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Preface

“Cryptology”—the science of secret writing—is peculiarly fascinating. Its
vocabulary alone reminds you of crime thrillers rather than of science: radio
reconnaissance, invisible ink, encrypted message exchange, ciphertext attack. . .

This fascination begins probably rather early in our lives. I once watched my
older son as he zestfully tried to decipher some secret writing in a children’s
puzzle magazine. When I was a kid I experimented with the legendary invisible
ink made of salt solution or lemon juice (which never worked, because as I
heated it up the paper would always char instead of magically revealing the
secret writing). When my dad later told me about his method for encrypting
radio traffic (Section 2.3), I was thrilled and had a dim feeling that there’s got
to be a bunch of mathematics behind it. I simply couldn’t imagine that anybody
could ever be able to read such ciphers without knowing the key. And with so
many keys around—no way anybody could try them all out!

My next encounter with cryptology happened two decades later. Long after my
math studies, I had access to a PDP11 computer and experienced for the first
time that computers can be there for people rather than the other way round. I
began to test an encryption algorithm I invented on this computer and thought
it to be bomb-proof—as always when you don’t have enough background
knowledge. Ten years later, I further developed this algorithm, studied it to the
best of my knowledge, and published it in the German UNIX Magazine. The
lively readers’ response took me by surprise.

Unfortunately, this algorithm was insecure. You will read in Section 3.7 how
it can be cracked.

xi



xii Preface

In the years that followed, I dealt with cryptology over and again and increas-
ingly more often. Motivated by a magazine article, Mr Wehren of Addison-
Wesley Publishing asked me whether I would like to write a book on this topic.
I initially thought it was too daring. After a month of playing with the idea, I
agreed, and I haven’t been sorry. This book is an English version of the fourth
edition of that book, and I hope you enjoy reading it as much as I enjoyed
writing it. The book is intended to be fun, but it also has other goals.

Today, as we can’t imagine our everyday lives without cryptology, there is a
widening gap between modern and hard-to-understand cryptological research
on the one hand, and the general state of knowledge on the other hand. The
risks from naı̈ve use of bad encryption methods (or—more often—bad use
of good methods) mustn’t be underestimated. That’s not panic-mongering: We
first have to get to grips with the new information age. A popular, but not
superficial, discussion of this issue is necessary. This book is intended to be
easily understandable for non-mathematicians, too, and it should show how
exciting, many-facetted, and entertaining cryptology can be. Whether or not I
achieved these goals is up to you.

A lot has happened since the first edition of this book (1997). Cryptology has
left its mystery-mongering world, and modern society would be unthinkable
without it any more. While there were still only a handful of specialists who
furthered cryptanalysis actively (i.e., cracked code) in the mid-1990s, it is now
a broad field of research that produces interesting results. And while good
encryption was subject to tight restrictions, not only in the USA, at the begin-
ning of the 1990s, we now have an encryption standard like the AES that came
about by an international challenge, and the USA now use a Belgian algorithm
for their own security. Also, we understand much better today that encryption
is only a small part of security, and that most errors are made when imple-
menting algorithms. Nevertheless, cryptology has remained one of the hardest
subjects in information security to understand.

The developments won’t come to a standstill. Additions and corrections to this
book will certainly become necessary, though it is already in its fourth edition.
This is why you will find current information on the topics discussed in this
book and errors that attentive readers will have found at

http://www.wileyeurope.com/go/cryptology

So, if you find wrong or incomplete information, or if you think that one term
or the other should appear in the Glossary, please send an email to the address
given below.



Preface xiii

I welcome every critical comment. But please don’t send me ciphertexts to
decrypt, or new ‘uncrackable’ algorithms. When you’ve read the book (and
particularly the text in txt/FAQ/memo.txt on our Web site!), you’ll understand
that those are extraordinarily cumbersome tasks, and I normally won’t have the
time or sometimes the knowledge.

Reinhard Wobst
r.wobst@gmx.de
GnuPG fingerprint:
897A 6984 9C8D FED9 305F 082E F762 909D A28C 4B16





Chapter 1

Introduction

We live in a world where information and its exchange play central roles, and
yet it’s only the beginning of the information age. It will become increasingly
important to protect information which, in turn, requires knowledge in cryptol-
ogy. Cryptology encompasses two fields: cryptography, which is, roughly
speaking, the science of data protection by encryption, and cryptanalysis,
which is the art of obtaining information on secret data without knowing the
key. Though people have been dealing with cryptology for several thousands
of years, it is still somewhat mystery-mongered. It is also a difficult field. First,
every cryptologist needs to have sound mathematical knowledge. Second, a
cryptologist is often hindered by the fact that he’s either bound to confiden-
tiality, or that research findings are kept secret. Cryptology still hasn’t rid
itself of its reputation of being a playground for national intelligence agencies,
diplomats, and militaries, though it has meanwhile made its way into every-
day use—think only of your bank card’s PIN, or digital cell phones. On the
other hand, for example in the United States up into the 1990s, good (secure)
encryption algorithms had been banned from export. They were classified as
‘ammunition’. In France, cryptography was thought of as the second most dan-
gerous type of weapon, and its use had to be approved by the Prime Minister
(explicitly excluding criminals and alcoholics). Meanwhile, the regulations have
loosened up in France, too.

Knowledge of good cryptographic methods and mainly their correct use is
still not widely disseminated. We often use bad or unpublished algorithms, or

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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2 1. Introduction

algorithms whose security we know little or nothing about. ‘Security’ means
almost always: we haven’t found a vulnerability so far, but who knows whether
somebody found one long ago and just didn’t tell us about it. Security that is
both theoretically provable and practically usable is still the pipe-dream of
all cryptologists today, even though we may quite reasonably trust modern,
thoroughly studied algorithms.

In contrast, interested outsiders encounter problems with the large choice of
algorithms, theoretical findings from analyses, and difficult cryptographic pro-
tocols. The significance of good methods cannot be appreciated enough. The
‘information society’ needs to have a totally new security awareness; the risks
are different and sometimes even much greater than in the physical world. One
thing is for sure: not knowing about cryptology can only make things worse.
You will find plenty of hair-raising examples in this book.

All the mystery-mongering, the imponderabilities and their particular signifi-
cance make cryptology very different from other fields of knowledge. Cryptol-
ogy is an adventure we will try to unlock in this book.

1.1 Should You Read This Book?

This is not a textbook. It is by no means complete, and it isn’t particularly math-
ematical either (at least not more than absolutely necessary). If you have some
background knowledge and want to delve deeper into cryptology, I recommend
the seminal work of Schneier [SchnCr], but this is a hefty tome of more than
800 pages. Nevertheless, the author refers to the literature frequently enough
when it comes to the details (more than 1653 quotations!). Or perhaps you are
looking for an easier way to first get to grips with the basics in cryptology:
What does it actually research? What is known so far? What is it good for?
How can I benefit from it? If you are intrigued by these questions, you may
want to have a go at this book. If you make it to the very end, you will hope-
fully have found answers to these questions. And you should have a rough idea
of how the security of methods and protocols is evaluated, and what to think of
the findings. You will know how many fields belong to cryptology (and which
don’t), how much inventiveness cryptanalysts put into their work, and how little
we know in spite of it all; many statements in this book are only suppositions.

Cryptological knowledge can prove very useful in practice. With basic knowl-
edge, if somebody tries to talk you into buying a product by simply stating that
‘nobody will reveal the data because they are encrypted’, you will not buy it.
Modern ciphering devices and ciphering programs should have freely usable



1.2. Why Busy Ourselves With Cryptology? 3

interfaces for a customer’s cryptographic components, or they should at least
offer reproducible methods. But only a qualified customer can force vendors to
do this. This customer could be you, for example. The triumphant success of
the free PGP program shows one possible way toward ‘cryptological justice’.

You will find reading this book easier if you have some IT knowledge—people
who know the C programming language will have a home advantage—and if
you are not too hostile toward mathematics. But you don’t have to be a profes-
sional programmer. Cryptology Unlocked is meant to be a book for practitioners
who want to get a rough idea of this fascinating field without having to delve
deeply into its theory. I’ll spare you the nitty-gritty, like formulas, to the widest
possible extent. Many things can be explained verbally just as well. Sometimes,
however, there is no way around formulas. After all, cryptology is a field where
each side uses mathematical ingenuity to trick the other side. This is why not
everything can be explained without using some background knowledge. But
it’s not a math book for sure.

You will find only a few ready-made programs on the Web site to this book
(www.wileyeurope.com/go/cryptology). Conversely, you will find plenty
of C source texts ‘to play’ with, and many documents that go far beyond the
things discussed here. The Web site to this book, the list of references, and
information sources on the Internet will help you if you want to deal with
cryptology more deeply.

1.2 Why Busy Ourselves With Cryptology?

1.2.1 ‘I’ve Nothing to Hide’

I’ve heard this sentence over and again and think it’s a big mistake. Almost
everybody is careful about their physical possessions: people lock their apart-
ment doors, don’t leave their wallets lying around unattended, and lock their
cars. The fact that information represents an asset doesn’t seem to have crossed
many people’s minds. All right, you wouldn’t write everything on postcards,
and you don’t pass on the personal identification number (PIN) of your bank
card. But the problem begins when handling this PIN: people who write their
PIN on the card itself are simply unaware of the things unauthorized persons
can do with such information! Information often embodies a much greater value
than material things. Look at this example: back in the 1990s, Philip Morris
bought Kraft Foods for 12.9 billion dollars, including 1.3 billion for material
assets. The buyer deemed it worth paying 90 % for know-how, experienced
staff, brand name, customer base, and so on—all of this largely representing
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Example of the value of a company:

• Material assets worth 1.3 billion dollars.

• Miscellaneous (know-how, customer base, brand name, staff, . . .)
worth 11.6 billion dollars.

Figure 1.1: Information can be more valuable than material assets.

information that could mean added value for a competitor, for example, the
know-how and disclosing of the customer base [Peters, p. 27].

Or think of the huge amounts of data from seismographic measurements that
could give a clue on the location of a future oil platform and would mean
millions in profit for an impostor. The German Chamber of Industry and
Commerce (IHK) and industrial associations estimated the damage caused by
industrial espionage to be at least 4 billion euros for Germany in 1988. This has
remained the only official figure. Estimates from the beginning of the millen-
nium were between 10 and 35 billion euros. The wide range of these estimates
shows better than any verbose statement how large the gray zone must be.

Yet another consideration explains the significance of information: according
to Peters [Peters], virtual companies will drive other business formats out of
the market, because they are much more flexible and efficient. In this context,
several companies would merge temporarily and for a specific purpose. Secure
exchange of information represents an immediate value-adding potential for
such virtual companies.

Underestimating the value of information can have catastrophic consequences.
We should have learned this much from history. In both world wars, read-
ing encrypted messages of the adversary played a decisive role, and in both
world wars, the parties concerned simply ignored the impact of it. In 1914,
when the German cruiser Magdeburg ran aground and fell to the Russians,
including the Signalbuch der Kaiserlichen Marine and other code books, it
didn’t raise suspicion on the German side; no secret code was changed on this
account. A Russian prisoner then even told the Germans that they owned the
code books. Obviously the Germans underestimated the significance of crypt-
analysis, and they hadn’t even gotten suspicious when the activities of British
warships made clear that the German intelligence communication had been
eavesdropped.
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Breaking the German Enigma code by the Poles and British in World War II
was most important for the outcome of the war. A large part of Chapter 2 is
dedicated to this topic. But in England, too, it took some time until the British
admiralty recognized the value of their cryptanalysts, while they had a close
shave themselves: according to Kahn [KahnCode], it would have been pos-
sible for the German Wehrmacht to land in Great Britain (in fact, things had
been going according to plan!)—had the British not changed their own code in
time—for the Germans listened in on them. Later on things changed, not only
militarily: while the British managed to listen in on the Germans increasingly
faster, the German top echelon refused to consider that their Enigma cipher-
ing machine might not be infallible. Many insiders think that cryptanalysis
was decisive for the outcome of many wars. Kahn [KahnCode] even thinks
that cryptanalysis helped gain more information than all espionage activities
together. At least four events decisive for the outcome of World War II were
possible only by cryptanalysis. Among others, this includes the battle off the
Midway Islands, which prevented the dominance of the Japanese in the Pacific,
and the shooting down of Admiral Yamamoto’s plane by the US air force.
However, the best example is the submarine war in the Atlantic. If the Enigma
hadn’t been deciphered, the USA would probably have dropped nukes over
Europe. More about this in Chapter 2.

We may reasonably assume that militaries, national intelligence agencies, and
other organizations learned a lot from past errors. Otherwise, there wouldn’t be
agencies like the NSA (National Security Agency), for example, which special-
izes in the ‘surveillance’ of global intelligence communication and cryptology,
among other things. Its largest listening-post outside the USA and Great Britain
is located in Bad Aibling in the south of Germany. Readers interested in the
details should look at Section 8.2.1.

You Have Information Worth Protecting

‘I don’t wage submarine wars, don’t buy companies, and don’t drill for oil’,
you will say, ‘What should I protect?’ Well, consider the following points.

• Any piece of information obtained in an unauthorized way that gives
clues on your financial situation can be dangerous for you. If you have
lots of money it will for sure. But even if you have no money it may: it
could interest a potential employer, or your landlord. This person doesn’t
necessarily have to wiretap your line itself. Don’t forget that information
(as opposed to tape recordings) won’t change even after the 15th copying
between computers.
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• Also your acquaintances and the possibilities for espionage or sabotage
given by your work can make you an interesting subject for others—for
national intelligence organizations, religious groups, or competitive com-
panies. This is one of the fields with likely the largest percentage of
undetected crimes. We don’t know the proportions of the ‘war behind
the scenes’.

• Businesses are particularly at risk. [IHK] describes a case from the textile
industry, where a company’s major competitor lured away customers
from that company’s customer base. Address lists of any sort are cash!
And people outside the business world shouldn’t be indifferent about
this either. Information is power, and it’s usually the powerful who get
to it more easily. This can lead to new types of painful competitive
imbalances. The customer will feel it in the form of excessive prices,
poor service, and inelastic supply.

• [IHK] points to the fact that scientists in particular see themselves as
colleagues rather than competitors, and such circumstances are recklessly
exploited by national intelligence organizations.

• Don’t forget that some confidential information that may not be of interest
to you can acutely endanger your friends or acquaintances. Possess-
ing third-party information can also be dangerous in some situations.
In February 1995, when insider information about Scientology became
public on the Internet, the sender of this message had used an anony-
mous remailer. A remailer is a computer that strips off all information
about the sender when forwarding emails (which is legitimate and some-
times necessary). On earlier occasions, such messages had been deleted
by unknown people due to alleged disclosure of trade secrets. In this
case, the Finnish police, called in by the FBI and Interpol, and Scientol-
ogy themselves called the remailer operator and requested the sender’s
address be disclosed. While this led to nothing, when the Swedish daily
Dagens Nyheter connected him with child pornography three days later,
the Finnish police waved a search and seizure warrant at him two days
later. The alleged child porn was found to be untenable a couple of days
later. You can read more about this thriller in [Kunz.ct].

• Cryptology doesn’t only deal with data secrecy. It also deals with data
integrity and authorship. If your ATM card is stolen and the thief (or
his organization) manages to cryptanalyze the PIN (see Section 6.6.8),
you might find the money stolen to be the least painful consequence.
The bank may claim that you had passed on your PIN with fraudulent
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intention and sue you. This has happened more than once. In court, your
PIN is as good a judicial evidence as your signature.

Poor cryptography allows adversaries to rummage in your name, and you will
be held responsible for the damage. Think of unscrupulous nuts with enough
capability and a decent budget!

This book is not about national economy and data protection. But it uses
examples from these fields to show you how important it is to protect informa-
tion today. Together with the explosively growing popularity of the Internet,
data protection gains unimagined significance. As convenient and beneficial as
global communication may be, we have to learn which information we have
to protect against unauthorized access, and how we can protect it. This book
deals mainly with the second question.

Have you noticed something? Our real-world examples talked little about
national intelligence organizations, and the popularly quoted armchair hacker
wasn’t mentioned at all. Information has become merchandise, and accordingly
it is of interest for business. I recommend the book by Hummelt [Humm] for
further reading; he worked with companies specializing in competitive analyses
himself and knows what he is writing about. This explains the large number of
instructive examples in his book.

Nevertheless, we should by no means underestimate the potential threat from
national intelligence organizations. Thanks to rapidly evolving computer tech-
nologies, the possibilities of unnoticed surveillance grow just as rapidly. Section
8.2.1 will show you how technology can enable surveillance of our everyday
lives, and how much of it has been implemented.

1.2.2 Cryptology: A Special Chain Link

Security is a Very Complex Field

Good cryptological algorithms alone offer no protection at all. Security can
only be achieved by a gapless chain of measures:

• All members of staff concerned have to be trustworthy.
• All members of staff concerned have to be security-aware: none of them

may write passwords on the bottom of the keyboard, have anyone looking
over their shoulders as they type their passwords, let alone mumble them.
Unfortunately, this happens quite often in practice.

• Data media with unencrypted information must be stored safely.
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• Confidential plaintext (readable text) must never flow through a network
others can eavesdrop, such as the Internet or intranets. It is believed that
every data packet crossing the Internet in the USA is listened in on with
a probability of 10 %. A DFN-CERT employee estimates a similar rate
for Germany.

• Your computers have to be secured against illegal access over the net-
work. IP spoofing (a technique used to gain unauthorized access to
computers, whereby the intruder sends messages to a computer with an
assumed IP address) is actually a complicated matter. But thanks to the
wealth of software packages on the black market, this type of attack has
become ‘respectable’, in addition to many other ingenious methods. We
don’t know how many of these attacks are malicious. Firewalls are not
impenetrable!

If all of this wasn’t scary enough, think of software working as an active spy.
For example, the Promis program originally designed for criminal investiga-
tion had been universally used and might also have helped the NSA (National
Security Agency) in accessing a large number of international databases, pos-
sibly including those of Swiss banks. I refer readers interested in the details
to [SpiegDat] and spies you happen to know. The article referred to mentions,
among other things, that every normal computer with a normal screen works
like a TV transmitter. The signal can probably be filtered out from a distance
of even one kilometer, and the screen contents can be reconstructed from this
signal. Automatic teller machines (ATMs) are also computers, by the way. And
we don’t know how many computers are out there running keyboard sniffers
that simply capture keystrokes and then send passwords or other sensitive stuff
they recovered over the network.

Don’t give up just yet. At the advent of the Industrial Revolution in England,
most houses had no door locks, and current security technology wouldn’t have
meant anything to anybody back then. The current change toward the informa-
tion society is just as revolutionary, and we’ll once more have to learn things
from scratch. And it will get dangerous if we fail to understand the threats.

What Cryptology Means for Data Protection

Back to our topic. You have seen that cryptology is not everything, but is
something special. Why? Encryption can protect information when it is clear
that unauthorized access cannot be prevented. (A classical example are the
address lists on your Windows computer at your workplace.) However, I find
another aspect much more significant.
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Bugging a room, listening over laser mikes, extorting a company’s employees,
or penetrating a company’s perimeters, and similar things are hard work and
risky. No wonder spies are well paid. But when a popular encoding algorithm
is secretly cracked, and the attack can be ‘cast’ in reasonably fast software,
then data espionage gets much easier. Using this software is easy. Imagine
somebody who can just about move a mouse suddenly getting hold of your
confidential information and selling it to the brains behind the scenes to replen-
ish his petty cash! This person won’t have any hard work to do, because our
networks are astonishingly easy to eavesdrop (or computers to tap), and he
will normally not leave any traces. Other persons or computers can also use
the program: copying the software is cheaper than buying a bug.

Yet another factor illustrates the special role of cryptology: if an eavesdropper
can’t decrypt encrypted messages, he can at least hoard them. One day either
the encryption algorithm or the protocol will be cracked, or the eavesdropper
will get access to a faster computer—and here we go, he will read all your mes-
sages in arrears. Since some information doesn’t lose its value with age, even
in our hectic times, you could have an unpleasant surprise after several years.
For who knows what methods cryptanalysis will use in five years from now?

Fast and good decryption programs could enable large-scale surveillance the
‘needlework spy’ can only dream of. This is one of the new-quality risks to the
information society. There are parallels to using nuclear power: the probability of
an accident is much smaller than with other processes (in cryptology this means
that money forging is much easier than finding an exploitable backdoor in the
DES algorithm). But when an accident happens, the damage can outdo everything
known so far.

Not even the leaky software mentioned above could have as many conse-
quences as the fast, unauthorized decryption of a widely used algorithm—if at
all possible.

All vulnerabilities mentioned so far have to be exploited individually; in con-
trast, cryptanalysis can be massware. You will find a small example on the CD
that comes with this book: newwpcrack is a program that finds the password
for an encrypted WordPerfect file on a PC with high probability within 10 ms.

Surprising Simplifications

I admit, I want to scare you a little. Really usable software like the one for
WordPerfect doesn’t normally come for free, and only the theoretical method is
discussed. Almost no program will work as fast as WordPerfect. But don’t rely
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on it, because complex mathematical problems have a peculiarity: once their
solutions are found, they often become much simpler. The following examples
show just how much simpler.

• You certainly know about Rubik’s cube, which challenges you to turn
the layered pieces such that each of its six sides has a different color.
It took me two weeks of occasional trial and error to get my first two
layers in place. The next attempt succeeded after three days, then it
took only one—I had grasped the trick. I then felt I had to proceed
more systematically. Within a week, I found a sequence of ‘pieces’ and
composed a puzzle out of them. Later I handled the cube without training
(but using a crib) within five to ten minutes. I’m convinced that everybody
can do this.

• A much more drastic example is the base problem in functional analysis.
The problem itself originates from mathematical basic research; I won’t
explain it here. Anyway, it concerns an assumption expressed in the 1930s
which is relatively easy to formulate, as many hard problems are. For
decades, leading mathematicians had cut their teeth over it. Nobody was
able to prove it, until a Dutchman found a counterexample in the mid-
1970s: it was all wrong! The proof that this was a counterexample in the
first place was said to have been about 600 pages long—an inconceivable
mental achievement. I heard a lecture about this proof, cut down to ‘only’
80 pages, in Warsaw. Coryphées in functional analysis I so much admired
shook their heads over the complexity of a single theorem. So I wasn’t
really sad that I failed to understand most of it. Six months later, a Polish
mathematician told me that the proof had been cut down to less than five
pages and had become readable.

Such stories seem to repeat themselves more often than not in mathematics. The
so-called Hilbert problems were very popular at the end of the 19th century. I
remember that at least one of them had been solved by an ‘outsider’, a student
from former Leningrad.

So let’s summarize:

• Even if great minds cannot solve a problem, an unknown person with
unconventional ideas may sometimes be successful.

• Even if a solution initially appears outrageously complicated, it can some-
times be drastically simplified.
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Chess programs appear to be subject to such changes, too. The playing strength
of current computers is certainly due not only to their computation power, but
also to chess theory. These programs have become so efficient because their
development is rewarding: they sell well. Conversely, the only vendor of crypt-
analytic software I know of is AccessData.1 Their software makes encrypted
files from numerous programs readable again (older versions handled Word-
Perfect, Lotus 1-2-3, Excel, Symphony, Quattro Pro, Paradox, and Word; their
Web site also mentions Microsoft’s encrypted EFSD file system). Confirming
what I said above, one of the software’s designers said they built wait loops
into the software to make sure people wouldn’t be shocked by its real speed
[Hoff]. You will see for yourself in this book how much the encoding algorithm
of WordPerfect is worth.

Normally, cryptanalysts are satisfied with showing the principle and occasion-
ally demonstrating a program. Easily usable and efficient cryptanalytic software
for more sophisticated algorithms is developed by somebody who deems it
worthwhile—and then the average punter won’t get the product. Large corpo-
rations and national intelligence organizations pay more and want to keep the
goodies for themselves.

However, there is at least one sensational exception: [Hoff] mentions that gov-
ernmental agencies in the USA use a program to crack the cipher contained in
pkzip; more details in Section 5.7.1. You can find such a program on the Web
site at www.wileyeurope.com/go/cryptology.

Don’t get me wrong: value addition can be achieved when information is
exchanged, and not when it is held back. But carelessly handling the protection
of information can destroy these values—faster today than in the near future.
On the other hand, thanks to cryptology, not only will our world become more
secure, our lives will become more comfortable. Think of electronic payment
systems, electronic elections, or digital signatures. Cryptology will perhaps also
finally help us to download a brief chapter from a textbook (or a soundtrack)
for a few bucks over a computer network rather than having to buy the entire
book (or CD).

1.3 What This Book Doesn’t Cover—Another Story

Security is an endless topic, and the existing literature is accordingly large:
How do I protect my computer/the local area network against unauthorized

1http://www.accessdata.com. The software is not cheap.
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access? What do I have to be particularly careful about when backing up
data? What risks can arise from third-party software (particularly operating
systems)?

This book doesn’t deal with these topics. Readers interested in the security
landscape can find plenty of material on the Internet, for example by visiting
the DFN-CERT servers, because the information offered there is current.2 This
book deals mainly with encryption algorithms and their analysis in view of the
previously explained special role cryptology plays.

Steganography

There is another method for protecting information against unauthorized tap-
ping, in addition to ‘open’ encryption. This method is called steganography,
and it hides messages in messages. Its purpose is to hide the existence of
information rather than making it unreadable. There is no limit to the wealth
of ideas. One example: my father was never allowed to tell anybody of his
whereabouts during World War II. So in his army mail, he sort of acciden-
tally underlined a digit in a date, say 5. All my mother needed to do was
find the first letter of every fifth word in the message to recover his loca-
tion. When I heard this as a child, I was sure nobody would ever be able to
see through such a smart trick. How wrong I was! Steganography is an art
that is thousands of years old, and it had reached totally different heights, as
well as the routine of its recovery. Minimal changes to some letters, slightly
varying spaces between words, previously agreed templates—everything con-
ceivable had certainly been exploited. You can admire a so-called semagram
in the seminal book by Kahn [KahnCode, p.523]: the naive pen-and-ink draw-
ing of a brook with bridge, flowers, and houses. The receiver knew that
she had to look at the blades of grass along the river bank: a Morse code
had been hidden in their different lengths. Invisible ink is also something
that belongs here, and microdots—entire A4 pages are accommodated in a
single typewriter dot using microphotographic methods. (Kahn explains in
detail how to produce microdots. Just this much here: they won’t help you
against surveillance anymore!) Other methods are discussed in [BauerDS] and
[BauerMM].

The usual steganography has a serious drawback: the message is not protected
by a secret and changeable key, but by a fixed method. Once the method is

2http://www.cert.dfn.de, ftp.cert.dfn.de
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revealed, all messages are compromised. This is the reason why a message is
normally encrypted before you hide it steganographically.

Steganography is still popular today. Encrypted emails must not be sent to
some countries (including Russia and Saudi Arabia), which means that one is
enormously tempted to hide the very existence of secret messages.

There are free software products for at least two methods intended to help keep
emails secret:

The first method creates ‘artificial words’, which behave statistically similar to
readable text. The message is hidden in the sequence of these artificial words.
Of course, everybody who looks inside the mail itself will see that it doesn’t
contain normal text (see Figure 1.2). But it helps fool a listening computer.

Nevertheless, I have my doubts. Analyzing written language is by far easier
than analyzing the spoken word, and even for the latter research has come a
long way. The statistical study alone gives many clues. Surely every software
designer will think of letter frequencies (and perhaps frequencies of pairs). As
an adversary interested in picking encrypted texts from a data stream, I would
definitely select more intelligent functions, at least ones that the popular free
programs don’t consider.

Only an UFO buff like you would want to have fun with Buster Keaton. You
know that Sigmund Freud was Eva Peron’s granola supplier in a previous life.
Glucose Chips! So ripe that it’s the eighth wonder of the world! Gonzo Q! So
expensive that it’s the eighth wonder of the world! Yo! Burt Reynolds would be
Best Actor of the Year if he hadn’t evenly got hair all over Dwight Eisenhower. How
can you rob Cortez so disappointedly? Having a part-time lover makes you more
cannibal prosimian. Wheaty! So nasty that it’s the eighth wonder of the world!
Have a Lipash-brand hat for your pteranodon! Bless my virtue! Eat tripe—the
moth intestines of the earth! Bless my stomach! You’re Scotch, my little father.
Bozhe moi, your power ties are really amusingly freaky. Frobo brand grape soda
is flamboyant and crisp! Roger Bacon is into Scientology. Sugar Pimples, for the
people who can’t get enough sugar! Possibly L Ron Hubbard and Paul Cezanne get
paid a whole lot, but all they ever do is artfully write protest letters to Congress.
C’mon, gimme the spiritual renewal.

Figure 1.2: This ‘artificial’ text hides encrypted information—it is a so-called
mimic function by Wayner (more details in the mimic.txt file on our Web site,
see A.1).
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Compression won’t do the trick either, by the way. Compressed text can be
decompressed, and those who try to be particularly clever by making encrypted
text pass for compressed text forget that compressed data obey certain rules,
too. More about this topic in Chapters 2 and 3.

I’m convinced that sufficient testing options can be found, except they aren’t
generally known.

The second method hides information in digitized images. Nope, this time
not in the length of a blade of grass: the color of each image dot (pixel)
is described by several bits, e.g., 4, 8, or even 24 (accordingly 16 million
possible colors). In this method, the first few bits determine the pixel color,
while the last few bits serve merely for ‘fine tuning’. Changes in these last
bits are hardly visible in the presentation; they are often even truncated when
output on a screen. These bits are used to hide secret information. Here too,
I have my doubts about the method’s security. Images are subject to certain
well-known rules—otherwise, there wouldn’t be effective image compression
methods. These rules also apply to the least significant bits. Now, if these
bits contain an encrypted message, they are purely random, leaping to the
eye exactly because of this, though our naked eye can’t recognize anything.
Adapting to the statistics of the image would certainly be possible, but costly
and never perfect. Rumors have it that every photo (at least the digitized ones)
that leaves NASA is previously checked for hidden information. Why shouldn’t
such programs work in large mail nodes? Basically, all objections made against
the first methods apply to this method, too.

‘Real’ steganography hides information such that its existence cannot be proved
lest you know the secret key. This is extremely difficult. You would have to

• filter out ‘noise’ independent of the actual information from a data stream;

• replace this noise by a secret text with equal statistical properties (not
hard with so-called ‘white noise’, because secret texts created by good
methods are equally distributed statistically);

• and finally mix this noise back into the reduced signal.

However, I have to warn you that statistical independence doesn’t mean deter-
ministic independence! It means that there might be a very simple test that
shows whether or not encrypted messages had been hidden. This is the critical
point when using steganography.
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Approaches that hide information in video conferences or digitized speech
(audio files) are of particular interest (see [Westf], [Pfitzstego]). Such data are
physically created and superimposed by an independent semi-conductor noise.
This nourishes hopes for secure steganography, in contrast to cryptography,
where we are still searching for a practically and provably secure algorithm.
Studies conducted by Westfeld [Westf] look promising and show that a GSM
phone call can be transmitted behind an ISDN video conference.

I should mention a (former) product of Steganos (www.steganos.com), a com-
pany based in Frankfurt, Germany, at this point: the product was used to
camouflage information about the choice of synonymous formulations. As a
side effect, the software was able to improve the style (e.g., avoiding repeated
words). This provided an excellent pretense for using the program, and prov-
ing that steganography was involved became really difficult. Currently, the
company offers only a program for embedding messages in images.

We will discuss another approach that’s also secure, but not universally usable,
in connection with subliminal channels in digital signatures in Section 6.3.3.
This topic will also turn up again in Section 6.7.

Cryptanalyzing steganographic methods doesn’t appear to be in advanced devel-
opment stages in public research (see the next section about digital watermarks).
The two methods mentioned above are uncritically praised over and again as
a panacea. Prohibiting the free use of cryptography would encourage research
and perhaps encourage the discovery of practically usable subliminal channels
in methods other than digital signatures.

Steganography has one function in any event: It makes surveillance of data
communications harder. Though thorough statistical studies are possible, they
require sufficient material and considerable computation power. Together with
the innumerable data formats commonly used, this can be a problem for eaves-
droppers, though we should by no means underestimate the power of current
supercomputers. More about this in Section 8.2.1.

Digital Watermarks

Another very young field of research is closely related to steganography. Intel-
lectual property is becoming increasingly available in electronic versions—
think of MP3 players, CDs, and DVDs, just to name the most obvious. As
the use of these formats rises, so does the amount of piracy. If illegal copying
cannot be entirely stopped, then we will at least want to be able to prove fraud.
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With this in mind, manufacturers try to accommodate hidden, mostly irremov-
able information about the author in digital documents; we also speak of digital
watermarks (copyright marking systems). A digital signature wouldn’t help
since it can be easily removed. A good example is the protocol by Birgit Pfitz-
mann described in [Pfitzfinger], which safeguards the anonymity of the honest
customer.

However, in this hide-and-seek game, too, there are ways to make hidden infor-
mation unusable, if it cannot be protected. Perhaps the first attack of this type
against steganographic methods is described in [PetAndMark]. The authors
are convinced that this type of analysis has helped steganography in making
progress just as cryptanalysis has furthered cryptography. I understood from
their work that the development of automatic tests for revealing hidden infor-
mation is still in its infancy—at least in the civilian sector. [Ditt] is a book
that thoroughly discusses the possibilities and risks.



Chapter 2

Cryptology from the Romans
to World War II

Now that we have talked about the cryptology landscape more than about
cryptology itself, let’s get to the point. We begin with pretty simple algorithms,
which, unfortunately, still play a role. But first, let’s define several terms. You
will probably be familiar with some of them:

• Plaintext: This is the original text to be encrypted.

• Ciphertext: This is the encrypted text.

• Cryptography: This is the science of designing encryption algorithms.

• Cryptanalysis: This is the art of recovering an encrypted text (or at
least clues about it) without knowing the key. The process is called code
breaking or compromising. An algorithm that doesn’t resist cryptanaly-
sis (except perhaps for an uninteresting special case) is said to have been
broken, compromised, or cracked.

A plaintext attack is the cryptanalysis of a ciphertext, where parts of the plain-
text are known. This type of attack is generally much more effective than the
pure analysis of a ciphertext. Plaintext attacks play a major role in this chapter.

Enough theory for the time being. Just check out the Glossary if you have
problems with one term or another. You should find it there (and if you don’t,
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I’d appreciate your letting me know). For, in contrast to the usual textbook
style, we will first deal with the practice and sum up a few important things
in Chapter 3. At that point, you’ll have a pretty good idea what is behind all
these terms.

Let me tell you at this point: everything described in this chapter is yester-
day’s bread. None of the algorithms presented here is secure today (with one
exception). They all originate from prehistoric times when computers weren’t
around. Back then, people looked at plaintext as a sequence of characters (while
almost always today we look at it as a sequence of bits). Nevertheless, you can
learn a lot about cryptography and cryptanalysis from the methods discussed
here. This knowledge will come in handy in the later chapters, because it is
more or less the basis of modern cryptology. Moreover, it’s simply fitting for
a cryptologist to know about the Enigma. And actually it is a very thrilling
matter—a pure cryptological adventure.

2.1 The Caesar Method and its Relatives

Even the old Romans wanted to send encrypted messages. Caesar used one
of the simplest encryption methods, known as the Caesar cipher or Caesar
addition. In this method, each letter is substituted by the one three places
further behind in the alphabet. We think of the alphabet as if it were written
on a ring so that A follows Z. The encryption rule will then look as follows:

A -> D
B -> E
C -> F
...
W -> Z
X -> A
Y -> B
Z -> C

Blanks are omitted and no difference is made between lowercase and uppercase
letters. This can result in ambiguities, and the code writer must pay attention.
A quick help can be the use of an agreed division sign (which will always
create a vulnerability). By the way, the Romans didn’t use 26 letters, but that
doesn’t change the method.

This method may have represented an insurmountable hurdle for the Roman
army and its adversaries. Augustus, Caesar’s successor, who was thought to
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have been less intelligent than Caesar, found the method too complicated. He
simply substituted each letter by the next letter in the alphabet, i.e., A became
B, B became C, and so on. Since a circularly shifted alphabet must have over-
strained his abilities, he replaced the last letter of the Roman alphabet, which
was ‘X’, by ‘AA’. In view of this kind of intellectual achievement, the Greek
mathematicians and philosophers must have been incredible masterminds.

Is this a cipher at all? What is the key in this cipher? Yes, it is a cipher, and it
uses key ‘3’. Augustus used the same method with key ‘1’. So the key is the
number of steps forward as letters in the alphabet are substituted. This means
that there are 25 meaningful keys (key ‘0’ won’t change the text). Well, things
can’t really be simpler than that, and you will find this method at the beginning
of almost every cryptology textbook.

Expressed mathematically, this encryption method corresponds to the number-
theory addition of a constant in the residual class modulo 26, i.e., adding the
remainders when dividing by 26. Let p be the plaintext character, c its cipher
(i.e., the ciphertext character created), and s the key (constant), then

c = p + s mod 26.

We assume that the letters are numbers: ‘A’ corresponds to 0, ‘B’ to 1, ‘Z’
to 25. ‘mod 26’ means in this context that if p + s becomes greater than or
equal to 26, we deduct 26 from the sum. Non-mathematicians will probably
think that this is theoretically playing up a simple thing, but we will get back
to this later. The method’s name, ‘Caesar addition’, comes from this approach,
by the way.

Breaking the method is a kid’s game; I won’t bore you with a detailed expla-
nation. But try it without a computer! You will see that cryptanalysis requires
intuition and patience. To make sure we won’t leave this statement in dead
space, and to prove that cryptology for private use would only foster criminals
anyway, as fearful politicians like to argue, I give you a small cryptogram. This
is what riddles challenging you to find the plaintext from an encrypted text are
called:

ZKKFFBWZMVPVRIJLEKZCKYZJSFFBWZERCCPTFLCUSVKIREJCRKVU

This ciphertext was created by a Caesar cipher using an unknown key. I won’t
resolve it for you but tell you just this much: further down in this section, there
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is a helpful hint for cryptanalyzing it. I encourage you to try it using pen and
paper. You will get an idea as to how the cryptanalysts in World War I must
have felt.

However, it is shocking to find this ancient method still around. According to
[BauerMM], it was introduced to the Russian army in 1915 when it transpired
that harder methods had overstrained the top echelon. One could hardly have
given the cryptanalysts in Prussia and Austria a nicer present. (Meanwhile,
however, Russian cryptology has long been up to date.)

Quite another matter is ROT13, a method widely used in UNIX, which repre-
sents nothing more than a Caesar cipher with key ‘13’. ROT13 was not designed
to protect data by encrypting it; it serves to protect data against inadvertent
reading—just like newspapers often print the solution to a puzzle upside down
underneath the puzzle section. One simply had to think of something different
for computers.

There was a simple reason why 13 was chosen of all numbers. Encrypting the
ciphertext once more produces the plaintext:

ROT13(ROT13(Text)) = Text.

2.2 About Gold Bugs and Rhymes: Substitution
and Transposition

2.2.1 Simple Substitution

The Caesar cipher is a special case of a much more general method: simple
substitution. With this method, each letter of the alphabet is substituted by
any other letter. The only side condition is that two different characters must
not be substituted by the same letter (e.g., never substitute both A and X by
C); otherwise, the ciphertext cannot be decrypted unambiguously. This kind
of mapping the alphabet onto itself is called permutation (sort of rearranging
the alphabet). While the Caesar method uses 25 possible keys, the number of
theoretically possible substitutions is astronomically high, namely 26! or

403.291.461.126.605.635.584.000.000 (403 quadrillions).

Several possibilities can be disregarded though, because they leave exces-
sively large parts of the plaintext unchanged. That leaves perhaps only 400
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quadrillions of possibilities. I spare myself the calculation how long the fastest
computers in the world would take to test all of these keys.

Nevertheless, this method isn’t worth much either. It can be broken effortlessly
by statistical analysis. Instructions can be found in Edgar Allan Poe’s famous
novel, The Gold Bug, perhaps the first popular work on cryptanalysis. Poe
explains very vividly how cryptanalysts work: revealing information step by
step as they exploit every particularity.

I don’t want to repeat the passage concerned from the book here in detail. You
can either read it there or in [BauerMM, 15.10]. But let’s have a quick look at
the keys used; it’s worthwhile:

Assume we want to decode a ciphertext 203 characters long, consisting of
numbers and various typographic special characters. (It doesn’t actually matter
whether letters are substituted by letters or other characters. The main thing is
that the substitution is reversible.)

• Knowing the code writer, the cryptanalyst concludes that he has surely
used just a simple substitution. Bear in mind: you always have to assume
that your adversary knows the method you used.

• First, the analyst will search for the most frequent character—that’s
‘8’—and assume that it corresponds to ‘e’, which is the most frequent
letter in the English, German, and other alphabets (see Table 2.1).

Table 2.1 Frequency analysis for the first chapter of the German edition of this book

The 10 most frequent letters and
characters

The 10 most frequent pairs of letters and
characters

13.78 % ‘ ’
13.17 % ‘e’
8.09 % ‘n’
6.65 % ‘i’
5.67 % ‘r’
5.17 % ‘t’
4.39 % ‘s’
4.03 % ‘a’
3.77 % ‘h’
2.99 % ‘l’
total: 66.7 %
average frequency of a letter: 3.85 %

3.11 % ‘e’-‘n’
2.65 % ‘e’-‘r’
2.57 % ‘n’-‘ ’
2.35 % ‘c’-‘h’
2.18 % ‘e’-‘ ’
1.56 % ‘e’-‘i’
1.54 % ‘r’-‘ ’
1.49 % ‘t’-‘e’
1.47 % ‘i’-‘e’
1.35 % ‘ ’-‘d’
total: 20.3 %
average frequency of a pair: 0.0015 %
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• This is a hypothesis, but it is substantiated by the fact that string ‘88’
occurs strikingly often in the text, and ‘ee’ is most frequent in the English
language. So the attacker is already looking at digrams, i.e., two-letter
pairs. That’s pretty easy with the naked eye.

• If ‘8’ corresponds to ‘e’, then there could be a pattern composed of
three characters and one ‘8’ in several instances at the end—namely the
correspondence for the frequent word ‘the’. Such a pattern occurs seven
times. This means that we might already have recovered three characters.
Let’s continue testing the hypothesis.

• The cryptanalyst uses the characters recovered and guesses several words
and, by using them, recovers more letters. Step by step, but increasingly
faster, the cryptanalyst gets closer to his goal. The most important pre-
requisite is that he knows what that goal should be: the English language.

From Theory to Practice: Automatic Decryption

One would assume that text encoded in this way can be read ‘online’ thanks
to modern computer technology, provided one has a suitable program. Still,
you’d spend a lot of time searching the Internet for free software that breaks
substitution ciphers without human interaction. The only explanation I have is
this: the theory is clear, and a simple demonstration program for cryptanalysis
can be written quickly, though some manual work will remain in the end.
Obviously, no author has been interested in a fully automatic cryptanalysis so
far. Well, there may have been such authors, but their software has allegedly
been locked up. As ridiculous as this may sound, I have actually received
serious hints.

I felt it was about time to do away with this deplorable state and tackled the
task myself. The frequency analysis described is poorly suitable for programs,
because it requires too much understanding of the context and too much text.
So my idea was to test for ‘forbidden’ pairs rather than for particularly fre-
quent ones (which corresponds to negative pattern search, as we will see in
Section 3.4.1). The frequency of single characters should serve only to set up
an initial substitution scheme. In general, several forbidden pairs will result
from the decoding attempt. Optimizing things by slightly varying the substitu-
tion from one step to the next should then allow us to continually reduce the
forbidden pairs.

So much about a cute theory. However, experiments resulted in catastrophic
findings; my idea was simply unusable. (National intelligence agencies are
likely to know more about such statistical niceties than cryptologists!)
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I was more lucky with cryptograms. These are popular crypto-puzzles, espe-
cially in the English-speaking world, where you have to guess the plaintext
from a given ciphertext. However, the word boundaries are not hidden, i.e.,
blanks are not removed or encrypted. So most of the solution programs are
based on frequency analyses with subsequent dictionary search—useless for
our task.

Only one method, the one by Edwin Olson described on the Web site at
www.gtoal.com/wordgames/cryptograms.html, appeared to be more apt.
It uses letter repeat patterns of words taken from a large dictionary. For
example, ‘BANANA’ has the pattern ‘ABCBCB’, ‘ENTER’ and ‘ESTER’ the
pattern ‘ABCAD’, and so on. A code breaker would proceed in a similar way:
he would first look for striking patterns.

Olson didn’t disclose the source text of his program, and he described the
algorithm only roughly (by the way, he also utilized the knowledge of word
boundaries). But that was sufficient for me to build on this idea and develop my
own program, which you find on the Web site under subscrack.zip, including
documentation in English and German. It was written in the Python script
language, so that it is relatively independent of the operating system you use.
Since it is a demonstration program, it is limited to the original task, i.e., the
substitution of 26 letters without punctuation marks and blanks. My algorithm
shares only the basic idea with Olson’s and looks like this:

1. Build a list of letter repeat patterns from a large dictionary. Assign a list
of words corresponding to this pattern to each pattern.

2. Search the ciphertext for a long word pattern using a short pertaining
word list. Use the first word from the list to obtain substitutions for some
letters.

3. Once the first match is found, look for the next pattern in the ciphertext.
Check for each word from its list whether or not there are contradictions:
identical letters always have to decipher to the same letter, different
letters to different ones. Moreover, subscrack checks whether there are
new letters. If there aren’t, it tests for the next word in the list. When
the list is exhausted, the program continues with the next pattern. Then
a third pattern is found once an attempt was successful, and so on. Once
all patterns are exhausted, the program takes the next word in its list
from the last pattern but one, and so on. This is called a tree search.

4. Once all or almost all characters have been deciphered, the entire cipher-
text is tentatively decrypted. Next, the program uses a large dictionary to
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recover more words from the parts not yet decrypted. If the percentage
of the ciphertext parts decrypted in this way is a given value, then the
attempt is deemed to have been successful, and subscrack exits by out-
putting both the key and the plaintext.

5. Otherwise, the last word is discarded, and the search continues.

The program is astonishingly surefire and fast on ‘normal’ texts. The main
problem of this tree search is that it sometimes tests too many possibilities.
After all, it is an optimization algorithm, and as such doesn’t generally work
as a black box:

• A hit is probable, but not guaranteed.

• The computation time can fluctuate heavily.

• The result is not always unambiguous (there can be more than one solu-
tion), and it is not always correct (the program doesn’t understand context,
i.e., it can’t make an intelligent choice of words).

Various parameters, such as minimum and maximum lengths of search patterns,
permitted percentage of non-decipherable letters, and maximum nesting depth,
decide on the success or failure and essentially on the computation time. Let’s
look at a practical example: we want to decrypt an aphorism by Christian
Morgenstern with a length of 260 characters:

cmgvgpiimhdtibvgueehxmutmqjfmuzodtvmtrptcmgfqogomubedmgc
umfqogomubimxjibkdoqxbmtfpgqdecumvqtkmcueemgmtbuqxgmzotd
tvvmjqdbuibuibqdzokdvxmuzocmgvgdtcdtigmgfubkuvmtvmcqthmt
fppebcqivqtkmouteqxxmtfdmgcmfmttfugcumqjfmuzodtvmtutmutm
glouxpiplouizomtibgmtvmtmoamtfdmgcmt

On an Athlon 1700 PC, subscrack takes about four seconds to load the ‘pre-
digested’ dictionary and then computes for about 1.6 seconds. The following
appears to be a clear solution:

dergrossekunstgriffkleineabweichungenvonderwahrheitfuerd
iewahrheitselbstzuhaltenworaufdieganzedifferentialrechnu
nggebautististauchzugleichdergrundunsrerwitzigengedanken
wooftdasganzehinfallenwuerdewennwirdieabweichungenineine
rphilosophischenstrengenehmenwuerden
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In contrast, the program cut its teeth over a short Caesar riddle similar to the
one above!

Such games are helpful in learning to understand problems and possibilities
of automatic cryptanalysis that have been a classic domain of national intel-
ligence organizations. This is the learning effect. And the aspired Aha effect
should have happened when the author’s kids dead cert secret writings gradu-
ally revealed themselves on the screen. All right, I openly admit, that was my
motivation for the entire effort in the first place. Unfortunately, the kids had
long left the house before my modest program finally finished.

2.2.2 First Improvement: Homophone Substitutions

We have seen that simple substitution ciphers can be broken by frequency or
pattern analysis, even when the messages are relatively short. A trick helps
you make this task harder. The trick is the so-called homophone substitution,
which let’s you assign one plaintext character to several ciphertext charac-
ters. The ciphertext alphabet includes more than letters; for example, it can
also include numbers and special characters. You will want to assign several
symbols particularly to the most frequent characters, such as ‘e’, ‘n’, ‘i’, ‘r’,
and ‘t’. (Blanks are always omitted in classic cryptology.) In the ideal case,
all characters would occur more or less equally often in your ciphertext. The
homophone substitution is better than the simple substitution, but it still has
serious drawbacks:

• First, there are no defined rules for selecting one out of several possible
ciphertext characters. The quality of such rules determines the quality of
the algorithm. Look at this simple example:

Assume we want to substitute the character ‘e’ by either ‘b’, ‘4’, or ‘!’. A
stupid or unqualified code writer would take his choices cyclically: in the
first cycle, he replaces ‘e’ by ‘b’, in the next by ‘4’, then by ‘!’, and then
by ‘b’ again. If the adversary is aware of this approach, which is normally
the case, then he will search a lengthy text (using a computer) for groups
of characters that always occur in the same cyclical arrangement. And
the encryption algorithm will quickly have been identified to be simple
substitution.

A random, ‘unreliable’ selection by hand would definitely be more secure.
This is the way the method was used in practice. Living in the computer
age, we have different demands.
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• Second, the algorithm is extremely vulnerable to the most important
cryptanalytic approach, the plaintext attack (see above). Even if an
attacker knows nothing but the original (i.e., the plaintext) of an encrypted
message, he can recover at least large parts of the key—the remainder
results from ‘idiomatic experiment’, as described above in connection
with the Gold Bug example. Of course, this holds true for all substitution
methods. We will see later in this chapter that a piece of plaintext is
normally known in practice. A good encryption algorithm must resist
such attacks under reasonable assumptions.

Homophone substitution makes poor use of a language’s inner rules. With
today’s computer technologies, it would surely allow an adversary to mount
attacks even without knowing anything about the plaintext and about the key
creation. But I think this kind of stuff doesn’t interest anybody anymore. The
weaknesses of this method are too serious, or are they . . .?

2.2.3 What If I First Compressed the Text?

. . . you might ask. Software or hardware compression is matter-of-factly in the
computer age, because it cuts down file sizes considerably (e.g., by a factor of 3
or even 10) without losing any of their contents. The files can be decompressed
and their contents restored at any time.

Compressed files are distributed pretty much equally, i.e., all characters are
more or less equally frequent (that much for a jump into the computer age,
talking of the 256 values a byte can have rather than of 26 letters). Frequency
analysis doesn’t do the trick any more. Does that mean more security? No, for
two reasons:

• First, reconstructing the key during a plaintext attack remains as simple
as if the beginning of the message were known. You just have to first
compress the known beginning of the message and then compare the
compressed product with the ciphertext.

• Second, though the compressed product appears to be equally distributed,
it is by no means random. To exploit the careless use of combined sub-
stitution and compression, I recommend proceeding as follows:

Every compression method places special information—so-called magic num-
bers —at the beginning to identify the method. A poor method would already
disclose the first elements of the key.
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Naturally, a clever code writer would truncate the fixed part of this beginning,
but that doesn’t matter much. One of the most effective compression meth-
ods, the Ziv–Lempel–Welch compression, creates tables listing the strings in
parallel to the text read. Instead of these strings, only the number of the table
entry appears in the text. When building the tables, these numbers cannot be
arbitrarily large at the beginning; their possible upper limit grows by 1 with
each step. This means that you can’t decompress any arbitrary byte sequence
(in contrast to encryption methods that are supposed to always diligently ‘deci-
pher’ nonsense). So we can make an assumption for the first character and,
using this assumption, consider the probable substitutions for the second char-
acter. Not all of them will produce compressed text; we will discard those.
Next, we look at possible remaining substitutions for the third character, and
so on. We might get stuck proceeding like this, however. If we do, we must
have made a mistake in one of the previous steps. We go back a step and start
over again from there, using the next possibility. This is like systematically
running around in a labyrinth with a very special structure, the tree structure.

Sloppy programming would cost us huge amounts of computing power for such
a search (as we have seen in the subscrack example). In practice, however, we
would discard more and more possibilities as we penetrate this labyrinth. At
some point along the road, there will only be a few alleys left; one of them leads
to the light. Now the key is known. And mind you, we didn’t need one single
character from the plaintext! Experience has shown that, using appropriate

Figure 2.1: Successful search in a tree structure.
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programming tricks, the computation time can be cut down dramatically. We
will see in Section 3.6.4 that all of this works in the real world.

Compression combined with homophone substitution is a trifle cleverer. Cre-
ating a program that breaks this combination is certainly not easy, but it is
possible. You’d have to do the work only once—then the method is for ever
worthless.

2.2.4 Transposition

While substitution ciphers preserve the order of the plaintext symbols but dis-
guise them, transposition ciphers, in contrast, reorder the letters but do not
disguise them. The easiest transposition method is the ‘cube’. Using it, you
write the message line by line in a rectangle:

DELIVE
RTHERA
NSOMTO
MORROW
ASAGRE
EDJOHN

and read it column by column:

DRNMAEETSOSDLHORAJIEMRGOVRTORHEAOWEN

Naturally this method offers no security whatsoever—it uses only the edge
length of the square to serve as key. In practice, the code writer would have
to use more ingenious transpositions, which depend mainly on keys with a
large number of conceivable values. It is, therefore, recommended to transpose
the columns of the rectangle once the plaintext is written and only then start
reading.

The method is very old. Back in the 5th century BCE, the Spartans had
already created this type of transposition (without columnar transposition).
They wrapped a parchment strip on which was written a message around a
rod, and the receiver would then unwrap the paper. The method was called
Skytale.

The rod, or more exactly its thickness profile, served as a key [BauerMM, 6.3].
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D

F I

I

I CN

N

D

D

E

E

T S

H O

GS O L D BA E

ERH

H F D I A N N S D D G E E O R T L H O IS D B E C E

A paper strip is wrapped around a rod;
text is written longitudinally. The rod’s
thickness is secret.

Unwrapping the rod reveals
the letter sequence on
the strip.

I

Figure 2.2: Ciphering by use of a rod.

The frequencies of characters don’t change versus the original text, but this
insight is of little use for us. Only information about the way the transpositions
were made will help us further. Unfortunately, this method is also insecure:

• An initial clue to a vulnerability could be supplied by a sloppy user who
pads the last line with fillers (e.g., ‘X’) to bring it to the required length.
This reveals parts of the transposition’s structure.

• Short messages could contain only a few or none of certain letters. An
attacker can draw conclusions as to which messages had definitely not
been sent. This may be sufficient to launch an attack.

• Sinkov [Sinkov] explains how an attack using a ‘probable word’ (more
about this term in Section 3.4.1) is possible even with transpositions. The
idea is very simple, but it can be used only provided the probable word
is longer than the block length. In this context, ‘block length’ means the
number of characters in the group in which a transposition occurs.

Let’s go back to the example with the rectangle above to be more specific.
(In this case, the block length is 6, i.e., the number of columns in the
rectangle.) Assume the word DELIVER occurs in the text, and that the
algorithm used is the ‘cube’ with subsequent columnar transposition. With
a block length of 3, there would have to be an ‘I’ underneath the ‘D’ in
the rectangle, i.e., the string ‘DI’ would have to occur in the ciphertext.
This is not the case, so assuming a block length of 3 was wrong. We
will find out by trial and error that the block length has to be 6 (since
‘DR’ does occur in the ciphertext). We have found the position of the
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word and can even determine whether a columnar transposition is likely,
except for the two columns in which the ‘E’ of the probable word occurs.

• Consecutive letters statistically depend on one another in a certain way,
because language has a structure. In this way, sufficiently long ciphertexts
that came into being by transposing equally long groups of characters can
be statistically tested for dependent (but now torn apart) pairs. We proceed
as follows:

– To determine the length, N , of the groups, we can use character coin-
cidence (Section 3.6.1), for example.

– We look at all N∗(N − 1)/2 possible pairs in positions i and j in the
groups (i, j = 1, 2, . . . , N). For each pair of positions, we analyze the
common distribution of the pertaining characters in the ciphertext at
these places.

– If the plaintext is normal language, then pairs of successive characters
have a typical distribution (see Table 2.1). Non-adjacent characters are
statistically less dependent and have a different distribution.

– We apply this to the pairs of positions mentioned in the previous point.
With some pairs, but not with others, we will find the typical digram
distribution of the plaintext. We will call pairs with numbers from 1
through N distinguished pairs.

– Among the distinguished pairs, we try to find chains with the following
form:

(n1,n2), (n2,n3), (n3,n4), ...

Such a chain of length N , in which all ni are different, could already
be the permutation (i.e., transposition) we are looking for.

– If we don’t find such a chain, or if no meaningful decryption results
are produced, then we try to join chain links; we will have to guess
missing members. Digrams that virtually never occur could be helpful.

It is certainly an attractive task to write and expand a corresponding
program (that would be an elegant practical training course for high
schools).

The major drawback of this method is the large amount of plaintext it
requires.
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– Notice that transpositions are very sensitive to differential cryptanalysis.
We will discuss this topic in Section 3.7.

You can also combine transpositions with substitutions and give the code
breaker a hard time. Rest assured that all simple combinations of both methods
can be broken quickly by use of one of the existing programs, even though
you won’t be able to get such a program.

2.2.5 Multiple Encryption

‘Two are better than one’ is a common saying, but it holds true neither for
medicine nor for cryptology in general. Executing two or more Caesar ciphers
in succession results in a Caesar cipher again: the alphabet is still shifted cycli-
cally; the only difference is that it’s shifted by another amount. We have seen
above why this method is also called ‘Caesar addition’. Adding two constants,
s1 and s2, to a plaintext character, p, has the same effect as adding first the
constants and then adding them to the text:

(a + s1) + s2 = a + (s1 + s2) mod 26

(With such residual classes, you calculate as you would with common natural
numbers.)

Similarly, two or more substitutions produce another substitution. The same
applies to transpositions. Methods that have this property are said to form a
group.

In contrast, if we combine a substitution with a transposition things appear to
look better. In reality, though, we wouldn’t gain much, because an attacker will
first run a frequency analysis, probably revealing some parts of the substitution.
At least knowing a little of the plaintext, the attacker can then start reconstruct-
ing the transposition. And if you give a cryptanalyst an inch he takes a mile.
(This is probably the reason why an encryption method is sometimes given up
as soon as it gives clues to only one bit of the key at a justifiable cost. This is
always the beginning of the end.)

In general, it is hard to say when double encryption, normally using two dif-
ferent methods, is better than a simple one. It is often hard to say that even
in a specific case. Section 5.2.1 will discuss this topic in more detail, among
other things.
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2.3 Combined Substitution: Digram Substitutions

Though ‘digram substitution’ is a term that sounds rather scientific, it hides
something very simple. In Section 2.1, we substituted single characters by
other characters based on a fixed rule. With digrams, we substitute character
pairs by other characters or character pairs. According to [BauerMM, 4.1.1],
the oldest representation of such a method dates back to 1563, and the inventor
was Giovanni Porta. He constructed 625 hieroglyphs for all possible 25*25
pairs of successive letters, where ‘J’ is substituted by ‘I’, and blanks were
omitted, and lowercase letters were converted to uppercase letters.

This method can theoretically be attacked similar to simple substitution, namely
using frequency analysis. However, as we have seen in Table 2.1, the frequen-
cies of single digrams do not differ as much as the frequencies of letters. In
this case, it is normally a good idea to consider the characteristic pattern of
the language more intensely and, above all, exploit the fact that many digrams
virtually never occur. (Even a negative statement can be extremely helpful in
cryptanalysis!)

Moreover, the statistical analysis is generally more sophisticated, compared
with the Gold Bug example. Since the statistical distribution of digrams is
more even than it is with letters (see Table 2.1), we would arrange them by their
frequencies and then try to find a match in the digram frequencies of a typical
language, where deviations are legitimate to a certain extent. Moreover, we have
to pay attention to side conditions, for example, that certain digrams follow one
another either almost never or particularly often, and that single frequencies
depend on one another. Digrams blur the structure of the language, but don’t
remove it. Everything together produces a huge puzzle, but it shouldn’t pose
an insurmountable hurdle for today’s computer technology.

My dad, who was a radio operator in World War II, taught me another method,
which also uses only 25 uppercase letters. The key consists of two squares
arranged next to each other, 5*5. The alphabet is entered in secret sequence in
each of these squares:

HQEFK WHSFK
RYBOD LPDNQ
NUGIS EIUXY
APCMZ VBOAM
LWJVX RCGTZ
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The code writer divides the text in lines of equal length (perhaps using padding
characters at the end). He encrypts superimposed letter pairs as follows: He
searches the left square for the upper letter, and the right square for the lower
letter. Both points found form the diagonal of a rectangle. The other diagonal
of this rectangle is determined by a new letter pair, which the code writer uses
as his ciphertext—placing the letter from the left square in the upper line and
the other letter in the lower line:

HEUTEKEINEBESOND -> HQEFK WHSFK -> N...
ERENVORKOMMNISSE RYBOD LPDNQ W...

NUGIS EIUXY
APCMZ VBOAM
LWJVX RCGTZ

If both letters are in the same line, then the two letters to the right of them form
the ciphertext. So ‘HS’ become ‘QF’. Once the last column has been reached,
work is continued on the first column—i.e., ‘KF’ become ‘HK’.

The code writer doesn’t actually have to tell the line length used. The receiver
writes the deciphered pairs one after the other and will notice where a line break
should go as he continues reading. What’s more, you can change the line length
even within the same text, provided that doesn’t produce ambiguities. That
would make an attack much harder. However, I doubt whether this possibility
was ever used in practice where things are usually sloppy. In [Hinstrip], Noel
Currer-Briggs, an English cryptanalyst, suggests a fixed line length of 13 or 17
characters.

Notice that 50 letters were rather many for a key at that time. Such permutations
(arrangements) of the alphabet are normally pretty easy to create; you put a
keyword at the beginning and write the unused letters behind it in alphabetical
order:

TICKNERabdfghjlmopqsuvwxyz

(Wheatstone wrote the permuted alphabet line by line in a box and then
read it column by column. That’s more secure.) But the German Wehrma-
cht didn’t use this method; I haven’t found the principle for constructing the
squares.
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The method has the remarkable property that the statistical relationship between
successive letter pairs doesn’t provide any more benefit during the analysis. (I
don’t think that in German, for example, the 1st, 14th, 27th, and 40th letters
of a sentence will still be in a meaningful relationship to each other.) This
distinguishes the method, for example, from the playfair method mentioned
in [BauerMM, 4.2.1], which uses only one single square and looks at pairs of
successive letters. Also, the method avoids pairs of equal letters, since they
won’t be converted. To this end, the code writer inserts an ‘x’:

Atxtila, Sexer.

Of course, that’s dangerous. In our case, equal-letter pairs play no role at all
since they are generally not translated into such pairs.

The method described above was broken by the British, by the way, together
with the Enigma code at the famous Bletchley Park (we will get back to this in
Section 2.5.2). A reader of the first German edition brought an article by Noel
Currer-Briggs in [Hinstrip, Chapter 23] to my attention. This article described
cryptanalysis in detail. I’d like to briefly mention a few interesting details.

Just like all methods mentioned so far, this method isn’t invulnerable to plain-
text attacks either. The example above (“keine besonderen Vorkommnisse” (no
unusual occurrences)) is rather typical: many messages of this type were sent
by the German Wehrmacht. And when a commander passed an encrypted com-
mand he wasn’t likely to omit a ‘HEILHITLER’ closing ahead of his name.
Of course, the enemy also knew the commander’s name (i.e., the last word of
the message). After all, numbers had been stiffly translated into words: ‘1324 =
ONETWOTHREEFOUR’. That’s what we call a ciphering error. More about
it in Section 2.5.2.

However, the Germans made it even easier than that for the British. First,
they replaced a blank by an ‘X’ (another ciphering error). Second, umlauts
were represented as usual, namely ‘AE’, ‘OE’, and ‘UE’. Since ‘E’ is the most
frequent letter in German texts anyway, a particularly frequent occurrence of the
‘XE’ and ‘EX’ pairs had to be expected. Third, ‘J’ was replaced by ‘II’ (more
about the impact of this below). And fourth, there were plenty of long words
like UNTERGRUPPENFUEHRER and GEFANGENGENOMMEN (DEPUTY
GROUP LEADER and CAPTURED) that didn’t fit in one cipher line. All these
things helped the cryptanalysts to search for specific digrams in a targeted way,
such as, for example, ‘UU’ from the word Untergruppenführer split in a 13th
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line. In addition, if the ‘PP’ of UNTERGRUPPENFUEHRER happened to fall
in the position above the ‘II’ of DNIIEPROPETROWSK (such names occurred
frequently in radiograms on the eastern front), both ‘PI’ pairs ciphered into
identical digrams. There weren’t that many possibilities of this sort that one
wouldn’t have been able to try them all out—without the help of computers,
of course, but lots of intuition, enormous staffing, and huge time pressure. But
once the ‘magic squares’ were constructed, they could be used to decrypt all
messages encrypted in this way on the same day at one go. If a radio operator
inadvertently used the key of the previous day (which the British already knew)
and sent the same, unchanged message again, encrypted with the ‘new’ key,
the British jumped for joy.

2.4 Permanently Changing Tactics: Polyalphabetic
Substitutions

A major vulnerability of simple substitutions is the fact that they are reversible:
each character in the ciphertext always corresponds to the same plaintext char-
acter, no matter where exactly the ciphertext character stands within the text,
which means that characteristic patterns are preserved. For example, looking at
the encrypted word WLRWJXL and using an electronic dictionary, it shouldn’t
be too hard to find out that the plaintext probably reads SEASIDE. (We have
already learned that word boundaries disappear since blanks are left out, but a
computer won’t have any problem searching the text for certain patterns.) This
statement also holds true for digrams.

The idea behind polyalphabetic substitution is to make the substitution rule
dependent on the position in the text. Initial thoughts in this direction had been
expressed by Alberti in 1466. Some think this was the birth of modern cryptol-
ogy. Though polyalphabetic methods are broken by computers nowadays, they
are still much harder than simple substitution.

2.4.1 The Vigenère Cipher

It is easiest to go back to the above representation of the Caesar addition method
to describe the simplest case of polyalphabetic substitution:

c = a + s mod 26
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This time, however, we will not simply select a shift, s, to serve as the key.
We will select a keyword, such as ABCD. We write this keyword repeatedly
over the plaintext:

ABCDABCDABCDABCDABCDABCD...
MEETINGTODAYEVENINGATTHE...

Next, we add superimposed pairs:

A + M = M
B + E = F
C + E = G
D + T = W
A + I = I
...

(Like in the example above, we have to think of letters as numbers: A = 0,
B = 1, . . . , Z = 25). That’s already the ciphertext. So, with this keyword of
length 4, we have defined four different Caesar additions, which we will use
cyclically. We can already see from the first few characters that the ‘EE’ in
‘MEETING’ become ‘FG’: patterns are generally destroyed. And unless you
know the length of the keyword, you can’t tell which same plaintext characters
correspond to which same ciphertext characters.

This encryption method is called the Vigenère cipher, which is not entirely
correct, because Vigenère described a more general method in 1585: he took
an arbitrary substitution of the alphabet and shifted it cyclically. This, too, is
merely a special case of the general polyalphabetic encryption. But let’s go
back to our example.

How do you break this Vigenère cipher? It is basically simple. Assume we know
the key length, which is 4 in the above example. We pick out the ciphertext
characters at positions 1, 5, 9, 13, . . . , i.e., each 4 characters apart. This subset
of the ciphertext is Caesar-encrypted since, at these positions, there is always
the same character above the plaintext line. We determine the frequencies of
all characters in this subset and assume that the most frequent character is ‘e’.
That produces a shift. Similarly, we proceed with the subset formed from the
ciphertext characters at positions 2, 6, 10, 14, . . . We may be able to retrieve
the plaintext. If we don’t, we have to play a little—we might want to guess
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another frequent character instead of ‘e’. In practice, it is better to compare
the distribution of all characters in the ciphertext with the distribution in the
language; that almost certainly produces the shift.

And how do we determine the key length? By experimenting with different
lengths and analyzing the frequency distributions in the subsets mentioned! We
will see in Chapter 3 that there are much more reliable methods.

You can see that this approach is easy to program. I actually thought I’d found
such a program on the Internet: solvevig.c by Mark Riordan, written in 1991.
Unfortunately, when I had a closer look I found that the program merely tries
a given list of keys and that the cipher tests the character frequency to check
whether or not it might be English text. I find this incomprehensible. Apart
from the fact that there are other tests for revealing text (including digrams
or words, and many more), we know how it’s done. Trying many keys is
really the very last resort in cryptanalysis. You are likely to experience a
similar disappointment with some cryptanalytic programs available for free.
Chapter 3 will discuss various possibilities of how to break Vigenère ciphers
in detail. Chapter 3 will also introduce a program you can find on our Web
site.

The cryptanalyst has to proceed more elaborately even with the general polyal-
phabetic substitution. Rather than doing Caesar ciphers, he does general sub-
stitutions. The method’s principle remains unchanged: the substitutions are
applied one after the other to the single characters of the plaintext, and once
you have used up the last one, you start over again with the first. The number
of substitutions used is referred to as the period of the method.

We can think of a large variety of rules to be used to form each of the sub-
stitutions—they won’t change the cryptanalysis much. In principle, it is not
much different from that of the Vigenère method, except that we have to find
the substitution for each subset. Knowing the rules by which the substitutions
are formed from one single keyword can strongly reduce the number of mis-
trials. We will come back to the cryptanalysis of polyalphabetic substitutions
in Chapter 3.

The designer of the algorithm defends himself against this attack by making a
huge number of possible substitutions available, i.e., enabling as long a period
as possible. The set of the ciphertext to be tested will (hopefully) not be enough
for a static analysis. Out of these considerations emerged the rotor machines and
particularly the Enigma. We will see this in a moment. First, let’s summarize
the most important things:
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Polyalphabetic methods are simple substitutions dependent on positions. These
substitutions really depend only on the position in the text, while their inter-
relationships are determined only by the key and the method itself. Such a
method would be much harder to break if the substitution also depended on
the plaintext (naturally such that it could still be decrypted!) but that’s not the
case here.

The advantage of this property is that methods can be easily synchronized,
which means that if some characters are garbled during a transmission then
only those few cannot be decrypted. Even if the length of the unclear part is
unknown, it is relatively easy to find the connection. We will see in Section 4.5
that there are methods allowing us to encrypt dependent on the plaintext and
synchronize at the same time.

