a discussion of types of protocols to show how
the above protocol fits in. Arbitrated protocols are those protocols relying on a
trusted third party, such as Trent, who will not render preferential treatment to
any of the participants. Trent has no allegiances to any of the participants and
no particular reason to complete the protocol. Thus, Trent may be considered
to be playing the role of a disinterested lawyer. Hence, all participating entities
are assured that what is done in the protocol is correct, and that their partic-
ular portion of the protocol is complete. The Feige-Fiat-Shamir protocol is an
arbitrated protocol.

The above discussion motivates us to complete the discussion of protocol
types, of which there are two. A variation of the arbitrated protocol is the
adjudicated protocol. This requires the introduction of our next character in
the cryptographic play, Judy the adjudicator. Judy is brought into the protocol
only if cheating by participants is suspected. In that case, she comes into the
play and analyzes the dispute, rendering a ruling to determine who is right and
determining the punishment for the entity who is in the wrong. An example is a
scenario where Bob agrees to sell his house to Alice, who gives him a cheque for
it. If the cheque is fraudulent, or the keys are fake, they go before Judy to present
their case. Judy rules on the evidence presented and the entity who cheated
is fined or imprisoned. There is, however, a third kind of protocol involving
no third party. A self-enforcing protocol is designed to make cheating a virtual
impossibility. Cheaters gain no advantage by not following the protocol. In
Section 5.4, we will encounter an example of such a protocol, coin flipping by
telephone.

We close this section with an alternative to the Feige-Fiat-Shamir scheme.
The following is based upon the intractability of the DLP (see page 164, es-
pecially Equation (4.2)). We will require the notion of a certificate, which is
a quantity of information that has been signed by a trusted authority such as
Trent. One type of certificate pertinent to the following, and protocols to be
considered later in the text, is an identification certificate, which contains iden-
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tifying information such as a birth certificate or passport. The following was
introduced in 1991 (see [242]). Again, we need Trent for this (zero-knowledge)
interactive proof of knowledge.

� Schnorr Identification Protocol

Trent’s Actions: Trent selects each of the following parameters.

1. A large prime p such that the DLP in F
∗
p is intractable (say, p ≥ 21024).

2. A large prime divisor q of p− 1 (say, q ≥ 2160).

3. α ∈ F
∗
p such that ordp(α) = q (say, α = β(p−1)/q where β is a primitive

root modulo p).

4. A parameter t such that q > 2t (usually t ≥ 40).

5. A secure signature scheme embodying a secret digital-signing algorithm
sigT (k) and a public digital-verifying algorithm verT (k) for verification of
Trent’s signatures. (Typically sigT (k) involves a cryptographic hash func-
tion for security (see page 170), but we will omit this here for increased
clarity of presentation.)

Then Trent creates a certificate for Alice as follows:

6. Trent establishes a bitstring containing information IA that identifies Alice.
Then Alice selects a private random nonnegative exponent e ≤ q − 1 and
she computes v ≡ α−e (mod p), which she sends to Trent. Upon receipt,
Trent generates a signature s = sigT (k)(IA, v), thereby blinding IA with
v. Then he sends the certificate C(A) = (IA, v, s) to Alice.

Three-Pass Identification Protocol: Alice wishes to identify herself to
Bob, who verifies her identity by proving knowledge of e (without revealing e).

1. Alice selects a random k ∈ Z/qZ, called a commitment, and computes

γ ≡ αk (mod p).

Then she sends her certificate C(A) and γ, called the witness, to Bob.

2. Bob computes verT (k)((IA, v, s)) = 1, thereby verifying Trent’s signature.
Then Bob selects a random natural number r ≤ 2t, called the challenge,
which he sends to Alice.

3. Alice computes y ≡ k + er (mod q), called the response, which she sends to
Bob.

4. Bob computes δ ≡ αyvr (mod p), and if δ ≡ γ (mod p), called the verifica-
tion, he accepts Alice’s identity. Otherwise, he rejects it.
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Example 5.1 (With artificially small parameters for illustration only.) We
dispense with the issue of the certificate and assume it has been handled properly.
We proceed with the rest of the protocol. Suppose that we have p = 8699, q =
4389 and t = 10. We know that α = 4 has order 4389 in F

∗
p, since 2 is a

primitive root modulo p and α ≡ 2(p−1)/q (mod p). If Alice’s private exponent
is e = 11, she computes v ≡ α−e ≡ 4−11 ≡ 4111 (mod 8699). This completes
the interaction of Trent and Alice. Now if Alice selects k = 110, she computes
γ ≡ αk ≡ 4110 ≡ 4572 (mod 8699). If Bob chooses r = 233 and sends it to
Alice, she computes y ≡ k + er ≡ 110 + 11 · 233 ≡ 2673 (mod 4389), which she
sends to Bob who computes

δ ≡ αyvr ≡ 42673 · 4111233 ≡ 4572 ≡ γ (mod 4937),

so Bob accepts Alice’s identity as valid.

� Analysis
Security: We first demonstrate that the protocol has the soundness prop-

erty discussed on page 203. Suppose that Mallory has knowledge of γ, and
that he has a nonnegligible probability of successfully impersonating Alice. We
now show this means that Mallory can actually compute e, which will demon-
strate soundness. Mallory can compute a response y that will be accepted by
Bob’s verification in step 4 of the protocol, so Mallory can compute integers
y1, y2, r1, r2 such that both

y1 
≡ y2 (mod p) and γ ≡ αy1vr1 ≡ αy2vr2 (mod p).

Hence,
αy1−y2 ≡ vr2−r2 (mod p).

Since v ≡ α−e (mod p), then

y1 − y2 ≡ e(r1 − r2) (mod q).

Since
0 < |r2 − r1| < 2t and q > 2t is prime,

then gcd(r2 − r1, q) = 1. Hence, (r2 − r1) has a multiplicative inverse modulo
q. It follows that Mallory can compute

e = (y1 − y2)(r1 − r2)−1 (mod q).

What we have shown is that if Mallory has a reasonable (nonnegligible) prob-
ability of successfully executing Schnorr’s protocol, then he must (essentially)
“know” Alice’s private exponent e. This is soundness.

Once Alice proves her identity in the fashion prescribed in the protocol, Bob
accepts her proof in step 4, so the protocol has the completeness property, also
discussed on the aforementioned page. However, soundness and completeness
are insufficient to guarantee security. For example, Alice could just reveal her
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private exponent e to Mallory, who could then impersonate her, and the protocol
would still have the soundness and completeness properties. Thus, Alice must
ensure that no information about e is leaked, the zero-knowledge property. Alice
proves knowledge of e (without revealing e) by her response y to the challenge
r in step 3 of the protocol. If Mallory does not have knowledge of e, and he
tries to impersonate Alice, then he is in the position in step 3 of having to
compute y, which is a function of e, in response to Bob’s challenge r. However,
computing e from v involves solving an instance of the DLP, which is assumed
to be intractable. Yet it has not been proved that Schnorr’s protocol is secure.

Attacks: There are three main types of attacks on identification protocols
in general. We have already met the replay attack in Footnote 5.1 on page
197. Defense against such attacks can involve the use of challenge-response
methods, or the use of nonces. Another type of attack is the chosen-text at-
tack, which is an attack on a challenge-response protocol where Mallory chooses
challenges according to some design to recover information about Alice’s pri-
vate key. For example, in Schnorr’s protocol, Alice encrypts the challenge r
with y, so this attack involves chosen-plaintext (see Footnote 3.4 on page 127).
Methods for thwarting such attacks include the embedding of a nonce in each
challenge-response. Last, there is the forced delay attack, which involves Mallory
intercepting a message and relaying it later. This is a type of man-in-the-middle
attack (see Footnote 3.7 on page 134). Defense against it may include the use
of nonces tied in with short response time outs.

Comparisons: There are variations of Schnorr’s protocol that have been
proved to be secure under the assumption of a particular discrete log. One such
is Okamoto’s protocol (see [170, pages 131–133] for a description, analysis, and
comparison). However, Okamoto’s protocol and other variations that are prov-
ably more secure, sacrifice speed. Moreover, even without a proof of security
(which is scarce in any case), Schnorr’s protocol still has not been cryptana-
lyzed. In other words, no weaknesses have been found, and with its efficiency
and suitability for use in smart cards (to which we will return later in the text)
it is an excellent pragmatic choice. When compared with the Feige-Fiat-Shamir
protocol, Schnorr’s protocol is also much more efficient. The reason for this is
that the most computationally intensive operation is the modular exponentia-
tion in step 1 of the protocol, which by design, may be computed offline. In step
3 there is one modular addition and one modular multiplication, so the online
computations are very moderate. The computations for Feige-Fiat-Shamir pro-
tocol are significantly greater. The Schnorr algorithm was designed with this
computational efficiency in mind for such applications as smart cards with low
computing power. In general, the Schnorr protocol is quite suitable when Alice
has restricted computing power. Notice as well that more computational effi-
ciency is gained by using a subgroup of order q

∣∣ (p−1), which lowers the number
of bits needed for transmission. The three-pass protocol involved in steps 1–3
was a built-in design of the protocol to reduce bandwidth (see Footnote 4.5 on
page 183), especially in comparison to the Feige-Fiat-Shamir protocol.
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5.4 Commitment

He that but looketh on a plate of ham and eggs to lust after it, hath already
committed breakfast with it in his heart.

C.S. Lewis (1898–1963), English literary scholar
— from letter (March 10, 1954)

Commitment schemes are valuable in setting up practical cryptographic ap-
plications such as electronic voting, which we will study in Section 5.6. For
simplicity, we will concentrate upon bit commitment, meaning the commitment
to either a 0 or a 1. The term “bit commitment” was coined by Blum in 1982.
He devised the following example to illustrate this type of protocol.

Suppose that Alice and Bob are getting a divorce and are living in different
cities. They need to decide how to split their possessions. They have agreed
upon everything except who gets the car. Flipping a coin is an option, but they
do not trust each other enough to do this since they are physically separated.
The following is a version of Blum’s solution (see [28]).

� Coin Flipping by Telephone (Using a One-Way Function)

Alice and Bob know a one-way function f , but not its inverse f−1. Moreover,
f reliably produces even and odd numbers with equal probability (as would a
fair coin in a coin flip).

Protocol Steps
1. Bob selects an integer x at random and sends the value f(x) = y to Alice.

2. Alice makes a guess as to whether the number x is odd or even and sends
the guess to Bob.

3. Bob tells Alice whether the guess is correct.

4. Bob sends Alice the value x.

5. Alice confirms that f(x) = y (verification step).

The above protocol is an example of flipping coins into a well, which is a
metaphor for the following scenario. Bob is next to a well and Alice is physically
removed from it. Bob throws a coin into the well, and can see it clearly at the
bottom, but cannot reach it. Alice cannot see the result of the coin toss until
Bob allows Alice to come to the well to have a look.

Commitment schemes must satisfy certain properties. There is the sender,
Bob, and the receiver, Alice. Bob commits to a bit b and sends it to Alice
in encrypted form. Bob sends additional information to Alice enabling her to
recover b. There are requirements. Once Bob sends b, Alice does not learn
anything about b. This is called the concealing property. Second, Bob cannot
change the value of b after he commits, called the binding property. Binding
must be a satisfied property even if Bob tries to cheat. Third, if both Alice and
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Bob follow the protocol, Alice will always receive the committed value b, called
the viability property.

Thus, bit commitment schemes are really the digital analogues of the use
of opaque sealed envelopes, wherein the sealing of a message in an envelope
commits the sender to the message, while keeping it secret.

The above concepts are now illustrated using an SKC to describe a bit-
commitment scheme.

� Bit-Commitment Protocol Using SKC

We assume that E is a symmetric-key cryptosystem available to Alice and
Bob.

1. Alice generates a random bitstring R and sends it to Bob.

2. Bob creates a message consisting of Alice’s random bitstring R and the
bit to which he wants to commit, producing (R, b) (binding). Bob uses a
random (secret symmetric) key e to encipher and sends the cryptogram
Ee(R, b) to Alice (concealing).

3. When ready to reveal his commitment, Bob sends the key e to Alice.

4. Alice deciphers the message via E−1
e (Ee(R, b)) = (R, b) to reveal the bit

and the random bitstring to verify the bit’s validity.

The next scheme involves the DLP.

� Coin Flipping by Telephone Using Discrete Logs

Suppose that the problem with which Alice and Bob are faced is the deter-
mination of who gets the car after the divorce, discussed on the previous page.
The problem is to be solved using a coin flip in the following manner.

Protocol Steps:

1. Alice and Bob agree upon a large prime p such that the factorization of
p− 1 is known.

2. Alice selects two generators α, β ∈ F
∗
p and sends both to Bob.

3. Bob chooses a random integer x ∈ (Z/(p− 1)Z)∗, then he computes exactly
one of y ≡ αx (mod p) or y ≡ βx (mod p), which he sends to Alice.

4. Alice guesses whether y is a function of α or β and sends the guess to Bob.

5. If Alice’s guess is correct, the result of the flip is deemed to be heads, and
if it is incorrect, it is deemed to be tails. Bob sends the result of the coin
flip to Alice.

6. Bob reveals x to Alice. Then Alice computes αx (mod p) and βx (mod p)
to verify both outcomes of the coin tosses.
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� Analysis: If Bob wants to cheat in step 3, he must know two integers u
and v such that αu ≡ βv (mod p). To compute u given v, Bob must calculate
logα(βv) (mod p), but for this he must know logα(β). Yet, it is Alice who chooses
α and β in step 2, so Bob is in the position of having to compute a discrete
log. This means that the coin flipping relies on the DLP. Moreover, Bob cannot
cheat at step 3 by choosing an x such that gcd(x, p− 1) > 1, since Alice checks
gcd(x, p−1) in step 6. Bob knows the result of the coin flip in step 3, but cannot
change it (binding), and Alice does not know the choice when y is sent to her
(concealing). Also, Alice knows the value of the commitment in step 5, and is
able to verify it in step 6 (viability), so this is another example of flipping coins
into a well.

The next scheme is a variation of the above for playing poker using RSA,
where nobody can influence the cards dealt.

� Poker Playing by Telephone

The following protocol is a mechanism for Alice to deal Bob a five-card hand.

1. Alice and Bob agree upon two large primes p and q, and form an RSA
modulus n = pq. They also agree upon a set of random numbers cj for
j = 1, 2, . . . , 52, as names for the cards. Both Alice and Bob generate
public/private RSA key pairs (eA, dA) and (eB , dB), respectively.

2. Alice computes fj ≡ ceA
j (mod n), for each j = 1, 2, . . . , 52, shuffles the

numbers, and sends them to Bob.

3. For j = 1, 2, . . . , 52, Bob computes gj ≡ feB
j ≡ ceAeB

j (mod n), shuffles the
numbers, and sends sends them back to Alice.

4. Alice takes each gj and computes hj ≡ gdA
j ≡ ceB

j (mod n). She selects five
cards at random and sends them to Bob.

5. Bob computes each hdB
j ≡ cj (mod n) to get his five-card hand.

� Analysis: In step 3, Bob cannot determine which of the random numbers
represents which card since Alice encrypted and shuffled them. To prevent
Alice from cheating, Bob encrypts and shuffles the cards as well. Thus, in
step 4, Alice cannot determine which of the gj represent which cards, so she
has to send a random hand to him. The process can be played with reversed
roles to deal Alice’s hand. However, as we saw with the RSA cryptosystem in
Section 4.2, we must ensure that no information whatsoever is leaked about the
plaintext. There is one attack that is subtle. RSA preserves Jacobi symbols

(see page 482), for instance,
( gj

n

)
=

(
c

eAeB
j

n

)
=

( cj
n

)
. Thus, in step 4, Alice

can determine whether the cards with Jacobi symbol 1 or −1 are better for her
and draws only these from the number deck. This means that Alice can get a
bit of information from every gj giving her an advantage over Bob (see [96]).
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However, the advantage can be eliminated by merely insisting in step 1 that
only numbers cj with Jacobi symbol 1 be chosen.

We conclude this section with another commitment scheme based upon the
DLP, which will allow us to set up a notion required for Section 5.6.

� Commitment Scheme Based on the DLP
This scheme allows Alice to commit to a message m ∈ Z/qZ where q is

prime.

1. Bob randomly selects primes p and q as in step 1 of the setup stage of the
DSA described on page 183. Then he randomly selects distinct generators
α, β of Z/qZ, as in steps 2 and 3 of the DSA setup. He sends (p, q, α, β)
to Alice.

2. Alice randomly selects r ∈ Z/qZ and computes

c ≡ αrβm (mod p),

her commitment, which she sends to Bob.

3. When it is time to reveal her commitment, she sends r and m to Bob, who
verifies that c ≡ αrβm (mod p).

� Analysis: Since the selection of p, q, α, β is as in the DSA, the above
scheme is based upon the DLP. To see why, let us suppose that Alice tries to
cheat by selecting m′ 
= m as her commitment. Then αrβm ≡ αr

′
βm

′
(mod p),

so
logα(β) ≡ (r − r′)(m′ −m)−1 (mod q),

which she must compute. Yet for randomly chosen α, β ∈ Z/qZ, this is deemed
to be computationally infeasible. Thus, by selecting α, β randomly in step 1,
αrβm is a means of blinding m, which depends upon the DLP.

The above scheme opens the door to a notion for commitments that we will
need later.

� Homomorphic Property
If E(x) and E(y) are ciphertext in a given scheme and

E(x)E(y) = E(x ∗ y), (5.1)

where ∗ is the operation used on plaintext, the scheme is said to have the
homomorphic property.

For instance if we set E(r, m) = αrβm in the above DLP scheme, then for
r, r′, m, m′ ∈ Z/qZ, E(r, m) · E(r′, m′) ≡ E(r + r′, m + m′) (mod p), which
satisfies (5.1), so it is an example of a homomorphic commitment scheme.

� Analysis: Homomorphic commitment schemes allow sums of integers to
be calculated without revealing either of the summands. We will see a real-world
application of this when we discuss electronic voting.
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5.5 Secret Sharing

I share no one’s ideas. I have my own.
Ivan Turgenev (1818–1883), Russian novelist

— from Fathers and Sons (1862), Chapter 9

When we discuss e-commerce on page 228, look at splitting secrets for the
digital cash schemes discussed therein. That application is the simplest form,
namely, the sharing of two pieces of a secret by two entities who add their
respective pieces modulo 2 to recover the secret. This notion is easily generalized
to any finite number of entities who may piece together the information to
retrieve the secret information. Herein we look at two secret-sharing schemes,
which will serve us well, especially in Section 5.6 when we talk about electronic
voting.

The two schemes that we describe in this section are ideas from the two
preeminent pioneers in the area, who independently worked out the schemes
that have found numerous applications. We begin with Shamir’s idea from
1979 (see [246]). We begin by generalizing and formalizing the notion of secret
splitting that we have already encountered.

� Threshold Schemes

Let t, w ∈ N such that t ≤ w, and m is the secret. A (t, w)-threshold
scheme invovles Trent computing the pieces mj , for j = 1, 2, . . ., called shares
(sometimes called shadows of m), among a set of w entities. Each t of the
entities can recover m from their shares. It is not possible for t− 1 or fewer of
the entities to recover m using their shares.

The first question that may arise is that of the existence of such schemes. A
mere definition does not mean they will always exist. But in fact, they always do
since it can be shown that for any t ≤ w and t > 1, there exists a (t, w)-threshold
scheme (see [141, Theorem 1.7, page 8]). The secret splitting discussed on page
228 is an example of a (2, 2) threshold scheme. The following is also known as
Lagrange Interpolation Scheme. In fact, the reader must be familiar with the
Lagrange interpolation formula, Theorem A.20, given in Appendix A on page
486, as well as the notions surrounding Definition A.39 on page 490. We require
good old trusted Trent again.

� Shamir’s Threshold Scheme

Trent distributes shares of m to w ∈ N participants of whom any t ≤ w of
them will be able to recover m.

Trent’s Actions:
1. Choose a prime p > max(m, w), where p is public, and set m0 = m ∈ Z/pZ.

2. Select t− 1 random integers cj for j = 1, 2, . . . , t− 1 and set

p(x) ≡ m +
t−1∑
j=1

cjx
j ≡

t−1∑
j=0

cjx
j (mod p),



5.5. Secret Sharing 213

where c0 = m.

3. Compute p(xk) ≡ mk (mod p) for distinct integers xk ≤ p− 1 and securely
distribute the share (xk, mk) to participant Pk for 1 ≤ k ≤ w.

Pooling Shares: Without loss of generality, suppose a group of t partic-
ipants Pk for 1 ≤ k ≤ t get together and plug their shares into the Lagrange
interpolation formula:

f(x) =
t∑
k=1

mk
∏

1≤�≤t
� �=k

x− x�
xk − x�

=
t∑
k=1

mkKk(x),

where
Kk(x) =

∏
1≤�≤t
� �=k

x− x�
xk − x�

.

In the analysis following, we will show that the next equation must hold:

f(xi) ≡ mi (mod p), for 1 ≤ i ≤ t (5.2)

and from it the following crucial equation must hold:

p(0) ≡ f(0) ≡
t∑
k=1

mkKk(0) ≡ m (mod p), (5.3)

so the shares have been pooled to retrieve the secret.

� Analysis
Verification of (5.2) and (5.3): To show that (5.2) is valid, we observe

that
Kk(xi) =

∏
1≤�≤t
� �=k

xi − x�
xk − x�

≡ 0 (mod p)

if i 
= k since Kk(xi) has a factor (xi − xi)/(xk − xi). Also,

Kk(xk) ≡ 1 (mod p)

since all factors are of the form (xk − x�)/(xk − x�) = 1. We note that

1/(xk − x�) ≡ (xk − x�)−1 (mod p),

so as long as k 
= 	, such inverses exist. Therefore,

f(xi) ≡
t∑
k=1

mkKk(xi) ≡ mi (mod p)
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for i = 1, 2, . . . , t, which is (5.2). Therefore,

p(x) ≡ f(x) (mod p)

since the Lagrange interpolation formula, given on page 486, tells us that f is
the unique polynomial with f(x) ∈ Fp[x] such that

f(xi) ≡ mi (mod p) for 1 ≤ i ≤ t.

In particular, Equation (5.3) holds with x = 0.
Security: In Shamir’s scheme, no fewer than t participants can recover m, a

property that makes it an example of what is sometimes called a perfect thresh-
old scheme. The security of Shamir’s scheme does not rely upon the assumed
intractability of such problems as the DLP or the IFP. Hence, in practice, the
scheme is as secure as a one-time pad in the sense that an exhaustive search of
all possible shares will reveal to an adversary that any message m could be the
secret.

Variations: Let us assume that a bank president wants to control the ma-
jority of the shares in a scheme for secret-sharing the combination to the bank’s
vault. Suppose that t = 9 shares are required and the president has 7 shares
while other participants have only 1 share. Therefore, the president gets together
with two underlings to recover the combination, but without participation by
the president, it takes 9 participants to recover it.

Another variation on Shamir’s scheme is depicted by the next setting. As-
sume that two banks A and B hold their securities in the same vault. They wish
to create a scheme where 2 participants from bank A and 3 participants from
bank B hold shares. Here is how they accomplish the task. Form the product
of a linear polynomial p1 and a quadratic polynomial p2. Then give w1 ≥ 2
employees of bank A a share p1(xi) for 1 ≤ i ≤ w1, and give w2 ≥ 3 employees
from bank B a share p2(yi) for 1 ≤ i ≤ w2. Then any two participants from
bank A can get together and recover p1 but not p2, and any 3 participants from
bank B can get together and recover p2 but not p1. Participants from both
banks A and B must work together to recover the full combination determined
by the product p1p2 acting on the individual shares.

The last secret-sharing scheme is due to the second pioneer who developed
his idea in the same year as Shamir. In 1979, Blakely came up with a scheme
(see [25]) based upon vectors and matrices (see pages 490–494 in Appendix A).
It is not a (t, w)-secret-sharing scheme.

� Blakely’s Secret-Sharing Vector Scheme
The secret message is m1 to be reconstructed by t > 2 participants.
Setup Stage: The following are executed.

1. Choose a large prime p > m1, where p is made public, and select
m2, m3, . . . , mt ∈ Fp at random. Then m = (m1, m2, . . . , mt) is a point in
the t-dimensional vector space F

t
p.
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2. For each j = 1, 2, . . . , t, select n
(j)
1 , . . . , n

(j)
t−1 ∈ Fp at random and set

cj ≡ mt −
t−1∑
i=1

n
(j)
i mi (mod p).

3. Each of the t participants is given the equation for a hyperplane in F
t
p as

follows:
t−1∑
i=1

n
(j)
i xi − xt ≡ −cj (mod p),

for j = 1, 2, . . . , t, where the intersection of the t hyperplanes must be the
point m.

Pooling Stage: The participants convene to recover the secret message as
follows. In matrix terminology, the pooling of their equations translates into
the following:

AX ≡




n
(1)
1 n

(1)
2 · · ·n(1)

t−1 −1
n

(2)
1 n

(2)
2 · · ·n(2)

t−1 −1
...

...
...

...
n

(t)
1 n

(t)
2 · · ·n(t)

t−1 −1







x1

x2

...
xt


 ≡



−c1

−c2

...
−ct


 (mod p). (5.4)

It follows from Theorem A.26 on page 494 that, if det(A) 
= 0, then there is the
unique solution,

X = (m1, . . . , mt),

so the secret m1 is recovered.

� Analysis: Although we cannot be certain that det(A) 
= 0 in (5.4), if
we choose p large enough, then it is highly probable that A is indeed invert-
ible. Shamir’s method is essentially a special case of the Blakely method since
Shamir’s method effectively deals with a Vandermonde matrix (see page 494)
for A, the determinant of which is zero if and only if some xk ≡ xi (mod p), but
we chose these values to be distinct in step 3 of the algorithm. This gives
Shamir’s method an advantage over Blakely’s method. Moreover, Shamir’s
method clearly requires each participant to have less information in their re-
spective shares.

When we look to applications involving electronic elections in the next sec-
tion, secret-sharing schemes will play a role. It is one of the highly important
modern-day applications of cryptographic protocols to ensure a secure and le-
gitimate voting process in a free society.
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5.6 Electronic Voting

Democracy substitutes election by the incompetent many for appointment by
the corrupt few.

George Bernard Shaw (1856–1950), Irish dramatist
— from Man and Superman (1903), Maxims: Democracy

Cryptographic protocols can be employed to create scenarios where voters
can electronically cast their ballots. Of course, secrecy is of paramount im-
portance when casting such ballots over a network. Furthermore, most often
we require authentication, for many reasons, not only including the need to
protect legitimate voters, but also to prevent an entity from voting more than
once. Another requirement is that each legitimate voter should be able to ver-
ify that their vote has been cast. One method of starting such a process is to
ensure that each voter has a unique secret bitstring identification number Vj for
j = 1, 2, . . . , u. Furthermore, there needs to be a set of voting authorities who
tally the votes. We will call them A1, A2, . . . , Aw. There will also be a central
voting authority who is trusted by all parties. This will be Trent.

A version of the following was first published in 1997 (see [62]).

� A Multiauthority Election Protocol

Background Assumptions: We will assume that the voters are in Cali-
fornia and voting on whether to recall their governor, a “yes or no” vote. The
voters will communicate through what is called a bulletin board that may be
viewed as a public data base. Each voter has a section of the bulletin board
on which to post messages, and can read the entire board, but no voter can
erase anything. A PKC DSS is assumed to have authenticated the origins of
any postings to the bulletin board (see Section 4.3 on page 180).

Setup Stage: Trent chooses primes p and q, with p ≡ 1 (mod q), and α a
generator of Z/qZ, as in the DSA setup stage (see page 183). Then he randomly
selects a secret key a ∈ Z/qZ and makes his public key k ≡ αa (mod p) known.
Trent uses the ElGamal encryption scheme described on page 185 to encipher a
message m via the choice of a random b ∈ Z/qZ and computing (αb, mkb). This
is then an example of a scheme with the homomorphic property (see page 211),
since if (αb, mkb) and (αb

′
, m′kb

′
) are the encipherings of m and m′, then

(αb, mkb)(αb
′
, m′kb

′
) ≡ (αbαb

′
, mkbmkb

′
) ≡ (αb+b

′
, mm′kb+b

′
) (mod p).

Trent selects a (t, w)-threshold scheme (see page 212) to split the secret key
a among the above-defined w authorities in the following fashion. Authority
Aj has secret share (j, aj) where the aj for j = 1, 2, . . . , w are the pieces that
make up the secret key a. Trent publishes αaj (mod p) for j = 1, 2, . . . , w on
the bulletin board.

Protocol Steps:
1. Casting Votes: Each voter Vj chooses a vote that is one of vj ∈ {−1, 1}

(say, with−1 meaning no, and 1 meaning yes). Then the ElGamal cipher is
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used to encrypt the vote by choosing a random bj ∈ Z/qZ and computing
cj = (αbj , αvj kbj ), posting it to the bulletin board. We assume that
each voter has signed cj and correctly performed a proof of knowledge
(see Section 5.3 on page 202) to verify that the protocol has been validly
followed. Failure to meet any of these criteria means that the vote is
discarded as invalid.

2. Tallying the Votes: Since all the cj are posted on the bulletin board, then
anyone can compute the following:

(V1, V2) ≡


 u∏
j=1

αbj ,

u∏
j=1

αvj kbj


 ≡

(
α

u∑
j=1

bj
, α

u∑
j=1

vj

k

u∑
j=1

bj

)
(mod p).

Each authority Aj posts αajbj to the bulletin board. Once t honest au-
thorities, say A1, A2, . . . , At for simplicity, have posted their data to the
bulletin board, then anyone can use their data to compute the following:

g ≡ V

t∑
j=1

ajKj

1 ≡ V a1 ≡ α
a

u∑
j=1

bj
≡ k

u∑
j=1

bj
(mod p),

where
Kj =

∏
1≤�≤t
� �=j

	

	− j

(see page 213).

Thus,

V2g−1 ≡ α

u∑
j=1

vj

≡ αD (mod p),

where D =
u∑
j=1

vj is the difference between the number of yes and no votes.

Hence, we see above that (V1, V2) is actually the cryptogram enciphering
αD and we used the homomorphic property to get it. Now the tally is
accomplished by computing αDα−u+i (mod p) for i = 0, 1, 2, 3 . . ., until
we have that αDα−u+i ≡ 1 (mod p). Then that value of u − i is D, the
tally.

� Analysis: Privacy is provided by the in-built ElGamal cipher, which rests
upon the intractability of the DLP (see pages 186 and 187). Given a coalition of
no fewer than t ≤ w honest authorities, anyone can verify the tally, a property
called universal verifiability, something currently not available to voters. Also,
the message sent by each voter is simple and concise, so the time complexity of
the scheme can be shown to be exceptionally low. Our version of the original
scheme is necessarily a simplified one for pedagogical reasons.

There is a mechanism for eliminating the role of Trent. To do so, Trent’s ac-
tions need to be performed by the authorities. Since this is a minor modification,
we will not discuss the details.
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5.7 Protocol Layers and SSL

Don’t express your ideas too clearly. Most people think little of what they
understand, and venerate what they do not.

Baltasar Gracián (1601–1658), Spanish philosopher

To become acquainted with the notion of a “protocol layer”, we must un-
derstand its (formal) inception, which began with the following organization.
The International Organization for Standardization (ISO), embodying members
from 148 countries, is a world federation of national standards organizations.
ISO is a nongovernmental body, created in 1947 to promote the development of
standardization and related activities. The reader already will have noticed that
ISO is not an acronym. Its roots are from the Greek isos meaning equal, which
will be recognized as the prefix iso-, such as in isometric. It happened that
equal devolved to standard, and the ISO name was adopted. Additionally, this
provides the feature of not requiring translation in each country, as would an
acronym. ISO develops precise criteria for such applications as the development
of a framework of international standards in computer networks, for instance.
(A network is a hardware and software communications system.) In 1978, ISO
developed a model of network protocols, called a protocol stack, which is a lay-
ered set of protocols working together to render a set of network functions. The
ISO model divides the architecture among seven layers, where we understand a
layer to be the environment of two or more communications devices in which
a particular network protocol operates. The ISO model is called the Open Sys-
tems Interconnection Reference Model (OSI-RM). OSI is the umbrella name for
a set of nonproprietary protocols and specifications, which includes the OSI-RM,
having the following seven layers, from the bottom to the top.

� OSI-RM Seven Layer Protocol Stack

1. Physical Layer: This bottom layer deals with electrical and mechanical
connections to the network.

2. Data Link Layer: This layer splits data into frames, which are data packets
containing the header and trailer information required by the physical
layer. The data link layer executes error checking and retransmits correct
frames for any corrupted frames it receives, thereby providing an error-free
connection to the next layer up to which it sends the frames.

3. The Network Layer: This is the communications subnet layer, which
decides the routing of packets received from the data link layer to be used
by the next layer up. Most commonly, IP is used (see page 199).

4. The Transport Layer: This middle layer is essentially the communications
system component of a given protocol. For instance, the TCP protocol
discussed on page 199 is one such communications system. Although TCP
itself is not cryptographically secure, mechanisms can be used to make it
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so. For instance, in 1996 the Internet Engineering Task Force (IETF),5.3

the agency that develops protocol standards for the Internet, formed a
committee, the Transport Layer Security (TLS) working group. Their
mandate was to to develop a standard for Secure Sockets Layer (SSL) a
protocol that originated at Netscape in 1994, and which we will describe in
detail in this section. In January 1999, the TLS working group published
the TLS protocol. However, TLS is essentially a version of SSL, so we
will not describe it here, but rather wait to get the full description of SSL,
which is not, in itself, a single protocol, but rather two layers of protocols
using TCP to provide a secure connection with WWW browsers.

This is an appropriate juncture to explain the Internet terminology that
we will be using. For instance, WWW is the acronym for the World
Wide Web, which is the information network using HTTP and HTML on
Internet host computers. HTTP is the acronym for HyperText Transfer
Protocol, which is the protocol used to transfer files from an Internet server
onto a browser in order to view that page on the Internet. HTTP is a
one-way system in the sense that the contents of a page from the server
are downloaded to the computer’s browser for viewing, but files cannot
be transferred to the computer’s memory. HTML is the acronym for
HyperText Markup Language, which is the text format for WWW pages.
Browser is a short form for WWW browser, which is a software application
used to locate and display WWW pages. The two most popular browsers
are Netscape Navigator and Microsoft Internet Explorer. Both of these
are graphical browsers, meaning they can display graphics as well as text.
Plug-ins are usually required for presentation of multimedia information.

To summarize, and expand the role of this layer, essentially the transport
layer decides how to utilize the network layer to render a virtual error-
free connection between hosts. Thus, it both initiates and terminates
connections between hosts.

5. Session Layer: This layer uses the transport layer to establish a connection
between hosts for certain processes. It essentially handles the security side
and the creation of the session itself.

6. Presentation Layer: This layer executes such functions as text com-
pression and format conversions. This is the mechanism for ironing out
differences between two hosts. If there are incompatible processes in the
next layer up, the presentation layer allows the process to communicate
via the session layer.

7. Application Layer: The top layer essentially handles the user’s needs. For
instance, it deals with such issues as allowing a user to access a remote

5.3The IETF is indirectly overseen by the Internet Society, a nonprofit organization that acts
as a conscience and guide for the Internet. The Internet Society supports the Internet Archi-
tecture Board (IAB), which oversees the technical development of the Internet. In particular,
IAB supervises IETF. See http://ietf.org/.
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resource through a network without having to know if the resource is
remote or local, a feature called network transparency. It will style itself
after the user’s particular desires such as email message formatting. This
layer also deals with resource allocation and problem partitioning. The
presentation layer provides the top layer with familiar local representation
of data, which is independent of the format used on the network.

� Analysis: Network Connections embody a set of independent protocols,
each in a different layer. The top layer, the applications layer, consisting of user
applications programs, is the only variable layer. Each layer uses the layer one
step below it and provides a service to the layer one step above it. Each of
the network’s components on a given host uses protocols applicable to its layer
to communicate with its analogous component in another host. Such layered
protocols are sometimes known as peer-to-peer protocols.

One large advantage of layered protocols is that the mechanism for delivering
information from one layer to another is specified clearly as part of the protocol’s
definition. Also, changes within a protocol layer are prevented from affecting
the other layers. This vastly simplifies the task of designing and maintaining
network communication systems.

� SSL Protocol — Simplified
Now we describe SSL, mentioned earlier in the section. SSL is an Internet

protocol that provides authenticity and secrecy for session-based communica-
tion. It provides a secure channel on the client/server model using a secret
sharing scheme. The security model of SSL is that it encrypts the channel by
enciphering the bits that go through that channel. As mentioned earlier, SSL
began with Netscape who originated it and in 1996, they handed over the spec-
ifications of SSL to IETF who worked to standardize the SSL version 3 model,
which had been released in 1995. In 1999, the TLS working group released TLS
version 1, which has now become the IETF standards-track variant of the SSL
version 3 protocol (see [68]). The cryptographic power of SSL/TLS is that it
operates at the transport level so HTTP runs on top of SSL, called HTTPS.

To understand the layers of SSL, we must introduce the names of the two
main subprotocols to be discussed in detail below: (1) the handshake protocol;
which operates above the (2) record protocol. This is illustrated below.

HTTP
SSL Handshake Protocol

SSL Record Protocol
TCP
IP

Data Link Layer
Physical Layer
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We begin by describing the lower level of SSL.

� SSL Record Protocol
This protocol defines the format used to transmit data, and is used by the

handshake protocol to exchange messages between client and server. First the
message to be transmitted is fragmented, which means it breaks the message
down into manageable blocks. Then it compresses the data (but this is an
optional exercise in SSL). It then applies a MAC (see page 136), enciphers the
data, adds a header, and transmits the cryptogram as a TCP unit. This is
illustrated in Diagram 5.2.

Diagram 5.2 SSL Record Protocol Actions

Message Data

↙
�

� ↘

Fragment Fragment · · · Fragment Fragment�
✞

✝

�

✆
Compress�

Compressed Data Add MAC�
Encipher�

Add Header�
Cryptogram�
Transmit

Upon receipt of the transmitted data, it is deciphered, authenticated, de-
compressed, reassembled, and delivered to users at higher levels.
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� Analysis: The message data is typically fragmented into blocks of 214

bytes, after which data compression is optional. We do not describe the details of
the application of the MAC here since it is very similar to the HMAC described
in Section 7.2. The encryption is done with an SKC cipher, which can be any of
the suite of ciphers (or sets of ciphers) supported by SSL, listed below in order
of cryptographic strength. These are the cipher suites for SSL implementations
that use the RSA key-exchange algorithm.

1. Triple DES (see Section 3.2, page 131), using 168-bit encryption and SHA-1
message authentication (see page 255).

2. The only stream cipher, RC4 (see Section 3.7, page 159), using 128-bit
encryption and MD5 message authentication (see page 255). When the
RC4 is used, the MAC is first computed, then the MAC and compressed
data are enciphered.

3. RC2 (a block cipher developed by Rivest for RSA Data Security), employing
128-bit encryption and MD5 message authentication.

4. DES (see Section 3.2) with 56-bit encryption and SHA-1 message authenti-
cation.

SSL supports the above variety of cipher suites since clients and servers may
support different ciphers depending upon numerous factors.

The following protocol shows how the server and client authenticate one
another, send certificates, and establish session keys. (See Section 8.5 for a
general description of the client-server model.)

� The SSL Handshake Protocol

Below there are actions that are: mandatory, situation-dependent, or op-
tional. We will call those that are either situation-dependent or optional, merely
optional for simplification of presentation in Diagram 5.3 on page 225.

I Contact and Establish Capabilities:

1. The client sends the server a client-hello message, which contains the fol-
lowing fields:

(i) The client’s SSL version number (usually the highest SSL version
supported by the client).

(ii) Cipher suite (usually listed in decreasing order of preference), each
element (cipher suite) of which includes both a key-exchange algo-
rithm and the details of the cipher proposed. The following is the
SSL key-exchange suite of algorithms:

(a) RSA: The RSA public key of the recipient is used to encipher
the secret key, but in order to validate the process, a public-key
certificate for the recipient must be accessible.
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(b) Authenticated Diffie-Hellman: In this type of key exchange,
it is mandated that the server certificate contains the Diffie-
Hellman public-key parameters, authenticated (signed) by Trent
as a CA. If the client is required to send a certificate (see step 3
of stage II, below), then the public-key parameters as so included
(see step 2 of stage III). Hence, the Diffie-Hellman-generated se-
cret key is fixed in this case.

(c) Anonymous Diffie-Hellman: Essentially the Diffie-Hellman
key exchange as given on page 166, is used with no authentica-
tion.5.4

(d) Fortezza: The Key-Exchange Algorithm (KEA) is the key ex-
change algorithm used with Fortezza. KEA was declassified by
the U.S. Department of Defense on June 23, 1998. KEA requires
a 1024-bit prime modulus, generated via the DSS specifications
in [91]. Moreover KEA is based on a Diffie-Hellman protocol
that uses SKIPJACK for the purpose of reduction of final values
to an 80-bit key (see [90]).

(iii) Some randomly generated data consisting of a 32-bit timestamp and
28 bits generated by a CSPRNG (see page 151), both of which are
treated as nonces to prevent replay attacks (see page 197).

(iv) List of compression methods supported by the client.

(v) A variable length session ID.

2. The server sends a server-hello, which consists of the same parameters as
the client-hello. For instance, the server selects a cipher suite from the
list proposed by the client, and the server chooses a compression method
from the client-proposed list. However, the random field is generated by
the server independent of the client-generated random field.

II Key Exchange and Server Authentication:

1. The server sends an identification certificate to the client (required for all
key exchanges except anonymous Diffie-Hellman). (If RSA is used, we
assume that the server’s public key was sent with the certificate.)

2. The server sends a server-key-exchange message (not required only if either
the server has sent a certificate with authenticated Diffie-Hellman param-
eters in step 1, or if RSA key exchange is used). If exercised, this contains
the server’s public keying material.

5.4This means that the SSL handshake protocol supports a totally anonymous operation in
which neither the client nor the server is authenticated. As we saw with the Diffie-Hellman
protocol in particular, and with PKC in general in Section 4.3, impersonation is possible since
the entities are not authenticated, leaving the scheme open to the man-in-the-middle attacks.
We will study a remote login protocol in Chapter 9 (see page 334), called the SSH protocol
that does mandate server authentication.
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3. If the server is not using anonymous Diffie-Hellman, it may send a request
for the client’s certificate. Contained in the client certificate request is a
certificate type that dictates the PKC to be employed. For instance, if
either RSA or DSS is used with authenticated Diffie-Hellman, then au-
thentication (only) is accomplished via an RSA or DSS signature on the
certificate.

4. The server sends a server-hello-done message.

III Key Exchange and Client Authentication:

1. After receiving the server-hello-done message, the client verifies the server’s
certificate if sent, and other server-hello parameters. If all is valid, the
client responds.

2. If requested, the client sends a certificate. If authenticated Diffie-Hellman
is being used, then the client’s public-key parameters are included.

3. The client-key-exchange message must now be sent. The key-exchange mode
dictates the content as follows:

(i) If RSA is used, then the client generates a 48-byte premaster secret,
which is encrypted with the server’s public key (sent with certificate
in Stage I).

(ii) If anonymous Diffie-Hellman is employed, then the client’s public
Diffie-Hellman parameters are sent.

(iii) If authenticated Diffie-Hellman is used, then the parameters were
already sent in step 1 of stage II, so this is a null action.

(iv) If Fortezza is used, then the client’s Fortezza parameters are sent.

3. If a certificate has been requested, the client signs a piece of data that is
unique to the handshake and known by both client and server, along with
the encrypted premaster secret.

IV Finish Protocol:
To simplify the final stage, we assume that RSA is being used.

1. If the server verifies the client’s identity, then the server uses its private key
to decipher the premaster secret. Then the server performs a sequence of
steps to create the master secret from the premaster secret, a one-time
48-byte generated for this session. These same steps are followed by the
client to recover the master secret.

2. Both the client and the server use the master secret to generate session
keys, which are symmetric keys used to encipher and decipher information
exchanged over the course of this SSL session, and to verify its integrity,
meaning the detection of changes that might have occurred in the time
period from transmission to reception.
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3. The client sends a client-finished message saying that all future messages
will be encrypted with the session key, the first message encrypted with
the secret session-key independently generated by the client and server.

4. The server sends a similar encrypted server-finished message, which assures
the client it is communicating with the server since the client sent the
premaster secret encrypted with the server’s public RSA key, which only
the server could have deciphered to calculate the session key.

5. The handshake is now completed and the client and server may exchange
application layer information with a secure connection.5.5

Diagram 5.3 SSL Handshake Protocol Actions
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Server-Key-Exchange (optional)
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5.5Caution must be exercised in certain generic implementations of SSL. See [142], for in-
stance.
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Diagram 5.3 SSL Handshake Protocol Actions (continued)
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� Analysis: SSL server authentication allows a user to confirm a server’s
identity, which is quite important if, for instance, the user is sending a credit
card number over a network, and needs to check the receiving server’s identity.
SSL client authentication allows a server to confirm a user’s identity. This is
very important if, for example, a bank is sending confidential financial informa-
tion to a customer, and needs to check the recipient’s identity. An enciphered
SSL session is protected by a tamper-detection mechanism, which automatically
checks to see if information has been altered in transit, a secure hybrid cryp-
tosystem, with the handshake allowing independent creation of symmetric keys
for fast enciphering, deciphering, and tamper-detection during the session.

If authentication of client and/or server is chosen, then X.509V3 certificates
are used; see page 238. This makes the use of SSL somewhat unwieldy given the
necessity of an established PKI to manage the certificates. Yet, the certificates
render a scalable key-management scheme, which is a powerful mechanism. Of
course, a totally anonymous SSL mode provides no authentication, and opens
the scheme up to the man-in-the-middle attack, as noted earlier. However, when
users want to take advantage of SSL on their Web site without being associated
with their host, then anonymous SSL is the way to go. Hence, the anonymous
SSL server has its place, and there are numerous vendors available to sell such
packages to the willing.
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5.8 Digital Cash Schemes

Some rhyme a neebor’s name to lash;
Some rhyme (vain thought!) for needfu’ cash;
Some rhyme to court the countra clash,
An’ raise a din;
For me, an aim I never flash;
I rhyme for fun.

Robert Burns (1759–1796), Scottish poet
from To J. S [mith] (1786), st. 5

Anyone living in the modern world, having access to a computer and a source
of funds, is aware of e-commerce, that is, basically doing business by computer.
This may include the purchasing of goods or services from an Internet site,
or conducting banking transactions, for instance. All of this requires the use
of digital cash schemes that comprise a collection of protocols for transferring
money. These are modeled on “hard cash” and its use, as well as credit card or
debit card use. Naturally, we want secure transactions, and this involves many
facets.

In our discussion below, we will simplify the general scenario by assuming
one customer, one vendor, one bank, but potentially many adversaries seeking to
steal your money. What makes digital cash and e-commerce possible are hybrid
cryptosystems, PKC and its digital signatures, for security and authentication,
combined with SKC for efficient transfer of funds. For instance, an example of
the use of digital cash is the bank affixing its digital signature to an electronic
money order via its private key, and the vendor verifying this by using the bank’s
public key. In this fashion, the customer may withdraw funds from the bank to
pay the vendor both of whom are assured that the proper amounts are securely
withdrawn as payment for the goods or services.

Before describing our digital cash scheme, we must be familiar with some
terminology from e-commerce. In particular, we are going to describe a scheme
called ECash as a relatively simple template for Internet purchases, which in-
volves Bob as the customer, the bank, and the vendor.

� E-commerce Terminology

� Bank The bank represents any electronic bank that is connected to the
Internet and plays an essential but unobtrusive role. The bank has an RSA
modulus n, a private key d that it keeps secure, and a public key e.

� Coins A coin is a pair of integers (m, md) (mod n) where m is the unique
identification number of the coin. The value md (mod n) is the bank’s signature
or special digital stamp on the coin. Coins will typically have different denomi-
nations, but for simplicity we will assume that the denomination is the same for
each of them, e.g., $100. To ensure a coin is used only once, the bank records all
identification numbers m in its used coin database. If m has been so recorded
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and someone tries to “spend” the coin, called double spending, the bank would
inform that the coin is a worthless copy.

� Blinding This is the technique first mentioned on page 177. We repeat it
here to put it in the context of e-commerce. Suppose that Bob has an account
at the bank, and that m is the identification number of a coin. Bob’s selects a
random integer z ∈ (Z/nZ)∗ (called the blinding factor), computes

s ≡ zem (mod n), (called blinding).

He sends the blinded message s to the bank, which computes t ≡ sd (mod n),
and sends t to Bob, who computes tz−1 (mod n), called unblinding. Since

tz−1 ≡ sdz−1 ≡ zedmdz−1 ≡ zmdz−1 ≡ md (mod n),

given that ed ≡ 1 (mod φ(n)), the bank has blindly signed the identification
number, validated with its signature. Of course, some validity checks must be
done on Bob before this signing.

� Money Order This consists of digital data, which contains Bob’s iden-
tifying data, together with the identification number m of a coin, and its de-
nomination. For instance, a $100 money order is given by ($100, m (mod n), IB)
where IB is a digital data string uniquely identifying Bob. Thus, m is a “blank”
coin awaiting the banks signature md to validate it.

� Cut-and-Choose Protocol The classic cut-and-choose protocol, for di-
viding anything equitably, is described as follows. Alice cuts the thing in half,
Bob chooses one half for himself, and leaves the other half for Alice. For in-
stance, if they both want a piece of an apple, this ensures that Alice will be as
fair as possible in her cutting, since Bob chooses first. Below, we will show how
the bank uses this notion on the money orders generated by Bob.

The next topic has already been covered in detail in Section 5.5. However,
for the convenience of the reader, we present the basics for what is needed herein.

� Secret Splitting This is any protocol that takes a message, and divides it
into pieces each of which is meaningless in itself, but when pieced back together
yields the original message. For instance, given the assistance of Trent, Alice
and Bob can split a message m via the following protocol.
1. Trent generates a random bitstring b with bitlength equal to that of m and

creates b⊕m = r, where ⊕ is addition modulo 2.

2. Trent gives b to Alice and r to Bob, with b and r having no meaning unto
themselves individually.

3. Alice and Bob can piece together the information to retrieve the original
message via b⊕ r = m.

Before describing the ECash scheme in detail, we will begin with an outline of
how it works in verbiage only, then proceed to add the mathematical description.
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� ECash Scheme – Preliminary Description

Suppose that Bob wants to withdraw $100 from his account at the bank
and use it to spend at a vendor to purchase merchandise electronically. The
following protocol is enacted.

� ECash Withdrawal

1. Bob generates 100 sets of identity strings, and uses a secret-splitting protocol
to split each one into two pieces.

2. Bob prepares 100 money orders for $100 each, uses a blinding protocol, and
sends the blinded orders to the bank (including his split-identity strings).

3. The bank, after verification of validity using a cut-and-choose protocol,
encrypts the identification number of one of the 100 blank coins with its
signature to form a valid money order, debits Bob’s account, and sends
the money order to Bob. If verification fails the bank reports to the
authorities.

4. Bob unblinds the signed coin in the money order, which he can now use to
spend with a vendor via the money order.

� ECash Spending

1. Bob sends the money order to the vendor, who verifies the bank’s signature.

2. The vendor uses the secret-splitting generated by Bob in step 1 of the
withdrawal stage and sends the money order to the bank for verification.

3. The bank checks the coin against its used coin database. If it is not there,
the bank credits the vendor’s account with $100 and the vendor sends the
goods to Bob, and the transaction is complete. If the coin is there, the
bank executes step 4.

4. The bank rejects the money order and uses the identity strings to identify
Bob.

Now we get the details of how the above is accomplished.

� ECashTM Scheme — Full Description

� ECash Withdrawal Details

1. Bob generates 100 sets of unique digital data strings Sj = {Ijk}100k=1 for
1 ≤ j ≤ 100 such that each Ijk uniquely identifies him. He then engages
in a secret-splitting protocol so that, for each j = 1, . . . , 100, the digital
data string is split into two pieces Ijk = {Ljk , Rjk} with I�⊕Ir identifying
Bob if and only if 	 = r, where 	, r ∈ {jk}100k=1.
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2. Bob prepares 100 money orders for $100 each:

Mj = ($100, mj , {Ljk , Rjk}100k=1) (1 ≤ j ≤ 100),

where mj is a randomly generated number (by Bob’s computer) that is
an ECash coin’s identification number with mj 
= mi for j 
= i. Bob
executes a blinding protocol for each of the money orders by selecting a
random zj (mod n) for 1 ≤ j ≤ 100 and sends the 100 blinded money
orders ($100, zejmj , {Ljk , Rjk}100k=1) to the bank.

3. Using a cut-and-choose protocol, the bank opens 99 of the money orders
and checks that the amounts are all the same, $100, that mj 
= mi for
j 
= i, and that each Ljk ⊕ Rjk is a valid identity string. If the bank sees
no evidence of fraud, it (blindly) signs the remaining money order, M100,
say, and sends the validated money order,

($100, ze100m100, (ze100m100)d, {L100k
, R100k

}100k=1),

to Bob, withdrawing $100 from his account. Otherwise, the bank does
not, and discloses the problem, and the transaction is terminated.

4. Bob unblinds to get the ECash coin (m100, md100), which he can now spend
using the money order M100.

� ECash Spending Details

1. The vendor verifies the bank’s signature by computing (md100)
e = m100.

2. The vendor gives Bob a random 100-bit binary string (b1b2 . . . b100), and
requests that Bob reveal L100k

if bk = 1, and R100k
if bk = 0 for each of

k = 1, 2, . . . , 100, which Bob does. The vendor sends the money order to
the bank for verification from its database.

3. The bank checks its used coin database to ensure that m100 is not there. If it
is not, then the bank deposits $100 into the vendor’s account, and records
m100 in its used coin database along with the identity string selected by
Bob via the binary string in step 1. The vendor then sends the goods to
Bob along with a receipt, and the transaction is completed.

4. If m100 is in the used coin database, the bank rejects the money order.
Then it compares the identity string on the bogus money order with the
stored identity string attached to m100. If they are the same, then the
bank knows the vendor duplicated the money order. If they differ, then
the bank knows that the entity who gave it to the vendor must have copied
it. Given that the coin (m100, md100) was spent with another vendor, then
that vendor gave Bob a different binary string. The bank compares the
differing strings until it finds a position where the bits differ, say the ith
position. This is where one vendor asked Bob to open Li and the other
asked Bob to open Ri. Thus, then bank forms Li ⊕ Ri, revealing Bob’s
identity, which can be reported to the authorities.
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� Analysis

Untraceability: The above scheme ensures anonymity for Bob, as a legit-
imate user. In other words, his identity is untraceable. When he spends the
coin, the bank must honour it since the bank’s signature is on it. However,
since it is unable to recognize the specific coin, given that it was blinded when
signed, the bank does not know who made the payment. However, if Bob is not
a legitimate user and tries to spend the coin twice, the bank can detect him in
step 3 of the spending stage. The attentive reader will have noticed that we
assumed that the binary strings were different in step 4, if Bob is illegitimate.
This is not 100% certain but the probability that they are the same is 1 in 2100,
which is extremely unlikely. This legitimate use of digital cash ensures that it
is anonymous digital cash. This mimics the use of real paper cash where the
use is anonymous and untraceable. The other type of digital cash is identified
digital cash, which mimics the use of a credit card, allowing a bank to track the
transaction as it moves through the system. This is not used often since users
want the untraceable property.

Security: This is a property guaranteed by both step 4 of spending, which
tells us that the coins cannot be copied and reused, and the fact that the bank
keeps its signature d secure, along with identity data.

Integrity: This is a property satisfied by ECash since the scheme is based
upon the security of RSA, which we have seen to be valid when properly imple-
mented.

Authenticity This is a property guaranteed by step 4 of spending since
Bob, as a legitimate user, is protected from impersonation.

Offline: Since an illegitimate user can be identified in step 4 of spending,
then it is not necessary to check the coins immediately since a cheater would
be identified later. Thus, the offline property exists for the scheme, since the
vendor does not have to check at the time of payment (online), but rather can
do so later (offline).5.6

Recovery: ECash has a special built-in recovery protocol executed between
Bob and the bank that allows all the coins that have been withdrawn by Bob
to be reconstructed. Thus, if there is a system crash, or computer crash, in
the middle of a payment attempt over the Internet, these reconstructed coins
can be redeemed at the bank (but only those coins not already in its used coin
database). Recovery of ECash coins can be accomplished over the Internet
with the click of a button.

Coin Denominations: Our simplified version of the ECash scheme did
not address the issue of different coin denominations. The ECash scheme uses
a different RSA public exponent for each denomination, but the same RSA
modulus n for each of them. Then the above ECash scheme is executed in
parallel for as many iterations necessary to withdraw the required amount.

5.6All of the above characteristics thus far in this analysis, are aspects of what Okamoto and
Ohta described as the ideal digital cash scheme. See [182].



232 5. Cryptographic Protocols

Background: David Chaum is the pioneer in digital cash. He invented
the notion of digital coins and the basic protocols for digital cash. In fact,
the seeds of ECash can be found in Chaum’s works, [53] and [54]. Chaum was
also a pioneer in ensuring that the (now world-renowned) CRYPTO meetings at
U.C. Santa Barbara, and the EUROCRYPT meetings in Europe, would become
an annual affair under a single organization, the International Association for
Cryptologic Research. Chaum was a pioneer of protocols for using PKC to
ensure anonymity of electronic users. In fact, it is not even certain when he was
born, since his desire for anonymity runs deep. It is known that he was raised
in Los Angeles, and ultimately got his undergraduate degree at U.C. San Diego,
and did his graduate work at U.C. Berkeley. By 1979 he was already creating
ideas for using PKC for authentication via digital signatures. Ultimately this
led him to anonymous untraceable schemes embodied in ECash.

Chaum’s idea of assigning a unique number to each coin guaranteed the
authenticity of the “virtual” money. His idea for “blinding” a digital signature
was the key notion to protect a user’s anonymity, since even a bank which
issues the cash, does not know who has it, and so cannot trace it. He is also
responsible for the above notion of preventing double spending while, at the
same time, providing anonymity for legitimate users.

In those pioneering days, Chaum did not find a lot of support among col-
leagues, so he eventually opened his own company to spread his ideas. Thus
in 1990, he founded Digicash in Amsterdam, Holland, while working for the
Centre for Mathematics and Computer Science (CWI). His company worked on
smart card applications, including the world’s first automated road toll collec-
tion scheme, and held patents on his anonymous digital cash schemes, including
ECash, which Digicash invented in 1990. However, as Visa and other credit
card companies failed to strike deals with Digicash for use of those patented
ideas, they eventually developed their own. By May of 1997 Visa and Master
Card completed their own e-commerce standard, SETTM (Secure Electronic
Transmission) that allows for security, privacy, integrity, as well as authenticity
in the protection of cards used in Internet e-commerce. We will revisit SET in
Section 6.3.

Even the so-called “cyberpunks” (see page 159) used an idea of Chaum’s for
“remailers”. These are information launderers, so to speak. One sends a message
to some Internet site (having what is called an anonymous server or remailer),
maintained by the cyberpunks who remove all identifying characteristics from
the message, and send it on, ultimately, to its final destination without any
return address or identifying information.

While Digicash was still trying to get its patents to be used by mainstream
business, a former student of Chaum’s, Stefan Brands, came up with a compli-
cated but nearly ideal digital cash scheme, and although Chaum claimed that
Brands’ ideas were derivative of his own, Brands obtained his own patents.
(See page 536 in Appendix D for a complete description of Brands’ scheme.)
Although Digicash did have some limited success, it finally came crashing down
in 1998, when Chaum filed for bankruptcy and lost his patents, yet another
pioneer who came up short in terms of recognition for his (real-world) efforts.



Chapter 6

Key Management

Every time I make an appointment, I create a hundred malcontents and one
ingrate.

King Louis XIV (1638–1715)
— from Voltaire Siècle de Louis XIV, 1768 edition

6.1 Authentication, Exchange, and Distribution

Since any (properly implemented) cryptosystem is only as strong as its keys,
we need to be concerned about key management, the secure generation, distri-
bution, and storage of keys. Generation of cryptographic keys is vital in any
cryptosystem. A real-world example, illustrating what can go wrong, is given
by SSL discussed in Section 5.7. In the early days of SSL, implementations
released by Netscape failed due to weak keys. We saw how this was a problem
with DES, and related ciphers, in Section 3.2. We encountered numerous secure
key-generation schemes such as Blowfish in Section 3.4; AES in Section 3.5; RC4
in Section 3.7; RSA in Section 4.2; and ElGamal in Section 4.4. Thus, we have
sufficient illustrations of the mechanisms for doing so.

As for key agreement we saw, on page 180, how an impersonation attack can
be launched, and how Diffie-Hellman key exchange is particularly vulnerable to
this type of fraud. Also, on page 199, we saw how three-pass protocols can be
effective means of authentication. Now we look at a scheme that is considered to
be a three-pass variant of the Diffie-Hellman scheme, which solves the problem
with the original scheme. The following appeared in [71] in 1992. This is an
example of an authenticated key-agreement protocol, which means that the key-
agreement protocol itself, authenticates the parties, in this case, Alice and Bob,
with Trent’s help.

� Station-to-Station Protocol (STS)

Background Assumptions: In the following, it is assumed that
(sigA, verA) and (sigB , verB) are Alice and Bob’s respective signature and ver-
ification algorithms (see Section 4.3); and that Trent has compiled and made

233
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public verA, verB , and certified that these are indeed their respective verification
algorithms, and not, say, for Eve or Mallory. Alice and Bob want to establish
a key k for use with a symmetric encryption scheme Ek, and they develop k in
the following fashion, which is Diffie-Hellman with digital signatures added.

Protocol Steps:
1. Alice and Bob agree upon a large prime p and a primitive root α modulo p.

2. Alice selects a random (secret) integer eA ∈ (Fp)∗, and Bob selects a random
(secret) integer eB ∈ (Fp)∗.

3. Alice computes m1 ≡ αeA (mod p), which she sends to Bob.

5. Bob computes k ≡ (αeA)eB (mod p), and sends

m2 = (αeB , Ek(sigB(αeB , αeA)))

to Alice.

5. Alice computes k ≡ (αeB )eA (mod p) and obtains sigB(αeB , αeA) via E−1
k

acting on Ek(sigB(αeB , αeA)).

6. Alice requests that Trent certify that verB is indeed Bob’s verification
algorithm, and if it is so certified, she uses it to verify Bob’s signature.
Then she sends

m3 = Ek(sigA(αeA , αeB ))

to Bob.

7. Bob deciphers via E−1
k , asks Trent to certify that verA is Alice’s verification

algorithm. If so, he uses it to verify Alice’s signature.

� Analysis: With the three messages, m1, m2, m3, this is a three-pass
version of Diffie-Hellman, using digital signatures to do the authentication in
conjunction with Trent. The STS protocol establishes a key k, mutually con-
firmed by Alice and Bob, whose identities have been verified to each other, but
not to Eve or Mallory. Thus, we indeed have an authenticated key-agreement
protocol, so now Alice and Bob can use k to encrypt all subsequent messages
between them.

We have seen schemes for distributing keys over large networks (see the
Kerberos protocol on page 196 for instance). However, we might want to decide
upon keys in advance and pre-distribute them. We briefly met this concept
on page 162, and the following scheme is designed to deal with the problems
discussed therein. The scheme below was introduced by Blom in 1985 (see [27]).
However, we present a simplified version given in [32] several years later.

� Blom’s Key Predistribution Scheme — Simplified

Basic Assumptions: We suppose that there is a network of m ∈ N users,
and that keys are taken from Fp where p ≥ m is a public prime. Each user on
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the network has a unique identification number such as uA for Alice. Trent will
distribute to each user, over a secure channel, a mechanism for communicating
with any other user on the network.

Protocol Steps:

1. Trent chooses three random values r1, r2, r3 ∈ Fp, and for each user, such
as Alice, computes

xA ≡ r1 + r2uA (mod p) and yA ≡ r2 + r3uA (mod p).

Then for each user, such as Alice, he computes the polynomial fA(x) =
xA + yAx, which is sent over the secure channel to her.

2. If Alice wants to communicate with user uB for Bob, say, then Alice com-
putes kAB = fA(uB) and Bob computes kBA = fB(uA). In the analysis
below, we show that kAB = kBA = k, say, so Alice and Bob now have a
means of communicating with k via some chosen SKC.

Example 6.1 For simplicity, we will assume a network of three users, Alice,
Bob, and Carol. If p = 31, uA = 7 for Alice, uB = 11, for Bob, uC = 17 for
Carol, and Trent selects r1 = 2, r2 = 10, r3 = 29, then

xA = 2 + 10 · 7 = 72; yA = 10 + 29 · 7 = 213; so, fA = 72 + 213x;

xB = 2 + 10 · 11 = 112; yB = 10 + 29 · 11 = 329; so, fB = 112 + 329x;

xC = 2 + 10 · 17 = 172; yC = 10 + 29 · 17 = 503; so, fC = 172 + 503x

are the respective polynomials for Alice, Bob, and Carol. Thus,

kAB = fA(uB) = 72 + 213 · 11 = 2415 = kBA = fB(uA) = 112 + 329 · 7,

kAC = fA(uC) = 72 + 213 · 17 = 3693 = kCA = fC(uA) = 172 + 503 · 7,

kBC = fB(uC) = 112 + 329 · 17 = 5705 = kCB = fC(uB) = 172 + 503 · 11.

� Analysis: First we show that kAB = kBA, where we assume the equalities
are congruences modulo p for convenience.

kAB = xA + yAuB = r1 + r2uA + (r2 + r3uA)uB = r1 + r2uA + (r2 + r3uA)uB =

r1 + r2uA + r2uB + r3uAuB = r1 + r2uB + (r2 + r3uB)uA = fB(uA) = kBA.

Now we show that Blom’s scheme is unconditionally secure against an attack
by a user, Mallory. In other words, we will show that with the knowledge Mallory
has, namely,

fM (x) ≡ r1 + r2uM + (r2 + r3uM )x (mod p)

sent by Trent, all values of z ∈ Fp are possible for kAB , which he is trying to
cryptanalyze. Since Mallory knows fM (x), then he knows the coefficients

r1 + r2uM ≡ xM (mod p), (6.1)
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and
r2 + r3uM ≡ yM (mod p), (6.2)

but not the unknown value r1 + r2(uA + uB) + r3uAuB ≡ z (mod p). Putting
this into a matrix equation we get

AX =


 1 uM 0

0 1 uM

1 uA + uB uAuB





 r1

r2

r3


 ≡


 xM

yM

z


 (mod p),

where

det(A) ≡ u2
M + uAuB − (uA + uB)uM ≡ (uM − uA)(uM − uB) �≡ 0 (mod p),

since uM �≡ uA (mod p) and uM �≡ uB (mod p). Hence, there exists a solution
(r1, r2, r3) ∈ F

3
p, for any possible value z ∈ Fp of kAB given the information

Mallory has at his disposal. Hence, Mallory obtains no information about kAB .
Although the scheme is unconditionally secure against an attack by any

individual user, it is vulnerable to a total break by more than one user acting
in concert. For instance, suppose that Mallory conspires with Eve.

Since Mallory has Equations (6.1) and (6.2) and Eve has her two similar
equations, then they have the four modular equations

xM ≡ r1 + r2uM (mod p), yM ≡ r2 + r3uM (mod p),

xE ≡ r1 + r2uE (mod p), and yE ≡ r2 + r3uE (mod p).

Hence, they have four equations in three unknowns from which elementary al-
gebra will yield a unique solution for r1, r2, r3.

However, the scheme can easily be made secure against any n ∈ N users
acting in concert by altering the choice by Trent in step 1. Trent replaces the
polynomial,

p(x, y) = r1 + r2(x + y) + r3xy,

by

fx(y) ≡
n∑

i=0

n∑
j=0

ri,jx
iyj (mod p), (6.3)

for randomly chosen ri,j ∈ Fp with ri,j ≡ rj,i (mod p) for all such i, j. The
general setup (6.3) is an aspect of the full Blom protocol (see [27]). It will
however, succumb to a conspiracy by n + 1 users acting in concert in the same
fashion as above. Thus, the above polynomial can be chosen for an appropriate,
arbitrarily high, value of n.
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6.2 Public-Key Infrastructure (PKI)

Who says that fictions only and false hair
Become a verse? Is there in truth no beauty?
Is all good structure in a winding stair?

George Herbert (1593–1633), English Poet and Clergyman

A public-key infrastructure, or PKI, consists of a set of protocols and stan-
dards, which support and enable the secure and transparent use of public-key
cryptography. PKI is particularly important in applications requiring the use
of public-key cryptography. For instance, in Section 6.3, we will look at one
such application to a secure e-commerce scheme developed for credit card pay-
ments over the Internet, which will use the concepts we develop herein. As we
shall see, PKI may be used as a tool for authentication, key distribution, and
nonrepudiation. Section 6.1 dealt with several issues surrounding authenticity,
and key distribution. We discussed nonrepudiation briefly on page 162 when
we were comparing SKCs and PKCs; and on page 182 when we looked at the
DSS. In this section, we will formalize the notions surrounding PKI so we can
use it as a framework for such discussions as that surrounding the credit card
payment scheme in the next section.

PKI provides protocols for certification of public keys and verification of
certificates. The reason is that if Alice wants to be sure she is communicating
with Bob and not Eve, say, then she must have assurance that Bob’s public key
actually belongs to Bob. This is where the role of a certificate comes into play.
We now discuss PKI with the role of providing key management through the
use of a certification authority (CA) and a registration authority (RA).

� Role of the CA

The CA is an entity responsible for issuing public-key certificates, which
are tamperproof data blocks. A certificate contains (at least) the following:
entity identification; CA identifier; and a public key. These are used to bind the
individual name to the corresponding public key. The CA accomplishes this by
affixing its private key as a digital signature, thereby performing key registration
via the issuing of a certificate. Think of the certificate as being the analogue of
a driver’s license.

� Role of the RA

The RA typically plays the role of assisting the CA by establishing and
verifying the identity of entities, called end users, who wish to register on a
network, for instance. Other functions of the RA may include:
(1) Key predistribution for later online verification.

(2) Initiation of the certification process with the CA for end-users.

(3) Performance of certificate-management functions such as certificate revo-
cation (meaning the cancellation of a previously issued certificate).
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(4) Key generation (in the absence of a CA to do so).

� PKI Services

1. Certificate creation, distribution, management, and revocation.

2. PKI-enabled services, that are not part of the PKI, can be built upon the
core PKI, and these include secure communications and timestamping.

3. A PKI, in itself, may not involve any cryptographic operations with the keys
that it is managing. A common feature of all PKIs is a set of certification
and validation protocols, since the fundamental core predicate of PKI is
the secure management of public keys, as well as nonrepudiation.

� Certificates
By a certificate we will mean the ISO/ITU-T X.509 Version 3 public-key

certificate format. The ITU is the International Telecommunication Union,
which was established on May 17, 1865 (as the International Telegraph Union)
to manage the first international telegraph networks. The name change came
in 1906 to properly reflect the new scope of the Union’s mandate. The ITU-T
is the ITU Telecommunication Standardization Section, one of three sections
of ITU, established on March 1, 1993. In conjunction, ISO (see page 218) and
ITU-T form world standards such as the X.509, which is a public-key certificate.
Version 3 (as specified in [128]) was developed to correct deficiencies in earlier
versions, and has become the accepted standard so that often the term certificate
is used to mean this version of X.509. Version 3, denoted by X.509V3, contains
each of the following fields: (1) version number; (2) certificate serial number;
(3) signature-algorithm identifier; (4) issuer name; (5) validity period; (6) entity
name; (7) entity public-key information; (8) issuer unique identifier; (9) entity
unique identifier; (10) extensions; (11) signature; (12) In addition, the extensions
field can contain numerous types such as authority key identifier, extended key
usage, and private-key usage period.

� PKI Trust Models
In PKIs, the trust models are used to describe the relationships of CAs with

end users and others. We describe only two of them.

1. User-Centric Trust. In this model, each user makes the decision as to
which certificates to accept or reject. There is an implementation, used by
Pretty Good Privacy (PGP), about which we will learn in Chapter 8, when
we discuss e-mail security. In this implementation, a user, such as Alice,
exchanges certificates which are public keys of those other users with whom
she wants to communicate. She protects her certificate from alteration by
signing it with her private key. Upon receipt of Bob’s certificate, say, Alice
acts as a CA by assigning it one of the following levels:

(1) Complete trust, meaning that she trusts Bob and anyone whose cer-
tificate is signed with Bob’s key.
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(2) Partial trust, meaning that Alice does not completely trust Bob, so
certificates signed by Bob must also be signed by other users (whom
she does trust) before she accepts it.

(3) No trust, meaning that Alice does not trust Bob and will not trust
any certificate signed by Bob.

(4) In some implementations, there is a fourth level of uncertain, but this
essentially amounts to no trust.

In this way she builds a web of trust with other users, but this model is not
acceptable for such applications as e-commerce. A more generally secure
trust model is described in what follows, where we will need the term
security domain, which means a system governed by a trusted authority.

2. In the PKI trust model called cross-certification, the CAs (in their respective
security domains) are required to form a trust path between themselves.
There are various processes within the framework of this trust model.

(1) The process called mutual cross-certification involves CA1 signing
the certificate of CA2, and CA2 signing the certificate of CA1.

(2) If the domains are different, called interdomain cross-certification,
then relying parties (those entities who verify the authenticity of an
end user’s certificate) are able to trust end users in the other domain.
This trust model is clearly suited to e-commerce, such as that engaged
by two distinct business organizations.

(3) If two CAs are part of the same domain, called intradomain cross-
certification, then this model can be varied to accommodate a hier-
archy of CAs where CA1 can sign the certificate of CA2 who is at a
lower level, without having CA2 sign CA1’s certificate, called unilat-
eral cross-certification. An advantage of unilateral cross-certification
is that it allows relying parties to trust only the top-level root CA,
having their certificates issued by the authority closest to them.

Clearly, the trust model is an indispensable part of any PKI. We have de-
scribed only two of many such models, which is sufficient for our purposes. The
reader interested in seeing more of them in greater detail may consult [4], which
is a book dedicated entirely to the topic of PKI.

In the following we will need the term, certificate-revocation list (CRL),
which is a signed data structure embodying a timestamped inventory of revoked
certificates.

� Certificate Storage

Once generated, a certificate must be stored for use at a later time. For
this, CAs require what is called a public certificate directory , which is a public
database or server accessible for read-access by end users that the CA manages
and to which it supplies certificates. This directory is a central storage location
that provides an individual, public, central location for the administration and
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distribution of certificates. As with PKI itself, there is no single standard.
Perhaps the most popular is the X.500 series, which is the ISO/ITU-T array of
standards with specifications in [127], and is, in fact, the underlying structure in
which the X.509 certificate originated. Proprietary directories based on X.500
include Microsoft Exchange, for instance. The X.500 series has standardized
protocols for obtaining data structures, thus allowing any PKI to have access
via a mechanism called a schema for the storage of certificates and CRL data
structures in a given entity’s directory entry.

� Certificate Revocation

Suppose that Alice’s private key has been compromised, which means the
corresponding public key can no longer be used for Alice. The process for
alerting the rest of the network of users is certificate-revocation checking. We
can now invoke the earlier analogy in terms of a driver’s license. A police officer,
upon checking a driver’s license, not only verifies the date on the license, but
also calls some central police authority to confirm that the license has not been
revoked. Certificate revocation means marking the certificate as revoked by
the CA and placing it in a CRL. CAs issue periodic CRLs to ensure relying
parties that the most recent CRL is current, so even if there are no changes,
a CRL is issued on time according to the schedule. Also, some certificates are
cross-certified between the CAs themselves. To revoke these certificates, we
need a separate authority revocation list (ARL), which plays the role of CRLs.
However, revoking the PKC of a CA is rare and usually occurs when the CAs
private key is compromised.

The X.509 Version 2 standard for CRLs, as with the Version 3 certificates,
discussed earlier, has extension fields to make the CA’s job of revocation easier.
They are:

1. Reason code, namely, a specification of the reason for the revocation.

2. Hold instruction code, which is a mechanism to temporarily suspend a
certificate, and contains an object identifier (OID), which stipulates the
action to be taken if this field is filled.

3. Certificate issuers, which has the identity of the certificate issuer.

4. Invalidity date, which contains the date and time of the known or suspected
compromise.

There is an alternative online mechanism for certificate revocation, the most
popular being the Online Certificate Status Protocol (OCSP), documented in
[176] with HTTP being the most common practical mechanism (see page 219).
This is a challenge-response protocol offering a mechanism for online revocation
of data from a trusted authority, called an OCSP responder. However, as a mere
protocol, it does not have the capacity to store revocation data, so the OCSP
responder must obtain information from some other source. Thus, latency is
involved with its use. Moreover, it is limited to the supplying of information
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about the revocation status of a given list of certificates, and nothing else.
Hence, there is still the need for CRLs.

� Key Backup and Recovery Server

This gives the CA a mechanism for backing up private keys together with
a means of recovering them later should end users lose their private keys. Key
recovery is implemented in an individual PKI by its authorities to provide key
recovery for its end users. The key recovery server is an automated process to
relieve the burden on PKI authorities. To prevent an adversary from access-
ing an entity’s private key and launching an impersonation attack, a CA may
support not one, but two key pairs: one for enciphering and deciphering and
the other for signature and verification. For instance, in the DSA, discussed on
page 183, the key pair cannot be used for encryption and decryption, whereas
the Diffie-Hellman key pair, discussed on page 166, cannot be used for signing
and verification. The management of key pairs is paramount in any PKI, and
dual key pairs has become a central feature of any in-depth PKI.

First, keys must be generated. The best method is for a CA or RA to
generate the key pair. Once multiple key pairs for individual entities have been
generated, there is a need for multiple certificates, since X.509V3, for example,
does not support multiple key pairs in a single certificate. A private key used
for signing and verification requires secure storage throughout its lifetime. In
this case, we should not back up the key pair, since the compromise of the pair
necessitates the generation of a new key pair, and it makes verification of all
signatures associated with that key pair impossible. Such key pairs must always
be secured, since knowledge of the private key needed for nonrepudiation will
allow the owner of the key to claim the adversary engaged in the nonrepudiable
act, which would defeat the goal of having the key pair for nonrepudiation.
A private key used for decryption must be backed up to enable recovery of
enciphered data, and it should not be destroyed once expired since it may be
needed for later decryptions. It should be placed in a key archive, which is a
long-term storage of keying data including certificates. Typically, archives are
appended with timestamp and notarization data in order to resolve any future
disputes, as well as for audit purposes.

If private keys are lost by end users (and they will be) there should also be
an optimal automatic process of key recovery in the PKI. Note that this means
the recovery of private decryption keys only, not private signature keys, for the
reasons cited above. An alternative method to the CAs storing public keys and
certificates for digital signature purposes is the RSA digital envelope (see page
163). Alice can use a secret symmetric session key to encipher, but also she
encrypted it, using an RSA public recovery key, when it was generated. Thus,
if Alice loses her key, the CA who owns the private RSA recovery key can open
the digital envelope and recover Alice’s session key. Key recovery can also be
accomplished using secret-sharing schemes such as those we discussed in Section
5.5. These key recovery threshold schemes are also very common since they
have a nice checks and balances feature. Splitting a private key among shares
thwarts attempts by any one entity from surreptitiously capturing private keys,
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and it allows reconstruction of the key shares without one or more of the trusted
entities being present to pool the shares.

� Key Updating and Key History
Key pairs must be updated at regular intervals, if for no other reason than

to thwart compromise threatened by cryptanalytic attacks. Once the key pair
expires, the CA can reissue a new certificate based on the new key pair, or a
new certificate for the old key pair can be generated. This gives rise to what
is called a key history, consisting principally of old private keys. A key history
must be maintained by the PKI for such purposes as later decryptions of old
data. Ideally, a key history is stored with a CA who has an automated process
available to retrieve the data from the key history as it is needed. This is
different from key archiving, which meets the need for storing public keys and
certificates for digital signature purposes.

Typically, to free the end user from responsibility, there is automatic ver-
ification of a certificate each time it is used on the network. Once expiration
approaches, the automated system will request a key update from a suitable
CA or more likely, an RA. Once the new certificate is created by a CA, it is
automatically replaced and requirements on end users are eliminated.

� The Future of PKI
The future of PKI is an open book. It is developing, with new standards

emerging, at a vigorous pace. For further information, the reader is referred to
any of the following:

1. PKI Forum at
http://www.pkiforum.org

2. Recall that we have already mentioned the IETF’s working group on page
219, see

http://www.ietf.cnri.reston.va.us/html.charters/pkix-charter.html.

3. The Government of Canada:

http://www.cse-cst.gc.ca/en/services/pki/pki.html

4. NIST has a Federal PKI Technical Working Group (PKI-TWG) studying
PKI infrastructures for use by government agencies:

http://csrc.nist.gov/pki/twg/

4. The Open Group, an international vendor and technology-neutral consor-
tium, is developing PKI standards:

http://www.opengroup.org/public/tech/security/pki/cki/

to mention only a few.
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6.3 Secure Electronic Transaction (SET)

To travel hopefully is better than to arrive, and the true success is to labour.
Robert Louis Stevenson (1850–1894), Scottish novelist

On page 232, we mentioned the circumstances surrounding how Visa and
MasterCard developed SET in 1997. Now we have the tools to describe this
scheme in detail. To do so, we need some terminology, and due to the complexity
of the scheme, a brief overview before we give the complete description.

First of all, a payment gateway is an interface between SET and the existing
e-commerce network for authorization and payment. We will use Trent for this
role. Alice will be our cardholder, and Bob will be our merchant. Diagram 6.1
is an illustration of the SET mechanism after which we will explain the opera-
tion in detail. However, it will be a simplified version to ease the explanation
without significantly altering the themes and function of the SET protocols.
For instance, in the following we assume that Trent is internally contacting the
acquirer (a financial institution that processes credit card payments and autho-
rizations), and an issuer (a bank that provides Alice with her card), without
mentioning them, except parenthetically.

Diagram 6.1 SET Protocol Actions

Alice
Cardholder

Purchase−−−−−−−→
Request

Bob
Merchant

Authorization−−−−−−−−−−→
Request
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Payment
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Encrypt

� Payment Capture−−−−−−−−−−−−−→
Request

� Decrypt
& Verify

Send Goods←−−−−−−−−−
or Services

Payment Capture←−−−−−−−−−−−−−
Response

Transfer
Funds

�

Bob’s
Bank

Account
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SET is presented via its components, the first being vital and innovative.

� SET Dual Signature Protocol

Background Assumptions: This concept of “dual signatures” is new to
the DSS arena. Dual signatures permit two data blocks to be intimately linked,
yet sent to two different entities for handling. Two mechanisms allowing this to
occur within SET are the following.

1. The order information (OI) message (which contains order reference gener-
ated in the exchange between Alice and Bob in her shopping phase before
the first SET message is sent, which we will detail below, but contains no
explicit order information such as the cost of Alice’s chosen items). The
OI is sent to Bob for processing.

2. At the same time, a payment information (PI) message is sent to Trent
who requires it (typically for authorization with the issuer and acquirer).

� Protocol Steps:

1. Given a public cryptographic hash function H, a message digest (see
page 170) is created for the OI, called the OI message digest H(OI) =
(OIMD); and for the PI, called the PI message digest H(PI) = (PIMD).

2. The OIMD and PIMD are concatenated to produce a new data block C =
(OIMD, PIMD).

3. C is hashed to produce a new data block H(C), called the payment order
message digest denoted by (POMD).

4. The POMD is encrypted using the signer’s private key to produce a (dual)
digital signature.

In the following diagram, k is the signer’s private key, DS is the dual signa-
ture, and all other acronyms are as given in the above protocol description.

Diagram 6.2 (SET Dual Signature Illustrated)

✄

✂

�

✁PI →
✄

✂

�

✁H →
✄

✂

�

✁PIMD ↘
✄

✂

�

✁OI →
✄

✂

�

✁H →
✄

✂

�

✁OIMD ↗

✞

✝

�

✆
(OIMD, PIMD) →

✄

✂

�

✁H →
✄

✂

�

✁POMD →
✄

✂

�

✁k →
✄

✂

�

✁DS

Now we describe the components of the SET scheme, which will employ the
dual signature protocol for security. Later we will discuss the details of how the
security needs are met by the use of dual signature to provide confidentiality,
integrity, and authentication. We begin with the first stage in Diagram 6.2,
initiated by Alice, who wants to do business with Bob over the Internet.
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� Purchase Request and Response
Background Assumptions: Alice is assumed to have already shopped

online, chosen her goods or services, and placed an order with Bob. Bob is
assumed to have sent a completed order to Alice. This is all done outside the
purview of SET. It accounts for the order reference mentioned in mechanism 1
of background assumptions in the SET dual signature scheme described above.
The CA, in what follows, is assumed to be trusted to issue X.509V3 certifi-
cates to all participants. We assume a secure PKI is in place (typically with
interdomain cross-certification; see Section 6.2).

� Protocol Messages

1. Initiate Request Message: In this message, Alice includes a request for
certificates, and information provided in this request are: (1) the type of
credit card; (2) Alice’s ID; (3) a nonce, used as a form of timestamp.

2. Initiate Response Message: Bob responds with: (1) Alice’s nonce that
she sent to him; (2) another nonce for her to return in the next message;
(3) a transaction ID for this particular purchase, denoted by TID; (4)
Bob’s signature certificate; (5) Trent’s key exchange certificate.
Then Bob signs the above response with his private signature key and
sends it to Alice.

3. Purchase Request Message: Alice verifies both Bob and Trent’s cer-
tificates via their respective CA signatures. Then she creates the OI and
the PI, and to both of these she affixes the TID. For the sole purpose
of sending the purchase request information, Alice generates a one-time
symmetric encryption key kA. The block of data that Alice forwards to
Bob so that he can pass it on to Trent consists of the following:

(1) The PI.
(2) The dual signature calculated over the OI and the PI as defined in

step 4 of the dual signature protocol steps on page 244.
(3) The OIMD as defined in step 1 of the dual signature protocol steps

on page 244. This is needed by Trent to verify the dual signature, as
we will describe in detail below.

All of the items in (1)–(3) are encrypted with kA to form the Trent-
encrypted part of the message, denoted by TE. Then, the following
is added:

(4) The digital-envelope, which is formed by encrypting kA with Trent’s
public key-exchange key, eT . (The term “digital-envelope” is used
here in a different sense than that given on page 163, where we talked
about hybrid cryptosystems. Here we have an “envelope” digitally
locked by Trent’s key, which must be unlocked, or decrypted, before
any data in the envelope can be viewed.) kA is not made available
to Bob, who therefore cannot read any of this part of the message.
He merely passes it to Trent.
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In the message, Alice includes data for Bob, which consists of:

(5) The OI.

(6) The dual signature as in (2) above.

(7) The PIMD as defined in step 1 of the dual signature protocol steps
on page 244. (This is needed by Bob to verify the dual signature, as
we will detail below).

(8) Alice’s certificate CA, containing her public signature key, sA. (This
is needed by both Bob and Trent.)

The purchase request message is sent to Bob.

4. Purchase Response Message: Upon receipt of Alice’s message, Bob
executes the following steps:

(1) He verifies Alice’s certificates via the CA signatures.

(2) He decrypts the dual signature using Alice’s public signature key,
thereby verifying that the order has not been altered by any entity
tampering in transit and that it was indeed signed using Alice’s pri-
vate signature key.

(3) He processes the OI and forwards the aforementioned data to Trent.

(4) Then Bob sends a purchase response to Alice, which includes acknowl-
edgement of the order appended with the TID; signature of the block
with Bob’s private signature key; and Bob’s signature certificate.

Upon receipt of the purchase response message, Alice verifies Bob’s cer-
tificate, then verifies his signature on the response block. If everything is
valid, her database is updated with this fact.

In the Diagram 6.3, DS stands for dual signature, and the balance of the
acronyms are given above.

Diagram 6.3 Alice’s Purchase Request
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Diagram 6.4 shows the balance of the purchase request/response protocol
with Bob’s actions, after which Alice verifies and updates as described above.

Diagram 6.4 Bob’s Purchase Verification/Response
✄

✂

�

✁OI →
✄

✂

�

✁H →
✄

✂

�

✁OIMD →
✞

✝

�

✆
(OIMD,PIMD) →

✄

✂

�

✁H →
✄

✂

�

✁POMD
	

✞

✝

�

✆
Purchase Response ←−−−−

✞

✝

�

✆
Bob Compares

�
✞

✝

�

✆
CA →

✄

✂

�

✁
sA →

✄

✂

�

✁DS →
✄

✂

�

✁POMD

� Authorization Request and Response

Background Assumptions: Bob, during the processing of Alice’s order,
must authorize the transaction with Trent via an authorization request, which
results in a guarantee that Bob will be paid or the transaction is rejected. This
is included in Trent’s authorization response.

� Protocol Messages

1. Authorization Request Message: Bob forwards the message from Alice
contained in the TE and digital envelope as outlined in part 3 (Purchase
Request Message) of Protocol Messages on page 245 and as illustrated in
Diagram 6.3 on page 246.

The data generated by Bob, which is sent with the above, includes the
following items:

(i) TID signed with Bob’s private signature key and encrypted with a
one-time symmetric key kB , generated by Bob.

(ii) kB is enciphered by Bob using eT to create another digital envelope
BE.

(iii) Alice’s signature key certificate, needed to verify the dual signature.

(iv) Bob’s signature key certificate, required to verify Bob’s signature.

(v) Bob’s key-exchange certificate, required for Trent’s response.

2. Authorization Response Message: Trent, upon receipt of Bob’s request,
executes the following:

(1) Verifies all certificates.

(2) Deciphers BE to obtain kB , which he uses to decrypt the TID and
verify Bob’s signature.
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(3) Decrypts TE to obtain kA, which is used to verify the PI by compar-
ing the TID in it with the TID obtained in step (2) above.

(4) If the above are all valid, he sends an authorization response to Bob
(requested and received from actions of an issuer and acquirer).
Included in the message sent by Trent are:
(i) An authorization block signed with Trent’s private key and en-

crypted with a one-time symmetric key kT , generated by Trent.
(ii) A digital envelope AE, created by Trent via enciphering kT

with eB , Bob’s public key-exchange key.
(iii) Some information for later payment capture, namely a dig-

ital envelope called a capture token, denoted by CT, not to
be opened by Bob, rather returned with Bob’s payment request
later.

(iv) Trent’s signature key certificate.

Upon receipt, Bob decrypts AE with dB , his private key-exchange key to
get kT which he uses to decrypt the authorization block. If the payment
is authorized, he can provide Alice with the goods and/or services.

In Diagram 6.5, dT is Trent’s private key-exchange key. All other acronyms
are as in the above protocol descriptions. We assume that Trent has verified all
certificates and signatures in the illustration as well.

Diagram 6.5 Trent’s Authorization/Response
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Diagram 6.6 Bob’s Verification
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In the event the transaction is declined, this is the end of the SET protocol.
However, if all is validated, then we proceed as follows.

� Payment Capture and Response

Once Alice’s order is completed, Bob requests payment from Trent.
� Protocol Messages

1. Capture Request Message: Bob generates, signs, and encrypts a message
block that contains the TID; the CT; his signature key; and his key-
exchange key certificates.

Upon receipt of the capture request, Trent decrypts and verifies that the
CT matches what he sent in part (4) of the Authorization Response Mes-
sage above. (If all is valid, Trent interacts with the issuer over a private
network to request payment to Bob’s bank account. Otherwise the pay-
ment is declined.)

2. Capture Response Message: Once the data is verified, Trent sends a
message block containing payment details for the transaction and includes
his signature-key certificate. Trent then forms a digital envelope and sends
it to Bob.

Upon receipt, Bob decrypts the envelope, verifies the message, and data,
then stores the message (for any future reconciliations with the acquirer).

The SET protocol is now complete. Our description was necessarily stripped
down since the original SET document, released in 1997 is nearly 1000 pages.
We have given all the necessary details to have a reasonable overview of the SET
scheme. If nothing else, the reader who has even a passing understanding of the
SET mechanisms, must be convinced of the security of this e-commerce scheme.
Since shopping on the Internet will almost certainly involve SET-enabled soft-
ware, the reader will now be convinced of the security of such transactions. We
now look at the scheme in detail from several perspectives pertaining to the key
features of SET.

� Analysis

Certificates and PKI: the secure PKI with a trusted CA guarantees that
the public keys are actually keys used by the legitimate entities to whom they
belong. This is an essential role of PKI. As we have seen, this was a verification
for both the key-exchange keys and the signature keys. Hence, the PKI provides
trust through the use of X.509V3 digital certificates.

Confidentiality: Alice’s account and payment information is secure as it
travels over a network. For instance, even Bob does not know Alice’s credit
card number, and Trent does not know the details of Alice’s order. This is
guaranteed by the mechanisms in the dual signature. Moreover, since kA is
not made available to Bob in her purchase request, Bob cannot read any of the
payment-related details.
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Integrity: The data sent by Alice to Bob is guaranteed not to be altered in
transit. RSA digital signatures (see page 181) are used and SHA-1 hash schemes
(see Chapter 7) are used to guarantee this.

Authentication: The use of not only the aforementioned certificates, but
also the use of RSA signatures ensures Bob that Alice is a legitimate card holder
of a legitimate account. Similarly, Alice can verify that Bob is a legitimate
merchant.

Issuer: We have kept the issuer in the background for the sake of simplicity
of presentation. The issuer is typically a bank or some other financial institution
that provides Alice with her card, such as a MasterCard or Visa. She interacts
with the issuer to open an account. Moreover, the ultimate responsibility for
the payment of all authorized transactions put on the card is the issuer. The
issuer must have certificates to be processed by a CA if they process any SET
messages. In this case, they receive them from the credit card organization, such
as Visa. Otherwise, the issuer may have the credit card organization process
certificates on their behalf, in which case they are not processing SET messages,
and do not require certificates.

Acquirer: We have also kept the acquirer in the background. This is a
financial institution that supports merchants such as Bob by providing the ser-
vice of processing payment of credit cards. Thus, the acquirer pays Bob, and
the issuer repays the acquirer. The acquirer must also have certificates that
can be processed by a CA. These certificates are obtained from the credit card
organization as above.

The Payment Gateway: We have put the task of all three of the issuer,
acquirer, and payment gateway on Trent’s shoulders, but in reality, Trent must
interface with the acquirer at some juncture, since Trent processes Bob’s pay-
ment messages which must, at some point go through the acquirer.

Certificate Status Inquiry: Again, for simplicity, we did not describe
some of the other transaction types in SET. In this type of inquiry either a CA
can send a message to Bob or Alice saying that more processing time is needed,
or Alice or Bob can send such a message to the CA to check the status of a
certificate request, for instance.

Purchase Inquiry: Alice can send this message to check the status of the
processing of her order, for instance.

Authorization Reversal: Bob can send this message to reverse an autho-
rization or part of it.

Capture Reversal: Bob may use this to correct errors in earlier capture
requests.

Credit or Credit Reversal: These types of messages may be used by Bob
to issue a credit or reverse a credit due to a previous error, for example.



Chapter 7

Message Authentication

The true test of a first-rate mind is the ability to hold two contradictory ideas
at the same time.

F. Scott Fitzgerald (1896–1940), American Novelist

7.1 Authentication Functions

Issues of authentication were discussed at various points previous to this
chapter, such as the presentation of Kerberos in Section 5.2 page 195; in Sec-
tion 5.7, page 220, in the presentation of SSL and issues surrounding it; in
Section 6.1, page 233, when we described authentication issues surrounding key
management; and in Section 6.3, page 243, when we delved into the details of
SET. We also looked at attacks on authenticity, such as the impersonation at-
tack presented on page 180, and methods for thwarting it. This impersonation
attack is essentially a man-in-the-middle attack, which we introduced in Foot-
note 3.7, page 134. This was in reference to authentication issues in the use of
the various modes of operation about which we learned in Section 3.3. Thus,
we are fairly well versed in authentication issues to date. Now we want to look
at authentication functions, such as MACs, which we briefly mentioned on page
136.

We are concerned in Chapter 7 with message authentication as opposed
merely to say, entity authentication, which we addressed on page 180 in the
discussion of digital signatures. A message authentication scheme is any algo-
rithm for ensuring that messages come from the legitimate source and have not
been altered. What is implicit in message authentication is the verification of
the message’s content; nonrepudiation by sender; origin; receipt; timing; and
sequence (of messages) if there is more than one.

As with protocol layers studied in Section 5.7, there are layers to authenti-
cation schemes, albeit in the latter, only two basic ones. At the bottom layer,
there must exist a function, which produces an authenticator, or value affixed
to a message as its means of being authenticated. (For instance, recall the Ker-
beros authenticator on page 197.) This bottom layer function is then used by

251
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the upper layer (authentication protocol) ensuring that the receiver can verify
the authenticity of the message.

Although there is no hierarchy written in stone as to the bottom layer func-
tions for authentication, the following is generally accepted by the cryptographic
community.

� Types of Authentication Functions

1. Hash functions, where a publically known cryptographic hash function is
the authenticator.

2. Message authentication codes (MAC)s, where a publicly known MAC of the
message coupled with a secret key, outputs a fixed-length value, which is
the authenticator.

3. Message encryption, wherein the ciphertext is the authenticator itself.

We are going to devote the balance of this section to the first of these, and
cover MACs in Section 7.2. Section 7.3 will be a description of the third and a
comparison of the three. The concluding Section 7.4 will deal with authentica-
tion applications.

� Hash functions

We had a brief introduction to hash functions and message digests on pages
170 and 171, where we learned that a (cryptographic) hash function is a one-
way function that is a computationally efficient function mapping bitstrings of
arbitrary length to bitstrings of fixed length. The hash value (or message digest)
is then affixed to the message by the sender, and the message is authenticated
by the receiver, who recomputes the message digest. As noted on page 171,
the message digest is a “fingerprint” of sorts, and this is the purpose of the
hash function: to authenticate the data by fingerprinting it. Moreover, as noted
on page 171, it is desirable for the cryptographic hash function to be strongly
collision resistant. The reason for this latter requirement is to guard against a
class of attacks for which we have prepared the reader on page 130, when we
discussed the meet-in-the-middle attack.

� The Birthday Attack

We are given a hash function H : S �→ T, with |T| = n and |S| > n, so there
is at least one collision. (If |S| ≥ 2n, there are at least n collisions. In fact, it can
be shown that when ∞ > |S| ≥ 2|T|, there exists a probabilistic algorithm that
finds a collision for h with probability bigger than 1/2 (see [159, Fact 9.33]).)
We now look at how to find such collisions. First, we describe the analogue of
the above that gives this attack its name.

The Birthday Paradox: Suppose there are n > 1 balls in a container
numbered from 1 to n inclusive. Also, let us assume that m > 1 balls are drawn
one at a time, listed, and replaced each time (where m < n). What is the
probability that one of the balls is drawn at least twice?
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Let Pj(n, m) be the probability that one ball is drawn at least j times. Then,
we are seeking

P2(n, m) = 1− P1(n, m).

To find P1(n, m), note that the probability that the second drawn ball is different
from the first is 1− 1/n, the probability that the third ball is different from the
first two is 1 − 2/n, and so the probability that the first three balls are all
different is (1 − 1/n)(1 − 2/n). Continuing in this fashion, we see that the
probability that all of the m balls drawn are different is,

P1(n, m) =
m−1∏
j=1

(
1− j

n

)
=

1
nm−1

m−1∏
j=1

(n− j) =

(n− 1)(n− 2) · · · (n−m + 1)
nm−1

.

Thus,

P2(n, m) = 1− (n− 1)(n− 2) · · · (n−m + 1)
nm−1

.

In particular, suppose we want to prove that in any room of 23 people, the
probability that at least two of them have the same birthday is greater than
50%. From the above this is a fact since

P2(365, 23) ≈ 0.5072972343.

This phenomenon is called the birthday paradox.
The birthday paradox is a special case of the occupancy problem, which is

given as follows. Suppose that a container has n balls numbered 1 through
n inclusive. Again assume that m balls are drawn one at a time, listed, and
replaced each time. Then the probability that exactly � of the m balls are
different for 1 ≤ � ≤ m is given by

1
�!

�∑
j=0

(−1)�−j

(
�

j

)
jmP1(n, m),

where
(

�
j

)
is the binomial coefficient (see Definition A.14 on page 473 and the

discussion following it, as well as Appendix E on probability theory.).
Now we return to the birthday attack that began this discussion. We initially

asked how we can find a collision. From the above, the probability that there
do not exist any collisions is

m−1∏
j=1

(1− j/n),

so
1− x ≈ e−x
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for small x values (such as ours). Hence, the probability of no collisions is

m−1∏
j=1

(1− j

n
) ≈

m−1∏
j=1

e−j/n = e−m(m−1)/(2n).

Therefore, the probability of at least one collision occurring is

pc ≈ 1− e−m(m−1)/(2n). (7.1)

Since
e−m(m−1)/(2n) ≈ 1− pc,

then
−m(m− 1)/(2n) ≈ ln(1− pc),

(where ln(x) is the natural logarithm, meaning the log to the base e, with ex

being the natural exponential function.) Hence,

m2 −m ≈ −2n ln(1− pc),

and so
m2 ≈ −2n ln(1− pc) ≈ 2n ln(1/(1− pc)),

since we can safely ignore the smaller factor of −m in an approximation, so

m ≈
√

2n ln(1/(1− pc)).

If pc = 1/2, then m ≈ 1.17
√

n. Clearly then, by hashing over little more than√
n random elements of S, we have a greater than 50% chance of finding a

collision. This is the birthday attack.
The birthday attack places a lower bound on the number of bits a hash

function should have in order to be secure. The reason is that the birthday
attack can find a collision in O(2k/2) hashings on an k-bit function. Thus, if
k = 64, then it is not secure against the birthday attack since only 232 hashings
are required.

The following illustration of the birthday attack was first presented by Yuval
in 1979 (see [297]), and we re-presented it in [170].

� Alice Cheats Bob Using the Birthday Attack

The hash function has 64 bits. Alice wants Bob to sign a contract that he
thinks will benefit him, and later she wants to “prove” that he signed a contract
that actually robs him of his life savings.

1. Alice prepares two contracts, one that is “good” for Bob, CG, and one, CB ,
which will sign away his savings.

(2) Alice makes very minor changes in each of CG and CB . Then she hashes
232 modified versions of CG and 232 modified versions of CB .
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(3) She compares the two sets of hash values until she finds a collision h(CG) =
h(CB) and recovers the corresponding preimages.

(4) Alice has Bob sign CG via the hash of its value.

(5) Later Alice substitutes CB for CG whose hash value is the same as that
signed by Bob, who has now lost all his money.

From the discussion preceding the Yuval attack above,we see that a birthday
attack requires an effort of only the order of 232. Thus, simple hash functions
based on a 64-bit message digest are insecure, so from a cryptographic perspec-
tive, they are not worth discussing. (As a counterpoint to the above contract
signing scam, we saw on page 193, how to make contract signing secure.)

Modern cryptography requires custom-built hash functions to meet current
standards for security. In 1990 (see [228]), Rivest developed a hash scheme,
called MD4, designed for software implementation on a 32-bit processor. How-
ever, very early after its inception, attacks on it proved it to be insecure under
modern cryptanalysis. MD4 was updated to MD5 in 1992 (see [229]), but in
1996 hash collisions of the underlying compression function proved it to be inse-
cure. In fact, the birthday attack can be used on MD5 to find a collision in about
264 iterations, which is quite insufficient for modern cryptosystems. In 1995, the
Secure Hash Algorithm (SHA-1) was developed for the NSA and standardized
by NIST (see [88]). SHA-1 employs a 160-bit hash function. In 2002, NIST
updated SHA-1 (see [89]) in what they called the Secure Hash Standard (SHS)
containing specifications for 256-, 384-, and 512-bit message digests, called (re-
spectively) SHA-256, SHA-384, and SHA-512. Naturally, these upgraded hash
standards are much slower than SHA-1, yet the increased security level makes
them excellent choices for modern cryptosystems.7.1 In terms of speed com-
bined with modern-day security requirements the SHA-256 is perhaps the best
choice, since the security level is 2128, based upon the above-established fact
that the birthday attack on a message digest of size 256 bits produces an effort
of about 2128 iterations of workload. Similarly, the SHA-1 scheme requires on
280 iterations, and some cryptographers feel that this is insufficient for modern
standards. Yet, from our perspective, it embodies the fundamentals of the SHA
algorithms, and so deserves to be studied in detail, since it provides a simple
method for describing the underlying mechanisms.