2.4.2 Bitwise Vigenère Method: Vernam Cipher

A particularly simple variant of polyalphabetic ciphers is the bitwise Vigenère
method, representing the computer-friendly conversion of the characterwise
method. So far, we have looked at 26 letters and added modulo 26 (i.e., we
looked only at the remainders when dividing by 26). Nowadays we work with
bits and bytes. A bit is just a letter in a two-element alphabet (consisting of
‘0s’ and ‘1s’, where ‘1’ is written as ‘L’). Adding modulo 2 in this alphabet
corresponds to the bitwise XOR (exclusive ‘or’, often written as ⊕):

0 + 0 = 0
0 + L = L + 0 = L
L + L = 0

The Vigenère key can continue to remain a finite string, but instead of adding
characterwise, we now add bitwise (a string can actually be thought of as
a bit sequence). The decryption happens simply by re-encryption, since the
XOR operation is involutory (doing the XOR transformation twice generates
the output data again):

(a ⊕ b) ⊕ b = a

This different approach doesn’t change anything in either the method or its
cryptanalysis. Schneier [SchnCr] calls this modified method the simple XOR
method, while Bauer [BauerMM] calls it the Vernam cipher. The latter name,
however, often refers to the bitwise one-time pad (see below).
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By the way, this section also ends with the sad comment that even the simple
bitwise Vigenère method is still in use: up to Version 5, the popular text proces-
sor WordPerfect used a slight modification of it (more about this in Chapter 3).
And WINCRYPT joined the list of highly insecure methods: it used a 512-byte
Vigenère key. According to [SchnCr, 1.3], the Vigenère method is still thought
to be heavily used in commercial software.

2.5 Domain of the Militaries: Ciphering Cylinders,
Rotor Machines, and the Enigma

Rotor machines have played an important role in the last century, both for
militaries and in cryptanalysis. We will first have a brief look at their precur-
sors—ciphering cylinders—and then have a closer look at the Enigma, the
most famous rotor machine.

Ciphering Cylinders

Computers have become so matter-of-fact for all of us that we consider some
things to be simple while they actually became simple only with the help of
computers. One of these things is polyalphabetic substitution. Back when every-
thing was done by hand it was deemed too difficult and error-prone. The first
mechanization came in the form of ciphering cylinders. A ciphering cylinder
is an apparatus consisting of a set of disks with a different alphabet on the
edge of each disk, i.e., permuted alphabets in arbitrary sequence. Each disk is
responsible for a different permutation. For example, if you have 30 such disks
at your disposal, you turn them against each other such that 30 characters of the
plaintext appear in one line. The ciphertext is read from the line above or below
it, or from an arbitrary line. The code breaker sets 30 ciphertext characters on
the cylinder and finds the plaintext in another line. The order of the disks is the
key (with 30 disks, that results in 30! or approximately 2.6*1032 possibilities).

Of course, the method is not secure by current standards, particularly if an
attacker has somehow come into possession of such a device, which always
happens sooner or later. Frequency considerations (and using other methods;
see Chapter 3) would then allow him to easily determine what disk is in which
place.

As always, such devices were used for longer than the level of cryptanalysis
would suggest. A well-known ciphering machine was the M-94 of the US
Army, which was in use at least from 1922 to 1943. It consisted of 25 aluminum
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Figure 2.3: Ciphering cylinders.

cylinders. In general, however, both the order of the disks in ciphering cylinders
and their selection from a larger set (e.g., 30 out of 100, corresponding to
approximately 3*1025 possibilities) were secret. In World War II, the Japanese
failed to break a device known as CSP-642 with 30 sliders (algorithmically
equivalent to a ciphering drum), although they were in possession of several
sliders. In contrast, the US 30-stick device O-2 was broken by the German
Rohrbach [BauerMM, 7.4.3]. On the other hand, the Germans thought their
Enigma to be absolutely secure, an opinion the Poles and British didn’t share
at all—see below! The level of cryptanalysis differed very much from one
country to another, and that’s still the case today.

Rotor Machines

Rotor machines are based on a much cleverer idea than ciphering drums.
With rotor machines, electric power came into play for the first time; they are
electro-mechanic encryption devices. Some descriptions of rotor machines are
hard to understand, while their principle is very simple. Let’s look at it in steps:

• Imagine a thick, electrically insulating disk. Twenty-six contacts are
arranged in a circle on its opposite faces. Every contact on the left side
is connected to exactly one on the right side, and vice versa, in some
secret way. This corresponds to a substitution.
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• The left contact surfaces are scanned by 26 sliding contacts, similarly the
right ones. The sliding contacts correspond to the letters of the alphabet.
Applying voltage to one of the left sliding contacts by the push of a
button, this voltage arrives at another right sliding contact and can cause
one of 26 small lamps to light up. This approach is nothing but a simple
substitution. It offers two minor benefits, compared with rigid schemes:
we can replace the disk by another one, and we can specify an arbi-
trary start position. We already know that the method is one of the most
insecure despite this.

• Next, we turn the disk forward by one step after each character. This
produces a polyalphabetic substitution with period 26 (the 27th character
in the plaintext is then encrypted like the first one). This corresponds to
the Vigenère cipher in the historical sense.

• Another idea uses several such disks arranged adjacently, each one with a
different inner wiring (i.e., substitution). Between each pair of two disks
we attach sliding contacts that connect the right contact surface of the
left disk with the opposite, left contact surface of the right disk.

As we know from the section on ‘multiple encryption’, this won’t initially give
us anything new: again, only a simple substitution will be produced at the far
right.

• Let’s combine the last two ideas: after each encrypted character, we turn
each disk a little further, but each by a different amount. The substitu-
tions that are permanently wired in the disks will now produce a totally
different substitution at the right-hand end each time. This arrangement
serves the purpose of keeping the period very large with minimum effort
(which makes cryptanalysis much harder).

• For example, we can move three disks like in a counter. After each
character, the right disk turns forward by one step; after each 26th char-
acter, the middle disk will also turn one step forward, and once the
latter has completed one full rotation, the left disk will also turn. In a
general case, this results in a period of 263 = 17 576. Arbitrarily com-
plicated approaches are conceivable to make cryptanalysis as hard as
possible.

Whatever the case, the algorithm of the disk movement is fixed, and only the
ground settings and the disk arrangement are variable.
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Figure 2.4: Wiring diagram of a rotor machine.

Rotor machines were registered for patent by several inventors around 1920;
every country first lists the most patriotic inventor (Arthur Scherbius, 1918,
is most frequently quoted in connection with the Enigma). The disks used in
these machines are referred to as drums or rotors.

2.5.1 Structure and Significance of the Enigma

The most famous representative of rotor machines is the Enigma machine
that was later used in the German Wehrmacht. Some details (such as how the
mechanics worked, how the plugboard was built, etc.) are not important for
our purposes. We just want to understand its principle, and we mainly want to
see how it was cracked.
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Incorrect Correction of a Rotor Machine: The Enigma

The first Enigma models were regular rotor machines with four rotors, as
described above.

But ‘good is not good enough for us’, said Willi Korn in 1926 and he went
about improving the rotor machine—at least so he thought. His fateful idea was
the so-called reversing drum, also called a reflector: in place of the sliding
contacts on the far right, his version featured an additional disk, with contact
surfaces on one side only. These contact surfaces were interconnected such that
each surface was connected to exactly one other surface. This corresponds to
a special substitution, namely one where no letter transforms onto itself.

Voltage is applied to a ‘letter’ on the far left, and propagates through the rotors
toward the right, ‘turns around’ in the reversing drum, and then traverses the
rotors again from right to left over a totally different path (which explains
why the reversing drum is also called a reflector). ‘Two are better than one’,
cryptologist Korn must have thought. As we will see further below, this was a
fateful mistake. This arrangement guaranteed that, during the ciphering process,
a letter can never transform onto itself, or there would be a short circuit. I
have already mentioned that, in cryptanalysis, even negative statements can
sometimes be very helpful, as we will see in Section 2.5.2.

Since the reversing drum made the Enigma ‘more secure’, Korn must have
believed that three rotors and the reversing drum would be sufficient. An addi-
tional plugboard was used to swap letter pairs before and after encryption.

The rotors moved roughly like a counter: once a rotor had reached a specific
position, the next rotor was turned forward by one step through a catch. This
specific position was different for each rotor. They probably believed that this
would confuse the adversary. However, it led to the exact opposite: exactly
this difference of all things would later allow the British to find out how the
rotors were arranged. The Germans detected their error only with rotors VI
through VIII and always placed the catches at the same position. (You will find
a more detailed description in the file enigma-wiring.txt on our Web site).

Rings with consecutive alphabet sets or numbers were fastened to the rotors
(the photos show both labeling types). These rings were plugged on only when
the rotors were used. Their positions relative to the rotor itself were part of the
so-called basic key, which will be discussed further below.

The German army used this machine, called Enigma I, in the described config-
uration. From 1942 onwards, the German navy possessed an Enigma with
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Figure 2.5: The Enigma ciphering machine (courtesy of M. Swimmer, IBM).

four rotors, since the positions of submarines had to be kept particularly
secret. The first three rotors could be selected from a total of five (chang-
ing rotors, however, is said not to have been easy). From 1943 onwards, a
sixth rotor was available to the navy, which could take the fourth position.
Finally, there was a total of eight rotors, partly with deviating movement prop-
erties.

Enigma’s key consisted of the selection and arrangement of three or four rotors,
their ground positions, and the description of the plugboard.

The army Enigma had 263 possibilities for the three rotor positions, multiplied
by 10 possibilities to select three rotors out of five, each multiplied by 3! = 6
possible rotor sequences. This resulted in a total of 1 054 560 possible keys.
And we haven’t considered the permutations on the plugboard yet. Twenty-
six letters could be grouped in pairs in 26!/(13!*213) ways, i.e., in roughly
eight billion ways. This resulted in a total of about eight trillion (8*1018)

possible keys for the Enigma (and not 265 749 120 as stated in the file enigma-
wiring.txt ; the author forgot a few multiplications). That’s an extremely large
number of possibilities, even for current computer technology. By the way,
though several reversing drums existed, they were never changed in a perma-
nent machine.

This sort of number-crunching game had impressed the cryptologists and cer-
tainly the top Nazi echelon. Anyhow, the German Wehrmacht thought the
Enigma was perfectly secure. The Enigma almost gained a monopoly; estimates
state that between 40 000 and 200 000 machines were built. It was perhaps the
first time that so much depended on one single algorithm. The Enigma was the
basis for secure radio communications in the entire Wehrmacht.
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And for decades, we’ve entrusted our ‘really important things’ (such as banking)
again to one single algorithm: DES . . . But more about that in Chapters 4 and 6.

2.5.2 The Cryptanalysis of Enigma
How the Enigma was broken is an unusual story like no other (at least among
the cryptanalytic stories that have become known to date). In view of the
units produced and the significance of these machines, every effort put into
cryptanalyzing them was justified. So, in the Enigma story, we find everything
that makes a good spy thriller: spying, most intensive research, ciphering errors,
mass deployment of men and material, celebrated successes, utmost secrecy,
dramatic backgrounds, and enormous pressure. To get an idea of the human
side of it all, I recommend the suspense book by Harris [Harris]. The following
presentation is based mainly on [BauerMM]. More details can be found in
Kahn [KahnEnig], who documented both the military and political events and
backgrounds exactly, and in the Enigma texts on the Web site to this book
(including further references).

• It all began with the Poles in about 1927 when their customs authority
intercepted an Enigma, which had inadvertently been dispatched to a
German company in Poland (incomprehensible mistakes had been made
already back then!). Poland even bought an Enigma officially from a
German manufacturer later on. Of course, those were ‘civilian’ machines,
but their basic functionality had become known. What does theorem
number One in cryptography read again? The adversary always knows
the algorithm. In this case, it specifically meant that the Poles found a
particularity of the Enigma: never ever is a letter transformed onto itself
during the encryption. Why is that so important? Because it enables the
so-called negative pattern search. That’s easily explained: imagine we
know that the plaintext contains the word

oberkommandowehrmacht

but we don’t know in what position. All we know is that no plaintext
character can coincide with a ciphertext character. The word is composed
of 21 letters. We write it underneath the ciphertext. Following the known
theory, there is a probability of

1 - (1 - 1/26)21 = 0.5611... (i.e., 56%)
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that the ciphertext and the plaintext coincide in some position. If we
move along underneath the ciphertext, coincidences will occur in about
half of all cases, i.e., we don’t have to consider these cases. This is
merely statistics; in practice, there may be far fewer possible cases left.
Things look even better with longer words. For example, plaintext parts
100 characters long supply forbidden places with a 98 % probability. We
will come back to this in Section 3.4.1.

• The Wehrmacht had plenty of training and radioing opportunities with
the Enigma in East Prussia before the war. Of course, the Poles listened
in on them, and so there was plenty of material to study. In addition, a
spy delivered instructions and the keys for September and October 1932
to the French, for whom (just as well as for the British) the stuff didn’t
mean anything at that time, so they passed the material on to Poland.

• So much for the ‘material’ prerequisites; without them, cryptanalysis
is usually impossible (things are totally different with software!). As it
happened, there was another logistic difficulty inherent in all symmetric
methods (see Glossary): how do you distribute the secret key?

To this end, there was something called ‘ground setting’ for each day.
It was published in a code book every month, and specified both the
selection and arrangement of the rotors as well as the position of the
rings relative to the rotors. Based on this ground setting, the radio operator
defined a ‘message key’ composed of three letters for each radiogram.
This key was encrypted with the ground setting, and everything that
followed was encrypted with the self-selected message key. This was
basically a good idea. Current practice still selects a new key for every
secret information exchange for each computer. This approach ensures
that the adversary won’t be able to collect a sufficiently large number of
messages encrypted with the same key which, in turn, prevents statistical
analyses. Moreover, the method allowed the knowledge about the key
to be split between two persons: a commander switched the machine
to ground setting, an operator defined the message key. Neither of the
two knew the other’s key (to know the commander’s key, the operator
would have had to disassemble the machine, since changing the rotors
was not easy). That was surely very foresighted thinking in the midst of
a war.

But when humans define message keys they make mistakes. They often
select keystrokes like ‘aaa’, ‘bbb’, etc. Though this was forbidden later
on, the Poles had already initiated their first cryptanalytic attack. Mean-
while, the operators’ reaction to the new rule was that they often selected
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keys adjacent in one row on the keyboard and similar things. Also, the
rotors’ positions after the last ciphering session often served as key. Since
the Poles had constantly listened in on them, they knew these positions.
Bauer [BauerMM] provides a table with 40 message keys used; only
three of them were not stereotypical.

As we know, the purpose of the message key was to prevent too much
material encrypted with the same key from falling into the adversary’s
hands, and to increase the security. The outcome was the exact opposite.
They hadn’t thought of the human insecurity factor.

Which takes us to the next vulnerability: the best method is worth nothing
when the keys are drawn from a small value space. We are talking of
a reduced key space. Prehistoric stuff? Nope. That was an illness that
transpired when transmitting credit card numbers via Netscape—a highly
topical issue. Once upon a time, people died because codes were broken.
Today, you might find your accounts cleared out, though people still die.

• Next ciphering error: the message key was an extremely important piece
of information. As mentioned earlier, polyalphabetic methods (and the
Enigma implemented one) have the benefit that brief transmission inter-
ferences cause little damage. Except for the message key, because if this
key is lost the entire message is indecipherable. The receiver’s request,
‘again please’, would naturally also be encrypted—and here you had
a neat vulnerability for a plaintext attack. Such a request would often
have been out of the question for military reasons: for example, radio
silence was ordered for submarines to prevent others from direction-
finding their positions. A command sent from the headquarters simply
had to be decipherable!

Such mishaps caused by transmission interferences were prevented by
typing the message key twice in a row at the beginning. This became
apparent statistically, and the Polish genius Marian Rejewski seemed
to have guessed quickly that a string occurred twice at the beginning,
and that it was probably a key. Since this concerned only six encrypted
characters, it moved only the first rotor in 20 out of 26 cases. So they
found the inner wiring of the first rotor. By 1936, the drum position was
changed every three months so that each rotor enjoyed once the honor of
working at the very front—and the Poles enjoyed analyzing it. Poland
built a copy of the Enigma with five possible drums and passed it on to
both France and Great Britain.
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Exploiting the circumstance that the Enigma doesn’t transform any char-
acter onto itself, and considering the poorly selected keys, and knowing
the rotor wiring, they were able to recover the message key.

The Warsaw-based factory AVA began building a device that tabulated
conformities of the Enigma. Again, Rejewski was one of the major play-
ers. Using the tables, they were able to find the day keys within 10 to 20
minutes. That was back in 1937.

Putting the same string twice at the beginning was the ciphering error.

• The ring setting, i.e., the positions of the rings on the rotors, could be
revealed by mounting a plaintext attack. That was the point where another
ciphering error by the radio operators materialized: most of the texts
began with ANX, where ‘X’ stood for a blank (and ‘AN’ means ‘TO’).

• In 1938, the Wehrmacht changed the message-key method. The for-
mer methods became ineffective, but the leading double message key
remained in effect. The Polish cryptanalysts used self-developed machines
as their only means to search for plaintext patterns in the form 123123.
These machines looked somewhat like iced cakes, called ‘bomba’ in
Polish. This was the reason why their expanded successors carried the
misleading name ‘bomb’ in Great Britain later on. Such a ‘bomba’ found
the key within two hours.

• A little later, still in 1938, the Wehrmacht approved two additional rotors
to be used in the Enigma. At this point, the reconnaissance planes owed
something important to chance: the military intelligence encrypted each
radiogram initially by means of a digram method before they passed it on
to the operators for encoding on the Enigma. In Poland, they first thought
it to be a method different from the Enigma. Inadvertently, however, the
number ‘1’ sneaked into a digram ciphertext. The operator diligently
typed it into the machine as a ONE. Poland noticed and understood that
this had to be a multiple encryption. It took little effort to break the
digram method.

When they introduced the two new drums, the military intelligence didn’t
change their digram method, which meant that the drums could be ana-
lyzed as before. Their structure quickly became known. Again, the attack-
ers knew the adversary’s full algorithm.

• In 1939, just before the war broke out, the findings won in Poland trav-
eled to Great Britain. There, the famous mathematician Turing busied
himself with the Polish ‘bombas’ and improved them. (Turing is famous
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in information technology, for example, for the Turing machine, a basic
model for a computer.)

• In 1940, the Germans corrected their ciphering error, i.e., the leading dou-
ble message key. By then it was too late. The British knew many details of
the machine. And they could mount plaintext attacks often enough—recall
the HEILHITLER at the end of a command, or ANX at the beginning of a
text, or the popular KEINEBESONDERENVOKOMMNISSE.

• Another opportunity for recovering plaintext was supplied by floating
mines. The ship that discovered the mines had to issue an encrypted warn-
ing to the other ships and submarines very quickly. While the Enigma-
encrypted messages to the submarines flowed over the air, they used sim-
pler methods that had already been broken to warn the other units. Usually
there was no time to rewrite the messages using a different encryption
method and so the adversary also learned the plaintext of the messages
to the submarines. Bauer [BauerMM] refers to this as a compromised-
ciphertext-ciphertext attack. The British called it ‘kiss’—they could
have kissed the operators for their ciphering errors.

When the Germans did not make errors, the British were very
inventive. For example, they bombed a light buoy with the
sole purpose of making a German observer send the encrypted
radiogram ‘ERLOSCHENISTLEUCHTTONNE’ (FLAREWENTOUT),
which he promptly did [BauerMM]. ‘Gartenpflege’ (gardening) was the
watchword for mining port entries or previously cleared areas, which
triggered similar stereotype messages, or supplied a kiss. This is how
things can look in practice when one foists plaintext on an adversary
(which is a ‘chosen-plaintext attack’; see Chapter 3).

• In 1941, the poorly armed trawler Krebs (cancer) fell into the hands of
the British when they attacked an industrial site on the Lofoten Islands
off the western coast of Norway, and the trawler’s crew didn’t have
time to destroy all secret documents before the British came aboard.
The British found two rotors they knew about already. Most importantly,
however, they found the basic key for February. They could use it to
finally decipher many unknown messages in arrears for the first time.
Among other things, they learned that the German weather ships also used
Enigmas to encrypt their information, and that they had used special code
books that contained what they called a weather key for their weather
reports since October 1940. Such weather messages represented strategic
data, so their encryption was justified.
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• That gave the British an idea: weather ships often remain at sea for
months, so they have to carry code books with ground settings for the
entire period afloat. From the military viewpoint, they were weak adver-
saries. The only problem with their seizure could emerge if the Germans
became suspicious. But the Germans had other things to worry about at
the time, namely in the east. The coup was successful. The first victim
was the München northeast of Iceland in May 1941. The British warships
fired intentionally past the ship. The crew panicked and abandoned the
ship, were taken prisoners by the British and taken below deck immedi-
ately for them to see that their ship wasn’t sinking (yet). A later British
radio broadcast confirmed what the Germans thought, namely that all
secret papers sank together with the München. And the British held the
basic keys for June 1941 in their hands.

• Shortly after that event, the German submarine U -110, together with
extensive material, fell into the hands of British warships by chance.
Again, the Germans didn’t become suspicious. The material was so exten-
sive that it had to be documented in photographs and shipped to Great
Britain in special containers. It included not only the basic keys for a
lengthy period, but also a large number of other code tables and the
‘Kleine Signalbuch’ (signal reference book) for submarines, which was
of particular interest for plaintext attacks.

• When the weather ship Lauenburg was fired at north of the Arctic Cir-
cle, the British used time-fuse missiles with black-powder charges, among
other things, which exploded above the ship without destroying it. The
system had an immediate effect; the conquerors again found highly inter-
esting documents on the ship abandoned in panic.

• Those were true successes. Of course, all German crews were strictly
instructed to destroy secret documents before they could be captured by
the enemy. Code books were printed on absorbent paper with water-
soluble ink. Particularly with U-110 submarines, it was difficult to take
the material safely to a British warship.

• We already know that the Germans sent encrypted weather reports from
submarines. It also transpired that they first compressed the meteorolog-
ical information using a secret dictionary. The British had such dictio-
naries. But only the submarines and one single land station possessed an
Enigma with four rotors. So when sending a weather report they held
the fourth rotor in place. That was a vulnerability for a plaintext attack
against the 3-rotor machine and eventually led to the breaking of the



2.5. Domain of the Militaries 51

4-rotor Enigma. If the story told in [Harris] is authentic, then thousands
paid with their lives for changing the weather report dictionary.

Meanwhile, decryption was practiced with massive input. Roughly 7000
people (other sources, including [KahnCode], mention 30 000) worked
against time at the famous Bletchley Park in Great Britain. The book by
Harris [Harris] is thought to give an authentic narration of this story.

It hadn’t always been like this. In the beginning, about 200 cryptanalysts
and employees at Bletchley Park had a hard time getting a response from
the conservative English admiralty. The first military disasters and the
personal commitment of Churchill changed the situation. Cryptanalysis
became ‘respectable’ at that time.

From 1940 onwards, Great Britain regularly listened in on German air
force messages, and from 1941 onwards, they listened in on the navy’s,
too. To my knowledge, there are unconfirmed speculations connecting
this with the fateful air raid on Coventry. Rumors had it that a radiogram
was previously intercepted. Churchill was said to have not responded
in order to prevent betraying that they had already broken the Enigma.
If this was the case, then it must have been awful for Bletchley Park
employees originating from Coventry: they knew in advance what was
going to happen and couldn’t even warn their relatives. Nothing was to
be done to prevent the Germans from learning that the Enigma had been
broken. If a few details of this story are incorrect, sufficient similarly
awful situations can also be found. After all, national intelligence orga-
nizations are supposed to do everything to the best of their abilities in
order not to disclose the state of their cryptanalysis. Let’s memorize this
sentence; it will play an important role later on.

• The young mathematician Gordon Welchman improved the principle of
the bombs decisively with the so-called diagonal board, which made the
bombs dramatically faster; now they required only 11 minutes for one
pass. The first batch of these devices was taken into operation in 1940;
200 were operating by the end of the war. Welchman is seen as the
actual hero in the Enigma story. He is probably identical to the hero Tom
Jericho in the book by Harris [Harris] mentioned earlier.

So this is roughly Enigma’s story. If you are interested in more details,
I recommend reading the rather thrilling and historically sound book by
Kahn [KahnEnig]. Moreover, you will find several texts on the Web site
to this book.
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• No character is transformed onto itself.

• Each rotor was turned further by the left neighbor in rotor-specific setting
and could thus be identified.

• Message keys were written twice successively at the beginning.

• Message keys were stereotypical.

• Many messages began with the same ‘ANX’ and contained other stereo-
typical parts (HEILHITLER).

• Sometimes plaintext was included: ‘Gartenpflege’ (mining certain areas by
the British air force—message sent by German observers).

• Basic keys sometimes became available by military conquests.

• Weather reports were transmitted by using 3-rotor Enigmas only.

• The same message was encrypted with two different methods—
mainly in ‘Gartenpflege’.

• The Enigma was deemed to be totally secure until the end of the war—
almost the entire secret radio communications were based on it: there was
sufficient material for analysis!

Figure 2.6: Vulnerabilities for cryptanalyzing the Enigma.

When hearing the words ‘Bletchley Park’ every insider will think of the
greatest cryptanalytic action in history until then. In Great Britain, the
project was called ‘Ultra’, which refers both to the effort and the secrecy.
Perhaps some high-ranking cryptologists in Germany had a hunch that
their wonder machine had been broken. But who would have admitted
it in times like those? So they preferred to limit themselves to gradual
improvements that always came a bit too late.

It can be assumed that the current state of computer technology came
about thanks to the analysis of the Enigma, at least to some extent. In
any event, its code breakers had a major impact on the course of the war
and were able to prevent many of the feared submarine attacks. Let’s
leave a more exact evaluation up to the historians.

Later developments of the ‘bombs’ worked even faster and were auto-
mated to a higher degree. But actually what for? We will learn the answer
in the next section.
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2.5.3 The Enigma after 1945

So what happened to the Enigma after the end of World War II? The ‘Ultra’
project continued to be top secret. Nobody knew officially that the Enigma had
been broken. Hints about that fact remained unnoticed.

The fact that this machine was compromised probably became officially known
in 1974. With the appearance of his book The Ultra Secret, Winterbotham let
the cat out of the bag. In the second edition of The Codebreakers by David
Kahn [KahnCode], the author even states that Winterbotham had obtained spe-
cial approval from the government to write his book. (But the first edition of
The Codebreakers in 1967 was also a drum-beat. Up to that time, cryptology
appeared to still be what it always was: a sort of occult science. By the way,
the book by Kahn, especially dedicated to the Enigma, appeared only in 1991
[KahnEnig].)

On October 19, 1993, Sir Harry Hinsley held a seminar at Cambridge Univer-
sity. Hinsley interpreted the German fleet’s messages deciphered at Bletchley
Park and is considered the official historian of the ‘Ultra’ project. This seminar
was recorded and you can find the highly interesting work on the Web site to
this book.

On May 20, 1994, Keith Lockstone posted an article that summarized the most
important contents in the sci.crypt Internet newsgroup (you can also find it on
our Web site):

• According to that article, Germany and Switzerland continued to produce
Enigmas after the war and sold them to Africa, the Middle East, and South
America for military and diplomatic communications. Germany may still
have believed in its marvel, while the Swiss intelligence agencies knew
back in 1943 about the adversary’s activities and had warned Germany
then (!). The Germans turned a deaf ear to this warning. No comment.

• Similarly ‘noble’ motives appeared to have encouraged the USA to sell
Enigmas to third-world countries, according to Zimmermann [ZimmPGP],
while the real reason was presumably to be able to listen in on their com-
munications. We will see later on that this tactic is being pursued to this
day. Cries of horror (like in a TV program I watched years ago) would
be feigned. After all, it’s about national intelligence.

• And in the Soviet Union, too, nobody was warned about using the Enigma
though cryptanalysis of the Enigma had allegedly been on the same level
as in the USA and Great Britain, but thanks to a parallel development
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rather than to spying. People aware of the strength of Soviet mathemati-
cians won’t be taken by surprise.
However, we don’t know precise details, for cryptology in the Soviet
Union has been locked against the outside.

Actually we don’t know many precise details in general—what became of the
captured Enigmas, how many machines were built or sold, who produced them,
and up to when they were in use.

Hinsley also speculates about what turn the war might have taken had the
Enigma texts not been deciphered: the invasion of the allied forces would have
happened nevertheless, but perhaps in 1946 or 1947. Unless the Soviet Union
had ended the war by that time the USA would probably have used nukes in
Europe, too (this is one of Hinsley’s speculations, but it’s worth considering).
Well, history cannot be turned back, nor should it be overly simplified. When
Willi Korn invented the reversing drum, he had no way of knowing what
consequences it was to have for world history.

There is still no end to mystery-mongering. The NSA declassified thousands
of documents about World War II on April 4, 1996 (50 years later!). You can
find notes and quotations on the Internet; references are also included on the
Web site to this book. The British government has not to date declassified
many important details about deciphering the Enigma. It became known only
in 2000 that ten ‘Colossus II’ machines, which were superior to the first official
ENIAC computer, were in use. More about this on our Web site (colossus.txt
and declassif UK.txt).

Cryptanalysis Today

Despite it all, I believe that this machine can be broken without using a plaintext
attack considering the current state of computer technology. Since it works with
only 26 letters, we may reasonably assume that it uses normal plaintext. Its letter
distribution is known, and I would launch an attack at this very point. Without
considering the plugboard, a ‘ridiculous’ set of 1 054 560 possible keys remain
to be tested at various speeds, depending on the program quality and hardware.
Each decryption attempt results in a letter distribution that can be compared
with the expected distribution. We select keys with reasonable results and test
for other criteria to see whether or not the result could be a language. This
trial-and-error process is likely to be fast. But what about the plugboard? The
second transposition—before revealing the plaintext—doesn’t change anything
in the distribution, the first does. Without being able or wanting to substantiate
my statement, I think that that’s something one could handle.
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Another approach is based on computer algebra. Modern computers can process
formulas. Though they don’t handle them as elegantly as we humans do, they
faultlessly master ‘tapeworms’ millions of members long. Computers can even
work with algebraic structures, since operations in such structures meet exactly
defined laws. As the Enigma drums and their movements were fixed, the struc-
ture of the substitutions was well known. We could try to describe the depen-
dence of the substitutions in consecutive steps with appropriate expressions,
and then build a totally different cryptanalysis on that. The only question is
then whether or not it would still be worth our while.

One interesting initiative is the ‘M4 Project’. (see m4 project.txt on the Web site
to this book). The challenge is to break three original Enigma messages from
World War II that have not yet been deciphered by means of free software. This
so-called hill-climbing method is a mixture of experimenting with the rotor set-
tings and subsequently ‘adapting’ the plugboard. At the time of writing, one of
the messages has been decrypted. The project shows that Enigma cryptanalysis
is still no kid’s game today.

Clipped, But Still Secret: UNIX-crypt

The UNIX world has always had a command called crypt, which can be used
to encrypt files. This command runs a kind of Enigma with only one rotor and
one reflector (reversing drum). However, the rotor has 256 ‘contacts’, because
it’s a matter of encrypting bytes and not just letters. The method is insecure,
which mightn’t come as a surprise after all you’ve read so far. Things looked
different when UNIX emerged in 1970.

To prove the insecurity claimed, Robert Baldwin of the MIT created a program
package called Crypt Breakers Workbench (CBW ) in the mid-1980s. The prod-
uct offers a convenient interface for unauthorized deciphering of files encrypted
with crypt. The program is freely available; everybody can have a look at it
and analyze its functionality. Of course, it is also included on the Web site
to this book. The Workbench integrates a program functionally equivalent to
crypt (by the misleading name of enigma.c). Nevertheless, crypt is available
under UNIX for compatibility reasons. There’s nothing unusual about it.

But now hold tight: until well into the 1990s, it was strictly forbidden to
export a UNIX system from the USA if it included crypt. crypt was considered
ammunition—you’ll probably remember that part from Chapter 1. crypt was
stripped off every legally exported UNIX. On the UNIX systems SunOS 4.1.3
and on my ESIX V.4.2 (shipped at the end of 1994) I found crypt documented,
but crypt itself was missing. OSF/1 no longer offered crypt. Though I found
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it on another system, I convinced myself to forget it at all cost in order not to
bring its vendor to the gallows. Hopefully, no slouch hat will be ringing at my
door for mentioning it here.

This unrealistic behavior was typical for NSA’s security policies. We will come
across this issue at several places in this book.

Nowadays, password security under UNIX and Linux is based on other algo-
rithms, such as Blowfish or hash functions.

2.6 The Only Safe Method: One-Time Pads

So far, we haven’t discussed one single encryption algorithm without showing,
at least rudimentarily, how it can be broken. Though you are likely to come
across statements like ‘provably secure method’ in publications, don’t buy
it: rather than proving that their method is secure, the authors normally just
attribute it to another one that hasn’t been broken yet (and often to the problems
of factoring large numbers, or calculating the discrete logarithm; more about
these issues in Section 4.5).

‘Is there such a thing as a secure encryption method?’, you’ll probably ask. Yes,
there is, and it’s called a one-time pad. The method is very easy to describe.
It’s a polyalphabetic cipher with infinite period. In other words, we select a
key which is at least as long as the plaintext:

ANEXTREMELYLONGANDCOMPLETELYRANDOMLYSELECTEDKEY
THEPLAINTEXTISSOMEWHATSHORTER

Superimposed characters are added (as in the Caesar cipher described earlier):
A corresponds to 0, B to 1, Z to 25, and if the sum grows larger than 25,
we deduct 25 to once more obtain a number that can be translated back into
a letter:

ANEXTREMELYLONGANDCOMPLETELYR
+ THEPLAINTEXTISSOMEWHATSHORTER
= TUIMERMZXPVEWFYOZHYVMIDLHVECI

The receiver is (hopefully!) the only one who also knows the key and subtracts
it from the ciphertext:
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TUIMERMZXPVEWFYOZHYVMIDLHVECI
- ANEXTREMELYLONGANDCOMPLETELYR
= THEPLAINTEXTISSOMEWHATSHORTER

We encrypt bitwise rather than bytewise nowadays. We no longer add characters
modulo 25, but bits modulo 2, which corresponds to the bitwise exclusive OR
(XOR, or operator in the C programming language). That’s a basic operation for
every microprocessor, and it can also be used to encrypt arbitrary data streams.

The important point about this method is that the section of the key concerned
may be used once only. Since absolutely nothing is known about the key, any
plaintext could have produced a given ciphertext, and all conceivable plaintexts
are equally likely. All other symmetric methods (these are encryption algo-
rithms like the ones described in this book so far) have shorter keys, which
means that they necessarily contain some rules (the trouble is, we just aren’t
clever enough to recognize and exploit these rules). There are no such rules
with the one-time pad, not even in theory.

Unfortunately, there are two problems inherent in this method.

Problem 1 : How can we create a ‘truly random’ key? Using a computer won’t
do the trick properly, because every computer output obeys rules, which means
that it can be at best ‘pseudo-random’. What we need is chaotic input from
the real world, which cannot be traced back. How about this for ‘chaotic’ and
‘real world’: record whatever an unreliable Geiger counter measures from a
radioactive sample in the trunk of your car as you rumble over bumpy roads,
then overlay this data stream with the digitized gurgling of a waterfall and the
bleating of sheep. Every spy will just give up.

Since there were times when digitizing didn’t exist, people selected sections
from books for use as keys, for example. Naturally, that’s far from being secure.
[BauerDS] explains the so-called zigzag method, which does break this method
after all: for a starter, you know a little bit of plaintext, from which you can
easily calculate a fragment of the key. This fragment doesn’t normally end at
word boundaries so that, with some luck, fragments missing in words can be
filled in. This, in turn, produces a little piece of plaintext—and so on. Though
this cryptanalysis doesn’t always work, it can indeed reveal important parts of
the plaintext.

Good keys, i.e., non-reproducible keys, were carried around by good spies in
printed form. Adversaries would regularly pull them out of the hollow knob of
their walking sticks.
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Both the sender and the receiver of a message have to carry this individual key
with them.

This takes us straight to problem 2 : handling the key. How does the key get
to the receiver? How should it be stored? This is not practical in most cases.
If you want to use a one-time pad to encrypt a complete hard disk, you need
a second disk only to store the key. How about locking away the critical disk
in the first place? Anyway, fast data streams over lengthy periods cannot be
encrypted in this way.

The following historical episode should teach us a lesson in this respect: one-
time pads were used by Soviet spies in the USA during World War II. They
reused the same pads; the KGB must have supplied them in identical batches.
That was a fateful mistake. Of course, the adversary listened in on them and
copied the messages, although they couldn’t initially make sense of them. Using
simple statistical tests, they managed in arrears to fish out usable ciphertext
pairs. If you use different pads, S1 and S2, for two plaintexts, P1 and P2, then
the results, C1 = P1 + S1 and C2 = P2 + S2, are independent, and both the sum
and the difference of C1 and C2 produce equally distributed random numbers.
In the case of S1 = S2, however,

C2 - C1 = P2 - P1

holds, and the difference of two texts in the same language is by no means
random—it has striking statistical characteristics. One single little piece of
plaintext from a message will allow you to apply the zigzag method, using all
messages encrypted with the same pad, S1!

This was how the USA started getting an idea of the entire dimension of Soviet
espionage in the USA for the first time after the end of World War II (rumors
had it that there were about 200 spies). The cryptanalysis was extraordinarily
difficult, because the messages had first been encrypted by means of code
books, and not all cover names were revealed. Only part of the ciphertexts
had been decrypted. Eventually the NSA gave up on their work in 1980 (!).
Still, this enterprise, named the VENONA Project, was a success. Famous
personalities like Julius and Ethel Rosenberg and the nuke spy Klaus Fuchs
fell victims to the project.

This example helps us understand why national intelligence organizations listen
in on encrypted texts even when they initially can’t make sense of them. And it
shows very impressively that even the single most secure ciphering method is
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not worth a bean if sloppy work is done in the environment—in this example,
the key management.

I must refer you to the lion’s den if you are interested in more details: visit the
NSA homepage at http://www.nsa.gov and search the site for ‘venona’.

Consequently, the one-time pad is reserved for very special purposes. Rumors
have it that the hotline between Moscow and Washington was protected by a
one-time pad. Schneier [SchnCr, 1.5] notes with some amusement that even
the aliens from Andromeda will never have a chance to decrypt the traffic in
arrears, unless they take a time trip into the past. I see things a little differently:
cryptology is not everything; politicians tend to write their memoirs sooner or
later.

2.7 Bottom Line

You may be a little ill-tempered after reading this chapter. Only one single
method is secure, but it’s one that goes by the board for most practical interests.
Moreover, mystery-mongering is everywhere, and honesty cannot be expected
in this business anyway.

Let me reassure you, it’s not that bad. Cryptology has made enormous progress
during the past twenty years, and it has become important for everyone. There
is strong public cryptological research; in particular cryptanalysis has been
practiced increasingly since the late 1990s. Still, none of us knows how far we
actually lag behind the NSA.

A major weakness of all algorithms discussed in this chapter is that they encrypt
entire characters. And an algorithm may be as good as it can get—it will nor-
mally always have small statistical dependencies. For this reason, a long time
ago, I published an algorithm called fcrypt [Wobfcrypt] that works charac-
terwise. It can be used to prove that statistical dependencies are virtually lost
during encryption. This was one of my first more serious attempts in cryptology,
so, at that time, I didn’t see how vulnerable the method was compared with
differential cryptanalysis (more about this in Section 3.7). The article found
lively echo; hopefully, the algorithm is no longer used. Steer clear of it.





Chapter 3

Cryptanalysis in Detail

Our discussion of cryptography (i.e., the science of designing encryption algo-
rithms) and cryptanalysis have balanced out so far in this book. From this
chapter onwards, we will systematically deepen the knowledge gained on
cryptanalysis. This is necessary because blindly trusting encryption algorithms
without knowing cryptanalytic methods is careless. Though we won’t look at
modern algorithms yet, it doesn’t mean that modern software doesn’t play
a role! Moreover, looking at simpler methods makes it easier to understand
cryptanalysis.

It is required for this chapter to have read Chapter 2. I can still spare you the
mathematics to some extent. However, I will introduce three small C programs.
Even if you’ve never programmed you should try to understand the explanations
about these programs. You will learn interesting details about cryptanalysis.

The Web site to this book allows you to try out several things discussed in this
chapter. Believe me, even if everything looks pretty simple in theory, there is
a fascinating experience to be had just in seeing how a program recovers your
really complicated and long password from apparent chaos in no time at all!
That gives you a real feeling for real dangers whilst having fun.

Though most of the programs discussed here were developed and tested under
UNIX, many of them are described generally so that they’ll probably run on
any system as long as there is a C compiler. Check out Appendix A.1 for more
details.

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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3.1 Aim and Methods. Some Basic Notions

You’ve already learned what plaintext, ciphertext, cryptography, and cryptanal-
ysis are. And you have heard of a cryptanalytic method, the plaintext attack.
It’s about time I told you what we want to achieve with cryptanalysis:

Cryptanalysis is aimed at revealing as much information about the plaintext as
possible without knowing the secret key.

In the worst case, all we have is a ciphertext without any other information.
In this case, we even have to find the encryption method used. Sometimes we
succeed. For example, if the ciphertext consists of uppercase letters only, and
the character distribution coincides with the usual one in the English language,
but it has a shift of its maximum, then chances are that a Caesar cipher was
used. If the cryptanalysis produces a readable plaintext, we were right and won
everything: the method, the key, and the plaintext.

This sort of success can normally be expected only from classic encryption
methods. In the following discussion, we will assume that the encryption
method is known. This prerequisite is not unrealistic: in information society
we deal with massware—encryption programs, chip cards, cell phones, cipher-
ing devices. Every algorithm will be disclosed sooner or later. And critical users
will want to know exactly what method they use and how it was implemented
anyhow.

Under the prerequisite of knowing the method, winning the key is probably the
greatest possible success for a cryptanalyst. It has the benefit that he can replay
all encrypted messages just as fast as the receiver with no additional work—as
long as the key doesn’t change.

The ‘next smaller’ success is recovering the plaintext. If that can be done fast
enough thanks to a weak method, then it will be sufficient; otherwise, it’s not
bad either.

Another little success is some idea about the plaintext without knowing it
entirely. Using the negative pattern search, for example, finding that a certain
word is not included in the ciphertext can be interesting indeed. Moreover,
the length of a message and its addressee can sometimes provide information.
But that’s not something we deal with in this book. We are only interested in
revealing methods, keys, or plaintext.

Four Basic Methods for Cryptanalysis

There are four known methods for cryptanalysis:
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Ciphertext-only attack: The key or plaintext is revealed exclusively by means
of the ciphertext. This method is the most difficult. If too little is known of
the rules of the ciphertext to be able to exploit them, only one obvious thing
remains: trying every possible key. This is called brute-force attack (exploiting
the key space; exhaustion method). Often, however, it is sufficient to try just a
few keys; but more about this later.

Known-plaintext attack: Part of the plaintext is known in addition to the
ciphertext, and used to reveal the remaining plaintext, normally by means of
the key. This is perhaps the most important cryptanalytic method, because it is
much more powerful than a ciphertext-only attack and normally possible: the
attacker guesses certain words in the text; the beginning of the text is fixed;
known, uncritical plaintexts are encoded with the same key as confidential
plaintexts, etc.

Chosen-plaintext attack: This is also a plaintext attack, except that the attacker
can choose the plaintext so that the attack becomes possible in the first place,
or will become easy. In this case, the cryptanalyst is active himself: he needs
a James Bond to deliberately introduce some text.

Adaptive-chosen-plaintext attack: This is a repeated attack with selected
plaintext, where the plaintext deliberately introduced is selected dependent on
the current state of the cryptanalysis. Algorithms used in ciphering devices with
permanently burnt-in keys have to be resistant against this sharpest method.

So these are the methods commonly used, but not all conceivable ones. For
example, most textbooks don’t mention the following method:

Ciphertext-ciphertext attack: This is the method described in Section 2.5.2,
where the plaintext is encrypted with two different methods. The attacker can
exploit this in different ways. In general, a method is already broken so that

• Using stereotype formulations (facilitating plaintext attacks).

• Repeated sending of slightly changed plaintexts.

• Inappropriate, foreseeable selection of keys.

• Using pad characters (e.g., ‘X’ for blanks, or for padding the text at the end).

Figure 3.1: Some common ciphering errors.
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everything boils down to a plaintext attack. Such an attack is always based on a
ciphering error. Good cryptographers use a different plaintext for each method.

Later in this book, we will discuss the chosen-ciphertext attack, which plays
a role with digital signatures. The attacker deliberately introduces a certain
ciphertext and gains access to the ‘plaintext’ generated from that ciphertext.
The attacker can use this information to calculate other plaintexts, and the code
writer is unable to prove the attack (see Section 4.5.3).

Yet another method is the chosen-key attack, which will be discussed in
Section 4.4.3. With this type of attack, the attacker exploits known relation-
ships between unknown keys. For example, he might know in what bits the
keys differ. Using each of these keys, an attacker encrypts the same plaintext
and then studies the results, and finally reconstructs the original key.

Of course, there are many other ‘methods’ to get hold of a key: vulnerabilities
in the security system, extortion, keyword guessing, and many more. The first
two methods (i.e., ciphertext-only attack and known-plaintext attack) play the
major roles in this book, because using them means the smallest risk for the
attacker’s cryptanalysis, while the code writer runs the risk of being totally
compromised.

Every Cryptographer Has to Be a Good Cryptanalyst

Every cryptographer’s aim is naturally to design an algorithm that won’t supply
any practically usable results when cryptanalyzed. This doesn’t necessarily
mean that it can’t be cryptanalyzed at all. It normally means that it would take
too long (the encrypted information might become worthless in the meantime),
or that it would be too costly to justify the value of the information.

For instance, the encryption methods used at the fronts in World War I had
been estimated by the cryptologists to require at least one day’s work for the
adversary to recover the plaintext. After one day, the encrypted commands
had become worthless—the shells had long hit by that time. The catch in the
matter could only have been that the adversary deciphered faster than expected
[BauerMM].

Both the time and the cost of a cryptanalysis have to be in a reasonable rela-
tionship to its result. Hardly anyone would buy a supercomputer to write a love
letter.

Unfortunately, there is no recipe for designing good encryption algorithms.
The one-time pad (Section 2.6) is the only method that is theoretically secure
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(but mostly unusable). To my knowledge, there are still no reliable estimates
of the minimum effort a cryptanalyst has to invest to break a certain algo-
rithm. (This is the subject of so-called complexity theory.) Consequently,
the cryptographer has to test a new algorithm against all current cryptanalytic
methods and ideally guess the unconventional thoughts of an attacker. Since the
security of an algorithm is in the foreground, its cryptanalysis is the measure of
all things. Of secondary importance are criteria like fastness, easy implemen-
tation in hardware, etc. This means that cryptography grows out of extensive
knowledge of cryptanalysis. You have seen enough examples that confirm this
statement in Chapter 2. Just like theorem number One in cryptanalysis, ‘the
adversary always knows your method ’, there are two important theorems in
cryptography:

1. It is virtually useless to want to develop a good encryption algorithm if
you don’t have a clue about cryptanalysis.

2. You will never make it on your own to exhaustively analyze an encryp-
tion algorithm. An algorithm should first be disclosed and then be dis-
cussed worldwide.

So a cryptographer always has to also be a cryptologist, i.e., to master crypt-
analysis.

Being more particular, the second point above holds true only for the part
of the world that’s accessible to us, i.e., public cryptological research. One
example is the National Security Agency (NSA), for example. NSA is the
biggest employer of mathematicians in the world (unconfirmed estimates range
between 30 000 and 40 000 employees), and it is totally sealed off against the
outside. It goes without saying that the NSA employs the best cryptologists in
the world, who mutually review their developments. However, their algorithms
normally remain secret. The only exception might be the Skipjack algorithm of
the Clipper chip (see Section 5.7.5). We have no idea what level the knowledge
accumulated there has reached, but it’s likely to be an unexpectedly high level.

3.2 Cryptanalytic Approaches

Suppose we have received a ciphertext and know the encryption method, as
agreed. How could we proceed?

• We first need information on the plaintext, i.e., the goal to be achieved:
what language is the plaintext in (German, English, Chinese?); is it a file
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created by a word processor (which word processor?); is it a compressed
file (which compression program?); is it a piece of recorded voice or
images? Each of these plaintexts has specific properties for which we
can test (have we achieved the goal?), and which we will exploit as
extensively as possible during the cryptanalysis.

Our attack will be much more difficult without this information. All
that’s generally left to do is to try each of the text formats and see
what specific guess would allow us to mount an attack. This approach
requires extensive experience and the kind of software that is probably
not available on the Internet.

• If we know the structure of the plaintext and find out that the method is
not particularly simple (i.e., not really Caesar, substitution, or Vigenère),
then we can look at the possible keys. There might not be that many pos-
sibilities. For example, there would be approximately 300 million possible
keys if, say, passwords were composed of only six uppercase letters. This
number won’t pose any major problem to a fast PC. However, we have
to come up with a few very fast plaintext tests. We will expediently test
in several steps:

– To start with, let’s test the first 100 characters of the ‘plaintext’ created
for forbidden characters.

– If this preliminary test was successful, let’s test roughly for letter fre-
quencies.

– Next, we test for forbidden digrams.

– Then we run a comparison with a dictionary.

– Finally, we have to manually test the last 20 variants to see whether
or not they are meaningful.

This brute-force method is typically applied against the Caesar cipher.
You can test the text by simply looking at it. A statistical method that
also supplies the shift right away, and that can be automated would be
more elegant.

However, even the worst cryptologist understands so much of his trade
today to choose an astronomically large number of possible keys. If fewer
keys are used, then it is most likely one of the older methods, or there
is some intention behind it (e.g., because NSA so requested, or a crack
software vendor wants to make a living).
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possible keys

practically used keys

dictionary key

Figure 3.2: Dictionary attack.

It is actually a cryptologist’s highest goal to design his algorithm so well
that the cryptanalyst has to fall back on the brute-force method, for then
the attacker has generally little chance.

• But we might not have to go that far. A dictionary attack might be
sufficient. People often take the request ‘Enter your password’ literally
and type a real password. In that case, ten thousand or hundred thousand
attempts will do to recover the key. There are plenty of corresponding
dictionaries available. This approach is appropriately called dictionary
attack. We will discuss a qualified attack of this type in Section 3.3.

Such reduced key spaces where the number of keys practically used is
much smaller than the number of keys theoretically possible are serious
ciphering errors. They are a major vulnerability in the symmetric methods
discussed so far.

This shortcoming can be removed reliably by using random session keys
(more about this in Chapter 4), or by crunching a passphrase such as
with PGP (see Section 7.1.3).

• With methods working characterwise, which are most of the methods dis-
cussed so far, we will often use statistical methods. There were plenty of
examples in Chapter 2, and we will come back to this issue in Sections 3.5
and 3.6.

A prerequisite for such methods is the availability of sufficient statisti-
cal material. In view of the ‘monster files’ that current word processors
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create, there shouldn’t be a lack of material, as opposed to World War
II when characters had been typed manually. With a file the size of one
Mbyte, it is no longer helpful to change the key regularly—one Mbyte
is enough for statistics.

• It might even be possible to mount a plaintext attack. There are many
possibilities to do just that. Look at the following realistic approach:
the staff in an office produce documents by given guidelines, including
the mandatory use of specific style files or macro files. The entries in
the file created are considerable; in fact, they can amount to umpteen
Kbytes (together with all other style data, my letterhead in WordPerfect
is 22 Kbytes long). It’s just a question of recovering the remaining Kbytes
of confidential text . . .

However, the bombing of light buoys (Chapter 2) went out of fashion.
There are better methods today.

• Testing for probable words is another special plaintext attack. In this
case, all we know (or guess) is that a certain word occurs in the text, and
perhaps we even know roughly where. We could start a plaintext attack
for any possible position to recover the key, or at least part of it. We
try to limit the number of possible positions by means of other methods,
e.g., the negative pattern search described in Section 3.4.1.

• We could arbitrarily include other information about the plaintext in our
analysis. Section 3.6.4 shows several examples.

• Not least, every program that poorly implements a good algorithm offers
the cryptanalyst welcome vulnerabilities. Imagine that a ‘dead secure’
software package for encrypted data communication stores your key on
the hard disk of a DOS or Windows computer, perhaps even without you
knowing! (Or the encryption is faked. I noticed a curious example under
Microsoft Word 6.0, when the text parts themselves obviously remained
unchanged by ‘protecting the file’.) Such mishaps are bound to happen
when a programmer knows nothing about cryptology.

• Finally all kinds of ciphering errors make an attacker’s life easier; see
Figure 3.1. Since ciphering errors always happen in practice, there is only
one way out, namely to prevent them from within the program. Therefore,
a good algorithm always has to be resistant to plaintext attacks. Keys
should be created by a program.

These are all rather blurred statements. Things will get more specific from
the next section onwards. However, there is no general-purpose recipe as to
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• Information about the plaintext: Created by which program? What striking
properties?

• Brute force: Trying the key space, if possible (important: quick testing for
correct plaintext).

• Searching a reduced key space (common in practice; dictionary attack).

• Plaintext attack: Fixed byte sequences in word processors; known formats of
database files, etc.

• Testing for probable words (special plaintext attack, especially for short files):
experimenting, negative pattern search.

• Exploiting additional information about the plaintext: compressed file, ASCII
text, . . .

• Exploiting any theory: In practice, it is usually a mix of algebra, number the-
ory, and probability theory; the remainder can be handled by experimenting.

• Exploiting vulnerabilities in the implementation: Inept ‘improvements’ or
‘simplifications’ of an algorithm, but also keys stored in unsafe places, trans-
mitting a key in plaintext over an insecure network, etc.

Figure 3.3: Potential vulnerabilities for the cryptanalyst to exploit.

how a cryptanalyst should proceed. Even with an algorithm as primitive as the
Vigenère method, cryptanalysis depends heavily on the plaintext expected so
that one single deciphering program will never cover all practically thinkable
cases. Nevertheless, people quite simply say that ‘Vigenère was broken’.

The reason is that cryptanalysts may use any theory; the main thing is that it
leads to success often enough. Should their crack programs not find a password
occasionally—oh well, they can surely explain and get over it. The attacked
algorithm remains insecure all the same. In contrast, the cryptographer who
designed the algorithm is disgraced by one single successful attack. The cryp-
tographer would actually have to cover himself against everything during the
design, which is impossible, of course.

As long as complexity theory cannot supply provable minimum estimates of
the effort required for cryptanalyzing an algorithm, the ‘cryptography versus
cryptanalysis’ race will continue.
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3.3 Example: Crack Finds UNIX Passwords

A popular and important example of dictionary attacks is Crack, a free program
by Alec D. E. Muffett (Great Britain). The program tries to find weak passwords
in UNIX systems. A brief digression is necessary to better understand how
it works.

How the UNIX Login Works

To log into a UNIX computer you have to enter a name and a password. If
you forget the password, you can’t work at the computer. How does it work?

Storing passwords in plaintext is extremely dangerous. Once upon a time, I saw
this under the RSX-11 operating system on PDP11 computers, the precursor
of VMS on VAX computers. Though RSX-11 had cleanly managed access
privileges, which guaranteed that not everybody could access all files,1 it would
have been easy to get hold of the passwords had I had bad intentions, since
I was often alone at the computer at night, and as things are with hardware,
it broke down suddenly now and then. Only restarting the computer helped.
I could have interrupted the startup phase by (electric) switch to become a
privileged user with access rights to all files.

UNIX developers recognized these risks and stored passwords in encrypted
form. That’s said rather sloppily, for the plaintext was known (by the way: it
consists only of bytes with the numerical values 0 and 1), and the key was
the password itself. From the result, i.e., the short ciphertext, the key could no
longer be revealed. You would have had to mount a plaintext attack to try and
find the key. However, UNIX uses 24 rounds of a modified DES algorithm
(see Section 4.3) for encryption, and by the officially known current state of
the art, the only meaningful type of attack that remains to reveal the key is the
brute-force method (in theory, there are other approaches, but I doubt whether
they could be practically used).

This means that not even the UNIX superuser (i.e., the system administrator),
who can read and change everything, knows the users’ passwords. If one of
his sheep forgets its password, he can help out only in one way: he deletes the
encrypted password, and the user has to think of a new one. There is nothing
wrong with making the password file readable to all users, for it also contains

1MS-DOS systems and Windows systems up to Windows 98 hadn’t known such rights. You
could protect your files against unauthorized access only by encryption!
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other information of general interest. And new users select their password
themselves; taking some care nobody will know it.

All of this was thought out rather cleverly (not only for the level of the 1970s),
but two vulnerabilities remain:

1. When two users—a good one and a bad one—accidentally use the same
password, then each one of them can log in by the name of the other
user and get unlimited access to that user’s files. The situation would
certainly be noticed and removed soon, but then it would be too late:
the bad user might have installed a Trojan horse, i.e., a program he can
use to get unauthorized access to the files of the good user, even if he
doesn’t know the password since it had been changed.

2. There are circuits that implement the DES algorithm at very high speed.
This means that an attacker with appropriate hardware could mount a
brute-force attack and guess the password.

Salt

Salt

known plaintext

modif. 24-
round DES

modif. 24-
round DES

password
as key

password
as key

known plaintext

enter password

password file /etc /password or
/etc/shadow

# passwd snoopy
New password:
Re-enter new password:

login: snoopy
Password:

Login by
password query

search entry

yes: login

COMPARE

entry
for
snoopy

encrypted
password

no: deny
encrypted
password

Figure 3.4: Password check during UNIX login.
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These are the reasons why a little salt is strewn in: the UNIX login program
(and also the password program used to change passwords) modifies the DES
algorithm randomly in one of 4096 ways. This additional information is the
salt that is placed in front of an encrypted password. In the event that two users
actually get the same entry in the password file, then the password program can
select a different salt. But the main thing is that the DES ciphering hardware
has become worthless since it cannot map the DES variants mentioned.

How Crack Works

UNIX password encryption is still cryptologically very secure. The only vul-
nerability in the entire process is humans: people use the names of their friends
as passwords, or the official names of their departments or subjects, if they
have no sense of humor. Rumors have it that the password ‘fred’ has been
used quite often. Have a look at Figure 3.5 and you’ll know why.

Crack exploits this fact. It basically runs a brute-force attack, though rather than
doing this at random, it tries many possibilities with the help of a dictionary.
It makes sense that the user of Crack is responsible for the dictionary (since
he won’t initially find the names of work subjects or names of friends in it).
The entries in the dictionary are selected and modified based on rules defined
by the user. You can see some of these rules in Figure 3.6.

Depending on the planned computing power and the known peculiarities of the
users (who select their passwords themselves!), the Crack user can individually
build his search strategy. Once it has guessed the password, Crack tells the
program operator about it. Upon request, it also sends an email to the person
concerned!

What Crack Is For

The last sentence probably shows best the actual purpose of Crack : the program
is not intended to enable breaking a system, but to increase its security. When

W E R T ZQ

A

Y N

HS D F G

X C V B

Figure 3.5: Part of a computer keyboard—why the password ‘fred’ is so
popular.
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Some modification rules:

• Add characters to the beginning or end: xfred, freddy.

• Convert to uppercase or lowercase letters: FRED, fred.

• Use uppercase for the first letter of the word only: Fred.

• Write the word backwards: derF (or combine the last two possibilities: Derf).

• Write the word twice: FredFred.

• Reflect the word: FredderF.

• Overwrite a certain position with a different character: Frxd.

• Insert a character in a certain position: Fried.

• Replace a character by another one: Frad.

• Use parts of the word: red.

• Use arbitrary combinations of the possibilities above and their negations.

Some selection rules:

• State the minimum and/or maximum length.

• Select or exclude words that include certain characters.

• Select or exclude certain patterns or numbers of vocal-consonant
changes.

Crack uses a special high-performing language for these things. The selection
options can be formulated much more solidly than their equivalent regular expres-
sions in UNIX tools (such as egrep).

Figure 3.6: Modification and selection rules of Crack.

a user learns that his password was guessed, he will hopefully select a better
one. A security-aware system administrator will pay attention to these things,
just as well as they will choose a good UNIX password program to be used
to define or change passwords. (I can think of goodpasswd under SCO UNIX
which rejects poor passwords. Unfortunately, it is not common to find such an
important feature.)

This is a big deal. Imagine a situation where a company fires an employee.
Maliciously, our ex-employee secretly copies the password file /etc/password.
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At home, she lets Crack run on her PC for a couple of weeks until she finds a
password. She logs into her former employer’s system over the network. Next,
she looks for a vulnerability in the system (which is often easy for insiders),
becomes a superuser, and eventually causes immense damage to that company.
Don’t think things like this can’t happen, because 80 % of all known successful
attacks to computers originate from current or former employees.

But carelessness dominates. When I got my first Internet access I looked at the
password file of the Sun workstation just for fun. Using the UNIX tool grep, I
quickly found out that among the users who had no password at all, there were
twenty professors. I knew one of them well. I accommodated a little script in
his startup file (.profile) that generated the following output:

Dear Mr XYZ,
You have no password at all.
Just think of all the bad people out there!

When I ran into him the next day, he was all excited and told me: ‘Imagine
what happened! I logged myself into the Sun yesterday, and this output pops
up at me,’ and I said ‘Dear Mr XYZ, You have no . . .’. He has had a password
ever since.

Some time later, the administrator ran Crack on this Sun and removed all
faults. I was proud that Crack hadn’t guessed my password.

The successes of Crack are surprising. In general, about 20 % of all pass-
words are guessed. This shows clearly how much a cryptologically excellent
method (namely the UNIX password encryption) is worth when there’s some-
thing wrong in the environment (in the above case, the key selection). The fact
that a fast computer may have to work for a week changes nothing in what’s
been said: such an effort is worthwhile for a criminal attacker.

Crack is popular and performs well. This issue actually belongs to Chapter 7,
but it demonstrates very impressively how intelligently one can mount a mean-
ingful brute-force attack.2

Current UNIX and Linux systems protect themselves against Crack attacks by
storing the encrypted passwords in a separate file called /etc/shadow, which the
regular user can’t read, and no longer in /etc/password. In addition, many login

2We will learn another possibility called ‘time–memory tradeoff’ in Section 4.4.1.
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programs enter a wait loop, e.g., 5 seconds, after each wrong password entry.
This prevents the most popular passwords being tried over the network. Rather
than DES encryption, other systems use a one-way hash function, e.g., MD5
(more about it in Chapter 6). All these measures are correct, but cryptologi-
cally insufficient. Really correct is only the stopping of bad passwords by the
password command itself. On the other hand, admissible passwords should not
be overly complicated, since that would encourage users to write them down.

3.4 Back to Ciphering Cylinders

After this excursion into modern cryptology, let’s get back to outdated methods.
We will see that cryptanalyzing these methods is still of interest. We begin with
the ciphering cylinders introduced in Section 2.5. A little reminder: a ciphering
cylinder is a homophone polyalphabetic method with a small period (e.g., 30).
The single substitutions are known, only their selection and sequence are secret.
Negative pattern search is very useful to cryptanalyze them. It can be deciphered
even if the ciphertext is too short for statistical analyses.

3.4.1 Negative Pattern Search

We know that the disks in ciphering cylinders are turned so that the plaintext
appears in one line. The ciphertext is read in another line. One of the properties
of this method is strikingly similar to the Enigma, namely that a character
never transforms onto itself during encryption. While this may seem to increase
the method’s security, it is actually a rather strong limitation. We saw at the
beginning of Section 2.5.2 that this may help somebody to find the position
of a piece of plaintext. The following simple (and impractical) example shows
how we can utilize it.

An Example (Caesar Cipher)

The task at hand is to decrypt the following Caesar-ciphered message without
the help of a computer:

GLHVHUWHAWHQWKDHOWHLQZDKUVFKHLQOLFKHVZRUW

We know that the text part

WAHRSCHEINLICHESWORT
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GLHVHUWHAWHQWKDHOWHLQZDKUVFKHLQOLFKHVZRUW
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
*WAHRSCHEINLICHESWORT

WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
*WAHRSCHEINLICHESWORT
*WAHRSCHEINLICHESWORT

WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
*WAHRSCHEINLICHESWORT

WAHRSCHEINLICHESWORT
WAHRSCHEINLICHESWORT
*WAHRSCHEINLICHESWORT

Figure 3.7: Negative pattern search. The highlighted letters show a coinci-
dence (i.e., a match between the plaintext and the ciphertext in that position).
All that remains are the five possibilities marked ‘*’.

(probable word) appears in the plaintext. We’ve come across such probable
words in Chapter 2. They even play a greater role in the modern data processing
world—just think of headers in word processor files.

Back to the probable word. We write it on a piece of paper and move it along
underneath the ciphertext, as shown in Figure 3.7. No character transforms
onto itself in the Caesar cipher either. So, when two equal characters happen
to be superimposed in any place, this position of the paper strip is out of the
question.

Based on the theory, only 46 % of all cases will have no such match, but
language is not random. In our case, there are only five possible positions of
the paper strip.

Next, we pick a letter that occurs at least twice in the probable word; let’s
select ‘R’. Notice that the same character always has to correspond to ‘R’ in
the ciphertext since the text is Caesar-ciphered. The first possibility is no good
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since a ‘W’ is above the left ‘R’, and a ‘Z’ above the right ‘R’. This can’t be
the right position. Similarly, we find the letters ‘K’ and ‘H’, ‘D’ and ‘L’ as
well as ‘Z’ and ‘V’ above the ‘R’ in the second, third, and fourth positions.
They are out of the question, too. The last position remains, where ‘R’ is
always converted into ‘U’. We try to determine a shift (here 3) and, running a
deciphering attempt, obtain the following:

DIESERTEXTENTHAELTEINWAHRSCHEINLICHESWORT

All right, so this text was ‘originally’ Caesar-encrypted (i.e., using shift 3).

Of course, there are other methods we could have used to cryptanalyze this
example. For instance, the letter ‘H’ occurs in the ciphertext with a frequency
of 19 %. Assuming that ‘H’ corresponds to the most frequent letter, ‘E’, we
would also have found the solution. This is actually the way for ciphertext
attacks. However, using the negative pattern search on a probable word meant
that we didn’t have to count up anything. It led to success almost effort-
lessly.

Approach for Ciphering Cylinders

The approach for ciphering cylinders is similar: the negative pattern search
supplies us with a few possible positions of the plaintext for a starter. What
makes this approach more difficult, however, is that the probable word could
be torn, and a careful code writer may have selected a different cylinder line
for each period. But we’re not interested in this right now.

We start a plaintext attack by exploiting each possible position of the probable
word as follows:

• For every letter, we know the character it will be transformed to in
the ciphertext. This heavily limits the selection of the disks, and even
homophony cannot change that (i.e., the fact that we don’t know from
what row the ciphertext was read), which increases our effort by 26-fold.

• For each assumed disk choice, we look up another period of the cipher-
text to see whether or not this choice will produce a fragment of some
meaningful plaintext in a row. Only a few possibilities will generally
remain.
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• We add more and more sections (periods) of the ciphertext as we continue
revealing the correct choice for as many disks as there are letters in the
probable word.

• In every period, we decrypt the part of the ciphertext determined by
the disks we already know. We will hit scraps of words like ORDE,
ANNABI, MITTANC, or XPOS, and completing them shouldn’t pose a
major problem. Having revealed yet another piece of plaintext, we can
start all over again, luckily from a better starting position.

• Step by step and piece by piece, we will end up knowing all disks.

The interesting part of this approach is that even homophony—ambiguity in
the cipher—does not represent an insurmountable obstacle. Of course, my
representation refers to the way we’d have worked before the computer era.
Humans are still better than computers when it comes to forming sentences
from scraps of words. But when you use a computer you’d proceed differently
anyway.

3.4.2 The Viaris Method

The method developed by Viaris represents a refinement of the cryptanalysis
discussed above. Again, we use a probable word, except that this time we
improve the negative pattern search.

To this end, we hold the row from which the ciphertext had been read (the
so-called generatrix ) on the cylinder for a moment. Under this prerequisite,
we analyze the letters that could form at all from the letters of the probable
word for all disks. We appropriately build ourselves a table (matrix ) for this
purpose. Each row in the table corresponds to a disk, and each column to a
letter of the probable word (see Figure 3.8).

As before, we move the probable word along underneath the ciphertext. We’ll
know we have hit the correct position when each character of the ciphertext
above the word appears at least once in the corresponding matrix column.
Positions with coincidences (character matches like above) fall out automat-
ically, but generally other cases do too. If we find no possible position, we
have to try all over again using a different generatrix. Notice that the number
of possibilities to be analyzed is slightly smaller with this method. Givierge
refined the method once more by doing without probable words and using only
digram and trigram frequencies. You will find more details and references in
[BauerMM, 14.3].
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The Attacking Method by Viaris

Let the probable word be CHIFFRE, and the ciphertext VIWSHQTLUFT-
WDTZ.

The ciphering cylinder should consist of ten disks with the following settings (to be
read from top to bottom; connecting the first row with the last row to form a ring):

1 2 3 4 5 6 7 8 9 10 (disk number)

N X F V M S X U T P
B J C X X A I B V M
A E L I T G L J G G
C Q G G Y J F W F Z
R N B D K V C R A X
V P T E D R V V X I
U T R C B D W M E S
H B A T L Q D L L V
D Z D R E O J F U L
Q H V F F L P O K J
W V M Q R H S P J W
M I H S H C R K W C
K G S N Q I E Y Q A
Z A O Z A U G Q S T
P S Z K W E T G Z U
L R U W J Z O A O N
F Y I H U Y A H I D
T K X U I M Y S B O
S F W Y O B N I R B
O O J M G X M C H Y
J C Y J N W B Z C R
G W P A C N U X N K
Y M E P Z K H T M F
X D Q O V F Z N Y E
I U N L S T Q E D Q
E L K B P P K D P H

We look at the first generatrix, i.e., the ciphertext is read from one row underneath
the plaintext row. This turns ‘C’ into ‘R’, ‘H’ into ‘D’, ‘I’ into ‘E’, and so on, in
the first disk. We write this result in the first row of a matrix. We fill the second
row analogously for the second disk. We obtain the following 10 × 7 matrix:

1 R D E T T V N
2 W V G O O Y Q

Figure 3.8: Using the Viaris method to attack ciphering cylinders.
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3 L S X C C A Q
4 T U G Q Q F C
5 Z Q O R R H F
6 I C U T T D Z
7 V Z L C C E G
8 Z S C O O V D
9 N C B A A H L
10 A P S E E K Q

The position

VIWSHQTLUFTWDTZ
CHIFFRE

of the probable word supplies no coincidence (no two superimposed characters
are equal), which means that it is theoretically no option. We place the pertaining
ciphertext fragment, VIWSHQT, on top of the 10 × 7 matrix above. Only the ‘V’
from the first position can be found in the next column (disk 7); the other characters
are not in the first generatrix in any other disk. This completes that word position
for this generatrix.

The word CHIFFRE is now moved forward and, excluding all positions, we look
at the next generatrix until we find a ciphertext fragment in which each ciphertext
character happens to be in one of the lower columns at least once. Another exclusion
condition is that the ciphertext characters must occur in different matrix rows. (If
there are multiple occurrences in one column, then we should be able to make the
choice so that this condition is met.)

We can now mount a plaintext attack on all positions found.

Figure 3.8: (continued )

The method fails when the permuted alphabets on the disks form a Latin square,
i.e., when the disks have turning positions that cause each letter to occur at
least once in every row.

It is very unlikely that people still use ciphering cylinders today, and nobody
implements them in software. So why dedicate a full section to the Viaris
method, which is especially tailored to these devices? For a couple of reasons.
First, because of the comment on Latin squares in the paragraph above: when
you run cryptanalysis yourself, you will begin to understand why this disk
property is so important for cryptanalysis. This still doesn’t mean that we are
able to design secure algorithms: we simply don’t know what methods have
been or will be used by all the cryptanalysts in the world.
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Second, there is one more risk we should be aware of: when designing an algo-
rithm, the developer may be particularly cautious, never letting any character
transform onto itself. In doing this, he actually compromises his own method.
Bauer [BauerMM] refers to this approach as an illusory complication. Endeav-
oring to design things particularly well often leads to the exact opposite. At
this point, you might not understand why German cryptologists hadn’t seen
the risk caused by the Enigma’s reversing drum: it enabled negative pattern
search.