� SHA-1

Background Assumptions

The algorithm inputs messages of maximum bitlength 264 and outputs 160-
bit message digests. The input is divided into blocks of 512 bits.

7.1At the August 2004 CRYPTO meeting (see page 232), theoretical attacks against MD5
and the original SHA algorithm show that they are not as secure as originally believed. This
may have some consequences for the security of SHA-1 as well, since the attacks had partial
success in finding collisions for the latter. Thus, use of SHA-256 seems even more prudent.
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� Algorithm Steps

1. Padding: The input message, denoted by m, is padded so that its bitlength
� ≡ 448 (mod 512). If � is already 448 modulo 512, before padding, then
we still pad, in this case with 512 bits. The padded message is denoted
by M .

2. Appending: A block of 64 bits is appended to M .

3. Buffering: A 160-bit buffer is employed to hold the intermediate and
final outputs of the algorithm. We represent the buffer having five 32-
bit registers, labelled ABCDE. (The buffer is initialized with specific
hexadecimal values that we will not cite here for the sake of simplicity.)
We will denote the five initialization values by

(H1H2H3H4H5)→ (ABCDE).

4. Processing: A module consisting of four rounds of 20 steps each employs
three different primitive logic functions. We will, for the sake of simplicity,
not describe their individual specific functions, rather we will call them
f1, f2, and f3. Each of these function inputs three 32-bit data strings or
words and outputs 32-bit words. The notation is as follows.

We will assume that there is only one 512-bit block. The procedure can be
iterated to accommodate as many such blocks as necessary. M is divided
into sixteen 32-bit words, denoted by mj for j = 0, 1, . . . , 15. Then each
mj is put into temporary storage mj → Xj . Then we expand the sixteen
32-bit words into eighty 32-bit words as follows.

First, we need some notation. Let ⊕ be addition modulo 2, and let LSk

be a circular shift left of k places, (for instance, see page 120, where we
used a slightly different notation for the k = 2 case in our description of
S-DES). For j = 16, 17, . . . , 79, assign the following storage:

LS1(Xj−16 ⊕Xj−14 ⊕Xj−8 ⊕Xj−3)→ Xj .

5. Rounds: We need to employ four constants ci for i = 1, 2, 3, 4. (These
have a certain hexadecimal representation that we need not cite here,
again forthe sake of simplicity.) Then each round operates on (the al-
ready initialized) buffer’s so-called chaining variables ABCDE, of 160
bits segmented into five 32-bit words, by updating the contents of the
buffer in each step as follows, (where + denotes is addition modulo 232):

Round 1 : For j = 0, 1, . . . , 19, set,

(LS5A+ f1(B,C,D)+E +Xj + c1, A,LS30(B), C, D)→ (A, B, C, D, E).

Round 2 : For j = 20, 1, . . . , 39, set,

(LS5A+ f2(B,C,D)+E +Xj + c2, A,LS30(B), C, D)→ (A, B, C, D, E).
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Round 3 : For j = 40, 1, . . . , 59, set,

(LS5A+ f3(B,C,D)+E +Xj + c3, A,LS30(B), C, D)→ (A, B, C, D, E).

Round 4 : For j = 60, 1, . . . , 79, set,

(LS5A+ f2(B,C,D)+E +Xj + c4, A,LS30(B), C, D)→ (A, B, C, D, E).

6. After completion of the fourth round (or 80th step), we assign

(H1 + A, H2 + B,H3 + C, H4 + D, H5 + E)→ (A, B, C, D, E).

which is the output message digest of 160 bits.

One could simplify the rounds as a single set of iterations as follows.
For each i = 1, 2, 3, 4, set the following storage for each of the values:

j = 20(i− 1), 20(i− 1) + 1, . . . , 20(i− 1) + 19,

(LS5A + fi(B,C,D) + E + Xj + ci, A,LS30(B), C, D)
−−−−→ (A, B, C, D, E),

(7.2)

where
f4 = f2.

Diagram 7.1 illustrates a single step in a single round, which is actually one
iteration of (7.2). Diagram 7.2 gives the complete processing of a 512-bit block
(assuming step 4 above is completed).

Diagram 7.1 SHA-1 Single Step

+ ←−−−− +

↙ ↑ ↑ ↖

↓ LS5 fi ↑

Xj → + ↑ ↗ ↑ ↖ ↑


 A B C D E

ci → +



↓
LS30



















A B C D E

Step j in Round i



258 7. Message Authentication

Diagram 7.2 SHA-1 Processing of 512-Bit Block

H1 H2 H3 H4 H5

Xj: 0 ≤ j ≤ 19 → Round 1: Steps j = 0, 1, . . . , 19 for i = 1



A B C D E


Xj: 20 ≤ j ≤ 39 → Round 2: Steps j = 20, 21, . . . , 39 for i = 2



A B C D E

Xj: 40 ≤ j ≤ 59 → Round 3: Steps j = 40, 41, . . . , 59 for i = 3



A B C D E


Xj: 60 ≤ j ≤ 79 → Round 4: Steps j = 60, 61, . . . , 79 for i = 4



A B C D E



+�



+�



+�



+�



+�

H1 H2 H3 H4 H5



160-bit Message Digest
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We conclude this section with a brief overview of a hash algorithm developed
under the European Race Integrity Primitives Evaluation (RIPE) project by a
research group that had successfully cryptanalyzed MD4 and MD5 (see [41] and
[72]). The following version is the evolution of earlier attempts, so represents
the best upgrade, to date, of the group’s efforts. We give only a brief description
since the details are similar to SHA-1, which we have described in detail and
use for comparison.

� RIPEMD-160 Message Digest Algorithm
The algorithm takes binary inputs of arbitrary length and outputs 160-bit

message digests. The input is separated into 512-bit blocks.
� Algorithm Steps

1. Padding: The input m is padded so that its bitlength is congruent to 448
modulo 512.

2. Appending: A block of 64 bits is appended to m.

3. Buffering: A 160-bit buffer is used to house intermediate and final outputs,
and is separated into five 32-bit registers.

4. Processing: This is the primary mechanism of the algorithm, consisting
of ten rounds of sixteen steps each of processing. The ten rounds are
separated into two parallel sequences of five rounds each. The ten rounds
have the same structure with five different primitive functions and additive
constants, but the order of application differs (to which we will return
in the analysis after the algorithm description). Each round inputs the
current 512-bit block being processed and updates the contents of the
buffer. The output of the fifth round (80th step) is (independently) added
to the chaining variable input to the first round (compare to the same idea
used in SHA-1; see Diagram 7.2 on page 258).

Analysis and Comparison: RIPEMD-160 uses two parallel sequences of
five rounds each to increase the complexity inherent in finding collisions be-
tween rounds, since this could be the starting point for finding collisions of the
compression function (notably a problem the designers found in cryptanalyzing
MD4 and MD5). Since the two sequences are virtually the same in logic de-
sign, there were differences introduced: the additive constants differ; the order
of applications of the five primitive functions is reversed; and the processing of
32-bit blocks is different.

In comparison with SHA-1, RIPEMD-160 is equally resistant to weak col-
lision attacks. Moreover, the parallel processing in RIPEMD-160 makes it
stronger against cryptanalysis than SHA-1. In terms of speed, SHA-1 has 80
(four rounds of 20) steps, whereas RIPEMD-160 has 160 (five paired rounds of
sixteen) steps. Thus, SHA-1 is slightly faster than RIPEMD-160, but again it
is a trade-off between security and efficiency. There are also MACs based upon
RIPEMD-160 (see [42]), but we will not discuss them in the next section where
a wealth of MAC information is otherwise available.
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7.2 Message Authentication Codes

Success is to be measured not so much by the position that one has reached
in life as by the obstacles that one has overcome while trying to succeed.

Booker T. Washington (1856–1915), Educator

In Section 7.1 we looked at the types of authentication functions of which
the MAC is the second that we study. A MAC consists of a secret key, a (for
authentication), shared by two communicating entities, such as Alice and Bob,
and a MAC function h, so that given any message m, a MAC is formed via
ha(m). Then the MAC together with m is sent, by say, Alice to Bob, who
computes the MAC on m, via h and a, and compares it to what Alice sent. If
they match, Bob can assume the message is authentic.

We have already studied hash functions in Section 7.1 and although hash
functions are typically considered to be non-keyed, there are types that a are
keyed. In particular, MACs, whose particular purpose is message authentica-
tion, are often called keyed hash functions. Thus, the message digest (see page
170) from a MAC is a keyed message digest (message together with key sent),
whereas a nonkeyed message digest (message alone sent), is called a Modifica-
tion Detection Code (MDC), sometimes called a Message Integrity Code (MIC).
These are the two types of message digests possible. Recall, however, that a
message digest is a digital fingerprint, so saying that a MAC is a keyed hash
function does not mean that the message digest is signed (private key enci-
phered, in the sense of a digital signature; see page 180), rather it means that
the message digest is formed with a secret key.

Diagram 7.3 Generic MAC

a−−−−→

m
Alice

h

m−−−−−→
ha(m)

↗

m
Bob

ha(m)
↘

ha(m)
↑

Bob
Compares

↓

ha(m)

In the above scenario, there is no confidentiality since m is sent in the clear.
Eve can intercept the message m and modify it to m′, say. However, given that
Eve does not know the secret key a, she cannot compute ha(m′), so Bob receives
m′ and ha(m). When he computes ha(m′) it will not equal ha(m), so he discards
the message m′ as invalid. Yet, to ensure confidentiality of m, one technique is
to encipher (m, ha(m)) with an SKC using a shared secret enciphering key k to
get Ek(m, ha(m)).
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Diagram 7.4 MAC with Confidentiality

k−−−−→ E Ek(m,ha(m))−−−−−−−−−−−→ D k←−−−−

a−−−−→

m
�ha(m)

m
Alice

h

m

ha(m)

↗

m
Bob

ha(m)
↘

ha(m)
↑

Bob
Compares

↓

ha(m)

Eve can also intercept the message and send it later in order to deceive (an
instance of a replay attack; see Footnote 5.1, page 197). However, this attack can
be thwarted by numbering the messages m1, m2, m3, . . ., so that Bob accepts
message mj if and only if j > k, where mk is the last message he accepted.

On page 136, we talked about the use of CBC and CFB modes of operation
for using block ciphers as MACs. One of the most popular of these MACs is
the CBC-MAC used with DES.

� CBC-MAC

Background Assumptions: Let m be the n-bit input block, and let E
denote the DES cipher, with secret enciphering key k.

� Algorithm Steps

1. Blocking and Padding: Separate m into 64-bit blocks m1, m2, m3, . . .,
mn where, if necessary, mn is padded to the right with zeros to form the
last 64-bit block.

2. CBC Processing: Block Bj for j = 1, 2, . . . , n is computed as follows,
where ⊕ denotes addition modulo 2:

Bj = Ek(mj ⊕Bj−1),

where B0 denotes the 64-bit block of zeros.

3. Final Triple Enciphering: Using a secret key k′ �= k, compute

Ek(E−1
k′ (Bn)) = Bn′ .

4. The Completed MAC: Bn′ is the CBC-MAC.

� Analysis: The triple encryption in step 3 of the CBC-MAC ensures
that brute-force attacks are made much more difficult, and it helps to thwart
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message forgery. CBC-MACs have the advantage of speed of operation since
only addition modulo 2 and DES encryption are applied to the blocks, and this
also makes implementation much simpler. In some implementations of the CBC-
MAC, an initialization vector different from B0 is used, but this typically does
not strengthen the algorithm. The triple encryption in step 3 does strengthen it,
although in some descriptions of CBC-MAC, this is considered to be an optional
step. We deem it to be necessary.

On pages 136 and 137, we discussed the importance of the CTR mode over
the other modes discussed in Section 3.3. In 2002, D. Whiting, R. Housley, and
N. Ferguson developed a combination of CTR mode with CBC-MAC, called
CCM, which was proposed as RFC7.2 3610 to NIST in June of that year (see
[226]). CCM is a generic authenticated encryption block cipher mode, designed
for use with 128-bit block ciphers, such as AES.

The CBC-MAC based on DES, discussed above, is FIPS-113 (NIST 1985),
and ANSI standard X9.17, sometimes called the Data Authentication Algorithm
(DAA). The algorithm is illustrated below, where

✄

✂

�

✁
+ denotes addition modulo

2 in Diagram 7.5.

Diagram 7.5 CBC-MAC with DES

B0 →

m1

✄

✂

�

✁
+ →

k

E B1−−−−→

m2

✄

✂

�

✁
+ →

k

E B2−−−−→

m3

✄

✂

�

✁
+ →

k

E B3−−−−→ · · ·

Bn−1−−−−→

mn

✄

✂

�

✁
+ →

k

E Bn−−−−→

k′

E−1 →

k

E

B′n−−−−→ CBC-MAC

� Cryptanalysis: There are two brute-force attacks against MACs, either
with the secret key as the target, or the MAC itself. By its very nature, a
MAC employs a many-to-one function, so if messages are not encrypted, then
a cryptanalyst has access to plaintext messages and their associated MACs.
Suppose that the keylength � is larger than the MAC bitsize n. Then if Eve
knows m and ha(m), then she can try ha(mi) for all i until she gets ha(m) =
ha(mi). Such a match will occur since Eve produces 2� MACs, but 2n < 2� so
2�−n values will produce a match.

Given the above, we now formulate properties that a MAC function should
possess to be secure. First, it should be computationally infeasible for Eve to
find an m′ such that ha(m′) = ha(m), given that she has m and ha(m). Second,
given m and m′, the probability that ha(m) = ha(m′) should be 2−n where n
is the number of bits in the MAC. This second property thwarts brute-force

7.2Documents called RFC’s, Requests For Comments, are the official working notes of the
Internet research and development community. See http://www.rfc-editor.org/rfcxx00.html.
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attacks based upon chosen plaintext (see Footnote 3.4 on page 127). Third, it
should be computationally infeasible to compute a valid MAC pair (m′, ha(m′))
from a known MAC pair (m, ha(m)), for any new input m �= m′. This property
thwarts a cryptanalyst’s attempts to create a valid MAC for a given message
m′, called existential forgery, whereas if the secret key itself is obtained, Eve
can manufacture a MAC for any selected plaintext, called selective forgery.

The security of MACs employing secret-key block ciphers, such as DES or
AES, depends upon the security of the underlying block cipher and the secret
key. In particular, the new AES-XCBC-MAC-96 algorithm is a variant of the
basic CBC-MAC using AES with a minimum 128-bit key, although variable
key lengths are possible. The AES-XCBC-MAC-96 algorithm and its use with
IPsec (which we will study in Section 8.3), released in 2003, is document RFC
3566 (see Footnote 7.2 and http://www.faqs.org/rfcs/rfc3566.html). For any
CBC-MAC variant, the major computational effort is expended in computing
the underlying block cipher, and for AES-XCBC-MAC-96, there is a minimal
number of AES operations used, resulting in performance roughly equivalent to
the above-described CBC-MAC. The use of a MAC with underlying block cipher
such as AES, is suggested since we achieve a desirable level of security. As noted
in the aforementioned RFC document: “The security provided by AES-XCBC-
MAC-96 is based upon the strength of AES. At the time of this writing there
are no practical cryptographic attacks against AES or AES-XCBC-MAC-96.”

Ideally, the most desirable MAC function is one that maps randomly from
bitstrings of arbitrary length to bitstring of length n. Hence, it seems most
reasonable to seek a hash function as the MAC function to do the job. Moreover,
hash functions, such as SHA-1 (see page 255), typically execute much faster in
software implementations than block ciphers, such as DES. The most successful
of the developments in the direction of such a MAC is the HMAC, which is
a new standard as a keyed-hash MAC, which is FIPS-198, updated April 8,
2002 (see http://www.faqs.org/rfcs/rfc2104.html). HMAC is a generalization of
Internet RFC 2104, and ANSI X9.71, and it can be used with any iterative7.3

hash function, in combination with a shared secret key. The security of HMAC
depends on the properties of the underlying hash function.

� HMAC Algorithm

Background Assumptions: We assume the HMAC has been prepared
as a module wherein the hash function H, (such as SHA-256, for instance, to
ensure optimal security, or SHA-1, if speed is a concern, even MD5 if speed is
more of a concern than rigorous security) is embedded as a separate module.
In this fashion, we have a prepared HMAC that may be installed where needed
with no further alterations. Moreover, if H has to be replaced, say, for security
reasons, then one merely removes the H-module and replaces it with another

7.3Iterative hash functions, such as SHA-1, split the input into a sequence of fixed blocks
m1, m2, . . . , mn with padding to fill in the nth block, typically of blocklength 512 bits. Then
the blocks are processed in ascending order, using a compression function and a fixed size
buffer, or intermediate state, again as with SHA-1, for instance, the final value being the
output of the hash function.
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one.
The message M input to the HMAC is assumed to be separated into blocks

Mj of bitlength � each for 0 ≤ j ≤ �− 1. There are also two padding constants
(which we will not explicitly specify here), of bitlength � each, denoted by p1

and p2. The secret key is denoted by k, which we will assume to have bitlength
�. (Typically, k will have to be padded, but we assume for the sake of simplicity,
that this has already been done.) Last, the output of the HMAC is of bitlength
n ≤ �.

� Algorithm Steps

1. Compute k′ = k ⊕ p1, where ⊕ is addition modulo 2.

2. Form the concatenation M ′ = (M, k′).

3. Compute H ′ = H(M ′), and pad to bitlength �.

4. Compute k′′ = k ⊕ p2.

5. Form the concatenation M ′′ = (k′′, H ′).

6. Compute H ′′ = H(M ′′), as the HMAC output.

The above algorithm steps may be succinctly stated as a single equation:

H(k ⊕ p2, H(M, k ⊕ p1)).

This is illustrated as follows, where
✄

✂

�

✁
+ denotes addition modulo 2 in Dia-

gram 7.6.

Diagram 7.6 HMAC

−−−−→
k

p1



✄

✂

�

✁
+ −−−−→

k′

M


H −−−−→

H′
Pad to
� bits

k→
✄

✂

�

✁
+ ← p2
k′′

→ H −−−−→
H′′

HMAC

� Analysis: Step 1 flips one half of the bits of k, whereas step 4 flips the
other half. Thus, once H compresses k′ and k′′, we have essentially produced
two pseudorandomly generated keys from the original key k. The designers of
HMAC employed this feature with an eye to both offline and online attacks (the
underlying assumption being that offline attacks are easier to mount). Use of
the key k in step 4 is used to thwart offline attacks.

Typically HMAC is used with MD5 or SHA-1, but as noted earlier, if one
desires the very best possible long-term security, SHA-256 is the premium choice
since HMAC is already efficient and easy to implement, so the time cost is offset
by the security profit.
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7.3 Encryption Functions

Minds are like parachutes. They only function when they are open.
James Dewar (1842–1923), Scottish physicist

We have seen the first two types of functions that may be employed to
produce a message authenticator in Sections 7.1 and 7.2. Now we turn to
the last of these to close the chapter. Since we have SKCs and PKCs, we
have different methods for using message encryption for authentication. With
an SKC, E, and a secret key, k is sufficient to provide confidentiality and (a
degree of) authentication (provided the secret key is kept secure). It should
be noted, however, that although Mallory may not know k, he may still alter
message content. Yet, not knowing k, he does not know how to alter bits in
the ciphertext to produce desired changes in the plaintext. Thus, although the
cryptographic community is aware that the mere fact of encryption does not
guarantee message integrity, the maintenance of a secure secret key can ensure
that tampering is detected. A mechanism for ensuring both confidentiality and
integrity along with the encryption process is to use an MDC (see page 260) in
a fashion that is essentially equivalent to the use of a MAC depicted in Diagram
7.4 on page 261.

Diagram 7.7 SKC Encryption: Confidentiality & Some
Authentication

Alice
m →

k


E Ek(m)−−−−−→ Bob →

k



D = E−1 m−−−−→

With PKC, straight encryption provides confidentiality, but may not provide
authentication as we saw on page 180, since Mallory can mount an imperson-
ation attack. In order to provide authentication with a PKC, Alice must use
her private key, dA, to encipher a message to Bob, who uses Alice’s public key,
eA, to decrypt. Hence, in this fashion, Alice is essentially providing a “digital
signature”, although as we saw in Section 4.3, this is not exactly how formal
digital signatures are formed. Yet, by using her private key, to which only she
has access, she is virtually signing the message.

Diagram 7.8 PKC Encryption: Authentication and Signature

Alice
m →


dA

E −−−−−−→
EdA

(m) Bob →

eA



D −−−−−−−−−−−−−−−→

DeA
(EdA

(m)) = m
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In the above, it is clear that there is no confidentiality since anyone can get
Alice’s public key to decipher the cryptogram. To provide both authenticity
and confidentiality, Alice can first “sign” her message with her private key, then
use Bob’s public key to ensure confidentiality.

Diagram 7.9 PKC Encryption: Authentication, Confidentiality,
and Signature

Alice
m →


dA

E −−−−−−→
EdA

(m)


eB

E −−−−−−−−−−−→
EeB

(EdA
)(m) Bob →

dB



D

EdB
(EeB

(EdA
))(m) = EdA

(m)



DeA
(EdA

(m)) = m←−−−−−−−−−−−−−−− D

eA

�

The main disadvantage to the last scheme is that an already slow PKC
process must be executed four rather than two times, so should be used only
when the highest possible security is needed.

� Comparisons and Summary

MAC and enciphering functions are very closely related as we noted above
in one instance, when we discussed use of an MDC with encryption on page 265.
However, a MAC function need not have an inverse, since a MAC is typically
a many-to-one function. Also, PKC encryption can provide a virtual digital
signature, but a MAC cannot because, with a keyed MAC, both Alice and Bob
share the same secret key.

As for cryptanalysis, a hash function is only as secure as the bitlength of the
message digest. For instance, SHA-1 outputs 160-bit message digests, and SHA-
256 outputs 256-bit message digests, the latter being a very secure modern-day
option. Cryptanalyzing a MAC with a brute-force attack is more problematic
than that for a hash function since Mallory must know message-MAC pairs to
do so, as we have seen in Section 7.2. Effectively, if the (keyed) MAC outputs
n-bit message digests and the key has bitlength �, then the effort required to
launch a brute-force attack on the MAC is M = min(2�, 2n). A similar comment
may be voiced for SKC enciphering algorithms. Hence, for an optimally secure
MAC today, we would want to see M ≥ 256 bits.

One issue we have not yet addressed is the order of encryption and au-
thentication in general. Should we encipher first, then encrypt, or should we
authenticate first, then encipher?

If we encipher first, this has the advantage that if Bob receives a message
that is invalid, he discovers this when he attempts to authenticate it. Thus,
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he can discard the illegitimate message without having to decipher it, a time-
saver, especially if a lot of fake messages are in the traffic. Hence, this option
is more efficient. If Alice authenticates first, say, with a MAC for instance,
then when Alice sends Bob a message, Mallory only gets to see the ciphertext
and enciphered MAC. Therefore, Mallory will find it more difficult to launch an
attack than if Alice enciphered first since the plaintext and original MAC value
are disguised.

So which do we perform first? The question boils down to whether we should
fear an active or a passive attack. If we encipher first, Mallory will attack the
authentication function first and be able to launch an active attack if successful,
where data can be modified. If we authenticate first, Mallory gets to attack the
encryption function first and read data, a passive attack. More damage is done
in the former than in the latter. Of course, Mallory may well be unsuccessful if
a truly strong scheme is used. Hence, as it often does, the issue comes down to
sacrificing security for efficiency or sacrificing efficiency for security.7.4

We conclude this section with a summary of the key elements of our study
of authentication functions.

� Summary of Encryption, MACs, and Hash Functions

1. MACs and Hash Functions: a is a shared secret authentication key, E
is an SKC, k is a shared secret key, and h is a hash function.

(i)
Alice (m,ha(m))−−−−−−−−−→ Bob

provides authentication
(ii)

Alice Ek(m,ha(m))−−−−−−−−−−−→ Bob

provides authentication and confidentiality

2. Encryption functions: dA is Alice’s public PKC key and eB is Bob’s
public PKC key.

(i)
Alice Ek(m)−−−−−→ Bob

provides confidentiality and some authentication

(ii)
Alice EdA

(m)−−−−−−→ Bob

provides authentication and signature

(iii)
Alice EeB

(EdA
)(m)−−−−−−−−−−−→ Bob

provides authentication and signature via dA, and confidentiality via eB

7.4However, either method is insecure if improperly implemented (see [142], for instance).



268 7. Message Authentication

7.4 Authentication Applications

There are no such things as applied sciences, only applications of science.
Louis Pasteur (1822–1895), French chemist and bacteriologist

On page 238, we discussed the ISO/ITU-T X.509v3 public-key certificates,
which are part of the X.500 series, discussed on page 240. In this section, we look
at the X.509 authentication protocols, employing public-key transport, which
uses the signing of encrypted keys (see [126]). The X.509 standard recommends
the use of RSA as a PKC, and the digital signature scheme (which could be
RSA or another DSS) is assumed to use a hash function. The X.509 standard
is important since it is used in many of the schemes we have discussed and will
study: iPSEC (see Section 8.3 on page 294); SET (see Section 6.3 on page 243);
S/MIME (see Section 8.2 on page 287); and SSL (see Section 5.7), to mention
a few.

On page 238, we presented the twelve possible fields in a given X.509 cer-
tificate, which the reader may want to review before proceeding. Furthermore,
since it is most pertinent to this section, the reader must be familiar with Section
6.2 on page 237, concerning PKI issues.

� X.509 Strong Authentication Protocols

Background Assumptions: Alice and Bob have PKC pairs for encryption
and signatures, (eA, dA) and (eB , dB), respectively. Moreover, Alice and Bob are
assumed (prior to the protocol) to have verified each other’s respective public
keys, by obtaining those public keys from other certificates C(A) and C(B),
from the X.500 directory.

� Strong One-Way Authentication

Protocol Steps
1. Alice obtains a timestamp tA, generates a nonce rA, obtains a secret key

SKC k, and she may (optionally) include a message m. She computes
MA = (tA, rA, C(B), m, eB(k)) and sends dA(MA) to Bob.

2. Bob uses eA to get MA, then he checks that the timestamp tA has not
expired, and that C(B) is his valid certificate. Then he uses his private
key, dB , to get k.

The one-way authentication ensures that Alice is authenticated since only
she has dA. It verifies, via C(B), that the message was indeed intended for Bob.
The integrity and originality of m are guaranteed via rA, since this nonce is a
sequential component, which Bob can check for uniqueness within the validity
time frame dictated by tA. This prevents replay and impersonation attacks.
In other words, Bob can store the nonce until it expires and reject any new
messages that arrive with the same nonce. In any case, Bob now has k as the
shared secret SKC key.
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Diagram 7.10 X.509 Strong One-Way Authentication

m←−−−− dA(m)

optional
�eA

Alice −−−−−−−−−−−−−−−−−−−−−−→
dA(tA, rA,C(B),m, eB(k))

Bob checks:
tA, rA,C(B)

dB



Shared Secret Key k←−−−− eB(k)

� Strong Two-Way Authentication
The one-way protocol is executed, then the following steps.

3. Bob obtains a new timestamp tB , generates a nonce rB , and (optionally)
may send a message m′. He obtains a secret SKC key k′ which he encrypts
with eA. Then he computes, MB = (tB , rB , C(A), m′, eA(k′)) and sends
dB(MB) to Alice.

4. Alice now executes analogous actions to those Bob took in step 2 of the
one-way protocol. If all is valid, and the option has been exercised, she
decrypts k′ with her private key dA. Now she can store k′ as another
shared key for future use.

Two-way authentication adds to the outcome of the one-way authentication
by authenticating Bob, since he is the only one with dB . Since C(A) is valid. As
in the one-way authentication, the integrity and originality of m′ is validated.

Digaram 7.11 is a simplified version of the strong two-way authentication
(with the actions in Diagram 7.10 by Bob understood as well as the correspond-
ing actions by Alice).

Diagram 7.11 X.509 Strong Two-Way Authentication (Simplified)

Alice
dA(tA, rA,C(B),m, eB(k))−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−
dB(tB, rB,C(A),m′, eA(k′)) Bob

� Strong Three-Way Authentication
The two-way protocol is executed, then the following step.
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5. Alice sends Bob the message dA(rB).

Three-way authentication is used (without timestamps) as a vehicle to be
employed when synchronized clocks are not available (see the analysis of Ker-
beros on page 197). Since both Alice and Bob have exchanged nonces, both of
them can check the nonce received to detect replay attacks. Recall that on page
199, we discussed a similar three-pass protocol by Shamir. Diagram 7.12 adds
step 5 to Diagram 7.11.

Diagram 7.12 X.509 Strong Three-Way Authentication (Simplified)

Alice
dA(tA, rA,C(B),m, eB(k))−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−
dB(tB, rB,C(A),m′, eA(k′)) Bob

↘ dA(rB)−−−−−−−−−−−−−−−−−−−−→ ↗

� Authentication and the Internet
The most common use of X.509 certificates, and the associated strong au-

thentication protocols, is for Internet transactions. (We are now talking about
both message and entity authentication.) Typically how this works is that a
server, Victor, say, needs to authenticate a user, Alice, say, as follows.

1. Alice sends her X.509 certificate, containing eA, to Victor.

2. Victor sends a challenge, in the form of a nonce, nV , back to Alice’s browser.

3. Alice’s browser encrypts nV with dA, and sends dA(nV ) back to Victor.

4. If Victor can recover nV using her public key eA, then he is convinced
that Alice is in possession of dA, and is indeed the person to whom the
certificate was issued.

The reason that this X.509 certificate-based authentication is called “strong”
is that no password or other secret information is sent over the network. Since
the private keys are secure, and since a nonce is used, Mallory cannot gather
any data that can be used to recover dA or to launch a replay attack. All of this,
of course, is predicated upon the absolute and unequivocal security of private
keys. In this fashion, the X.509 standard for strong authentication is a method
superior to simple password-based protocols.

The most popular browsers on the Internet are Netscape Communicator,
Microsoft Internet Explorer, and Opera, all of which support the X.509 strong
authentication protocols. Server support is enabled in most Web servers, as long
as there is an embedded module with SSL/TLS (see Section 5.7). Embedded
X.509 certificate support is available, for instance, in Microsoft Outlook and
Outlook Express, Netscape Communicator, and Mozilla. In Chapter 8, we will
learn about e-mail security in depth.



Chapter 8

Electronic Mail and
Internet Security

The new electronic interdependence recreates the world in the image of a
global village.

Marshall McLuhan (1911–1980), Canadian communications scholar.
— from The Gutenberg Galaxy (1962)

8.1 Pretty Good Privacy (PGP)

Phil Zimmermann (Figure 8.1) was born in 1954 and raised in Florida. His
interest in codes began at an early age. For instance, in the fourth grade, he
was deciphering some minor codes broadcast on children’s television shows. He
began reading about codes, and steganography, even creating his own invisible
ink out of lemon juice, as well as some of his own original ciphers. This interest
continued through his youth, so that by the time he entered Florida Atlantic
University in 1972, he turned to computers as a tool for the cryptographic skills
that he, independently, had honed over the years.

By the time he was ready to graduate in 1977, he came across Martin Gar-
diner’s article in Scientific American [100] (see page 175), about RSA. This
merely increased his interest in learning more about cryptography. He even
considered implementing RSA on a computer. However, he felt that he had
neither the computing machinery available to him, nor the mathematical back-
ground to make it work, so he abandoned the idea. This would eventually
change.

By 1980, he was already married and raising a family. He moved to New
Zealand, largely for political reasons involving his disenchantment with Amer-
ican politics, especially as it pertained to privacy issues at the time. Yet, he
found little there (in the sense of a lack of any computer business infrastructure),
so after a couple of years he returned home.

271
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With some friends, Zimmermann created a company called Metamor-
phic Systems. He received a phone call at the company one day, per-
haps one that changed the direction of his thinking for good, from a man
named Charlie Merritt, who had accomplished what Zimmermann failed to
do years ago: the implementation of the RSA PKC on a microcomputer.

Figure 8.1: Phil Zimmer-
mann.

Courtesy of Phil Zimmer-
mann.

NSA had effectively shut down Merritt’s
company by threatening action if they did not
stop exporting their software program outside
the United States. Since this was the heart of
their enterprise, they had to find another way,
calling companies such as Metamorphic Systems
to see if their software might be incorporated in
the company’s hardware for export. The idea
excited Zimmermann, and it inspired him to be-
gin writing his own program for e-mail encryp-
tion using PKC.

It took a while for the ideas to develop and
the relationship to evolve, but by November of
1986, Merritt and Zimmermann had a project
for using RSA. Nevertheless, RSA Data Security
Inc. had patents on the protocols they wanted
to use. Attempts were made to strike a deal
with the patent holders, but nothing substantive
came out of those discussions.

Zimmermann, undeterred, continued to work on his ideas to produce a ci-
pher without the explicit use of RSA protocols. By 1990, he had developed a
communications program, which he called Pretty Good Privacy, (PGP) a name
derived from a fictitious entity on a radio show, Ralph’s Pretty Good Grocery.

By 1991, Zimmermann became concerned that some impending legislation
by the government might make it illegal for him to launch PGP 1.0, so he
turned to the Internet. He uploaded copies of PGP 1.0 to the Internet for
anyone to use, that is, freeware. His intention was not to profit, but to make
encryption available to the masses for privacy considerations. Almost overnight,
the program became a hit, and Zimmermann was delighted, but version 1.0 had
its failings. He plugged the holes and killed the bugs in 1.0 to produce a vastly
superior version 2.0. One particularly important improvement was the addition
of certificates. Yet as we saw in Section 6.2, the proper handling of certificates
requires a CA, but Zimmermann had no access to a PKI for this independently-
generated program, so he had to come up with a new idea. That idea was to
make the users of PGP, themselves, the CA. To do this, he had the idea of
signed keys, as a symbol of “trust”, for the communicating parties, something
he developed into what he called a web of trust, (which we discussed on pages
238 and 239). This web of trust became the users’ self-enforcing CA.

In September of 1992, Zimmermann posted PGP 2.0 on the Internet as
freeware, and as the light of 1992 faded into memory, Zimmermann was becom-
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ing a very famous man indeed. However, fame sometimes engenders costs. In
1993, he was put under criminal investigation, since the government charged
that PGP was available to criminals, and they were also concerned about
export regulations. The exportation of strong cryptography programs, they
maintained, was deemed to be equivalent to illegally exporting munitions!

Figure 8.2: Phil Zimmermann, after the
charges.

Helen Davis, Denver Post, courtesy of
Phil Zimmermann, whose photo was
taken right after the Justice Department
dropped their case against him in 1996.
(He said he was “feeling pretty good”.)

Fortunately, perhaps because the
government finally realized the fu-
tility of this war with the Internet
as the battleground, they officially
dropped the investigation on Jan-
uary 11, 1996.

Zimmermann launched a new
company called, Pretty Good Pri-
vacy Inc. to market the software
to commercial enterprises, but due
to his lack of business acumen,
it was going nowhere fast, so he
turned over the reigns to some
business types. However, the com-
pany eventually went to the brink
of bankruptcy before it was sold to
Network Associates Inc., (NAI) an
established computer firm, where
Zimmermann remained as its figu-
rative head, as well as special ad-
visor, and consultant. It is worth
ending this anecdote with an ironic note about Zimmermann and the com-
mercial version of PGP. During a party held by NAI at a conference in 2000,
Zimmermann staged a demonstration of launching a commercial version of his
product over a computer to a market abroad, an act for which he was, years
earlier, put under criminal investigation. The new millennium has arrived, and
privacy is no longer in the hands of private enterprise or governments.

Zimmermann has received numerous awards for his achievements. Among
them are: the Chrysler Award for Innovation in Design in 1995 (see
http://www.chrysler.com/design/design influences/design awards/1995/ ); the
1995 Pioneer award from the Electronic Frontier Foundation; the Nor-
bert Wiener Award from Computer Professionals for Social Responsibil-
ity, for promoting the responsible use of technology, in 1996; a Life-
time Achievement Award from Secure Computing magazine in 1998;
the Louis Brandeis Award from Privacy International in 1999; and
in 2001, he was inducted into the CRN Industry Hall of Fame (see
http://www.crn.com/sections/special/hof/industryHOF Main.asp). It is cer-
tain that there will be many more such recognitions of his achievements in
the future.

PGP has enjoyed remarkable success and is now widely used over the globe
as a mechanism for secure e-mail transmission and file storage. It is time to see
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the details of the algorithm in action.

� Pretty Good Privacy (PGP)
PGP embodies five protocols for the secure transmission of e-mail messages.

� PGP Protocols
1. Authentication.

2. Compression.

3. Confidentiality.

4. E-mail compatibility.

5. Segmentation.

Now we look at each of these in detail. We assume that Alice is communi-
cating with Bob.

� Authentication (Digital Signature)
Protocol Steps

1. Alice creates a message, m, to be used for the purpose of authenticating
herself to Bob.

2. SHA-1 (see page 255) is used on m to create a 160-bit message digest, h(m).

3. Alice enciphers h(m) with her private RSA key dA. She sends DA =
(dA(h(m)),m) to Bob. On the network, DA passes through a ZIP com-
pression operation, denoted by Z. (We will learn more about ZIP later.)

4. After decompression, denoted by Z−1, Bob uses Alice’s public RSA key eA

to decipher and recover h(m).

5. Bob applies h to the value of m sent by Alice and compares the result to
the value of h(m) he deciphered in step 4.

Diagram 8.1 PGP Authentication

h −−−−−−−−→
h(m)

m
�

h(m) dA←−−−−�dA(h(m))

Alice
m −−−−→

m
(dA(h(m)),m)

= DA
DA−−−−→ Z DA−−−−→ Z−1

h ←−−−−−−−−−−−−−−−−−−
m

�
DA

←−−−−
eA

↓

h(m) ← Compare →
↓

h(m)
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� Confidentiality
Several mechanisms using SKC may be used for ensuring PGP confidential-

ity. Among them is Triple DES (3DES) (see page 131), and this is the one we
assume will be used in what follows, denoted by E herein. Other options include
IDEA (see [159]), and CAST-128 (see [2] and [3]). Moreover, we will assume
that 64-bit CFB mode is also used in what follows (see Section 3.3). We will
use RSA as our PKC, but ElGamal is also an option (see Section 4.4), as well
as Diffie-Hellman/DSS (see pages 166 and 180).

Protocol Steps
Alice wants to send an enciphered message m to Bob.

1. Alice generates a 128-bit nonce k to be used as a one-time-only (session) key
for this message, and uses it (after compression of m using Z) via 3DES
to get Ek(Z(m)).

2. Alice enciphers k with Bob’s public RSA key eB to get eB(k) and sends
(eB(k), Ek(Z(m))) to Bob.

3. Bob deciphers k with his private RSA key dB and recovers m with k (after
decompression with Z−1).

Diagram 8.2 PGP Confidentiality (Without Authentication)

k k ←−−−−
eB

Alice
m −−−−→

m Z −−−−→

�
E −−−−−−−−→

Ek(Z(m))

�
(eB(k),Ek(Z(m)))

dB−−−−→ eB(k) eB(k)←−−−−
k
�

m←−−−− Z−1 ←−−−− E−1
k

←−−−−−−−−−−
Ek(Z(m))

�
eB(k)
Bob

Ek(Z(m))

� Authentication and Confidentiality

This is illustrated in Diagram 8.3 on page 276, with the amalgamation of
the previous two protocols as follows.

Steps 1–3 of the authentication protocol are executed, followed by steps
1 and 2 of the confidentiality protocol (acting on Z(DA) rather than Z(m)).
Then Bob recovers k with his private RSA key dB , and uses k to recover the
compressed version of DA via E. Then steps 4 and 5 of the authentication
protocol are executed.
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Diagram 8.3 PGP Authentication and Confidentiality

h −−−−−−−−−−−−−−−−−−−→
h(m)

m
�

h(m) dA←−−−−�dA(h(m))

Alice
m −−−−−−−−−−−−→

m
(dA(h(m)),m)

= DA
−−−−→
DA

Z

eB(k)
✞

✝

�

✆Bob Ek(Z(DA))
← (eB(k),Ek(Z(DA)) ←−−−−−−−−−

Ek(Z(DA))

�
E

�eB(k)

�Ek(Z(DA))

�
k ←−−−−

eB

�
k

eB(k) k−−−−→ E−1
k −−−−→ Z−1 −−−−→

eA

�
DA = (dA(h(m)),m)

dB

�

m
�
h�

�h(m)
�

h(m) h(m)

↖ ↗

Compare

� Compression Analysis

For the purposes of efficient e-mail transmission and file storage, PGP has a
built-in default mechanism that compresses m after signing but before encipher-
ing. As with our description of the pros and cons of the order of enciphering
versus authentication on pages 266 and 267, the order of signing vs. compression
deserves some elucidation.

If Alice were to compressm, forming Z(m), then sign it to form, dA(Z(m)), it
would be necessary to either store Z(m) for the purposes of later verification by
Bob, or once Bob obtains Z(m) via eA, then it would be necessary to form Z(m)
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from m for comparison. Both of the latter options entail additional workload
over merely storing (dA(m),m). Furthermore, Z is a randomized operation in
the sense that the same input may produce different compressed outputs at
different times, say, Z(m) = x at time t1, and Z(m) = y at time t2, with x �= y.
However, any version can decompress to get the correct version of compression
by any other version; in other words,

Z−1(x) = Z−1(y) = m.

Yet, forming, say, dA(m) at time t1 would restrict the PGP scheme to the
version of Z applied at time t1, since we would have to verify Alice’s application
of that version of the compression at time t1, which is an unacceptable shackle
to put on the security mechanism. Last, speaking of security, enciphering is
applied after compression for increased cryptographic security since Z(m) has
less redundancy that does m, so cryptanalytic attacks are made much tougher
on Mallory.

ZIP compression is a freeware/shareware package that is perhaps the most
frequently used compression mechanism for virtually any computing platform.
It is based upon an algorithm, called LZ77 (see [299]), developed in 1977. Since
a version of LZ77 is used in all versions of ZIP, we will describe the basic features
that make up the algorithm. The source data is input to the algorithm as 9-bit
words8.1 (a binary 1 followed by 8-bit ASCII8.2 representation of the word) to be
processed from left to right. The algorithm uses two buffers, called the sliding-
history buffer and the look-forward buffer . The former contains W ∈ N already
processed words, and the latter contains W ∈ N to-be-processed words. The
buffers interact as follows. The algorithm tries to match n ≥ 2 words from the
initial part of the look-ahead buffer to a bitstring in the sliding-history buffer.
If no match is found, the first word in the look-ahead buffer is output as a 9-bit
word, and it is also input to the sliding-history buffer, which discards its last
9-bit word. If a match is found; the longest match bitlength, �, is calculated;
the matched word is output as a three-tuple consisting of the bitlength of the
word, its indicator value, and a pointer to the prior word of the same value;
the �-bit word is input to the sliding-history buffer; and the last �-bit word is
discarded from that buffer.

Decompression of the compressed data in the algorithm uses the pointers,
bitlength, and value fields to replace the compressed strings with the original
text.

8.1Typically, the term word refers to a fixed-size integer of given bitlength in the main
memory of a given computer. Usually, the bitlengths are one of 8, 16, 32, 64, or 128. A word
can then be represented by its binary representation as a single word in the computer, such
as a 16-bit word having a representation in computer memory as one of the values between 0
and 65535 = 216 − 1.

8.2ASCII is the acronym for American Standard Code for Information Interchange. Each
symbol is represented as a 7-bit word, and allows for 128 possible symbols to be so represented.
Typically, a bit is appended to the 7-bit word as either a parity-check bit or an error-check
bit to see if an error occurred in transmission. The mechanism for ASCII conversion is radix-
64 transformation, wherein binary blocks of three bytes each are converted into four ASCII
symbols, each of which is appended with an error check in the form of a cyclic redundancy
check ; see pages 541 and 542. Note that the term “radix” is a synonym for “base”.
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Diagram 8.4 LZ77 Compression

Discard←−−−−−−−−−
Last Word

Sliding-History
Buffer

Input←−−−−−−−−−−
First Word

Source Data
�

Look-Ahead
Buffer

Output

�
Compressed

Data

� E-Mail Compatibility

Typically, PGP sends a stream of bytes of data. However, there are certain
e-mail networks allowing only ASCII data to be transmitted. PGP satisfies
this requirement by transforming the stream of bytes into a stream of print-
able ASCII characters, using an encoding technique called radix 64, which we
describe in Appendix D; see page 541. This inflates the message by 33%, but
the aforementioned compression stage offsets this message expansion. In fact,
a standard analysis of the PGP mechanism shows that, even with the message
expansion, the net compression is approximately one-third.

From a security viewpoint, the aforementioned conversion to ASCII provides
a camouflage of the data since it blindly converts to ASCII (even in the case
that the original data is already ASCII text). Therefore, it will be unreadable to
Eve, even if the message is not enciphered. Optionally, PGP may be formatted
so that only the signature part is converted to ASCII, which permits Bob to
read the message without conversion, (albeit, PGP should still be used to verify
Alice’s signature).

In summary, once h(m) is formed, the concatenation, (m,h(m)), is signed
by Alice to get dA(m,h(m)) = DA, which is compressed via Z. Then she
enciphers via k using E to get, Ek(Z(DA)), then eB(k) is appended to get
(eB(k), Ek(Z(DA)), which is converted to ASCII. Upon receipt, Bob reconverts
to binary; recovers k via dB , which he uses to get Z(DA). This is passed through
Z−1, after which he uses eA to get (m,h(m)). He applies h to m; and compares
his h(m) to the version sent by Alice.

� Segmentation

Anyone who has tried to send a very large e-mail attachment knows that
certain e-mail sites will “bounce back” the message stating that it exceeds the
maximum message length allowable (which typically over the Internet is 5 · 104

bytes). Hence, segmentation, the splitting up of the message into smaller pieces
or segments, is necessary. PGP meets this requirement by segmenting a message
into manageable, acceptable blocks for easy transmission. Segmentation is done
after all of the above processing is completed.
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Now that we have described the basics of the fundamental protocols under-
lying PGP, we look in detail at the various aspects of the message transfer and
reassembly, starting with the components of the message itself.

� Message Components
There are three basic components in a message m to be sent by Alice.

1. Session Key: This component has two facets. First there is Bob’s identifier
IeB

for his public RSA key eB , defined by IeB
≡ eB (mod 264), namely,

the least significant 64 bits of eB . The identifier IeB
is the most efficient

means to transfer the key verifier to Bob that does not involve the use
of too much space or too much workload to do the verifying. (Note that
this identifier is essentially a probabilistic identifier in the sense that it is
possible for two different public keys to have the same least significant 64
bits, but the probability is very low given the bitlength involved.)

The second facet of the session key component is the session key k, itself.

2. Signature: This component has four facets. There is the timestamp tA,
which corresponds to the creation time of Alice’s signature. Then there
is the identifier IeA

for Alice’s public key, via eA ≡ IeA
(mod 264) (see the

description of this device, presented for Bob’s key, in part 1 above). Third,
there is the message digest, h(tA,m), which is formed (with tA appended
to thwart replay attacks). Last, there are the two leading bytes L1 and
L2, of h(tA,m), which allows Bob to ensure that the correct public key,
eA, was used to decipher the message for authentication. He does this
by comparing the plaintext copy of these bytes with the first two bytes
of the deciphered message digest. (Note that in the previous discussion
and diagrams, we did not mention, explicitly, the timestamp in order to
simplify the presentation. Thus, we are assuming, tacitly, that it is present
and handled in the aforementioned fashion.)

3. Message: This is the component consisting of the message data, m, itself,
accompanied by a timestamp, tm, specifying the creation time of m, as
well as a filename Fm.

Both the message and signature components are ZIP compressed, then en-
ciphered with the session key. The session component together with the com-
pressed components are then converted to ASCII.

In Diagram 8.5, we are assuming that the (otherwise optional) operations of:
ensuring confidentiality by forming eB(k); ensuring authentication by forming
dA(m,h(tA,m)); ZIP compression of the signature and message components is
carried out; and ASCII conversion is executed on all components. Each of the
symbols in the diagram are defined in the discussion preceding the diagram.
Each double box contains a set of operations to be carried out, and the nesting
of the boxes dictates the order of the operations from inner to outer.
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Diagram 8.5 PGP Message Components
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The next topic is a fundamental feature of PGP and is a mechanism for an
individual user to communicate with entities it knows, securely, and efficiently.

From the above, it can be seen that the key identities, IeA
and IeB

, for Alice
and Bob, respectively, provide authentication and confidentiality. Bob’s public
and private keys are stored securely at his computer along with public keys of
others, such as Alice, with whom he communicates. PGP uses data structures to
store them, called public key rings and private key rings. We now describe each
of these in turn, and delineate the schemes by which private keys are securely
maintained.

� Key Rings

The private key ring is stored only on Alice’s computer, which stores the
RSA key pairs owned by her, and is accessible only to Alice. In the private key
ring, each entry for an entity has the following fields (but typically she will only
have one entry, namely, her own public/private key pair).

� Private Key Ring Individual Field Entry

1. Timestamp: tA, the creation time of (eA, dA).

2. Key ID: IeA
(mod 264).
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3. Public Key: eA.

4. Private Key: dA (enciphered using CAST-128, 3DES, or IDEA). The
actual key dA is not stored on Alice’s computer, only the encrypted ver-
sion. Here is the actual mechanism by which Alice accesses the private
key, when needed, in order to achieve maximum security.

Private Key Storage and Access Steps

(i) Alice chooses a passphrase that she will use for enciphering private
keys. (It is paramount that she keep this secure, never write it down,
or disclose it to anyone.)

(ii) When the PGP program generates a new RSA key pair, such as
(eA, dA), it will prompt Alice for her passphrase, P , and using SHA-
1, a 160-bit hash h(P ) is formed, and the passphrase is discarded.

(iii) The program enciphers dA, using an SKC, E (which is one of
3DES, IDEA, or CAST-128), with h(P ) as the key, namely, to form
Eh(P )(dA), and discards h(P ). Then Eh(P )(dA) is stored on Alice’s
private key ring.

(iv) Whenever Alice wants to access dA, she must provide the passphrase.
The PGP program provides her with Eh(P )(dA), generates h(P ), and
deciphers dA using E with h(P ), namely, via

E−1
h(P )(Eh(P )(dA)) = dA.

5. User ID: IDA, which could be, for instance: Alice@PGPprivateRing.com.

� Public Key Ring Individual Entry
This ring is used to store the public keys of other users, such as Bob, with

whom Alice communicates. The following are the fields in Bob’s entry, which
may be viewed as a public-key certificate (see Section 6.2 on PKI). Items 4, 6,
and 8 are under a framework, called a trust-flag-byte, the contents of which are
described individually in each field entry, and refer to the web-of-trust model
described on pages 238 and 239.

1. Timestamp: tB , which is the creation time of the entry.

2. Key ID: IeB
(mod 264).

3. Public Key: eB .

4. Owner Trust: trust − flag − byte, which is the trust, assigned by Alice,
that indicates the degree to which eB can be trusted to sign other public-
key certificates. When a new public key is to be added to the public-key
ring, the PGP program prompts Alice to assign a level of trust to the key
owner, Bob in this case. When the level of trust is complete trust, then the
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public key is also put on Alice’s private-key ring. In the case where Bob’s
key appears on Alice’s private-key ring, there is a buckstop bit, which is
set to 1 in that instance.

5. User ID: IDB , which is Bob’s identifier, such as Bob@PGPpublicRing.ca.

6. Key legitimacy: trust − flag − byte, which is the level of trust that
the PGP program (which computes this field), imparts to the binding
of Bob’s user ID to eB . The means by which this is determined by the
PGP program is on a weighted basis, whereby the PGP program bases
the weighting upon the signature trust fields present in item 8. There is
also a warnonly bit, which is set to 1 if Alice only wants to be warned that
eB is only used for enciphering, but is not fully validated.

7. Signature: When a new public key, Bob’s in this case, is added, one or
more signatures could be appended to it, and more may be added later.

8. Signature Trust: trust − flag − byte, which is the degree of trust that
Alice assigns Bob to certify public keys, so is essentially a cached version of
field 4 (owner trust), in the following sense. Upon addition of a signature,
the PGP program looks through the public-key ring to determine if Bob’s
signature is among the public-key owners therein. If so, the trust value
given in field 4 is assigned, and if not, an unknown value is assigned to
this field. This field is periodically updated by the PGP program, which
scans the public-key ring for all signatures owned by Bob and updates this
field to be the same as the owner trust field.

Now that we have the notion of PGP rings, we can give a more detailed and
informed description of PGP message generation, processing, and reception.

� PGP Message Processing Protocol Via Key Rings

This protocol description, and accompanying diagrams on pages 284 and
285, depict the PGP message generation, and processing upon reception using
key rings. Since we fully described the mechanism for ASCII conversion and
ZIP compression above, we eliminate those stages for the sake of simplicity.
Moreover, we are assuming that both signing and encryption are required.

Protocol Steps

We assume, as above, that Alice is sending a message to Bob.

1. The PGP program obtains Alice’s encrypted private RSA key dA from her
private-key ring using IDA (for instance, Alice@PGPprivateRing.com) as
an index for so doing.

2. The PGP program requests Alice’s keyphrase in order to provide her with
this enciphered version, which she provides and dA is obtained as in part
(iv) of private-key storage and access on page 281.
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3. Alice generates the message m, and the digital signature dA(h(m)) is formed
as in the authentication protocol described on page 274. However, the
public-key identifier, IeA

, her public-key identifier from the signature com-
ponent of the message (see part 2 on page 279), must be appended to the
signature since Bob must know which public key is intended for use given
that Alice could have many private keys.

4. The PGP program uses a random-number generator to create a session key
k, as above, and forms Ek(m).

5. The PGP program gets eB , Bob’s public key from Alice’s public-key ring
using IDB (for example, BOB@PGPpublicRing.ca) as an index.

6. Then the PGP program forms eB(m), and (eB(k), Ek(m)) is sent to Bob.

7. Upon reception, the PGP program obtains Bob’s encrypted private key, dB ,
from his own private key ring using IeB

, from the session key component
of the message (see part 1 on page 279), as an index.

8. The PGP program requests Bob’s passphrase, which he delivers, and de-
crypts to get the session key, k, which is used to recover the message
(dA(h(m)),m).

9. The PGP program gets eA from Bob’s public key ring, using IeA
from the

signature component of the message (see part 2 on page 279), as an index.
This is used to recover the h(m) sent by Alice.

10. The PGP program computes h(m) from Alice’s sent message m, and
compares it to the h(m), sent by Alice for authentication.

In step 4 above, we mentioned the PGP random-number generation (PG-
PRNG). We will not describe the algorithm here since it is based upon the
ANSI X9.17 algorithm, which is described in detail in Appendix B (see page
506). However, before we turn to diagrams illustrating the details of the PGP
message scheme in action, there are some features of the PGPRNG that deserve
to be elucidated. PGPRNG generates random numbers from the content and
timing of keystrokes. This provides an intricate and formidable scheme for gen-
erating both random and pseudorandom numbers. The PGP mechanism uses
the random-number generation for initial seed inputs to PRNGs (see page 151);
an alternative input during the actual operation of a PRNG; and the generation
of RSA key pairs. The PGPRNG generates pseudorandom numbers for session
key generation (see page 275); and to generate an IV for CFB mode (see pages
135 and 275). The PGPRNG employs a 256-byte buffer of random bits in the
following fashion. When the PGPRNG anticipates a keystroke, it records the
time in 4-byte configuration, then it waits. When it receives the keystroke,
it records the time the key was pressed and the byte value of the keystroke.
This information is used to generate a key, and this key is used to encipher the
current value of the random-bit buffer.



284 8. Electronic Mail and Internet Security

Diagram 8.6 PGP Message Generation and Encryption Via Rings
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Diagram 8.7 PGP Message Reception, Decryption, and
Authentication
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� Analysis and Summary

PGP utilizes a package of algorithms, in a general-purpose application, which
is operating system and machine independent, embodying only a few simple
operations. It is freeware for individuals and of moderate cost to commercial
enterprises who enjoy vendor support. Moreover, the scheme is independent of
government control (although it has become Internet standard track RFC3156,
MIME security with OpenPGP, which we will study in the following section).

Figure 8.3: Phil Zimmermann in Red Square.

From Computerworld Russia.

The trust model
used by PGP does
not include a PKI
specification, but
its web-of-trust
approach (see
page 238) does
provide a conve-
nient trust-use
mechanism for the
purpose of linking
trust with public
keys, as depicted
by our discussion
of public and
private-key rings
on pages 280–
285). This is a
particularly clever
and innovative
means of dealing
with one of the
principle weak-
nesses of PKC,
namely, the pro-
tection of public
keys from being
compromised.

In conclusion,
PGP embodies an
interwoven collec-
tion of protocols
(including public-
key management) in an efficient, yet secure manner to ensure authentication
and confidentiality of e-mail services, as well as file storage.
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8.2 S/MIME and PGP

Pictures are for entertainment, messages should be sent by Western Union
Sam Goldwyn (born Samuel Goldfish) (1882–1974),

American film producer

A quarter of a century ago, Internet e-mail involved little more then elemen-
tary ASCII message exchange, typically among researchers based in universities
or government centers. For these clients, security was not much of an issue.
Today, e-mail is used by tens of millions of people worldwide for sending a
cornucopia of digital information including not only text-based data, but also
sophisticated graphics, movies, music, and much more. A substantial amount
of this traffic requires security, and much of this has been provided by a scheme
called Secure Multipart Internet Mail Extension (S/MIME), the initial version of
which was developed by a private consortium of vendors. This was an evolution
of the original MIME e-mail scheme, developed by IETF, which had no security
attached to it. The latest version in this evolution is S/MIMEV3, or S/MIME,
version 3, which was made an IETF standard in July 1999. S/MIMEV3 is
described in [216]–[220], which contain the following parts: (RFC2630), cryp-
tographic message syntax; (RFC2631), Diffie-Hellman key-exchange method;
(RFC2632), certificate handling; (RFC2633), signature/encryption protocols;
and (RFC2634), some enhanced security service extensions: signed receipts; se-
curity labels; secure mailing lists; and signing certificates. S/MIMEV3 includes
PKI attributes such as CRLs, and X.500 certificates used to bind an entity’s
identification and public key for the secure operation of S/MIME and other
PKI-enabled functions. Indeed, S/MIME uses PKI to employ mechanisms for
authenticating S/MIME users, to provide digital signatures, ensure confiden-
tiality, nonrepudiation, and more.

Not only has S/MIME been proposed for providing e-mail security services,
but also for its use with PGP. There are two proposed standards, OpenPGP
and PGP/MIME, both of which are based on PGP, and the latter of which
was developed by individuals, some of whom now form PGP Inc. In 1997, the
OpenPGP Working Group was formed in IETF to define a standard. OpenPGP
is now an IETF proposed standard RFC2440. It appears clear at this point
in time that S/MIME will become the industry standard for commerce, while
PGP will prevail as the choice for individuals seeking security in their e-mail
transactions.

Section 8.1 looked at PGP in depth, and we saw that the scheme provides for
mechanisms involving the signing and encryption of data. The same is true of
S/MIME. We now look at enhancements in functionality built into S/MIMEV3.

� S/MIME Functionality

We assume that Alice is sending a message to Bob.

1. Enveloped Data: This function provides for SKC encryption, with a
symmetric key k, say, of S/MIME data, D, to form k(D), followed by
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enciphering of k with Bob’s public key eB to form eB(k). Then eB(k),
k(D), identifying data, and specifiers for the cryptographic algorithms
being used are sent to Bob.

The various cryptographic algorithms that MUST8.3 be used by S/MIME
are contained in the following cryptographic suites, or sets of cryptographic
algorithms.

[CS1]: RSA for digital signatures, with RSA key size a minimum of
1024 bits being a MUST (see page 181) and SHA-1 for hashing (see
page 255); RSA for key transport; 3DES (see page 131) for content
encryption, and at least two independent keys MUST be supported
using CBC mode (see page 134), called DES EDES3 CBC.

[CS2]: DSA (see page 183) for digital signatures, with DSA key size of
1024 bits being a MUST, with SHA-1; RSA for key transport; and
3DES for content encryption.

In addition to the above, the following cryptographic algorithms SHOULD
be supported for implementation.

[CS3] RSA for digital signatures with SHA-1 for hashing, RSA for key
transport, and AES (see Section 3.5) for content encryption.

[CS4] DSA for digital signatures with SHA-1 for hashing, Diffie-Hellman
(see page 166) for key agreement, and 3DES for content encryption.

[CS5] DSA for digital signatures, SHA-256 (see page 255) for hashing,
Diffie-Hellman for key agreement, and AES for content encryption.

2. Signed Data: This function renders a data integrity resource. First, a
message digest is formed, h(m), then encrypted with Alice’s private key
to get dA(h(m)), which is radix-64-encoded, the latter being called transfer
encoding. This means that the digital equipment being used encodes the
data in base-64 to enable the binary data to be transferred, unaltered,
through a variety of systems. (This is essential since, for instance, if
an 8-bit message is sent through an e-mail portal, which is, say, a 7-
bit device, then it could strip the message of important symbols, and any
digitally signed message that is altered or stripped of characters is rejected
as invalid.) Once so encoded, only S/MIME-enabled users can read the
signed data.

3. Clear-Signed Data: This is a function allowing non-S/MIME-enabled
users to view the message content, but not verify the signature. This is

8.3The terms “MUST”, “SHOULD”, and “MAY” are precisely defined in [204]. Essentially
a “MUST” means that what is referenced is an absolute requirement of the S/MIME protocol,
and must be implemented in order to be in compliance with the specification. “SHOULD”
means that the referenced feature may be ignored for sound reasons, but it is recommended
that the feature be implemented. “MAY”, sometimes replaced by the adjective ”OPTIONAL”,
means that an item is truly optional.
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accomplished via the digital signature only being base-64 encoded. This,
therefore, ensures the same data integrity as part 2, but allows for more
flexibility in the “read-only” format.

4. Signed and Encrypted Data: This is a nesting function allowing for
both confidentiality and integrity via either the signing of encrypted data,
or the enciphering of signed data.

There are also recommendations for key sizes depending on the cryptographic
suite used.

� Public Key Sizes

1. If the implementation of S/MIME is employing cryptographic suite CS3,
then it SHOULD also support RSA key sizes greater than 1024 bits.

2. If the S/MIME implementation uses cryptographic suite CS5, then it
SHOULD support Diffie-Hellman key sizes greater than 1024 bits.

3. If the S/MIME implementation supports key sizes greater than 1024
bits when employing either DSA or RSA for digital signatures, then it
SHOULD also support SHA-256.

Deciding upon a cryptographic suite to use may depend on the capabilities
of the intended receiver. S/MIME, therefore, makes decision criteria available
to the sender for making such a determination.

� S/MIME Decision Criteria for Selecting Cryptographic Suites
We assume Alice is sending Bob an S/MIME message.

1. Known Capabilities: If Alice has knowledge of Bob’s cryptographic ca-
pabilities from some previous correspondence, then she should choose the
item on Bob’s list that most closely corresponds to the most preferred
S/MIME capability.

2. Unknown Capabilities: If Alice has no knowledge of Bob’s cryptographic
capabilities, but has received at least one message from him in the past,
then she should use the algorithm employed by Bob for sending him the
message.

3. Unknown Capabilities and Unknown S/MIME Version: If Alice
has neither any knowledge of Bob’s cryptographic capabilities, nor has
she had any previous correspondence with him, she should use 3DES,
which is required in cryptographic suites CS1–CS2.

� S/MIME Messages
S/MIME messages embody cryptographic message syntax objects as defined

in [216] and MIME bodies. In order to process an S/MIME message, one must
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first prepare what is called a MIME entity, which may be a subpart of a message
or the whole message, including all its subparts. (A MIME message8.4 consists
of: (1) one of five header fields, which provide information about the body of the
message; and (2) a variety of content formats, supporting multimedia e-mail.)

Once the MIME entity is created, it is converted to canonical form, which
is a format, suitable to the content type, standardized for use between various
systems. Then the appropriate transfer encoding is applied to the message
content. Then the MIME entity is sent to security services, where it is enveloped,
signed, or both.

� S/MIME Content Types

1. Enveloped-Only Data: The S/MIME content type, called enveloped
data, consists of enciphered content of any kind, together with encrypted
content-enciphering keys for one or more recipients. For each such re-
cipient, a digital envelope is manufactured. This envelope contains the
enciphered content itself, together with an attendant encrypted content-
enciphering key. This guarantees confidentiality of the message while in
transit. The methodology for creating enveloped-content data is given in
the following steps.

We will assume that there is one recipient, Bob, for simplicity, but there
may be numerous recipients for whom each of these steps must be carried
out.

[a] Choose an SKC (3DES, for instance), and generate a pseudorandom
content-enciphering key k.

[b] Encipher k with Bob’s public key eB , to get eB(k).

[c] Create a block of data for Bob consisting of eB(k), an identifier, C(B),
for Bob’s X.509V3 certificate, and an identifier of the algorithm used
to encrypt the session key, k, say IRSA, for instance.

[d] Encipher the message m, with k to get Ek(m).

[e] Form ED = (eB(k), C(B), IRSA, Ek(m)), the enveloped data, which
is base-64 encoded to produce the enveloped data value.

When Bob receives the message, he strips off the base-64 encoding, uses
dB to get k, which is used to recover m.

Enveloped-only data in S/MIME provides secrecy without authentication.

2. Signed-Only Data: Although it is possible to have more than one signer,
we will assume that there is only Alice, for the sake of simplicity. There are
also two methods for signing S/MIME messages: (1) SignedData-MIME
with signed-only data (but this is readable only by S/MIME-enabled

8.4MIME message specifications are provided in RFC 2045–2049; see [198]–[202].
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users); (2) multipart signed, which is also called clear signing (and this
is viewable by all users).

SignedData MIME: The following steps provide the means for con-
structing a SignedData MIME entity. Again, we assume there is only
Alice doing the signing of a given message m.

[i] Select a message digest algorithm, h, such as SHA-1.

[ii] Hash m, to get h(m).

[iii] Encrypt the message digest with Alice’s private key to form
dA(h(m)).

[iv] Create a message block for Alice, consisting of: an identifier of her
public-key certificate, IeA

; her X.509V3 certificate identifier C(A); an
identifier of the hash algorithm being used, ISHA−1, say; an identifier
of the algorithm used to encipher h(m), IRSA, say; m itself; and the
encrypted message digest. This produces the SignedData MIME,

SDM = (IeA
, C(A), ISHA−1, IRSA,m, dA(h(m))).

[v] Then SDM is base-64 encoded to produce the SignedData MIME
value.

Upon reception, Bob, strips off the base-64 encoding, then uses eA to get
h(m). Then he independently computes h(m) from m and compares this
with the deciphered value of h(m) to verify Alice’s signature.

Clear Signing: This structure allows Alice to communicate with Bob
if he is not an S/MIME-enabled user. The body of the multipart/signed
MIME is comprised of two parts, the first of which can be of any MIME
type, is left to be broadcast in the clear. The second part is actually a
special case of the SignedData MIME type, called a detached signature,
wherein the plaintext of the message is omitted.

Here are the basic steps in producing a clear signed S/MIME entity:

[A] The message m is signed with Alice’s private key to form dA(m).

[B] She forms a data block consisting of

CSM = (IeA
, C(A), IRSA, dA(m)).

[C] Then CSM is base-64 encoded to form CSM64 and the two-part
message (m,CSM64) is sent to Bob.

Bob receives the message, strips the base-64 encoding from the second
part of the message, CSM64, to get CSM , uses Alice’s public key eA to
recover m and compares it with the message m sent in the clear in the
first part of the message.

Signed-only data in S/MIME provides authentication without secrecy.



292 8. Electronic Mail and Internet Security

There is a means in S/MIME to provide both authentication and secrecy.

� S/MIME Message Authentication and Secrecy

This involves the nesting of protocols. In other words, Alice nests the
enveloped-only data with the signed-only data, so that either she signs the
message first or envelopes it first. The pros and cons of enciphering first versus
authentication first were discussed on pages 266 and 267.

Diagram 8.8 Enveloped-Only S/MIME Message

MIME

Body k −−−−−−−−−−−−−→ eB(k) ←−−−−eB

m

�
Convert to

Canonical Form c(m)−−−−→

�
E −−−−−−−→

Ek(c(m))

C(B)
� eB(k)

�
�IRSA

(Ek(c(m)), eB(k),
C(B), IRSA) = ED

OUTPUT ←−−−−

ED
�

Base−64
Encode

In Diagram 8.9, for the sake of simplicity of presentation, we do not explicitly
give the conversion to canonical form, but assume this has tacitly been done.

Diagram 8.9 Signed-Only S/MIME Message
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In Diagrams 8.10 and 8.11, which conclude the discussions for this section, we
illustrate both clear signing and the combination of enveloping and signing with
S/MIME. We have not discussed the actual certificate processing with S/MIME
since this is essentially a facet of the PKI structures discussed in Section 6.2, to
which we refer the reader for a reminder of this mechanism.

Diagram 8.10 Clear Signed S/MIME Message
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Diagram 8.11 Signed and Enveloped S/MIME Message

ALICE m−−−−→ signs m SDM−−−−→ Envelopes SDM → OUTPUT

———————OR———————
ALICE m−−−−→ Envelopes m ED−−−−→ signs ED → OUTPUT

In the next section, we look at IP-level security since there are security
issues that cross the protocol layers (see Section 5.7). Such applications-specific
security schemes such as PGP and S/MIME, for example, do not address issues
where a particular network might want to restrict ingress and egress of data to
and from its site. We will see that IPSec (initially mentioned on page 137 in
connection with CTR mode), provides security at the network layer, that layer
between the bottom physical layer and the next layer up, the transport layer.
Recall that we already discussed SSL in depth in Section 5.7, which deals with
security at the transport layer. Thus, the next section deals with yet another
aspect of protocol level security for our Internet activities, such as remote logins,
file transfer, WWW access, as well as e-mail and more.
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8.3 � IPSec

Knowledge is of two kinds. we know a subject ourselves, or we know where
we can find information upon it.

Samuel Johnson 8.5 (1709–1784)
— from Life of Samuel Johnson (1791), 7 April 1775, by James Boswell8.6

� What IS IPSec?

Internet Protocol Security (IPSec), is a foundation of open standards for
establishing end-to-end security in network architecture. The IETF developed
standards for IPSec under which it ensures cryptographically enforced authen-
ticity, confidentiality, and integrity of data transfer over a public IP network.
Perhaps the most important attribute of IPSec is that it provides security to all
traffic at the IP level, including those distributed applications mentioned at the
end of the previous section on page 293.

IPSec is a very complex mechanism and is still evolving. It is not as preva-
lent as SSl/TLS (studied in Section 5.7), but is more secure, as we shall learn in
this section. IPSec’s complexity has drawn criticism from some cryptographers,
but even they agree that IPSec is the best there is for secure Internet commu-
nications, at this point in time. Succinctly, an IPSec-enabled computer is one
that can authenticate any data packet it receives and encipher any data packet
it sends.

The majority of IPSec security measures are provided by the use of two
traffic security protocols, called the Authentication Header (AH), and the En-
capsulating Security Payload (ESP), although (optionally) through the use of
Internet Key Exchange (IKE), for exchanging keys and negotiating security.
(All of this will be described in detail later in this section.) AH provides only
authentication, meaning verification of the origin and integrity of the message
sent, according to IPSec documentation. ESP, on the other hand, provides both
confidentiality and integrity, albeit AH ensures that more of the message is au-
thenticated. IPSec does not specify the cryptographic suites to be used, since
its security protocols are designed to be cryptographic algorithm-independent.
However, there is a default suite of cryptographic algorithms for use with AH
and ESP if required.

� Why Use IPSec?

Everyone from corporations to individuals are increasingly seeking more se-
curity for their communications. For business organizations, leasing lines dedi-
cated to their companies provides the security, but the cost can be prohibitive,
and is relatively inflexible when compared to the Internet. Thus, an increasingly
more common choice is being exercised, namely, the Virtual Private Network

8.5See page 180.
8.6Boswell (1740–1795) was a Scottish lawyer, who was Johnson’s biographer.
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(VPN), based upon IPSec, for secure Internet data transmissions. A descrip-
tion of a simple VPN is as follows. If Alice works for company A and wishes
to communicate with Bob who works for company B, both behind their respec-
tive security gateways, then her gateway automatically negotiates security with
his gateway. In this case, all IPSec processing is done behind these respective
gateways so no adversary can determine anything other than the fact that the
gates are communicating. Below, we will describe the details of such setups.

Remote logins for workers in large companies, as well as individuals away
from home, is becoming commonplace. To do so securely is also becoming a
necessary part of this fact. Whether it is for an individual’s online banking while
on vacation, or a company employee who needs to access sensitive corporate
files while at a business meeting away from the workplace, Internet security is
becoming a daily fact of life.

An advantage for end users having IPSec-security-enabled software is that
they can make local calls to an Internet Service Provider (ISP), and acquire
access to a corporate network, for instance. For employees of this corporation,
this reduces access costs when travelling or commuting. Moreover, when these
employees are at their workstations, they can achieve secure communications
with other corporate entities with whom they do business. Even when the
network used by employees has its own built-in security mechanism, IPSec com-
plements and intensifies that security. Moreover, unlike SSL/TLS, studied in
Section 5.7, the choice of cryptographic algorithm to be used, can be negotiated
in secret. With SSL/TLS, the negotiations are done in plaintext. Also, with
SSL/TLS, applications, such as e-mail, require that such cryptographic services
be requested, whereas IPSec-enabled computers automatically protect e-mail,
Web browsing, file transfers, and generally any data communications between
itself and any other IPSec-enabled computer. Even if the other computer is not
IPSec-enabled, the IPSec-enabled one can allow or disallow messages in a way
that is transparent to the user. (Transparent, in this context, means hardware
or software that works without user interference.)

� How Does IPSec Work?

When IPSec is implemented as a boundary between unprotected and pro-
tected perimeters (such as in a firewall or router),8.7 for a host or network, it
controls whether data crosses the boundary unrestricted, are subject to AH or
ESP security processing, or are discarded (say, if a replay data packet is de-
tected). Paths into an organization are protected against all bypass traffic if
it is specified that all outside traffic must pass through IP, say, in a firewall.
Moreover, given that IPSec is implemented at the network level, there is no
need to alter software or access to servers (see page 218). This also clearly has
the advantage that IPSec can be made transparent to end users. Yet, IPSec

8.7In Section 8.4, we will learn about firewalls in depth. For now, think of them as network
gateway-server programs, that shield data of a network site from users situated in other
networks. Firewalls provide security in concert with what are called router programs, which
are mechanisms for directing data, via the best route possible, to the next network site enroute
toward the target site. Together they screen all data to decide action.
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can provide end users with security when necessary, say, for those employees of
a corporation working on highly classified material.

� IPSec Services

IPSec security, provided at the IP level, enables a system by using AH and
ESP in concert to provide the following services:
1. Access Control: using AH and ESP.

2. Confidentiality: via enciphering of data or limited traffic-flow security,
using ESP for both encryption and authentication.

3. Connectionless Integrity: via an in-built IP detection mechanism.

4. Data Origin Authentication: using AH.

5. Rejection of Replay Data Packets: using AH and ESP.

Now we are ready to look at the various components that make up the IPSec
structure. At the time of this writing the RFC 2401 overview of IPSec security
architecture has been rendered obsolete by a document currently being updated;
see http://www.ietf.org/internet-drafts/draft-ietf-ipsec-rfc2401bis-01.txt.

First, we examine how keys are used to set up the IPSec mechanism.

� IPSec Key Management

IPSec provides another essential feature of any security protocol, namely,
the management of keys for use in data exchange, encryption, and for such, the
negotiation of keys with other entities. IPSec further mandates that a record of
such key negotiations be kept. There exist two kinds of IPSec support for this
key service.

Key Management Techniques

The following provides minimal requirements of IPSec key (and SA) man-
agement (see page 302).

Manual: The manual key and SA management is the simplest type. In
this case an entity, typically a systems administrator, manually configures each
network with keying material and SA management information pertinent to
communications with other systems. This is really only practical for small,
relatively static communications environments. For instance, in a VPN, with a
small number of sites in a single administrative domain, this would be feasible.
Manual techniques might also work in larger environments where only a small
number of gateways need to be secured. However, in larger networks, in general,
this method is not practical.

Automated: With an automated system, on-demand keys may be created
for SAs, and is scalable for ever-changing and growing larger networks. More-
over, this type of management enables options not available in manual mode
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such as antireplay protection, as well as on-demand creation of SAs for the pur-
poses of, say, session-key creation. Although IPSec supports many standards,
IKE is the default IPSec key-exchange protocol.

IPSec is divided into two major parts: part one consists of user authentica-
tion and key exchange using IKE, and part two consists of bulk data confiden-
tiality and integrity for message and file transfer.

� IPSec Part I: IKE Identity Authentication and Key Exchange

� Internet Key Exchange (IKE)
What is IKE?: IKE is an IPsec standard used to ensure security for VPN

negotiations and access to networks or remote hosts. IKE is specified in RFC
2409 [212], which specifies an automatic mechanism for establishing security,
and does so without the preconfiguration necessary for manual mode, which we
discussed above. IKE is a hybrid protocol that evolved from two older protocols
called Oakley and SKEME with an ISAKMP (Internet Security Association
and Key Management Protocol) TCP/IP-based configuration. The Oakley pro-
tocol defines a sequence of key exchanges and specifies their services, typically
authentication and identity protection. SKEME is a protocol that defines the
methodology for negotiating key exchange.

Why Use IKE?: Although it is not specified that IPSec use IKE, its em-
ployment ensures automatic authentication for antireplay security; certification
authority services; and on-demand change of IPSec session-based encryption
keys (among other built-in services).

How Does IKE Work?: There are two phases to IPSec IKE. In phase one,
two IKE peers establish a secure authentication communication channel via an
IKE SA and establish a shared secret key. In phase two, the secret key and
secure IKE SA, established in phase, are used to send encrypted messages. In
these messages, they agree upon secret keys for bulk encryption, cryptographic
methods for using them, and other parameters. Different modes for IKE are
available for accomplishing the above.

� IKE Modes
Main Mode: In this mode, there is a three-pronged approach for creating

the first phase of an IKE SA, which is used for later transactions. This is similar
to the initial phase of SSL/TLS where negotiation to determine cryptographic
parameters is done largely in plaintext.

In main mode, there is a six-step message exchange between, say, Alice and
Bob, consisting of three two-way passes.

(1) They agree on cryptographic algorithms for use as the IKE SA.

(2) They exchange public keys to be used for Diffie-Hellman exchange, and
exchange nonces.

(3) They verify identities via signed nonces.
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Upon completion of this phase, authentication and key exchange are com-
pleted, and the IKE SA is established.

In what follows, we give a description of the six steps involved in the three-
pass IKE main mode, followed by an illustration. What we describe is a sim-
plified version of the scheme, assumed to take place between Alice and Bob. In
fact, IKE itself, is a slim-down version of ISAKMP/Oakley.

Background Assumptions: For the Diffie-Hellman part of the exchange,
we need the following notation. We use (pA, sA), and (pB , sB), respectively for
Alice’s, and Bob’s, respectively public/secret Diffie-Hellman keys. Recall from
page 166 that (pA, sA) = (αx, x) and (pB , sB) = (αy, y), so

psB

A = psA

B = k.

This notational assumption will be made below. Moreover, IA and IB are
identifying data strings for Alice and Bob, respectively, and we assume that Alice
and Bob have RSA public/private key pairs (eA, dA) and (eB , dB), respectively,
where they have exchanged eA and eB in advance of the following.

IKE Phase I Using Main Mode

1. SA Negotiation Initialization: Alice sends Bob her list of proposed
parameters, SA, such as proposed encryption algorithms, hash functions,
pseudo-random generators for hashing messages to be signed, and so on.
These will be used to establish an IKE SA. Also, contained in the message
is a header, HA, containing a cookie, CA (see pages 323–325) for Alice
(in order to keep the session state information for her).

2. SA Agreement: Bob selects one of each of the parameters from Alice’s
lists in SA, such as a single choice of hash function, sole choice of SKC,
and so forth. He sends back his list of choices, SB, together with a header,
HB, containing a cookie, CB, for his session state data.

3. Key Negotiation Initialization: Alice sends Bob her Diffie-Hellman
public key pA, a nonce NA, and HA.

4. Key Generation Completion: Bob sends his Diffie-Hellman public key,
pB, his nonce NB, and his header HB.

Alice and Bob independently compute psB

A = k and psA

B = k, respectively.

5. Alice’s Identity Verified: Alice sends

(HA, k(IA, dA(NA,NB, k,pA,pB,CA,CB,SA))),

to Bob who now is able to use k−1 and eA, to verify Alice’s identity.

6. Bob’s Identity Verified/SA Established: Bob sends to Alice

(HB, k(IB, dB(NA,NB, k,pA,pB,CA,CB,SB))),

and Alice may similarly verify Bob’s identity.
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Diagram 8.12 IKE Main Mode

First Pass: SA Negotiation

A
L
I
C
E

HA,SA−−−−−−−−−−−−→
←−−−−−−−−−−−−

HB,SB

B
O
B

Second Pass: Key Negotiation

A
L
I
C
E

HA pA NA−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−

HB pB NB

B
O
B

Third Pass: Identity Verification

A
L
I
C
E

(HA,k(IA,dA(NA,NB,k,pA,pB,CA,CB,SA)))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(HB,k(IB,dB(NA,NB,k,pA,pB,CA,CB,SB)))

B
O
B

Aggressive Mode: The essential difference between this mode and main
mode is the manner in which messages are configured, which reduces the ex-
changes depicted in Diagram 8.12 to two. This naturally increases the speed of
communication. We make the same background assumptions as for main mode
given on page 298.

IKE Phase I Using Aggressive Mode

1. SA and Key Negotiation Initialization: Alice sends to Bob
(HA,SA,pA,NA, IA), where the notation is as above.

2. SA Agreement and Verification of Bob’s Identity: Bob sends

(HB,SB,pB,NB, IB, k(IB)),

so Alice may now compute k using her sA, then use k−1 to verify Bob.
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3. Verification of Alice’s Identity and SA Establishment: Alice sends
(HA, k(IA)), so Bob may verify Alice via k−1.

Diagram 8.13 IKE Aggressive Mode

First Pass

A
L
I
C
E

(HA,SA,pA,NA, IA)
−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(HB,SB,pB,NB, IB, k(IB))

B
O
B

Second Pass

A
L
I
C
E

−−−−−−−−−−−−−−−→
(HA, k(IA))

B
O
B

Since aggressive mode sacrifices identity protection in favour of speed, Alice
and Bob may exchange identifying information before this exchange. Also,
aggressive mode, unlike main mode, does not prevent against a denial-of-service
attack,8.8 so there is a sacrifice in security as well.

One of main or aggressive modes is used to create an IKE SA as above with
a shared secret key k. Using k, and a keyed hash function plus other values from
phase I, they derive three more secret shared keys, ke to encrypt all phase-II
messages, ka, used as an HMAC to authenticate all phase-II messages, and kd,
which is used to derive the second set of shared secret keys.

For phase II, there is only one mode, whose sole purpose is to transact IP
security and keying material, wherein Alice and Bob now have an authenticated
secure channel, so every packet is encrypted. Now, they wish to negotiate a
new SA called IPSec SA, and a secret key for bulk data encryption in IPSec
part II, as well as other parameters including protocol and mode. (Note that
IPSec SA, the commonly used term, should not cause confusion even though
the entire process is under the IPSec umbrella. The term IPSec SA is merely
used to distinguish it from the SA established in phase I under the tutelage of
IKE.)

8.8A denial-of-service attack (DOS) is one that impedes the normal functioning of communi-
cations sites. This may involve anything from disruption of the entire network to suppressing
all messages to a particular target site, the antithesis of which accomplishes the former, namely,
by overloading the network with messages.
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IKE Phase II — Quick Mode

1. Alice sends the following, where SID is a 32-bit session ID to differentiate
the phase-II session setup; SA2 is a list of parameters for IPSec SA; and
N′A is a new nonce uniquely identifying Alice’s message to thwart replay
attacks:

ke(CA,CB,SID,SA2,N′A).

2. Bob responds with the following where SB2 is his list of choices from SA2;
SPIB is his security parameters index (see page 303) authorization; and
N′B is his unique nonce to identify his message:

ke(CA,CB,SPIB,SB2,N′B,ka(N′A)).

3. Alice acknowledges receipt by sending ke(N′B).

4. Using kd, in part, Alice and Bob independently and simultaneously generate
a secret key K that they will use in part II for bulk data encryption.

In phase II there is an option for establishing a Diffie-Hellman shared secret
key k′ in order to calculate K. Since k′ would not be based upon any previously
shared secrets, it would have what is called perfect forward secrecy8.9 (PFS).
This means that if this particular secret, k′, is compromised, not all of the
encrypted data is compromised. Without PFS, if k is compromised in phase I,
then all secrets derived from it, including kd, are compromised. However, this
D-H option is not an automatic default since negotiating k′ is costly in terms
of time.

Part I Summary: In phase I, Alice and Bob established an IKE SA and
shared secret keys for use in phase II. This makes phase II an efficient mechanism
since only SKC keys are used rather than PKC devices (without the D-H option).
In phase II, using the phase-I keys, they establish an IPSec SA and thereby a
shared secret key for bulk data encryption as well as other parameters not
explicitly specified for IPSec SA in the above (such as protocol and mode).
There is a lifetime associated with the IPSec SA, and once it expires, Alice and
Bob’s computers automatically reestablish a new IPSec SA, without Alice and
Bob being involved, namely, a transparent process to them.

Diagram 8.14 IPSec Part I — Summary

Phase I
D-H keys and nonces

−−−−→ IKE SA and secret key k

Phase II
secret key k and nonces

−−−−→ IPSec SA and secret key K

8.9This is not related to Shannon’s notion of perfect secrecy that we will study in Chapter
11, nor is the forward secrecy we discussed on page 200.
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� IPSec Part II: Bulk Data Confidentiality and Integrity

Now that we know how IPSec SAs are created, we now explore how they are
used in detail for part II bulk encryption as well as integrity for message or file
transport. In fact, it is possible for a single IKE SA to create several IPSec SAs,
which may be employed for varying tasks. For instance, the established SA from
phase I above, can be used to establish, in phase II, say, SAm and SAf , where
SAm and its associated keys and parameters are used for encrypted e-mail, and
SAf and its (different) associated keys and parameters are used for transport
of encrypted database files.

Earlier in this section, we learned a bit about the two types of IPSec proto-
cols, AH and ESP. The function of these protocols is to protect the confiden-
tiality and/or message integrity of data packets.

The modes, which we study below, control how much of the data packets are
protected by these protocols. The details will now be presented for the individual
IPSec SA, its modes, parameters, security databases, and interoperability.

� Security Association (SA)
This is a one-way “connection” or relationship — unicast traffic — which

supplies security to the traffic it carries, allowing only one of AH or ESP to
be used. If both AH and ESP are required, then two SAs must be created
and coordinated — multicast traffic — to ensure a security shield via this
application. Typically, there is a two-way IPSec-enabled transmission between
two SAs (one in either direction). Since this is such common usage, IKE is set
up to explicitly create SA pairs, which must be of the same mode, defined as
follows.

SA Modes

1. Tunnel Mode: SA tunnel mode is essentially SA applied to an IP tunnel,
which means that an entire packet is protected as it travels from one site
of an IP network to another without being screened by any routers (a
“tunnel”), to examine any inner IP header. What this means, in practice,
is that when a packet P leaves the original host, and gets to the boundary
of its hosts’s firewall, there is a determination of whether P needs IPSec
processing. If so, it encases P with an outer IP header, and is sent to the
target site.

When P is enroute, intervening routers screen only the outer IP header,
and upon reaching the target site, this outer header is stripped off by the
target’s firewall and the inner packet is delivered to the target.

Hosts, shielded by firewalls, may communicate via tunnel mode, with-
out invoking IPSec. This is accomplished via communications where the
above-described “unprotected” data packets are sent by SAs in tunnel
mode set up by IPSec software in the firewall.

2. Transport Mode: SA transport mode is typically used between a pair
of hosts for protection of upper-layer protocols and selected IP header
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fields. There are two current IPSec environments, IPv4 and IPv6. When
a host uses IPv4 with AH or ESP, the IP header is followed by the payload
data. With IPv6, the IP headers and the IPv6 extensions are followed by
the payload. In transport mode, AH authenticates the IP payload, and
selected parts of the IP header, whereas EPS in transport mode encrypts
the IP payload, and optionally authenticates it, but not the IP header.

When we referred to the packet P in part 1, we meant, and will mean
throughout our discussion, one of IPv4 or IPv6 data packets. These ver-
sions are specified in the document that obsoletes RFC 2401, cited on
page 296; as well as in documents being updated, which make obsolete
RFC 2402, [207] and RFC 2406, [211]; see http://www.ietf.org/internet-
drafts/draft-ietf-bmwg-ipsec-term-04.txt, dated August 2004.

SA Parameters

1. Security Parameters Index (SPI)

This bitstring uniquely identifies an SA relative to a security protocol such
as AH or ESP. The SPI is located within the AH and ESP headers so that
the target site can select the type of SA under which to process the packet.

If the SA is employed for unicast traffic only, then a locally assigned bit-
string is sufficient to specify an SA. If multicast traffic is supported by the
IPSec implementation, then it MUST8.10 support multicast SAs. How-
ever, in this instance, a sender SHOULD put traffic into different packets
to avoid the improper discarding of low-priority packets, which may occur
due to the in-built reject-replay mechanism.

2. IP Destination Address

This parameter dictates the target IP address for the SA, and is allowed
to be only a unicast address. The target may be an end user, but it may
also be a firewall or network system router. Note that an IP address (also
known as an Internet address) is a unique 32-bit string allotted to a host
and used for all communication with that host.

3. Security Protocol Identifier

This parameter stipulates the SA, namely, whether it is an AH or ESP.

In any IP packet,the SA is uniquely identified by the Destination Address in
the IPv4 or IPv6 header and by the SPI in the enclosed extension header, one
of AH or ESP. In Diagrams 8.15–8.19, we will illustrate only the IPv6 version
since it is more extensive than the IPv4 model.

8.10Note that, as in Footnote 8.3 on page 288, MUST, MUST NOT, REQUIRES, SHALL,
SHALL NOT, SHOULD, SHOULD NOT, MAY, and OPTIONAL are to be interpreted by
the document specifications given in [204].
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Diagram 8.15 Standard IPv6 Packet

Original IP Header Extension Headers TCP DATA
(possibly options) (if present)

Diagram 8.16 IPv6 AH Packet in Transport Mode

Original IP Site-by-Site Destination
Header Destination AH Options TCP DATA

Routing Info.

Diagram 8.17 IPv6 AH Packet in Tunnel Mode

New IP Extension Original IP Extension
Header Headers AH Header Headers TCP DATA

(Optional)

Diagram 8.18 IPv6 ESP Packet in Transport Mode

Original IP Site-by-Site ESP Destination
Header Destination Header Options

(possibly options) Routing Info.
· · ·

· · · TCP DATA ESP ESP
Trailer Authentication

Diagram 8.19 IPv6 ESP Packet in Tunnel Mode

New IP New Extension ESP Original IP
Header Headers Header Header · · ·

· · · Original Extension TCP DATA ESP ESP
Header Trailer Authentication

An SA in AH mode MUST have associated AH information containing the
authentication algorithm; keys; key lifetimes; and any related data necessary for
the interoperability of the IPSec implementation. Similarly, in ESP mode an
SA MUST have the encryption and authentication algorithm; keys; initialization
values; key lifetimes; and any other data essential to the implementation.

There are also means of using layered security protocols via IP tunneling,
called iterated tunneling. In these cases, the options involve tunnels, each of
which can begin and end at any given IPSec site along the route. Both parts of
the illustrated configurations of Diagram 8.20 involve the host-to-host tunneling
described in the discussion of tunnel mode on page 302.
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Diagram 8.20 Iterated Tunneling

↗ SA ESP Tunnel ↖

Host
A ↔

Security
Gateway A ↔ Internet ↔

Security
Gateway B ↔

Host
B

↘ SA ESP (or AH) Tunnel ↙

Configuration I: Host-to-Host and Host-to-Gateway

↗ SA ESP Tunnel ↖

Host
A ↔

Security
Gateway A ↔ Internet ↔

Security
Gateway B ↔

Host
B

↘ SA ESP (or AH) Tunnel ↙

Configuration II: Host-to-Host and Gateway-to-Gateway

In configuration I, the host-to-gateway tunnel allows Host B to reach Host
A’s security gateway, after which it may gain access to a server behind the
gateway. Both Host A and Host B are IPSec enabled to communicate via an
SA, via the tunnel through which they are connected.

In configuration II, the gateway-to-gateway tunnel may provide both authen-
tication and confidentiality for all traffic between the two networks. Moreover,
since the tunnel is in ESP mode, it also contributes a certain qualified amount
of traffic confidentiality. With the SA tunnel between hosts, we have end-to-end
security in either configuration.

The next protocol to be discussed in detail is a major component of IPSec,
which we mentioned at the outset of this section, the AH. It renders services
that protect against attacks levelled at networks, such as spoofing, where an
adversary creates packets with some other entity’s IP address, then exploits
those software applications that are based upon IP authentication; as well as
replay attacks; and packet sniffing, where an attacker reads login and database
information.

� Authentication Header Protocol
These fields are presented top-down in order (see Diagram 8.21 on page 307).

1. Next header: This 8-bit field identifies the header for the higher-level
protocol immediately following AH (such as ESP or TCP, for instance).
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2. Payload length: This 8-bit field contains the length of the AH contents.

3. Reserved: This 16-bit field is reserved for future use.

4. Security parameters index: This 32-bit field identifies the SA for this
packet by specifying a set of security parameters for use herein.

5. Sequence number: This 32-bit field supplies a monotonically increasing
counter value for each packet sent with a given SPI, used to track the
order of packets. Moreover, the counter establishes protection against
replay attacks. The means by which this is achieved is as follows.

When a new SA is created, the sender initializes the sequence to zero,
and each time a packet is sent using this SA, the sender increments the
counter and the result is put into the sequence number field. Since the
default mechanism is enabling antireplay, the sender must ensure that the
counter has an upper bound of B = 232 − 1, beyond which it is forbidden
to increment (since otherwise, there will be more than one packet with
the same sequence number given that 232 cycles back to zero). Once B is
reached, a new SA with a new key is negotiated. On the other hand, the
receiver ensures that a window, called the antireplay window, is created for
received packets, checked via a MAC, which discards unauthorized ones.
Moreover, in the instance of a discarded packet, the receiver SHOULD be
capable of sending a message with reasons for the dropping of the packet
along with date, time, and sequence number of the packet. (See page
311 where details on the antireplay window and associated notions are
detailed.)

6. Authentication data: This variable length (modulo 32, which might
necessitate padding), field consists of the Integrity Check Value (ICV) for
this packet.

The ICV is essentially the output of a truncated MAC defined as fol-
lows. The compliant implementations are HMAC with SHA-1 or MD5,
but also AES with CBC (see [208] for a description of HMAC-MD5-96;
[209] for a description of HMAC-SHA-1-96; [224] for a description of AES-
XCBC-MAC-96; and see pages 263–264 for a reminder of our description
of HMAC in general). Whichever is used, the complete HMAC value is
calculated, then truncated using the authentication field default value of
96 bits.

The ICV is calculated using, (1) certain IP header fields, namely, those
whose values are predictable when they arrive at the AH SA, or those
that do not change in transit, the latter process called immutable; (2) the
entire contents of the AH header except for the authentication data field,
which is set to zero for calculation purposes at both origin and target;
(3) the complete upper-level protocol data, assumed to be immutable in
transit, such as an IP packet in tunnel mode (see Diagram 8.20).
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Diagram 8.21 Authentication Header Fields

Next Header
← 8-bit→

Payload Length
← 8-bit→

Reserved
← 16-bit→

Security Parameters Index (SPI)
← 32-bit→

Sequence Number
← 32-bit→

Authentication Data
← Variable→

Transport and Tunnel Mode AH
We discussed transport and tunnel modes in general terms earlier, and il-

lustrated AH transport mode (IPv6 implemented) in Diagram 8.16. This case
is considered to be an end-to-end payload — it is immutable — and remains
untouched by routers between its origin and target sites. For this reason, AH
appears after the original IP header and routing information. Authentication,
in this case, extends to the entire packet, excluding only mutable fields that are
set to zero for MAC calculations.

In AH tunnel mode, the entire original IP packet is authenticated, again,
except for the mutable fields (see Diagram 8.17). Unlike transport mode, the
AH can be used by either hosts or security gateways. In fact, when AH is used
in a security gateway, tunnel mode must be employed. Thus, the new IP header
may contain addresses for firewalls or other security gateways.

� Encapsulating Security Payload (ESP)
ESP Fields
As with AH, we provide a top-down description of the ESP fields followed

by a diagram illustrating the same.

1. Security Parameters Index (SPI): This 32-bit field names the specific
SA to be used.

2. Sequence Number: This 32-bit field is similar to the corresponding AH
field, with a monotonically increasing counter that guards against replay
attacks. (See the explanation for AH above.)

3. Payload Data: This variable-length field consists of the enciphered data
for the packet being transmitted, which may be at the transport level
(thus, in transport mode), or IP packet (in tunnel mode).

4. Padding: This field provides space for up to 255 bytes, which might
be necessitated by the enciphering algorithm being used. The suite of
compliant encryption algorithms are 3DES-CBC (see [214]), which the
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IPSec implementation MUST have, but SHOULD NOT have DES-CBC
as specified in [210]; AES-CBC (see [225]), which it SHOULD have; and
AES-CTR which it SHOULD have (see page 137). The Padding Field
is used, for instance, to expand the plaintext (consisting of the Payload
Data, Padding, Pad Length, and Next Header Fields described below), to
the desired length when an encryption algorithm specifies, say, some fixed
number of bytes.

5. Pad Length: This 8-bit field identifies how much of the encrypted payload
is padding.

6. Next Header: This 8-bit field identifies the type of data carried in the
payload data field by identifying the first header in that payload.

The ESP format dictates that the Pad Length and Next Header Fields be
right justified within a 32-bit word (see Diagram 8.22).

7. Authentication Data: This variable-length field (modulo 32) contains
the value representing the ICV computed over the ESP packet minus the
Authentication Data Field.

Diagram 8.22 ESP Header Fields

Security Parameters Index (SPI)
← 32-bit→

Sequence Number
← 32-bit→

Payload Data
← Variable→

Padding
← 0− 255 Bytes→

Padding Field
(Continued)

Pad Length
← 8-bit→

Next Header
← 8-bit→

Authentication Data
← Variable→

Transport and Tunnel Mode ESP

We illustrated the general discussion of transport mode with ESP (IPv6
implemented) in Diagram 8.18. In this case, all parts of the packet, except
the original IP header and routing information are encrypted. Authentication
(which is optional) covers ciphertext and ESP header. The IP header and
plaintext IP extension headers are not encrypted since they have to be examined
by intermediate routers.

As with AH, either hosts or security gateways may employ tunnel mode
ESP. See Diagram 8.19 for an illustrated ESP IPv6 implemented tunnel mode.
When ESP is used at a security gateway, again as with AH, tunnel mode must
be employed (see Diagram 8.20). In this case, encryption occurs only between
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external hosts and a security gateway, or between security gateways. In this
fashion, hosts do not need to execute any enciphering, so key distribution is
made easier, since fewer keys are required. From a security standpoint, this
mode is valuable since it thwarts traffic analysis.8.11 Last, as with AH, au-
thentication is optional and essentially covers the same features as with AH.

� Combining Security Associations

As observed in our earlier examination of SAs, they are one-way relation-
ships. Yet, we may wish to employ more than one of them, in which case we
must set up new SAs for each instance. We already considered and illustrated
one mechanism for combining them, namely, iterated tunneling (see Diagram
8.20). Now we look at the other method of combining SAs.

Transport Adjacency

Transport adjacency (see Diagram 8.23) pertains to the mechanism where
multiple transport SAs are applied to the same IP packet (without using tunnel-
ing SAs). Both AH and ESP IP packets may be combined by this methodology.
In this case, the IP packet is processed only at its target destination.

The use of either of the methods: iterated tunneling or transport adjacency,
is called security association bundling (SA bundling).

Diagram 8.23 Transport Adjacency

↗
✞

✝

�

✆
SA-1 (AH Transport) ↖

Host
A ↔

Security
Gateway A ↔ Internet ↔

Security
Gateway B ↔

Host
B

↘
✞

✝

�

✆
SA-2 (ESP Transport) ↙

Transport adjacency may also be used to bundle SAs with, for instance,
the inner one being an ESP SA and the outer one being an AH SA, thereby
applying authentication after encryption. (We refer the reader to pages 266 and
267 for our discussion of the pros and cons concerning the order of encryption
vs. authentication.) Enciphering, in this case, is applied to the IP payload, then
AH is applied in transport mode so that authentication is the umbrella for ESP
and the original IP header, extensions included, but mutable fields excluded.
One could simply use a single ESP SA and invoke the authentication option to
8.11Traffic analysis refers to the scrutiny of frequencies and lengths of enciphered messages,
by an adversary, in an effort to guess the nature of the communication being observed. From
this an opponent could discover the location and identity of communicating entities.
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avoid the costs of using two SAs, but the nesting of two SAs ensures that more
fields are authenticated.

If one wants to authenticate first, in a bundling of SAs, then an inner AH
transport SA may be formed with an outer ESP tunnel SA. Thus, authentication
is applied to the IP payload and the IP header, plus extensions, but minus
mutable fields. Then the IP packet is processed by ESP in tunnel mode. The
outcome is that the complete (authenticated) inner packet is encrypted and new
outer IP header and extensions are added.

Diagram 8.24 Nesting SAs: Authentication After Encryption

Host
A ↔

Security
Gateway A ↔ Internet ↔

Security
Gateway B ↔

Host
B

↘
SA-2 (AH Transport)

SA-1 (ESP Transport) ↙

Diagram 8.25 Nesting SAs: Encryption After Authentication

Host
A ↔

Security
Gateway A ↔ Internet ↔

Security
Gateway B ↔

Host
B

↘
SA-2 (ESP Tunnel)

SA-1 (AH Transport) ↙

Although numerous aspects of IP traffic processing and IPSec implemen-
tation are local matters, and thus not subject to standardization, there are
external features of the process that require such systematization in order to
guarantee interoperability and render a lower bound on the management capac-
ity that is crucial for effective use of IPSec. In order to accomplish this, we need
the following.

� IPSec Security Databases
IPSec possesses two formal databases: the Security Policy Database (SPD),

and the Security Association Database (SAD). SPD prescribes the guidelines
that govern the configuration of all incoming and outgoing IP traffic. SAD
embodies parameters that are associated with each keyed SA.

Security Association Database (SAD) Parameters
The following parameters are used to define an SA and each SA has an entry

in the SAD.
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1. Security Parameter Index (SPI): This 32-bit value is the unique identi-
fier of the SA, chosen by the receiver of the SA. If the SAD entry is for an
outbound SA, the SPI is used to build the packet’s AH or ESP header. In
the case of a SAD entry for an inbound SA, the SPI is employed to assign
traffic to the suitable SA.

2. Sequence Number Counter (SNC): This is either a 64-bit or a 32-bit
value that is employed to generate the Sequence Number Field in either
AH or ESP headers. The default is a 64-bit but a 32-bit may be negotiated.

3. Sequence Counter Overflow: This is a flag signifying whether overflow
of the SNC should generate an auditable event, thereby preventing the
sending of any more packets on the SA (but rollovers may be permitted).