3.4.3 This is Still Interesting Today!

The ciphering cylinder is history, and so is characterwise encryption. ‘So what
do we discuss it for?’, you will probably ask. We encrypt bitwise nowadays!
Well, negative pattern search is still a potential risk, even with algorithms
working bitwise. We certainly won’t compare superimposed bits any longer.
But we might be able to prove a statement like the following:

If byte 1 has even and byte 3 uneven parity in the plaintext block, then there
is a 76 % likelihood that bit 26 in the ciphertext block is equal to 1.

Of course, it would be best to have a 100 % probability, for we could then run
a negative pattern search, like before. But every value that deviates from 50 %
can be helpful.

These kinds of statements are dangerous for all algorithms that are vulnerable
to plaintext attacks. Look at this not totally unrealistic example: assume a
WordPerfect file was encrypted bitwise using a Vigenère method (more about
this in Sections 3.5 and 3.6). We know for sure that it includes the string

Lexmark 4039 plus PS2

(21 characters), since our security department uses this printer. Moreover, we
know the code writer is chronically lazy, i.e., he would never bring himself to
use a password with a length of ten characters. We are looking for the position
of the probable word; we have a hunch where in the ciphertext it might be
found. If the password is four characters long, then ‘L’ and ‘a’ have got to be
encrypted in the same way. This is written as follows in cryptology:

p1 ⊕ s = c1

p5 ⊕ s = c5
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Where p1 represents the plaintext character ‘L’; p5 represents ‘a’; c1 and c5

denote the pertaining ciphertext characters; s represents the key character for
this position; and ⊕ denotes the bitwise XOR according to the operation ˆ in
the C language. We XOR the left and right sides of both equations and obtain

p1 ⊕ p5 = c1 ⊕ c5

This is a good criterion for checking a position in the text, since we already
know that p1 ⊕ p5 = ‘L’ ⊕ ‘a’. We will naturally run this test on the other
character pairs, too. If no possible position at all results, we have to try it with
a different period length.

Once we’ve eventually found the correct position of the word, we use it to
reveal the correct key, since the Vigenère method is not resistant to plaintext
attacks: the plaintext length is greater than the period length so that we can
compute the key (plaintext XOR ciphertext) directly. Again, it is remarkable
that this approach can do totally without statistic analyses.

3.5 WordPerfect Encryption as a Modern Example

The WordPerfect word processor let’s you encrypt your files just like many other
application programs. Though the method hadn’t been disclosed, it appeared
on the Internet nevertheless. First I suspected somebody might have reverse-
engineered parts of the program, but then I realized that this effort wasn’t nec-
essary. Finding out this method is so unbelievably simple that I want to briefly
demonstrate it here without qualifying you for a hacker (after all, I’m not one
either). All you need is the right intuition. I once used WordPerfect Version 5.1
under UNIX (it’s equivalent to the same version for other operating systems).

3.5.1 The Encryption Method: How to Find It, and How
to Break It

Let’s first create a simple text in WordPerfect 5.1. For example, we opt for
lines composed of ‘A’s only:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
...
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We look at this file to see where we find this text string, using a hexdump
program (the first four characters give the hexadecimal address from the begin-
ning of the file, followed by 16 characters both in hexadecimal and ASCII
representations).

0650 00 e7 27 58 02 50 23 00 01 d1 9f 53 ad 08 23 7c ..'X.P#....S..#|
0660 00 67 00 00 00 00 00 41 41 41 41 41 41 41 41 41 .g.....AAAAAAAAA
0670 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
*
0690 41 41 41 41 41 41 41 41 41 41 41 0a 41 41 41 41 AAAAAAAAAAA.AAAA
06a0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
*

Now, let’s encrypt this file. The trick to be found here is to again select ‘A’ as
the password. The part of the file considered here now looks as follows:

0650 03 e5 22 5c 05 56 2a 08 0a db 92 5f a2 06 32 6c .."\.V*...._..2l
0660 13 75 15 14 17 16 19 59 5a 5b 5c 5d 5e 5f 60 61 .u.....YZ[\]^_‘a
0670 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 bcdefghijklmnopq
0680 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 rstuvwxyz{|} ∼...
0690 82 83 84 85 86 87 88 89 8a 8b 8c c6 8e 8f 90 91 ................
06a0 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 ................

It virtually leaps to your eyes that there are ascending numbers, which is not
the case when selecting ‘B’ for the password:

0650 00 e6 21 5f 06 55 29 0b 09 d8 91 5c a1 05 31 6f ..!_.U)....\..1o
0660 10 76 16 17 14 15 1a 5a 59 58 5f 5e 5d 5c 63 62 .v.....ZYX_\]\cb
0670 61 60 67 66 65 64 6b 6a 69 68 6f 6e 6d 6c 73 72 a‘gfedkjihonmlsr
0680 71 70 77 76 75 74 7b 7a 79 78 7f 7e 7d 7c 83 82 qpwvut{zyx.∼}|..
0690 81 80 87 86 85 84 8b 8a 89 88 8f c5 8d 8c 93 92 ................
06a0 91 90 97 96 95 94 9b 9a 99 98 9f 9e 9d 9c a3 a2 ................

Obviously, the two ‘A’ characters have somehow ‘lifted themselves off’, but
not by subtraction, for then the last file would look different: the difference
between ‘A’ and ‘B’ is 1, and this would probably not have had such a big
influence. It seems that the plaintext is XORed with the keyword, and an
ascending number sequence is additionally superimposed. Let’s find out what
the outcome would be if we used the password ‘AB’:
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0650 02 e1 23 5c 04 5a 2b 08 0b df 93 5f a3 1a 33 6c ..#\.Z+...._..3l
0660 12 71 14 14 16 1a 18 59 5b 5f 5d 5d 5f 63 61 61 .q.....Y[_]]_caa
0670 63 67 65 65 67 6b 69 69 6b 6f 6d 6d 6f 73 71 71 cgeegkiikommosqq
0680 73 77 75 75 77 7b 79 79 7b 7f 7d 7d 7f 83 81 81 swuuw{yy{.}}....
0690 83 87 85 85 87 8b 89 89 8b 8f 8d c6 8f 93 91 91 ................
06a0 93 97 95 95 97 9b 99 99 9b 9f 9d 9d 9f a3 a1 a1 ................

We can see that, from address 66a onwards, every other character forms an
accordingly ascending row, but this time with difference 2:

5b 5d 5f 61 63 65 ...

Perhaps all that’s done here is a simple Vigenère cipher and XORing, like
in Section 2.4.2, and then additionally superimposing an ascending number
sequence on everything? One can find out pretty quickly that this is actually
the case. More specifically, the method in WordPerfect 5.1 looks like this:

• Write bytes with the following numerical values on one row: the first
value is larger than the password length by 1; every following value is
larger than its predecessor by 1; 0 comes after 255.

• Write the password underneath several times, and
• underneath it, write the bytes of the WordPerfect file again, starting with

byte number 16.
• XOR three superimposed characters bitwise. The result is the ‘ciphertext’

(Figure 3.9).

Let the password be UNIX, i.e., let it have length 4. The WordPerfect file should
look like this from byte 16 onwards, for example (doesn’t happen in practice):

Canon BJ-200 (LQ Mode)

The encrypted text is produced by bitwise XORing the following three rows:

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
U N I X U N I X U N I X U N I X U N I X U N
C a n o n B J 2 0 0 ( L Q M o d e )

Figure 3.9: The encryption method of WordPerfect 5.1.
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You can see that the method can be recovered within one to two hours at most
when proceeding cleverly. This is not an exceptional case. Vigenère methods
or modifications are thought to still be very popular in MS-DOS and Mac
software. The manufacturers say that their method ‘is almost as secure as DES,
only much faster’. Though the second part of this statement may be true, let’s
show compassion for the first part.

How do you break the WordPerfect encryption? The most obvious method is to
simply try all password lengths. There aren’t many since the program limits the
maximum admissible length to 23. We use the statistical method (as described
in Section 2.4.1) to try and find the key for each length. This is not a problem,
for there is plenty of material to analyze—almost all WordPerfect files are
many Kbytes long—and there are sufficient peculiarities in how the characters
are distributed in these files.

But it can be even simpler than that. WordPerfect 4.0 is thought to have
encrypted only the text itself. In contrast, Version 5.1 ‘protects’ headers, too.
The motivation for this expansion may have been to also encrypt the business
addresses included in the styles (which are included in the headers). But the
header contains plenty of known bytes that can be exploited in a plaintext
attack. We will see exactly how this is done in the next section.

3.5.2 The newwpcrack Program

WordPerfect encryption is known not only on the Internet; there are lots of
programs you can get for free that can break it. One of these programs was
written by Ron Dippold in 1991 and is included on the Web site to this book.
As usual, nobody will guarantee the software’s reliability, but that’s not the
point. Even a success rate of 50 % would show that the method works.

Unaware of this program, I had developed and published one of my own
[Wobsymm]. I’ll introduce an improvement in this section. The program is
still short (only 70 lines; see listing in Figure 3.10), but it shows how several
methods can be combined. Since cryptanalysis is very specific, you should
take your time and look at the details, even if you don’t think you’ll ever use
WordPerfect.

How does newwpcrack work?

• We first have to identify the bytes that are constant in WordPerfect files.
To find these bytes, I used a program called wph.c, a program found on
our Web site. It compares bytes 17 through 56 of several WordPerfect
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1 /* Crack encoded WordPerfect 5.1 files: newwpcrack <encoded_file
2 (C) R.Wobst (Dresden), @(#) 30.Oct 00:34
3 */

4 #include <stdio.h>

5 #define INVERS "\033[07m" /* switch on inverse printing */
6 #define NORMAL "\033[0m" /* return to normal printing */

7 #define HEADER 16 /* # of header bytes, variable */
8 #define MAXKEY 23 /* max. keylength (WP specific) */
9 #define MAXPLAIN 40 /* # of bytes in known plaintext

*/
10 #define PROBE 1024 /* portion of read plaintext */

11 main()
12 {
13 static unsigned int wp[MAXPLAIN] =
14 {
15 0xfb, 0xff, 0x05, 0x00, 0x32, 0x00, 0x100, 0x04,
16 0x00, 0x00, 0x100, 0x00, 0x100, 0x00, 0x00, 0x00,
17 0x42, 0x00, 0x00, 0x00, 0x100, 0x100, 0x100, 0x100,
18 0x00, 0x00, 0x100, 0x00, 0x00, 0x00, 0x100, 0x100,
19 0x100, 0x100, 0x00, 0x00, 0x100, 0x100, 0x00, 0x00
20 };

21 unsigned char b[PROBE];
22 unsigned int key[MAXPLAIN];
23 int len, m, k, bad, N;

24 fread(b, 1, HEADER, stdin); /* Header: Name etc. */
25 N = fread(b, 1, PROBE, stdin);

26 if(N < MAXPLAIN) exit(1);

27 for(len=1; len <= MAXKEY; ++len) /* test on keyword lengths
*/

28 {
29 /* construct periodic key from known bytes */

Figure 3.10: The newwpcrack.c program.
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30 for(m=0; m < MAXPLAIN; ++m) key[m] = ((len+1+m)^wp[m]^b[m])
& 0xff;

31 /* test on period */

32 for(m = MAXPLAIN-len; m--; )
33 if(wp[m] != 0x100 && wp[m+len] != 0x100 && key[m] !=

key[m+len])
34 break;

35 if(m >= 0) continue;

36 /* possible keyword found */

37 printf("len = \%2d: \"", len);

38 /* reconstruct keyword */

39 for(m=0; m < len; ++m)
40 {
41 bad = 0;
42 k = key[m];

43 if(wp[m] == 0x100) /* not unique, test on another
known byte */

44 {
45 for(k=m; k < MAXPLAIN; k += len)
46 if(wp[k] != 0x100)
47 {
48 k = key[k];
49 break;
50 }

51 if(bad = (k >= MAXPLAIN)) /* trial failed, use
statistics */

52 {
53 int cnt[256];
54 int l, max, indx;

Figure 3.10: (continued )
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55 for(l=256; l--;) cnt[l] = 0;
56 for(l=m; l < N; l += len) ++cnt[((len+1+l) & 0xff)^

b[l]];

57 for(indx=max=0, l=256; l--;)
58 if(cnt[l] > max)
59 {
60 max = cnt[l];
61 indx = l; /* '\0' is preferred byte!

*/
62 }

63 k = indx;
64 }
65 }

66 if(bad) printf(INVERS);

67 if(k < 32) printf("^%c", k+'@');
68 else putchar(k);

69 if(bad) printf(NORMAL);
70 }

71 putchar('"'); putchar('\n');
72 }

73 return 0;
74 }

Figure 3.10: (continued )

files, where the file names are passed as arguments. When two bytes in
two files differ, the program outputs the value 0x100, which corresponds
to no character at this place. You can see the result of these tests in the wp
field (lines 13–20 in the listing in Figure 3.10). Only insiders can check
whether or not these assumptions are always valid. No contradiction has
been found so far in practice. By the way, the number 40 for the field
length was selected relatively at random.
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• Next, the encrypted text is read from the standard input stdin (lines 24
and 25); the first 16 bytes are discarded.

• The big loop used to try all possible password lengths begins at line 27.
The most important calculation is done at line 30, where the ciphertext,
the known plaintext, and the ‘number sequence’ (top row in Figure 3.9)
are used to tentatively guess the key. The mathematical background is as
easy as it could be:

cipher = plain ⊕ key ⊕ number
(where ⊕ stands for XOR) becomes
key = cipher ⊕ number ⊕ plain (1)

• We have to test to see whether or not we’ve been successful. We test
in lines 32 through 35: if the key created is not periodic, we certainly
weren’t successful. We can only test for positions that contain known
plaintext. The trial has succeeded if there is no rejection.

• Next, we want to reconstruct as much of the key as possible. The first
period alone may not supply enough information, since we normally
know only scraps of the plaintext. However, there might be a known
plaintext byte that reveals the character we are looking for in another
period. This is done in lines 41 through 50.

• Some characters of the key still haven’t been found yet. Let’s use sta-
tistical methods. All right, this sounds high-flown: the thing is I noticed
that zero bytes occur in masses in the headers of WordPerfect files. You
can see the distribution of the first 1000 characters of this chapter (as a
WordPerfect file) in Figure 3.11.

37.50 % ‘ˆ@’ (zero byte)

20.60 % ‘d’

13.10 % ‘x’

5.50 % ‘<255>’

3.10 % ‘P’

2.10 % ‘<254>’

2.00 % ‘<140>’

Figure 3.11: Distribution of the first 1000 characters in a special WordPerfect
file.
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In view of such ‘exotic’ statistics (the zero byte was by far the most
frequent in all cases analyzed), let’s not deal with the innards of
WordPerfect and instead search for the most frequent character in the
transformed ciphertext, which was ‘cleared’ of the disturbing ascending
number sequence. This happens in lines 51 through 62. Without that
number sequence, only the following remains from equation (1):

key = cipher_nonum ⊕ plain

However, since the plain byte equals 0, we get

key = cipher_nonum !

We mark this character as ‘unsafe but probable’ and output it together
with the other ones in lines 66 through 69. The entire ‘session’ can look
like this, for example (under UNIX):

$ newwprack <c.wp
$ len = 18: "THIS IT NOT SECURE"
$

(The marked characters appear inverted in the output, which means that
they have been revealed statistically.)

The program is not flexible—it supplies only one suggestion for each keyword
length. Though significant improvements are possible (if there are several char-
acters with approximately equal probability, then all of them should be output),
I didn’t come across a keyword that newwpcrack failed to guess. It is rather
striking how surefire this quick-and-dirty method works.

Hopefully you’ve understood that one can proceed rather heuristically—the
main thing is that this path often leads to the goal. The program’s computing
speed is impressive: calculating a password took 9 ms (0.009 seconds) on a 133-
MHz PC Pentium under PC-UNIX (ESIX V.4.2). As mentioned in Chapter 1,
AccessData has wait loops built into its software to avoid having to confront
customers with the brutal truth. But I’d never have imagined they’d occupy a
PC 386-16 for full 60 seconds with the same task that newwpcrack handles . . .

Certainly, their program is much more reliable than mine (I’m serious).
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Had the cryptologists been a bit more careful, they would have encrypted only
the text itself to at least prevent plaintext attacks. Even then, however, it would
still be easy to break the code: you will see how and by what program in
Section 3.6.

3.6 The Vigenère Method Under the Magnifying Glass

The Vigenère method is very simple and (unfortunately) still often used.3 This
is why it is a good and interesting candidate for discussing a few problems
in cryptanalysis. Similarly to the previous section, you will learn a specific C
program, but one that’s much more powerful and universal. Again, we will limit
ourselves to using the ‘bitwise Vigenère method’, also called simple XOR.

3.6.1 The Index of Coincidence Supplies the Period Length. The
Kasiski Method

We determined the method’s period length experimentally both in the discus-
sion of the Vigenère method in Section 2.4.1 and in deciphering encrypted
WordPerfect files in the previous section. But things would be much faster and
simpler if we considered the index of coincidence, also called kappa. Though
this sounds very scientific again, it’s very simple.

If we write two equally long texts, T1 and T2, in two lines one on top of the
other, then the kappa of both texts is defined as follows:

κ = number of coinciding characters

number of characters in the text

More specifically, it looks like this:

this is the first text
and this is the second
...........*..........

The two texts coincide only in one character (a blank) and are 22 characters
long each. Consequently, the kappa of the two texts is 1/22, or 4.5 %. The
special thing about this quantity kappa is that it always has roughly the same

3For example, the wincrypt program uses a 512-byte Vigenère key.
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value for sufficiently long, different texts in the same language. This is quite
amazing, but the reason is clear: in the first approximation, the characters
of long texts have a certain distribution based on probability theory, which
depends on the language used. Moreover, the pairs of letters written above
one another are statistically somewhat independent in long texts. Therefore,
the kappa expected is the square sum of all character probabilities. Whether or
not you can reproduce this in detail is not important—just remember this: the
kappa results from the common distribution of single characters in two texts.

We shift the entire text block by four characters to the right and form the kappa
of the shifted text onto itself (and simply cut off ends that jut out):

is the first text
this is the first

*

We can see that roughly the same kappa as for long texts occurs here too.
Though superimposed characters are no longer entirely independent (especially
when moved by one position only), the effect is still there. Had I used English
text with all the blanks and line breaks removed from it, I would have obtained
a kappa of approximately 5.5 %.

Let’s use this function for a special case: a plaintext, represented by the
character string (pi)i = 1, 2, 3 . . . , is to be Vigenère-encrypted with a key
(s1, s2, . . . , sN ) of length N , to produce ciphertext (ci)i = 1, 2, 3, . . .:

p1 p2 p3 ... pN pN+1 pN+2 ...
s1 s2 s3 ... sN s1 s2 ...
c1 c2 c3 ... cN cN+1 cN+2 ...
with c1 = p1 ⊕ s1, c2 = p2 ⊕ s2, ...

We can see instantly that ci = cN+i exactly when pi = pN+i , since both cipher-
text characters were encrypted with the same key characters (whereas different
key characters produce different ciphertext characters). So we conclude:

The kappa of the ciphertext shifted by N positions against itself equals the kappa
of the plaintext calculated in the same manner.

If the ciphertext is shifted against itself by an amount smaller than N , then the
result will be a different kappa, namely one in the order of magnitude of a kappa
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from truly random text: 1/256 or 0.39 % (how about this compared with a value
of 5.5 % for the English language!). Such a small kappa is also to be expected
with shifts by amounts larger than N , unless the shift is a multiple of N .

We won’t dive into the theory any further at this point. The important thing
to remember is that we have found the method for recovering the period of a
polyalphabetic cipher:

For all text shifts up to an arbitrary upper limit, we calculate the kappa of the
shifted text against itself. When shifting by a multiple of the ciphering period,
the kappas should clearly be higher than those for other shift values.

This quantity kappa also played a role in the Enigma, by the way. At one point
it was found that the kappa of two Enigma texts encrypted with the same first
six characters was near the theoretical value for the German language. The
Poles correctly concluded from this that these six characters revealed the rotor
setting.

The Kasiski Method

For the sake of completeness, I briefly want to mention yet another method that
can be used to reveal the period length. It was introduced by the Prussian army
commander Kasiski in 1863. Though this method is much more plausible, it is
less universal.

When a ciphertext is fairly ‘random’, the probability that a character string at
least three characters long will occur in the ciphertext more than once is very
low (provided there is not ‘too big’ a distance between the two strings). In
normal language, however, multiple occurrences are rather frequent—think of
-tion, -ning, inc-, etc.

Now, if two identical character strings in the plaintext have a distance between
them that corresponds to a multiple of the period length, then we get the same
ciphertext in the two places concerned. Using the Kasiski method, we would
consequently search for reoccurrences of character strings that are at least three
characters long in the ciphertext, and then look at their distances. For example,
looking at the distances

24, 54, 18, 29, and 66

it becomes obvious that the period is 6 (or 2 or 3)—29 is an ‘outlier’.
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It is pretty easy to program this method, but it requires a certain plaintext
structure.

3.6.2 Ciphertext Attack

How do we break a Vigenère cipher using statistical methods? We know from
Section 2.4.1 that it’s done in two distinct steps: revealing the period length
and breaking each of the monoalphabetic substitutions.

We’ve seen in Section 3.6.1 how the period length can be revealed effectively
and reliably. To reveal the substitutions, we only have to find the key character
used for XORing.

If the ciphertext is reasonably long, which we initially assume, then we pick out
the group of all characters that were encrypted with the same key character. If
we use period length N , there are N such groups. In every group, we calculate
the frequencies of all characters (to find the character distribution) and try to
adapt it to the expected distribution. Let’s just briefly assume for our purposes
we wanted to encrypt by addition modulo 256 (i.e., a Caesar addition for the
‘byte alphabet’), rather than by XOR. The distribution curve of a ciphertext
group should then be similar to that of a related plaintext, except that it would
be shifted (Figure 3.12).

NE I R T S A H L .  .  . Alphabet

Fr
eq

ue
nc

y

Figure 3.12: Shifted distributions.
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The shaded area is a measure of the coincidence of the two curves. The question
as to which shift we should define as the ‘statistically best’ will always be
somewhat subjective, so we try to minimize the area content by selecting a
suitable shift.

In mathematical terms, we try to make an expression in the form

(g0-p0)2 + (g1-p1)2 + ... + (g255-p255)2 (2)

as small as possible in dependence on a shift, where gi are the relative fre-
quencies of a shifted ciphertext, and pi are the relative frequencies of a related
plaintext.4

Let’s go back to the XOR operation. It doesn’t correspond to a shift, but
to a permutation of the ‘byte alphabet’; anyway, this doesn’t basically change
anything in our considerations. The only thing is that Figure 3.12 can no longer
be represented with this operation as it would be far too big. The so-called
objective function remains for minimizing the expression in (2).

So, we try all 256 key characters possible in each group and select the one
with the smallest objective function value. This is how we reveal the key.

Notice that there are more sophisticated cryptanalytic methods. But as long as
it’s a matter of practical use on word processors, spreadsheets, etc., we will have
sufficient material for good statistics. That’s purely pragmatic. The surprisingly
successful cryptanalysis using a program called vigcrack introduced in the next
section confirms that we can be pragmatic about it.

3.6.3 The vigcrack Program

This C program is not particularly long either (122 lines, excluding the comment
in the header; see listing in Figure 3.13), but it uses more theory, and it is a
lot more universal than newwpcrack from Section 3.5.2.

Since we’ve learned the theoretical background in Section 3.6.2, we can now
focus on important details of the implementation. vigcrack cracks Vigenère-
encrypted files with unequally distributed characters (i.e., readable texts, source

4For mathematicians: what we basically do here is a kind of Chi-square adaptation test with
a distribution over 256 groups. Except that, rather than testing for a hypothesis with given
error probability, we select the most favorable, the one that would pass the hardest test, out of
several samples. However, the shaded area in Figure 3.12 corresponds to the sum of the absolute
amounts of the differences in (2) and not to their squares.
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1 /* crack vigenere ciphers by statistical methods
2 (C) Reinhard Wobst, Dresden (Germany) @(#) 30.Oct 22:57, 1996

3 Usage: vigcrack distr_file <crypted_file

4 The 'distr_file' must be generated by the program 'distr' from
5 a typical plaintext:

6 distr <plaintext >distr_file

7 The file plaintext must have typical character frequencies.
8 Not applicable for equally distributed plaintexts (gzip etc).

9 Output: One proposed keyword, trust value (the higher, the
better).

10 A trust value near 1 indicates insecure password detection.
11 */

12 #include <stdio.h>
13 #include <ctype.h>
14 #include <memory.h>

15 #define MAXPERIOD 64 /* max. key length */
16 #define MAXLEN 40960 /* max. portion of read source */
17 #define THRESH 0.1 /* "threshold factor for max.

probability" */
18 #define PERC 0.01 /* 1% - kappa (coeff. of coincidence)

*/

19 main(argc, argv)
20 char *argv[];
21 {
22 unsigned char buf[MAXLEN], key[MAXPERIOD+1],
23 *p;
24 register n, m;

25 int n0, c, off, indx, period, kappacnt, N, Np,
26 cnt[256];

Figure 3.13: Using vigcrack to break a Vigenère cipher.



3.6. The Vigenère Method Under the Magnifying Glass 97

27 double thresh, trust1, trust, min, delta, expkappa, Nd,
28 kappa[2*MAXPERIOD], patt[256], frequ[256];

29 FILE *fp;

30 if(argc != 2 | | (fp = fopen(argv[1], "r")) == NULL)
31 {perror(argv[1]); exit(1);}

32 /* read distribution pattern */

33 expkappa = thresh = 0.;

34 for(n=0; n < 256; ++n)
35 {
36 if(fscanf(fp, "%d %le\n", &c, patt+n) != 2 | | c != n | |

patt[n] < 0.)
37 {
38 fprintf(stderr, "error in pattern file, line %d: %d %g\n",
39 n, c, patt[n]);
40 exit(1);
41 }

42 expkappa += patt[n]*patt[n];

43 if(patt[n] > thresh)
44 {
45 indx = n; thresh = patt[n];
46 }
47 }

48 thresh *= THRESH;
49 printf("expected index of coincidence: %.2f%%\n", expkappa*100.);

50 /* read file probe */

51 N = fread(buf, 1, MAXLEN, stdin);

Figure 3.13: (continued )
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52 if(N < 2*MAXPERIOD)
53 {
54 fprintf(stderr, "file too short: %d bytes\n", N);
55 exit(1);
56 }

57 Nd = n;

58 /* compute coincidence index */

59 for(period=1; period <= 2*MAXPERIOD; ++period)
60 {
61 kappacnt = 0;
62 for(n = Np = (N/period-1)*period; n--;)
63 kappacnt += buf[n] == buf[n+period];

64 kappa[period-1] = (double)kappacnt/Np;
65 }

66 /* look at frequency peaks */

67 period = -1;

68 for(min = expkappa-PERC; min > PERC; min-=PERC)
69 {
70 n0 = -1;
71 for(n=0; n < 2*MAXPERIOD; ++n)
72 {
73 if(kappa[n] < min) continue;
74 if(n0 < 0) {n0 = n+1; continue;}
75 else if((n+1)%n0) break;
76 }

77 if(n < 2*MAXPERIOD) continue;
78 period = n0; break;
79 }

80 if(period < 0)

Figure 3.13: (continued )
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81 {
82 fprintf(stderr, "no period found!\n");
83 exit(1);
84 }

85 /* compute characters of key */

86 key[period] = '\0';
87 Np = (N/period-1)*period;
88 trust = 1.e+9;

89 for(off=period; off--;)
90 {
91 y memset(cnt, 0, 256*sizeof(int));

92 /* compute distribution */

93 for(n = Np + off; n >= 0; n -= period) ++cnt[buf[n]];
94 for(n=256; n--;) frequ[n] = cnt[n]/Nd;

95 /* align distribution: get 1 char of key */

96 min = 257.;

97 for(m = 256; m--;)
98 {
99 if(frequ[indx^m] < thresh) continue;

100 delta = 0.;

101 for(n = 256; n--;)
102 delta += (frequ[n^m] - patt[n])*(frequ[n^m] - patt[n]);

103 if(min > delta)
104 {
105 trust1 = min/delta;

Figure 3.13: (continued )
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106 min = delta;
107 key[off] = m;
108 }
109 }
110 if(trust > trust1) trust = trust1;
111 }

112 /* print result */

113 printf("trust value: %.2f\n", trust);
114 printf("key dump (%d characters):\n", period);

115 for(n=0; n < period;)
116 {
117 c = key[n];

118 if(c == ' ') printf(" ");
119 else if(c == '\n') printf("\\n ");
120 else if(c == '\r\) printf("\\r ");
121 else if(c == '\t') printf("\\t ");
122 else if(isprint(c)) printf("%c ", c);
123 else if(iscntrl(c)) printf("^%c ", c);
124 else printf("%02x ", c);
125 if(!(++n%15)) putchar('\n');
126 }

127 printf("\n\nPROPOSED KEY: ");
128 for(p=key; *p != '\0\; ++p)
129 if(*p < ' ') printf("^%c", *p+'@');
130 else putchar(*p);
131 printf("\n");

132 return 0;
133 }

Figure 3.13: (continued )

texts, word processor files, etc.). Passwords can be up to 64 characters long
(this limit is totally arbitrary).

There’s no universal cryptanalysis, not even for the Vigenère method. We
first need to know something about the statistical properties of the plaintext
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expected: is it a natural language (German, English?); a programming language
(C, C++, Fortran?); a database; a word processor? To find answers to these
questions, we need pattern files, in which the characters are distributed approx-
imately as we would expect from the plaintext. We use the simple program
distr found on our Web site, to analyze these files. This little program gives
us the relative frequencies of the characters in a file. We save the frequency
profile to a file.

• For a starter, vigcrack reads the file, computes the kappa, κP , of the
plaintext expected (appears on the screen), and finds the largest relative
frequency of a character (lines 30 through 47).

• In line 51, the program reads as much of the ciphertext as possible; the
maximum is 40 Kbytes.

• Next, the program computes the kappa, κn, of the ciphertext shifted
against itself for each of the 64 possible password lengths, n. It takes
the result to compute the period duration rather pragmatically:

– It first minimizes the kappa, κP , of the plaintext by one percentage
point and analyzes to see whether those n with κn that exceed this
threshold are all multiples of the smallest of these n:

n, 2*n, 3*n, ...

– If so, then vigcrack takes this n as a period.

– Otherwise, it minimizes κP again by one percentage point and repeats
the test.

If it doesn’t find a period, it terminates the cryptanalysis. However, expe-
rience has shown that this very sharp test succeeds on this kind of files
that are usually long (lines 59 through 84).

• Now that the period is known, vigcrack can compute the relative fre-
quencies of each of the ciphertext groups (lines 93 and 94).

• Next, the program computes the square deviation of the distribution found
from the theoretical deviation for all possible 256 key characters. Since
the deviation is computed in a triple nested loop (the outer loop traverses
the period length), it requires a lot of computation time, which is the
reason why it has a pretest built in: if the most frequent character of
the plaintext transforms into a ‘rare’ character in the cipher, then the
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key character is discarded right away, rather than being included when
computing the deviation (line 99). ‘Rare’ means ten times rarer than
expected (as specified by the THRESH constant in line 17). The ratio
between the second smallest square deviation and the smallest deviation
is called the ‘trust level’ in this program (just an imaginative word). The
more this number deviates from 1, the securer the result.

• Finally, the results from lines 113 through 131 are output in readable
form. It cannot be reasonably expected that all key characters are ASCII
characters, so the key is shown as a ‘dump’: ASCII characters are shown
as such; line break and tab characters are written with a backslash ‘\’,
like in C; and all other characters (including umlauts) are shown as hex-
adecimal numbers.

The program is astonishingly surefire. On the configuration mentioned above
(133-MHz Pentium, PC-UNIX ESIX V.4.2), its computation times range
between 150 ms and 600 ms (the latter on very long passwords of about 60
characters). It works on English and German, on vigenere.c—WordPerfect
files encrypted onto themselves, on C programs—as long as the characters are
not distributed equally. Try it.

As a sideline, you can also use vigcrack on a ‘sophisticated’ combination of
transposition and subsequent Vigenère cipher. The substitution doesn’t change
anything in the text’s distribution so that vigcrack reconstructs the password
with the usual certainty. You can then break the transposition, for example, by
looking at the frequencies of digrams.

You can see that combining several different methods doesn’t always lead to
benefits (and sometimes leads to even more insecurity!).

3.6.4 Compression = Compromise

The cryptanalytic programs introduced so far (except Crack ) are rather simple
while still working amazingly fast and secure. A closer look reveals that the
theory behind these attacks is not particularly profound, but we can’t generalize,
of course. This section introduces a problem that’s different in every respect:
a cryptanalytic approach that totally does away with statistical analyses, and
the program used is downright tricky, requiring rather long computation times.
But you will find the result more interesting!

More specifically, I’m referring to the claim asserted in Section 2.2 that com-
pression does not always increase the security (as opposed to the widely held
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0.87 % ‘ˆD’

0.86 % ‘ ’

0.84 % ‘ˆP’

0.83 % ‘ˆC’

0.80 % ‘ˆF’

0.78 % ‘ˆB’

0.78 % ‘4’

0.72 % ‘ˆ@’

. . .

0.18 % ‘<250>’

0.18 % ‘<223>’

0.18 % ‘<221>’

0.17 % ‘∼’

0.17 % ‘<253>’

0.17 % ‘<251>’

0.17 % ‘<234>’

0.17 % ‘<189>’

0.17 % ‘<183>’

0.15 % ‘<249>’

0.14 % ‘<239>’

0.14 % ‘<236>’

0.14 % ‘<219>’

0.11 % ‘<174>’

0.10 % ‘<255>’

Figure 3.14: Character frequencies in a compressed file.

opinion), though it does make cryptanalysis a bit harder. The illusion of more
security comes from the fact that the character distribution curve is very flat
in compressed files; there are almost no usable maximums and minimums (see
Figure 3.14).

In contrast to natural language, however, compressed text obeys fixed rules—
something we’ll take full advantage of. We try to mount a ciphertext attack
against Vigenère-encrypted compressed files, referring to compress, a program
that once was widely used in the UNIX world.

But first, we have to deal a bit with the plaintext or, more specifically, with
the format of files created by compress.

How Are Files Compressed?

Most people realize that language is not the shortest form in which we can
express ourselves. Compression means that a piece of text is ‘summarized’
in a way that ensures no information is lost. More specifically, a program is
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used to convert a piece of text into a much shorter one, which becomes illeg-
ible in the process. Another program can be used to retrieve the original text
from the compressed text at any given time. There is a large number of com-
pression methods, where the effect (how much a file will shrink) depends on
both the file contents and the method. The compress program implements a
well-known and very effective method based on the Ziv–Lempel algorithm.
compress used to be on every UNIX system, including FreeBSD. (gzip, which
has become very popular lately, is based on the Deflate algorithm of zip; it
cannot be used here—see Wikipedia entries on gzip.) It’s extremely easy to
use compress. The example below is from a UNIX session (the number in front
of the month shows the file length in bytes).

$ ls -l vigc_crk.*
-rw-r--r-- 1 wobst other 5211 Nov 6 13:51 vigc_crk.c
$ compress -v vigc_crk.*
vigc_crk.c: Compression: 45.63% -- replaced by vigc_crk.c.Z
$ ls -l vigc_crk.*
-rw-r--r-- 1 wobst other 2833 Nov 6 13:51 vigc_crk.c.Z
$

How does this algorithm work? Most importantly, it replaces entire character
strings by numbers, which makes the compressed product short. This replace-
ment is done based on a table that stores character strings. At program start, the
table has 257 entries, namely all 256 one-element character strings formed from
all possible bytes, and an additional abortion code and, sometimes, an addi-
tional reset code (depending on the implementation). The table is expanded
in every step as the uncompressed text is read. If a character string that has
already been saved to the table is encountered in the text, then the algorithm
outputs the number of that table entry in its place. This is roughly how the
Ziv–Lempel algorithm works. If you are interested in the details, you’ll find
an exact description in [Welch].

A little trick helps to save even more space: initially, the table includes less than
512 entries, i.e., the numbers of entries can be described using 9-bit numbers.
Once 256 9-bit words have been output, we can use 10-bit numbers; after
another 512 steps, we can use 11-bit numbers, and so on, till 16-bit numbers
are output. The program authors don’t generally say what will happen once
16 bits have been exhausted (our example won’t reach these spheres). This
sort of output with variable word length is called the adaptive Ziv–Lempel
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algorithm. compress places a header composed of these three unchanging bytes
in front of this word sequence:

1f 9d 90

We will refer to the numbers output by compress as compress words in the
following discussion.

Using the vigc crk Program for a Ciphertext Attack

The vigc crk program (see listing in Figure 3.15) uses essentially the fact that
a word written by compress in the nth step cannot be larger than 256 + n.(*)

As little as this may actually appear, it is surprisingly sufficient in practice. Yes,
we even do without evaluation of the three fixed bytes at the beginning of the
text for ‘sporty reasons’. This is no kid’s game, since a careful cryptographer
would truncate these bytes anyway. In detail, we proceed as follows:

• We certainly can’t determine the period length using the index of coinci-
dence (see Section 3.6.1) due to the very flat distribution. We have to try
the expected period lengths one after another (at this point, the program
may still have considerable reserves).

• For every given period length, we now recover the key, proceeding char-
acter by character. Suppose we already know n characters. We try all 256
possible values for the (n + 1)th character. We store the current value for
each period together with all characters collected so far. For example, this
could look like this for period 5, n = 3 characters already known—‘a’,
‘u’, and ‘f’—and using ‘c’ as the (n + 1)th character:

a u f c ? a u f c ? a u f c ? a

G e h e i m t e x t . . . . . .

where “Geheimtext” means ciphertext.

We try to decrypt the ciphertext in the known positions, i.e., we XOR the
characters shown one on top of the other. We use the resulting part of
plaintext to check whether the relation marked with an asterisk (*) above
is met in the checkable cases.
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1 /* crack vigenere ciphers of compressed files
2 (C) Reinhard Wobst, Dresden (Germany) @(#) 7.Nov 00:44, 1996

3 Usage: vigc_crk [max_keylength] <crypted_file
4 */

5 #include <stdio.h>
6 #include <ctype.h>
7 #include <memory.h>

8 #define HEADER 3 /* # of bytes in compress-header
*/

9 #define MAXPERIOD 64 /* max. key length */
10 #define MAXKEYS 64 /* max. # of stored keys */
11 #define MAXLEN 40960 /* max. portion of read source

*/

12 static void tree_search(), print_result();

13 static unsigned char buf[MAXLEN], /* ciphertext */
14 key[MAXPERIOD]; /* key field */
15 static N, maxperiod;
16 static tcnt=0;

17 static long bitoff[6], blenmsk[17] =
18 {
19 0l, 0l, 0l, 0l, 0l, 0l, 0l, 0l, 0l, /* dummy */
20 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
21 /* indices 9...16 */
22 };

23 main(argc, argv)
24 char *argv[];
25 {
26 int period, n, blen;
27 long p2, sum;

28 if(argc != 2 | | sscanf(argv[1], "%d", &maxperiod) != 1 | |
29 maxperiod < 1 | | maxperiod > MAXPERIOD)

Figure 3.15: Using vigc crk.c to break a Vigenère-encrypted compressed file.
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30 maxperiod = MAXPERIOD;

31 printf("maximal keylength: %d bytes\n", maxperiod);

32 N = fread(buf, 1, MAXLEN, stdin); /* read
file probe */

33 /* preliminary computation: bit offsets */

34 p2 = 256; blen = 9; sum = 0;

35 for(n = 0; n < 6; ++n)
36 {
37 bitoff[n] = (sum += blen*p2);
38 ++blen; p2 <<= 1;
39 }

40 /* compute possible keys */

41 for(period=1; period <= maxperiod; ++period)
42 {
43 if(N < 30*period)
44 {
45 fprintf(stderr,
46 "file too short(%d bytes) for period (%d) - search

stopped.\n",
47 N, period);
48 exit(1);
49 }

50 fprintf(stderr, " %2d\r", period); fflush(stderr);
51 tree_search(period, 0);
52 }

53 printf("%d recursive calls\n", tcnt);
54 return 0;
55 }

Figure 3.15: (continued )



108 3. Cryptanalysis in Detail

56 /* ---------------------------------------------- */
57 /* recursive tree search
58 input: key - key field
59 len - key length
60 knb - # of known bytes (starting with key[0])
61 print result if path through is found
62 */

63 static void tree_search(len, knb)
64 {
65 int val, k, off, blen, knb0, knb1, knb2;
66 long n, bits, bits0, cnt, cwd;
67 ++tcnt;

68 if(knb == len+1) {print_result(len); return;} /*
through */

69 knb0 = knb; while(knb0 >= len) knb0 -= len;
70 knb1 = knb-1; while(knb1 < 0) knb1 += len; while(knb1 >= len)

knb1 -= len;
71 knb2 = knb-2; while(knb2 < 0) knb2 += len;

72 for(val = 0; val < 256; ++ val) /* test all values for
key byte */

73 {
74 if(knb < len) key[knb] = (val+’A’) & 0xff; else val = 256;
75 if(!knb) {tree_search(len, 1); continue;}

76 for(n=knb; n < N; n += len) /* test val for
all periods */

77 {
78 if(n < 4) continue; /* skip header + 2

bytes */
79 bits = (n-HEADER) << 3; /* compute bit

offset */
80 bits0 = 0; blen = 9; cnt = 256;

81 for(k = 0; k < 6; ++k)
82 {
83 if(bitoff[k] < bits)

Figure 3.15: (continued )
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84 {
85 cnt += (1 << (blen++ - 1));
86 bits0 = bitoff[k];
87 continue;
88 }
89 else
90 {
91 cnt += (off = (bits-bits0)/blen);
92 off = bits0 + (off+1)*blen;
93 if(bits+8 < off) break;
94 /* (compress-word not determined yet - test

next period) */
95 off = bits+8 - off;

96 /* compose compress-word (from 2 or 3 bytes) */

97 if(off+blen <= 16)
98 {
99 cwd = ((buf[n] ^ key[knb0]) << 8) |

100 ((buf[n-1] ^ key[knb1]));
101 cwd = (cwd >> (16-blen-off)) & blenmsk[blen];
102 }
103 else
104 {
105 if(n == 4 | | (len >= 2 && knb < 2)) break;
106 /* next period */
107 cwd = ((buf[n] key[knb0]) << 16) |
108 ((buf[n-1] key[knb1]) << 8) |
109 ((buf[n-2] key[knb2]));
110 cwd = (cwd >> (24-blen-off)) & blenmsk[blen];
111 }

112 if(cwd > cnt) goto next_val; /* test
rejected! */

113 break; /* next period */
114 }
115 }
116 }

117 /* all tests went through for this val, try next key byte
*/

118 tree_search(len, knb+1);

Figure 3.15: (continued )
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119 next_val: ;
120 }
121 }

122 /* ---------------------------------------------- */
123 /* print result */

124 static void print_result(period)
125 {
126 static unsigned char found_keys[MAXKEYS][MAXPERIOD];
127 static char *kd="key dump: ";
128 static found = 0, periods[MAXKEYS];
129 int n, m, c;

130 /* test if key is of form old_keyold_keyold_key... */

131 for(n=found; n--;)
132 if(!(period%periods[n]) &&
133 !memcmp(found_keys[n], key, periods[n]))
134 {
135 for(m = period/periods[n]; m--;)
136 if(memcmp(found_keys[n], key + m*periods[n],

periods[n]))
137 break;

138 if(m < 0) return;
139 }

140 /* store key */

141 if(found < MAXKEYS)
142 {
143 memcpy(found_keys[found], key, period);
144 periods[found++] = period;
145 }

146 /* print */

Figure 3.15: (continued )
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147 printf("period: %d, PROPOSED KEY: \"", period);

148 for(n=0; n < period; ++n)
149 {
150 c = key[n];
151 if(iscntrl(c)) printf("^%c", c+'@');
152 else putchar(c);
153 }

154 printf("\"\n%s", kd);

155 for(n=0; n < period;)
156 {
157 c = key[n];

158 if(c == ' ') printf(" ");
159 else if(c == '\n') printf("\\n ");
160 else if(c == '\r') printf("\\r ");
161 else if(c == '\t') printf("\\t ");
162 else if(isprint(c)) printf("%c ", c);
163 else if(iscntrl(c)) printf("^%c ", c+'@');
164 else printf("%02x ", c);
165 if(!(++n&0xf))
166 {
167 putchar('\n');
168 for(m=strlen(kd); m--;) putchar(' ');
169 }
170 }

171 printf("\n\n");
172 }

Figure 3.15: (continued )

• If this relation for the character is met in all periods, then these first
n + 1 characters could be the beginning of a valid password. We repeat
the last step with all 256 possible (n + 2)th characters. (If n is sufficiently
large—see below—we’d even have found a password.)

If the relation for the character is not met in at least one period, then we
try our luck with the next (n + 1)th character.
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If the relation was met for no (n + 1)th character in no period, then the
nth character must have been wrong. We go back one step and increase
the key character in the nth position by 1.

• Proceeding like this—always stepping forward and backward in the
key—we try all possibilities until we have searched all branches in the
tree (see Figure 2.2 and the accompanying text).

• If we are unsuccessful, we increase the period length by 1 and start the
procedure all over again.

With a period length, p, we would have to try 256p keys in a brute-force attack.
The relation (*) reduces this number to a tiny fraction, which will become tinier
the longer the ciphertext (for, the more inequalities would then have to be met,
i.e., the more dead ends there would be in the tree).

A ‘great strategy’: in detail, however, we’ll have to grapple with some rather
nasty problems. I’ll use the following listing to explain some of them.

• Lines 34 through 39: We don’t even think of the ciphertext as a byte
sequence, but as a bit stream. These lines compute the numbers of those
bits where the length of the compress words printed increases, and save
them to the field bitoff. (Though we could write these numbers in a table
right away, our approach requires only minimal computation time, and
errors are easier to catch.)

• Line 63: The actual work is handled by the function tree search(), which
is invoked by main() once for each period length, and then invokes itself
(i.e., recursive calls).

Similarly to the known knb key character, it is responsible for determining
the (knb +1)th character. To this end, it looks up all periods to see
whether adding the (knb +1)th character would result in a compress
word that hadn’t been tested for yet:

– If it does, then it computes the word and tests relation (*). This happens
in lines 98 through 113 (a major ‘bit shifting’ job).

– If it doesn’t, then it skips the current period and continues testing in
the next.

• If (*) is true in all testable cases, even after character number knb + 1
was added, then tree search() calls itself with a knb value increased by
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1 (line 119). This action corresponds to one step forward in the search
tree. If (*) is false for a period, then the program jumps out of the period
test loop (going to next val ; lines 113 through 120), and tests the next
value. Once all 256 values have been processed, the function returns,
which corresponds to one step backward in the search tree.

• If tree search() can see from the period length values and the number
of bytes already known that all test cases have been analyzed, then it
considers the password found to be valid and prints it (line 68).

• There are several particularities about this action:

– (*) cannot be tested for knb = 0, because every compress word is at
least 9 bits long, and no such word is found in the partially decrypted
text for a period length greater than 1 (line 75). Period length 1 is
nevertheless dealt with!

– Even if all key characters have already been fixed, there are compress
words that haven’t been tested for (*) yet: these are the words that
reach beyond the period boundary. Therefore, we let knb run not only
from 0 to len − 1, but to len + 1, and accordingly replace the len and
len + 1 indices by 0 and 1. Lines 69 through 71 and 74 show that our
programming has to be extremely careful.

– Line 74 reveals a little trick: when searching for the next key char-
acter, we start with ‘A’ rather than ‘0’, since we assume that pass-
words are composed mainly of letters. Though this little trick doesn’t
shorten the overall computation time, it helps to get to a correct
password faster—even dramatically faster, depending on the tree struc-
ture.

• Finally, we have a look at the print result() function, since it is not lim-
ited to printing the password. If ‘abc’ was used to Vigenère-encrypt a
plaintext, then trivially enough it is also encrypted to ‘abcabc’, ‘abcab-
cabc’, etc. For this reason, print result() stores up to 64 passwords and
checks for ‘multiples’ of these words.

Doubtlessly the program can be greatly improved, though it is generally quite
fast and reliable. No obvious problems occur with long files. On a UNIX-PC
(133-MHz Pentium, ESIX V.4.2), vigc crk found the correct solution from a
compressed 260-Kbyte file encrypted with a 60-character password within 16
seconds:
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$ vigc_crk <u1
maximal keylength: 64 bytes
period: 60, PROPOSED KEY:
"0123456789a123456789b123456789c123456789d123456789e123456789"
key dump: 0 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5

6 7 8 9 b 1 2 3 4 5 6 7 8 9 c 1
2 3 4 5 6 7 8 9 d 1 2 3 4 5 6 7
8 9 e 1 2 3 4 5 6 7 8 9

16980 recursive calls
$

In contrast, short files could cause problems. When using the program to test
a 512-byte file, I observed the following computation times, depending on the
password length (on the same Pentium computer).

Up to 5 characters long: less than 1 second; unambiguous solution

6 characters: 1.8 seconds; 2926 function calls; unambiguous solution

7 characters: 9.4 seconds; 4643 function calls; unambiguous solution

8 characters: 1.5 seconds; 2795 function calls; unambiguous solution

9 characters: 8.6 seconds; 5646 function calls; unambiguous solution

10 characters: 8.3 seconds; 14 553 function calls; 16 passwords

Additional tests are necessary to find the correct password from the passwords
proposed in the last example: whether or not the plaintext produced can be
decompressed (which is sometimes possible even with ‘wrong passwords’),
whether or not the decompressed output is something meaningful, and so on.
There are cases where vigc crk in the form represented here won’t be sufficient:
when I encrypted the file with a 15-byte password, it took the program 25
minutes (and almost four million function calls) to come up with about 31 000
possible passwords on the screen (all of which obviously let you guess the
correct password: ‘abcdefghijklmno’).

The program tends to get tangled up particularly with multiples of the period
length. While searching it displays the period length currently assumed for
controlling reasons. With the correct period length (and its multiples), it can be
seen clearly how the search time increases: from 0.1 to 0.2 seconds to several
seconds. With wrong assumptions about the period length, the dead ends in
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the search tree appear to be very short. Additional tests for greater search
depth are missing. This is a point where the method could be significantly
speeded up.

Conclusions

It is remarkable that the actual encryption method plays a role only in two
expressions—see the ‘ˆ’ (XOR) character in lines 99, 100, and 107 through
109. There could be an addition corresponding to the Vigenère method in the
classical sense instead. With true polyalphabetic methods, the set of substitu-
tions possible could be limited, at least with long files. However, the program
would then have to work more effectively, and it would be much more complex.

compress is not the only compression program around. pkzip, which is popular
in the DOS world, also implements the Ziv–Lempel algorithm, among other
things. Of course, the file format differs from that of compress. Nevertheless,
the attack remains basically the same. The well-known Huffmann method,
implemented in pack for UNIX, writes character frequencies to a header and
subsequently appends a bit stream. gzip is a free and very effective program
(available for UNIX and DOS) and is also based on a Ziv–Lempel algorithm.
Each one of these methods requires a different approach.

You can see that, for the examples discussed in this section, we don’t need any
information about the plaintext, except that it was compressed with compress.
We need to look at the text itself only if there are several possible passwords
and we can’t guess the right one, and if several passwords let us decompress
the plaintext. Naturally, the code writer can select a different compression
method and add cryptological elements to it, for example, ‘disturbing’ bits. A
prerequisite is that the code writer knows exactly how a cryptanalyst would
proceed against his method. This means that he would basically jump out of
the frying pan into the fire.

Making a method appear more complicated by previously compressing things
can sometimes have the opposite effect. As a sideline, compression also makes
a brute-force search much easier. We will get back to this issue in Section 4.4.1.

After all, ‘more complicated’ doesn’t always mean ‘more secure’.

3.7 fcrypt: How Differential Cryptanalysis Works

The discussion in this section takes us back to fcrypt, the encryption method I
mentioned at the end of Chapter 2, which is described in detail in [Wobfcrypt]
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(not to be confused with the faster fcrypt DES implementation). To cryptanalyze
it, we will use a method totally different from those discussed so far, namely
differential cryptanalysis. This method was first introduced by the Israeli
mathematicians Biham and Shamir in 1990 [Bih.diff] and used for an attack
against DES; we will discuss this issue in more detail in Section 4.4.2.

Though my fcrypt method should no longer be used for encryption, it is quite
interesting for cryptanalysis. As mentioned in the previous section that dealt
with compressed files, we won’t worry about the probability theory as we
mount our attack, because fcrypt is immune to statistical methods. We will
reach our goal with a particularly simple type of differential cryptanalysis.

The fcrypt Method

How does fcrypt work? The basic idea is pretty simple: we divide the plaintext
in blocks of 256 bytes each (appropriately padding the last block). We take
each block and split it into 16 groups of 16 bytes each in a secret way. There
are 256!/(16!)2 or approximately 10192 different ways (so we don’t need to
consider brute force from the outset). We encrypt each group separately by the
following rule:

Replace each byte by the sum of the other 15 bytes of that group.

Let the plaintext bytes of a group be p1, . . . , p16, then the formula for creating
the ciphertext bytes, c1, . . . , c16, is as follows:

c1 = p2 + p3 + ... + p16 (mod 256)
c2 = p1 + p3 + ... + p16 (mod 256)
...
c16 = p1 + p2 + ... + p15 (mod 256)

(The decryption is just as easy, but we are not interested in it here.) This method
has a remarkable property: if the plaintext bytes are sufficiently random, we
might be lucky enough to get equally distributed ciphertext bytes. Even sharp
tests didn’t show any more statistical dependencies between the ciphertext
bytes. However, I found in the first design that the method has a conceptual
weakness:

If two plaintexts differ only in one byte, then the ciphertexts (created with the
same key) differ in 15 bytes. These 15 bytes all belong to the same group.
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This is the reason why fcrypt writes the 256-byte plaintext blocks in a 16 × 16
matrix such that each row contains the elements of one group. (The order of the
plaintext bytes written in the matrix is secret!) Once the encryption ‘by rows’ is
complete, we analogously encrypt ‘by columns’. This approach introduces yet
another considerable improvement to the method’s statistical properties, and
makes it a bit more secure.

Attacking fcrypt

What happens with the improved fcrypt if two plaintexts differ in one byte
only? You may come to think that the ciphertexts (again created with the same
key) differ in all bytes, except for the bytes in positions within the matrix (in
columns or rows) that coincide with the position of the changed byte. Let’s
look at an example: two plaintexts differ in the byte written in row 7, column 4.
Writing ‘.’ for changed bytes and ‘0’ for unchanged bytes in the ciphertext, the
ciphertext block (written as a matrix) we create would basically look like this:

...0............

...0............

...0............

...0............

...0............

...0............
0000000000000000
...0............
...0............
...0............
...0............
...0............
...0............
...0............
...0............
...0............

Don’t forget, the ciphertext doesn’t appear in rows in this matrix, since the
way the characters are written in the matrix (and read from it) is secret. The
only thing we can see is that 31 positions somewhere strewn across the text
haven’t changed, and we know that they’ve got to be in the same row or in
the same column that the changed byte is in.

An attacker initially won’t be able to do much with these 31 numbers. What I
(incomprehensibly!) hadn’t thought of back then was the following:
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If we take an arbitrary plaintext, p0, and build 17 plaintexts, pi , that all differ
only in one byte of p0, then there must be at least two pi in which the differing
bytes are in the same row. We select two such texts, pm and pn, and encrypt
them. Exactly 31 positions of every cipher will not differ from the encrypted
text, p0. For example, if we use ‘0’ for the bytes where fcrypt(pm) does not
differ from fcrypt(p0), and analogously use ‘1’ for the bytes of pn, things would
look like this:

...0......1.....

...0......1.....

...0......1.....

...0......1.....

...0......1.....

...0......1.....
XXXXXXXXXXXXXXXX
...0......1.....
...0......1.....
...0......1.....
...0......1.....
...0......1.....
...0......1.....
...0......1.....
...0......1.....
...0......1.....

The positions marked with ‘X’ haven’t changed in the two ciphertexts. If we
were an attacker with access to a ciphering device, we would consequently
proceed as follows:

• We take plaintext p0 and build 17 slightly modified plaintexts, pi , as
described above.

• We have all 18 texts encrypted with the same key and intercept the
ciphertexts.

• For each cipher, fcrypt(pi), we find the bytes that don’t differ from
fcrypt(p0). These are always 31 positions. We call the set of all positions
of these bytes the ‘checkpoint set’.

• Two different checkpoint sets will generally have two common elements.
But at least two sets have exactly 16 common elements. This means that
we’ve recovered one row or one column of the secret matrix.

• Using a sufficiently large number of plaintexts and doing some puzzle
work, it’s relatively easy to recover the secret matrix.
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The remarkable thing about this approach is that we haven’t bothered about the
plaintext at all in our cryptanalysis; we were only interested in the positions
in which the two plaintexts differ. Moreover, we were not interested in the
ciphertexts created, but again only in the positions where the bytes changed.
In differential cryptanalysis, which will be discussed in detail in Section 4.4.2,
you look at the differences of plaintexts or ciphertexts and additionally use
probability theory. Well, fcrypt is a very simple example indeed.

But that’s not all. In the form described so far, the rfcrypt plaintext-to-ciphertext
mapping suggested by the key is linear. This means that, if we multiply the
plaintext bytes by 3, then the ciphertext bytes will also be multiplied by 3; the
same applies to additions (everything modulo 256, of course):

rfcrypt(n*P) = n*rfcrypt(P)
rfcrypt(P1±P2) = rfcrypt(P1) ± rfcrypt(P2)

(P, P1, P2: plaintexts; n: natural number; multiplication and addition are done
bytewise, modulo 256.)

Exploiting this linearity, we’ll often be able to recover plaintexts that differ in
one byte only from plaintexts that differ in many bytes: we have managed to
make a transition from a chosen-plaintext attack to a plaintext attack. However,
we need many blocks encrypted with the same key. But this is a security issue
not directly related to the algorithm, and, as is well known, security issues are
always violated.

Several Problems Remain Unsolved

Unfortunately, things are not as simple as that. The ciphertext created by fcrypt
has excellent statistical properties provided that the plaintext contains ‘a little
chance’, i.e., it isn’t exactly composed of blanks. Since this can’t be excluded
in practice, I take a few countermeasures:

1. Before the first encryption, a secret key is added bytewise to the plaintext.
In contrast, after the second encryption, a secret key is XORed with the
result. Addition and XOR are ‘incompatible’; it’s not easy to get rid of
this complication.

2. After each block, the key is modified in a relatively complicated way
(depending on the ciphertext of the last block and a key that is not used
otherwise).



120 3. Cryptanalysis in Detail

Point 2 makes it hard to exploit more than the first ciphertext block. Otherwise, a
sufficiently long plaintext (perhaps only 18 blocks long, i.e., 4.5 Kbytes) would
already be the key to success. However, Point 1 turns fcrypt into a non-linear
mapping, which means that we are back to having to rely on chosen plaintexts.
(Adding or XORing a byte wouldn’t change anything in our consideration as
to what bytes will or won’t change.) On the other hand, we could pick out
plaintext blocks that differ little from the beginning of messages to eventually
reveal the matrix. As far as the method is concerned, it would certainly be a
fascinating and challenging task, but its actual benefit is doubtful.

As a sideline, thanks to the complications under Points 1 and 2, fcrypt acquires
excellent statistical properties. I encrypted a sequence composed of ten million
line break characters (‘\n’); the ciphertext showed no cycle whatsoever and
behaved like a sequence of very good random numbers in every respect. Also
thanks to the two complications, a plaintext attack wouldn’t be as easy as one
might think. You can see that probability-theoretical statements have to be rated
very carefully—if statistics can’t be used for cryptanalysis, there are still plenty
of other methods. vigc crk from Section 3.6.4 is an impressive example.

Transpositions and Differential Cryptanalysis

Transpositions (see Section 2.2) are even easier to break if we use differen-
tial cryptanalysis rather than fcrypt. Pure transpositions are linear, regardless
of whether they are bitwise or bytewise (with bitwise operations, we compute
modulo 2, as usual; otherwise modulo 256). This means that a few plaintext
blocks will do; we take them to form linear combinations (see Glossary) that
differ only in one bit or byte. Since we can compute the corresponding cipher-
texts as linear combinations5 in the same way, we can see directly which bits
or bytes differ there, thus revealing the transposition just as directly. Here, too,
we need not know anything about the text’s statistics; the only prerequisite is
that a sufficient number of plaintext blocks are linearly independent (i.e., none
of their linear combinations is zero). This prerequisite is very realistic.

Linear methods such as fcrypt (without the addition or XOR modification) and
transpositions are rewarding candidates for differential cryptanalysis, since they
can be mounted as plaintext attacks in cases like this. Generally, however, they
require chosen-plaintext attacks, often even with extremely extensive plaintext,
as we will see in Section 4.4 and Chapter 5.

5This is the simplest linear algebra, except on a finite field.
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3.8 Bottom Line

If you’ve made it through this chapter, you learned a thing or two about crypt-
analysis. You have seen that there are no limits to imagination in cryptanalysis
(and you will learn more and unusual methods later on). In contrast to the
subliminally suggested opinion that cryptanalysis depends only on the method,
you know at least since Section 3.6.4 that the plaintext to be expected can also
play a role.

There is no such thing as a general ‘theory of cryptanalysis’. The cryptanalyst’s
principle is to exploit available vulnerabilities. This is somewhat chaotic from
the outset. The vigcrack program discussed in Section 3.6.3, which includes
the expected-plaintext spectrum in its considerations, has the only touch of
universality in this chapter.

You can surely guess how to give an attacker a hard time: you’d have to
combine or modify methods in unusual ways, use exotic plaintext (for example,
one you created with your own compression method), and similar things. I
intentionally write this in the subjunctive for two reasons:

• First, it could backfire—‘improving’ a good method almost always means
correcting mistakes into it.

• Second, algorithms are used in mass-market products nowadays. There
is no longer such a thing as ‘individual variation’, and attacking an algo-
rithm is always rewarding. Something you could call ‘new’ would be a
user-specific variation and combination of methods, but these methods
would then have to be as secure as the original algorithm. And this is
the very aspect in which the theoretical background is problematic.

But all complications a cryptanalyst has to deal with are gray theory, because
practice still helps him often enough. For example, the radio communications
of some US cell phones are encrypted using a 160-bit Vigenère key at the
NSA’s request. Do you have any idea how it is cracked? More about this sort
of ‘practice’ in Section 6.7.





Chapter 4

Development Milestones:
DES, RSA

You may have gained the impression so far in this book that though they
have a very difficult task, cryptanalysts eventually have the upper hand over
cryptographers. As long as commercial programs make do with simple XOR
(i.e., the bitwise Vigenère method) or strapped-down Enigma machines, this
impression is true. But there are much better encryption methods, and their best-
known representative is the DES algorithm discussed in this chapter. Modern
algorithms and implementations should be resistant to ciphering errors like
those shown in Figure 3.1. At least plaintext attacks shouldn’t have a chance.

Cryptanalyzing the methods discussed from this chapter onwards by use of a
freely available program will be an absolute exception.

Discussions about security are always somewhat speculative; some methods
can be judged only intuitively. The reason is the nature of the matter, and
what’s more, we only know about the results of public cryptological research.

Historically, we will jump from the end of World War II to the mid-1970s,
when the emerging computer technology required good encryption algorithms
and cryptology had to come out of its dark corner. It was the beginning of public
research in this field. You will have a pretty good grasp of the significance of
this change once you’ve read Section 4.3.1.

First, however, we need to define a few basic terms.

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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4.1 Basic Terms

4.1.1 Bitwise Processing

The methods discussed so far were character-oriented, with the exception of the
simple XOR ciphering, which we discussed together with the classic Vigenère
method, since it is analogous to this method. When computers are available as
ciphering machines, it is no longer meaningful to limit ourselves to bytewise
encryption. Computers work with bits, bytes, and words (i.e., groups of bytes).
It is much better to work with bits for statistical reasons alone: we know that
‘e’ is the most frequent character in the English and German languages. But is
there also some usable evidence about the distribution of bit 3 of all bytes in
a text?

However, the particularities of a text won’t be lost when decomposing it into
single bits. Think only of the headers in WordPerfect files, where many zero
bytes occur successively. This fact alone could be fateful for a weak method.

4.1.2 Confusion and Diffusion

C. E. Shannon, the ‘father of information theory’, published two basic encryp-
tion principles back in 1949: confusion and diffusion. Confusion refers to
covering up the relationship between the characters in the plaintext and in
the ciphertext. Diffusion refers to distributing the information contained in the
plaintext across the ciphertext. We can use the methods discussed so far to
easily explain these two terms.

Both the Caesar cipher and the simple substitution are methods that use con-
fusion. The relationship between a single ciphertext character and the corre-
sponding plaintext character is intentionally blurred; it should be recoverable
only by means of a key. Polyalphabetic methods, such as the Vigenère cipher
or the Enigma, are other methods that work with confusion only, but the kind
of ‘blurring’ additionally depends on the position in the text.

The fcrypt program discussed in Section 3.7 is a good example of diffusion. In
this case, every ciphertext character depends on 256 − 31 = 225 other plaintext
characters, and it is impossible to identify these characters. This ‘smudging’
of information is the basic idea behind fcrypt. In addition, it uses confusion,
namely when adding a secret key or XORing with a secret key. It wasn’t pure



4.1. Basic Terms 125

chance that we had to fall back on the help of a new cryptanalytic method with
fcrypt, and that linking diffusion and confusion prevented a plaintext attack
(requiring a chosen-plaintext attack instead). Diffusion is the acting principle
of transposition, which becomes easily attackable by differential cryptanaly-
sis only.

A stronger term for smudging than described by diffusion is the avalanche
effect for block ciphers (see also the following section): every bit of the cipher-
text block should depend on every bit of the plaintext block and every bit of
the key. The avalanche effect of fcrypt is insufficient: with a fixed key, only
some ciphertext characters (i.e., ciphertext bits) depend on a changed plaintext
bit. We will use this as a good peg for differential cryptanalysis.

A good block algorithm demands even more: if somebody swaps some plain-
text bit or key bit, then every ciphertext bit should change with a proba-
bility of exactly 50 %. Differential cryptanalysis exploits any deviation from
this value.

Diffusion:
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Plaintext information is distributed
across the ciphertext; this is “horizontal
blurring”.
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is “vertical blurring”.
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Figure 4.1: Confusion and diffusion.
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4.1.3 Stream Ciphers and Block Ciphers

Most current methods work by either one of these two principles:

• Depending on some key, a ‘wild’ bit sequence is created and normally
used as a one-time pad, i.e., it is XORed with the plaintext. The method’s
entire security lies in creating the bit sequence. For one thing, it has
to behave statistically perfectly; second, it must never be possible to
recover the entire sequence and certainly not the key from parts of it,
or it would be vulnerable to plaintext attacks. These methods are called
stream ciphers. As the name implies, they are well suited for online
encryption of message channels. The one-time pad can even be computed
in advance, if need be, to speed up the ciphering process in the event of
message bursts.

A stream cipher is also suitable for encrypting entire hard disks; more
about this in Section 7.4. Thanks to the XOR method, the same program
or device can be used both for decryption and encryption. This is another
aspect that gives XOR an advantage over other methods, such as bytewise
addition. RC4, A5, and SEAL are good examples of stream ciphers; see
also Chapter 5.

• A method working by the second principle groups bits and encrypts them
jointly as a group. This is called a block cipher, and used by methods like
simple character substitutions, for example: they work with 8-bit blocks.
Polyalphabetic methods use larger blocks (according to the period length).
My fcrypt program (Section 3.7) works with 256-byte blocks. In general,
the bits of a block are linked in a complicated way, as we will see in our
discussion of the DES algorithm.

In fact, the best-known and most secure algorithms are block ciphers. They
have several advantages over stream ciphers:

• Confusion and diffusion can be combined, while stream ciphers normally
use confusion only. So block ciphers can be more secure.

• They must never reuse a key bit sequence (see Section 5.1.1; OFB Mode).

• Block ciphers can be faster than stream ciphers.

You will find more information on how block ciphers are implemented in
Section 5.1. Examples are DES, IDEA, RC5, and AES.
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Figure 4.2: Block ciphers and stream ciphers.

Stream ciphers and block ciphers are also told apart by their purposes of use,
which are not strictly defined. You can actually use a block cipher similarly to
a stream cipher (e.g., in OFB mode; see Section 5.1.1).

We will look only at block algorithms in the following discussion.

4.1.4 Product Algorithms

Most modern block ciphers are product algorithms: simple, cryptologically
relatively insecure steps are made one after the other. Such a step is called a
round. You’ve already come across a seven-round product method. To really
confuse you I’ll describe it like this:

• The first round is a polyalphabetic substitution with period 26. A fixed
substitution scheme is rotated cyclically by 1 in each position of the
period, which results in 26 substitutions.

• The second round is similar, except 26 substitutions follow one another
(and are rotated only then), which results in a period length of 262 = 676.
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• The third round has an analogous period of 263 = 17 576; 676 identical
substitutions follow one another.

• The fourth round is a fixed substitution.

• The fifth round is the reversion of the third round, the sixth round is the
reversion of the second round, and the seventh that of the first.

• Moreover, character pairs are flipped before the first round and after the
seventh round, which corresponds to a particularly simple transposition.
(More specifically, we have nine rounds here.)

You recognize the method? Right, it’s the Enigma. You already know that
the Enigma is more secure than any substitution. The third round by itself
is statistically easy to break: we look only at 676 identical substitutions and
derive the other rotor positions from them. But exactly because this third round
is combined with the other rounds, the method obtains the large period length
of 17 576, which is so critical for its security.

So, cleverly combining simple methods increases the security dramatically.
That’s similar to solving equations:

• Linear equations in the form ax + b = c are trivially solvable.

• To solve quadratic equations, we know the formula from school.

• To solve cubic equations, things are getting a bit more complex: we need
several formulas with some kind of case differentiation.

• The solution formulas for fourth-order equations are pretty complex, but
still solvable.

• In contrast, it has been proven that there is no generalized solution
formula (except perhaps using fundamental operations and roots) for fifth-
order equations and higher. This is a quality leap. Of course, there are
still solution formulas for special fifth-order equations, and it should also
be possible to write the general solution in closed form if you also use
special, novel functions.

These statements are easily transferable to the cryptanalysis of product algo-
rithms: product formation does not always increase the security; on the other
hand, there appear to be ‘sound barriers’. For example, the most effective crypt-
analyses against the DES algorithm get stuck after eight rounds when things
get much harder.
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Nobody can prove when and why this is so; all there is are indications (for
example, making differential cryptanalysis harder; see Section 4.4.2). Using
product formation can sometimes even lead to the opposite. We will discuss
an interesting example in the next section.

4.1.5 The Image Is Gone, But We Still See It

The following example of a repeated image transformation was taken from
[Crutch]. I wrote an identical program; it is included on our Web site (it’s
a program called book/trans/trans.c; see Appendix A.1) so that UNIX users
can experience the same surprise on the screen I had. The program vividly
demonstrates the effects of a product algorithm, and how one can get lulled
into a false sense of security.

For the sake of simplicity, we take any square image (rectangular formats would
also do the job, but they are more clumsy to handle). We take the image and do
a simple transformation: the image is right-rotated by 90 degrees and distorted,
as shown in Figure 4.3. We cut off the two protruding ends and paste them as
follows.

We repeat this transformation until the image appears gray. I used the ‘Escher
knot’ included as bitmap in the X Window system and changed it to 216 × 216
format. You can see the first few transformations in Figure 4.4.

The image will never turn uniformly gray, but it looks well mixed. Let’s con-
tinue following up on the image series. We will see blurred rings that will
disappear again after 24 rounds. Such diffuse appearances alternate with the

Figure 4.3: A simple image transformation.
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Figure 4.4: Transformation from Figure 4.3, applied to the Escher knot.
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Figure 4.5: The transformation apparently produces the original image after
72 rounds.

‘chaos’ cyclically. However, you will see a clear structure again after 64 rounds,
which becomes gradually clearer to eventually peak in the original image after
72 iterations to our surprise (Figure 4.5).

How is this possible? A closer look at this method reveals that there should
actually be chaos—a totally mixed-up image—after 72 rounds. Well, almost
totally mixed—except for a raster with 216 × 216 dots, on which the origi-
nal image forms again! Mathematically, the image is gray almost everywhere,
except in the raster dots, and exactly these dots are represented on the screen.
The image is no longer there, but we still see it!

Only thanks to the special property of the human brain to be able to construct
an image from adjacent dots can we recognize the risk that could arise out of
the use of this type of encryption mechanism. If we had transformed the bits of
a text, we would have been deceived by an illusion. When bits within a close
neighborhood are strongly correlated (i.e., when only very few randomly depend
on one another), then it might be possible to reconstruct the original text . . .
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Of course, this is a malicious, fabricated example. Still, we should bear it in
mind. Product algorithms can have excellent properties, but they have to be
studied as critically as all others. Mixing things or creating plain ‘chaos’ is
never a guarantee for security.

4.2 Feistel Networks

Many of the product algorithms currently used are so-called Feistel networks.
They were described by Horst Feistel (IBM) and first published in the 1970s
[Feistel]. The underlying principle is rather simple, only you don’t initially see
how it could be useful.

We split each block into two equal halves and denote the left half of the block
as Li and the right half as Ri in the ith round. Depending on a secret key, S,
we can compute a function, fS,i , that converts half blocks to half blocks. The
actual encryption consists in that we swap the two half blocks, and XOR Li

and fS,i(Ri):

Li + 1 = Ri

Ri + 1 = Li ⊕ fS,i(Ri)(1)

This is graphically represented in Figure 4.6.

plaintext block

Li Ri

Li+1 Ri+1

f round’s key

ciphertext block

Figure 4.6: A round in a Feistel network.
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Why is this principle so useful? Because if you know function fS,i for all i,
you can decrypt! The reason is that you get the following from (1):

Li = Li ⊕ fS,i(Ri) ⊕ fS,i(Ri) = Ri + 1 ⊕ fS,i(Ri)

And from this, you can already derive the decryption for an n-round method:

Rn − 1 = Ln

Ln − 1 = Rn ⊕ fS,n − 1(Rn − 1)
...
R0 = L1

L0 = R1 ⊕ fS,0(R0)

This means that the fS,i functions don’t have to be reversible. To design encryp-
tion algorithms, we had to ensure that the key-dependent mapping, fS , in

ciphertext = fS(plaintext)

was reversible only by somebody who had key S. With the method discussed
here, we only need to ensure that none of the fS,i functions can be computed
without knowing S. This is a much simpler task; we can build ‘wild’ functions.

Of course, cryptanalysis has adjusted itself to this. But more about this later.
Examples of Feistel networks are DES, FEAL, and Blowfish.

4.3 The DES Method

The Data Encryption Standard (DES) is probably the best analyzed crypto-
graphic method. We owe many modern design principles and modern crypt-
analysis to this algorithm.

Although the suspicion that the NSA might have built a backdoor into DES
has never been cleared up, no practically usable vulnerability has been found
in it until today to my knowledge. The insecurity of DES is due to the fact that
brute-force attacks are technically possible nowadays.

Since DES has played a major role in history and still does today, we will have
a closer look at this algorithm.
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4.3.1 A Difficult Labor

In 1973, when it identified a need for a governmental standard to encrypt
sensitive information, the National Bureau of Standards (NBS; now named
NIST—National Institute of Standards and Technology) publicly solicited pro-
posals for a secure cipher. Due to the development and proliferation of computer
technology and communication, a generally accessible and secure method was
needed. Though the response to this request showed a strong interest in such
a standard, none of the submissions turned out to be suitable [SchnCr, 12.1]!
This shows very impressively how much cryptology was an occult science
back then.

When a second request was issued in 1974, an IBM workgroup including Horst
Feistel (mentioned in Section 4.2) and the famous cryptanalyst Don Copper-
smith, submitted a candidate that was deemed acceptable. It was a cipher based
on the Lucifer project conducted by IBM, after which at least one algorithm
was named.

Supposedly short of expert knowledge, the NBS involved the NSA in evaluating
the security of the algorithm. This involvement—so it was feared—wasn’t
limited to evaluating the proposed standard. The suspicion was that the NSA
had shortened the key length from 128 bits, as suggested by IBM, to 56 bits.
IBM developers Tuchman and Meyer said that the NSA had not changed a
single bit in DES. But Coppersmith commented that the so-called S-boxes (see
Section 4.3.2) were all different when they came back from the NSA. This can
be interpreted in two ways: either the NSA built a backdoor into DES, or they
wanted to prevent IBM from building in a backdoor themselves.

In any event, the design criteria of the S-boxes—the security-relevant part
of DES—remained hidden. That gave rise to suspicion, of course. Tuchman
(who claimed the NSA had changed nothing) commented that these criteria had
been kept secret on NSA’s request since members of the IBM team ‘. . . had
unknowingly rediscovered some of the best-guarded secrets their own [NSA’s]
algorithms were based on’ [SchnCr, 12.3].

In 1978, a committee that had access to publicly inaccessible documents inves-
tigated the matter and found that DES was completely safe and free from
weaknesses. However, the specific findings underlying this judgment remained
secret.

DES was approved as an official encryption standard at the end of 1976. The
method was authorized for use on ‘unclassified’ data rather than for the pro-
tection of highly confidential information. Of course, this gave rise to doubts
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again, but it could have been just a formality—the reason for this restriction
might have been its disclosure rather than DES itself.

It is also possible that DES is really very secure, and that it was published
only due to misunderstandings between the NBS and the NSA, and the NSA
had assumed that DES would be implemented in hardware only. Two reasons
speak in favor of this assumption:

• DES was the first algorithm studied by the NSA that became pub-
licly known. The next NSA standard algorithm—Skipjack (see Section
5.7.5)—typically remained secret for many years.

• The design criteria of the S-boxes were published after Biham and Shamir
discovered the differential cryptanalysis in 1990. You can read about it in
[SchnCr, 12.5]. The S-boxes obviously guarantee maximum resistance to
differential cryptanalysis. This is no coincidence, since IBM and the NSA
already knew this attack when DES had been in the design phase. Cop-
persmith wrote in 1992 that differential cryptanalysis would have become
known as early as in 1977 had the said criteria been disclosed, and nei-
ther IBM nor the NSA wanted this to happen. After the design criteria
were published, Shamir asked Coppersmith to admit that there were no
attacks more effective against DES to his knowledge. Coppersmith didn’t
comment. Schneier [SchnCr, 12.4] states ‘personal communication’ as
his source.

You can see that much remains in the realm of speculation. But there is
one obvious fact: since the NSA had been aware of differential cryptanalysis
long before DES was designed, by their own statements, it can be reasonably
assumed that the NSA was at least 20 years in the lead of public cryptological
research in this field. That was back then—it is likely to be much less today.

4.3.2 The Algorithm

We will discuss the DES method here only to the extent required to better
understand it. If you are interested in the specific design of the S-boxes, you’ll
find all details in [SchnCr, 12.2], or visit the Web site—you will find two DES
implementations.

The following characteristics show that DES is a product algorithm, especially
a Feistel network:

• It uses a 56-bit key
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• to transform 64 bits of plaintext blockwise into 64 bits of ciphertext, and
vice versa,

• which is done in 16 key-dependent rounds, where

• a fixed, bitwise transposition (i.e., permutation) is done before the first
round and after the last round. The final permutation is the reversion of
the first one.

You know from Section 4.2 that the blocks in a Feistel network are split into
equally large left and right halves, and that each round has the following form:

Li + 1 = Ri

Ri + 1 = Li ⊕ fS,i(Ri)

So DES looks roughly as shown in Figure 4.7.

How is the round- and key-dependent function, f , structured in DES?

• First, the 56-bit key is modified depending on the round, and 48 bits are
selected.

EP

AP

ciphertext

plaintext

S1

key

S2

S15

S16

16 Feistel rounds

fixed input permutation

fixed output permutation

Figure 4.7: Rough scheme of DES.
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• Next, the right block half, Ri , is expanded from 32 to 48 bits.

• The two 48-bit sequences are XORed.

• Eight so-called S-boxes are used to transform the result into a 32-bit
sequence. (An S-box is a table with 4 rows and 16 columns.)

• The 32-bit sequence is permuted, i.e., its sequence is modified. This
transformation is described by the P-box. (A P-box is simply a certain
arrangement of the numbers 1 through 32.)

All that remains to be done is to take the 32-bit block created and XOR it
with the left block half, Li , to produce the right block half for the new round.
Decryption works as in any Feistel network—similarly to encryption, except
with the round keys in reverse order.

We will look at a few details in the following sections.

Input and Output Permutation

The permutations before the first round and after the last round serve no security
purpose. Their use is probably due to the hardware because, in the mid-1970s,
it wasn’t easy to load 64-bit data into a register. Even 16-bit microprocessors
weren’t around.

Key Transformation

Before each round, we decompose the 56-bit key into two 28-bit halves and
rotate each half by 1 bit or 2 bits, depending on the round number. ‘Rotating’
by 2 bits means that all bits walk two places to the left, while the two bits
pushed out march back in to the two places on the right. Subsequently, we put
the two halves together again to make a 56-bit key.

Based on a fixed scheme, we select 48 bits out of the 56 bits and permute them
concurrently, i.e., we modify their arrangement. Since this process reduces the
number of bits, it is called compression permutation.

On account of this (rigid) key transformation, different key bits are used in
each round; every bit is used in about 14 rounds, but not distributed equally
(which could be exploited in a special attack referred to as related-key crypt-
analysis—see Section 4.4.3).

The Half-Block Expansion

A fixed transformation is used to expand the 32 bits of block half Ri to a
48-bit block. Some input bits occur twice in the output (every fourth bit and
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Figure 4.8: Expansion permutation in DES rounds.

the following). This is also a rigid transformation and, analogous to the above
transformation, is called expansion permutation.

The cryptological background of the expansion permutation is the avalanche
effect mentioned earlier: every changed key or plaintext bit should influence
all ciphertext bits after as few rounds as possible. For this reason, it is better to
reduce the key to 48 bits and expand half the block, rather than XORing half
the block right way with a key reduced to 32 bits.

The expansion permutation is shown in Figure 4.8. We will look at it again in
Section 4.4.2.

The S-Boxes

The result achieved from the last XOR operation is a 48-bit block. We take these
48 bits and divide them into eight groups of 6 bits each; then we transform each
group using another S-box (short for ‘substitution box’). These eight S-boxes
represent the most critical part of DES. Each S-box is a table consisting of 4
rows and 16 columns, and it converts 6 input bits into 4 output bits. You can
see an example of such an S-box in Figure 4.9.

We use this table as follows: if the input consists of six bits, b1, . . . , b6, then
the number determined from b1 and b6 (2 bits = 4 values) denotes the table
row, while the number determined from the four remaining bits (b2b3b4b5)

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Figure 4.9: S-box number 5 of DES.
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Figure 4.10: A DES round; the numbers to the right of the boxes denote the
width in bits.

denotes the table column. The number in the corresponding row and column
is the output value. You can see that 4 bits are sufficient for the output: the
largest table entry is 15.

Figure 4.10 shows a schematic representation of a DES round.

Design Features of the Algorithm

If you think that the DES algorithm is rather complicated you are right, but it is
extremely hardware-friendly: no step involved does additions or multiplications,
everything is limited to bitwise shifts, fixed permutations (that are easy to
implement in hardware), and XOR operations. There is a system behind the
complexity:

• The expansion permutation and the P-box are responsible for diffusion
(more specifically, for the avalanche effect).

• In addition, the P-boxes ensure that a plaintext bit traverses another S-box
in each round on ‘its way through the algorithm’.
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• The S-boxes introduce non-linearity and resistance to differential crypt-
analysis (see Sections 4.4.2 and 4.4.4).

• As the round keys are created, the rotation and the compression permu-
tation ensure that any change to a key bit can influence all ciphertext bits
after only a few rounds.

• As mentioned above, the input and output permutations are probably
due to the hardware design; they are meaningless from the cryptology
viewpoint.

You may reasonably assume that each detail of DES has its reason. Talented
cryptologists have cut their teeth over it. For one thing, it is very difficult
to design S-boxes such that the algorithm created is cryptologically secure.
Rumors have it that when designing DES the developers put their computers
to work on good S-boxes for months.

To an outsider who doesn’t know the theory behind them, the S-boxes may
seem to be merely an ‘arbitrary’ collection of numbers. No wonder many users
were extremely doubtful about DES and suspected a backdoor. There might
be one, or there might not. We’ll be smarter in fifty years from now when the
secret documents will likely have become accessible.

4.4 How Secure is DES?

We know that there is no exhaustive, officially known answer to this question.
Only the types of attacks against DES are known:

• brute-force,

• differential, and

• linear cryptanalysis.

We will discuss all three types below and, on this occasion, learn a new crypt-
analytic method.

4.4.1 Brute-Force Attack and the ‘Deep Crack’ Computer

The only practicable attack against DES is brute force, i.e., trying all 256 pos-
sible keys. This is a huge number: the ciphertext has to be decrypted and
tested for about 72 000 000 000 000 000 or 72 quadrillion keys to produce some
meaningful plaintext.
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A large number of estimates can be found in the literature as to which computers
would be busy for how long and, mainly, how much a special computer that
could handle this task within meaningful time would cost. In 1993, for example,
the price of a machine used for a 3.5-hour brute-force attack was estimated to
be one million dollars [SchnCr, 1.27; GarPGP, Chapter 3, ‘DES Cracking’]. Of
course, this estimate is old hat: a mention at EUROCRYPT ’98 reduced this
hypothetical time to half an hour (at the same price). A 40-bit DES key could
be found in 50 ms.

The RSA Challenge

Since nobody built such a machine, people fell back on available resources,
namely idle times of computers on the Internet. To this end, RSA Data Security,
Inc. started an initiative called RSA Challenge, where a brute-force attack was
distributed over innumerable computers. When a DES key was found (the
search took from January to June 1997), RSA started a second initiative, which
was successful in February 1998 after only 39 days. In this initiative, about
22 000 users all over the world had put to work more than 50 000 processors
(CPUs) for this task, and tried 85 % of all possible keys before the correct one
came up. You can find all the details on the RSA Web site at www.rsa.com.

‘What’s all this good for?’, you might ask. Brute force is nothing to write
home about these days, and all this computer capacity wasted! Not really, for
the following reasons:

• First, computers worked at this task only when they were not busy oth-
erwise so that no valuable computation time was wasted. (In fact, most
computers are jobless during the largest part of their lives.)

• Second, the initiative gained valuable experience with distributed pro-
cessing in large projects.

• Third and most importantly, the initiative was able to demonstrate to
outsiders, too, that DES is no longer as secure as its supporters claim.
This, in turn, had an immediate impact on the US export policies for
cryptographic products so that eventually all of us profited.

The initiative’s first impact, however, looked more like a backfire: in February
1998, an expert declared before US Congress that, while this RSA Challenge
was an impressive proof of how secure DES really was, it also showed that
this approach was inappropriate for practical, unnoticed cryptanalysis. All this
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whereas the initiative’s purpose was to show that a DES cracking machine
could be built at all if only one had enough financial means.

How Deep Crack Was Born

The Electronic Frontier Foundation (EFF; www.eff.org) put an end to all
speculation and doubts about potential DES cracking machines when it built
such a machine. And not only that: the organization published a book [EFF] that
describes how it’s built, disclosing the chip design and the firmware, printing
the listings in scanner-friendly layout, and on top of it all, writing ‘Scan This
Book!’ on the cover (the paper version had its reason in a loophole in the
US laws, prohibiting the export over the Internet and on electronic media, but
leaving out print media). No doubt this book had been intended to move things,
and it really did.

In view of the hardware friendliness of DES, it came as no surprise to experts
that such a machine could be built, but the implementation of the idea called
Deep Crack is interesting nevertheless.

The actual surprise was how inexpensively such a machine could be built:
a team of about ten people worked on it for little over 18 months, and not
even full-time. The required control software came from voluntary work in
less than three weeks. Altogether, the costs for design and testing were roughly
80 000 dollars, and 130 000 dollars were spent on material. The ‘total price’
of the project is usually stated to amount to 250 000 dollars. Series produc-
tion of the machine would naturally be much cheaper. Advanced Wireless
Technologies (AWT), the developers of the special chips, have started offering
the machine for sale. Much faster special computers are no utopia either. An
article in the magazine Information Week [InfWeekDES] assumes somewhat
higher costs and estimates a write-off time of three years for the computer.
With the one-million-dollar machine mentioned above (which could find a
key within half an hour), the costs would be approximately 20 dollars per
DES key. In other words, this could mean, for example, that the DES encryp-
tion of an email (for instance using PEM in the current form, which is the
PGP counterpart) would be worthwhile if the message were worth 20 dol-
lars at most. But such values are usually underestimated. Cruel irony: the
very same magazine had offered free annual subscription (worth 150 dol-
lars) over a lengthy period of time to people who’d fill out a ‘harmless’
questionnaire. So much for how much people are really willing to pay for
information.
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The Innards of Deep Crack

What do the parameters of the machine look like? Its core is a 40-MHz special
chip with 24 independent search units, each of which manages one DES decryp-
tion within 16 clock pulses. Sixty-four such chips are housed on one board.
There are 12 such boards, plugged into scrapped Sun 4/470 computer boxes,
and two such computers work in parallel. This results in a search speed of
approximately 90 billion keys per second, i.e., roughly 2.5 times faster than the
entire free capacity on the Internet that had been deployed for the RSA Chal-
lenge! Each chip tests concurrently for certain criteria to find whether or not
the plaintext created is meaningful, and stops when hitting a success. A control
computer running Linux or Windows95 is responsible for further evaluation,
and continues the search, if need be. The average search time is 4.5 days.

Of particular interest is the test on plaintext, i.e., whether or not a tested key is
the correct one. The hardware doesn’t find the correct key itself; it rather tests,
for example, to see whether the plaintext created consists only of characters
from a certain subset, for instance ASCII characters. If this is true, then a
second ciphertext block (consisting of 8 bytes) is decrypted instantly, and the
test is repeated. If this test is positive, too, then the search unit stops and
informs the controlling PC which, in turn, takes over and runs further analyses.
This means that the hardware is not responsible for finding the correct key, but
for singling out as many ‘bad’ keys as possible! As a sideline, the machine
also works with texts encrypted in CBC mode (see Section 5.1.1). Remember
this ‘gradual filtering’ of a data stream. National intelligence organizations also
work by this principle. We will get back to this issue in Chapter 8.

Meanwhile, there is at least one official successor: Copacobana (www.
copacobana.org), which stands for ‘Cost-Optimized Parallel Code Breaker’,
is a machine with an FPGA basis developed jointly by the universities at Kiel
and Cologne, Germany. You can buy it for 8980 euros (probably not in the
supermarket though). It can handle about 48 billion DES ciphers per second,
while consuming only 600 watts. This means that searching the full key space
would take about nine days. It can also be used to break other block ciphers
programmed in FPGA.

Other Considerations

It may be reasonably expected that DES cryptanalysis will be offered as a
service unofficially. So you’ll have to strike out the sentence that can still be
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Figure 4.11: The Copacobana DES cracking machine (from www.
copacobana.org, Gallery, with the courtesy of the authors).

read quite often: DES is not secure against national intelligence agencies and
large organizations. I tend to rewrite this sentence to read:

Don’t use DES for encryption if a party interested in the plaintext would be
willing to pay a three-figure or four-figure sum. (The money amounts estimated
really include all ‘expenses’; otherwise we would have to speak of a two-figure
sum.)

Nobody doubts that the key length of 56 bits instead of 128 bits came about at
the request of the NSA. We can guess why. However, this corresponded to the
situation in place 20 years ago! There is much speculation as to whether and
how the NSA cracks DES. Rumors have it that the NSA disposes of devices
the size of small suitcases that handle such tasks in a matter of seconds.

Alternative Methods

With everything said above, we could actually shelve the ‘DES cryptanalysis’
topic. A real vulnerability hasn’t been found to this day; all that remains is
brute force, and this is something that can be done today. All other attempts
at breaking DES merely promoted the theory, and were practically unusable.
But the theory is decisive in evaluating new algorithms with slightly larger key
lengths, where brute force won’t do the trick. For this reason, we’ll stay with
this topic a bit longer.

For example, it would be possible to use very large optical memories with
values computed in advance. In the ‘simplest’ case, an attacker would have to



4.4. How Secure is DES? 145

determine and store all 72 quadrillion ciphertext blocks that can be formed by
encrypting a frequent plaintext block. Such a plaintext block could contain eight
zero bytes, for example (they certainly occur often enough, e.g., in WordPer-
fect; see Section 3.5). In this case, the plaintext block assumes the role of the
probable word we know from earlier sections. This would be less simple tech-
nically: since the ciphertext blocks are 8 bytes long, we need about 850 million
CDs to store them. When using 100-GB magnetic tapes, there would ‘only’ be
about five million tapes. The media required can be further reduced when using
new (e.g., holographic) methods. But things can be done far more thriftily.

Time–Memory Tradeoff

This is a brute-force method developed by Hellman in 1980 [Hell.troff; Denn83,
2.6.3] with a rather complicated name: it means that we aim at achieving
a tradeoff between time and memory. This method is not limited to DES;
it can be applied to any encryption method. This means that it is a general
cryptanalytic method.

The time–memory tradeoff is a refinement of the plaintext attack mentioned
earlier. The trick is to store just a small part of the possible ciphertexts of
a frequent plaintext rather than all of them. The rest is computed during the
analysis. In detail, this looks as follows:

Assume we have a frequent plaintext block, P , the corresponding ciphertext,
C, and some (very easy to compute) function, R, which maps the 64-bit blocks
to 56-bit blocks. For example, R can be a rule which says that the most signif-
icant bits should be truncated from the 8 bytes that form the 64-bit block. The
following function is then defined for each 56-bit key, S:

f(S) = R(ES(P))

where ES(P ) is the encryption of P with key S (E = encryption). We look for
all keys, S, in such a way that

f(S) = R(C)

Such an S can already be the key searched, but not necessarily, since eight bits
are not tested. To search for this S, we randomly select m keys, S1, . . . , Sm,
and compute the following table with t columns and m rows for a given
width, t :
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S1 f(S1) f2(S1) = f(f(S1)) ... ft(S1)

...
Sm f(Sm) f2(Sm) = f(f(Sm)) ... ft(Sm)

This means that each element comes into being by removing eight bits from
an encryption of the fixed plaintext, P , and serves as key for the element to
the right of it. But we discard all intermediate results and store only the first
and last columns.

Next, we look for our ciphertext, R(C), reduced to 56 bits, in the right-hand
column. If we find it there in row k, then R(C) came into being by the encryp-
tion of P (and subsequent reduction, R), together with the key located in row k

of the table, column t − 1. That’s how we built the table in the first place. We
can compute this key, since we had also stored Sk; we ‘only’ have to transform
it (t − 1) times by using function f .

If we don’t find R(C) in the last column, we might find it in the last column
but one. If R(C) is there, then f (R(C)) should occur in the last column of the
table. So, let’s look for f (R(C)) in the last column. Now we can understand
why we built the table in exactly this way. Our approach is then relatively easy
in theory:

• Compute the table and store only the first and last columns.

• Search for R(C) in the last column.

• If not found, search for f (R(C)) in the last column.

• If not found there either, search for f (f (R(C)) in the last column.

• . . .

• If found, compute the table element in the same row, but one column
earlier.

The method doesn’t necessarily lead to the goal, but it’s very likely that it does.
It ranges roughly in the middle between the usual brute-force attack (which tests
all possible keys) and the dictionary attack (which tests only probable keys).
In practice, we would create many tables in parallel (since the left columns
are random) and select the m and t values such that the probability of being
successful is sufficiently large, despite potential ‘false alarms’: after all, we test
only 56 out of 64 bits for a match with the ciphertext block. The method can
be made faster; see [Denn83, 2.6.3].
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We can see that, depending on what we select for m, t , and the number of
tables, we can decide ourselves what we want to focus on: if we have plenty of
storage available, we can select large m and number of tables; if our computer
is very fast, we can work with large t ; hence the name of the method.

Hellman suggested one million tables with 100 000 rows each computed in par-
allel and one million rounds per row (which could cover a maximum of 1017

or 100 quadrillion possible values—the key space has ‘only’ 72 quadrillion
entries). All tables together would require a storage space of roughly one Tbyte
(terabyte, corresponds to one trillion bytes, or one million Mbytes)—no prob-
lem considering the size of current jukeboxes. We would need a 1-Gbit memory,
i.e., 125 Mbytes. All PCs will have this capacity before long. Moreover, we
would have to deploy 10 000 DES chips. That’s a bit harder. In 1980, Hellman
estimated 4 µs as the time required per encryption for one DES chip. That
would have resulted in a computation time of well over a year.

Of course, current chips are much faster. The VM007 chip produced by VLSI
Technology in 1993 can handle 25 million encryptions per second (that’s an
improvement by a factor of 100 compared with 1980—when using a 32-MHz
clock frequency—and by a factor of 10 compared with the Deep Crack chips).
With a tenfold use of such DES chips (i.e., 100 000 units), the time–memory
tradeoff could be done in half a workday. The time required for one-time table
computation is twice that amount.

The encryption modes we will discuss in Section 5.1.1 allow us to push up the
cost of this attack:

• The time remains the same when using the ECB mode and a known
plaintext. The table can be computed once and for all, i.e., this time is
negligible.

• In CBC mode, though the plaintext is known, it has to be deemed to be
random. A new table has to be created for every attack so that the time
involved triples.

• Things are similar with the CFB and OFB modes. However, we need to
know two consecutive pairs of ciphertext blocks and plaintext blocks.

The purpose of the time–memory tradeoff is, however, to compute the table
once (at high cost) for a specific plaintext block and then try to find the key in
routine operations relatively quickly. In this constellation, encryption in CBC
mode would be hindering.
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My considerations about the computing time may even be underestimated. Who
do you think can listen in on your DES code?

Visual Cryptanalysis

The heading of this section is the title of a paper published by the well-known
cryptanalyst Adi Shamir, who introduced it at EUROCRYPT ‘98 [Shamvis].
The simplified basic statement might initially seem spooky: throw away all
computer technology and buy yourself a high-resolution black-and-white neg-
ative film for aerial photographs, a photographic developer, and a black-color
spray can. How on earth would anybody be able to run a cryptanalysis with
that sort of material?

Photographic films are suitable for parallel processing. Though the development
of a film takes ages compared with electronic bit processing, the film contains
a very large number of bits. We divide the film’s image field into as small areas
as possible, which we will call ‘dots’ for the sake of simplicity. A black dot
corresponds to value 1, a non-black dot to value 0. We use this mask to expose
a second film, and the inverse bit pattern will form once we’ve developed this
film—where there was a 1, there’s a 0 now, and vice versa. Logically, we have
executed a NOT operation, but processed all ‘film bits’ in parallel.

In contrast, if we superimpose two or more films so they are exactly congruent,
and use this bunch to expose another film, then a dot on this (bottom) film will
turn black, provided there are only non-black dots on top of it. This corre-
sponds to the NOR operation, written as ∼(a|b) expression in C. If we expose
consecutively rather than concurrently, we do a NAND operation: ∼(a&b).

Yes, we could even do a XOR operation by utilizing the solarization effect.
This effect says that, when exposing the negative for too long, it will no longer
be blackened, but remain white after the development. To do a XOR operation,
we prepare two films with dark gray instead of black dots and expose them long
enough so that solarization occurs in the transparent places. In contrast, if there
is only one gray dot on top, there is still blackening, while there will be almost
no blackening in two superimposed gray dots. We may have to additionally use
a photographic reducer; amateur photographers who develop their films them-
selves know such tricks. (This method was not described in the original paper.)

To make a long story short: we can use this method to ‘compute’ very com-
plex logical expressions. Though the process is slow, we actually process an
extraordinarily large amount of bits in each step. The hardware friendliness
of DES is vulnerable to this algorithm. If we accommodate all possible keys
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on 64 sufficiently big films—one film for each bit position—we can create
all possible ciphertexts from a known plaintext in many—but a finite number
of—steps, again distributed across 64 films, i.e., one film for each bit position.
We link these bit levels photographically such that a 0-bit can be only where
the eavesdropped ciphertext was created. The position of this (theoretically)
single ‘light spot’ reveals the DES key.

What do we need the spray can for? Well, we can use it to create random
bits: we simply spray color on a film substrate such that about 50 % of the
dots appear black. We can use the result to generate the 64 bit levels of all
possible keys.

This is just a very simplified description of the method. Interested readers will
find the details on our Web site or in the Proceedings of EUROCRYPT ’98.
However, knowledgeable people will already have identified several technical
problems:

• Shamir assumes a technically feasible storage density of about one billion
bits per square inch. This means that one bit would have an expansion
of 1 µm, i.e., we’d need clean-room conditions for film processing.

• People knowledgeable about chip production processes know of the prob-
lems involved in trying to exactly adjust the films, mainly because of their
deformation (due to humidity, temperature, and inhomogeneity). This
means that we’d have to work with much smaller sections and many
adjustment marks and many single steps per exposure.

• Superimposing the films so they can act as exposure masks isn’t as easy
as it may sound: the light source has to supply parallel beams, and the
light diffusion has to remain very small. Interference effects must be
expected.

• Photographic layers are not homogeneous; instead, they can have ‘holes’
(small areas without light-sensitive particles).

• The spraying process works (if at all) only provided the drops are not
electrically charged; otherwise, there will be a minimum distance between
drops.

It appears more realistic to use small squares with an edge length of 5 to
10 µm. Also, it is by no means clear whether or not the financial cost for a
visual cryptanalysis will remain within the acceptable range at a reasonable
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execution time. Shamir himself thinks that visual cryptanalysis could be most
effective when combined with suitable computer technology. Still, I felt the
basic idea behind his method was so original that I shouldn’t withhold it from
you, just to show how many faces cryptanalysis can have. We will come across
more surprising methods further on in this book.

As a sideline, you will find a remarkable note about a press release by CRAY of
March 7, 1995 in the literature referenced above. The report praises the special
production of a massive parallel bit-slice computer named CRAY-3/SSS—a
joint development by CRAY and the NSA. This computer can compute one
million bits in parallel, thus achieving a processing speed of up to 32 trillion
bits per second—with a price/performance ratio unparalleled by any other
computer. The press release says that ‘the CRAY-3 system with the SSS option
will be offered as an application-specific product’. Think for a moment of who
cooperated in the development and you’ll know how to interpret this sentence.

Compression = Compromise

Remember Section 3.6.4? It introduced the surprising fact that the prior com-
pression of data doesn’t increase security, even though the plaintext is statisti-
cally distributed pretty much equally.

This argument holds for DES, too, only the attack is not as simple as against
the Vigenère method: you actually should have a DES crack machine in your
den before you can think of putting the following idea to work.

The approach against DES looks like this: assume we have a sequence of
ciphertext blocks, C1, C2, C3, . . . . They are the DES ciphers of a plaintext
created by compress (where the three fixed bytes at the beginning should be
truncated to make things a bit harder for the attacker). First, we will limit
ourselves to encrypting in simple ECB mode.

Now we have our machine try all possible DES keys. We normally decrypt only
C1 tentatively. Since the resulting plaintext block, P1, is 64 bits long, we can
already test to see whether or not P1 could have been created by compress —the
equation (*) from Section 3.6.4 will probably be sufficient for an initial test.

In most cases, (*) will not be true for a pair of two 9-bit blocks from P1.
In about 0.8 % there is no contradiction. This figure is not hard to check: a
plaintext block contains seven 9-bit blocks of this sort. There is a probability
of about 0.5 that each of the 9-bit blocks is valid. With a plaintext created
randomly (which can be plausibly assumed when using a wrong key), relation
(*) will be true for all blocks with a probability of only 2−7, i.e., 0.0078.
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In these few cases, we decrypt C2 tentatively and test for (*), and so on. We
will gradually obtain all possible candidates for the plaintext, which we can
test with other means, if need be. Practically, however, (*) will be sufficient
for unambiguously revealing the key, since, with a random key, there is a
probability of

2−(64∗8)/9 = 2−56.8...

that eight ciphertext blocks produce a plaintext that might have been created
by compress. In reality, this probability may even be smaller. In fact, it is (1 −
257/512) for the first 9-bit block, (1 − 258/512) for the second, and generally
(N < 255) for N blocks:

n = 1

N

1( )− 2 56 n
51 2

We can use a small program to quickly verify that this product will already be
smaller than 2−56 for N = 49, i.e., due to

9*49 = 441 < 488 = 7*64

seven ciphertext blocks will suffice to recover the key on average. Though
there is really no profound mathematics behind it, the result sounds sensational
[Wobrump]:

People who compress their plaintext using compress before they DES-encrypt
it facilitate a ciphertext attack that requires only seven ciphertexts!

The astonishing thing about this finding is that cryptanalysts don’t even dare to
dream of a ciphertext attack that might be generally mountable against DES.
We can see from the procedure that even the encryption mode plays only a
subordinate role. But the formulation is not entirely correct. It is not a pure
ciphertext attack. Though we don’t know the plaintext, we do have an important
clue about it. This facilitates the test for correct decryption, as if we already
had the plaintext. What you actually want to call this type of attack doesn’t
really matter. The important thing is to know that compression introduces an
additional risk!

Unfortunately, there is no Deep Crack in my den so that I won’t be able to tell
you exactly how much computation time is involved. Anyway, I’m convinced
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that the method is almost as effective as brute force with a given plaintext,
for, when 99.2 % of all plaintext blocks fall through the sieve, the search cost
increases by less than 1 % compared with a plaintext attack. I find the following
facts particularly remarkable:

• As mentioned earlier, it is a ciphertext attack against DES-encrypted
code; the only one I know of.

• It doesn’t matter which ciphering mode is used.

• The findings are by no means limited to compress; the process can be
applied to any compression method for which an easily checkable test
for plaintext, similar to (*) in Section 3.6.4, can be found.

• The process can also be generalized for each block algorithm with too
short a key length. I find this alarming, particularly in view of the US
export laws that dictate 40-bit keys (which would require six ciphertext
blocks).

I don’t want to warn of compression in general. If the encryption method is
good and the key length sufficient, there won’t be any risk. For example, though
the PGP program discussed in Section 7.1 compresses a plaintext before it is
encrypted, it uses the secure IDEA algorithm, and the 128-bit key length of that
algorithm sends any idea about a brute-force attack into the realm of utopia.

4.4.2 Differential Cryptanalysis—The Role of the S-Boxes

No method that could crack DES faster than a brute-force attack was known
until 1990. In that year, the Israeli mathematicians Elie Biham and Adi Shamir
developed differential cryptanalysis and used it first against DES, then FEAL,
LOKI, and other known algorithms. That was a breakthrough in cryptanalysis.
We used this method in relatively simple form against fcrypt in Section 3.7,
and want to have a closer look at it now.

DES Without S-Boxes

Imagine DES were designed without S-boxes. Assume that some fixed com-
pression permutation from 48 to 32 bits were to take their place. We change
some single bit in the plaintext block and follow up on the effect this change
has on the ciphertext, as shown in Figures 4.7, 4.8, and 4.10.
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The only effect permutations have is that the position of the changed bit changes
within the block. Also, nothing sensational happens with the XOR operation on
the key: though the change to a bit can change the direction, e.g., from 1 to 0
instead of from 0 to 1, the position remains the same. Expressed mathematically:
if P and S are bit sequences with equal length (where S stands for ‘key’), and
if the ith bit (and only this one) is changed in P , then the ith bit (and only
this one) will also change in P ⊕ S.

Things get a bit more interesting when linking the left and right block halves
in a Feistel network (Figure 4.7). Though a changed bit in Li influences only
one bit in Ri+1, if the bit is in Ri , it changes two bits in the result of that round:
one bit each in Li+1 and in Ri+1. These two bits have the same positions in
Li+1 and Ri+1, i.e., the change does not propagate further.

With the expansion permutation, such a change can ‘split itself up’. Figure 4.8
shows that this happens with every fourth bit and each of the following ones. It
depends on our fictitious compression permutation (which replaces the S-boxes)
whether or not this change will have an impact on all bits after a sufficient
number of rounds.

(Bear this method in mind. We will get back to it in Section 4.4.4 and see that
it offers no security at all against a plaintext attack despite its complexity.)

Let’s summarize: if we change a plaintext bit, then which of the ciphertext bits
will also change does not depend on the key. The reason is that the key is
simply XOR-embedded in the round.

DES With S-Boxes

We will now bring the S-boxes back into play. They alone make the interaction
of the key with the algorithm complex; they are the non-linear element in DES
(see Section 4.4.4) and increase the avalanche effect.

On account of the S-boxes, which of the ciphertext bits will be influenced by
one single plaintext bit will now depend essentially on the key. Even more: for
certain well-defined sets of changed bits in block Ri you can observe a statistical
dependence of the S-box output on the key. This statement is inexact; we will
formulate it in a more mathematically exact way in a moment.

We have been talking of ‘changed bits’ so far. In differential cryptanalysis,
however, we speak of ‘differences’. The meaning is virtually the same, except
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the first term is more expressive, while the second can be used to compute. If
we XOR two equally long blocks, A and A′:

�A = A ⊕ A’

then exactly the bits in which A and A′ differ are set in �A. Since the XOR
operation behaves like a usual addition of numbers (except in a number field
that consists only of equally long sequences of zeros and ones), we also refer
to �A as the difference of the two blocks.

We denote the transformation defined by the S-boxes as SB and the 48-bit
key of an arbitrary DES round as S. For two 48-bit blocks, A and A′, which
emerged from the expansion permutation, DES computes the 32-bit blocks as

C = SB(A ⊕ S) and C’ = SB(A’ ⊕ S)

Again, we denote the difference, �C, as �C = C ⊕ C′. We can now formulate
the above statement more exactly as follows:

The values of �C depend on the key, S, for certain values of �A.

How can this be exploited? There are values, �P , for plaintext pairs (P ,
P ′), for which certain differences, �C, of the corresponding ciphertext pairs
(C, C ′) have a higher probability than expected. Such pairs of differences are
called characteristics, and plaintext pairs with the distinguished values for �P

are called right pairs. However, the higher probability mentioned above will
decrease as the number of rounds increases.

We can determine the characteristics for a 15-round DES. By encrypting a
sufficiently large number of right pairs, we eventually obtain probable values
for the key of the last round. This supplies us with 48 bits out of 56 key bits.
We find the last 8 bits by brute force (don’t take it too literally, though).

This sounds neat and practicable if it weren’t for the problem that the chosen
plaintext pairs will have to somehow be foisted on the code writer. But as
we got worked up we forgot the specific data, for the catch is: ‘we eventually
obtain probable values for the key of the last round’. How do we determine
such probable values? By comparing the frequencies, that’s for sure. But we
would have to acquire 248 frequencies. They correspond to about 280 trillion
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numbers, for which we would need a 1000-Tbyte memory. For the time being,
that’s too much by six orders of magnitude.

Refinements and Results

Biham and Shamir looked at characteristics not for a 15-round DES, but for
only 13 rounds. Reducing the number of rounds makes higher probabilities
stand out more and leads to success faster. Moreover, they found a method that
allowed them to test for the correct key immediately. This meant that the 248

counters for frequencies were no longer required.

Of course, we are mainly interested in practically usable results. Figure 4.12
gives an overview that requires several comments.

The third column shows the number of plaintext blocks not especially chosen,
but required for a plaintext attack. Only among that many plaintexts will we find
a sufficiently large number of right pairs (i.e., pairs with the desired differences).
The fourth column is surprising: many cases will also evaluate extremely few
right pairs, you just don’t know in advance which ones. For these cases, the
computation cost (in this method called ‘complexity’) required is higher once
we have found appropriate plaintexts, which shouldn’t come as a surprise.

The first and last rows of the table are the most interesting. As mentioned
in Section 4.1.4, product algorithms can sometimes have a ‘sound barrier’ for
cryptanalysis to overcome. We can see clearly from the table that an 8-round
DES is still vulnerable—we could imagine success in deliberately introducing
214, i.e., 16 384 plaintext pairs. In contrast, 247 plaintexts correspond to a data

Number of Chosen Known Analyzed Complexity of
rounds plaintexts plaintexts plaintexts analysis

8 214 238 4 29

9 224 244 2 232

10 224 243 214 215

11 231 247 2 232

12 231 247 221 221

13 239 252 2 232

14 239 251 229 229

15 247 256 27 237

16 247 255 236 237

Figure 4.12: Cost for differential cryptanalysis against DES.
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set of more than one quadrillion bytes (more than one million Gbytes). That’s
beyond good and evil, not only technically. Nobody would ever encrypt such a
huge data set with only one key. Certainly, no attacker could foist such a data
set on a code writer ever.

So, if you read something along the lines of ‘DES can be attacked by dif-
ferential cryptanalysis’, it is basically true but can’t be realized in practice.
Such claims create false doubts about this algorithm if they remain unquali-
fied. DES is resistant to this attack thanks to the careful design of its S-boxes
(and 16 rounds, a number certainly not chosen at will): attacking with differen-
tial cryptanalysis is not more effective than brute force even with known (but
not chosen) plaintext.

This is why differential cryptanalysis enjoys a strong interest. In fact, it was
the first method that worked faster than brute force. Moreover, the resources
required might be reduced to practically interesting levels one day.

4.4.3 Attacking With Related Keys. Weak Keys

Thought experiments are always possible and interesting when they bring new
findings. The attack with related keys was originally such a thought experiment.

The underlying idea is to look at the changed key bits rather than at the effect
these changed plaintext bits have. For the time being, we are not interested in
the practical realization of this attack. In theory, it looks like this: a known
or perhaps chosen plaintext is encrypted with different keys, which naturally
differ in certain bits. The key is reconstructed from the ciphertexts created.

Schneier [SchnCr, 12.4] writes that the irregular rotation of the DES keys in the
single rounds frustrates this attack. The DES designers may also have thought
about it! But 217 (over 100 000) chosen plaintexts are sufficient for this type
of attack if the key is rotated constantly. This was shown in a study by (well,
guess who) Biham.

This attack was found to be independent of the number of rounds and, if
feasible, effective also against Triple-DES, described in Section 5.2.1.

A related principle was exploited in a new type of attack that created a great
stir. More about it in Section 4.4.5.

Weak Keys

As troubling as this heading may sound, the impact on the security of DES
is negligible. The reason is that the algorithm is insecure to special keys. For
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0000 000 0000 000 0000 000 0000 000 0000 000 0000 000 0000 000 0000 000

1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111

1111 111 1111 111 1111 111 1111 111 0000 000 0000 000 0000 000 0000 000

0000 000 0000 000 0000 000 0000 000 1111 111 1111 111 1111 111 1111 111

Figure 4.13: The four weak keys of DES (bitwise representation).

example, if all bits of the key are equal to 0, or perhaps all equal to 1, then
rotating the half keys in each round changes nothing: all rounds use the same
key. This holds true even if the left half key contains only 0-bits and the right
one only 1-bits. Such keys are called weak keys.

Six pairs of DES keys consist of semiweak keys. The keys in such a pair are
inverse to each other: things encrypted with one of the two keys are decrypted
with the other key. Finally, there are 48 possibly weak keys: each one of them
creates only four different round keys, which are each used four times in the
16 rounds.

If there were many weak keys, or if these four keys occurred frequently due to
poor automatic key selection, then an attacker could test for them right away.
This test could be an attack tailored to DES, for example, with equal round
keys. If it is successful, the attacker has reached his goal; otherwise he has to
try other methods.

Compared with the 72 trillion possible keys, these 64 potential risks are a
ridiculously small number. In addition, it is very easy to discard such weak
keys, or have weak keys automatically replaced by ‘strong’ ones.

In general, a key is said to be weak if the encryption method that uses it
deteriorates into one that’s easier to break. How about this for a blurred def-
inition? Anyhow, when designing an algorithm, one also has to think of this
type of attack. If an algorithm uses a fairly large percentage of weak keys in
any respect, it earns a minus score.

4.4.4 Linear Cryptanalysis and Other Methods

Linear cryptanalysis was developed by Matsui in 1993; it is one of the most
modern cryptanalytic methods. It seems that it will not be used to its full
potential until a long time in the future.
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When there is talk about linear cryptanalysis, you can often read: ‘. . . works
with linear approximations, thus trying to recover the key’, or perhaps: ‘you
XOR a few bits of the plaintext and the ciphertext, and there is a certain
probability that you will obtain a value produced by XORing several key bits’.
Such statements don’t explain the background. A few theoretical comments
will be useful before describing the method itself.

Linear Method

What does ‘linear’ mean? In algebra, a linear expression in variables, x1, . . . , xn,
has the form

a1x1 + a2x2 + ... + anxn

where ai are constants. We are not looking at integer or real numbers in this
discussion, but at the ‘value range’ of a bit, which is the numbers 0 and 1. We
know that an addition is defined on this two-element number field, namely the
XOR operation:

0 ⊕ 0 = 0
0 ⊕ 1 = 1 ⊕ 0 = 1
1 ⊕ 1 = 0

The commutative and associative laws hold, similarly to a normal addition:

a ⊕ b = b ⊕ a
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

There is also a multiplication in set {0,1} (or we couldn’t call it a number field).
This is the ‘AND’ link (‘&’ in C):

0*0 = 0*1 = 1*0 = 0
1*1 = 1

The usual arithmetic rules for real numbers apply here, too, though they may
seem a bit odd. Analogous operations can be defined bitwise, e.g., on 64-bit
blocks.
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The term ‘linear expression in bits b1, . . . , bn’ actually means nothing more than
selecting a few bits (corresponding to a multiplication by constants, which can
only be either 0 or 1) and subsequently XORing them.

Why are such linear expressions of interest? Because block methods that rep-
resent only linear expressions in the plaintext bits and key bits can be cracked
by solving a system of equations. Assume the key consists of n bits, si . Further
assume that the ciphertext bits, ci , can be calculated from the plaintext bits pi ,
as follows:

c 1= p i
1 1

s*

*

*

*

j
1 1

p i
2 1

s j
21

.. .

.. .
cm = p i1m

s j 1m
p i 2m

s j 2m
. ..

We know the indices, ikl and jkl , and if we additionally know pi , then this is a
linear system of equations in the key bits, si , except that it uses unusual arith-
metic operations. Of course, ‘knowing pi’ means that we carry out a plaintext
attack. This is very effective: if the block length is N , and k is large enough
so that kN ≥ n (where n is the key length) holds, then knowing k different
plaintext blocks might suffice to recover the key.

We can see that linear methods are very sensitive to plaintext analysis. The
Vigenère cipher is a trivial example of linear methods, but for cryptanalyzing
them, we don’t need that much theory, while still being able to mount successful
ciphertext attacks.

The DES algorithm without S-boxes (but with a fixed compression permutation
instead) discussed in Section 4.4.2 is more interesting. It is not too hard to
derive from Figures 4.7 and 4.9 that each output bit can be represented as a
XOR of plaintext bits and key bits. The indices of all these bits, i.e., their
positions in the plaintext block or in the key, are known—that’s the most
important thing. One single known plaintext block may be enough for us to
compute the key!

Now the comment that the S-boxes introduce a ‘non-linear element’ to DES is
easier to understand. They are really decisive for the method’s security.

Linear Cryptanalysis on DES

Schneier [SchnCr, 12.4] writes about linear cryptanalysis: ‘This attack uses
linear approximations to describe the function of a block cipher’. We know
what linear mapping on the number field with the elements 0 and 1 is, but how
can a linear approximation be defined where only two distances, 0 and 1, are
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possible? The meaning is taken from the theory of probability. For example, if
we know there is a 90 % probability that the following equations hold between
the key bits, si , the bits of the plaintext block, pi , and the bits of the ciphertext
block, ci :

s2 ⊕ p15 ⊕ s6 ⊕ p7 = c2 ⊕ p5 ⊕ c7

s2 ⊕ p8 ⊕ s6 = c5 ⊕ c6

then, knowing pi and ci , we can recover the two key bits, s2 and s6, with equal
probability for a statistically sufficient number of plaintexts almost for sure.

In general, when mounting a linear cryptanalysis, you exploit the fact that there
is a linear relationship (which the attacker has to find) with a probability other
than 50 %. This is a deviation from ‘pure randomness’ and can give clues on
the key bits. In our example, once we have studied a sufficient number of
plaintext–ciphertext pairs, we will have revealed the values for key bits that
tend to occur preferentially (only with a probability of exactly 50 % we can’t).

How does this look specifically with DES? First, we will only look at one DES
round and omit the input and output permutations for the sake of simplicity
(since they only cause more typing and don’t change anything in the study
itself).

S-box number 5 seems to offer the best vulnerability. That’s the reason why
this box was chosen for Figure 4.9. The thing is that, among the 64 possible
inputs (corresponding to 6 bits), the second input bit equals the sum (i.e., the
XOR) of the four output bits in only 12 cases—we would expect 32 cases.
Shamir discovered this back in 1985, but wasn’t able to exploit it.

The second input bit of S-box number 5 came into being by XORing bit s26

of the round’s key with bit 26 of the expanded right half block which, in turn,
was formed from bit r17 of the unexpanded half block. Due to the subsequent
P-box permutation, the four output bits of the S-box land in positions 3, 8, 14,
and 25. These are four bits in the functional value fS,1(R1) in equation (1),
Section 4.2. We can compute this functional value from the ciphertext:

fS,1(R1) = R2 ⊕ L1
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Denoting the four bits in the functional value as c3, c8, . . . , then the equation

r17 ⊕ c3 ⊕ c8 ⊕ c14 ⊕ c25 = s26

holds with a probability of 3/16. For a one-round DES (which isn’t used), we
can recover bit s26 of the round’s key (which doesn’t help much yet). To this
end, we look at as many plaintext–ciphertext pairs as may be necessary to
detect whether the right-hand side is equal to 0 or equal to 1 in about 3 out of
16 cases.

We proceed similarly with the 16-round DES, however, there won’t be any
more probabilities that deviate as significantly from 50 % as in the previous
example. This is one of the reasons why a product algorithm with many rounds
is normally more secure than one with few rounds or even just one. So, against
DES, we have to work with minimum deviations from the 50 % probability.

Consequently, it won’t come as too big a surprise to learn that, with linear crypt-
analysis in the form described, 247 known plaintexts are required to recover the
key. So many items of input data are required for cryptanalysis. Though we are
dealing with known plaintexts here, in contrast to differential cryptanalysis that
uses chosen plaintexts (compare the second and third columns in Figure 4.12!),
the result is merely one bit of the last round’s key. A trick can help us recover
another bit: we study the decryption, which is identical to the encryption except
for the sequence of the keys. The key of the last round in the decryption is
the first key in the encryption, and the 26 bits in the keys of the two rounds
correspond to different bits in the original key.

But recovering two key bits by analyzing 1000 terabytes of text is nothing to
write home about.

For the 14 rounds from 2 through 15, however, there is a better linear approach.
We have to guess the 12 input bits of S-box number 5 in the first and last
rounds, i.e., we have to run 212 or 4096 linear cryptanalyses in parallel and
then pick out the most probable among them. We obtain 13 bits, together
with s26, and this number will double to 26 bits if we apply the trick men-
tioned above—additionally studying the decryption instead of the encryption.
To resolve the remaining 30 bits, we have to once more fall back on brute
force (which corresponds to about one billion possibilities).
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Results and More Methods

If we use linear cryptanalysis, we need 243 known plaintexts to break a complete
16-round DES. That’s 16 times less than the chosen plaintexts required in
differential cryptanalysis, and even 4096 times (255/243) less than the known
plaintexts needed in differential cryptanalysis. It is currently the most effective
attack against DES. And how does all this look in practice?

The data volume to be analyzed is only 70 terabytes. This means that, if some-
body sends DES-encrypted data (of course, assuming that the same key is used)
over a 34-Mbit/s line, then an attacker needs to listen in on the communica-
tion for the better part of half a year. Subsequently, the attacker (similarly to
what Matsui did in 1994) puts twelve HP-9735 workstations (which correspond
roughly to very fast Pentium Pro computers for this purpose) to work and will
retrieve the key within another 50 days.

You can see that even the time–memory tradeoff discussed in Section 4.4.1
has more chances, let alone hardware-based brute force (using Deep Crack ).

In contrast to time–memory tradeoff and ‘direct’ brute force, however, the
methods mentioned here can be expanded, which makes them more interest-
ing. In 1994, Hellman and Langford introduced an attack against an 8-round
DES using so-called differential linear cryptanalysis. With only 512 chosen
plaintexts, this attack recovers ten key bits with a probability of 80 %—which
increases to a 95 % probability with 768 chosen plaintexts. The computing
power it required was amazing: a Sun-4 workstation, which is a rather slow
computer by today’s standards, took only 10 seconds. Our Web site includes a
description of this method.

4.4.5 DFA and the Chip Crackers

There’s actually only one important conclusion we can draw from the last
few sections: no practicable attack against the DES algorithm has become
known in public cryptological research. On the other hand, cryptanalysts also
try to attack the use of DES. This book is not about spying out keys through
vulnerabilities in an operating system or in an application. Another approach
targeted to revealing DES keys hidden in chip cards has much more to do with
cryptanalysis and is currently making headlines.

Biham’s DFA Method

An article titled ‘Hot chip cards leak code’ appeared in Computerzeitung
[CZ96] at the end of October 1996. The article referred to chip cards that do a
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DES encryption. The key is said to be unreadable and built into hardware—the
chips are referred to as tamperproof. However, heat, microwaves, ionizing
radiation, and similar things can be applied to ‘flip’ some bits in internal reg-
isters. In contrast to attacks using related keys, this attack uses ‘related keys of
rounds’. Plausible probability-theoretical assumptions have it that this allows
an attacker to reveal stored DES keys. To this end, the same plaintext is used
over and over again to encrypt it by means of round’s keys disturbed differently
every time.

This method was first used by Boneh, Demillo, and Lipton (Bellcore) against
RSA (Section 4.5.3), but not published. Only an article by Markoff in the
New York Times of September 26, 1996, documented it. Again, the famed
cryptanalysts Biham and Shamir emerged, claiming that the method can be
transferred to complex block algorithms. They launched an attack against DES,
in which 200 created ciphertexts were sufficient. Most interestingly, it is not
necessary to know the plaintext. There’s more to it—even the structure of
unknown Feistel algorithms could allegedly be recovered in this way!

Biham calls this cryptanalysis differential fault analysis (DFA). But it is still
very new; I put a rough description of the method in a file on our Web site. I
found the reference on Biham’s homepage on the Internet. This topic had been
fiercely discussed; visit http://cryptome.org and, searching for ‘DFA’,
have a look around.

The chip card manufacturers naturally claimed that there was no way of pur-
posefully influencing the key bits. Would you say otherwise in their place?

For one thing, what we learn from this attack are the unusual ideas cryptanalysts
come forth with, and the many different things one has to think of when
developing an algorithm. But if you think this was bad it will get worse.

A Sensational Improvement by Anderson and Kuhn

Anderson and Kuhn (article on the Web site) said the chip card manufacturers
are not totally wrong. In reality, both the keys and the encryption program are
stored in the same EEPROM. A randomly flipped bit normally influences the
program, and what you get after exposure to radiation is just garbage rather
than a slightly modified ciphertext—if anything at all will come out.

The authors thought that one should rather attack the program code. Pay-TV
pirates have recently started using similar techniques, including techniques that
interrupt the power supply to the chips for fractions of a microsecond, or,
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for example, send four 20-MHz pulses instead of a 5-MHz clock frequency.
The effect is that though the program counter in the microprocessor jumps
forward, the corresponding command is executed either faultily or not at all.
By selecting a suitable point in time and a suitable interference, the attacker
can select a command to be skipped purposefully. The attack hadn’t been used
for cryptanalysis to that date. That’s where Anderson’s idea came in.

In particular, an attacker can suppress the XOR of a byte in a round’s key
in the last or next to the last DES round. He encrypts an arbitrary plaintext
with the properly working card and once more with the suppressed com-
mand. He then compares the two ciphertexts created to find clues on key
bits, similarly to differential cryptanalysis. (However, this analysis is clearly
less costly than the one by Biham and Shamir.) On average, five key bits
result per ciphertext, and 40 key bits result after eight faulty encryptions. The
last 16 bits are resolved by brute force. This means that ten ciphering opera-
tions are sufficient to reveal the DES key in a chip card, without destroying the
card.

This attack is not theoretical at all, since Anderson and Kuhn virtually mounted
it on a chip produced in series. It is indeed possible that a modified terminal
would reveal keys by the dozen from cards inserted without the customers
ever finding out. The effect would be as dangerous as breaking the algorithm
itself. The Triple-DES introduced in Section 5.2.1 and a large number of other
methods offer no protection against this sort of sneaky attack. The protection
must come from the hardware.

No details were published out of consideration for the card manufacturer, to
ensure that both the manufacturer and the bank customers can adjust to the
situation. Such ideas are not totally new to card manufacturers, and they do
undertake countermeasures; see [Koch.DFA].

Anderson’s ‘Parity Attack’ Against Chip Cards and Memories

When things are bad they tend to get worse: Anderson [AndDES] found a
much simpler way to recover DES keys in chip cards. Most people have come
to think that the NSA pushed for reducing the DES key length from 128 to
56 bits. This corresponds to 8 bytes of 7 bits each; the 8th bit of each of these
bytes can be used for parity check. (Nobody speaks of byte parity anymore
today. But bear in mind when DES was developed.)

As a cruel irony, it is this very parity, which is often required still today, that
Anderson exploited. It is known where in an EEPROM the internal key is
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stored—usually in the lowest address. It is astonishingly simple to open such
a chip (also described by the author in [AndKuhn.tamp], since insiders have
known this for a long time) and to localize the corresponding bits. Only reading
the bits is not that simple.

But that’s no problem. You can use simple means to set an EEPROM bit from
the outside. You won’t need an expensive UV laser for it. Two micro needles
and an 18-V pulse over 10 ms will do and are much cheaper. Anderson suggests
the following method: Set the lowest key bit to 1. If the chip complains about
a parity error, then it should have been 0; otherwise 1 was correct. Next, set
the second bit to 1. Depending on the previous result and the current parity
displayed, you will get this bit, and so on. Once he has read the key, the
attacker might burn another chip card himself to this key and use it to cause
considerable damage.

That’s cryptanalysis at the lowest level and independent of the ciphering
method! You may reasonably assume that there are plenty of code cards out
there on which this attack works.

This attack is also of interest against bank computers. In his article [AndDES],
Anderson mentions a security module produced at the end of the 1980s that
held twelve DES keys in memory. Every few years, the internal battery had
to be replaced. The power went off as soon as a maintenance engineer opened
the device, and the memory cells were deleted. With a fresh battery in place,
the bank people stored the keys safely again.

However, memories (SRAMs and DRAMs) tend to ‘burn in’ bits after years.
This is analogous to a picture tube: if you display the same block of letters in
the same position over many months, then the internal coating of the picture
tube will change at that place, and the letters will become indistinctly readable
if the screen is equally gray (that’s the main reason why we use screen savers).
Similarly, a memory cell has an indefinite (‘gray’) state after voltage was fed,
unless its content has been exactly the same over several years—then this
content is preferred. Together with parity check, this allows an intruder to
even attack Triple-DES (Section 5.2.1) using a 112-bit key. Anderson doesn’t
speculate in this respect; he actually studied a bank computer and recommends
banks to observe the following:

1. have your maintenance engineers supervised during their work; and

2. thoroughly destroy the memory modules when scrapping computers.
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The Chip Crackers

Though we’ve moved rather far away from mathematical cryptanalysis and
landed on its ‘physical’ counterpart, the way that the two methods can be
merged together seemed interesting enough for me to mention it. We will
come across tamperproof chips several more times in this book, e.g., in GSM
cell phones (the D- and E-networks in Germany), digital signatures, and the
Clipper chip (Section 6.4). Even if you have only the slightest interest in this
field, you should skim through the fascinating article by Anderson and Kuhn
[AndKuhn.tamp] on the Web site. It will give you a rough idea of the guile
involved in reading chips, which makes the trick used by pay-TV pirates look
harmless; appropriate labs can reconstruct the design of an 80386 microproces-
sor within two weeks—that corresponds to several 100 000 transistor functions!
Among other things, the authors explain in their article how nuclear weapons
are protected; we will get back to this issue in Section 6.2.

4.4.6 Bottom Line

We have discussed DES in more detail than any other algorithm in this book.
This corresponds to its historical significance. If you compare Chapter 3 with
what you’ve read so far in this chapter, you will clearly see the difference
between modern and classic cryptology. The specification of DES—the first
time ever a good algorithm was published for the world to study—drove the
theory forward by a quantum leap, particularly the theory of cryptanalysis. Five
thousand years from now, an ‘expert’ might explain this big jump forward by
the landing of aliens. We know better.

We can identify a new, interesting tendency for the years to come: differ-
ential linear cryptanalysis, differential higher-order cryptanalysis, progress in
attacking with related keys—things might look really exciting.

From the perspective of the theory currently known, DES is remarkably good.
Why should the NSA not have built in a backdoor? It is currently impossible
to answer this question. It might really be true that the publication of DES was
actually based on a misunderstanding between NIST and NSA.

Such a large number of talented cryptanalysts have cut their teeth on DES
during the past twenty years or so that I personally don’t believe in a simple
backdoor. The weakness of DES is its key length. With 64-bit keys, brute force
gets much more costly, but the end of the 56-bit era has already come. It may
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be reasonably assumed that many national intelligence organizations have DES
crack machines. Nevertheless, DES has been confirmed as a secure standard
by NIST repeatedly every five years. Schneier [SchnCr] wrote in 1996, ‘Guess
what will happen in 1998’.

Schneier was wrong in this respect. Already at the beginning of 1997, the
NIST had begun searching for a DES successor, which turned out to be the
Advanced Encryption Standard (AES). Meanwhile, this process was com-
pleted successfully. You will learn more about it in Section 5.5.

What we should take home from these lessons is that nobody should send
valuable DES-encrypted information over the Internet, never ever again. And
it’s not necessary. There are DES variants, such as Triple-DES or DES with
key-dependent S-boxes, that appear to be secure. Better yet, use more secure
algorithms. We will get back to this issue in Chapter 5.

4.5 Asymmetric (Public-Key) Methods

DES was confirmed as a standard at the end of 1976 and, as you know, brought
about a radical change to cryptology. In that same year, another path-breaking
event occurred in this field: Diffie and Hellman introduced the first asymmetric
encryption method ever at a conference, while Merkle submitted his work on
the same topic at the same time. These methods introduced a new quality to
the field: they widely solve the problem of key distribution. But before we
can study this problem, we need to look at some more theory. Once you’ve
understood some important basic terms and the practical uses, we will discuss
three specific examples.

4.5.1 Symmetric and Asymmetric Methods

So far in this book we have discussed only symmetric methods: the receiver
decrypts each message with the same key that the sender used to encrypt it.
Notice that the symmetry refers to the keys rather than to the methods them-
selves: with a few exceptions (e.g., one-time pad, ROT13, stream ciphers), the
encryption algorithm is different from the decryption algorithm. Encryption and
decryption differ even in the Caesar and Vigenère ciphers: an amount (mod-
ulo 26) is added to each character during the encryption and subtracted during
the decryption. More specifically, though they work with one key, symmetric
methods almost always use two methods.
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Asymmetric methods (also called public-key methods) also use two methods
(which can be identical), but they always use two keys. One of them is the
private key, and its algorithm is referred to as the decryption algorithm; the
other key is the public key, and its algorithm is the encryption algorithm. This
still looks pretty much symmetric. But the decisive point is:

The private key cannot1 be derived from the public key.

In contrast, the reverse may easily hold. This is the actual asymmetry. It makes
the following procedure possible, where the names used start making more sense.

We create a private key and a public key. We give the public key to somebody
without having to fear that the security of the private key may be compromised.
We don’t show the private key to anybody. Everybody can now encrypt a
message with our public key and send it to us; only we as the owners of the
private key can read it. So we actually make public keys public to receive
messages rather than to send them!

This means that asymmetric methods have to guarantee cryptological security
in two ways: they must guarantee (i) that the plaintext cannot be derived from
the ciphertext (encrypted with the public key); and (ii) that nobody can derive
the private key from the public key. Again, this is meant in the sense of
cryptology, i.e., they should prevent these things against available algorithms
and justifiable cost and time.

There is a twofold reward in return: in addition to the security gained, there is
a key that cannot be compromised since it is not secret. The real secret—the
private key—never has to leave the owner’s computer. That’s a cute thing
indeed. A practicable and more secure asymmetric algorithm would presum-
ably drive symmetric algorithms quickly into a corner. Some magazine articles
actually give you the impression that the golden times have already dawned.

Unfortunately, however, there are huge drawbacks. Only very few principles
for secure and practicable algorithms are known to date. These algorithms are
extremely slow and vulnerable to chosen-ciphertext attacks, which is critical
when used for digital signatures (see Sections 4.5.3 and 6.3.3). This is why
asymmetric methods are currently used only to exchange session keys, but not
to encrypt messages. Session keys are secret keys for symmetric methods.

We will have a closer look at this use in the following section.

1‘Not’ is meant in the cryptologic sense, i.e., you cannot derive it with the known means
within a practically feasible time.
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4.5.2 Exchanging Keys With and Without a Public Key

Exchanging Keys Without an Asymmetric Method

If you exchange encrypted messages with someone on a permanent or regular
basis, you can often do without an asymmetric method. Asymmetric methods
may only mean additional work. The installation of additional software, such
as PGP, and the training required can quickly cost a company a couple of
hundred dollars. Moreover, additional risks cannot be totally excluded; see
Section 4.5.6.

So, if you exchange encrypted emails with your converser and the only thing
you have to look out for is protection against one cunning competitor, just
call your converser up and tell him the password on the phone. The competitor
would have to both intercept your emails (which is doable) and listen in on your
phone conversations (you really think he does?). If you wouldn’t put it past
him, send the key by regular mail. All right, he could have bribed the mailman
if he knows your tactics. In that case, try to send half the key by mail (perhaps
in several portions) and tell your converser the other half on the phone. Who on
earth can monitor postal and phone traffic concurrently (well, guess who can)?

If you use three or four different distribution channels for the ‘parts’ of your
key, a normal adversary won’t stand a chance (let’s define the other adversaries
as ‘abnormal’). Of course, you mustn’t distribute a 64-bit key in four portions of
16 bits each (the broken magic amulet is only good for fairy-tale movies), for,
in the unlikely event that somebody intercepts three key parts, then brute force
will become a kid’s game for them (as opposed to the magic amulet!). A better
idea is to represent your 64-bit key as the sum of four 64-bit numbers, three of
which are random. This way you can rest assured that an eavesdropper won’t
have a chance, unless he actually possesses all key parts. This is presumably
the most reliable practical method for secure message exchange.

If you don’t trust anybody other than your converser, why not make a trip,
hand him the key over personally, and subsequently enjoy a short vacation?

There won’t be many occasions for you to go through this procedure, though.
Agree on a ‘key encryption key’ (KEK) with your converser that must never
be compromised. For each message, you create a new separate session key
(using a cryptologically good computer program; see Section 5.1.4) and use
it to encrypt the message. You use the KEK to encrypt the session key and
send it along with the message. This careful approach ensures that no single
key is ever used to encrypt large amounts of data, thus significantly improving
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Figure 4.14: Distributing a secret key more securely.

the security. This is presumably the way people always work in critical areas.
And it is the reason why a theoretically possible plaintext attack will become
practically doable if it can make do with a few Mbytes of plaintext.

There’s nothing new to all of this. The work regulations for the Enigma
corresponded to it years ago! You probably remember Section 2.5.2: a univer-
sal key—the so-called ‘ground setting’—was transmitted over cryptologically
secure channels (in the code book); the radio operators set the message key
themselves and encrypted it with the day key. The German cryptologists were
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well aware of the fact that a ciphertext attack would have been possible
otherwise. In practice, however, operators worked under stress and inadver-
tently passed the ball to the adversary by selecting bad message keys (naturally
other weaknesses of the Enigma played a role, too).

For the sake of completeness, I should mention that there is yet another possi-
bility to distribute keys securely: through so-called centralized key servers. A
universal key known only to the legitimate users is used to distribute a session
key at one of these users’ request. A good example is the so-called wide-mouth
frog protocol described in Section 6.1.1.

Exchanging Keys With Asymmetric Methods

The method of distributing key parts separately, as described above, can become
cumbersome and slow if you have to exchange encrypted messages with many
conversers. It can also become costly, for example, if your converser happens
to work in New Zealand; or it can become unnerving if your Japanese business
partner writes English much better than he speaks it.

Things look much simpler when using asymmetric methods: everybody who
wants to receive encrypted messages creates a corresponding key pair and pub-
lishes their public keys. To send an encrypted message (even without previously
announcing it) to a ‘key owner’, we can use a similar approach:

1. We get the receiver’s public key.

2. We create a random session key.

3. We use this session key and a symmetric method to encrypt the message;
then we use the receiver’s public key and an asymmetric method to
encrypt the session key.

4. We send both ciphers to the receiver.

5. The receiver is the only one who can recover the session key, since he,
and only he, knows the private key.

6. The receiver can decrypt the message using the session key and the
symmetric method (Figure 4.15).

(As a sideline, the description of such an approach is called cryptographic
protocol. Chapter 6 is entirely dedicated to this topic.) We generally speak of
hybrid methods, because they use both symmetric and asymmetric algorithms.

Nothing can go wrong any more! In fact, a plaintext attack against the asym-
metric method is not doable, since random session keys are encrypted (it would
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be too hard to memorize them). The low speed of the asymmetric method is
negligible thanks to the relatively short session keys (8 to 16 bytes). Or is there
a drawback after all?

There is, and we will recognize it when looking closer at Point 1 above. What
makes us so sure the public key we got really belongs to the person we think it
does? Fraudulent maneuvering is possible, indeed, and we will discuss it below.

The Man in the Middle

As is customary in cryptology, we will call the ‘good conversers’ Alice and
Bob, and call Mallory the ‘malicious attacker’.2

2For the sake of simplicity, Mallory sometimes assumes the role of Eve, the eavesdropper,
in this book.
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Alice wants to transmit encrypted messages to Bob and sends him an email:
‘Please mail me your public key.’ Bob receives the mail and sends Alice the
key. Alice gets the key, sends the encrypted message, and Bob can actually read
it—without doubt a message from Alice, or so he thinks. In reality, however,
Mallory, the intruder, listened in on everything. He is the administrator of the
firewall computer, bribed by the competition, through which all emails flow in
Alice’s company. How did he do it?