4. Antireplay Window: This is a 64-bit counter and a bit map used to indi-
cate whether an inbound (AH or ESP) packet is a replay. Accommodation
for 32-bit numbers are made, but the default is 64-bit. It is possible for the
receiver, in certain situations, to disable antireplay. If so, the Antireplay
Window is ignored for this SA.

5. AH Authentication Algorithm: These are parameters associated with
the use of AH, which include keys and their lifetimes. Of course, this
parameter is required only if AH is supported.

6. ESP Encryption Algorithm: These are parameters related to the use of
ESP such as keys and mode.

7. ESP Integrity Algorithm: This involves the keys and other parameters
involved in ESP integrity, but if this service is not chosen, these will be
null fields.

8. ESP Combined Mode Algorithm: In this case, the keys, and so on, as
are chosen above, but only if both encryption and integrity are selected
to be used with ESP.

9. Lifetime of this SA: Typically this parameter is a byte count that
specifies the life span of the SA, and upon completion of that duration
of use, the SA either (1) must be replaced by a new SA with a new SPI,
or (2) terminated. This parameter includes an indication as to which of
(1) or (2) should occur. This parameter may also be expressed as a time
count, and any compliant implementation MUST support both types of
lifetimes, as well as simultaneous use of both. Furthermore, if the packet
does not get delivered during the lifetime of the SA, the packet SHOULD
be discarded.

10. IPSec Protocol Mode: This is a choice of tunnel or transport, which
indicates which mode of AH or ESP is applied to traffic on this SA.
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There may be other minor parameters added to the above, but the bulk of
what is required is contained in this list.

Security Policy Database (SPD) Parameters
IPSec documentation refers to SAs as management constructs used to enforce

security policies for traffic crossing an IPSec boundary. Therefore, since the SPD
is responsible for the screening of all inbound and outbound traffic (IPSec and
non-IPSec), it is necessary to have a clear indication of what services are offered
and in what manner. To do so SPD needs what are called selectors, which are
top-level protocol field values. These are defined as follows.

1. Destination IP Address: Typically this is a list of IP addresses of those
systems sharing the same SA, especially if the IPSec implementation is
operating behind a gateway. Yet, this selector will support a single IP
address.

2. Source IP Address: As with the Destination IP Address, this is usually a
list, if there is sharing of the same SA, but this could be a single address
in the case of a simple configuration.

3. Next Layer Protocol (NLP): This is obtained from one of the IPv4
Protocol field, or IPv6 Next Header field. Other selectors depend on the
NLP value. For instance, if a port such as TCP is used, there are selectors
for Source and Destination Ports, each of which is a list of values. If
the NLP is a mobile header, there is a selector for IPv6 Mobility Header
Message Type, which is an 8-bit value that identifies a specific mobility
message. There may be others, depending on the message type.

4. Name: This is a symbolic identifier for an IPSEC origin or target ad-
dress, which may be an X.500 distinguished name or an operating system
identifier.

5. Data Sensitivity Level: This is an indicator of the security level of the
information being transferred, such as classified or unclassified.

There is a third, not often mentioned, database — the Peer Authorization
Database (PAD) — which is also needed within a secure IPSec architecture.
The reason that this database is often ignored in descriptions of IPSec is that
the PAD may already be integrated within the SA management protocol itself.
Nevertheless, it is important to understand the PAD functions. The PAD es-
tablishes a connection between an SA management protocol (such as IKE), and
the SPD. Among the PAD duties are defining the range of identities that a peer
(one of a set of entities that are in the same protocol layer or the equivalent
layer of another system), is authorized to represent when SAs are negotiated
with a peer; defining how to authenticate a peer (such as via a certificate); and
verification of the authorization of SPD traffic selectors relative to the autho-
rized peer of the SA management protocol. PADs may also be needed to locate
secure gateways.
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8.4 Internetworking and Security — Firewalls

Things won are done; joy’s soul lies in the doing.
William Shakespeare (1564–1616)
— from Troilus and Cressida (1602)

IP, or Internet Protocols, provide services for connecting hosts over various
disparate networks, as we have seen. To accomplish this, however, each IP must
be embedded, not only at each host site and its associated network, but also
in routers. This presents challenges for these routers since they connect such
dissimilar systems. Here are some of the differences routers face.

� Network Dissimilarities

Address Labels: The various schemes for networks to allocate a target ad-
dress to data in an Internet mechanism may range from 48-bit assignments to
encoded decimal representations. Therefore, some kind of universal standard-
ization is needed together with a central archive for record keeping.

Fragmentation: On page 221, we already met the concept of message frag-
mentation. Fragmentation is required because of network disparities in maxi-
mum packet sizes permitted.

Interfaces: A router must be designed to execute its duties irrespective of
the disparate hardware and software interfaces among networks.

Network Dependability: A router must be independent of the differences
in network reliability, which may range from unreliable to end-to-end depend-
ability.

� Firewalls

All the above being said, the primary concern is with local security, so we
need firewalls (see Footnote 8.7 on page 295). The term “firewall” is taken
from the firefighting profession, wherein a firewall is a barrier constructed to
prevent the spread of fire. In the computer world, it means keeping the flames
of disaster, ubiquitous on the Internet, away from your local network, and pre-
venting entities from inside the local network from opening a “door” that will
let those flames in. A firewall may be defined as a combination of hardware and
software, located at the interface between two networks, that enforces an access
control security policy between them. For instance, these security gateways8.12

may screen IP addresses, or ports requested on incoming connections, to decide
what traffic is permitted into the local network.
8.12A gateway is an access point on a network that plays the role of an entrance to another
network. For instance, when we discussed SET in Section 6.3, we looked at payment gateways.
More generally, a node on the Internet is a connection point, typically with the capacity to
read, process, and forward data to other nodes. Thus, a node may be a computer or other
device. For a user at home, an ISP (see page 295), is a gateway. For a business enterprise, a
gateway node may play the role of both a proxy server (see Footnote 8.14 on page 317), and
firewall.
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Origins of Firewalls: Development of firewall architecture has been con-
temporaneous with the evolution of the Internet. Not surprisingly, initial fund-
ing for firewall research was the domain of the U.S. Department of Defense.
The origins of the first commercial firewall architecture may be traced to the
mid-to-late 1980s with Cisco Systems, who introduced (static) packet filters.
In the late 1980s and early 1990s the next generation of firewalls, called cir-
cuit level firewalls came out of research at AT&T Bell Labs. Then the third
generation of firewalls came to attention in the early 1990s, out of work from
Bell Labs and others, with application layer firewalls. A fourth generation,
called dynamic packet filtering firewalls, sometimes called stateful inspection,
was epitomized by Firewall-1, the first user-friendly firewall architecture, re-
leased by Check Point Technologies in 1994. This essentially replaced static
packet filtering as a standard. Today there is the fifth generation of firewall,
called Kernel Proxy Architecture, the first commercial incarnation being Cisco
System’s Centri Firewall, released in 1997. All of the aforementioned types will
be discussed below.

� Firewall Design Principals: If the security goal of a local network
that has its own local security policy is to explicitly deny all transmission that
fail those criteria, then the following firewall design goals should be sought: (1)
all data traffic into and out of the local network must physically be directed
through the firewall; and (2) the firewall must be impenetrable.

The local security policy will dictate the level of monitoring, and what traffic
will be permitted or denied access. Typically a local network will want a balance
between protection of that local system from threats, and access to the Internet.

What A Firewall Can Do
◗ First of all, in general terms, firewalls guard against unauthorized access

from outside the protected local network, but allow access from within the local
network to the outside. A more intricate firewall scheme will ensure that certain
entities within the local network are prevented from accessing certain sensitive
documents inside, as well as prevent users from within the local network from
sending confidential, sensitive, or vulnerable data outside the firewall.

◗ A firewall provides a single choke point where security, audit, tracking (of
logins, Internet usage, etc.), and other management functions may be concen-
trated into a single system. Security alarms can also be set.

◗ A firewall may be employed as a foundation upon which to implement
IPSec (see Section 8.3). Some opinions in the cryptographic community even
suggest that IPSec usage will replace firewalls altogether, but that remains to
be seen. What can be done is to use a firewall to establish VPNs via IPSec
employed in firewall-to-firewall tunnel mode (see Diagram 8.20).

◗ Firewalls may also serve the function of Network Address Translator
(NAT), by which it can alter data in packets to change the network address,
which means one set of IP addresses is used for local network traffic and another
is used for external traffic. The firewall would have a NAT box installed to make
all the requisite IP address translations. In this fashion, the firewall hides all
local network IP addresses. Moreover, behind the firewall in the local network,
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the use of a distinct set of IP addresses means there is no conflicting intersection
with IP addresses from outside.

What Firewalls Cannot Do

◗ A firewall cannot thwart attacks that go around it. There might be a
dial-out server behind the firewall, for instance, that circumvents it by dialing
directly to an ISP.

◗ If there are hackers within the local network, the firewall will not detect
them. Possibly, an employee of a corporation operates in concert with Mallory
outside the corporation to steal vital data by giving him needed passwords. No
firewall can prevent this.

◗ A firewall is not an antivirus program. Thus, infected files or programs may
get through. A firewall is not the place for virus-control software, since there are
simply too many ways for viruses to be sent. It would be virtually impossible
for a firewall to filter every piece of data for a possible virus. Furthermore,
even if it could be implemented, it would still only guard against viruses from
the Internet. There are viruses that come in CDs, via modems, as well as the
Internet. A better mechanism is to have antivirus software installed in every
individual computer in the local network.

◗ A firewall is only as secure as the operating system (OS) in which it sits.
If there are weaknesses in the OS, a firewall cannot protect against them.

� Basic Kinds of Network Firewalls

1. Packet Filters — Screening Routers: A simple firewall configuration
is called a packet filter, which records the permitted origins and target IP
addresses, as well as port number8.13. If a packet has an address that is
not on its list, it is discarded. Given its simplicity, this type of firewall
is both efficient and is transparent to users, as well as being inexpensive
to implement. However, this very simplicity makes it vulnerable to such
attacks as network layer address spoofing.

Spoofing: In general (not necessarily computer-related) terms, spoof-
ing means assuming another entity’s identity. In a computer context, IP
spoofing, faking the origin of a message, was an idea tossed around the
cryptographic community in the 1980s. It first appeared in reality when
there was a problem discovered with the TCP protocol, called sequence
prediction (see [116] for a discussion of a story related to spoofing and
the introduction of the first Internet worm, called the Morris Worm; see
also pages 407–409 where we discuss worms in general). Later Bellovin
[16], wrote an article discussing the TCP/IP problems. Unfortunately,
IP spoofing is a problem intrinsic to the TCP/IP model. Yet there are

8.13Port numbers are integers ranging from 0 to 65,000, which allow data to be sent directly to
a specific device that is “tuned in” to the designated port on a target computer. Port numbers
less than 1024 are for use and assignment only by a systems administrator. Typically, a port
on a computer is specified by the IP address (of the computer on which the port is active),
followed by a colon, and the number of the port, such as 123.214.2.7:60.
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measures to be taken as we will see below. First, we look at some spoofing
attacks.

In the case of Mallory, say, trying to breach a firewall, he might use a
(source) IP address of a local network host in the hope of his packet be-
ing delivered by a system that “trusts” the IP addresses of internal hosts.
Some examples of IP spoofing are man-in-the-middle attacks (see Footnote
3.7 on page 134). For instance, there is the routing redirect attack, where
data is redirected from the original host to Mallory’s host, say. There is
also the source routing attack where Mallory redirects individual packets.
IP spoofing is used almost always in denial-of-service attacks (see Foot-
note 8.8 on page 300), wherein Mallory might spoof a source IP address to
thwart tracing his steps, and thus stopping the attack is made that much
more difficult. These are but a few of many attacks involving spoofing. In-
cidentally, one misconception about spoofing is that it involves anonymous
Internet access, which is not the case.

Diagram 8.26 Simple Firewall: Packet Filter
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2. Stateful Inspection Packet Filters — Dynamic Filtering: Since
the aforementioned packet filter firewall bases its decisions on whether
the IP address or port number correspond to those listed in the packet
filter’s configuration, the filtering process is static. However, there is a
methodology wherein it is possible to incorporate the notion of the state of
a connection into a packet filter. This is accomplished by using a state table
and some data in the TCP headers to record those packets previously given
access within a connection. In other words, stateful inspection keeps track
of an IP packet over a period of time; that is, “remembers” the interaction
between the local network and the Internet, say. This makes it possible
to thwart unauthorized incoming traffic. This implementation of a packet
filter is called stateful inspection packet filtering. Packets leaving the local
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network that require a particular kind of incoming packet are recorded.
Any packet coming into the local network are allowed only if they embody
an appropriate response. Whereas static packet filtering essentially only
checks headers, dynamic filtering of packets looks at the packet in context,
namely, all the way to the application layer. With dynamic filtering, a
network administrator is allowed to define the guidelines to satisfy the
requirements of the local network.

3. Application-Level Gateways — Proxy Servers:8.14 These types of fire-
walls are also called application proxies, since they require two ingredients,
a proxy server and a proxy client. Suppose that a user, Alice say, in the
local network wants to connect to a service on the Internet. Her request,
together with her authentication ID, is first sent to the proxy server at the
gateway/firewall using a TCP/IP application such as HTTP or FTP. The
proxy server, acting in the role of the Internet server, assesses the request,
and based upon the local network security policy, allows or denies Alice’s
wish. If approved the proxy server sends the data, as TCP pieces, to the
proxy client, which contacts the actual Internet server. Then connections
are established between the Internet server and the proxy client, which
relays them to the proxy server for transfer to Alice. Hence Alice’s out-
bound connections are always made to the proxy server, and the Internet’s
connections are always made with the proxy client. There is never a direct
connection between Alice and the Internet server.

Application gateways execute intricate record keeping and audit of traffic
passing through them, as well as the traditional access restrictions required
of any firewall. These firewalls may be used as NATs (see page 314).
The reason is that the data exits the firewall after having been processed
by an application, which usually conceals the source address of the data.
Thus, the complexity of this type of firewall slows performance and reduces
transparency. On the other hand, they are more secure than packet filters,
and render thorough audit records. Moreover, since they do not operate
at the TCP/IP level, rather at the applications level, they need to screen
only a small number of permissible applications.

There are several more advantages to the use of application gateways.
They recognize and administer high-level protocols such as HTTP and
FTP. At the same time, application gateways present the semblance that
they are connecting directly with external servers. They can also be em-
ployed within the local network to route services to other servers therein.

8.14A server may be viewed as a program, or computer, that provides services to other
programs, or computers. A proxy server is a server that acts as a go-between for a user in a
business enterprise, say, and the Internet so that enterprise can ensure security and control,
as well as possibly caching. A cache is a memory location that stores data for quick access.
For example, if a user requests a WWW page and the proxy server has a cache with that page
already in it, downloaded previously for another user, say, then that page can be forwarded
immediately to the next user on request. This saves a great deal of time over the server having
to actually request the WWW page from where it really sits on the Internet.
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Lastly, these gateways can be used for caching (as described in Footnote
8.14), and may be employed for user authentication.

There are some disadvantages to application gateways such as the fact
that the local network cannot run a network server on the firewall server.
Also, if a new protocol has to pass through the gateway, a new proxy has to
be implemented, which causes inefficiencies. Moreover the complication of
the process further reduces efficiency since modifications to configurations
often have to be made.

Diagram 8.27 Application Level Gateway/Firewall
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4. Circuit-Level Gateway: These firewalls are very fast, but have limited
security checks. They are a type of proxy server where a virtual “circuit”
is established between the local network and the proxy server, which re-
ceives requests, via the circuit, from Alice in the local network; and after
changing the IP address, delivers data to the Internet host. Any user out-
side the local network sees only the IP address of the proxy server, and
when it receives a response, it is relayed back through the circuit to Alice.

The security checks are restricted to the firewall’s checking of permissions
for Alice to send her message to the Internet, based on local security
policy, and whether the target Internet host has permission to receive
Alice’s data. If a connection is established, no further checks are done.
Hence, circuit-level gateways are best used when Alice is a trusted local
network user.

These gateways transmit TCP connections, such as TELNET, wherein
once the connection is established, the firewall forwards data unrestricted.
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This makes circuit-level gateways more secure than static packet filters,
but less so than application gateways, since there is no applications-level
checking. The circuit-level firewall security is essentially the decision per-
taining to which connections will be permitted. Whereas the applications-
level gateway operates (necessarily) at the applications level, the circuit-
level gateway functions at the session level, which explains the means by
which the proxy sets a virtual circuit between Alice and the Internet host
on a session-by-session basis.

Disadvantages to the circuit-level gateway are that they are restricted to
TCP protocol access, they have limited ability to audit events, and they
cannot interpret the application protocol being employed.

Now we turn to a circuit-level gateway implementation, which is consid-
ered to be an Internet standard firewall. First, we need to expand our
understanding of several notions. On page 199, we (informally) defined
the term (computer) host to mean those computers that provide services
to other computers and to users on a network (such as the Internet). There
is more to it. A host has associated with it a host number, and coupled
with its network number, forms its unique IP address (see page 303). The
host number is that part of the IP address that determines which com-
puter on the subnetwork8.15 is being addressed. The Network number is
that part of the IP address that designates the specific network to which
the host belongs.

The term IP reachability is often used synonymously with Internetworking,
which means any technology and associated mechanisms allowing commu-
nications across disparate computer networks. The following firewall has a
basic function which is to provide hosts on either side of it to communicate
without direct IP reachability.

� The Socks Firewall/Proxy

SOCKSv5 is an IETF standard (see [194]) known as the Authenticated
Firewall Traversal (AFT). SOCKS (derived from SOCK etS ), is a net-
working proxy protocol allowing hosts on one side of the SOCKS server
to access hosts on the other side of the SOCKS server without direct IP
reachability. When used as a firewall, SOCKS redirects requests for con-
nections from both sides of the SOCKS server; so acts as a proxy server.
The SOCKS protocol makes connection requests, establishes proxy cir-
cuits, relays data, and authenticates clients. This is accomplished as fol-
lows.

First an application client, Bob say, sends the SOCKSv5 server a request
for connection. If the request succeeds, Bob sends a list of authentication

8.15A subnetwork is a set of computer systems under the control of a single administrative
domain that uses a specific network-access protocol. Forming subnets, subnetting, allows a
network supervisor to segment the host part of an IP address into more than one subnet,
which is interconnected, but independent portion of a network.
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schemes that he can support. Then the SOCKSv5 server selects one, or
if none of the methods intersects nontrivially with the network admin-
istrator’s security policy, no connection is made with Bob. If a method
is available, the SOCKSv5 server sends the choice to Bob, after which
authentication is set up between Bob and the server.8.16

Once authenticated, Bob sends his request to the SOCKSv5 server, and
that request must contain the IP address of the application server with
which Bob wishes to connect. Then the SOCKSv5 server evaluates Bob’s
request and either rejects it or accepts it. If it is accepted, then using
the address sent by Bob, the server connects to the specified application
server, and establishes a circuit between Bob and it, notifying Bob in the
process. Once established, the circuit conveys data between Bob and the
external server with the SOCKSv5 server screening each fragment of data
and relaying it between the two.

There is an earlier version of the protocol, SOCKSv4, but it had some
issues that were not fully considered or were omitted altogether such as
authentication, which SOCKv5 addresses completely. SOCKSv5 is used
as a firewall, proxy server in VPNs, as well as a single communications pro-
tocol that authenticates users and establishes a communications channel.
SOCKSv5 uses the same channel for both authentication and communica-
tion establishment, which has a higher degree of integrity guarantees built
into the process. Moreover, it does so without direct IP reachability.

Socks may be configured to work with virtually any application, and it
can set up not only TCP connections, but also UDP connections via a
proxy.8.17 UDP capacity is another improvement of SOCKSv5 over its
former version. This is a valuable addition since UDP provides a couple
of services not available with TCP. One is an (optional) capacity, called
a checksum, meaning a value related to the contents of a packet, sent
with the packet, or stored to detect if the data has been altered during
transmission. The other UDP feature (over TCP) is that it provides port
numbers to help differentiate user requests. SOCKS uses sockets8.18 to
record and track a given connection.

5. Kernel Proxy Firewall: The fifth and latest generation of firewall is the
8.16There are, in fact, two support authentication mechanisms for SOCKv5. They are RFC
1929 [195], and RFC 1961 [196].
8.17A UDP is a User Datagram Protocol, which is a communications protocol providing
service for network communications that use IP. In fact, UDP is an alternative to TCP. UDP
actually transfers what is called a “datagram” from one computer to another. A datagram is
an independent data unit not requiring preprocessing in order to be transported from origin
to target site on the network. Datagram is a term that has been replaced by the word packet,
and either term is simply meant to refer to any message unit that the IP handles and the
Internet transfers from one site to another. UDP differs from TCP in that it does not keep
track of the order in which packets arrive at the target site. Thus, since UDP does not process
the sequence of packets, time is saved, so UDP is used over TCP when there is only a small
amount of data to process. Both TCP and UDP are transport layer mechanisms.
8.18Think of a socket as one endpoint of an interprocess communication link between two
entities on a network, and each entity establishes their own socket.
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most intelligent. It has the capacity to do stateful inspection of network
packets at every protocol layer of the network stack. It does so via the
existence of a proxy within the kernel (core of the firewall), and relays
packets on a session-by-session basis using a custom TCP/IP stack. In
this fashion, each packet is screened at every layer from the physical to
the application and back. Yet, despite this complexity, the filtering can
be done efficiently. It accomplishes this via the kernel embodying the full
set of available proxies. The kernel stands ready to proxy any protocol
layer and execute full security checks.

The proxy server examines each incoming packet against a network secu-
rity policy. If the packet passes this security point, it is checked against
existing sessions. If the packet belongs to one, it is relayed to the proxy
stack for that session. Each such proxy stack is dynamically built for each
session. If the packet does not belong to an existing session, a new proxy
stack is created and the packet is relayed to that stack for analysis.

Each of the dynamically created stacks analyze the network packet for
those protocols determined by the specific session. Each packet may be
discarded at a given layer if it does not meet security standards, or it may
be modified at the pertinent protocol proxy. Furthermore, each proxy
layer records state information for a given session.

If there are particular requested services, the proxy establishes an appli-
cation layer extension. This renders the specific services, such as caching,
without sacrificing efficiency. If no such additional services are needed,
the packet does not go to the applications level.

There is also a native network stack, which stands alone without changes
and has its own separate security policy allocated to it. Packets may be
passed to the native stack after passing security checks/modifications, or
the packets may be delivered to other computers, if so destined.

The new firewall architecture marries the need for some of the best possible
security with exceptional performance. It still suffers from the failing of
all firewalls as outlined on page 315, of course, but is a fantastic stride
forward for network security.

There are hybrid systems employing combinations of the above firewalls
using what is called a bastion host, which is a host that a local network designates
as the only computer allowed to be accessed directly from the Internet, and
used to shield the local network from security breaches. Usually, bastion hosts
are stages for either application-level or circuit-level gateways. An example
would be what is called a screened subnet firewall wherein a packet filter firewall
is positioned on either side of the bastion host, thereby creating an isolated
subnetwork. Another example is one configured to have both the packet filter
and application gateway firewalls positioned on either side of the bastion host.
Numerous such configurations are possible. The endgoal is maximum security
with minimum time.
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8.5 Client–Server Model and Cookies

Any general statement is like a cheque drawn on a bank. Its value depends
on what there is to meet it.

Ezra Pound (1885–1972), American poet
— from The ABC of Reading (1934)

We have informally discussed client-server model applications throughout
the text such as Kerberos in Section 5.2 and SSL in Section 5.7. Now we look
at the general nature of such models, largely from the perspective of “cookies”,
which we will define and study in detail below. The so-called client-server model
is one of the central features of Internetworking. It is time to settle on a general
definition of these terms.

� Client-Server Model
A client, when considered as part of software, is a computer program (al-

though we may use Alice and/or Bob in these roles), which relies on a server
to perform some operations. (In the client-server model, the term “program”
may be replaced by the term “computer” on which the program runs, sometimes
called a “host computer”, but this computer is typically employed for more tasks
than just the client-server architecture). Think of a client as a “requester of ser-
vices”. A server in this context, is a computer program that provides access
(for the client) to WWW formats and protocols (or to where HTML documents
are stored). Think of a server as a “provider of services”. The client-server
model is a relationship between two programs in which one program, the client,
makes a request of the other program, the server, which fulfills the request.

Client-Server Origin and Role: The client-server model was introduced
in the 1980s as message-based modular software, intended for use over a network.
The motivation was to improve functionality, versatility, interoperability, and
scalability over a single mainframe computer with time sharing. It is possible to
configure the client-server architecture so that it operates on a single computer;
in other words, the same machine serves the role of both client and server.
However, the intention for, and full value of, the client-server model is realized
over a network with physically separated client and server machines. This is
because the client-server model was introduced largely to address the limitations
of file-sharing architecture where the server downloaded files from the shared
location to the desktop environment. This type of architecture was strained by
a large number of online users, and large volumes of data. The client-server
architecture, in contrast, was a means by which the file server was replaced by
the database server. By employing a database management system (DBMS),
user enquiries could be answered directly, thereby reducing network traffic via
an enquiry and response rather than total file transfer. The term Intranet means
the employment of Internet technology for a given organization to implement
client-server applications. To do this, a corporation for example, would merely
have to change its code on an HTTP server, as opposed to updating, the client
code on numerous desktop computers in its organization.
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Among the simplest forms of servers are the file servers, whereas among the
more advanced servers are the database servers. As mentioned earlier, use of a
file server to transfer data over a network slows the process considerably. In the
client-server model, the client sends a request to a server, which processes the
request on its own power to find the requested data rather than transferring all
the information back to the client to find its own data.

Client-Server and HTTP: On page 219, we were introduced to HTTP
via protocol layers studied in Section 5.7. Here is how HTTP fits into the client-
server model. When Alice opens her WWW browser (a client software program
used for locating and viewing different types of Internet resources such as data on
a WWW site), she indirectly makes use of HTTP. Each WWW server contains
an HTTP daemon8.19 (pronounced dee-muhn), denoted by HTTPD, which is
a continuously running program (by itself under the operating system), whose
sole purpose is to (wait for and) handle requests that a given computer system
receives periodically. Alice’s browser is an HTTP client that makes requests to
a server by, say, opening a WWW file via the typing in of a Uniform Resource
Locator8.20 (URL). By so doing, her browser formulates an HTTP request and
sends it to the IP address indicated by the URL. The HTTP daemon at the
server site receives the request and sends back a response in the form of requested
files. Unfortunately, HTTP is what is known as a stateless protocol, which means
that each time Alice visits a WWW site (or even when she just clicks to another
location from that site), the server sees this as her first visit. In other words, the
server forgets all that has transpired after each request unless there is a means
to somehow “stamp” Alice so that the server will remember the details of her
last visit. The following is a mechanism for accomplishing this task.

� Cookies8.21

What is a cookie and how does it fit into the client-server model? In simplest
terms, a cookie is data (for future use) that is stored by a server on the client side
of a client-server model. For instance, a cookie might record Alice’s preferences
when visiting, say, QQQ.com. The cookie is a means by which the server can
store its own data about Alice on Alice’s own computer.

Analogy: An analogy is a voucher Alice gets when she brings her shoes to a
cobbler, Corbett, say. If she returns for her shoes without that voucher, Corbett
will not be able to locate her shoes. To him, she could be a new customer. Alice’s
8.19The etymology is from the Greek meaning an attendant supernatural being, on a hierarchy
between gods and humans.
8.20A URL is the acronym for Uniform Resource Locator, which is the global address associ-
ated with given data. The first part of the URL specifies which protocol to use, and the second
part indicates the domain name. For example, http://www.math.ucalgary.ca/˜ramollin/ in-
dicates that this is a WWW page and the HTTP protocol should be used. The second part
is the domain name where my homepage is located.
8.21The origin of the term “cookie” is uncertain, although its inventor, Netscape, claims it
was a name chosen at random. Some claim that it was derived from a similar Unix operating
system transaction called a “token”. On MAC computers, the cookies are kept in a list called
“magic cookie”, whereas on IBM CPUs, they are in a file called “cookies.txt”.
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voucher is necessary for Corbett to maintain record keeping, and it establishes
a formal relationship (which we will call a state), between him and Alice.

Cookies and HTTP: In Internet terms, a server, when returning an HTTP
object to Alice, includes a cookie that has a description of the range of URLs for
which that cookie is valid. Any future HTTP requests made by Alice that fall
in that range will include the current value of the cookie from Alice sent back
to the server. This means that she can shop online and store information about
the currently selected items, and it frees Alice from retyping her user ID for each
visit. The sites at which she shops can store preferences on her computer, and
have Alice supply those preferences every time she visits that site. For instance,
the QQQ.com server provides the cookie to Alice’s browser, which stores it in
its memory as a text file. Each time her browser sends a request to QQQ.com
(when she types in its URL for example), the cookie is sent back to the server.

Types of Cookies: There are different types of cookies. For instance,
a session cookie (or transient cookie), is one that is erased when Alice closes
her browser, because the session cookie is stored in temporary memory and
discarded after the browser is closed. These transient cookies do not obtain
information from Alice’s computer. Rather they store data in a session ID
format, which does not explicitly identify Alice. Another type of cookie is the
persistent cookie (also called, permanent or stored cookie), which is a cookie set
with an expiration date and is stored on Alice’s hard drive8.22 until it expires (or
else Alice, herself, deletes it). Persistent cookies gather information about Alice,
including her WWW surfing behaviour or her preferences at, say QQQ.com. The
QQQ.com server may use this information to present Alice with a customized
welcome page with, say “Hello Alice”, the next time she visits.

Alice’s browser automatically updates her cookies every time she revisits a
site, since once the browser is closed, the cookies are resaved to disk.

Effect of Cookies: In the final analysis, a cookie is simply a piece of text,
not a program, and only Alice’s browser can store cookies on her hard drive, if
it is a persistent cookie. The data is stored in a special file called a cookie list,
and is done without the knowledge or consent of Alice. However, it cannot be
used for, say, a virus, so it is harmless in that regard. Moreover, the number of
cookies allowed for storage on Alice’s hard drive is also restricted. Most browsers
conform to RFC 2109 (see [203]), which puts a limitation of 300 cookies that
may be stored on a given hard drive (with a 4096 byte-per-cookie maximum).
This involves a limit of 20 cookies per WWW site, so if 15 sites maximize the
cookies on Alice’s hard drive, then the next time a cookie is to be set, Alice’s
browser will discard her least used cookie to free space for the new cookie.

When Alice returns to QQQ.com, her browser will automatically and again,
without her knowledge or consent, transmit the cookie containing her personal
data to QQQ.com’s server.
8.22A hard disk, also called a disk drive, is part of a unit that stores (and provides efficient
access to) large blocks of data on one or more electromagnetically charged surfaces.
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Cookie Ingredients: Cookies transport between server and client as an
HTTP header, and the formal specifics of this header as defined in RFC 2109.
There are six parameters that can be assigned to a cookie. The first two are
mandatory and are set by pairing them together. The others (set optionally),
configured manually or automatically, typically separated by semicolons.
1. Name: This is any alphanumeric value (excluding semicolons, commas,

and white space), used to identify the cookie.

2. Value: This cookie value may be any scalar.

3. Expiration Date: This determines the valid lifetime of the cookie and
if not explicitly set, defaults to the end of the session, as long as Alice’s
browser is open.

4. Path: This sets the subset of URL paths on a domain for which the cookie
is valid. If a path is not specified, the default is the path of the document
that created the cookie.

5. Domain: This is the textual equivalent of a numerical IP address. When
searching a cookie list, a comparison is made between the tail of the valid
host domain name (such as QQQ.com), and the tail of the cookies on the
list. For instance, it might be shopping.QQQ.com, which indeed satisfies
the tail matching for the domain QQQ.com. Because of this tailmatching,
no domain is allowed to set a cookie with fewer than two dots, in order
to distinguish among tails such as those containing .com, .ca, .gov, and
so on. Thus, for instance, QQQ.com would not be an allowed cookie on
the list. Moreover, the server setting the cookie must be a member of
that domain. For instance, WWW.QQQ.com cannot set a cookie for the
domain WWW.RRR.com, since the security breaches would be severe.

6. Secure Label: If this label is set to TRUE, then the cookie may only be
sent over a secure channel, typically HTTPS (see page 220). The default
is FALSE, since most WWW sites do not need secure connections.

Basically cookies are pieces of textual data generated by a WWW server
for storage on a client’s computer for future access. Cookies are embedded in
HTML information that flows between the client browser and the server. Most
often both the storage of, and access to, cookies goes unnoticed by the client.
However, any client, concerned about privacy issues can set their computer to
notify of any attempt to set a cookie, and will ask permission. Of course, this
may become a headache since there will be a lot of “alerts”. The crucial issue is
for the client to be “aware” of the issues, which this section addresses. Cookies
cannot damage your computer or give out private data on you without your
giving it out at a WWW site in the first place. The bottom line is that cookies
were meant as a mechanism to make it easier for you to access your favorite
WWW sites by storing information, so you do not have to login each time you
visit, a process impossible before the advent of cookies due to the stateless
nature of HTTP.
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8.6 History of the Internet and the WWW

Networks aren’t made of printed circuits, but of people
Cliff Stoll

— from The Cuckoo’s Egg (see [273, page 392])

It is appropriate to close this chapter with a look at the origins of the
stage upon which the applications (which we have been describing), perform,
the Internet and World-Wide Web (WWW), the principal information retrieval
scheme for the Internet. The Internet is the system architecture underpinning
the globally interconnected network of computers, the set of all the computer
networks connected, via routers, all over the globe.8.23 Now we look at where
they began, how they developed, and how the infrastructure evolved.

Computer networks existed as far back as the late 1950s in the form of
special-purpose systems (such as the inception of the airline registration sys-
tem called SABRE). By the early 1960s, time-sharing systems were in use in
many leading-edge corporations. These systems allowed multiple employees
of the firm to access the computer virtually simultaneously. Such computers
came to be known as hosts, and with a vision toward a host-to-host network.
By 1969, the first implementation of a host-to-host, general-purpose network
was put into service, called ARPANET, for the U.S. Department of Defence’s
Advanced Research Projects Agency (ARPA).8.24 ARPANET supported host-
to-host, time-sharing connections in the United States, mainly at government-
supported research sites such as universities.8.25 ARPANET also contained one
of the first e-mail manifestations in the form of a protocol called simple mail
transfer protocol (SMTP).8.26 From SMTP evolved the file transfer protocol
(FTP) needed for use with much larger data packages than those typically en-
countered in an e-mail transmission. In order to process these bigger blocks of
data, ARPANET used a new segmenting mechanism called packet switching,
which broke down large blocks of data into manageable packets for independent
dispatch, and later reconstruction at the target site. This new notion for pro-
cessing of packets via segmentation and reconstruction was one of the earliest
means of communication without a dedicated channel.8.27 Although packet net-
works were created in the private sector in the 1970s, such as Telnet in the U.S.,
8.23There exist isolated internets that are not connected to the Internet, but still follow
Internet Standards (see RFC 1602, [193]).
8.24The RFC series (see Footnote 7.2 on page 262), began in 1969 as part of ARPANET.
8.25However, the military people wanted separate communications, so they created Milnet,
which nevertheless, remained connected and accessible by ARPANET users.
8.26The other modern-day e-mail standard is Post Office Protocol (POP). When e-mail arrives
at an SMTP server, it is forwarded to a POP server where it is stored until accessed by the user
who logs on to the POP server with username and password. Then the POP server retrieves
the mail and sends it. The newest version, POP3, can be used with or without SMTP.
8.27A dedicated channel is a channel reserved exclusively for one type of communication. The
term is often used to mean a leased or private line. On the other hand, a dedicated server is
a particular computer in a network reserved specifically for the purpose of fulfilling the needs
of the network. Typically, however, most servers are not dedicated in today’s world, since
the computer may be employed to be a server in addition to performing other duties. The
antithesis of dedicated is general purpose.
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these were not host-to-host connections. Instead, they were virtual circuits over
packet networks. In the 1970s and 1980s, the host-to-host networks remained
in government control.

ARPA was replaced by DARPA, the Defence Advanced Research Project
Agency, which may be seen as having played a seminal role in the establishing
of a mini-version of the Internet via its researchers employing a network for
their communications. Essentially, DARPA employed a combination of ground
and satellite-based packet networks. This allowed a combination of ground-
based radio system transportable access to computing facilities, coupled with
a satellite-based connection between the United States and Europe. However,
there was no interconnection among the ground-based net, the satellite-based
net, and other networks; i.e., the modern-day Internet was not yet born.

By the mid-1970s, the notion of data packets evolved into a scheme called
Transmission Control Protocol (TCP), allowing interconnected networks all over
the globe to transmit and receive data. This new protocol contained a world-
wide addressing scheme permitting routers to deliver data packets to their target
sites. This new addressing method was called the Internet Protocol (IP). By the
mid-1980s, the TCP/IP scheme was effectively adopted worldwide.

The National Science Foundation (NSF) in the U.S. played a significant
role in establishing TCP/IP as a universal standard. In the mid-1980s, they
funded the first five supercomputing centers, and the development of NSFNET,
a network to connect these centers. By the late 1980s, a commercial distribution
of networks was developed in the private sector called the Commercial Internet
Exchange (CIX), since private enterprise was not allowed to use NSFNET for
their transactions. However, by 1993, federal legislation allowed NSF to open
NSFNET to commerce. As a consequence, in 1995, NSF dropped its support
of NSFNET, since they saw the willingness of the private sector to support a
communications network on their own. This, as with cryptography discussed
earlier, marked the end of government control of the Internet, and permitted the
proliferation of private sources to carry the torch. For instance, at the grassroots
level, the IETF has developed and maintained standards (see page 219). By the
late 1990s, the number of Internet Service Providers (ISPs) had mushroomed,
and we now have tens of millions of ISP subscribers, with no end in sight.

In 1988, the Corporation for National Research Initiatives provided the first
commercial Internet connection linking e-mail, called MCI mail. Following this
inception, other e-mail providers entered the fray and Internet traffic has never
been the same. In September of 1993, the National Center for Supercomput-
ing Applications at the University of Illinois introduced Mosaic, which was the
first of a new breed of computer programs called a browser, which made it eas-
ier to access, obtain, and display Internet files. Embedded in Mosaic was a
collection of protocols, developed at Centre Européen de Recherche Nucléaire
(CERN), for an Internet application called the World-Wide Web. From Mosaic
Communications Corporation evolved Netscape Communications Corporation,
established in April 1994, to develop Mosaic for commercial use. Mosaic was
released officially in December of 1994, after which it swiftly became the pre-
dominant browser. Later, Microsoft Corporation developed Internet Explorer,
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which was derived from the Mosaic idea. In fact, Mosaic was the first program
to produce a multimedia graphical user interface (GUI).8.28

In the 1980s, CERN saw a clear and increasing need for researchers, students,
and visiting scientists to quickly become conversant with the latest developments
in physics and information processing. CERN’s project included the use of their
hardware and software to implement some elementary browsers for individual
users, at their workstations, who incorporated their ideas into the framework.

In March of 1989, the WWW was initiated as an information retrieval system
based upon the client-server model. To operate the scheme, the researchers at
CERN created a protocol named HyperText Transfer Protocol (HTTP) a mea-
sure initiated to standardize server-client communications. The WWW browser
was officially released in January of 1992, and the acceptance of the WWW
was accelerated by the aforementioned creation of Mosaic. The WWW swiftly
ascended into the stratosphere in terms of the number of users.

The WWW allows users to access the universe of data all connected to each
other via hypertext (also called hypermedia links) or simply hyperlinks, which
are electronic interconnections that tie together blocks of data permitting easy
access by users. The way this works is that hypertext is essentially an aspect of
a computer program permitting a user to choose a word or phrase and obtain
more data on it — a definition or related commentary within the text — for
example. Mosaic introduced this notion to the WWW to allow users to employ
the point-and-click option they had on their personal computers for some time.
For instance, point at the text “hypertext” at a WWW site, and one might
be taken to a document with comments on “hyperlinks”. This provides users
with instant access, cross-referencing to a large array of linked relevant data
pertaining to their target idea. It allows users to access small pieces of data at
any given time, digest it, and move on to more data through more links.

A hypertext document and its associated hyperlinks are written in HyperText
Markup Language, which comes with an assigned URL. The user may contribute
to the documents on the WWW by creating their own homepage written in
HTML, which is a simple, easy-to-learn language. The user merely dictates the
structure and content they want on their site, and the detailed presentation and
extraction of information is left to the user’s browser.

The future of the Internet is unbounded in terms of the features it may offer
us, as is the potential for hypertext in the WWW scheme. We are, in this new
millennium, on the verge of an explosion of information technology that will
rival the changes that the advent of the twentieth century produced. The dawn
of the twentieth century did not see the air and ground travel, which we now
take for granted, nor was it a computer-dominated world, without which our
own would collapse. What will the next century bring for us?

8.28A GUI refers to the use of pictures, as well as text, to display the output of a program.
This may be presented in the form of icons or buttons, for instance, which a user can control
via a mouse-controlled pointer. Although the concept of a GUI was conceived at Xerox’s
PARC laboratory in the late 1970s, it was Apple with its Macintosh operating system that
first employed it in a computer for general use. The term multimedia refers to the interaction
between computer and user including graphics, text, video, speech, and often hypertext.
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Applications and the Future

The future ain’t what it used to be.
Yogi Berra (1925–) American baseball player

9.1 Login and Network Security

When we login (sometimes called signing in), to a computer, we must pro-
vide a passphrase, which may be as simple as a single word (typically called a
password), or a sequence of words used to identify us uniquely for secure access
to the system. The encrypted passphrase will be accompanied by our plaintext
username ID. A user ID, authenticated by its associated passphrase, determines
the privileges allotted to the user, which may vary from personal e-mail access
to superuser status, where actions may be executed that are protected by the
operating system.

If we are trying to login from home, or a hotel when on a trip, to gain
access to a computer at work, for instance, this is called remote login. In this
case, passwords may travel over unsecured channels, making them susceptible to
eavesdropping by Eve or interception by Mallory. Mechanisms exist for dealing
with these situations. One strong method, IPSec, was studied in Section 8.3. Of
course, while workers are at their workplace, firewalls would likely be in place
to prevent attacks, and IPSec deals with communications between such secu-
rity gateways, as we have seen. A secure PKI indirectly assists here since the
X.509V3 certificates are part of the IPSec protocol, including user transparency
on certain issues. Moreover, we have the strong X.509 authentication proto-
cols studied in Section 7.4, which also employ X.509 directories and other PKI
structures. We have methods for secure authentication in e-commerce, such as
SET studied in Section 6.3. Secure session-based communication via SSL was
explored in Section 5.7. E-Mail security via PGP and S/MIME were described
in Chapter 8, and message authentication itself was discussed in Chapter 7.
Now we delve further into password protection.

On page 168, we described the use of one-way functions in the role of pass-
word security. Also, we have already been introduced to the concept of a
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“salted” message (see Footnote 3.8 on page 136). Passphrases may be salted,
or as we saw with the explanation of SRP (see page 200), a salt and a verifier
can be used to eliminate the need for direct password-based schemes.

� Why Use Salt?
The purposes behind salting a passphrase are threefold.

1. Eliminating the visibility of duplicate passphrases on a user’s file.

2. Increasing the bitlength of the passphrase, to thwart password-guessing.

3. Helping to thwart attacks such as the dictionary attack (see Footnote 5.2
on page 201).

� Proactive Password Selection
Since human beings are notoriously lazy about choosing proper passwords,

instead selecting easy-to-remember words, and neglecting security, there needs
to be a means for ensuring that user-chosen passwords are acceptable. This
is where a proactive password checker comes into play. This built-in checker
will determine if a user-selected password is acceptable, and reject it if not,
prompting the user to try again. System enforcement may contain some of the
following criteria.

Passphrase Selection Criteria
Parts 1–4 below refer to the criteria for a proactive checker itself, whereas

the remainder are more for a given user to consider when choosing a passphrase.

1. All passphrases must have at least ten symbols.

2. There must be at least three of: lower case letters; upper case letters;
numeric; and characters such as !,#,),&,*,❅, and so on.

3. No symbols should be repeated.

4. No actual words should be used.

5. No personal data such as birthdays, or telephone numbers should be used.

6. Memorize the passphrase. Never write it down and do not store it on your
computer as a file.

Of course, the above criteria are also known by Mallory, so he knows which
passphrases he should not try, but if properly implemented, a brute-force attack
is made less likely to succeed.

There exist methods for creating effective and efficient passphrase checkers,
which do not require lots of space and time as would, say, a list of stored
“unacceptable” phrases. There is a Markov model (see [64]), and a Bloom filter
model, both of which are probabilistic methods (for details, the interested reader
may consult: [267] and [268]).
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Attacks on Passwords

We have met some attacks on passwords already in our travels, such as
password sniffing (see page 199); the birthday attack (see page 252); spoofing (see
page 305); and the dictionary attack (see Footnote 5.2 on page 201). Moreover,
there is also password-cracking software available. Some of these we saw only
in passing so we expand our discussion here.

There are attacks based upon the aforementioned human laziness in choosing
passwords. Mallory understands these human weaknesses and exploits them in
a group of attack methods known collectively as social engineering attacks (see
page 394).

There are several attacks Mallory may employ to gain access to sensitive
information as follows.

� Packet Sniffers

A packet sniffer is a program that monitors, captures, and analyzes network
traffic, or databases (legitimately or illegitimately). For instance, a database
might be (illegitimately) scrutinized by Mallory to detect passwords. If he is
successful at gaining access to a system-level password, Mallory can create a
new account that can be used at will as a back door to get into the network and
its resources, including the altering of core system files, such as the password
for the system administrator account, the list of server services and permissions,
and the login information for other machines, containing critically confidential
information. This could create chaos since the daily workings of the network are
up for grabs, and Mallory’s network packet sniffer can be modified to include his
information or change system information in a network packet, forcing network
connections to behave erratically, at best.

Packet sniffers can also be used legitimately as follows. A snoop server is
a server that uses a packet sniffer to capture network traffic for analysis. For
example, an employer might want to use a snoop server to monitor the WWW
sites visited by their employees.

Snoop servers typically operate in promiscuous mode, which is a networking
mode allowing a network device (a unit of removable hardware), to access all
packets, irrespective of their target addresses. In this manner, a snoop server
for instance, can seize any data packet, copy, and store it to a file for later
analysis and reporting. For example, the Sun operating system, Solaris, has a
feature called the snoop command permitting administrators to capture packets
with an attendant packet description or summary. However, this also permits
intruders (running the Solaris OS), to scrutinize the traffic over the network.

In general, a promiscuous mode is used for legitimate monitoring of net-
work activity. This might involve the performance of diagnostic testing to try
to resolve such problems as bottlenecks in the flow of traffic, or general trou-
bleshooting to identify a variety of performance problems. Modern sniffers can
be configured to automatically alert administrators when a performance prob-
lem is triggered by some preset standard, which they set as a local bound.

A packet sniffer can be configured to store copies of packets in memory or
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hard drive.9.1 This might be done via temporary storage in a buffer for later
analysis. Employers might want to monitor any number of employee activities
such as who visits the employee’s site; what an employee downloads, including
streaming audio and video; contents of incoming and outgoing e-mail messages;
which sites the employee visits; and the contents of what they view at a given
site. The amount of traffic scanned by a given packet sniffer will depend on the
location of the computer in the network. If it is located in a relatively secluded
area of the network, then the sniffer will be able to scan only a tiny portion
of traffic over the network. However, if it is the principal domain server, for
instance, the packet sniffer will be able to scan virtually all of the traffic.

The above being said, Mallory still likes packet sniffers, since if successful,
he can use them to seize passwords from data packets traversing the network
and wreak havoc as described above. One method of thwarting Mallory is to
encipher the headers of packets using SSL in browser-based traffic (see Section
5.7).

Ethernet and Promiscuous Mode
Ethernet (as specified in IEEE9.2 802.3), is the most commonly employed

Local Area Network (LAN). Ethernet evolved from a framework called Alohanet,
named for the Palo Alto Research Center Aloha Network, which was developed
into Ethernet by XEROX, then further expanded later by DEC, Intel, and
XEROX. There exist Ethernet configurations that provide transmission speeds
up to 10 billion bits per second, called Ten-Gigabit Ethernet, which is specified
in IEEE 802.3a. The future of all interconnections of LANs, WANs, and MANs
is generally predicted to be via the Ten-Gigabit Ethernet.

Now that we know the basics of Ethernet, we describe the use of packet
sniffers in this context. Ethernet was designed to filter out all data traffic not
belonging to it. When a packet sniffer is installed in Ethernet hardware, that
filter is turned off and the hardware goes into promiscuous mode. Thus, if Alice

9.1Although we gave a basic definition of a hard drive in Footnote 8.22 on page 324, we will
expand it here to get a better idea of how they function. A hard disk is essentially a collection
of stacked disks, each storing data electromagnetically recorded in concentric circles, called
tracks. Two heads, one located on each side of a disk, read or write the information on these
tracks as the disk spins. The spin speed is anywhere from 4500 to 7200 rpms. Think of the
comparison with a phonograph record and its player having a phonograph arm (“head”), to
“read” the music.

9.2IEEE, pronounced I-Triple E, is the Institute of Electrical and Electronics Engineers
Incorporated. The AIEE, American Institute of Electrical Engineers, which was founded in
1884, merged with the IRE, Institute of Radio Engineers, in 1963 to form IEEE. The primary
function of IEEE, for our interest, is the development of standards for communications security,
the most famous of which are the IEEE 802 standards for LANs and WANs. A LAN is a
collection of computers and their attendant mechanisms sharing a common communications
channel or wireless linkage, and (usually), a shared server. The common server has applications
and data storage, which may be accessed by the LAN users who may vary in number from
a couple to several thousand. A WAN is a Wide Area Network, which differs from a LAN
in that it is a geographically more dispersed network, which usually includes shared user
networks. In size between a LAN and a WAN is a MAN or Metropolitan Area Network,
typically meaning the interconnection of networks in a city into a single large network. A
MAN, of course, provides a more efficient connection to a WAN. For more information on
IEEE and its standards, visit http://www.ieee.org/portal/index.jsp.
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and Bob are communicating over an Ethernet channel with a packet sniffer
attached, Mallory can read all the traffic between them. Packet sniffers on an
Ethernet consist of the following components.

Packet Sniffer Components

1. Hardware: In promiscuous mode, every packet is received and read by a
network adapter, which is a physical device such as a card (and its software
driver) that connects a host computer to network traffic, allowing the host
to send and receive packets. A network adapter is sometimes called a
network interface.

2. Capture Driver: This type of driver captures the network traffic and
stores it to a buffer, for instance. A driver in general, is a program that
controls a particular device, such as a printer, or disk drive. Either the
driver will come with the operating system or have to be loaded when the
device is added. Think of a driver as a translator between the device and
the programs using the device.

A device driver is a program that controls a specific device such as a
printer. Thus, we may (informally) think of a capture driver as a program
that controls the capture of information packets for the packet sniffer.

3. Buffer: The captured data from the network are stored in a buffer until
they can be analyzed.

4. Protocol Analyzer: This aspect of the packet sniffer strips off any encod-
ing and analyzes the data (see Section D.6 on page 541).

The antithesis of promiscuous mode is nonpromiscuous mode wherein pack-
ets are scanned and passed on if those data packets are not theirs. Only the
target site device receives and reads the data in this mode.

Now we return to the issue of login security. We have addressed the issue
of password selection and checking, remote logins, and attacks that may obtain
passwords. We turn to a modern secure method for password storage.

� Security Tokens

A security token is a special device (a physical object usually ranging in size
from that of a housekey to that of a credit card), which a user carries for the
purpose of authorized access to a network. For example, the device may be
embedded in a key fob, which has the physical appearance of a key, but has
built-in authentication mechanisms consisting of the following:

1. The user’s PIN, authenticating, say Alice, as the fob’s owner.

2. A login ID, which is displayed after Alice correctly enters her PIN, allowing
her to login to the network.
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Token Applications

1. A token may be embedded in a smart card, which has the physical ap-
pearance of a credit card but has the above authorization mechanisms
embedded. (We will study smart cards in detail in Section 9.3.) The login
ID is not static, and may actually change every few minutes for security
reasons. Thus, if a security token is lost, and Mallory finds it, he cannot ac-
cess the network without Alice’s PIN. Furthermore, an additional security
measure against the possibility that Mallory might launch a brute-force
attack to recover Alice’s PIN, is that the device would be disabled after
a small number of attempts to enter the PIN, say, three or four. Hence,
security tokens provide one of the foremost, modern, practical methods
for the storing of secret keys.

2. Since employees of, say, a corporation, need to insert their security token
into their computers for network access, the corporate administrators must
guard against human laziness. For instance, a user, such as Alice, might
decide to leave her office, to get a coffee, say, and not remove the token
from her computer, which is a security risk. To guard against this, the
employers may require that the token is needed for access to her office, the
coffee machine, the filing cabinets, the department office, the rest room,
and so on. In this fashion, the token cannot be left unattended, in any
reasonable scenario. This makes such a system foolproof, but not idiot-
proof. (An adage is that genius knows its limitations, but stupidity is
unbounded.)

We will learn about other security options such as biometrics in Section 9.4.
For now, we turn to a remote login protocol that is considered to be the industry
standard.

� The Secure Shell Remote Login Protocol (SSH)

Although there is an older version, SSH1, we will describe only the newer one,
SSH2, which corrects failings of the original, including susceptibility to certain
attacks. SSH1 and SSH2 are quite different and are actually incompatible under
certain configurations. We describe only SSH2 since it is a complete rewriting
of the SSH1 protocol, does not use the same networking implementation, and
is more secure. We do point out the advantages SSH2 over SSH1 when that
benefit is an overwhelming one. For instance, see the automatic mechanism for
host authentication on page 337.

Although the protocols in SSH2 described below may have many differing
formats, we do not delve into that detail. Instead, suitable references will be
provided for the interested reader. We concentrate upon the description of the
main protocols and focus upon SSH2 as a development that is on an approach
to becoming the new standard for remote login.
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For Internet-Drafts documentation9.3 see [13], [99], [146], [275], and [293]–
[296], as well as the elliptic curve, Diffie-Hellman key exchange proposal for SSH
transport level protocols in [271], all of which are RFC 2026-compliant, Internet
standards process specifications (see [197]).

What is SSH?

Secure Shell or SSH (sometimes called Secure Socket Shell — not be be
confused with SSL — see Section 5.7), is essentially a Unix-based9.4 command
interface using PKC-oriented, secure remote login protocols. It allows a user to
execute commands on a remote computer, as well as securely move files from one
host to another. It provides strong authentication and secure communication
over an insecure channel. SSH was designed to replace insecure applications
such as Telnet and FTP (see page 326).

Basically, How Does SSH work?

The SSH mode of operation is quite simple on the surface. The host com-
puter first authenticates itself to the client, establishing a unilateral server-to-
client secure channel. Then a user, Alice, say, on a client computer, employing
unilateral public-key and/or password-based protocols, authenticates herself to
the server. Once the link is secure, not only can files between hosts be trans-
ported, but also other TCP/IP connections may be forwarded over that secure
link. All algorithms used to ensure security are negotiated, so if some algorithm
is cryptanalyzed, it is a simple matter to eliminate it and switch to another in
the cipher suite.

The following is a detailed description of SSH2 (see [99]), the latest version
of the protocol.

9.3Although Internet-Drafts (working documents for the development of Internet standards)
may be distributed by any working group, the IETF is perhaps the most widely known (see
Footnote 5.3 on page 219). These documents have a maximum lifespan of six months, after
which they are updated or deleted. If a document becomes an RFC (see Footnote 7.2 on page
262), an announcement is made in the Internet-Drafts Directories, see http://ietf.org/1id-
abstracts.html, typically updated daily, where all current Internet-Drafts may be found. The
IETF working group for SSH is denoted by secsh, see http://www.ietf.org/html.charters/secsh-
charter.html. If an Internet-Draft is not part of a working group, it is considered to be an
individual submission. For instance, the elliptic curve, Diffie-Hellman proposal, [271], cited
above, is one such document, whereas all the others cited above are part of secsh. IETF is
vendor-neutral, maintaining only the standards. The developer of both versions of SSH is SSH
Communications Security. It appears, at this juncture, that SSH2 is on its last lap toward
becoming an RFC.

9.4Unix (pronounced you-niks) originated in 1969 at AT&T Bell Labs to provide an interac-
tive time-sharing system. In 1974, Unix attained the status of the first operating system to be
written in the C programming language. Being a nonproprietary operating system, it evolved
as freeware and eventually became the first standard operating system that could be openly
developed by virtually anybody. We may rightfully view both the client-server model and
Unix as vital developments in the evolution of the Internet, with a focus toward computing
networks and away from independent computers.
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� SSH Protocol Architecture

We will assume that Alice is the user on the client computer, and she wishes
to establish secure communications with the (remote) host computer.

� Overview of SSH Protocols

1. Transport Layer Protocol: This protocol provides strong host authenti-
cation, confidentiality via strong encryption, and integrity protection from
the server to the client computer. This layer also thwarts the man-in-the-
middle attack. Moreover, it optionally supports compression. Although
there are other possible data streams over which this transport layer may
run, we assume that it does so over the canonical one, TCP/IP. The other
layers of the SSH protocol run on top of the secure tunnel provided by the
transport layer.

2. User Authentication Protocol: This protocol runs over the transport
layer protocol for the purpose of authenticating Alice to the server. The
DSA cipher is used for authentication (see page 183). Once this protocol
is completed, there is a mutually authenticated secure channel between
Alice and the host.

3. Connection Protocol: This protocol runs over the encrypted tunnel es-
tablished above. It multiplexes9.5 that tunnel into numerous logical chan-
nels that may be used for a rich variety of application-support services,
including remote program execution, signal propagation, and connection
forwarding.

� SSH Protocols in Detail

SSH Transport Layer: The purpose of this layer is to ensure secure com-
munication between Alice, as the client user, and the remote server, as the host.
Once Alice contacts the server, key data must be exchanged in order to con-
struct the tunnel. With SSH2, it is mandated that DSS be used (see page 183).
The host sends its public key, called the host key eS , as identification. In order
for Alice to be certain that she is communicating with the correct server, she
must have prior knowledge of eS , for which two trust models are available.

Trust Models for Host Keys: The first is that Alice has a local database
available to her at the client machine. This database associates each host name,
which Alice enters, with the matching public host key. This requires no PKI
infrastructure, which currently is unavailable to the Internet in any case. How-
ever, it is clear that maintaining such a database with matching key names may
become onerous.

9.5Multiplexing means the use of a transmission channel to carry two or more signals at the
same time.
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The second type of trust model structure is via the use of Trent as a CA (see
Section 6.2). Alice only knows Trent’s root key,9.6 but can verify the validity
of all certified host keys. This trust model eliminates the storage problem of
the first model since only Trent’s key needs to be stored at that client machine.
However, each host key must be certified by Trent before authorization is possi-
ble. Moreover, as noted in the discussion of the first trust model, there currently
does not exist a comprehensive PKI for the Internet.

SSH2 Advantage

SSH2 eliminates many of the above concerns by automatically maintaining,
checking, and updating public host keys. When Alice logs in to a host server for
the very first time, that host’s public key is stored to a file in Alice’s personal
directory. Even if that host’s ID changes, SSH2 will warn Alice and disable pass-
word authentication to prevent attacks. In this fashion, transparency is added
to the session. Furthermore, attacks such as a Trojan horse9.7 are thwarted
by the built-in alerts. As well, man-in-the-middle attacks are thwarted by this
automatic mechanism (see Footnote 3.7 on page 134).

In any case, once Alice is assured of the validity of eS , she may initiate a key
exchange connection as part of the transport layer construction of the secure
tunnel, as follows.

Key Exchange Protocol

It is mandated in [293] and [294] that the Diffie-Hellman key exchange pro-
tocol be used to arrive at key agreement. Here is how it is done.

We assume that p is a large safe prime; α is a primitive root modulo p; h
is a hash cryptographic hash function; and that identification data has been
exchanged in advance such as both Alice’s and the server’s ID, IA and IS , as
well as Alice’s and the server’s protocol versions VA and VS , respectively.

1. Alice generates a random number r with 1 < r < p− 1, then she calculates
cA ≡ αr (mod p), which she sends to the server.

2. The server generates a random number s with 1 < s < p− 1, and computes
each of the following:

(a) cS ≡ αs (mod p).

(b) K ≡ cs
A (mod p).

(c) HS = h(VA, VS , IA, IS , eS , cA, cS ,K).

9.6A root key is a public key for which the matching private key is held by a root, which
means an end (ultimate) CA, such as Trent say, who signs the certificates of the CAs below
him. As root CA, Trent has a self-signed certificate that contains its own public key.

9.7A Trojan Horse is a program that appears to have a useful purpose, but has a hidden
malicious function. Usually such a program exploits authentication mechanisms of a given
system. For instance, a disk defragger is a class of Trojan Horse that erases a disk rather
than (the intended purpose of) reorganizing it, if it were a legitimate defragmenting program.
Another class is that of fake login programs, which prompt the user for passwords in order
to gain access to accounts. A Trojan Horse differs from a virus in that it does not replicate
itself. We will learn in depth about about such mechanisms in Section 10.3.
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(d) DS(HS), the server’s digital signature.

Then the server sends DS(HS) to Alice.

3. Alice certifies eS as described in the above discussion preceding the key
exchange protocol. Once done, she computes

K ≡ cr
S (mod p)

and
HS = h(VA, VS , IA, IS , eS , cA, cS ,K).

She may then verify the server’s signature DS(HS). If this is valid, then
she accepts the key K as the shared secret session key, which may now be
used for encrypting communication between Alice and the server.

Upon completing construction of the secure tunnel via the transport mode
described above, it is Alice’s turn to authenticate herself to the server.

Authentication

First, the server informs Alice of the various authentication mechanisms
supported. She may choose any of these methods. For instance, the server
might send Alice a challenge that she signs with her private PKC key, allowing
the server to use her public PKC key to authenticate her.

Once the authentication of Alice has occurred, the server will typically log
her into the remote computer and provide her with a shell. Thereafter all
communications with her remote shell will be automatically encrypted. It should
be noted, however, that the SSH shell forbids login to an insecure FTP server,
for instance. The remote host is required to posses SSH-enabled software. There
is a mechanism, called SFTP, which is an FTP replacement that runs over an
SSH tunnel. However, since OpenSSH supports the SSH SFTP protocol, there
is no need to use SFTP.9.8 In other words, simply use SFTP under the SSH
shell supported by OpenSSH.

The server can decide which encryption methods it will support, which may
be any of 3DES (see page 131), Blowfish (see page 138), Twofish (see page 142),
RC4 (see Section 3.7), or CAST128-CBC (see [223]). Alice may choose the order
of authentication from the options given by the server.

Given the secure tunnel provided by the transport layer, the authentication
methods do not require the level of security that would be required without

9.8OpenSSH is a version of SSH available over the Internet, supported by the Open BSD
Project ; see http://www.openbsd.org/. It contains not only the SSH program, which replaces
rlogin (remote login) and telnet, but also other features such as SFTP. Rlogin is a UNIX
command allowing a user to login to other UNIX hosts on a network, and interact as if
physically present at the remote host. Rlogin is similar to the better known telnet command.
However, both are insecure. The OpenSSH suite replaces not only these two UNIX utilities,
but also others such as ssh-add, ssh-keygen and so on, as well as the sftp-server. Sftp is an
interactive file transfer program, which operates over an encrypted SSH tunnel, capable of
using many features of SSH.
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the channel. Once the transport tunnel and the user authentication with key
exchange are completed, Alice and the server can create a new channel. This is
accomplished as follows.

Connection

When the above protocols are completed, Alice and the server may nego-
tiate the characteristics of each new channel to allow multiplexing the single
connection between Alice and the remote host. Each channel is assigned a dif-
ferent number for both ends, Alice and the host, according to [146] and [295].
When Alice wants to open a new channel, she transmits this channel number
along with her request. The host stores this data for the purpose of orienting
communications to that specific channel, which allows differing sessions to be
unaffected and prevents the main SSH connection from being disrupted. This
is required since SSH sends different channels over a common secure tunnel.
There is a mechanism for these channels, called flow control, which ensures the
transmission of data in an ordered fashion; for example, the data will not be
sent to Alice, say, until she has already been alerted to the fact that a channel
is open for the message transfer.

� Analysis

SSH, as with IPSec discussed on page 305, thwarts IP spoofing, as well as IP
source routing where Mallory, a malevolent host, can fake an IP packet on the
pretext of coming from a trusted host, and even DNS spoofing, where Mallory
falsifies server records. SSH also protects against any attempts by intervening
hosts to intercept plaintext passwords or general manipulation of data. However,
certain generic implementations of SSH are insecure (see [142]).

SSH2 supports PGP keys as well as the SOCKS firewall (see Section 8.4).
However, SSH does not shelter against an attack when either root access has
been compromised (see Footnote 9.6 on page 337), or Alice’s home directory
say, has been accessed by Mallory. In both of these cases there is no security.

Last, we look at how SSH differs from SSL (see Section 5.7). With SSL,
authentication is optional, whereas it is mandatory in SSH. A totally anony-
mous SSL discussed on page 226 is susceptible to the man-in-the-middle attack,
whereas, as we saw above, the SSH protocol has built-in mechanisms to thwart
such attacks. Also, it is more unwieldy to use the certificate management nec-
essary via a PKI in SSL, whereas the SSH keys are a relatively simple matter
to handle. Moreover, SSH has a wide range of client authentication options
whereas with SSL only PKC is an option. Last SSH has many more features
implicit in its multiplexing via the connection protocol than does SSL at any
level. That being said, the PKI certificate management provides SSL with a
scalable key management feature that is absent in SSH2.
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9.2 Wireless Security

The cell phone industry isn’t really interested in providing security against
eavesdropping; it’s not worth the trade-offs to them. What they are really in-
terested in providing is security against fraud, because that directly affects the
companies’ bottom line. Voice privacy is just another attractive feature, as long
as it does not affect performance or phone size.

Bruce Schneier
— from Beyond Fear (see [240, pages 38 and 39])

Why Wireless? Wireless technology has reached the point where it can
reach any place on the world, and this success has resulted in its being employed
in the computing world on a wider basis through distributed computing over
networks. Hence, people worldwide may access and share information on a
global scale. The clear advantage of wireless telephony is the removal of the
shackle of wired networks. Medical workers do not need to leave a patient’s
bedside to check paper records for medical history, or other data. A manager
of a storage and delivery facility for a large business enterprise can use wireless
scanners connected to the main inventory database in order to track current
stocks. University students may access course data on wireless terminals across
campus. Car rental agencies can facilitate check-ins for their customers using
wireless networks. Corporate business meetings, using wireless, may be set up
at a moment’s notice, and just as easily dismantled. The limits are only those
of the reader’s imagination.

Of course, with this freedom comes a price, and that price is privacy and
security. Whereas a wired LAN (see Footnote 9.2 on page 332), is protected
by physical security and potentially additional cryptographic security, WLANs
Wireless Local Area Networks, sometimes called Wireless LANs, use radio waves,
not bound by such walls of security. Hence, different cryptographic methods are
required since Eve can listen in on a WLAN with her radio receiver. Moreover,
and more seriously, it is equally likely that Mallory can use his transmitter to
write data to a WLAN. Given this ease of access by adversaries, we need serious
means to thwart (active) Mallory attacks, as well as (passive) Eve threats.

� WLANs: We learned about IEEE’s development efforts with LANs,
MANs, and WANs in Section 9.1 (see Footnote 9.2), via its committee 802. We
now discuss its efforts in more detail, especially as it pertains to WLANs. The
802 committee is segmented into the standards upon which it works via their ex-
tension numbers. For instance, 802.3 represents task group 3 of the committee.
It focuses on development of Ethernet-based wired networks (see page 332). In
fact, the term “Ethernet” is often used in place of 802.3. The 802.11 committee
develops standards for WLANs, and this is further subdivided into subfamilies,
where 802.11 is the original standard, which is publicly ratified. Basically, the
three protocols 802.11a, 802.11b, and 802.11g, are protocols that concentrate
upon encoding, whereas 802.11c–f, 802.11h–j, and 802.11n are considered to be
service improvements and additions, or corrections to earlier specifications. For
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example, 802.11a is a standard for WLANs operating in the 5 GHz9.9 radio fre-
quency range and having a data rate of 9–54 Mbps (see Footnote 3.11 on page
160). This is a successor to the widely accepted standard, 802.11b9.10, which
operates in the 2.4-GHz range. The modulation9.11 scheme chosen for 802.11b is
called Complementary Code Keying (CCK) allowing for higher data speeds and
less transmission errors. CCK is comprised of 64 eight-bit code words employed
to encode data for 5.5 and 11 Mbps in the 2.4-GHz band. Unique properties of
the code words permit them to be differentiated from one another by a receiver,
even if there is a lot of channel noise. CCK only functions with Direct-Sequence
Spread Spectrum (DSSS), which is a transmission technology wherein a signal
to be sent is combined with a higher data rate bit sequence to make it more ro-
bust. This sequence is a redundant bit pattern for each bit sent, thus alteration
during transmission is minimized; and if there is such an alteration, the original
data may be recovered via the redundancy.

Sometimes the task group and standard are referenced interchangeably in
the literature. We will occasionally separate the two. For instance, 802.11i is a
proposed standard (see page 345), which we discuss at length, so for convenience
and to avoid confusion, we use the well-known notation TGi to denote the task
group for the standard implicit in 802.11i; and similarly TGn for 802.11n.

� WLAN Standards: In June of 2003, 802.11g was given official status
as the third standard for WLAN encoding. This standard saw wider adoption
than that of 802.11a due to the limited range of 802.11a, and the full backward
compatibility of 802.11g with 802.11b, the latter of which had already seen
a very wide adoption rate, whereas 802.11a is not backward compatible with
802.11b. Furthermore, 802.11g employs data rates of 54 Mbps. 802.11a/b/g are
more than adequate for wireless Internet access and for the sharing of small files.
However, when big files come into play, they are slower than most methods. For
these larger files and other applications requiring higher bandwidth, we need
a new standard. The following not-yet-developed standard is the follow-up to
802.11g.

TGn was created in September of 2003 with a goal of substantially increasing
9.9A GHz is a unit of frequency equal to 109 Hertz. A Hertz is the international unit for

measuring frequency, equivalent to the older unit of cycles per second.
9.10The first widespread commercial use of 802.11b was made by Apple Computer under the
name Airport.TM

9.11Modulation is the varying of some characteristics (for instance, amplitude, frequency,
or phase) of an electrical carrier wave in order to embed information in it. For instance,
amplitude modulation (AM) is that in which the amplitude (magnitude) of a carrier signal
is varied to encode it with information; whereas frequency modulation (FM) is a method of
embedding data onto an alternating-current (AC) wave by varying the instantaneous frequency
of the wave, but the amplitude remains the same. An illustration from the “Old West” is a
stream of smoke (as carrier) from a fire being modulated by waving a blanket to send a “smoke
signal”. A modulator is a device that superimposes data on a wave. It uses an oscillator to
create a wave, which it then combines with the data to create the carrier wave.

After the advent of the first wireless transmitters were put into use in the early twenti-
eth century using radiotelegraphy (Morse code), it was modulation that made it possible to
broadcast music and voices, which came to be known as radio. With the modern use of data
communications, cell phones and the like, the term “wireless” has come back into vogue.
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the bandwidth in 802.11g. The development of 802.11n took a step forward in
August 2004, when it passed the proposal posting stage at the IEEE meeting.
Yet the 802.11n specifications may take anywhere from late 2005 to early 2007
to finalize. Essentially, TGn is in the nascent stage of developing its standard.
They are entertaining proposals from various groups, after which they will decide
what to include and exclude. Below we will delineate a couple of the sets of
proposals by certain consortiums and analyze the potential outcomes. The
802.11n standard will have the potential of increasing WLAN speeds to at least
100 Mbps throughput rates,9.12 but could be as high as 500 Mbps. These high
bandwidths are very important for consumer applications such as HDTV and
streaming video, as well as significant updates for business environments such as
high-density corporate networks. The push for higher bandwidth is also driven
by real and increasing modern-day needs. For instance, the number of mobile
users is increasing, as are the number of business employees with handheld
devices. Moreover, in their private lives, individuals are increasingly connecting
computers to TVs and audio systems in order to move digital sound and video
from one device to another. Lastly, these applications are becoming increasingly
more complex and demanding of higher bandwidth.

� Proposals for 802.11n
The WWiSE Proposal
One of the consortiums laying out proposals for the proposed TGn standard

is called World Wide Spectrum Efficiency (WWiSE), consisting 12 companies,
including Airgo Networks, Bermai, Broadcom, Conexant, SIMicroelectronics,
and Texas Instruments; with system members: Mitsubishi and Motorola, the
latter of which uses ECC in their wireless phones (see page 190).

1. Bandwidth: There should be compulsory employment of already existing
(and approved) 20-MHz bandwidth channels; and to maximize data rates,
these channels should employ four MIMO9.13 antennas. Optionally, higher
rates may be achieved with 40-MHz channels using two MIMO antennas.

2. Interoperability: There should be obligatory modes accommodating in-
teroperability with devices in the 5-GHz and 2.4-GHz bands.

3. Number of Channels: There should be 14 channels in the 5-GHz band.

Perhaps equally matched in their power to influence the outcome of TGn’s
standardization process is the consortium (originally founded by Agere Sys-
9.12A throughput is the measure of the capacity of a (digital) network. The rate is provided
as a ratio of bits transmitted per unit of time (such as the 100 Mbps, cited above). The more
popular term for throughput is bandwidth.
9.13MIMO stands for Multiple-Inputs, Multiple-Outputs. Essentially, MIMO is a technique
which increases bandwidth on an individual channel by creating more air paths for data
transmission. By employing multiple antennas, both transmitters and receivers, each such
path can carry differing kinds of data at the same frequency. Currently, only a single set of
antennas is employed in each wireless connection. (Note that once a signal is received, it is
interpreted by a demodulator that separates the data from the carrier wave, and translates
the information back into its original form.)
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tems), nSynch, backed by Atheros, Cisco, Intel, Nortel, and Philips; with system
members Matsushita, Nokia, Samsung, Sony, and Toshiba.

1. Bandwidth: There should be mandatory 10-, 20-, and 40- MHz bandwidth
channels. Moreover, there should be mandatory two-antenna MIMO in
the 40-MHz channels, and optional four-antenna MIMO in the 20-MHz
channels.

2. Interoperability: There should be mandatory modes for interoperability
with devices in the 5-GHz band, and optionally in the 2.4-GHz band.

3. Number of Channels: There should be twenty-four channels in the 5-GHz
band.

Analysis: Basically, the general consensus is that the difference between
the two aforementioned proposals amounts to 2×40 vs. 4×20. Do we want two
MIMO antennas in the 40-MGz channels, or four MIMO antennas in the 20-
MGz channels? The former will produce raw throughput of 250 Mbps (although
usable bandwidth would be approximately 175 Mbps), but will be more difficult
to implement in some areas. The latter will produce raw bandwidth of 216 Mbps
(with usable bandwidth of approximately 162 Mbps), but would be easier to
implement and face less regulatory barriers. The arguments against the former
include that it would reduce the number of available 802.11 channels; while the
arguments against the latter include that it would be unnecessarily complicated,
expensive, and unsuitable for mobile devices. From a strictly mathematical
viewpoint, we see that 2 × 40 = 80 = 4 × 20, so perhaps both proposals are
really aiming at the same thing. In the final analysis, a compromise may be the
solution.

Whatever the outcome of 802.11n, we will be seeing Ultra WideBand (UWB)
in the not-too-distant future. This new TGn standard should result in 20 times
the speeds we currently have at our disposal.

� Wi-Fi: The generic term for any type of 802.11 network is Wi-Fi or
Wireless Fidelity for high-frequency WLANs. The Wi-Fi Alliance was formed in
1999 as a nonprofit international organization to certify interoperability between
WLAN products based on 802.11. Initially, Wi-Fi was used only in reference to
the 802.11b standard (ratified in 1999), but Wi-Fi extended the use of the term
in a deliberate effort to stem the tide of confusion over WLAN interoperability.
However, 802.11b operates with virtually no privacy despite the fact that it
supports Wired Equivalent Privacy (WEP), which was created with the aim of
making a WLAN as secure as a wired network.

� WEP: The WEP protocol is totally insufficient as a sole means of security
for a WLAN. Part of the problem is that the use of RC4 (see Section 3.7), in
WEP is flawed partly because they reuse the encryption key.9.14 Given that
9.14Do not gather from the above that there is a problem with RC4. It is the implementation
of it in WEP, which is problematic. As we have seen previously, the strongest of ciphers is
irrelevant if the implementation is done in an improper fashion that renders its use insecure.
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it operates only at the physical and data-link protocol layers, it does not offer
end-to-end security. In fact, several analyses of WEP have been done over the
years and the consensus was that without significant changes, WEP would not
provide a sufficient level of security for WLANs, which led to 802.11i. The
following is a description of how WEP operates.

In what follows, Alice wishes to send a message m to Bob.

1. Creating Plaintext: Alice applies the cyclic redundancy code, CRC-32
checksum (see Appendix D on page 541), which we will denote by ICV ,
to m to get ICV (m). The plaintext is P = (m, ICV (m)).

2. Creating Ciphertext: Using RC4, Alice generates an initialization vector
v and a secret key k, which we denote by R(k,v). Then the ciphertext
C = P ⊕R(k,v) is formed by addition modulo 2, and she sends C = (v, C)
to Bob.

3. Deciphering and Comparing: Upon receipt of C, Bob regenerates R(k,v)

and forms P ′ = C ⊕ R(k,v). Then he separates P ′ into m′ and c′. Bob
computes ICV (m′) and compares it to c′. If they match, he knows Alice’s
message was not altered in transit, since then, m′ = m.

The problem with the above is that if two messages are enciphered with the
same v and the same k, then Mallory can cryptanalyze if he knows one of the
two plaintexts. Even if he does not know one of them, he can mount a dictionary
attack (see Footnote 5.2 on page 201). Moreover, this is a near triviality for
Mallory since the attack is not dependent on the length of k, but rather on the
length of v, which WEP mandates to be only 24-bits! Even though the WEP
protocol recommends that v, and thus both v and k, be changed after every use,
it does not require that this be done. Hence, most implementations do default
to a reuse of the key pair, which is significantly insecure behaviour. Also, there
is no key management protocol in WEP, another security issue.

Cryptanalysis of WEP has been given early and rigorous scrutiny. For in-
stance, see [8], [38], [95], and [274]. The TGi is working on enhanced security
for WLANs and is fixing the security in 802.11. These, and other studies, con-
clude that the following are problems with WEP. We maintain the notation
introduced in the above description of WEP.

� WEP Design Problems

1. The bitlength of 24 for v, the initialization vector, is insufficient to thwart
attacks on confidentiality.

2. The CRC checksum, called the Integrity Check Value (ICV), which is em-
ployed by WEP for safeguarding integrity, is insecure. It does not thwart
attacks where packets can be modified in transit.

3. The mechanism for combining v with k invites attacks where Eve may
recover k after the scrutinizing of a mere few million (a relatively small
number of) enciphered packets.
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4. There is no protection for integrity of the source and target addresses.

Diagram 9.1 WEP Encryption

ICV

k

�
RC4 v←−−−− IV

↗
m
↘

�ICV(m)

�R(k,v)

�v

(m, ICV(m)) P−−−−→ ⊕ C−−−−→ (v,C) C−−−−→

Diagram 9.2 WEP Decryption
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� WEP Replacement

The TGi proposed standard, 802.11i, was ratified by IEEE in June of 2004.
Before the long-awaited ratification by the TGi, there was a transitional speci-
fication called Wi-Fi Protected Access (WPA) which was adopted by the Wi-Fi
Alliance in November of 2002, largely to respond to the impatience over the long
gestation period for the ratification of 802.11i. It was designed to be deployed
as a software upgrade to existing WLAN hardware. However, WPA is not an
802.11 standard. Rather, it complements and is based on 802.11i, a strong ele-
ment of which is the Robust Security Network (RSN). Since WPA is essentially
a subset of RSN, we look at it first.

Summary of RSN Features

1. AES is employed with a 128-bit key, but supports key lengths up to 256
bits. Although RSN does not introduce new hardware, it will be affected
by the fact that any RSN-compliant device will be required to support
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AES. This, in itself, may mean that no actual upgrading of firmware9.15

will suffice, that is, the complexity of RSN may mean that it will not be
interoperable with anything but the very latest in WLAN hardware. Also,
this will mean that certain (AP)s9.16 will not be RSN-capable (as defined
in the IEEE publication, “Wireless LAN Security and IEEE 802.11i” by
Chen, Jiang, and Liu — see: http://wire.cs.nthu.edu.tw/wire1x/.

2. It uses a 48-bit initialization vector, v.

3. Integrity is achieved via the CBC-MAC in counter mode (see page 262).
Since AES replaces RC4, and the counter mode (see page 136) of CBC-
MAC is the method of applying it, then this is more suitable for the packet
realm than stream data.

4. Since the sequence for v changes as keys change, replay attacks are thwarted.

5. Key management is based upon Extensible Authentication Protocol (EAP).

Now we look at the EAP in detail. This protocol is defined in [33] (a docu-
ment that replaces the one formerly known as RFC 2284bis, and which renders
obsolete RFC 2284). RSN employs EAP for authentication of wireless devices
to a network, and for provision of dynamic keys as needed. EAP supports
numerous authentication schemes.

EAP Authentication Schemes

1. MD5 (see page 255).

2. TLS (see page 219).

3. TTLS, sometimes called EAP-TLS, developed by Microsoft. This was ac-
cepted as RFC 2716 (see [221]). TTLS, a challenge-response protocol,
requires only server-side certificates, and these are used for one-way TLS
authentication (network to user). Once a secure channel is established,
EAP may be used inside of the TLS tunnel for any other authentication.

4. LEAP, Lightweight Extensible Authentication Protocol, developed by Cisco,
but they are replacing it (eventually) with the following.

5. PEAP, Protected Extensible Authentication Protocol, or Protected EAP,
which was developed by Cisco and RSA Security. This is a rival challenge-
response protocol to that of TTLS.

9.15Firmware typically refers to (permanently stored) software embedded in a hardware de-
vice. For instance, firmware may be a program embedded in a ROM-integrated chip. ROM is
Read Only Memory, memory that may be accessed and read but not altered. The term Ran-
dom Access Memory (RAM) refers to memory space that is basically used to store dynamic
data (data that changes during execution of a program).
9.16An access point is a (base) station that transmits and receives data, and whose function
is to both interconnect users on the network as well as interface the WLAN with a wired
network. Sometimes, in the WLAN context, an AP is called a transceiver.
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6. SecurID, developed by RSA Security (see Footnote 9.20 on page 348).

7. SIM, Subscriber Identity Module, a card that interfaces with GSM9.17 tech-
nology.

8. AKA, Authentication and Key Agreement, is an INTERNET-DRAFT (see
[9]), which is based on per-station shared secrets.

EAP was initially intended as an extension of PPP, which is Point-to-Point
Protocol that provides a mechanism for connecting a computer to the Internet.
PPP operates at the data-link layer by transmitting TCP/IP packets to a server,
which then places them onto the appropriate Internet site.

EAP is a port-based network access control mechanism that must establish
authentication before any port access is allowed. The reason EAP is called “ex-
tensible” is that more types of authentication can be introduced in the future,
and this may be accomplished without compromising the protocol’s specifica-
tion.

In EAP authentication, a Master Key (MK) is produced between Alice and
the server. From the MK the authentication server creates the Pairwise Master
Key (PMK), which binds Alice to the AP for that particular connection, so is
given to the AP for that session. The authentication server makes a fresh PMK
for every such connection. Other transient keys are created from the PMK,
including the Temporal Key (TK). TK is the actual device for securing data
traffic. When the connection is dropped/terminated, the PMK is discarded.

WPA — The Interim Solution

Due to the key recovery attack on WEP, which became increasingly easier
on the Internet, there was a call for an interim solution, out of which came
WPA. As noted earlier, WPA is a subset of RSN. It is designed so that only
software or firmware upgrades are required to existing WLANs running WEP
(by merely running it as a security layer over WEP, namely by running WEP
as a sub-component), allowing current WEP hardware to remain unaltered, and
with minimal performance degeneration by the fixes it imposes.

Authentication for WPA is essentially done through the above-described
EAP process. The mandatory protocols for WPA include RADIUS,9.18 EAP,
and one called 802.1X, whose principal purpose is to control access at a juncture
where a client joins a network. Originally designed for wired LANs, 802.1X’s
objective is to control port access by using the AP as the analogue of a wired
9.17Originally, Groupe Spécial Mobile (GSM) developed in Europe in the early 1990s as a
standard for mobile phones. (It is now called, Global System for Mobile Communications.)
It was the first WLAN architecture to provide user authentication, confidentiality, and key
agreement. This is a standard for digital cellular communications, currently used in the 900-
MHz and 1800-MHz bands.
9.18This is Remote Authentication Dial In User Service, defined in [205], which is client-
server protocol software allowing remote-access servers to connect with a central server for
the purpose of user authentication, for access to whatever system is requested. However, RSN,
being a superset of WPA, does not require RADIUS for the authentication server that permits
more flexibility for implementation.
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network switch. This permits the AP to act in the role of a switch since each
connection request may be regarded as an unauthenticated connection until
further approval by the authentication server (so upon approval, the AP may
“switch on” the connection). Thus, 802.1X may be considered to be a standard
for port-based network access control that resides between an authentication
protocol and a LAN. Yet, in itself, it is not an authentication protocol. That
choice (of authentication algorithm, and associated key management) is left to
the particular EAP authentication type (one from the list on pages 346–347).

In Diagram 9.3, we see the 802.1X protocol running between the client and
the AP for the authentication and key exchange operation. The AP is the link
between the client using 802.1X protocol and the RADIUS server running over
IP. Thus, the authentication phase is executed previous to the establishment of
an IP connection between the client and the network, and exclusively 802.1X
traffic is permitted and solely to the RADIUS server. Once authentication
succeeds, the AP switches the client to a network connection.

Diagram 9.3 802.1X Protocol Illustration
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802.1X-EAP Authentication Process
The following is an example of how a common mode of operation for 802.1X

would operate with EAP. We assume that Alice is the client (sometimes called
the supplicant), who wishes to connect to a WLAN. The negotiation takes place
among Alice, the AP as intermediary, and the authentication server.

1. Alice requests a connection to a WLAN via the AP.

2. The AP requests ID from Alice, and once received, it forwards this ID to
an authentication server, such as RADIUS.

3. The authentication server sends a challenge,9.19 such as a token password
scheme,9.20 for Alice to prove herself, and may send ID to prove itself to

9.19See pages 197 and 198 for a description of challenge-response protocols.
9.20For instance, RSA Security Inc. worked with Microsoft to introduce tokens called SecurID
for Microsoft Windows, which provide users with a temporary password every 60 seconds. This
“token password” is used with a secret PIN to logon to Windows.
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Alice if mutual authentication is being employed; and only strong mutual
authentication is recommended for WLANs. This message interchange
will vary depending on the authentication scheme employed.

4. Alice verifies the server’s ID, if mutual authentication is being used, then
sends her response to the ID challenge via the AP to the server.

5. The server either accepts or rejects the request by Alice.

6. If her request is accepted, the AP opens a port for her network access.

In the absence of an external authentication server, WPA is capable of exe-
cuting what is called a Pre-Shared Key mode (PSK) to verify ID, for Alice say,
both at her client station and the AP. This is accomplished via a password, or
some other ID, and she may gain access only if her password matches the AP’s
password. This password also supplies the material for use by TKIP Temporal
Key Integrity Protocol (TKIP), which is part of the standard drafted by the
TGi, to generate an encryption key for each data packet.

Temporal Key Integrity Protocol

TKIP (also called WEP2), is a collection of algorithms to wrap around WEP
in order to patch the security holes, especially the use of static keys in WEP.
With WEP, encryption is optional, whereas with TKIP, it is mandatory. Indeed,
TKIP replaces WEP with a stronger encryption scheme using computing power
in existing wireless devices to execute the required operations. The following
are some features of TKIP.

1. MIC: This is a Message Integrity Code, (MIC)9.21 employed to thwart forg-
eries; its code name is Michael.9.22 The 8-byte MIC is placed after the data
portion of the TKIP frame and before the 4-byte ICV (Integrity Check
Value). (This fixes a WEP problem where Mallory can tamper with the
ICV before it is received, even though WEP enciphers it beforehand.) The
data, MIC, and ICV portion of the frame are WEP-encrypted. Michael
computes a keyed function of the message at the transmission site (as de-
scribed below), sends the resulting “tag” value together with the message
to the receiver. There the tag value is recalculated and compared with
the sent value. If the tags match, the message is accepted as authentic.
Otherwise it is rejected as a forgery.

9.21We know this as a MAC (see page 136), but TGi has already used MAC to mean Media
Access Control, so we will conform with their acronym here, even though it conflicts directly
with the term we used as MIC on page 260, where we used it in reference to an un-keyed hash
function. With this warning of alternate usage for this discussion only, there should be no
confusion.
9.22MIC was created by Niels Ferguson (see [82]), who is a cryptographic engineer and con-
sultant. His expertise lies in the design of cryptographic algorithms, protocols, and security
infrastructures, especially on a large scale. He worked with Bruce Schneier at Counterpane
Systems (see page 138), and coauthored a recent book [85] with him.
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Also with Michael both the source address and destination address are
protected, whereas in WEP there is no such protection. Moreover, Michael
essentially enforces the packet sequencing. This is because Michael applies
to whole packets, Media Access Control Service Data Units (MSDU)s,
which includes the MSDU source address (SA), the MSDU destination
address (DA), and the MSDU plaintext data.

2. Packet Sequencing: To thwart replay attacks, TKIP mandates that the
same IV value of 48 bits is never used more than once, and a sequencing
mechanism is in place so that there is a discarding of any packet received
with an IV value no bigger than the last packet that was received and
processed successfully. If the IV were to reach its maximum value, all
data traffic would halt.

3. Per-Packet Key-Mixing Function: To prevent the recovering of the
WEP key (a design problem with WEP, listed as item 3 on page 344), as
an automatic feature, a fresh, unique encryption key is generated for each
client. Since this is done at periodic intervals, it avoids the insecurities
inherent in WEP where the same key may be in use for several weeks.

We now look at the TKIP features in more detail.9.23

Message Integrity Code

Background Assumptions: Michael inputs a 64-bit Michael key MK, where
MK is represented as two 32-bit little-Endian words,9.24 MK = (K0,K1), and
inputs the message m. Michael processes the message by padding it so that its
bitlength is congruent to 0 modulo 32. Second, it segments m into a sequence
of 32-bit words, m1,m2, . . . ,mn. Then it executes the following to compute the
tag from the key and the message. First, set i = 1, L = K0, R = K1, and let
f be a function (that we will not describe explicitly), constructed from shifts,
byte swaps, and additions. As usual, ⊕ denotes addition modulo 2.

MIC Tag Creation

1. Replace L by L⊕Mi.

2. Replace (L,R) by f(L,R).

3. Replace i by i + 1.

4. If i < n, go to step 1. Otherwise, output T = (L,R) as the MIC tag.

9.23In view of the above discussion, WPA is often written in the form of the following formula:
WPA=802.1X+EAP+TKIP+MIC.
9.24The term Endian refers to the different means of ordering bytes for storage as representa-
tion of values. Big Endia means the ordering of bytes in a word such that the most significant
digits (or bytes) are positioned on the left. Little Endia refers to the placing of the least
significant digits on the left.



9.2. Wireless Security 351

Packet Sequencing
The classical method for thwarting replay attacks is to bind a packet se-

quence number space with a MIC key, and reinitialize the sequence space each
time the MIC key is replaced. TKIP does not stray far from the classical
paradigm. TKIP employs a 48-bit sequence number, which it binds to the TKIP
encryption key (rather than the MIC key). Then, TKIP mixes the sequence
number into the key and enciphers the MIC and WEP IV via the following.

Per-Packet Key Mixing Function
As we discussed earlier, in the WEP protocol, the encryption key is vul-

nerable to attack due to the weak 24-bit IV, among other factors. TKIP fixes
this with a mixing function that inputs a 128-bit temporal key TK, the 48-bit
packet sequence number, SEQ, and the transmitter address, TA, then outputs
a fresh per-packet 128-bit key, called a WEP seed key. The mixing stage is
broken down into two phases in order to save on computing time.

The first phase inputs the TK, the TA, and the first four most significant
bytes, msb, of SEQ to an S-box that outputs an intermediate key IK.

In the second phase, IK is mixed with the least two significant bytes, lsb,
of SEQ to output the per-packet key, PPK. The end result is that a different
key is used for each packet that is sent.

Diagram 9.4 Per-Packet Key Mixing
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Once TKIP has processed the data and produced the MIC, together with
the plaintext MSDU, TKIP appends the MIC to the data field. Then the 802.11
implementation fragments the MSDU into Media Access Control Protocol Data
Packets (MPDU)s, required for WEP encryption. Once this has been done, each
fragment is given a packet sequence number to establish a per-packet encryption
key for each such fragment. This is all summarized in Diagram 9.5 on page 352.

Summary
TKIP was meant only for short-term security until the standard RSN became

a fact. As a wrapper around WEP it did alleviate some the the problems with
the original WEP design, such as removing weak key attacks and thwarting
the redirection of packets to unauthorized sites (via Michael’s protection of SAs
and DAs). However, this comes sometimes at a performance cost, such as the
additional key mixing time and rapid rekeying rate, which arises from reuse of
WEP packets and IV spaces. Basically, it is a trade-off between security and
acceptable performance characteristics. WEP met virtually none of its security
goals, and TKIP addressed these problem in the short term. RSN provides the
more robust solution.
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Diagram 9.5 TKIP Encapsulation
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� Conclusions

TGI’s ratification of 802.11i takes the above-described WPA a giant stride
forward, and is now often called WPA2. Since RSN uses AES, encryption
strength is vastly increased. However, some existing hardware cannot simply be
upgraded as was possible with the transition to WPA. In other words, some of
the older hardware simply has to be replaced, as we mentioned in the context
of the RSN summary in part 1 on page 345. However, now that ratification of
802.11i is a fact, we will see the distribution of AES-compliant equipment.

WPA2 advances in another important fashion since it enciphers the entire
data frame, whereas WPA encrypts only the payload. That said, coordinating
the inter- and backward-compatibility of the system at large is clearly still a
challenge to be met. Thus, although the TGi is now disbanded, there is still
work to be done. For instance, we await the resolution of the standard from
TGn. There also exists the TGr group that works on 802.11r, for fast hand-off in
those situations where a wireless client is moving, on the same WLAN, from one
AP to another. Another is the TGs group working on codifying requirements
for standardization of self-configuring mesh networks.
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Comparisons

Table 9.1

WEP TKIP RSN
Cipher RC4 RC4 AES

Key Size 40 or 104 bits encrypt: 128 128 bits

authenticate: 64

Packet Key Concatenation Mixing function Not Required

Integrity CRC− 32 Michael CCM

Replay None Use IV Use IV

Protection

Key None EAP-based EAP-based
Management

802.11 — Summary

Table 9.2

IEEE WLAN Applications
802.11 – The legacy standard

– Provides 1–2 Mbps transmission in 2.4 GHz band, typically
using DSSS (see page 341).

802.11a – Extends 802.11 providing up to 54 Mbps in 5-GHz band
– Uses Orthogonal Frequency Division Multiplexing, (OFDM),

which is a means of sending large quantities of data by radio wave.

OFDM operates by separating the signals into smaller ones,
sent simultaneously at differing frequencies.

– 802.11a is, however, not interoperable with the following

802.11b – Provides 11 Mbps in the 2.4-GHz band using DSSS

– Was ratified in 1999 as the 802.11 standard

– Provides functionality comparable to Ethernet

802.11g – Supplies 20 Mbps in the 24-GHz band, and

up to 54 Mbps when operating with 802.11b hardware

802.11i – The TGi has ratified the standard, upgrading Wi-Fi’s short-term

solution, WPA, to the security flaws in 802.11a–802.11b

802.11n – To increase throughput to at least 100 Mbps in the 5-GHz range

– Unlike the above, focuses on throughput at the MAC interface,

not the physical layer, so throughput will be the highest possible
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9.3 Smart Cards

As a human being, one has been endowed with just enough intelligence to be
able to see clearly how utterly inadequate that intelligence is when confronted
with what exists.

Albert Einstein (1879–1955)
— from a letter to Queen Elizabeth of Belgium, September 19, 1932

The term “smart card” has entered our discussions briefly thus far (see pages
105 and 334, for instance). Now it is time to delve into the details.

What is a Smart Card? Smart cards are made of plastic and are of
credit-card-size, having an embedded microprocessor chip with internal memory
or merely a memory chip with nonprogramming logic.9.25

Types of Smart Cards: Classifications for smart cards is described in the
following.
1. Standard Memory Cards: These are cards that merely store data. They

do not possess data-processing capabilities. Typically, these cards have
a magnetic strip (so are often called magnetic strip cards). These cards
store private data, usually employed as credit or debit cards, which require
physical contact with a device to read the data on the magnetic strip.

2. Intelligent Memory Cards: These cards have a built-in wired logic circuit
to access the memory (usually 1 K to 16 K bits) of the card. Sometimes
these cards can be configured to restrict access via a password or system
key. These cards are often called protected memory cards.

3. Stored-Value Cards: Sometimes these are called memory cards with
register. These are cards that have security features hard-wired into
the chip at the point of manufacture. Examples of such cards are prepaid
phone cards, wherein a terminal inside the pay phone will write a declining
balance into the card’s memory. The card is discarded when the balance
is zero; or if the card has a rechargeable capacity, it can be reset.

4. Processor Cards: These cards, perhaps the most deserving of the name
smart card, contain memory, a processor, and have data-processing ca-
pabilities. This is an integrated circuit (IC) card with ISO/IEC 7816
interface.9.26 If an 8-bit microprocessor had the task of RSA crypto-
graphic calculations, for instance, it could take several minutes. Thus, a

9.25A microprocessor is any integrated circuit (IC) containing the CPU of a small computer.
A CPU is the Central Processing Unit, which controls the operation of a computer, including
the execution of arithmetic and logical operations as well as other instructions. In a smart
card or microcomputer, the entire CPU is on a single chip. In general a computer processor
is the logic circuitry that responds to and deals with the instructions that run the computer.
However, in the modern day, the term “processor” has been replaced by “CPU”.
9.26We learned about the ISO on page 218. The IEC is the International Electrotechnical
Commission, a Switzerland-based organization that sets standards for electronic devices. A
committee, JTC1, is joint between ISO and IEC, and its mandate is information technology
standardization.
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cryptographic coprocessor is typically added to the architecture, thereby
reducing cryptographic calculations to a few hundred microseconds.

Types 1–3 are often grouped under the single heading of memory cards and
type 4 under the heading of microprocessor chip cards. Memory cards are, nat-
urally, the least expensive and most common. They contain what is called Elec-
tronically Erasable Programmable Read-Only Memory (EEPROM) nonvolatile
memory.9.27 For security, the data may be locked in by a PIN of up to eight
digits written to a special file on the card.

Chips: There are three kinds of smart card chips as follows.

1. Memory Chips: Naturally, the most basic and least expensive are those
chips that merely store data and have no processing capabilities. Once
created, memory chips cannot be reprogrammed, since they can only hold
static data such as personal information that does not require dynamic
enciphering capacity. To change the capacity of such a memory card, it
would need to be replaced entirely.

2. Applications Specific Integrated Circuits (ASIC): The ASIC chips
are hard-wired to keep data and execute a specific processing job. Of
course, this processing capacity makes the ASIC chip stronger than the
memory chip. Yet, the ASIC chip cannot be reprogrammed, as is the case
with the memory chip. However, the ASIC chip does allow for some static
encryption, but this is suitable only for low-level security applications.

3. Microprocessor Chips: These chips are the most powerful and versatile
of the three types. They cannot only do what both the memory and ASIC
chips can do, but also they are capable of dynamic encryption, and they
can be reprogrammed or updated, unlike the previous two. Processor
cards have microprocessor chips that typically come in 8-, 16-, or 32-bit
formats. Their data storage may range from 300 to 32,000 bytes.
Microprocessor-based smart cards have the benefits of (1) a high level of
security, having the capacity to execute PKC or SKC protocols, including
DES, RSA, and ECC; (2) multiple applications on the same card; and (3)
ease of updating existing applications, or the addition of new ones.
Microprocessor cards have numerous applications: the access medium for
GSM (see page 347); for identification; for electronic signatures; for access
to restricted areas; to protect data storage; and for e-commerce.

9.27Nonvolatile memory means any kind of solid-state memory that does not lose its contents
when the computer is turned off. In the case of a memory card, when it is removed from the
card reader, the power is cut off, yet the card stores the data. On the other hand volatile
memory loses its contents when the computer is turned off. Nearly all RAM is volatile, except
of course, battery-powered RAM. Included under the heading of nonvolatile memory are not
only EEPROM, but also all other forms of ROM such as programmable read-only memory
(PROM), erasable programmable read-only memory (EPROM), and flash memory, sometimes
called flash RAM. The latter type of memory can be erased and reprogrammed. The term
“flash” is derived from the fact that in a microchip, a section of memory cells is erased in one
solitary act, in a flash. Flash memory is employed in PC cards, digital cell phones, printers,
and digital cameras, for example.
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Card Operating Systems: The microprocessor in a smart card is con-
trolled by a Card Operating System (COS), which is a piece of firmware stored
in the ROM of the microcontroller IC embedded in the card.9.28 The COS has
the following fundamental tasks.

1. Both establish and control communication between the card and any card-
reading device.

2. File management.

3. Memory management.

4. Management of applications including loading and operating.

5. Protect data access.

6. Instruction processing and execution control.

7. Execute and manage cryptographic protocols when communicating with a
card-reading device.

Smart Cards and PKI: The structure for smart cards employing PKI is
described in RFC 2459 (see [215]). Smart cards may be embedded with functions
that generate public and private PKC keys inside the cards, meaning that the
private key is not sent to any site outside the card. In other words, the smart
card need not export the private key in order to use a given application.

Suppose that Alice interfaces her smart card with her computer for the pur-
pose of using some application, which requires Alice’s signature on a document
to authenticate her. In order to get the card to communicate with the applica-
tion, a hash of Alice’s document, e-mail for instance, is sent to the card. The
card signs the document with her private key (all this taking place inside the
card), and the signed document is sent to the application. Hence, her private
key is never exposed to the outside, in particular to her computer. Smart cards
may employ SSH (see page 334) to authenticate to an application remotely, for
instance. In general PKI architecture may support access to a given business
enterprise via a local CA or RA for the purpose of certification. Basically, the
structures discussed in Section 6.2 may be brought to bear via smart cards and
their interaction with various applications.

Contact Vs. Contactless: The communication between a smart card and
a card reader or detection device might be direct, namely, physical contact, or
contactless using radio frequency. Thus, smart cards are further divided into
contact and contactless (sometimes called proximity) cards. Contactless cards

9.28Think of a microcontroller as a computer on a chip. A microcontroller is created via the
integration of the fundamental components of a microprocessor: RAM; ROM; and digital I/O
(input/output) ports into the same chip die. Other features might include: serial I/O, a timer
module; analogue to digital converters (ADC); and even serial peripheral drivers. Examples
are Motorola’s M68HC08 family of 8-bit microcontrollers, and Microchip’s PIC17 Family with
16-bit program word.
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are embedded with not only a chip, but also an antenna for the purpose of
sending a signal to the reading device. Typically, a few centimeters of distance
will allow the mechanism to receive the signal and authenticate the card owner
for access to that device. Contact cards are usually employed for access to
secure areas in a business enterprise, for instance, whereas contactless cards are
typically used for mass transit access or for door locks.