First, Mallory read Alice’s request to Bob to send her the public key. Then
Mallory intercepted Bob’s reply, i.e., Bob’s public key. In its place, however,
he sent his own public key to Alice. From then on, he could decrypt and read
every mail from Alice to Bob, and then re-encrypt the session key with Bob’s
public key and send it to Bob. It is not difficult at all to have a computer
program handle this procedure.

This attack is known as the man-in-the-middle attack. Mallory sits virtually
in the middle of the line, pretending toward both conversers to be the respective
other one.

The Interlock Protocol

There are several possibilities to prevent this attack. An easy-to-implement
method that does without a trustworthy third party called interlock protocol
was invented by Rivest and Shamir in 1984. When using this protocol, Alice
and Bob have to send each other messages that allow each one of them to
recognize that a message clearly originates from the other one. The protocol
works like this:

1. Alice and Bob send each other their public keys. Like before, Mallory
could use his own keys.

2. Alice encrypts an individual, but not too confidential, message with the
public key she obtained (which might be Bob’s or Mallory’s). From
this message, however, she sends only a part that cannot be decrypted to
Bob. If the asymmetric method used is a block algorithm, then she could,
for instance, send only the left half of each block. Or she sends only
the bits or bytes in uneven positions within the message. Or she uses
the CBC mode and leaves the initialization vector (will be explained in
Section 5.1.1) out.

3. After he receives the first part, Bob proceeds similarly: he sends Alice
a part of an encrypted message that cannot be decrypted.
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4. Alice sends the second part of her message.

5. Bob puts the two parts of Alice’s message together and decrypts it, using
his private key.

6. If everything is correct, Bob sends the second part to Alice. Alice puts
the two parts together and decrypts the message (Figure 4.16).

Since Alice’s first message part cannot be decrypted, Mallory cannot ‘re-
encrypt’ it with his own or Bob’s key. He would have to forward invented
messages pretending to Bob that they came from Alice. This shouldn’t be pos-
sible after this prerequisite; how Alice achieves it is not part of the protocol.

But why is Step 3 included in the protocol even if only Alice wants to send
a message to Bob? Wouldn’t it be sufficient for Alice to decompose her mes-
sage into two parts? No, because Mallory could ‘collect’ the two halves and
proceed as usual. Only the trick that both parties send parts that cannot be
decrypted alternately and then complete these parts alternately makes the pro-
tocol secure. Moreover, both parties can discover a fraud and don’t have to
talk about it via email. For, Mallory could also have tampered with this email.
Pretty clever.

The only downside is the prerequisite that Alice and Bob have to recognize
that the messages received ‘come doubtlessly from the converser’. While this
is easy in personal contact, it is hard to automate. This point can become a
problem when computers want to communicate securely among themselves and
automatically over the interlock protocol.

Distribution of Public Keys

You can see that the sore point in using asymmetric methods is the distribu-
tion of public keys, as long as the methods themselves are secure, of course.
The interlock protocol introduced above is a clever method, for instance, to
exchange public keys individually and exclusively on the Internet. A public
key can also be reliably checked over the phone—it’s not easy to fake another
person’s voice and diction. But that means there will be additional cost with
every new contact. It would be nice to have a way to publish the public key
securely. We could publish it in a daily paper, but the costs of ads and han-
dling newspapers are not ideal. We would like to use one single communication
medium, e.g., the Internet.
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Figure 4.16: Using the interlock method to avoid the man-in-the-middle attack.

This is an endless topic, so I will mention the solutions just briefly. There are
two popular concepts related to two software packages: PEM and PGP (more
in Chapter 7).

PEM (Privacy-Enhanced Mail) is a standard for sending encrypted emails
on the Internet that manages public keys on certified computers arranged
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hierarchically in a tree structure (see also Figure 2.1). A trustworthy ‘root
computer’ uses suitable cryptographic protocols to confirm that certain other
computers are trustworthy. These computers, in turn, certify other computers,
and so on. Leaving the details aside, it means that the entire security depends
on the root computer. That’s a point to worry about. But the interlock protocol
can be used to periodically check a root computer.

PGP is the popular counterpart to PEM, but rather than using a centralized trust
hierarchy, it works on a ‘federal’ principle: every PGP user (electronically)
signs the public key for parties he personally trusts (electronic signatures will
be dealt with in Section 6.3). According to the motto: ‘my friend’s friend is my
friend too’, PGP builds a ‘Web of Trust’, a network with pretty secure connec-
tion channels. This network is hard to disturb because it is irregular—similar to
the Internet, the precursor of which was actually invented to guarantee secure
transmission of messages in times of war. More about PGP in Chapter 7.

This section actually belongs to Chapter 6 since it deals exclusively with cryp-
tographic protocols. But unless we are aware of such problems, dealing with
asymmetric methods gets somewhat dry.

4.5.3 The RSA Method and Eight Risks

You have probably heard of the RSA method since it is the most popular
asymmetric method. In contrast to the methods known up to then (knapsack
algorithm and Diffie–Hellman key exchange), RSA was the first method to
be suitable both for asymmetric encryption and digital signatures. The name
is composed of the initials of its three discoverers, Rivest, Shamir, and Adle-
man, who published the algorithm in 1978 [RSA]. (Gardner quoted it in 1977
[GardRSA].)

The RSA method is based on a mathematically ‘hard’ problem, namely factor-
ing very large numbers (currently 300 decimal places and more). The algorithm
is quickly described, but as so often in mathematics, it wouldn’t explain how
they came by this idea. I will try to build such an idea in the following. What
we need is some number theory, but really very little.

Congruencies and Fermat’s Little Theorem

You have been confronted with congruence arithmetic several times in this
book. You know that two natural numbers, a and b, are called congruent
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modulo n (where n is a natural positive number), written as

a = b mod n or a ≡ b mod n

if a and b leave the same remainder when divided by n. The equivalent is that
(a − b) is not divisible by n without remainder, which can be written like this:

n | a-b

We can do arithmetic with such congruencies similarly to equations, e.g., we
can add or multiply them:

a = b mod n

and

c = d mod n

are followed by

a+c = b+d mod n
ac = bc mod n and
ac = bd mod n

In particular, the last equation results in

ak = bk mod n

for every natural number, k.

Finally, we conclude from

a = b mod n (i.e., n | a-b)
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that

nc | ac-bc

or

ac = bc mod nc

holds.

This means that we can multiply both sides of a congruence and the module
(in this case the number n) by the same number. We will utilize this finding
further below.

This subsection of mathematics is called congruence arithmetic or modular
arithmetic. It works exclusively with integers, which is implicitly understood
in the following.

Not all equations can be solved by this arithmetic. For example,

3x = 1 mod 12

has no integer solution x. And not all simple equations can be easily solved.
While d can still be computed by

de = 1 mod n

for suitable numbers, e and n, at a reasonable effort (see below), equations in
the form

ax = g mod n

for large numbers are extremely hard to solve for x. Without the ‘mod n’ at
the end, we could simply write ‘loga(g)’, but we are dealing with integers and
remainders here—that’s something totally different. Only the name of solution
x is similar to normal numbers: x is the discrete logarithm from g to base a.
We will get back to this in Section 4.5.4.
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For the time being, we are interested in a number-theory theorem that is not
proved here. You presumably remember from school that a number (greater
than 1) is called a prime number if it is divisible only by 1 and itself without
remainder. Fermat’s little theorem applies to prime numbers and states that
if p is a prime number and a cannot be divided by p, then

ap−1 = 1 mod p

holds. Euler proved an important generalization of this theorem, which applies
also to non-prime modules:

A number, m, is relatively prime to n if there is no integer greater than 1,
by which both m and n are divisible. So, 12 and 7 are relatively prime, while
12 and 8 are not. The amount of all numbers from the set 1, . . . , n, which are
relatively prime to n, is called Euler’s function of n, written as φ(n). Fermat’s
little theorem can now be generalized as follows:

aφ(n) = 1 mod n

holds for every natural number, n, and every a that is relatively prime to it.

When n is a prime, then φ(n) = n − 1 holds. We can see that it is actually a
generalization of Fermat’s little theorem.

We can also use Euler’s generalization to compute the modular reciprocal of a
number, i.e., we can determine x that meets

ax = 1 mod n

for given a and n. The solution is x = aφ(n)−1.

This should do for a preparation.

Reaching the Goal With Ease

There is often no direct way to a solution in mathematics; instead, solutions are
found by apparently aimless experimenting. We’ll take good heed of this, and
just see what we can do with Euler’s generalization of Fermat’s little theorem
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as we use it on products of two prime numbers. This is our basic idea: we
know that it is extraordinarily difficult to calculate the prime numbers from a
product, n = pq , of two large prime numbers, p and q. The problem is referred
to as the factoring of n. The difficulty increases as numbers have increasingly
more decimal digits. We might be able to build an asymmetric algorithm: n is
known, and we could somehow encrypt something using this number, but we
couldn’t decrypt it without knowing p and q.

We will first consider that Euler’s function looks like this for all prime numbers:

φ(pq) = (p-1)(q-1).

The proof is simple: there is a total of pq numbers, 1, . . . , pq . Out of these
numbers, the following are not relatively prime to pq : the numbers p divisible
by q, and the numbers q divisible by p, i.e., p + q. We have to bear in mind
that we considered pq twice, since it is divisible by p and q. All other numbers
divisible neither by p nor by q have got to be relatively prime to pq (since p

and q are prime numbers). Thus

φ(pq) = pq - (p+q-1) = (p-1)(q-1).

Consequently,

m(p−1)(q−1) = 1 mod pq (2)

or

m(p−1)(q−1) + 1 = m mod pq

holds for all m that are divisible neither by p nor by q. This could be the
procedure we are looking for: we find two natural numbers, d and e, by

de = (p-1)(q-1)+1 and d,e > 1

and publish e and n. Everybody can calculate the remainder for every number
that is relatively prime to pq , m < pq , which me leaves when divided by pq.
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Let this remainder be the ciphertext; m the plaintext ; and n = pq and e the
public key (i.e., two numbers!). We are the only ones to know d, the private
key (actually this also includes n, but it is not secret). When somebody sends
us ciphertext me (or, more exactly, the remainder from the division by n), then
we calculate plaintext m as follows:

(me)d = med = m(p−1)(q−1) + 1 = m mod pq

The calculation of d from e and n is done by factoring n = pq . Somebody
who does not factor n (i.e., who does not compute p and q from n) cannot
find d either. Is this correct? Isn’t (p − 1)(q − 1) all an attacker needs to find
d? Well, if he somehow managed to compute (p − 1)(q − 1) in any other way,
then he also knows

pq - (p-1)(q-1) - 1 = p+q

so that he can easily calculate p and q from pq and p + q, i.e., he can factor
n. Calculating (p − 1)(q − 1) is not easier than factoring n. And the direct
calculation of m from me means taking the eth root, which is not easier than
computing the discrete logarithm of me to base m, or factoring large numbers.
There might be another way to find d or m, but nobody has found such a way
yet. The most recent work I know was presented at the EUROCRYPT ’98;
but it merely suggests that there could be such a way, without showing the
direction.

All of this looks pretty good, doesn’t it? The only thing is that we have left
two problems unsolved.

Problem 1 : Have you noticed the unproved prerequisite? The reason is that, in
general, there are no two numbers, d and e, with d, e < 1 and

de = (p-1)(q-1) + 1.

For example,

(p-1)(q-1)+1 = 41
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becomes a prime number for p = 5 and q = 11. This problem can be solved.
If e is relatively prime to (p − 1)(q − 1) (a number bigger than 1 can always
be found), then there is a modular reciprocal, d of e, i.e., a d with

de = 1 mod (p-1)(q-1)

(This d is calculated by the so-called extended Euclidean algorithm.) This
translates to

de = k(p-1)(q-1) + 1

for any natural number, k > 1, because

mk(p−1)(q−1) = 1k = 1 mod pq

follows from (2), and we will then still have

mde = m mod pq (3)

Problem 2 : What happens with those m < n that are not relatively prime to
n = pq? A small calculation shows that the equation (3) we are interested in
will nevertheless hold. Proving it is not difficult, so I will demonstrate it.

We know that

tp−1 = 1 mod p and qp−1 = 1 mod p

holds for each t < p according to Fermat’s little theorem, so it also holds for
each k > 0:

tk(p−1)(q−1) = 1 mod p and qk(p−1)(q−1) = 1 mod p.
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We multiply the two equations together and then multiply the two sides by t :

t(tq)k(p−1)(q−1) = t mod p

Now, we remember the above rule that both sides of a congruence and the
module itself can be multiplied by the same number, in this case q:

(tq)k(p−1)(q−1) + 1 = tq mod pq.

Thus (3) also holds for all multiples of q. Analogously, we show the equation
for multiples of p.

As a result, we have derived the RSA method and concurrently proved that it
works.

Using RSA

All you have seen so far were variables, but natural numbers hide behind them,
of course. How can all of this be turned into an encryption method? First of
all, we have to create a key pair:

1. We define a key length; 1024 bits are currently thought to be secure. We
create two different prime numbers, p and q, with a length of at least
1024/2 = 512 bits each (more about this further below).

2. We define an exponent, e. Common values are 3, 17, and 65 537 =
216 + 1 (me can be calculated particularly fast for these special values).
e has to be relatively prime to p − 1 and q − 1. If it weren’t, we would
have to select e, or p and q, differently. But there won’t be a problem
using the three values above for e, since they are prime numbers and
certainly not equal to p or q (for we want p and q to be extremely
large).

3. We use the extended Euclidean algorithm (it won’t be discussed here;
you can find a C program in [SchnCr, 11.3]) to calculate a d by

de = 1 mod (p-1)(q-1).
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The RSA Method

Creating keys:

• Choose two large prime numbers, p and q (e.g., 512 bits long).

• Compose n = pq , where n is N bits long.

• Choose an e > 1 that is relatively prime to (p − 1)(q − 1).

• Use de = 1 mod (p − 1)(q − 1) to calculate a d .

• n and e form the public key, d forms the private key.

Encryption:

• Decompose the plaintext into blocks of N − 1 bits each (the last block may
have to be padded).

• For each block with value m < n, calculate remainder c from me after division
by n.c, this is the ciphertext block, and it is N bits long.

Decryption:

• Decompose the ciphertext into N -bit blocks.

• For each block with value c < n, the remainder from cd after division by n

is the corresponding plaintext.

Figure 4.17: The RSA method.

d is the private key that we will never ever show to anybody. We can basically
forget about p and q now. We will publish their product, n = pq , together with
the exponent, e, as our public key.

As a result, we have created the key. The encryption looks like this:

1. If key n = pq is exactly N bits long, then we divide the text into blocks
of N − 1 bits each (we may have to pad; see Section 5.1.2).

2. We take each block with numerical value m and calculate the remainder,
me, from division by n. This produces the ciphertext block, but has length
N (we can pad it to bring the ciphertext block and the plaintext block
to the same length, if need be).
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We proceed in reverse order for decryption:

1. We divide the ciphertext into N -bit blocks.

2. For each ciphertext block with numerical value c, we calculate the
remainder, cd , from division by n. This produces a plaintext block with
a length of N − 1 bits (we delete the first bit—it has to be 0; otherwise,
there is an error).

We can easily see that RSA is slow: multiplications and calculating remainders
take time with 1000-bit numbers.

How to Create a Key

One question that has remained unanswered so far is very important for the
method’s security and speed: how do we find such huge prime numbers? You
probably know Eratosthenes’ sieve, the simplest method to compute prime
numbers.

We write down all numbers, e.g., up to 1000, beginning with 2:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

We delete all multiples of the first number (which is 2), except that number
itself:

2 3 5 7 9 11 13 15

The smallest number greater than 2 is 3; that’s the next prime number. We
delete all multiples of 3, except 3 itself:

2 3 5 7 11 13

Now we look for the smallest number greater than 3 that’s still left, and so
on. The method works like a sieve: only prime numbers are caught. This is
very effective, for example, if you want to calculate all prime numbers up to
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ten million. Though you’d need ten million storage locations (3 Mbits might
be sufficient), that shouldn’t represent a hurdle today.

With 512-bit numbers, however, you’d overtax all resources. The search can
be simplified if we break away from our idea of 100 % security and make do
with 99.9999 . . . % instead.

With huge numbers like these, it is generally most effective to randomly select
a number in the desired order of magnitude and test whether or not it is a
prime number. If it isn’t, we choose the next number—whether randomly or
deterministically doesn’t matter.

Testing for prime numbers is also done with the help of chance. We will always
get just statements in the form: ‘There is a 50 % probability that the number in
this test is a prime number.’ After 50 independent tests, the error probability
will drop to 2−50, which roughly corresponds to one error in one quadrillion
trials. I will use the test by Rabin–Miller as an example [Rabin]; its hit ratio
is not 50 %, but 99.9 % and better. With long numbers, the error probability is
supposedly smaller than 2−50 after only six tests.

In practice, prime numbers are created as follows:

1. We create a random number with a length of N bits, p (N is the given
key length). We set the first and the N th bits to 1 to make the number
uneven and greater than 2N−1.

2. We check to see whether p is divisible by a small prime number, e.g.,
by a prime number smaller than 256 or 2000. If so, then p is out, and
we have to return to Step 1.

This is faster than discarding, if needed, by the following test.

We represent p in the form p = 2bm + 1, where b should be as large
as possible. It is pretty easy: we set the last bit of p to equal 0; the
number of zero bits at the end is equal to b, and the previous remainder
produces m.

3. We run the following Rabin–Miller test [Knuth2, 4.5.4] six times, for
example:

(a) We randomly select a number, a < p.

(b) We compute z = am mod p. If z is equal to 1 or p − 1, then p

passed the test for this a. Otherwise, we set a counter, j = 0, and
enter into a loop.
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(c) If j > 0 and z = 1, then p is a composite number, i.e., it won’t
pass the test. We start all over again from Step 1.

(d) We increase j by 1 and decide:

• If z = p − 1, then p passed the test for this a.

• If j < b and z �= p − 1, then we calculate z = z2 mod p and
return to (c).

(e) That leaves us with j = b and z �= p − 1: so, p failed the test and
we start again.

Non-mathematicians will presumably find it hard to understand how this test
can work: the residual classes modulo p form a field only for prime numbers
p. In it, each square has exactly two roots; in particular 1 has the roots 1 and
p − 1. As the test runs, number z is continually squared. When it first takes on
the value 1 without previously having taken on the value p − 1, then 1 has to
have a third root, i.e., the residual classes modulo p cannot form a field, and
p cannot be a prime number in this case.

The above test will be rejected with a probability of at least 75 % if p is not a
prime number [Knuth2, 4.5.4]. In practice, things look much more optimistic
(see above).

The costliest operation in this test is computing am mod p in Step (b). Accord-
ing to [SchnCr, 11.5], finding a 512-bit prime number on a Sparc II takes
about 24 seconds; with 1024 bits, this can easily increase to well over 5 min-
utes. Consequently, generating keys for the RSA method is not a matter of
fractions of seconds, even when using modern, faster computers (aside from
the fact that we have to create two prime numbers). But that shouldn’t pose a
problem since it is extremely seldom that we’d have to create keys.

As a sideline, we don’t have to choose p randomly every time. After the first
step, we can cleverly increase p in every step so that divisibility by small prime
numbers, such as 2, 3, or 5, is avoided from the outset.

See [SchnCr, 11.5] for more tests and literature references.

We will now discuss the security of the RSA method. Of course, the security
stands or falls with the possibility of factoring very large numbers; in this case
computing these prime numbers from the product of two prime numbers at an
acceptable cost. People have worked on this problem for decades. Before we
get to it, we will have a look at several other security aspects.
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Risk 1: Identical Prime Numbers in Different Modules

If somebody finds that his module n is not relatively prime to a third-party
module (as we know, the modules are integral parts of the public keys, i.e.,
they are generally known), then this person knows a factor of the third-party’s
module, i.e., he can factor it without any problem. When millions of public
keys have been published one day sooner or later, there will be trillions of
pairs—there could at least be one pair with a common divisor, couldn’t there?

Theoretically, yes; practically, no. The reason is that a well-known prime-
number theorem in number theory says that π(N), the number of all prime
numbers smaller than number N for large N , is described as n/lnN by approx-
imation. More specifically,

π(N) lnN/N

tends toward 1 as N tends toward infinity. This means that, between 2512 and
2513, there are roughly as many prime numbers as there are between 1 and 2512,
and that’s approximately 7.5*10151, a number for which human languages don’t
have a suitable superlative to classify it. So, no risk whatsoever can emerge
from the set of possible prime numbers.

It is much more likely (certainly not ‘only’ 10100 times) that several users
will hit the same prime number due to poorly chosen random numbers. This
risk has to be excluded by most careful implementation of the random number
generation!

Risk 2: Chosen-Plaintext Attack

This brief discussion refers to a cryptographic protocol that will be covered in
Chapter 6, namely digital signatures. Nevertheless, we have to jump ahead a
little since the issue relates to RSA.

In digital signatures, a character string is ‘decrypted’ with the private key
(naturally, gibberish comes out of it). The result can be re-encrypted with the
public key to check it, which means that it has the function of a signature (only
the owner of the private key was able to create this signature).

People who use RSA to decrypt third-party character strings and publish the
results can be compromised. This happens as follows: Eve, the eavesdrop-
per, intercepted one of Alice’s encrypted session keys. From the mathematical
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perspective, she knows c = me mod n, where m is the session key and (e, n) is
Alice’s key. To recover m (and read the entire message encrypted with the ses-
sion key), Eve uses the public key to encrypt any number, r , that is relatively
prime3 to n. Then she takes the ciphertext produced and multiplies it with the
intercepted ciphertext, c:

y = cre mod n

Foisting this y on Alice, Eve asks her for a signature, i.e., decryption. So Alice
computes

yd = cd red mod n

and gives this result back to Eve. On account of

m = cd mod n and red = r mod n

Eve now knows the remainder from dividing mr by n, and can use it together
with the extended Euclidean algorithm to compute m (using this algorithm, she
first solves the equation rx = 1 mod n and then multiplies mr = u mod n by
x: m = ux mod n).

Of course, Eve could have submitted c = me mod n to Alice for signature right
away. That would have been more obvious. In that case, however, though very
costly, Alice could have caught Eve cheating if she’d kept all encrypted session
keys and compared c with these keys. In the attack described here, Alice has
no chance to see through Eve’s intention.

Eve exploits a particularity of RSA, namely that the decryption of a cipher-
text can be derived from the encryption of another ciphertext, though the two
ciphertexts are apparently not related. This is not a weakness of RSA, but of the
cryptographic protocol. With the protocols used in practice, there is no chance
this weakness can be exploited. But knowing about it helps to prevent us from
developing insecure methods.

3If it weren’t relatively prime to n, Eve would have recovered a prime factor of n and reached
her goal.
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Risk 3: Attack Against Small Values of e

Choosing a small value for exponent e in the public key saves computation
time during the encryption, but there are inherent risks. If every user within
a group uses their own modules, but all use a common exponent e, then a
message, m, encrypted by e users, will suffice to reveal m. The same is true
when e(e + 1)/2 linearly dependent messages are encrypted [Hastad].

If there is a risk that this weakness might be practically exploited, then one
can disturb the messages with random bits. The probability that these bits will
prevent linear dependencies is high.

As a sideline, exponent d —the private key—shouldn’t be too small either, but
this doesn’t play an important role in practice.

Risk 4: Attack Against Common Modules

If you now think that all users could use the same module (the keys would then
have to be created centrally) after what was said in the section above, I have
to disappoint you—there are also powerful attacks where even the module can
be factored.

Risk 5: Attack Against the Protocol

At the CRYPTO ’98, Daniel Bleichenbacher suggested an attack against a pro-
tocol called PKCS#1 that is normally used for RSA encryption [BleichRSA].
This attack is practically doable, so it caught some attention, although the threat
is within limited boundaries. I will briefly explain the basic idea.

With the PKCS#1 protocol, an RSA plaintext has the following form:

00 | 02 | pad bytes ... | 00 | plaintext

Bleichenbacher’s attack sends a ‘ciphertext’ to a server that decrypts it. The
server checks whether or not the ‘plaintext’ created has the described format; if
it doesn’t, it returns an error message. And this is the information the attacker
is after. The attacker creates the next ‘ciphertext’ dependent on the previous
replies and sends it again to have it decrypted. We can easily see that this is
a typical adaptive-chosen-plaintext attack (see Section 3.1). Though the author
does not give an exact figure for the trials required, we can reasonably assume
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that between 300 000 and two million ciphertexts will suffice, based on rough
estimates and practical experiments.

Readers with some mathematical knowledge who are interested in learning the
details of this attack find the well-written original article, txt/cryptana/pkcs.ps,
on our Web site.

It is remarkable that Bleichenbacher exploits only the fact that the first two
bytes have the values 00 and 02 when the server does not report an error!
With symmetric algorithms, such a finding would not be a breakthrough, but
RSA can’t be compared with these methods. It was even proved that an attack
which reveals only one single bit of an RSA key can be used to compute the
entire key. It had been known for some time, but Bleichenbacher’s was the
first practicable chosen-ciphertext attack. Until then, such methods had been
considered to be of theoretical interest in the RSA world.

In practice, the attack works on some sufficiently fast SSL servers. In theory,
it can be used to crack even relatively slow servers: if you are lucky you need
only 300 000 requests at 80 requests per second to reach your goal in about
one hour.

The attack works even if the server does not report whether or not the plaintext
created was correct. The reason is that, sometimes, it first checks the format
and then looks for a digital signature. If it finds that the plaintext is not correct,
it normally omits the signature check. Due to the relatively long computation
times, this allows an intruder to mount a special type of timing attack, which
will be described in Section 5.10.

Of course, the attack can be prevented. If the plaintext contains a checksum that
is included in the test, then the attacker has a poorer hand. The requirement
that the server additionally check the length of the data block and the SSL
version is much simpler, without the need to change the protocol. This makes
it less likely for the server to return error messages, and the number of trials the
attacker needs to run increases from one million to one trillion. A yet cleverer
approach would have the attacker prove somehow or other (perhaps by a hash
value) that he knows about the existence of the plaintext. Version 2 of the
PKCS#1 protocol thwarts the attack. The timing attack mentioned above can
also be easily prevented, for example, by always including the digital signature
in the checking procedure (or integrating an appropriate time delay).

Nevertheless, Bleichenbacher stirred things up quite a bit, especially among the
developers of Secure Shell SSH, which will be discussed in Section 7.3.
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Risk 6: Stealthy or Accidental Change to the Private Key

RSA signatures (Section 6.3) are normally determined by the so-called Chinese
Remainder Theorem (CRT). Rather than having to calculate values modulo pq,
they are calculated individually—modulo p and modulo q.

Now, if a bit of either p or q is changed due to a hardware or software error,
the wrong signature thus computed can be used to compute p and q [BonRSA].
This is a dangerous attack. An unnoticed one-time bit error in a register can
cause a disaster.

This can be prevented, for example, by subsequently checking the signature
for correctness, but it requires some computation time. Stealthy changes to
private keys (on smartcards, or if it is XOR-encrypted, as discussed at the end
of Section 7.1) can be reliably detected by using suitable checksums.

Appropriate implementation allows us to prevent the six risks discussed so far,
but not the following risks.

Risk 7: Private Key Stolen

Absolutely clear, you will think—the private key has to be protected as well as
it possibly can. Everything is actually ‘only’ a matter of implementation, but it
is so important that it is listed as a separate risk here. The problem is as follows:
private keys are normally encrypted by their owners (e.g., using a passphrase
like in PHP; see Section 7.1), so they are (hopefully) protected against unau-
thorized access. But some time sooner or later when owners will want to work
with their private keys, these keys form a coherent area in the memory. On
Web servers that establish secure connections over the SSL protocol, private
keys are held in memory even permanently.

Until not so long ago, people thought that private keys were hidden well enough
amidst all those many megabytes of data in memory. The trouble is that keys
have a distinct feature: they look really random, while almost all program code
and ‘normal’ data have a structure. Nicko van Someren and Adi Shamir robbed
people of this illusion when they showed in [SomSham] that these keys can
be found astonishingly fast. At the IHW ’99 convention in Dresden, Germany,
Someren demonstrated just how fast. In fact, searching for a private RSA key
on a hard disk can even be as fast as physically reading the disk! This opens
up ways for a specific attack: hacker methods are used to intrude a Web server,
bring the server down, and analyze the core image created on the disk. The
process can be automated.
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A 128-bit session key can presumably not be found in this way. But 1024 or
2048 bits of ‘real chaos’ do stand out in memory.

As bad as this may sound, don’t panic just yet. A private PGP key on a private
computer is still safe, at least it will be if you are paranoid about disconnecting
from the network as you encrypt it (just joking). With Web servers, however, the
owner should know that a hacker attack can jeopardize the ciphering security
even after the attack’s traces were removed. Generating new keys is part of
damage repair. Someren recommends to keep private keys in hardware only,
and process them only there.

This attack doesn’t actually belong in a book on cryptology, because it is closely
related to computer security, a different (and endless) topic. Nevertheless, I
think the method for finding private keys is closer to cryptanalysis than it is to
computer security. Moreover, it is helpful to know that 1024 bits of randomness
cannot be hidden coherently ‘somehow’ within 2 gigabytes of data.

Risk 8: New Methods for Factoring Large Numbers; Quantum
Computers; Twinkle

The attacks discussed so far are directed against the procedure, i.e., the protocol,
rather than against RSA itself. A cryptanalysis in the sense considered so far
would be successful if we could factor module n. It is assumed that finding the
plaintext from the public key is equivalent to the problem of factoring n, but it
can’t be proved (yet?) [BonVen]. We have seen earlier that finding the private
key enables factoring. But perhaps it is also possible without the private key.

Research work in this field is running at full speed. You may have heard of the
spectacular decryption of a 428-bit number (129 decimal places) in April 1994
[GarPGP, Chapter 4, ‘RSA-129 Solved!’; SchnCr, 11.4]. A group of math-
ematicians under the supervision of Lenstra used a variant of the so-called
quadratic sieve for factoring large numbers and coordinated huge computer
capacities on the Internet: 600 users had 1600 distributed computers work
for over eight months. This corresponded to between 4000 and 6000 MIPS-
years. ‘MIPS’ is a very blurred unit; it roughly means ‘one million computing
operations per second’. This means that a total of 150 billion operations were
executed (whatever that may mean). By the way. . . notice something about
this number? A similar amount of decryptions is necessary to brute-force
attack DES.

This 129-digit number had long been known. Rivest published it as a riddle in
1977; he estimated that 40 quadrillion years would be required to decrypt that
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text. Within a little less time, namely in 17 years, he could read his plaintext
to his great surprise, as nobody had expected to ever see it printed:

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.

But this speaks against the theory rather than against Rivest. This success wasn’t
initially a real risk for the public keys in use. Factoring a 512-bit number would
have taken a hundred times longer (for a key only 84 bits longer!).

However, the theory behind this attack was five years old. Meanwhile, another
variant by the name of number-field sieve (NFS) was developed [Lenstra].
NFS would have made the attack ten times faster. For large numbers with
many decimal digits, the cost for factoring a number, n, by NFS is roughly

e(1923 + o(1)) f(n)

where f stands for

f(n) = (ln n)1/3 (ln n)2/3.

(As usual in higher mathematics, o(1) denotes a quantity the value of which
gradually reduces as n increases.) If we were able to reduce the constant 1923
to 1.5 today, then factoring 1024-bit numbers, which are secure by current
standards, would already be real. But it hasn’t happened yet.

By the time this book goes to print new findings will have been published.
Perhaps somebody may even have made a ‘great breakthrough’, or perhaps
such a breakthrough is not even possible.

People also have great hopes of quantum computers, which will be discussed
in Section 5.9. It is currently believed that, with their help, factoring very large
numbers might become a ‘kid’s game’. Unfortunately, quantum computers have
a serious drawback: they don’t exist yet, and it is in the lap of the gods whether
and when we will ever have one.

Conversely, an opto-electronic device called Twinkle (The Weitzman INstitute
Key Locating Engine) by Shamir appears to be much more realistic. Shamir
introduced it at the EUROCRYPT ’98; he estimates that the device can increase
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the length of breakable RSA keys by 100 to 200 bits. However, Twinkle accel-
erates only the first step (the ‘sieving’) within the factoring process. The second,
much more memory-intensive step doesn’t change.

An improved version of the device was discussed at the EUROCRYPT 2000
[Twinkle]; it is said to help factor 768-bit keys within nine months.
Unfortunately, it requires about 5000 upgraded Twinkle devices and 80 000
standard Pentium-II computers . . .

Anyway, the example of the RSA method shows clearly how much direct
influence current research has on cryptological practice, how much knowledge
is buried in a good implementation, and how open the future of this algorithm
actually is.

Multiprime

The heading of this section is the buzzword a company used at the RSA
Conference 2000 in Munich, Germany, for their product—same security but
dramatically increased performance! What’s behind it? One can modify the
RSA method by working not only with the product N = pq of two prime
numbers, but also by using several very large prime numbers: N = p1p2 . . . pn.
Everything runs analogously, and if the prime numbers used are large enough,
security won’t suffer either. But since the computation time for multiplication
(or raising to power) grows quadratically in line with the bit length, things can
be speeded up; for example, you can do things twice as fast when using four
instead of two factors. That’s all there is to it. Cryptologists had long been
aware of this, they just might have forgotten to tell software developers about
it. So, if a cryptocard takes 25 seconds to encrypt using a ‘classic’ key, then
this might be reduced to 8 seconds when using six factors. It still remains slow.

Patents

RSA was patented in the USA in 1983, and the patent expired on September
20, 2000; it hadn’t been patented elsewhere. RSA is the de-facto standard for
asymmetric methods all over the world, except in the USA. Public Key Partners
(PKP) handle all patents for such methods. This company is part of RSA Data
Security, Inc. and Caro-Kahn. Though free licenses appear to have been granted,
everything remained secret, and no law suit against PKP ended with a non-
appeal judgment. This is probably the reason why much free software, e.g.,
PGP and SSH (see Chapter 7), prefer methods no longer patented, such as the
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Diffie–Hellman or ElGamal method (see next section), which have not been
covered by patents since 1997.

Fortunately, this is all history now; the only thing you should be aware of
when using public-key algorithms in data communication with the USA are
continually relaxing export regulations.

The ElGamal Method

While the RSA algorithm can presumably be cracked by factoring large num-
bers, the ElGamal method is based on the difficulty of computing discrete
logarithms, i.e., determining the value of x from

y = ax mod n

with known base a and module n. This method has two distinct benefits versus
RSA:

1. People who can compute discrete logarithms have also won an algorithm
for factoring large numbers. Theoretically, it is not more insecure than
RSA.

2. In contrast to RSA, ElGamal is not patented, but the PKP patent man-
agement thinks it is covered by the Diffie–Hellman patent in the USA.
This patent expired on April 29, 1997. By the time you read these lines,
ElGamal will presumably be the first non-patented asymmetric algorithm.

After the number-theory preparations above, it is no longer difficult to explain
the algorithm.

We choose a prime number, p, as our module, and a base, g. Both are part of
the public key. (p − 1)/2 should also be a prime number. The private key is a
secret exponent, x < p. We also publish remainder y with

y = gx mod p.

So, the public key consists of three numbers: prime number p, base g, and
remainder y. The secret key, x, is the discrete logarithm of y to base g with
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The ElGamal Method

Creating keys:

• Choose a large prime number, p (e.g., 512 or 1024 bits long), for which
(p − 1)/2 is also a prime number. Let p be N bits long.

• Choose a base, g < p.

• Choose a secret exponent, x < p.

• Compute y = gx mod p.

• p, g, and y form the public key, x forms the private key.

Encryption:

• Decompose the plaintext into blocks of N − 1 bits each (the last block may
have to be padded).

• Choose a k < p that is relatively prime to p − 1. k must remain secret. It can
be created by a program and discarded after use.

• For each block, m, compute two numbers, a and b, as follows:

a = gk mod p and b = ykm mod p

The two numbers, a and b, form two ciphertext blocks of length N .

Decryption:

• Decompose the ciphertext into N -bit blocks.

• For two consecutive a-and-b blocks, solve the equation

axm = b mod p

toward m (using the generalized Euclidean algorithm). m is the plaintext
looked for.

Figure 4.18: Asymmetric encryption by the ElGamal method.
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regard to module p. Though there is an effective algorithm to compute such
logarithms, it only works if (p − 1)/2 itself is not a prime number.

The encryption of a message, m < p, looks a bit unusual: the sender chooses
a random number, k, which must be relatively prime to p − 1, and computes

a = gk mod p and
b = ykm mod p .

The ciphertext consists of two numbers, a and b. The sender won’t tell anybody
the value of k and doesn’t have to know it any more later on. Otherwise,
anybody who knew k could solve the number-theory equation

ykm = b mod p (4)

and find m. Conversely, we know x and can resolve the equation

axm’ = b mod p

toward m′.

axm’ = gkxm’ = gxkm’ = ykm’ = b mod p

holds now, and when comparing it with (4) (and due to the unique solvability
of this equation, modulo p) we can see that m = m′ in any event.

The fact that the ciphertext is twice as long as the plaintext doesn’t matter,
because we only want to encrypt session keys.

The ElGamal encryption is closely related to the Diffie–Hellman key ex-
change, the first method that used public keys (see Section 6.1.1). ElGamal
methods are mainly used for digital signatures. We will not discuss them further
here and refer to [SchnCr] instead.

4.5.4 The Knapsack Story

You may be surprised to learn that the asymmetric methods commonly used
are solely based on the problems of factoring or computing discrete logarithms.
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With that amount of inventive talent, you might think that cryptologists should
certainly have found other methods! Well, they have, and one such story is
worth being told.

Two years after the first asymmetric algorithm was published by Diffie and Hell-
man, Merkle and Hellman proposed another method, the so-called knapsack
algorithm. It takes much less background knowledge than RSA to under-
stand it.

The knapsack problem is mathematically formulated like this: let a number be
a sum, where the summands are taken from a given set of summands. This
can be expressed in more culinary terms: several yummy slices of different
thickness and the same diameter are placed on a table. Pack some of the slices
in a certain cylindrical knapsack (with the width of the slice diameter) such
that the knapsack is filled up to the rim. Which slices have to be packed?

The problem is not always solvable, and when it is, the result is not always
unambiguous. We are mainly interested in making its solution generally difficult
for large knapsacks. We say purposefully ‘general’, because the summands are
very easy to find for specific number sequences. One such number sequence
is, for instance,

1, 2, 4, 8, 16, 32, ...

For example, the representation of 13 as the sum of such numbers can even be
read from right to left from its representation as a binary number (dual number)
in this case. The following holds:

13 = 11012

so we choose the first, third, and fourth members of the sequence above:

13 = 1 + 4 + 8

Solving the knapsack problem becomes generally simple if each summand in
the ascending sequence of the given set of summands is greater than the sum
of all previous summands. Such knapsacks are said to be superincreasing.
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For the solution with such knapsacks, we only have to subtract the largest
possible element from the sum to successively obtain the set of summands
looked for.

How should we use it for encryption, or even for constructing an asymmetric
encryption algorithm? The trick is to transform the superincreasing knapsack
into a normal one. To this end, we choose a secret superincreasing number
sequence, (si)i=1,...,N , from N numbers. We then define a secret module, n,
and a secret factor, k. The module should be greater than the sum of all si
numbers, and k should be relatively prime to n. We multiply the given si
summands by k modulo n. This results in different summands, ti, ti = sik mod
n. The ti compose the public key.

If you want to encrypt, you represent your message as a bit sequence. You
decompose this bit sequence into N -bit blocks. For each block, you compute
the sum of all ti , for which the ith bit in the block is equal to 1. This is the
ciphertext.

But since we know n and k, we can use

kk’ = 1 mod n

to determine a k′.

Multiplying the ciphertext by k′ modulo n gives us those values that would have
resulted had we used the superincreasing sequence for encryption. This problem
is easy to solve. It’s how we reveal the bits of the plaintext (Figure 4.19).

Except for finding k′ and doing the modulo n multiplication, we need no number
theory at all. The rest is almost school arithmetic, and the implementation is
extremely easy, compared with RSA. Beautiful, isn’t it?

Because of this question, you already may have a hunch that the algorithm
is too beautiful. Though some flaws were found, nobody was initially able
to crack the entire algorithm. At the CRYPTO ’82 conference in California,
however, several cryptanalysts claimed they had achieved it. Their attack might
have consisted in transforming the ‘public knapsack’ into the superincreasing
knapsack (this is actually jargon; we are talking of disks = summands that are
packed in the knapsack rather than of the knapsack = sum itself).

In light of these claims, a ciphertext decryption challenge was published as early
as on the first night. All lecturers expounded theoretical problems, but the riddle
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The Knapsack Method

Creating keys:

• Choose a secret superincreasing number sequence with a length of N mem-
bers, (si)i=1,...,N , i.e., a number sequence in which each element is greater
than the sum of all previous elements. N should be at least equal to 200; the
si should be of the order of 10100.

• Choose a secret module, n, greater than the sum of all elements of the number
sequence.

• Choose a secret number, k, relatively prime to n.

• Compute k′ by kk ′ = 1 mod n.

• Multiply all elements of (si) by k modulo n:

ti = sik mod n (i=1,...,N).

• Sequence (ti)i=1,...,N forms the public key; k′, n, and sequence (si)i=1,...,N

compose the private key.

Encryption:

• Decompose the plaintext into blocks of N bits each (the last block does not
have to be padded).

• For each block, compute the sum from those ti , where bit i in the block is
equal to 1. The sum is the ciphertext.

Decryption:

• Decompose the ciphertext into N -bit blocks.

• Multiply each ciphertext block by k′ modulo n.

• Solve the knapsack problem for each number thus obtained with regard to
(si) by successively subtracting the largest possible si from the sequence. If
summand si occurs in the sum, then set bit i in the plaintext block to 1;
otherwise set it to 0.

Figure 4.19: Asymmetric encryption using the knapsack method.
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remained unsolved. Eventually, Len Adleman of MIT (we know him from the
RSA method) took the biscuit. He had brought an Apple II computer along and
solved the task in front of the spectators [GarPGP, Chapter 3, ‘The Rise and
Fall of Knapsacks’]. That was tantamount to a sensation—the computer wasn’t
on the market yet, and ‘real computers’ came with power supply, ventilator,
and line printers back then. And along came this cryptanalyst and solved a
major task on a computer that a single man could carry, and what’s more, with
a neat and clean ciphertext attack!

To make the rest of the story short: improvements were ‘handed in subse-
quently’ over and again, and all of them were cracked every which way. Well,
there are still some unbroken variants around. The question is, for how long?

Actually a pity for such a beautiful algorithm.

4.5.5 Bottom Line

The RSA method is the worldwide ‘market leader’ among asymmetric algo-
rithms. It has been studied for almost as long as DES and except for the basic
problem of factoring large numbers, all known flaws can be avoided by appro-
priate implementation. There are mature strategies for preventing intrusions
like the man-in-the-middle attack. It is certainly easier to forge a 100-euro bill
than to get hold of somebody’s session key if this somebody knows a thing or
two about security and cryptology.

But. I think this ‘but’ is very critical: The private key is a real ‘universal key’.
Compare it yourself (though all comparisons are known to be poor):

The German Wehrmacht published their code books with keys for rounds
monthly. In the event that a code book fell into the adversary’s hands, the
Wehrmacht believed that they could send ‘messages for listening in on’ only
for another month at most.

Public keys are generally changed much more seldom. An unbelievable amount
of messages can belong to one key pair. If these messages include some that
have to remain secret for years, then be careful. If somebody has listened in
on your communication and a genius student discovers a factoring method
after two or three years you are sunk. All your messages will be compro-
mised at once in arrears, because all session keys will then be public (see
Figure 4.15)!

Though this risk is perhaps extremely low, nobody knows. If you communicate
with only one converser and use the symmetric universal-key splitting as shown
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in Figure 4.14, you are on the safe side. If Mallory missed listening in on one
single channel, then he missed the train—you just have to carefully watch
the computer that holds the universal key. All modern symmetric methods
are vulnerable to plaintext attacks at best. Though a DES ciphertext (possibly
encrypted in the CBC mode; see Section 5.1.1) can be recovered by brute force,
methods with at least 64 bits make it much harder, and with 128-bit keys, it’s
an unrealistic venture. Apart from that, the risk mentioned last exists just as
well when using public keys in hybrid methods.

In short: Current asymmetric methods offer a lot of comfort, very high security
and enormous damage when they are compromised.





Chapter 5

Life After DES: New Methods,
New Attacks

We have learned two important and modern encryption methods and know
quite a few things about cryptanalysis. In this chapter, we will undertake an
expedition through the colorful world of modern algorithms. It cannot be more
than a short expedition though, and it shouldn’t be. Moreover, our discussion
will be limited to symmetric methods—you have already come to know the two
popular asymmetric methods in Section 4.5. I refer readers who want to know
about more algorithms and their analysis to the comprehensive and clearly
written work by Schneier [SchnCr].

But before we start dealing with new methods, we will first have a look at
very practical things. To be able to use cryptographic algorithms in programs,
or—more frequently—to evaluate the security of cryptographic programs, you
need to know a thing or two about the implementation of such algorithms.

5.1 Implementation of Algorithms

The best algorithm won’t do any good if it is badly implemented from the
cryptographic viewpoint. This section will discuss three things everybody needs
to know before they embed a cryptographic algorithm in another program:

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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operating modes, padding, and key generation. Moreover, you will learn about
an interesting cryptanalytic attack (the insertion attack against stream ciphers),
and a useful trick.

5.1.1 Operating Modes: ECB, CBC, CFB, and OFB

Together with the DES standardization, four operating modes were defined for
this algorithm. Rather than concerning DES in particular, they are applicable
to all block algorithms. While a block algorithm per se can transform only
one plaintext block into one ciphertext block (and vice versa), these operating
modes specify how a sequence of plaintext blocks should be encrypted. While
the ECB and CBC modes function as block ciphers, the CFB and OFB modes
only use the block algorithm to define a stream cipher.

ECB: Electronic Codebook Mode

You’ve already come to know the ECB mode, just not by its name: plain-
text blocks are transformed successively into the corresponding ciphertext
blocks—that’s all. The name is due to the fact that ciphering is done as if
we were traditional spies using a codebook, and replacing the sensitive words
by other words based on a rigid scheme. Except that, in our sense, these ‘words’
correspond to plaintext blocks, and the codebook would be rather extensive, for
example, when using DES with 264 (18 trillion) entries; in addition, we would
use a different one for each key.

ECB is the simplest way of embedding a block algorithm into a program, but
also the most insecure. Why?

Assume you want to send somebody a secret drawing. You don’t know that
your application works very weakly in this respect: it scans the drawing line
by line and creates only the bit values 0 and 1 for ‘white’ and ‘black’, similar
to a fax machine, but without compression. The rough manual drawing might
be composed of relatively few strokes. The bit stream created would contain
long sequences of zero bits, interrupted by few bits with value 1. You use, say,
DES to encrypt this bit stream and send it over a channel, unaware of the fact
that an attacker is listening. This attacker sees that one ciphertext block occurs
much more frequently than all others. That’s probably the encryption of 64
zero bits, he thinks instantly; the other blocks contain at least one 1-bit. With a
resolution of 180 dpi (corresponding to a dot size of 0.14 mm), the attacker can
easily make out the blackening in the drawing, except for a horizontal deviation
of approximately 9 mm and a vertical deviation of 0.14 mm. That’s very useful
for the attacker!
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You can use the best algorithm on earth, the only important thing for the
attacker is to know that you encrypt in ECB mode. ECB doesn’t blur patterns
sufficiently in plaintext. There are other vulnerabilities. For example, somebody
could stealthily replace ciphertext blocks by others, but the first vulnerability is
bad enough. Nevertheless, many commercial programs are believed to use this
mode. If the question of whether or not they encrypt in ECB or CBC mode
doesn’t mean anything to a vendor of cryptological software, they probably
don’t know much about cryptology.

CBC: Cipher Block Chaining Mode

The idea behind this mode is as simple as it is effective. Before encrypting it,
a plaintext block is XORed with the ciphertext block created in the last step:

Cn+1 = DES(Pn+1 ⊕ Cn)

(As before, Pn denotes the nth plaintext block, and Cn denotes the nth ciphertext
block; ‘DES’ stands for an example of a block algorithm; see Figure 5.1). The
decryption is analogous, we only have to put the ciphertext block aside for the
duration of one encryption step and then XOR it with the created ‘plaintext’:

Pn+1 = DES−1(Cn+1) ⊕ Cn

What happens in the first step? What about C0? We choose C0 randomly and
send it as our first ‘ciphertext’ block! This won’t cause any security risk at

. . .

. . .

. . .IV C1 C3 C4C2

P1 P2 P3 P4

DES DES DES DES encryption

plaintext blocks

ciphertext blocks

Initialization
block

Figure 5.1: Ciphering in CBC mode.
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all—C0 won’t mean anything to a potential attacker. This ‘zeroth’ plaintext
block, C0, is called the initialization vector (IV), a somewhat unfortunate
name; it would be better called the ‘initialization block’.

The CBC mode has several important benefits:

1. Plaintext patterns are destroyed. Every ciphertext block depends on all
previous plaintext blocks.

2. Two identical plaintexts are transformed into different ciphertexts if they
have different initialization vectors, C0. This is normally the case when
C0 was well chosen (sufficiently random). This finally does away with
a common ciphering error: sending an encrypted text repeatedly with
almost no changes, and encrypting the same text with different keys.

3. A brute-force attack against time–memory tradeoff (Section 4.4.1) would
take three times as long as normal because a fixed plaintext block occurs
only with a probability so small it is negligible.

4. CBC can generally also thwart chosen-plaintext attacks. Only an algorithm
vulnerable to normal plaintext attacks is not better protected by CBC.

After all, an eavesdropper knows the ciphertext blocks and, if he learns
the plaintext, he can also recover the input blocks for the algorithm
(i.e., the sums Cn ⊕ Pn+1). But modern (symmetric) methods should be
resistant to plaintext attacks anyway.

Though each ciphertext block depends on the entire ‘history’, a block that was
garbled during the transmission won’t be disastrous: it will turn only two plain-
texts into gibberish. This argument is not always important. The integrity of
data transmitted over insecure channels is today normally ensured by check-
sums and redundancy. For example, the Internet Protocol (IP) resends garbled
data packets; CD-ROMs encode 8-bit information by 14 recorded bits to ensure
that bits missing due to data errors (which happen frequently in practice) can
be computed from other bits.

CBC has several theoretical security flaws, too. First, it is vulnerable to the so-
called bit-twiddling attack. The attacker knows the structure of the plaintext
and wants to change it. For example, he wants to give himself a raise, say from
398 dollars to 16 782 dollars (and quickly disappear once he has received the
pay check). If he can intercept and change the encrypted message before the
receiver gets it, then all he does is change the correct bit ahead of the number
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in the ciphertext block, and the figure is raised by 214 = 16 384. The block
ahead of this block is decrypted correctly. But what users respond to errors?

An attacker could just as well append ciphertext blocks stealthily. Though he
would produce meaningless plaintexts, it is a potential risk.

All these attacks are ineffective if plaintexts are sent with encrypted checksums
(MACs) only. This is an important point to consider in the implementation.

However, CBC has another weakness: it is vulnerable to the birthday attack.
You will learn more about it and its peculiar name in Section 6.3.3. This attack
is normally used in connection with digital signatures. We are now interested
only in the following consideration.

Assume that C2 = C4 in Figure 5.1. In other words, the following holds:

DES(C1⊕P2) = DES(C3⊕P4)

C1⊕P2 = C3⊕P4

C1 = C3⊕ (P4⊕P2)

C1⊕C3 = P2⊕P4

Since an eavesdropper knows C1 and C3, he can compute P2 ⊕ P4. This is
not much, but since Murphy usually has a hand in things, the attacker might
make the right guess from the most important message of all messages ever
sent, since he knows P2 ⊕ P4. You might object that the probability for two
blocks to coincide is negligibly low. Even with blocks only 32 bits long, the
probability would merely be 2−32, i.e., in the order of magnitude of 10−10.
Appearances are deceptive. With 32-bit blocks, about 216 ciphertext blocks
suffice for a likelihood that any two of them are identical. (We will get back
to this issue in Section 6.3.3.) And with the assumed block size, this is only
256 Kbytes of text, not really much for today’s circumstances.

The main reason for this weakness, at least theoretically, is not the CBC mode
itself, because there are similar vulnerabilities in other modes, too. Too small
a block size is the reason. People even mistrust 64-bit blocks, although two
blocks coincide only within 32 Gbytes of ciphertext on average. The reason is
that technologies normally evolve faster than we think. This is why we require
128-bit blocks for future algorithms to be on the safe side. The ‘critical mass’
would then be over 100 million terabytes, which should be sufficient for several
years to come.



210 5. Life After DES: New Methods, New Attacks

CBC got its name because the ciphertext blocks are XOR-chained with the
plaintext.

CFB: Cipher Feedback Mode

To encrypt data traffic between a central computer and its terminals by means
of a block algorithm, neither the simple ECB mode nor the better CBC mode
can be used. Imagine you press the ENTER key at such a secure terminal and
wait for a command to be executed. Like all characters, this ENTER is also
subject to an encryption algorithm. But this algorithm works with 64-bit blocks,
and your ENTER character is the second character in the block just started.
You can quietly go get yourself a cup of coffee—nothing will happen. The
only solution would be to append seven arbitrary bytes to each character and
then send this block immediately. That would cause an eightfold increase of
the data traffic, which is undesirable, of course.

The CFB mode comes in handy here, because it uses a block cipher as a stream
cipher. It’s also pretty simple: the ciphertext block produced in the previous
section is re-encrypted and XORed with the plaintext block. The result is the
new ciphertext block. Mathematically, it looks like this:

Cn+1 = Pn+1 ⊕ DES(Cn).

(The names remain the same as with the CBC mode; as a reminder, ‘DES’
stands for a block algorithm; see Figure 5.2.) Again, we begin with a random
initialization vector, C0. But we can now encrypt every byte (and even bit)
of Pn+1 instantly, because DES(Cn) is known. Once the eight plaintext bytes
from Pn+1 are read and encrypted, we compute DES(Cn+1), and start the game

DES

P1 P2 P3

C1 C2 C3

DES DES

IV

Initialization
block

. . .   ciphertext blocks

. . .    encryption

. . .     plaintext blocks

Figure 5.2: Ciphering in CFB mode.
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all over again. In practice, something like this is implemented with a shift
register, which is re-encrypted, for example, after each plaintext byte read (the
ciphertext byte produced is pushed into the shift register from the right-hand
side). Instead of ‘bytes’, we could also use ‘a fixed number of bits’.

We won’t deal with the details of using CFB as a stream cipher any further
here, but instead direct our attention to two facts:

1. The block algorithm is used only to encrypt both when ciphering and
deciphering in CFB mode; its reverse (denoted DES−1 in CBC) is not
required. This is interesting for the hardware aspect when using algo-
rithms other than DES, but also in the following respect: all UNIX
systems have to have a DES encryption function, or logging into the sys-
tem wouldn’t be possible (see Section 3.3 and Figure 3.4). Conversely,
the DES decryption was not available in cryptological software outside
the USA due to export restrictions. Those who use DES ciphering in CFB
mode are not interested in it! This is an absurdity similar to the export
ban of UNIX-crypt in view of the existence of CBW (Crypt Breaker’s
Workbench; see Section 2.5.3).

2. Similar to the CBC mode, initialization vector C0 should be different for
each data stream.

The name ‘CFB’ is due to the fact that the ciphertext created is fed back to the
‘encryption unit’, i.e., it is re-encrypted.

OFB: Output Feedback Mode

In CFB mode, the output of the block algorithm is XORed with the plaintext
and then fed back to the block algorithm. If this feedback is done before rather
than after the XOR, we obtain the OFB mode:

Sn+1 = DES(Sn)
Cn = Sn ⊕ Pn

The initialization block is called S0 here. The sequence (Sn) is used like a
one-time pad (see Figure 5.3). This means that, rather than feeding the cipher-
text back to the ‘encryption unit’, OFB feeds back the output of this unit
itself—hence the name output feedback.
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IV
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block
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Figure 5.3: Ciphering in OFB mode.

Compared with CFB, this mode has an important benefit in some situations:
the sequence (Sn) can be computed independently of the plaintext. This is
interesting for online encryption over fast message channels, of course, but also
for optional access: if all interesting Sn blocks are cached in main memory,
or if they can be computed fast, we could pick out arbitrary ciphertext blocks,
Cn, and decipher them immediately. This is exploited by the crypted file system
(CFS) under UNIX (see Section 7.4); it also lets you encrypt databases.

However, the OFB mode is dangerous: when the same key and the same ini-
tialization vector, S0, are used to encrypt two different texts, and an attacker
knows parts of a plaintext, then he can use these parts and the pertaining
ciphertext passages to easily XOR-compute the corresponding key blocks. The
attacker can then learn parts of the remaining plaintext. This is the reason why
every data stream must have a different S0. This is necessary also to prevent a
possible active attack; more about this in the following section.

Protection Against Active Attackers

It is well known that cryptanalysts try to get unauthorized hold of plaintexts
and/or keys. Conversely, active attackers may not do any cryptanalysis at all
(but have to have an understanding of it); they actively intervene in the data
traffic, trying to exploit things to their liking.

For example, an intranet is often connected to the outside world over one sin-
gle computer. This computer (often only the special software on it) is called
a firewall, since it is supposed to protect the internal network against hacker
attacks from the outside like, well, a firewall. The administrator of this firewall
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computer can use a program to stealthily intercept and modify data packets.
The situation is totally different, for example, with cell phones in the Ger-
man D- and E-networks. Phone calls are radioed to the next base station in
encrypted form, and malicious swapping of data packets would be a technical
masterstroke.

The modes introduced above are vulnerable to active attackers at different
degrees. The ECB and OFB modes make it relatively easy to swap data blocks.
In the CBC and CFB modes, only the first and last blocks can basically be
swapped. Therefore, checksums appended to plaintexts should never be in the
last block.

Similarly to all stream ciphers, where the key stream (which is called (Sn) in
OFB) does not depend on plaintext, the OFB mode is prone to a dangerous
active attack, referred to as an insertion attack:

The attacker intercepts the ciphertext, but doesn’t initially know any bit of the
key sequence and the plaintext. If he is successful in introducing a few bits or
bytes into the plaintext and in intercepting the ciphertext encrypted with the
same key sequence, then he can compute the key sequence and the plaintext
from the insertion point onwards! This is relatively easy.

The first encryption produces ciphertext blocks Ci from plaintext blocks Pi ,
XORed with keys Si :

P1 P2 ... Pi Pi+1 Pi+2 ...
⊕ ⊕ ⊕ ⊕ ⊕
S1 S2 ... Si Si+1 Si+2 ...
= = = = =
C1 C2 ... Ci Ci+1 Ci+2 ...

The attacker introduces a known block, P *, after Pi . The cipher looks like this
now:

P1 P2 ... Pi P* Pi+1 Pi+2 ...
⊕ ⊕ ⊕ ⊕ ⊕ ⊕
S1 S2 ... Si Si+1 Si+2 Si+3 ...
= = = = = =
C1 C2 ... Ci C’i+1 C’i+2 C’i+3 ...
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He uses this to compute the following, in this order:

Si+1 = P* ⊕ C’i+1 from the second scheme,
Pi+1 = Ci+1 ⊕ Si+1 from the first scheme,
Si+2 = Pi+1 ⊕ C’i+2 from the second scheme,
Pi+2 = Si+2 ⊕ Ci+2 from the first scheme

and so on. Since such a stream cipher actually works bitwise, the division in
‘blocks’ is arbitrary in this context. A block can be one bit long, or 8 or perhaps
31. Moreover, even changes to Pj for j ≤ i play only a secondary role; the
only important thing is that bits are introduced deliberately.

This opens up ways for the following practicable approach: the attacker—let’s
call him Bond—had himself hired by a suspect company, knowing that an
encrypted message he’d previously intercepted placed an order for hot goods
with Gun Services & Partner. That company’s contact, Müller, has been under
surveillance by the secret service for quite some time. During a date with his
company’s attractive secretary, Bond mentions incidentally that he had recently
put his foot right in it with him, because he had spelled Müller’s name wrongly:
it should actually read ‘Mueller’, and the man was known to be finicky about
correct orthography. The following day, Bond promptly intercepts an encrypted
message to Gun Services & Partner that coincides with the previous message,
except in a certain place. He correctly assumes that the first differing byte
came into being as the ‘ü’ was changed into ‘u’, and an ‘e’ was inserted after
it. Since the name ‘Müller’ occurs only once in the plaintext—at the beginning
of all places, Bond can decipher almost the entire order for an illegal weapons
shipment, except for an addition in the second message, which was probably
an apology for the wrong spelling.

The best methods are worth nothing to people who handle cryptology so laxly.
They should also take more interest in whom their attractive secretaries date.

This attack was only possible because the same key sequence (Sn) was used in
both bases. This shows how important it is to choose a different initialization
vector for every message.

Other Problems

So much for active attacks. Another aspect is the potential error propagation.
All modes discussed here are designed such that a transmission error (gar-
bled blocks) can turn no more than two plaintext blocks into gibberish when
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decrypted. Synchronization errors, i.e., missing bits or blocks, are harder to
deal with. In fact, only the CFB mode can handle these errors. It is presumably
better to have a transmission protocol that excludes such errors from the outset,
rather than leaving the consequences up to the ciphering mode.

Another problem relates to parallelism. It has enormous practical significance:
network connections are getting increasingly faster, and encryption turns into a
bottleneck during data transmission. Of the modes introduced above, only ECB
supports the encryption of several blocks in parallel, i.e., it lets you operate
several ciphering units in parallel.

There is an interleaved CBC mode that also allows you to run several encryp-
tions in parallel. To this end, we decompose the data stream into about five
smaller streams, for example, arranged by block numbers as follows:

1st data stream: 1,6,11,16,...
2nd data stream: 2,7,12,17,...
...
5th data stream: 5,10,15,20,...

We take each data stream and encrypt it with its own chip in CBC mode.

There is a large number of other ciphering modes, in addition to the ones men-
tioned above. For example, the security software Kerberos 4 uses a mode called
PCBC (Propagating Cipher Block Chaining), where the plaintext block,
Pn+1, is XORed not only with Cn, but also with Pn. This mode guarantees
text integrity, which is important because an error in parallelism propagates
through all subsequent blocks. However, this feature is ineffective when two
successive blocks are swapped. Due to this theoretical weakness, PCBC is no
longer used in Kerberos 5—details of the other modes are found in [SchnCr]
and [NISTmod].

Another unanswered question is the cryptanalysis of these methods. It is easy
to understand that one cannot generally decide whether the use of CBC, for
example, would make an encryption method more secure or more insecure.
The latter is unlikely to be the case with modern algorithms. The purpose of
ciphering modes is not to improve an algorithm, but to make its use more sturdy
or possible at all: ciphering errors like the repeated sending of the same plaintext
become ineffective thanks to careful CBC implementation; single bytes can
be transmitted in encrypted form in CFB mode, although one uses a block
algorithm.
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5.1.2 Padding in Block Algorithms

When implementing block algorithms, we generally hit an apparent side prob-
lem relatively late: what should we do with the last block? If we use the block
algorithm as a stream cipher (CFB and OFB modes), we work bytewise and
have no problem. Things look differently with blockwise encryption, e.g., in
ECB or CBC mode. In general, the length of the plaintext is not a multiple
of the block length so that we have to pad the last block when using either
of these modes. In doing so, we don’t want to bargain it with cryptological
insecurities, of course. This task is less simple than it looks.

If the structure of the plaintext is such that its end is uniquely marked, e.g., by
ˆZ in text files under MS-DOS, then we can pad the last block with random
characters without running a risk. Unfortunately, the plaintext end is not always
marked. We will often have to encrypt a binary file, and the end of such a file
is determined only by the file length, for example, in UNIX. We also have to
assume that arbitrary characters and patterns can occur in the plaintext, i.e., we
cannot ‘invent’ an end identifier and simply append it.

Luckily, there is a very simple method recommended when a few bytes more
in the ciphertext won’t matter: we pad the last plaintext block with random
bytes, and accommodate the number of filler bytes in the last byte:

Each_blo| ck_conta | ins_8_ch | aractersXX3

Here we have used ‘X’ for padding; there are three additional bytes, together
with the ‘count byte’. It is not important whether this last byte includes the
character ‘3’ or the numerical value 3 (corresponding to ˆC)—the main thing
is that the statement is unambiguous, and that the receiver program can handle
it: it first decrypts all blocks, then looks at the last plaintext byte and truncates
the number of bytes from the end.

Unfortunately, this method is inelegant when the plaintext just about fills the
last block. In this case, we have to append a ‘dummy block’, the last byte of
which has a value of 8 when using 64-bit blocks.

And here is another drawback of this method: the ciphertext is longer than the
plaintext. This is undesirable, for example, when a subsection in the middle of
a file (or a database) is to be encrypted.
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Figure 5.4: Ciphertext stealing in ECB mode.

To this end, Daeman [Daeman] developed so-called ciphertext stealing in
1995. I will explain this method for use only with the simple ECB mode
(Figure 5.4): the last plaintext block, Pn, is shortened; let it be 11 bits long.
We truncate the left 11 bits from the last ciphertext block but one (denoted
Cn in the figure) and use them as the last ciphertext block. We append the
remaining bits (C′ in Figure 5.4) to Pn on the right-hand side and obtain a
full plaintext block, and use its cipher as the last ciphertext block but one.
This means that the last, short plaintext block ‘steals’ some ciphertext from the
previous step, hence the name of this clever method.

Together with the CBC mode, ciphertext stealing is almost identical, except
that C ′ is not appended to Pn. It suffices to use zero bits to pad Pn to the full
block length—thanks to XORing with the previous ciphertext block (‘Cn|C ′’
in Figure 5.4), C′ appears nevertheless as if it were appended to Pn before the
encryption.

From the programming point of view, ciphertext stealing is less cumbersome
than the simple padding mentioned at the beginning of this section: we always
have to have the last ciphertext block but one readily stored since we don’t
know in advance which plaintext block will be the last one. Moreover, the
natural sequence of the ciphertext blocks is broken up in the last step.
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We can see that ciphertext stealing allows us to substitute things ‘in place’. With
the CBC mode, however, we would have to accommodate the initialization
vector (IV) elsewhere, or be able to compute it from the context any time (for
databases, for example, from user and record numbers).

5.1.3 Integrating Checksums

When the encryption does not have to be done ‘in place’, i.e., when ciphertext
and plaintext don’t have to have the same length, it is recommended to append
a checksum to the plaintext: it allows us to check the text integrity at any given
time. This is certainly nothing new to you.

But there is another practical situation where encrypted checksums can come
in handy: suppose you have an encrypted file many Mbytes long and you want
to edit the pertaining plaintext. If you enter a wrong password, the deciphering
algorithm will create a ‘plaintext’ all the same, though it will be anything but
‘plain’. At the very end of the encryption, your program may find that the
checksum is not correct and ask you to enter a new password. Meanwhile, it
has created one more ‘dead data body’ and consumed considerable computer
resources for nothing. Or perhaps the program works without checksums, and
you will painfully notice your error when you first attempt to edit the plaintext.

This is annoying and user-unfriendly. Wouldn’t it be simpler if your program
were to refuse wrong passwords right away without risking the security? It is
possible, and the trick is even very simple—you just have to first recognize
the necessity.

We choose a random block, I0, and encrypt it; we obtain a block I1. We put
both blocks—I0 and I1 —in front of the plaintext and encrypt the plaintext
thus expanded. I0 becomes C1, I1 becomes C2, and P1 eventually becomes C3,
and so on (see Figure 5.5).

During the decryption process, we stop after the computation of plaintext block
I1 to check whether or not C0 coincides with I1. If it doesn’t, the password
has got to be wrong; if it does, then there is a high likelihood that it is correct.
A theoretical drawback of this method is, however, that the plaintext block
I1 = C0 is known. But resistance to plaintext attacks is taken for granted in
modern methods anyway.

Numerous variants are possible here: with the CBC mode, we can use I0 directly
as the initialization vector. We encrypt the first two blocks, I0 and I1, as shown
in Figure 5.5 in ECB mode, and then switch to CBC from the third block
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Figure 5.5: Fast password check during decryption.

(i.e., from plaintext block P0) onwards. I find the trick to put two identical,
random blocks in front of the plaintext and encrypt the product in CBC mode
even more elegant. However, the statement ‘the first two plaintext blocks are
equal’ can be similarly valuable for an attacker as the statement ‘the first
plaintext block consists of zeros’. This might actually be the reason why the
PGP program discussed in Section 7.1 repeats only 16 bits of the first 64-bit
block.

In my RC5a implementation, I use several input blocks, append a checksum,
and have a block follow that contains only the release number of the algorithm.
The actual plaintext begins only after that block. This arrangement facilitates
a later migration to other algorithms or variants of RC5. More about this issue
in Section 7.6.

When encrypting ‘in place’, however, such tricks are not easy to implement—
the checksum and the initialization vector have to be accommodated in different
places. Where exactly depends on the application.

5.1.4 Generating Keys

A particularly important aspect in implementing encryption methods is the
careful choice of keys. We’ve already learned the risks inherent in reduced key
spaces in Sections 3.2 and 3.3. In this section, we will look at another example
and then discuss how such mishaps can be avoided.

The Netscape Story

A downright dramatic example of a reduced key space became public in mid-
1995 when Ian Goldberg and David Wagner, then Berkeley graduate students,
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discovered a flaw in the popular Netscape Navigator Internet browser. For
example, you can send encrypted credit card numbers through Netscape. To
this end, the program creates 128-bit session keys and uses the symmetric RC4
method, which is probably still ‘impermeable’ (see Section 5.6). Within the
USA, 128-bit keys may be used for RC4, while only 40 bits are effectively
variable in export versions due to export regulations (the SSL standard used in
Netscape ships 88 key bits along within the plaintext). Even 240 is still a pretty
large number—approximately 1012 or one billion. With so many keys, brute
force won’t presumably be worthwhile unless the plaintext is really interesting.
Even with one million trials per second (which, I think, is not realistic on current
computers in view of the required tests for plaintext), a computer would be busy
for 11.5 days; but it might be busy even for six months. . .

As it appeared, the random-number generator for Netscape’s session key was
not random enough, at least under the Solaris and HP-UX UNIX systems. It
was initialized with one quantity that depended on the system clock (with a
microsecond accuracy) and on the identification numbers of the current process
and the parent process (PID and PPID). This resulted roughly in a variation
width of many trillion (1018) possibilities. However, if somebody else had
access to the same computer, then this other person could easily find the user’s
PID and PPID. In addition, that person had no problem determining the sys-
tem time at least at minute’s accuracy, which left a few umpteen million (107)
possibilities. In other words, the variation width dropped by a factor of 1011,
i.e., 100 billion! The fact that Netscape actually used good ciphering algorithms
didn’t matter any more. Even if Netscape had done highly complicated compu-
tations with the initial numbers, 107 input values supplied ‘only’ 107 possible
keys for trying. Even with only 1000 trials per second, a computer would have
been through with them after three hours! But things were even ‘better’ in
practice: often enough, the time in a computer cannot be measured exactly to
the microsecond, e.g., only in 10-ms intervals. This will earn you another four
orders of magnitude; the computer takes only 10 seconds. With that speed, a
full brute-force attack would have taken over 30 years. I think there is hardly
a better way to demonstrate more vividly what effect a reduced key space
can have.

Since this specific case concerned credit card numbers, such an attack was
worthwhile indeed. Netscape responded in exactly the way you’d expect from a
manufacturer: rather than suing Goldberg and Wagner for illegal code reassem-
bling, they admitted it was their fault and removed it immediately. This served
the general public best. Except for large and experienced corporations, it is
probably always best to have security studied publicly.
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In general, there are two specific points where we have to be particularly careful
when creating keys: when session keys are generated automatically, and when
keys are entered manually. We will deal with the first point in the next section.

Creating Session Keys—ANSI X9.17

If you have a secret corner on your computer that really nobody can look into,
then I recommend you to create keys based on ANSI standard X9.17 (published
in 1985). Though this standard specifies DES only as block cipher, you can
use any other block algorithm. As usual, we denote EK(E = encryption) as
the encryption with key K below.

Using this ANSI standard, we define a very secret key, K , and a secret initial
value, V . We store the two values in that secret corner on our computer.

The procedure creates keys continually. In every step we have to determine a
timestamp, T (more about it below), and compute a key, S:

S = EK(EK(T) ⊕ V)

Subsequently, we determine a new V :

V = EK(EK(T) ⊕ S)

and also put it away in the secret corner (Figure 5.6).

If the bit count of S does not coincide with the number of bits required for
the key, we delete bits from S, or create several S keys and concatenate them.

EK

EK

EK V

SV

T
“time stamp”

Initialization

new Initialization

key created

K
secret key

Figure 5.6: Creating session keys according to ANSI standard X9.17.
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The result of either of the two equations depends on three quantities: K,T ,
and V or S. This means that, if we choose T for K and V ‘very randomly’,
an attacker has no chance, even if he were to find K and V .

No question, the method was carefully designed and studied. But also no ques-
tion excessive security can be effectively annihilated if the implementation is
bad. For example, a programmer might take the term ‘timestamp’ too literally
and make the set of possible secret keys K too small, thus producing a strongly
reduced key space. It would be theoretically sufficient if the timestamp or the
secret key were taken from a sufficiently large set of values.

The problem of finding a ‘secret corner’ on the computer is not a cryptological
problem, but one that belongs to system security. K is normally created with
a ‘sufficient amount of randomness’ when the program is started. More about
this issue in the next section.

‘Computer Randomness’

Randomness in a computer is usually not desirable, for example, when a Win-
dows computer crashes purely by chance. On the other hand, you will find that
creating randomness in a targeted way is not as simple as it may sound. This is
not a matter of the statistical properties of randomness. We are only interested
in preventing an attacker from anticipating or guessing the values created.

There are many ways to utilize pseudo-random events. However, this depends a
lot on the operating system and the computer type used. We cannot discuss such
programming techniques in generalized form. You will find some suggestions
in Figure 5.7.

Password Selection—the Trick with Wait Times

If you program a password entry yourself, you should absolutely prevent users
from entering ‘bad passwords’ in the program! Think of the experience peo-
ple had with the Enigma: only the establishment of appropriate work rules
made the radio operators think of keys better than ‘aaa’, ‘asd’, ‘sdf’, etc. Only
an alarmingly small number of users I watched as they logged into a UNIX
system typed long passwords. Older systems allowed users to use very short
passwords and, well, many chose two-letter passwords. One single letter may
have appeared to them to be too risky after all.

By the way, there is a trick that let’s you live well with a one-letter password,
but only in one special case. I wrote myself a program that locks the screen
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• System time.

• Interrupt vectors or status information of the system: under UNIX V.4, for
example, the output of ps-elf. Even more clever is the method by Wietse
Venema, which he uses in his famous SATAN program (to check the security
of UNIX systems); here modified for Linux:

#!/bin/bash
(ps axl & ps -elf & netstat -na & netstat -s & ls -lLRt

/dev & w) 2>&1 | \
md5sum | { read word rest; echo $word; }

All six commands run concurrently in the background; the sequence of their
outputs is not predictable. Each command describes a current system state.
Error outputs (due to undefined switches) don’t play a role.

• Values of non-initialized variables (this is an insecure and rather weak ran-
domness, but it can be utilized: the values are sometimes hard to predict under
UNIX).

• User keyboard entries. The time intervals between keystrokes are measured
exactly as permitted by the computer. The keys pressed can also be included
in the evaluation. For several dozen keys pressed, the value created will meet
a high demand.

The method is well suited for one-time initializations. It is used, for example, in
the PGP software package to create an initial value for searching prime numbers.
Conversely, it would be cumbersome to have to chaotically clatter on the keyboard
upon each program start. PGP stores values created in encrypted form.

• Air turbulences in hard disk boxes are believed to also have been utilized for
random generation.

• External random sources such as speech input, Geiger counters, seismometers,
and many more can also be used—but there is a drawback since additional
hardware is required.

• Arbitrary mouse movements are suitable, too; but not every computer user
works with the mouse.

Figure 5.7: Some pseudo-random events a computer could poll.
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temporarily via password [Woblock]. I choose a different password every time
myself. Anybody unauthorized who wants to work at my terminal waits three
seconds after the first attempt fails, six seconds after the second attempt, then
12 seconds, then 24 seconds, and so on. Even if that person knew, for example,
that I enter only one lowercase letter, the average brute-force attack against the
26 possibilities would take 3 ∗ 214 seconds or 13.5 hours on average—not a
promising outlook, since by that time I’ll have caught him. The main draw-
back of the program is that roguish or malicious colleagues could press a
wrong button every now and then during my absence (though I took care that
keystrokes are not recorded). Upon my return, there would be a wait time of
just about 213 seconds. . .

But let’s get back to ‘correct’ passwords. You should test for the following:

• The password should not be too short (e.g., six characters minimum).

• It should contain not only letters, but also special characters.

• It should not have a simple structure (examples are X.X.X. or aaa,,,).

• And finally, it should not be a word (test against a big dictionary, or
demand the occurrence of impossible or rare digrams).

Have a look at Figure 3.6: all these variations and many more can be tested
automatically!

On the other hand, if you overstep the mark, you will most likely achieve the
opposite: users will write down their passwords. This is a misery. There are
two simple ways out of it:

1. If your system processes short passwords only (for example, often only
eight characters under UNIX), then memorize a crazy sentence and use
the first letters of its words and the punctuation marks. For example, I use
the superuser password ‘ImRbnje!’ on all UNIX computers I administer;
that’s short for ‘In meinen Rechner bricht nie jemand ein!’ (Nobody
breaks into my computer!). Well, don’t take it literally.

2. I’m crazy about these things called passphrases in PGP, and Schneier
[SchnCr] also uses that name, while GnuPG call them mantras. A
passphrase is a simple sentence, like the one above, or a fraction
of a sentence (a phrase). The program sees a passphrase simply as a
long password. When using passphrases, a dictionary attack appears to
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have no chance, unless you use a quotation from a book that has been
stored electronically (there are even bible CDs and movie dialogs on the
Internet!). The crazier the better; typos are allowed and even desired.

If you write the ciphering program yourself, you should allow for passphrases.
Passwords would be possible anyway as a special case, for conservative users.
If your algorithm wants a 128-bit key, then use the passphrase to build a suitable
checksum. This is called key crunching.

The only problem with a passphrase is entering it. You normally type a pass-
word blindly. Unfortunately, blind typing of entire sentences is pretty hard for
some people. PGP allows you to make your input visible in exceptional cases.
It doesn’t mean that somebody wants to look over your shoulder (there are
telescopes!). It might be helpful to always display the passphrase in a small
window pane (e.g., 5 characters) that scrolls horizontally. Should somebody
watch you they won’t be able to quickly read it as they pass by, and it helps
people who have to look at what they type.

5.1.5 Bottom Line

This section has certainly showed you that the implementation of security
software requires all kinds of tricks. Apart from purely cryptological criteria
(such as modes or padding), you also have to bear in mind the entire security
environment: password entry, managing secret data, key space size, and so on.

In general, you will probably not want to implement encryption programs your-
self, but rather understand and evaluate their security problems. Well, now you
have learned a few problems you should be aware of when buying such soft-
ware. A software vendor should know how to deal with your questions. If they
don’t, or if they even keep the algorithm used hidden, then be as suspicious as
you can afford in view of the market situation.

5.2 DES Modifications

Returning to our discussion of algorithms, we still remain in the DES envi-
ronment. Based on current knowledge, brute force is still the only practicable
attack against this method, i.e., its only exploitable vulnerability is its too short
a key length. The slight suspicion whether or not the NSA built in a back-
door in DES remains, of course. There has not been a shortage of attempts to
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remove this drawback and concurrently utilize the careful design of DES. You
will find two results of these attempts later in this section and a large number
of additional ones in Schneier [SchnCr, Chapter 13].

5.2.1 Triple-DES

The most obvious means against short keys is multiple encryption with different
keys. For example, using Double-DES encryption, we would choose a 112-bit
key, and split it into two subkeys, K and K ′, and then encrypt each plaintext
block, P , with K and then once more with K ′:

C = DESK’(DESK(P))

No brute force is possible against a 112-bit key. This method can be easily
implemented in software, and it is slower than DES only by a factor of 2
(with a security 72 quadrillion times larger). To build a ciphering device, all
we actually need to do is switch two DES chips in series and then feed them
with subkeys separately—no problem at all.

These considerations are pretty obvious, and as usual in cryptology, obvious
views are wrong—here too. Considering this generality, we cannot say that
double encryption is more secure than simple encryption. First of all, it could
well be that there is a (56-bit) key, K ′, so that the following holds for arbitrary
plaintext blocks, P :

DESK′′ = DESK(DESK′(P))

In that case, multiple encryption would not be more secure than simple encryp-
tion to fend off brute force; only dictionary attacks would get harder. Algo-
rithms that always have such K ′ keys are said to have group property or
to form a group. (Actually not a well-chosen name, because, in mathematics,
there is always a single element that belongs to a group. In our case, this would
be the identity. A key where the plaintext transforms onto itself doesn’t have
to exist in arbitrary algorithms with group property.)

DES does not form a group. Though an algebraic operation is defined on
the set of mappings defined by multiple encryption as a result of consecutive
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encryptions, this set, together with this operation, does not form a mathematical
group. It is quite possible that this algebraic structure offers vulnerabilities for
cryptanalysis. To my knowledge, no such vulnerabilities are known; one doesn’t
probably even know whether or not consecutive encryptions can produce an
identity (i.e., the original plaintext again)—except for the six pairs of semiweak
keys from Section 4.4.3.

Let’s not stumble about in the gray zone and instead look at a more substantial
theory in the following section.

Man Meets in the Middle

There is a method to cryptanalyze double encryption. It is a brute-force attack
combined with a known-plaintext attack. The cryptanalyst meets virtually in the
middle between the two encryptions. On the one side, he encrypts the known
plaintext with all keys; on the other side, he decrypts the ciphertext. The two
results should coincide in the middle. This is the reason why this method is
referred to as a meet-in-the-middle attack, not to be confused with the man-
in-the-middle attack, where public keys are exchanged (see Section 4.5.2).

Two plaintext–ciphertext block pairs are basically sufficient for this attack. The
idea is very simple:

Suppose a plaintext block, P , and the corresponding ciphertext, C, produced
from a double encryption, are known:

C = DESK(DESK′(P))

We encrypt P with all possible keys, K ′, and save the results. We then decrypt
C with all possible keys, K , and see whether or not the deciphered product
occurs in the ciphers created. If it does, then we test the two keys, K and K ′,
on a second (C, P ) pair. If K and K ′ pass this test, then it is very likely that
they are the correct keys. We can now run other, more elaborate tests.

Rather than trial-and-error testing all K for every K ′, i.e., working our way
though 256∗256 possibilities like the wise men of Gotham, we save the results
for all possible 256K ′ keys and test for possible Ks up to 256 times, so that the
time required is now only 256 + 256.
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Figure 5.8: Meet-in-the-middle attack against double encryption.

Though our calculation is a bit cleverer than that of the wise men of Gotham, it
is stuck on a naı̈ve level. You know that 256 plaintext blocks correspond to an
order of magnitude of 576 million Gbytes. As mentioned in Section 4.4.1, this
could be stored, for example, on 850 million CDs. (However, we would need
a different set of CDs for every plaintext block, P, . . .) This data record has
to be looked up 256 times, i.e., roughly 72 quadrillion times. There are very
effective search strategies—arranged in a binary tree, we would find every
entry in 56 steps at most—but these methods work at a snail’s pace, unless the
data is on fast hard disks or even in memory. Even if there were such as thing
as a superfast, superdense optical memory that required only one square with
an edge length of 1 µm for every bit and where every bit could be addressed
directly, then the bits of this memory required would still fill a square with an
edge length greater than 2 kilometers.

In short, the attack is totally unrealistic in practice. Nevertheless, double DES
encryption is an unloved child. Of course, theoreticians get upset when the double
cost theoretically yields only a tiny fraction of the effect intended. There might
be other considerations. In any event, triple encryption is commonly used today.

Triple-DES

The DES developer Tuchman proposed a method called Triple-DES, or 3DES,
in 1979. Let us use two DES keys, K and K ′, again. We use the first key, K ,
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to encrypt the plaintext, and then use the second key, K ′, to decrypt the result
to finally encrypt it with K again:

C = DESK(DES−1
K′ (DESK(P)))

The receiver uses K for decryption, K ′ for encryption, and K for re-decryption.

The decryption in the middle part may be somewhat surprising, but the reason is
obviously only the compatibility with the simple method: Triple-DES turns back
into the usual DES cipher for K = K ′. This allows a ‘triple ciphering device’
to talk to a ‘simple ciphering device’ without the need to change anything
(except the key selection).

There are meet-in-the-middle attacks here, too, which are faster than brute force
for 112-bit keys. Schneier suggests using a separate key in each of the three
steps rather than the two keys, K and K ′, to prevent this type of risk.

However, if there were an effective attack against DES—the notorious ‘back-
door’—it might well be that multiple encryption won’t help either. Think only
of the combined Vigenère cipher and transposition discussed in Section 2.2.5,
which can be broken almost as easily as any one of the single methods.

But we are stumbling about in the gray zone again. To this day, there are no
rational arguments against the security of Triple-DES—only irrational ones.
But it’s true that Triple-DES is rather slow, particularly in software, so that it
is markedly inferior to more modern algorithms (especially the final candidates
of the AES Initiative; see Section 5.5).

5.2.2 DES with Key-Dependent S-Boxes

In 1994, at the ASIACRYPT conference, Biham and Biryukov introduced a
modified DES that can be easily implemented on certain DES chips and in
software [Bih.biry]. The trick is to construct key-dependent S-boxes. Some
DES chips support variable S-boxes so that these boxes can be created outside
the chips and then be fed into them.

Now, it is well known that the original S-boxes are optimized against differ-
ential cryptanalysis. DES with random boxes is much easier to break. This
actually means that an attacker needs to know the boxes, but let’s not draw
over-hasty conclusions.
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The method is easily described:

1. The key is 104 bits long, which means that it contains 48 bits in addition
to the 56 DES key bits.

2. We arrange the eight S-boxes in this sequence: 24673158.

3. We use the first 16 bits of the 48 additional bits of the key for swapping
rows and columns in the S-boxes:

– Two bits each modify an S-box: if bit 1 is equal to 1, then we swap
the first two rows with the last two rows; if bit 2 is equal to 1, then
we swap the first eight columns with the last eight columns.

– From said 16 bits, we modify the first two of the first S-box, the next
two of the second S-box, and so on.

4. This leaves us with 32 = 4 ∗ 8 extra bits. Using four bits each, we modify
an S-box by XORing these four bits with every element of the box. This
corresponds to a permutation of the elements.

5. Otherwise, the DES encryption method remains unchanged.

Without question this method is very hardware-friendly and not slower than
DES. The number of (either chosen or known) plaintexts required for dif-
ferential or linear cryptanalysis is 251 and 253, respectively, based on cur-
rent studies. Conversely, brute force requires 2102 encryptions. Everything
is outside the technically feasible range. Moreover, it cannot be reasonably
expected that a DES backdoor—if there is one—would still be open with the
Biham–Biryukov method.

We may want to prefer this method over Triple-DES. Schneier [SchnCr, end
of Chapter 12] gives a tip how to give the NSA a hard time: ‘Therefore, I
recommend the use of Biham’s construction of key-dependent S-boxes. . . . It
strengthens the resistance of DES against brute-force attacks, makes differential
and linear cryptanalysis harder, and ensures that the NSA has to think of a
method that is at least as strong as DES, but different.’

5.2.3 DESX and Whitening

There is yet another extraordinarily simple method to make algorithms more
secure based on current knowledge. The method is called whitening and it is
of special interest for DES, because it increases its short key length. But it can
also be applied to almost every other block algorithm.
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The idea behind this method is simple: we use two 64-bit keys, Kp and Kc, in
addition to the 56-bit DES key. Ciphertext C is computed from plaintext P as
follows:

C = Kc ⊕ DESKd(P ⊕ Kp).

This means that, in addition to the DES cipher, the plaintext is XORed with
additional keys before the encryption, and the ciphertext is XORed with addi-
tional keys after the encryption. It also means that an attacker won’t have
any plaintext–ciphertext pairs for DES, and brute force won’t work either.
The structure of DES suggests that the algorithm gains from this procedure
(and should there really be a backdoor in DES, then this assumption might be
wrong).

The method is attractively simple. It requires only minimum hardware expan-
sion, while the gain in security is presumably very high. The fact that the USA
once exported only ciphering devices with limited key length (here 40 bits)
won’t matter, since whitening compensates for this limitation.

The idea is a brainchild of Ron Rivest; the method is thoroughly studied in
[DESX]. An algorithm called DESX computes Kc as a one-way hash value
(see Section 6.3.1) from Kd and Kp. It has been used in MailSafe (since 1986)
and BSAFE (since 1987). The effective key length of DESX is 120 bits, far
too many for brute force.

One would actually expect whitening to have an effective key length of 64 +
56 + 64 = 184 bits. But this is not so: it is ‘only’ 120 bits. That’s not too hard
to check; I’ll just briefly outline it below.

We pick two plaintext–ciphertext pairs, (P 1, C1) and (P 2, C2), and set
dP = P 1 ⊕ P 2 and dC = C1 ⊕ C2. The modified plaintexts, P 1 ⊕ Kp and
P 2 ⊕ Kp, still also have XOR difference dP. Also, the ciphertexts XORed
with Kc produce a XOR difference, dC.

Now we brute-force all (P, S) plaintext-key pairs such that

DESS(P) ⊕ DESS(P ⊕ dP) = dC

holds. This search requires 264+56 = 2120 DES ciphers each. In terms of the
order of magnitude, only 264(P, S) pair solutions can be expected. We can try
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to compute Kp and Kc for each pair and test the result on a third and fourth
plaintext–ciphertext pair. This effort is ‘negligibly small’ (namely about 72
quadrillion times smaller) compared with 2120 ciphers, but 256 times larger
compared with the usual DES cracking.

Should anybody one day succeed in reducing the search for (P, S) pairs with
a clever trick, then whitening would presumably not be of much use.

[DESX] shows that the cost to be expected for different Kp and Pc, too, would
be in the order of magnitude of 264+56−1−lg(m), where m denotes the number
of eavesdropped plaintext–ciphertext pairs.

Under this aspect, it appears reasonable to choose Kc as a function of Kp and
Kd right away as is done in DESX.

5.3 IDEA: A Special-Class Algorithm

Despite Triple-DES and the modified DES with key-dependent S-boxes by
Biham and Biryukov, there was an understandable wish to get away from this
algorithm once and for all. In fact, this algorithm is more than a quarter of a
century old, and it cannot be entirely excluded that somebody might know a
more successful attack against this type of encryption than we do—after all, it
is assumed that only the smaller part of cryptological research is public.

A joint project of ETH Zurich (under the supervision of famous cryptologists
X. Lai and J. Massey) and Ascom Systec AG tried to find theoretically solid
foundations for a new algorithm. Such an algorithm was published with the
name PES (Proposed Encryption Standard) in its original form in 1990. This
method was attacked successfully by Biham and Shamir using differential crypt-
analysis. As a consequence, Lai and Massey protected their algorithm against
this attack and put an ‘I’ for ‘Improved’ in front of its name. Since 1992, we
have known the algorithm by the name IDEA—International Data Encryp-
tion Algorithm (see algor/idea directory on our Web site and [SchnCr, 13.9]).

5.3.1 This Time First: IDEA Patent Rights

IDEA is used for symmetric encryption in the very popular PGP software
package, which is the main reason why it is well known. Unfortunately, it
is less noticed that IDEA is patent-protected—in Europe until May 16, 2011,
while the USA will enjoy its free use one year earlier. This fact is omitted so
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Table 5.1 Patent protection of IDEA; source: company brochure (as of March 5, 1996)

Country Patent number Filed on Granted on Expiry

Europe: 0482154 5/16/1991 6/30/1993 5/16/2011
Austria,
France,
Germany,
Great Britain,
Italy,
Netherlands,
Sweden,
Switzerland,
Spain,
USA 5’214’703 5/16/1991 5/25/1993 5/25/2010
Japan 508119/1991 5/16/1991 pending

often that I will describe the legal issues before discussing the algorithm itself.
Table 5.1 shows the details.

The current licensing terms and conditions can be obtained directly from Ascom
Systec AG (www.ascom.com).

At the beginning of 1996, the license fees ranged between 2 and 15 dollars per
user, where not all employees in companies are counted as users, depending
on their type of classification.

As a sideline, the fact that algorithms cannot be patented in Germany or else-
where doesn’t matter: IDEA is patented in Switzerland, and this patent is
effective in other countries, too.

Use of the algorithm is free for non-commercial purposes, but a copyright
notice has to be included in the corresponding software, and the developer
should contact Ascom prior to publication.

5.3.2 The IDEA Method

After this legal stuff, let’s return to cryptology:

• IDEA works with 64-bit blocks and uses a 128-bit key. This key is used
to create 52 subkeys of 16 bits each as follows.

The key is first decomposed into eight subkeys of 16 bits each. These
are the first eight subkeys.
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Subsequently, the 128-bit key is left-rotated by 25 bits (i.e., the 25 most
significant bits walk back in from the right) and once again decomposed
into eight equally long subkeys. This produces the next eight subkeys.

In the seventh round, only the four subkeys with the most significant bits
are chosen.

• The algorithm encrypts in eight rounds, so it is a product algorithm rather
than a Feistel network. It uses six subkeys in every round.

• In every round, the blocks are split into four subblocks of 16 bits each
and linked with three different, ‘incompatible’ operations; all operations
process 16-bit numbers only.

This facilitates implementing IDEA in hardware; better yet, it even works
effectively on 16-bit microprocessors.

• Finally, the four subblocks are linked with the four remaining subkeys in
an output transformation and composed into one single 64-bit ciphertext
block.

Before having a closer look at the IDEA round, we want to briefly discuss the
operations used to get a basic grasp of the design.

5.3.3 Three Algebraic Operations Cleverly Linked

With a set of 16-bit numbers at hand, we look at the following three operations:

• the known bitwise XOR operation, ‘⊕’;

• the usual addition, ‘+’, which is a modulo 216 addition due to the limi-
tation to 16-bit numbers; and

• the modulo 216 + 1 multiplication, denoted ‘	’ here; where zero repre-
sents the remainder, 216, i.e., if either of the operands a or b equals zero
in the equation

a 	 b = c mod (216+1)

then we write 216 in its place to compute c, and vice versa: if result c

becomes equal to 216, then we write the value zero in its place. This is
a pure issue of definition, but somehow unusual.
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The definition mentioned last is normally quoted uncritically (and not ex-
plained), but it is apparently contradictory. The thing is, we only have 216 num-
bers available to represent 216 + 1 remainders—the remainder zero is missing
here, or is it? Well, zero can never occur as a remainder: since 216 + 1 = 65 537
‘happens’ to be a prime number, the product of two numbers is divisible only
by 216 + 1, if this holds at least for one of the factors. In this arithmetic, how-
ever, we multiply only numbers between 1 and 216 together, and none of these
numbers is divisible by the prime number 65 537.

Expressed mathematically: together with ‘	’, we have defined an algebraic
operation within the set of numbers 0, 1, . . . , 216 − 1, which is always exe-
cutable within this set.

Before describing IDEA any further, we can already see why it calculates with
16-bit numbers rather than, for example, 32-bit numbers: 232 + 1 is not a prime
number; rather the following holds:

232 + 1 = 641 * 6700417

We wouldn’t be able to define this analogously to the ‘	’ operation for 32-bit
operands.

These three algebraic operations are ‘incompatible’. This blurred statement
needs some explanation.

We all know the distributive law

a(b + c) = ab + ac

from school. There is no pair of operations among these three for which the
distributive law holds, i.e., for all 16-bit numbers, a, b, and c. For instance,
there is the counterexample

a = b = c = 1
a + (b ⊕ c) = 1 + 0 �= 0 + 0 = (a ⊕ b) + (a ⊕ c)

for the ‘+’ and ‘ ⊕’ operations.
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Moreover, no ‘generalized associativity law’ holds for any two of the three
operations. As we know, the usual associativity law of addition for three normal
numbers says

a + (b + c) = (a + b) + c

The ‘generalized associativity law’ for the ‘+’ and ‘⊕’ operations would read
like this:

a + (b ⊕ c) = (a + b) ⊕ c

Again, a = b = c = 1 supplies a counterexample: the left-hand side is equal
to 1, the right-hand side is equal to 3.

We can also prove the following: the algebraic structures defined by the three
operations (formulated mathematically: they are monoids) cannot be trans-
formed one into the other by some clever transformation or other in two cases
(formulated mathematically: they are not isotopic). This holds for the two pairs
of monoids that belong to the operations ‘⊕’ and ‘	’, and ‘⊕’ and ‘+’, respec-
tively. Though there is isotopy between the monoids belonging to ‘	’ and ‘+’,
it is as complex as a discrete logarithm, and we know from Section 4.5.4 that
discrete logarithm is a ‘hard’ function.

These comments were aimed not only at furthering your mathematical knowl-
edge, but also at emphasizing why Lai and Massey chose these operations:
they are really a poor match. And now you know where the decomposition
into 16-bit blocks stems from: the fact that 216 + 1 is a prime number (and not
because they felt sympathy for owners of vintage 16-bit computers. . .).

5.3.4 The IDEA Algorithm in Detail

IDEA links these three operations within a network that looks desperately
complicated at first. Figure 5.9 shows the description of a round.

As usual, each operation processes the operands that correspond to the incoming
arrows. The result ‘walks’ alongside the outgoing arrow to the next operation,
or forms a subblock. In six cases, however, a result is used in two additional
operations.

Figure 5.10 shows the output transformation.
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Z1 Z2 Z3 Z4

X1 X2 X3 X4

Z6

Z5

Y1 Y2 Y3 Y4

X1, ... , X4: input subblocks

Y1, ... , Y4: output subblocks

Z1, ... , Z6 : round's key

bitwise XOR

addition

Multiplication modulo 216+1 (see text)

Figure 5.9: Description of the IDEA algorithm.

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

Figure 5.10: Output transformation in IDEA, using the same notation as in
Figure 5.9.

A closer look reveals that the structure of this network is surprisingly logical.
First of all, we will quickly notice that, together with the output transformation,
the network is symmetric. The reason is that, if we were to swap the plaintext
blocks with the ciphertext blocks, traversing the network from bottom to top,
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Z6

Z5

U1 U2

V1 V2

Figure 5.11: The MA transformation forms the ‘core’ of IDEA.

then the same computations would be executed! This explains the meaning of
the output transformation in a very simple way.

Having made this discovery, we already know how to decrypt: we substitute
each key by the key that currently reverses the operation during the encryption.
These are the negative values of Z2 and Z3, and the reciprocals modulo 216 + 1
with the others. XOR operations are self-inversing, i.e., applying them once
more to the same intermediate results produces the original result again. This
is why subkeys stand explicitly ahead of the ‘+’ and ‘	’ operations, but not
ahead of ‘⊕’!

That’s cleverly designed indeed, but rather a technical question. We would
certainly accept a separate decryption algorithm for the price of higher security.

In contrast, another feature of IDEA is more interesting: the result of an oper-
ation never becomes the operand of an operation of the same type in any place.
No matter how we go along the arrows—two equal operations never follow
one after the other on one path. This is an important property of IDEA that has
caused confusion. But this confusion is ‘more unfathomable’ than with DES,
at least subjectively.

There are more remarkable properties in IDEA. In its core is the MA
(multiplication–addition) transformation, shown in Figure 5.11.

The MA transformation is responsible for diffusion. Computer experiments have
shown that, with this transformation, every bit of V1 and V2 depends on every
bit of the keys and every bit of blocks U1 and U2. And all this after one single
round! Lai and Massey also showed that at least four operations are required
to achieve this—so the MA transformation is even minimal in this sense.
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5.3.5 Cryptanalyzing IDEA

After these impressive and theoretically underpinned properties of this algo-
rithm, you’ll not be surprised to hear that so far the most successful attacks
against IDEA have become stuck after 3.5 rounds (where the output transfor-
mation is counted as half a round). The method is optimized against differential
cryptanalysis; Lai thinks that it is resistant to this attack after only four rounds.
And an attempted attack with related keys by Biham also failed.

There are weak keys in the sense that their use by foisting chosen plaintexts can
be proved, which could be interesting for chip cards with a ‘burnt-in key’. First
of all, however, these keys can be easily avoided—one only needs to XOR
all subkeys with the hexadecimal number 0x0dae—and second, the probability
that such a key can be caught is 2−96; that is about one out of 1029 randomly
selected keys (this number even has a name: 100 quadrilliards).

An effective cryptanalysis was presented by Philip Hawkes at the EURO-
CRYPT ‘98 [HawIDEA]. Hawkes discovered 265 weak keys for which roughly
20 chosen plaintexts would suffice to recover 72 bits of the key. The remaining
56 bits are then recovered by brute force—a cost comparable to cryptana-
lyzing DES. This means for an attacker that he can fire up his IDEA crack
machine (which is slightly larger and slower than his DES crack machine)
every 9 trillion (9 000 000 000 000 000 000) sessions he listened in on to com-
pute the key. This doesn’t sound particularly dangerous. Nevertheless, Hawkes
recommends changing IDEA’s key generation system. This is no paranoia—the
next cryptanalytic improvement could be more effective.

Another attack was demonstrated by Borst, Knudsen, and Rijmen at the EURO-
CRYPT ’97 [BorstIDEA], but only against a 3.5-round IDEA (i.e., three rounds
plus final transformation). In about 5/6 of all cases, this attack finds the key
using 256 chosen plaintexts (accordingly more than 500 000 terabytes of plain-
text). Though the authors assume that this attack could be mounted more
effectively, they doubt whether it would change the security of the full 8.5-
round IDEA. In his work mentioned above [HawIDEA], Hawkes studied a
4-round IDEA. With a little less than 40 chosen plaintexts, he recovered 15
bits of the key, which is only of theoretical interest for the time being.

It would be absolutely hopeless to ever want to brute-force IDEA. With a key
length of 128 bits, this belongs to the realm of science-fiction movies (see also
‘Brute Force’ entry in the Glossary and Section 5.9).
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However, the IDEA algorithm has one big drawback: it is not scalable, which
means that it cannot benefit from the growing processing width of modern
computers (32 bits, 64 bits, . . .) and is particularly fixed on 64-bit blocks. We
know from the discussion of the CBC mode in Section 5.1.1 that too small
a block size theoretically represents a vulnerability for birthday attacks. In
fact, its small block size and its fixed key length were the only reasons IDEA
disqualified as a candidate for the AES algorithm, the successor of DES (see
Section 5.5).

Of course, IDEA has not been studied long enough to convince even the last
doubter of its security. Even the theoretically underpinned design, over which
one could go into raptures, doesn’t exclude potential vulnerabilities. Crypt-
analysts traditionally look for sore points and don’t normally let themselves
get carried away by the esthetic inner life of an algorithm. Anyhow, no suc-
cessful attack has become publicly known, although cryptologists have busied
themselves increasingly with IDEA.

5.3.6 Speed, Outlook

IDEA is about twice as fast in software as DES. Schneier [SchnCr, Section 13.9]
mentions 300 Kbytes/s on a 66-MHz PC-486 (compare this with RC5 in Sec-
tion 5.4). In hardware, however, IDEA is much harder to implement than DES,
which is mainly due to the ‘	’ operation. An IDEA chip developed at the ETH
Zurich achieved about 22 Mbytes/s, but it is not produced in series. The major
obstacle appears to be reservations by the industry on account of the license
fees for the algorithm. Security has not yet reached the importance for an orga-
nization with 100 employees to pay 1000 dollars for encryption within their
internal networks. For example, a software vendor would have to pay 2 % of
their sales to Ascom Systec AG just for using IDEA in their products. This
is obviously too much even for an attractive name like IDEA. In addition to
its use in free software (for example, PGP and SSH; see Chapter 7) I know
that it is commercially used in the Brokat software package, which has been
deployed by at least four German banks since early 1997. Deutsche Telekom
presumably purchased a large number of IDEA licenses for their own products.

5.4 RC5: Yet Another Hope for DES Replacement

This section discusses perhaps the simplest and most flexible of modern algo-
rithms. RC5 is a symmetric block algorithm introduced by Ron Rivest [RivRC5]
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in 1994 (you know Rivest from the RSA method). In designing this algorithm,
Rivest pursued the following goals:

• RC5 should be equally suitable for hardware and software.

• RC5 should be fast. To this end, the algorithm uses only operations on
words in the sense of hardware, i.e., operations on 32-bit blocks, for
example, when working with 32-bit processors.

• RC5 should be variable. No word length, block length, key length, or
number of rounds are defined. It should be up to the user to opt between
higher speed and higher security.

• RC5 should be simple, which would not only simplify the implementa-
tion: the main idea is that a simple structure makes it easier for cryptan-
alytic study.

• RC5 should require little memory. This makes it interesting for chip cards.

• Finally and most importantly, RC5 should be secure.

5.4.1 Description of the RC5 Algorithm

For the sake of simplicity, we will limit our discussion in this section to 32-bit
words, i.e., to the algorithm fastest for 32-bit processors. RC5 looks the same
for 64-bit words, and it can also be implemented on 32-bit processors, but this
makes it somewhat slower.

Figure 5.12 summarizes the original description of RC5.

We can represent the algorithm in an alternative form. Denoting A as Li and
B as Ri , each of the two equations looks like this in an RC5 round:

Li+1 = Ri

Ri = ((Li ⊕ Ri) <<< Ri) + Si

This reminds us strongly of a Feistel network (see Figure 4.6), but it is not:
first, the round function depends not only on Ri , but also on Li ; second, Li

is not XORed with the round function’s result. Figure 5.13 shows a graphical
representation of an RC5 round.

RC5 is really very fast: my own implementation on a 133-MHz Pentium
and ESIX V.4.2 PC-UNIX achieved 1.5 Mbytes per second—i.e., 12 Mbits
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The RC5 Algorithm

The algorithm depends on three parameters:

– the word size, w, in bits (in the following written as ‘w = 32’);

– the number of rounds, r(r ≤ 1); and

– the key length of b bytes (b = 0, 1, . . . , 255).

Plaintext and ciphertext blocks are each 2w bits long, for w = 32, i.e., 64 bits. Rivest
recommends a key length of 16 bytes for w = 32 with 12 rounds, and denotes the
method as ‘RC5-32/12/16’.

Encryption

• From a key K of length b, create a field, S0, S1, . . . , S2r+1, of 2(r + 1) subkeys
with 32 bits each (see below).

• Decompose every plaintext block into two 32-bit blocks, A and B.

• Set

A = A + S0

B = B + S1

• In the ith round (i = 1, . . . , r) set

A = ((A ⊕ B) <<< B) + S2i

B = ((B ⊕ A) <<< A) + S2i+1

where A <<< B denotes the left rotation of A by B bits. Since the left
rotation by 32 bits is the identity for w = 32, you have to consider only the
five least significant bits of B for computing A <<< B.

Decryption

Decryption proceeds accordingly in the opposite direction:

• Decompose the ciphertext block into two half blocks, A and B, with 32 bits
each.

Figure 5.12: The RC5 algorithm.
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• For I = r, . . . , 1 compute

B = ((B-S2i+1) >>> A) ⊕ A
A = ((A-S2i) >>> B) ⊕ B

where >>> denotes the right rotation, analogous to the encryption.

• Set

B = B - S1

A = A - S0

and put A and B together into the plaintext block.

Computing the Key

Initialize the key field (Si):

• If w is the word length in bits, i.e., 32 in this case, then define two constants,
Pw and Qw, by

Pw = Odd(2w(e-2))
Qw = Odd(2w(φ − 1))

where e is the basis of the natural logarithms (2.718 281 8. . .), φ is the golden
ratio

φ = (
√

5 + 1)/2 = 1.681033...

and Odd() is the nearest uneven number.

• Now set

S0 = Pw and
Si = Si−1 + Qw for i=1,...,2r+1.

Figure 5.12: (continued )
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Mixing with the Key

• Copy the b-byte key, Ki=0,...,b−1, into a word field, Li=0,...,c−1. Choose as
small a value for c as possible. This is similar to copying the character string
K into field L on Intel processors; in general, K has to be shoved into L

bytewise. Written in C, it looks like this:

for(i = c-1; i > = 0; --i) L[i] = 0;
for(i = b-1; i > = 0; --i) L[i/u] = (L[i/u] << 8) + K[i];

• For integers i, j, t, m and for words A, B set (again written as a C program):

i = j = 0;
t = 2*r + 2;
m = 3*max(t,c);
A = B = 0;

and compute

for(k=0; k < m; ++k)
{
A = S[i] = (S[i] + A + B) _ 3;
B = L[j] = (L[j] + A + B) _ (A + B);
++i; i % = t; /*, i.e., i = (i + 1) mod t */
++j; j % = c; /*, i.e., j = (j + 1) mod c */

}

Figure 5.12: (continued )

per second—when encrypting long files on the hard disk (so this is not a
trimmed benchmark). Even on a 486-33 computer, the same RC5 implementa-
tion still yielded 240 Kbytes/s, corresponding to 1.9 Mbits/s.

5.4.2 Cryptanalyzing RC5

Similarly to IDEA, RC5 also links three different operations, but in a much
simpler way. As you might expect, the diffusion is weaker than with IDEA;
but RC5 has more rounds. The following simplified example shows the weaker
diffusion.
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Li

r

Si

Li+1 Ri+1

XOR

rotation

addition

Ri

Figure 5.13: Alternative representation of an RC5 round.

Choose two plaintext half blocks, A and B, and all subkeys, Si , such that the
five least significant bits are each equal to 0. Then the last five bits of the
ciphertext half blocks are also equal to 0, which means that they certainly
won’t depend on other key or plaintext bits. However, if the rotation occurs
even in one single round, the diffusion grows explosively. This might be one
of the reasons Rivest chose extremely ‘odd’ values for the initialization values,
Pw and Qw, and ‘mixed in’ the subkey field, S, extremely ‘thoroughly’. With
12-round RC5 and random subkeys, the last five bits of all subkeys will be
equal to 0 only once in 2130 cases. In mathematics, 2−130 is a positive number
indeed; for us humans, such a probability simply means ‘never’.

The confusion is essentially determined by the data-dependent rotation. Any-
how, the security of RC5 depends essentially on the data-dependent rotation.
However, it has not yet been studied exhaustively.

RC5 was analyzed intensively at the RSA Laboratories. Statistically, the algo-
rithm has excellent properties—as may be expected. After only four rounds, the
single ciphertext bits depend ‘equally’ on the single plaintext bits (formulated
mathematically: the correlation almost no longer depends on bit positions).
During my own studies, I found no indication of statistically usable depen-
dencies. But this doesn’t mean much. An algorithm with obvious statistical
dependencies is considered weak anyway.

According to information in [RivRC5], a trial with 100 million random plain-
texts and random keys showed that every plaintext bit influences a rotation
at least once (i.e., it influences the last five bits of a half block) after only
eight rounds.
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Among 100 million random pairs of 16-byte keys and 64-bit plaintext blocks tested,
there were plaintext bits which, when changed, did not influence the rotations of
RC5 (‘influence’ means the number of places that are rotated changes). Such cases
were found as follows:

34 732 with 7-round RC5;

1915 with 8-round RC5;

104 with 9-round RC5; and

15 with 10-round RC5.

Up to the 11th round, every plaintext bit influenced a rotation (there were probably
exceptions, but 100 million trials were obviously not enough to find them).

Figure 5.14: Modified plaintext bits influencing the rotations in RC5.

I cannot confirm the last statement. In my own trials, I created 100 million
random pairs of 16-byte keys and 64-bit plaintext blocks. For each of these
pairs, I initially stored the amounts by which things are rotated in each of the
twelve rounds. Subsequently, I changed one bit one after another in all 64 bit
positions in the plaintext and compared the rotations with the ‘ground setting’.
I found that there are still cases where a modified plaintext bit influences no
rotation even after ten rounds. Figure 5.14 shows the specific results.

Differential Cryptanalysis

The first attack against RC5 by means of differential cryptanalysis was pre-
sented by Kaliski and Yin at the CRYPTO ’95 Conference [KalisRC5]. The
results spoke in favor of RC5: a 6-round RC5 required 231 chosen plaintexts
(i.e., approximately one billion, or 8 Gbytes); 8 rounds required 239; 10 rounds
required 250; and finally 262 were required for 12 rounds. The computation
time grows as you would expect: a Sun-4 workstation (considered a rather
slow computer today) worked for 10 minutes to attack a 5-round RC5, but it
worked for not less than 12 hours against a 6-round RC5 (corresponding to 225

and 231 plaintexts).

For practical purposes, these values are not interesting. In theory, however, they
represent progress: 262 chosen plaintexts are clearly faster than brute force.
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The background of this attack is interesting. The IDEA developers introduced
so-called Markov ciphers [LMM.IDEA]. These are product algorithms where
the probability for an arbitrary difference of two ciphertexts depends only on
the difference in the pertaining plaintexts, and not on that difference’s value, in
every round. Such methods are resistant to differential cryptanalysis, because
every ciphertext difference has about the same probability after a sufficient
number of rounds with a fixed plaintext difference.

RC5 is not a Markov cipher. But every fixed plaintext difference creates a large
number of possible ciphertext differences with about the same probability across
several rounds, mainly thanks to rotation.

This attack was improved by Knudsen and Meier by a factor of up to 512,
i.e., 29 [KnudRC5], at the CRYPTO ’96. Their idea was to search for such
plaintexts where no rotation occurs at the beginning in several rounds, i.e.,
where there is only a weak diffusion. They found these plaintexts by use of a
special key-detection algorithm. Against a 12-round RC5, they ‘only’ needed
253 chosen plaintexts to find special plaintexts where no rotation occurred in the
first few rounds. Subsequently, they would need another 254 chosen plaintexts
to recover the key. As a sideline, 254 plaintexts correspond to a data volume
of 128 000 terabytes. . .

Another improvement was introduced by Biryukov and Kushilevitz at the
EUROCRYPT ‘98 [BirKush]. They defined a pair of plaintexts where the rota-
tion amounts coincided in all rounds to serve as a right pair (see Section 4.4.2)
for differential cryptanalysis. (The exceptions found in Figure 5.15 may in this
sense also be considered to be right pairs that differ only in one bit.) Rather
than looking at the differences of 32-bit words, they studied only the five least
significant bits. This is why they also call their method partial differential crypt-
analysis. Its result is more dangerous by a factor of about 1000: 244 chosen
plaintexts suffice to recover the subkeys. So, the only thing left for the attacker
is to foist 128 Gbytes of chosen plaintext on the code writer (or the chip card).
That kind of volume is transmitted over a 34-Mbit data line within a little over
one hour. As a sideline, RC5a, my modification introduced in Section 5.4.3, is
resistant to this attack, just as well as to the attack by Knudsen and Meier.

Weak Keys

Knudsen and Meier additionally found weak keys in the sense that using
such a key facilitates differential cryptanalysis. These keys—the Si words in
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Figure 5.13, and not the original key, K —have three subkeys, Si, Si+1, and
Si+2, with special values in their last five bits. This increases the probability
of special differences over three half rounds by a factor of 4.7. However, a
special test with chosen plaintexts is required here, too, to detect the use of
such a key.

These weak keys have different ‘risk classes’. The higher the risk class, the
easier the attack, but also the fewer weak keys of that class there are. More
specifically, only 245 chosen plaintexts (270 Tbytes of text) are required to find
the key to be weak with RC5-32/12/16 for a key group with frequency 2−32.2

(approximately one key out of five billion random keys). For these keys, differ-
ential cryptanalysis can make do with ‘only’ 240 chosen plaintexts (8.2 Tbytes).
For other keys with frequency 2−10.7 (one key out of 1663 random keys), you
would need 253 plaintexts for the key and 249 plaintexts for the attack.

This doesn’t represent a particular risk for practical purposes. But there might
be faster methods to find weak keys, and there might also be other types of
weak keys.

As you can see, the result is not as alarming as the Abstract in Knudsen’s
article may suggest: ‘We also show that RC5 has many weak keys with regard
to differential cryptanalysis. This weakness is in the structure of the algorithm
and not in its key generation.’ However, we should follow up closely on the
development. It’s certainly no mistake to use RC5-32/16/16, i.e., to work with
16 rounds rather than 12. This algorithm is still very fast. And, by the way,
this cryptanalysis doesn’t work for RC5a (see Section 5.4.3).

Linear Cryptanalysis and Linearly Weak Keys

The first known linear cryptanalysis on RC5 was done by Kaliski and Yin
[KalisRC5]. They required 247 plaintexts for a 5-round method (i.e., like with
the differential cryptanalysis on DES!), but as many as 257 with 6 rounds.
Consequently, the 12-round method is secure in this respect. However, similarly
to Knudsen and Meier, Heys [HeysRC5] showed that there are weak keys here,
too, which facilitate linear cryptanalysis: using the 12-round method with a
128-bit key, there are 228 (about one quarter of a billion) such weak (sub)keys,
and only about 217 plaintext blocks (corresponding to 1 Mbyte of plaintext) are
required to recover the subkeys. This sounds more worrying than the result
from differential cryptanalysis. Though the probability of catching such a key
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is only 2−100 (approximately 10−30), what if Rivest’s algorithm were to create
preferably weak subkeys for generation? The counter-proof may not be easy.

There are no such worries rationally, but being careful has never hurt. RC5a,
my modification introduced in Section 5.4.3, should not have differentially or
linearly weak keys (Heys thinks so, too). The reason is that the probability that
no rotation occurs in successive rounds is much smaller with RC5a (it can even
be arbitrarily reduced if there is enough memory available). All attacks against
RC5 discussed so far are based on the assumption that there is no rotation in
several rounds.

The mod-3 Cryptanalysis of RC5P

Kelsey, Schneier, and Wagner introduced a new type of attack against a modi-
fication of RC5 in [Schnmod3]. I find this attack worth noting here since it was
the first direct attack against data-dependent rotations. In fact, all cryptanalyses
I know of try to find chosen plaintexts where nothing or little is rotated, and
attack the algorithm, for example, by differential cryptanalysis. The underlying
idea outlined in [Schnmod3] is different and so simple you once again have to
ask yourself why nobody thought of it earlier.

We look at the remainders of 32-bit numbers, X, when dividing them by 3.
If X is smaller than 231, then the cyclic left rotation by 1 is nothing but a
multiplication by 2:

X <<< 1 = 2X (X < 231)

Conversely, the following holds in the other case:

X <<< 1 = 2X + 1-232(X • 232).

But the following holds in general since 232 leaves a remainder of 1 when
divided by 3:

X <<< 1 = 2X mod 3.



250 5. Life After DES: New Methods, New Attacks

Consequently, this equation also holds for all X <<< n rotations with uneven
n. When n is even, the remainder of X modulo 3 does not change in the
rotation. In particular, the divisibility by 3 is not lost in any rotation. If X and
n are random, then the following holds with a probability of 2/3:

X <<< n = X mod 3.

In other words, the data-dependent rotation doesn’t ‘blur’ information on X

(namely the remainder from dividing by 3) sufficiently, and the confusion is
‘weak’ in this respect. The results of intermediate rounds differ from random-
ness in a definable way. That’s the point where the authors mount their attack.

I will just discuss two details below (you can find the full article in txt/cryptana/
mod3.ps on our Web site):

1. In order for the ‘beautiful number theory’ to remain applicable, RC5P
is analyzed rather than RC5. The RC5P modification emerges from the
original RC5 when replacing the XOR operations by additions in every
round. Kaliski and Yin studied RC5P back in 1998 (so the algorithm
was not ‘invented’ especially for the mod-3 cryptanalysis) and assumed
that the method was just as secure as RC5 itself. They were wrong as it
turned out.

It is easy to see without further explanation that additions are ‘friendlier’
towards residual classes than XOR operations.

2. The authors didn’t initially succeed in providing a clean theoretical
substantiation for their cryptanalysis, i.e., estimating statistical shifts
mathematically. They replaced the theory by computer experiments and
constructed their attack on this basis.

Something like this is generally disapproved of among theoreticians, but jus-
tified from the cryptanalytic point of view: the end justifies the means. If the
attack works in practice, then it is irrelevant whether or not it was theoretically
substantiated.

Nevertheless, the authors endeavor to close this gap. For cryptographs, i.e.,
from the algorithm development perspective, the current state is somewhat
unsatisfactory: only when the background is fully understood can one start
building algorithms that cannot be cryptanalyzed by such methods.
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Kelsey, Schneier, and Wagner succeeded, after all, in attacking a 14-round
version of RC5P in practice; a Pentium-133 took about 3 hours for this attack.
They then turned their method against the M6 algorithm, which is based on
Japanese research and supposedly used in the FireWire standard. Against M6,
a mod-5 attack and subsequently a mod-257 attack led to the goal. (Notice that
3, 5, and 257 all divide 232 − 1, i.e., 232 leaves a remainder of 1 when divided
by these prime numbers. This is decisive in this type of cryptanalysis.) The
results are devastating: one single known plaintext suffices to find the 40-bit
key 16 times faster than by brute force, and with a few dozen known plaintexts
it can be found 512 times faster. A minor modification of the M6 algorithm
might effectively help prevent such attacks.

The use of the XOR operation and the addition in both RC5 and RC6 (see
Section 5.4.4) is also decisive for their security. Mixing operations with various
algebraic structures still appears to be key for high security. Not without reason
is this principle implemented in practice in IDEA.

Of course, we cannot exclude the fact that somebody might discover a totally
new method to attack RC5. It might well be that RC5 in its current form will
be considered to be insecure one day. If and when this happens, the algorithm
will have advanced the theory. However, I think that an encryption with a
sufficiently large number of rounds (e.g., 16) is secure against the known theory;
at least the RC5a modification from Section 5.4.3 is.

Cryptanalyzing the One-Round RC5

You probably remember how we defined the product algorithm in Section 4.1.4:
‘Simple, cryptologically relatively unsure steps are made one after the other.’
How does this look with RC5? Is RC5-32/1/* (one round, optional key length)
cryptologically insecure?

Even if nobody would use one-round RC5 in practice, the issue is a welcome
opportunity for us to make an excursion into cryptanalysis. I can finally show
you a real ‘bit fiddling’ attack in a reproducible way in this book. Being familiar
with these considerations will perhaps help you to understand Section 5.7.1,
which is more relevant for practice.

The differential cryptanalysis by Kaliski and Yin discussed above requires 128
chosen plaintexts for RC5-32/1/*. Of course, this is far from being optimal,
because it’s an attack against RC5 with many rounds. I found a plaintext attack
against the one-round method, for which three (almost) arbitrary plaintexts
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(24 bytes) normally suffice. This is quite interesting: RC5-32/1/* also supplies
a statistically ‘well randomized’ text and uses 128 key bits in CBC mode.

The one-round RC5 is easy to describe:

Let the plaintext half blocks (each 32 bits long) be A and B, and assume the
key consists of 32-bit words S0, S1, S2, and S3. To determine the ciphertext half
blocks A1 and B1, we compute

A0 = A + S0

B0 = B + S1

A1 = ((A0 ⊕ B0) <<< k0) + S2 (1)
B1 = ((B0 ⊕ A1) <<< k1) + S3 (2)

Where k0 or k1 is the value from the five least significant bits of B0 or A1,
respectively.

Assuming that both A and B (the plaintext) and A1 and B1 (the ciphertext)
are known, we try to recover the keys, (Si)i=0,...,3, from as small a number
of plaintexts and ciphertexts as possible. (We are not interested in the method
used by RC5 to generate keys Si from a byte field here. Once we know Si we
can decrypt.)

We begin with equation (2). Since our assumption was that we know A1, we
also know k1, so that we can represent subkey S1 as a function of S3 that we
can compute:

S1 = (((B1-S3) >>> k1) ⊕ A1)- B(3)

From among the ciphertexts available, we find two with k1 values that differ
as little as possible, but are not equal. This prerequisite is almost always met
in practice: with ten known ‘random’ ciphertexts, for example, the probability
that all k1 are equal is not more than 2−45 (approximately 3 ∗ 10−14). Moreover,
with four different ciphertexts at hand, there are two k1 values that differ by
32/4 = 8 at most. The more different ciphertexts we have the smaller the
smallest positive difference of any two k1.

Now, having picked out two such plaintext–ciphertext pairs, we turn to equa-
tion (3) for both pairs, writing the equation with the largest k1 value first. We
subtract the second equation from the first, which causes a zero to appear on



5.4. RC5: Yet Another Hope for DES Replacement 253

the left-hand side. The right-hand side is the sum of the difference of the triple
bracketed expressions and the difference of the Bs. To prevent us from getting
lost in multi-step indices, we define the following terms:

X = B1 − S3 for the B1 of the first equation;

D = B1(2nd equation) − B1(1st equation);

P = A1(1st equation);

Q = A1(2nd equation);

K = k1(1st equation);

L = k1(2nd equation); and

R = B(1st equation) − B(2nd equation).

The difference of the two equations will then look like this:

(X>>>K) ⊕ P-((X+D)>>>L) ⊕ Q = R (4)

(where XOR = ‘ ⊕ ’ is executed prior to the subtraction). All quantities except
X are known in (4). K > L also holds based on our assumption. We set
n = K − L.

We can use brute force on n bits to determine the value of X from equation (4)
(the reason why n should be as small as possible). That’s the difficult part of
this cryptanalysis.

As a starter, we look at arbitrary values of the n bits xL . . . xK−1 of X. Using (4),
we can determine n bits yK . . . yK+n−1 of the 32-bit number (X + D), where
y32 should be equal to y0, y33 should be equal to y1, and so on. From this,
in turn, we obtain n bits xK . . . xK+n−1 of X, but ambiguously—depending
on whether or not the addition of X and D produced a carryover in bit L.
Similarly, we compute the next n bits of X. This computation is unambiguous
since a carryover can be determined if there is one. After 32/n + 1 steps, we
can compute known bits and check whether or not things work out. If they
don’t, we try our luck with the next n-bit combination, xL . . . xK−1.

There has to be a solution for X. Perhaps only a few other solutions remain (the
smaller the difference, n, of K and L, the fewer solutions are possible). For each
X = B1 − S3 found, we compute S3 (since B1 is known as a ciphertext half
block) from (2), then we compute B0 and from this S1 again. Consequently, we
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can use (1) to determine B0 and k0 for every plaintext–ciphertext pair. You can
see that determining S2 from (1) represents the same problem as determining
S3 from (2). We determine S2 and S0 analogously. Running a check based on
other plaintext–ciphertext pairs eliminates wrong solutions for X. If several
solutions still remain, we have to test with other methods, depending on the
problem at hand.

I wrote a demonstration program to this end and ran tests under UNIX (see
Appendix A.1, algor/RC5a directory). It is not even 400 lines long, includ-
ing overhead. The critical function is solve X , which solves equation (4) (as
described above); it’s only 50 lines long. I admit having worked at this short
function for quite a while. Have a look at the source text and you will see why.

You don’t need to understand solve X when using this program. You can
blindly feed it with some plaintext and the entire ciphertext—and the entire
plaintext will come out in a flash. The result is impressive: in all cases tested,
three plaintext–ciphertext pairs sufficed to find a unique solution, and the
computing time on a 133-MHz Pentium under UNIX V.4.2 was only 2 ms
(0.002 seconds)!

This attack doesn’t make RC5 any weaker, though. It cannot even be mounted
against the two-round RC5, nor can it be mounted against the one-round variant
of the RC5a algorithm that will be discussed in Section 5.4.3. And yet, the
entire thing is no dry run as you will see in the next section.

Attacking Chip Cards

Helena Handschuh first presented a timing attack against RC5 in the ‘rump
session’ (where ideas and comments are suggested freely) at the EUROCRYPT
‘98: an attacker measures the execution times of encryptions and tries to recover
information from them. I don’t want to discuss the details here, because this
method will be discussed in detail in Section 5.10.

The result sounds alarming at first: once you have access to a chip card with
internal secret RC5 key, all you need is to encrypt about 8 Mbytes of cho-
sen plaintext (i.e., approximately 220 plaintext blocks); then you measure the
ciphering times to get hold of all subkeys. However, this method is applicable
only to certain 8-bit microprocessors, and even then, they can be thwarted with
little effort.

I find another type of attack much more dangerous: while having access to such
a card, why wouldn’t one better use the ‘hacker methods’ by Anderson and
Kuhn, as described in Section 4.4.5? As a reminder: you mess up the processor



5.4. RC5: Yet Another Hope for DES Replacement 255

by interfering with the clock frequency at a clock time computed exactly. It
is perhaps not too bold to assume that this might suppress the execution of
the last RC5 round. Using the same plaintext, this supplies the ciphering result
after r − 1 and r rounds, i.e., the plaintext and ciphertext for the one-round
RC5! Now we can finally use the knowledge we gained in the previous section
and compute the subkeys of the last round in three trials. Next we suppress
round r − 1. Since we already know the last round’s subkeys, we can decrypt
this one round and analogously compute the subkeys of the last round but one.
This means that 36 ciphering trials would probably be required for the 12-round
method—a matter of fractions of seconds in any event. And all this without
the parties concerned noticing anything.

Don’t interpret this attack as a weakness of RC5. Such nasty methods can crack
almost every algorithm—surely including the RC5a method introduced below,
though I currently don’t know how (you may have to suppress half rounds).

5.4.3 The RC5a Modification

Knudsen and Meier’s attacks against RC5 exploit the fact that there is no rota-
tion in some steps. Even the improved method by Biryukov and Kushilevitz
studies only pairs where the same rotation occurs in all steps. Rotation intro-
duces confusion and diffusion to the algorithm, which appears to still be hard
to crack. In this respect, the results from Figure 5.15 are not entirely satis-
factory. I propose a modification which I call RC5a. It deviates only slightly
from the original. Moreover, it is just as fast as the original, except for the key
generation, but increases the ‘mixing’ factor considerably.

The idea is as follows: keys S2i and S2i+1 are added to the rotated words in
the ith round. We denote the keys as S[2∗i] and S[2∗i + 1], like in the C
programming language, for technical reasons:

A = ((A ⊕ B) <<< B) + S[2*i]
B = ((B ⊕ A) <<< A) + S[2*i + 1]

We modify these steps such that keys S[2∗i] or S[2∗i + 1], respectively, can
each be chosen from a larger set of 2K keys, depending on either B or A. Each
S[j ] is ‘replaced’ by an independent set of keys; this set is called the keybox.
It makes decryption possible.

What effect does this change have? If the last five bits of B are equal to 0
in the first equation, then ciphering the last five bits of A leads to an addition
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of S[2*i]. A change to B in the remaining 27 bits has no impact on the last
five bits of A. With the modification, however, K additional bits now have an
impact. This means that the larger K the greater the diffusion. The value of K

is basically limited only by the memory available.

More specifically, algorithm RC5a-32/r/* (32-bit words, r rounds, optional key
length) with given K between 1 and 27 now looks like this:

1. Set KB = 2K and KBSH = 32 − K .

2. Create (2r + 2)∗KB subkeys, S[i], as shown in Figure 5.13.

3. Encrypt the half blocks, A and B, from Figure 5.13 as follows:

A = A + S[B >> KBSH];
B = B + S[KB + (A >> KBSH)];
for i=1 to r do

A = ((A ⊕ B) <<< B) + S[2*i*KB + (B >> KBSH)];
B = ((B ⊕ A) <<< A) + S[(2*i + 1)*KB + (A >> KBSH)];

where A � denotes the right rotation of A by n bits. In other words, the
five least significant bits of A or B, respectively, determine the rotation
of A or B, while the most significant KB bits determine the choice of
the key. RC5a turns back into RC5 when K = 0. I recommend K = 4.
With 12 rounds, this corresponds to a memory requirement of well over
1.5 Kbytes for the S[j ] subkeys.

Cryptanalyzing RC5a

As expected, RC5a has fewer random key–plaintext pairs in which changed
bits have no influence on the rotation. Figure 5.15 shows this clearly.

This modification might not be the philosopher’s stone, but the improved dif-
ferential cryptanalysis by Knudsen doesn’t work on this algorithm any more,
since the probability for ‘no rotation’ drops considerably. Kaliski and Yin also
followed paths across the RC5 rounds, where ideally no amount of a rotation
changes due to changed bits. The point is presumably that the probabilities
of characteristics (see Section 4.4.2) for K = 4 are smaller by a factor of 16,
which makes differential cryptanalysis more ineffective than brute force with
less than 12 rounds. The weak keys discussed above—if there are any in RC5a
at all—are then no longer a threat either. The same applies to the linearly
weak keys of Heys and the partial differential cryptanalysis of Biryukov and
Kushilevitz.
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Analogous to Figure 5.14, the following number of cases where no rotation is
influenced results with the RC5a algorithm when using K = 4 (24 = 16 keys in
one keybox):

5179 with 7-round RC5a;

220 with 8-round RC5a;

11 with 9-round RC5a; and

0 with 10-round RC5a.

Figure 5.15: Influence of changed plaintext bits on the rotations in the modi-
fied RC5a algorithm.

Of course, the ‘meager’ information of key K from Figure 5.13 in RC5a is
‘distributed’ over more bytes than in RC5. From the information-theory per-
spective, the subkeys are anything but independent. But you know this sort of
discussion from other cryptographic algorithms: ciphering a lot of information
(a long plaintext) by means of little information (namely the key) does not
mean that the plaintext information is exposed entirely or in part—at least in
practice that is.

We can probably handle successive keys S[j ] as we would handle independent
random quantities with a clear conscience. I cannot imagine an attack that
exploits some rule as to how the bits of S[2∗i∗KB + j ] vary in dependence on
j = 0, 1, . . . , 2K − 1.

Can you use mod-n cryptanalysis to attack RC5a? I don’t know, but I don’t
think so. I originally modified RC5 in this specific way to make finding subsets
without rotation improbable. In view of mod-n cryptanalysis, I am no longer
interested in this argument. But RC5a offers yet another security reserve: one
has to reconstruct more subkeys for each round, e.g., 16 times more, than with
RC5, an otherwise identical method. This probably increases the number of
known plaintexts required so much that one wouldn’t do better than with brute
force, unless the number of rounds was heavily reduced.

Anyway, I hope that RC5 (and RC5a with it, of course) will continue to prove
secure. The algorithm can effortlessly ‘grow’ with the hardware. Its security
can be increased by the number of rounds at the cost of performance, just as
well as the block size and the key length, which are actually limited arbitrarily
(a 12-round method uses a total of 104-byte subkeys, i.e., 832 bits!). RC5
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is very easy to program and to implement in hardware. The same applies to
RC5a, except that you can trade not only ‘computing time for security’, but
also ‘memory requirements for security’.

5.4.4 Patents and the RC6 Successor

A US patent was filed for RC5. Rivest claims that the license fee will be
extremely low and is intended only to finance further research at the RSA Lab-
oratories. Similarly to IDEA, non-commercial use might even be free. Unfor-
tunately, I don’t have more details at the time of writing. The improvement
named RC6 would have been available for free if it became AES. However,
since Rijndael won the race (see Section 5.5), RC6 was also patented.

Rivest assumes that RC5a also falls under the RC5 patent. However, everybody
outside the USA can use this algorithm for free in any event. It has been on an
FTP server on the Internet (visit ftp.cert.dfn.de/pub/tools/crypt/RC5-
IFW/* and have your search engine look for rc5a.c) since February 1996. I
have not set any restrictions on its use, just the copyright has to be ensured.
Due to the disclosure, there was no way for RC5a to obtain patent protection
in Germany, provided the method is accepted as an independent algorithm.
Section 7.6 will discuss an implementation that detects and considers the inter-
nal number representation (big endian/little endian) automatically, in contrast
to others, as well as on the Web site to this book.

My RC5a implementation was ported to Windows NT by the Chile-based com-
pany S&I Chile, and it is used at EffCom GmbH, based in Ludwigshafen,
Germany, in their Treasury asset management program. At the occasion of this
porting, the code was thoroughly checked and a small error was found, luckily
without impact. We are grateful to S&I Chile for making us the pertaining
porting in addition to a small cryptolibrary available for free—you will find
all these things on our Web site.

RC6 Further Development

Time didn’t stand still at the RSA Laboratories, of course. RC5 didn’t meet
the requirements of the AES standard described in Section 5.5, since it spec-
ifies 128-bit block sizes. Considering that it uses 64-bit words, RC5 is not
particularly fast on 32-bit processors. This motivated people to find out how
the algorithm could be further developed, how it could work faster, remain as
flexible as it was simple, and be harder to attack than RC5 at the same time.



5.4. RC5: Yet Another Hope for DES Replacement 259

The RC6 Algorithm

The algorithm depends on three parameters:

– the word size, w, in bits (in the following called w = 32);

– the number of rounds, r(r ≤ 1); and

– the key length, b bytes (b = 0,1, . . . , 255).

Plaintext and ciphertext blocks are each 4w bits long, i.e., 128 bits for w = 32.
Rivest recommends for w = 32 a key length of at least 16 bytes (128 bits) with 20
rounds and calls this method ‘RC6-32/20/16’.

Encryption

• Take a key K with a length of b bytes and create a field, S0, S1, . . . , S2r+3,
of 2(r + 2) subkeys with 32 bits each (see below).

• Decompose each 128-bit plaintext block into four 32-bit blocks, A,B,C,
and D.

• Set

B = B + S0
D = D + S1

• In the ith round (i = 1, . . . , r) set

t = (B(2B + 1)) <<< 5
u = (D(2D + 1)) <<< 5
A = ((A⊕t) <<< u) + S2i

C = ((C⊕u) <<< t) + S2i+1

(A,B,C,D) = (B,C,D,A)

(cyclic swapping of the four words), where A <<< B is the left rotation of
A by B bits. Multiplications and additions are done mod 232. To compute
A <<< t , you need to consider only the five least significant bits of t . For
word lengths of 26 = 64 bits or more, generally 2w bits, replace number 5 by
the value of 6 (generally w).

Figure 5.16: The RC6 algorithm.
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• After the last round, set

A = A + S2r + 2
C = C + S2r + 3

• Keys are generated exactly as in RC5.

Figure 5.16: (continued ).

The product of this development work is called RC6 and is very similar to
RC5. You can find a description in Figure 5.16 and on our Web site, where
you will also find the source code in C.

The decryption results quite easily from the ciphering rule.

How do RC5 and RC6 differ, and what do they have in common?

• The most important operation in both methods is the data-dependent
rotation. It guarantees extraordinarily strong diffusion and confusion and
cannot be attacked effectively at present.

• RC6 initially reminds you of two RC5 methods running in parallel, except
that the cyclic swapping of the four words—A, B,C, D—‘mixes’ both
methods after each round. This becomes even more striking if you com-
pose an RC5 round from two ‘half rounds’ in the form

A = (A ⊕ B) <<< B) + Si

(A,B) = (B,A)

(i.e., swapping the two half words after each [half] round, similarly to a
Feistel algorithm).

• The decisive improvement versus RC5 is the computation of two helper
quantities, t and u, in each round. The transformation t (B) = B(2B + 1)

has the property that the five most significant bits of t depend on all bits
of B (which is the main reason for the left rotation when computing t and
u; in other words, the five most significant bits of B(2B + 1) determine
the rotation of A ⊕ t).

Compare this with RC5, where only the five least significant bits of B

determine how A ⊕ B is rotated. Cryptanalysts tend to ‘kick in’ at these
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last places, because these values are not ‘disturbed’ by carryovers from
additions. In RC6, these are the five most significant bits of t , which
additionally depend on B in a very complicated way.
As a sideline, the transformation of t (B) is unambiguous, which means
that all possible 232 values of t are accepted even if B traverses all pos-
sible values (proving this is a moderately hard task for mathematicians).
This is important, because it ensures, for example, that the A ⊕ t opera-
tion will not only link the word A with ‘partial information’ on B, which
is critical for the diffusion.

• The (A, C) and (B, D) pairs mix even more than the cyclic swapping
of the four words after each round in that the rotation amounts and the
‘XOR’ partners— t and u from B and D—are computed and applied to
A and C concurrently.

The closer a look you take at RC6, the simpler and cleverer you will find this
algorithm. It appears to be the one with the shortest description out of all AES
candidates; this is the only reason I can describe it here fully.

However, there are two minor drawbacks. First, the integer multiplication sug-
gests where the algorithm runs most effectively: on 32-bit processors. Things
look less good with 8-bit smartcards, where the data rotation is costly. And sec-
ond, while the usual cryptanalytic attacks against RC6 have failed so far, I agree
with Schneier’s comments on the mod-3 cryptanalysis (see Section 5.4.2): here
too, an effective attack is prevented by XOR and addition. Moreover, the trans-
formation t (B) = B(2B + 1) produces only remainders 0 and 1 when dividing
by 3. This type of ‘distortion’ could ‘survive’ the cleverly constructed round
function if it weren’t for said XOR.

In contrast, the mod-3 cryptanalysis seems to be less effective against RC5a,
however at the cost of increased memory requirement. Apart from patent rights,
as there may be, RC5a is still attractive indeed. Of course, RC6 could be simi-
larly modified into an RC6a algorithm, but I don’t see a need for the time being.

Nevertheless, no symmetric algorithm since DES has been cryptanalyzed as
thoroughly and with such good results as the five AES final candidates, includ-
ing RC6.

5.5 Rijndael Becomes AES and Replaces DES

Even before Deep Crack, the DES crack computer (see Section 4.4.1), was
built, scientists, industries, and government authorities understood that the days
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of DES were numbered. The pressure from the business world to create and
use secure algorithms is very strong today; we will see this particularly in
Chapter 8. The AES Initiative of the NIST is an excellent example showing
how the situation has changed during the past twenty years.

Remember how DES was born (Section 4.3.1)? Back then, the NBS had major
difficulties in obtaining a usable proposal at all, and they had to involve the NSA
due to a lack of internal competency. And today? Successor NIST challenged
a new standard at the beginning of 1997; it was to be named AES (Advanced
Encryption Standard). But this time it seemed that all the leading people in
public cryptological research had participated in the challenge, submitted a large
number of proposals, discussed and cryptanalyzed the algorithms submitted,
until eventually they were spoilt for choice. Though it was primarily a matter
of a new US standard, proposals and analyses were submitted from all over
the world. Eventually, a Belgian algorithm was selected to become the new
security standard in the USA. This alone shows almost symbolically how much
cryptology has changed during the past twenty years.