Contactless cards use wireless self-powered induction technology, as defined
in the standard, ISO/IEC 14443. The latest use for such a card in mass transit
is the Oyster Card issued in London, England, in January of 2004. The card is
rechargeable, secure since, if lost or stolen, it may be cancelled and reissued; and
it is valid London-wide including the “Tube”, Tramlink, DLR (Docklands Light
Railway), and National Rail services across the entire London bus network.

Contactless cards have the benefits of speed of transaction time; convenience;
low maintenance (compared to contact cards); and consumer appeal where key
fobs, rings, or other devices may be used in place of a plastic card. Many upscale
residential areas are looking at replacing locks with contactless smart cards in
North America. The fact remains that contacts are the most frequent break-
down points in the electromagnetic system as a result of dirt, and wear on the
mechanism. Contactless cards solve these problems and improve performance
in the balance, so user acceptance will surely increase.

Last, there are cards which combine certain features, called combi-cards
or multifunction cards. This might involve a combination of password, and
biometric such as a fingerprint. Also, there is the possibility of combining both
contact and contactless features in one card.

Physical Properties: The actual body of the card is plastic, which may
be polyvinyl chloride (PVC) or acrylonitrile butadiene styrene (ABS). The card
itself may contain a signature strip, printed signature, or a cardholder pho-
tograph. Of course, the plastic body will be embossed with the proprietary
graphics such as with Visa or MasterCard. The size of the card is specified by
ISO/IEC 7816-1, namely, 85.6 × 54 × 0.76 mm. This standard includes defini-
tions of resistance to static electricity, electromagnetic radiation and mechanical
stress, as well as the location of the card’s magnetic strip and embossing area.

The dimension and location of the contacts is specified in ISO/IEC 7816-2.
This includes the module, which is the smallest part of the card that is capable
of accommodating a chip and its contacts. The mechanism for securing the
module in place on the card is via encasing them in a resin amalgam, which for
security reasons, should be designed so it cannot be removed without destroying
the circuitry (see page 361).

There are also cards, called mini-cards, which are in size between that of
a regular smart card and its module. These are often used for mass transit
applications, where the size of the cards mimic the size of the magnetic-strip
tickets they replace.

In the following, Diagrams 9.6 and 9.7 give the placement of the electrical
contacts in a smart card chip, numbered C1–C8, and describe the function of
each.
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Diagram 9.6 Smart Card Chip — Electrical Contacts

C1 C5
C2 C6
C3 C7
C4 C8

Diagram 9.7 Functions of Electrical Contacts

Position Abbreviation Function

C1 VCC Power Supply Voltage
C2 RST Reset Microprocessor
C3 CLK Clock Frequency
C4 RFU Reserved for Future Use
C5 GND Ground
C6 VPP Programming or Write Voltage
C7 I/O Serial Input/Output Line
C8 RFU Reserved for Future Use

All the data transmitted to and from a smart card is through the C7 contact
point. Once a smart card is inserted into a card reader, for instance, a client-
server relationship ensues. The physical transmission is defined in ISO/IEC
7816-3, so any reader must conform to that standard.

Card Origins: The French are responsible for the term “smart card”, in
development since the 1970s when the French invested a large amount of money
into this R&D technology. They originally called these cards Carte a mem-
oire or memory card in the 1970s. The French government’s marketing arm,
Intelimatique, coined the term smart card in 1980. In fact, Roy Bright of In-
telimatique (see [45]), was the one who coined the word “smart card” (which
is sometimes written as a single word smartcard). In 1970, the concept of the
smart card was filed in a patent by Kunitaka Arimura of Japan. The patent
was restricted to Japan, and to the technical aspects of the smart card idea,
namely, to integrate data storage and arithmetic logic on a single silicon chip.
Shortly after his patent was filed, the first smart cards were issued in Japan.

Although many credit the first patent for an IC card to the French journalist,
Roland Moreno, who filed his patent in in 1974 (see [172]), there was a patent
filed in 1968 by the German inventors Jurgen Dethloff and Helmut Grotrupp for
the invention of the idea to incorporate an IC into an identification card (see
[67]). However, the patent filed by Moreno is considered the first actual “smart
card” patent since it was the first to incorporate the two ideas of Arimura and
Dethloff-Grotrupp into a single entity, what we consider to be a smart card
today. Moreover, Moreno’s patent was the first to be broad-based not only in
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France, but also in major industrial countries around the globe. By 1977, the
first commercial developers of an IC card product were three manufacturers,
Bull CP8, SGS Thompson, and Schlumberger. Also, in that year, the French
banking system had a smart card payment scheme in place, and by 1978 the
first prototype card was produced. In 1979, Motorola introduced the first secure
individual chip microcontroller. It was a prototype made in Toulouse, France
for Bull CP8, having programmable 1-K memory and microprocessor 6805.

Credit cards contain data including either signature or picture for identifi-
cation of the person authorized to use it for account access or services. The use
of credit cards, on a local scale, actually goes back to the 1920s in the United
States, when some oil companies and hotel chains started issuing them to cus-
tomers for purchases at their enterprises. On a global scale, the first credit card
for use at a large multiplicity of businesses was Diners Club Inc., in 1950. Their
card employed PVC plastic, which replaced earlier paper-based cards. They
were the first to institute charging an annual fee billed to their cardholders. By
1958, American Express entered the stage with its card. The first bank to issue
a card was the Bank of America in 1959 with its BankAmericard distributed
initially in California only, adding other states starting in 1966. In 1976, it was
renamed VISA,9.29 and later MasterCard followed suit. In 1981, MasterCard
(formerly called Master Charge), introduced the first gold-card program, and in
1983 it was the first to employ a laser hologram as an antifraud mechanism.

The 1980s saw much field testing of smart cards. The world’s first significant
IC card test was conducted in France with their testing of serial memory phone
cards in 1982. In 1983, the first nationwide smart card scheme was put in place
by the French for their public telephone payment system (see [45]). In 1984,
the French adopted the Bull CP8 card as their standard for the first version of
their bank debit cards Carte Bleue. By 1986, the French also were the first to
introduce a smart card scheme in the form of a health card. In 1987, the ISO
introduced the first card standards in the form of ISO/IEC 7816-X. The 7816
series of standards today define everything from the physical shape of the card
to the format the commands may take when sending to or responses from the
card. This includes not only the functionality of the card, but also the very
position and shape of the electrical connectors and the protocols defining the
power voltages to be applied to them (see Diagrams 9.6 and 9.7).

By the early 1990s the French were involved in field testing of combi-cards.
Also in the early 1990s, Germany was involved in memory card distribution on
a mass scale. In 1994, they started the distribution of some 80 million serial
memory chip citizen health cards. Now, every German citizen has a health
smart card. By the mid-1990s, mobile phone use was conducted and paid via
smart cards by some three million users. By the late 1990s, the major players in
the credit card industry were looking at standards for interoperability. In 1996,
9.29Internationally, BankAmericard was known by other names before VISA came into being.
In Canada, a number of banks, in concert, issued Chargex cards. In the U.K., the BarclayCard
was issued by Barclay’s Bank. Both of the latter used the blue-white-blue motif familiar to
BankAmericard holders. The blue and gold motif on the VISA cards was selected to represent
the blue sky and gold-coloured hills of California, where BankAmericard originated.
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MasterCard and Visa began developing two types. JavaCard, sponsored by Visa,
and Multi-application Operating System (MULTOS), sponsored by MasterCard.

Two announcements were made in April of 2004. One was that residents of
Lakhpat, Taluka, India, would be the first to be issued a processor card, called
the multipurpose National Identification Card to serve as citizenship proof. An-
other was the fact that many governments were gearing up for a transformation
of existing passports to include microprocessor chips embedding biometrics.

Attacks on Smart Cards: There are numerous attacks against smart
cards that need to be reviewed so we may better understand the threats and
not fall victim to them. Two attacks already discussed are power cryptanalysis
and the small RSA enciphering exponent attack (see page 178). These attacks
are especially effective against smart cards due to their limited computing power
and relatively slow processors, such as the choice of a small enciphering exponent
to communicate between the smart card and a larger computer.

Power cryptanalysis (sometimes called power analysis) attacks are examples
of what are called side-channel attacks wherein a cryptanalyst, Mallory, say, has
an additional channel of information about the system he is trying to break.
Timing analysis of message encryption falls into this category. The reason that
side-channel attacks are so effective against smart cards is that Mallory may
have full control of the card. Countermeasures for side-channel attacks come
from a combination of software implementations and actual hardware.

Countermeasures against timing attacks include the following: (1) blinding
signatures (see page 177); (2) avoiding delays (make all operations take the
same amount of time); (3) equalization of multiplication and squaring (the time
taken to execute multiplication and exponentiation should be set to be very
similar); (4) power consumption balancing (operations should be made to appear
constant from outside the card, which can be accomplished with dummy gates
and the like to even out the power consumption to some constant value); (5)
add random noise (enough to stop an attack); and (6) physical shielding.

Magnetic strip cards, having no computing power at all, are subject to what
is known as a skimming attack. In this case, an illegal card reader can be used
to copy the data in the card (once it is swiped through the illegal device) for the
purpose of counterfeiting cards and incurring illegal charges. Some criminals
have even resorted to planting these devices in legal ATM machines for the
purpose of gathering this data. Once the data has been captured, the card
owner might be presented with a screen that says there has been a malfunction.
In some cases, the criminals engineer the card reader so that it does not interfere
with the ATM’s function. In this case, the customer will get their cash, when
making a withdrawal, say, but their data are still captured for later use by the
criminal element. The ATM machines most susceptible to this kind of attack
are not usually the ones at banks themselves, but rather at convenience stores,
bars, hotel lobbies and the like. Moreover, they are typically the kind of ATM
where the card is swiped rather than inserted into the machine directly. Also,
skimming may be accomplished by dishonest businesses when your card is taken
out of your sight for payment, say at a restaurant, and run through a skimmer.
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To thwart skimming attacks, do not use ATMs where something appears to
be out of place. Keep all PINS safe and never give them to anyone. Do not let
strangers “assist” you at an ATM machine. If your card is not returned after
usage in an ATM, immediately contact the institution that issued the card.
Treat your cards as if they were cash and do not let them out of your sight.

Returning to IC cards, there are tampering attacks, which may be broken
down into four subsets: (1) microprobing, where the chip itself is accessed, ma-
nipulated, and there is direct tampering with the IC; (2) software attacks, the
exploitation of weaknesses in cryptographic protocols or their implementation
via the I/O interface; (3) eavesdropping, the monitoring of any electronic radia-
tion produced by the microprocessor’s executions; (4) fault generation, creating
malfunctions in a microprocessor for the purpose of establishing access.

Attacks (2)–(4) are noninvasive attacks. On the other hand, microprob-
ing is an invasive attack that requires a significant amount of laboratory time,
expensive equipment, and expertise. In order to extract the chip, the plastic
card is destroyed. Once the chip is removed, it may be mapped, analyzed, and
information obtained. One countermeasure for such attacks (already available
with some microprocessors), is the embedding of a sensor mesh above the actual
chip, so that any tampering would trigger an erasure of nonvolatile memory.

With noninvasive attacks, smart cards are especially vulnerable since their
microprocessors are exposed without the safeguards built into larger devices,
such as electromagnetic shielding. A microprocessor is basically a collection of
a relatively small number of flipflops (registers, latches, and SRAM cells),9.30

which establish its current state, together with a logic design that calculates
that state based on a clock cycle and other states. A register is a specialized,
high-speed storage region of the CPU. No data is capable of being processed
before being put into registers. A CPU’s power is defined in terms of the number
and capacity of registers it possesses. For example, an 8-bit CPU has registers
that maintain 8-bit words each, so each command sent to such a CPU is capable
of handling 8 bits of information. A latch is a digital logic circuit for storing
bits. The components of a latch are the data input to it, a clock input, and
its output. The term “latch” comes from the function of the clock activity, for
example when active, the clock input triggers the data input to be “latched”
(stored) and transferred to output when the clock input becomes inactive. The
value of the clock output is then set and maintained until the clock input is
again activated. This analog effect is one of the vulnerabilities that can be
exploited via fault-generation attacks in smart cards, namely, by causing one or
more flipflops to take on the incorrect state (see [34]).

Countermeasures to thwart noninvasive attacks include inserting a random-
number generator at the clock-cycle level; and embedding a tamper-sensor that
will disable the entire microprocessor upon detection of unauthorized activity.

9.30SRAM is static RAM as opposed to the more common dynamic RAM or DRAM. The
term “static” is employed to differentiate it from the conventional form of RAM in that it does
not need to be refreshed as does DRAM. Therefore, SRAM is faster and more reliable than
DRAM. However, it is more expensive in terms of financial cost, storage space, and power
consumption. Thus, DRAM is necessarily volatile memory.
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9.4 Biometrics

Biology is the search for the chemistry that work.
R.J.P. Williams (1926–), British chemist

— from a lecture in Oxford, June 1996

� Overview

The science and technology of quantifying and analyzing biological or be-
havioral data is what we call biometrics. The characteristics to be measured are
DNA; ear geometry; eye retina (the nerve endings inside the eyeball that cap-
ture and send light to the brain) and irises (the coloured part visible at the front
of the eye); facial geometry; fingerprints; hand geometry; and voice frequency.
The data to be analyzed is stored in a database for comparison with existing
records. Typically, software is used to identify specific match points, which are
then processed into a value that may be compared with biometric data that is
scanned when the owner of a smart card, say, tries to gain access. Biometrics
may be used to provide authentication for access to a bank account; to pay for
products or services from a business; to pay for telephone charges; and so on.
Biometrics can be employed in addition to, or in place of, say, a PIN.

Sensors are used to record the biometric information. Cameras are used for
facial, eye, hand, and ear geometry; microphones for voice; chemical laboratories
for DNA; and any number of sensors for fingerprints including pressure sensitive,
thermal, optic, and capacitive devices.

� Biometrics and Smart Cards

The idea of embedding biometrics into a smart card together with other
personal details has been considered by many governments. For instance, such
a card, called Mykad, was mandated in September of 2001 for all Malaysian
citizens over the age of twelve. The Mykad deployment started in 1999 when
the government awarded the project to an international consortium of technol-
ogy suppliers. From its official release in September 2001, to April of 2004,
nine million cards had been issued with a total of fifteen million expected to
be registered by the end of 2005. The Mykad replaces the national ID card
and driver’s license; it contains medical data; may be used for highway-toll pay-
ments; for parking; for public transportation; for ATM transactions; and even
e-commerce since it contains PKI infrastructure, including digital signatures.
Mykad contains fingerprint biometrics for verification of a given individual.

In 2002, the U.S. Congress mandated a program to issue international vis-
itors “only machine-readable, tamper-resistant visas and other travel and en-
try documents that use biometric identifiers.” The global biometric enrollment
program started in September of 2003. By October 26, 2004, all visa-issuing
U.S. embassies and consulates will be collecting biometrics for visa applications.
Typically, fingerprints of two digits from each individual will be electronically
scanned and stored in a database available to the Department of Homeland
Security immigration officers for those ports of entry to the United States.
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Other countries and agencies using smart card technology in conjunction
with biometrics are the following. The U.S. Department of Defense Common
Access Card has a photograph together with a fingerprint embedded in its func-
tionality. Spain has a social security card including biometrics in its smart card
application. The Netherlands has a system called Privum for automated bor-
der crossing. Their smart card has a photograph, and iris biometrics. Brunei
employs a national ID smart card having a photograph together with finger-
print biometrics. The United Kingdom has the Asylum Seekers Card, which is
a smart card with a photograph and fingerprint biometrics. It is not long before
more countries are added to the list in an effort to secure their borders.

The bottom line for smart cards supported by biometrics is that it raises
security levels to very high standards. The reason is that such cards possess the
following.

The Three Fundamental Aspects of Authentication

1. Something the user has (the smart card, itself)

2. Something the user knows (a PIN or password)

3. Something the user is (the biometrics)

� Accuracy and Robustness of Biometrics

Biometric Traits

Biometric traits develop in one of three ways:

1. Genotypic (through genetics)

2. Phenotypic (through early embryo development)

3. Behavioural (through training)

Robust biometrics are those which are not subject to significant changes.
Certain biometric traits may vary over time due to aging, growth, injury and
later regeneration, wear and tear, and so on. The least changeable biometrics
are DNA and iris pattern followed by retina, fingerprints, and hand geometry.
In terms of accuracy (minimal error rates plus clarity and consistency), iris and
retina measurements rank ahead of DNA, although all three are difficult quan-
tifications to obtain and are costly to process. The reason that DNA trails the
other two eye biometrics is that DNA cannot distinguish between monozygotic
twins, but the eye biometrics can do so, (and better than the other biometrics).
Fingerprints rank roughly fourth on the accuracy scale, but are relatively easy
to obtain, and inexpensive to process in comparison to the other three. An
iris match against a database can be made 300 times faster than a match to a
fingerprint in the same database. Hence, despite the cost differential, the speed
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and high accuracy of eye biometrics make it vastly superior to the fingerprinting
biometric. Once costs descend, this must surely be the medium of choice, if for
no other reason than the key factor in selection of an appropriate biometric is
its accuracy. At the bottom of the list are face geometry, followed by finger
geometry, and voice patterning.

� Verification vs. Identification
We discussed the use of smart cards and biometrics for verification of indi-

viduals above, where verification means the following.

Verification

The individual’s identity is entered into the system, via a smart card, say,
then a biometric feature is scanned. If that scanned trait matches the one
previously stored in the card, then verification is successful. This kind of
“verification” is also often called “authentication” of the individual.

The notion of verification must be separated from the issue of identification,
given as follows.

Identification

An individual’s recorded biometric feature is compared to all the correspond-
ing biometrics in the database. If there is a match, then the individual is
identified, and the user’s ID may be processed later for verification.

Identification is very useful in fighting crime. For instance, if an individual’s
fingerprint or DNA, say, is lifted from a crime scene, and a match is made
to it after searching a database, this provides crime fighters with evidence to
prosecute.

In order for biometrics to be effective, there must be an enrollment process,
where an individual consents to having a biometric image captured, such as
a fingerprint or eye scan, from which the characteristics are extracted. This
allows the creation of the user’s biometric template, which is stored centrally,
in a database, or locally, on a smart card, say. Think of verification as a one-
to-one comparison, which confirms that the credential belongs to the individual
who is presenting it. The authenticating device need only have access to the
individual’s enrolled biometric template, which may be stored locally or in a
database. Identification, on the other hand, is a one-to-many comparison. It
verifies that the given entity exists within a given population and is not enrolled
with another ID. Moreover, it will verify that the individual is not on a list of
prohibited entities. In this case, the database must contain a set of all entities
applying for the access, say, to enter a country, and their biometric templates.

As shown in Diagrams 9.8 and 9.9, the acceptance or rejection will be based
upon some threshold value derived from the security policy of the system being
accessed.



9.4. Biometrics 365

Diagram 9.8 Verification
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Diagram 9.9 Identification
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9.5 Quantum Cryptography

The lesson to be extracted from the latest century of physics is that physical
knowledge has greatly expanded and resulted in new and much-improved theories,
but that these have been produced largely cumulatively and without a complete
break with the past.

Helge Kragh (1944–)
— from Quantum Generations (see [140, page 449])

The nobel laureate, Richard Feynman,9.31 once said: “ I think that it is safe
to say that nobody understands quantum mechanics.” The science of Quan-
tum9.32 mechanics is the branch of physics that accounts for matter at the
atomic level. We will not try to explain quantum mechanics beyond this ele-
mentary description. However, a cornerstone of quantum cryptography, called
the uncertainty principle,9.33 may be relatively easily stated as: One cannot
simultaneously know both the position and momentum of a given object to ar-
bitrary precision.9.34 This is usually illustrated as follows. Suppose that we
wish to measure the position and momentum of a specific particle. To do this,
we must “see” the particle so we must shine light on it. Suppose that light has
wavelength λ. To measure the particle’s position, λ must be very short, because
in order to provide data on position we need wavelengths comparable to the
object we want to locate. However, a short wavelength of light transmits a big
boost in momentum when it bounces off the particle to provide position data.
Thus, the more accurately we measure position, the more uncertainty there is
in its momentum. On the other hand, if we want to measure momentum, we
use very long wavelengths, which increases uncertainty in its position. Hence,
a particle does not have a well-defined simultaneous position and momentum.
Typically, quantum experiments are done at this subatomic particle level, and
this is not in our everyday experience. Yet, there is a means of describing a
quantum experiment at a level with which we are all familiar.
9.31Richard Phillips Feynman (1918–1988) was born in New York City on May 11, 1918. He
was educated in the United States, obtaining a doctorate from Princeton in 1942, wherein his
thesis developed a new approach to quantum mechanics. From 1943 to 1945, he worked as a
member of the team that developed the first atomic bomb at Los Alamos. In 1965, he was
awarded the Nobel Prize in Physics. Despite all his accomplishments, he was not a typical
stuffy scientist. To put his life in perspective, we quote from the jacket cover of his book [86]:
“In short, here is Feynman’s life in all its eccentric glory — a combustible mixture of high
intelligence, unlimited curiosity, and raging chutzpah.” After eight years of battling abdominal
cancer, he succumbed on February 15, 1988, in Los Angeles, at the age of sixty-nine, having
taught his students up until two weeks before his death.
9.32Quantum theory is a physical theory that holds that certain properties occur only in
discrete (as opposed to continuous) amounts, called quanta.
9.33This is formally known as Heisenberg’s uncertainty principle, named after Werner Karl
Heisenberg (1901–1976) who was awarded the Nobel Prize for Physics in 1932.
9.34This does not say anything about how precisely a particular object can be known. It does
say (more generally), that some pairs of properties are intimately linked in such a way that
they cannot be precisely measured at the same time. Physicists call these pairs canonically
conjugate variables. For instance, position and momentum is one such pair and another is
time and energy. The more precisely one knows the time span when an event occurred, the
less precisely one knows the energy involved (and vice versa).
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� Photons and a Quantum Experiment

We begin by looking at basic properties of light. The particles that constitute
light are called photons. These photons make up light waves, which are examples
of electromagnetic waves, meaning that they have an electric field that travels
perpendicular to their associated magnetic field. Photons travelling through
space vibrate (or oscillate) as they move. This vibration can be horizontal,
denoted by →; vertical, denoted by ↑; 45◦, denoted by ↗; or 135◦, denoted
by ↖. The angle of the vibration is known as the polarization of the photon.
This is a simple type of polarization, called linear, meaning that as the photon
propagates, the electric field stays in the same plane. This linearity assumption
simplifies the situation by allowing only four possible polarizations, rather than
the infinitely many possibilities (namely all angles in between).

Now we need to understand a little bit about polarization of light. We are
going to look at the effects of a Polaroid filter9.35 on a light source. We will
assume that the axis of the filter is oriented in one of the aforementioned four
ways. Quantum theory dictates that if α is the angle that the plane of the
electric field of the photon makes with the axis of a Polaroid filter, then there is
a probability of cos2 α that the photon will emerge with its polarization reset to
that of the filter’s axis, and a probability of 1− cos2 α that it will be absorbed
(to be re-emitted later as heat). For example, if the polarizer axis is vertical,
then light emitted with random polarization means that if α is only slightly off
vertical the photon has a high probability of passing through. If it is 45◦, then
it has a fifty percent chance of getting through, and this decreases to zero at the
horizontally polarized photons. Hence, roughly 50% of the randomly emitted
photons get through and as they pass through the vertical filter, they all emerge
as ↑ polarizations. Call that polarization filter V, and the situation is illustrated
in Diagram 9.10.

Diagram 9.10 Polarization with Filter V

Light Source: L
S−−−−→

↑
V

↑ polarized−−−−−−−−−−→ 50% of S

9.35Edwin Herbert Land (1909–1991) patented a cellophane-like polarizing filter, the first
to polarize light, a process that reduces light glare. In 1932, Land co-founded the Land-
Wheelwright Laboratories in Boston. By 1937, Land founded the Polaroid Corporation and
began to use his filters in Polaroid sunglasses, and a variety of other applications. However,
Land is best known for his invention and marketing of instant photography, called Polaroid
photography. In 1947 he presented the Polaroid Land Camera, which took 1 minute to pro-
duce a finished photograph. After his retirement from Polaroid in 1980, he worked with the
nonprofit Rowland Institute of Science supported by the Rowland Foundation that he founded
in 1960. Land stands second only to Thomas Edison in the number of patents issued to him,
more than 500. He received a number of awards for his contributions to knowledge about
polarized light, photography, and colour perception. Land died in Cambridge, Massachusetts,
on March 1, 1991.
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Now suppose that we use a polarizer axis that is horizontal, denoted by H.
Then no light gets past filter H, after having passed through filter V because
all of the photons are polarized ↑, whose angle with H is α = 90◦, and the
probability of getting through is cos2 90◦ = 0. This process is illustrated in
Diagram 9.11.

Diagram 9.11 Polarization with Filters V and H

L
S−−−−→

↑
V

↑ polarized−−−−−−−−−−→
→
H → 0% of S

Suppose we now place a filter with polarizer axis 45◦, denoted by F between
V and H. Then the 50% of those photons that get through V now have a 50%
chance of getting through F, and each of those will be polarized as ↗, so now
25% of the original photons got through. Now we approach H and each of the↗
has a 50% chance of getting through H. Hence, once through all three filters,
12.5% of the original photons are emitted. Surprisingly, having put another
filter between two that allowed no photons through, now allows 12.5% through.

Diagram 9.12 Polarization with Filters V, F, and H

L
S−−−−→

↑
V

1
2S
−−−−→
↑

↗
F

1
4S
−−−−→
↗

→
H

1
8S
−−−−→
→

This is the basic principle upon which Polaroid sunglasses work. One can
demonstrate this principle, using a pair of Polaroid sunglasses, by taking one
lens out and placing it in front of the fixed lens. There will be an orientation
that is exactly the same for both lenses, so that the fixed lens has no effect
on the loose lens. If the loose lens is now rotated ninety degrees, the effect
will be complete blackness. This is because the polarization of the lenses are
now perpendicular, so that photons that get through the one lens are blocked
by the other. By rotating the loose lens forty-five degrees, one now gets an
intermediate stage between complete blackness and no effect. This is because
half of the photons that pass through the one lens succeed in getting through
the other. Placing a third lens in front of the loose lens with axis perpendicular
to the fixed lens, we get about half the light from the first two being filtered
through, which is Diagram 9.12 in action.

� Quantum Key Generation
Now we turn back to cryptography and show how the above notion of po-

larization and its effects can be employed to generate cryptograms.
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Our goal is for Alice and Bob to communicate in binary using the polarization
effects from our earlier discussion. First, we set up two binary schemes based
on those polarizations.

Rectilinear Scheme: This scheme will be denoted by +, wherein a 1 is
represented by ↑ and a 0 is represented by →.

Diagonal Scheme: This scheme will be denoted by ×, which uses ↗ for 1
and ↖ for 0.

To send a message Alice can randomly switch between these two schemes.
For example, she might send a photon string consisting of

→→↑→↗↖↑

using the combination of methods: + + + +××+ so the message is:

0 0 1 0 1 0 1.

� Quantum Key-Generation Protocol
In the following, when we say that Alice and Bob “openly” communicate,

we mean that they converse over an unsecured telephone line.

1. Alice openly communicates to Bob a string of n ∈ N photons with random
polarizations in the two schemes, + and ×, with the particular polarized
photons denoted by p1, p2, . . . , pn. Each polarized photon pj is associated
with one of the schemes + or ×, so we denote sj to denote that scheme
under which pj is polarized, for j = 1, 2, . . . , n. For instance, if p1 =→,
then s1 = +.

2. Bob has a polarization detector with two settings.

(a) A + detector that can measure the polarizations ↑ and→ with perfect
accuracy, but misinterprets ↗ or ↖ as one of ↑ or →.

(b) A × detector, which can measure ↗ and ↖ with perfect accuracy,
but misinterprets ↑ and → as one of the ×-polarized ones.

Both settings cannot be used at the same time due to the uncertainty
principle (we cannot simultaneously measure both + and × polarizations).

Bob sets the polarization detector at random settings. Sometimes the
correct detector (corresponding to Alice’s choice) is picked for the in-
coming photon, and sometimes not. We denote his received photons
as q1, q2, . . . , qn, and his corresponding randomly selected schemes as
t1, t2, . . . , tn.

3. Alice openly communicates to Bob the sj for each j = 1, 2, . . . , n, but not
pj . If sj = tj , then qj is selected. Otherwise, qj is discarded. We will
label the selected ones as q1, q2, . . . , qm, without loss of generality, for the
sake of convenience.
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4. Alice openly communicates to Bob her choice of randomly selected  < m of
the pj . They compare her  of the pj with Bob’s corresponding qj If any
of these do not match, Alice and Bob know there must be an eavesdropper
(see analysis below) and they abort the run. Otherwise, they go to step
5.

5. Alice and Bob discard the  randomly tested pj = qj , and maintain the
remaining m−  of them as the secret key.

Analysis: The bitstring corresponding to their agreed-upon secret key is
truly random since Alice’s initial photon burst was random and Bob’s choice
of polarization methods was random. Hence, this agreed upon bitstring can be
used for a one-time pad.

To see why the above key-generation scheme is the equivalent of a one-time
pad, suppose that Mallory has also attempted to measure the initial photon
burst from Alice. Then Bob and Mallory are in exactly the same situation since
both of them will choose the wrong detector roughly half of the time (but not
the same half). The uncertainty principle guarantees that Mallory has no means
of duplicating Alice’s original settings, so even if Mallory’s eavesdropping on the
telephone conversation, thereby gaining knowledge of the correct polarization
settings, this does not help because Mallory will have measured about half of
these incorrectly. Hence, this one-time pad is absolutely unbreakable, since
Mallory cannot intercept Alice’s message without making errors.

Mallory’s presence is detected by the very act of measuring. If Alice sends
a ↗, for instance, and Mallory uses the + detector, then the incoming ↗ will
emerge as one of ↑ or→, since this is the only way that photon can get through
Mallory’s detector. If Bob measured the transformed photon with the× detector
and ↖ emerges, then a correct setting of the detector will result in an incorrect
reading. In this case Mallory has altered the resulting qj . Of course, it might
also occur that Bob’s reading results in the correct ↗ emerging. Therefore,
Mallory has a one in four chance of being detected for each photon checked.
Since  of the qj are checked in step 4, then the probability of detecting Mallory
is 1− (3/4)�. Hence, for arbitrarily large  (and sufficiently large corresponding
n), we can make this as close to 1 as we desire.

The above analysis shows that quantum cryptography allows key distribution
between two entities (who share no prior keying material) that is provably secure
against enemies with unlimited computing power, provided that the entities have
access to a conventional channel, aside from the quantum channel.

There was a working prototype for such a similar quantum scheme developed
in 1989 by the authors of [20] (having four, rather than two, schemes), but there
were some glitches in the prototype, all of which is discussed in the book [291,
pages 177 and 178] devoted entirely to quantum computing. Moreover, there
have been implementations of the scheme using fiber optical cables over several
kilometers (see [125] and [155]). Further advances were announced in Tokyo in
March of 2004; NEC Corporation in collaboration with others have succeeded
in realizing the world record, a 150-km-long single-photon transmission.
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� Quantum Computing

The conventional digital computers, with which we are familiar, use bits,
0 and 1, to represent information. Moreover, after each execution, the digital
computer has a definite, precisely measurable state; all the bits are either 0
or 1 but not both. A (as yet still hypothetical) quantum computer is a quan-
tum analogue of a digital computer, that operates with quantum bits involving
quantum states. A quantum bit is also called a qubit, which may be represented
as a (unit) vector in a sphere, where ↑ represents 1, and ↓ represents 0. Any
orientations in between such as ↗ and ↖ represents the angle with the vertical
axis as a measure of the “0-to-1”-ness of the qubit. Thus, unlike classical bits,
a qubit may posses several states at once. The input and output qubits can
be linear combinations of basic states, so that the quantum computer functions
on all basic states in the linear combinations simultaneously. Hence, a quan-
tum computer is essentially a massively parallel computer. This means that (if
one were ever built), it would outperform all classical computers, and would
make classical cryptography obsolete. For example RSA could be broken. Even
though a quantum computer, per se, does not yet exist, factoring methods for
one have been developed. In [252], Shor9.36 presented a polynomial time quan-
tum algorithm for factoring large integers. He used the quantum property called
interference, which is the feature of quantum mechanics that dictates that the
outcome of a general quantum process is dependent upon all possible histories of
that process. Interference makes quantum computers qualitatively more power-
ful than classical ones, because quantum interference can occur whenever there
exists more than one method for obtaining a specific result.

In 1993, the authors of [21] showed how to teleport the quantum state of
an object, meaning that they presented a scheme for transporting from one lo-
cation to another without passing through the distance between them. They
used the notion of entangled states (or entanglement), which refers to the quan-
tum fact that the properties of a composite system, even when the components
are distant and noninteracting, cannot be fully expressed by descriptions of the
properties of all the component systems. Entanglement is the feature of quan-
tum mechanics that makes quantum cryptography possible. Hence, with this
scenario, quantum cryptography employing quantum computers would involve
enciphering qubits using quantum states and teleporting those quantum states
from one quantum computer to another without having to pass through an unse-
cured channel. Although prototypes exist, the construction of a general-purpose
quantum computer seems infeasible at this time. Yet, it might be possible to
construct a special-purpose quantum factoring machine. After all, Shor has
shown us how to use quantum computers to break classical cryptosystems, such
as RSA, based on factoring, since his technique reduces the factoring of very
large composite numbers to the comparable triviality of multiplying.

9.36Peter Shor was born August 14, 1959. He obtained his Ph.D. at MIT, and after a brief
stint at the Mathematics Research Center in Berkeley, California, as a postdoctoral fellow, he
joined AT&T in 1986. He is currently a mathematician at the AT&T Research Laboratories in
Florham Park, New Jersey. His work on quantum factoring earned him the 1998 Nevanlinna
Prize at the International Congress of Mathematicians in Berlin.
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9.6 Nuclear Test Ban Treaty Compliance

I must create a system, or be enslaved by another man’s. I will not reason
and compare: my business is to create.

— William Blake (1757–1827), English poet
— from Jerusalem (1815 Chapter 1; plate 10, l. 20)

We conclude this chapter with a section on applications of PKC to a modern-
day phenomenon given by the title. This was very much a real part of negotia-
tions in the last century when the cold war between the United States and the
former Soviet Union were under way to limit nuclear bomb testing.

We begin with a brief biographical description of the man responsible for
the idea of using PKC for the application in the title of this section.

Gustavus J. Simmons was born on October 27, 1930 in Ansted, West Vir-
ginia. His educational background includes a B.S. in mathematics from New
Mexico Highlands University, Las Vegas, in 1955, an M.S. from the University
of Oklahoma at Norman in 1958, and a Ph.D. in 1969 from the University of
New Mexico, Albuquerque. In 1986, he received both the U.S. Government’s
E.O. Lawrence Award, and the Department of Energy Weapons Recognition of
Excellence Award for “Contributions to the Command and Control of Nuclear
Weapons”. In May 1991, he was awarded an honorary Doctorate of Technology
by the University of Lund, Sweden, which recognized his contributions to the
science of communications and to the field of information integrity, in particular.

Simmons spent his working life with Sandia National Laboratories from
which he retired in 1993 as a Senior Fellow and the Director for National Security
Studies. His work at Sandia mainly centered around integrity and authentica-
tion issues surrounding national security, with a special focus on those involving
command and control of nuclear weapons. In 1996 he was made an honourary
Lifetime Fellow of the Institute of Combinatorics and Its Applications. His
many publications were primarily in the areas of combinatorics, graph theory,
information theory, cryptography, especially in the application of asymmetric
encryption techniques and message authentication. His later work was devoted
largely to creating protocols that can be ensured to operate properly, even if
some inputs and/or participants in the protocol may not, themselves, be trust-
worthy.

The following presentation is a simplified version of an idea created by Sim-
mons in the late 1970s and early 1980s, published in a series of papers [253]–
[255], as a means for such countries as the United States and the former Soviet
Union to ban underground nuclear testing and have a treaty in place to verify
compliance using PKC.

In the scenario below, there is no need for secrecy, only guaranteed authenti-
cation, called authentication without secrecy. What is being sought is authenti-
cation without covert channels, which means any communication pathway that
was neither designed nor intended to transport data. Covert channels, therefore,
would only be located and employed by adversaries.
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As noted in [253], several SKC schemes were delineated, all with problems
concerning authentication that the following PKC scheme solves.

� How is the treaty enforced?
Suppose that two countries, A and B, sign a treaty to terminate all un-

derground nuclear weapons testing. Both A and B need to verify that the
other is not engaging in underground testing. To do this, country A, say, will
put seismic monitors in country B, since one of the most reliable methods of
detecting underground tests is the measurement of ground motion from such
mechanisms. Also, we need a monitor, whom we will call Monty, from, say, the
United Nations, in country B to relay messages to country A from the sensors.
(We assume that both A and B agree on the construction and placement of
these devices.) In this scenario, both countries have issues.

Country A wants to ensure that country B does not alter the data, and
country B needs to ensure that there is no unauthorized data being transmitted
to A. Here is how both of these issues can be resolved.

The seismic device, which we will call HAL, secretly generates primes p and
q for an RSA modulus n = pq, as well as the enciphering key e. Moreover,
we assume that all the security issues discussed on pages 174–179 have been
addressed and programmed into HAL, together with a CSRNG (see page 151).
Thus, after the random process of generating p, q, and e, the Euclidean algo-
rithm would be used to calculate the decryption key d. Then n = pq, and d
would be provided to Monty, country A and country B. However, p, q, and e
are kept secret within HAL, which is assumed to be deeply buried and tamper-
proof. HAL gathers data m and uses e to form the information c ≡ me (mod n).
Both c and m must first pass muster with country B, which verifies that

cd ≡ m (mod n) (9.1)

so they know that m indeed is the data that corresponds to the encrypted data
c. They then forward m and c to country A, who also verify (9.1). Then country
A is certain that m could not have been altered. They know this since if B were
to choose

m1 = m so that m1 ≡ cd (mod n),

then this is the same effort as decrypting c, which the RSA conjecture presumes
is computationally infeasible (see page 175).

� Summary of Treaty features
(1) None of A, B, or Monty can forge messages that would be accepted as

authentic.

(2) Since n and d are public, both countries A, and B, as well as Monty may
verify the authenticity of messages.

(3) Since e is kept secret from all entities, no unilateral actions are possible
by any entity that would be capable of lessening the confidence in the
authentication of the message.
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(4) No part of the message is concealed from any of the participating enti-
ties. Hence, the above is an application of authenticity without secrecy
using PKC, and A and B can try to cheat as much as they wish without
compromising the system.

� Analysis and Conclusions

Simmons observed, at the end of [254], that the above mechanism has a direct
analogue for communication between international banks each having branches
in the foreign host country (see Section 5.8). He also gave the opinion that this
methodology is a paradigm for public access systems to important resources or
facilities. It turns out that this opinion was well founded as we have seen from
the multitudinous applications of PKC already demonstrated in this book.

In 1984, Simmons [256] discovered a problem with the above scheme. Al-
though a built-in feature of the scheme is that it does not allow for a covert
channel to be built into the message (since a process is in place for country A
to verify this), HAL could still be used to hide a subliminal channel (see page
192). What this means is that a channel can be implanted so that country B
could not detect the use of the covert channel and could not read the hidden
part. In particular, as noted by Simmons [261] in 1993 (with reference to the
Second Strategic Arms Limitation Treaty (SALT II) between the former Soviet
Union and the United States) the subliminal channel could be used to reveal
to the other country which of those silos in the host country were loaded with
missiles and which were empty. What is striking and decisive about this fact is
that the country in possession of this knowledge would be able to successfully
launch a first strike!

In the early 1990s, Simmons [258] and [259] came up with a proposed solution
to the problem (see also [257], [260], [262]). However, in 1996, Desmedt [65]
provided a counterexample to this claim, and demonstrated how several other
protocols in the literature are susceptible to this problem. This was addressed
by Simmons [263] in 1998. The actual details, including the very definition of
subliminal-channel-free protocol is beyond the scope of this text. For details
consult [65] and [66], as well as the aforementioned papers by Simmons.

The aforementioned subliminal channel idea is even mentioned as a stegano-
graphic technique in the book on such schemes, [137, page 34].



Chapter 10

Noncryptographic Security
Issues

Thought is great and swift and free, the light of the world, and the chief glory
of man. (quoted in [245])

Bertrand Russell (1872–1970), British philosopher and mathematician

10.1 Cybercrime

Although (physical) bank robberies are still with us, they are rapidly taking
a back seat to a newer crime requiring no direct contact: Cybercrime.

What is Cybercrime? Cybercrime (sometimes written Cyber-Crime, and
also referenced as e-crime) is defined, in its most general sense, as any crime in-
volving computer technology and the Internet. According to a 2003 survey con-
ducted, in part, by the U.S. FBI, nearly eighty percent of attacks are launched
via the Internet; the most likely source of attackers are either hackers or dis-
gruntled employees (over ninety percent of economic crimes are committed by a
company’s own employees!); and the cost of computer crime (in that year) was
in excess of 200 million dollars (U.S.). One (unfortunate) ubiquitous source of
such attackers is the bored (but typically ignorant),10.1 teenager who employs
automated software packages devised by other (more informed) hackers.10.2 In
this case, only the original, inventive, cyber-smart hacker needs to have the
computer aptitude to create the software, then distribute it for use over the
Internet.

Cyber Terrorism: The extrapolation of the modern-day hacker is the
cyberterrorist, who may be able to create disaster from outside a given country.
10.1Such a computer user with little skill, who employs the software creations of others, is
called a script kiddie.
10.2For now, we will think of “hacker” as a slang term for any entity that attempts to break
into a computer system. In Section 10.2, we will look at such entities in more depth.

375
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Imagine what could happen if such entities were able to gain access to the power
grid of a given nation. They could shut down or disrupt all transportation,
computer networks, power to homes — in short — create a catastrophe.10.3 If
they were successful, how would the home nation prosecute them? These are
issues with which governments are now trying to grapple, in order to meet the
new challenges of the future. Technology has proven to advance much faster than
the means to make it secure before effective countermeasures against system
attacks are devised.

Cybercrime and E-commerce: Earlier in the text, we looked at numerous
mechanisms for making e-commerce secure. There is good reason for this, of
course. As with the scenario presented at the outset of this chapter, digital
banks can be robbed, too. Your identity may be stolen (identity theft, see page
202), your bank account drained, or you may be conned by a scam10.4 artist.
It happens every day to unsuspecting people. In short, if it can happen in the
real world, it can happen in the computer world and then some. Only the venue
changes from the direct attack to the digital attack.

Privacy: Privacy invasion is also an issue, whether it be your medical
records or other sensitive data that is stored on computer network databases.
We have looked at numerous means for securing such information, especially in
the previous chapter. There are many reasons for not wanting your personal
information to be violated, not the least of which is fraud. Even a simple mat-
ter of monitoring your electricity and other utility use could allow a criminal
to deduce when you are on vacation and rob your home. Do not assume that
any amount of personal data is trivial or useless to the criminal element. If
there is a means to use your personal information to extract money it can, and
probably will, be exploited. Therefore, do not give out personal data unless you
absolutely have to do so to a reputable source. Some culprits deal specifically
in gathering personal information via scam “survey”, or “opinion getting”, for
the sole purpose of identity theft. Do not be too trusting of strangers when it
comes to divulging information. A telemarketer is not your friend.

A thief need not be near your home to rob you. There are numerous mar-
keting scams that attempt to entice the unsuspecting into parting with their
money. Some of the most recent are those from various Third World countries
that send you a claim, by e-mail, that they cannot get their money out of the
country. If you would just allow them to deposit their money into your account,
you would be handsomely compensated. Once you give them your digital bank
data, you will find that you are led into a scam (see the discussion of “advance
fee fraud” on page 379). Do not, as the adage goes, believe you have access to

10.3This actually occurred, without cyberterrorist intervention, in August of 2003 on the
eastern coast of North America, when an overloaded grid caused a domino effect across nearly
the entire eastern front.
10.4A scam is generally viewed as a fraudulent business scheme. Typically, the perpetrators
promise significant profit for insignificant risk in order to separate a person from their money
or other valuables. Also, a scam may involve one or several individuals, and the scheme is
given the appearance of a legitimate enterprise.
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something that is too good to be true — that is the point — it is too good to
be true.

� Types of Cybercrime: Cybercrime is so new that the very notion of
what constitutes a crime is is still open to debate. Certainly, the tradition-
ally viewed crimes, such as espionage, fraud, forgery, larceny, mischief, sabo-
tage, and so forth, are easy to cite as cybercrimes. However, once we are in
cyberspace10.5 then things become more shadowy, and even newer crimes are
introduced such as cyberstalking, which we will discuss below. However, the
United Nations has clarified some of these issues in its document United Na-
tions Manual on the Prevention and Control of Computer-Related Crime, (see
http://www.uncjin.org/Documents/EighthCongress.html), where such activities
as computer sabotage, unauthorized access, unauthorized copying, and the like
are included. From the first sentence therein: “The burgeoning of the world of
information technologies has, however, a negative side: it has opened the door
to antisocial and criminal behavior in ways that would never have previously
been possible.” Indeed, and this is our focus here.

� Computer Espionage: Industrial espionage means obtaining propri-
etary information from an organization (which might be private enterprise or
the government), for the purpose of aiding another company or government, but
the term excludes espionage related to national security. A principal motive for
industrial espionage is for a business to improve their competitive edge, or for a
government to give an advantage to their domestic enterprises. Foreign indus-
trial espionage executed by a government is usually called economic espionage.
Typically, the greatest threat in this type of espionage is an employee within a
given organization or government, who sells the information to another party.

In industrial espionage, stolen data most destructive to the victim are intel-
ligence on pricing, processes used in manufacturing, as well as product devel-
opment and description. Other types of data stolen are a company’s research;
its customer lists; as well as data on compensation; costs; negotiating positions;
personnel; proposals; sales; and strategic goals. At the least harmful level are
activities that are actually legal and are termed separately as business intelli-
gence, such as gathering information from a company Web site, examining their
patent records, analyzing their corporate publications, and the like in order to
deduce the organization’s activities.

In economic espionage, the main target is technology-related information.
By obtaining intelligence on defence systems, for instance, a country could ob-
tain information to manufacture leading-edge weapons systems without incur-
ring the costs of research and development. They could also sell or trade the
information for economic or political reasons. Espionage by foreign governments
10.5The term cyberspace originated with William Gibson, a science fiction (the more recent
term being “speculative fiction”) author, in his novel Neuromancer (see [103]). Today, the
term cyberspace is used, typically, to mean the domain of data available via the Internet, and
computer networks, as well as the virtual environment created by the Internet. Thus, the
term is often employed to describe that new “virtual culture”, which is emerging from these
electronically interconnected communities.
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might include not only economic espionage, but also certain attempts to gain
access to unclassified intelligence such as civil defense and emergency readiness;
technology employed in manufacturing; trips planned by high-ranking officials,
as well as data on satellites; personnel; and payroll; together with files from:
policing agencies; investigative departments of government (such as taxation)
and security agencies.

� Cyberstalking: This new crime (also written cyber-stalking), spawned by
the Internet, refers to the practice of sending harassing messages (which might
include threats as serious as threatening another’s life), by e-mail. Women are
targeted more than men in this regard. Although the majority of cyberstalkers
are men and the majority of their victims are women, the number of women
cyberstalkers is increasing as are the numbers of adults cyberstalking children;
even children cyberstalking children is a new threat. New laws have been en-
acted in numerous countries to deal with this new criminality.

Cyberstalkers assume they will remain anonymous, so can do as they please
with impunity. When they are caught by authorities, most cyberstalkers claim
they “didnt mean to do it”, or did not “mean it to go so far”. Contrary to what
one might infer, the vast majority of cases are not from someone known to the
victim, rather they are from strangers. Much of the problem stems from the
victim putting blind trust in those they meet online. Do not.

To protect yourself online, use your principal e-mail account only for mes-
sages to and from those you know and trust. Use some type of free e-mail
account for your more frivolous Internet activities. Sites such as Hotmail have
such accounts for you to access. (MSN Hotmail claims to be the world’s largest
provider of free, Web-based e-mail.) Even there, use a gender-neutral name for
your account, and do not use your real name if it can possibly be avoided. Do
not fill out any automatic data features, such as chat-room profiles. If you must
go to a chatroom, do not engage in lengthy, heated, online arguments with oth-
ers. The consequences could be more than you are willing to bear. Use filtering
programs in your e-mail to get rid of unwanted sources. If you do encounter a
cyberstalker, do not respond. That is what they want. Instead, contact their
ISP by forwarding their message, and if the harassment persists, call the police.

The dangers in cyberspace are somewhat like drinking alcohol. It lowers
one’s inhibitions, and allows people to say things they probably would not have
said if they were in your physical presence. Again, this stems from the online
anonymity factor, as well as the physical separation between entities. One
might type something that would provoke a punch in the mouth or a slap in
the face if said directly, but the anonymity and physical distance make some
individuals think that there will be no consequences to their actions, certainly
not an immediate one.

� Fraud: You might think that as long as your credit cards are “safe” in
your wallet or purse, that no criminal can use them. The Internet has changed
all that. In point of fact, criminals use cyberspace to target, obtain, and sell
credit card data to those who would counterfeit these cards. These counterfeiters
use custom-built hardware and software to embed data on plastic cards with
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magnetic strips. However, this is only one small facet of the total fraud industry.
Let us have a look at some of the others.
1 Accounting Fraud: By now anyone living on the planet who has access to

news media, knows about the Enron accounting scandal, which brought
down one of the big-five auditors, Arthur Anderson,10.6 along with it.
In its wake, Worldcom filed for bankruptcy protection in July of 2002,
the largest ever corporate insolvency. They engaged in “creative account-
ing”, meaning that they employed unorthodox means of stating assets,
income, and liabilities. When used to describe misrepresentation of actual
income, profits, and so on, creative accounting refers to fraud, for which
the aforementioned firms were convicted. Computer data files were “cre-
atively altered” to deceive the shareholders into thinking they were far
more profitable than they were in fact. In 2002, this resulted in a major
market downturn (see [158] and [266]).

2. Advance Fee Fraud: We alluded to this when we discussed privacy issues
on page 376. The scam originated in Nigeria, so is often called the Nigeria
scam and, consequently, sometimes also the 419 scam, after the pertinent
section of the Nigerian criminal code. However, now individuals in many
Third World countries actually engage in this type of fraud. Although
there are other methods, the most common is now e-mail (this author gets
several such letters per week, for instance), which usually says something
of the following sort. Some person, Aroujo, say, claiming to be an official,
usually in some government department, will suggest that, in order to
purchase real estate in the country of the intended victim, say, Alice, a
transfer of funds from a Nigerian bank account must have an “overseas
agent”, Alice. Alternatively, Aroujo might tell Alice he has millions of
dollars to “discreetly” transfer abroad. In any case, Aroujo tells Alice
that her bank account is required to establish the funds in her country,
and for her assistance, she will be richly rewarded. If Alice agrees, then
there will be a delay and Aroujo will tell Alice that in order to effect
the transfer, she needs to have a Nigerian bank account with a six-figure
amount in it. If Alice does this, there will be more delays all the while
keeping alive the assurance of the impending transfer. Sometimes more
money is requested from Alice to cover such things as bribes for other
government officials. In some cases, the most gullible will be invited to
Nigeria to meet the government officials and are held there for ransom.

The advance fee fraud is actually a subset of a more general confidence
game,10.7 called the Spanish prisoner. This dates to the seventeenth cen-
tury when con artists would convince the mark that there is a prisoner
(of noble birth with vast wealth), in Spain being held under a fictitious

10.6E-mail records uncovered the document-shredding coverup at the firm.
10.7A confidence game, or simply a con is a fraudulent scheme where a person is persuaded
to buy useless property, goods, or services, or to part with their money for a phony scheme.
The victim, in this case, is usually called the mark. If there is an accomplice to the con artist,
the name given is shill, a person whose role is to encourage the mark.
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identity. He presents himself as the person who has been entrusted to
raise money for his release and cannot reveal the prisoner’s true identity.
If the mark buys this story and money is given, then as with the advance
fee scam, there will be delays, and requests for more money, all the while
keeping alive the promise of being generously rewarded at the conclusion.
However, the conclusion is that the con artist disappears with the loot.

3. Phishing: Password phishing is the extracting of a password from an
individual by pretending to be a legitimate person of authority. Often
this scam takes the form of a message from someone pretending to be
in authority and asking the victim for their password to “update your
account”, or “verify billing data”, for instance. The term “phishing” was
coined in the 1980s by crackers attempting to steal AOL accounts. If the
victim gave out the password, the perpetrator would access the account
and use it for criminal activity.

A modern version of phishing involves masquerading online as a victim’s
bank. The victim might be sent a message saying, for instance, that due
to a system error, their account has been deactivated and they have to
reenter their banking data to reactivate it. The victim is provided with a
link to a Web site that appears to be their bank. Once the data is entered,
the criminal has the necessary information to drain the victim’s account.

To protect yourself, simply do not use anything online when presented
with such a message. Contact the financial institution directly to confirm
that this is legitimate. The online Web site can be very sophisticated and
may be difficult, at best, to determine if it is legitimate.

4. Pump and Dump: This is a type of financial fraud that involves the
artificial inflation of the value of some security or stock, via promotion,
for the purpose of selling it at the higher price. Countries typically prohibit
this practice under their securities laws. However, the Internet has made
it a common and profitable practice. It functions in the following fashion.

An entity will have a Web site touting their product via press releases,
bogus mineral finds, or research claims and the like. If it is a stock, say,
then investors will be urged to buy it and when this happens the price
escalates, that is, is “pumped up”. Then the originators of the scheme sell
their stack at its peak — “dump it” — and stop promoting it. Then, of
course, the stock drops like a rock and the legitimate investors lose their
money. In the 2000 movie Boiler Room the scheme is well illustrated.

5. Miscellaneous Computer Fraud: Employees may alter computer docu-
ments related to their hours of work, or sick leaves taken. This is an ex-
ample of perhaps the most common computer fraud, called data diddling,
which is fraud by input manipulation, where an individual having access to
data processing at the input level can alter it. Although little computer
skill is required to carry this out, detection of data diddling is difficult
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to achieve. Similarly, program manipulation is difficult to detect, but re-
quires a computer-savvy individual who alters or inserts new programs, or
perhaps subroutines into existing ones. The Trojan Horse is a ubiquitous
method for program manipulation (see Footnote 9.7 on page 337), wherein
the attacker can write a self-destruct into the program so that evidence
of its existence is erased. Yet another type of computer fraud is the prac-
tice of transferring (stealing) money from accounts in “thin slices”, called
salami slicing. Salami slicing requires an institution where there are an
immense number of transactions, so as not to be noticed, and for which
the transactions involve more than two decimal places. Since currencies
typically use only two decimals, there is roundoff after those two decimals.
A salami-slicing program will round down those decimals and place the
excess into an account, usually hidden. This may seem trivial, but it does
not take long to accumulate millions by this scheme. Moreover, detec-
tion is difficult, and often takes place only after the culprit has left the
organization.

� Forgery: Computer data forgery is the alteration, manipulation, or dele-
tion of computer data for the purpose of defrauding or injuring. It may also
involve the transmission of such computer data. Computer “data” means any
computer-generated text, document, record, or representation, including e-mail,
graphics, images, and word-processing documents.

� Identity Theft: As noted on page 376, when we discussed cybercrime
and e-commerce, we have already looked at identity theft. Here we extend the
discussion to include methods for thwarting such criminal activity. To protect
yourself against identity theft, do not throw away data with information about
you unless you destroy it first. For instance, always shred any bank state-
ments, credit card applications or promotions you receive in the mail, credit
card receipts, expired credit cards, insurance forms, and any medical state-
ments. Thieves may pick through your garbage or recycling bins to get your
personal information. Keep track of your credit card activity at regular inter-
vals, say, once a week. Do not wait for the billing-cycle statement since you
may be able to catch any unusual activity early and terminate it before it goes
too far. Moreover, if you do not receive your regular billing cycle statement
on time, contact the financial institution. Check your address with them since
identity thieves often recover bills and change the address when they take over
the account. The same holds true for any banking accounts. Keep tabs on
activity in order to spot and stop any suspicious activity. If you order cheques
from your bank, pick them up. Do not have them sent by mail since that invites
intervention by identity thieves. Always cancel inactive credit accounts of any
type. If you do not need it, close it. Such accounts are invitations to criminals.

When we talked about privacy issues above, we cautioned against giving out
personal information to strangers. This is particularly important in preventing
identity theft. Never give out numbers related to your personal identity that
is government-related. For instance, if you are Canadian, do not give out your
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Social Insurance Number, and if American, do not give out your Social Security
Number, unless it is to a reputable source known to you. For those documents
not under your control, such as those at your physician’s office or your work-
place, ask about procedures for disposal. Ensure the methods are secure, and
ensure that your information is kept confidential. Use passwords on all finan-
cial accounts available to you. Moreover, do not use information such as your
mother’s maiden name when opening new accounts. Use a password and use
one that works (see page 330 for password-selection criteria).

When online, always be suspicious of urgent e-mail requests for your personal
financial data. If such is requested, do not click on a link provided. Instead go
to the financial institution’s WWW page of your own volition and navigate from
that site. If you receive an e-mail request for financial or other personal data,
do not respond. Instead, enter it at the firm’s WWW page. Always call the
company directly if in doubt. You are safer to check by phone than by mouse.

� Larceny Cyberlarceny (also written as cyber-larceny, and also called cy-
bertheft), is the computer-facilitated theft of property. The principal factor
differentiating theft of property in the “real world” from cybertheft is that the
latter relies upon the electronic maneuvering of data to effect the transfer of
property from the legitimate owner to the thief. In other words, cyberlarceny
involves the stealing of property via the use of a computer. This may involve
electronic siphoning of money (cyberembezzlement); threats employed to force
a victim to surrender property (cyberextortion); or electronic communications
of falsified data to deceive the victim into parting with property (cyberfraud).
Cyberlarceny must be considered to be a part of what one would consider to be
cyberburglary since real-world break and enter (burglary) is replaced by breaking
into a computer system where the property is stored.

� Money Laundering: This crime refers to the practice of processing
illegally gotten gains through electronic channels to make the funds appear to be
legitimately obtained. The offenders conceal their true identities and locations,
often using cryptographic techniques to do so.

� Sabotage: Computer sabotage means the use of the Internet to interrupt
the normal functioning of a computer system by using “malicious code”.10.8

This could involve the use of computer viruses, logic bombs, Trojan horses,
worms, and so forth, about which we will learn in Section 10.3.

There are no guarantees, but the more cautious you are, and the better
informed you happen to be will give you, at a bare minimum, a sense of greater
10.8The term malicious code has nothing to do with cryptography in this context. Here we
are (and will be throughout this chapter) using the term from a programming point of view
where an attacker writes a program (“writes code”), with malicious intent. The term “to
code” in this context means the act of programming. In particular, source code refers to the
program written before it is compiled by a computer. The computer accomplishes this task
via a compiler, which is a specific program whose function it is to process statements written
in a given programming language and transform them into machine language (“code”). This
code is then used by the computer’s processor (see Footnote 9.25 on page 354). The compiled
code used by the processor is called the object code.
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Figure 10.1: Cybercrime.

This image is via the courtesy of the FBI homepage:
http://www.fbi.gov/. It accompanied an article on cybercrime,
especially related to piracy issues and the damage it does. We will
look at these issues more closely in Section 10.4.

control over your own security. Do not leave that security for others.

� Cybercrime Law Enforcement

One of the first cybercrime laws to come into existence was the Swedish Data
Act of 1973. It was general in scope in that Section 21 of that act incorporated
protection from the unauthorized access to all types of data. In the 1970s and
1980s many countries began enacting laws to fight cybercrime, but as is usually
the case, the criminal was ahead of the law. The United Nations adopted a
resolution on cybercrime, which we mentioned on page 377 (see the URL cited
there for more information). This was enacted at their eighth Congress on the
Prevention of Crime and Treatment of Offenders, which was held in Havana,
Cuba, in 1990. The United Nations cybercrime manual was published in 1994.
However, many countries now see the laws of the 1990s to be woefully inadequate
to deal with the new millennium cybercriminal, so many are revising, updating,
and expanding those laws. For a case in point, see Footnote 10.28 on page 402.
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10.2 Hackers

When you are ignorant of the enemy but know yourself, your chances of
winning or losing are equal.

Sun Tzu
(See [279, page 84], as well as page 138 herein.)

� What is a Hacker?
Hacker is a term with many meanings. The press has co-opted it to mean

any malicious attacker of a computer system, but those who consider themselves
to be hackers put a different spin on the term. They may see themselves as
computer-savvy individuals who are simply dedicated to pushing the limits of a
computer system for the fulfillment of the exercise (in this section, we will talk
about the pioneers who lived this point of view). Of course, those who consider
themselves to be legitimate hackers might likely consider the individual who
breaks into a computer system (with malicious intent) to be a cracker. However,
the victims really do not care about labels, since damage is done to their system.

The term has changed over time. As far back as the 1920s, it meant an
amateur who played with radios for the purpose of improving its performance,
which may be called hobby hacking. The source of academic hacking is traced to
students at MIT, where a hacker was simply a prankster, and their (technology-
based) pranks or practical jokes, were called “hacks” (we will also talk about
some of this MIT crowd since they form a highly nontrivial intersection with the
aforementioned pioneers). Network hacking began with telephone networks and
involved attempts to get free phone calls by reproducing certain tones into the
telephone receiver. Once computer networks developed, and phone companies
went digital, then network hacking took on a new computer-based meaning.

There are many sides to hacking, and this is given weight in the book, Cy-
berpunk [116], where three different stories are told from “the dark side” of
hacking to the shy student who wrote a program that brought down a computer
network. The Encyclopedia Britannica looks at hackers as “irresponsible com-
puterphiles”. Perhaps the definition of hacker lies somewhere in the middle of
these various illustrations, but we must settle on a definition for our purposes
that encompasses much of the new-millennium reality. Therefore, for our pur-
poses a hacker will mean an individual who (legally or illegally) gains access
to computer systems, or to software, to either make changes, or to inform the
system administrators of security flaws. This definition encompasses several
acknowledged uses of the term. At the one end, the person who is hired by a
firm to discover security flaws and does this by finding weaknesses in a com-
puter system or piece of software, is sometimes called a white-hat hacker. On
the other end of the spectrum, is the malicious attacker type who breaks into a
system illegally to do significant damage for whatever reason from being a dis-
gruntled employee to just doing it for the perverse joy of the act. In this case,
the hacker is typically called a black-hat hacker. It even encompasses someone in
the middle of these two since there are individuals who gain access to systems
and make insignificant changes, which is done largely for recognition, or just



10.2. Hackers 385

for entertainment. These are called grey-hat hackers. Moreover, we may have
nontrivial intersections among the types since it is often the case that white-hat
hackers were once black-hat hackers, and that is why they are so good at what
they do.

In 1984, Steven Levy, in his book [150], defined the code of conduct of a
hacker as the free sharing of information that did not allow for the harming of
any data encountered. We now turn to this “ethic” since it, and the people who
lived it, were the founders of a culture that was benign in intent and gave us,
arguably, some of the best of the modern computer world that we enjoy today.
Our “definition” of hacker, given on page 384, is a modern-day interpretation
to which we will return once we look at the lives of the pioneers who saw things
quite differently.

� Hacker Ethic: The hacker ethic consists of the conviction that informa-
tion sharing is a positive goal in and of itself, and that it is a social responsibility
of hackers to share their expertise by producing freeware and access to comput-
ing resources wherever possible. It may also include the notion that breaking
into a system for leisure activity is ethically valid provided the hacker com-
mits no criminal offense by altering, deleting, or otherwise tampering with data
found. (Perhaps it is the latter that has led to the modern-day notion of the
hacker.)

Some hackers extrapolate the above ethic, and maintain that all information
should be free with any proprietary regulation being unethical. In 1984, a
hacker named Richard Stallman (See Figure 10.2, courtesy of Richard Stallman)
founded the GNU project based on that belief. GNU (pronounced guh-noo), is
a recursive acronym for Gnu’s Not Unix. He also founded the nonprofit Free
Software Foundation (FSF), which is the main support organization behind
the GNU Project (see www.gnu.org). Another organization he founded is the
League for Programming Freedom.

� Hacker Pioneers

We are now going to look at those who helped to create the hacker ethic
and who lived it. These individuals believed in group effort for improvement,
who enjoyed the intellectual challenge, and were dedicated experts and enthu-
siasts.10.9

Stallman: He was born on March 16, 1953 in Manhattan as Richard
Matthew Stallman (although he prefers his nickname given by his initials
RMS). In 1971, as an undergraduate at Harvard University, he became a

10.9In this context, to “hack” something takes on a more general meaning and may refer
to any human enterprise. In other words, in the most general context possible, a hacker is
any human being who fully dedicates themselves to their craft whether it be music, poetry,
mathematics, physics, architecture, dance, or whatever. If the individual has skill, dedication,
and commitment that runs deep, then that is a hacker. In this sense, Richard Feynman was
a hacker (see Footnote 9.31 on page 366); Einstein was a hacker; Bach was a hacker; and just
about anyone at the upper levels of arts and science is a hacker.
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hacker at MIT’s Artificial Intelligence10.10 Lab (AI Lab). After graduating
from Harvard in 1974 with a B.A. in physics, he wrote the first extensible
Emacs text editor10.11 in 1975, largely done at that AI Lab. By 1984, he had
the GNU project ready to launch, so he resigned from MIT to pursue that
project. Although many others left the MIT lab in the early 1980s, Stallman
was seemingly the only one with the philosophy that software should be free.

Figure 10.2: Richard Stallman.

In fact, several of those
former MIT hackers estab-
lished the enterprise called
Symbolics, which was a
company interested in pro-
prietary software. They
even attempted to poach
the remaining MIT hack-
ers to work for their com-
pany in this endeavor.
Stallman actually felt a
certain betrayal when he
was asked to sign nondis-
closure agreements. In
1985, he published the
GNU Manifesto, which he
had first written in 1983.
This document outlined
his motivation for creat-
ing GNU, which he wanted
to be Unix-compatible. In
fact, by 1991, the final
bugs were worked out via
Linux, so that now the OS
is called GNU/Linux.10.12

Although Stallman did
not complete his Ph.D., he
10.10Artificial Intelligence is intelligence manifested by anything constructed by sentient beings
(namely, “self-aware” beings). AI is also commonly called “machine intelligence”. Of course,
the definition of intelligence itself comes into play here. Since human beings are the only
sentient beings we know (so far), then we may accept, as an informal definition here, that AI
is any system that can think, and act rationally as do humans (at least most of us).
10.11This is a text editor whose source code is freely copyable and redistributable. Moreover,
it will run on most machines with differing operating systems (OS)s. Being extensible means
that its usage is customizable and programmable to accomplish varying tasks limited only by
the users’ imagination. “Emacs” actually represents a collection of text editors that evolved
from one another in some fashion. Stallman was also the author of GNU Emacs. In the early
distribution days of GNU Emacs, a hole was found in the security through which malicious
hackers could enter. An interesting real-life tale about one such event is woven in the intriguing
book, The Cuckoo’s Egg (see [273]).
10.12Linux is a free Unix-type OS originally created by Linus Torvalds with global assistance
from a number of developers.
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has since been granted three separate honourary doctorates from various in-
stitutions around the world, as well as many awards: the 1991 Association for
Computing Machinery’s Grace Hopper Award for his work on the original Emacs
editor; the 1998 Electronic Frontier Foundation’s Pioneer Award together with
Linus Torvalds; the 1999 Yuri Rubinski Memorial Award; and the 2001 Takeda
Techno-Entrepreneurship Award for Social and Economic Well-Being. Stallman
is currently chief GNU of the GNU project and president of the FSF. You may
get a flavour of Stallman’s ideas by consulting [270].

Gosper and Greenblatt: The hacker ethic, discussed above and epito-
mized in Levy’s book [150], is actually a reflection of the philosophy developed
by Stallman and Bill Gosper, who many consider to be Stallman’s mentor at
the MIT AI Lab. R. William Gosper, Jr. is a computational mathematician.
He and Richard Greenblatt, known as the “hacker of hackers”, are said to have
founded the hacker community. Gosper was associated with the MIT AI Lab
in various capacities from 1965 to 1974. He was involved with MACSYMA (see
page 167) from 1974 to 1999, which included his being a consultant to Symbolics,
discussed above. Richard Greenblatt is a computer scientist who also spent his
early days at the MIT AI Lab. He was, in fact, the principal designer of the MIT
Lisp machine.10.13 Some of Greenblatt’s exploits are described in Rheingold’s
book [227]. The director of the MIT AI Lab, Marvin Minsky, Greenblatt’s advi-
sor, gave the hackers access to the machines, being impressed with their talent
and desire to explore. Many of the MIT students interested in the AI Lab had
been exploring the phone switching network and the control systems of the Tech
Model Railroad Club (TMRC), near legendary as the “cradle of hackerdom”.

� The First Wave: Gosper and Greenblatt were members of what is com-
monly considered to be the “first wave” of hackers. This first wave encompassed
the pioneer hackers from the age of what we now consider to be the primitive
era (those more sentimental might call it the “golden age” of hackers). Other
hackers from this time period who are worthy of note are Peter Deutsch, Tom
Knight, and Jerry Sussman.

Deutsch: L. Peter Deutsch began early, at the age of twelve, when he was at
the MIT AI Lab where he discovered the TX-0, which was a three-million-dollar
(U.S.) computer that filled a small room. It was the world’s first PC for the
MIT hackers who embraced it as such. It was different from computers of its
time since it was interactive. This allowed hackers to explore on the machine.
He hacked the TX-0 along with his older counterparts. When he was a high-
school student in 1963, he created the first interactive Lisp implementation for
the PDP-1 computer.10.14 Although he grew up in Cambridge, Massachusetts,
he has lived in the San Francisco Bay Area since 1964. He received his Ph.D.
10.13Lisp machines were general-purpose machines running the Lisp language. In the early
stages of AI research, AI programs were run using the Lisp language (see Footnote 10.10 on
page 386). It was in this context that Greenblatt began the Lisp machine project at MIT in
1974. Although these machines had an interesting developmental history, they went the way
of the dinosaur once computers with microprocessors came on the scene. Their advent meant
that desktop PCs could run Lisp programs much faster than Lisp machines.
10.14The PDP-1 was the first computer in Digital Equipment Corporation’s (DEC)’s PDP
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from U.C. Berkeley in 1973, but worked at Xerox PARC from 1970 to 1986.
In 1986, he began writing the ghostscript10.15 program. From 1986 to 1991 he
was employed at ParcPlace Systems. He has been at Aladdin Enterprises since
1991.

Knight: Knight, Greenblatt, and others created the Incompatible Time
Sharing System (ITS) at the MIT AI Lab in the late 1960s. It was written in
Assembly Language and run on DEC’s PDP-10s at MIT until 1990 after which
it was run at the Stracken Computer Club in Sweden until 1995. The ITS was
the first device-independent graphics terminal output; required no password to
log on; any user could crash the system, and a message was sent to tell who that
was; all users could converse with instant messaging on the terminals of others;
and users could watch what was happening on any other user’s terminal. These
and numerous other truly revolutionary features were incorporated and later
used in other operating systems. Even some aspects of GNU/Linux were begun
on ITS. Knight was also involved in the development of the Lisp machine at
MIT, which came to be the hacker’s favorite machine. Currently, Tom Knight
is a senior research scientist at the MIT AI Lab.

Sussman Gerald J. Sussman co-invented the scheme programming lan-
guage, which is a descendant of Lisp. He is famed for his book, co-authored
with Hal Abelson, Structure and Interpretation of Computer Programs, which
has become a classic (see [1]). It was used in MIT’s introductory computer
class for majors, 6.001, developed by Sussman and Abelson, which was taught
in scheme. The book [1] has become known as the Wizard Book, with legendary
characters from it and the 6.001 class emerging, such as “Alyssa P. Hacker”,
“Louis Reasoner”, and “Captain Abstraction”.

� The Second Wave: The “second wave” of hackers were largely based
on the west coast, but many such as Stallman, had their beginning at MIT. The
west-coast center for this second wave was the Sanford University AI Lab, called

(Programmable Data Processor), series produced in 1960. They were famous both for being
ground-breaking, and for being influential in creating the hacker culture at MIT.
10.15Ghostscript is a PS (PostScript) and PDF (Portable Document Format) translator. This
means it is a program inputting a PS or PDF file and generating an alternative-format repre-
sentation of it as output. Ghostscript is freeware released in two versions: one for commercial
use as AFPL (Aladdin Free Public License) ghostscript; and GNU GPL (General Public Li-
cense) ghostscript. The GNU GPL is a copyleft free software license, which is a product of
the GNU project from 1988. Copyleft is an application of the copyright law whose purpose
is to force derivative works to be released with a copyleft license as well. What this means
is that any number of individuals may make successive improvements, but those who refuse
the terms are not allowed to create derivative works. Derivative work is work based upon
preexisting work. With respect to software this includes a translation of a computer pro-
gram into another language or conversion of an existing program onto a new platform. The
derivative work is separately copyrightable, but applies only to the new work added as well
as any amalgamation of the new and old parts of the work. Stallman created the copyleft
concept after he supplied a public domain version of his Lisp interpreter to Symbolics, who
made improvements to it. When Stallman asked for access to those improvements, Symbolics
refused. In 1984, he created a software license to prohibit such behaviour, whence the copyleft
idea, to thwart what Stallman called “software hoarding”. Think of the purpose of copyleft,
with respect to freeware, being to ensure that derivatives of licensed work remain free.
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SAIL, under the direction of John McCarthy (see page 167). SAIL closed in
1991, but business research centers such as AT&T and Xerox also had what came
to be known as hackers of the second wave due to their expertise. Among this
second wave, in addition to Stallman, were Ed Fredkin, Jim Gosling (see Figure
10.3, courtesy of Jim Gosling), Brian Kernighan (see Figure 10.4, courtesy of
Brian Kernighan), Brian Reid, and Dennis Ritchie.

Fredkin: Ed Fredkin had no university degrees, yet he learned about com-
puters in the U.S. Air Force in 1956, since he was one of the first to work on the
SAGE (Semi-Automatic Ground Environment) computer air defence system.
SAGE was established in 1954 by the U.S. Air Force to protect against nuclear
bomber attack from the USSR. MIT established the Lincoln Laboratory10.16 in
Lexington, Massachusetts, to produce the SAGE system design. In fact, after
leaving the service, Fredkin took a job at the Lincoln Lab, where he earned a
reputation as a top-notch, original programmer, so much so that some of his
algorithms became standards. To Fredkin hacking meant pride in his abilities
at “code crafting.” He once commented that nobody could “outcode” him, that
is until he met Stewart Nelson, who arrived at MIT in the fall of 1963 as a fresh-
man. Nelson was a brilliant programmer who would work for Fredkin, Gosper,
and Greenblatt, the latter three of whom had been hired as full-time hackers at
the AI Lab in 1965.

Fredkin is responsible for the founding of more than a dozen institutions,
including the famed Information International Incorporated (Triple I), and has
served as CEO of several companies including Triple I and RadNet. He has
had professorships at MIT and other universities, as well as the directorship of
the MIT Laboratory of Computer Science. He is currently Distinguished Service
Professor at the Robotics Institute at Carnegie Mellon University in Pittsburgh.

Figure 10.3: Jim Gosling.

Gosling: While a student at Carnegie Mellon,
Gosling wrote a version of Emacs, which he gave
to friends and which he negotiated with Unipress
Software Inc., of Edison, New Jersey, to sell com-
mercially.

When Unipress tried to sell this version of
Emacs, they came in conflict with Stallman’s copy-
left (see Footnote 10.15 on page 388). After a bitter
dispute between Stallman and Unipress, the con-
flict was ended by rewriting certain aspects.

Gosling’s biggest claim to fame is that he is
the inventor of the Java programming language.
Gosling is now a Fellow at Sun Microsystems Inc.,
where Java was developed. Java is a computer
language specifically designed for writing programs
that can be downloaded from the Internet, safely,
10.16In 1958, MITRE Corporation was formed from the Computer System Division of Lincoln
Labs, where the software was developed for SAGE’s digital computer system. (See page 97
for a discussion of Horst Feistel’s involvement with MITRE.)
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specifically without the possibility of transferring a virus or other damaging
vehicle to your computer. Java employs miniprograms, called Applets, whose
functionality includes adding animated images to WWW pages, and generally
allows the user to interact with those pages. Java is platform-independent by
using virtual machines permitting applets to run on any given OS.

Kernighan: In 1970, Brian Wilson Kernighan coined the name Unix as a
pun on Multics, which used enormous system resources and had grown out of
control during its development at MIT. The patience of AT&T Bell Labs was
waning in terms of the amount of time the development of Multics was taking
and basically got tired of waiting for it to be useful, so by 1969, they stopped
supporting the system. In that year Unix, the hacker OS of choice, was born.

Figure 10.4: Brian Kernighan.

Kernighan is best known
for his book (co-authored
with Dennis Ritchie) on the
C programming language
(see [135]), and for being
a co-inventor of the Awk
programming language (af-
ter the initials of its in-
ventors: Aho, Weinberger,
and Kernighan). Awk has
a C-like syntax with pat-
tern matching, associative
arrays, no declarations, and
implicit type casting. The
text [135] along with his
book [134] on Unix are con-
sidered to be classics. He
is also known for one of
the four major C “indent”
styles, called K&R style, af-
ter Kernighan and Ritchie,
also called kernel style be-
cause the Unix kernel is
written in it. The C indent styles all have the goal of making it easier for
the reader to visually track the scope of control constructs.

Reid: Brian K. Reid was a hacker who was attracted to computing as a way
to avoid the Vietnam-era draft. He is known to have said that due to knowledge
he gained breaking into systems when he was young, he was asked to assist in
apprehending culprits who broke into other systems. His later education came
when he attended Carnegie Mellon as a graduate student. He is perhaps best
known for developing SCRIBE, a document specification language for the first
laser printer and predecessor of several desktop-publishing programs used today.
See [97] for more on the life of Reid.

Ritchie: Dennis M. Ritchie, was born on September 9, 1941, in Mount
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Vernon, New York. As noted above, he first published the book on the C
programming language [135] with Kernighan. His invention of C was for use
with the Unix OS, accomplished during his work for AT&T Bell Labs in 1969.
In 1983 he was awarded the ACM’s A.M. Turing Award (see page 172), along
with Ken Thompson, who developed Unix. Moreover, in 1984 he received the
IEEE’s Pioneer Award (see Footnote 9.2 on page 332).

� The Third Wave: This group of hackers were the first to be independent
of the MIT group. They arose out of northern California, especially the San
Francisco Bay area. They were different than the first two waves in that they
wanted, and in some cases built, their own computers, and hardware in general.
These were the individuals responsible for the PC revolution we know today.
Among them are Steve Dompier, Bill Gates, Steve Jobs, and Steve Wozniak.
(Jobs and Wozniak are shown in Figure 10.5.)

Dompier: In the mid-1970s, at a meeting of Silicon Valley’s Homebrew
Computer Club, Steve Dompier showed how he had programmed new MITS
Altair 8800 (one of the world’s first personal computers) to play the Beatles’
Fool on the Hill for which he received an unrestrained standing ovation. Even
Wozniak (see below) is known to have said that he had no intention of starting a
company when he built a computer. It was merely to “show off” to an assembly
of that club at one of their meetings. Hence, this club was the catalyst for much
ingenious activity and invention for the hacker community. In mid-1975, Louis
Solomon, technical editor of Popular Electronics magazine, went to Processor
Technology to ask about the development of a computer terminal about which
he could write an article in his magazine. In July of 1976, an article appeared
about a complete computer design, called the Sol Terminal Computer, or simply
the Sol-10, which used the Intel 8080A processor in kit form. “Sol” was, of
course, an abbreviation of Solomon’s name. Dompier produced the OS for Sol-
10, called CONSOL. Dompier used the Sol-10 to write a computer game called
Target, which consisted of a little cannon on the bottom of the screen used to
shoot down a series of alien spaceships moving across the top of the screen.
Dompier called it a “clever little hack” that he basically gave away since he
merely wanted people to have fun with it. Later, when it was presented on the
TV show Tomorrow, it intrigued the host Tom Snyder so much that he had to
be torn away from the game to finish the show. For more on the life of Dompier,
see [150].

Gates: In 1975, Bill Gates wrote an interpreter for the programming lan-
guage BASIC and charged money for it, which was not done at that time. This
practice began a new approach to the idea of software development, not seen
before since such software development was seen as a hobby and not a business
enterprise. However, this was, in and of itself, a betrayal of the hacker ethic.
Thus, to many “true” hackers, Bill gates is a traitor for making money from
what they deem should be free.

Gates is the co-founder (together with Paul G. Allen) of Microsoft Corpo-
ration. Gates is currently Chairman and Chief Software Designer at Microsoft.
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Figure 10.5: Steve Jobs (with a blue box) and Steve Wozniak in 1975.

The photo is reproduced with permission of woz.org. The photo was
taken by Margaret Wozniak, Steve’s mother. Thanks to Alan Luckow
of woz.org for the information.

According to Forbes magazine, he is the richest person in the world, and Mi-
crosoft is the world’s largest and best-known software manufacturer. The com-
pany was founded in Albuquerque, New Mexico, in 1975 by Gates and Allen to
develop and sell BASIC interpreters under the company name Micro-soft.

Jobs and Wozniak: Steve Jobs and Steve Wozniak are the co-founders of
Apple Computer (1976), with the immensely popular Macintosh PC. Wozniak
is also known for his construction of devices, called blue boxes, for use in making
free telephone calls, called phone phreaking today.

Currently, Jobs is CEO of Apple Computer and Pixar, while Wozniak is
Founder, Chairman, and CEO of Wheels of Zeus (wOz), which is an organi-
zation, based in Los Gatos, California, that has produced a wireless platform
designed as a communications tool for both commercial and individual con-
sumption. In January of 2004, it was announced that Motorola plans to employ
the wOz platform in aspects of their wireless technology. In fact, Wozniak
prefers the nickname WOZ. Also, Jobs co-founded Pixar, the animation studio
responsible for such academy-award winners as Finding Nemo (2003).
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� Modern-Day Hackers

Now that we have looked at the hacker culture in the sense that it was
initially intended, we delve into the modern-day reality of what it has become
to many (although the above hacker-culture still lives a separate life in many
circles).

We now refer to the definition of hacker that we gave on page 384, where
we are looking at gaining access to systems. When the activity is illegal, which
is now our focus, the type of modern-day hacker is determined by their goals.
The following provides a general delineation of the kinds of intruders we may
encounter.

Hacker Types

The hacker with malevolent intent falls into one of three categories.
1. Covert User: This is a hacker who somehow gains access to sysadmin10.17

status for the purpose of evading auditing and access controls.

2. Impostor: This is a hacker who obtains access control illegally for the
purpose of exploiting a legitimate user’s account.

3. Trespasser: This brand of hacker gains illegitimate access to computer
resources (which might include programs and data), with malignant intent.
This type also includes those who have legitimate access to such resources,
but abuse those privileges.

The tools used by hackers are varied.

Hacker Tools

1. Exploit: This is a prepared application that exploits a known weakness
in the system. In this case, strong encryption techniques win the day.
With no encryption or weak encryption to thwart them, there are tools
available to the modern-day hacker that were only a dream a decade ago.
For instance, in 1997, a source code was released in Phrack Magazine (see
[63] and http://www.phrack.org/show.php?p=50&a=6), for a TCP hijack
tool called Juggernaut. In this case, even a script kiddie could hijack a
TCP session without understanding how it is done. Not only can the
hacker eavesdrop, but also can replace data in packets, and hijack the
TCP session by running a daemon (see page 323), which suppresses the
legitimate user. That user does not even know the attack is taking place.
Rather, to the legitimate user, it will seem that the TCP connection has
been dropped (which is not all that unusual, so typically, suspicions will
not arise). Hence, as mentioned earlier, strong encryption is necessary
to thwart the Juggernaut hijacking and any other such tools. If strong
encryption is properly set up, no such tool will ever succeed.

10.17This is a system administrator, who is a person with the privileges to administer a com-
puter system and keep it functioning.
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2. Leet: This is an abbreviation for elite, and is jargon employed by hackers
to refer to themselves or to the sites they visit for the purpose of sharing
pirated software and data.

3. Rootkit: This is a basic toolkit for disguising the fact that a computer’s
security has been compromised. Such kits might include a substitute for
system binaries10.18 rendering it impossible to see activities run by the
hacker in the active process tables.10.19 There are programs such as rkdet,
which is a small daemon for detecting someone installing a rootkit or
running a packet sniffer (see http://vancouver-webpages.com/rkdet/ ).

4. Social Engineering: We briefly mentioned social engineering attacks on
page 331. Basically, any technique that exploits human weakness or gen-
eral gullibility can be employed. It consists of using nondigital means
to gain digital information from a victim, the most common being mas-
querading as a bank official to get a person’s PIN on the claim that it
is needed to fix something concerning the account. Essentially, social en-
gineering attacks involve the obtaining of a person’s trust so they will
disclose information to the hacker. See [163] for more information.

5. Vulnerability Scanner: This is a tool to scan computers for weaknesses.
This might include port scanners, which check the open ports on a com-
puter that are available for access. For example, there is the nessus scan-
ner (see http://www.nessus.org), which employs modules, so it can be
expanded.

Also, we may include in this category, brute-force password hacking, which
is software that, given a unix password file or MS Windows registry keys
for authentication, goes through a list of common dictionary words to
reveal any insecure passwords on the system.

Some of the tools mentioned above were designed for legitimate use to dis-
cover security holes in a given system, but as with anything in life, there can be
a “good” use and a “bad” use to which they are put.

Defence
There are numerous techniques to protect computers from hacker attacks.

We list but a few of the more important ones.

10.18A system’s binaries are the binary, machine-readable forms of programs that have been
compiled or assembled, but not to the “source” language forms of programs. In other words,
binaries are source code that has been compiled into executable programs. If we are talking
about GNU/Linux (see page 386), there are three possibilities: (1) software is distributed as
source code only; (2) software package includes both source and binaries; (3) software contains
only binary format.
10.19A process is a program in execution, which may have several states: new; active; waiting;
ready; and terminated. An active process table is a set of data structures used to represent the
process. Thus, if the active process table is compromised, a sysadmin, for instance, cannot
see the activities of the hacker.
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1. Audit Records: A basic tool for detecting intruders is some form of audit
record. There may be a native audit record that automatically collects data
on all user activity. However, it is difficult to be precise about something
you are looking to discover, so for that you require detection-specific audit
records. Audit records may be used quite effectively in conjunction with
statistical anomaly detection, which analyzes such data over a period of
time to determine the profile of the average user. Then an intrusion-
detection model may be assembled from this data.

2. Disable: One security measure you can take is to disable inactive accounts
since these are weak points that hackers love to attack. Also, a sysadmin
should not run any servers or daemons that are not needed. Moreover,
if such are needed infrequently, then disallow anonymous access, such as
anonymous ftp.

3. Firewalls/Gateways: We discussed gateways and their associated firewall
security at length in Section 8.4. Such measures go a long way toward
thwarting hacker attacks.

4. Intruder-Detection System (IDS): There is some overlap with the
discussion above since we looked at one form of IDS, namely, statistical
anomaly detection used in conjunction with audit records. There are other
types as well. If you have a network-based IDS, it eavesdrops on network
traffic, seeking evidence of an intrusion. A host-based IDS might scan for
incoming viruses, or altered files, for instance. However, certain IDSs have
false negatives (intrusions missed by the IDS), and false positives (false
alarms, when an IDS incorrectly concludes there is an intrusion). Anomaly
detection, such as the one described in the audit record section, is an IDS
that will usually get both false signals. See [119] for instance, which looks
in detail at the problems involved with getting an IDS to function in a
desired manner. Host and network-based IDSs work in concert. While a
network-based IDS is a unit unto itself, so it is attack resistant; a host-
based IDS is aware of the state of its computer, so data flow is simplified.

A recent innovation in the IDS arena is the honeypot, which is a decoy
system whose function it is to lure the hacker away from sensitive areas in
the system. A recent example may be found in [269], which is a honeypot
that imitates a complete network. Honeypots work best as a dedicated
network-based IDS. Honeypots will not only redirect a hacker from sensi-
tive systems areas, but also collect data about the hacker’s activities and
possibly keep them online long enough to have a sysadmin take action.
This type of IDS is perhaps one of the most effective in existence today,
since it not only protects, but also sets a trap for the hacker.

5. Password Protection: Your first line of defence should be proper pass-
word protection. We have discussed proper choices for passwords on page
330. Moreover, we discussed protocols in Section 5.2 for securely establish-
ing passwords along with authentication, such as SRP-6 (see page 200).
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Software such as Nessus, discussed above, was written with the legitimate
intention of assisting sysadmins to secure their systems, so although they
may be used by hackers, they may be employed by sysadmins to patch
the holes in their security schemes as well.

6. Restrict Access: You may restrict access to your computer or a sysadmin
may restrict access to the server, the latter by specifying a command in a
configuration file, and the former using software associated with a firewall,
for instance.

7. Tiger Teams — Sneakers: These are typically temporary teams formed
for the purpose of breaking down the defenses of computer systems, pene-
trating security, and thus testing security measures in an effort to uncover,
and eventually patch, security holes. These may be white-hat hackers,
called sneakers10.20 in this case. Hiring reputable people is key here since
having anyone poke around inside your computer system is a very risky
business. We will not even mention the political aspects, only the tech-
nical ones. Testing firewalls is an important exercise since certain weak
versions exist and they should be ferreted out. Moreover, this should
not be a one-time endeavor. In other words, use a reputable tiger team
at regular intervals since environments change quickly in the computer
world.

� Conclusions

There is a thriving community of (nonmalicious) hackers who live the orig-
inal hacker ethic discussed above, and who deem it to be morally wrong to
maliciously hack into a system. They see themselves as the “real hackers” and
the modern-day element as the criminalization of the term. The dichotomy
is recognized, for example, in Stoll’s book, The Cuckoo’s Egg (see [273]). At
the beginning of the book, a colleague is quoted as saying: “Joe’s a hacker of
the old school. A quick, capable programmer. Not one of those punks that
have tarnished the word ‘hacker’.” (see [273, page 7]); and near the end of the
book, Stoll recognizes the “golden age” of computing when he says ([273, page
371]): “I wish that I had lived in a golden age, where ethical behavior was
assumed; where technically competent programmers respected the privacy of
others; where we didn’t need locks on our computers.” Thus, as we started this
section, we conclude it: there are many meanings of the term “hacker”.

Now that we understand the various nuances, we can bring the entire field
of vision on this topic into focus.

10.20The movie, Sneakers, starring Robert Redford is an entertaining look at this phenomenon.
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10.3 Viruses and Other Infections

The nature of bad news infects the teller.
William Shakespeare

— from Antony and Cleopatra, act 1, scene 2

One of the hacker tools we deliberately omitted from the list in Section 10.2
is that of the virus construction kit, since it fits into this section as a convenient
segue. Basically the name says it all, and usually these kits come with a GUI
(see Footnote 8.28 on page 328), as well as instructions on how to use the kit, so
that even script kiddies can use them (unfortunately) with effect, requiring no
no knowledge of how they work. Now we will learn about how viruses function.

� Viruses

A virus is a hidden, and typically malicious, program that “infects” your
computer, by copying itself into and becoming part of, another program called
the host program, without which the virus cannot run. The effect varies from the
merely annoying to the completely destructive. Viruses might delete files, erase
programs, or even your entire hard drive. On the other hand, they may just
flash the message “gottcha” without end, for instance. We will learn about the
various types of viruses and how they work in this section. We will learn later
about other types of infections that do not need such a host program to infect
a computer. Moreover, although most viruses are written with a computer
in mind, such as those that will only attack a PC, but not a Macintosh, for
instance, there are platform-independent viruses (see macro viruses below).

The most common vehicle for infection today is the Internet, and many arrive
by e-mail. Downloading files from the Internet or opening an e-mail file may
trigger a virus. However, even the exchange of infected disks is a mechanism for
spreading infection.

The term “virus” from the biological realm is used here since the computer
virus acts in a similar manner to an infectious disease. A biological virus is
a string of nucleic acid (DNA or RNA), which may infect a living cell by as-
suming control of it and instructing it to replicate the virus many times over.
Similarly, computer viruses attach themselves, replicate themselves, and spread
in a manner akin to a biological one. They may take control of the computer’s
OS, for instance, and whenever a new piece of software is encountered, it copies
itself to that new program thereby infecting it. With the Internet, where you
may access resources running on other computers, there is a rich culture for the
spread of this kind of infection.

Once a program is infected with a virus program, it becomes the host. The
virus program runs secretly when the host program is run, since it stays hidden
in the legitimate program, remaining dormant until the infected program is
run (or as we will see below, until an infected data file is accessed). A virus
may be embedded in an executable program, then once run, the virus code is
executed first, then the original program code. The following are the aspects of
a computer that a virus attacks.



398 10. Noncryptographic Security Issues

Virus Targets
Viruses may infect any of the following:

1. Executable Program Files: An executable program is a set of instructions
that can be input to the memory of a computer and executed. In other
words, it is a program that may be run as a self-contained procedure,
which consists of a main program and, possibly, one or more subprograms.
Usually, the name of such a program is all that is required to run it, merely
the typing in of the program name and requesting that the computer run
it.

2. File Directories: A computer’s file-directory system keeps track of the
location of data files, and without them the computer will not function.

3. Macros: Today virus programs can be written so that, for instance, it may
attach itself to a macro10.21 and is launched whenever the macro is run.
When we discuss “macro viruses” later, we will see that Microsoft Word
(MS-Word), documents are virtually always the target since they contain
programs, the macro language, which are automatically executed when
one of these “data” files is opened.

4. System Sector10.22: The system sector refers to special areas on the
computer’s hard drive containing programs that are executed when the
computer is booted. These are not files, but rather small segments of the
hard disk that the hardware reads as a single unit. The system sector is
required for the normal functioning of the computer, even though they are
invisible to normal programs. Sometimes this is called the boot sector.10.23

How Viruses Work: When an infected program is run, the first action is
to invoke the virus program and run it, since this is the first instruction line
of the controlling program. The second instruction is for the virus program to
check to see if the program it is about to infect has already been infected or not.
The mechanism by which this is accomplished is a message, called a v-marker
or virus marker, which the virus program places in the legitimate program.
10.21A macro is a collection of instructions stored in an executable form, usually written to
automate a few steps. Macros may be application-specific, such as a word-processing macro
that executes certain steps within that program; or general-purpose, such as a keyboard
macro that types in a user’s login name when a specific short sequence of keys is pressed on
the keyboard.
10.22A sector is one of the areas (or “pie slices”), into which the disk is segmented. This
division of the disk into pie slices is the method of organizing it for access of data to the read-
write heads of the disk drive. Moreover, the disk is further divided into concentric circles, so
that a given area can be located via the intersection of a given sector and the concentric track
passing through it. There are further subdivisions of the tracks into what are called clusters,
which are the storage units (usually 256 or 512 byte-lengths, which are minimal in terms of
allowing the unit to be addressable).
10.23To boot a computer, also called booting up, is the action of loading an OS into the com-
puter’s main memory (RAM), see Footnote 9.15 on page 346. On a large computer or a
mainframe, booting is sometimes called initial program load (IPL). To reboot is to reload, or
in the case of larger machines, to re-IPL.
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If the virus program encounters a v-marker, it does not replicate there since it
knows that the program is already infected. Then it seeks uninfected executable
files (those without v-markers) and infects them. If a virus begins by infecting
a program, then each time that program is run, it seeks out uninfected files.
Often the virus is embedded in a game, or utility.

Once a virus program determines that there are no more files to infect, it may
begin to damage the computer and its data. The virus program may corrupt
program or data files so that they either work erratically or not at all. They
might destroy all the files on the computer or alter the system files needed to
reboot, or any other of a number of damaging actions.

Now we look at the evolution of a given virus from its initial infection to its
end goal attacks.

Stages of a Virus

1. Infection Stage: The virus infects some area of the computer as discussed
earlier. Some viruses then remain dormant until a “trigger” sets it in
motion while others go to stage 2 immediately.

2. Replication Stage: In this stage, the virus reproduces itself onto other
programs using the initial infected program to do so. Then each new
infected program will undergo the same replication stage.

3. Activation Stage: The virus is triggered to perform its end goal. The
trigger may be any number of events from the time of day, the date, or
any other event such as the number of times the program is executed.

4. Execution Stage: The virus performs its end goal, which may range from
erasure of the computer’s hard drive to the merely annoying, including
simply slowing down the performance of the computer.

Types of Viruses

1. Boot- (System-) Sector Viruses: These kinds of viruses infect the
master boot record (MBR).10.24 When a computer is rebooted, the virus
spreads its infection.

2. File Viruses: File-infecting viruses attach themselves to executable pro-
gram files. Once the program is loaded, the infected program is executed
and seeks out uninfected executable files.

10.24The master boot record, also called the partition sector, is the first sector of a computer’s
hard disk, which indicates the location of the OS and the methodology for finding it. This is
necessary for the booting of the OS into the computer’s RAM. The MBR is also called the
master partition table since it contains a table that houses data on each of the hard disk’s
partitions. The MBR also contains a program whose function it is to read the boot sector
record of that partition that contains the OS to be booted into RAM.
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3. Memory-Resident Viruses: This kind of virus stays in memory after it
executes and after its host program is terminated, whereas a nonmemory-
resident virus only activates when an infected program executes.

4. Polymorphic Virus: This is a particularly nasty virus that mutates every
time it infects a new program. Therefore, detection of this type of infection
is difficult since it leaves no unique trail (“signature”) to follow.

5. Stealth Virus: This kind of virus is specifically designed to disguise its
existence from virus-scanning software. For instance, if a stealth virus has
infected the MBR, then its function might be to interrupt a virus-scanning
software’s request to examine the MBR and then transmitting a (false)
copy of the original uninfected MBR.

Examples
An example of a virus that is a combination of some of the above is the

following.

Multipartite Viruses: These viruses infect in one format type, then trans-
form into another. For instance, one might begin as a boot-system virus, then
move to become an attack on executable files.

An example of a memory-resident virus is the following modern-day virus
that takes advantage of features found in data-processing software.

Macro Viruses: This type of virus is one of the most recent, and unlike
the others, is platform independent. In other words, it will infect those using
a Macintosh computer as well as those using Microsoft Windows, for instance.
The reason is that these viruses are programs written to attach themselves to
macros used in modern-day data-processing systems, such as MS-Word, MS-
Excel, and AmiPro. These macro languages fit the three conditions that make
them ripe for macro infection, namely, they (1) assign specific macro programs to
specific files; (2) copy macro programs from one file to another; (3) pass control
to some macro program without the user’s explicit permission, that is, they are
automatic. The aforementioned word-processing systems were designed to be
automatic, and as such, if an infected document is opened, the viral macro will
replicate itself into the computer’s startup files. From then on, the machine is
infected and the macro virus will reside on the computer until eradicated. Any
document on the machine that uses the infected application can then become
infected. If the machine is on a network, the infection will likely spread to other
machines on the network. If a disk with the infection is shared, then the virus
will spread to the recipient’s machine. Today, macros are deemed to make up
two-thirds of all computer viruses according to experts.

The typical agent for spreading macro viruses is via e-mail. The most noto-
rious macro virus was Melissa,10.25 launched in 1999. Melissa was distributed
10.25In some circles, Melissa is considered to be a worm (see below for our description of
worms), since it clogged up systems. However, due to its behaviour as a malicious e-mail
attachment and its mechanism for delivery, it is more rightly viewed as a macro virus.
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by e-mail and applied to MS-Word documents. Moreover, those recipients who
opened the documents found that the first fifty people in their address books
also received the virus. This was so effective that on Friday, March 26, 1999,
Microsoft Corporation was forced to disable incoming e-mail. Melissa operated
by incorporating a message that told the recipient that an important (secret)
message was contained in the attachment. Once opened, the infected file was
read to the global macro file. Then the virus employed the visual basic lan-
guage10.26 to read the first fifty names in the address book, and send them all
the virus.10.27

Macro viruses are memory-resident since they are active not only when the
infected documents are opening or closing, but for the entire time the system is
running.

Melissa suggests that e-mail is becoming the medium of choice for attackers
and this is indeed the case.

E-Mail Viruses: Malicious software employing e-mail is becoming more
common with each passing day. Melissa was just the beginning. More powerful
versions of e-mail viruses have emerged wherein the virus is spread to all the
e-mail addresses within the address book of the infected host. Thus, the rapid
deployment of e-mail viruses is now a major threat.

On Thursday, May 4, 2000, a new e-mail virus called the “I Love You” virus,
also called the love bug, spread itself around the world in a matter of hours. Its
name is derived from the fact that it contained a message to check the attached
“love letter”, which was a file in Visual Basic containing the virus. If the e-
mail was deleted without opening the attachment, then the computer was safe.
However, if opened, the computer was infected and the virus was distributed
via e-mail employing MS-Outlook’s address book. This was an advance in the
degree of malevolence over Melissa since the latter only sent to the first fifty
addresses, whereas the former sent to everyone in the address book. The love
bug was much more destructive than Melissa since it copied itself into two vi-
tal system directories and added triggers in the Windows registry. This meant
that every time an infected computer rebooted, the love bug was executing. It
infected data files by overwriting them using Visual Basic, and deleting the orig-
inal file. Typically files associated with WWW development, and multimedia
files were extinguished, such as those of type MP3 (music) and JPG (images).
An example, to illustrate the magnitude of the losses, was reported by the Nor-
wegian photo agency Scanpix, which lost over six thousand of its photos, and
was able to recover less than twenty-five percent of them. The love bug only
affected versions of the Windows and NT operating systems, so Macintosh and
Unix platforms were safe. Yet this was enough to cause billions of dollars in
10.26Visual Basic is a graphical programming language introduced by Microsoft in 1990. It is
used for developing GUI Windows applications.
10.27David Smith, who wrote Melissa, was caught within a week of the virus hitting the
Internet. Although he pleaded guilty and was sentenced to ten years in a New Jersey state
prison, his sentence was reduced to twenty months when he cooperated in thwarting attacks
and aided in the arrest of other hackers.
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damages around the globe.10.28

In October of 2002, the Bugbear virus infected Windows platforms through a
hole in the security system in MS-Outlook, MS-Outlook Express, and Internet
Explorer. Once a machine was infected, the virus copied all passwords and
credit card numbers typed by a user, then it sent the information to numerous
e-mail addresses. It was estimated that in the first week it sent roughly 320,000
e-mail messages. In 2003, the virus appeared in a more virulent strain called
Bugbear.B, which took only one day to cause the damage the previous strain
had caused in three days. The reason was that a flaw in MS-Outlook allowed
the program to automatically open e-mail attachments. The perpetrator of the
Bugbear strains has not been apprehended.

Virus Detection and Prevention

The following steps may be taken to protect and defend yourself from infec-
tion by computer viruses.

1. Check before Use: Before using any floppy disk or downloaded files,
always run a virus-scanner program on them. There are numerous rep-
utable vendors who have relatively inexpensive (or in some cases free),
virus-scanning software available. Moreover, updates will be provided as
a service by the vendor. As we have seen, the race to beat the attacker is
based on knowing what is out there. You should also use the software to
do a virus scan after each reboot of your computer.

2. Create Emergency Disk: For the worst-case scenario where you get
infected and you cannot reboot your machine, the only saviour may be
an emergency disk that you have set in advance to use for that scenario.
Ensure that the disk is write-protected at the time it is created.

3. Disable: Do not allow the enabling of such automatic features as the
opening of e-mail attachments, downloading of files, or the like. Disable
these features.

4. Documents (MS): Do not open any MS-Word document unless you are
certain it is not infected. Remember not to view these as “data files”,
since they may be infected with a macro virus.

5. E-Mail: Be cautious in the extreme about e-mail that you receive, even if
you know and trust the sender very well, since anyone may be an unwit-
ting victim. The above-described scenarios should be enough to convince
anyone of that. If there is an attachment, especially if it is an executable
file, you must verify that it is virus-free. Delete it if there is doubt, or
if you believe it to be valid and from a valid source, contact that source
before opening it. Ask them what is in the file, whether they know if it is

10.28The author of the love bug, Onel de Guzman, of the Philippines, was never charged with
a crime. At the time, there were no laws against cybercrime in the Philippines. Although
such laws exist now, he cannot be charged retroactively.
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virus-free from having scanned it, say, and why it has been sent to you.
Then, and only then, should you attempt to open such a file.