Everything had actually run so smoothly that there was hardly a reason for
criticism. Even the requirements to the new standard were not formulated by
the NIST alone, but in an open workshop especially conducted to this end in
April 1997. For defining the requirements was not an easy task—after all, AES
was to be secure for long into the future so that it had to meet extremely strict
criteria from the outset. You can read the result in Figure 5.17.

The required block length of 128 bits relates to the birthday attack discussed in
Section 5.1.1 in connection with the CBC mode: having two equal ciphertext
blocks, one can draw conclusions on the XOR product of the pertaining plain-
text blocks, thus obtaining a (minimal) hint on the plaintext. The probability
for such an event should be as small as possible. With 128-bit blocks, such a
pair generally occurs with more than 100 million terabytes of ciphertext, which
would seem to be sufficient for the next twenty years.

This meant that, for example, IDEA with its 64-bit block length was ruled
out, among others. RC5 was not an eligible candidate either since it works
most effectively with 64-bit blocks on 32-bit processors. Thus, RC6 came into
existence, as described in Section 5.4.4. And the requirement for a key length
up to 256 bits is by no means paranoid considering that quantum computers
might exist (Section 5.9) within the next twenty years.

A worldwide search for candidates began as a consequence. The NIST pre-
sented 15 proposals at the first conference in August 1998. At the second AES



5.5. Rijndael Becomes AES and Replaces DES 263

The requirements for AES specified by the NIST were formulated in public discus-
sion, including a workshop on April 15, 1997. Here are a few selected criteria:

• AES shall be a symmetric block algorithm.

• The algorithm shall use a block length of at least 128 bits and be capable of
using keys 128, 192, and 256 bits long.

• It shall be suitable for most different purposes of use, e.g., it shall be equally
implementable in hardware and software.

• AES shall resist all methods known in cryptanalysis.

• It shall especially resist power analyses and timing attacks.

• It shall have excellent performance both in hardware and software.

• It shall have computational efficiency especially for use in smartcards (small
code length, minimum memory requirement).

• The algorithm shall be free from patents and freely available to everybody.

Figure 5.17: NIST requirements for AES.

conference held in March 1999, these algorithms were studied and cryptan-
alyzed thoroughly. If there was even the slightest doubt about its security,
a candidate would not be short-listed. The Magenta method submitted by
Deutsche Telekom was one of the candidates that did not make it to the
shortlist.

The most capable cryptanalysts in the world dealt with the five candidates that
survived the thorough and numerous analyses, and ended up in stalemate: all
the algorithms were found to be excellent and hard to compare. Each one of
them could have become the new standard, and no flaws were found in any of
them. Each had different benefits, but which properties should be considered
to be the decisive ones?

In two of his contributions to the third AES conference, Don B. Johnson of
Certicom asked: ‘Does there have to be a best method?’ After all, modern soft-
ware implements a standardized crypto-interface anyhow, and normally offers
several methods to choose from. None of the five AES candidates was that big
a program that all of them together would blast the volume of crypto-software
(this looks different in hardware).
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January 2, 1997: Solicitation for initiative; submission of candidates by
September 12, 1997.

April 15, 1997: A public AES workshop was held to formulate the exact
requirements. Cryptographers all over the world began
developing appropriate algorithms.

August 20, 1998: First AES conference; NIST announced receipt of 15
candidates. Public study began.

March 1999: Second AES conference; discussion of current results. 28
candidates from all over the world were submitted and
made accessible on the homepage several weeks prior to
the conference in order to hold the conference on as high
a level as possible.

April 15, 1999: End of public study of all candidates. Five candidates
(MARS, RC6, Rijndael, Serpent, Twofish) were
short-listed. Further work was then concentrated on these
five algorithms.

April 13/14, 2000: Third AES conference; the analyses of the five final
candidates were presented and discussed.

May 15, 2000: End of public discussion.

October 2, 2000: Announcement of Rijndael as the “winner”.

November 2000: Publication of the FIPS standard as a manuscript; request
for public comments.

February 2001: End of public discussion on the standard.

April–June 2001: Approval as FIPS standard.

Figure 5.18: Timeline of the AES Initiative.

Or better yet, a preferred field of use (smartcards, online encryption, . . .) should
be stated for each algorithm. This kind of flexibility would clearly have more
benefits than drawbacks. Products fixed on a specific method would become
insecure instantly if, against all odds, a weakness were detected in the method.
A warning example is the use of DES in banking applications, which had
bet on it exclusively for twenty years. The migration to 3DES took years and
devoured huge sums.

The decision the NIST took turned out to be anything but the expected—only
the Rijndael algorithm by the Belgian authors Joan Daemen and Vincent
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Round 1:

• CAST-256: Entrust Technologies, Inc. (represented by Carlisle Adams).

• CRYPTON: Future Systems, Inc. (represented by Chae Hoon Lim).

• DEAL: Richard Outerbridge, Lars Knudsen.

• DFC: CNRS—Centre National pour la Recherche Scientifique, Ecole Nor-
male Superieure (represented by Serge Vaudenay).

• E2: NTT—Nippon Telegraph and Telephone Corporation (represented by
Masayuki Kanda).

• FROG: TecApro Internacional S.A. (represented by Dianelos Georgoudis).

• HPC: Richard Schroeppel.

• LOKI97: Lawrie Brown, Josef Pieprzyk, Jennifer Seberry.

• MAGENTA: Deutsche Telekom AG (represented by Dr Klaus Huber).

• MARS: IBM (represented by Nevenko Zunic).

• RC6: RSA Laboratories (represented by Burt Kaliski).

• RIJNDAEL: Joan Daemen, Vincent Rijmen.

• SAFER+: Cylink Corporation (represented by Charles Williams).

• SERPENT: Ross Anderson, Eli Biham, Lars Knudsen.

• TWOFISH: Bruce Schneier, John Kelsey, Doug Whiting, David Wagner,
Chris Hall, Niels Ferguson.

Round 2:

• MARS, RC6, Rijndael, Serpent, Twofish.

Selected after Round 3:

• Rijndael.

Figure 5.19: The algorithms short-listed for AES.

Rijmen won the competition. The arguments why one single candidate was
selected failed to convince everybody:

• If Rijndael had practically relevant weaknesses against all odds, then the
larger key length required would provide sufficient reserve.
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• In the worst case, 3DES is still available as an alternative, and it might
continue to offer full security into the foreseeable future.

• It is cheaper to implement one single algorithm (however, this argument
applies to hardware only).

• The costs would be less in the event that patent claims were brought
forward by inventors of similar algorithms (I suspect this was one of the
most important reasons).

However, nobody was to be disappointed: the entire process was entirely open
and very fair. In the USA, where algorithms had been classified weapons only
a few years earlier, an algorithm developed by Belgians and studied interna-
tionally had made it to become a foundation of national security! Though the
field of use for governmental agencies is described as ‘sensitive, not classified’,
the NSA made a rather sloppy statement, but Rijndael will presumably form
the ciphering basis (as the NIST expects) for the next twenty years or longer
in spite of it. There is currently no reason for doubt.

The Rijndael Algorithm in Detail

That much on the background of the AES Initiative. In view of its outstanding
significance, Rijndael will be described briefly in this section. This is not par-
ticularly difficult, since it uses only bytewise substitution, byte swapping, and
the XOR operation. The following discussion uses 128-bit blocks and 128-bit
keys in the individual steps. You will find details and source texts in C and
Java on the Web site to this book.

I will first describe Rijndael roughly for 128-bit keys.

1. A plaintext block consisting of 128 bits or 16 bytes is written into a
4 × 4 matrix column by column. Daemen and Rijmen call these matrices
‘states’. The plaintext bytes are in the matrix before the first round. Each
round changes the contents of the matrix; after the 10th round, the matrix
holds the ciphertext bytes that are read column by column.

Before beginning with the encryption, the 128-bit keys for 10 rounds are
created from the 128-bit key and written in 10 matrices with 4 columns
and 4 rows each (I will skip the key generation for reasons of space,
you can find it in algor/rijndael.ps on our Web site). Next, the Rijndael
algorithm runs the following steps in each round:
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Figure 5.20: Basic representation of Rijndael.

– ByteSub: The single bytes of the state matrix are substituted by a fixed
scheme. This transformation is deterministic and known, so it doesn’t
represent an encryption yet.

– ShiftRow: The rows of the state are cyclically left-rotated bytewise by
0, 1, 2, and 3 bytes. For example, if the characters

a b c d

are in row 2, then this row looks like this after the ShiftRow transfor-
mation:

b c d a

Naturally this transformation is deterministic and doesn’t encrypt any-
thing.
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– MixColumn: The columns of the state are substituted by a deterministic
principle. This rule is somewhat more complicated and uses transfor-
mations over Galois fields.

– AddRoundKey: The round key is XORed bitwise with the state. Only
this process mixes a secret into the transformation so that one may
speak of encryption.

2. Prior to the first round, an AddRoundKey transformation is executed, and
the MixColumn transformation is missing in the last round.

Rijndael can also work with 192-bit and 256-bit blocks; it then uses 4 × 6 and
4 × 8 matrices, respectively, as states, and the ShiftRow transformation changes
somewhat. The algorithm with 128-bit block and key lengths uses 10 rounds,
while 12 and 14 rounds, respectively, are used for longer block or key lengths.

Cryptanalyzing Rijndael the Classic Way

Rijndael with only one round would offer extremely low security. Since Byte-
Sub, ShiftRow, and MixColumn form only a fixed reversible transformation
even when executed one after the other, the security would correspond to a
128-bit Vernam cipher. We know from Section 3.6 what kind of special treat
this is for cryptanalysts.

But since Rijndael is a product algorithm, the security of such algorithms grows
explosively as the number of rounds increases, as we know. The cryptanalysis
of Rijndael known to date (see below) shows this rather impressively.

The ByteSub, ShiftRow, and MixColumn transformations are chosen such that
they are simple (and thus easy to analyze) on the one hand, and that all crypt-
analytic methods currently known will fail, on the other hand. The authors
explain their motivation for choosing these transformations in detail in their
publication (see the Web site: algor/aes/rijndael.ps. I just want to mention here
that operations on Galois fields play an important role.

The most important factors in choosing the transformations are strong diffusion
and confusion in every round:

• Diffusion means here that a change to even one single state bit (or to
a round key bit) after as few rounds as possible influences all bits of
that state. ShiftRow and MixColumn are mainly responsible for this in
Rijndael.
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• Confusion means that ‘relationships are lost’ so that one cannot draw
conclusions on the input matrix from the result of one round. ByteSub
and AddRoundKey are mainly responsible for this task.

Only the continual consecutive execution of these rounds (which are nothing but
a deterministic substitution of 128-bit states with subsequent XOR addition of
a secret key) represents (hopefully) an almost unsolvable task for cryptanalysts.
Neither differential nor linear cryptanalysis (which works even against DES in
theory), nor the so-called interpolation attack work in this case; there are no
weak keys, and even attacks with related keys (interesting for smartcards) fail,
in contrast to DES.

As for all five final candidates of the AES challenge, no effective attacks are
known on Rijndael. If you reduced the number of rounds, you would obtain the
following results (which become of interest only with 192-bit and 256-bit keys):

6 rounds: Using 6 ∗ 232 chosen plaintext blocks, you can compute the key with
244 complex (i.e., approximately 17 billion) operations.

This means for practical purposes that about 400 Gbytes of plaintext given by
the attacker have to be encrypted and analyzed. If one complex operation takes
one microsecond, then this would take roughly 200 days (or 5 hours with one
nanosecond).

7 rounds: Requires almost 2128 chosen plaintexts (corresponding to approxi-
mately 5 ∗ 1039 bytes) and a computing effort of 2120. With one nanosecond per
operation, this would take 4 ∗ 1019 (40 trillion) years.

Notice how tremendously the security grows by adding a 7th round! However,
Rijndael runs at least ten rounds (depending on the key length).

Though theoretical weaknesses were discovered in the way the round keys are
created, they may only be of academic interest. There is no practical impact
based on current knowledge.

Algebraic Cryptanalysis

Several experts expressed their doubts about the security of Rijndael, argu-
ing that the design was too simple to be secure. Though complex, ‘hard-to-
understand’ methods (such as DES, among others) may be harder to attack
mathematically, this is only an apparent benefit in an age of fast comput-
ers and high-performing software which can, for example, handle much more
complex formulas than humans will ever be able to.
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An ‘alarmingly interesting’ article by Niels Ferguson, Richard Schroeppel, and
Doug Whiting of May 2001 [FergSchrWhit] shows vividly that this is far from
being paranoia. The article describes how an astonishingly simple represen-
tation of the Rijndael transformation as a sum of continued fractions can be
found. Though there would then be about 225 five-step (well over 33 million)
continued fractions on either side of the equation, if it helped to mount an
attack, then such an attack would perhaps be practically feasible. However,
nobody yet has any idea what this attack would look like.

Another work by Nicolas Courtois and Josef Pieprzyk that appeared in 2002
[CourtPiep] (see also eprint.iacr.org/2002/044 ) caused quite some hurly-burly.
The so-called XSL (Extended Sparse Linearization) method exploits the fact
that AES can be represented as a system of 8000 square equations with 1600
variables. A number of scientists (including Don Coppersmith, among others)
heavily criticized this article. The main arguments were that the cost required
was impossible to estimate, and that the method was not demonstrated in a
practical example. It seems that the attack in the form presented does not
represent a risk in practice. However, I find four points pretty alarming:

• Attacks always improve; they never deteriorate.

• In addition to AES, it would be Serpent, the AES final candidate estimated
to be the most secure, of all candidates that would be vulnerable to this
method, if it really works.

• This attack would require only few plaintexts, in contrast to differential
and linear cryptanalysis. If the computational effort could be reduced to
something realistic, then this would be the first practicable attack against
a modern algorithm—and then AES of all algorithms!

• Also in contrast to differential and linear cryptanalysis, the number of
rounds or keys does not play a significant role. This is alarming in view
of the fact that increasing the number of rounds and/or the key length
was thought to be a ‘secure bank’.

Current and qualified information about this issue can also be found in Wikipedia
at en.wikipedia.org/wiki/XSL_attack.

So it is understandable indeed that people justly worried about the strikingly
simple structure of Rijndael. One should bear in mind that there are algorithms
other than AES. My personal tip: Twofish.
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Is AES Secure, Or Is It Not?

Authors Daemen and Rijmen explain the background of their design to the
finest detail, which seldom happens in cryptography, unfortunately. For this
reason, one may reasonably assume that the method has no backdoor built
in. Considering its simple design, it is astonishingly secure! If AES can be
attacked effectively at all, then it probably would be by algebraic means, but
no success is in sight. So, there currently is no rational reason against betting
on this algorithm.

Implementation Issues

It is easy for both insiders and outsiders to see that Rijndael can be implemented
nicely in hardware; even written as a C program, Rijndael in its optimized
version remains less than 500 lines of source code. Another important point is
that Rijndael can be ‘cast’ in hardware such that timing and power analyses,
which will be introduced in Section 5.10, are widely ineffective.

Unfortunately, decryption runs a bit slower than encryption on 8-bit processors
(for smartcards)—up to 30 % slower, in fact. In the software version, there are
minor time differences since the round keys for decryption are computed a bit
differently.

Encryption and decryption are often identical in other algorithms. Conversely,
in the hardware version of Rijndael, the ciphering hardware can be used only
partly for deciphering, and the software version requires different code and
different tables. However, deciphering is not always necessary, for example,
when the CFB and OFB modes (Section 5.1.1) are used.

As expected, the strongest response to the AES choice came on October 2,
2000 from the business world: on October 10, Demcom GmbH announced the
beta package of Stegano’s Security Suite 3, which uses Rijndael. On October
16, Utimaco Safeware AG followed suit with their SafeGuard Private Crypt .
Of course, the free software world didn’t lag far behind—GnuPG, which will
be discussed in Section 7.1.4, is one good example.

5.6 RC4: Stream Cipher for (Almost) Everyone

RC4 is an encryption algorithm that has little in common with RC5 described
above: it is also a brainchild of Ron Rivest, and it is very simple and fast.
Apart from that, everything is different: RC4 was developed in 1987 and kept
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secret for seven years. It has been used in many commercial products, including
Lotus Notes, Oracle Secure SQL, and not least the popular Internet browser
Netscape Navigator. In contrast to RC5, which is a block algorithm, RC4 is a
typical stream cipher: a byte sequence is created dependent on a key of variable
length and used as a one-time pad. The ciphertext results from simple bytewise
XORing of the key byte sequence with the plaintext, and the reversion works
similarly.

Up to September 10, 1994, this was basically everything people knew about
this algorithm. On that date, a C program that produced the same results as the
commercial software packages that used RC4 suddenly emerged in the Internet
newsgroup sci.crypt anonymously (through the cypherpunks mailing list). That
was it—RC4 was revealed. Part of the response was rather unfriendly. I quote
the original posting by David Sterndark (NETCOM On-line Communication
Services) in the same newsgroup on September 14, 1994, as an example:

I am shocked, shocked, I tell you, shocked, to discover that the cypherpunks have
illegally and criminally revealed a crucial RSA trade secret and harmed the secu-
rity of America by reverse engineering the RC4 algorithm and publishing it to the
world.

I will join this ugly game that harms the security of America and present you
with the algorithm in Figure 5.21.

The method is astonishingly simple and extremely easy to program (it is very
software-friendly, but less suitable for hardware). Since index i traverses all
values from 0 to 255 cyclically, each number, Pi , is swapped with another one
every 256 steps at the most. How j changes obviously cannot be told unless
one knows the key. To determine the key byte, RC4 uses the sum of two secret
Pk as index. Therefore, a statement about a few Pk would probably not tell
us much. The RC4 design is really simple and clever. According to comments
by the company RSADSI, no attack using differential or linear cryptanalysis
is known. More doesn’t appear to be known. I am convinced that this will
change, because such a simple and important algorithm will surely be studied
thoroughly.

But bear in mind that RC4 is a stream cipher and as such is vulnerable to
insertion attacks (see Section 5.1.1). If a software package uses RC4 without
an initialization vector (which could precede the key in the simplest case), then
this software is dangerous, no matter how good RC4 may be! You can read
about other methods that implement this good algorithm in security-ineffective
ways in txt/cryptana/wlanrc4.txt on our Web site.
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Description of RC4

RC4 is a stream cipher, i.e., a secret key is used to create a secret byte sequence
(Ki), and simple XOR is used for encryption and decryption:
Ciphertext bytei = plaintext bytei ⊕ Ki

Plaintext bytei = ciphertext bytei ⊕ Ki

Internal Key
Two bytes, i and j , and a permutation, (Pi)i=0,...,255, of the numbers 0, . . . , 255 are
used as internal key, i.e., each of these numbers occurs exactly once in sequence
(Pi). The size of the key space is approximately 21700 (= 2562 ∗ 256!).

Ciphering
A step to create a key byte, K , looks like this:

i = i + 1 mod 256
j = j + Pi mod 256
swap Pi and Pj

t = Pi + Pj mod 256
K = Pt.

(A modulo-256 addition is simply a bytewise addition—in C adding two data of
the type unsigned char.)

Creating the Internal Key

Let the key entered consist of l bytes, S0, . . . , Sl−1. We set

i = 0
j = 0
Pk = k (k=0,...,255)

and compute the following 256 times:

j = j + Pi + Si mod 256
swap Pi and Pj

i = i + 1 mod l.

With this, i, j , and the Pk are initialized.

Comment: In [SchnCr, 17.1], i traverses all indices from 0 to 255, and the key
is iterated as often as needed until all 256 bytes, S0, . . . , S255, are filled. I didn’t
check whether or not the two versions are equivalent. My variant stems from tested
C programs.

Figure 5.21: Description of the RC4 stream cipher.
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In the WLAN standard 802.11, it is easy to forge messages and even decipher
them (see also below). You can find an overview of the current RC4 crypt-
analysis at www.wisdom.weizmann.ac.il/∼itsik/RC4/rc4.html. As it
appears, the algorithm should be used only with some precautionary measures.
For example, keys and the initialization vector should be generated by means
of cryptographic hash functions (see Section 6.3.1), and a sufficiently large
number of bytes at the beginning of the key stream should be discarded.

You can see that the name ‘RC4’ itself doesn’t mean anything. A good example
is the work described in eprint.iacr.org/2005/007.pdf, which points to the fact
that the initialization vector in RC4-ciphered Microsoft Word and Microsoft
Excel documents doesn’t change when the documents are modified: you know
how this vulnerability can be attacked! Also, when designing the WLAN
standard WEP, people initially made almost all errors that can possibly be made
in an RC4 implementation. Obviously not a single cryptologist was involved in
the workgroups. With the related IEEE standard 802.15.4/802.15.4b and mainly
with the ZigBEE standard derived from the former (which is interesting, for
example, for self-connecting wireless sensor networks), things look better, but
this is not the topic of this book.

Thanks to its proliferation in commercial products, RC4 is used by many users
(mostly without their knowing it), and thanks to its simplicity, programmers
could actually build it in their products themselves, of course, with the use of
an initialization vector. That would be a stream cipher for everybody, well, if it
weren’t for the license fee to be paid to RSADSI for commercial use. Though
this is rather doubtful, the license fees would probably be less than the cost of
a legal action.

5.7 Other Interesting Methods

Many more ciphering methods are used than you have learnt so far in this
book. In the rest of this chapter on modern methods, I won’t even try to give
an overview; you will find one in Schneier [SchnCr]. I have just picked the
most interesting or practically important algorithms and will then introduce yet
another very original cryptanalysis in Section 5.10.

5.7.1 The pkzip Cipher and How to Break It

As the heading of this section suggests, we will again be dealing with a ‘weak’
method. You probably know that ‘weak’ in cryptanalysts’ lingo is everything
that has been cracked or where breaking is imminent. In the present case,



5.7. Other Interesting Methods 275

cryptanalysis is rather complicated. Astonishingly, there is a free program to
break this code. But let’s look at these things in turn.

The pkzip tool widely used in the PC world groups several files into a single
one—an archive. The files are compressed using a suitable method, and the entire
archive can be encrypted. We are interested in the latter feature, of course. Despite
it being complicated, this section is important, since you will come to understand
at least roughly how today cryptanalysts can disentangle complex things.

The pkzip Cipher

The pkzip encryption is a stream cipher. Similarly to RC4, it creates a key-
dependent byte sequence which is XORed with the ciphertext or the plaintext. In
pkzip, the key-dependent byte sequence depends additionally on the plaintext
previously encrypted. For this reason, and because twelve partially random
bytes, which serve as an initialization vector, among other things, are set prior
to the encryption, an insertion attack won’t work.

The method uses three secret 32-bit words, key0, key1, and key2, and a secret
byte, K . Byte K is XORed with the plaintext for encryption, or ciphertext
for decryption. Subsequently, the method computes new values for key0, key1,
key2, and K , depending on the plaintext. This actualization procedure looks
like this:

C = P ⊕ K
key0 = crc32(key0,P) (a)
key1 = (key1 + (key0 & 0xff)) * 134775813 + 1 (b)
key2 = crc32(key2, key1 >> 24) (c)
tmp = key2 | 3 (d)
K = (tmp * (tmp⊕1)) >> 8 (e)

where P is a plaintext byte, C is a ciphertext byte, and tmp is a 16-bit number.
Similarly to the C programming language, A � n denotes the right shift of A

by n bytes, i.e., key1 � 24 is the most significant byte of key1, and K is the
most significant byte of tmp* (tmp ⊕1). The operation key0 & 0xff creates the
least significant byte of key0, and the expression key2 | 3 just means that the
two least significant bits of key2 are set equal to 1. Finally, crc32() is an easily
computable CRC polynomial:

crc32(key,c) = (key >> 8) ⊕ crctab[(key&0xff) ⊕ c] (5)
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where crctab[] denotes an easily computable table, key denotes a 32-bit word,
and c denotes a byte. The function crc32() is reversible, i.e., one can easily
determine key for given values of crc32(key,c) and c. Using

Crc32 = crc32(key,c)

the solution looks like this:

key = (Crc32 << 8) ⊕ crcinvtab[Crc32 >> 24] ⊕ c (6)

(again, crcinvtab is a computable table).

How does a secret key get in there? First of all, the words key0, key1, and key2
are initialized:

key0 = 0x12345678
key1 = 0x23456789
key2 = 0x34567890

Then you run the actualization procedure described above for all key bytes.
This corresponds to a cipher where the ciphertext is discarded. This means that
there is no restriction as to the key length. The internal key consists of the
three key variables, thus it is 96 bits long (corresponding to 12 bytes); far too
many for brute force.

About the Security of ‘Wild’ Algorithms and How to Break the pkzip
Cipher

This cipher was designed by Roger Schlafly1 and looks pretty ‘wild’ at first. I
don’t know all the design principles of the algorithm. For example, I have no
idea where factor 134 775 813 in the actualization procedure comes from (it is
not a prime number, but is equal to the product 3*17*131*20 173). Perhaps it
is as arbitrary as the initialization of the three key variables.

1Homepage on the Web: bbs.cruzio.com/∼schlafly/; see also [GarPGP, end of Chap-
ter 6].
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I certainly don’t want to suggest that Roger Schlafly designed the algorithm
‘arbitrarily’. (The use of an initialization vector and the inclusion of the plain-
text in the key stream generation show profound knowledge.) Gradually chang-
ing the key variables is also typical: key0 changes key1, key1 changes key2, and
K is computed only from key2. But things will go as they went for Schlafly for
everybody who builds a ‘wild’ algorithm on the off-chance: his method will be
cracked, not only in theory. pkzip is instructive in this respect—cryptanalysts
would probably proceed in the same way with other insufficiently protected
ciphers, too.

In 1995, Biham and Kocher published a successful plaintext attack against the
pkzip cipher [Bih.zip]. The article is available on the Internet. It is not easy
to read, so we should take time to do some basic thinking and look at the
results—they are interesting.

As usual with a plaintext attack, we assume that we know at least one byte of
the plaintext and the corresponding ciphertext byte. We can then compute byte
K from the key byte sequence:

K = P ⊕ C

The first exploitable point is equation (e) above. The multiplication is a strongly
mixing operation, but we are not interested in it at all. We know from (d) that
the two least significant bits of the 16-bit variable tmp are equal to 1. So tmp
can be represented as follows:

tmp = 256a + b + 3

where a and b denote bytes, and the last two bits of b are equal to 0. We can
thus write (e) alternatively as follows:

K = LSB((2b + 5)a) + MSB((b + 2)(b + 3))

where LSB stands for ‘least significant byte’, and MSB stands for ‘most sig-
nificant byte’. We can use both to unambiguously determine the lower-order
byte of (2b + 5)a for given b and K . But we can also compute a now, since
the congruence
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(2b + 5)a = c mod 256

is solvable toward a for known b and c, because 2b + 5 is relatively prime to
256 (see Section 4.5.3).

Byte b can accept 26 = 64 values at most. Knowing key stream byte K, a

results from b unambiguously. So, there are only 64 possible values for tmp
as well as for the 14 bits 2, . . . , 15 of key2 ! The 16 higher-order bits of key2
are undetermined for the time being; a total of 222 (approximately 4 million)
values can be considered for the 30 most significant bits (2, . . . , 31) of key2
with given K .

That’s all we can get out of (d) and (e); the two least significant bits of key2
play no role in these equations. We can recover values of key2 that belong to
successive plaintext bytes from equation (c). The same applies to (a) and (b).
So we need several successive plaintext–ciphertext pairs, i.e., the values of K

in successive steps. Now things get far more complicated.

Equation (c) won’t help us further in the form stated, since we can see in
(5) that the two least significant bits of key2 play an important role. But the
reversion of crc32() described in (6) shows us how to proceed: we represent
key2i (the value of key2 for the ith step) as a function of key2i+1 by means of
(c) and (6), and compare the right and left sides bitwise: if key2i+1 is known,
then bits 10, . . . , 31 are given on the right-hand side, and the left-hand side
can accept only 64 (26) values in the 14 bits 2, . . . , 15 of key2i anyway. Since
the right and left sides have to coincide in the six bits, 10, . . . , 15, the 14 bits
2, . . . , 15 of key2i are given ‘unambiguously on average’. Under this prerequi-
site, we can continue comparing the right and left sides to gradually determine
all 30 bits of key2i and eventually all bits of key2i+1. What remains are 222

possible values for the entire sequence, key2i+1, key2i , . . . , key2 1. This is a
clever attack in my opinion.

However, we haven’t reached our goal yet; we don’t know the values of key1
and key0. We can use the values for key2 and the crc32 reversion (6) to
compute the most significant bytes of key1 in successive steps. This would
yield us 224 (approximately 16 million) values for bytes 0, . . . ,23 of key1. We
can now easily reverse equation (b):

key1i−1 + LSB(key0i) = (key1i − 1) * 134775813−1 mod 232
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(The reciprocal of 134 775 813 is formed modulo 232.) Since the most significant
byte of key1i−1 is given and LSB (key0i ) concerns only the eight lowest-order
bits on the left side (except for carryovers), the eight most significant bits on
the left side are given. Consequently, this equation limits the value reserve
for key1i to about 224/28 = 216. We can now compute key1i−1, except for the
eight least significant bits, which are ‘disturbed’ by the least significant byte of
key0i , for each of these 216 values. Next, we write the last equation once for
i − 1 and put in all 256 (28) possible values for key1i−1 there—this time on
the right-hand side. Only every 28th value of key1i−1 will result in the given
most significant byte of key1i−2 on average. Again, key1i is ‘unambiguous on
average’. We thus obtain the least significant byte of key0i . A nice ending,
don’t you think?

Let’s capture the intermediate state of affairs: we determined 222 possible
sequences for the values of key2, and about 216 sequences of key1 values
are possible for each of these 222 sequences. Altogether, this results in approx-
imately 238 (or a quarter of a billion) possibilities.

Things get pretty fast from now onwards. We can determine the values of key0
from (a), (6), and the least significant bytes of key0 for four successive steps
using the solution of a linear equation system. We take this result to compute
the key0 values and compare their least significant bytes with the values given
in 238 lists for additional steps. This is basically the solution.

We can now decrypt the ciphertext backwards without knowing the plaintext.
This is much easier than the approach above. We obtain the same initial values
for key2, key1, and key0, i.e., the internal representation of the key. With this,
we decrypt the entire archive.

About 12 or 13 coherent plaintext bytes, which don’t necessarily have to be
at the beginning of the file, will suffice for the attack. The complexity of the
computation is around 238, i.e., we have to trial-and-error test roughly one
quarter of a billion key lists. This complexity can be dramatically reduced if
more plaintext is known.

When computing key2i−1 from key2i , we get double values. This reduces the
number of possible key2 in every computation step. So, with 12 000 known
plaintext bytes, about 2000 lists instead of 222 (4 million) remain typically,
reducing the complexity of the entire computation from 238 (250 billion) to 227

(about 100 million) lists.

Biham and Kocher even found a way to reveal the unknown key. Remem-
ber that it was initially used as ‘plaintext’, while the ‘ciphertext’ created
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was discarded. With a key length of up to 6 bytes, the key can be revealed
unambiguously; the complexity of the computation increases by a factor of 28

with every additional byte. A maximum of 248 tests are to be expected. This
corresponds to a 12-byte key that contains as many bits (96) as the internal
key. It is believed that there are cases where 13-byte keys represent the shortest
solution to the problem. However, a value of 248 strongly reminds us of DES
cracking, and that’s a case for special hardware. But the key entered does not
have to be computed, it is just the icing on our cryptanalysis cake.

The pkcrack Program

It is a remarkable achievement to ‘cast’ this algorithm in a program and then
make it available for free on top of it all. Many problems remain unanswered
in the original work, too, and even understanding them all won’t make the
implementation any easier. I tend to think that this pkcrack program is the most
difficult among all free cryptanalytic software. In fact, AccessData don’t even
have it in their product supply (see Footnote 1 in Section 1.2.2). Author Peter
Conrad from Germany deserves all respect for this work. Version 1.2 of his
program can be used as a ‘black box’. It runs under UNIX (particularly Linux);
a special compiler can be used to run it under DOS. It requires 33 Mbytes
of virtual memory in the startup phase, but a physical 16-Mbyte memory is
normally enough.

I used pkcrack on an encrypted archive, knowing that it included a file 728 bytes
long. The computational effort was considerable: a DEC workstation with a
300-MHz alpha processor was busy breaking code for almost 6 hours. After
all this work, only one password was output—it was the right one. Things
would have been much faster had I used more known plaintext, though. The
workstation’s performance corresponds to a very fast Pentium-Pro.

Since pkcrack is easy to use, and its technical details and installation are well
documented, I will spare you the details here. It is not excessively long (3000
lines in C) and written in a pretty compact way. Conrad uses the denotations
of the original work.

All files are encrypted with the same password in a pkzip archive so that it is
sufficient to know a bunch of 12 or 13 coherent bytes of one file from within
the archive to decrypt all files! These 12 or 13 plaintext bytes don’t have to
be at the beginning of the known file; you only need to know their offset.
However, an attacker has to overcome yet another obstacle: pkzip normally
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compresses each file by the best possible method. This means that 12 or 13 bytes
of the compressed file need to be known to reveal the archive. Generally
speaking, one has to know at least the first 40 bytes of a file and a suitable
compression method (the method can be trial-and-error determined, if need be,
usually from the length of the compressed file). This prerequisite is met often
enough, particularly when only some of the archived files are sensitive. This is
the reason why it is strongly advised not to use the pkzip cipher.

The ‘license fees’ for using pkcrack are rather interesting, if not amusing.
No software developer can make a living from shareware in Germany. So they
distribute it as ‘cardware’: everyone who uses the program and likes it is kindly
requested to send the developer a postcard from their home country with some
text of their choice (praise is preferred). It doesn’t always take money to create
incentives!

The commercial use of pkcrack is ‘strictly forbidden in any form whatsoever’.
Don’t allow yourself to be led into accepting money for supporting companies
in economic espionage—consider code breaking as voluntary assistance and
cash in on respectable consultant fees instead. Joking aside: whoever protects
corporate data with pkzip can’t be helped. I appreciate Peter Conrad’s program
very much. It made the decisive step from theory to practice and, as a side
effect, prevents a large number of people from pocketing dream commissions
semi-legally. (There are enough opportunities to make money with software.)

Bottom Line

Cryptanalyzing the pkzip cipher is perhaps the most demanding part of this
book, though merely outlined. If you are interested in the details, you should
have a look at the original work by Biham and Kocher. It is included in the
pkcrack program as a PostScript file. However, even the original text is not
easy to understand. Perhaps the explanations given above will help you get
started. Conrad’s program also helps to better understand things, though the
detail is not mentioned.

The pkcrack program can be seen as a realization of the ‘threat’ from Chapter 1:
if you use a theoretically insecure method, you have to expect that somebody
with no knowledge of the background but lots of money for fast hardware (a
Pentium PC and Linux in this case) and an appropriate program (pkcrack in
this case) will get hold of your sensitive information. It won’t take more than
a couple of hours on a PC, or maybe less.
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The design of the pkzip cipher is not bad at all. But its single steps (a) through
(e) are not secure enough. Each step can be cracked in itself without knowing
the previous step. This is an important difference to product algorithms like the
ones discussed in this book. The single steps in pkzip differ a lot, but without
doing any good.

5.7.2 Classified Stuff in Air: The D-Networks and the A5
Algorithm

Cellular telephones are great as long as Mr Mallory can’t listen in on them.
Some owner of a C-network phone was obviously not aware of this problem. In
the C-network, phones worked analogously, like radio senders and receivers.
Though voice was scrambled, listening in on them wasn’t a major problem
for techno freaks more or less familiar with the matter. In short, if you made
confidential phone calls within the C-network you might just as well have
written the contents on postcards and given them to the next passerby to put
them in a letterbox. That wouldn’t be as fast as a phone call, but more secure
if the passerby looked fairly trustworthy.

Things changed with the advent of the GSM standard. In Germany, these are
the networks D1, D2, and E-Plus. These networks digitize, compress, encrypt,
and broadcast voice in single 114-bit data packets to the next base station.
Up to eight subscribers can concurrently use a frequency in one time slot
based on timesharing—every one of them is ‘on’ for about half a millisecond.
Moreover, the transmit frequency can be set anew over and again during the
transmission. This is called frequency hopping. Theoretically, 124 frequencies
are available in each cell; the practical number of frequencies used per cell
seems to still be in the single-digit figure range. Frequency hopping enables
broadcasting behind coarse grids like steel bridges, while making eavesdropping
more difficult for attackers.

The base station receives the packets individually, decrypts them and forwards
them via radio relay or fiberglass cables. If the receiver happens to be using
a GSM handset, then his base station encrypts the data packets received, and
the receiver’s handset decrypts them, puts them together again, and converts
them back into voice. Otherwise, this process happens upon the transition into
a different telephone network. All this shows the following clearly.

Eavesdropping on D-network conversations is not meant for freaks with tuned
broadband receivers. You need very expensive special hardware. If the infor-
mation on frequency hopping itself is also encrypted (which I don’t know),
then the cost would multiply once more considerably.
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Consequently, conversations in the D- and E-Plus wireless networks are much
more secure, compared with conventional wireline networks, for several rea-
sons. First, a ‘hacker’ can’t get hold of the line as easily as they can get to your
telephone distribution panel in the basement, since base stations are intercon-
nected by radio relay or fiberglass cables. Second, he cannot run up your phone
bill as easily as in a wireline network, because digital networks authenticate
their users. We will get back to this issue in Section 6.1.3.

However, governments (and naturally all national intelligence agencies) can lis-
ten in on your conversations in spite of it all. The government may tap base sta-
tions. Though this was not possible when the D-networks were introduced, the
software was meanwhile changed at high cost upon the government’s request.

A weak ciphering algorithm could be a theoretical threat to the confidentiality
of the communication within the D-network. And this is exactly the case. We
will be dealing with the A5 algorithm in the following, because it concerns an
important field: ciphering by means of shift registers.

LFSRs and the A5 Algorithm

All kinds of interesting rumors are woven around the A5 algorithm. I partic-
ularly refer to messages posted in the sci.crypt newsgroup on June 17, 1994,
which you can read on our Web site (see A.1, algor/A5 directory). In the mid-
1980s, people discussed whether A5 should be strong or weak. Germany voted
in favor of a strong algorithm, since the Iron Curtain was very close back then.
Other countries feared an export ban to the Middle East due to the cryptography
used. The outcome was a stream cipher designed in France, which is obviously
weak. This very circumstance seems now to restrict its export.2

Though A5 was kept secret for a long time, it eventually leaked to the Inter-
net over several channels (including Bradford University in Great Britain).
Dr Simon Shepherd of Bradford University wanted to lecture on a cryptanal-
ysis of this algorithm at an IEE colloquium to be held in London on June 3,
1994. However, his lecture was prevented at the very last minute. In 1997,
Jovan D. Golic presented another analysis at the EUROCRYPT [GolicA5], but
revealing the session key remained a costly enterprise, as it turned out. So
there was something out there to get credit for after all! The reduction of the
key length to 54 bits (see also Section 6.1.3), which wasn’t discovered until
April 1998, could not be used in his cryptanalysis, as Golic himself stated. But

2However, this is not a typically European problem—think of the 160-bit Vigenère cipher
for US mobile phones (end of Chapter 3).
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that’s of no interest to anybody anymore. We will see further below how the
algorithm can be cracked in a flash.

Apart from these dubious circumstances and the fact that A5 is one of the
encryption algorithms most frequently used in the world, this algorithm repre-
sents an encryption class we haven’t dealt with in this book yet: stream ciphers
using LFSRs (Linear Feedback Shift Registers). This impressive name hides
a rather simple method.

A shift register is nothing more than a memory location with n bits, where n

does not have to be a power of 2; it can be an ‘odd’ number, for example, 9,
23, or 47. A special piece of hardware allows you to shift all bits concurrently
by one position to the left and to fill the least significant bit with a given value.
It would look like this in C:

R = (R << 1) | b

where R is a data type with n bits, and b is a value with all of its bits equal
to 0, except perhaps the least significant bit. Registers of microprocessors can
be shifted. However, microprocessors handle other tasks, too; conversely, shift
registers are specialized and particularly fast pieces of hardware.

Linear functions on a shift register are defined exactly as at the beginning of
Section 4.4.4: some bits are chosen from the register and XORed. Feedback
means that, in a shift, the least significant bit of the shift register is the result
of a linear function on that register. The most significant bit of the register
pushed out on the left is reused. Figure 5.22 shows how this process works.
(The shift could just as well run from left to right, and use the least significant
bit; the names are arbitrary.) The positions of the bits that ‘participate’ in the

XORing single bits

output

feedback

Figure 5.22: A 10-bit shift register with linear feedback (LFSR).
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XOR in the feedback are referred to as a tap sequence. Such an LFSR is very
easy to implement in hardware, of course.

What has all this got to do with cryptology? Well, we could fill an LFSR with
a secret content—the key—and then use the bit sequence created for a stream
cipher. That’s far from being secure yet. First, LFSRs have a period, which
means that, after a finite number of steps, a state repeats itself. If this period
is too short and much of the ciphertext is known, we could mount an attack
similar to how we would attack the Vigenère cipher. The period length can
be maximally 2n − 1 for an LFSR n bits long (though the LFSR can accept
2n values at most, value 0 is not applicable: once all bits are equal to 0, they
will remain equal to 0). The period is maximal if the tap sequence corre-
sponds to a so-called primitive polynomial modulo 2. Rather than explaining
this term, I refer to [SchnCr] and the large number of literature references
included therein.

LFSRs have been interesting for a long time and formed the backbone of mili-
tary cryptography because they are particularly easy to implement in switching
circuits, and because of the high ciphering speed. On the one hand, there is
a mature mathematical theory of LFSRs. On the other hand, little is known
about their use in devices, and most developments are secret [SchnCr, 16.4].
It is interesting that almost all Cray supercomputers process a strange machine
command that determines the number of bits set in a register. This means that
an LFSR can also be implemented very efficiently in software. It is believed that
this command is a requirement in almost all computer contracts with the NSA.
It has meanwhile become an open secret that Cray computers were initially
built mainly for cryptanalysis.

Simple LFSRs don’t offer cryptological security any longer; they are easily
cracked. A plaintext attack with 2n successive plaintext–ciphertext bit pairs
suffices to break an n-bit LFSR. For this reason, several LFSRs are linked in
as complicated a way as possible. We will only look at a brief outline of A5
in this book.

The A5 algorithm uses three LFSRs with lengths of 19, 22, and 23 bits, i.e., 64
bits in total (and that’s also the key length). The tap sequences (bits counted
from 0 on) are:

18, 17, 16, 13 for the 19-bit register,
21, 20, 16, 12 for the 22-bit register,
22, 21, 18, 17 for the 23-bit register.
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We look at the middle bit of each register (i.e., positions 9, 11, and 13). Every
ciphering step moves a register forward exactly when either its middle bit is
equal to 1 and the middle bits of the other two registers are equal to 0, or vice
versa (the bit considered is 0, the others are equal to 1). The feedback bit—and
not the bit pushed out in that step—goes into the key stream. That’s all!

The points of departure for cryptanalyzing A5 are the register lengths and the
tap sequences—both are too short. The register lengths allow you to mount a
plaintext attack with 240 trial-and-error encryptions on average: you guess the
first two registers and compute the third from the key stream. Little plaintext
will suffice, because one single 23-bit LFSR can be broken with 46 bits of
plaintext. Ross Anderson estimates that the computing performance required
can be handled by programmed Xilinx chips: if each chip trial-and-error tests
two keys per microsecond and 50 chips are housed in a special computer, the
key should be found in about 3 hours on average. The insufficient lengths of
the tap sequences appear to have been exploited by Dr Shepherd.

Birkyukov and Shamir put an end to all the speculation around A5 in 2000.
They showed how to crack A5 in their publication [BirShamA5]. You need
a computer with two 73-GB hard disks. You fill them with data computed
in advance. This is certainly costly, but you need to do it only once. You
then replay 2 minutes’ worth of plaintext and ciphertext of a communication
and put the computer to work; it will compute for 1 second, and you will
have the session key. Alternatively, you need a 2-second plaintext and several
minutes of computation time. This is more realistic for data transmission, if the
beginning of the data stream is known. This method doesn’t work for normal
voice communication, though. You would proceed differently.

GSM handsets know an additional algorithm called A5/2 (probably the reason
why A5 is sometimes called ‘A5/1’), which is much more insecure than A5.
In 2003, Barkan, Biham, and Keller published an article (cryptome.org/gsm-
crack-bbk.pdf on the Web site to this book) describing how to practically and
effectively attack A5/2. They exploited an error in the protocol: the checksum
of the data packets is a CRC, an algebraic function of the packet’s bits, and
this CRC is included in the cipher. Now, A5/2 is so weak that the algebraic
dependency between CRC and data is not sufficiently blurred (insufficient con-
fusion). You can reveal the key by replaying a few hundredths of seconds of the
ciphertext within a 1-second computation time. In practice, Mallory could use
an IMSI catcher, play the man in the middle, and convince the handset at the
beginning of the conversation to use A5/2 instead of A5/1. The cost amounts
to a couple of thousand dollars and sufficient know-how.
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However, somebody who can use an IMSI catcher and play the man in the
middle is normally more nifty: he’d talk the handset into disabling the cipher
(which often happens due to poor transmission conditions, since unencrypted
messages require less bandwidth). Only very few handset models display this
state, and if they do, users don’t normally pay attention. Disappointed? That’s
espionage in practice: it’s not the elegance that counts, but the result.

5.7.3 FEAL: The Cryptanalysts’ Favorite

Read a lot about cryptanalysis and still not heard of the FEAL block algorithm?
Just like every cryptologist should know the Enigma, they should have heard of
the cryptanalytic successes against FEAL. For, whenever a new cryptanalytic
method is discovered, FEAL seems to be the first victim, and the algorithm
does ‘lend’ itself indeed.

FEAL was designed by the Japanese Shimizu and Miyaguchi in 1987 with the
goal to replace DES by a faster and at least equally secure algorithm. Simi-
larly to DES, it is a Feistel network with 64-bit blocks, but it uses a 64-bit
key. The intended improvement was to be a more secure round function. Four
rounds had originally been planned. FEAL-4 (4-round FEAL) is really much
faster than DES; unfortunately, it is not more secure. Figure 5.23 shows the
round function.

S0

S0

S1

S1
S0(a,b) = Rot2((a+b) & 0xff)

Ri half block (32 bits)—split in 4*8 bits

subkey (16 bits)—split in 2*8 bits

f(Ri)

S1(a,b) = Rot2((a+b+1) & 0xff)

Rot2(a): rotate byte a by 2 bits

Figure 5.23: The round function of FEAL.
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The design goal was thoroughly missed. The first attack by means of differential
cryptanalysis that was published at all was not the famous attack Biham and
Shamir launched against DES, as you might expect, but the one by Murphy
[MurFEAL] against FEAL-4 in 1990: the algorithm can be broken with as little
as 20 chosen plaintexts. In contrast to DES, this is very practicable indeed!

The developers’ response was FEAL-8. Biham and Shamir came along and
showed that differential cryptanalysis is more effective than brute force against
FEAL with up to 32 rounds. The number of chosen plaintexts for FEAL-4
dropped to 8 (!), and was 10 000 for FEAL-8, and FEAL-16 required 228

chosen plaintexts or 237.5 (corresponds to 1.5 Tbytes) known plaintexts.

The designers then came up with FEAL-NX which uses 128-bit keys. Biham
and Shamir didn’t fall down on showing that their attack works just as effec-
tively against this algorithm.

In their linear cryptanalysis attack in 1992, Matsui and Yamagishi broke FEAL-
4 using five known plaintexts (40 bytes)! FEAL-8 would have required 215

(32 768) known plaintexts.

Meanwhile, differential linear cryptanalysis can be used to break FEAL-8 with
only twelve chosen plaintexts.

FEAL is an impressive example of the progress modern cryptanalysis has made
during the past few years: while 10 000 chosen plaintexts were necessary to
attack FEAL-8 in 1990, that number was down to 12 five years later. The
unsuccessful improvement of this algorithm shows that new ideas can turn a
weak algorithm into a secure one only fundamentally.

Implementations of FEAL-8 and FEAL-NX are given on the Web site associ-
ated with this book (see www.wileyeurope.com/go/cryptology).

5.7.4 Other Algorithms: SEAL and Blowfish

In closing our discussion of known algorithms, I will briefly describe the SEAL
stream cipher and the Blowfish block algorithm below.

SEAL

Similarly to RC5, SEAL is a relatively young algorithm—it was first intro-
duced by Rogaway and Coppersmith [RogCoSeal] in 1994. (We know Copper-
smith from the DES development; he is thought to be an excellent cryptanalyst.)
SEAL is a stream cipher, i.e., it takes a key to compute a secret key sequence
and XOR it with the ciphertext. The method has three outstanding features:
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• The algorithm is one of the fastest ciphers in software that are currently
considered to be secure: it achieves 58 Mbits/s on a 50-MHz PC-486 (that
translates in 7 Mbytes/s, about five times faster than my RC5a implemen-
tation on a 133-MHz Pentium!).

• The computation of special tables about 3 Kbytes long from the key is
much slower than the encryption. This prevents trial-and-error attacks,
such as dictionary attacks or brute-force attacks, against a different subset
of all keys.

• The key byte sequence does not have to be computed sequentially (as
with other algorithms); you can skip an arbitrary number of bytes. This
makes SEAL ideally suited for encrypting entire hard disks or single
distributed database entries. In contrast to other stream ciphers, SEAL-
encrypted messages can be sent over channels that lose data from time
to time—there is no synchronization problem.

However, SEAL is patented by IBM and has not yet been publicly cryptana-
lyzed. But when Coppersmith designs an algorithm you may reasonably assume
that it is well designed.

SEAL takes a secret 160-bit key, k, and creates a sequence k(n) of pseudo-
random character strings of length L for an arbitrarily given number L (not
greater than 216, corresponding to 64 Kbytes), where index n is a 32-bit number.
The details of this algorithm are rather complex; an implementation in C is
included on the Web site associated with this book (see www.wileyeurope.
com/go/cryptology).

Blowfish

The Blowfish block algorithm is also fairly new. It was introduced by Bruce
Schneier, the author of the seminal cryptographic book [SchnCr], in [Schn-
Blow1] and [SchnBlow2] in 1994. In contrast to SEAL, Blowfish is free and
has been cryptanalyzed. It is also used practically, namely in FolderBolt for MS
Windows and Macintosh as well as in Nautilus and PGPfone. Because it’s free,
it is also used in many public-domain products, including SSH (Section 7.3)
and GnuPG (Section 7.1.4).

Blowfish is essentially a Feistel network with 64-bit blocks, 16 rounds, and
variable key lengths (up to 448 bits, i.e., 56 bytes). Figure 5.24 shows its round
function.
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Figure 5.24: Round function of the Blowfish algorithm. The S-boxes are com-
puted dependent on the key.

However, referring to Figure 4.6, Ri is also XORed with a subkey, Pi . Each
of the four key-dependent S-boxes contains 256 values of 32 bits each. This
reminds us a little of DES with key-dependent S-boxes (Section 5.2.2), but the
round function is clearly more complex, and since it uses XOR and addition,
its non-linearity is stronger.

The cryptanalysis of Blowfish showed no weaknesses in the algorithm. An
attack with 2080 chosen plaintexts and about 234 computations was found
against the 3-round method. However, Blowfish uses 16 rounds. According
to Schneier [SchnCr], there is a differential cryptanalysis by Vaudenay, which
finds the subkeys of the Blowfish algorithm with r rounds using 28r+1 cho-
sen plaintexts. This does not mean that the attacker knows the S-boxes yet.
Weak keys required ‘only’ 24r+1 chosen plaintexts, so they don’t give reason
for concern.

Blowfish can be programmed very effectively on large microprocessors, such as
Pentium or Power Chip (Schneier states 26 CPU cycles per byte; this would cor-
respond to about 5 Mbytes/s on a Pentium-133!). It requires less than 5 Kbytes
of memory and, not least, it’s free. Altogether an interesting algorithm indeed.
You can find an implementation in C on our Web site (see A.1).
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5.7.5 NSA and Skipjack

In April 1993, the President of the United States started a Technology Initiative
related to the Escrowed Encryption Standard (EES), the Clipper chip, and
the Capstone chip, among other things. The initiative was intended to provide
for cryptologically secure data and voice transmission, however, with some
reservation: governmental agencies should have access to the secret key upon
demand. This would be done by key escrow using a device-specific key, which
can be used, in turn, to decipher the session key. We are only interested in the
underlying symmetric algorithm called Skipjack.

Nothing was known about its structure for many years. The reason was that
Skipjack was developed by the NSA and subject to secrecy. It was permitted for
use in ‘non-analyzable’ hardware (tamperproof chips) only, more specifically
in the Clipper chip (for telephone and telefax) and in the Capstone chip (for
data communication; embedded in the Fortezza card for notebooks). Though
a group of cryptologists were allowed to look at the algorithm [BrickDenn],
their results showed no vulnerabilities whatsoever—neither statistically nor by
means of differential cryptanalysis, and weak keys had obviously not been
found either. Nevertheless, this is not very convincing since nobody else was
permitted to have a look at the algorithm.

It is presumed in [SchnCr, 13.12] that Skipjack has a structure similar to DES.
The presumption was substantiated: in the unlikely event that somebody man-
ages to analyze either Clipper or Capstone, they should at least not be able to
learn a novel cryptographic method of the NSA. Anderson and Ross mentioned
in their remarkable article [AndKuhn.tamp] that the chip was read at the Sandia
National Laboratories.

However, when Matthew Blaze showed how the Skipjack algorithm imple-
mented in the Clipper chip can be exploited without key escrow, the EES
Initiative was all of a sudden not pushed at full stream anymore. He may have
hit a sore point, apart from hefty animosities against the Initiative by civil right-
ists and many cryptologists. More about this issue in Sections 6.4 and 8.2.3.

The Secrecy Concept Fails—Skipjack is Revealed

Skipjack was not supposed to become known, because nobody was supposed
to learn anything about the level of knowledge at the NSA. As a consequence,
only the NSA itself or suppliers under its strict supervision were permitted to
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produce the Clipper and Capstone chips. And this is exactly the point where
the huge almighty authority made an elementary error, just as happens with
such authorities: they forgot to allow for alternatives. Had the protocol addi-
tionally permitted disclosed algorithms like RSA and 3DES as alternatives,
the chip could have been implemented in software, including key escrow,
since the latter is an integral part of the cryptographic protocol and not the
algorithm. But methods that are kept secret have to remain hidden in hard-
ware.

So, Alice needed an NSA chip to be able to communicate with some equipment
fitted accordingly, and she didn’t have one. We don’t know whether she found
the chips too expensive, or whether there simply weren’t enough chips around.
Anyhow, problematic cases appeared to pile up. The only feasible way out was
to implement the chips in software.

Now, the NSA knew that people would have started mounting their analyses
on the very day such software was shipped, eager to closely inspect the first
algorithm ever developed by the NSA. All that remained was to take the bull by
the horns: the NSA disclosed the algorithm in mid-1998, along with its public-
key method called KEA (which will be briefly discussed in Section 6.1.1). You
can imagine (just as the NSA did back then) that cryptanalysts from all over
the world plunged into it.

Skipjack is a product algorithm (a Feistel network) with 64-bit blocks, an
80-bit key, and 32 rounds. It differs from the ‘civilian’ algorithms mainly in
that it uses linear feedback shift registers (LFSRs; Section 5.7.2), which are
commonly used for stream ciphers, a traditional military field. The design is
astonishingly simple, you can find the detailed description and source texts on
our Web site. In his online magazine Cryptogram 7/98, Bruce Schneier wrote
that Skipjack is very ‘vulnerable’, and that even the slightest modification would
wreck its security.

A Spectacular Cryptanalysis

Biham, Biryukov, and Shamir, the cryptanalysts well known to our readers,
appear to have put up a memorial to themselves as they cryptanalyzed a Skip-
jack variant reduced by one round only. In fact, they invented a new variant
of differential cryptanalysis, the method of impossible differentials, spiritu-
ally slightly related to the negative pattern search discussed in Section 3.4.1:
roughly speaking, you look at differences that can currently not occur and
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exclude keys that create such differences. This method is ingenious and very
strong—its successes include the best known attack against IDEA [Skipana].

The authors succeeded in attacking the Skipjack variant reduced to 31 rounds
more effectively by this method than by brute force. However, this is irrelevant
for practical purposes. You’d require 234 (128 Gbytes) chosen plaintexts and
278 steps. Even if you executed one billion steps per second on one million
processors in parallel, this cryptanalysis would still take 9.5 years.

On the other hand, the result is enormously significant for self-confidence in
public research. Take a minute and compare this with the cryptanalysis of the
five final AES candidates: none of them can be attacked faster than by brute
force, if you reduce it by only one round. What you usually do is consider
some security reserve in your planning. Since the NSA didn’t, the conclusion
that they didn’t know this attack suggests itself. Let’s sum things up:

Biham, Biryukov, and Shamir presumably found a cryptanalytic method that
the NSA didn’t know.

Together with Matt Blaze’s attack against the Clipper protocol and the conse-
quential disclosure of the algorithm, the NSA no longer appears as almighty
as you might be led to believe.

5.8 Probabilistic and Quantum Cryptography

This section will show you that cryptographic algorithms can sometimes come
along in rather exotic shapes. What we will be dealing with are ingenious ideas
rather than specific algorithms.

Probabilistic Cryptography

Probabilistic algorithms contain randomness, as the name suggests. They can
generate many possible ciphertexts from one fixed plaintext; which one of them
will be output is totally accidental. The reverse procedure—decryption—must
remain unambiguous, of course.

‘What’s the point?’, you may ask. For one thing, such an algorithm is useful
as an improvement of asymmetric methods. If encryption with the public key
is probabilistic, nobody can prove that a certain ciphertext belongs to a certain
plaintext, unless they know the public key. Something like this can be desirable
in many a situation!
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Furthermore, the usual asymmetric methods are vulnerable to adaptive-chosen-
plaintext attacks—after all, the public key is known. In probabilistic asym-
metric encryption, the amount of information gained by encrypting a chosen
plaintext is clearly smaller, it might even be zero. These are not more than
diffuse threats. No such attack is known against RSA, for example.

The first probabilistic method was invented by Goldwasser and Micali as early
as in 1982, but the method was not practicable. In 1984, Goldwasser and Blum
[BBS] introduced a simple and applicable method that I will briefly describe
below.

The basis is the random-number generator by Blum, Blum, and Shub, also
referred to as the BBS generator. Similarly to the RSA method, two large
prime numbers, p and q, form the secret key, and their product, n = pq, forms
the public key. Here, however, it is necessary that p and q leave a remainder
of 3 when divided by 4 (such prime numbers are also called Blum numbers).
If you want to encrypt something, you choose a random number x that is not
divisible by p or q and compute

x0 = x2 mod n
x1 = x0

2 mod n
x2 = x1

2 mod n
x3 = x2

2 mod n
...

Sequence b0, b1, b2, . . . of the least significant bits of x0, x1, x2, . . . is used as
a one-time pad. Value xt+1 (if the plaintext consists of t bits) is appended to
the ciphertext. This xt+1 value is useless for attackers. But if you know p

and q, you can construct the sequence (xi) and thus also (bi) in reverse order
(corresponds to calculating roots modulo n).

Since value x was chosen randomly, every encryption will normally produce
a different ciphertext.

You can alternatively take several bits rather than the least significant bits. The
algorithm would still be secure and faster than RSA (with the above-mentioned
benefits versus RSA). Moreover, it would allow you to prove that cracking the
method requires the factoring of n.

The only drawback of this method is its high vulnerability to chosen-ciphertext
attacks (see Section 4.5.3). However, this is of no importance to the exchange
of session keys.
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Quantum Cryptography

The field of quantum cryptography suggests that the world of cryptology is
much larger than one would expect from what has been discussed so far in
this book. In fact, this is the field where cryptographic algorithms and proto-
cols merge with modern physics, challenging cryptanalysts in their race with
cryptography.

The decisive novelty of quantum cryptography is that it lets you detect or
thwart potential eavesdropping on data lines with certainty. To this end, it
uses the laws of quantum mechanics, which leave even the niftiest national
intelligence organizations powerless over the foreseeable future. They will have
to find another vulnerability. In critical cases, one-time pads can be transmitted
over secure channels, thus offering a chance (using appropriate noise sources)
to—hopefully—rid oneself of cryptanalysts for good.

Such ideas were first published and expanded by Bennet, Brassard et al. in 1982
(see [BBEQuant] with references for further reading). The principle is not really
hard to understand. You already know the basics from physics at school.

We know that light can be polarized. You can think of a plane of polarization of
light, for example, horizontal, vertical, or diagonal (and there are more planes
to polarize light differently). You may even have used this phenomenon in a 3D
slide show. The glasses used in the binoculars are polarization filters, i.e., they
let light penetrate from one polarization level only. The level of the left glass
is superimposed vertically on the right glass, similar to frames on a special
screen (that does not scatter the polarization direction). Thus, each eye sees
only the ‘correct’ frame.

However, things are a bit more complicated than the simplified analogy above.
Say, one of your acquaintances has a 3D projector; have him cover one of
the two objectives, then look at the frame through the corresponding binocular
glass. Rotate the glass slowly by 90 degrees: the image turns gradually darker
until it almost disappears. The model to see polarization as a polarization plane
is not entirely correct. When using a filter to measure polarization, we measure
the amplitude (intensity) of light in the direction determined by the filter—as
shown in Figure 5.25.

If the filter looks onto the polarization plane, then the light intensity is maximal;
if the filter is vertical to it, then the intensity is minimal (theoretically equal
to zero). And if you hold the binocular glass rotated by 45 degrees to the
polarization plane while looking at the screen with one eye, you will see both
frames with equal brightness.
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Figure 5.25: Measuring the polarization of light.

If one single polarized photon (light quantum, light wave train) hits such a
filter, the term ‘intensity’ loses its meaning. We have to replace it by ‘proba-
bility’. If a photon polarized vertically arrives at the receiver’s end with a filter
placed vertically, the photon passes this filter with a high probability. If the
receiver filter is arranged horizontally, the photon can theoretically not pass it.
However, if the receiver filter is rotated diagonally by 45 degrees, the photon
will pass it with a probability of 50 %, and the polarization is undetermined.
An eavesdropper trying to detect the polarization cannot achieve this by the
laws of quantum mechanics without changing the photon’s polarization or even
absorbing it.

This means that the polarization of a photon can be determined only once at
most. This is the decisive physical principle of quantum cryptography.

Naturally, the technical details of the method are complicated. However, the
considerations above should help you to understand the following cryptographic
protocol:

1. Alice sends randomly polarized photons. Each photon is polarized hori-
zontally, vertically, or in one of the two diagonal directions.

2. Bob has a habit of setting his receiver horizontally or diagonally slanted
to the right, and arbitrarily for each photon. With each incoming pho-
ton, he can determine whether or not it passed the filter. He can decide
from the filter set horizontally whether the photon was polarized hori-
zontally or vertically. His finding will be random for photons polarized
diagonally.
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3. Bob tells Alice his settings over a non-tamperproof channel (but the
message must not be vulnerable to manipulation). With this, Bob doesn’t
give away anything to an eavesdropper: the sentence ‘I used a filter set
horizontally in the 5th pulse’ does not reveal the polarization he actually
measured in the 5th pulse.

4. Alice tells Bob the numbers of the correct settings, for example: ‘You
measured the 1st, 3rd, 4th, and 5th pulses correctly’. Again, this won’t
allow the eavesdropper to understand what Bob actually measured. The
measuring results for these pulses are pieces of information that Alice
transmitted securely to Bob. 50 % of the settings should be correct on
average. The intruder eavesdropping on the line would necessarily falsify
the information. Alice and Bob could find this out, for example, by
comparing hash values. They would also be able to notice forgeries as
they exchange filter settings.

The last point shows us that quantum cryptography does not provide for a secure
data channel, but it does allow the conversers to detect whether or not somebody
listened in on them. For this reason, quantum cryptography is meaningful only
for transmitting a random key (which does not contain important information),
but less suitable for transmitting sensitive information.

The protocol can be expanded such that information can be transmitted securely
despite a (necessarily active) eavesdropper. The only problem could arise in
steps 3 and 4: man-in-the-middle attacks where an intruder pretends to both
conversers to be the other converser must be prevented in these steps. Asym-
metric methods can be used to reliably exclude such attacks. Notice that there
is a difference to using asymmetric encryption in hybrid methods, where crack-
ing would reveal the private key, and consequently all session keys and with
them all secret messages. Conversely, in quantum cryptography, only the fil-
ter settings would be compromised, which are not secret anyway. For this
reason, it is actually sufficient to exchange digitally signed messages about
the filter settings. Mallory, in the middle of the line, would have to forge
these messages as fast as Alice and Bob exchange them. To this end, Mal-
lory would have to know their secret keys in advance, which can normally be
ruled out.

Quantum cryptography is theoretically a heady approach. There is finally a
provable security rather than the usual assumptions and speculation.

The fact that the entire thing works in practice is still cooler. Employees of
British Telecom managed to transmit information over a fiberglass line 10 km
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long. Researchers at Los Alamos achieved 48 km in 1999. This is an outstanding
achievement in view of the fact that single photons are transmitted.

Unfortunately, even such outstanding achievements don’t remove all problems.
If Alice and Bob are at a distance of 2000 km, then quantum cryptography
won’t work over fiberglass even if the most sophisticated technology were
used. The solution could be airborne, at least partly: through the atmosphere
to a satellite and back to earth again.

Is this doable? Isn’t air an optically ‘dirty’ medium compared with superclean
fiberglass? Richard Hughes of the Quantum Information Team at Los Alamos
has been working at it for years and has achieved results that stun physicists
with disbelief. A receiver with a diameter of a few centimeters, circulating the
earth in 8 km/s at a height of 300 km, would have to be hit by one single photon
that must neither be absorbed nor change its polarization as it travels through
air. Hughes hasn’t gotten there yet, but almost. He uses the following tricks:

• The selected wavelength is 770 nm (this is borderline infrared). The
absorption is very low in this range, and turbulences (that could change
the polarization) have a smaller impact due to their typical expansion of
several centimeters.

• Light scatter is widely excluded by receiving only photons that ideally
come exactly from the sender’s direction. To this end, a special receiver
unit was built at Los Alamos.

• A sharper frequency filter lets pass only photons of the transmitted wave-
length.

• Nevertheless, many photons are still disturbed, though they do come
from the right direction and have the right frequency. For this reason,
a time window of only 5 nanoseconds is opened for reception in every
microsecond.

• Other sources of interference are air turbulences. Though they don’t
absorb the photons, and they don’t change their polarization noticeably,
they provoke a change to the photons’ traveling time due to density fluc-
tuations in the air. However, this is not jerky. The time difference remains
moderate within 1 microsecond.

To compensate for such differences in the time of flight, each ‘sharper’
pulse is preceded by a 100-nanosecond measuring pulse. This is how the
current time of flight is determined, and the receiving window is kept
open at exactly the right point in time.
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• Yet another problem is that turbulences deflect the light ray. This is why
the current deviation from the ideal is determined concurrently to ensure
that the sender is always directed exactly to the receiver.

Such tricks helped Hughes and his team to demonstrate airborne quantum
cryptography over a distance of 500 meters. ‘Big deal’, you will probably
say, ‘people covered 48 kilometers over fiberglass’. Well, let’s not jump to
conclusions yet! Once we have overcome a 2-km airway, we will reach 300 km
into orbit somehow sooner or later! This is so for the simple reason that the
density of air and turbulences decrease quickly as the height increases.

For the time being, however, we will stay on earth, where considerable progress
has been made:

• The 67-km distance between Geneva and Lausanne has been overcome
by fiberglass.

• Toshiba achieved a transmission rate of 15 bits/s over a 100-km fiberglass
line in Cambridge.

• The most impressive achievement, however, is probably the bridging by
telescope and laser of a 23.4-km beeline between the Wendelstein and
Zugspitze mountains on the German side of the Alps. You can read all
the details about this fascinating work by Matthäus Halder on our Web
site and the Internet at scotty.quantum.physik.uni-muenchen.de/
publ/matthaeusdiplom.pdf.

Nothing is impossible, so it seems.

5.9 Quantum Computers. What’s Still In There for
Brute Force?

If you think the last point above seemed like witchcraft, you will probably
banish the following into the realm of utopia. You wouldn’t be alone. Except for
a group of theoretical physicists, nobody took the ‘quantum computer’ seriously
for a long time. We had failed to understand that such computers could turn our
ideas about information technology upside down radically. However, I have to
take a run-up to explain this.

You’ll probably remember from school that quantum mechanics does not speak
of deterministic states, such as ‘power on’ or ‘power off’ (corresponding to bit 0
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or 1); it works with probabilities. The last point above suggested this. It is hard
to imagine in everyday life that something can have several states concurrently,
based on a certain probability distribution.

But there are more inconceivable things: quantum particles can be in super-
position to one another so that they are no longer independent. This is called
quantum entanglement. If you influence one of these entangled quantum parti-
cles, you also influence all others concurrently rather than with a minimal delay.
It is easier to describe it mathematically (though complicated) than trying to
imagine it.

All of this has been known since about 1920 and can be described by quantum
mechanics. But around 1980, Bennett, Benioff, and Feynman hit upon the idea
that one could build a computer on that basis. This computer would look totally
different from the computers we are used to today, and it would also work in
a totally different way:

• The bit of our times would be replaced by a qubit in such a computer. A
qubit could take states 0 and 1 concurrently, with different probabilities.

• Operations change the state of all qubits concurrently. Though there are
processes that correspond to the logical AND, OR, and NOT operations,
they would merely change probability distributions in quantum computers.

• Computations are totally ‘blind’, i.e., there is no feedback on the system’s
state as the computer works. And it wouldn’t be possible, since you
can’t ‘read’ quantum particles without influencing them (which is exactly
what quantum cryptography in the previous point is based upon!), and a
measuring process would destroy an entanglement immediately.

• The art of programming a quantum computer consists in, for example,
changing probability distributions by continued operations such that the
‘correct’ state (i.e., the solution) has a higher probability than all other
states in the end. Only then is the system of qubits read and destroyed as
it is read. Moreover, quantum computers allow you to directly determine
periods of functions. This is the principle that the Shor algorithm for
factoring, which is explained in detail in [WillClear10], works by.

In sequential work, say, in iterations, quantum computers are not faster than
conventional computers. But they can do things like determining the period of a
function ‘directly’, which poses enormous problems for our classic sequential
computers. Consider diffraction radiograms of crystals: the images give you
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a direct clue to the periodic crystal structure. The method works selectively,
virtually filtering the periodic shares. Compare optical electron microscopy with
scanning electron microscopy—this is roughly how you should think of the
difference between conventional computers and quantum computers.

If you are interested to learn more, you can find other texts on this topic
in txt/quant on our Web site. Furthermore, I recommend the excellent book
Ultimate Zero and One [WillClear10], and the Web site www.nsf.gov/pubs/
2000/nsf00101/nsf00101.html on Quantum Information Science (QIS),
which some experts think is the most interesting or even strategically most
important progress in information technology of the 1990s.

Fascinating Outlook

The quantum computer was initially a pure thought experiment: there was
a logic, and this logic was used to build a hypothetical computer without
considering its practical feasibility. Such a computer could not be compared
with our current computers. 500 entangled qubits could take on 2500 states
concurrently. You know that the number 2500 is beyond good and evil on
conventional computers with regard to both memory capacity and number of
operations. The number of atoms in the entire known universe is incomparably
smaller.