6. Infection Detected: If your virus-scanner detects an infection, locate the
virus, identify it, and use the software to remove all traces of it. The
virus must be removed from all systems in order to restore your computer
to health. Remember, it is detection, identification, and removal in the
case of a viral infection. If it is not possible to either identify or remove
the virus, then the infected program should be discarded and a new clean
backup copy should be reloaded.

7. Software for Blocking: Some more sophisticated software exists for the
purpose of actually blocking behaviour that is deemed to be malicious.
Again, reputable software vendors have numerous such devices available.
For instance, there are Internet filters, which will screen out any e-mail
related to pornography, violence, or other such offensive material as well
as potentially malicious e-mail. There are spam blockers, to prevent all
sorts of irritating e-mail from getting through to you, not just the infected
kind. There are e-mail virus blockers, which should take care of effec-
tively protecting your computer by identifying and blocking potentially
dangerous attachments.

If you are a large corporation concerned with ferreting out holes in your
security, for instance, there is Bugscan, by HBGaryTM, starting at the
modest price of $19,500 (U.S.). It will audit code for security gaps, in-
cluding WWW-based administration and reporting interfaces. However,
for the individual with a somewhat smaller bank account, there are nu-
merous scanning devices in the $40 (U.S.) range that work quite nicely,
such as the NortonTM AntiVirus package.

Advanced Protection

There exist modern methods that excel in their ability to protect from and
eliminate attacks. We look at two of the most common and most effective.

Generic Decryption: Polymorphic viruses may require more sophisticated
software. The most modern such device is called a generic decryption engine
(GDE). Basically a GDE tricks a polymorphic virus into decrypting and reveal-
ing itself. If a scanner with GDE is installed, then it makes three assumptions:
(1) the body of the polymorphic virus has enciphering to thwart detection; (2)
the virus must decrypt before it can execute; and (3) once a polymorphic virus
does execute, it must immediately assume control of the computer to decipher
the body of the virus, after which the control of the machine is taken over by the
completely decrypted virus. The GDE loads each new program file into a self-
contained virtual computer that is generated from RAM. It is inside this virtual
computer that the program files run as though on a real computer. Therefore, a
polymorphic virus can do no damage since it is running in the virtual computer,
which is isolated from the real computer. The virtual computer allows the virus
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to decrypt after which the virus body is exposed to the GDE scanner, which
can identify the strain via a signature. If there is no virus to expose, the GDE
stops execution and drops the program, proceeding to the next file. Think of
the GDE as a rat and think of the files loaded to it as injections given to the
rat to detect the presence of a virus. If there is no adverse behaviour in the rat,
there is no virus in the injected substance, whereas if there is, then the rat is
observed for symptoms that will identify the virus.

A GDE scanner has five basic components: (1) a processes emulator; (2) a
memory emulator; (3) a system emulator; (4) a virus signature scanner; and (5)
a decision mechanism. The process emulator is an imitation of a CPU, which
reads the instructions in an executable file. This includes software versions of
all registers and other CPU hardware, so the actual processor is unaffected. The
memory emulator imitates the memory of the computer, where the emulated
memory is employed instead of real memory. The system emulator actually
imitates the OS and hardware of a computer. This should also include a virtual
drive that is capable of being read, formatted, and so on. The virus signature
scanner is a module that scans the program code of the loaded file for known
virus signatures. This module interrupts the GDE process to return it to the
scanner for it to look at the code for signatures. The decision as to when to
interrupt is given by the decision-making mechanism, which may be the most
vital part of the GDE since we want to ensure speed. Thus, proper decision
making must be made so that the optimum use of the GDE is ensured. The GDE
innovation seriously reduces the time taken to analyze polymorphic viruses, from
weeks to minutes.

The second type of antivirus device is a comprehensive virus protection
mechanism developed at IBM in the late 1990s. For more data on the origi-
nal research papers from IBM and related development go to the following site:
http://www.research.ibm.com/antivirus/.10.29 In 1999, Symantec entered into
a licensing agreement with IBM to market the idea as antivirus software for
business and personal computing, officially released as a commercial product in
October of 2000.

Digital Immune System (DIS): The idea is, as the title suggests, to
mimic the human immune system in a computer so that a virus is automatically
captured as it enters a system to be analyzed, removed, and ensure that the
system is updated with detection and protection mechanisms (if it is a new
virus). Essentially this builds on the emulation idea described above. The
central goal of the DIS is to drastically reduce the delay time between discovery
of a virus and when a remedy is transmitted to all vulnerable systems. What
we describe here is essentially the version designed by IBM and Symantec.

DIS Closed-Loop Process

We first describe this process, then illustrate the “closed-loop.”

10.29The idea for a Digital Immune System began with David Chess of IBM in 1991 (see [55]),
then was developed by Kephart and others over a period of years (see [133] for the culmination
of much of that work).
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1. Detection: A virus is detected at some source point such as a gateway,
server, or client machine.

2. Quarantine: A sample of the virus is sent to the Digital Immune System
central quarantine where it is isolated, and scanned with the latest virus
definitions. If it turns out to be a known virus, then the cure can be
sent immediately back to the source of infection and no further action is
required. Otherwise, central quarantine strips all sensitive data such as
MS-word documents (to ensure confidentiality), and the sample is sent
to Symantec Security Response. This transmission is accomplished over
HTTP on port 80, using SSL, which ensures confidentiality and authenti-
cation (see Section 5.7).

3. Automated Processing: The DIS automatically analyzes the sample and
creates a cure, which is sent back to the administrative console at the
source.

4. Administrative Console: The new fingerprint is distributed by the ad-
ministrative console throughout the source network to be added as an
update to the current virus definitions.

Diagram 10.1 DIS Closed-Loop Virus Methodology

New virus detected and isolated −−−−→
Quarantined

sample sent to DIS�
Administrative console receives
and distributes new fingerprints ←−−−−

�
DIS analyzes

and creates a cure

Analysis of DIS: The DIS, arguably, represents the pinnacle of antivirus
software currently available. The DIS approach is stronger than other antivirus
techniques since it is automated, scalable, and does not require human interven-
tion for decoding viruses and creating signatures. The number of false positives
is kept low and supplies end-to-end automation of submission, analysis, and
transmission of new fingerprints for virus definition updates. There is relatively
little maintenance needed with the DIS system, and costs are minimal given the
alternatives. If the administrative console is allowed to streamline the control
of the system at the given organizational source, then the maximum benefit will
be received, since administrators have control of the level of automation.

There are other kinds of malicious programs requiring a host program, and
are not considered to be viruses due to the manner in which they operate. we
now look at their morphology.
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� Logic Bombs

The logic bomb, also known as slag code, is a much older device than the
virus. Like a bomb, it requires a trigger to set it off (“explode”), until which
time it remains dormant in a host program. The results are particularly ugly,
as would be the effects of a real bomb in a populated area. It may make the
entire hard drive unreadable, or it may be more insidious and merely change a
byte here and there, avoiding detection until it does irreversible damage. The
trigger may be any of a number of vehicles from an elapsed amount of time,
a particular date and time (December 31, 1999, at 24:00 hours, for instance),
or perhaps the removal of an employee from the payroll file, indicating that he
was fired. If he were really clever, the bomb would go off a few months after
his termination. In this case, the logic bomb would trigger a piece of malicious
code to slag (destroy) essential files in the company’s system. This use of logic
bombs clearly demonstrates the need for audit trails (see page 394), as well as
clearly delineated breakdown of individual duties at any organization.

A real-world example comes from Omega Engineering and a (fired) disgrun-
tled employee who turned vicious. A logic bomb slagged all of its research,
development, and production programs, including the tape backup. One of
Omega’s programmer’s, Timothy Lloyd, was arrested in 1998 for setting the
logic bomb on Omega’s network. It exploded and destroyed all their data ten
days after he was fired.

A logic bomb may be considered to be a delayed-action virus in terms of
effect. They can be eliminated before they explode by using virus-scanning
software. If the scanning software is put on auto-protect mode, including e-mail
screening, then the probability of catching a logic bomb in time is increased.

� Trojan Horse

The name Trojan horse comes from the story of Troy (about which you may
read on pages 24 and 25). It is piece of malicious code that is inserted into a
seemingly benign program. However, it differs from a virus in that it does not
replicate itself. For instance, you might download a movie or some music from
the Internet and find that it contained a Trojan horse that erases your hard
disk. Another popular alternative for downloads that contain Trojan horses are
FTP archives (see page 326). Another is peer-to-peer exchanges over an IRC
channel.10.30 You have to be careful since the more you download or exchange,
the greater the risk of getting a Trojan horse as part of the deal, since Trojan
horses are very common among IRC traders. Do not download from people or
sites unless you are 100% certain of them. Even if the peer-to-peer exchange
is with a trusted friend, there may be a Trojan horse lurking. In fact, the way
most people find out that they have a Trojan horse is that others tell, say,
Alice, that they are being infected by her download. Never use auto-download
features, since you must check every file first. Moreover, check it out before you
download it since if you download an executable file that has a Trojan horse and
10.30IRC stands for Internet Relay Chat, which was originally designed for people to “chat”
in real time. IRC users trade movies, music, games, and software, peer-to-peer sharing.
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run it to check it out, then you are already infected. As with the other types of
infection discussed above, use a virus scanner, but do not rely on it. The fact
of the matter is that, even when up to date, it may miss something, especially
if the infection is very new.

If you do get infected, then the best eradication is a backup of the entire hard
disk, and reinstall the OS and all applications from their original disks. This
might become necessary since a typical Trojan horse attack is to destroy the file
allocation table (FAT) on your hard disk. A FAT is the table that maintains a
map of the clusters on the hard disk (see Footnote 10.22 on page 398). Without
a FAT or with a damaged FAT, your computer will not operate properly.

An interesting example of the use of a Trojan horse comes from the OpenSSH
source (see Footnote 9.8 on page 338). It turns out that in 2002, only the second
day after the latest version of OpenSSH was released and ready for download
on the Internet, the developers made the somewhat startling discovery that the
original package had been exchanged for one with a Trojan horse embedded
in it. The checksum (see page 320), was found to have been altered. When
installed, the Trojan horse attempted to communicate with another Internet
computer to await commands. Fortunately, they caught it early.

Now we look at malicious code that has similarities to a virus, but some
differing characteristics that make it a favorite for a network attack.

� Worms
A worm is (malicious or nonmalicious) code that replicates itself and is self-

propagating. Thus, a worm is independent, and designed to thrive in network
environments without human intervention. Unlike a virus, it needs no host
program. Rather, the computers themselves provide the hosts. The programs
running on individual computer hosts are called segments of the complete worm.
The OS in a given system is not needed to manage the worms since they seek
out resources for themselves, finding remote machines and spawning a remote
process on that machine. Thus, a worm program is a program that spans
machine boundaries as part of a distributed computation. Some worms have
a main segment that coordinates the activities of the other segments. Such
a worm is sometimes called an octopus. Worms that are contained within a
single computer are sometimes given the name host worms, and those that have
many segments on more than one machine are deemed to be network worms. A
host worm uses the network connections for the sole purpose of copying itself
to other machines, whereas the network worm uses the network connections for
communication between each of its segments. Those host worms that delete
themselves after launching a copy on another host, guaranteeing there is only
one version of the worm running on the network at any given time, are sometimes
called rabbits. It is the network worm that is most common and which will be
our focus.

In the 1970s before the Internet was a fact, the first two worms were sent
through ARPANET (see page 326), the predecessor of the Internet, as programs
called Creeper and Reaper. First there was Creeper, which used idle processor
CPU time in ARPANET to replicate itself on one system and move onto the
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next. Then Reaper was created to follow the path of Creeper through the
network deleting the segments of Creeper as it went. However, these did no
damage to the computers they “infected”, since they were designed to explore
the possibility of making use of idle CPU time. Such nonmalicious worms are
called existential worms, since their only function is to stay alive and propa-
gate. In 1973, F. Shoch and J.A. Hupp of the Xerox Palo Alo Research Center,
developed an existential worm program to move through an Ethernet network.
Later, in 1982, these two individuals wrote a paper [251], which contained the
first formal definition of the term “worm”. Shoch lifted the term from a 1975
science fiction novel, called Shockwave Rider, in which the author, John Brun-
ner, conceived of the concept of a worm that takes over a network, and as one of
Shockwave Rider’s characters puts it: “... now it’s so goddamn comprehensive
that it cannot be killed. Not short of demolishing the net!” (see [49, page 247]).

As Shoch and Huff found, even the creation of an existential worm opens
problems with its control. In the initial stages of development of their worms,
they once left one running on a system overnight only to return the next morning
to find it had crashed several hosts. Even their attempts to reboot resulted in
the worm’s crashing the system. Therefore, they had to build a code in the worm
that would shut it down when a signal was received through the network. These
were problems when the creation of the worms was that based on benign intent.
When written as malicious code, the consequences proved to be disastrous.

On page 315, we made reference to the Morris worm. This was the first true
Internet worm. In 1988, a Cornell University graduate student, and son of the
chief scientist at NSA’s National Security Center, Robert Tappan Morris Jr.,
wrote a worm program (designated for UNIX systems). Supposedly his intention
was that it be an existential network worm. He got it wrong. His program had
serious shortcomings in terms of containing the worm. On November 22, 1988,
after he released the worm, it propagated itself so many times that it effectively
crashed several thousand host machines. It is estimated that as much as ten
million dollars (U.S.) was lost in terms of productivity, and this was despite
the fact that the worm left no permanent damage once eradicated. Morris was
sentenced to three years probation and ordered to pay a fine of ten thousand
dollars (U.S.).

Although there have been worms in the last century, the more recent ones
in this millennium have been the most devastating in terms of cost. In July of
2001, two variants of the Code Red worm were released. It exploited a security
weakness in MS-Internet Information Server (MS-IIS). Code Red launched a
three-phase attack: scanning, flooding, and sleeping. In the scanning stage, it
sought vulnerable machines and ran malicious code on them. In the flooding
stage, false IP packets were sent to “flood” machines with useless messaging. At
the height of its activity, Code Red infected a couple thousand computers each
minute, ultimately contaminating in excess of a third of a million machines,
and costing 1.2 billion dollars (U.S.). The final sleep stage was intended to last
forever. The culprits who wrote Code Red have not yet been apprehended.

In August of 2003, the Blaster worm, also called Lovesan, caused mayhem
with various Windows servers. Blaster searched for unprotected machines, and
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sent itself to those computers. Once it located a vulnerable machine, it sought
out the file mblast.exe, retrieved it, then scanned other systems similarly. Blaster
was written to launch a DOS attack (see Footnote 8.8 on page 300), on Mi-
crosoft’s updated WWW site. Microsoft found a means of thwarting the attack
on their site, but Blaster still infected around a half million computers. Mi-
crosoft offered a quarter of a million dollars (U.S.) for information that would
lead to the arrest of Blaster’s creators. However, to date, there have been no
arrests. Microsoft has a five-million-dollar reward fund for the apprehension of
the various malicious code authors not yet caught.

On Friday, April 30, 2004, a worm called Sasser began spreading over the
Internet. It exploited a vulnerability of MS-Windows Local Security Authority
Subsystem Service (LSASS). Sasser scanned for vulnerable machines, created a
remote connection with them, installed an FTP server and downloaded itself to
the new host. From there it sought out the vulnerable LSASS components on
other machines. Sasser caused the LSASS component of Windows to crash. On
May 7, 2004, German authorities arrested Sven Jashan, an eighteen-year-old
student, who created a total of five separate versions of Sasser. Jaschan is also
responsible for twenty-eight variants of the Netsky worm. Key evidence leading
to Jaschan’s apprehension was given by a peer group familiar with his activities.
They had approached Microsoft officials in Germany asking about the reward.
Once informed that they would indeed get it, they turned him in, after which
Microsoft paid the quarter million dollar (U.S.) reward to them. This arrest
caused Microsoft officials to have confidence that their reward fund would have
a positive effect on the eventual arrest of the perpetrators of the Blaster and
Code Red worms.10.31

Antiworm Countermeasures: At the outset of Section 10.2, we quoted
Sun Tzu on knowing your enemy in battle. This applies equally well today in
the war on malicious code. In fact, we may quote him further: “Know the
enemy and know yourself; in a hundred battles you will never be in peril.” (See
[279, page 84].) In the computer word, one must be aware of both internal
and external potential attackers, especially if you are an employer. Disgruntled
employees, as we demonstrated with real-world examples, can be a greater threat
than any external source. We have talked at length about measures against
internal threats such as the use of firewalls (see Section 8.4); monitoring; and
access control. Now we see how to protect against external threats presented
by worms.

Relying solely on firewalls is insufficient. Each server must be protected
as a separate entity. We have already discussed the technological devices such
as IDSs (see page 395); blocking software, including antivirus mechanisms (see
page 403); and access-control software (see page 403). There should also be
human intervention such as Tiger Teams (see page 396 ); risk analysis; and in-
depth security policies. Using the human and technological devices in concert
can be the most effective of security-management mechanisms.

10.31It was reported in August of 2004 in the Telegram (Berlin) that teenagers are responsible
for 70% of e-mail viruses.
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10.4 Legal Matters and Controversy

When men understand what each other mean, they see, for the most part,
that controversy is either superfluous or hopeless.

John Henry Newman (1801–1890)
English theologian, leader of the Oxford Movement, and Cardinal

— from Oxford University Sermons (1843)

� What Is Copyright?

The term “copyright” refers to the legal right to exclusive distribution, pro-
duction, and publication for the owner of any original product. Typically, this
right is granted by a government to an originator of work, to distribute, produce,
publish, or sell the work (subject to certain caveats). It is not always necessary
to seek out explicit copyright protection by applying to a government agency,
say. For instance, a photographer is automatically granted copyright world-
wide, to a photograph via the ownership of the negative (or digital original) of
a picture taken.

In our digital world, the issue of “electronic rights” has arisen in addition to
the older notion of copyright. In fact, some courts in various countries have ruled
that the older notions of copyright did not contemplate electronic databases, so
they are not included in the old laws. Several lawsuits pertaining to this issue
have tested the new limits of copyright laws, which are now expanding to address
these modern bones of contention.

The inception of the e-book10.32 has given publishers pause since some au-
thors have made digital representations of their works available online, putting
them in direct conflict with their own publishers. Most lawsuits in this regard
have been in favour of the publisher, since new copyright law tends to extend
to include the e-book that is based on an existing print book. Many expect
that all of the print versions will eventually be converted to digital form. How-
ever, copyright laws may interfere with that expectation since the permission
of the copyright holder is required to do this. For the older books, the authors
may be dead, in which case the copyright passes to the heirs, or the publisher,
sometimes as a condition of publication, or even, in the case of many academic
publications, to the scholarly journal in which it appeared. In the latter case,
this has facilitated the online project called JUSTOR, Journal Storage, which
is a scholarly journal archive. It is converting back issues of masses of runs of
10.32An e-book is a digital version of a book, which might be a literal translation of a printed
book, created by say, scanning; or it might be created strictly in digital form to be read by an
e-book reader, which is software that runs on a PC or a hand-held device, for the purpose of
downloading and displaying book products. An example is the Adobe Acrobat e-book reader,
or the Rocket e-book. The latter is a hand-held device about the size of a paperback novel,
weighing twenty-two ounces, operates on batteries that last about twenty or so hours, and
holds about the equivalent of ten novels. It is updatable, has high-resolution liquid crystal
display, and can be recharged as well as connected to a PC via a serial connection (see Footnote
10.33 on page 412). If portable e-books are successful, then the Rocket e-book may be the
template for their design.
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original scholarly material without having to go to each author. In fact, for each
journal and all its articles, there is negotiation with a single entity.

With nonscholarly material, there is still the problem of getting permission
from the copyright holder, and in the case of older works, this may present
problems simply in terms of actually locating that owner. Furthermore, in
some countries, such as the United States, laws have been passed to protect
highly profitable works by extending the copyright from the life of the author
plus fifty years, to the life of the author plus seventy years. This was the result
of the 1998 Sonny Bono Copyright Extension Act passed by the U.S. Congress.
This means that there is a further two-decade-long moratorium on new works
entering into the public domain, that body of knowledge in general, in which no
individual or organization can lay proprietary claim. Thus, in many countries,
it will take some time to sort out the copyright issues related to the transferal
to digital form.

There are works, other than books, which are intrinsically in digital form,
such as music and video. We would be surprised if book publishers wanted to
restrict use of photocopy machines away from copyrighted works, or to fight
for a royalty tax on such machines to compensate the copyright holders from
pirating of printed works. The reason is simple: cost. Even in today’s world,
if one wants to pirate a book by photocopying it, and binding it, and taking
all the time to do this, the cost would be prohibitive. Even if one downloads a
digital PDF version of a book and wants to convert it to bound-book format, the
costs remain. Yet, with music or movies, which already exist in digital form,
and increasingly so, as we will discuss below, then we are not surprised that
the audio/video industry seeks a royalty tax on CD, VCR, and DVD players.
The problems for the music industry are quantitatively greater than for the
movie industry, the reason being that the size of movies prevents most users
from downloading, even when available. Moreover, many videos are encrypted,
and the network connections required to successfully and quickly download such
films are not in the hands of the average user. Actually, in today’s world there
are bigger problems faced by the music industry that we need to discuss.

� Copyright and Piracy Issues

Recent polls taken of teenagers in North America show that, although they
are not ignorant of copyright laws when it comes to downloading music from
the Internet, more than half admit to simply ignoring those laws. In fact, these
polls show that they are more concerned with getting a computer virus than
being prosecuted for copyright violations. This is a problem for companies
holding those copyrights. How do they get paid for proprietary data if they
make it public? Unauthorized copying (pirating) of software, in general, costs
the industry billions of dollars. How do manufacturers prevent unauthorized
copying of their software, called copy protection?

There is a copy protection device, called the dongle. Basically, it is a mecha-
nism for protecting against unauthorized copying or use of proprietary software.
Typically, a dongle will be a hardware device, usually sent with the software
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package, that plugs into the parallel port10.33 of a computer. Then the software
application sends an encrypted message to the dongle for verification before it
will run. Moreover, at selected points during its running, the application will
send messages to the dongle. If the dongle does not respond with the program’s
validation code, the software ceases execution. In other words, the dongle must
remain plugged into the computer in order for the software to continue running.
Hence, although users may copy the program, they need a new dongle for each
copy, so must pay for each one. Modern dongles have a pass-through function
that allows a printer to be connected, for instance, thereby not tying up the
parallel port. Older versions were a nuisance since they did indeed tie up the
port and so were not very popular.

Most copyright infringements have been in the area of music downloaded
from the Internet. The majority of the recent major court battles and subse-
quent fights over piracy, copyright violations, and rights of users centered in this
arena.

� MP3: Most digital music downloaded from the Internet is in MP3 format.
In order to understand further the copyright/piracy issues, we must have some
understanding of this format and how it operates. Prior to the arrival of MP3 on
the digital scene, the format for downloading music from the Internet was WAV
(pronounced “wave”, which stood for waveform audio), developed by Microsoft.
WAV files were monsters that could take vast amounts of storage space for a
CD, and take several hours to download it.10.34

10.33A parallel port (also called an LPT port), is an interface that supports transmission of
multiple bits at the same time for connecting an external device, which is usually a printer.
Most computers have both a parallel and a serial port. A serial port is slower than its
counterpart, since it is a general-purpose port in which 1 bit of information is transferred at
a time. Thus, it is usually employed for modems, mouses, and some communications devices.
Most serial ports use an RS-232C type connector, so are often called RS-232 ports. In the past,
serial ports were used to transfer images from digital cameras, but this was painfully slow. It
is being replaced by the much faster USB ports on both digital cameras and computers. USB
means Universal Serial Bus, an external bus standard, which supports data transfer rates of
12 Mbps. (Think of a bus as a transmission pathway.) USB ports allow one to “daisy-chain”
devices, that is connect one device to another. In fact, a single USB port can be used to
connect up to 127 peripherals. This means that a new device may be added to a computer
without the necessity of adding an adapter card. The port looks like a vertically positioned
slim rectangle, typically on the back of a computer or monitor. The widespread use of the
USB port really began with the popularity of Apple’s iMAC, released in 1998. It is now
expected that all serial and parallel ports will eventually be replaced by USB ports. The USB
specification was published in 1996 by a consortium of corporations led by Intel Corporation.
10.34To understand why, we must learn something about CDs. Digital audio for CDs is ob-
tained by using two-byte numbers to represent samples of the original analog signal. CD
sampling is akin to frames of a motion picture, but with audio the “samples” are taken at a
rate of 44.1 kHz (44,100 times per second), and this is naturally done in stereo (two channels).
Therefore, one minute of CD audio contains 60 × 2 × 44, 100 × 2 = 10, 584, 000 bytes. Since
an average song is three minutes long, then we are talking about roughly 30 MB. (Since we
get into such large numbers in these discussions, it is convenient to talk in terms of megabytes
(MB), where 1 MB = 1, 048, 576 bytes or 1024 kilobytes (KB), where 1 KB = 1024 bytes.)
Supposing that an Internet connection has the (not unreasonable cable-type) rate of about
60 seconds to download 1 MB, then one song will take about 30 minutes, and a complete CD
with say a dozen songs on it will take six hours to download!
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MP3 is short for MPEG-1, layer 3, where MPEG is the acronym for Motion
Picture Experts Group, which operates under the direction of the ISO and
IEC (see Footnote 9.26 on page 354), for the development of standards for
audio/video compression. In 1988, MPEG met to consider the development
of a single codec (compression/decompression) for digital audio. By 1992, the
MPEG-1 standard for audio and video coding was created. The new standard
produced high-resolution audio compression data in packets vastly smaller than
those required for the WAV format. By 1997, an inexpensive software for MP3
was delivered, and this new format is what made it quick and easy to download
pirated music stolen from copyrighted CDs. The MP3 compression ratio is
about 12:1, meaning that the size of an MP3 clip is one-twelfth the size of an
uncompressed audio file. More importantly, MP3 compresses without sacrificing
much quality. It does this through a process called perceptual audio coding
scheme that relies on the property of the human ear to discard the weakest
sounds. For MP3, this means that there is a loss in quality, but the loss is not
perceived by the human ear!

In October of 1998, the MP3 sensation was given a publicly available com-
mercial vehicle, called the Rio marketed by Diamond Multimedia, as a portable
MP3 player. Initially, users could upload music to certain key sites, such as
MP3.com. Then anyone could go to that site and download it from the server
where it was stored, but the user had to search the Internet for the desired
music. Sometimes, IRC (see Footnote 10.30 on page 406) could be employed to
chat with others and find an appropriate site. However, a combination of all
these functions would have to wait for the idea of a single teenager.

� Napster: In 1999, eighteen-year-old Shawn Fanning, a Northeastern Uni-
versity student, wrote a program that combined three features:
1. A search engine which was dedicated to finding only MP3 files.

2. File sharing, providing the ability to exchange MP3 files directly, thereby
eliminating the need to store them on a server.

3. IRC embedded as part of the program to allow MP3 users to chat online.

The above program became the utility called Napster, which was a high-
school nickname for Fanning, ostensibly derived from his hair. Napster replaced
the server storage mechanism with peer-to-peer sharing. Thus, with Napster, a
user would be downloading music from another user’s computer, which could be
anywhere in the world. The manner in which this was accomplished is explained
in what follows.

Suppose that Alice wants to share music over the Internet. In order to use
Napster she needs the following:

1. A copy of the Napster utility installed on her computer.

2. A directory on her computer whose privilege she sets to shared mode.

3. An Internet connection set to be on.
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Now, if Alice wants to download a specific song, she executes the following.
Alice Downloads via Napster

1. She opens her Napster utility, which verifies the Internet connection, and
logs her onto the central server. This Napster server has the purpose of
indexing all Napster users, but is not used to hold MP3 files. Once the
connection with the Napster server is made, Alice’s shared music files also
become available to other Napster users, in essence turning Alice’s com-
puter into a small server in the Napster network. This is accomplished via
Alice’s Napster utility informing the central server which files are available
on her computer for sharing.

2. She types the information concerning the song she wants, and the Napster
utility on her computer queries the index server for other Napster users’
computers online storing that particular song. For each match found, the
Napster server informs the Napster utility on Alice’s computer and builds
a list in her results window.

3. She chooses a file and selects download. Alice’s Napster utility establishes
a connection with the host system that hosts her target file, and once
accomplished, the file downloads.

4. After the downloading is completed, the host system disconnects with Alice’s
system. She now has the desired song stored on her shared file for her to
access.

As long as Alice is online with the central server, other Napster users may
access music files on her computer for download. Fanning’s idea was to eliminate
the use of a server in the above fashion. Given that Napster grew to literally
billions of songs available, there was no server capable of holding them. (At
its height, Napster had sixty million users per month.) The central idea in the
above is that there is no copyright violation since “friends” may share music
with “friends”. However, the courts disagreed. The central gap in the logic
was the Napster central indexing server. Once the courts ordered Napster to
stop using the central database, the Napster network was dealt a lethal blow. In
July of 2001, the lawsuit filed by the Recording Industry Association of America
(RIAA) was successful. A judge ordered that Napster’s servers stop operating.
Napster tried to rectify the situation by offering to pay millions to copyright
owners but by September 2, 2002, Napster was forced to liquidate its assets
under U.S. bankruptcy laws. At a bankruptcy auction in 2002, the Napster
name and assets were sold to Roxio, a Silicon Valley software organization.

On October 29, 2003, the Napster division of Roxio made the announcement
of their launch of Napster 2.0 where users could purchase a song to download
for about a dollar or about ten dollars for a CD, or for a monthly (unlimited-
listening) subscription. Although the new Napster is not a peer-to-peer service,
it still offers shared playlists, interactive radio, music videos, general access to
their “world’s largest” music store, and other features. As with the old Napster,
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a user can browse libraries of others, and participate in the sense of a music
community. On March 10, 2004, Napster announced a team effort with IBM
in the introduction of their Super Peer application for music downloads. It is
an open standards-based technology to assist universities, ISPs, and commercial
enterprises, as well as their own customers, to safely and rapidly download music
legally. On May 20, 2004, Napster announced its move into the British market.
Other markets are sure to follow. There are new systems that are similar to the
old Napster, but operate in a fashion that makes it difficult for the courts to
shut them down. Let us see why by looking at one of them.

� Gnutella: In early 2000, a subsidiary of AOL,10.35 called Nullsoft,10.36

made the first Gnutella program available on its servers as a distributed soft-
ware project designed to establish a genuine peer-to-peer file-sharing network,
without a central server. Gnutella (pronounced with a silent g), is a word amal-
gamation of GNU (see page 385), and Nutella, the latter being a registered
trademark for a hazlenut spread with a chocolate taste first developed in the
1940s by Pietro Ferrero (currently outselling all peanut butter brands combined
all over the world). Ostensibly the name combination, Gnutella, derived from
the fact that the two inventors of the initial program, Justin Frankel and Tom
Pepper, ate large quantities of the product while working on the project, and
they had intended the source code to be released under the GNU GPL. In any
case, AOL pulled the plug on Gnutella the day after its release, since they were
concerned over the legal issues already plaguing Napster over similar issues at
that time. This did not stop the program since it was reverse engineered10.37

and open source copies were cropping up all over the Internet.
10.35AOL means America Online, which is a corporate ISP, based in Dulles, Virginia, and is
owned by Time Warner, the world’s largest media organization, headquartered in New York
City. Time Warner was created from the merging, on January 10, 1990, of Time Incorporated
and Warner Communications. In 1996, Time Warner merged with the Turner Broadcasting
System. This ensured that Ted Turner would be the largest shareholder of the group of
companies. In 2000, Time Warner merged with AOL to form AOL Time Warner. However,
due to the weakness of the performance of the AOL component, the name was changed back
to Time Warner on September 17, 2003. AOL’s instant messaging system works in a fashion
similar to that of the original Napster, but of course the purpose is not to pirate music. Instant
messaging is essentially a service that allows users to communicate with others in real time
through private online chat areas, and alerts them when others are actually online.
10.36Nullsoft is a play on Microsoft, observing that “null” (meaning “nothing”), is smaller than
“micro” (in general terms, meaning “very small”), and is the name of the software company
purchased by AOL in 1999. Nullsoft is perhaps best known for its open source installer
program, Nullsoft Scriptable Install System (NSIS), which is similar to the original Windows
installer, while being easier to use and supporting more compression formats. In general, open
source, in reference to software, means source code that is in the public domain. It may also
refer to copyrighted material that is distributed under an open-source license such as the GNU
GPL (see Footnote 10.15 on page 388).
10.37The process of reverse engineering (RE) refers to the taking apart of something, which
could be a piece of hardware or software, and analyzing it with the goal of creating a new
construct that has the same functions as the original. Of course, reverse engineering collides
with copyright and patent laws, since patents, for instance, apply to what a product does, not
how it is implemented to do so.
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Bob Downloads Music Using Gnutella

Background: Let us see how Gnutella works so we may achieve some un-
derstanding of how it compares and contrasts with the old Napster. There is
no central server, which was essentially the legal problem with the old Napster.
Each user, such as Bob, has Gnutella client software, which will have built-in
preexisting lists of other users IP addresses, and which may use IRC to find
suitable addresses from the list when requested. Typically, once the software
is installed on a given machine and connected to the Internet, it will try to
connect to the IP addresses with which it was shipped until it reaches some
preprogrammed quota, and stops, but keeps the addresses not tried.

1. Bob types in the name of the music he is seeking, a song or a CD. The
Gnutella software seeks out appropriate machines with that music.

2. The Gnutella software on Bob’s computer sends the names of the music
Bob wants to the other machines to see if it is located on their local disks.
Each one that does have it sends back the file name and IP address of the
machine on which it sits.

3. Simultaneously, each of the machines sends out Bob’s request to all the
machines to which they are connected, and each of these machines repeats
the process in turn.

4. There is a limit placed on each request, called a TTH (Time To Hop),
meaning that the request must go out to say, seven levels deep before it
stops its own propagation.

5. Bob selects from the returned files via their IP addresses and his software
contacts the sender and negotiates the transfer.

6. Once Bob disconnects, his Gnutella software updates by saving the IP
addresses of those users who contacted him.

This is a clever mechanism for employing the peer-to-peer idea without vio-
lating any copyright laws since there is no central indexing server, just “friends”
sharing files via their computers. However, without that central server, the pro-
cess can take time. It could be a few minutes for a multilayer deep request
to be processed. Furthermore, Bob is giving up time on his own computer to
process requests coming in from other users, so he sacrifices bandwidth. More-
over, there is no guarantee he will find what he is looking for even with all
the machines involved. Yet the Gnutella idea works every time Bob connects
since, as long as there is one user to whom he can connect in the Gnutella
network, he is able to query all the interconnected machines. Yet no court
is likely to shut this scheme down since there is no central server for which a
court could issue the cease-and-desist order. Currently several hundred million
copies of the Gnutella software have been downloaded. For more information
see http://draketo.de/inhalt/krude-ideen/gnufu en.html.
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There are numerous Gnutella client applications, unlike the old Napster.
Some of them are Bearshare a closed-source, Windows-based platform; Gnu-
cleus, a Windows-based, open-source platform written in the C language;
Limewire, a GPL open-source code in Java, which is multiplatform (but there is
a MAC OSX platform based on Limewire, called Acquisitionx ); and Poisoned,
an open-source, MAC OSX-based platform. The most common file-sharing ap-
plications in use today, which also employ the above clients, are BitTorrent and
Kazaalite; see http://bittorrent.com/ and http://www.kazaalite.com/.

The music industry is responding to the above concerns, especially the
MP3 developments, with an initiative called Secure Digital Music Initiative
(SDMI), which is, an as yet incomplete, standards forum established in 1998
(see www.sdmi.org). The goal of SDMI is to provide online, convenient, legal
access to digital music, by creating new digital distribution systems, enabling
copyright protection for music artists, and promoting development of music-
related technologies. Part of the reason that SDMI’s goal is, as yet, incomplete
is that their SDMI challenge, Open Letter to the Digital Community, announced
in September 6, 2000, had unexpected outcomes. They invited hackers and
cryptanalysts to break their proposed digital watermarking scheme for protect-
ing digital music. Their challenge was met in the worst possible way (for them).
A group broke the entire system. In other words, not only did they break the
proposed scheme, but showed that the basic idea was flawed in that any algo-
rithm based upon it could also be broken. The SDMI project has been inactive
since May 18, 2001. However, this hiatus did not invalidate their development of
a portable device specification. The idea behind this specification is that future
music content would include data that SDMI-compliant players would recog-
nize, and would refuse to play any file containing digital music without these
markings. In this fashion, copyrighted material would be protected. However,
it is not difficult to see that implementing such a system is going to meet some
formidable barriers.

The last topic of this chapter is on controversy surrounding a single computer
chip that involved the White House, the NSA, DES, and numerous characters,
who attempted to build a wall of security that came crashing down.

� The NSA

The National Security Agency (NSA)10.38 is also regarded as the Central
Security Service. It is essentially the U.S. cryptologic citadel, whose function is
to organize and direct whatever necessary to safeguard U.S. information systems
and to gather foreign intelligence. On November 4, 1952, President Harry S.
Truman signed a directive that established the NSA. We have witnessed several
cryptologists in the NSA Hall of Honor (see pages 85–88, and 91), as well as
images from their National Cryptologic Museum (see page 92–96, and 106), for
instance.
10.38The acronym is often used for No Such Agency and Never Say Anything in reference to
its cloak of secrecy shrouding the organization.
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Figure 10.6: The NSA’s 50th Anniversary Exhibit.

This exhibit is in the NSA’s National Cryptologic Mu-
seum, and is courtesy of the NSA. For more details see
http://www.nsa.gov/museum/museu00021.cfm.

For more than half a century the NSA has been at the forefront of high-
tech development including paving the way for the first large-scale computer,
the first solid-state computer, the tape cassette, and modern semiconductor10.39

technology. The NSA also employs certainly the largest number of mathemati-
cians in the United States, and arguably, in the world. Their cryptologists and
mathematicians help the agency to design ciphers and find deficiencies in enemy
cryptosystems.

In other words, their job is to make and break codes. In the NSA, this is
10.39A semiconductor is a substance that selectively conducts electricity through the move-
ment of electrons and holes (which are electric charge carriers with positive charge, equal in
magnitude, but opposite in polarity to the charge of an electron). A semiconductor is interme-
diate between conductors (like copper that freely conducts electricity), and insulators (such
as rubber, which does not conduct an electrical charge). For instance, silicon is a semicon-
ductor, and usually microchips (sometimes called simply chips or integrated circuits (IC)s),
are fabricated on semiconductor substances such as silicon. The substance, silicon, present in
glass and sand, for instance, is the best known semiconductor material for electronic compo-
nents. Silicon will conduct electricity in a fashion depending upon the impurities added to it,
called doping. If the addition of impurities causes the majority of the charge carriers to be
negatively charged electrons, then this is called N-type silicon. If addition of impurities leads
to the majority of charge carriers being positively charged holes, then we have P-type silicon.
Typically silicon material used in electronics has both N- and P- type material.
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Figure 10.7: The NSA’s Cryptologic Memorial.

The black granite wall was erected outside the NSA headquar-
ters in Ft. Meade, Maryland, to honour 153 cryptologists who
sacrificed their lives for their country; courtesy of the NSA (see
http://www.nsa.gov/gallery/photo/photo00054.jpg).

sometimes called Equities, to designate that both tasks are of equal importance.
Since the NSA is necessarily committed to being on the cutting edge of cryp-

tologic advances, they have a National Cryptologic School. William Friedman
was, in fact, the chief cryptologist at the forerunner of the NSA (see page 85),
and his influence was probably a precursor to the development of the school.

The above being said, we are interested herein with the controversy sur-
rounding the NSA’s involvement in attempting to suppress public access to
cryptographic mechanisms. They were involved early on with Feistel’s work
(see pages 97 and 120), and later with DES (see page 98), as well as the doomed
attempt to suppress public-key cryptography (see [169]). However, it is a single
chip in which we are interested, since it embodies a whole wealth of stealth that
is worth the telling.
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� The Clipper Chip

The Clipper Chip was designed to be resistant to reverse engineering even
against sophisticated and well-funded attackers. It was developed by the de-
fence contractor, Mykotronx of Torrence, California as a secure voice device for
AT&T. Mykotronx called the chips MYK-78.

The chip was to be used to protect private voice communications while al-
lowing government agents to employ what was called key escrow to access the
encrypted communications. The reason was to provide access for law enforce-
ment to be readily able to obtain information in criminal cases from voice com-
munications. The proposal was that the Clipper Chip would hold a master key
“in escrow” for release to government agents at a later time as a “secret door”
for them to access the encrypted conversations without having to use methods of
decryption to get them. This secret door was called LEAF or Law Enforcement
Access Field. To accomplish this, the master key would be in the protected,
secure custody of the government. Then the (classified) encryption algorithm
on the Clipper Chip, called Skipjack, would use the session key to encipher the
sounds as they left the transmitting source, and decrypted as they arrived at
the received target. There was also to be a unique chip identifier, a unique
chip key. LEAF would be generated by Skipjack using the session key and the
unique chip key to produce an enciphered session key and the unique chip key.
Then the master key would encrypt it all. Below is a stepwise version of how
this all works. First we look at Skipjack to see how it is an improvement over
DES, and examine what the Clipper Chip contains.

Chip Contents: Each Clipper Chip contains the following.

• The classified SKC, Skipjack, employing 80-bit keys (DES has only 64), and
32 rounds (DES has only 16), supporting DES modes of operation (see
Section 3.3).

• An 80-bit family (master key), F, common to all Clipper Chips.

• A unique serial number, N.

• A unique 80-bit secret key, U, for decrypting all messages enciphered with
the chip.

The following is a simplified version of the employment of the Skipjack SKC
used in conjunction with the Clipper Chip for secure voice communications
between Alice and Bob.

Encrypting with the Clipper Chip: Alice and Bob will use the Clipper
Chip for an encrypted telephone conversation as follows. We will assume that
the conversation is digitized voice.

1. First there is a negotiation of a session key between Alice and Bob that
takes place outside the chip, which is embedded in the AT&T security
device for each phone. Alice activates her security device to call Bob, and
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her device negotiates with Bob’s device to create a session key K, using
a key exchange such as Diffie-Hellman. Then once K is established, the
Clipper Chip is used to secure the conversation as follows.

2. The telephone security device takes the message stream M and the key K
as input to the chip. Employing Skipjack encryption, E, output values are

EK(M),

the encryption of M using key K; as well as

EF(EU(K),N),

the LEAF, using master key F to encipher the concatenation of N and
the value EU(K), which is K encrypted using key U.

3. Both EF(EU(K),N) and EK(M) are transmitted to Bob’s Clipper Chip,
which deciphers the voice message via Skipjack decryption, DK, to get
the original message,

DK(EK(M)) = M.

4. The Clipper chips operate in both directions for the conversation in the
above fashion now that they are synchronized.

5. The LEAF may be decrypted by law enforcement once a wiretap warrant
is ordered in the case of suspected criminal activity.

The following gives one means of having escrow agents, employed as TTPs
(see page 182) to program the chips and generate the required keys.

Clipper Chip Programming and Escrow

We will employ Trent and Victor as TTPs to accomplish the task of generat-
ing the unique unit keys for each of the Clipper Chips, which are programmed
in a secure manner. At least one of Trent or Victor must be independent of
any branch of government or law enforcement agency. All Clipper Chips are
programmed at Mykotronx in a secure vault. Numerous chips are programmed
during a given session as follows. A computer and equipment to program the
chips are in the vault.

1. Trent and Victor enter the vault and each enters into the computer a random
80-bit seed, ST and SV , respectively.

2. The serial number, N, of a given chip is padded with a fixed block to
produce a 64-bit number N1. Then the following triple encryption is
computed using Skipjack,

R1 = EST
(DSV

(EST
(N1))).
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3. In a similar fashion to step 2, N is padded with two more distinct blocks
to form two more 64-bit blocks N2 and N3, respectively, from which the
following are computed:

R2 = EST
(DSV

(EST
(N2))),

and
R3 = EST

(DSV
(EST

(N3))),

respectively.

4. Then the 192-bit concatenation R = (R1, R2, R3) is formed. The first
80 bits, U1 is given to Trent, and the second 80 bits, U2, is given to
Victor, with the rest of R being discarded. Then the addition modulo 2
is computed:

U = U1 ⊕ U2.

The value U is kept on a separate disk at Mykontronx for later program-
ming.

5. Trent and Victor have now completed a secret-sharing scheme (see Section
5.5), where each of them knows exactly one of the 80-bit parts of the secret
key U. They leave the vault with their pieces of data, neither of whom
may separately generate U without the other’s participation.

6. Each such value U, stored on disk, is used to program the chips. Then all
data is discarded from the vault and the computer hard disk is erased to
be ready for the next TTPs to enter the vault.

Law Enforcement: If criminal activity is deemed to have occurred in the
conversation between Alice and Bob, then law enforcement obtains a wiretap
warrant, goes to the service provider of their telephones, and accesses the com-
munications lines. Then the law enforcement agents, Polly and Peter, access
the Clipper Chip and perform the following actions.

1. First they use F to decrypt LEAF and obtain

DF(EF(EU(K),N)) = (EU(K),N).

2. Then Polly and Peter use secure lines to both send the serial number N,
and authorization documentation to both Trent and Victor.

3. Trent and Victor independently send their respective shared-secret pieces
U1 and U2 to Polly and Peter, who add them modulo 2 to get U.

4. Polly and Peter use U to decrypt via

DU(EU(K)) = K,

which is used to obtain DK(EK(M)) = M.
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Skipjack was a component of what NSA called Capstone, a PKC, developed
by NSA, that included the DSS (see Section 4.3). Skipjack was started by NSA
in 1985, and completed in 1990. The NSA had moved heavily to ensure that
the DES keylength was kept relatively small, while developing Skipjack as an
improved, albeit classified SKC. Thus, the NSA wanted to have their cake and
eat it, too (see pages 98 and 117, for instance). However, the public outcry
against what was seen as an extreme invasion of privacy would not allow them
much more than a slice of that cake.

The brainchild of the Clipper Chip was Clinton Brooks who rose to become
assistant deputy director at the NSA. Brooks, who was intent on the success
of the Clipper Chip, approached Al Gore after the 1992 election victory of Bill
Clinton, even before they entered the White House in December of that year.
Being a “techno-geek” himself, Gore was taken with the idea. Gore had a desire
to see an Information Highway and was intent on making this a reality. Once
the Clinton administration took power in 1993, meetings were set in high gear
by the NSA with the White House staff. By March 31, 1993, Clinton gave the
go-ahead for the Clipper project. However, he had no idea that this move would
signal the end, not the beginning, of government control of cryptology.

NIST was required to solicit public input on the Clipper project, and the
results were devastating for the pro-Clipper side. Only six percent of those
responding were in favour of the proposal. The White House was undeterred. On
February 4, 1994, Clinton formally enshrined Clipper as a FIPS standard, known
as the Escrow Encryption Standard (EES). However, opponents were speaking
out against the project in growing numbers with some impressive names doing
the talking. Phil Zimmermann (see Section 8.1), posed the important query:
Why would anyone want the Clipper Chip when programs like PGP were readily
available and free? Why indeed? Whit Diffie (see page 167) appeared at a Senate
hearing on the matter and basically focused on the right of the populace to freely
communicate and do so in private, without (what had come to be known as)
“Big Brother on a Chip” monitoring their every word. Then the flaws of the
Clipper Chip idea came to the fore in a way that is even more powerful than
the testimony of hundreds of top-notch experts.

Matthew Blaze worked in the cryptography group of AT&T Bell Labs in New
Jersey. In early 1994, NSA became interested in Blaze as a potential outside
source for testing the Clipper Chip so they invited him to NSA headquarters.
He discovered that the certain safeguards built into one of the LEAF fields was
a pitiful 16 bits. Using this fact he cracked the scheme in less than an hour.
Even though this hole could be filled, the fact that it was there in submitted
form, ready to be distributed, created a gaping hole in anyone’s trust of the
scheme. When the story appeared in The New York Times, the writing was
on the wall. Public opinion in favour of the Clipper Chip project descended to
less than twenty percent. The project died on the operating table, and even its
creator, Clinton Brooks, was fed up with the project, and threw in the towel.

The original Clipper plan was retracted, and two new initiatives, called
Clipper 2 and Clipper 3, were promoted. In 1996, Clinton promoted the latter,
which allowed the use of any encryption technology, but reserved the right of



424 10. Noncryptographic Security Issues

a government to recover any keys exported out of the United States In 1998,
Skipjack was declassified along with KEA (see page 223). They had to settle
for a small slice of the cake after all.

Other Secret Doors: The idea behind any of the U.S. government key
escrow plans, such as the above, was to give law enforcement timely access to
plaintext (without the consent or knowledge of the user), in order to solve the
problem of criminals enciphering evidence of their nefarious deeds. The public,
however, saw the solution as far worse than the perceived problem.

Essentially the security devices, such as those described above for the Clip-
per Chip, add a subliminal channel (the secret door we talked about earlier), to
the users’ communications lines (see pages 184, 192, and 374). This notion of
building such a channel (or secret door), into hardware at the time of manufac-
ture was being employed elsewhere. On March 18, 1992, the Iranian military
counterintelligence service arrested Hans Bueller, who was Crypto AG’s10.40

marketing representative in Tehran. The charges were that he was a spy for
Germany and the United States. During his nine-month imprisonment, he was
questioned five hours every day. Although Buehler said he was not beaten, he
was told he would be beaten and, during these interrogations, he was tied to a
wooden bench. It turns out that, despite his thirteen years of employment at
Crypto AG, Buehler was ignorant of the allegation that the firm was incorpo-
rating a secret door in their cryptographic devices (ostensibly, at the behest of
the NSA and the BND, Bundesnacrichtendtendienst, the German intelligence
service). Buehler stated that if he knew anything, they would have gotten it
out of him.

In order to sweep the issue under the carpet as quickly as possible, Crypto
AG paid a million dollar ransom to Iran to secure Buehler’s release in January
of 1993. After his return to Switzerland, the firm fired him and demanded that
he pay the money back to them. However, not everything went under the carpet
since some of the Crypto AG engineers came to Buehler’s defence and allegedly,
threatened to disclose that the crypto devices had been altered by American
and German engineers, who inserted their own cryptosystems.10.41 The Swiss
media was inspired by the Buehler affair, and began to dig into Crypto AG’s
background. The firm launched a lawsuit in response, but there was an out-
of-court settlement days before the trial was to begin. Crypto AG denies all
allegations.

10.40Crypto AG is a company begun by Boris Hagelin who moved his company to Zug, Switzer-
land, in 1948, and changed its name as the current incorporated entity in 1959. Previously,
it was a company called Aktieboget Cryptograph, based in Sweden, owned by Avrid Damn.
After Damn’s death in 1927, Hagelin took it over. He became the first millionaire from cryp-
tography due to the royalties earned from the products sold by the firm, such as the M-209
(see page 90).
10.41On December 4, 1995, The Baltimore Sun reported that the NSA has secretly rigged
Crypto AG devices so American intelligence could easily decipher the traffic generated by
these machines. The newspaper claimed this information was obtained from former Crypto
AG employees whose story was supported by company documents.



Chapter 11

Information Theory and
Coding

That was a little more information than I needed to know.
Quentin Tarentino (1963–), American film director

— from the movie Pulp Fiction (1994), spoken by Uma Thurman

11.1 Shannon

“Information theory” is a term derived from the seminal work of C.E. Shan-
non, The Mathematical Theory of Communication, published in 1948 (see [249]).
In Section 11.2, we will define what “information” means, and see that it is not
to be confused with the everyday understanding of the word. We will also see
that the Internet would not exist without information theory. Since Shannon is
the prime mover and prover of the concepts of perfect secrecy and information
theory, we begin with a brief biographical sketch of his life.

Claude Elwood Shannon (see Figure 11.1) was born on April 30, 1916, in
Gaylord, Michigan, where he stayed and graduated from the University of Michi-
gan in 1936. He left to do his graduate work at MIT. His supervisor, Vannevar
Bush, had Shannon take care of a computing device called the Differential An-
alyzer, which was a concoction of rods and gears that needed manual alignment
before a problem could be “input” to the machine. These problems involved
finding numerical solutions to ordinary differential equations. It was Shannon’s
experience with this machine that got him thinking along the lines of replac-
ing the unwieldy mechanical device with electrical circuits. Then he realized
that Boolean algebra was similar to the electrical circuit, and from this derived
the notion of circuit design according to Boolean algebra to analyze, test, and
optimize relay switching circuits. These ideas were expounded in his master’s
thesis entitled, A Symbolic Analysis of Relay and Switching Circuits, for which
he earned his master’s degree in 1937. His Ph.D., on population genetics, was
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Figure 11.1: Claude Shannon.

(Courtesy of Lucent Technologies Inc./Bell Labs.)
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granted in 1940.
In 1941, Shannon obtained a job as a research mathematician at the New

Jersey AT&T Bell Labs. In 1942, he collaborated with John Riordan to publish
a paper whose topic was the number of two-terminal series-parallel networks,
which generalized seminal results published by MacMahon in 1892. By 1948
he had published the paper cited at the outset of this section, which essentially
founded Information Theory. In this paper, he set forth a linear schematic
model of an information system, a revolutionary new idea that described the
measurement of information via binary digits. In this paper, he uses the word
“bit” for the first time. At that time communication was via nondigital means,
the transmission of electromagnetic waves through a wire. What we take for
granted today — continuous flow of bits through a wire — was a revolutionary
idea at that time. In this paper, he provides a rigorous mathematical definition
of information, which was based upon his cryptological work accomplished dur-
ing World War II. Shannon’s assumption was that information sources generate
words comprised of a finite number of symbols sent over a channel. He provided
a mechanism for analyzing a sequence of error terms in a signal to determine
their inherent type, assigning them to the designed type of the control system.
He demonstrated how adding extra bits to a signal could correct transmission
errors. This and the notions exposed in this paper were used and extended by
engineers and mathematicians to provide efficient and error-free transmissions
through noisy channels. The development of Information Theory made possible
the development of digital systems.

Shannon also worked on AI problems. By 1950, he had written a computer
program, which appeared in a publication entitled Programming a Computer for
Playing Chess. This publication led to the first machine chess game played by
the Los Alamos MANIAC machine in 1956. This was also the year in which he
published an important paper that demonstrated how a Turing machine can be
constructed utilizing only two states. In 1957, he was appointed to the Faculty
at MIT, but remained a consultant to AT&T Bell Labs until 1972. He received
many awards, among them the Alfred Nobel American Institute of American
Engineers Award in 1940, the National Medal of Science in 1966, the Audio
Engineering Society Gold Medal in 1985, and the Kyoto prize in that year. In
his last few years he suffered from Alzheimer’s disease, and was confined to a
Massachusetts nursing home. He died at age 84 in Medford, Massachusetts, on
February 24, 2001.

Shannon was a genius in his own realm, making contributions that paved the
way for our modern digital revolution. Marvin Minsky wrote of him that “For
him, the harder the problem might seem, the better the chance to find something
new.” He certainly found many “new” concepts, without which we could not
have the world that we have today. He was an inspiration to generations of
mathematicians and computer scientists. One of Shannon’s ideas, contained in
his paper [249], was a notion related to his formulation of information. We will
study this notion in the following section for which the reader will need some
familiarity with the basic probability theory presented in Appendix E on page
543.
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11.2 Entropy

Heretics are the only bitter remedy against the entropy of human thought.
— see [298, introduction]

Yevgeny Zamyatin (1884–1937), Russian writer

Information Theory is concerned with sending messages via electronic sig-
nals in the most efficient and error-free manner. Shannon defined information
to mean a measure of one’s freedom of choice when one selects a message. This
“measure” will gain mathematical precision below. The idea is that information
refers to the degree of uncertainty that exists in the situation at hand. There-
fore, in this (Information Theory) sense of the word, any situation that is totally
predictable (namely, whose outcome is certain) has very little information (per-
haps none). Thus, redundancy adds little, if any, information. Redundancy,
such as in the repeating of a message, helps to eliminate noise in a communica-
tions system. Think of “noise” as anything within the communications system
that is contrary to the predictability of the outcome of that system.11.1 The
term entropy is the degree of randomness (or uncertainty) in a given situation,
measured in bits, to which we will give a mathematical flavour below. In other
words, entropy is a measure of the amount of information in a given message
source. Moreover, in Information Theory, “efficiency” refers to the bits of data
per second that can be sent and received, and “accuracy” (error-freeness) is the
extent to which transmitted data can be understood (meaning clarity of recep-
tion, wherein the message may not have “meaning”). When we put the above
into a cryptological situation, where intended plaintext messages do have mean-
ing, encryption may be seen as noise added to the cryptosystem. The entropy
is the measure of the uncertainty about a message before it leaves the message
source. Now we look at all of this from a mathematical viewpoint.

� Properties of Entropy
Shannon required that entropy must satisfy the following properties.

1. H must be a continuous function of the variables p1, p2, . . . , pn, the probabil-
ity distribution. In this way, a small change in the probability distribution
should not severely alter the uncertainty.

2. When all messages are equally likely, that is, when p(mj) = 1/n for all
j = 1, 2, . . . , n, H should be an increasing function of n. In other words,

H
(
n−1, . . . , n−1

)
≤ H

(
(n+ 1)−1, . . . , (n+ 1)−1

)
for all n ≥ 1,

11.1In 1948, Shannon was able to precisely determine the maximum data rate achievable over
any transmission channel involving noise. Today this is known as Shannon’s theorem, which
says that

K = B · log2(1 + S/N),

where K is the effective limit on the channel’s capacity measured in bits per second, B is
the bandwidth of the hardware, S is the average signal strength, and N is the average noise
strength. S/N is called the signal-to-noise ratio. Shannon’s theorem places a fundamental
limit on the number of bits per second that can be transmitted over a channel. Thus, no
amount of engineering innovation will overcome this basic physical law.



11.2. Entropy 429

which means that there is more choice (uncertainty) when there exist more
equally likely outcomes.

3. If the jth outcome is replaced by two successive outcomes, the first with
probability cpj and the second with probability (1 − c)pj , for 0 < c < 1,
then the entropy of S should be a weighted sum of the entropies of the
two choices. More precisely,

H(p1, . . . , cpj , (1− c)pj , . . . , pn) = H(p1, . . . , pj , . . . , pn) + pjH(c, 1− c).

This says that the entropy is increased by the uncertainty caused by the
choice between the two outcomes, multiplied by pj .

Based on the above three properties, Shannon established the following def-
inition for entropy.

� What Is Entropy?

Entropy, the measure of information (uncertainty), is formalized as follows.
Suppose that we have a set of messages S = {m1,m2, . . . ,mn} for some

n ∈ N, and pj for 1 ≤ j ≤ n is the probability that message mj is the message
sent, with

∑n
j=1 pj = 1. Then

H(S) = H(p1, p2, . . . , pn) =
n∑

j=1

pj · log2(1/pj) = −
n∑

j=1

pj · log2(pj) (11.1)

denotes the entropy of S, which is independent of the set of messages since an-
other distinct set T = {m′1,m′2, . . . ,m′n} with the same probability distribution
has the same entropy.11.2 Also, Equation (11.1) defines a mathematical value
called the number of bits per message source.11.3

This definition captures the earlier notion since, for instance, if the outcome
is certain to be m1, namely, p1 = 1 and pj = 0 for all j > 1, then H(S) = 0, so
there is no information in a predictable outcome. In fact, this is the only way
that H(S) = 0 is possible, that is, if there is an mj ∈ S such that pj = 1 and
pk = 0 for all mk ∈ S with j �= k. Since the goal is to record minimal amounts
of bits on a computer to represent information, then there is no point in storing
information with zero content such as the above. When H(S) > 0, then the
following illustrates the measure of certain minimal bits we have to employ in
order to record output from S, namely, the average number, given by H(S).

11.2Since there is an undefined quantity when pj = 0, we agree by convention that 0 log2 0 = 0.
11.3Shannon chose log2 as a suitable measure of entropy to which he could ascribe the term
“bits”, which he says in [249], was a word suggested by J.W. Tukey. In that paper, he gave
three substantive reasons for the logarithmic measure: (1) It is practically more useful; (2) It
is nearer to our intuitive feeling as to the proper measure; and (3) It is mathematically more
suitable.



430 11. Information Theory and Coding

Example 11.1 If S consists of the toss of a coin with equal outcomes, and we
encode heads as 1 and tails as 0, then p1 = p2 = 1/2 with S = {0, 1}, and

H(S) = 1 log2(1/2)/2− 1/ log2(1/2) = 1 bit.

In general, if S has cardinality n such that each message has probability 1/n,
then H(S) = log2(n).

In general, if n = |S|, log2(n) is the maximum possible value that H(S) may
assume. Moreover, this maximum is assumed if and only if the probability
distribution is uniform, for example, when pj = 1/n for all j ≥ 1. For instance,
we have the following.

Example 11.2 Suppose we encode N equally likely, independent coin tosses as
bitstrings of length N , then the cardinality of S is n = 2N and pj = 2−N for
each j for which the entropy is given by

H(S) = −
2N∑
j=1

2−N log2 2−N = −2N (2−N (−N)) = N = log2(n).

Thus, we learn N bits when we are given a bitstring of length N .

Example 11.2 illustrates that H(S) may be viewed as the measure of the
number of bits of information obtained when we know the outcome of S. This
example also illustrates the fact that entropy measures the minimal amount of
bits required to represent an event on a computer, and then only the relevant
bits pertaining to the uncertainty.

For the next illustration, we go back to page 208, where we talked about
Alice and Bob flipping coins by telephone. Let us look at the entropy of that
protocol (event).

Example 11.3 In this case S = {0, 1} where 0 is the encoding of tails and 1 is
the encoding of heads. Then as in Example 11.1, H(S) = 1 bit. In other words,
Alice is a source of only 1 bit in this coin flipping protocol, irrespective of the
size of the integer x. The reason is that Bob knows x so there is no information
there for him. There is, for Bob, uncertainty (information) only in its parity,
which is Alice’s guess; hence her output: 1 bit of entropy.

We have considered only uniform probability distributions thus far. We now
look at other scenarios.

Example 11.4 Suppose that we flip three coins, which are not fair, where the
outcome is the number of tails. Then S = {0, 1, 2, 3}, and we let the probabilities
be p0 = 1/8, p1 = 3/8, p2 = 3/8, and p3 = 1/8. Thus, the entropy is

H(S) = −1
8

log2(1/8)− 3
8

log2(3/8)−−3
8

log2(3/8)− 1
8

log2(1/8) ≈ 1.81.
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We may use this example to illustrate how entropy is related to decision problems
(see page 502). In other words, to determine the outcome of the event, one may
ask yes or no questions, but how many? One could ask if the number of tails is
greater than one. This narrows the field to two possibilities. Then if the answer
were yes, for instance, then the next question could be, is the number of tails
greater than three? Then we know the outcome after two questions, a number
approximately equal to the entropy.

Joint Entropy: When we have two message sources S = {s1, s2, . . . , sn}
and S′ = {s′1, s′2, . . . , s′n′}, the joint entropy is defined by

H(S, S′) = −
∑
si∈S

∑
tj∈S′

pi,j log2(pi,j),

where pi,j is probability that si is the outcome of S and s′j is the outcome of S′.
It follows that

H(S, S′) ≤ H(S) +H(S′), (11.2)

which says that the entropy in the pair (S, S′) is, at most, the information
contained in S plus the information contained in S′; and equality holds precisely
when S and S′ are independent.

To illustrate this new notion, we move from coins to the more “suitable”
deck of cards.

Example 11.5 Suppose that a card is drawn from a standard deck of 52 cards,
S = {clubs, diamonds, hearts, spades} = {s1, s2, s3, s4} with pj = 1/4 for each
j = 1, 2, 3, 4, and S′ = {ace, 2, 3, 4, . . . , 10, jack, queen, king} = {s′1, . . . , s′13},
with pj = 1/13 for j = 1, 2, . . . , 13. Thus, S and S′ are independent, which
means that

pi,j = pi · pj =
pi

pj
=

1
4
· 1
13

=
1
52
,

where pi is the probability that si is the outcome of S and pj is probability that
j is the outcome of S′. Then the entropy is given by

H(S, S′) = −
4∑

i=1

13∑
j=1

pi,j log2(pi,j) = log2(52),

the maximum entropy possible as discussed above.

Conditional Entropy: Earlier we mentioned the context of cryptography
for entropy. We revisit this here in terms of ciphertext and keys, which was one
of Shannon’s viewpoints when establishing the basics of Information Theory. We
may discuss the conditional entropy of, say, the key, k ∈ K, given the ciphertext,
c ∈ C, which is defined as follows,

H(K|C) = −
∑
c∈C

∑
k∈K

pc,k log2(pk|c), (11.3)
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where pc,k is the probability that the outcome of C is c, and of K is k, whereas
pk|c is the conditional probability that k occurs, given that c occurs.11.4

Of course conditional entropy may be invoked with any message source, not
just cryptologic. An important property of conditional entropy is the following,
which marries the notions of joint and conditional entropy.

The Chain Rule: The joint entropy and the conditional entropy are given
by the following Chain Rule, where S is one message source, and S′ is another:

H(S, S′) = H(S) +H(S′|S). (11.4)

The Chain Rule tells us that the joint uncertainty of pair (S, S′) is the uncer-
tainty of S plus the uncertainty of S′ given that S is known.

Mutual Information: If S and S′ are message sources, then their mutual
information is the uncertainty of S′ reduced when S is known:

I(S′, S) = H(S′)−H(S′|S).

Thus, I(S′, S) measures the amount of information learned about S′ that is
obtained by learning S. The following material tells us both that mutual infor-
mation is nonnegative and gives us criteria for when it is zero.

The Role of Conditional Entropy: Perhaps one of the most important
facts from Information Theory is the following inequality:

H(S′|S) ≤ H(S′), (11.5)

which tells us that the uncertainty about S′ when we know S is no greater
than the uncertainty about S′. As we have seen above, when the events are
independent, equality holds (and it can be shown that equality cannot hold
otherwise). We may deduce that S can only yield information about S′, namely,
knowing S cannot increase our certainty about S′. Incidentally, it is clear that
Equation (11.5) may be deduced from Equations (11.2) and (11.4).

The Role of Independence: When S and S′ are independent, the following
are equivalent facts.

1. H(S, S′) = H(S) +H(S′).

2. H(S′) = H(S′|S).

3. H(S) = H(S|S′).

4. I(S′, S) = 0.

11.4From the results in Appendix E, we know that pk|c = pc,k/pc.
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11.3 Huffman Codes

A promise made is a debt unpaid, and the trail has its own stern code.
Robert W. Service (1874–1958), Canadian Poet

— From The Cremation of Sam McGee (1907)

This section deals with another focus that motivated Shannon. Today we
would call it message compression, but he saw it as the problem of finding
the optimal method for representing data in the most compact form. This
will bring together the relationship between entropy and compression, so the
material studied in the previous section will be a valuable tool. We now look
at formalizing this notion with an eye to finding an optimal encoding for all
possible messages in the message source. First we look at the man behind the
idea we present herein.

� Huffman David A. Huffman (1925–1999) obtained his B.Sc. in electrical
engineering from Ohio State University when he was eighteen. He then served
as a radar maintenance officer on a destroyer, which served to clear mines in
Japanese and Chinese waters following World War II. After returning to Ohio
State University where he obtained his M.Sc., he went to MIT for his graduate
work. While there, he developed his ideas, under the supervision of Robert
Fano, and presented them in a term paper. The ideas were published in 1952. He
received the Louis E. Levy Medal from the Franklin Institute for his Ph.D. thesis
on sequential switching circuits. Ohio State University also later granted him
their Distinguished Alumnus Award. Huffman’s ideas on compression eclipsed
the ideas put forth by his supervisor and Shannon, which were called Shannon-
Fano codes.

He served on the faculty at MIT from 1953, but in 1967 he moved to Califor-
nia to take a position at the University of California at Santa Cruz. He founded
the Computer Science Department there, and almost single-handedly developed
the department, serving as its head from 1970–1973. He retired in 1994, but for
a couple of years continued to teach Information Theory and other courses such
as signal analysis.

Huffman received many awards, among them the Golden Jubilee Award for
Technological Innovation from the IEEE Information Theory Society in 1988;
the Computer Pioneer Award from the IEEE Computer Society; and the 1999
Richard W. Hamming Medal from the IEEE in recognition of his outstanding
contributions to the general scope of information sciences. He died on October
7, 1999, and is survived by his wife, a son, and two daughters.

Huffman codes can be used in a vast array of compression areas, albeit
newer approaches have taken over. Nevertheless, the ideas are seminal in the
compression arena, so we will devote some time to understanding them.

� Encoding If S is a message source, we may define an injective function
f : S �→ B, where B is the set of all bitstrings of finite length. This is called
an encoding of messages from S. We denote the bitlength of the image f(s) by
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|f(m)|. Now we define a weighted length of an encoding by

L(f) =
∑
s∈S

p(s)|f(s)|. (11.6)

The goal is to find an encoding f that minimizes L(f).

� Huffman Encoding Algorithm Given a message source S =
{m1,m2, . . . ,mn} with probability distribution given by pj for j = 1, 2, . . . , n,
we encode as follows.
1. The two elements mi ≤ mj with lowest probability are encoded, the lowest

with a 0 and the largest with a 1. In the event they are equal, mi is
encoded with a 0 and mj with a 1.

2. The mi and mj from step 1 are treated as a single entity mi,j , with proba-
bility equal to the sum of their individual probabilities, pi,j = pi + pj .

3. Step 1 and 2 are repeated until there is a single element remaining. Then
go to step 4.

4. The binary output for each sj ∈ S is obtained by reading backward through
the above procedure to mj in the message source.

Example 11.6 Let S = {s1, s2, s3, s4} with p1 = 0.1, p2 = 0.2, p3 = 0.3,
p4 = 0.4, we illustrate the above algorithm via the following table.

s1 s2 s3 s4

0.1 0.2 0.3 0.4
0 1

0.3 0.3 0.4
0 1

0.6 0.4
1 0

1.0

The encoding is determined by reading backward through the procedure to
get f(s1) = 100; f(s2) = 101; f(s3) = 11; f(s4) = 0. Therefore, L(f) =
0.1 ·3+0.2 ·3+0.3 ·2+0.4 ·1 = 1.9, and when we compare this with the entropy
of S, we get

H(S) = 0.1 · log2(10) + 0.2 · log2(5) + 0.3 · log2(10/3) + 0.4 · log2(5/2) ≈ 1.84644.

Hence, the Huffman encoding is approximately equal to the entropy.

Example 11.6 is motivation for the following fact.

Huffman Encoding and Entropy If L is given by Equation (11.6) and
the assumptions surrounding it, then

H(S) ≤ L < H(S) + 1. (11.7)
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11.4 Information Theory of Cryptosystems

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

T.S. Eliot (1888–1965), Anglo-American poet, critic, and dramatist
— from The Rock (1934)

When we defined conditional entropy in Equation (11.3) on page 431, we
looked at a cryptological context. It is this interpretation upon which we now
concentrate. In fact, the quantity defined in that context for Equation (11.3) is
called key equivocation.

� Key Equivocation

The entropy of cryptosystems is a key feature upon which we will focus
herein. A cryptosystem may be defined by parameters that include the keyspace
K, the message space M, the ciphertext space C (as well as encryption and
decryption transformations), and certain probability distributions given as fol-
lows. Each plaintext unit, m ∈ M, has a certain probability of occurring, and
the choice of key k ∈ K is assumed to be independent of the choice of m, with
probability of a given k ∈ K also having a probability distribution from which
it follows that

H(K,M) = H(K) +H(M)

(see part 1 of The Role of Independence on page 432). Also, the possible c ∈ C

have a probability distribution that depends on the probability distributions for
M and K. Given this setup, the key equivocation satisfies

H(K|C) = H(K) +H(M)−H(C), (11.8)

which is a measure of how much information about the key is revealed by the
ciphertext.

Example 11.7 Let M = {s1, s2, s3, s4} with probabilities,

ps1 = 0.1, ps2 = 0.2, ps3 = 0.3, and ps4 = 0.4;

K = {k1, k2, k3} with probabilities,

pk1 = 0.3, pk2 = 0.3, and pk3 = 0.4;

and C = {c1, c2, c3, c4}.
If Ek is the enciphering transformation for a given k ∈ K, and

Ek1(s1) = c1; Ek1(s2) = c2; Ek1(s3) = c3; Ek1(s4) = c4

Ek2(s1) = c2; Ek2(s2) = c3; Ek2(s3) = c4; Ek2(s4) = c1

Ek3(s1) = c3; Ek3(s2) = c4; Ek3(s3) = c1; Ek3(s4) = c2
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then the probabilities for the ciphertexts, pC(cj), for j = 1, 2, 3, 4, is derived as
follows:

pc1 = pk1 · ps1 + pk2 · ps4 + pk3 · ps3 =

0.3 · 0.1 + 0.3 · 0.4 + 0.4 · 0.3 = 0.27,

and similarly
pc2 = 0.25, pc3 = 0.19, and pc4 = 0.29.

Now we may calculate some conditional probabilities to determine key equiv-
alence. First, we look at individual entropies.

Using the fact cited in Footnote 11.4 on page 432, we calculate the following:

pk1|c1 =
pk1 · ps1

pc1

=
0.3 · 0.1

0.27
≈ 0.1111,

and similarly,

pk1|c2 ≈ 0.2400; pk1|c3 ≈ 0.4737; pk1|c4 ≈ 0.4138;

pk2|c1 ≈ 0.444; pk2|c2 ≈ 0.1200; pk2|c3 ≈ 0.3158; pk2|c4 ≈ 0.3103;

pk3|c1 ≈ 0.444; pk3|c2 ≈ 0.6400; pk3|c3 ≈ 0.2105; pk3|c4 ≈ 0.2759.

Thus, using Equation (11.3) as a formula, we get

H(K|C) ≈ 1.4342.

Now we calculate, using Equation (11.1),

H(K) = −0.3 log2(0.3)− 0.3 log2(0.3)− 0.4 log2(0.4) ≈ 1.5709,

and similarly, H(M) ≈ 1.8464, H(C) ≈ 1.9831. Therefore,

H(K) +H(M)−H(C) ≈ 1.4342,

which agrees with Equation (11.8), as an illustration.

This tells us that when Eve intercepts encrypted conversation between Bob
and Alice, she obtains H(K|C) information about the key, and this is deter-
mined by the right-hand side of Equation (11.8). Moreover, this is, of course, a
ciphertext-only attack.

Now define Cn to denote all n-grams (ciphertexts of length n), and similarly
Mn will denote all n-grams of plaintext, with associated probability distribu-
tions, then as with Equation (11.8), we have

H(K|Cn) = H(K) +H(Mn)−H(Cn), (11.9)
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Unconditional Security

If the following holds,

lim
n �→∞

H(K|Cn) �= 0,

then the cryptosystem is said to be unconditionally secure.

On the other hand, we have the following.

Breakable — Theoretically

If the following holds,

lim
n �→∞

H(K|Cn) = 0,

then the cryptosystem is said to be theoretically breakable.

Associated with the latter case is the following.

Unicity Distance

The shortest length n for which,

H(K|Cn) ≤ 1,

is called the unicity distance.

Since the unicity distance tells us that there is no more than one bit of un-
certainty about the possible key, then it has only two possible values. In other
words, any given ciphertext may be decrypted in at most two different ways.
A competent cryptanalyst would be able to determine which one. It is some-
times the case where a unicity distance of ∞ is assigned to those cryptosystems
that are unconditionally secure, so as to have a unicity distance assigned to all
possible cases.

To show how to approximate the unicity distance, we need to explore the
following.

� Entropy and Redundancy in Languages

The entropy of a cryptosystem is related to the entropy of the underlying
language. We now look into this matter and examine languages in general with
applications to cryptosystems. Let L be a given language, such as English.
What is the entropy of L? It is given by

H(L) = lim
n→∞

H(Mn)
n

.

This was established by Shannon in [249], and it represents the average amount
of information per letter in language text, as well as the degree of uncertainty in
determining the next letter given knowledge of a substantial amount of text. It



438 11. Information Theory and Coding

may also be viewed as the average number of bits needed for recording output
from L. The rate of L for messages of length n is defined by

rn(L) = H(L)/n,

and the rate of L is defined to be

r(L) = lim
n→∞

rn(L).

This is the average number of bits of entropy per letter.
The absolute rate of L with a k-letter alphabet is given by

R(L) = log2(k),

which is the maximum number of bits per letter in a string from L. Thus, the
redundancy of L is defined by

D(L) = R(L)− r(L),

and the redundancy rate is
D(L)/R(L).

Redundancy in languages supplies an important cryptanalytic tool in terms of
recovering plaintext or keys from ciphertext.

Example 11.8 Consider L to be English. Shannon was able to demonstrate
that, for English,

1 ≤ r(L) ≤ 1.5,

which means that the average information content of the English language is
between 1 and 1.5 bits per letter. Moreover, since

R(L) = log2(26) ≈ 4.7

bits per letter, then

D(L) = R(L)− r(L) ≈ 4.7− 1.25 ≈ 3.5

so the redundancy of English is roughly 3.5 bits per letter. Looking at this
another way, the redundancy rate is roughly

D(L)/R(L) ≈ 3.5/4.7 ≈ 75%.

In other words, 3/4 of the English language is redundant. This does not mean
that you can discard three quarters of a given English text and still be able to
read it. It does mean that there is a Huffman encoding of length n English text
that will, for sufficiently large values of n, compress it to about a quarter of what
it was (see inequality (11.7)).
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Now that we have developed the above, we may return to unicity distance.
It can be shown that the it may be approximated by the following.

Unicity Distance Approximation

n ≈ log2(|K|)
D(L)

,

where D(L) is the redundancy of the underlying plaintext language
and |K| is the cardinality of the keyspace K.

Note that if there is a uniform probability distribution associated with K,
then H(K) = log2(|K|).

Example 11.9 Let us revisit the Caesar cipher discussed on page 11. Then
|K| = 26, and since we are using English, D(L) ≈ 3.5. Thus, the unicity
distance is given by

log2(26)/3.5 ≈ 1.34

letters.
If we take the substitution cipher defined on page 8 on the English alphabet,

then
log2(|K|) = log2(26!) ≈ 88.4

and since D(L) ≈ 3.5, then the unicity distance is

n ≈ 88.4/3.5 ≈ 25,

meaning that for ciphertexts of length about 25, there should exist a unique
decryption. because the unicity distance is effectively the smallest length of text
that has probability near 1 for one of the possible decryptions and probability
near 0 for all other possible decryptions.

The above tells us that the unicity distance may be viewed as the average
ciphertext length needed for a cryptanalyst to uniquely compute the key, given
enough computing time. Often the unicity distance is defined in terms of what
are called spurious keys, which are those keys that Eve will rule out leaving
only “possible keys”, assuming she knows that the plaintext is a language such
as English, and she is engaged in a ciphertext-only attack. Then the unicity
distance is the value of n at which the number of spurious keys has an expected
value of 0. That value is exactly the unicity distance we have defined above.

Now we would like to delve into the world of Shannon’s perfect secrecy, the
land of the one-time pad discussed on page 83.

� Perfect Secrecy

A cryptosystem is deemed to be perfect when the plaintext and ciphertext
are mutually independent. In other words, in terms of entropy we have the
following.
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Perfect Secrecy
A cipher has perfect secrecy when H(M|C) = H(M).

The above is tantamount to saying that

H(C|M) = H(C)

(see the role of independence on page 432). Basically, in a cryptosystem with
perfect secrecy, Eve gains no information from the ciphertext about the plain-
text that was not already known previously. Earlier, we talked about uniform
distribution of the keyspace with reference to unicity distance. Now we show
how this is intertwined with criteria for perfect secrecy.

Theorem 11.1 If C = {M,C,K, E} is a cipher such that

1. Every key k ∈ K has probability 1/|K|;
and

2. For each m ∈ M and c ∈ C, there exists exactly one k ∈ K such that
Ek(m) = c

both hold, then C has perfect secrecy.

Corollary 11.1 (Shannon) The One-Time Pad has perfect secrecy.

Shannon’s Main Theorem (1949)
For a cryptosystem C = {M,C,K, E}, any two of the following imply the
third.

1. H(M|C) = H(M).

2. H(K) = H(M).

3. I(M,K) = 0 (see page 432).

It should be noted that entropy does not take into account the amount of
computing time necessary to carry out an action. For instance, it might take
the life of the known universe to carry out a computation, but entropy does not
cover this. An example is the RSA cipher (see Section 4.2), for which H(K) = 0,
since the key may always be determined from public data. The computational
time to factor the modulus, which we have seen to be computationally infeasible,
is not taken into account by the entropy viewpoint. Hence, the latter (the com-
putational complexity of RSA), is the more accurate assessment of RSA rather
than any interpretation via entropy. This is also true of other ciphers based
upon the intractability of solving some hard number-theoretic problem. For
these cryptosystems, the ciphertext is formed, as with RSA, via some function
computed modulo n, and the latter is roughly the size of the key. It follows that
the setup of such ciphers forces the cryptanalyst launching a ciphertext-only
attack, to try all keys, in other words, a brute-force attack.
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11.5 Error-Correcting Codes

The aim of science is not to open the door to infinite wisdom, but to set a
limit to infinite error.

Bertolt Brecht (1898–1956), German Dramatist
— from Section 9 of The Life of Galileo (1939)

We have already been introduced to the use of noncryptographic codes in
this chapter. Indeed, Shannon is responsible for the birth of coding theory
with his seminal papers, the consequences of which we have studied in the
preceding sections. In this book we have been concerned largely with codes
from a cryptographic viewpoint. However, at the outset, on page 6, we did
promise to look at noncryptographic codes, called error-correcting codes, which
are methods for detecting and/or correcting errors in the transmission of data.

Noncryptographic error correction is required in virtually anything that
works with digitally represented data: satellite communications; telephone com-
munications; fax machines; computers; CD players; and so forth. Coding theory
deals with communications over noisy channels. This noise may be caused by
human error, lightening, electric impulses, thermal noise, deterioration of ma-
chinery, imperfections in the equipment, neighboring channels, and so on. The
goal of error-correcting codes is to encode the data, in a fashion (usually involv-
ing adding redundancy), so that the original data may be recovered if errors
(but not too many of them) have occurred.

A simple example where we replace the original message with an encoding
(see pages 433 and 434), which has built-in redundancy, is given as follows.
Suppose that we want to send the letter C, which has binary representation 10.
If we send a codeword of bitlength 6 as 101010, this is merely the repetition
of the original message three times. Thus, if an error is introduced so that the
received message is 111010, say, then the receiver can still determine the original
message as the most repeated one, namely, 10. Of course, if too many errors are
introduced, such as 111111 being the received message, then there is no hope
of retrieving the original. Thus, a goal of error-correcting codes is to minimize
the probability that errors will be introduced.

Once we encode a message, we need a mechanism to decode it after it passes
through a noisy channel. For our example, in the above illustration, our decoder
would be the recognition of the repetition of 10 twice, and would spit out the
corrected message with the three repetitions of it for the intended user. In
other words, the decoder recognizes that the nearest codeword is the one with
the second 1 replaced by a 0 to make three repetitions of the already twice-
repeated 01. If however, it received 111111, it would spit out the same since it
has no basis upon which to determine if errors occurred. In this case, we are
talking about binary codewords of bitlength 6. In terms of the definition given
on the aforementioned pages,

f(C) = 101010, with |f(C)| = 6.

This example is depicted in Diagram 11.1.
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Example of Binary Encoding/Decoding
Diagram 11.1

M
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G
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C
E

C−−−−→
Encoder

f(C) = 101010 101010−−−−−−→

N
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Y

C
H
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L

111010−−−−−−→

D
E
C
O
D
E
R

101010−−−−−−→

Now we may begin to formalize these notions.

� Codewords and Hamming Distance
Let M be the message space and let Mn be defined as in Section 11.4. Then

a code of length n is a nonempty subset C of Mn, and an element of C is called
a codeword.11.5 For example, if M = {0, 1}, the codes are binary. If n = 3, for
instance, and we are dealing only with binary repetition codes, then the code is
the set,

C = {000, 111}.
In general, if |M| = q, then the codes using the message space M are called q-
ary codes. We must place some restrictions on Mn since a completely arbitrary
such set would be unwieldy. Thus, we typically restrict M to be a finite field Fq

for some prime power q = pm, and the codes are therefore vectors in the vector
space Mn.11.6 With this notion in mind, we now need a concept of distance
between the vectors under consideration. This was given by Hamming, see [117]
and [118].

The Hamming distance d(u, v), for two vectors u, v ∈ Mn is defined as
the number of components on which they disagree. For instance, if u =
(1, 0, 1, 0, 1, 0) and v = (1, 1, 1, 0, 1, 0) from our above example, then d(u, v) = 1,
since they disagree on only the second component. Similarly, if u = (3, 4, 2, 1)
and v = (3, 2, 2, 0) are vectors in F

4
5, then d(u, v) = 2 since they differ at the

second and fourth components. Hence, the Hamming distance can be employed
11.5These are often called block codes since there exist codes where the codewords do not have
fixed length.
11.6Such codes are typically called linear codes, whose information rate or code rate is given
by logq(M)/n. Later in this section, we will study linear codes in depth.
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as the number of errors to be corrected. The Hamming distance is a function
on F

n
q that satisfies the following.

� Properties of the Hamming Function

Each of the following holds:

1. Given u, v ∈ F
n
q , d(u, v) = 0 if and only if u = v.

2. For any u, v ∈ F
n
q , d(u, v) = d(v, u).

3. For any u, v, w ∈ F
n
q ,

d(u, v) + d(v, w) ≥ d(u,w),

called the triangle inequality.

If C is a code, then the Hamming distance, d(C), is also defined on C as the
minimum distance between any two codewords. In mathematical terms,

d(C) = min{d(u, v) : u, v ∈ C, with u �= v}.

For error-correcting codes, this is a valuable number since it provides the small-
est number of errors that have to be corrected.

Another fundamental concept in the theory of error detection comes from
the geometric arena.

� Hamming Sphere
A Hamming sphere in F

n
q of radius r centered at the codeword u ∈ F

n
q is the

set of all vectors, denoted by S(u, r) given as follows:

S(u, r) = {v ∈ F
n
q : d(u, v) ≤ r},

which has cardinality given by

|S(u, r)| =
r∑

j=0

(
n

j

)
(q − 1)j .

Now we need to address the issue of decoding. If we receive a message v
sent through a noisy channel, we may decode it to u where u is that value such
that d(u, v) is the smallest possible. This process is called the nearest neighbour
decoding.

To set the stage for the next important result, we need the following defini-
tions. We say that a code C can detect up to s errors provided that changing s+1
components in a codeword can change it into another codeword, but changing s
or fewer components in a codeword cannot alter it to make another codeword.
Also, we say that a code C can correct up to t errors if changes made to at most
t components of a codeword c ∈ C, ensure that the closest codeword remains
c. In other words, if c′ represents a codeword obtained by altering at most t



444 11. Information Theory and Coding

components of c, then d(c, c′) is a minimum. The following is fundamental in
the theory of theory of error-correcting codes.

� Maximal Error-Correction/Detection

1. A code C can detect up to s errors if d(C) ≥ s+ 1.

2. A code C can correct up to t errors if d(C) ≥ 2t+ 1.

A consequence of the above is that nearest neighbour decoding may be used
to detect up to d − 1 errors or to correct up to (d − 1)/2 errors where d is the
minimum distance of a code C. This motivates some standard notation used in
error-correcting codes.

� Notation for Codes: A code C of length n, having M codewords, and
minimum distance d = d(C), is called an (n,M, d)-code. this notation allows us
to formulate more easily the central problems of coding theory.

We also require the following notion that allows us to determine when two
codes are essentially the same.

� Equivalent Codes

Two codes are equivalent if a code can be obtained from the other by a finite
sequence of operations of the types given in 1 and 2 below:

1. Permute the positions of the code;

2. Permute the symbols appearing in a fixed position of all codewords.

Now we provide a matrix theoretic interpretation of the above. Let a code
C be given by the M × n matrix,




c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n

...
...

...
cM,1 cM,2 · · · cM,n


 ,

sometimes called the generator matrix for C, where each row is a codeword.
Then operations of type 1 are merely rearrangements of the columns of the
matrix and operations of type 2 are s (relabelling) of entries within a given
column. For instance, if we have the binary code given by the matrix,




0 1 0 1 1 1
0 0 0 0 1 1
1 0 0 1 1 1
0 0 1 1 1 1
1 0 0 0 1 1


 ,
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then applying the permutation 0 �→ 1 and 1 �→ 0 to column four (an operation
of type 2), then interchange columns one and five (an operation of type 1), we
get 



1 1 0 0 1 0
1 0 0 1 1 0
1 0 0 0 1 1
1 0 1 0 1 0
1 0 0 1 1 1


 .

� Central Coding Theory Goals: An optimal (n,M, d)-code C, is one
with small n, large M , and large d. We require a small length n so that we
may efficiently transmit the code. We would like to have a large M in order to
be able to send a diverse array of messages, and we seek a large d so we can
correct as many errors as possible when they occur. Unfortunately, these aims
are conflicting, so we usually fix one of the values and optimize the other two.
One typical feat is to attempt to minimize d and maximize M for a given length
n. For instance, if we have a q-ary (n,M, d)-code where M is a maximum, we
denote the maximum value by Aq(n, d). Indeed, the extreme cases are easy to
find, namely, Aq(n, 1) = qn and Aq(n, n) = q. In fact, these are special cases of
the next result.

The goals for optimizing the values was given mathematical rigour in [264]
in 1964. This is thus known as the following.

� The Singleton Bound: Let C be a q-ary (n,M, d)-code. Then

M ≤ qn−d+1.

Moreover, if M = qn−d+1, then C is called a maximum distance separable
(MDS) code.

Hamming also developed a bound, given as follows.

� The Hamming Bound: If C is a q-ary (n,M, d)-ocde with d ≥ 2t+ 1,
then

M ≤ qn∑t
j=0

(
n
j

)
(q − 1)j

,

where the value on the right is called the Hamming bound.

� Perfect Codes: An (n,M, d)-code with d = 2t + 1 for which M equals
the Hamming bound is called a perfect code. Another characterization of perfect
codes is that every vector in Fn

q is a distance of no more than t units from exactly
one codeword. In other words, the M spheres of radius t centered on codewords
in a perfect t-error correcting code fills the entirety of F

n
q without overlapping.

For instance, the binary code,

C = {(0, 0, . . . , 0), (1, 1, . . . , 1)},

of length n where n is odd, is a perfect (n, 2, n)-code. Later in this section we will
look at some classes of perfect codes including those discovered by Hamming.
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There are also lower bounds, the following of which was discovered in the
middle of the twentieth century (see [104] and [284]).

� The Gilbert-Varshamov Bound: Given n, d ∈ N with n ≥ d, there
exists a q-ary (n,M, d)-code satisfying,

M ≥ qn∑d−1
j=0

(
n
j

)
(q − 1)j

.

� Linear Codes
An [n, k]-linear code over a field F is a k-dimensional subspace C of Fn. If

the minimum distance d = d(C) is given then we call it an [n, k, d]-linear code.
Note that a a q-ary [n, k, d]-code is also a q-ary (n, qk, d)-code, but not every
(n, qk, d)-code is an [n, k, d]-code.11.7

If Mk×n is a k × n matrix whose rows form a basis for the [n, k]-code, then
Mk×n is called a generator matrix for C. It is precisely this mechanism of being
able to describe the entire code via a basis of the codewords that make linear
codes such a palatable means of error correction/detection.

An example of a binary [8, 5, 1]-code is given by the generating matrix,

G =




1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 0


 .

The value of d = 1 may be achieved via the notion of weight. The weight of a
codeword c is the number of nonzero entries in c. The weight of an entire code
C is the minimum of the weights of the nonzero codewords in C. Thus, the
weight of a given codeword c ∈ C is d(−→0 , c) where −→0 is the zero vector.

A major advantage to linear codes is the ease with which we can encode.
Suppose that G is the generating matrix for an [n, k]-code C over a finite field
Fq. Then a simple encoding rule for c ∈ C is the following:

c �→ cG,

the multiplication of the 1× k vector c by the k × n matrix G. For instance, if
we take the matrix G displayed above and the vector c = (1, 1, 1, 1, 1) ∈ C, then

cG = (1, 1, 1, 1, 1, 1, 1, 1).

Note that a linear q-ary code cannot be defined unless q is a prime power.
This may be considered to a drawback to linear codes. Yet, even this seeming
11.7The reader may review the notion of vector spaces and dimension in Appendix A, espe-
cially Definition A.39 on page 490. It is important for this discussion to recall that a subspace
C of dimension k in F

n
q , satisfies the property that every vector of C can be uniquely expressed

as a linear combination of the basis vectors {v1, v2, . . . , vk} for C, and that C contains exactly
qk vectors. This explains why every q-ary [n, k, d]-code is also a q-ary (n, qk, d)-code.
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disadvantage may be overcome by using a larger message space. For instance,
if we want to look at binary 15-ary codes, we need only go to linear codes over
F

16
2 , and omit all codewords containing some fixed value.

Given that there are many equivalent matrices, we need a canonical choice.
It can be shown that two k × n matrices generate equivalent linear [n, k]-codes
over Fq if and only if one can be obtained from the other by a sequence of the
following operations.

R1. A permutation of the rows.

R2. Multiplication of a row by a nonzero scalar.

R3. Addition of a scalar multiple of one row to another.

C1. A permutation of the columns.

C2. Multiplication of a column by a nonzero scalar.

Furthermore, if G is a generator matrix for an [n, k]-code, then operations
R1–R3 and C1–C2 can transform G into standard form,

[Ik|Mk,n−k] =




1 0 · · · 0 m1,k+1 · · · m1,n

0 1 · · · 0 m2,k+1 · · · m2,n

...
...

...
...

...
0 0 · · · 1 mk,k+1 · · · mk,n


 ,

where Ik is the k × k identity matrix and Mk,n−k is a k × (n − k) matrix.
Therefore, [Ik|Mk,n−k] has the first k columns to provide the codewords and the
remaining n − k columns to add redundancy. Note that the generator matrix
G must have rows that are a basis for a k-dimensional subspace of the space
of all vectors of length n, namely, our linear code C. Hence, every codeword is
uniquely expressible as a linear combination of the rows of G, which must be
linearly independent.

The first k bits are called the information symbols and the last n−k bits are
the check symbols. This means, as the above example shows, that in the encod-
ing, the information symbols appear in the clear. Any code that satisfies this
property is said to be systematic. Moreover, the redundancy in the remaining
n− k columns can be employed to do a parity check in the following fashion.

Given a generating matrix G = [Ik,Mk,n−k], set P = [−M t
k,n−k|In−k], where

M t
k,n−k is the transpose of Mk,n−k. Then P is called a parity-check matrix.

Indeed, any matrix M that, given any c ∈ Fn, satisfies cM t = −→0 if and only if
c ∈ C is called a parity-check matrix for C.11.8 Thus, any errors in transmission
11.8Note that when C is an [n, k]-code over Fq with parity-check matrix P , then d(C) is the
smallest number of columns of P that are linearly dependent. It follows that if every subset
of 2t or fewer columns of P is linearly independent, then C is capable of correcting all errors
of weight up to size t. If q = 2, this implies that when all possible linear combinations of no
more than t columns of P are distinct, then d(C) ≥ 2t + 1, whence C can correct all errors
up to weight t.
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may be easily detected via a check that cP t = −→0 for c ∈ C. For the example of
the binary [8, 5, 1]-code given on the previous page, we have

P =


 1 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0
1 1 0 1 0 0 0 1


 .

We note that for the codeword (1, 1, 1, 1, 1, 1, 1, 1) = cG, we have cGP t = −→0 =
(0, 0, 0). Observe, as well, that the subspace of Fn that forms a zero dot prod-
uct11.9 with all codewords from C in Fn has dimension n− k, and is called the
dual code of C. This space is typically denoted by C⊥, so a parity-check matrix
for C may be defined as a generator matrix for C⊥. In other words, the dual
code of a linear [n, k]-code C with generating matrix G = [Ik|Mk,n−k], is given
by

C⊥ = {v ∈ Fn : v · c = −→0 for all c ∈ C},
which is itself a linear [n, n− k]-code with generating matrix,

P = [−M t
k,n−k|In−k].

In this way, G may be viewed as a parity-check matrix for C⊥.

Remark 11.1 There is some linear algebra at work in the above. If M ∈
Mm×n(F ), then all vectors v such that vM = −→0 is a subspace of Fn, called the
left null space of M . This space is often called the kernel of M . Our linear codes
are constructed via a k-dimensional subspace of Fn, which is manufactured by
selecting k linearly independent vectors and taking their span. This is achieved
by choosing a k×n generating matrix G of rank k with entries in F . The set of
vectors of the form vG where v runs over all vectors in F k provides the desired
subspace. It is a fact from linear algebra that the left null space space of a matrix
M ∈Mm×n(F ) of rank r, has dimension n−r. Since our generating matrix has
rank k, its null space C⊥ has rank n− k. (See the discussion in Appendix A of
matrix-related data, especially pages 494 and 495.) In any case, the mechanism
now exists for checking errors since if cP t �= −→0 , then we know there is an error.
However, the converse need not be true. It may be the case that cP t = −→0 and
there is still an error but the chances are small that this is the case. It has much
higher probability that no errors have occurred than that enough errors occurred
to create a valid codeword from another. Hence, the parity check is taken as a
signal that no errors have arisen.

If a generating matrix G can be transformed into standard form [Ik|Mk,n−k]
employing only row operations R1–R3, then the latter will generate exactly the
same code as the former. However, if C1–C2 are used, then the latter will
generate a code that is equivalent to the former, but not necessarily the same.
Furthermore, [Ik|Mk,n−k] obtained from G is not unique, since permuting the
columns of Mk,n−k creates a generator matrix for an equivalent code.
11.9Recall that a dot product is the pointwise multiplication of two vectors. For instance, if
c = (c1, c2, . . . , cn) ∈ C and x = (x1, x2, . . . , xn), then cx = (c1 · x1, c2 · x2, . . . , cn · xn) is the
dot product, which may be given via the above matrix equations.
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� Linear Encoding: Earlier we stated the ease with which one may encode
data by sending a codeword c ∈ C, an [n, k]-code over Fq, via c �→ cG. To
summarize, the encoding function c �→ cG maps the vector space F

k
q to a k-

dimensional subspace, of F
n
q , namely, the code C. When the generating matrixG

is in standard form [Ik|Mk,n−k], with Mk,n−k = (mi,j), then c = (c1, c2, . . . , ck)
is encoded via

c = cG = (c1, c2, . . . , ck, ck+1, . . . , cn),

where

ck+i =
k∑

j=1

mj,icj for 1 ≤ i ≤ n− k

are the check digits, and the original ci for 1 ≤ i ≤ k are the message digits. In
the example of the [8, 5, 1] binary linear code given above,

c = cG = (c1, c2, c3, c4, c5, c6, c7, c8) = (1, 1, 1, 1, 1, 1, 1, 1),

with n = 8, k = 5,

Mk,n−k = M5,3 =




m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

m4,1 m4,2 m4,3

m5,1 m5,2 m5,3


 =




1 0 1
0 0 1
0 0 0
0 0 1
0 1 0


 ,

c6 =
∑5

j=1mj,1cj ≡ c7 =
∑5

j=1mj,2cj ≡ c8 =
∑5

j=1mj,3cj ≡ 1 (mod 2).

Now we add an illustration for linear codes (see diagram 11.2) that supple-
ments Diagram 11.1.

Linear Code Encoding
Diagram 11.2

M
E
S
S
A
G
E

S
O
U
R
C
E

message−−−−−−−−−−−−→
c = (c1, . . . , ck)

Encoder
c �→ c = cG

codeword−−−−−−−−−−−−→
c = (c1, . . . , cn)

N
O
I
S
Y

C
H
A
N
N
E
L
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Suppose that the above codeword c is sent through the channel and received
as r = (r1, . . . , rn). then we define the error vector to be

e = r− c = (e1, . . . , en).

Thus, when we want to decode, the decoder must determine from r the codeword
c, if an error occurs, which will be the case when ej �= 0 for any j = 1, 2, . . . , n.
However, it turns out that there is a very elegant means for accomplishing this
task as follows. The first thing that we note, as a motivator, is that if P is the
parity check matrix for the code, then cP t = −→0 .

In the following, we need to employ some group theory of a basic kind. The
reader needing a refresher on the concept of cosets and related notions should
consult Appendix A, especially Definition A.37 on page 488. The following
employs the fact that any linear code is an additive subgroup of a suitable F

n
q .

� Syndromes: If P is a parity-check matrix for a linear [n, k]-code C, then
for any x ∈ F

n
q , the 1× (n− k) row vector,

S(x) = xP t,

is called the syndrome of x.
It is a basic fact that S(x) = −→0 if and only if x ∈ C. A pleasant feature

of the syndrome is that it depends solely upon the error pattern and not the
message itself. The receiver, who detects e �= −→0 , will know both r and e, so
will be able to determine c. To see that the syndrome’s dependence is only on
the error pattern, consider the following:

S(r) = rP t = (c + e)P t = cP t + eP t = eP t

since cP t = −→0 .
The syndrome is a valuable piece of information about e, but we can do

better. There is a limitation since for a given S(r) ∈ F
n−k
q , the collection of

solutions eP t = S(r) forms a coset of the code C in F
n
q of the form, for a fixed

value of e, given by
C + e = {c + e : c ∈ C}.

It follows that two vectors are in the same coset if and only if they have the
same syndrome. Hence, there is a one-to-one correspondence between the cosets
and the syndromes.

Here we are viewing Fq as an additive group of q elements and C is a subgroup
of the direct product Fq × · · · × Fq, of which C + e is a coset.11.10 Since the
cardinality of each coset is qk, and there are qn−k cosets of C in total, given
that there are qn−k syndromes, then the receiver has to distinguish among the
qk possibilities for e. We need another concept to simplify the process.

Earlier we spoke about the weight of a binary vector being the number of
nonzero elements appearing in it. If we select a vector of minimum weight in
11.10It is for this reason that linear codes are often called group codes.



11.5. Error-Correcting Codes 451

a given coset, we call this vector a coset leader. The coset leader need not be
unique, in which case we select one at random and call it the coset leader.

It is possible to form an array of vectors from F
n
q arranged as the cosets of

C in the following fashion.

� Slepian Standard Array
The following is an algorithm for setting up a qn−k × qk matrix for a linear

[n, k]-code, called a Slepian standard array. (See [265].)

1. List the codewords of C beginning with the zero vector c1 = −→0 , as the first
row: c1, c2, . . . , ck.

2. Choose any one of the remaining qn − qk vectors of minimum weight, a1 as
the first element of the second row, and let

aj = a1 + cj for j = 2, 3, . . . , qk

be the remaining elements of the second row.

3. Select an element b1 of minimum weight from the remaining qn−2qk vectors
as the first element of the third row, and let

bj = b1 + cj for j = 2, 3, . . . , qk

be the remaining elements of the third row.

4. Continue in the above fashion until all qn−k rows are filled and every vector
of F

n
q appears exactly once in one of those rows.

Example 11.10 Let C be the binary [4, 2]-code with generating matrix,

G =
(

1 0 1 0
0 1 1 1

)
.

Then n = 4, k = 2, qk = 22, qn = 24,

C = {c1, c2, c3, c4} = {(0, 0)G, (0, 1)G, (1, 0)G, (1, 1)G} =

{0000, 0111, 1010, 1101}.
This forms the first row of the Slepian array. The balance are given in the
qn−k × qk = 4× 4 matrix,




0000 0111 1010 1101
0100 0011 1110 1001
0010 0101 1000 1111
0001 0110 1011 1100


 ,

wherein the first column consists of the coset leaders, and the rows represent the
elements in the cosets of C. (Notice that in the third row, 1000 could also have
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qualified as the coset leader. The random choice of 0010 as coset leader shows
that we obtain the same coset in either case since choice of the latter would just
be a permutation of the third-row elements.)

The parity check matrix is

P =
(

1 1 1 0
0 1 0 1

)
,

and since vectors in the same coset have the same syndrome, we may look at
the received vector r, calculate its syndrome S(r) = rP t, then find the position
in the row. Since r = c + a where c is some codeword and a is the coset leader
for the row, then we have a means for decoding r, namely, c = r − a. Hence,
the decoding is the vector sitting at the top of the column in which r sits. For
instance, if r = (1, 0, 1, 1), then S(r) = (1, 1), and this represents the fourth
row, with coset leader a = (0, 0, 0, 1). The value at the top of the column in
which r sits is c = (1, 0, 1, 0). Indeed,

r− a = (1, 0, 1, 1)− (0, 0, 0, 1) = (1, 0, 1, 0) = c.

In fact, since all we use from the array is the coset leader and calculation of
the syndrome of the received vector, then these two columns are all that need
be stored on a computer, for instance, making this an efficient mechanism for
decoding. These two columns make up an array called the syndrome look-up
table, which in our case is given by the following:




Coset Leader Syndrome
(0, 0, 0, 0) (0, 0)
(0, 1, 0, 0) (1, 1)
(0, 0, 1, 0) (1, 0)
(0, 0, 0, 1) (0, 1)


 ,

Now we formalize the decoding illustrated in Example 11.10.

� Syndrome Decoding

The following algorithm for the decoding of a linear [n, k]-code C, needs
far fewer iterations than any nearest neighbour decoding scheme, where one
searches for the nearest codeword to a received vector. In what follows P is
assumed to be the parity-check matrix for C.

1. For a received vector r, calculate the syndrome S(r) = rP t.

2. Find S(r) in the second column of the syndrome look-up table, and find its
coset leader a in the first column.

3. Decode via c = r− a.
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In Example 11.10, if we receive r = (1, 0, 0, 0), then S(r) = (1, 0), which is
in the third row of the second column of the syndrome look-up table, which has
coset leader a = (0, 0, 1, 0). Hence, we decode via

c = r− a = (1, 0, 0, 0)− (0, 0, 1, 0) = (1, 0, 1, 0),

which we see is the entry at the top of the column of the Slepian array in which
r sits.

The general process of syndrome decoding for a linear [n, k]-code C is illus-
trated as follows.

The notation
S(r)↔ a

will denote the decoder’s act of calculating the syndrome S(r) and associating
it with the coset leader a for the row in which it sits from the syndrome look-up
table. The following illustration (Diagram 11.3) complements Diagram 11.2 on
page 449.

Syndrome Decoding
Diagram 11.3

N
O
I
S
Y

C
H
A
N
N
E
L

received vector−−−−−−−−−−−−−→
r = (r1, . . . , rn)

Decoder
S(r)↔ a

decoded word−−−−−−−−−−−−→
r− a =

c = (c1, . . . , cn)

Received
Message

c = (c1, . . . , ck)

Now we turn to a well-known collection of linear codes. These are important
in removing noise, for instance, from long-distance telephone calls. First we need
the notion of single-error-correcting codes, which are codes capable of correcting
all error patterns of weight no bigger than 1. The following are single-error-
correcting codes that are easy to employ for encoding and decoding.

� The Hamming Codes
Although the codes we discuss herein may be defined over any Fq (see page

596), we confine our focus to the binary case for ease of presentation and overall
simplicity of elucidation.
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For an n× (2r−1) matrix, P , whose columns are distinct nonzero vectors in
F

r
2, the code C having P as its parity-check matrix is called a binary Hamming

code, denoted by Ham(r, 2), which has length 2r − 1 and dimension 2r − r − 1.
Since the columns are nonzero and distinct, then the minimum distance d must
be bigger than 2. In fact d = 3 since it is possible to find codewords of weight
3 for r > 1. Hence, Ham(r, 2) for r ≥ 2 is a linear, binary [2r − 1, 2r − r − 1, 3]
single-error-correcting code, which is also a perfect code. The latter follows from
the fact that the Hamming spheres of radius 1 around the codewords exactly
fill F

2r−1
2 without any overlapping. Another such class of distinguished linear,

binary, perfect codes is the collection of repetition codes, which are [n, 1] codes
with generator matrix G = [1, 1, . . . , 1], where n is odd. We will investigate yet
a third such family, called Golay codes, later, and the latter represent the last of
the possible such families, namely, the last of the possible linear, binary, perfect
codes.

Given the above, Ham(r, 2) is a binary (N, 2k, 3)-code (equivalently an
[N, k, 3]-code), where N = 2r − 1, and k = 2r − r − 1, which is a distinguished
class of perfect linear codes.

Example 11.11 First, we observe that the parity check matrix P is given by
column j being the binary representation of j. For instance, if r = 3, then

P =


 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1


 ,

where column 1 is the binary representation of 1, column 2 is the binary rep-
resentation of 2, and so forth. In order to get the generator matrix, we put P
into standard form,

P =


 0 1 1 1 1 0 0

1 0 1 1 0 1 0
1 1 0 1 0 0 1


 = [−M t

k,N−k, IN−k],

where N = 2r− 1 = 7, k = 2r− r− 1 = 4, then we obtain the generating matrix
from it,

G =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 = [Ik,Mk,N−k],

which yields the [7, 4, 3] Hamming code. To see that this is a perfect code, let
t = 1, n = N , k = 2r − r− 1, and q = 2 in the Hamming bound on page 445 to
get

M = 24 = 2k =
2N∑t

j=0

(
N
j

) =
27

7 + 1
= 2N−r−1,

as required.



11.5. Error-Correcting Codes 455

Now suppose that we want to decode the received vector r = (1, 0, 1, 0, 1, 0, 0)
using syndrome decoding. Thus, we calculate S(r) = rP t = (0, 0, 1), which
is the last column of P . Hence, we need only correct the last entry of r to
get the correct codeword c = (1, 0, 1, 0, 1, 0, 1). The reason for this is that the
error vector can have weight at most 1, so if the syndrome is nonzero, then the
correction must be in the position corresponding to the column that the syndrome
represents. This simple decoding method is explained in what follows.

Decoding with Hamming Codes: Decoding with Ham(n, 2) can be done
with ease. Since Ham(r, 2) is a perfect single-error correcting code, the nonzero
coset leaders are the vectors,

rj = (0, 0, . . . , 1, 0, . . . , 0),

where the only nonzero term is a 1 in exactly the jth position for j =
1, 2, . . . , 2r − 1 = N in F

N
2 . Thus, calculating the syndrome via the parity-

check matrix P , we get
S(rj) = rjP

t,

which is exactly the transpose of the jth column of P . Hence, the syndrome
explicitly and directly identifies the error location within the received vector.
Therefore, this allows a special, simpler syndrome decoding than in the general
case, as follows.

Syndrome Decoding of Hamming Codes

1. For a received vector, r, calculate the syndrome S(r) = rP t.

2. If S(r) = −→0 , then r is the correct codeword.

3. If S(r) �= −→0 , then S(r) is the transpose of a unique column of P , the jth
one, say. To get the correct codeword, add 1 to position j of r.

We illustrated the above at the end of Example 11.11. The Hamming codes
are clearly a special case of the general linear codes discussed earlier, since they
can correct only one error. They were discovered by Hamming in 1950 (see
[117]) and by Golay in 1949 (see [105]–[107]). The latter is responsible for one
of the most singular and important codes in the history of error correction.

� Golay Codes

In his 1949 paper, Golay presented a binary, linear, perfect [23, 12, 7]-code,
named the G23-code, that satisfies rather amazing properties. In his search for
a perfect code Golay observed that

3∑
j=0

(
23
j

)
= 211 =

(
23
0

)
+

(
23
1

)
+

(
23
2

)
+

(
23
3

)
= 223−12,
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which told him that there might exist a perfect [23, 12] binary code that had the
potential to correct up to three errors. In 1949, he made the discovery of G23,
which indeed satisfies these properties, and is to this day, the only one known
to be capable of correcting any combination of up to three random errors in a
vector of length 23 (see Footnote 11.8 on page 447). Later, G23 was extended
to what is now known as the G24-code, which is a (nonperfect) [24, 12, 8]-code.
G24 proved to be extremely useful in satellite transmission. In fact during the
years 1979–1981, Voyager I and Voyager II spacecrafts sent back signals from
Jupiter and Saturn that were error-corrected using G24.

It turns out that it is very productive to first define the G24 code and derive
the G23 code from it. Since a linear code may be characterized via its generat-
ing matrix, we provide the G24 generator matrix first. To construct this 12× 24
matrix, we first provide the initial twelve columns that are given by the iden-
tity matrix I12, so it has the form G = [I12|M12×12]. The matrix M12×12 is
constructed as follows. The first row of the matrix is given by

R1 = (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0) = (r1, r2, . . . , r12),

and rows 2 through 11 are given by fixing the first element of this row and cycli-
cally permuting the remaining elements to the right, namely, for j = 2, 3, . . . , 11,

Rj = (1, r12−j+2, r12−j+3, . . . , r12, r2, r3, . . . , r12−j+1),

and row 12 is given by

R12 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Hence, we achieve, G =


1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1




.

Properties of G24

The matrix G is a generator matrix for the G24 linear [24, 12, 7]-code, and
this code satisfies the following properties.

1. G24 is self dual. In other words, G⊥24 = G24. (See page 448.)

2. If c is a codeword of G24, then the weight w(c) satisfies that

w(c) ≡ 0 (mod 4),

and w(c) > 4. (See page 446.)
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The Perfect Golay Code: One can use the G24 Golay code to obtain the
G23-code by merely deleting the last entry of each codeword in G24. Thus, G23 is
a linear [23.12.7]-code, which unlike the G24-code is perfect, which follows from
the Hamming bound on page 445.

There is a mechanism to more naturally introduce the Golay codes, but with
more machinery necessary, namely, cyclic codes, which we will introduce shortly.
For now, we conclude with the comments of a more sophisticated nature.

Advanced Facts Concerning Golay and Related Codes: The following
are features of Golay codes, and others studied thus far, for the reader with some
deeper mathematical background (or the desire to gain it).

1. The automorphism group (see page 600), of G24 is the Mathieu group M24,
one of the so-called sporadic groups, first discovered by Mathieu in the late
nineteenth century. (For general group theory information, see [277].)

2. The G24-code can be employed to define the Leech lattice, which is one of the
most efficient sphere-packing mechanisms known today. It was discovered
in 1964 by John Leech (see [143]), as the unique lattice with the properties
that it is unimodular (namely, it can be generated by the columns of a
distinguished 24×24 matrix with determinant 1); the length of any vector
in the lattice is an even integer; and the shortest length of any vector in
the lattice is 2, meaning that the unit spheres centered at points in the
lattice do not overlap. (For general lattice theory information, see [114].)

3. The words of weight 8 in G24 form a S(5, 8, 24) Steiner system, which is a
24-element set S together with a set, T, of 8-element subsets of S, with
the property that each 5-element subset of S is contained in exactly one
of the subsets in T. One means of constructing this Steiner system is to
form the matrix whose rows are the 212 = 4096 Golay 24-bit codewords.
These rows form a group under addition modulo 2. In addition to the row
consisting of −→0 , there are 759 rows having weight 8; 2576 having weight
12; 759 having weight 16; and one having weight 24. The 759 elements
of weight 8 form the aforementioned set T, called octads. (For a study of
Steiner systems in general, see [59].)

4. There exists the (11, 6) ternary Golay code, which is the only known perfect
nonbinary code. This (11, 6)-code over F3 has minimum distance d = 5
and can correct up to two errors. As with the Golay [23, 12] binary code,
the (11, 6) ternary Golay code can be extended to the (12, 6) ternary Golay
code, and as with the extended G24 code, the (12, 6)-code is also unique.

5. A result proved in the mid-1970s shows that the Hamming and Golay
codes are the only (nontrivial) perfect codes (up to equivalence). (Here
we consider the repetition codes, described on page 454, to be trivial.) In
other words, it is known that the only nontrivial q-ary perfect codes are
those with parameters given by the Golay and Hamming codes and so are
equivalent to one of: (1) the q-ary Hamming codes (see page 596); (2) the
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binary Golay code G23; and (3) the ternary (11, 6) Golay code, described
above. The problem of actually finding all perfect codes having parameters
of the Hamming and Golay codes remains difficult and unsolved. What
has been proved is that if there is a perfect code, then the parameters of
these codes must be the same as one of the Golay, Hamming or repetition
codes, which is a result is due to van Lint [154] and Tietäväinen [278].

Now we turn to a natural and highly important type of code of which the
preceding are examples.

� Cyclic Codes

We will be working over some fixed finite field Fq. An (n, k)-code C is called
cyclic if, whenever

c = (c1, c2, . . . , cn) ∈ C,
so is the cyclic shift,

c′ = (cn, c1, c2, . . . , cn−1),

For instance, the two Golay codes Gj for j = 23, 24 are both cyclic codes.
Moreover, there are always four cyclic (n, k)-codes for any n > 2 over Fq, given
as follows.

Example 11.12 Given n ∈ N, there are always four cyclic codes of length n.
They are: (1) the singleton zero vector of length n, −→0 , having dimension 0;
(2) the collection of constant codewords of length n, c = (c0, c0, . . . , c0), having
dimension 1; (3) any collection of codewords, c = (c1, c2, . . . , cn), that satisfy
the property,

c1 + c2 + · · ·+ cn = 0,

having dimension n− 1; and (4) the entirety of F
n
q , having dimension n. There

are also the two Golay codes Gj for j = 23, 24, as well as the Hamming code
Ham(3, 2), all studied above.

We will now reindex our reference to the codewords in the cyclic codes so
that we look at

c = (c0, c1, . . . , cn−1),

since we wish to associate this vector with the polynomial,

c0 + c1 + · · ·+ cn−1x
n−1.

In general, we have the following situation, for which the reader needs famil-
iarity with the notion of polynomial rings and related phenomena in Appendix
A, especially pages 484–491.

For a fixed n ∈ N, we look at

Rn,q = Fq[x]/(xn − 1), (11.10)
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which are the elements in Fq[x] modulo (xn − 1). Hence, we will always be
considering polynomials of degree no more than n− 1, since any polynomial of
degree n or larger may be divided by xn− 1, and we merely take the remainder
since we are working modulo the latter. (Note that since xn ≡ 1 (mod xn − 1),
then we need only replace the powers of x accordingly, so division in the usual
sense, by xn − 1 is not required.) With this setup, and the notation given in
(11.10), general cyclic codes are described as follows.

Polynomials and Cyclic Codes: Suppose that C is a cyclic code of length
n over Fq. To each codeword c = (c0, c1, . . . , cn−1) ∈ C associate the polyno-
mial,

fc(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

Notice that
xfc(x) = cn−1 + c0x+ c1x2 + · · ·+ cn−2x

n−1

corresponds to a single cyclic shift of the vector,

(c0, c1, . . . , cn−1).

Consequently, multiplying fc(x) by xm corresponds to a cyclic shift through m
positions to the right.

If we let g(x) be the unique monic polynomial of smallest degree from the
set of all such fc, then let C denote C embedded in Rn,q, so

g(x) is called the generating polynomial for C.

(Observe that if the polynomial from this set of smallest degree is not monic,
we can make it so by dividing through by the coefficient of the highest degree
term, which is possible since our coefficients are from a field.)

If we therefore view the embedding C of C in Rn,q via the polynomial iden-
tification, we get the following characterizations.

The Generating polynomial and Criteria for Cyclic Codes in Rn,q

First, we observe that C in Rn,q as above means that it is cyclic code if and
only if it is closed under addition and closed under multiplication from elements
of Rn,q, namely, it is an ideal of Rn,q. This tells us that any cyclic code can
be generated by a polynomial. Hence, the cyclic codes are exactly the ideals of
Rn,q. In other words,

a linear code C is cyclic if and only if C is an ideal in Rn,q.

If C is a cyclic code in Rn,q, then there exists a generating polynomial g(x)
satisfying each of the following.

1. C = 〈g(x)〉, so g(x) is uniquely determined by C, which equals the set of
polynomials of the form f(x)g(x), where deg(f) ≤ n− deg(g)− 1.

2. g(x)
∣∣ (xn − 1).
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3. If xn − 1 = g(x)p(x), then h(x) ∈ Rn,q corresponds to an element of C if
and only if

p(x)h(x) ≡ 0 (mod xn − 1),

In other words, a polynomial is in C if and only if it is a multiple of
the generating polynomial. The polynomial p(x) is called the parity-check
polynomial.

Suppose that the generator polynomial for a cyclic code C has degree t given
by

g(x) = c0 + c1 + · · ·+ ctxt,

then it follows from part 3 above that every element of C in Rn,q is a polynomial
of the form

f(x)g(x) where deg(f(x)) ≤ n− t− 1,

so f(x) may be viewed as a linear combination of the monomials xj for j =
0, 1, . . . , n− t− 1. In other words, the codewords are linear combinations of the
polynomials xjg(x) for j = 0, 1, . . . , n − t − 1. Hence, dim(C) = n − t and a
generator matrix for C is

G =




c0 c1 c2 · · · ct 0 0 · · · 0
0 c0 c1 c2 · · · ct 0 · · · 0
0 0 c0 c1 c2 · · · ct · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · c0 c1 c2 · · · ct



.

There is also a good reason for the polynomial p(x) in part 3 of the preceding
page to be called a parity-check polynomial. Let

p(x) = p0 + p1x+ · · ·+ pn−tx
n−t,

then the t× n matrix given as follows is the parity-check matrix for C,

P =



pn−t pn−t−1 pn−t−2 · · · p0 0 0 · · · 0

0 pn−t pn−t−1 pn−t−2 · · · p0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · pn−t pn−t−1 pn−t−2 · · · p0


 .

Example 11.13 Let g(x) = x + 1 ∈ R3, with q = 2, then t = 1, n = 3, and
c0 = c1 = ct = 1. Thus,

C = {(000), (110), (011), (101)},

and C is a subspace of F
3
2 of dimension n − t = 2 with basis {(110), (011)}.

Viewed as a code in R3,

C = {0, x2 + x, x+ 1, x2 + 1},
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so C is an ideal in R3 of dimension n− t = 2 since

C = 〈g(x)〉.

Also, since

g(x)p(x) = (x+ 1)(x2 + x+ 1) = x3 − 1 (mod 2),

then p(x) = x2+x+1 is the parity-check polynomial for C. Hence, the generator
matrix for C is given by

G =
(

1 1 0
0 1 1

)
,

and the parity-check matrix is given by

P =
(

1 1 1
)
.

Since the discussion preceding the example tells us that the only possible
cyclic codes in R3 are those corresponding to polynomial divisors of x3−1, then
the only other possible binary cyclic codes of length 3 can be those associated
with the polynomials g(x) = 1 corresponding to all of F

3
2; those corresponding

to g(x) = x2 + x + 1, namely, C = {(000), (111)}; and the trivial one for
g(x) = x3 − 1 corresponding to the singleton code C = {(000)} = {−→0 }. Since
there are no other divisors of x3 − 1, this constitutes all possible binary cyclic
codes of length 3.

Although the parity-check matrix allows for detection of errors, correcting
them for general cyclic codes can be quite arduous. The next set of cyclic codes
provide us with more robust decoding, and error-detection features.

� BCH Codes

In 1959, a class of codes was discovered by Hocquenghem [124], as well as
independently in 1960 by Bose and Ray-Chaudhuri [39] and [40]. The codes
were initially named after the latter two authors, but later it was discovered
that Hocquenghem had anticipated them, so the codes were renamed and are
now accepted as BCH codes.

For a description of the following, the reader must be familiar with primitive
roots and the notions surrounding them (see Appendix A, especially pages 480
and 490). First, we need the following.

BCH Bound: Suppose that C is a cyclic [n, k, d]-code over Fq where q = pm

for some prime p and m ∈ N with gcd(p, n) = 1. If C = 〈g(x)〉 and α is a
primitive nth root of unity for which there exist integers r, s such that

g(αr) = g(αr+1) = · · · = g(αr+s) = 0,

then
d ≥ s+ 2.
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The so-called BCH bound leads us into another fact about cyclic codes,
namely, that they can be specified by roots of a generating polynomial consid-
ered in a suitable extension field of Fq. When we stipulate that C = 〈g(x)〉, we
are merely saying that every code polynomial (the elements of C in Rn,q), is a
multiple of g(x) so they are all equal to 0 at the roots of g(x). Looking at it
another way, if β1, β2, . . . , βr are elements of a finite extension of Fq, and mj(x)
is the minimal polynomial of βj over Fq for j = 1, 2, . . . , r, then we may define

g(x) = lcm(m1(x), . . . ,mr(x)).

If n ∈ N such that βn = 1 for all j = 1, 2, . . . , r, then g(x)
∣∣ (xn − 1). Hence, if

C ⊆ F
n
q is the cyclic code with generator polynomial g(x), then f(x) ∈ C if and

only if f(βj) = 0 for all j = 1, 2, . . . , r. An application of the above discussion
is the following.

If C = 〈g(x)〉 is the binary cyclic code of length N = 2r − 1 , where g(x)
is the minimal polynomial over F2 of a primitive element of F2r , then C is
equivalent to Ham(r, 2).

BCH Defined: Let b ≥ 0 be an integer and α ∈ Fqm , a primitive nth root
of unity, wherem = ordn(q). Then a BCH code over Fq of length n and designed
distance d (2 ≤ d ≤ n) is a cyclic code defined by the roots αb, αb+1, . . . , αb+d−2

of the generator polynomial. Hence, if m(j)(x) denotes the minimal polynomial
of αj overFq, then the generator polynomial g(x) of a BCH code is given by

g(x) = lcm(m(b)(x),m(b+1)(x), . . . ,m(b+d−2)(x)),

for some nonnegative integer b. When b = 1, they are called narrow-sense BCH
codes. When n = qm − 1, the BCH code is called primitive. If n = q − 1, then
the BCH code is called a Reed-Solomon code.

It can be shown that indeed a BCH code of designed distance d has minimum
weight at least d. The following illustrates this fact.

Example 11.14 We maintain the notation from the above discussion. Let q =
23, n = 7, m = 3, t = 4, b = 0, s = 2, and d = 4. Then the cyclic [7, 3, 4]-code,
described as follows, illustrates a BCH code. We have the following factorization
over F2:

x7 − 1 = (x− 1)(x3 + x2 + 1)(x3 + x+ 1).

If we set g(x) = x4 + x3 + x2 + 1, and let α be a primitive 7th root of unity,
then the cyclic code,

C = 〈g(x)〉,
may be described as follows. First, we note that F2m = F8 = F2(α) (see page
487). It can be shown that αj for j = 1, 2, 4 are the roots of x3 + x+ 1 = 0 (see
page 599). Since g(1) = g(α) = g(α2) = 0, then the BCH bound tells us that
d ≥ 4. Moreover, if we set m(0)(x) = (x− 1),m(1)(x) = m(2)(x) = x3 + x+ 1,
then

g(x) = lcm(m(0)(x),m(1)(x),m(2)(x)) = lcm(x− 1, x3 + x+ 1),
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and since the only remaining roots of x7 − 1 are αj for j = 3, 5, 6, then these
are the roots of

p(x) = x3 + x2 + 1,

the parity-check polynomial.

We will not discuss BCH decoding since it is quite complicated in the general
case, and simplification to the single error-correcting BCH codes reduces us to
what we have already studied, the reason being that there exists an isomorphism
between such a code and a Hamming code. For a complete and detailed overview
of the general BCH decoding scheme, see [153], for instance. That said, the
special case where n = q − 1 defined above is worth exploring.

� Reed-Solomon Codes
Reed-Solomon codes are a specific kind of BCH code with a vast array of

applications in digital communications including digital television; high-speed
modems; satellite communications; wireless communications; and storage de-
vices such as barcodes, compact disks, DVDs, and the like. These codes excel
at correcting certain types of errors called burst errors.11.11 These are errors
that occur close together, as opposed to randomly. As examples: a burst of
solar energy can introduce errors in satellite communications; a scratch on a
CD can introduce errors in contiguous bits; and electrical interference can be
caused when an electric motor starts near a data-carrying cable. Hence, these
codes are potent and have great efficacy in the aforementioned applications.

If n = q − 1, then Fq contains a primitive nth root of unity, α. In other
words, Fq = Fq(α). Select a natural number d = 2t+ i− 1 < n, where i, t ∈ N,
and set

g(x) = (x− αi)(x− αi+1) · · · (x− α2t+i−1) =
2t∑

j=0

cjx
j ∈ Fq[x]. (11.11)

then the code C = 〈g(x)〉 is a cyclic [n, n−2t, t]-code called a Reed-Solomon code,
which achieves the maximum possible minimum code distance d(C) = 2t + 1
for any linear code with the same encoder input and output block lengths.
Often the Reed-Solomon codes, defined above, are denoted by RS(n, t) over
Fq where q = pm, which is a cyclic code of length n = pm − 1, containing
qn−2t codewords, having dimension n−2t, with generating polynomial given by
(11.11), and minimum distance 2t+ 1.

Example 11.15 Let us see how RS(7, 2) is constructed. In this case, q = 23,
n = 7, t = 2, i = 1, α, a primitive 7th root of unity, and

g(x) =
4∏

j=1

(x− αj) = (x− α)(x− α2)(x− α3)(x− α4) =

11.11For instance, a Reed-Solomon code may correct an entire byte, even if only one bit is
corrupted. This gives these codes a huge advantage over binary codes that might only correct
a bit, when several contiguous bits have been corrupted. We look at other codes, with respect
to burst errors, in Appendix E (see page 549).
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4∑
j=0

cjx
j = x4 + α3x3 + x2 + αx+ α3.

Since the only other root s of x7 − 1 = 0 are 1, α5, α6, then the parity check
polynomial for this code is

p(x) = (x− 1)(x− α5)(x− α6) = x3 + α3x2 + α2x+ α4.

The corresponding generating and parity-check matrices are given by

G =


 α3 α 1 α3 1 0 0

0 α3 α 1 α3 1 0
0 0 α3 α 1 α3 1


 ,

and

P =



α4 α2 α3 1 0 0 0
0 α4 α2 α3 1 0 0
0 0 α4 α2 α3 1 0
0 0 0 α4 α2 α3 1


 .

The dimension of C = 〈g(x)〉 is n−2t = 3. Since C is the embedding of C ⊆ Fq

into F
7
q via c �→ cG, then we may illustrate the relationship as follows (see page

446). C has basis,
{(100), (010), (001)},

in Fq and these correspond to
{1, α, α2}

via the association,
(c0, c1, c2)↔ c0 + c1α+ c2α2.

Notice that, for instance,

(100)G = (α3, α, 1, α3, 1, 0, 0),

(010)G = (0, α3, α, 1, α3, α, 0),

(001)G = (0, 0, α3, α, 1, α3, 1),

which are rows 1–3 of G, respectively, and all codewords of C are linear combi-
nations of these three rows. for instance,

(111)G = (α3, 1, 0, 0, α3, α, 1)

is the sum of all three rows. Indeed, there are qn−2t = 83 = 512 codewords in
C, which are all linear combinations modulo 8 of the three rows of G.

In Example 11.15, the number of n-tuples is 512 out of a total possible
221 = 2, 097, 152, or 1/4096 of them. This illustrates the fact that if q = 2m,
then in the n-tuple space 2nm n-tuples there 2km are codewords in the Reed-
Solomon code, where k = n − 2t. This is a small proportion of the possible
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n-tuples. Hence, when a small proportion, such as this of the total space F
n
q ,

then d(C) can be allowed to be quite large. Indeed, since d(C) = 2t + 1, this
helps explains why the maximum such d(C) is achieved. Moreover, although any
linear [n, k, d]-code has the capacity to correct �(d−1)/2� errors if they lie within
the parity-check symbols (see part 2 of “maximum error-correction/detection”
on page 444), the RS(n,t) codes can correct any (d− 1)/2 = t symbols.

We conclude this section with a look at a generalization of BCH codes, which
were discovered in 1970 (see [112]).

� Goppa Codes
Let G(x) ∈ Fq[x] be a polynomial of degree s ∈ N, and let

(α0, α1, . . . , αn−1) ∈ Fqm , where m,n ∈ N, and G(αj) �= 0 for any j =
0, 1, 2, . . . , n − 1. Then a Goppa code C is defined as follows. An element
c = (c0, c1, . . . , cn−1) ∈ F

n
q is in C if and only if

n−1∑
j=0

cj
x− αj

≡ 0 (mod G(x)),

where G(x) is called the Goppa polynomial, C is a linear [n, k, d]-code over Fq

satisfying the properties:

1. d ≥ s+ 1.

2. k ≥ n−ms.

There exist methods for decoding based upon syndrome calculations, but we
do not cover that here. These methods, as well as the decoding methods for
Reed-Solomon codes go beyond the scope of the text.

Goppa codes have some of the deepest and most outstanding of results in all
of coding theory. Indeed, we may come full circle to the beginning of this chapter
by tying together Goppa codes with the theory that Shannon developed in the
1940s from a modern mathematical viewpoint. In 1948, Andre Weil published a
monograph (see [288]), that provided what is known as the proof of the Riemann
hypothesis for algebraic curves over finite fields, which is well beyond the scope
of this book to describe. Yet, we may speak of it insofar as it is intimately
linked to coding theory, although in those early years nobody suspected any
such connection. Weil’s paper was the genesis of an evolution in the area of
mathematics called algebraic geometry. Then a quarter of a century after the
appearance of Weil’s work and Shannon’s introduction of information theory,
Goppa suggested the connection between algebraic curves and codes, which we
now call Goppa codes. (See [192] for the advanced theory.)

With this, we have already gone well beyond a mere introduction to coding
theory, and its applications. This marks the end of our journey in the main
text. Yet, it is our hope that, for the reader, this is merely the beginning of a
journey to learn much more about the topics in this book, which is but a brief
introduction to such a magnificent edifice of human accomplishment, bringing
intellectual innovation and applications to everyday life.
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Appendix A: Mathematical Facts
Several of the topics in this appendix are taken directly from the author’s

books [167]–[170].

A.1 Sets, Relations, and Functions

Definition A.1 (Sets)
A set is a well defined collection of distinct objects. The terms set, collection,

and aggregate are synonymous. The objects in the set are called elements or
members. We write x ∈ S to denote membership of an element x in a set S,
and if x is not in S, then we write x �∈ S.

Set notation is given by putting elements between two braces. For instance,
the set {1, 2, 3} consists of the elements 1,2, and 3. In general, we may specify
a set by properties. For instance, {x ∈ Z : |x| > 1} specifies those integers
that satisfy the property of being bigger than 1 in absolute value. (Recall that
|x| = x if x ≥ 0 and |x| = −x if x < 0.)

Definition A.2 (Subsets and Equality)
A set T is called a subset of a set S, denoted T ⊆ S, if every element of T is

in S. On the other hand, if there is an element t ∈ T such that t �∈ S, then we
write T �⊆ S, and say that T is not a subset of S. We say that two sets S and
T are equal, denoted T = S provided that a ∈ T if and only if a ∈ S, namely,
both T ⊆ S, and S ⊆ T. If T ⊆ S, but T �= S, then we write T ⊂ S, and call
T a proper subset of S. All sets contain the empty set, denoted by ∅, or {},
consisting of no elements. The set of all subsets of a given set S is called its
power set.

Although the set of all subsets of a given set, namely, the power set, is indeed
a set, the set of all sets is not a set. Also, we may get examples of ∅ by defining
sets with vacuous properties. For instance, {n ∈ N : n < 1} = ∅, since no
natural numbers are less than 1. We can also build sets from existing sets.

Definition A.3 (Complement, Intersection and Union)
The intersection of two sets S and T is the set of all elements common to

both, denoted S ∩ T, namely,

S ∩ T = {a : a ∈ S and a ∈ T}.

The union of the two sets consists of all elements that are in either S or in T,
denoted S ∪ T, namely,

S ∪ T = {a : a ∈ S or a ∈ T}.
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If T ⊆ S, then the complement of T in S, denoted S � T is the set of all those
elements of S that are not in T, namely,

S � T = {s : s ∈ S and s �∈ T}.

Two sets S and T are called disjoint if S ∩ T = ∅.

For instance, if S = {1, 2, 3, 4}, and T = {2, 3, 5}, then S ∩ T = {2, 3}, and
S ∪ T = {1, 2, 3, 4, 5}. Also, S � {2, 3} = {1, 4}.

Definition A.4 (Binary Relations and Operations)
Let a, b be elements of a set S. Then we call (a, b) an ordered pair, where

a is called the first component, and b is called the second component. If T is
another set, then the Cartesian product of S with T, denoted S × T is given by

S × T = {(s, t) : s ∈ S, t ∈ T}.

A relation between S and T is a subset of S × T. A binary relation on S is a
subset R of S × S. For (a, b) ∈ R, we write aRb. A binary operation on S is a
rule that assigns each element of S× S to a unique element of S (see Definition
A.5 below).

Example A.1 If S = {✜,✦,✪,�}, then
R = {(✜,✜), (✪, ✜), (�, ✪)}

is a binary relation on S, and so is
R1 = {(✜,✜), (✜, ✦), (�, �)}.

In Example A.1, ✜ does not have a unique second element. There are certain
distinguished binary operations that do satisfy the property of uniqueness in this
regard.

Definition A.5 (Functions)
A function f (also called a mapping or map) from a set S to a set T is a

relation on S × T, denoted by f : S → T, which assigns each S ∈ S a unique
t ∈ T, called the image of s under f , denoted by f(s) = t. The set S is called
the domain of f and T is called the range of f . If S1 ⊆ S, then the image of
S1 under f , denoted by f(S1), is the set {t ∈ T : t = f(s) for some s ∈ S1}. If
S = S1, then f(S) is called the image of f , denoted by img(S). If T1 ⊆ T, the
inverse image of T1 under f , denoted by f−1(T1), is the set {s ∈ S : f(s) ∈ T1}.

A function f : S → T is called injective (also called one-to-one) if and only
if for each s1, s2 ∈ S, f(s1) = f(s2) implies that s1 = s2. A function f is
surjective (also called onto) if f(S) = T, namely, if for each t ∈ T, t = f(s)
for some s ∈ S. A function f is called bijective (or a bijection) if it is both
injective and surjective. Two sets are said to be in a one-to-one correspondence
if there exists a bijection between them. A composition of functions f and g is
denoted by f ◦ g, meaning the function defined by f ◦ g(s) = f(g(s)).
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Each of the following may be verified for a given function f : S → T.

(a) If S1 ⊆ S, then S1 ⊆ f−1(f(S1)).

(b) If T1 ⊆ T, then f(f−1(T1)) ⊆ T1.

(c) The identity map, 1S : S → S, given by 1S(s) = s for all s ∈ S, is a bijection.

(d) f is injective if and only if there exists a function g : T → S such that
gf = 1S, and g is called a left inverse of f .

(e) f is surjective if and only if there exists a function h : T → S such that
fh = 1T, and h is called a right inverse for f .

(f) If f has both a left inverse g and a right inverse h, then g = h is a unique
map called the two-sided inverse of f .

(g) f is bijective if and only if f has a two-sided inverse.

Notice that in Definition A.4 a binary operation on S is just a function on
S × S.

Definition A.6 (Set Partitions)
Let S be a set , and let S = {S1, S2, . . .} be a set of nonempty subsets of S.

Then S is called a partition of S provided both of the following are satisfied.

(a) Sj ∩ Sk = ∅ for all j �= k.

(b) S = S1 ∪ S2 ∪ · · · ∪ Sj · · ·, namely, s ∈ S if and only if s ∈ Sj for some j.

The number of elements in a set is of central importance.

Definition A.7 (Cardinality)
If S and T are sets, and there exists a one-to-one mapping from S to T, then

the sets are said to have the same cardinality. A set S is finite if either it is
empty or there is an n ∈ N and a bijection f : {1, 2, . . . , n} �→ S. The number of
elements in a finite set S is sometimes called its cardinality, or order, denoted
by |S|. A set is said to be countably infinite if there is a bijection between the
set and N. If there is no such bijection and S is not finite, then the set is said to
be uncountably infinite. Two sets are said to be in one-to-one correspondence
if there exists a bijection between them.

Example A.2 If n ∈ N, then the map f : N �→ 2N via f(n) = 2n is bijective,
so the cardinality of the even natural numbers is the same as that of the natural
numbers themselves.
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A.2 Basic Arithmetic

� Basic Arithmetic

A natural number n is one of the so-called counting numbers consisting of
the set {1, 2, 3, . . .}, denoted by N (where the ellipsis . . . means ad infinitum or
“up to infinity”). The natural numbers, and their negatives, together with 0
is called the set of integers, namely, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, denoted by
Z (where the ellipsis on the left . . ., denotes from negative infinity and on the
right, ad infinitum).

Definition A.8 (Primes)
If p ∈ N (p > 1) and p has no positive divisors, other than itself and 1,

then p is a prime number, or simply a prime. If n ∈ N, n > 1, and n is not a
prime, then n is composite.

Once we have primes as the building bricks of the integers, we have a means
of representing any given integer.

Definition A.9 (Canonical Prime Factorization)
If n ∈ N, n > 1, then the factorization n =

∏N
i=1 p

ai
i , where ai ∈ N, and

2 ≤ p1 < p2 < . . . < pN , is the canonical prime factorization of n.

Moreover, those representations are essentially unique as the following fun-
damental fact shows.

Theorem A.1 (The Fundamental Theorem of Arithmetic) Let n ∈
N, n > 1. If n =

∏r
i=1 pi =

∏s
i=1 qi, where the pi and qi are primes, then

r = s, and the factors are the same if their order is ignored.

Proof. See [167, Theorem 1.4.2, page 44]. ✷

If a, b ∈ Z with b �= 0, then a/b is a rational number. The set of all rational
numbers is denoted by Q. Rational numbers have periodic decimal expansions,
such as 1/3 = 0.3333 . . ., but those numbers, such as

√
2, do not have any re-

peated pattern in their decimal expansions. These numbers are called irrational
numbers. The collection af all the rational and irrational numbers is called the
set of real numbers, denoted by R. The collection of only the positive reals is
denoted by R

+. Also, if x ∈ R and n ∈ N, then xn = x · x · · ·x multiplied n
times is called an exponentiation of x.

� Divisibility. If a, b ∈ Z, then to say that b divides a, denoted by b
∣∣ a,

means that a = bx for a unique x ∈ Z, denoted by x = a/b. Note that the
existence and uniqueness of x implies that b cannot be 0. We also say that a is
divisible by b. If b does not divide a, then we write b � a, and say that a is not
divisible by b. Note that x is not unique for a = b = 0. We say that division by
zero is undefined.
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We may classify integers according to whether they are divisible by 2, as
follows.

Definition A.10 (Parity)
If a ∈ Z, and a/2 ∈ Z, then we say that a is an even integer. In other words,

an even integer is one that is divisible by 2. If a/2 �∈ Z, then we say that a is
an odd integer. In other words, an odd integer is one that is not divisible by 2.
If two integers are either both even or both odd, then they are said to have the
same parity. Otherwise they are said to have opposite or different parity.

Of particular importance for divisibility is the following algorithm.

Theorem A.2 (The Division Algorithm)
If a ∈ N and b ∈ Z, then there exist unique integers q, r ∈ Z with 0 ≤ r < a,

and b = aq + r.

Proof. See page 599. ✷

Now we look more closely at our terminology. To say that b divides a is to
say that a is a multiple of b, and that b is a divisor of a. Also, note that b
dividing a is equivalent to the remainder upon dividing a by b being zero. Any
divisor b �= a of a is called a proper divisor of a. If we have two integers a and
b, then a common divisor of a and b is a natural number n, which is a divisor of
both a and b. There are special kinds of common divisors that are the content
of our initial formal definition, first used in Chapter 1 (see page 75).

Definition A.11 (The Greatest Common Divisor)
If a, b ∈ Z are not both zero, then the greatest common divisor or gcd of a

and b is the natural number g such that g
∣∣ a, g ∣∣ b, and g is divisible by any

common divisor of a and b, denoted by g = gcd(a, b).

We have a special term for the case where the gcd is 1.

Definition A.12 (Relative Primality)
If a, b ∈ Z, and gcd(a, b) = 1, then a and b are said to be relatively prime or

coprime. Sometimes the phrase a is prime to b is also used.

By applying the division algorithm, we get the following according to Euclid.

Theorem A.3 (The Euclidean Algorithm)
Let a, b ∈ Z (a ≥ b > 0), and set a = r−1, b = r0. By repeatedly applying

the division algorithm, we get rj−1 = rjqj+1 + rj+1 with 0 < rj+1 < rj for all
0 ≤ j < n, where n is the least nonnegative number such that rn+1 = 0, in
which case gcd(a, b) = rn.
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Proof. See [167, Theorem 1.3.3, page 37]. ✷

It is easily seen that any common divisor of a, b ∈ Z is also a common divisor
of an expression of the form ax + by for x, y ∈ Z. Such an expression is called
a linear combination of a and b. The greatest common divisor is a special kind
of linear combination, which can be computed using a more general form of
Theorem A.3, as follows.

Theorem A.4 (The Extended Euclidean Algorithm)
Let a, b ∈ N, and let qi for i = 1, 2, . . . , n+ 1 be the quotients obtained from

the application of the Euclidean algorithm to find g = gcd(a, b), where n is the
least nonnegative integer such that rn+1 = 0. If s−1 = 1, s0 = 0, and

si = si−2 − qn−i+2si−1,

for i = 1, 2, . . . , n+ 1, then

g = sn+1a+ snb.

Proof. See [167, Theorem 1.3.4, page 38]. ✷

Corollary A.1 If c
∣∣ a and c

∣∣ b, then c
∣∣ (ax + by) for any x, y ∈ Z. In

particular, the least positive value of ax+ by is g.

We will also need the following notion (see Exercise 4.28 on page 575 in
Appendix G, for instance).

� (The Least Common Multiple)
If a, b ∈ Z, then the smallest natural number, which is a multiple of both a

and b, is the least common multiple of a and b, denoted by lcm(a, b).

� The Sigma Notation

We can write n = 1 + 1 + · · · + 1 for the sum of n copies of 1. We use the
Greek letter upper case sigma to denote summation. For instance,

∑n
i=1 1 = n

would be a simpler way of stating the above. Also, instead of writing the sum
of the first one hundred natural numbers as 1 + 2 + · · · + 100, we may write it
as

∑100
i=1 i. In general, if we have numbers am, am+1, · · · , an (m ≤ n), we may

write their sum as
n∑

i=m

ai = am + am+1 + · · · an,

and by convention,
n∑

i=m

ai = 0 if m > n.

The letter i is the index of summation (and any letter may be used here), n is
the upper limit of summation, m is the lower limit of summation, and ai is a
summand. In the previous example,

∑n
i=1 1, there is no i in the summand since
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we are adding the same number n times. The upper limit of summation tells us
how many times that is. Similarly, we can write,

∑4
j=1 3 = 3 + 3 + 3 + 3 = 12.

This is the simplest application of the sigma notation. Another example is∑10
i=1 i = 55.

Theorem A.5 (Properties of the Summation (Sigma) Notation)
Let h, k,m, n ∈ Z with m ≤ n and h ≤ k. If R is a ring (see page 483),

then:

(a) If ai, c ∈ R, then
∑n
i=m cai = c

∑n
i=m ai.

(b) If ai, bi ∈ R, then
∑n
i=m(ai + bi) =

∑n
i=m ai +

∑n
i=m bi.

(c) If ai, bj ∈ R, then

n∑
i=m

k∑
j=h

aibj =

(
n∑

i=m

ai

)
 k∑
j=h

bj


 =

k∑
j=h

n∑
i=m

aibj =


 k∑
j=h

bj




(
n∑

i=m

ai

)
.

Proof. See page 599. ✷

Of value is the following formula.

Theorem A.6 (A Geometric Formula)
If a, r ∈ R r �= 1, n ∈ N, then

n∑
j=0

arj =
a(rn+1 − 1)

r − 1
.

Proof. See [169, Theorem A.30, page 283]. ✷

A close cousin of the summation symbol is the following.

� The Product Symbol
The multiplicative analogue of the summation notation is the product symbol

denoted by Π, upper case Greek pi. Given am, am+1, . . . , an ∈ R, where R is a
given ring and m ≤ n, their product is denoted by

n∏
i=m

ai = amam+1 · · · an,

and by convention,
∏n
i=m ai = 1 if m > n.

The letter i is the product index, m is the lower product limit, n is the upper
product limit, and ai is a multiplicand or factor.

For instance,
∏7

i=1 i = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5, 040. This is an illustration of
the following concept.
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Definition A.13 (Factorial Notation!)
If n ∈ N, then n! (read “enn factorial”) is the product of the first n natural

numbers. In other words,

n! =
n∏
i=1

i.

We agree, by convention, that 0! = 1. In other words, multiplication of no
factors yields the identity.

The factorial notation gives us the number of distinct ways of arranging
n objects. For instance, if you have 10 books on your bookshelf, then you can
arrange them in 10! = 3,628,800 distinct ways. This motivates the next symbol.

Definition A.14 (Binomial Coefficients)
If k, n ∈ Z with 0 ≤ k ≤ n, then the symbol

(
n
k

)
(read “n choose k”) is given

by (
n

k

)
=

n!
k!(n− k)!

the binomial coefficient.

The binomial coefficient is used in the theory of probability as the number of
different combinations of n objects taken k at a time. For instance, the number
of ways of choosing two objects from a set of five objects, without regard for
order, is

(
5
2

)
= 5!/(2!3!) = 10 distinct ways (see Appendix E).

Proposition A.1 (Properties of the Binomial Coefficient)
If n, k ∈ Z and 0 ≤ k ≤ n, then

(a)
(
n
n−k

)
=

(
n
k

)
. (Symmetry Property)

(b)
(
n+1
k+1

)
=

(
n
k+1

)
+

(
n
k

)
. (Pascal’s Identity)

(c)
∑n
i=0(−1)i

(
n
i

)
= 0. (Null Summation Property)

(d)
∑n
i=0

(
n
i

)
= 2n. (Full Summation Property)

Proof. See [167, Proposition 1.2.1, pages 18 and 19]. ✷

The full summation property given above can be broken down into two more
revealing parts. For this we need a new function as follows.

Definition A.15 (The Greatest Integer Function — The Floor)
If x ∈ R, then there is a unique integer n ∈ Z such that n ≤ x < n + 1.

We say that n is the greatest integer less than or equal to x or the floor of x,
denoted by �x� = n.
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For instance, �−1/2� = −1, �1/2� = 0, �−1.5� = −2, and �
√

2� = 1.
Now we are able to revisit the full summation property and break it apart.

Proposition A.2 If n ∈ N, then

(a)
∑�n/2�
i=0

(
n
2i

)
= 2n−1,

and

(b)
∑�(n+1)/2�
j=1

(
n

2j−1

)
= 2n−1.

Proof. See [167, Proposition 1.2.2, pages 21 and 22]. ✷

Now that we have the notion of the floor function, it is valuable to know
some of its properties.

Theorem A.7 (Properties of the Greatest Integer Function)

(a) x− 1 < �x� ≤ x.

(b) �x+ n� = �x� + n for any n ∈ Z.

(c) �x� + �y� ≤ �x+ y� ≤ �x� + �y� + 1.

(d) �x� + �−x� =
{ 0 if x ∈ Z,

−1 otherwise.

Proof. See [167, Theorem 1.2.4, page 22]. ✷

We not only need the floor function but also the following close cousin. (See
Appendix F on pages 555 and 556, for instance.)

Definition A.16 (The Least Integer Function — The Ceiling)
If x ∈ R, then there is a unique integer m ∈ Z such that x ≤ m < x + 1.

We say that m is the least integer greater than or equal to x or the ceiling of
x, denoted by �x� = n.

Theorem A.8 (Properties of the Least Integer Function)

(a) If x ∈ R, then −�−x� = �x�.

(b) If x ∈ R, then �x� = �x� + 1 if and only if x �∈ Z.

Proof. See [167, Exercises 1.3.1 and 1.3.2, page 40]. ✷

An important fundamental result involving binomial coefficients that we will
need in the text is the following.
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Theorem A.9 (The Binomial Theorem)
Let x, y ∈ R, and n ∈ N. Then

(x+ y)n =
n∑
i=0

(
n

i

)
xn−iyi.

Proof. See [167, Theorem 1.2.3, page 19]. ✷

Note that the full and null summation properties in Proposition A.1 are
just special cases of the binomial theorem (with x = y = 1 and x = 1 = −y,
respectively.)

A.3 Modular Arithmetic

Definition A.17 (Congruences)
If n ∈ N, then we say that a is congruent to b modulo n if n|(a− b), denoted

by
a ≡ b (mod n).

On the other hand, if n � (a− b), then we write

a �≡ b (mod n),

and say that a and b are incongruent modulo n, or that a is not congruent to
b modulo n. The integer n is the modulus of the congruence. The set of all
integers that are congruent to a given integer m modulo n, denoted by m, is
called the congruence class or residue class of m modulo n.A.1

We have that a ≡ b (mod n), if and only if a = b+nk for some k ∈ Z. Thus,
a ≡ b (mod n) if and only if a = b with modulus n. Therefore, it makes sense
to have a canonical representative.

Definition A.18 (Least Residues)
If n ∈ N, a ∈ Z, and a = nq + r where 0 ≤ r < n is the remainder when a

is divided by n, given by Theorem A.2, the Division Algorithm, then r is called
the least (nonnegative) residue of a modulo n, and the set {0, 1, 2, . . . , n− 1} is
called the set of least nonnegative residues modulo n.

Example A.3 There are four congruence classes modulo 4, namely,

0 = {. . . ,−4, 0, 4, . . .},

1 = {. . . ,−3, 1, 5, . . .},
A.1Note that since the notation m does not specify the modulus n, then the bar notation

will always be taken in context.
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2 = {. . . ,−2, 2, 6, . . .},
and

3 = {. . . ,−1, 3, 7, . . .},
since each element of Z is in exactly one of these sets.

In order to motivate the next notion we let r ∈ Z, n ∈ N, and consider the
set {r, r + 1, . . . , r + n − 1}. If r + i ≡ r + j (mod n) for 0 ≤ i ≤ j ≤ n − 1,
then i ≡ j (mod n), so by the same argument as above i = j. This shows that
the r + j for 0 ≤ j ≤ n − 1 are n distinct congruences classes. Moreover, if
m ∈ Z, then m must be in exactly one of the n congruence classes. In other
words, m ≡ r + j (mod n) for some nonnegative integer j < n. This motivates
the following.

Definition A.19 (Complete Residue System)
Suppose that n ∈ N is a modulus. A set of integers

T = {r1, r2, . . . , rn}

such that every integer is congruent to exactly one element of T modulo n is
called a complete residue system modulo n. In other words, for any a ∈ Z,
there exists a unique ri ∈ T such that a ≡ ri (mod n). The set {0, 1, . . . , n− 1}
is a complete residue system, called the least residue system modulo n.

Example A.4 The least residue system modulo 4 is T = {0, 1, 2, 3}. Suppose
that we want to calculate the addition of 3 and 2 in {0, 1, 2, 3}. First, we must
define what we mean by this addition. Let a⊕b = a+ b where + is the ordinary
addition of integers. Since 3 represents all integers of the form 3 + 4k, k ∈ Z,
and 2 represents all integers of the form 2 + 4�, � ∈ Z,

3 + 4k + 2 + 4� = 5 + 4(k + �) = 1 + 4(1 + k + �).

Hence, 3 ⊕ 2 = 1 = 3 + 2. Similarly, we may define a⊗ b = a · b, where · is the
ordinary multiplication of integers. The reader may verify that 2⊗3 = 2 = 2 · 3.
Notice as well that since a− b = a+ (−b) = a⊕−b, then 2 ⊕−3 = 3 = 2 − 3,
for instance.

Example A.4 illustrates the basic operations of addition and multiplication
in {0, 1, . . . , n− 1} for any n ∈ N, namely,

a⊕ b = a+ b and a⊗ b = a · b,

where ⊕ and ⊗ are well defined since + and · are well defined. Since it would be
cumbersome to use the notations of ⊕, and ⊗ in general, we maintain the usage
of + for ⊕ and · for ⊗, where we will understand that the the result of the given
operation is in the appropriate residue class. The following result formalizes
this for us in general.
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Theorem A.10 (Modular Arithmetic)
Let n ∈ N and suppose that for any x ∈ Z, x denotes the congruence class

of x modulo n. Then for any a, b, c ∈ Z the following hold.

(a) a± b = a± b. (Modular additive closure)

(b) ab = ab. (Modular multiplicative closure)

(c) a+ b = b+ a. (Commutativity of modular addition)

(d) (a+ b) + c = a+ (b+ c). (Associativity of modular addition)

(e) 0 + a = a+ 0 = a. (Additive modular identity)

(f) a+ −a = −a+ a = 0. (Additive modular inverse)

(g) ab = ba. (Commutativity of modular multiplication)

(h) (ab)c = a(bc). (Associativity of modular multiplication)

(i) 1 · a = a·1 = a. (Multiplicative modular identity)

(j) a(b+ c) = ab+ ac. (Modular Distributivity)

Proof. See [169, Theorem 2.7, page 60]. ✷

For the notions of rings and fields used in the following, the reader should
consult page 483.

Definition A.20 (The Ring Z/nZ)
For n ∈ N, the set

Z/nZ = {0, 1, 2, . . . , n− 1}

is called the Ring of Integers Modulo n, where m denotes the congruence class
of m modulo n.A.2

There is a multiplicative property of Z that Z/nZ does not have, namely,
the Cancellation Law for Z, which says that if ac = bc where a, b, c ∈ R, and
c �= 0, then a = b. This is not the case for Z/nZ in general. For instance,
2 · 3 ≡ 2 · 8 (mod 10), but 3 �≡ 8 (mod 10). In other words, 2 · 3 = 2 · 8 in Z/10Z,
but 3 �= 8 in Z/10Z. We may ask for conditions on n under which a modular
law for cancellation would hold. In other words, for which n ∈ N does it hold
that:

for any a, b, c ∈ Z/nZ with a �= 0, ab = ac if and only if b = c? (A.1)

It can be shown that (A.1) cannot hold if gcd(a, n) > 1, but if gcd(a, n) = 1,
then there is a solution x ∈ Z to ax ≡ 1 (mod n). This motivates the following.
A.2Occasionally, when the context is clear and no confusion can arise when talking about

elements of Z/nZ, we will eliminate the overline bars.
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Definition A.21 (Modular Multiplicative Inverses)
Suppose that a ∈ Z, and n ∈ N. A multiplicative inverse of the integer a

modulo n is an integer x such that ax ≡ 1 (mod n). If x is the least positive
such inverse, then we call it the least multiplicative inverse of the integer a
modulo n, denoted by x = a−1.

Example A.5 Consider n = 26, a = −7, and suppose that we want to find the
least multiplicative inverse of a modulo n. Since −7 · 11 ≡ 1 (mod 26) and no
smaller natural number than 11 satisfies this congruence, then a−1 = 11 modulo
26.

When n is prime Z/nZ takes on a new character (see page 483).

Theorem A.11 (The Field Z/pZ)
If n ∈ N, then Z/nZ is a field if and only if n is prime.

Proof. See page 599. ✷

We employ the notation F ∗ to denote the multiplicative group of nonzero
elements of a given field F . In particular, when we have a finite field Z/pZ = Fp

of p elements for a given prime p, then (Z/pZ)∗ denotes the multiplicative group
of nonzero elements of Fp. This is tantamount to saying that (Z/pZ)∗ is the
group of units in Fp, and (Z/pZ)∗ is cyclic. Thus, this notation and notion may
be generalized as follows. Let n ∈ N and let the group of units of Z/nZ be
denoted by (Z/nZ)∗ (see page 483). Then

(Z/nZ)∗ = {a ∈ Z/nZ : 0 ≤ a < n and gcd(a, n) = 1}. (A.2)

Numerous times we will need to solve systems of congruences for which the
following result from antiquity is most useful.

Theorem A.12 (Chinese Remainder Theorem)
Let ni ∈ N for natural numbers i ≤ k ∈ N be pairwise relatively prime, set

n =
∏k
j=1 nj and let ri ∈ Z for i ≤ k. Then the system of k simultaneous linear

congruences given by
x ≡ r1 (mod n1),

x ≡ r2 (mod n2),

...

x ≡ rk (mod nk),

has a unique solution modulo n.
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Proof. See [169, Theorem 2.29, page 69]. ✷

The natural generalization of Fermat’s Little Theorem (given below) is the
following, which provides the modulus for the RSA enciphering and deciphering
exponents, for instance.

Definition A.22 (Euler’s φ-Function)
For any n ∈ N the Euler φ-function, also known as Euler’s Totient φ(n) is

defined to be the number of m ∈ N such that m < n and gcd(m,n) = 1.

Theorem A.13 (The Arithmetic of the Totient)
If n =

∏k
j=1 p

aj

j where the pj are distinct primes, then

φ(n) =
k∏
j=1

φ(paj

j ) =
k∏
j=1

(paj

j − p
aj−1
j ) =

k∏
j=1

(pj − 1)paj−1
j = n

∏
pj

∣∣n
(

1 − 1
pj

)
.

Proof. See [169, Theorem 2.22, page 65]. ✷

Theorem A.14 (Euler’s Generalization of Fermat’s Little Theorem)
If n ∈ N and m ∈ Z such that gcd(m,n) = 1, then mφ(n) ≡ 1 (mod n).

Proof. See [167, Theorem 2.3.1, page 90]. ✷

Corollary A.2 (Fermat’s Little Theorem)
If a ∈ Z and p is prime such that gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

Example A.6 Let n ∈ N. Then the cardinality of (Z/nZ)∗ is φ(n). Hence, if
G is a subgroup of (Z/nZ)∗, |G|

∣∣ φ(n).

The calculus of integer orders and related primitive roots is an underlying
fundamental feature of cryptographic problems such as the discrete log problem.

Definition A.23 (Modular Order of an Integer)
Let m ∈ Z, n ∈ N and gcd(m,n) = 1. The order of m modulo n is the

smallest e ∈ N such that me ≡ 1 (mod n), denoted by e = ordn(m), and we say
that m belongs to the exponent e modulo n.

Note that the modular order of an integer given in Definition A.23 is the
same as the element order in the group (Z/nZ)∗.

Proposition A.3 (Divisibility by the Order of an Integer)
If m ∈ Z, d, n ∈ N such that gcd(m,n) = 1, then md ≡ 1 (mod n) if and

only if ordn(m)
∣∣ d. In particular, ordn(m)

∣∣ φ(n).
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Proof. See [169, Proposition 4.3, page 161]. ✷

Definition A.24 (Primitive Roots)
If m ∈ Z, n ∈ N and

ordn(m) = φ(n),

then m is called a primitive root modulo n. In other words, m is a primitive
root if it belongs to the exponent φ(n) modulo n.

Theorem A.15 (Primitive Root Theorem)
An integer n > 1 has a primitive root if and only if n is of the form 2apb

where p is an odd prime, 0 ≤ a ≤ 1, and b ≥ 0 or n = 4. Also, if m has a
primitive root, then it has φ(φ(n)) of them.

Proof. See [169, Theorem 4.10, page 165]. ✷

Definition A.25 (Index)
Let n ∈ N with primitive root m, and b ∈ N with gcd(b, n) = 1. Then for

exactly one of the values e ∈ {0, 1, . . . , φ(n) − 1}, b ≡ me (mod n) holds. This
unique value e modulo φ(n) is the index of b to the base m modulo n, denoted
by indnm(b).

Definition A.25 gives rise to an arithmetic of its own, the index calculus. The
following are some of the properties.

Theorem A.16 (Index Calculus)
If n ∈ N and m is a primitive root modulo n, then for any c, d ∈ Z each of

the following holds.

(1) indnm(cd) ≡ indnm(c) + indnm(d) (mod φ(n)).

(2) For any t ∈ N, indnm(ct) ≡ t · indnm(c) (mod φ(n)).

(3) indnm(1) = 0.

(4) indnm(m) = 1.

(5) indnm(−1) = φ(n)/2 for n > 2.

(6) indnm(n− c) ≡ indnm(−c) ≡ φ(n)/2 + indnm(c) (mod φ(n)).

Proof. See [169, Theorem 4.14, page 166]. ✷

Proposition A.4 (Primitive Roots and Primality)

(1) If m is a primitive root modulo an odd prime p, then for any prime q
dividing (p− 1), m(p−1)/q �≡ 1 (mod p).



A.3. Modular Arithmetic 481

(2) If m ∈ N, p is an odd prime, and m(p−1)/q �≡ 1 (mod p) for all primes
q

∣∣ (p− 1), then m is a primitive root modulo p.

Proof. See page 600. ✷

Of particular importance is the following notion. If n ∈ N and c is an integer,
then c is called a quadratic residue modulo n if there exists an integer x such
that x2 ≡ c (mod n). The least quadratic residue of c modulo n is the reduction
of c modulo n via Definition A.18. If no such integer exists, then c is called a
quadratic nonresidue modulo n. The following symbol makes it easier to study
quadratic residues.

Definition A.26 (Legendre’s Symbol)
If c ∈ Z and p > 2 is prime, then

(
c

p

)
=




0 if p
∣∣ c,

1 if c is a quadratic residue modulo p,
−1 otherwise,

and ( cp ) is called the Legendre symbol of c with respect to p.

Example A.7 Let p be an odd prime. Then

if c(p−1)/2 ≡ 1 (mod p), then
(
c

p

)
= 1,

and

if c(p−1)/2 ≡ −1 (mod p), then
(
c

p

)
= −1.

This is called Euler’s Criterion for quadratic residuacity.

Theorem A.17 (Properties of the Legendre Symbol)
If p > 2 is prime and b, c ∈ Z, then

(1)
(
c

p

)
≡ c(p−1)/2 (mod p).

(2)
(
b

p

) (
c

p

)
=

(
bc

p

)
.

(3)
(
b

p

)
=

(
c

p

)
, provided b ≡ c (mod p).

Proof. See [169, Theorem 4.28, page 171]. ✷

Of central importance in the study of the Legendre symbol is the next major
result.
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Theorem A.18 (The Quadratic Reciprocity Law)
If p �= q are odd primes, then(

p

q

) (
q

p

)
= (−1)

p−1
2 ·

q−1
2 .

Equivalently,(
q

p

)
= −

(
p

q

)
if p ≡ q ≡ 3 (mod 4), and

(
q

p

)
=

(
p

q

)
otherwise.

Proof. See [169, Theorem 4.36, pages 173 and 174]. ✷

The following generalization of the Legendre symbol will be needed to discuss
certain attacks on RSA for instance, (see page 210).

Definition A.27 (The Jacobi Symbol)
Let n > 1 be an odd natural number with n =

∏k

j=1 p
ej

j where ej ∈ N and the
pj are distinct primes. Then the Jacobi symbol of a with respect to n is given
by (a

n

)
=

k∏
j=1

(
a

pj

)ej

,

for any a ∈ Z, where the symbols on the right are Legendre symbols.

The Jacobi symbol satisfies the following properties.

Theorem A.19 (Properties of the Jacobi Symbol)
Let m,n ∈ N, with n odd, and a, b ∈ Z. Then

(1)
(
ab

n

)
=

(a
n

) (
b

n

)
.

(2)
(a
n

)
=

(
b

n

)
if a ≡ b (mod n).

(3) If m is odd, then
( a

mn

)
=

( a

m

) (a
n

)
.

(4)
(−1

n

)
= (−1)(n−1)/2.

(5)
(

2
n

)
= (−1)(n

2−1)/8.

(6) If gcd(a, n) = 1 where a ∈ N is odd, then(a
n

) (n
a

)
= (−1)

a−1
2 ·

n−1
2 ,

which is the quadratic reciprocity law for the Jacobi symbol.

Proof. See [169, Theorem 4.40, pages 175 and 176]. ✷
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A.4 Groups, Fields, Modules, and Rings

Below is listed a set of axioms. Depending on which axioms are satisfied,
we are able to determine the structure of the mathematical object we wish to
define. After the listing, we describe the various types of such objects. In what
follows, S denotes a set.
(a) For all α, β ∈ S, α + β = β + α. (Commutativity: addition)

(b) For all α, β, γ ∈ S, (α + β) + γ = α + (β + γ). (Associativity: addition)

(c) There exists a unique z ∈ S such that z + α = α + z = α. (Additive
Identity) (When no confusion can arise, we use the symbol 0 here for the
additive identity z, since it mimics the ordinary zero of the integers.)

(d) To each α ∈ S, there exists a α(0) ∈ S such that α + α(0) = α(0) + α =
z. (Additive Inverse)

(e) For all α, β ∈ S, αβ = βα. (Commutativity: multiplication)

(f) For all α, β, γ ∈ S, (αβ)γ = α(βγ). (Associativity: multiplication)

(g) For each α ∈ S, there exists a unique i ∈ S such that iα = αi = α.
(Multiplicative identity) (Here, as with the additive identity above, we can
use the symbol 1 in place of the multiplicative identity i, when no confusion
will arise from so doing, since i mimics the function of the multiplicative
identity of the integers.)

(h) For all α, β, γ ∈ S, α(β + γ) = αβ + αγ. (Distributivity)

(i) For all α, β ∈ S, if αβ = z, then α = z or β = z. (No zero divisors)

(j) For any α ∈ T, with α �= z there exists an element denoted α−1 such that
αα−1 = i = α−1α.

Any set which satisfies (a)–(d) is an additive abelian group. Any set that
satisfies (a)–(d), (f), and (h) is a ring. If the ring also satisfies (e), then it
is a commutative ring. If a commutative ring also satisfies (g), then it is a
commutative ring with identity. If a ring also satisfies (i), then it is a ring with
no zero divisors. A commutative ring with identity and no zero divisors is an
integral domain, namely, those sets that satisfy all of (a)–(i). If a set satisfies
all of (a)–(j), it is a field. If a set satisfies all of (a)–(j), except (e), then it is a
skew field or division ring.

We need the following notion below. A unit or invertible element u in a
commutative ring with identity R is an element for which there exists a multi-
plicative inverse. In other words, an element u ∈ R is a unit if there exists an
element u−1 ∈ R such that uu−1 = 1R.

The reader should note that the abstract notion of a group is any nonempty
set satisfying (b)–(d) of above. Moreover, the operation can be any binary
operation (see Definition A.4). Of particular interest in this text is the following
notion.
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Definition A.28 (Permutation Groups)
The set of all permutations on the set {1, 2, . . . , n} is a group Sn under

composition, with cardinality |Sn| = n!, called the permutation group on n
symbols.

Another notion that will help the reader understand some more advanced
concepts is the following.

Definition A.29 (Modules)
Suppose that G is an additive abelian group, and that R is a commutative

ring with identity i that satisfy each of the following axioms:

(a) For each r ∈ R and g, h ∈ G, r(g + h) = (rg) + (rh).

(b) For each r, s ∈ R and g ∈ G, (r + s)g = (rg) + (sg).

(c) For each r, s ∈ R and g ∈ G, r(sg) = (rs)g.

(d) For each g ∈ G, ig = g.

Then G is a (two-sided) module over R, or for our purposes, simply an R-
module.

Definition A.30 (Algebras)
If R is a commutative ring with identity, then an R-algebra is a ring A such

that

(a) A is an R-module.

(b) r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ A.

Any R-algebra that is (as a ring) a division ring is called a division algebra.
An algebra over a field K is called a finite dimensional algebra over K.

The following notion will be needed in what follows.

Definition A.31 (Characteristic of Rings)
The characteristic of a ring R is the smallest n ∈ N (if there is one) such

that n · r = 0 for all r ∈ R. If there is no such n, then R is said to have
characteristic 0.

✦ Polynomials and Polynomial Rings
If R is a ring, then a polynomial f(x) in an indeterminant x with coefficients

in R is an infinite formal sum,

f(x) =
∞∑
j=0

ajx
j = a0 + a1x+ · · · + anx

n + · · · ,
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where the coefficients aj are in R for j ≥ 0 and aj = 0 for all but a finite
number of those values of j. The set of all such polynomials is denoted by R[x].
If an �= 0, and aj = 0 for j > n, then an is called the leading coefficient of f(x).
If the leading coefficient an = 1R, in the case where R is a commutative ring
with identity 1R, then f(x) is said to be monic.

We may add two polynomials from R[x], f(x) =
∑∞
j=0 ajx

j and g(x) =∑∞
j=0 bjx

j , by

f(x) + g(x) =
∞∑
j=0

(aj + bj)xj ∈ R[x],

and multiply them by

f(x)g(x) =
∞∑
j=0

cjx
j ,

where

cj =
j∑
i=0

aibj−i.

Also, f(x) = g(x) if and only if aj = bj for all j = 0, 1, . . . . Under the above
operations R[x] is a ring, called the polynomial ring over R in the indeterminant
x. Furthermore, if R is commutative, then so is R[x], and if R has identity 1R,
then 1R is the identity for R[x]. Notice that with these conventions, we may
write f(x) =

∑n
j=0 ajx

j , for some n ∈ N, where an is the leading coefficient
since we have tacitly agreed to “ignore” zero terms.

If α ∈ R, we write f(α) to represent the element
∑n
j=0 ajα

j ∈ R, called the
substitution of α for x. When f(α) = 0, then α is called a root of f(x). The
substitution gives rise to a mapping

f : R �→ R given by f : α �→ f(α),

which is determined by f(x). Thus, f is called a polynomial function over R.

Definition A.32 (Degrees of Polynomials) If f(x) ∈ R[x], with f(x) =∑d
j=0 ajx

j, and ad �= 0, then d ≥ 0 is called the degree of f(x) over R, denoted
by degR(f). If no such d exists, we write degR(f) = −∞, in which case f(x)
is the zero polynomial in R[x]. If F is a field of characteristic zero, then

deg
Q
(f) = degF (f)

for any f(x) ∈ Q[x]. If F has characteristic p, and f(x) ∈ Fp[x], then

degFp
(f) = degF (f).

In either case, we write deg(f) for degF (f), without loss of generality, and call
this the degree of f(x).

With respect to roots of polynomials, the following is important.
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Definition A.33 (Discriminant of Polynomials)
Let f(x) = a

∏n

j=1(x−αj) ∈ F [x], deg(f) = n > 1, a ∈ F a field in C, where
αj ∈ C are all the roots of f(x) = 0 for j = 1, 2, . . . , n. Then the discriminant
of f is given by

disc(f) = a2n−2
∏

1≤i<j≤n

(αj − αi)2.

From Definition A.33, we see that f has a multiple root in C (namely, for
some i �= j we have αi = αj , also called a repeated root) if and only if disc(f) = 0.

Definition A.34 (Division of Polynomials)
We say that a polynomial g(x) ∈ R[x] divides f(x) ∈ R[x], if there exists

an h(x) ∈ R[x] such that f(x) = g(x)h(x). We also say that g(x) is a factor of
f(x).

Definition A.35 Irreducible Polynomials over Rings
A polynomial f(x) ∈ R[x] is called irreducible (over R), if f(x) is not a unit

in R and any factorization f(x) = g(x)h(x), with g(x), h(x) ∈ R[x] satisfies the
property that one of g(x) or h(x) is in R, called a constant polynomial. In other
words, f(x) cannot be the product of two nonconstant polynomials. If f(x) is
not irreducible, then it is said to be reducible.

Remark A.1 Note that it is possible that a reducible polynomial f(x) could be
a product of two polynomials of the same degree as that of f . For instance,

f(x) = (1 − x) = (2x+ 1)(3x+ 1) in R = Z/6Z.

The following will be needed in our discussions on secret sharing in Section
5.5, for instance.

Theorem A.20 (The Lagrange Interpolation Formula) Let F be a field,
and let aj for j = 0, 1, 2, . . . , n be distinct elements of F . If cj for j =
0, 1, 2, . . . , n are any elements of F , then

f(x) =
n∑
j=0

(x− a0) · · · (x− aj−1)(x− aj+1) · · · (x− an)
(aj − a0) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an)

cj

is the unique polynomial in F [x] such that f(aj) = cj for all j = 0, 1, . . . , n.
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Now we turn to some facts about fields themselves. For the following exam-
ple, recall that a finite field is a field with a finite number of elements n ∈ N,
denoted by Fn. In general, if K is a finite field, then K = Fpm for some prime
p and m ∈ N, also called Galois fields. The field Fp is called the prime subfield
of K. In general, a prime subfield is a field having no proper subfields, so Q is
the prime subfield of any field of characteristic 0 and Z/pZ = Fp is the prime
field of any field K = Fpm . Also, we have the following result.

Theorem A.21 (Multiplicative Subgroups of Fields)
If F is any field and F ∗ is a finite subgroup of the multiplicative subgroup

of nonzero elements of F , then F ∗ is cyclic.A.3 In particular, if F = Fpn is a
finite field, then F ∗ is a finite cyclic group, and a generator of F ∗ is called a
primitive element of F .

It also follows that if p is prime and m ∈ N, then there exists a field with pm

elements that is unique up to isomorphism (see [168, Corollary C.19, page 398],
for instance). Related to this is the following notion, which we will need, for
instance, in Chapter 11 when we discuss coding theory. For m ∈ N, a primitive
mth root of unity is a complex number α such that αm = 1, but αj �= 1 for all
natural numbers j < m. Primitive roots play a vital role in the proofs of results
involving field extensions of various types, especially finite. For instance, it may
be shown that Fpm = Fp(α) where α is a primitive (pm − 1)th root of unity.
(This is related to Galois theory; see [168, Appendix C, pages 393–401] for an
overview of this elegant theory.)

✦ Action on Rings

Definition A.36 (Morphisms of Rings)
If R and S are two rings and f : R → S is a function such that f(ab) =

f(a)f(b), and f(a + b) = f(a) + f(b) for all a, b ∈ R, then f is called a ring
homomorphism. If, in addition, f : R → S is an injection as a map of sets, then
f is called a ring monomorphism. If a ring homomorphism f is a surjection as
a map of sets, then f is called a ring epimorphism. If a ring homomorphism f is
a bijection as a map of sets, then f is called a ring isomorphism, and R is said
to be isomorphic to S, denoted by R ∼= S. Lastly, ker(f) = {s ∈ S : f(s) = 0}
is called the kernel of f . Also, f is injective if and only if ker(f) = {0}.

There is a fundamental result that we will need in the text. In order to
describe it, we need the following notion.

A.3Recall that a multiplicative abelian group is cyclic whenever the group generated by some
g ∈ G coincides with G. Note that any group of prime order is cyclic and the product of two
cyclic groups of relatively prime order is also a cyclic group. Also, if S is a nonempty subset
of a group G, then the intersection of all subgroups of G containing S is called the subgroup
generated by S.
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Definition A.37 (Ideals, Cosets, and Quotient Rings) An ideal I in a
commutative ring R with identity is a subring of R satisfying the additional
property that rI ⊆ I for all r ∈ R. If I is an ideal in R then a coset of I
in R is a set of the form r + I = {r + α : α ∈ I} where r ∈ R. The set
R/I = {r + I : r ∈ R} becomes a ring under multiplication and addition of
cosets given by

(r + I)(s+ I) = rs+ I, and (r + I) + (s+ I) = (r + s) + I

for any r, s ∈ R (and this can be shown to be independent of the representatives
r and s). R/I is called the quotient ring of R by I, or the factor ring of R by
I, or the residue class ring modulo I. The cosets are called the residue classes
modulo I. A mapping,

f : R �→ R/I,

which takes elements of R to their coset representatives in R/I is called the
natural map of R to R/I, and it is easily seen to be an epimorphism. The
cardinality of R/I is denoted by |R : I|.

Example A.8 Consider the ring of integers modulo n ∈ N, Z/nZ introduced
in Definition A.20. Then nZ is an ideal in Z, and the quotient ring is the residue
class ring modulo n.

Remark A.2 Since rings are also groups, then the above concept of cosets and
quotients specializes to groups. In particular, we have the following. Note that
an index of a subgroup H in a group G can be defined similarly to the above
situation for rings as follows. The index of H in G, denoted by |G : H|, is the
cardinality of the set of distinct right (respectively, left) cosets of H in G. Our
principal interest is when this cardinality is finite (so this allows us to access
the definition of cardinality given earlier). Then Lagrange’s theorem for groups
says that

|G| = |G : H| · |H|,
so if G is a finite group, then |H|

∣∣ |G|. In particular, a finite abelian group G
has subgroups of all orders dividing |G|.

Now we are in a position to state the important result for rings. The reader
unfamiliar with the notation “img” of a function should consult Definition A.5
for the description.

Theorem A.22 (Fundamental Isomorphism Theorem for Rings)
If R and S are commutative rings with identity, and

φ : R → S
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is a homomorphism of rings, then

R

ker(φ)
∼= img(φ).

Example A.9 If Fq is a finite field where q = pn (p prime) and f(x) ∈ Fp[x] is
an irreducible, monic polynomial of degree n (see page 484), then

Fq
∼= Fp[x]

(f(x))
.

The situation in Example A.9 is related to the following definition and the-
orem.

Definition A.38 (Maximal and Proper Ideals)
Let R be a commutative ring with identity. An ideal I �= R is called maximal

if whenever I ⊆ J , where J is an ideal in R, then I = J or I = R. (An ideal
I �= R is called a proper ideal.)

Theorem A.23 (Rings Modulo Maximal Ideals).
If R is a commutative ring with identity, then M is a maximal ideal in R if

and only if R/M is a field.

Example A.10 If F is a field and r ∈ F is a fixed nonzero element, then

I = {f(x) ∈ F [x] : f(r) = 0}

is a maximal ideal and F ∼= F [x]/I.

Another aspect of rings that we will need in the text is the following. If
S = {Rj : j = 1, 2, . . . , n} is a set of rings, then let R be the set of n-tuples
(r1, r2, . . . , rn) with rj ∈ Rj for j = 1, 2, . . . n, with the zero element of R being
the n-tuple, (0, 0, . . . , 0). Define addition in R by

(r1, r2, . . . , rn) + (r′1, r
′
2, . . . , r

′
n) = (r1 + r′1, r2 + r′2, . . . , rn + r′n),

for all rj , r′j ∈ Rj with j = 1, 2, . . . , n, and multiplication by

(r1, r2, . . . , rn)(r′1, r
′
2, . . . , r

′
n) = (r1r′1, r2r

′
2, . . . , rnr

′
n).

This defines a structure on R called the direct sum of the rings Rj , j =
1, 2, . . . , n, denoted by

⊕nj=1Rj = R1 ⊕ · · · ⊕Rn, (A.3)
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which is easily seen to be a ring. Similarly, when the Rj are groups, then this
is a direct sum of groups, which is again a group.

We conclude this section with some more comments on Example A.9, since
we will need these ideas, particularly in Chapter 11 when we discuss error-
correcting codes.

If α is a root of f(x) such that

Fp(α) ∼= Fq
∼= Fp[x]

(f(x))
,

then f(x) is uniquely characterized by the conditions that f(α) = 0 and g(α) = 0
for some g(x) ∈ Fp[x] if and only if f(x) divides g(x). In this case, f is called the
minimal polynomial of α over Fp, and is assumed to be monic. In particular,
a polynomial is called primitive of degree n ∈ N over Fq if it is a minimal
polynomial over Fq of a primitive element of Fqn .

A.5 Vector Spaces

A vector space consists of an additive abelian group V and a field F together
with an operation called scalar multiplication of each element of V by each
element of F on the left, such that for each r, s ∈ F and each α, β ∈ V the
following conditions are satisfied:
1. rα ∈ V .

2. r(sα) = (rs)α.

3. (r + s)α = (rα) + (sα).

4. r(α + β) = (rα) + (rβ).

5. 1Fα = α.

The set of elements of V are called vectors and the elements of F are called
scalars. The generally accepted abuse of language is to say that V is a vector
space over F . If V1 is a subset of a vector space V that is a vector space in its
own right, then V1 is called a subspace of V .

Definition A.39 (Bases, Dependence, and Finite Generation)
If S is a subset of a vector space V , then the intersection of all subspaces of

V containing S is called the subspace generated by S, or spanned by S. If there
is a finite set S, and S generates V , then V is said to be finitely generated. If
S = ∅, then S generates the zero vector space. If S = {m}, a singleton set, then
the subspace generated by S is said to be the cyclic subspace generated by m.

A subset S of a vector space V is said to be linearly independent provided
that for distinct s1, s2, . . . , sn ∈ S, and rj ∈ F for j = 1, 2, . . . , n,

n∑
j=1

rjsj = 0 implies that rj = 0 for j = 1, 2, . . . , n.
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If S is not linearly independent, then it is called linearly dependent. A linearly
independent subset of a vector space that spans V is called a basis for V . The
number of elements in a basis is called the dimension of V . A hyperplane H is
an (n− 1)-dimensional subspace of an n-dimensional vector space V .

Example A.11 For a given prime p, m,n ∈ N, the finite field Fpn is an n-
dimensional vector space over Fpm with pmn elements.

A.6 Basic Matrix Theory

If m,n ∈ N, then an m× n matrix (read “m by n matrix”) is a rectangular
array of entries with m rows and n columns. For simplicity, we will assume that
the entries come from a field F . If A is such a matrix, and ai,j denotes the entry
in the ith row and jth column, then

A = (ai,j) =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
am,1 am,2 · · · am,n


 .

Two m × n matrices A = (ai,j), and B = (bi,j) are equal if and only if
ai,j = bi,j for all i and j. The matrix (aj,i) is called the transpose of A, denoted
by

At = (aj,i).

Addition of two m× n matrices A and B is done in the natural way.

A+B = (ai,j) + (bi,j) = (ai,j + bi,j),

and if r ∈ F , then rA = r(ai,j) = (rai,j), called scalar multiplication.
Matrix products are defined by the following.
If A = (ai,j) is an m× n matrix and B = (bj,k) is an n× r matrix, then the

product of A and B is defined as the m× r matrix:

AB = (ai,j)(bj,k) = (ci,k),

where

ci,k =
n∑
�=1

ai,�b�,k.

Multiplication, if defined, is associative, and distributive over addition. If m =
n, then

In =




1F 0 · · · 0
0 1F · · · 0
...

...
...

...
0 0 · · · 1F
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is called the n× n identity matrix, where 1F is the identity of F .
Another important aspect of matrices that we will need throughout the text

is motivated by the following. Consider the 2 × 2 matrix with entries from F :

A =
(

a b
c d

)
,

then ad− bc is called the determinant of A, denoted by det(A). More generally,
we may define the determinant of any n×n matrix with entries from F for any
n ∈ N. The determinant of any r ∈ F is just det(r) = r. Thus, we have the
definitions for n = 1, 2, and we may now give the general definition inductively.
The definition of the determinant of a 3 × 3 matrix,

A =


 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3




is defined in terms of the above definition of the determinant of a 2× 2 matrix,
namely, det(A) is given by

a1,1 det
(

a2,2 a2,3

a3,2 a3,3

)
− a1,2 det

(
a2,1 a2,3

a3,1 a3,3

)
+ a1,3 det

(
a2,1 a2,2

a3,1 a3,2

)
, .

Therefore, we may inductively define the determinant of any n×n matrix in
this fashion. Assume that we have defined the determinant of an n× n matrix.
Then we define the determinant of an (n + 1) × (n + 1) matrix A = (ai,j) as
follows. First, we let Ai,j denote the n× n matrix obtained from A by deleting
the ith row and jth column. Then we define the minor of Ai,j at position (i, j)
to be det(Ai,j). The cofactor of Ai,j is defined to be

cof(Ai,j) = (−1)i+j det(Ai,j).

We may now define the determinant of A by

det(A) = ai,1cof(Ai,1) + ai,2cof(Ai,2) + · · · + ai,n+1cof(Ai,n+1).

This is called the expansion of a determinant by cofactors along the ith row of
A. Similarly, we may expand along a column of A.

det(A) = a1,jcof(A1,j) + a2,jcof(A2,j) + · · · + an+1,jcof(An+1,j),

called the cofactor expansion along the jth column of A. Both expansions can
be shown to be equal. Hence, a determinant may be viewed as a function that
assigns a real number to an n × n matrix, and the above gives a method for
finding that number.

If A is an n× n matrix with entries from F , then A is said to be invertible,
or nonsingular if there is a unique matrix denoted by A−1 such that

AA−1 = In = A−1A.
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Here are some properties of invertible matrices.

Theorem A.24 (Properties of Invertible Matrices)
Let R be a commutative ring with identity, n ∈ N, and A invertible in

Mn×n(R). Then each of the following holds.

(a) (A−1)−1 = A.

(b) (At)−1 = (A−1)t, where “t” denotes the transpose.

(c) (AB)−1 = B−1A−1.

In order to provide a formula for the inverse of a given matrix, we need the
following concept.

Definition A.40 (Adjoint)
Let R be a commutative ring with identity. If A = (ai,j) ∈ Mn×n(R), then

the matrix Aa = (bi,j) given by

bi,j = (−1)i+j det(Aj,i) = cof(Aj,i) =
[
(−1)i+j det(Ai,j)

]t
is called the adjoint of A.

Some properties of adjoints related to inverses, including a formula for the
inverse, are as follows.

Theorem A.25 (Properties of Adjoints)
If R is a commutative ring with identity and A ∈ Mn×n(R), then each of

the following holds.

(a) AAa = det(A)In = AaA.

(b) A is invertible in Mn×n(R) if and only if det(A) is a unit in R, in which
case A−1 = Aa/det(A).

For instance, we will need the following in Example 3.2 on page 112.

Example A.12 If n = 2, then the inverse of a nonsingular matrix,

A =
(

a b
c d

)
,

is given by

A−1 =

(
d

det(A)
−b

det(A)
−c

det(A)
a

det(A)

)
,
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We will need the following in the text, for example, when we talk about
secret-sharing schemes on page 215.

Theorem A.26 (Cramer’s Rule)
Let A = (ai,j) be the coefficient matrix of the following system of n linear

equations in n unknowns:

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
...

...
...

...

an,1x1 + an,2x2 + · · · + an,nxn = bn,

over a field F . If det(A) �= 0, then the system has a solution given by

xj =
1

det(A)

(
n∑
i=1

(−1)i+jbi det(Ai,j)

)
, (1 ≤ j ≤ n).

Of particular importance is a special matrix called the Vandermonde matrix,
of order t > 1, which is given as follows:

A =




1 x1 · · · xt−1
1

1 x2 · · · xt−1
2

...
...

...
...

1 xt · · · xt−1
t


 ,

where
det(A) =

∏
1≤i<k≤t

(xk − xi)

is the Vandermonde determinant.
A notion that uses vector spaces and matrix theory is the following, which

we will use in Appendix C, for instance.

� Gaussian Elimination

The term Gaussian elimination refers to an efficient algorithm for finding
linear dependency relations among vectors in a vector space over a suitable field.
Suppose that we have vectors vj = (v1,j , v2,j , . . . , vn,j) for j = 1, 2, . . . ,m over
a field F . We seek field elements c1, c2, . . . , cm ∈ F such that

m∑
i=j

cjvj = −→0 , (A.4)
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where cjvj = (cjv1,j , cjv2,j , . . . , cjvn,j), and −→0 = (0, 0, . . . , 0) is the zero vector
of length n. Since

∑m
i=j cjvj , the relation given in (A.4) where not all coefficients

are 0, is a linear dependency relation (see Definition A.39 on page 490). Gaussian
elimination uses the basic notions of linear algebra to define matrices with the
vectors vj as columns, then performs elementary row operations to put them
into a form to determine the dependency relations therefrom, if there are any.
The basic point from elementary linear algebra is that if the number of vectors
is greater than the dimension of the vector space over the field, then there must
be a dependency relation. For instance, if m > n in (A.4), then at least one of
the cj �= 0.

In the above, we mentioned the notion of elementary row operations. They
are defined as follows.

� Elementary Row Operations

1. Interchange two rows of the matrix.

2. Multiply all elements of a row of the matrix by a nonzero scalar.

3. Add to any row of the matrix any other row of it multiplied by a nonzero
scalar.

The above operations also hold for columns and may be restated as ele-
mentary column operations by replacing the word “row” by “column” wherever
they occur. It is a fact that any nonzero M ∈ Mm×n(R) can be reduced by
application of elementary row and column operations to an m×n matrix of one

of the following forms: (Im, 0),
(

In 0
0 0

)
,

(
Ir
0

)
, In, where the 0’s denote

that the matrix has only zero entries in those positions, and the Ij ’s are identity
matrices of the given size for j = m,n, r. Since the rank of a matrix is equal to
the order of the largest nonzero minor, then in the above four cases, the ranks
are m,n, r, and n, respectively.

Matrices in the form given above are in what is called reduced row echelon
form, which is a matrix that has the following properties.

1. All zero rows are in the bottom position(s).

2. Reading left to right, the first nonzero element in a nonzero row is a 1,
which is called a leading 1.

3. For j > 2, if there exists a leading 1 in row j, then it appears to the right
of a leading 1 in row j − 1.

4. Any column containing a leading 1 has all other elements equal to zero.

When applied to a system of m linear equations in n unknowns, there is an
equivalent formulation in which the matrix representation, called the augmented
matrix, has reduced row echelon form. In practice, the reduction of a system of
linear equations to its reduced row echelon form is calculated via the employment
of Gaussian elimination, discussed earlier.
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A.7 Continued Fractions

For Appendix C, we will need some basic ideas from the theory of continued
fractions as follows.

Definition A.41 (Continued Fractions)
If qj ∈ R where j ∈ Z is nonnegative and qj ∈ R

+ for j > 0, then an
expression of the form,

α = q0 +
1

q1 +
1

q2+
. . .

+
1

qk +
1

qk+1

. . .

is called a continued fraction. If qk ∈ Z for all k ≥ 0, then it is called a
simple continued fraction, denoted by 〈q0; q1, . . . , qk, qk+1, . . .〉. If there exists a
nonnegative integer n such that qk = 0 for all k ≥ n, then the continued fraction
is called finite. If no such n exists, then it is called infinite.

Definition A.42 (Convergents) Let n ∈ N and let α have continued fraction
expansion 〈q0; q1, . . . , qn, . . .〉 for qj ∈ R

+ when j > 0. Then

Ck = 〈q0; q1, . . . , qk〉
is the kth convergent of α for any nonnegative integer k.

Theorem A.27 (Finite Simple Continued Fractions are Rational)
Let α ∈ R. Then α ∈ Q if and only if α can be written as a finite simple

continued fraction.

Proof. See [167, Theorem 5.1.1, page 223]. ✷

Theorem A.28 (Representation of Convergents)
Let α = 〈q0; q1, . . .〉 be a continued fraction expansion. Define two sequences

for k ∈ Z nonnegative:

A−2 = 0, A−1 = 1, Ak = qkAk−1 +Ak−2,

and
B−2 = 1, B−1 = 0, Bk = qkBk−1 +Bk−2.

Then
Ck = Ak/Bk =

qkAk−1 +Ak−2

qkBk−1 +Bk−2
,

is the kth convergent of α for any nonnegative integer k.
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Proof. See [167, Theorem 5.1.2, page 224]. ✷

Theorem A.29 (Irrationals Are Infinite Simple Continued Fractions)
Let α ∈ R. Then α is irrational if and only if α has a unique infinite simple

continued fraction expansion,

α = α0 = 〈q0; q1, . . .〉 = lim
k→∞

Ck,

where

qk−1 = �αk−1� with αk = 1/(αk−1 − qk−1) and Ck = Ak/Bk for k ∈ N.

Proof. See [167, Theorem 5.2.1, page 228]. ✷

Theorem A.30 (Convergents of
√
D)

Suppose that D > 0 is not a perfect square, n ∈ Z, and |n| <
√
D. If (x, y)

is a positive solution of
x2 −Dy2 = n,

namely, x, y ∈ N, then x/y is a convergent in the simple continued fraction
expansion of

√
D.

Proof. See [167, Theorem 5.2.5, page 232]. ✷

Definition A.43 (Periodic Continued Fractions)
An infinite simple continued fraction α = 〈q0; q1, q2, . . .〉 is called periodic

if there exists an integer k ≥ 0 and � ∈ N such that qn = qn+� for all integers
n ≥ k. We use the notation,

α = 〈q0; q1, . . . , qk−1, qk, qk+1, . . . , q�+k−1〉,

as a convenient abbreviation. The smallest such natural number � = �(α) is
called the period length of α, and q0, q1, . . . , qk−1 is called the preperiod of α.
If k is the least nonnegative integer such that qn = qn+� for all n ≥ k, then

qk, qk+1, . . . , qk+�−1 is called the fundamental period of α.

If k = 0 is the least such value, then α is said to be purely periodic, namely,

α = 〈q0; q1, . . . , q�−1〉.
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Theorem A.31 (Continued Fractions and Recursion)
Let D be a positive integer that is not a perfect square, and let

α0 = (P 0 +
√
D)/Q0

be a quadratic irrational. Recursively define the following for k ≥ 0:

αk = (P k +
√
D)/Qk, (A.5)

qk = �αk�, (A.6)

P k+1 = qkQk − P k, (A.7)

and
Qk+1 = (D − P 2

k+1)/Qk. (A.8)

Then P k, Qk ∈ Z and Qk �= 0 for k ≥ 0, and αk = 〈qk; qk+1, . . .〉.

Proof. See [167, Exercise 5.3.6, page 251]. ✷

Theorem A.32 (Continued Fractions and Quadratic Irrationals)
Let α = (P +

√
D)/Q be a quadratic irrational and set

Gk−1 = Q0Ak−1 − P0Bk−1 (k ≥ −1),

where Ak−1, Bk−1 are given in Theorem A.28 on page 496. Then

G2
k−1 −B2

k−1D = (−1)kQkQ0 (k ≥ 1). (A.9)

Proof. See [167, Theorem 5.3.4, page 246]. ✷

Corollary A.3 If α =
√
D, then Equation (A.9) becomes

A2
k−1 −B2

k−1D = (−1)kQk. (A.10)

Proof. See [167, Corollary 5.3.3, page 249]. ✷

A.8 Elliptic Curves

We now summarize some basic facts needed for understanding the crypto-
graphic schemes described in this text such as the ElGamal cryptosystem on
page 190. We begin with the basic definition.

Definition A.44 (Elliptic Curves)
Let F be a field with characteristics not equal to 2 or 3. If a, b ∈ F are given

such that 4a3 + 27b2 �= 0 in F , then an elliptic curve E defined over F is given
by an equation y2 = x3 + ax + b ∈ F [x]. The set of all solutions (x, y) ∈ F to
the equation:

y2 = x3 + ax+ b, (A.11)

together with a point o, called the point at infinity, is denoted by E(F ), called
the set of F -rational points on E. The value ∆(E) = −16(4a3 +27b2) is called
the discriminant of the elliptic curve E.
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� Elliptic Curve Facts

We assume that E(Q) is an elliptic curve over Q given by y2 = x3 + ax+ b
where a, b ∈ Z, and o denotes the point at infinity.

(1) (Addition of points): For any two points P = (x1, y1) and Q = (x2, y2)
on E, with P,Q �= o and P �= −Q, define

P +Q = (x3, y3) = (m2 − x1 − x2,m(x1 − x3) − y1), (A.12)

where

m =
{

m1/m2 = (y2 − y1)/(x2 − x1) if P �= Q,
m1/m2 = (3x2

1 + a)/(2y1) if P = Q, (A.13)

and

if P = o, for instance, then P +Q = Q for all points Q on E,

and
if P = −Q, then P +Q = o.

(2) (Reduction modulo n): Let n > 1 be given and fixed with gcd(n, 6) = 1,
and gcd(4a3+27b2, n) = 1. Then we refer to E reduced modulo n when the
coefficients a, b are reduced modulo n, and each point P on E is reduced
modulo n in the following fashion. If P = (r1/r2, s1/s2) where

gcd(r1, r2) = gcd(s1, s2) = gcd(r2s2, n) = 1,

then

P = (t1, t2), where t1 ≡ r1r
−1
2 (mod n) and t2 ≡ s1s

−1
2 (mod n),

with r−1
2 and s−1

2 being the multiplicative inverses of r2 and s2 modulo
n, respectively. We denote the reduced curve by E(Z/nZ), and if n is a
prime, then this is a group.

(3) (Modular group law): Suppose that P1, P2 are points on E(Q) where
P1 +P2 �= o and the denominators of P1, P2 are prime to n. Then P1 +P2

has coordinates having denominators prime to n if and only if there does
not exist a prime p

∣∣ n such that P1 +P2 = o (mod p) on the elliptic curve
E(Z/pZ).

For a more in-depth description of elliptic curve theory as it applies to cryp-
tology, see [169, pages 221–251].
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A.9 Complexity

On page 46, we were introduced to an informal definition of the following.
An algorithm is a well defined computational procedure, which takes a variable
input and halts with an output. An algorithm is called deterministic if it follows
the same sequence of operations each time it is executed with the same input.
A randomized algorithm is one that makes random decisions at certain points
in the execution, so the execution paths may differ each time the algorithm is
invoked with the same input.

The amount of time required for the execution of an algorithm on a computer
is measured in terms of bit operations, which are defined as follows: addition,
subtraction, or multiplication of two binary digits; the division of a two-bit
integer by a one-bit integer; or the shifting of a binary digit by one position. The
number of bit operations necessary to complete the performance of an algorithm
is called its computational complexity or simply its complexity. This method of
estimating the amount of time taken to execute a calculation does not take
into account such things as memory access or time to execute an instruction.
However, these executions are very fast compared with a large number of bit
operations, so we can safely ignore them. These comments are made more
precise by the introduction of the following notation.

Definition A.45 (Big O Notation) Suppose that f and g are positive real-
valued functions. If there exists a positive real number c such that

f(x) < cg(x) (A.14)

for all sufficiently large x, then we writeA.4

f(x) = O(g(x)) or simply f = O(g). (A.15)

(Alternatively, we may also write f << g to denote f = O(g).)

Big O is the order of magnitude of the complexity, an upper bound on the
number of bit operations required for execution of an algorithm in the worst-
case scenario, namely, in the case where even the trickiest or the nastiest inputs
are given. It is possible that most often, for a given algorithm, even less time
will be used, but we must always account for the worst-case scenario.

If the reader is searching for a reason to use complexity as a foundation for
cryptography, it is quite simply that it assists us in clarifying assumptions we
might make concerning security. Now, the comments made before Definition
A.45 may now be put into perspective. The definition of the time taken to
perform a given algorithm does not take into consideration time spent reading
and writing such as memory access, timings of instructions, even the speed or
amount of memory of a computer, all of which are negligible in comparison
A.4Here sufficiently large means that there exists some bound B ∈ R

+ such that f(x) < cg(x)
for all x > B. We just may not know explicitly the value of B. Often f is defined on N rather
than R, and occasionally over any subset of R.
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with the order of magnitude complexity. The greatest merit of this method for
estimating execution time is that it is machine-independent. In other words, it
does not rely upon the specifics of a given computer, so the order of magnitude
complexity remains the same, irrespective of the computer being used. In the
analysis of the complexity of an algorithm, we need not know exactly how long
it takes (namely, the exact number of bit operations required to execute the
algorithm), but rather it suffices to compare with other objects, and these com-
parisons need not be immediate, but rather long term. In other words, what
Definition A.45 says is that if f is O(g), then eventually f(x) is bounded by
some constant multiple cg(x) of g(x). We do not know exactly what c happens
to be or just how big x must be before (A.14) occurs. However, for reasons
given above, it is enough to account for the efficiency of the given algorithm in
the worst-case scenario.

The amount of time taken by a computer to perform a task is (essentially)
proportional A.5 to the number of bit operations. In the simplest possible terms,
the constant of proportionality, which is the number of nanosecondsA.6 per
bit operation, depends upon the computer being used. This accounts for the
machine-independence of the Big O method of estimating complexity since the
constant of proportionality is of no consequence in the determination of Big O.

A fundamental time estimate in executing an algorithm is polynomial time
(or simply polynomial)A.7. In other words, an algorithm is polynomial when
its complexity is O(nc) for some constant c ∈ R

+, where n is the bitlength
of the input to the algorithm, and c is independent of n. (Observe that any
polynomial of degree c is O(nc).) In general, these are the desirable algorithms,
since they are the fastest. Therefore, roughly speaking, the polynomial-time
algorithms are the good or efficient algorithms. For instance, the algorithm is
constant if c = 0; if c = 1, it is linear; if c = 2, it is quadratic, and so on.
Examples of polynomial time algorithms are those for the ordinary arithmetic
operations of addition, subtraction, multiplication, and division. On the other
hand, those algorithms with complexity O(cf(n)) where c is constant and f is a
polynomial on n ∈ N are exponential time algorithms or simply exponential. A
subexponential time algorithm is one for which the complexity for input n ∈ N

is
Ln(r, c) = O(exp((c+ o(1))(lnn)r(ln lnn)1−r) (A.16)

where r ∈ R with 0 < r < 1, c is a constant, and o(1) denotes a function
f(n) such that limn→∞ f(n) = 0.A.8 Subexponential time algorithms are faster
than exponential-time algorithms but slower than polynomial-time algorithms.
These are, again roughly speaking, the inefficient algorithms. Algorithms with
A.5To say that a is proportional to b means that a/b = c, a constant, called the constant of

proportionality. This relationship is often written as a ∝ b in the literature.
A.6A nanosecond is 1/109 of a second, that is, a billionth of a second.
A.7Recall that a (nonconstant) polynomial is a function of the form

∑n
i=0 aix

i for n ∈ N,
where the ai are the coefficients (see page 484).
A.8In general, f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. Thus, o(1) is used to

symbolize a function whose limit as n approaches infinity is 0. Also, exp(x) = ex.
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complexity O(cf(n)) where c is constant and f(n) is more than constant but less
than linear are called superpolynomial. It is generally accepted that modern-day
cryptanalytic techniques for breaking known ciphers are of superpolynomial-
time complexity, but nobody has been able to prove that polynomial-time algo-
rithms for cryptanalyzing ciphers do not exist.

Another notion of time is expected running time, which means the expectation
(in the probability sense) of the runtimes over all the possible inputs, expressed
as a function of the input size (see Appendix E). This means that one needs to
estimate the probability that a given input occurs, not an easy task in general.
For instance, there is expected polynomial time, which we first encounter on
page 109 in reference to symmetric-key cryptosystems.

The running time of an algorithm is sometimes difficult to determine. When
this is the case, one may be forced to settle for approximations for the running
time, called the asymptotic running time, which is a measure of how the running
time of the algorithm increases as the size of the input increases without bound.

In calculating complexity using the Big O notation, the following properties
are essential.

Theorem A.33 (Properties of the Big O Notation)
Suppose that f, g are positive real-valued functions.

(a) If c ∈ R
+, then cO(g) = O(g).

(b) O(max{f, g}) = O(f) +O(g).

(c) O(fg) = O(f)O(g).

Proof. See [169, Theorem 1.24, page 50]. ✷

To get some idea of what the various classes of complexity analysis mean
in “real-world” terms, let us look at times related to some of these classes.
Suppose that the unit of time on the computer at our disposal is a microsecond
(a millionth (1/106) of a second). Assuming an input of n = 106 bits, then
a constant algorithm (complexity O(1)) would take a microsecond to execute,
since the number of bit operations is one. A linear algorithm (complexity O(n))
would take a second, since the number of bit operations is 106. A quadratic
algorithm (complexity O(n2)) would take 11.5741 = 1012/(106 · 24 · 3600) days,
since there are 1012 bit operations, and a cubic algorithm (complexity O(n3))
would take 31, 709 = 1018/(106 · 24 · 3600 · 365) years, since the number of bit
operations is 1018. By the time we get to exponential algorithms, we are looking
at times astronomically larger than the age of the known universe. Hence, a
problem is called intractable if no polynomial-time algorithm could possibly
solve it, whereas one that can be solved using a polynomial-time algorithm is
called tractable. (By a problem, we mean a general question to be answered. A
decision problem is one whose solution is “yes” or “no.” A problem may possess
parameters whose values are left unspecified, and an instance of a problem is
achieved by specifying values for those parameters.)
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Now we need the notion of a Turing machine, which is a finite-state machine
having an infinite read-write tape, i.e., our theoretical computer has infinite
memory and the ability to search for and retrieve any data from memory.

More specifically, a (deterministic, one-tape) Turing machine has an in-
finitely long magnetic tape (as its unlimited memory) on which instructions
can be written and erased. It also has a processor that carries out the instruc-
tions: (1) move the tape right, (2) move the tape left, (3) change the state of
the register based upon its current value and a value on the tape, and write
or erase on the tape. The Turing machine runs until it reaches a desired state
causing it to halt. A famous problem in theoretical computer science is to de-
termine when a Turing machine will halt for a given set of input and rules.
This is called the halting problem. Turing proved that this problem is undecid-
able, meaning that there does not exist any algorithm whatsoever for solving
it. The Church-Turing thesis, which came out of the 1936 papers of Turing and
Church (see page 92), essentially says that the Turing machine as a model of
computation is equivalent to any other model for computation. (Here we may
think of a “model” naively as a simplified mathematical description of a com-
puter system.) Therefore, Turing machines are realistic models for simulating
the running of algorithms, and they provide a powerful computational model.
However, a Turing machine is not meant to be a practical design for any actual
machine, but is a sufficiently simple model to allow us to prove theorems about
its computational capabilities while at the same time being sufficiently complex
to include any digital computer irrespective of implementation.

Complexity theory designates a decision problem to be in class P if it can be
solved in polynomial time, whereas a decision problem is said to be in class NP
if it can be solved in polynomial time on a nondeterministic Turing machine,
which is a variant of the normal Turing machine in that it guesses solutions to a
given problem and checks its guess in polynomial time. Another way to look at
the class NP is to think of these problems as those for which the correctness of
a guess at an answer to a question can be proven in polynomial time. Another
equivalent way to define the class NP is the class of those problems for which a
“yes” answer can be verified in polynomial time using some extra information,
called a certificate.

The class P is a subset of the class NP since a problem that can be solved in
polynomial time on a deterministic machine can also be solved, by eliminating
the guessing stage, on a nondeterministic Turing machine. It is an open problem
in complexity theory to resolve whether P = NP. However, virtually everyone
believes that they are unequal. It is generally held that most modern ciphers can
be cryptanalyzed in nondeterministic polynomial time. However, in practice it is
the deterministic polynomial-time algorithm that is the end goal of modern-day
cryptanalysis. Defining what it means to be a “computationally hard” problem
is a hard problem. One may say that problems in P are easy, and those not in
P are considered to be hard. However, there are problems that are regarded as
computationally easy, yet are not known to be in P. For instance, the Miller-
Rabin-Selfridge test is such a problem. It is in the class RP, called randomized
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polynomial time or probabilistic polynomial time. Here,

P ⊆ RP ⊆ NP.

A practical (but mathematically less satisfying) way to define “hard” problems is
to view them as those which have continued to resist solutions after a concerted
attack by competent investigators for a long time up to the present.

Another classification in complexity theory is the NP-complete problem,
which is a problem in the class NP that can be proved to be as difficult as any
problem in the class. Should an NP-complete problem be discovered to have a
deterministic polynomial-time algorithm for its solution, this would prove that
NP ⊆ P, so P = NP. Hence, we are in the position that there is no proof that
there are any hard problems in this sense, namely, those in NP but not in P.
Nevertheless, this has not prevented the flourishing of research in complexity
theory. The classical NP-complete problem is the travelling salesman problem:
A travelling salesman wants to visit n ∈ N cities. Given the distances between
them, and a bound B, does there exist a tour of all the cities having total length
B or less? The next in the hierarchy of complexity classification is EXPTIME,
problems that can be solved in exponential time.

Thus far, we have been concerned with the time it takes for an algorithm
to execute, measured (asymptotically, the worst-case scenario) in terms of the
number of bit operations required. Another component of complexity is the
amount of computer memory (storage required) for the computation of a given
algorithm, called the space requirement. Time calculation on a Turing machine
is measured in terms of the number of steps taken before it enters a halt state,
as we have discussed above. The space used is defined as the number of tape
squares visited by the read-write head (where we think of the tape as having
infinitely many squares read, written, or erased by a “read-write head”). Thus,
the notion of polynomial space takes on meaning, and since the number of steps
in a computation is at least as large as the number of tape squares visited, then
any problem solvable in polynomial time is solvable in polynomial space. Thus,
we define PSPACE as those problems that can be solved in polynomial space,
but not necessarily in polynomial time. Hence, PSPACE-complete problems
are those such that if any one of them is in NP, then PSPACE=NP, and
if any one of them is in P, then PSPACE=P. At the top of the hierarchy
of the classification of problems in terms of complexity is EXPSPACE, those
problems solvable in exponential space, but not necessarily in exponential time.
It is known that P �=EXPTIME and

NP⊆PSPACE�=EXPSPACE.

(There are also the nondeterministic versions, NPSPACE and NEX-
PSPACE, which we will not discuss here.) Figure A.1 provides an illustration
of the above discussion on the hierarchy of problems in complexity theory.



A.9. Complexity 505

Figure A.1: Hierarchy of Problems in Complexity Theory.✤
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There are other types of complexity such as circuit complexity , which looks at
the connection between Boolean circuits and Turing machines as a computa-
tional model for studying P vis-à-vis NP and affiliated problems. We will not
discuss these more advanced themes here.

Roughly speaking, complexity theory can be subdivided into two categories:
(a) structural complexity theory, and (b) the design and analysis of algorithms.
Essentially, category (a) is concerned with lower bounds, and category (b) deals
with upper bounds. Basically, the primary goal of structural complexity theory
is to classify problems into classes determined by their intrinsic computational
difficulty. In other words, how much computing time (and resources) does it
take to solve a given problem? As we have seen, the fundamental question in
structural complexity theory remains unanswered, namely, does P = NP? We
have been primarily concerned with the analysis of algorithms, which is of the
most practical importance to cryptography.
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Appendix B: Pseudorandom Number Generation
In this appendix we look at algorithms for pseudorandomly generating num-

bers for use in cryptographic schemes (see page 151). In particular, we begin
with a FIPS-approved standard for use with DES (see Section 3.2). It is also
the basis for the PGPRNG discussed in Section 8.1 (see page 283).

B.1 ANSI X9.17

ANSI X9.17 was introduced in 1985 as the Financial Institution Key Man-
agement standard, which defined protocols for use by such institutions for en-
cryption key transfer using SKC methods. It was updated in 1995, but had
become a FIPS-171 standard in 1992. In 1998, Appendix A of ANSI X9.31
replaced Appendix C of ANSI X9.17, which is the version used by PGP.

X9.17/X9.31 PRNG The goal is to output a string of B 64-bit PRNs,
where B is some predetermined bound. We are given the following as input.
(a) a secret, random 64-bit seed, S;

(b) a 64-bit representation, DT , of the current date/time;

and

(c) a 3-DES key K, which is used for DES encryption, denoted by EK , which
is

Ek1 ◦Dk2 ◦ Ek1 ,
a two-key triple encryption, kept secret and used only for the PRNG (see
page 131).

Then the algorithm proceeds as follows with a parameter i, and a vector X
of length B initialized with entries X[j] = 0 for j = 1, 2, . . . , B.

1. Set I = EK(DT ) and set i = 1.

2. Compute
Xi = EK(I ⊕ S)

and set X[i] = Xi.

3. Set S = EK(Xi ⊕ I), and set i = i+ 1.

4. If i < B, go to step 2. Otherwise, output

X = (X1, X2, . . . , XB)

as the sequence of pseudorrandom 64-bit numbers.
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Any of the Xjs may be used as an IV for DES modes of operation (see
page 135). The PRNs may also be employed for DES keys. On the other hand,
PGP employs two PRNGs, the ANSI X9.17/X9.31 generator and a function that
measures the entropy from the latency in the user’s keystrokes (see Chapter 11).
However, PGP is not restricted to 3-DES, since it also has the option of using
IDEA or CAST-128 (see [2] and [3] and [159]). In fact, it is a relatively easy
task to convert ASNI X9.17/X9.31 to the use of IDEA, for instance.

ANSI X9.17/X9.31 PGP Session Key and IV Generation
We will assume, for convenience, that PGP consists of the four components:

(1) the SKC, IDEA; (2) the PKC, RSA (see Section 4.2); (3) the hash MD5 (see
page 255); and (4) the PRNG, X9.17/X9.31 in conjunction with user keystroke
entropy information. The latter provides true random number generation for
the purpose of generating RSA pairs, and providing initial and subsequent input
to the PRNG. Once a latency timer, or keystroke timer, anticipates a keystroke
from a user, it records the time in 32-bit format and once the keystroke is
received, it records the time the key was pressed and the 8-bit value of the
keystroke. This time and keystroke data are used to generate a key, which is
used to encipher the current value of the random bit buffer. (PGP keeps a 256-
byte random bit buffer.) To ensure maximum entropy, the keystrokes should be
separated as randomly as possible.

The initial random bitstring from the latency timer is input as a 24-byte seed,
called randseed.bin, for the X9.17/X9.31 generator. The seed is then washed
with an IDEA encryption in CFB mode. The IDEA key is an MD5 hash of the
plaintext message and a null IV. The outcome of the process is a 16-byte session
key and an 8-byte IV, together with a new seed for the next PRNG.

Analysis
PGP’s PRNG is a cryptographically solid method for generating temporary

SKC keys, which has stood the test of peer review for some time. The seed
file, randseed.bin, is kept in a disk file that is reseeded by the generator for each
usage. Although randseed.bin should not be revealed, a cryptanalyst would have
extreme difficulty in obtaining pertinent data from it, if it were captured, since
it is “cryptographically washed” both before and after each use. The long-term
RSA key pairs are generated from the “truly random” entropy derived from the
keystroke latencies. Thus, the overall strength of the scheme is based on a firm
bedrock of iron-clad cryptography.

We now turn to a discussion of other PRNGs. One of the most popular,
introduced in 1986 (see [29]), is given in the following. We first need to set the
stage with some rather interesting integers.

� Blum Integers
For the next algorithm, we need to refer to quadratic residues modulo a

given integer n, called a Blum integer, which is an integer n = pq, where p ≡
q ≡ 3 (mod 4) are distinct primes. Since Blum integers have such interesting
properties, we list some here for the reader as a preparatory introduction.
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Properties of Blum Integers
If n is a Blum integer, then each of the following hold, where the symbol(

a
b

)
is the Jacobi symbol (see Appendix A, especially page 482).

1.
(
−1
p

)
=

(
−1
q

)
= −1.

2. If x ∈ Z/nZ and
(
x
n

)
= 1, then one of ±x is a quadratic residue modulo n.

3. If x2 ≡ y (mod n), then the four square roots of y are given by

x = ±
(
upy(q+1)/4 + vqy(p+1)/4

)
, and x = ±

(
upy(q+1)/4 − vqy(p+1)/4

)
,

where
up+ vq = 1.

4. If y ≡ x2 (mod n), then exactly one (least quadratic residue of a) square
root x of y, with

(
x
n

)
= 1 satisfies x ≤ n/2.

Now we are ready for the next generator.

B.2 The Blum-Blum-Shub-(BBS) PRNG

Let x0 ∈ Z/nZ be a seed quadratic residue where n is a Blum integer. This
initializes the BBS-PRNG (also known as the quadratic residue generator). The
random bit sequence is generated as follows.
1. For j = 1, 2, . . ., compute xj ≡ x2

j−1 (mod n).

2. Let bj be the least significant bit of xj .

Then the output pseudorandom bit sequence is b1, b2, . . ..

It can be shown that if x0 is kept secret, then for a cryptanalyst to predict the
least significant bits in the above output sequence is computationally equivalent
to factoring n (see [110]). (Compare with the RSA conjecture on page 175.)

The BBS-PRNG is considered to be a cryptographically secure pseudoran-
dom bit generator (CSPRBG) (see page 151). This takes us into the formal
area of semantic security, which means that the ciphertext does not reveal any
information about the plaintext to a cryptanalyst (whose computational power
is polynomially bounded). The reader interested in pursuing this formal theory
may consult the pioneering work of Goldwasser and Micali in [109], as well as
Blum and Micali in [31], and the much more recent [184].

One drawback to the BBS-PRNG is that it may be very slow in application.
To improve speed, one may select the m least significant bits of xj , and if

m ≤ log2(log2(n)),

then the scheme is cryptographically secure (see[30]).
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Appendix C: Factoring Large Integers
Given the importance of factoring, or rather the difficulty thereof, in the

security of RSA and other cryptosystems, it is worth our having a closer look
at the issue to which we devote this appendix.

On page 165, we mentioned the integer factoring problem (IFP), but did not
delve into its meaning. Now we make this explicit.

� The Integer Factoring Problem — (IFP)

Given n ∈ N, find primes pj for j = 1, 2, . . . , r ∈ N with p1 < p2 < · · · < pn
such that

n =
r∏
j=1

p
ej

j .

A simpler problem than the IFP is the notion of splitting of n ∈ N, which
means the finding of factors r, s ∈ N such that 1 < r ≤ s such that n = rs. Of
course, with an RSA modulus, splitting and the IFP are the same thing. Yet, in
order to solve the IFP for any integer, one merely splits n, then splits n/r and
s if they are both composite, and so on until we have a complete factorization.

First, we look at some older methods that still inspire the methods of today.

C.1 Classical Factorization Methods

Trial Division The oldest method of splitting n is trial division by which
we mean dividing n by all primes up to

√
n. For n < 108, or within that

neighborhood, this is not an unreasonable method in our computer-savvy world.
However, for larger integers, we need more elaborate methods.

Fermat Factoring In 1643, Fermat discovered a factoring scheme based
upon the following insight. If n = rs is an odd natural number with r <

√
n,

then

n =
(
s+ r

2

)2

−
(
s− r

2

)2

= a2 − b2. (C.1)

Therefore, in order to split n, we need only investigate the values,

x = a2 − n for a = �
√
n� + 1, �

√
n� + 2, . . . , (n− 1)/2,

until a perfect square is found. This is now called Fermat’s difference-of-squares
factoring method. It has been rediscovered many times and used as a basis for
many modern factoring techniques since essentially we are looking at solutions
of

x2 ≡ y2 (mod n) with x �≡ ±y (mod n), (C.2)

and
gcd(x± y, n)
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provides the nontrivial factors.
Although the order of magnitude (see page 500) of Fermat factoring can

be shown to be O(n1/2), Lehman has shown how to reduce the complexity
to O(n1/3) when combined with trial division. This is all contained in [144],
complete with a computer program. There is also a method, from D.H. Lehmer,
for speeding up the Fermat method when all factors are of the form 2k�+1 (see
[48]).

Euler’s Factoring Method This method only applies to integers of the
form,

n = x2 + ay2 = z2 + aw2,

where x �= z and y �= w. In other words, n can be written in two distinct ways
in this special form for a given nonzero value of a ∈ Z. Then

(xw)2 ≡ (n− ay2)w2 ≡ −ay2w2 ≡ (z2 − n)y2 ≡ (zy)2 (mod n),

from which we may have a factor of n, namely, provided that xw �≡ ±zy (mod n).
In this case, the (nontrivial) factors of n are given by gcd(xw ± yz, n).

The Euler method essentially is predicated on the congruence (C.2), but
unlike the Fermat method, not all integers have even one representation in
the form n = x2 + ay2. In fact, the reader who is versed in some algebraic
number theory will recognize these forms for n as norms from the quadratic
field Q(

√
−a). It can be shown that Euler’s method requires at most �

√
n/a�

steps when a > 0.

Legendre’s Factoring Method This method is a precursor to what we
know today as continued fraction methods for factorization (see pages 496–498).
Legendre reasoned in the following fashion. Instead of looking at congruences
of the form (C.2), he looked at those of the form,

x2 ≡ ±py2 (mod n) for primes p, (C.3)

since a solution to (C.3) implies that ±p is a quadratic residue of all prime
factors of n. For instance, if the residue is 2, then all prime factors of n are
congruent to ±1 (mod 8) (see part (5) of Theorem A.19 on page 482). Therefore,
he would have halved the search for factors of n. Legendre applied this method
for various values of p, thereby essentially constructing a quadratic sieveC.1 by
getting many residues modulo n. This allowed him to eliminate potential prime
divisors that sit in various linear sequences, as with the residue 2 example above.
He realized that if he could achieve enough of these, he could eliminate primes
up to

√
n, thereby effectively developing a test for primality!

The linchpin of Legendre’s method is the continued fraction expansion of
√
n

since he was simply finding small residues modulo n. Legendre was essentially
C.1A sieve may be regarded as any process whereby we find numbers via searching up to a

prescribed bound and eliminate candidates as we proceed until only the desired solution set
remains. A (general) quadratic sieve is one in which about half of the possible numbers being
sieved are removed from consideration, a technique used for hundreds of years as a scheme for
eliminating impossible cases from consideration.
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building a sieve on the prime factors of n, which did not let him predict, for a
given prime p, a different residue to yield a square. This meant that if he found
a solution to

x2 ≡ py2 (mod n),

he could not predict a solution,

w2 ≡ pz2 (mod n),

distinct from the former. If he had been able to do this, he would have been
able to combine them as

(xw)2 ≡ (pzy)2 (mod n)

and have a factor of n provided that

xw �≡ ±pzy (mod n)

since we are back to congruence (C.2).
Gauss invented a method that differed from Legendre’s scheme only in the

approach to finding small quadratic residues of n; but his approach makes it
much more complicated (see [102, Articles 333 and 334, pages 403–406]).

In the 1920s, one individual expanded the idea, described above, of attempt-
ing to match the primes to create a square. We now look at his important
influence.

Kraitchik’s Factoring Method Maurice Kraitchik determined that it
would suffice to find a multiple of n as a difference of squares in attempting
to factor it. For this purpose, he chose a polynomial of the form,

kn = ax2 ± by2,

for some integer k, which allowed him to gain control over finding two distinct
residues at a given prime to form a square, which Legendre could not do. In other
words, Kraitchik used quadratic polynomials to get the residues, then multiplied
them to get squares (not a square times a small number). Kraitchik developed
this method over a period of more than 3 decades, a method later exploited by
D.H. Lehmer and R.E. Powers (see [145]). They employed Kraitchik’s technique
but obtained their residues as Legendre had done. Later this was exploited in
the development of an algorithm that systematically extracted the best of the
above ideas as follows, which is taken from [169]. First we need to define a
couple of terms.

If B ∈ N, then a number n ∈ N is said to be a B-smooth number if all primes
dividing n are no larger than B, and B is called a smoothness bound. A factor
base is a set of “small” primes that remain the primes under consideration for
the algorithm at hand.
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C.2 The Continued Fraction Algorithm

Suppose that we wish to factor n ∈ N and a smoothness bound B has been
selected. Then execute the following steps:
(1) Choose a factor base of primes F = {p1, p2, . . . , pk} for some k ∈ N deter-

mined by B and a large upper index value J .C.2

(2) Set Q0 = 1, P0 = 0, A−1 = 1, A0 = �√n� = q0 = P1. For each natural
number j ≤ J , recursively compute Qj using the following formulas:

Qj =
n− P 2

j

Qj−1
,

qj =
⌊
Pj + �√n�

Qj

⌋
,

Aj = qjAj−1 +Aj−2,

Pj+1 = qjQj − Pj ,

and trial divide Qj by the primes in F to determine if Qj is pk-smooth. If
it is, use its factorization Qj =

∏k

i=1 p
ai,j

i to form the binary k + 1-tuple,

vj = (v0,j , v1,j , v2,j , . . . , vk,j),

where v0,j is, respectively, 0 or 1 according as j is even or odd, and for
1 ≤ i ≤ k, vi,j is, respectively, 0 or 1 according to whether ai,j is even or
odd. If Qj is not pk-smooth, discard it and return to calculate Qj+1.

(3) For each set S of the vectors vj constructed in (2), for which it is discovered
that ∑

j∈S

vi,j ≡ 0 (mod 2), 0 ≤ i ≤ k,

we have x2 ≡ y2 (mod n), where

x =


∏
j∈S

(−1)jQj




1/2

and y ≡
∏
j∈S

Aj−1 (mod n).

If x �≡ ±y (mod n), then gcd(x± y, n) gives a nontrivial factor of n.

By Corollary A.3 on page 498,

A2
j−1 − nB2

j−1 = (−1)jQj ,

which is the heart of the algorithm. Thus, we have that nB2
j−1 ≡ A2

j−1 (mod p),
for any prime p

∣∣ Qj , so n is a quadratic residue modulo p. Hence, we only put

C.2From knowledge about the distribution of smooth integers close to
√
n, the optimal k is

known to be one that is chosen to be approximately
√

exp(
√

log(n) log log(n)).
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primes p in the factor base for which n is a quadratic residue modulo p. The
following gives a small illustration of the continued fraction algorithm, called
CFRAC by some users.

Example C.1 Let n = 6109. Our factor base will be F = {3, 5, 11, 13, 31, 37}.
Since �√n� = 78, then we compute the following table (where J = 3).

j Pj qj Aj−1 (−1)jQj vj

0 0 78 1 1 (0, 0, 0, 0, 0, 0, 0)
1 78 6 78 −25 (1, 0, 0, 0, 0, 0, 0)
2 72 4 469 37 (0, 0, 0, 0, 0, 0, 1)
3 76 17 1954 −9 (1, 0, 0, 0, 0, 0, 0)

We have a set S such that
∑
j∈S

vi,j ≡ 0 (mod 2) for each i = 0, 1, . . . , 6.

This set is S = {1, 3} for which we have Q1 = −52, Q3 = −32, A0 = 78 and
A2 = 1954. We compute

∏
j∈S

Aj−1 ≡ 5796 (mod 6109) and since

y2 =
∏
j∈S

A2
j−1 ≡ x2 =

∏
j∈S

Qj = 152 (mod n),

then we check gcd(x ± y, n). We compute that both gcd(x − y, n) = gcd(15 −
5796, 6109) = 41, and gcd(x + y, n) = gcd(15 + 5796, 6109) = 149. Thus, we
have factored n = 41 · 149.

The CFRAC algorithm was developed by Brillhart and Morrison in the early
1970s (see [173]). It is widely acclaimed to be the very first efficient general
factorization algorithm put into use. It is subexponential time (see page 501),
which essentially means that if the running time to factor n is na, then a slowly
decreases as n �→ ∞.

In 1974, Pollard published a factorization scheme (see [189]), that utilizes
Euler’s generalization of Fermat’s little theorem (see Theorem A.14 on page
479). He reasoned that if (p−1)

∣∣ n where p is prime, then p
∣∣ (tn−1) provided

that p � t, which follows from Euler’s theorem, so p may be found by employing
Eulcild’s algorithm (see Theorem A.3 on page 470). The following is taken from
[169].
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C.3 Pollard’s p − 1 Algorithm

Suppose that we wish to factor n ∈ N, and that a smoothness bound B has
been selected. Then we execute the following.
(1) Choose a base a ∈ N where 2 ≤ a < n and compute g = gcd(a, n). If

g > 1, then we have a factor of n. Otherwise, go to step (2).

(2) For all primes p ≤ B, compute m =
⌊

ln(n)
ln(p)

⌋
and replace a by ap

m

(mod n)
using the repeated squaring method given on page 171. (Note that this
iterative procedure ultimately gives a

∏
p≤B pm modulo n for the base a

chosen in (1).)

(3) Compute g = gcd(a− 1, n). If g > 1, then we have a factor of n, and the
algorithm is successful. Otherwise, the algorithm fails.

The reasoning behind Pollard’s algorithm is given as follows.
Let � = lcm(pa1

1 , . . . , pat
t ), where p

aj

j runs over all prime powers such that

pj ≤ B. Since p
aj

j ≤ n, then aj ln(pj) ≤ ln(n), so aj ≤
⌊

ln(n)
ln(pj)

⌋
. Hence,

� ≤
∏t

j=1 p
�ln(n)/ ln(pj)�
j . Now, if p

∣∣ n is a prime such that p − 1 is B-smooth,
then (p−1)

∣∣ �. Therefore, for any a ∈ N with p � a, a� ≡ 1 (mod p), by Fermat’s
little theorem (A.2). Thus, if g = gcd(a� − 1, n), then p

∣∣ g. If g = n, then the
algorithm fails. Otherwise, it succeeds.

Example C.2 Let n = 13193, and choose a smoothness bound B = 13, then
select a = 2. We know that a is relatively prime to n so we proceed to step (2).
The table shows the outcome of the calculations for step (2).

p 2 3 5 7 11 13
m 13 8 5 4 3 3
a 6245 1365 1884 3133 5472 396

Then we go to step (3) and check gcd(a − 1, n) = gcd(395, 13193) = 79.
Thus, we have factored n = 79 · 167. Observe that p = 79 is B-smooth since
p− 1 = 2 · 3 · 13, but q = 167 is not since q − 1 = 2 · 83.

The running time for Pollard’s p−1 algorithm is O(B ln(n)/ ln(B)) modular
multiplications, assuming that n ∈ N and there exists a prime p

∣∣ n such that
p − 1 is B-smooth. This is of course the drawback to this algorithm, namely,
that it requires n to have a prime factor p such that p − 1 has only “small”
prime factors. A generalization of the p − 1 method was given by Lenstra
using elliptic curves, which we will study later in this appendix. In the Elliptic
curve algorithm, we will see that success in factoring depends upon an integer
“close” to p having only small prime factors, which is less demanding than
the p − 1 algorithm and therefore more likely to occur. Another improvement
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was given by Williams in [289], called the p + 1 method of factoring, which is
efficient if n has a prime factor p such that p+ 1 is B-smooth. There have been
other refinements and improvements. Pollard also developed another method
for factoring in 1975, called the Monte Carlo factoring method, also known as
the Pollard rho method (see [188]). The following is taken from [167].

C.4 Pollard’s Rho Method

Given n ∈ N composite, and p an (as yet unknown) prime divisor of it,
perform the following steps.

(1) Choose an integral polynomial f with deg(f) ≥ 2—usually f(x) = x2 + 1
is chosen for simplicity.

(2) Choose a randomly generated integer x = x0, the seed, and compute
x1 = f(x0), x2 = f(x1) . . . , xj+1 = f(xj) for j = 0, 1, . . . B, where the
bound B is determined by step (3).

(3) Sieve through all differences xi − xj modulo n until it is determined that
xB �≡ xj (mod n) but xB ≡ xj (mod p) for some natural number B > j ≥
1. Then gcd(xB − xj , n) is a nontrivial divisor of n.

Example C.3 If n = 3161, and x0 = 2 is the seed with f(x) = x2 + 1, then
x1 = f(x0) = 5, x2 = f(x1) = 26, x3 = f(x2) = 677, x4 = f(x3) = 3146,
x5 = f(x4) = 226, x6 = f(x5) = 501, x7 = f(x6) = 1283, x8 = f(x7) = 2370,
x9 = f(x8) = 2965, where the bar notation denotes the fact that we have reduced
the values to the least residue system modulo n. We find that all gcd(xi−xj , n) =
1 for i �= j until gcd(x9−x7, n) = gcd(1682, 3161) = 29. In fact, 3161 = 29·109.

As the number of comparisons of xi − xj and n for a gcd gets large, then
the method becomes very time consuming. However, there is an observation
that cuts down the work considerably. Suppose that xi ≡ xj (mod m) for some
m ∈ N and some j > i > 0. Then

xi+1 ≡ f(xi) ≡ f(xj) ≡ xj+1 (mod m),

xi+2 ≡ f(xi+1) ≡ f(xj+1) ≡ xj+2 (mod m),

and, for general k ∈ N,

xi+k ≡ f(xi+k−1) ≡ f(xj+k−1) ≡ xj+k (mod m).

In particular, if k = j − i, then x2j ≡ xj (mod m). Hence, in our search for a
factor of n, we need only look at x2j − xj for each j = 1, 2, . . . . This modified
method has the advantage of checking only one gcd for each j. However, as
Example C.3 shows, we would miss the gcd found in there since 5 �= 2j for any
j. However, the time saved in general means that we will come across a solution
in comparatively less time.
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Example C.4 Referring to Example C.3, and continuing the calculations, we
get x10 = 485, x11 = 1312, x12 = 1761, x13 = 181, x14 = 1152, x15 = 2646, and
x16 = 2863. We find that gcd(x16 − x8, n) = gcd(493, 3161) = 29.

In Example C.4, we made only eight comparisons for x2j − xj for j =
1, 2, 3, . . . , 8. However, in Example C.3, we made nearly forty of them, since
we had to look at xj − xi for all i �= j with 1 ≤ i, j ≤ 9.

Now we illustrate the reason behind the name Pollard rho method. We take
n = 29 as the modulus and x0 = 2 as the seed, then we proceed through the
Pollard rho method to achieve the following diagram.

Diagram C.1 (Pollard’s Rho Method Illustrated)
We take n = 29 as the modulus and x0 = 2 as the seed, then we proceed

through the Pollard rho method to achieve the following diagram.

..........

..........

..........
..........
..........
..........
..........
...........
...........
...........
...........
............

............
..............

...............
.................

....................
..........................

...........................................................................................................................................................................................................................................................................................................................................

�x7 ≡ x9 ≡ 7 (mod 29) ← �x8 ≡ 21 (mod 29)
↑
�x6 ≡ 8 (mod 29)
↑
� x5 = 226 ≡ 23 (mod 29)
↑
� x4 = 3146 ≡ 14 (mod 29)
↑
� x3 = 677 ≡ 10 (mod 29)
↑
� x2 = 26
↑
� x1 = 5
↑
� x0 = 2

Diagram C.1 shows us that when we reach x9, then we are in the period
that takes us back and forth between the residue system of 7 and that of 21
modulo 29. This is the significance of the left pointing arrow from the position
of x8 back to the position of x7, which is the same as the reside system of x9.
This completes the circuit. The shape of the symbol is reminiscent of the Greek
symbol ρ, rho, pronounced row. The rho method was made twenty-five percent
faster by Brent [43] in 1980. His idea was to stop the algorithm when xj for
j = 2i occurs, then consider xj−x2i (mod p) for 3·2i−1 < j ≤ 2i+1. This has the
advantage of revealing the period length after far fewer arithmetic operations
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than Pollard’s original rho method. Adapting this modification, Brent and
Pollard found a factor, 1238926361552897, of the eighth Fermat number F8 =
228

+ 1 in approximately two hours on a mainframe computer (see [44]).

Pollard’s two methods above may be invoked when trial division fails to be
useful. However, if the methods of Pollard fail to be useful, which they will for
large prime factors, say, with the number of digits in the high teens, then we
need more powerful machinery. The following is one of those.

In the early 1980s, Carl Pomerance was able to fine-tune the parameters in
Kraitchik’s sieve method (see [190]). The following is taken from [169].

C.5 The Quadratic Sieve (QS)

(1) Choose a factor base F = {p1, p2, . . . , pk}, where the pj are primes for
j = 1, 2, . . . , k ∈ N.

(2) For each nonnegative integer j, let t = ±j. Compute yt = (�√n�+ t)2 −n
until k + 2 such values are found that are pk-smooth. For each such t,

yt = ±
k∏
i=1

p
ai,t

i , (C.4)

and we form the binary k + 1-tuple, vt = (v0,t, v1,t, v2,t, . . . , vk,t), where
vi,t is the least nonnegative residue of ai,t modulo 2 for 1 ≤ i ≤ k, v0,t = 0
if yt > 0, and v0,t = 1 if yt < 0.

(3) Obtain a subset S of the values of t found in step (2) such that for each
i = 0, 1, 2, . . . , k, ∑

t∈S

vi,t ≡ 0 (mod 2). (C.5)

In this case, x2 =
∏
t∈S x

2
t ≡

∏
t∈S yt = y2 (mod n), where xt = �√n�+ t,

so gcd(x± y, n) provides a nontrivial factor of n if x �≡ ±y (mod n).

In step (2), we have that yt ≡ x2
t (mod n). Thus, if a prime p

∣∣ yt = x2
t − n,

we have x2
t ≡ n (mod p). Thus, we must exclude from the factor base any primes

p for which there is no solution x ∈ Z to the congruence x2 ≡ n (mod p). In
other words, we exclude from the factor base any primes p for which n is not a
quadratic residue modulo p.

Example C.5 Let n = 30167. From Footnote C.2, k = 11, so we choose the
first eleven primes for which n is a quadratic residue. They comprise our factor
base F = {2, 7, 11, 17, 29, 31, 37, 41, 43, 53, 67}. We see, by inspection, that a
subset S of the values of t in the table on page 518 (which we computed given
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�√n� = 173) such that
∑

t∈S
vi,t ≡ 0 (mod 2) for each i = 0, 1, 2, . . . , 11 is

S = {0, 18,−23}. Thus,
∏
t∈S

x2
t = 22325417321912 ≡ 90622 ≡ x2 (mod 30167),

and ∏
t∈S

yt = 2272112172412 ≡ 168372 ≡ y2 (mod 30167),

so y2 − x2 ≡ 168372 − 90622 ≡ 7775 · 25899 (mod 30167).
By computing both of the values, gcd(7775, 30167) = 311 = gcd(y − x, n)

and gcd(25899, 30167) = 97 = gcd(x+ y, n), we get that n = 30167 = 97 · 311.

t xt yt vt

0 173 −2 · 7 · 17 (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0)
−1 172 −11 · 53 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0)
−5 168 −29 · 67 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)
5 178 37 · 41 (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0)
−6 167 −2 · 17 · 67 (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1)
7 180 7 · 11 · 29 (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0)
11 184 7 · 17 · 31 (0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0)
14 187 2 · 74 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−15 158 −11 · 43 (1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0)
−17 156 −73 · 17 (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0)
18 191 2 · 7 · 11 · 41 (0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0)
−23 150 −11 · 17 · 41 (1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0)
28 201 2 · 7 · 17 · 43 (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0)

Some elementary linear algebra underlies the solution to a factorization prob-
lem using the QS as depicted in Example C.5. By ensuring that there are k+ 2
vectors vt in a k + 1-dimensional vector space F

k+1
2 , we guarantee that there

is a linear dependence relation among the vt. In other words, we ensure the
existence of the set S in step (3) of the algorithm such that congruence (C.5)
holds. There is no guarantee that x �≡ ±y (mod n), but there are usually several
dependency relations among the vt, so there is a high probability that at least
one of them will yield an (x, y) pair such that x �≡ ±y (mod n). The problem, of
course, is that for “large” smoothness bounds B, we need a lot of congruences
before we may be able to get these dependency relations.

For k as given in Footnote C.2, the asymptotic running time (see page 502),
of the quadratic sieve is O

(
exp

(
(1 + o(1))

√
ln(n) ln(ln(n))

))
.

To split n ∈ N, with the QS, we consider a polynomial,

g(x) = (x+ �
√
n�)2 − n,
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for x ∈ (−nε, nε). Then we construct a set of integers i ∈ S so that g(xi) factors
over the factor base and

∏
xi∈S

bi ≡
∏
xi∈S

g(xi) ≡ y2 (mod n).

For a single choice of g(x), there is an unreasonable amount of time required to
generate a sufficiently large enough set S over which g(x) will factor. The reason
is that for large n, the interval (−nε, nε) is also large since g(x) = O(n1/2+ε)
is large as well, and so we will probably not be able to factor most of the
g(x) over a small set of primes. The following version, taken from [170], solves
this problem by establishing an efficient means of using several polynomials so
that the x values may be chosen from smaller intervals rather than one large
interval. This means that the average polynomial values are smaller than the
average of g and have a higher probability of factoring over small primes than
the g(x) values in the ordinary quadratic sieve. This then is a way of running
the ordinary quadratic sieve in parallel.

C.6 Multipolynomial Quadratic Sieve (MPQS)

In this algorithm, n ∈ N is assumed to be a large composite number. The
goal is to split n.
(1) (Select bounds): Choose a large smoothness bound B and an M ∈ N

with (
√

2n/M)1/4 > B.

(2) (Select a factor base): Choose a set of L ∈ N primes as a factor base
(see the discussion on page 534) that is fixed for the algorithm:

F = {pi : pi is prime and
(
n

pi

)
= 1 for i = 1, 2, . . . , L},

where the symbol is the Legendre symbol. For pi ∈ F with qi = pai
i < B,

compute solutions tqi
to the congruences,

t2qi
≡ n (mod qi),

for 0 < tqi ≤ qi/2.

(3) (Create a quadratic polynomial): Choose r, k ∈ N with 1 < k < r.C.3

Generate primes g1, g2, . . . , gr, which are called g-primes, satisfying:

(a) gi ≈ (
√

2n/M)1/(2k),

(b) ( ngi
) = 1, and

(c) for each i = 1, 2, . . . , r, gcd(gi, q) = 1 for all q ∈ F.

C.3We choose a small values of r for pedagogical purposes but in practice, the MPQS typically
uses a value such as r = 30, for instance.
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For some choice of k of the g-primes where 1 ≤ i1 < i2 < · · · < ik ≤ r, let

a = gi1gi2 · · · gik .

Now, solve for bi with i = 1, 2, . . . , r in

b2i ≡ n (mod g2
i ).

Then use the Chinese remainder theorem A.12 on page 478, to solve the
system of congruences, for a specific choice of signs:

b ≡ ±bi1 (mod g2
i1); b ≡ ±bi2 (mod g2

i2); · · · b ≡ ±bik (mod g2
ik

).

For this solution b, set c = (b2 − n)/a2. Then we select

W (x) = a2x2 + 2bx+ c,

where the above generation guarantees that a, b, c satisfy

a2 ≈
√

2n/M, b2 − n = a2c, |b| < a2/2. (C.6)

(4) (Test W(x) for divisibility by factor base elements): If qi
∣∣ W (j) for

some j ∈ [−M,M ], called a sieve number, then qi
∣∣ (a2j + b)2 − n, so

j ≡ a−2(±tqi
− b) (mod qi),

since gcd(a, qi) = 1 from step (3). We compute a−2 (mod qi) for all such
qi via

a−2 ≡ g−2
i1
g−2
i2

· · · g−2
ik

(mod qi).

Thus, for efficiency, with the calculation of g-primes by the methodology
in in step (3), we also compute and save, for i = 1, 2, . . . , r, all the numbers
g−2
i (mod qi) for each qi = pai

i < B where pi ∈ F.

(5) (SievingC.4): Define a (2M + 1)-tuple:

s = (s(−M), s(−M + 1), . . . , s(j), . . . , s(M)),

which we initialize by setting s(j) = 0 for all j ∈ [−M,M ]. For each sieve
number j ∈ [−M,M ], i.e., those for which some prime power qi = pai

i

∣∣
W (j), reset

s(j) = ln pi + s(j).

(6) (Selection of factor candidates): Define the report threshold C.5 to be

RT = ln
(

1
2
M

√
n/2

)
.

C.4In general with the MPQS, the amount of time spent on sieving takes more than 85% of
the total computing time.
C.5The report threshold is the average of ln |W (j)| for j ∈ [−M,M ]. When s(j) ≥ RT , W (j)

is a good candidate for factoring over the factor base.
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Select from step (5) all those values j for which s(j) ≈ RT , test W (j),
and save a, b, j, (and thus tacitly c via the choice in step (3)) only if W (j)
factors over F. If the number of W (j) selected is less than L + 2, go to
step (3). Otherwise, go to step (7).

(7) (Creation of exponent vector): Since we have L+ 2 sieve values j, we
form

W (j) = (−1)bj0

L∏
i=1

p
bji
i , and bji ≤ ai, for j = 1, 2, . . . , L+ 2

and associate with W (j) the exponent vector,

vj = (bj0 , bj1 , . . . , bjL) (mod 2),

so we have a binary L+1-tuple for each j = 1, 2, . . . , L+2. Since we have
L+ 2 vectors with L+ 1 coordinates, then there is at least one subset,

S ⊆ {1, 2, . . . , L+ 2}C.6,

such that ∑
j∈S

vj ≡ 0 (mod 2),

so ∏
j∈S

W (j) ≡ z2 (mod n).

(8) (Factor n): Since (a2x+ b)2 ≡ a2W (x) (mod n), then

X2 ≡
∏
j∈S

(a2j + b)2 ≡ z2
∏
j∈S

a2 ≡ Y 2 (mod n),

so if 1 < gcd(X − Y, n) < n, then we have a nontrivial factor of n.

One big advantage of the MPQS over the ordinary quadratic sieve is that
one can generate many a, b, c values, and switch polynomials when the residues
grow too large. In step (3), we see that if we have a fixed k and set of r g-primes,
the number of polynomials that may be calculated is

2k−1

(
r

k

)
= 2k−1 r!

(r − k)!k!
.

Analysis To see why the conditions in (C.6) hold, we present the following
verification. Since (a) holds, then

a2 ≈
k∏
i=1

(√
2n
M

)2(1/2k)

=

(√
2n
M

)∑k
i=1(1/k)

=

(√
2n
M

)
,

C.6We can use Gaussian elimination modulo 2 on the matrix whose columns are vj to find a
set S. See Appendix A on page 494.
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so the first condition is satisfied in (C.6). Since b2 ≡ n (mod a2) given the
solution to the system of congruences via the Chinese remainder theorem, then
a2

∣∣ (b2 −n), so (b2 −n)/a2 = c ∈ Z, which is the second condition. If b ≥ a2/2,
then replace b by b− a2, and we have |b| < a2/2, which is the last condition.

As mentioned earlier, Lenstra invented a generalization of Pollard’s p − 1
method, which we now present. The following is taken from [170]. The reader
needing a reminder of elliptic curve fundamentals may go to page 498 in Ap-
pendix A.

C.7 The Elliptic Curve Method (ECM)

In this algorithm, n ∈ N is assumed to be composite, prime to 6, and not a
perfect power, and r ∈ N is a parameter. The goal is to split n.
(1) (Select and elliptic curve): Choose a random pair (E,P ) where E =

E(Z/nZ) is an elliptic curve:

y2 = x3 + ax+ b and P is a point on E.

Check that gcd(n, 4a3+27b2) = 1. If not, then we have split n if 1 < g < n,
and we may terminate the algorithm. Otherwise, we select another (E,P )
pair.

(2) (Choosing bounds): Select M ∈ N and bounds A,B ∈ N such that the
canonical prime factorization for M is M =

∏�
j=1 p

apj

j for small primes
p1 < p2 < · · · < p� ≤ B where apj

= �ln(A)/ ln(pj)� is the largest
exponent such that paj

j ≤ A. Set j = k = 1.

(3) (Calculating multiple points): Using (A.12) and (A.13) from page 499,
compute pjP .

(4) (Computing the gcd):

(a) If pjP �≡ o (mod n), then set P = pjP , and reset k to k + 1.

(i) If k ≤ apj , then go to step (3).
(ii) If k > apj

, then reset j to j + 1, and reset k to k = 1. If j ≤ �,
then go to step (3). Otherwise go to step (5).

(b) If pjP ≡ o (mod n), then compute gcd(m2, n) for m2 in (A.13). If
n > g, terminate the algorithm, since we have split n. If g = n, go
to step (5).

(5) (Selecting a new pair): Set r = r−1. If r > 0, go to step (1). Otherwise,
terminate with “failure”.
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Example C.6 Let n = 923 and select (E,P ) = (y2 = x3 +2x+9, (0, 3)). Then
gcd(4 · 23 + 27 · 92, 923) = 1, so we choose B = 4, based upon (C.7), and let
A = 3,M = 6 = 2 · 3 = p1 · p2. Now, using (A.12)–(A.13), with p1 = 2, we
calculate

p1P = 2(0, 3) ≡ (9−1,−82 · 27−1) ≡ (718, 373) �≡ o (mod n).

Thus we set P = (718, 373) and compute

p2P = 3P ≡ 2P + P ≡ (505, 124) + (718, 373) ≡ o (mod n).

Thus, we have that a denominator in (A.13) is not prime to n. In fact, the
calculation of m for 4P + 2P yields m = (124− 373)/(505− 718) = 83/71, and
gcd(923, 71) = 71. Indeed, n = 13 · 71, and we have split n.

What Example C.6 illustrates is that the failure of the existence of a modular
inverse for some m in the calculations may lead to a factor of n. Another way
of saying this is that the group law for multiplication actually fails in Z/nZ

since n is not prime and this allows us to get the factor. Indeed, it is somewhat
inaccurate in the ECM algorithm to say that pjP ≡ o (mod n), when in fact it
is pjP ≡ o (mod p) where p is the factor for which we were searching. However,
this is legitimate since we were, in a sense, assuming n to be prime and doing
the calculations as if it were so, in the hope that the calculations would “break
down” with an undefined denominator for some value of m in (A.13).

A significant advantage of the ECM is that its running time is highly reliant
on the factor, p

∣∣ n, found. Hence, one of the most useful means of employing
the ECM is for finding “small” prime factors in a number n, which is too large
to find all its factors. The reasons behind this are as follows. Assuming that
p is the smallest prime dividing n, the expected running time of the ECM is
known (under certain plausible assumptions) to be

O(exp(
√

(2 + o(1)) ln p(ln ln p)) · ln2 n).

This may be used in practice to select a smoothness bound B in step (2) of the
algorithm as

B = exp(
√

ln p(ln ln p)/2). (C.7)

Since we do not know p in advance, we may nevertheless select (for p) the value
�√n�. In this case, it is estimated that one out of every B iterations will be
successful in splitting n.

The worst-case scenario for the ECM is when n is an RSA modulus, in which
case we have that the expected running time is

O
(
exp(

√
(2 + o(1)) lnn(ln lnn)

)
= O

(
n
√

(2+o(1))(ln lnn)/ lnn
)
.

This being said, it is not surprising that ECM is most successful at splitting
non-RSA moduli, usually finding prime factors of less than 40 decimal digits in
large composite numbers.
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Now we look at one of the big guns in factoring. This requires some knowl-
edge of the theory of algebraic number fields (see [168] for instance). The
following is taken from [170].

C.8 	 The General Number Field Sieve

The QS and MPQS studied above is based upon the generation of many
smooth quadratic residues of n close to

√
n, for a given composite n. Pollard

extrapolated this idea in a manuscript circulated in 1988, where he used cubic
integers (those in Z[ 3

√
−2]) to factor by attempting to generate many smooth

cubic residues of n close to 3
√
n. Later the idea was extended to the fifth degree

and used to factor the 9th Fermat number. Then he looked at the more general
idea of looking at composite n that are close to being powers in the sense that

n = rt − s for smallr, |s| ∈ N and larger t ∈ N. (C.8)

The special case where |s| = 1 are called Cunningham numbers, which are
the subject of a project unto themselves in the history of factoring, called the
Cunningham project (see [47]).

The special number field sieve dubbed as such by the authors of [50]
can factor integers of the form given in (C.8) in expected running time
Ln(1/3.(32/9)1/3) (see Equation (A.16) on page 501 for a definition of the nota-
tion). The general number field sieve (GNFS) that we study below has expected
running time (for arbitrary integers n) given by Ln(1/3, 1.9229), making it a
fast algorithm for arbitrary integers but the SNFS is faster for the integers of
the special type given above.

We now look at the GNFS and point out that despite its sophistication and
power, it is still based essentially on Fermat’s difference-of-squares method.

The setup and the goal: Given a composite n to split, what we will
be setting out to achieve is the following. We select an appropriate monic
polynomial f(x), irreducible over Z, where m ∈ N with f(m) ≡ 0 (mod n), and
α ∈ C a root of f . This setup allows us to define the natural homomorphism,

φ : Z[α] �→ Z/nZ, via φ(α) = m,

which ensures that, for any g(x) ∈ Z[x], we have φ(g(α)) ≡ g(m) (mod n).
Thus, we will seek a set S of polynomials g over Z such that both

∏
g∈S g(α) =

β2 ∈ Z[α], and
∏
g∈S g(m) = y2 ∈ Z. Then by setting φ(β) ≡ x (mod n) we get

x2 = φ(β)2 ≡ φ(β2) ≡ φ


∏
g∈S

g(α)


 ≡

∏
g∈S

g(m) ≡ y2 (mod n), (C.9)

and we are back to Fermat’s method in (C.2) on page 509, where we have a
nontrivial factor of n if x �≡ ±y (mod n)! However, the devil is in the details so
here we go.
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The Algorithm
We make some initial simplifying assumptions the reasons for which the

reader may find in [50]. We assume that a smoothness bound B and the degree
d of the polynomial f have been chosen from experimental data.C.7 Now, we
let m = �n1/d� and write n in base m,

n = md + cd−1m
d−1 + · · ·+ c0, with 0 ≤ cj ≤ m− 1 for j = 0, 1, . . . , d. (C.10)

Now if we set

f(x) = xd + cd−1x
d−1 + · · · + c0 ∈ Z[x],

then we have a monic polynomial with f(m) = n. However, we wanted f to
be irreducible. If it is not, then we have no need of the number field sieve,
since then f(x) = g(x)h(x) where g and h have unequal positive degrees, so
g(x)h(x) = f(m) = n, and we have a nontrivial factor of n. Hence, we may
assume that f is irreducible (as are most monic polynomials over Z). Thus, we
have our polynomial f , B, and d values, and a number field F = Q(α) of degree
d over Q.

In the following, we have to extend our definition of smooth given on page
511. We call a+ bα ∈ Z[α] B-smooth if |NF (a+ bα)| is B-smooth where NF is
the norm map from the field F to Q. Also, for a given prime p ≤ B, set

R(p) = {r ∈ Z : 0 ≤ r ≤ p− 1 and f(r) ≡ 0 (mod p)}.

Then whenever (a, b) are coprime, p
∣∣ NF (a− bα) if and only if p

∣∣ (a− br) for
some r ∈ R(p) with p � b. Then r is called the (unique) signature of N(a− bα)
modulo p. Hence, for each coprime (a, b)-pair, there exist |R(p)| = r primes
p ≤ B dividing N(a− bα). We will let these be denoted by p1, p2, . . . , pr. Then
if a− bα is B-smooth, we have

N(a− bα) = (−1)a(0)
r∏
i=1

pa(pi), where a(0) ∈ {0, 1}.

Based on this we can now define exponent vectors. Let

v(a− bα) = (a(0), a(p1), a(p2), . . . , a(pr)).

However, based on our goal set above, we want not only a − bα to be B-
smooth, but also a − bm to be B-smooth. If the latter is the case, then let
qr+1, qr+2, . . . , qs be all the primes less than or equal to B dividing a− bm, and
write

a− bm = (−1)b(0)
s∏

i=r+1

q
b(qi)
i ,

C.7Heuristic complexity arguments determine the choices to be optimal when B = Ln(1/3, c)
for c = (8/9)1/3+ε, and d = ((2/c)1/2[lnn/(ln lnn)]1/3) = ln(Ln(1/3, (2/c)1/2)). These

choices ensure that Bd ≈ n2/d. Hence, n > 2d2
, which is needed to ensure that n is monic in

(C.10), a straightforward exercise to verify.



526 Factoring Large Integers

and define, v(a− bm) = (b(0), b(qr+1), . . . , b(qs)). Finally set

v(a, b) ≡ (v(a− bα), v(a− bm)) (mod 2).

Hence, v(a, b) is a binary vector of length r + s + 2.
For ease of elucidation, we make the simplifying assumption that if we find

a set S = {(a, b) ∈ Z × Z : gcd(a, b) = 1} such that
∑

(a,b)∈S v(a, b) is the
zero vector modulo 2, then both

∏
(a,b)∈S(a − bm) will be a square in Z and∏

(a,b)∈S(a−bα) will be a square in Z[α] (see [191] for the means of dealing with
the obstructions when this is not the case). Hence, all we do is to sieve over
coprime integer pairs (a, b) with 0 < b ≤ B, |a| ≤ B until the above is achieved.
Then we are in the situation (C.9) and we proceed to factor n.

� Summary

In order not to waste time, we must first ensure that the number n that we
are trying to factor is indeed composite. One may apply a strong pseudoprime
test (see Appendix F). Also, see the deterministic primality test by the authors
of [6], which we present in Appendix F.3.

Once convinced of the compositness of n, perform trial division up to 104,
then apply Pollard’s rho method, which finds small factors rather quickly. Trial
division is applied first since Pollard’s method has a slower running time than
trial division for the very small divisors, so it is worthwhile to apply the rho
method to a number whose small prime factors have been removed.

Secondly, many methods fail to detect when n is a perfect power, so we
must also rule out that possibility. If n = me, where m, e ∈ N and e > 1, then
we can actually determine m and e as follows. For each prime p ≤ log2 n,
do a binary search for r ∈ N satisfying n = rp, restricting attention to
the range 2 ≤ r ≤ 2�(log2 n)/p�+1. This calculation may be accomplished in
O((log2 n)3(log2(log2(log2 n)))) bit operations. Thus, this is a reasonable pre-
test for ensuring that we do not have such a power.

Once the above has been completed, use Pollard’s p − 1 method, followed
by Lenstra’s ECM. The ECM takes more time than Pollard’s rho method for
finding relatively small factors, so it may be used to advantage at this juncture.

If all the above fails, the big guns should be brought to bear on the problem.
This includes CFRAC, MPQS, and GNFS. Of course, all of this strategy depends
on the computing power available, the algorithms at hand, and other factors,
but all things being equal and having access to all of the above, then the strategy
should ultimately work modulo a suitable waiting period if the heavy machinery
mentioned here is employed. The running times given in this appendix provide
a good indicator of just how long one should expect to wait as your computer
executes its job.
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Appendix D: Technical and Advanced Details
In this appendix, we sequester certain technical details about some of the

ciphers or other algorithms. Otherwise, the explanation, left in the main text,
could present a more onerous task, leaving the novice reader stranded in some
cases. Hence, we provide the particulars of these algorithmic fine points for
those interested in pursuing the depths of a given cipher or methodology more
exhaustively. Moreover, for the reader interested in pursuing material beyond
that given in the main text, we provide some advanced algorithms that go well
beyond the boundaries of the standard presentations.

D.1 AES

We begin with some specifics concerning the AES cipher introduced in Sec-
tion 3.5.

� The Rijndael S-Box

The means by which Rijndael’s invertible S-box, explicitly given below, was
constructed consists of composing two functions. First, consider the 3×8 matrix
with entries,

ai,j = 8i+ j − 9 for 1 ≤ i ≤ 32 and 1 ≤ j ≤ 8.

Let the map g defined by taking 0 to 0 and for ai,j �= 0,

g : ai,j �→ a−1
i,j =

7∑
k=0

bk2j ,

the binary representation of the multiplicative inverse of ai,j in F28 . If we view
the image of g as a column vector,

g(ai,j) =




b7
b6
b5
b4
b3
b2
b1
b0




,

then we let f be the Affine function that is applied to the output of g via
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1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1







b7
b6
b5
b4
b3
b2
b1
b0




+




0
1
1
0
0
0
1
1




=




s7
s6
s5
s4
s3
s2
s1
s0




.

Hence,
f ◦ g(ai,j) = (s7s6s5s4s3s2s1s0)t

is the binary equivalent of the decimal digit appearing in the S-box at position
(i, j).

Observe that the column matrix, added on the left of the equality, is binary
for the decimal digit 99 (or equivalently, the hexadecimal digit 63).

We may consider the above in terms of polynomials. For instance,

a11,3 = 8 · 11 + 3 − 9 = 82

has representation as the binary polynomial,

x6 + x4 + x ∈ F28 ∼= F2[x]/(m(x)),

where
m(x) = x8 + x4 + x3 + x+ 1

is the irreducible Rijndael polynomial (see Example A.9 on page 489 in Appendix
A). The multiplicative inverse of 82 in F28 is given by x2 + 1, so

(b7, b6, b5, b4, b3, b2, b1, b0) = (0, 0, 0, 0, 0, 1, 0, 1).

Thus




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1







0
0
0
0
0
1
0
1




+




0
1
1
0
0
0
1
1




=




0
0
0
0
0
0
0
0




,

and 0 is the decimal entry in position (11, 3) of the S-box:
In summary, all of the values values of f ◦ g acting on the ai,j are given by

the decimal representations in the following Rijndael S-box.
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99 124 119 123 242 107 111 197
48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240
173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204
52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154
7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160
82 59 214 179 41 227 47 132
83 209 0 237 32 252 177 91
106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133
69 249 2 127 80 60 59 168
81 163 64 143 146 157 56 245
188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23
196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136
70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92
194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169
108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198
232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14
97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148
155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104
65 153 45 15 176 84 187 22

AES Mix Column (MC) Algorithm

In this step of the AES cipher, the columns in the state matrix are treated
as polynomials a(x) over F28 ∼= F2[x]/(m(x)), where

m(x) = x8 + x4 + x3 + x+ 1

is the irreducible Rijndael polynomial (see construction of the S-Box earlier).
Then a(x) is multiplied modulo M(x) = x4 + 1 with a fixed invertible polyno-
mial,

c(x) = 3x3 + x2 + x+ 2,

denoted by
c(x) ⊗ a(x).

Here multiplying modulo x4 + 1 means that

xi (mod x4 + 1) = xi (mod 4).

It can be shown that if

aj(x) = a3,jx
3 + a2,jx

2 + a1,jx+ a0,j
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represents column j in the state matrix, then c(x)⊗ a(x) can be represented by
the matrix product:

CAj =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2







a0,j

a1,j

a2,j

a3,j


 =




b0
b1
b2
b3


 = B,

where the matrix Aj is column j of the state matrix and C is the circulant matrix
representing c(x). Hence, each column Aj of the state matrix is multiplied in
this fashion by C. For instance, if

a(x) = x3 + 1,

then
c(x) ⊗ a(x) = 5x3 + 4x2 + 2x+ 3,

which is given by the matrix product:


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2







1
0
0
1


 =




3
2
4
5


 = B,

D.2 Silver-Pohlig-Hellman

The next algorithm is the Silver-Pohlig-Hellman algorithm for finding dis-
crete logs, which first appeared in 1978 (see [187]). We discussed issues sur-
rounding this algorithm on page 165.

� Silver-Pohlig-Hellman Algorithm for Computing Discrete Logs
Let α be a generator of F

∗
p and let β ∈ F

∗
p, and assume that we have a

factorization

p− 1 =
r∏
j=1

p
aj

j aj ∈ N,

where the pj are distinct primes. The technique for computing e = logα β is
to compute e modulo p

aj

j for j = 1, 2, . . . , r, then apply the Chinese remainder
theorem (see Theorem A.12 on page 478 in Appendix A). Since we operate on
each prime power paj

j , we replace pj with q for simplicity in what follows, and
simply refer to qa with the understanding that we are operating on each of the
r prime powers in this fashion. To compute e modulo qa we need to determine
e in its base q representation:

e =
a−1∑
i=0

biq
i where 0 ≤ bi ≤ q − 1 for 0 ≤ i ≤ a− 1.
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To find these bi, we proceed as follows. First, set β0 = β = αe, and observe that

(p− 1)
a−1∑
k=i

bkq
k−i−1 ≡ (p− 1)bi/q (mod p− 1). (D.1)

1. Calculate b0. By (D.1),

β
(p−1)/q
0 ≡ α(p−1)b0/q (mod p), (D.2)

using Fermat’s Little Theorem (see Corollary A.2 on page 479). Thus, we
compute α(p−1)k/q (mod p) until (D.2) occurs, in which case k is b0.

2. Calculate bi for i = 1, 2, . . . , a− 1. First, recursively define

βi = βα
−

i−1∑
k=0

bkq
k

.

By (D.1),

β
(p−1)/qi+1

i ≡ α(p−1)
∑a−1

k=i bkq
k−i−1 ≡ α(p−1)bi/q (mod p), (D.3)

so we compute α(p−1)k/q modulo p for nonzero k ≤ a−1 until the left and
right sides of (D.3) are congruent modulo p, in which case k is bi.

A small example is in order. This is, of course, not realistic in terms of the
degree of difficulty, but for pedagogical purposes, it will suffice, and we will do
this often for the same reasons throughout.

Example D.1 Let p = 37. Then α = 2 generates F
∗
37. Given β0 = β = 19, we

want to compute e = log2(19) in F
∗
37. We have

p− 1 = 36 = 22 · 32 = pa1
1 pa2

2 .

All congruences in the balance of this example are assumed to be modulo 37.
For p1 = 2:

k 0 1

α(p−1)k/p1 1 218 ≡ 36

i 0 1

βi 19 19 · 2−1 ≡ 28

β
(p−1)/pi+1

1
i 1918 ≡ 36 289 ≡ 36

bi 1 1
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Thus, the base 2 representation of log2(19) modulo 4 is

a−1∑
i=0

bip
i
1 = 1 · 20 + 1 · 21 ≡ 3 (mod 4). (D.4)

For p2 = 3:

k 0 1 2

α(p−1)k/p2 1 212 ≡ 26 224 ≡ 10

i 0 1

βi 19 19 · 2−2 ≡ 14

β
(p−1)/pi+1

2
i 1912 ≡ 10 149 ≡ 10

bi 2 2

Thus, the base 3 representation of log2(19) modulo 9 is

a2−1∑
i=0

bip
i
2 = 2 · 30 + 2 · 31 ≡ 8 (mod 9). (D.5)

Solving (D.4)–(D.5) by the Chinese remainder theorem , we get that

e = log2(19) = 35 in F
∗
37.

If n = p− 1, then given a factorization of n, the running time of the Silver-
Pohlig-Hellman discrete log algorithm is

O


 r∑
j=1

aj
(
lnn+

√
pj

)



group multiplications. This implies that the Pohlig-Hellman algorithm is only
efficient if the prime divisors of p−1 are small. This is the reason why we talked
about a proper choice of p on page 165 for the intractability of the discrete log
problem.

It should also be noted that the above algorithm makes use of what is known
as the baby-step giant-step algorithm for computing discrete logs due to the
late Dan Shanks, a pioneer in computational number theory. For the sake of
completeness, and because it leads to another important method for computing
discrete logs, we present it here. The following is taken from [170].
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D.3 Baby-Step Giant-Step Algorithm

� Baby-Step Giant-Step Algorithm for Computing Discrete Logs
Given a generator α of a cyclic group G of order n, and β ∈ G, the goal is

to compute the discrete logarithm,

x ≡ logα β (mod n).

(1) Compute s = �√n�.

(2) Baby-Step: For j = 0, 1, . . . , s− 1, compute (j, αjβ). Then sort the list
by second component in ascending order.

(3) Giant-Step: For i = 1, 2, . . . , s compute (αis, i) and sort by first compo-
nent in ascending order.

(4) Search and Compare: Search the lists in steps (2) and (3) to see if there
is an αjβ from step (2) and an αis from step (3) such that αjβ = αis. If
so, then compute

x ≡ is− j (mod n),

which is
logα β (mod n).

Example D.2 Let α = 5, β = 71, and n = 167. We want to determine

x ≡ log5(71) (mod 167).

First, we calculate s = �√n� = 12. The baby-step is the computation of

(j, 5j · 71 (mod 167)) for j = 0, 1, . . . , 11 :

(0, 71), (1, 21), (2, 105), (3, 24), (4, 120), (5, 99), (6, 161), (7, 137), (8, 17),
(9, 85), (10, 91), (11, 121). Then we sort according to the second element:

j 8 1 3 0 9 10
5j · 71 17 21 24 71 85 91

j 5 2 4 11 7 6
5j · 71 99 105 120 121 137 161

The giant-step is the computation of (512i (mod 167), i) for i = 1, 2, . . . , 12:
(152, 1), (58, 2), (132, 3), (24, 4), (141, 5), (56, 6), (162, 7), (75, 8), (44, 9),
(8, 10), (47, 11), (130, 12). Then we order according to the first component:

1512i 8 24 44 47 56 58
i 10 4 9 11 6 2
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1512i 75 130 132 141 152 162
i 8 12 3 5 1 7

Then we search the two lists and find that α3β ≡ 24 ≡ α4·12 (mod 167), so
x = 4 · 12 − 3 = 45 and indeed

log5(71) ≡ 45 (mod 167) since 545 ≡ 71 (mod 167).

The baby-step giant-step method presented above was first used by Shanks
in August of 1968 to calculate the class number of an imaginary quadratic field.
The running time for the algorithm is O(

√
n) group operations and according to

[159, Note 3.67(i), p. 109] is the same as the Silver-Pohlig-Hellman algorithm if
n is prime. Moreover, it uses O(

√
n) memory, so this deterministic algorithm has

a runtime/memory trade-off. Shanks’ method is a kind of square-root method,
of which Pollard provided other kinds such as his rho method (see [167, pp. 127–
130]). We now look at (arguably) the most potent and efficacious of the methods
for computing discrete logs. In its general form, it bears a strong resemblance
to some of the most powerful factoring algorithms (such as the number field
sieve (see [169, Section 5.2, pp. 207–220]), which may be considered to be a
variant of the following method). Although the following has a more general
formulation for other cyclic groups, we restrict our attention to F

∗
p for the sake

of simplicity of presentation. The following is a subexponential time algorithm
(see page 501).

D.4 Index-Calculus Algorithm

� The Index-Calculus Algorithm for Computing Discrete Logs

We solve β ≡ αx (mod p) where p is a large prime and α is a primitive root
modulo p.

Precomputation stage:
(1) Select a factor base (a set of “small primes” that will remain the primes

under consideration for the duration of the algorithm): B = {p1, . . . , pB}
consisting of the first B primes. (Here the choice for B should be made
such that a “considerable number” of the elements of F

∗
p can be expressed

as products of powers of elements of B.)

(2) Collect relations by choosing a random nonnegative integer k ≤ p− 2 and
compute the least positive residue of αk modulo p, if possible, then its
canonical prime factorization,

∏B
j=1 p

kj

j for kj ≥ 0. When such relations
exist we may take logs and get

k ≡
B∑
j=1

kj logα(pj) (mod p− 1). (D.6)
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Continue to choose (at least) B such k so that we are successful in securing
B relations as in (D.6). Here we are trying to solve for logα(pj) for j =
1, 2, . . . , B.

Calculation of discrete logs stage:

(3) For each k in (D.6), determine the value of logα(pj) for 1 ≤ j ≤ B by
solving the B (modular) linear equations with unknowns logα(pj).

(4) Select a random nonnegative integer t ≤ p− 2 and compute βαt.

(5) If possible, factor βαt over B, namely, write

βαt =
B∏
j=1

p
tj
j (tj ≥ 0). (D.7)

If it is not possible to get (D.7), then go to step (4). If (D.7) is successfully
obtained, then

logα(β) + t ≡
B∑
j=1

tj logα(pj) (mod p− 1),

from which we can calculate logα(β).

As usual, a small example will suffice to illustrate the algorithm.

Example D.3 Let p = 3361, α = 22, and B = {2, 3, 5, 7}. We wish to compute
log22(4) in F

∗
3361 using the index-calculus method. We choose randomly k =

48, 100, 186, 2986 and get

2248 ≡ 25 · 32 (mod 3361), 22100 ≡ 26 · 7 (mod 3361),

22186 ≡ 29 · 5 (mod 3361), 222986 ≡ 23 · 3 · 52 (mod 3361).

Thus we get the system of four congruences in four unknowns:

48 ≡ 5 log22(2) + 2 log22(3) (mod 3360),

100 ≡ 6 log22(2) + log22(7) (mod 3360),

186 ≡ 9 log22(2) + log22(5) (mod 3360) and,

2986 ≡ 3 log22(2) + log22(3) + 2 log22(5) (mod 3360).

This completes the precomputation stage. Now we use this to compute

log22(2) = 1100; log22(3) = 2314; log22(5) = 366; and log22(7) = 220.
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Suppose that we now select t = 754 at random and compute

βαt = 4 · 22754 ≡ 2 · 32 · 5 · 7 (mod 3361).

Thus, we have

log22(4) + 754 ≡ log22(2) + 2 log22(3) + log22(5) + log22(7) (mod 3360).

Hence, log22(4) = 2200, and we check that indeed

222200 ≡ 4 (mod 3361).

D.5 	 Brands’ Digital Cash Scheme

Now we turn to e-commerce and present the details of Brands’ scheme dis-
cussed at the end of Section 5.8 on page 232.

� 	 Brands’ Digital Cash Scheme

Setup Stage: The bank performs the following steps:
(1) Choose a large prime p such that (p− 1)/2 = q is also prime, and select α

to be the square of a primitive root modulo p. Also, we assume that the
DLP in (Z/pZ)∗ is intractable.

(2) Choose two random x1, x2 ∈ (Z/qZ)∗, compute g1 ≡ αx1 (mod p) and
g2 ≡ αx2 (mod p), then discard x1, x2. (Note that by (1), g1 ≡ g2 (mod p)
if and only if x1 ≡ x2 (mod q).) Make (α, g1, g2) public.

(3) Select a random secret x ∈ (Z/qZ)∗ and compute

h ≡ αx (mod p), h1 ≡ gx1 (mod p), and h2 ≡ gx2 (mod p).

Then (h, h1, h2) is the bank’s public key and x is the bank’s private key.

(4) Choose two public cryptographic hash functions,

H1 : ((Z/pZ)∗)5 �→ (Z/qZ)∗ and H2 : ((Z/pZ)∗)4 �→ (Z/qZ)∗.

(5) The merchant registers identification number M with the bank.

Opening Alice’s Account:

(1) Alice generates e1, e2 ∈ (Z/qZ)∗ at random and computes

A ≡ ge11 ge22 �≡ 1 (mod p),

which she sends to the bank.
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(2) The bank stores (A, IA, NA) in its database where IA is a digital data
string uniquely identifying Alice and NA is her account number.

Identification Protocol:D.1 When Alice wishes to withdraw coins from
her account, she must first identify herself to the bank’s satisfaction.

(1) Alice generates f1, f2 ∈ (Z/qZ)∗, at random, computes f ≡ gf11 gf22 (mod p),
and sends f to the bank.

(2) The bank generates a random k ∈ (Z/qZ)∗ (the challenge), and sends it
to Alice.

(3) Alice computes �1 ≡ f1 + ke1 (mod q) and �2 ≡ f2 + ke2 (mod q) (the
responses) and sends (�1, �2) to the bank.

(4) The bank accepts her response if and only if fAk ≡ g�11 g�22 (mod p).D.2

(5) If the bank accepts her response in step (4), it sends her an identification
number y1 = Ax.

(By completing step (5), Alice proves that she owns A. She does this by a
proof of knowledge of (e1, e2).)

Coin Withdrawal Protocol: For simplicity, we assume that Alice wants
to withdraw only one coin, a six-tuple of integers (X,Y, Y1, Y2, Y3, Z), which we
will now see how to construct.

(1) The bank chooses a random w ∈ (Z/qZ)∗, computes y2 ≡ αw (mod p),
y3 ≡ Aw (mod p), and sends (y2, y3) to Alice.

(2) Alice selects three random integers z1 ∈ (Z/qZ)∗ and z2, z3,∈ Z/qZ. She
computes the following where all congruences are modulo p:

y′1 ≡ Az1 , Y1 ≡ yz11 , Y2 ≡ yz22 αz3 and Y3 ≡ yz1z23 Az1z3 .

Now she computes s1, s2, t1, t2, u1, u2 ∈ (Z/qZ)∗ such that

e1z1 ≡ s1 + s2 (mod q), e2z1 ≡ t1 + t2 (mod q), z1 ≡ u1 + u2 (mod q).

D.1In the Brands scheme this step is often called the representation problem step. It turns
out that the Brands scheme is built on the Schnorr signature scheme and the representation
problem which is given as follows. In a group of prime order G with generators (g1, g2, . . . , gs)

for s ≥ 2, gj ∈ G, and a given h ∈ G, find a representation such that h =
∏s

j=1 g
bj

j for bj ≥ 0.
The reader will note that this is related to a discrete log problem and so is difficult without
knowledge of the bj .
D.2To see that step (4) identifies Alice uniquely, note that since A is unique to Alice and

fAk ≡ gf1
1 g

f2
2 (ge1

1 g
e2
2 )k ≡ gf1+ke1

1 gf2+ke2
2 ≡ g1

1 g
2
2 (mod p),

then Alice’s identity is indeed verified.
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Then she calculatesD.3

X ≡ gs11 gt12 Au1 (mod p) and Y ≡ gs21 gt22 Au2 (mod p).

(3) Alice computes a challenge,

c1 = H1(y′1, Y1, Y2, Y3, X),

and blinds it with c ≡ c1z
−1
2 (mod q), which she sends to the bank.

(4) The bank sends a response r ≡ xc + w (mod q) to Alice, and debits her
account. Alice accepts r if and only if D.4

αr ≡ hcy2 (mod p) and Ar ≡ yc1y3 (mod p).

(5) Alice computes Z ≡ rz2 + z3 (mod q). Her coin is

C = (X,Y, Y1, Y2, Y3, Z),

which she can now spend.

(Essentially (Y1, Y2, Y3, Z) is the banks’s signature on (X,Y ), so we write
(X,Y, sig(X,Y )) for C in what follows for simplicity.)

Spending Protocol: Alice wishes to purchase some goods from the mer-
chant.

(1) She sends the merchant her coin (X,Y, sig(X,Y )).

(2) The merchant verifies that XY �= 1,D.5 then sends a challenge,

c = H2(X,Y,M, TM )

to Alice, where TM is a timestamp with the date and time on it.
D.3Note that by this step, XY ≡ y′1 (mod p), which is Alice’s blinded identity. The reason

for this is as follows:

XY ≡ gs1
1 g

t1
2 g

s2
1 g

t2
2 (ge1

1 g
e2
2 )u1 (ge1

1 g
e2
2 )u2 ≡ gs1+s2

1 gt1+t2
2 ge1u1

1 ge2u2
2 ≡

ge1z1
1 ge2z1

2 (ge1
1 g

e2
2 )u1+u2 ≡ (ge1

1 g
e2
2 )z1 ≡ Az1 ≡ y′1 (mod p).

D.4These are necessary and sufficient condition for Alice to accept the bank’s response because
only the bank knows x. Therefore, only the bank can send a response satisfying both

αr ≡ αxc+w ≡ (αx)cαw ≡ hcy2 (mod p)

and
Ar ≡ Axc+w ≡ (Ax)cAw ≡ mcy3 (mod p).

D.5The merchant must check this since, if Alice is legitimate, then XY 	= 1. The reason is
that by Footnote D.3, XY ≡ y′1 (mod p). Thus, since y′1 ≡ Ax (mod p) with A 	≡ 1 (mod p)
by step (1) of the protocol for opening Alice’s account, and since x ∈ (Z/qZ)∗, by step (3) of
the setup stage, then x 	≡ 0 (mod q), which completes the reasoning.
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(3) Alice computes the responses,

r1 = s1+s2c (mod q); r2 ≡ t1+t2c (mod q); and r3 ≡ u1+u2c (mod q)

which she sends to the merchant.

(4) The merchant verifies that gr11 gr22 Ar3 ≡ XY c (mod p) holds and if so ac-
cepts the payment.D.6

(5) The merchant sends (X,Y, sig(X,Y ), TM , c, r1, r2) to the bank.

(6) The bank verifies the signature sig(X,Y ), that no double spending has
occurred, and that c and r1, r2 are valid challenge response protocols. If
all holds true, the bank pays the merchant.

Deposit Protocol:

(1) The merchant sends (X,Y, sig(X,Y ), TM , c, r1, r2) to the bank.

(2) The bank checks that sig(X,Y ) is valid, that the coin has not already been
spent, and that the merchant’s challenge and Alice’s responses r1, r2 are
valid. If all of this holds true, the bank pays the merchant.

As with the ECash scheme discussed in Section 5.8, Brands’ scheme requires
the customer to reveal enough information without revealing identity. However,
if Alice tries to double-spend, we now show she will be identified and charged
with fraud.

If Alice tries to spend the same coin twice, then there will be two distinct
challenges c1 and c2 to which she will respond with (all congruences being
modulo q)

r(1)
c1 ≡ s1 + s2c1, r(2)

c1 ≡ t1 + t2c1, r(3)
c1 ≡ u1 + u2c1,

and
r(1)
c2 ≡ s1 + s2c2, r(2)

c2 ≡ t1 + t2c2, r(3)
c2 ≡ u1 + u2c2,

respectively. Hence,

r(1)
c1 − r(1)

c2 ≡ s2(c1 − c2) and r(2)
c1 − r(2)

c2 ≡ t2(c1 − c2),

so

s2 ≡ (r(1)
c1 − r(1)

c2 )(c1 − c2)−1and t2 ≡ (r(2)
c1 − r(2)

c2 )(c1 − c2)−1. (D.8)

D.6This holds for valid responses from Alice since

gr1
1 g

r2
2 A

r3 ≡ gs1+s2c
1 gt1+t2c

2 (ge1
1 g

e2
2 )u1+u2c ≡ (gs1

1 g
t1
2 A

u1 )(gs2
1 g

t2
2 A

u2 )c ≡ XY c (mod p).
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Similarly, c2r
(1)
c1 − c1 − r

(1)
c2 ≡ s1(c2 − c1) and c2(r

(2)
c1 − c1r

(2)
c2 ) ≡ t1(c2 − c1), so

s1 ≡ (c2r(1)
c1 − c1 − r(1)

c2 )(c2 − c1)−1, t1 ≡ (c2(r(2)
c1 − c1r

(2)
c2 ))(c2 − c1)−1, (D.9)

so from (D.8) and (D.9), the bank can calculate s1, s2, t1, t2, and thereby

e1z1 ≡ s1 + s2 and e2z1 ≡ t1 + t2. (D.10)

Lastly, since

r(3)
c1 − r(3)

c2 ≡ u2(c1 − c2) and c2r
(3)
c1 − c1r

(3)
c2 ≡ u1(c2 − c1),

then

u2 ≡ (r(3)
c1 − r(3)

c2 )(c1 − c2)−1 and u1 ≡ (c2r(3)
c1 − c1r

(3)
c2 )(c2 − c1)−1,

from which the bank computes z1 ≡ u1 + u2. Hence, from (D.10), the bank
can compute e1, e2, and so A ≡ ge11 ge22 (mod p), which identifies Alice, who is
charged with fraud.

If Alice does not try to double-spend and is indeed legitimate, her identity
is not revealed. Thus, Brands’ scheme provides anonymity to legitimate enti-
ties since Alice never has to provide identification, as is the case with paper
money. As with the ECash scheme, Brands’ scheme also ensures untraceabil-
ity of legitimate entities. However, as proved above, the bank can identify a
double-spender. Brands’ scheme possesses authenticity since the scheme is se-
cure against impersonation due to the fact that it is based upon the intractability
of the DLP (see page 164).

One of the major advantages of Brands’ method is that it does not use any
cut-and-choose protocol or secret splitting (see Section 5.5), because the time
costs are excessive. Thus, with Brands’ scheme, the bank does not have to
engage in such protocols. Moreover, since Brands’ scheme is based upon the
DLP, then the integer factoring problem does not come into play as it does with
the use of an RSA modulus, used in the ECash scheme. Now we look at the
parameters involved in Brands’ method.

Since g1, g2 are made public, and A ≡ ge11 ge22 (mod p), then g1, g2 must be
chosen large enough to make it computationally infeasible for an adversary to
compute a representation of Alice’s account. Nevertheless, the bank must be
able to accommodate all its customers with the pairs (e1, e2), so the bank has
to ensure that g1, g2 are not chosen so large as to prevent this. The exponents
e1, e2 are in (Z/qZ)∗ and Brands suggests that q should have 140 bits while
e1, e2 should be around 70 bits. As usual, the system is only as secure as the
implementation and security of the private/secret keys.

Although Brands’ scheme is relatively complicated mathematically, most of
the work is required to preserve both anonymity and to prevent double-spending.
Given the above advantages, the consensus is that Brands’ scheme is preferable
to the ECash scheme in most implementations.
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D.6 Radix-64 Encoding

As we saw on pages 277 and 288, both PGP and S/MIME use radix-64
encoding techniques in their execution. Radix-64 is a data encoding scheme (see
page 433), consisting of base-64 encoded data with a 24-bit cyclic redundancy
check (CRC) appended to it, as specified in RFC2440 (see [213]), and see the
discussion on page 549. This is necessary to accommodate restrictions in many
email systems that only permit the use of blocks consisting of ASCII text. In
essence, the radix-64 conversion, also called ASCII armor, may be viewed as
a wrapper put on the binary message for transmission over nonbinary email
channels.

Table D.1 presents the character set of 65 printable characters, one of which,
the = sign, is used for padding. However, in order for radix-64 encoded data
to travel through mail-handling systems, there are no control characters for
such systems to detect when scanned, which results in a text file that is secure
against alterations made by email systems. Since one character is used for
padding, there are 26 = 64 characters to be employed for representation, so
that each character may be used to represent 6 bits of input data. In fact, this
is from where “radix-64” is derived since a six-bit number has 64 combinations.
We represent the 6-bit input data in their decimal value form for convenience in
the table, while the character encodings are represented by upper- and lower-
case English alphabet letters, together with the integers 0 through 9, and the
symbols +, /, and lastly = for padding.

Radix-64 Conversion
Table D.1

6-bit Input 0 1 2 3 4 5 6 7 8 9 10
Encoding A B C D E F G H I J K

6-bit Input 11 12 13 14 15 16 17 18 19 20 21
Encoding L M N O P Q R S T U V

6-bit Input 22 23 24 25 26 27 28 29 30 31 32
Encoding W X Y Z a b c d e f g

6-bit Input 33 34 35 36 37 38 39 40 41 42 43
Encoding h i j k l m n o p q r

6-bit Input 44 45 46 47 48 49 50 51 52 53 54
Encoding s t u v w x y z 0 1 2

6-bit Input 55 56 57 58 59 60 61 62 63 PAD
Encoding 3 4 5 6 7 8 9 + / =

The radix-64 encoding is a mapping denoted by f64 acting on 6-bit inputs
that are grouped into blocks that are mapped to 32-bit blocks. Each of the
four 6-bit input values is mapped to an 8-bit character. In essence, this means
that three bytes are mapped to four printable characters. This is illustrated in
Diagram D.1.
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Diagram D.1 Radix-64 Encoding Illustration

Binary input →

24−bit︷ ︸︸ ︷
6-bit 6-bit 6-bit 6-bit

f64

+ f64

+ f64

+ f64

+
Encoding ← 8-bit 8-bit 8-bit 8-bit︸ ︷︷ ︸

32−bit

Example D.4 For instance, suppose that the text for encoding consists of the
three bytes 01010000, 00100001, and 10000000, which are put into four 6-bit in-
put values: 010100, 000010, 000110, and 000000, whose decimal representations
are: 20, 2, 5, and 0. Looking at Table D.1, we get the radix-64 encodings as:
UCFA.

The radix-64 conversion also appends a CRC for the purpose of detecting
transmission errors. Essentially this is a checksum, meaning a value computed
to check the validity of a data transmission, usually by detecting transmission
errors. In the case of the armor checksum, a 24-bit CRC is converted to four
bytes of radix-64 encoding that is prepended by an = sign to the four-byte code.
For the actual mechanism by which this is done, the reader may consult [213].
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Appendix E: Probability Theory
We need concepts that are basic to probability at certain points in the text.

In particular, to understand entropy in Chapter 11, we must have some under-
standing of these fundamental concepts. In general, it will assist us throughout
the text to be familiar with certain probabilistic tools. For the following, the
reader will have to be familiar with the set theory in Appendix A (see Section
A.1 on pages 466–468).

E.1 Basic Probability

We have already encountered the symbol that makes it possible to count the
number of ways of arranging k objects from a set of n elements. This is given by
the binomial coefficient presented in Definition A.14 on page 473 in Appendix
A. Now we show this is tied in with the notion of “probability”, which we now
define.

Suppose we have an experiment, S, such as the flipping of a coin, with
possible outcomes in a set S. For instance if S is the flipping of a coin, then S

would be the set consisting of {heads, tails}. Each outcome in S is assigned a
probability that is a mapping,

p : P(S) �→ S,

with real values 0 ≤ ps ≤ 1 for each s ∈ S and with∑
s∈S

ps = 1,

where P(S) is the power set of S. (In the example of flipping a fair coin,
pheads = ptails = 1/2.) Furthermore, another property must be satisfied with
respect to probabilities of subsets of S. First of all, we must have that pS = 1,
called a certain outcome, and pφ = 0, called an impossible outcome, where φ is
the empty set; and if {Sj}nj=1 is a collection of pairwise disjoint subsets of S,
then

p∪n
j=1Sj

=
n∑
j=1

pSj
.

Now we may look at examples that bring in the binomial coefficient. Suppose
that we wish to engage in the experiment of tossing a coin a dozen times, and we
want to know the probability that a tail will come up seven times, an outcome
we will label t7. This is related to the number of ways of choosing 7 objects
from 12, which is (

12
7

)
=

12!
7!5!

= 792,

but this is not the probability, which is given by

pt7 =
792
212

= 792/4096 ≈ 1
5
,
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the ratio of the number of ways of success at getting 7 out of 12 tails divided
by the total number of possible outcomes.

In a more general scenario, we could define probability to be a map from a
subset of the power set satisfying certain closure properties. However, to keep
the description simple, we will stick with the power set, which we call the sample
space, and the subsets of the power set are called events, as well as outcomes.

Now suppose that we have two experiments S and T with random events
S and T. Then we can put them together and speak about the joint random
events U = (S,T). For instance, suppose that we have a standard deck of 52
cards and S consists of the event the value of the card, while T consists of the
event the suit of the card. Then U = (S,T) represents all the possibilities of the
52 outcomes of choosing a card. If ps,t represents the probability that a card is
drawn with value s and suit t, then given a fair deck with ps = 1/13, pt = 1/4,
and ps,t = 1/52.

In general, we let ps,t denote the probability that s ∈ S and t ∈ T both
occur. It follows that

ps =
∑
t∈T

ps,t,

so the probability of a fixed s ∈ S occurring is the sum of all the probabilities
of t ∈ T occurring along with s ∈ S occurring.

Independence

The two random events s ∈ S and t ∈ T, are called independent if

ps,t = ps · pt. (E.1)

For instance, in the deck of cards illustration above, the suit and value of
the cards are independent events.

Conditional Probability

If we know that event s ∈ S has occurred, then the probability that t ∈ T will
occur given that p(s) > 0, is defined as follows:

pt|s =
ps,t
ps

, (E.2)

called the conditional probability of t given s.

Notice that if we combine (E.1)–(E.2), we get that

s and t are independent events if and only if pt|s = pt.

In other words, the probability that t occurs is unaffected by the probability
that s occurs.

In what follows, we assume that s and s′ are event subsets of S.
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Probability Rules

The Difference Rule

If s ⊆ s′, then ps′�s = ps′ − ps.

The Sum Rule

ps∪s′ = ps + p′s − ps∩s′ .

The Product Rule

If ps > 0, then ps′∩s = ps′|s · ps.
Moreover, if s′ and s are independent, then ps′∩s = ps′ · ps.

There is a well-known result that is merely the putting together of some of
the above facts.

Baye’s Theorem

If s ∈ S and t ∈ T are events such that pS(s) > 0 and pt > 0, then

ps|t =
ps · pt|s

pt
.

Baye’s theorem allows us to formulate the conditional probability of s given
t in terms of the conditional probability of t given s. This is a valuable tool in
Chapter 11, when we talk about entropy.

Another question of importance in probability is: What is the probability
that after n trials of some experiment at least two of the outcomes are the same?
For instance, see the birthday attack on page 252.

� Probability of Two Outcomes Being the Same

Let S be an experiment that is the choice of an element from S (without
removing it from S), with outcomes S = {s1, s2, . . . , sm} having equal probabil-
ities psj = 1/m for all j = 1, 2, . . . ,m. Then the probability of two outcomes
being the same after n trials is at least

1 − e−(n−1)n/(2m).

We see from this fact that if n >
√

2m ln 2, then the probability that at least
two outcomes will be the same is at least 50%. (See page 254 for a comparison
with the birthday attack.)
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E.2 Randomness, Expectation, and Variance

There is another probabilistic notion that will be used is the notion of “ex-
pectation”.

A real-valued function X : S �→ R of a set S = {s1, s2, . . . , sn} is called a
random variable. For simplicity, we assume that the random variables take on
only finitely many values.

Expectation

If the probabilities of S are given by psj = pj for j = 1, 2, . . . , n, then the
expected value of X is given by

E(X) = p1 ·X(s1) + p2 ·X(s2) + · · · + pn ·X(sn).

Moreover, the average value, which will be “close to” E(X), is given
by looking at a large number of independent trials N , say, with outcomes
sj1 , sj2 , . . . , sjN , for sufficiently large N :

X(sj1) +X(sj2) + · · · +X(sjN )
N

.

Variance

The variance of X is defined by

var(X) = E((X − E(X))2).

The square root of the variance is called the standard deviation of X. The
following are central results on the notion of expectation and variance.

The Expectation Theorem

If X, Y are random variables and a, b ∈ R then

E(aX + bY ) = aE(X) + bE(Y ),

and if X and Y are independent, then

E(XY ) = E(X) · E(Y ).
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In order to state the next result, we need a notion related to variance.

Covariance

If X and Y are random variables, the covariance is defined by

covar(X,Y ) = E [(X − E(X)) · (Y − E(Y ))] .

The Variance Theorem

If X and Y are random variables, and a, b ∈ R, then

var(aX + bY ) = a2 · var(X) + b2 · var(Y ) + 2ab · covar(X,Y ),

and if X and Y are independent, then

var(X + Y ) = var(X) + var(Y ).

E.3 Binomial Distribution

An important notion that links the binomial coefficient with the notion of
expectation and variance is the following.

The Binomial Distribution Theorem

If s ∈ S, ps = p, and Bn(s) is the number of occurrences of s in n independent
trials, then

1. Bn(s) ∈ {0, 1, . . . , n}, and for any nonnegative integer k ≤ n, the proba-
bility that Bn(s) = k is given by

(
n

k

)
pk(1 − p)n−k,

2. E(Bn(s)) = n · p,

3. E(Bn(s)/n) = p, where

Fn(s) =
Bn(s)
n

is a random variable, called the nth relative frequency of s.

3. var(Bn(s)) = n · p · (1 − p),

4. var(Fn(s)) = p · (1 − p)/n.
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See the discussion of attacks on RSA on pages 176 and 177 for an application
of the above notions, as well as the references to expectation throughout the
text. The above is also of value when discussing such phenomena as the birthday
attack (see pages 252–255).

E.4 The Law of Large Numbers

In the theory of probability, there exist numerous versions of what is called
the “law of large numbers”. What they all essentially say is that if an experi-
ment is performed n times for sufficiently large n, then the difference between
the expected and actual values is very small. One way of describing this math-
ematically is the following.

Law of Large Numbers

If X1, X2, . . . , Xn are independent random variables, and X =
∑n
j=1 Xj , then

for any ε > 0,

p(|X/n− E(X/n)| ≥ ε)) ≤
∑n
j=1 var(Xj)
n2 · ε2 ,

where p(|X/n− E(X/n)| ≥ ε) is the probability that |X/n− E(X/n)| ≥ ε.

The law of large numbers can be illustrated using the binomial distribution
theorem. Let Bn(s) denote the number of heads in n independent coin-flipping
trials. Then p = ps = 1/2, E(Bn(s)) = n/2, and var(Bn(s)) = n/4, so if
X = Bn(s), then var(X) =

∑n
j=1 Xj = n/4, and

p(|X/n− E(X/n)| > ε)) ≤ 1
4n · ε2 ,

so as n → ∞, the probability goes to zero. In other words, we may expect that
the number of heads will not be far from n/2 if the experiment is performed
enough times.

E.5 Probability and Error Detection

We conclude this appendix with some data concerning probability and error
detection. We are all familiar with power surges and other electro magnetic
disruptions. These types of interference may cause transmission errors, that
is, the loss, alteration, or insertion of data. Thus, we need mechanisms for
detecting when this occurs.

A simple mechanism for error detection is called parity checking, which in-
volves the sender’s computation of an additional bit, called a parity bit, which
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is attached to each character before sending. The receiver removes the parity
bit, and executes the same computation as the sender to verify that the com-
putation agrees with the value of the parity bit. For instance, if odd parity is
chosen and agreed upon by receiver and sender, then the sender selects a parity
bit that will make the total number 1-bits odd. For each character, the receiver
computes the parity to ensure it is the same as the sender’s computation. If
not, an error has been detected. However, if an even number of bits have been
altered, then the parity check cannot detect the errors since the total number
of 1-bits remains the same. This and other error detection methods, which we
will discuss, are subject to some such disadvantage. The need is to reduce the
probability of the receiver’s acceptance of transmission errors.

On pages 320 and 542, we made reference to the notion of a checksum, which
helps to detect errors in transmission. The means by which this is accomplished
is for the sender to view the data as a sequence of binary integers and compute
their sum. This may be a 16- or 32-bit checksum, often built into many networks.
Thus, there is ease of computation. However, checksums do not detect all
common errors such as simple bit reversal in some packets. For instance, if the
last bit in every packet is reversed, then the checksum will remain the same.

One mechanism for error detection that is superior to each of the above is the
cyclic redundancy check (CRC), which we mentioned on page 541 in Appendix
D. The mechanism for computing a CRC is a shift register, which we discussed
on page 155, together with addition modulo 2. First, all values in the shift
registers are initialized to 0. Then the bits of the message are shifted one at a
time until the entire message has been processed into the shift register unit. The
receiver uses exactly the same shift register unit to calculate the CRC for the
message and to verify its agreement with the CRC transmitted by the sender.

A typical CRC is 16-bit, called CRC-16, where the sender appends an addi-
tional sixteen zeros to the message. Then the receiver computes a CRC over the
transmitted message together with the transmitted CRC. If there are no errors,
the computed value will be zero. As seen in Chapter 11, a mathematical means
for representing a message is the use of a binary polynomial. For example,

f(x) = 1 + x5 + x12 + x16

might be used in CRC-16. Then an n-bit message would be represented by a
binary polynomial d(x) of degree n − 1, and the CRC value corresponding to
d(x) is the 16-bit word represented by the polynomial,

r(x) = x16 · d(x)/f(x).

It is a provable fact that CRCs detect more errors than checksums. For
instance, errors involving alterations to a small number of bits near one location
are called burst errors. Such errors are often caused by lightning for instance,
so detecting these is an important exercise. It can be shown that CRC-16 can
detect all burst errors of bitlength no more than 16, and more than 99% of
burst errors of greater bitlength. The downside is that CRCs are more difficult
to compute than checksums or parity checks. Yet, a CRC can be implemented
with minimal cost, so it remains the error detection mechanism of choice.
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Appendix F: Recognizing Primes

F.1 Primality and Compositeness Tests

The methods in Appendix C for factoring might be considered a means for
recognizing primes if an attempt to factor n fails. Of course, we need only look
at odd integers, so for instance, we could simply trial divide n by all odd integers
between 2 and

√
n. However, if n is a 100-digit integer, say, then this would

take longer than the life of the universe!
In general, factorization methods are quite time consuming, whereas deciding

whether a given n is composite or prime is much more efficient. Part of the
reason is that a test for recognizing primes, which are not attempts to factor n,
and which determine n to be composite, do not provide the factors of n. Two
tests for recognizing primes are given as follows.

(1) The test has a condition for compositeness. If n satisfies the condition, then
n must be composite. If n fails the condition, it might still be composite
(with low probability). In other words, a successful completion of the
test — satisfying the condition — always guarantees that n is composite;
whereas an unsuccessful completion of the test — failing to satisfy the
condition — does not prove that n is prime.

(2) The test has a condition for primality. If n satisfies the condition, then n
must must be prime. If it fails the condition, then n must be composite.

We call (1) a compositeness test and (2) a primality test.

Factorization methods may be used as compositeness tests, but quite expen-
sive ones, as we discussed above. Thus, they may be used only as compositeness
tests, and only to find very small factors.

Primality tests, as we have defined them, are sometimes called primality
proofs, which are typically either complicated to apply or else are applicable only
to special numbers such as Fermat numbers, those of the form 22n

+1. In other
words, they sacrifice either speed or generality, but always provide a correct
answer without failure. We look at one, which employs the converse of Fermat’s
little theorem (see Corollary A.2 on page 479). The following is attributable to
D.H. Lehmer, M. Kraitchik, and others (see page 511 in Appendix C).

� Primality Test via the Converse of Fermat’s Little Theorem
Suppose that n ∈ N with n ≥ 3. Then n is prime if and only if there exists

an m ∈ N such that mn−1 ≡ 1 (mod n), but m(n−1)/q �≡ 1 (mod n) for any
prime q

∣∣ (n− 1).

A major pitfall with the above primality test is that we must have knowledge
of a factorization of n − 1, so it works well on special numbers such as Fermat
numbers, for instance. However, the above is a general “proof” that n is prime
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since the test finds an element of order n − 1 in (Z/nZ)∗, namely a primitive
root modulo n (see page 480). Furthermore, it can be demonstrated that if we
have a factorization of n− 1 and n is prime, then the above primality test can
be employed to prove that n is prime in polynomial time; but if n is composite
the algorithm will run without bound, or diverge.

Primality proofs sacrifice one of speed or generality. For instance, there is
the Lucas-Lehmer test for Mersenne numbers, Pocklington’s theorem, Proth’s
theorem, and Pepin’s theorem, all of which the reader may see in detail by
consulting [169, Chapter 4, pp. 180–184], for instance.

We will be concerned herein with tests that are used in practice. Usually,
these are tests that are simple, generally applicable, and efficient, but unlike the
aforementioned tests, they sometimes fail. These are the compositeness tests.
Note that in a compositeness test, failure of the test means that n does not
satisfy the condition for compositeness and n is composite. In other words,
failure results in a composite number being indicated as a prime, but never is a
prime indicated as a composite number. The reason is that the condition is a
“proof of compositeness” in the sense that if the condition is satisfied, n is forced
to be composite. However, the converse is false. Composite numbers may fail
to satisfy the condition. We may again employ the converse of Fermat’s little
theorem as an illustration.

� Fermat’s Little Theorem as a Compositness Test

If n ∈ N, a ∈ Z with gcd(a, n) = 1, and

an−1 �≡ 1 (mod n), (F.1)

then n is composite.

Note that any n satisfying condition (F.1) must be composite by Fermat’s
little theorem. An application of the above is an interpretation of Lucas’ test as
a compositeness test by letting n be odd and a = 2. See [46] for a recent article
by John Brillhart on this famous test by Lucas. He argues that a primality test
is an algorithm “whose steps verify the hypothesis of a theorem whose conclusion
is “n is prime.” which is consistent with our definition.

If n fails condition (F.1), then this is not a proof that n is prime. For
instance, 2340 ≡ 1 (mod 341), yet 341 = 11·31. Such numbers that fail condition
(F.1), and are composite are called pseudoprimes. In fact, there are composite
numbers for which the choice of the base a is irrelevant in the sense that they
will always fail the test. For instance, a541 ≡ a (mod 541) for any a ∈ Z,
yet 561 = 3 · 11 · 17. This is an example of a Carmichael number or absolute
pseudoprime. Moreover, there are known to be infinitely many Carmichael
numbers (see [7]). This shows, in the extreme, that Fermat’s little theorem may
not be used as a primality test. However, the following is a well-known and
utilized primality test. The presentation is taken from [170].
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F.2 Miller-Selfridge-Rabin

� The MillerF.1-SelfridgeF.2-Rabin F.3 Primality Test

Let n− 1 = 2tm where m ∈ N is odd and t ∈ N. The value n is the input to
be tested by executing the following steps, where all modular exponentiations
are done using the repeated squaring method described on page 171.
(1) Choose a random integer a with 2 ≤ a ≤ n− 2.

(2) Compute
x ≡ am (mod n).

If
x ≡ ±1 (mod n),

then terminate the algorithm with

“n is probably prime”.

If t = 1, terminate the algorithm with

“n is definitely composite.”

Otherwise, set j = 1 and go to step (3).

(3) Compute
x ≡ a2jm (mod n).

If x ≡ 1 (mod n), then terminate the algorithm with

“n is definitely composite.”

If x ≡ −1 (mod n), terminate the algorithm with

“n is probably prime.”

Otherwise set j = j + 1 and go to step (4).

F.1Gary Miller obtained his Ph.D. in computer science from U.C. Berkeley in 1974. He is
currently a professor in computer science at Carnegie-Mellon University. His expertise lies in
computer algorithms.
F.2This test is most often called the Miller-Rabin Test in the literature. However, John

Selfridge was using the test in 1974 before Miller first published the result, so we credit
Selfridge here with this recognition. John Selfridge was born in Ketchican, Alaska, on February
17, 1927. He received his doctorate from U.C.L.A. in August of 1958, and became a professor
at Pennsylvania State University six years later. He is a pioneer in computational number
theory.
F.3Michael Rabin (1931–) was born in Breslau, Germany (now Wroclaw, Poland), in 1931.

In 1956, he obtained his Ph.D. from Princeton University where he later taught. In 1958, he
moved to the Hebrew University in Jerusalem. He is known for his seminal work in establishing
a rigorous mathematical foundation for finite automata theory. For such achievements, he was
co-recipient of the 1976 Turing award, along with Dana S. Scott. He now divides his time
between positions at Harvard and the Hebrew University in Jerusalem.
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(4) If j = t− 1, then go to step (5). Otherwise, go to step (3).

(5) Compute
x ≡ a2t−1m (mod n).

If x �≡ −1 (mod n), then terminate the algorithm with

“n is definitely composite.”

If x ≡ −1 (mod n), then terminate the algorithm with

“n is probably prime.”

If n is declared to be “probably prime” with base a by the Miller-Selfridge-
Rabin test, then

n is said to be a strong pseudoprime to base a.

Thus, the above test is often called the strong pseudoprime test F.4 in the liter-
ature. The set of all pseudoprimes to base a is denoted by spsp(a).

Let us look a little closer at the above test to see why it it is possible to
declare that “n is definitely composite” in step (3). If x ≡ 1 (mod n) in step
(3), then for some j with 1 ≤ j < t− 1:

a2jm ≡ 1 (mod n), but a2j−1m �≡ ±1 (mod n).

Thus, it can be shown that gcd(a2j−1m−1, n) is a nontrivial factor of n. Hence,
if the Miller-Selfridge-Rabin test declares in step (3) that “n is definitely com-
posite”, then indeed it is. Another way of saying this is that if n is prime, then
Miller-Selfridge-Rabin will declare it to be so. However, if n is composite, then
it can be shown that the test fails to recognize n as composite with probability
at most (1/4). This is why the most we can say is that “n is probably prime”.
However, if we perform the test r times for r large enough, this probability
(1/4)r can be brought arbitrarily close to zero. Moreover, at least in practice,
using the test with a single choice of a base a is usually sufficient.

Also, in step (5), notice that we have not mentioned the possibility that

a2t−1m ≡ 1 (mod n)

specifically. However, if this did occur, then that means that in step (3), we
would have determined that

a2t−2m �≡ ±1 (mod n),

from which it follows that n cannot be prime. Furthermore, by the above
method, we can factor n since gcd(a2t−2m − 1, n) is a nontrivial factor. This

F.4The term “strong pseudoprime” was introduced by Selfridge in the mid-1970s, but he did
not publish this reference. However, it did appear in a paper by Williams [289] in 1978.
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final step (4) is required since, if we get to j = t− 1, with x �≡ ±1 (mod n) for
any j < t − 1, then simply invoking step (3) again would dismiss those values
of x �≡ ±1 (mod n), and this would not allow us to claim that n is composite in
those cases. Hence, it allows for more values of n to be deemed composite, with
certainty, than if we merely performed step (3) as with previous values of j.

The Miller-Selfridge-Rabin test is an example of a Monte Carlo algorithm
meaning a probabilistic algorithmF.5 that achieves a correct answer more than
50% of the time. More specifically, Miller-Selfridge-Rabin is a Monte Carlo
algorithm for compositeness, since it provides a proof that a given input is com-
posite, but only provides some probabilistic evidence of primality. Furthermore,
Miller-Selfridge-Rabin is a yes-biased Monte Carlo algorithm meaning that a
“yes” answer is always correct but a “no” answer may be incorrect. In this
case, the answer is to the decision problem:F.6 “Is n composite?” A yes-biased
Monte Carlo algorithm is said to have error probability α ∈ R

+ with 0 ≤ α < 1,
provided that for any occurrence in which the answer is “yes”, the algorithm
will give the incorrect answer “no” with probability at most α, where the prob-
ability is computed over all possible random choices made by the algorithm for
a given input. Therefore, the Miller-Selfridge-Rabin algorithm is a yes-biased
Monte Carlo algorithm for the decision problem “Is n composite?” with error
probability α = (1/4)r.

There are many related algorithm that we have not discussed here, such
as the Solovay-Strassen test, because the Miller-Selfridge-Rabin test is compu-
tationally less expensive, easier to implement, and is at least as correct. For
information on such tests, the reader may consult [170, pp. 84–86], for instance.

There are several tests that are beyond the scope of this book. Nevertheless,
they are worth mentioning as a segue to the next section. Among them is
one using Artin symbols, described by Lenstra in [147], which is also given a
presentation in [168, Section 4.5, pp. 264–270]. There have also been proofs of
the existence of a deterministic polynomial time algorithm for primality testing
under the assumption of the Extended Riemann Hypothesis (ERH). The ERH
has has not yet been verified, but is widely believed to be true (see [162]). There
is also the Goldwasser-Kilian test presented in [108], which is based on elliptic
curves. The Goldwasser-Killian test was motivated by a desire to prove that,
at least theoretically, it is possible to find a polynomial time primality testing
algorithm. Using Schoof’s algorithm [243], this can be done, but the procedure
is impractical to implement and run. The idea was modified by Adleman and
Huang in [5], who presented a randomized algorithm that runs in expected
polynomial time on all inputs, as opposed to the restrictions in the Goldwasser-
Killian algorithm. There were other advances, but the goal of actually finding
an unconditional deterministic polynomial time algorithm for primality testing
has only recently been solved, and we present it in the next section. (For a
history of primality testing, see [290].)

F.5See the discussion of randomized algorithms on page 500 in Appendix A, since probabilistic
algorithms use random numbers.
F.6See page 502.



F.3. Primes is in P 555

F.3 Primes is in P

The following is an unconditional deterministic polynomial-time algorithm
for primality testing presented in [6] by M. Agrawal, N. Kayal, and N. Saxena.
For notation in what follows, see Appendix A, especially Definition A.22 on
page 479 and Definition A.23 on page 479, as well as results on polynomial
rings especially as they pertain to finite fields on pages 484–490.

In what follows, Zn for a given integer n > 1 denotes Z/nZ, and if h(X) ∈
Zn[X], then the notation,

f(X) ≡ g(X) (mod h(X), n)),

is used to represent the equation f(X) = g(X) in the quotient ring
Zn[X]/(h(X)). In particular, for suitably chosen r and a, values, we will be
looking at equation of the following type:

(X + a)n ≡ Xn + a (mod Xr − 1, n). (F.2)

Algorithm F.1 —
Unconditional Deterministic Polynomial-Time Primality Test

Input an integer n > 1, and execute the following steps.

1. If n = ab for some a ∈ N and b > 1, then terminate with output

“n is composite”.

2. Find the smallest r ∈ N such that ordr(n) > 4 log2
2 n.

3. If 1 < gcd(a, n) < n for some a ≤ r, then output

“n is composite”.

4. If n ≤ r, then output
“n is prime”.

5. Set a = 1 and execute the following:

(i) Compute Y (a) ≡ (X + a)n −Xn − a (mod Xr − 1, n).

(ii) If Y (a) �≡ 0 (mod Xr − 1, n), output

“n is composite”.

Otherwise, go to step (iii).

(iii) If Y (a) ≡ 0 (mod Xr − 1, n), set a = a + 1. If a < �2
√
φ(r) ·

log2(n)�, go to step (i). Otherwise, go to step 6.

6. Output
“n is prime”.
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� Analysis

The reason the authors of [6] considered equations of type (F.2) was that
they were able to prove the following.

Polynomial Primality Criterion

If a ∈ Z, n ∈ N with n > 1, and gcd(a, n) = 1, then n is prime if and only if

(X + a)n ≡ Xn + a (mod n). (F.3)

The satisfaction of polynomial congruence (F.3) is a simple test but the
time taken to test the congruence is too expensive. To save time, they looked
at the congruence modulo a polynomial, whence congruence (F.2). However,
by looking at such congruences, they introduced the possibility that composite
numbers might satisfy (F.2), which indeed they do. Yet, the authors were able
to (nearly) restore the characterization given in the above polynomial primality
criterion by showing that for a suitably chosen r, if (F.2) is satisfied for several
values of a, then n must be a prime power. Since the number of a values and the
suitably chosen r value are bounded by a polynomial in log2(n), they achieved
a deterministic polynomial time algorithm for primality testing.

The authors of [6] were able to to establish the following facts about their
algorithm. The reader will need the concepts of ceiling and floor functions (see
pages 473 and 474 in Appendix A).

Facts Concerning Algorithm F.1

1. The algorithm outputs “n is prime” if and only if n is prime. (Hence, it
outputs “n is composite” if and only if n is composite.)

2. There exists and r ≤ �16 log5
2(n)� such that ordr(n) > 4 log2

2(n).

3. The asymptotic time complexity of the algorithm is O(log10.5+ε
2 (n)) for

any ε > 0.

4. It is conjectured that the time complexity of the algorithm can be im-
proved to the best-case scenario where r = O(log2

2(n)), which would
mean that the complexity of the algorithm would be

O(log6+ε
2 (n)) for any ε > 0.

Two conjectures support the authors’ conjecture in part 4 above. They are
given as follows.
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Artin’s Conjecture

If n ∈ N is not a perfect square, then the number of primes q ≤ m for which
ordq(n) = q − 1 is asymptotically A(n) · m/ ln(m), where A(n) is Artin’s
constant given by

A(n) =
∞∏
j=1

(
1 − 1

pk(pk − 1)

)
= 0.3739558136 . . . ,

with pk being the kth prime.

If Artin’s conjecture becomes effective for m = O(log2
2(n)), then it follows

that there is an r = O(log2
2(n)) with the desired properties.

The other conjecture that supports their contention is given as follows.

Sophie Germane’s Prime Density Conjecture

The number of primes q ≤ m such that 2q+1a is also a prime is asymptotically
2C2m/ ln2(m), where C2 is the twin prime constant given by

C2 =
∏
p≥3

p(p− 2)
(p− 1)2

≈ 0.6601611816 . . . .

aSuch primes are called Sophie Germane primes.

If the Sophie Germane conjecture holds, then r = O(log2+ε
2 (n)) for any ε > 0

such that ordr(n) ≥ 4 log2
2(n). Hence, the algorithm, with this r value, yields a

time complexity of O(log6+ε
2 (n)) for any ε > 0.

The authors of [6] leave one more conjecture, the affirmative solution of
which would improve the complexity of algorithm F.1 to O(log3+ε

2 (n)) for any
ε > 0.

Conjecture F.1 If r is a prime not dividing n > 1 and if

(X − 1)n = Xn − 1 (mod Xr − 1, n),

then either n is prime or n2 ≡ 1 (mod r).

The result given in Algorithm F.1 is a major breakthrough and the simplicity
of the approach is even more noteworthy given the attempts at finding such an
algorithm through much more difficult techniques such as those discussed in the
previous section. The algorithm uses essentially only elementary properties of
polynomial rings over finite fields and a generalization of Fermat’s little theorem
in that context, quite impressive indeed.

The next section deals with the generation of random primes, another im-
portant feature in the recognition of primes.
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F.4 Generation of Random Primes

When we talked about SRP on page 200, we discussed safe primes, p, those
for which (p − 1)/2 is also prime. Safe primes are also important in selecting
an RSA modulus n = pq since, if p and q are safe primes, then RSA is not
vulnerable to p − 1 and p + 1 factoring methods discussed in Section C.3 (see
page 514). In general, having safe primes in the modulus makes it more difficult
to factor. However, finding such primes is also more difficult. We present the
following algorithm for so doing, which is taken from [170].

� Algorithm for Generating (Probable) Safe Primes

Let b be the input bitlength of the required prime. Execute the following
steps.
(1) Select a (b− 1)-bit odd random n ∈ N and a smoothness bound B (deter-

mined experimentally).

(2) Trial divide n by primes p ≤ B. If n is divisible by any such p, go to step
(1). Otherwise, go to step (3).

(3) Use the Miller-Selfridge-Rabin test on page 552 to test n for primality. If
it declares that “n is probably prime”, then go to step (4). Otherwise, go
to step (1).

(4) Compute 2n + 1 = q and use the Miller-Selfridge-Rabin test on q. If it
declares q to be a probable prime, terminate the algorithm with q as a
“probable safe prime”. Otherwise go to step (1).

There are primes that have even more constraints to ensure security of the
RSA modulus. They are given as follows.

Definition F.1 (Strong Primes)
A prime p is called a strong prime if each of the following hold.

(1) p− 1 has a large prime factor q.

(2) p+ 1 has a large prime factor r.

(3) q − 1 has a large prime factor s.

The following algorithm was initiated in [113].

� Gordon’s Algorithm for Generating (Probable) Strong Primes

(1) Generate two large (probable) primes r �= s of roughly equal bitlength
using the Miller-Selfridge-Rabin test.

(2) Select the first prime in the sequence {2js+ 1}j∈N, and let

q = 2js+ 1

be that prime.
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(3) Compute p0 ≡ rq−1 − qr−1 (mod rq).

(4) Find the first prime in the sequence {p0 + 2iqr}i∈N, and let

p = p0 + 2iqr

be that prime, which is a strong prime.

Although it is possible to generate primes that are both safe and strong,
the algorithms are not as efficient as Gordon’s algorithm. Furthermore, choos-
ing random primes large enough will generally thwart direct factoring attacks.
The following, also taken from [170], provides a mechanism for generating large
random primes.

� Large (Probable) Prime Generation

We let b be the input bitlength of the desired prime and let B be the input
smoothness bound (empirically determined). Execute the following steps.

(1) Randomly generate an odd b-bit integer n.

(2) Use trial division to test for divisibility of n by all odd primes no bigger
than B. If n is so divisible, go to step (1). Otherwise go to step (3).

(3) Use the Miller-Selfridge-Rabin (MSR) to test n for primality. If it is de-
clared to be a probable prime, then output n as such. Otherwise, go to
step (1).

� Large (Provable) Prime Generation

Begin with a prime p1, and execute the following steps until you have a
prime of the desired size. Initialize the variable counter j = 1.

(1) Randomly generate a small odd integer m and form n = 2mpj + 1.

(2) If 2n−1 �≡ 1 (mod n), then go to step (1). Otherwise, go to step (3).

(3) Using the primality test on page 550, with prime bases 2 ≤ a ≤ 23, if for
any such a,

a(n−1)/p �≡ 1 (mod n)

for any prime p dividing n − 1, then n is prime. If n is large enough,
terminate the algorithm with output n as the provable prime. Otherwise,
set n = pj+1, j = j + 1, and go to step (1). If the test fails go to step (1).

Note that since we have a known factorization of n−1 in the above algorithm,
and a small value of m to check, then the test is simple and efficient.
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F.5 Decision Problem or Primality Test?

On page 551, we discussed Lucas’ test as an application of Fermat’s compos-
iteness criterion (F.1) (contrapositively speaking). There is, however, a brand
of opinion that Lucas’ test is really a decision problem (see page 502). Here is
the reasoning.

Lucas’ test tells us to compute 2n−1 (mod n). If

2n−1 �≡ 1 (mod n),

then we know that n is not prime and send it off to some factoring routine such
as discussed in Appendix C.

If
2n−1 ≡ 1 (mod n),

then we send it off for primality testing. Hence, the Lucas test may be viewed
as a decision problem on whether to send n for primality testing or factoring.
Since decision problems are “yes-no” issues, we phrase the question as

Do we send n for primality testing?

If the answer is yes, we do so, and if the answer is no, we send it to a factoring
algorithm.

There is merit to the above argument. Attendant with the above viewpoint is
the opinion that assigning probabilities or improving such estimates has nothing
to do with primality testing. Thus, this school of thought would not consider
the MSR test in Section F.2 to be a test that in any way assists with practical
primality testing. Given that MSR does not satisfy our criterion (2) given on
page 550, this viewpoint also has some merit. That said, this does not prevent
the use of such algorithms in practice.

The aforementioned point of view is presented for mental fodder and general
interest in what is often a contentious topic.
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Appendix G: Exercises
We do not see things as they are, but as we are.

— from The Talmud, compilations of Jewish civil ceremonial law, dating
from the fifth century AD.

G.1 Chapter 1 Exercises

� In Exercises 1.1–1.4, use Table 1.2 for the Caesar cipher on page 11 to
decrypt the ciphertext given in each.

1.1. ZH EHJLO RXV MRXUQB.

1.2. RQ WKH LVODQG RI FUHWH.

1.3. ZLWK WKH PLQRDQ FLYLOLCDWLRQ.

1.4. D WUXOB PDJQLILFHQW SHRSOH.

� In Exercises 1.5–1.8, use Table 1.3 on page 11 to decrypt the numeric ci-
phertext given in each.

1.5. 20,18,4,12,14,3,20,11,0,17,0,17,8,19,7,12,4,19,8,2.

1.6. 11,8,13,4,0,17,0,17,0,8,18,0,12,24,18,19,4,17,24.

1.7. 4,0,18,19,4,17,8,18,11,0,13,3,8,18,

17,8,2,7,8,13,7,8,18,19,14,17,24.

1.8. 3,4,2,8,15,7,4,17,19,7,4,15,7,0,8,18,19,14,18,3,8,18,10.

� In Exercises 1.9–1.12, use the Polybius square 1.1 on page 10 to decrypt the
numeric ciphertext given in each.

1.9. 3534315412244543 521143 1123151114 3421 232443 44243215.

1.10. 253334132543 4215353111131514 44344213231543.

1.11. 44454233243322 142422244443 24334434 433445331443.

1.12. 33345224442443 11 1211432443 3421 32113354
13243523154243.

1.13. Using the permutation cipher displayed on page 9 decrypt the following
ciphertext:

IPEROTEWMURDS.

(Hint: See the discussion concerning the finding of inverse permutations
on page 122.)
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1.14. Using the description of atbash given on page 23, decipher the following:

WZMRVO XIBKGZMZOBAVW RG.

(Hint: You may visualize the atbash methodology via the following cipher
table.)

Plain a b c d e f g h i j k l m
Cipher Z Y X W V U T S R Q P O N
Plain n o p q r s t u v w x y z
Cipher M L K J I H G F E D C B A

1.15. Using the above table, decipher the following

GSV DRHV NVM XLFOW MLG.

1.16. Consider the Alberti disk position as illustrated in Figure 1.22 on page
48. Using this position, decipher DOLZYIB. Then assume that the disk
is rotated so that the z sits over the C, and decipher SSIB RGBZRNPV,
keeping in mind that since there is no w on the disk, we use a double v to
denote it.

� In Exercises 1.17–1.20, use the Trithemius tableau on page 51 to decrypt
each ciphertext.

1.17. MPPREQWPILPFWQ.

1.18. WFOYXZTWCPPMETTQI.

This is a quote from St. Francois De Sales (1567–1622), who was Bishop
of Geneva.

1.19. YPXFESTWCCSMXSXQEWMQEQFZCMGQGNLLOSDF.

This is a quote from Indira Gandhi (1917–1984), who was prime minister
of India until her assassination.

1.20. LPQNMTSMEKCPNBWUC.

This is line 163 of “Lycidas” (1637), written by the English poet John
Milton (1608–1674).

� In Exercises 1.21–1.24, use the Bellaso polyalphabetic cipher on page 53
employing the keyphrase quintessential to decipher each cryptogram.

1.21. HZURFFXKYUTCTTCZRFFSFXC.

This is a quote from Benjamin Franklin (1706–1790) taken from “Advice
to Young Tradesmen” (1748). Franklin was an American scientist, diplo-
mat, and publisher.
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1.22. CIANENMQNFNQEGUUSAYXLGKGBNMTDY.

This is a quote from Arthur Rimbaud (1854–1891) taken from “ Une Sai-
son en enfer” (1873). Rimbaud was a sometimes controversial French poet.

1.23. BZIEGNFZNFNQEGUUYBG

ABMMIBRCSIUCNGNLSZUITEUY.

This is a quote from Sa’DĪ (Musharrif-udd̄in) (1184–1291) taken from
Chapter 8, maxim 44, of “Gullistan” [Rose Garden] (circa 1258). Sa’DĪ
was a Persian poet.

1.24. BZRFOWXONGBXUEIODQRNLWINNQ.

This is a quote from Lucius Annaeus Seneca (the Younger) (circa 4 BC–65
AD) taken from “Epistolae Morales”. Seneca was a Spanish-born Roman
statesman and philosopher.

� In Exercises 1.25–1.28, use the Vigenère cipher with the keyphrase given in
Example 1.4 on page 57 to decrypt the ciphertext.

1.25. FTVSPUVLOJQAGWYKGRBQWMQYIHIIUSLNWSSR.

This is a quote from Pedro Caldaron De La Barca (1600–1681) taken from
“La Vida es Sueño” [Life is a Dream]. He was a Spanish dramatist and
poet.

1.26. PCVEQWWFWIFPSWDIJZWMTBTQXMMLPW.

This is a quote from Claude Bernard (1813–1878) taken from “Leçons de
pathologie expérimentale”. Bernard was a French scientist.

1.27. FFRAUNPJKRVXRWZYSYQZULOLOUHKIWBF.

This is a quote from Virgil (70–19 BC). Vigil, known formally as Publius
Vergilius Maro, and was a Roman poet. See the story of Troy on pages 24
and 25 for an explanation of the reason behind the quote.

1.28. LFNRPMOSDKTWMNQBZMZG.

This is a quote from Virgil (see Exercise 1.27). This quote is the opening
line of “The Aeneid”, written in 19 BC.

G.2 Chapter 2 Exercises

� In Exercises 2.1–2.4, use the Playfair/Wheatstone cipher described on page
68 to decipher each cryptogram.

2.1. ZVKTCSZOFCUHTYUHVNODACUVJDGE

This is a quote from Menander (circa 342–291 BC) taken from “Monos-
ticha”. Menander was a Greek comic dramatist.
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2.2. FEODQFZJYOYFGPYHNOTOZKAMSNDJEIOT.

This is a quote from Arthur Schopenhauer (1788-1860) taken from “The
World as Will and Idea”, published in 1819. Schopenhauer was a German
philosopher.

2.3. HGGTFOUAOZFUEQKTIEOHTGNHHUZV.

This, and the completion of it in Exercise 2.4 below, is a quote from John
Fitzgerald Kennedy (1917–1963) taken from one of his speeches. Kennedy
was the 35th President of the United States until his assassination. Note
that most modern-day presidents used ghost writers. Among Kennedy’s
writers were Theodore Sorenson, Arthur Schlesinger, Jr. (see Exercise
2.5), and John Kenneth Galbraith (see Exercise 2.6), who wrote most of
Kennedy’s best-known quotes.

2.4. RGGJUGYFOUAOZROEPUNKUYKEWZGU,

See Exercise 2.3.

2.5. Use the keyphrase given in Example 2.2 on page 75, and employ Kasiski’s
method to the plaintext given below to show that the keylength is four.

“The only certainty in an absolute system is

the certainty of absolute abuse.”

(Hint: Look for the repeated groups of ciphertext UOVRSS and YR.
Then compute the gcd of their respective distances.)

The above is a quote from Arthur Schlesinger Jr. (1917–) taken from
an address he gave to the Indian Council of World Affairs in 1962. The
balance of the quote is: “Injustice and criminality are inherent in a system
of totalitarian dictatorship”. Schlesinger is an American educator and
historian (see also Exercise 2.3.)

� In Exercises 2.6–2.9, use the ADFGVX Field cipher method described on
pages 80 and 81 to decrypt the ciphertext in each case, where the key to
be used is given in each exercise.

2.6. In this exercise use the key SUBNETWORK.
FAAAXDAG DFFFFFFA FXGFFFAV GXGVAFGF
VFVFFAFA XFFFVGDX VFFXFXFX AFGGGVFX

GXGFGXGA AXAFAXXX

(Hint: Put each of the above ten rows as individual columns corresponding
to the numbering of the letters in the key as done in Example 2.3 on page
81.)

This is a quote from John Kenneth Galbraith (1908–) taken from Chapter
1 of “The Affluent Society” (1958). Galbraith is a Canadian-born Amer-
ican economist. Also see Exercise 2.3.
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2.7. In this exercise use the key IRONCLAD.
DXXAXAF VXDFDAA AFAAXVG FFXDFAX
GXAGFVF GAFVFAX FXDXXDA XFXAVGF

This is a quote from Ben Jonson (1573–1637) taken from “To the Memory
of My Beloved, the Author, Mr. William Shakespeare” (1623). Jonson
was an English actor, poet, and dramatist.

2.8. In this exercise use the key FRANCISKEY.
AXFAA AFDXA FFFXX DFXDV VGAFX
FGFFA VAXXG AGFFX XVXXX XFFXF

This is a quote from Adolph S. Ochs (1858–1935) that has become the slo-
gan for the New York Times. Ochs was an American newspaper publisher.

2.9. In this exercise use the key FLAUBERT.
XAXXAGFF GFFXXAAF FFVFAXGF DFFAXXXA

AXGFXXXG XAAXXFXX FAGFVFFF AXXXXFVV

This was written by Francis Scott Key (1729–1843) and is part of “The
Star-Spangled Banner”. Key was an American poet.

2.10. This exercise refers to Friedman’s index of coincidence discussed on pages
85–87.
Calculate the index of coincidence of the following ciphertext using the
formula displayed on page 86.

BAETKBESZMZIOMVWSSWYFEUKP
YEBHLNOBIQAMSXAOQFGBDPAE

2.11. Assuming the ciphertext in Exercise 2.10 was produced via the Vigenère
cipher with keyword XANADU, find the plaintext.
This is a quote from Gustave Flaubert (1821–1880). Flaubert was a French
novelist. Compare with the comment on page 334 in parentheses at the end
of part 2 in the discussion of “Token Applications”.

2.12. Show that the probability of choosing identical letters from a text in
which there are equal numbers of each letter in English is ≈ 0.0385.
(Hint: The probability of choosing two of any letter is (1/26)2.)

2.13. If you are told that the following ciphertext was created by a modular
shift given by c ≡ m+ 7 (mod 26), find the plaintext.

TVKBSHYHYPAOTLAPJPGLHZF

� In Exercises 2.14–2.20, solve the given congruence for x. Hint: To find
the multiplicative inverse of the coefficient a of x in each case, find that
integer y such that ay ≡ 1 (mod n). For instance, in Exercise 2.15,

6 · 6 ≡ 1 (mod 7),

so 6 is the inverse of itself modulo 7. For the reader requiring more back-
ground on modular arithmetic, see pages 475–482 in Appendix A.
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2.14. 2x+ 1 ≡ 3 (mod 7)

2.15. 6x+ 5 ≡ 2 (mod 7)

2.16 17x ≡ 4 (mod 26)

2.17. 23x+ 1 ≡ 5 (mod 24)

2.18. 2x− 3 ≡ 6 (mod 13)

2.19. 2x− 5 ≡ 7 (mod 9)

2.20. 5x− 2 ≡ −1 (mod 6)

� In Exercises 2.21 and 2.22, find the values of a and b for which the congru-
ences hold. Hint: Find the value of a in terms of b from one congruence
and plug it into the other.

2.21. 3a+ b ≡ 10 (mod 29) and a+ b ≡ 5 (mod 29)

2.22. 5a+ 2b ≡ 1 (mod 26) and 7a+ 9b ≡ 2 (mod 26)

� In Exercises 2.23–2.25, find the plaintext given that the cipehrtext is produced
via the congruence c ≡ 3m + 10 (mod 26) where the values of m in the
plaintext are given in Table 1.3 on page 11.

2.23. 3,9,0,3,22,9,15,4,2,8,21,22,23,10,24,10,4,15,

0,25,9,8,22,23,19,12,8,12,15,5,9,0,23,17,4,14,

8,23,19,24,8,17,17,25,0,9,22,21,22,9,13,0,18,9,12

This is a quote from Martial (Marcus Valerius Martialis) (circa 40-104
AD). taken from “Epigrammata”. Martial was an Iberian-born Roman
poet.

2.24. 24,5,22,23,24,10,9,8,12,19,22,16,17,10,22,

19,15,9,18,15,5,8,12,15,5,22,25,8,9,12,15

This is a quote from Arthur Ponsonby (1871–1946) taken from “Falsehood
in Wartime” (1928). Ponsonby was an English diplomat and writer.

2.25. 5,10,8,17,22,20,3,22,9,22,9,24,22,24,5,0,10,9,22,

10,13,0,18,15,15,0,3,22,9,8,17,0,18,9,17,8,21,

22,12,12,10,17,18,15,22,4,0,18

This is a quote from Suetonius (Gaius Suetonius Tranquillus) (circa 70–
140 AD) taken from [276, p. 320]. Suetonius was a Roman historian (also
see page 10).
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G.3 Chapter 3 Exercises

3.1. We have had some experience in solving Affine ciphers in the Exercises
from Chapter 2. Now show that given any Affine transformation,

c ≡ am+ b (mod n) with gcd(a, n) = 1,

we may achieve the plaintext m. In other words, demonstrate that the
inverse function m ≡ a−1(c− b) (mod n) exists and explain why it does.

� In Exercises 3.2–3.5, use the Hill cipher discussed on pages 111 and 112 to
decrypt the given ciphertext. Assume that n, r, A, M, C, and K are those
given in Example 3.2 on page 112. The key e will be given in each exercise
below. Also, letters corresponding to the numerical equivalents are given
in Table 1.3 on page 11.

3.2. The key is

e =
(

1 5
2 3

)

and the ciphertext is

HMSPUGPVEREATWUTKEPDFZDMSQIZPYOWSZOWQJ

This is a quote from the American writer, Henry David Thoreau (1817–
1862).

3.3. The key is

e =
(

2 3
1 1

)

and the ciphertext is

ERIKCUJRIGVJSZWNSXVIVZUNPD

This is a quote from the English dramatist, William Wycherley (1640–
1716) taken from Act 3, Scene 3 of “Love in a Wood” (1671).

3.4. The key is

e =
(

5 6
2 3

)

and the ciphertext is

BAISNHZJRCYSTJYYWAZSAH

This is a quote from the Aristophenes (circa 450–385 BC) and is line
1447 of “The Birds” (414 BC). Aristophenes was an Athenian poet and
dramatist.
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3.5. The key is

e =
(

7 1
3 8

)

and the ciphertext is

XXVLGWCOCEVHXHOBBKRXKCMJ

This is a quote from Ralph Waldo Emerson (1803–1882). Emerson was
an American poet, Unitarian minister, and philosopher.

� In Exercises 2.6–2.9, we got some practical experience with the ADFGVX
cipher. What is hidden in that cipher is that it is a substitution followed
by a transposition. Our experience with the Hill cipher above, as well
as Exercise 1.13, provided applications of substitution ciphers. Now we
get more experience with transposition/permutation ciphers, discussed in
detail on pages 114 and 115. In Exercises 3.6–3.11, use the key given in
Example 3.3 on page 114 to decrypt the given ciphertext.

3.6. DEWYSAEGIRRDR

Hint: Use the inverse permutation given by

e−1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13
5 9 10 7 12 3 6 13 1 8 11 2 4

)

3.7. IAESAAGDLLERT

This and its conclusion in Exercise 3.8 is a quote from the Irish writer,
Oscar Wilde (1854–1900). Wilde’s name was actually Fingall O’Flahertie
Wills.

3.8. RSNZAGDOREUAE

3.9. FRODITNFCAONA

This and its completion in Exercises 3.10 and 3.11 is a quote from Louis
Agassiz (1807–1873), taken from a letter in which he refused an offer to
give a lecture course. Agassiz, known formally as Jean Louis Rodolphe
Agassiz was a Swiss-born American naturalist.

3.10. YMTETEATOWISM

3.11. NZGZMMIEAKYNO

� Exercises 3.12–3.18 are applications of S-DES described in Section 3.2.

3.12. Apply the initial permutation IP, described on page 118 to the input
m = (10101011).



G.3. Exercises – Chapter 3 569

3.13. Apply the expansion permutation described on page 119 to the input
(1010).

3.14. Given a symmetric key k = (11101000), employ the S-DES key generation
method described on pages 119 and 120 to k in order to produce the
subkeys k1 and k2.

(Hint: You should get k1 = (10000100) and k2 = (01010110).)

3.15. Apply the S-Boxes S0 and S1 to the input (1110).

(Hint: You should get S0(1110) = (11) and S1(1110) = (00).)

3.16. Given SK = (01010110) and t = (11111011), compute fSK(t), the S-DES
round function described on page 121.

(Hint: The end result is fSK(t) = (11011011).)

3.17. Given input m = (01110111) and key k = (11101000), use the S-DES
encryption steps outlined on page 122 to find the ciphertext. Then use
the S-DES decryption steps outlined on pages 122 and 123 to verify that
your answer is correct.

(Hint: You have already calculated k1 and k2 in Exercise 3.14.)

3.18. Prove the DES complementation property highlighted on page 127.

(Hint: Complementation does not affect out modulo 2 addition, namely,
c(x) ⊕ c(y) = x⊕ y.)

3.19. Verify that the deciphering method for CBC mode described on page 134
actually recovers the plaintext.

3.20. Show that for CFB mode described on page 135, the following decryption
method will recover the plaintext: mj = cj ⊕ Ek(Cj−1).

3.21. Verify that the CTR random access property, highlighted on page 137,
is indeed valid.

3.22. Show that Blowfish decryption, summarized on page 141, is indeed the
inverse of the algorithm’s encryption technique, summarized on page 140.

3.23. Compare DES and AES from the perspective of their round functions.
Also, compare them with respect to the use of confusion and diffusion.

3.24. Given a key for a one-time pad:

k = (1110001100100000111100001110001100100000011111000011100)

and ciphertext

c = (0100011110101000000101100100110000101110000101001011000),

find the plaintext string.
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3.25. Assuming the bitstring found as plaintext in Exercise 3.24 is to be inter-
preted as a concatenation of bitstrings of length five, each corresponding
to an English letter whose numerical equivalent in decimal is given by
Table 1.3 on page 11, find the English text equivalent of that bitstring.

� In Exercises 3.26–3.29, assume that n = 26 in the Vigenère cipher described
on page 153, and use the given key, as well as the values of r and s given
in each case, to decrypt the ciphertext. Use the numerical equivalents from
Table 1.3 on page 11 to find the English text.

3.26. Let r = 3, s = 31 and k = (3, 7, 9).

c = WONIPAVAAHHLWPXQAXWYDWORVOJWYNG.

This is a quote from Tertullian (circa 160-225 AD), known formally as
Quintus Septimus Florens Tertullianus. He was a Carthagian-born Latin
church father. The quote is taken from “Apologeticus” (circa 197 AD).

3.27. Let r = 5, s = 26, and k = (11, 13, 17, 19, 20).

c = LALGODRUECQRZLUYRRKFJQVTNS.

This is a quote from Johann Wolfgang Von Goethe (1749–1832), a German
poet, dramatist, and philosopher. The quote is taken from Act 1, Scene 1
of “Iphigenie auf Tarris” (1787).

3.28. Let r = 7, s = 34, and k = (1, 2, 4, 6, 8, 10, 12).

c = TKPKVMQJUELZSQOFANWGUMNRKDODCGXXII.

This is a quote from Confucius (551–479 BC) who was a Chinese
sage/philosopher.

3.29. Let r = 5, s = 15, and k = (1, 17, 18, 20, 21).

c = OFLBDOXAHZYTWMN.

This is a quote from Pittacus of Lesbos (650–570 BC), who was one of
the seven sages of ancient Greece.

� In Exercises 3.30–3.33, assume n = 26 in the autokey Vigenère cipher
described on page 154, and using the given values of r, s, and k in each
case decipher the cryptograms. As usual, employ Table 1.3 for numerical
equivalents.

3.30. Let r = 2, s = 16, and k = 38 = k1k2.

c = XVMNXEFXAGYFNWTH.

This is the title of a book by Ralph Nader (1934–), an American consumer
protectionist.
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3.31. Let r = 6, s = 29, and k = (k1k2k3k4k5k6) = (237591).

c = ARBHJOLSPGRORXJSIJGACFKWQAVZG.

This is a famous quote attributed to the Duchess of Windsor (Wallis Simp-
son) (1896–1986), who was the wife of the former King Edward VIII.

3.32. Let r = 4, s = 16, and k = (k1k2k3k4) = (7182).

c = SFITYXONEBHANMEP.

This, and its conclusion in Exercise 3.33, is a quote from John Sheffield
(First Duke of Buckingham and Normanby) (1648–1721), who was an
English poet and politician. The quote is taken from “An Essay upon
Satire” (1689).

3.33. Let r = 4, s = 17, and k = (k1k2k3k4) = (1234).

c = PTQSHKBKKBHARBTPL.

See Exercise 3.32 for the initial part of this quote.

� In Exercises 3.34–3.44, use the information pertaining to LFSRs as de-
scribed on pages 156–158. For further reading on LFSRs, the reader may
consult [111] or [283].

3.34. Given � = 4, (c1c2c3c4) = (1010) and initial state,

s0 = (k(3,0)k(2,0)k(1,0)k(0,0)) = (0111),

calculate the period length and each iteration for the LFSR.

3.35. Execute the calculations in Exercise 3.34 using matrix equations as de-
scribed on pages 157 and 158.

(Hint: Your last calculation should be CS6 = S7.)

3.36. Show that the maximum number of possible internal states is 2� − 1.

3.37. Prove that an LFSR must be periodic with period length no larger than
2� − 1.

Note that if c� = 0, then the LFSR is not periodic, but is eventually
periodic since it must become periodic after ignoring a finite number of
initial terms. In other words, sL = sN for some N ≥ L > 0. When
c� = 0, the LFSR is called singular, and is called nonsingular otherwise.
Hence, we are only considering nonsingular LFSRs since our assumption
on page 155 is that c� = 1.
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3.38. If an LFSR has period length 2� − 1, called a maximum-length LFSR,
show that

t(x) = 1 +
�∑
j=1

cjx
j ,

called the tap polynomial, is irreducible.

(Hint: See Definition A.35 on page 486 in Appendix A. Assume that t(x)
is reducible and argue on the degrees of the individual factors in relation to
t(x). Also, note that the individual factors generate LFSRs and the least
common multiple of their periods must be at least as big as the period for
the LFSR associated with t(x).)

3.39. Is the converse of Exercise 3.38 true?

(Hint: Look at Exercise 3.34.)

3.40. Show that if t(x) is the tap polynomial for a maximum-length LFSR
(see Exercise 3.38), then t(x) must divide x2�−1 − 1 but t(x) does not
divide xd− 1 for any proper divisor d of 2�− 1. (In this case t(x) is called
primitive.)

(Hint: Use matrix theory employing the tap matrix C, defined on page 157,
and the matrix theory in Appendix A, especially on page 493, to conclude
that C2�−1 = I, where I is the identity matrix and all entries are reduced
modulo 2. Note that since t(x) must be irreducible by Exercise 3.38, then
it divides every polynomial that has the root C of C2�−1 = I in common
with it, where t(x) is viewed as the determinant of the matrix C − Ix.
Thus, t(x) will divide x2�−1 − 1 in this case.)

3.41. Show that if n(1) denotes the number of ones output by a maximum
length LFSR, and n(0) denotes the number of zeros output by it, then
n(1) − n(0) = 1.

(Hint: The zero sequence cannot be included.)

3.42. Show that if t(x) is irreducible as the tap polynomial of an LFSR, then
the period length is a factor of 2� − 1.

(Hint: Use similar techniques to those suggested in the hint for Exercise
3.40.)

3.43. Show that if 2� − 1 is prime (called a Mersenne prime), then every
irreducible polynomial of degree � is the tap polynomial of a maximum-
length LFSR.

3.44. Suppose that r is a factor of 2� − 1 but r is not a factor of 2d − 1 for
any positive integer d < �. Show that there is an irreducible polynomial
of degree � that is the tap polynomial of an LFSR of period length r.

(Hint: You can actually show that there are φ(r)/� irreducible polynomials
of degree � as tap polynomials of LFSRs of period length r, for each such
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r. See pages 479 and 480 in Appendix A for a discussion of Euler’s φ-
function.)

G.4 Chapter 4 Exercises

� In Exercises 4.1–4.4, assume that the given ciphertext is formed via the
permutation given in Example 4.1 on page 163. Find the plaintext by
using the inverse permutation and converting to English text from Table
1.3 on page 11.

4.1 c = (8, 6, 18, 19, 7, 5, 11).

4.2 c = (0, 13, 12, 20, 8, 2, 17).

4.3 c = (0, 18, 2, 8, 18, 2, 11).

4.4. c = (24, 11, 7, 18, 8, 18, 19).

4.5. Prove that the DLP presented on page 164 is independent of the generator
m of F

∗
p.

(Hint: Pick two generators of F
∗
p and show that the log of any element in

F
∗
p to one base can be written in terms of the log of that element to the

other base. This demonstrates that any procedure for calculating logs to
one base can be used to calculate logs to any other base that generates F

∗
p.

Hence, any such procedure is independent of the choice of base.)

4.6. The Generalized DLP (GDLP) is formulated as follows. Given a finite
group G, and elements g, h ∈ G, find an integer e such that ge = h,
assuming such an integer exists. Let e = Lg(h). Prove that

Lg(h ∗ h′) = Lg(h) + Lg(h′),

where h, h′ ∈ G, ∗ is the group operation, and ge ∗ gf = ge+f , for integers
e, f .

� Exercises 4.7–4.10 pertain to the Pohlig-Hellman exponentiation cipher de-
scribed on page 165. In each case use the data to decrypt the ciphertext
and produce the plaintext via Table 1.3 on page 11.

4.7. Let p = 647, e = 67 and c = (119, 346, 32, 499, 115, 63, 346, 617).

4.8. Let p = 919, e = 47 and c = (40, 221, 233, 294, 164, 9, 814).

4.9. Let p = 173, e = 99 and

c = (132, 62, 168, 137, 87, 88, 170, 170, 88, 137, 87, 168, 0, 20).



574 Exercises – Chapter 4

4.10. Let p = 401, e = 21 and c = (256, 232, 127, 0, 10).

� Exercises 4.11–4.15 pertain to the Diffie-Hellman key exchange protocol de-
scribed on page 166. In Exercises 4.11–4.14, with the given parameters,
find the shared secret key in each case.

4.11. p = 397, α = 5, x = 295, and y = 301.

4.12. p = 643, α = 11, x = 540, and y = 603.

4.13. p = 907, α = 2, x = 101, and y = 2.

4.14. p = 1181, α = 7, x = 1000, and y = 5.

4.15. Explain why we choose the generator α, for the Diffie-Hellman protocol,
in the range 2 ≤ α ≤ p − 2. In other words, why would it be a very bad
idea to choose α = p− 1?

4.16. Verify the statement made on page 167, namely, if Eve can solve the
DLP, she can solve the DHP.

4.17. Suppose that n is an RSA modulus and you know both the enciphering
exponent e as well as the deciphering exponent d. Show how this allows
you to factor n.

� In Exercises 4.18–4.21, use the repeated squaring method highlighted on page
171 to find the given modular power residue.

4.18. 572 (mod 103).

4.19. 381 (mod 303).

4.20. 792 (mod 97).

4.21. 251 (mod 101).

4.22. Suppose we alter the modulus in Exercise 4.20 so that we have

792 (mod 105).

Explain how this may be easily done without using the repeated squaring
method.

(Hint: Use Euler’s theorem A.14 on page 479 once you factor out the gcd
of the modulus and the base.)

� Exercises 4.23–4.26 pertain to the RSA public-key cryptosystem described
on page 173. Find the plaintext numerical value of m from the param-
eters given. You will first have to determine the private key d from the
given data via the methodology illustrated in Example 4.5 on page 173. If
repeated squaring is not employed (see page 171), then a computer will be
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required for these calculations. Whenever, we suggest a computer for cal-
culations henceforth, we will be assuming, tacitly, that a software package
such as Maple or MATLAB is available.

4.23. (p, q) = (5443, 4327), n = 23551861, e = 5, and c ≡ 1960142 (mod n).

(Hint: Without repeated squaring, even with a computer, raising the ci-
phertext to the deciphering exponent d, will take considerable time to exe-
cute. Thus, you should first factor d, then raise c to the factors successively
until m is found. This will quite considerably reduce the calculation time.
The same comment holds for Exercises 4.24–4.26.)

4.24. (p, q) = (6113, 7001), n = 42797113, e = 11, and c ≡ 3430667 (mod n).

4.25. (p, q) = (7499, 8237), n = 61769263, e = 7, and c ≡ 16695987 (mod n).

4.26. (p, q) = (8999, 9547), n = 85913453, e = 13, and c ≡ 63358885 (mod n).

4.27. Explain why neither e = 3 nor e = 11 can be employed with the modulus
in Exercise 4.26.

4.28. The Carmichael function, λ(n), is defined as follows. If n ∈ N, and

n = 2a · pa1
1 · pa2

2 · · · pak

k

is its canonical prime factorization, namely, 2 < p1 < p2 < · · · < pk, then

λ(n) =

{ φ(n) if n = 2a, and 1 ≤ a ≤ 2,
2a−2 = φ(n)/2 if n = 2a, a > 2,
lcm(λ(2a), φ(pa1

1 ), . . . , φ(pak

k )) if k ≥ 1,

where φ is Euler’s totient (see Definition A.22 on page 479), and where
lcm is the least common multiple (see page 471).

Suppose that p and q are primes and n = pq is an RSA modulus. Fur-
thermore, assume that x ∈ Z with gcd(x, n) = 1 and that e and d are the
RSA-enciphering and deciphering exponents, respectively. Show that the
following hold.

1. xλ(n) ≡ 1 (mod n).

2. xed ≡ x (mod n).

(In particular, if p and q are safe primes, then λ(n) = φ(n)/2, so the
above shows that φ(n)/2 may be used in place of φ(n) in the RSA cipher.
(See page 200 for a definition and application of safe primes.) In fact,
even when p and q are not safe primes, λ(n) may be employed in the RSA
cryptosystem since φ(n) and λ(n) are roughly the same size. The reason
for the latter is that the gcd(p− 1, q− 1) has an expectation of being small
when p and q are chosen arbitrarily.)
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4.29. Exercise 4.28 shows, in particular, that φ(n)/2 may be used instead of
φ(n) in the RSA cipher. Explain why using φ(n)/2 + 1 in place of φ(n)
would be an exceptionally bad idea.

4.30. Show that in Exercise 4.28, n may be any natural number relatively
prime to x and part 1 still holds. Also, show that λ(n)

∣∣ φ(n), for any
n ∈ N.

4.31. Exercise 4.29 shows that λ(n) is an example of what is called a universal
exponent for n, which means an exponent f such that xf ≡ 1 (mod n)
for all integers x relatively prime to n. Show that λ(n) is the minimal
universal exponent for n.

(Hint: Use the notion of the order of an integer defined in Definition
A.23 on page 479, in conjunction with the Chinese remainder theorem
A.12 provided on page 478.)

4.32. Let n be an RSA modulus and suppose that m ∈ Z is a plaintext message
unit. Is it necessary that gcd(m,n) = 1 in order to use RSA? If not provide
a counterexample. If so prove it.

4.33. Mallory wants to decrypt c ≡ me (mod n) sent by Alice to Bob using the
RSA cipher. To do so, he intercepts c, masks it by the execution,

c′ ≡ cxe (mod n),

for a randomly chosen x ∈ (Z/nZ)∗, and sends c′ to Bob. Bob computes
m′ ≡ (c′)d (mod n) and sends it to Alice. Explain how Mallory can recover
m if he intercepts m′.

(The above is an instance of an adaptive chosen-ciphertext attack on RSA.
In such attacks, Mallory may send any number of ciphertexts to be de-
crypted, after which he uses the results to select succeeding ciphertexts.
Eventually, Mallory hopes to reveal data about the plaintext, or even the
key. Hence, this type of attack may be viewed as an interactive form of
the chosen-ciphertext attack (see Footnote 4.3 on page 176). Such attacks
may be thwarted by ensuring that the plaintext message, m, has a specified
fixed structure, so that if m is disguised as m′, then it is unlikely that the
latter will maintain that structure. Therefore, if Bob receives a cipher-
text that decrypts to a plaintext without that structure, he will discard it
as fraudulent. Adaptive chosen-ciphertext attacks can work only when ci-
phertexts satisfy what is called ciphertext malleability, which means that
the ciphertext can be masked in certain ways that have a foreseeable effect
on the deciphering. One well-known prevention of such attacks on RSA is
OAEP (see page 174).)

� Exercises 4.34–4.37 refer to the RSA signature scheme developed on pages
181–183. Use the given parameters in each case to first compute the en-
cryption key e using the Euclidean algorithm on φ(n) and d. Then compute
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ce (mod n). If m ≡ ce (mod n), then accept the signature as valid, since
verk(m, c) = 1. Otherwise, reject the signature, since verk(m, c) = 0.

4.34. n = 17438441, φ(n) = 17430084, d = 15845531, m = 210314, and
c = 2673099.

4.35. n = 29778839, φ(n) = 29767920, d = 17234059, m = 186677, and
c = 17284872.

4.36. n = 42486991, φ(n) = 42473952, d = 16989581, m = 249917, and
c = 14191108.

4.37. n = 42486991, φ(n) = 42473952, d = 16989581, m = 249917, and
c = 14191109.

� In Exercises 4.38–4.41, use the description of the DSA given on pages 183
and 184, applied to the given parameters in each case, to verify that Bob
should accept Alice’s digital signature. For simplicity we use very small
parameters, as with the above applications of other algorithms, and in this
case we assume that h(m) = m, to further simplify the calculations. Fur-
thermore, the primes p and q are not selected with the values suggested in
the description of DSS, rather are artificially small for pedagogical pur-
poses.

4.38. p = 1549, q = 43, α = 104, β = 252, m = 21, γ = 29, σ = 7.

4.39. p = 2699, q = 71, α = 896, β = 1850, m = 21, γ = 11, σ = 33.

4.40. p = 3359, q = 73, α = 2451, β = 1185, m = 45, γ = 43, σ = 48.

4.39. p = 9439, q = 13, α = 4139, β = 2471, m = 4, γ = 5, σ = 8.

� In Exercises 4.42–4.45, employ the Elgamal cryptosystem described on pages
185 and 186 to recover the plaintext m from the ciphertext c via the pa-
rameters given by the prime p and Bob’s private key a in each case.

4.42. p = 2099, a = 17, c = (αb,mαab) = (1700, 304).

4.43. p = 3313, a = 7, c = (αb,mαab) = (1697, 770).

4.44. p = 4657, a = 19, c = (αb,mαab) = (1640, 4556).

4.43. p = 7177, a = 35, c = (αb,mαab) = (1416, 7104).

� Exercises 4.44–4.47 pertain to the ElGamal signature scheme delineated on
pages 187 and 188. For the given parameters, determine if Bob should
accept the signature as valid.

4.44. for p = 463, α = 3, y = 454, β = 243, and γ = 153, so Alice sends,
m = 96 and sigk(m, r) = (β, γ) = (243, 153).
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4.45. for p = 2689, α = 19, y = 2221, β = 954, and γ = 2154, so Alice sends,
m = 96 and sigk(m, r) = (β, γ) = (954, 2154).

4.46. for p = 4657, α = 15, y = 3484, β = 284, and γ = 2503, so Alice sends,
m = 1111 and sigk(m, r) = (β, γ) = (284, 1865).

4.47. for p = 8761, α = 23, y = 5807, β = 2973, and γ = 2678, so Alice sends,
m = 2069 and sigk(m, r) = (β, γ) = (2973, 2678).

� In Exercises 4.48 and 4.49, use the elliptic curve given in Example 4.9 on
page 190 to decipher the given cryptogram with the private key a, provided
in each case.

4.48. c = ((11, 1), (1, 3)), and a = 2.

4.49. c = ((11, 1), (11, 12)), and a = 3.

� Exercises 4.50–4.56 look at the cryptographic applications of Dickson poly-
nomials, defined below.

4.50. The Dickson polynomial G.1 of the first kind of degree n ∈ N in the
indeterminant x with parameter a ∈ R, where R is a commutative ring
with identity, is defined by

Dn(x, a) =
�n/2�∑
j=0

n

n− j

(
n− i

i

)
(−a)j xn−2j .

Prove that n
n−j

(
n−j
j

)
is an integer. Then establish that, when R = Fq, a

finite field, we may write the polynomials in the form,

Dn(x, a) =
((

x+
√
x2 − 4a

)
/2

)n
+

((
x−

√
x2 − 4a

)
/2

)n
.

Moreover, if A = (x+
√
x2 − 4a)/2, then A2 −Ax+ a = 0, and

Dn

(
A+

a

A
, a

)
= An +

( a

A

)n
. (G.1)

(Hint: You may use Waring’s Formula, given as follows:

An +Bn =
�n/2�∑
j=0

(−1)j
n

n− j

(
n− j

j

)
(AB)j (A+B)n−2j

,

G.1In 1896, L.E. Dickson had these polynomials as part of his doctoral thesis at the University
of Chicago. In a paper [244], published in 1973, I. Schur put Dickson’s name to these poly-
nomials in his honour, and related these Dickson polynomials to the well-known Chebyshev
polynomials. From the 1970s to the present, the theory of Dickson polynomials has flourished.
Much of this development is due to W.B. Nöbauer and his followers (see [179] and [180], for
instance). In particular, applications to cryptography have come to the fore, and it is this in
which we are interested, albeit many other applications of these polynomials abound.
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and you may use the fact that if f(x) = x2 − cx + d ∈ F [x] for any field
F , then c is the sum of the roots of f(x) and d is the product of the roots.
Note, as well, that (x+

√
x2 − 4a)/2 lies in the extension field Fq2 . Also,

Equation (G.1) is called the functional equation of Dn(x, a).)

4.51. A permutation polynomial on a finite field Fq is a polynomial f(x) ∈ Fq[x]✰
such that f permutes the elements of Fq. In other words, f is a one-to-one
and onto mapping of Fq to itself.

Prove that for a ∈ F
∗
q , Dn(x, a) is a permutation polynomial on Fq if and

only if gcd(n, q2 − 1) = 1.

(Hint: Prove first that xn permutes Fq if and only if gcd(n, q − 1) = 1.
Then use Exercise 4.50.)

4.52. Let k =
∏t
j=1 p

aj

j be the canonical prime factorization of k ∈ N . A
polynomial is a permutation polynomial modulo k, or permutation poly-
nomial of Z/kZ, if f is a one-to-one and onto function of Z/kZ. With
somewhat more difficulty than the above, it can be shown that Dn(x, a) is
a permutation polynomial modulo k if and only if gcd(n, ν(k)) = 1, where

ν(k) = lcmj(p
aj−1
j (p2

j − 1)).

(Exercise 4.51 is provided as an indication of that process for the simpler
case.) Once we have a permutation polynomial, we can form its inverse
and this provides a basis for developing a cryptosystem.

The following public-key cipher is called a Dickson cryptosystem.

Let Bob’s public enciphering exponent be eB ∈ Z/kZ with gcd(eB , ν(k)) =
1. Alice enciphers a message m to Bob via computation of

DeB
(m, a) ≡ c (mod k)

where a = 1 or a = −1 in Z/k/Z. To decrypt, Bob uses his private key
dB obtained via the linear congruence,

eBdB ≡ 1 (mod ν(k)),

and computes DdB
(c, a) (mod k). Prove that the latter actually recovers

m. Moreover, show that if k = pq is an RSA modulus, and

µ(k) = (p2 − 1)(q2 − 1)

is used in place of ν(k), then this is similar to the RSA cipher, and for
a = 0 it is the RSA cipher.

4.53. With reference to Exercises 4.50–4.52, Dickson polynomials may also be
used as a basis for digital signatures. Suppose that Alice wishes to sign a
message m, and k is given to be a product of large primes. If (eA, dA) is
Alice’s public/private key pair, assume she computes

DdA
(m, a) ≡ s (mod k),

and sends the signature s to Bob.
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1. Show how Bob can form a computation to recover m, and uniquely
verify that this is Alice’s signature.

2. How can Alice sign a message using Dickson polynomials and Bob’s
public key to achieve the same effect?

4.54. The Dickson polynomial schemes devised above can be employed to
form a type of Diffie-Hellman key exchange as follows. Let α ∈ Fq be
chosen such that α = γq−1 + γ−(q−1) where γ is a primitive element of
Fq2 . Randomly chosen positive integers a and b, chosen by Alice and Bob,
respectively, are kept private, whereas q, α, Da(α, 1), and Db(α, 1) are
made public. The following is a Dickson key exchange.

1. Alice gets Bob’s public data, Db(α, 1) and computes Da(Db(α, 1)) =
Dab(α, 1).

2. Bob gets Alice’s data Da(α, 1) and computes Db(Da(α, 1), 1) =
Dba(α, 1).

.

Show that the shared key Dab(α, 1) = Dba(α, 1) in this key exchange
scheme depends on the DLP as does the Diffie-Hellman exchange.

4.55. The three-pass protocol (sometimes called Shamir’s three-pass scheme)
discussed on pages 198 and 199, can be generalized to Dickson polynomials
developed in Exercises 4.50–4.54.

Assume that Alice wishes to send a message m ∈ Fp (p a prime), to Bob.
To do so, the following steps are executed.

1. Alice selects an integer a with gcd(a, p2 − 1) = 1, where a is kept
secret. She sends Da(m, 1) ≡ c (mod p) to Bob.

2. Bob picks an integer b such that gcd(b, p2 − 1) = 1, where he keeps b
secret. Then he sends Db(c, 1) ≡ c′ (mod p) to Alice.

3. Alice computes a′ such that

aa′ ≡ 1 (mod p2 − 1)

and sends
Da′(c′, 1) ≡ d′ (mod p)

to Bob.

4. Bob recovers m (mod p) by computing b′ satisfying

bb′ ≡ 1 (mod p2 − 1)

and
Db′(Da′(Db(Da(m, 1), 1), 1), 1) ≡ m (mod p).
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Describe the property satisfied by the Dickson polynomial that allows Bob
to recover m in step 4, and verify that step 4 indeed does recover m as
suggested.

4.56. Dickson polynomials may also be used for multiple encryptions. The
notation and concepts used in this exercise were developed in Exercise
4.52.

Suppose that D(s)
n (x, a) denotes the composition of Dn(x, a) s ∈ N times.

If c is a ciphertext, show that there are integers r, s such that

D(r)
n (c, a) ≡ D(s)

n (c, a) ≡ c (mod k).

This implies the existence of an integer t such that

D(t)
n (c, a) ≡ c (mod k) (G.2)

Show how this may be used to recover the plaintext without factoring the
modulus. (It can be shown that the fixed point given by (G.2) may be
used as an attack to factor k (see [174] and [181])). For more information
on Dickson polynomials and their applications, see a book devoted entirely
to this topic ([152]).

G.5 Chapter 5 Exercises

5.1. This problem refers to the explanation of oblivious transfer covered in
Section 5.1 on pages 191–194.

Suppose that Alice and Bob are secret agents for two different countries
and Bob wants to buy a secret from Alice. Moreover, Bob wants to buy a
secret without Alice knowing which one.

Suppose that Alice has a list of � secrets s1, s2, . . . , s�, all expressed as
bitstrings of equal bitlength. She also possesses a one-way function f for
which only she possesses f−1. She lets Bob know what each of the secrets
represent by giving him a list of questions q1, q2, . . . , q� to which the sj are
the answers. The oblivious transfer protocol is described as follows.

1. Bob selects qk from the list of questions to which he wants to buy the
secret sk. He chooses random numbers r1, r2, . . . , r� from the domain
of f . Then he computes

cj =
{

rj if j �= k,
f(rj) if j = k,

and sends (c1, c2, . . . , c�) to Alice.
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2. Alice computes mj = f−1(rj), and sends the values xj = mj ⊕ sj
(where ⊕ is the mod 2 addition of the bitstrings), for j = 1, 2, . . . , �,
to Bob.

3. Bob knows mk = f−1(f(rk)) = rk, so Bob can compute mk⊕xk = sk.

Show that Bob cannot compute sj for j �= k. Explain how Bob can cheat
Alice by altering his computation of cj in step 1.

5.2. Explain how Kerberos (see pages 196 and 197), is vulnerable with respect
to (1) host security; (2) Carol’s password (encryption keys); and (3) offline
attacks on Carol’s ticket.

5.3. Show how the three-way authentication protocol described on page 198
would be vulnerable to the man-in-the middle attack (see Footnote 3.7 on
page 134), if the DSS is not employed. In other words, if signatures are
not employed, show how Mallory can impersonate Alice and successfully
convince Bob that he is talking to her.

� In Exercises 5.4–5.7, use the Fiege-Fiat Shamir identification protocol pre-
sented on pages 202 and 203 to show that Bob should accept Alice’s proof,
given the parameters in each case.

5.4. Let p = 523 · 1637 = 856151, sA = 5, a = 2, and assume that in round
1, Alice selects m = 651, and Bob chooses c = 0, while in round 2, Alice
picks m = 1516 and Bob selects c = 0.

5.5. Let p = 613 · 2281 = 1398253, sA = 7, a = 2, and assume that in round
1, Alice selects m = 3291, and Bob chooses c = 1, while in round 2, Alice
picks m = 1923 and Bob selects c = 1.

5.6. Let p = 739 · 2557 = 1889623, sA = 25, a = 3, and assume that in
round 1, Alice selects m = 3681, and Bob chooses c = 1; in round 2, Alice
picks m = 111 and Bob selects c = 0; and in the third round Alice picks
m = 38888 and Bob chooses c = 1.

5.7. Let p = 857 · 3323 = 2847811, sA = 49, a = 3, and assume that in
round 1, Alice selects m = 333, and Bob chooses c = 1; in round 2, Alice
picks m = 723 and Bob selects c = 1; and in the third round Alice picks
m = 111111 and Bob chooses c = 1.

� In Exercises 5.8–5.11, employ the Schnorr identification protocol delineated
on page 205 to show that Bob should accept Alice’s identity. As usual,
the parameters are artificially small to make computation reasonable. In
other words, we are not choosing p ≥ 21024, or q > 2t with t ≥ 40, for
instance. We will assume that all certificates and signature verifications
have taken place. All that is required is the calculation of the commitment,
the response, and the verification as outlined in steps 1–4 of the protocol
given on the aforementioned page.
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5.8. Let p = 1249, q = 13, e = 12, k = 2, r = 55.

5.9. Let p = 2251, q = 5, e = 4, k = 3, r = 23.

5.10. Let p = 6619, q = 1103, e = 110, k = 234, r = 233.

5.11. Let p = 9377, q = 293, e = 11, k = 43, r = 199.

� Exercises 5.12–5.15 pertain to the protocol for coin flipping by telephone
using discrete logs that we studied on page 209. With the parameters
given, decide whether the outcome of the coin toss is heads or tails.

5.12. Let p = 3011, α = 2, β = 7, x = 9, and y ≡ 1 (mod p), which Alice
guesses is a function of α.

5.13. Let p = 4129, α = 13, β = 14, x = 5, and y ≡ 3812 (mod p), which Alice
guesses is a function of β.

5.14. Let p = 4561, α = 11, β = 13, x = 7, and y ≡ 2840 (mod p), which Alice
guesses is a function of β.

5.15. Let p = 7481, α = 6, β = 7, x = 13, and y ≡ 5128 (mod p), which Alice
guesses is a function of α.

� In Exercises 5.16–5.19, we are going to play poker by telephone in a fashion
similar to that described on page 210. However, instead of five cards dealt,
we assume that only one card is dealt by Alice to Bob. In each exercise,
the values of the cards are given specific numerical values. You will need
computing power. The hint to Exercise 4.23 applies here.

5.16. Let n = 26904167, (eA, dA) = (5, 21515021); (eB , dB) = (11, 9779555),
cj ≡ 5j (mod n) for j = 2, 3, 4, . . . , 14 where cj = j for j = 2, 3, . . . , 10,
whereas cj for j = 11, 12, 13, 14 represent the Jack, Queen, King, and
Ace, respectively. Bob is dealt hj ≡ 14473275 (mod n). Determine the
card dealt to Bob.

(Hint: Compute cj ≡ hdB (mod n).)

5.17. In Exercise 5.16, assume that gj ≡ 22526833 (mod n). Determine the
card that was initially enciphered by Alice.

(Hint: Compute cj ≡ gdA·dB
j (mod n).)

5.18. Given fj ≡ 24498353 (mod n) with the parameters in Exercise 5.16,
determine the card enciphered by Alice.

(Hint: Calculate cj ≡ fdA
j (mod n).)

5.19. With reference to the analysis of Jacobi symbols concerning poker playing
by telephone, given on pages 210 and 211, determine which of the values
−1 or +1 is more advantageous to Alice given the parameters in Exercise
5.16. How may we alter the numbering of the cards to eliminate this
advantage?
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5.20. Blum integers and their properties are examined in Appendix B on pages
507 and 508. There is a coin flipping scheme based on Blum integers that
we now describe.

1. Bob generates a Blum integer n, a random x ∈ N relatively prime to
n, and computes x0 ≡ x2 (mod n) and x1 ≡ x2

0 (mod n). He sends n
and x1 to Alice.

2. Alice guesses the parity of x and sends the guess to Bob.
3. Bob sends x and x0 to Alice.
4. Alice checks that both x0 ≡ x2 (mod n) and x1 ≡ x2

0 (mod n). Thus,
Alice can determine if the guess is correct.

Explain how Bob can cheat freely if this is not a Blum integer, where
p ≡ q ≡ 1 (mod n) for primes p and q.

� Exercises 5.21–5.24 contain parameters for Shamir’s threshold scheme de-
scribed on pages 212–214. Use the parameters to determine the message
m = c0. Again, a computer may be necessary for some of the calculations.

5.21. Let (t, w) = (2, 2), p = 1009, (x1,m1) = (1, 172), (x2,m2) = (2, 244).

5.22. Let (t, w) = (3, 3), p = 3271, (x1,m1) = (1, 1234), (x2,m2) = (2, 1578),
and (x3,m3) = (3, 2144).

5.23. Let (t, w) = (4, 4), p = 1433, (x1,m1) = (3, 372), (x2,m2) = (5, 859),
(x3,m3) = (7, 50), and (x4,m4) = (11, 720).

5.24. Let (t, w) = (4, 4), p = 6367, (x1,m1) = (7, 3401), (x2,m2) = (11, 2822),
(x3,m3) = (12, 4239), and (x4,m4) = (13, 1821).

� In Exercises 5.25.–5.28, use the description of Blakely’s secret-sharing vector
scheme given on pages 214 and 215, to determine the message m for each
of the set of parameters given. Some calculations may require a computer.

5.25. Let t = 2, p = 3359, n(1)
1 = 358; n(2)

1 = 953; and (c1, c2, ) = (1001, 1111).

(Hint: Form the equation given by (5.4) on page 215, and solve the equa-
tion:

X ≡ A−1C (mod p).

The same hint holds for Exercises 5.26–5.28.)

5.26. Let t = 3, p = 2551, (c1, c2, c3) = (109, 526, 2128), and

(n(1)
1 , n

(1)
2 ) = (7, 9); (n(2)

1 , n
(2)
2 ) = (27, 361); (n(3)

1 , n
(3)
2 ) = (100, 2).

5.27. Let t = 4, p = 757, (c1, c2, c3, c4) = (26, 399, 711, 192), and

(n(1)
1 , n

(1)
2 , n

(1)
3 ) = (3, 21, 31); (n(2)

1 , n
(2)
2 , n

(2)
3 ) = (5, 26, 10);

(n(3)
1 , n

(3)
2 , n

(3)
3 ) = (7, 71, 5); (n(4)

1 , n
(4)
2 , n

(4)
3 ) = (11, 20, 1).
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5.28. Let t = 5, p = 9001, (c1, c2, c3, c4, c5) = (2706, 3743, 95, 3239, 6475), and,

(n(1)
1 , n

(1)
2 , n

(1)
3 , n

(1)
4 ) = (217, 1, 3549, 2);

(n(2)
1 , n

(2)
2 , n

(2)
3 , n

(2)
4 ) = (900, 25, 867, 27);

(n(3)
1 , n

(3)
2 , n

(3)
3 , n

(3)
4 ) = (1002, 111, 257, 29);

(n(4)
1 , n

(4)
2 , n

(4)
3 , n

(4)
4 ) = (1, 261, 69, 96);

(n(5)
1 , n

(5)
2 , n

(5)
3 , n

(5)
4 ) = (2, 900, 8999, 21).

5.29. Construct a multiauthority election protocol that extends the notions
described on pages 216 and 217 by allowing the independent choice of
more than one generator of Z/qZ.

(Hint: Allow each voter to encrypt their vote with respect to all the gen-
erators such that exactly one of the encipherings reveals the actual vote,
by an interactive proof of knowledge, say.)

5.30. Explain how SSL/TLS described in Section 5.7 on pages 218–226, is
susceptible to Eve’s doing a traffic analysis on the communications. In
other words, explain how Eve may use her observations concerning the
number of messages being sent to and from a specific Internet address to
extract information, even if she does not know the particular content of
those messages.

(Hint: Assume you are a lawyer (just for this one time), and you want
to know about the legal activities of competing law firms in terms of the
volume of their activity. (Also, see Footnote 8.11 on page 309.))

5.31. Outline the mechanism for the use of different coin denominations via
differing RSA exponents mentioned on page 231 of Section 5.8 on digital
cash.

G.6 Chapter 6 Exercises

� Exercises 6.1–6.8 refer to the Blom key predistribution protocol presented
on pages 234–236. Assuming, as we did in Example 6.1 on page 235,
that there is a network of only three users, use the parameters given to
determine the keys kAB, kAC , and kBC .

6.1. p = 1297, (r1, r2, r3) = (12, 79, 721), (uA, uB , uC) = (92, 219, 691).

6.2. p = 2843, (r1, r2, r3) = (29, 289, 378), (uA, uB , uC) = (919, 1001, 2004).

6.3. p = 3253, (r1, r2, r3) = (38, 391, 499), (uA, uB , uC) = (111, 1111, 2000).
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6.4. p = 4799, (r1, r2, r3) = (49, 492, 585), (uA, uB , uC) = (479, 1078, 3003).

6.5. p = 5009, (r1, r2, r3) = (59, 581, 609), (uA, uB , uC) = (3232, 1137, 1194).

6.6. p = 7321, (r1, r2, r3) = (78, 777, 832), (uA, uB , uC) = (2590, 2495, 1979).

6.7. p = 8293, (r1, r2, r3) = (87, 888, 929), (uA, uB , uC) = (186, 4047, 152).

6.8. p = 9497, (r1, r2, r3) = (96, 999, 9000), (uA, uB , uC) = (2152, 1601, 6133).

6.9. Explain what would be necessary to embed a PKI into Kerberos (see
Section 6.2).

6.10. Explore the ramifications of eliminating the dual signature in the SET
protocol described in Section 6.3 in favour of a standard signature.

6.11. How do SSL/TLS and SET differ with respect to suitability of e-
commerce applications?

G.7 Chapter 7 Exercises

7.1 This exercise pertains to the birthday attack and related issues described
on pages 252–255. Suppose that we want to solve the DLP, namely, given
a large prime p, a generator m of F

∗
p and an element c ∈ F

∗
p, we want to

find e such that c ≡ me (mod p). How does the following aid in solving
the problem using the birthday attack?

Alice compiles two lists, A and B of length ≈ �√p�, satisfying the two
properties:

1. List A consists of all numbers mx (mod p) for approximately �√p�
randomly selected values ofx.

2. List B contains the values cm−y (mod p) for approximately �√p�
randomly chosen values of y.

7.2 Suppose that there are 150 students in a class. What is the probability
that at least two of them have the same birthday?

7.3. What is the minimum number of people who should be in a room to ensure
a probability of 99% that at least two of them have the same birthday?

7.4. What is the probability that we have a collision from a randomly chosen
pair of 16-bit numbers, given a random hash function applied to them?

(Hint: See the formula for P2(n,m) on page 253 and set n = 216, m = 1.)

7.5. Suppose that you choose a pair of 16-bit numbers as in Exercise 7.4, but
if you do not get a collision, you keep trying until you do. If you do this
n times, how big must n be in order to have a 50% chance of success?
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7.6. Suppose that you have a sorted list, A, of 16-bit values mj and a sorted
list, B, of their hash values h(mj) for j = 1, 2, . . . 28. You compare the
lists A and B pairwise, namely,

(mj , h(mj)) against (mk, h(mk)),

in order to seek out collisions, where h(mj) = h(mk). How many compar-
isons must you make to guarantee a success rate of at least 50%?

7.7. What is the maximum number of iterations to produce a collision with
SHA-1? (See pages 255–258.)

7.8. RIPEMD-160, described on page 259, uses little-Endian architecture (see
Footnote 9.24 on page 350). Explain why it must be ensured that the
message digest is independent from the underlying architecture.

7.9. Is A CBC-MAC a one-way transformation? (See page 261.)

7.10. Explain the security problems with an HMAC if it were possible to invert
the hash function H (see pages 263–264). In general, explain why hash
function must be practically noninvertible.

7.11. If it were possible to have a “perfect” hash function, then we would have
a powerful imaginary function called a random oracle. In other words, if
we could prove that hash functions behave like truly random functions,
we would have the existence of a random oracle. A random oracle has
output that is not only uniform, but also deterministic and efficient. This
idealized model for a hash function is often called the random oracle model,
which was introduced in [14]. In the random oracle model, a hash function
is randomly selected, but we are not given an explicit description of how to
compute the hash values. We are allowed only to query a so-called oracle
who has access to the function. Think of this as equivalent to looking up
a value of h(m) for a given m in some table. Thus, if we are given m then
h will output the same value h(m) every time the oracle is queried with
that value. Moreover, if the oracle is not queried with a specific value,
then the output is a random value that has a uniform probability of being
chosen throughout the possible values in the range of h.

Based on the above description, suppose that Alice sends messages m to
Bob but does so as h(m) where h is a random oracle. Suppose that Mallory
has access to an oracle of his own that allows him to submit ciphertext
(c,m), which responds with true if h(m) = c and false otherwise. Is this
system secure against Mallory’s attack?

7.12. Explain how Mallory could successfully impersonate Alice to Bob, in the
X.509 three-way authentication protocol described on pages 269 and 270
if timestamps are not employed.

(Hint: See Exercise 5.3.)
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G.8 Chapter 8 Exercises

8.1. When discussing PGP in Section 8.1, we assumed that triple DES was
used. There are others options such as CAST-128 and IDEA (see page
275). Explain why (single) DES would not be suitable for use with PGP.

8.2. We assumed, in our description of PGP (see Exercise 8.1), that CFB
mode is employed. Why would PGP use CFB over say CBC, which is
more common in usage?

8.3. Explain how PKI can ensure a greater degree of trust in the use of PGP, es-
pecially with respect to ensuring we are in possession of the actual owner’s
public key.

8.4. Without a PKI, why is the web of trust discussed in detail on pages 280–
286, insufficient to guarantee that, for instance, Alice really knows Bob’s
public key?

8.5. Explain how MIME helps your Internet browser recognize a text file,
assuming that the remote web server has not already identified it for your
browser.

(Hint: See page 290.)

8.6. If you had to list only two primary goals of IPSec, detailed in Section 8.3,
what would they be?

8.7. Explain why it is desirable to have encryption before authentication in
SA bundling (see page 309).

8.8. Make an argument for employing authentication before encryption in SA
bundling.

(Hint: see pages 266 and 267.)

8.9. On page 305, we illustrated configurations for end-to-end security using SA
tunnels. What configuration would constitute end-to-end authentication
and encryption without nesting as illustrated in Diagrams 8.24 and 8.25
on page 310?

8.10. Compare transport mode and tunnel mode SAs for AH and ESP with
authentication. (See pages 302–312.)

8.11. Speculate as to how HMAC might be used with RIPEMD-160 (see page
259), within ESP and AH in IPSec (see Section 8.3). For actual technical
details, see RFC 2857 [222].
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G.9 Chapter 9 Exercises

9.1. Suppose we have a large codebook that consists of short words with
corresponding 6-digit numbers. Devise a means of choosing passphrases
from this list based upon the roll of dice.

9.2. Assume that you have a password p and each time you logon to a WWW
site the host uses a one-way function f to calculate f(p), and compares
this with a stored value. Devise a means using only this function, that
will prompt you to change your password after, say, 100 logins.

9.3. The SSH protocol presented on pages 334–339, has a significant additional
feature called port-forwarding, which means that either Alice or the server
can bind a socket to a collection of specified ports. In practice, what this
means is that when Alice, say, connects to one of these ports, the call is
relayed to the other end of this particular SSH call, from which another
call is made to some other predetermined port. Effectively, this is an SSH
built-in tunneling mechanism (see page 337 for details). Discuss the pros
and cons of such tunnels.
(Hint: Consider setting up such tunnels to avoid firewalls.)

9.4. Explain how a basic wireless system operates. (See Section 9.2.)

9.5. Explain the relationship between frequency of a signal and the size of
an antenna. In particular, why is it possible for cell phones to have such
small antennas?
(Hint: The higher the frequency, the smaller the wavelength, so the closer
the antenna the same size is to the wavelength it receives, the better the
reception. In practice, an antenna is some fraction of the wavelength, such
as half, say.)

9.6. A cell phone has internal memory that contains the wireless phone num-
ber, a system identification number or SID, which identifies the phone to
the system to which it subscribes, and an electronic serial number identi-
fying that specific phone as a measure against fraud. When a cell phone
is turned on, it compares its SID with any overhead signals and when a
match occurs, the phone knows it is operating within the subscriber net-
work. How would a cell phone operate when it is away from its subscriber
network and needs roaming mode?

9.7. Cell phone networks are made up of cells each of which is associated with
a base station. These cells overlap, so when one is travelling, there needs
to be a hand-off (see page 352), from one cell to another. How would a
mobile switching center perform this hand-off?
(Hint: A mobile switching station continuously monitors the power level
of a given cell phone, together with the power level of the base station.
Speculate how the switching station would react when a cell is getting close
to the edge of the current base station’s cell.)



590 Exercises – Chapter 9

9.8. Digital cell phones not only digitize speech, but also compress it. Why is
this necessary?

9.9. There is a standard for wireless networks that competes with IEEE 802.11
(see pages 340–353), called Bluetooth,G.2 which is a network that does
not require a server or other central access source. In other words, the
devices on a Bluetooth network can find each other independently and
can communicate directly with each other, i.e., a peer-to-peer network (see
page 220). Since Bluetooth allows not only telephones, but also computers,
personal desktop assistants (PDA)s, and even TVs and audio equipment
to communicate with one another, it may be used in concert with 802.11.

Bluetooth devices have microchips embedded in them containing software,
called a link controller, allowing one Bluetooth device to recognize another,
by continually sending out signals in search of other such devices in its
range. The software also contains profiles encoded into each device so
that one can determine if it is appropriate to form a connection (cell
phones and TVs need not communicate, for instance). Once connection
is established between two or more Bluetooth devices, this is a network
called a piconet. Bluetooth devices that are placed too close to one another
may have their radio frequencies interfere with one another. Speculate as
to how Bluetooth fixes this problem (via some monitoring technique).

9.10. If a cell phone has a microbrowser installed, it can interface with the
WWW to display a Web page using a protocol called Wireless Access
Protocol (WAP), which employs its own language, the Wireless Markup
Language (WML). To accomplish this, the cell phone must send a request
that is routed through a landline (wire-based network), which is sent to a
Web server where the page is located. Then the page is sent to to what is
called a WAP gateway. Assuming the WWW page is in HTML, speculate
on how the WAP gateway would deal with the page in order for it to be
displayed on the cell phone once it is relayed back.

9.11. A step above cell phones are satellite phones, which employ GSM tech-
nology, so the phone must have a SIM installed (see page 347). A signal is
sent from the phone to a satellite, which receives the call. Assuming there
are numerous satellites in the system, how would this system of satellites
work in a fashion similar to a cell phone network?

9.12. Exploration satellites, such as the Voyager series, send signals back to
earth that contain pictures and other data. The transmitter on some of
these satellites can be a mere 23 watts. Given an antenna of fourteen feet
on board, and a signal in the 8-GHz band, sent to NASA satellites that
are 100 feet in diameter, explain how the signal can reach earth.

(Hint: See Exercise 9.5. )
G.2The name is a (rough) translation from the Danish word Blatand, the surname of the king

of Denmark from 940 to 985 AD. King Harald Blatand united Denmark and Norway. Thus,
it was deemed appropriate to name a uniting communications feature after this man.
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9.13. Suppose that a smart card (see Section 9.3), uses the RSA cipher with
public encryption exponent e = 3. Next assume that m is Alice’s credit
card number and she buys merchandise from three shops whose public
moduli are n1, n2, and n3, respectively. Thus, each shop computes

m3 (mod nj) for j = 1, 2, 3,

respectively. If Mallory has been observing these transactions, how can
he recover m?

(Hint: See page 178.)

9.14. Cite some problems that might occur with the use of voice as a biometric
identifier. (See Section 9.4.)

9.15. Compare fingerprint and iris scanning as biometric identifiers from the
perspective of which is more accurate and least open to replication. (See
Section 9.4.)

9.16. Given the quantum schemes described on page 369, translate the follow-
ing into binary integers:

↑↖↖→→; ↗↖↑→→; ↖↖→→→; ↗↗→↑;

↑→→↑↑; ↗↖↗↖↖; ↑↑→→ .

9.17. Translate the binary integers found in Exercise 9.16 into decimal digits
and convert to plaintext via Table 1.3 on page 11.

9.18. Suppose that in the nuclear test ban treaty compliance, presented in
Section 9.6, Monty selects p, q, e. Then he downloads n = pq and e
into HAL, and gives n and d to Hostvania. Demonstrate how Monty can
now produce undetectable forgeries. Moreover, in this scenario show how
Hostvania can break the treaty and blame Monty.

G.10 Chapter 10 Exercises

10.1. Name ten different priority needs that must be addressed in cybercrime
(see Section sec:crime).

(Hint: Begin with the need for “public awareness” at the top of your list.)

10.2. Name five advantages to information sharing between policing agencies
in various countries when it comes to cybercrime.

10.3. Name five steps that might be used in the gathering of digital data in a
cybercrime.

(Hint: Start with: “Evaluate the target”.)
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10.4. Name three methodologies for a malicious hacker to break into a host
from the Internet. (See Section 10.2.)

10.5. Compare and contrast worms and viruses, and the mechanisms to protect
against them. (See Section 10.3.)

10.6. Review the Clipper Chip enciphering, deciphering, and law enforcement.
Decide on advantages and disadvantages of the Skipjack scheme, discussed
on pages 420–424.

G.11 Chapter 11 Exercises

11.1. Establish identity (11.4) on page 432.

11.2. Verify Inequality (11.5) on page 432.

11.3. Prove the equivalence of items 1–4 in the “Role of Independence” at the
bottom of page 432.

� In Exercises 11.4–11.7, calculate the entropy for the set S = {s1, s2, s3, s4},
where the probabilities for each sj is given in the exercises via pj for j =
1, 2, 3, 4. See pages 433–434.

11.4. (p1, p2, p3, p4) = (0.5, 0.25, 0.125, 0.125).

11.5. (p1, p2, p3, p4) = (0.4, 0.4, 0.1, 0.1).

11.6. (p1, p2, p3, p4) = (0.3, 0, 3, 0.1, 0.1).

11.7. (p1, p2, p3, p4) = (0.7, 0.1, 0.1, 0.1).

11.8. Calculate the Huffman codes for each of the situations in Exercises 11.1–
11.4.

� In Exercises 11.9–11.12, use the data given to calculate each of H(K),
H(M), H(C), and H(K|C). Then compare the latter with the former three.
Assume that M = {s1, s2, s3, s4} and C = {c1, c2, c3, c4}. See pages 435–
436.

11.9. ps1 = 0.2, ps2 = 0.3, pS−3 = 0.4, ps4 = 0.1, K = {k1, k2} with pk1 = 0.4,
pk2 = 0.6, Ek1(s1) = c1, Ek1(s2) = c2, Ek1(s3) = c3, Ek1(s4) = c4,
Ek2(s1) = c3, Ek2(s2) = c2, Ek2(s3) = c1, and Ek2(s4) = c4.

11.10. ps1 = 0.1, ps2 = 0.1, ps3 = 0.5, ps4 = 0.3, K = {k1, k2, k3} with
pk1 = 0.5, pk2 = 0.2, pk3 = 0.3, Ek1(s1) = c1, Ek1(s2) = c2, Ek1(s3) = c3,
Ek1(s4) = c4, Ek2(s1) = c2, Ek2(s2) = c3, Ek2(s3) = c4, Ek2(s4) = c1,
Ek3(s1) = c3, Ek3(s2) = c4, Ek3(s3) = c2, and Ek3(s4) = c1.
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11.11. ps1 = 0.2, ps2 = 0.2, ps3 = 0.2, ps4 = 0.4, K = {k1, k2, k3} with
pk1 = 0.3, pk2 = 0.3, pk3 = 0.4, Ek1(s1) = c1, Ek1(s2) = c2, Ek1(s3) = c3,
Ek1(s4) = c4, Ek2(s1) = c4, Ek2(s2) = c3, Ek2(s3) = c2, Ek2(s4) = c1,
Ek3(s1) = c2, Ek3(s2) = c3, Ek3(s3) = c4, and Ek3(s4) = c1.

11.12. ps1 = 0.3, ps2 = 0.3, ps3 = 0.3, ps4 = 0.1, K = {k1, k2, k3} with
pk1 = 0.1, pk2 = 0.1, pk3 = 0.8, Ek1(s1) = c1, Ek1(s2) = c2, Ek1(s3) = c3,
Ek1(s4) = c4, Ek2(s1) = c2, Ek2(s2) = c3, Ek2(s3) = c4, Ek2(s4) = c1,
Ek3(s1) = c1, Ek3(s2) = c3, Ek3(s3) = c2, and Ek3(s4) = c4.

11.13. Prove that if M is the message space and C is the ciphertext space for
a one-time pad, then H(M|C) = H(M). (See pages 439 and 440.)

11.14. Calculate the unicity distance of a block cipher with 56-bit keys and
64-bit blocks of plaintext, assuming use of the English language. (See page
439.)

11.15. In Section 11.5, we looked at error-correcting codes. This book has an
ISBN number,G.3 meaning an International Standard Book Number, given
by, 1 − 58488 − 470 − 3. The first digit, 1 refers to the country, area, or
language group, in this case the fact that the book is published in the
English language. The second group 58488 identifies the publisher. The
third group 470 identifies this particular book, and the last digit 3 is a
checksum digit. In the case of an ISBN, what this means is that the last
digit is chosen such that the following occurs. Suppose that the ten digits
in the ISBN are d1, d2, . . . , d10. Then we must have that the weighted sum
satisfies

10∑
j=1

jdj ≡ 0 (mod 11).

Note that the first nine digits dj for j = 1, 2, . . . , 9 are in {0, 1, 2, . . . , 9},
but d10 ∈ {0, 1, 2, . . . , 10}, but in the ISBN number a 10 will be represented
as the Roman numeral X. In the case of this book,

1 ·1+2 ·5+3 ·8+4 ·4+5 ·8+6 ·8+7 ·4+8 ·7+9 ·0+10 ·3 ≡ 0 (mod 11),

as required. Are the following valid ISBN numbers?

1. 0 − 4523 − 2345 − 4.

2. 0 − 13 − 061817 − 9.

3. 1 − 23 − 098733 −X.

4. 2 − 432 − 23459 − 6.
G.3The current ISBN system is reaching the end of its viability. On January 1, 2007,

it will be replaced by a 13-digit ISBN. Although the 10-digit ISBN system, designed for
printed books in the late 1960s, has the capacity to assign a billion numbers, the internal
structure of the ISBN restricts the capacity of the system. The new 13-digit ISBN system
will be better suited to integrate with current bar-code technology. See http://www.isbn-
international.org/en/revision.html.
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If an incorrect ISBN number has been transmitted, what is the best way
to correct it?

11.16. Prove that the Hamming distance defined on page 443 is indeed a
function as asserted. Then establish that the properties, displayed on
page 443, of the Hamming function hold.

11.17. Establish the two conditions 1 and 2, for the Hamming function’s ability
to detect/correct codes, given on page 444.

11.18. Verify the statement made on page 444 to the effect that nearest neigh-
bour decoding may be used to either detect up to d−1 errors or to correct
up to (d− 1)/2 errors.

11.19. Prove the facts, stated on page 445, that Aq(n, 1) = qn and Aq(n, n) = q.

(Hint: To show the latter it suffices to show that you can always find
at least one (n,M, d)-code. To do this, let C be a collection of vectors
(a, a, a, . . . , a, a0, . . . , a0) where there are d repetitions of a, and n − d
repetitions of a0, where a0 ∈ M fixed and a ∈ M arbitrary. Conclude that
there are q such vectors, with distance d(c, c′) = d for c �= c′.)

11.20. Prove that any (n,M, d)-code over Fq is equivalent to an (n,M, d)-code
which has a row of zeros in some matrix representation of it (see page
444).

11.21. Prove that the Singleton bound given on page 445 holds. Conclude that
the code rate for such a code is at most (n− d+ 1)/n. See Footnote 11.6
on page 442.

11.22. Let w(c) denote the number of 1s appearing in a binary code c, called its
weight (see page 446). Show that if c, c′ ∈ F

n
2 , then d(c, c′) = w(c + c′) ≤

w(c) +w(c′). Indeed, show that d(c, c′) = w(c) +w(c′) −w(c ∩ c′), where
c∩ c′ is the codeword consisting of 1s in precisely the places j where c and
c′ both have a 1 in position j.

11.23. Show that if d is even, then there exists a binary (n− 1,M, d− 1)-code
if and only if a binary (n,M, d)-code exists.

(Hint: Use Exercise 11.22. In particular, when you assume that C is
a binary (n − 1,M, d − 1)-code, proceed as follows. For each codeword
c = (c1, . . . , cn−1) ∈ C, define c′ = (c1, c2, . . . , cn−1, cn), where

cn =
n−1∑
j=1

cj (mod 2).

The set C ′ of new codewords can be shown to be an (n,M, d)-code. This
construction of C ′ from C is often called adding an overall parity check
to C.)
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11.24. Prove that an MDS code, defined on page 445, possesses the largest
possible value of d for a given M and n.

11.25. Verify that the cardinality of the Hamming sphere displayed on page
443 is indeed valid.

(Hint: Calculate |{v ∈ S(u, r) : d(u, v) = m}| for each m ∈ N.)

11.26. Prove that the Hamming bound displayed on page 445 holds.

(Hint: Place a Hamming sphere around each codeword so that it has radius
t. Then count the number of vectors in these spheres and multiply by the
number of codewords.)

11.27. Establish that the Gilbert-Varshamov bound given on page 446 holds.
Conclude that this is also a lower bound for Aq(n, d).

(Hint: Use an iterative process where you begin with some fixed vector
and remove all vectors within a Hamming sphere radius of d − 1 from
it. Then from the remaining vectors choose another and do the same
thing, continuing in this fashion until no vectors remain. Then employ
the cardinality of the Hamming sphere established in Exercise 11.25 to
conclude that ultimately the bound is achieved.)

(Alternative hint: There is an alternative proof for those who are comfort-
able with the notion of cosets, at this juncture, and have solved Exercise
11.22. In this case, assume that the code has fewer than the number of el-
ements in the bound. Then there is a coset where all the words have weight
at least d. However, the union of a linear code with one of its cosets can
be shown to be a linear code. Once confirmed this establishes the result.)

11.28. Prove that d(C) = min{w(c) : c ∈ C where c �= −→0 } for a linear code C.
(See Exercise 11.22 and the discussion on page 446.)

11.29. Prove that two matrices generate equivalent linear [n, k]-codes if one
matrix can be obtained from the other by operations R1–R3 and C1–C2
described on page 447.

(Hint: The rows of a generator matrix are linearly independent. Show
that the row operations preserve this independence and that the column
operations create a generator matrix for an equivalent code.)

11.30 Prove that if G is the generator matrix for a linear [n, k]-code, then op-
erations R1–R3, and C1–C2 transform G into standard form [Ik|Mk,n−k],
as described on page 447.

11.31. Prove that the matrix P defined on page 447 satisfies that cP t = −→0 for
all c ∈ C.

11.32. Prove that C⊥ defined on page 448 is indeed a linear [n, n − k]-code
with generating matrix P = [−M t

k,n−k|In−k], and that G is a parity check
matrix for C⊥ as claimed on the aforementioned page.
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11.33. Prove that if G is a generator matrix for an [n, .k]-code, then it can
be reduced to standard form [Ik|Mk,n−k] employing only row operations
R1–R3 if and only if the first k columns of G are linearly independent.

11.34. A linear code C is self-dual if C⊥ = C (see page 448). Prove that if C
is a self-dual linear [n, k, d]-code, then n is even.

11.35. With reference to Exercise 11.34, prove that (C⊥)⊥ = C for any linear
[n, k]-code C.

� Exercises 11.36–11.40 pertain to the discussion on page 450 concerning
cosets of linear codes.

11.36. Establish that two vectors are in the same coset if and only if they have
the same syndrome. Conclude that there is a one-to-one correspondence
between cosets and syndromes.

11.37. Prove that if e + C is a coset of C and f ∈ e + C, then e + C = f + C.

11.38. Prove that every coset C + e has exactly qk vectors.

11.39. Verify that every vector of F
n
q is in some coset of C.

11.40. Show that two cosets are either identical or are disjoint.

(Hint: Use Exercise 11.37.)

11.41. Prove that if C is a linear [n, k]-code over Fq with parity check matrix
P , then the minimum distance of C is d if and only if d− 1 columns of P
are linearly independent, but d columns are linearly dependent.

11.42. If q is a prime power and N = (qn− 1)/(q− 1) for a given n ∈ N, prove
that there exists a [N,N − n, 3]-code.

(Hint: Consider the sets Sv = {λv : λ ∈ Fq, λ �= 0} for each nonzero
v ∈ F

n
q . Then |Sv| = q − 1 for each such v and there are N such sets.

Select one vector from each Sv, no two of which are linearly dependent.
Now use Exercise 11.41 to conclude.)

11.43. The codes constructed in Exercise 11.42 are called q-ary Hamming
codes. Prove that these codes are perfect single-error-correcting codes.
(See page 445.)

11.44. Show that the repeating [n, 1] linear code with generator matrix G =
[1, 1, . . . , 1] with n odd is a perfect code where the Hamming spheres of
radius (n− 1)/2 completely fill F

n
q without overlapping.

11.45. Prove the allegation stated in Footnote 11.8 on page 447.

11.46. In the Example on page 454 of the [7, 4, 3] Hamming code, construct
the 8×16 Slepian array. Then extract the syndrome lookup table from it,
and use syndrome decoding to find the original message from the following
received vectors.
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1. (0, 1, 1, 0, 0, 1, 0).
2. (0, 1, 1, 0, 0, 0, 1).
3. (0, 0, 1, 1, 1, 0, 1).
4. (0, 1, 1, 0, 1, 0, 0).
5. (1, 0, 0, 1, 0, 1, 0).
6. (1, 0, 0, 1, 0, 0, 1).
7. (0, 0, 0, 1, 1, 0, 0).
8. (1, 0, 1, 0, 1, 0, 1).

11.47. Prove that the matrix G given on page 456 is the generator matrix for✰
the Golay code G24, and that properties 1 and 2, listed therein, hold for
this code.

(Hint: If you have a desire and ability at programming and a computer to
execute your algorithm, you can list all 212 = 4096 codewords and verify
that d(G24) = 8 directly. Otherwise, first show that the code is self-dual.
To do this, employ the fact that rows 2 through 11 of the matrix M12×12

are cyclic permutations of row 1 as presented on the aforementioned page.
This reduces the work in establishing that any given row of G forms a
zero dot product with all the rows of G. Now you can easily establish that
[M12×12|I12] is a generator matrix for G24 since G⊥24 has generator matrix
[M t

12×12|I12] and M12×12 = M t
12×12. To show that every codeword of G24

has weight divisible by 4, observe that the weight of the intersection is the
dot product, which is even since the code is self dual. Since all rows have
weight divisible by 4, it follows from Exercise 11.22 that the weight of the
sum of any two codewords is divisible by 4. This can be employed to verify
that the weight of any linear combination of rows of G has weight divisible
by 4. To show that there exists no codeword of weight 4, look at all the
possibilities for the weight of such a codeword by breaking it into left and
right components. The outcome will be that −→0 is the only such word. That
G is the generating matrix for G24 now follows from these facts.)

11.48. Prove that G23 is a linear [23, 12, 7]-code.

11.49. Prove that the Golay code G23 is cyclic.

11.50. Prove that the ternary (11, 6) Golay code is perfect.

11.51. Prove that Ham(r, 2) is a cyclic code for any r ≥ 2.

11.52. Show that the polynomial g(x) chosen with minimal degree for cyclic
codes described on pages 459 and 460 satisfies properties 1–3 listed therein.

11.53. Show that the matrix G displayed on page 460 is the generator matrix
for the cyclic code C as claimed.

11.54. Prove that P given on page 460 is the parity-check matrix for the cyclic
code C, as claimed.
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11.55. Find all binary cyclic codes of length 5.

11.56. Prove that a generator matrix for the binary code Ham(3, 2) is given by

G =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1




corresponding to the polynomial x3 + x + 1 in R3, and that this matrix
may be obtained from the matrix given in Example 11.11 via the operation
R1–R3 and C1–C2 on pages 447.

11.57. Suppose that C is a cyclic [n, k]-code with parity-check polynomial
p(x) = p0 + p1x + · · · + pn−kn−k. Prove that C⊥ is a cyclic code generated
by the polynomial,

pn−k + pn−k−1x+ · · · + p0x
n−k.

11.58. Consider the binary cyclic code generated by the polynomial,✰

g(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11.

Show that this is a perfect [23, 12, 7]-code that is equivalent to the Golay
code G23.

11.59. Show that the ternary code in R11 generated by g(x) = x5 + x4 − x3 +
x2−1 is a 12, 6, 5]-code, which is perfect. This is equivalent to the ternary
Golay code discussed on page 457.

11.60. Prove that the BCH bound, d ≥ s + 2, stated on page 461, actually
holds under the conditions given.

(Hint: Prove by contradiction. Assume there is a code with weight w
no bigger than s + 2, and select a polynomial m(x) with the code el-
ements as coefficients. Then g(x)

∣∣ m(x). Select the nonzero coeffi-
cients {cij}1≤ij≤w of m(x) and form a matrix that represents the equation
m(x) =

∑w
j=1 cijx

ij = 0 at the roots αr+k for r = 0, 1, 2, . . . , w− 1. Then
consider the determinant of the coefficient matrix in light of the Vander-
monde determinant given on page 494. Once shown that the determinant
is nonzero, this forces the coefficients to be zero, a contradiction.)

11.61. Prove the statement given on page 462: the binary, cyclic [N,N − r]-
code for N = 2r−1 (having generator polynomial the minimal polynomial
of a primitive element of F2r over F2) is equivalent to Ham(r, 2). (See page
490.)

11.62. Suppose that p(x) is a primitive polynomial (see page 490) over F2 of
degree r. Prove that the cyclic code C = 〈p(x)〉 is Ham(r, 2).

(Hint: Use Exercise 11.61.)
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11.63. Prove that a BCH code of distance d has weight w ≥ d. (See page 462.)

11.64. Let α be a primitive pth root of unity where p is a prime (see page 487).
Prove that

αp−1 + αp−2 + · · · + α + 1 = 0.

11.65. Use Exercise 11.63 to prove that if α is a primitive 7th root of unity,
then α, α2, and α2 are roots of x3 + x + 1 = 0 over F2, as claimed in
Example 11.14 on page 462.

11.66. Prove that the polynomials g(x) and p(x) given in Example 11.15 on
page 463 have the additive structure corresponding to the multiplicative
one given. In other words, verify the coefficients of the various powers of x.
Also, show that in Fq, the codewords (110), (011), (111), (101) correspond
to α3, α4, α5, and α6, respectively.

(Hint: Use Exercises 11.64 and 11.65.)

11.67. Establish the properties of Goppa codes listed as 1 and 2 on page 465.

G.12 Appendices Exercises

App.1. Prove the division algorithm presented as Theorem A.2 on page 470.

App.2. Establish the properties of the sigma notation given as Theorem A.5
on page 472.

App.3. Prove Theorem A.11 on page 478.

� Exercises App.4–App.12 concern Euler’s function defined on page 479.

App.4. Prove that φ(n) ≡ 2 (mod 4) if and only if n = 4, n = pa or n = 2pa,
where p ≡ 3 (mod 4) is prime and a ∈ N.

App.5. Prove that if n ∈ N is even, then
∑
d|n

(−1)n/dφ(d) = 0.

What is this sum if n is odd?

App.6. Prove that if n ∈ N is composite and φ(n)
∣∣ (n− 1), then n is square-

free.

App.7. Prove that φ(d)
∣∣ φ(n) for all divisors d ∈ N of n ∈ N.

App.8. Prove that for any a ∈ Z, am ≡ am−φ(m) (mod m) for all m ∈ N.

App.9. Prove that φ(an − 1) ≡ 0 (mod n).
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App.10. Prove that φ(n) ≤ n−√
n for all composite n ∈ N.

App.11. Prove that there are infinitely many n ∈ N such that φ(n) > φ(n+1).

App.12. Suppose that b, n ∈ N, p is a prime not dividing a, and g =
gcd(φ(pb), n). Prove that

aφ(pb)/g ≡ 1 (mod pb),

if and only if there exists an integer x such that

a ≡ xn (mod pb).

� Exercises App.13–App.16 pertain to indices and related material. See pages
479 and 480.

App.13. Prove Proposition A.4 on page 480.

App.14. Prove that if c is an integer and p is an odd prime, not dividing c,
then there exists an integer x such that

c ≡ x2 (mod p)

if and only if indpa(c) is even for any primitive root a modulo p.

App.15. Assume that p is an odd prime, and ordp(c) is odd. Prove that cx ≡ −1
(mod p) has no solution x ∈ N.

App.16. Given that m,n ∈ N are relatively prime. Prove that a is a primitive
root modulo mn if and only if a is a primitive root modulo both m and n.

App.17. Let n ∈ N be odd. Prove that the Jacobi symbol, (mn ) = 1, for all
natural numbers m < n with gcd(m,n) = 1 if and only if n = a2 for some
a ∈ N. (See page 482.)

App.18. Given a ∈ Z. Prove that x2 ≡ a (mod p) has a solution x ∈ Z for all
primes p if and only if a = b2 for some b ∈ Z.

App.19. Prove that 2x2 − 219y2 = −1 is not solvable for any integers x, y.

App.20. Prove that the congruence 2x2 − 219y2 ≡ −1 (mod n) has solutions
x, y ∈ Z for all n ∈ N.

App.21. Prove that a finite integral domain is a field. (See page 483.)

App.22. Suppose that R is a ring, and α : R �→ R is an isomorphism (see pages
487–489). Then α is called an automorphism of R. Prove that the set of
all automorphisms of a group forms a group itself, under composition.
This group is typically denoted by Aut(R).
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App.23. If K is a field extension of F and α ∈ Aut(K), such that α(f) = f
for all f ∈ F , then α is called an F -automorphism of K. Prove that the
group of all F -automorphism of K is a subgroup of Aut(F ). This group
is denoted by Gal(K/F ), called the Galois group of K over F .

App.24. With reference to Exercise App.23, determine Gal(C/R). (For a
detailed view of Galois theory and its ramifications, see [168].)

� Exercises App.25–App.29 pertain to continued fractions. See pages 496–498.

App.25. Suppose that the period length � of the simple continued fraction
expansion of

√
D is even. Prove that all (positive) solutions of the Pell

equation x2 − Dy2 = 1 for D ∈ N not a perfect square are given by
x = Ak�−1 and y = Bk�−1 for k ∈ N.
(Hint: See Corollary A.3 on page 498.)

App.25. Prove that in the situation given in Exercise App.24, there are no
solutions to the Pell equation x2 −Dy2 = −1.

App.26. Suppose that the period length � of the simple continued fraction
expansion of

√
D for nonsquare D ∈ N is odd. Prove that all positive

solutions of x2 − Dy2 = 1 are given by x = A2k�−1, y = B2k�−1 for
k ∈ N; and all solutions of x2 −Dy2 = −1 are given by x = A(2k−1)�−1,
y = B(2k−1)�−1 for k ∈ N.

App.27. With reference to Theorem A.32 on page 498, prove that

Gk−1 = PkBk−1 +QkBk−2,

for any nonnegative integer k.

App.28. If � is the period length of the simple continued fraction expansion
of

√
D, show that Qj = Q�−j for 0 ≤ j ≤ �, and P�−j = Pj+1 for

0 ≤ j ≤ �− 1.

App.29. If D = pq where p ≡ q ≡ 3 (mod 4) are primes with p < q, and√
D = 〈q0; q1, . . . , q�〉, prove that � is even. Also, verify that the following

Legendre symbol identity holds:G.4

(
p

q

)
= (−1)�/2.

App.30. Let p be a prime and define and elliptic curve E(Fp) over Fp by
y2 = x3 + ax + b for integers a, b. Prove that the number of points on E
counting the point at infinity is given by the following Legendre symbol
formula.

p+ 1 +
∑
x∈Fp

(
x3 + ax+ b

p

)
.

(See pages 498 and 499.)
G.4This idea and related issues have been substantially generalized by this author in [171].
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App.31. Verify the four properties of Blum Integers given on page 508.

� Use the continued fraction algorithm, described on pages 512 and 513 to
factor the integer n given in Exercises App.32–App.36.

App.32. n = 6457.

App.33. n = 75433.

App.34. n = 387181.

App.35. n = 98759.

App.36. n = 689863.

App.37. Use Pollard’s p − 1 algorithm to factor the integers in Exercises
App.32–App.36. (See pages 514 and 515.)

App.38. Use Pollard’s Rho-Method to factor the integers in Exercises App.32–
App.36. (See pages 515–517.)

App.39. Use the QS method to factor the integers in Exercises App.32–App.36.
(See pages 517–519.)

App.40. Use the MPQS method to factor the integers in Exercises App.32–
App.36. (See pages 519–522.)

App.41. Use the ECM method to factor the integers in Exercises App.32–
App.36. (See pages 522–524.)

App.42. Compare the factoring methods used in Exercises App.37–App.41.

� In Exercises App.43–App.46, use the Silver-Pohlig-Hellman algorithm pre-
sented on pages 530–532, to find the value of logα β from the given param-
eters.

App.43. p = 73, α = 5, β = 8.

App.44. p = 1637, α = 2, β = 15.

App.45. p = 2689, α = 19, β = 27.

App.46. p = 2999, α = 17, β = 38.

App.47. Use the baby-step giant-step algorithm described on pages 533 and
534, to calculate the values in Exercises App.43–App.46.

App.48. Use the index-calculus method, delineated on pages 534–536, to cal-
culate the values in Exercises App.43–App.46.

� In Exercises App.49–App.52, use radix-64 encoding via the description on
pages 541 and 542, to encode the given three-byte segments.
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App.49. 01010010, 10000011, 10101011.

App.50. 10101101, 11111100, 11010100.

App.51. 11110000, 00001111, 01010111.

App.52. 11111111, 10000000, 01111110.

� Using the probability theory basics that we learned in Appendix E (pages
543–549) to solve Exercises App.53–App.56.

App.53. If you have two fair dice, thrown one at a time, find the probability
that the sum is 8. What is the probability that the first die is less than
the second die? What is the probability that the second die is a 4, given
that the first is a 3?

App.54. Given two cards dealt, one after the other, from a fair 52-card deck,
what is the probability that they are the same suit? What is the proba-
bility they are the same value?

App.55. Suppose that the probability that an event occurs is p = 0.1%. Find
the probability that this event occurs no more than twice in a series of
1000 independent trials.

App.56. Assume that Alice buys a lottery ticket for $2, and her possible
winnings are $1, 000, $10, 000, and $100, 000 with respective probabilities
of 0.3%, 0.005%, and 0.001%. Determine Alice’s possible winnings.

� Use Fermat’s compositeness test on page 551 to determine show that the
values in Exercises App.57–App.60 are composite

App.57. n = 296977.

App.58. n = 36977.

App.59. n = 45671.

App.60. n = 77571.

App.61. Use the Miller-Selfridge-Rabin test in Section F.2 on page
552, to determine the (probable) status of the values: n ∈
{561, 1729, 14081, 296987}.

App.62. Employ the algorithms for probable prime generation in Section F.4
on pages 558 and 559, to produce a list of a half dozen probable primes.
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