The downside is that quantum mechanics has always been hard to understand.
And because this fascinating new quantum computer appeared very hypothetical
and hard to grasp on top of it all, these things were discussed within a small
circle of specialists for fourteen years, until 1994. In that year, Shor developed
an algorithm that allows you to factorize large numbers on quantum computers
at a speed one can hardly imagine.

‘Wait a minute’, you will say, ‘wouldn’t that be sensational! One could easily
break RSA and most encrypted messages sent around nowadays at one go!’
That was exactly what jumped to the minds of militaries, national intelligence
agencies, governmental agencies, and large organizations like IBM. With his
purely theoretical work, Shor had woken sleeping giants. Since 1994, intensive
research work on quantum computers has been underway, and all of a sudden
financial means that physicists had never even dreamt of have become avail-
able. Rumors have it that the NSA sponsored nine universities for activities in
this field.

Talking about dreaming: the discrete logarithm could also be computed by
use of quantum computers. This would mean that all known reliable public-key
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methods became insecure. The computational speed versus algorithms currently
known would accelerate exponentially. It is currently possible that a 512-bit
RSA key could be broken on conventional computers, and 768 bits should be
possible with the Twinkle device introduced in Section 4.5.3. Cracking 1024-bit
keys is definitely utopian with such methods and current computing technol-
ogy. If we had quantum computers, for example, 1024 bits would take only
twice or four times as long as 512 bits. And that’s thought to be fast, really
fast—perhaps in the range of seconds or minutes.

Quantum computers could be useful for other tasks, too. For example, searching
unordered data repositories is one of the most time-consuming tasks for current
computers. It generally takes n/2 steps to find a specific record from a list of n

records. In his article included on our Web site (txt/quant/qc-grover.txt), Grover
explains an algorithm for quantum computers that needs only

√
n steps. More

specifically, while a conventional computer requires 500 billion steps to find
a specific entry out of one trillion entries on average, a quantum computer
with Grover’s algorithm can do this in about one million steps—500 000 times
faster. Grover even shows that it cannot be faster than that in general on a
quantum computer.

Finding periods of functions is much faster on quantum computers compared
with using classic algorithms. This is the special feature that methods for fac-
toring and computing discrete logarithms are based on. Rather than working
sequentially, quantum computers truly work in parallel.

Back to Reality

Unfortunately, there is no single quantum computer yet, at least not one that
deserves this name. One of the large number of hurdles has been that quantum
computers don’t work deterministically, which means that they are error-prone.
This problem was solved by Shor and Steane at the same time in 1995. They
designed methods for error correction in quantum computers which obviously
nobody had believed in.

In August 2000, Isaac Chuang of the IBM Almaden Research Center presented
the most promising approach to that date in a cumbersome manner to the
press: a glass tube with special molecules, in which atomic nuclei simulated a
5-qubit quantum computer, triggered and read by electromagnetic waves based
on nuclear magnetic resonance (NMR) imaging. In effect, this computer can
process a very short algorithm. Insiders will want to know that the qubits
correspond to the spins of single atoms in specially constructed molecules
coupled over electron sheaths (so the algorithm lies obviously in the molecular
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structure). The relaxation times are still within the range of seconds. Don’t
laugh: the first computers worked mechanically with punch cards and weren’t
much faster.

That was the state of affairs in summer 2000. Meanwhile, one arrived at 7 qubits
and managed to factor the number 15 (http://www.research.ibm.com/
resources/news/20011219_quantum.shtml). Many great developments
began with a ‘proof of concept’.

More results won’t be long in coming considering the intensive research in this
field. However, the way toward factoring 1024-bit numbers is extremely cum-
bersome. Solving the problem might indeed be more difficult than it appears.
It wouldn’t be the first time. For instance, people thought of nuclear fusion
reactors as a future technology forty years ago, whereas things around this
issue are very quiet today. Some researchers bet that the sun would extinguish
before a quantum computer could factor 1024-bit numbers.

Cryptologists should be more careful because they have to invent algorithms
that resist novel types of attack ahead of their time. Grover recalls a contribution
to a discussion in 1949, which read that ‘while a computer like the ENIAC is
equipped with 18 000 tubes and weighs 30 tons, computers of the future might
perhaps have only 1000 tubes and weigh only one ton’. Now just imagine how
experts might laugh at our current ideas in 50 years from now. . .

Schneier said in an interview that ‘quadratic acceleration’ as in Grover’s algo-
rithm would be rather typical for quantum computers. This would mean that
AES with 256-bit keys might still have the security of a 128-bit algorithm, i.e.,
it would still be invulnerable (see below). Quantum computers are exponentially
faster for special problems only. Unfortunately, this includes the two problems
all current asymmetric encryptions suffer from. And other secure methods are
still not in sight.

So there is need for action. Some studies suggest that quantum computers could,
for example, replace conventional semiconductor technology by the year 2020
once this technology has reached dimensions where quantum effects dominate.
Though we have to be patient, only two mathematical problems identified in the
past twenty years are suitable for public-key cryptography, namely factoring
and computing the discrete logarithm.

And I wouldn’t be so sure about symmetric methods. Quantum computers do
not offer faster speeds when running successive operations. But who checks
whether or not symmetric algorithms could be attacked somehow ‘differently’?
Hardly a cryptanalyst is in the habit of attacking such methods by means of
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quantum computer algorithms (aside from the fact that it cannot be tested
practically yet). On the other hand, quantum computer specialists are not yet
familiar with the shallows of modern cryptanalysis.

Quantum computers are often confused with quantum cryptography, but there is
a huge difference: though both use quantum mechanics, they differ profoundly.

• Quantum cryptography serves to transmit data where eavesdropping can
doubtlessly be detected in arrears, while quantum computers implement
algorithms, i.e., they are actually computers.

• Quantum cryptography makes our world more secure, while quantum
computers make it clearly more insecure.

• Quantum cryptography has progressed pretty far experimentally, while
nobody can tell whether we will ever be able to build a reasonable quan-
tum computer.

I personally tend to believe that cryptanalytic research will come up with a few
whopping surprises before the first large quantum computer is built. Think only
of unexpected methods like Shamir’s impossible differentials (Section 5.7.5) or
Schneier’s mod-3 cryptanalysis (Section 5.4.2).

What’s Still In There For Brute Force?

Let’s stay with physics and speculation for another while. People claim over
and again that brute force is only a matter of cost. That’s nonsense! Of course
there is no such a thing as an absolutely secure system, but that’s a different
story. I will compute a few simple examples that you can easily reconstruct
yourself.

To start with, take an 80-bit key. Brute-force cracking it takes 279 trials, cor-
responding to about 6 ∗ 1023 on average. The fastest processors reach a clock
frequency of about 1 GHz nowadays. Assume we actually had a superpro-
cessor that could really decrypt at this frequency. Though this is currently
utopia, it could well happen several years from now. Let’s further assume
that we have 100 000 such processors in parallel at our disposal. It would
cost us a huge amount of money, but it’s not impossible. All right, so we
would be able to run 1014 decryptions per second. This comes pretty close
to the frequency of light! Nevertheless, the result is sobering: such a code
would be broken in well over 190 years on average—not particularly relevant
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for practical purposes. Even one million or ten million such processors would
overtax the attacker’s patience.

However, if we were able to penetrate into the THz (terahertz, 1012 clocks per
second) range by means of novel types of physical principles and to operate one
billion (109) deciphering units in parallel with just as novel a miniaturization,
then this ultracomputer would take only 10 minutes—a usable value indeed.

With these things in mind, I wouldn’t want to guarantee a 20-year resistance of
a Skipjack-encrypted ciphertext, for Skipjack (Section 5.7.5) uses 80-bit keys.

But while talking about such long periods of time, Skipjack is probably not the
algorithm of choice; it would rather be AES with a minimum key length of 128
bits. What about security there? Our ultracomputer that can find 80-bit keys in
10 minutes would have to work on AES for over five billion years. You see
that classic physics won’t help solve this problem.

Even more reason to leave our current minds would be an attempt to attack
256-bit keys by brute force. This would correspond to 2.3 ∗ 1077 trials. Suppose
we had a way to exploit quantum-mechanical effects of some sort that turn
an electron into a deciphering unit and put each electron to work at a clock
frequency of 1015 Hz (which corresponds to the frequency of hard X-rays!).
The wonder computer thus constructed, which is supposed to solve this task
within one year, would have to have a mass of 1028 grams (for each electron
weighs roughly 10−27 grams). This means that it would be as heavy as the
earth. If we replaced electrons by molecules, we would immediately land in an
order of magnitude of 1033 grams, and that corresponds to the mass of a star.
Thinking more realistically based on our current minds, the computer would
be so heavy it would have to form a black hole, within which our task would
perhaps be solved—but the result could never come back out of it, as things
are with black holes.

You see that the key lengths of 192 and 256 bits additionally required for AES
don’t originate from the fear of ending up with keys too short to resist brute
force. People wanted to have a large security reserve against future cryptanalytic
methods.

More realistic appears the thought that quantum computers might be built one
day, and that symmetric algorithms could also be attacked. If these computers
really worked ‘squarely faster’, then a 256-bit security would shrink to 128-bit
security. Well then, are 256 bits sufficient? Let’s calculate things down: qubits
are controlled by means of electromagnetic radiation (radio waves, light, or
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something similar), based on our minds. With a clock rate of 1015 Hz, some-
thing imaginable in the remote future, we would have to put 5 ∗ 1015 (i.e., five
quadrillion) quantum computers to work in parallel to handle the computation
within one year. To make sure the monster won’t get heavier than 100 tons,
every quantum computer may weigh 20 ng (nanogram; a billionth of a gram)
at most—a tiny silicon cube with an edge length of 20 µm, including control
electronics and all other ‘physics required’.

All the considerations above suffer a little from the fact that they are based
on current knowledge and assumptions. Maybe quantum computers will be
built one day, and maybe they will be able to attack symmetric methods using
algorithms more elegant than we can imagine at present. But I can just as
well imagine that quantum computers might be used one day sooner or later to
finally help estimate the minimum cost required to break a certain encryption
method.

However, you may laugh about people who claim that breaking a 128-bit key
is but a matter of pure diligence for the time being. And you may laugh even
more about the company (I’d better not mention the name here) that advertised
‘totally new algorithms filed for patent with key lengths of up to 200 000 bits’,
would you believe, at the CeBIT 2001 trade fair. Such vendors understand
neither cryptology nor the random generation required for creating such long
(and useless) keys.

Developers of this kind of ‘ultra-algorithm’ are normally convinced and often
even pretty aggressive. I came across arguments like ‘Experts claim that all
new algorithms were insecure while in reality they only want to protect their
trades’, or ‘True novelties won’t be noticed in the first place’, on Web sites and
in mails. I am sure that if you understood the cryptanalytic parts in this book
only roughly you already know more than these pastime developers do. Once
you discover a ‘cryptanalysis’ on such a Web site you will recognize the true
level very quickly.

5.10 Surprise Attack From Behind: Timing and Power
Analyses

As the last ‘hit’ in this chapter, I want to show you an entirely new, totally
different cryptanalytic approach. At first, this approach does not appear prac-
ticable, but this was thought to be the case with attacks using related keys,
too, until the first chip cards emerged. For example, the new method could
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find a private RSA key or even IDEA keys illegibly hidden in a chip card
non-destructively and fast.

The method is called timing attack and was published by Paul Kocher at the
end of 1995 [Koch.Tim]. You will find the work in a PostScript file on our Web
site. Kocher’s cryptanalysis requires an attacker to be able to measure the time
a program or chip needs to encrypt or decrypt a plaintext or ciphertext block.
We will look at the example of decrypting the RSA method (see Figure 4.16)
to see how this works. Suppose the attacker knows many ciphertexts and can
monitor the program or chip as it decrypts, i.e., the attacker can measure the
execution time. RSA decryption requires the computation of an R = cd mod n

expression. This power can be computed as follows (all operations modulo n),
for example:

• Set R equal to 1 and traverse the bits of d, starting with the least signif-
icant.

• If the bit of d currently looked at is equal to 1, then multiply intermediate
result R by c; otherwise leave R unchanged.

• Substitute c by its square and advance to the next bit of d.

The multiplication times in the second step now have a certain distribution
that depends on c and on the method used. For example, when using bitwise
multiplication, it will take longer the more bits you set in c. Suppose the
attacker already knows b bits of c (b = 0 at the beginning). He can determine
the computation time consumed for these b bits himself and deduct the result
from the total time. Depending on whether bit b + 1 is equal to 1 or equal to 0,
he can also deduct the computation time required for bit b + 1 and check in both
possibilities whether or not the distribution of the remaining computation times
thus obtained deviates from the theory. This way the attacker can determine
bit b + 1 and successively compute the entire exponent d.

The nice thing about this method is that mistakes are permitted. It can be imple-
mented similarly to the tree search in my vigc crk .c program (see Figure 2.1
and Section 3.6.4): even if you happen to end up on the wrong branch, you
will obtain a computation time distribution that clearly indicates an error at
some point in time, and you just walk back along that same branch.

Putting this train of thought more generally: it suffices to find that the compu-
tation time for b fixed bits of a secret key and random ciphertexts depends on
bit b + 1. What’s more, these b bits don’t even have to be the least significant
or most significant of the key.
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More specifically, the computation of cd with a 256-bit exponent d and a 512-bit
module n takes between 392 411 and 393 612 CPU clocks on a 120-MHz Pen-
tium computer under MS-DOS, which means that it fluctuates by 0.3 % at most
[Koch.Tim]. About 2000 ciphertexts suffice to identify strong dependencies of
the computation time distributions on the bits in the exponent.

Many vulnerabilities can be exploited by timing attacks, including the following
examples:

• The computation times necessary to determine (c mod p)—where c is in
the order of magnitude of p—depend on whether c is greater or smaller
than p.

• Rotations can be time-dependent. This can play a role when computing
DES subkeys (depending on the hardware used) and, of course, with
RC5.

• IDEA also uses a multiplication, in this case modulo 216 + 1.

• When the internal tables are not always addressed in the same way, for
example, with Blowfish, SEAL, or DES, then cache hits can represent
a vulnerability, i.e., how often a looked-up table entry is already in the
processor cache.

I’m sure you have long asked yourself this question: ‘How does an attacker
get hold of these times?’ The most intuitive possibility is offered by chip
cards with non-readable keys burnt in. Measuring clock times should be fairly
easy. Imagine that your credit card would one day use an RSA cipher. Just
like organized gangs can copy your ATM card stealthily, they can recover
your credit card’s key. Say an encryption took 0.3 seconds and required 1000
ciphertexts. You would have to let your credit card out of your hands (perhaps
not voluntarily) for not more than 5 minutes to risk compromising your secret
key with the legal force of a signature!

There are many more possibilities. Say you work on a secure multi-user oper-
ating system that sends encrypted messages to other similar computers and
exchanges RSA-encrypted session keys. You can have somebody listen in on
all ciphertexts at the cable, but you don’t have access to other users’ jobs.
Never mind, the system has a flaw that allows you to measure the execution
times of other users’ work. Or even more likely, the system holds a valid pri-
vate key that nobody can read for all users. That’s no big deal, for you could
send ciphertexts in separate (perhaps identical) blocks to other computers and
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measure the computation time. All of these scenarios are rather speculative,
however, and depend a lot on the operating system and the applications. But
where there is a flaw, it will be exploited for sure sooner or later. Eavesdroppers
usually sit inside their own companies rather than attacking from the outside.

How can these attacks be prevented? Timing attacks are actually not directed
against algorithms, but against their implementations. It would be ideal if every
ciphering/deciphering process took exactly the same number of CPU clocks.
The downside is that it would cause the performance to drop since all ciphering
processes would have to run as slowly as the worst case. Rivest thinks that
this does not represent a dramatic deterioration in RSA: he states that the
computation time grows by 10 % to 20 % at most. However, it is rather difficult
to create a corresponding implementation. As a sideline, randomly interfering
with the computation time is ineffective because interferences can be filtered
statistically.

Power Analysis and Differential Power Analysis (DPA)

We have learned that the novelty in the timing attack was to exploit side
effects—varying execution times of operations in this case—rather than attack-
ing the algorithm itself. An intuitive consequence was to exploit parameters
other than the execution time. The first approach in this direction was the power
analysis, also referred to as the Simple Power Analysis (SPA) in 1995. The
SPA is an attack that measures the fluctuating power consumption of a chip
card. This is helpful, for example, to distinguish multiplication and squaring on
RSA cards based on the power consumption. This new method is yet another
one invented by Kocher.

SPA is powerful; it can normally find secret keys in a matter of seconds.
The method turns a smartcard that can be activated without a PIN into a
security risk: it is pretty easy for somebody to non-destructively read the key,
and you won’t have the slightest idea later on how and where on earth this
happened. On the other hand, it is not particularly difficult to protect smartcards
against this attack. The only thing is that the manufacturers have to know about
it first.

A much more powerful attack is the Differential Power Analysis (DPA), also
developed by Kocher, this time in cooperation with Jaffe and Jun. Though a
DPA normally takes several hours, the authors found not a single smartcard
then on the market that would have resisted it! In contrast to SPA, DPA statisti-
cally evaluates large data sets, which means that even a single bit flipped in the
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data stream can be identified. When they introduced the High-Order DPA in
their work, the authors went even a step further. This method can process data
streams from different measuring series concurrently (for instance, it addition-
ally determines the electromagnetic radiation). For the time being, this attack
is mainly interesting for designers, since current systems are not resistant to
SPA. You can find details in txt/cryptana/dpa on our Web site.

Timing attack, SPA, and DPA all show how hard it is to build secure sys-
tems, even when using algorithms that are secure by current standards. Such
‘side-effect attacks’ are a marginal field of cryptology: in contrast to the usual
cryptanalysis, they do not attack the algorithm directly, but they differ with
regard to computer security by their typical cryptanalytic methods.

However, smartcard designers have not been idle either: visit www.research.
ibm.com/intsec/side-channel.html for an overview of current research
work.

5.11 What Is a Good Ciphering Method?

Five increasingly difficult chapters were necessary before we can finally ask
this question. Only now is it clear how much a statement like ‘algorithm XYZ is
secure’ depends on time and the state-of-the-art, i.e., officially published results.
The race between cryptography and cryptanalysis gets increasingly faster, but
we have to live with that. Though key lengths of 128 bits and higher are
theoretically secure, future developments in cryptanalysis may have surprises
undreamt of in store. This circumstance forces us to be careful, and not the
increasingly faster computer technology.

In addition, cryptology has to struggle with the nasty problem that encrypted
data can be stored. If you secure a money transporter based on the current state-
of-the-art in both technology and logistics, the money will probably arrive at
its destination, and you can forget about the matter. If you wire sensitive RC5-
or AES-encrypted data, they will most likely not be jeopardized by an attacker.
However, an attacker can store this data and cause unexpected problems many
years later if and when RC5 or AES may have been broken. Perhaps one day,
quantum cryptography will help create accomplished facts. So far, cryptanalysts
have had new and unusual ideas anyhow. The timing attacks discussed in
Section 5.10 are a typical example.

No single algorithm (except the one-time pad) known today can claim that it
will be secure with absolute certainty in ten years from now. What we do know
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are the properties it should have as a minimum requirement. You should not
expect a stronger statement than this in this section either.

So what does the ‘ideal’ encryption algorithm look like, and how should it be
implemented?

1. It should implement confusion, i.e., the relationship between plaintext
and ciphertext should not be discernible. (This property is so matter-of-
fact that it is listed here for the sake of completeness only—it sounds
so prettily scientific.) Plaintext and ciphertext have to be statistically
independent.

2. It has to implement diffusion, i.e., structures in the plaintext should
be blurred to the largest possible extent. For example, the CBC mode
should be used when working with block ciphers.

3. The key length should be large enough to make brute force too costly
compared with the value of the message (bear in mind that computers
are getting continually faster!).

4. Identical or similar plaintexts should never create identical or similar
ciphertexts. You should always use block ciphers in combination with
a mode that uses a random initialization vector (Section 5.1.1); this is
mandatory for stream ciphers to prevent insertion attacks.

5. A ciphertext must not be statistically distinguishable from a sequence of
random numbers. This applies not only to the character distribution, but
also to correlations between characters or bits, even when the plaintext
is a constant character sequence (see Point 4 above).

6. No exploitable cycles should occur in constant, periodic, or otherwise
strikingly structured plaintext, i.e., the ciphertext must not repeat itself
from a point forward. Though iterations occur theoretically, except
for the one-time pad, their period should be long enough to prevent
exploitable cryptanalysis.

7. Block algorithms are required to support the avalanche effect : a change
to an arbitrary plaintext bit must influence every ciphertext bit with a
probability of exactly 50 %, when using a random key; otherwise, there
might be a risk of linear cryptanalysis attacks. This is an aggravation
of Point 1 above.

8. Known-plaintext or chosen-plaintext attacks should not be practically
feasible.

9. In particular, the algorithm should not be vulnerable to differential or
linear cryptanalysis.
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10. The algorithm must not use weak keys, and if it does, then they should
be easy to determine.

11. With a product algorithm, one round must not be breakable if the other
rounds are not broken. Compare RC5 with the pkzip cipher. Though
the latter is not a product algorithm, the individual steps can be broken
one after the other; the attack against RC5-32/1/* is not usable on a
method with several rounds.

12. The algorithm must not be attackable by algebraic methods (e.g., the
ciphertext bits must not be linear functions of the plaintext bits). Good
algorithms mix ‘incompatible’ operations, such as addition, XOR, and
multiplication.

13. The implementation must guarantee a sufficiently large key space. This
requirement is very important but hard to implement (Section 5.1.4).

14. Also, initialization vectors must not repeat themselves.

15. Try to find out whether timing attacks or power analyses could be a
threat, and implement countermeasures accordingly.

An algorithm that meets all the points above is a good algorithm based on cur-
rent standards. An ideal algorithm would also have to be theoretically secure,
i.e., it must not be vulnerable to novel attacks or special hardware.

I currently know of only two methods that ensure both practically and theoreti-
cally secure message communication: one-time pad and quantum cryptography.
The latter, however is not an algorithm in the strict sense, but rather a type of
cryptographic protocol.



Chapter 6

Cryptographic Protocols

According to Schneier, a protocol serves to ‘run a certain task and consists
of a series of actions in which two or more parties participate’ [SchnCr, 2.1].
Cryptographic protocols are aimed at securing secrecy or preventing fraud or
sabotage. Such protocols sort of mediate the use of cryptographic algorithms
in practice once they have been designed and implementation issues have been
clarified. Exactly like algorithms, protocols can be broken by discovering a
possibility for fraud that was unconsidered in the design. You can find a good
example in Section 6.4.2. There are cryptanalyses for cryptographic protocols,
too, but their formalization is not yet on the same level as with algorithms.

You already know a few cryptographic protocols. The distribution of a secret
key over several channels (Figure 4.13), for example, is a simple protocol,
and so is the key distribution by means of hybrid methods (Figure 4.14). The
interlock protocol (Figure 4.15) is a bit more sophisticated. And the password
check under UNIX (Section 3.3) is a cryptographic protocol, too.

Cryptographic protocols are primarily intended to map processes or objects
related to processes from the real world to the digital world and protect them.
Examples include

• signatures;

• non-repudiable agreements;

• personal identifications;

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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• elections; and

• cash payments.

This is not as easy as one might think. So far in this book, we have dealt
with the environment of one single activity, namely the transmission of secret
messages. Securing this activity is difficult enough!

As it turns out, however, we can apply our current knowledge to fields other
than message encryption. If you have read Section 4.5 and are familiar with
one-way hash functions (these will be discussed in Section 6.3.1) you will
easily understand, for example, how to create digital signatures.

Even better, cryptographic protocols can offer new functionalities. For example,
it is not difficult to distribute a secret among several people such that all together
can reconstruct the secret, but none of them can recover any information from
their part alone. This is a way to secure secrets more reliably than keeping
them in safes.

Cryptographic protocols are extremely complex in many cases. For example,
people still work on digital elections, and protocols for electronic payment
systems are subject to intense further development. Section 6.6.7 will introduce
a protocol for electronic checks which, in turn, uses several other cryptographic
protocols.

But I won’t give you an overview of the most important protocols here (you
will find a full overview, including references for further reading in Schneier
[SchnCr]). I will limit this discussion to a few understandable and particularly
important protocols for practical purposes to give you an insight into this field.

6.1 Key Distribution

Protocols for secure key distribution are probably the protocols most widely
used today. We have dealt with several important key distribution methods in
Section 4.5.2, but there are many more interesting possibilities.

6.1.1 Diffie–Hellman, SKIP, KEA, and the Wide-Mouth Frog

We know that keys for symmetric methods are distributed by splitting them over
different channels, and how they are distributed in asymmetric cryptography.
Neither of the two methods is always satisfactory.

Though splitting over several channels is secure in practice, it is hard to
automate. For a government agency with important data to acquire daily that



6.1. Key Distribution 315

should reach the headquarters automatically in the evenings, the described split-
ting over several channels is not acceptable.

In contrast, there is a considerable risk inherent in public keys. As you know,
a new and dramatically faster method for factoring the product of large prime
numbers in the RSA method would reveal all session keys at once.

But there are other possibilities for key distribution. You will learn two of them
in the following.

Diffie–Hellman Key Exchange

As mentioned in Section 4.5.3, this algorithm was the first asymmetric method
ever. But it is not a cipher in the usual sense, and strictly speaking, there are
two private and two public keys, which are used to generate a session key.
That sounds confusing, but the method itself is astonishingly simple.

1. Alice and Bob together choose a large prime number, p, and a primitive
number with regard to p, g (this means that all numbers 1, . . . , p − 1
can be represented in the form gi mod p). These numbers p and g are
not secret.

2. Alice chooses a large secret number, x < p, and sends Bob the remainder
X from the equation

X = gx mod p

3. Similarly, Bob chooses a large secret number, y < p, and sends Alice
the remainder Y from the equation

Y = gy mod p

4. Alice computes the remainder s = Yx mod p.
5. Bob computes the remainder s′ = Xy mod p.

The remainders s and s′ are equal, for

s = s' = gxy mod p

holds.
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Value s serves Alice and Bob as their shared session key. Though Mallory can
learn the values of p, g, X, and Y , to obtain key s, however, he has to compute
the discrete logarithm, i.e., he has to determine x from remainder gx mod p.
As we know from Section 4.5.4, this is a hard mathematical problem and at
least as difficult as factoring. To ensure that the Diffie–Hellman key exchange
is secure, (p − 1)/2 should also be a prime number.

This method is related to the asymmetric ciphering method of ElGamal. It is
special because there is no secret key that has to be permanently protected
against unauthorized access. Only when the keys are passed on are x and y

secret; once Alice and Bob have obtained s from x and y, they can delete x

and y. At the end of their ciphered communication, s is also destroyed.

This is an interesting advantage over asymmetric encryption. An attacker can
only try to compute discrete logarithms in arrears, i.e., frontally approach the
mathematical problem—and that’s beyond his means for the time being. He
cannot steal a private key in arrears.

The drawback of the Diffie–Hellman key exchange in the form introduced
is that session keys have to be exchanged in pairs. With encrypted messages
to be broadcast to, say, 100 people, this can become pretty costly! Moreover,
Alice and Bob both have to become active before they can communicate. Alice
cannot leave an encrypted mail for Bob while he happens to be on vacation
(and then go on a trip herself).

This drawback can be removed as follows: Bob can send his value Y to Alice
and then go on his trip. Alice would choose a different x for every message
sent to Bob and send the public key X together with her message. This method
is more elegant.

Finally, a small modification helps to enable communication between many
conversers without the need for prior interaction. To this end, the public keys
(X, Y, . . .) are stored in a generally available database. The protocol then looks
like this:

1. Every participant chooses a random w < p and deposits the remainder,
gw mod p, in a public database. They each keep number w to themselves
and protect it against unauthorized access.

2. Alice fetches Bob’s key Y from the database.

3. Alice selects a random x < p and uses it to compute X = gx mod p.
(She could take her X from the public database, but our variant is more
secure.) She then computes the session key, s = Yx mod p.
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4. Alice uses s to encrypt the message and sends Bob X and the encrypted
message.

5. Bob computes s = Xy mod p and decrypts the message.

However, there is a catch in this procedure: it now uses private keys again,
and Mallory is interested in them.

Though this methods appears a bit awkward, it can be automated in software or
hardware just like any other cryptographic protocol. It is not more insecure than
RSA, and what’s more, it had a considerable benefit over RSA for three years:
since autumn 1997 it is no longer patented (while the RSA patent expired in
September 2000). This is certainly one of the reasons why the Diffie–Hellman
principle is used in the SKIP Internet protocol, which ciphers data packets with-
out the need for users to change their applications. SKIP was a competitor of the
IPsec protocol, which is much more complicated but eventually won the race.

However, there is a more important reason why SKIP uses key exchange rather
than RSA. Using RSA means that a session key has to be generated, encrypted,
and then distributed. This translates in an additional data packet for each session
and each key exchange, which is not desirable in this context. SKIP solves this
problem simply and elegantly: Alice and Bob choose their secret exponents, x

and y, for good and deposit their certified public keys, gx and gy , in a public
database. To ensure that they won’t permanently use the same joint secret, gxy ,
a timing mark and a sequential number are appended to this number. Both
parties know the timing mark and the sequential number, so these two items
don’t have to be distributed separately. Now, a one-way hash function is applied
to this conglomerate, creating the joint session key. This virtually excludes the
possibility that somebody might guess the joint secret, gxy . Furthermore, the
session key changes often enough, and the procedure does not create additional
data packets.

KEA, the NSA Variant by Diffie–Hellman

Together with the disclosure of its secret Skipjack algorithm (Section 5.7.5),
the NSA published KEA (probably short for ‘key exchange algorithm’), the
public-key method used in the Clipper chip. In contrast to Skipjack, which
would go beyond the volume of this book, KEA is quickly explained. We will
have a look at how the NSA implements asymmetric cryptography.

Initially, everything runs like in Diffie–Hellman: both parties know (in this
case) the 1024-bit module p, base g of equal length, and both possess a secret
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key 160 bits long: Alice has the number xA, Bob has the number xB. As before,
Alice sends YA = gxA mod p to Bob, and Bob sends YB = gxB mod p to Alice.
However, xA and xB are fixed, similarly to the SKIP example. Either one of
them creates 160-bit random numbers, rA and rB, especially for that session
and sends RA = grA mod p and RB = grB mod p, respectively, to the other
party. Next, Alice computes

tAB = (YB)rA mod p = gxB rA mod p and
uAB = (RB)xA mod p = grB xA mod p.

Analogously, Bob computes tBA = (RA)xB mod p and uBA = (YA)rB mod p,
i.e., the same numbers: tAB = tBA, uAB = uBA. Next, both parties create

w = (tAB + uAB) mod p

where w is the joint secret. It is created by the fact that each party links its
random secret key, xA (xB ), with the fixed public key, YB (YA), of the other
party, and links its fixed secret key with the random public key of the other
party.

The two parties can now take the same bits from w to get their session key.
The NSA obviously found this to be too risky. Using Skipjack, it derives the
session key by a relatively complicated method:

• First of all, the 80 most significant bits are taken from the 1024 bits of
w; they form the number v1; the next 80 bits form v2.

• v1 is XORed with a fixed 80-bit number, pad (pad has the value 0x72f1a
87e92824198ab0b). The result, kv, serves as key for Skipjack.

• Skipjack and key kv are used to cipher the most significant 64 bits of v2
twice, producing the 64 most significant bits of the session key.

• The 16 least significant bits of the session key are equal to the 16 least
significant bits of v2, XORed with the 16 most significant bits of the
result produced by the first Skipjack cipher.

Figure 6.1 shows a schematic view of this procedure.
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Figure 6.1: Generating the session key from v1 and v2 in KEA.

But how does this work in email where the receiver does not communicate
with the sender directly? In this case

uAB = (YB)xA mod p = gxB xA mod p

is computed instead of

uAB = (RB)xA mod p = grB xA mod p

and the number RA is attached to the mail.

Of course, KEA has the drawback that it computes twice as long as the usual
Diffie–Hellman key exchange. On the other hand, it really creates random
session keys. Though the SKIP protocol can handle this more simply, it requires
a separate hash function, which would first have to be implemented in the
Clipper or Capstone chips. Furthermore, the NSA doesn’t seem to trust in the
direct use of bits from tAB + uAB .

The Wide-Mouth Frog Story

There are protocols where the security depends essentially on one single cen-
tralized computer—a server. This has benefits and drawbacks versus distributed
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security. We will look at an example and discuss it. The protocol by the catchy
name of wide-mouth frog we are looking at uses one single symmetric method.

1. Using a trustworthy server, Alice and Bob independently of one another
agree on secret keys; Alice picks Sa while Bob picks Sb. Only the server
knows both keys.

2. Alice generates a session key, Ss, and creates a timestamp, TA (which
is a unique byte sequence showing the current time). She concatenates
Bob’s name, B, and the timestamp and the key, and encrypts the byte
sequence thus created using the secret key, Sa. She then sends the cipher
together with her name, A, to the server:

A, ESa(TA, B, Ss)

(As usual, ESa() denotes the encryption by use of key Sa .)

3. The server decrypts Alice’s message. The server can do this, because
Alice’s name readably precedes the message, and because it also knows
Sa. The server creates a new timestamp, TB , and sends the following to
Bob:

ESb(TB, A, Ss)

4. Bob can decrypt this message and recognize both Alice’s name and the
session key from it. Their secret communication can now begin.

You will probably ask: ‘If both Alice and Bob agree on secret keys with a
server, why don’t they agree on a key directly?’ There are at least two reasons.
First, such a server can secure the communication of perhaps 100 users. If each
pair of communicators were to directly agree on keys, then there would be 5050
different keys, 99 per user. This is impracticable, and the consequence is that
each converser would use only a few keys. The second reason actually results
from the first: one negligent user storing other people’s keys readably on his
disk would be enough to compromise many others. Within the wide-mouth frog
protocol, one negligent user would compromise only himself.

Another thing: timestamps seem to be unnecessary with this protocol. Though
the method can certainly do without them, Mallory could exploit this situation
and mount a replay attack:
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• Mallory intercepts the message the server sends to Bob in Step 3 above.
Though he can’t decrypt it, he knows from snooping on the server activ-
ities that it came on Alice’s request.

• At a later point in time, Mallory pretends to be the server and sends
the intercepted message once more to Bob. For example, Mallory waits
until Alice wants to communicate again with Bob and replaces the server
message in Step 3 by the old message. Similarly, he can send the message
regardless of Alice’s activities.

• Bob doesn’t check whether or not session key Ss had been used before,
since that would be pretty cumbersome. He assumes that Alice wants
to tell him something and unsuspectingly starts sending Ss-encrypted
messages to Alice. Or he waits for a note from Alice.

At this point, Mallory has several options: he can send some junk data to Bob;
he can have Alice and Bob ‘communicate’ with different session keys (which
won’t work, of course); he can snatch one of Bob’s requests and pretend Alice
had been kidnapped. Any of these options would perhaps make both of them
panic, which is absolutely in Mallory’s interest.

This form of disturbing a channel (without anybody being able to identify the
initiator) is a denial-of-service attack at the same time. The main goal of this
attack is to impair or bring down a system without being able to identify the
initiator rather than intercepting or forging data.

Naturally, the protocol also has drawbacks:

• If Alice happens to create bad keys, she can cause threats to Bob.

• If the centralized server is compromised, then all users are compromised
at once.

• Using timestamps means that the clocks of all computers have to run
synchronously. This is not a trivial problem: programs used by time-
announcing services, of all programs, often have security flaws. A radio
clock for each computer is normally too expensive. The administrator
could forget to manually adjust the clock, or it may be too costly.

The problem of choosing keys is handled better by other protocols. In Ker-
beros, for example, two trustworthy services create and distribute session keys,
among other things. Kerberos is rather complicated and will not be discussed
here any further.
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6.1.2 Merkle’s Riddle

The key distribution method discussed below is presumably not used in practice,
but it is interesting for several reasons. It is a method that Ralph Merkle, famous
for the knapsack algorithm (Section 4.5.4), among other things, invented in
1974. Back then, the method obviously did not mean anything to anybody—
public cryptological research was still in its infancy (as you know from Section
4.3.1 in connection with the DES design).

So Merkle’s method is of historical interest. Moreover, it is easy to understand,
and it uses symmetric encryption only:

1. Alice tells Bob that she wants to send him an encrypted message. Bob
creates 220 (approximately one million) messages in the form: ‘The key
with identifier x is called y.’ The values for both x and y have to
be different in each message. Bob uses a known symmetric method to
encrypt these messages individually, and he also uses 220 20-bit keys, a
different one for each message.

2. Alice uses brute force to cryptanalyze a message picked out randomly
(this won’t generally take long for 220 keys). She obtains a value pair
(x,y).

3. Alice uses key y to encrypt her message, and sends the cipher together
with x to Bob.

4. Bob can easily determine the correct y from the value x sent, and decrypt
Alice’s message.

An eavesdropper who wants to find y has to decrypt 219 messages on average
to find the one that contains the x sent. Using brute force, the eavesdropper
needs 219 ciphers, i.e., a total of 238, for each decryption, while Alice has to
run only 219 ciphers on average. This means that an attacker would require a
computing technology that is about one million times faster than Alice’s to be
able to listen in on the data communication.

Even though the method is probably not used in this form (there are thought
to be more effective variants), it is worth noting because its security is based
on one single encryption algorithm, and the cost for breaking the protocol can
be sized up.
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6.1.3 Key Management and Authentication in GSM Networks

Another example of encrypted data communication that uses session keys, but
doesn’t use an asymmetric method, are the cell phone networks based on the
GSM standard (D1, D2, and E-Plus in Germany) mentioned in Section 5.7.2.
You already know the A5 ciphering method—but how are keys agreed upon?

Each GSM handset uses a SIM card that contains a chip. This chip stores
a fixed serial number and a secret number, Ki. This number can presumably
not be read, but remember what was said in Section 4.4.5, and consider the
remarkable article by Anderson and Kuhn [AndKuhn.tamp] on the security of
tamperproof chips.

Furthermore, the chip implements two algorithms, A3 and A8. The GSM
standard does not specify these algorithms. The network providers keep them
secret, and they build them into their chips and into the computers of their net-
works themselves. A3 serves for authentication, A8 serves for key distribution.
The method works as follows.

Secret number Ki is also stored in the network provider’s computers. When a
subscriber initiates a call, the chip on the SIM card sends its serial number.
This identifies the subscriber. The network looks up the corresponding secret
number, Ki, and sends a random number, SRAND, to the subscriber. The chip
on the SIM card uses A3 to compute a 32-bit response, SRES, from SRAND
and Ki, and returns it to the base station. Since the base station also knows
Ki, A3, and SRAND, it can compute SRES itself. The computer in the base
station compares the value computed with the value received. If the two values
match, then the call is admitted. This prevents unauthorized use of the network
at somebody else’s cost.

Furthermore, both the SIM chip in the handset and the computer in the base
station compute a 64-bit session key, Kc, from the Ki and SRAND values,
using the A8 algorithm. However, this key Kc is used by both parties for A5
encryption and decryption only; it is not transmitted. Thanks to the previous
authentication by means of SRES, the two parties can be sure to be using the
same key, Kc.

GSM networks in other countries could use different A3 and A8 algorithms,
while subscribers can still use their cell phones. The reason is that the other
country’s GSM network recognizes that a phone is not registered with it, and
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Figure 6.2: Authentication and creating session keys in GSM networks.

has the phone’s home network send it sets of SRAND, SRES, and Kc for
authentication and encryption, referred to as triplets, in advance. This explains
why roaming contracts have to be stipulated among GSM providers in several
countries before you can use their networks. Roaming contracts are signed for
billing reasons, but also for cryptological purposes: if a subscriber switches on
his German cell phone in Italy, the Italian network must be able to see that
it needs to fetch the SRAND, SRES, and Kc triplet from Germany (triplets are
normally kept in stock after the first call).

You may have noticed that the first logon abroad takes much longer than the
connections you established afterwards. The reason is clear now: for the first call,
the network abroad has to procure triplets, while it will have some in stock later
on. As a sideline, in all these activities, the secret Ki never flows over a network;
it remains in the network provider’s database computer and in the handset.
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Cloned Cell Phones

Authentication, generation of session keys, and exchange of encrypted data
together represent a rather complex cryptographic protocol. Is it secure? Up
to April 13, 1998, the answer was generally ‘yes’. On that day, a spectacu-
lar successful attack against the GSM authentication was published jointly by
Marc Briceno, Director of SDA (Smartcard Developer Association) and the
two Berkeley graduate students, Ian Goldberg and David Wagner. (The same
Goldberg and Wagner who discovered the weak key generation in Netscape,
as you will recall from Section 5.1.4.)

In some way that cannot be reproduced, as usual, the standard versions of the
A3 and A8 algorithms kept secret had somehow ‘escaped’. The two algorithms
together are sometimes also called COMP128. Goldberg and Wagner discovered
a flaw in COMP128 that could be exploited by a so-called chosen-challenge
attack: a SIM card is ‘fed’ with many chosen SRAND values and its replies
are then studied. After a sufficient number of trials, the secret value Ki can
be computed, and with it both the response, SRES, and the session key, Kc,
for any request, SRAND. Now, if an intruder stealthily analyzes somebody
else’s SIM card, he can use a regular computer (that knows Ki and has A3
and A8 implemented) to simulate the SIM card without the mobile network
provider noticing it. In other words, the intruder can make phone calls at another
customer’s expense. You can find details on our Web site in the txt/gsm directory
(in addition, algor/A5/a3a8.c contains the COMP128 implementation in C).

The attack mentioned above is real. It was demonstrated by Chaos Computer
Club (CCC) in Hamburg, Germany, using a D2 card (see [SpiegClon]). But
let’s not panic just yet. The attack is not that simple in practice. Computing
Ki requires roughly 150 000 SRAND requests, and since a SIM card is no
supercomputer, it will take about 8 hours. This is the time somebody needs to
have your cell phone and card without you noticing it. Only then would they
be able to run up your account. If you notice that your phone’s gone earlier
and have your card and/or phone locked, nothing could actually happen.

That’s not all. The SIM card is protected by a four-digit to eight-digit PIN,
as we know. The handset normally locks after three faulty PIN entries, and to
access the network, you have to enter your eight-digit super-PIN. You can try
it with this number ten times at most. If all of these attempts fail, all you can
do is visit your phone dealer, taking all your documents along. So it’s really
useless to steal a GSM cell phone!
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Somebody with the requisite knowledge and lack of morals can still get hold
of the super-PIN as things stand currently, but I am convinced that this way
will have been barred by the time this book goes to print. (As a sideline, some
cell phones in rental cars have no PIN—for how much longer?)

Finally, I should mention that Mannesmann was the only D2 provider who
used the COMP128 algorithm unchanged; D1 and E-Plus used variants. But
we know that this won’t be a security edge for long, because these variants
will also be compromised one day.

Incomparably more dangerous would be an ‘air raid’ on the SIM card. This
attack forces an unsuspecting user’s cell phone to constantly authenticate itself
while it is switched on. Network providers have denied this vulnerability, and
meanwhile people are careful about such allegations.

Another method to reveal the secret, Ki, compromises the computer in a base
station. However, this would probably not remain unnoticed. Network providers
surely have taken appropriate precautions.

Together with the considerable technical problems involved in eavesdropping
on GSM mobile communications, the system is still moderately secure, based
on current knowledge. Nevertheless, network providers have underestimated
and obviously even ignored the threats described above. Only very few of
them have responded to the attacks discovered so far. There were more details
at www.research.att.com/∼janos/3gpp.html, but this Web site is no
longer accessible. This is why I put the text version in txt/gsm/3gpp.txt on the
Web site to this book.

Conclusions and One ‘Side Effect’

Let’s briefly return to the attack described above. It exploited an obvious and
presumably unintended vulnerability of the COMP128 algorithm. A public study
of the method would have found this vulnerability immediately—it took Gold-
berg and Wagner only one day! With a uniform, but cleanly designed and thor-
oughly analyzed algorithm, we could probably still make secure phone calls.
Unfortunately, all GSM users, currently more than one billion worldwide, are
potentially at risk (though there is currently little reason to worry). Modifying
the algorithms would be extremely expensive. There is probably no better way to
show you how little mystery-mongering in designing algorithms helps security.

The real sting got lost in the media hype. It ‘incidentally’ turned out that the
64-bit A5 key, Kc, is only 54 bits long; the ten remaining bits are always zero.
This means that a brute-force attack would be faster by a factor of 1000. In
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cryptanalyzing A5, however, this flaw cannot be exploited easily, according to
Golic (see [GolicA5]).

The official statement of the GSM providers on this ‘short key’ (you can read
it in txt/gsm/gsm press.txt on our Web site) seems somewhat strange: on the
one hand, it mentions only the authentication code (but not the A5 cipher);
on the other hand, the free bits allegedly enabled a ‘more flexible response to
technical security threats’. It can’t be taken seriously . . .

However, there is general agreement on the fact that only national intelligence
organizations have an interest in such an intentional reduction of security. Marc
Briceno told me that, up to the end of April 1998, there had been no single
SIM card worldwide in which the A3/A8 algorithm had not produced 54-bit
keys. We can only sense dimly how much national intelligence organizations,
first and foremost surely the NSA, can influence the business world and the
security of all of us. You can find more hints in Section 6.7 in connection with
the Swiss company Crypto AG, and in Section 8.2.1.

6.1.4 UMTS: People Learned Their Lessons

GSM was the first wireless communication system that used cryptography in a
mass-market product. In view of the fact that there are several hundred million cell
phone owners worldwide (the widespread SMS hype not included), the number
of encrypted messages per year might be in excess of a trillion. Considering this
number, the weak A5/1 algorithm has left the much securer DES far behind.

The network providers themselves hadn’t anticipated such a success, so it
appears even more important to point to the system’s weaknesses:

• A3/A8, the algorithms used for authentication, and A5 used for encryp-
tion, are weak, as we saw in Sections 6.1.3 and 5.7.2. I think the main
reason is that the algorithms had been kept secret. Officially, the ban
on strong cryptography in some countries (like France, for example) and
export regulations played an important role.

• The concept envisions only one algorithm for encryption, namely A5.

• Encryption always ends up in a base station. This means that unencrypted
phone conversations also traverse non-tamperproof relay networks.

• A cell phone within GSM has to identify itself only toward the base
station, but not vice versa. Nobody seemed to have thought of active
attacks—the equipment required was too expensive, so they argued.
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Meanwhile, the prices for such equipment are in the range of less than
10 000 dollars, and it is no longer hard to find.

• This means that man-in-the-middle attacks against cell phones are no
longer utopia, just as message forgery isn’t.

• The last point above addresses replay attacks, where data packets previ-
ously sent are resent to a cell phone or a base station. In a particularly
malicious attack, for example, the pretended base station sends a com-
mand to the cell phone asking the owner to send packets in unencrypted
form. The existence of this command emerged ‘incidentally’ during dis-
cussions on UMTS, by the way.

A GSM cell phone cannot defend itself against this type of active attack,
since signalization messages are not sufficiently protected. The base station
can check whether or not a cell phone is legal only at the beginning of a
communication, while all further packets are protected by the cipher only. For
example, a malicious attacker could prolong a victim’s 0900 call (at exorbitant
rates per minute) for hours by copying the data packets in the first minute and
then sending them to the base station over and over again at a much higher
transmission rate than the cell phone.

Nevertheless, almost nothing has been changed in the GSM system to my
knowledge. But things are bound to get better with the advent of UMTS. The
ban on strong cryptography is no longer an issue, i.e., the algorithms will be
getting better and made public.

The UMTS security concept is very extensive and complicated, as you will see
when reading the text txt/gsm/UMTS sec.pdf on our Web site. I will mention
only a few differences here:

• The authentication mechanism is identical with that of GSM, because the
basic principle was good, only the algorithms were too weak. The new
methods are essentially based on KASUMI, a variant of the hardware-
friendly MISTY1 algorithm, developed by Matui (Mitsubishi) in 1996; it
is resistant to linear and differential cryptanalyses. KASUMI differs from
MISTY1 in that its key generation is simpler, its cryptanalysis is harder
(we know that this is not quite easy), featuring ‘statistical improvements’,
and higher speed as well as simpler hardware implementation. KASUMI
has been studied by expert teams, including famous names like Knudsen,
Preneel, Rijmen, and Vaudenay.

• The 54-bit encryption of GSM was replaced by a 128-bit encryption. As
long as there are no serious weaknesses in KASUMI—and it doesn’t
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look like there are—there will be no practically effective attacks like
that of Biryukov and Shamir (see Section 5.7.2).

• At the base stations quintets, rather than triplets, arrive. The three
values—SRAND, SRES, and Kc —remain in place (with different names
though), while an integrity key, IK, and an authentication key, AK, were
newly introduced. Similarly to the encryption key, Kc, these two 128-bit
numbers never traverse the airway, but are computed from SRAND and
Ki at the network provider and in the handset.

• IK is used to encrypt 64-bit checksums (so-called MACs; see Section
6.3.1), which have the function of digital signatures. A base station can
use the MAC to identify itself to the cell phone (and vice versa), par-
ticularly for important signalization messages (‘disable encryption’ as an
easily remembered example). A sequential number and a direction flag
that specifies the direction a data packet flows, i.e., from the cell phone
to the base station, or the other way round, are appended to the computed
MAC. Both pieces of information prevent special types of replay attacks,
where an active attacker reuses packets previously sent.

• The AK key serves to hide the sequential number, which could be used
by an attacker to discover the sender’s identity and cell. AK is set to zero
if this preventive measure appears superfluous.

• The MACs mentioned above enable ‘signed’ (authorized) signaling mes-
sages. In contrast to GSM, this enables fast local authentication, i.e.,
without the need to request or consume new quintets every time a con-
nection is established. This is important in UMTS, because connections
have to be continually established and torn down, for instance, when
surfing the Web, to release unused frequencies quickly. The lifetime of
a key is agreed upon at the beginning of a connection and written to a
special field in the signaling message.

• Encrypted packets are not always decrypted in a base station; they may
also be decrypted in a Radio Network Controller (RNC ). An RNC is used
to securely overcome non-tamperproof network sections.

The wireless communication is encrypted by means of KASUMI, which is
operated in OFB mode, but with two minor modifications. While you would
write

Sn+1 = KASUMI(Sn)

Cn = Sn ⊕ Pn
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in standard OFB mode (Pn = plaintext; Cn = ciphertext; see Section 5.1.1),
you compute

Sn+1 = KASUMI(Sn ⊕ S0 ⊕ n)
Cn = Sn ⊕ Pn

in this case, where n is the block number, and S0 is computed by KASUMI-
encrypting connection-dependent data. The block number is involved to prevent
cycles, while S0 is used to prevent special chosen-plaintext attacks.

Obviously people learned their lessons from the errors in GSM. Though the
investment costs will strain our wallets over the next cell phone generation for
quite some time, and the user demand seems to be scarce, there is good news
as far as security is concerned.

6.2 Sharing Secrets

Cryptographic protocols serve more purposes than key distribution. For
example, they help us distribute sensitive data such that they are protected
against both loss and unauthorized access. Simple sharing is called secret
splitting, and the more universal method is called secret sharing. The two
methods are described in the following sections.

6.2.1 Secret Splitting

In its simplest form, secret splitting can be built by means of a one-time pad
(see Section 2.6): you have a message, P , and encrypt it using the one-time
pad, S, to produce ciphertext, C:

C = P ⊕ S

Now you give key S to Alice and ciphertext C to Bob. Neither Alice nor Bob
can do anything with their data. Only when the two of them get in touch and
use their information jointly can they reconstruct the plaintext:

P = C ⊕ S
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This can be easily generalized for an arbitrary number of persons. You create
n − 1 one-time pads, S1, . . . , Sn−1, and XOR them; the result should be Sn. You
use Sn to encrypt the plaintext, creating ciphertext C. You give S1, . . . , Sn−1

and C to your n conversers—one file to each one. Only XORing the data of
all conversers will reveal the plaintext.

For a very large amount of data, you can split plaintext P into n equally
long parts, P1, . . . , Pn, of length 1 (you may have to pad the bits). Moreover,
you create n one-time pads, S1, . . . , Sn, of length 1. Each bit sequence, Pi ,
with all Sj is then XORed with j �= i. Each one of the n conversers gets
ciphertext Cj thus created, together with key Sj , which had not been used
when encrypting Pj .

Secret splitting is an excellent method of establishing and maintaining secrecy,
much better than safes. Split your secret into five parts and give each part to
five trustworthy persons who lock it away in their safes. Even if these safes
were of Franz Jäger (Berlin), Egon Olsen would be powerless, because at the
latest when breaking the third safe, he would surely end up in prison. And
even if you were wrong about the trustworthiness of your partners, it suffices
that one of them remains trustworthy, and the probability for this is sufficiently
high. Moreover, you can make sure that your partners know nothing about each
other.

However, the method has a flaw. If one single safe of your partners is robbed
or the contents destroyed in a fire, then the entire information is lost. The
probability for one single such event may not be high, but with five partners,
it is five times as high. Backup concepts double the cost. To overcome this
problem, secret sharing was invented.

6.2.2 Secret Sharing

If you fear that two of the five safes of your partners might burn down, then
you have to split your data by the secret sharing method: three arbitrary part-
ners together can reconstruct your data, while two can’t. The reason is related
to error-correcting codes, which you may make ample use of: when listen-
ing to a CD, the computation of 8 bits of information out of 14 bits of data
is played back several ten thousand times per second. The physical record-
ing method of CDs is so unreliable that every byte has to be ‘expanded’ to
14 bits. If a few bits are lost during the reading process, they can be com-
puted from the remaining bits. If too many are lost, nothing can be computed
anymore.
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I want to show you at least one such secret sharing method in this section.
You know that a square polynomial (corresponding to a parabola) is defined
by its values at three different points. Two points are not sufficient, because
there are infinitely many parabolas that traverse these points. The same applies
to residual classes. From this we construct a polynomial method [Shamshare]:

Let your secret message be a number, M . Choose a non-secret large prime
number, p, which is greater than all secret messages and their subsets. Define
arbitrarily two integer coefficients, a and b. Take the polynomial

ax2 + bx + M

and compute the values for x = 1,2,3,4,5 and distribute their remainders mod-
ulo p among your five partners, who also have to know p. You can forget the
values of a and b forever. No two of your partners will even theoretically be
able to determine M from their pieces of information, while any three of them,
in contrast, need to solve only a linear equation system in the residual class
modulo p. This is not excessively hard.

By computing in residual classes, by the way, all messages M become possible
only with two known subsets of the secret. This means that the method is
provably secure!

If your secret is several Mbytes long, you can encrypt it using a random session
key and then distribute this key by the secret sharing method.

Unfortunately, the protocol described above is still vulnerable to denial-of-
service attacks: if one partner cheats as the secret is reconstructed, then a
wrong secret is created, and what’s more, the cheater cannot be identified.
The problem can be solved by using robust secret-sharing protocols, which
work with zero-knowledge proofs. You can find details about this protocol in
[SchnCr, 3.7] and [Gemmel].

There is a more general secret sharing method. For example, you could demand
that among three partners who can reconstruct the secret, one out of two must
always be particularly trustworthy. Or two of the participants should be fierce
enemies. (You could make a list of corresponding pairs.) Arbitrary logical
schemes are conceivable, and intensive research has been done in this field
since 1979. You can find more theory in [Shamshare], [Stins], and [Blakshar;
with further references] and in [SchnCr, 3.7].
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Secret Sharing in Practice

Ferguson and Schneier write in [FergSchnPract, 22.9] that secret sharing is
hardly used because both its implementation and use are too complex. I don’t
share this opinion. While the protocol is surely an overkill for everyday pur-
poses, it does solve an important problem for critical secrets that is often
overlooked: it can handle the fluctuation of employees. When employees leave
their company, they can take along passwords, and they might have procured
encrypted data from outside the company. In this case, changing the passwords
in arrears is of little help! Secret splitting would help in such a case, though
with the drawbacks we already know: no subkey must ever be lost, and if a
key has to be changed (due to termination of employment), then all other keys
have to be changed, too.

Secret sharing could be used to implement the following concept.

• Critical data are encrypted with a session key generated automatically,
and this key, in turn, is encrypted with a universal key, which is created,
for example, by three out of five employees on a computer via secret
sharing, but only in the memory of one computer.

• If one of these five employees leaves the company, then the session key
is decrypted on that computer (which is doable because there are still four
bearers of the secret), a new universal key is generated and re-encrypted
together with the session key (and added to the encrypted files).

• The new universal key is split into five subkeys via secret sharing, and
these subkeys are distributed among the four previous employees and one
new bearer of the secret. From this moment onwards, the subkey owned
by the former employee becomes worthless.

More measures are required in practice, though. I implemented the following
additional measures in a contracted project.

• Subkeys are divided into number groups and printed, and checksums
are added. The resulting number sequences were relatively long, and
only memory artists can memorize such numbers (I didn’t test for this
capability, though).

• The printouts were packed in sealed envelopes in the presence of wit-
nesses and handed out to different persons who kept them in different
places (safes).
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• A sealed computer without network access at a secure location was used
for activation. A script was used upon each startup to check that swapping
was disabled and only one user logged on to the system. A modified live
CD with a Linux system would be even more secure.

• The persons handed their sealed envelopes to third parties, who sat at
this computer one after the other, opened their envelopes only there, and
typed the subkeys (an asterisk as an echo on the screen is helpful here).
A supervisor observed the entire procedure from some distance, where
he could not recognize the numbers printed.

• Once each subkey had been entered, the printout was put back in the
envelope, freshly sealed and returned to its owner.

• When a sufficiently large number of subkeys had been typed, the com-
putation of the universal key was initiated, followed by the decryption
of the data (where the data can be transferred on diskette or USB stick),
and the computer was then switched off. With this, the created key was
lost, because it was only in the memory.

The astonishing thing about this apparently cumbersome procedure was the
seriousness with which the employees dedicated themselves to the matter. It
seemed that the very typing of checksum-secured number sequences under
observation, and individually entering that computer room had something espe-
cially important about it. Even designers need to know that security has to do
with psychology.

So there are practical uses for secret sharing after all; it is not too complex. But
what about the implementation? The interface was not extremely hard to design,
only the algorithm itself didn’t seem to be available in free software. Though
there are plenty of demo programs, they included only a little serious stuff. I’m
grateful to Sebastian Mozejko, a young cryptologist from Poland, who drew
my attention to one of these few products. However, it used IDEA—not really
an option for commercial applications.

For this reason, I sat down and developed an easy-to-use class in Python,
which can be used to create and use arbitrary K-of-N schemes (i.e. K keys
out of N are needed for decryption). By default, it serves for encrypting and
decrypting data held in memory, files, and data streams. The encryption itself
is handled by an external C program that uses Blowfish-128 or AES-128 (as
well as the OpenSSL library libcrypto). As usual, the shared secret serves only
as a master key (KEY, key encryption key), while the actual encryption uses
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random session keys. Furthermore, the integrity is checked by means of an
MD5 hash sum (which is secure in this context).

The Python script language is ideally suited for such applications, since it has
fast long-number arithmetic built in. Moreover, it is a modern and extremely
easy-to-learn language with interfaces to C/C++ and other languages (visit
www.python.org for more information). Thanks to its large number of mod-
ules, hardly a wish remains unfulfilled (it doesn’t always have to be Perl—
Python programs are generally much easier to maintain and understand).

The software is covered by the usual PSF license for Python scripts, which
means that it may also be used commercially. It has been tested under
Linux only to date. The software and documentation area the Web site under
PD/secshare.

6.2.3 Shared Secrets and Nuclear Fission

There is a very serious motivation behind the development of secret splitting
and secret sharing: these methods served to secure nuclear weapons. Following
the Cuba missile crisis, there was concern that a world war could start by
accident—for example, by a rogue or hysterical commander feeling that ‘if
only they knew in Washington how bad things were here, they would let us
use the bomb’.

President Kennedy’s response was to order that almost all nuclear weapons1

should be brought under ‘positive control’. This meant that missile warheads
could be activated with a secret code only. But it would have been far too dan-
gerous to use the same key for all warheads; a maintenance engineer could have
recovered it. So they needed a group key for smaller quantities of weapons.
At the same time, nuclear weapons were not to be used without the Presi-
dent’s approval.

This was the point where secret splitting came in handy: local commanders
knew part of the group key. Together with the universal key made known
by the President, the group key produced a key valid for a specific batch of
weapons (now you have a vague presentiment of what’s in Putin’s famous little
suitcase).

If a Soviet ‘surprise raid’ were to destroy the US army’s top echelon, it would
presumably no longer be possible to learn the universal key. The solution in

1Except for the ‘nuclear demolition munition’, which is taken from its storage depot to its
target and detonated using time fuses.
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this case, you might guess, is secret sharing. Only a certain group of people in
joint action would be able to activate warheads. This is certainly not a matter
of a simple ‘three out of five’ scheme.

It is probably clear to you as it is to me: if cryptological work is done to
perfection, then this is an extremely sensitive area. Another fascinating detail
shows how far this can go: of course, all nuclear warheads are optimally pro-
tected against espionage and sabotage. An attempt to get unauthorized hold of
the nuclear charge or the electronics causes the immediate destruction of the
warhead. Gas bottles are used to deform and chemically change the plutonium
body, targeted demolition charges destroy neutron boosters, tritium charges,
and the secret code, of course. After tests showed that 1-mm chip fragments
survived the protective detonation, the software was rewritten so that, based on
secret splitting, all key material was stored as two separate components, which
were kept at addresses more than 1 mm apart on the chip surface.

All these security measures have been successful to date. Not a single warhead
has been reported stolen, nobody has spied out and used the universal key,
to public knowledge. With this background, James Bond movies appear even
more absurd, but this is what makes them so attractive.

You surely wonder where such interesting information can be found. I neither
interviewed militaries nor national intelligence agents; I just read the fascinating
article [AndKuhn.tamp] that formed the background for Section 4.4.5. You can
find it on our Web site.

6.3 Digital Signatures

Currently the most popular cryptographic protocol in German politics and
jurisdiction is the digital signature. In line with the increasing migration of
information flows to electronic media, it has simply become a necessity to
develop an electronic equivalent for traditional signatures. This is not a prob-
lem cryptologists couldn’t handle, but it is a double-edged sword with regard
to law and risk. However, before we can create and study signatures, we have
to deal with one-way hash functions.

6.3.1 One-Way Hash Functions

Common hash functions are something IT experts have long been familiar with;
they represent a simple and genial idea. Imagine the following situation: you
create a large database with customer names. The company is doing well, so



6.3. Digital Signatures 337

you have to continually add new names and have no time to sort things (or
your computer would be busy sorting all the time). On the other hand, you have
to continually search for names previously entered. Though searching through
the names is much faster than sorting them, it has to be done so often that your
computer lags behind.

The way out of this dilemma is pretty simple. As you enter names, you cal-
culate the ‘sum of the digits’ for each name, i.e., you simply add all the bytes
in a name. In addition to the database, you create a hash table with 256
entries—one entry for every possible sum of digits. This entry contains refer-
ences to all database records in which a customer name matches the given sum
of digits. So when searching for a name, you first calculate its sum of digits,
then you look up that entry in the hash table and search only for the references
given there. Since all sums of digits will occur roughly equally when there are
many names, searching based on the hash table is 256 times faster!

Calculating the sum of digits is a very simple example of a hash function. The
sum of digits itself is called a hash value or hash sum. The most important
properties of hash functions are:

1. It takes an extensive piece of information (a name) and computes a
compressed piece of information (a one-byte sum of digits).

2. The values of the hash function for different names should differ with
a sufficiently high probability (to make the rows in the hash table about
equally long).

The one-way hash functions used in cryptography differ considerably
from the hash functions used in information technology. Though they
also meet the requirements 1 and 2 above, they add at least a third
property:

3. With a given hash value, it is not possible to construct a byte sequence
that produces this hash value at reasonable cost.

So the difference between common hash functions and one-way hash
functions is as big as the difference between a simple conversion of
character sets and a cryptographic algorithm.

For example, if a one-way hash function is applied only to readable texts,
then it should basically suffice to ensure that no readable text can be con-
structed from a given hash value. However, this demand can hardly be
checked in practice. So we try to stay on the safe side and ask for more.
One-way hash functions should generally not be ‘reversible’. But these
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three properties are still not sufficient. Many cryptographic protocols
using one-way hash functions additionally require the following prereq-
uisite:

4. With a given byte sequence, it is not possible to find a second byte
sequence with the same hash value at reasonable cost. A pair of byte
sequences with an identical hash value is also called a collision.

This relates to the birthday attack, which will be discussed in Section 6.3.3.

One-way hash functions are sometimes also referred to as compression func-
tions, concentration functions, message digests, cryptographic checksums, mes-
sage integrity checks (MIC ), and there are more names. You can see quickly
from the context what each one is about.

One-way hash functions do not use secret keys. This corresponds to their pur-
pose of use—they should be computable for everybody. We will see this in the
following section. However, there are non-reversible hash functions with secret
keys. They are called MACs (message authentication codes) and serve for
creating signatures that can be verified only provided one knows the secret key.
Such signatures are useful, for example, to detect virus infection or other manip-
ulations to your software with certainty. We won’t discuss MACs any further
here; you can find all the details in [SchnCr, 18.14] and [MenOoVan, 9.5].

Research on one-way hash functions began only around 1990. With one-way
hash functions, cryptanalysis concentrates on different goals than it does with
encryption algorithms. The reversion of a hash function (Property 3) has been
successful only once so far, namely for a reduced variant of MD4 (see below).
One tries instead to compute collisions, i.e., to find different byte sequences
with the same hash value (Property 4).

Examples of One-Way Hash Functions

The structure of one-way hash functions appears very complicated at first, and
their design is not easy to understand. I spare you the detailed description of
such difficult hash functions as MD5 and will present only the most simple
(MD2) which is, however, pretty outdated. The important things to remem-
ber are statements on the cryptanalysis of these functions. The following list
mentions several known one-way hash functions.

• Snefru: This function was developed by Merkle in 1990 (it was probably
the first algorithm of this type). Its major drawback is that, if SneFru is
to be secure at all, it gets extremely slow.
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• N-Hash: This function originates from Japan, from the inventors of the
FEAL symmetric method. It is just as insecure as FEAL itself (see
Section 5.7.3).

• GOST : Insiders will know immediately that this has to be a Russian
standard (they are generally called GOST). According to Schneier
[SchnCr, 18.11 and 20.3], the GOST function is probably secure, though
its description is somewhat confusing.

• MD2 : This function was developed by Ron Rivest and published in
RFC 1319 in 1992. It computes a 128-bit hash value and is shown in
Figure 6.3. (‘MD’ stands for ‘Message Digest’.) The only cryptanalytic
attack against MD2 currently known to RSA Laboratories was found in
1995: when the checksum appended to the text (Step 3 in Figure 6.3) is
omitted, you can construct a collision [RogChMD2]. That already suf-
fices to advise you against long-term use of MD2. The major benefit of
MD2 is its simple implementation, its major drawback is the relatively
slow computation of the hash value (Schneier [SchnCr] mentions 23 KB/s
on a PC-486SX/33 MHz). This shouldn’t come as a surprise since it was
designed for 8-bit computers, while the MD4 and MD5 functions men-
tioned below were designed for 32-bit computers. MD2 is (still) used
together with MD5 in PEM (see Section 7.2.1).

• MD4 : MD4 was designed by Ron Rivest in 1990; it creates a 128-bit
hash value. Successful attacks had been known against the first and last
two rounds of the algorithm for some time. Later on, Dobbertin computed
a collision on a regular PC [DobMD4] within one minute. He even man-
aged to compute the reversion of a 2-round MD4. In [DobMD4inv], he
states the archetype of hash value 0, i.e., he constructs a byte sequence
with a hash value of 0. Together with the successful cryptanalysis of
MD5 (see below), MD4 was attacked very successfully: collisions can
meanwhile be calculated by hand. This is why I strongly recommend
not to use this function any more. Nevertheless, its design serves as a
template for many other hash functions.

• MD5 : This is one of the best known one-way hash functions. It is sup-
posed to remove the weaknesses of MD4, and was also developed by
Ron Rivest (in 1991). MD5 is the hash function exclusively used in PGP
up to Version 2.6, and produces a 128-bit hash value, like MD4. You can
find an implementation in C on our Web site.
Serious flaws were found in MD5, too. In 2004, somebody even suc-
ceeded in computing collisions (see below). This function should, there-
fore, no longer be used for critical purposes.
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1. Compute a permutation of numbers 0, . . . , 255 based on the decimal places
of π . Let this permutation be S0, . . . , S255.

2. Pad the text with i bytes of value i such that its length is a multiple of 16.
(For example, if the text is 6 bytes long, you append 10 bytes of numerical
value 10.) The bytes of the text thus created are called Ti .

3. Append a 16-byte checksum to the text.

4. Consider a group of 48 bytes: X0, . . . , X47. Initialize X0, . . . , X15 to 0 and
set Xi+32 = Xi+16 = Ti for i = 0, . . . , 15.

Set t = 0.

5. Compute new Xi according to the following symbolic C program:

for(j=0; j < 17; ++j)
{
for(k=0; k < 47; ++k) {t = Xk ^ St; Xk = t;}
t += j; t &= 0xff;

}

6. Allocate the next 16 bytes Ti to X16, . . . , X31 and compute

Xi+32 = Xi ^ Xi+16 (i=0,...,15).

Go back to Point 5 where the old value of t is reused.

7. Once all Ti are used up, X0, . . . , X15 form the 128-bit hash value.

Figure 6.3: Computing the MD2 one-way hash function.

• RIPE-MD160 : This algorithm is an integral part of the European project
RIPE and is also based on MD4. RIPE-MD160 creates a 160-bit hash
value. Together with SHA-1, it is currently thought to be one of the
algorithms against which no practically effective attacks are known. An
implementation together with a description can be found on the Web site.
RIPE-MD160 didn’t gain acceptance versus SHA-1.

• SHA-1 : SHA stands for ‘Secure Hash Algorithm’. This function cre-
ates 160-bit hash values. It was developed jointly by the NIST and the
NSA in 1993 and published in 1994. One year later, the NSA submit-
ted an improved version without stating any reasons. This new version
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rotates by one bit during expansion, which is a minimal change with
a big effect, as we will see further below. It is called SHA-1 and has
meanwhile become the most frequently used hash function. To distinguish
it, the older version is now called SHA-0. But even in SHA-1, the first
theoretical vulnerabilities have been found (see below).

• SHA-256 : Hash functions are also used for generating session keys,
among other things. Since AES optionally processes key lengths of 192
and 256 bits, SHA-1 is not suitable for it. This was presumably the main
reason why the NIST published other hash functions, including SHA-512,
in August 2002. As the name suggests, SHA-256 creates hash values of
256-bit length. Though the function is slower, it is easier to program
than SHA-1. And in contrast to SHA-1, no theoretical weaknesses have
become known to date. A description and C program (from GnuPG) in
algor/SHA is on the Web site.

Minor Earthquake: Collisions Found!

With all due respect for the successes in cryptanalyzing MD4, MD5 collisions
have continued to be wishful thinking for cryptanalysts. Conversely, Chabaud
and Joux introduced a theoretical attack against SHA-0 with complexity 261 at
the CRYPTO ‘98, which means in the worst case that 261 SHA-0 values have
to be computed to find a collision (a totally unrealistic number for practical
purposes). The basic idea was derived from differential cryptanalysis: messages
are ‘disturbed’ in single bits, and one tries to do this in such a way that the
effect of the disturbance is removed in the subsequent compression (‘corrective
pattern’).

Based on this work and the lecture by Biham and Chen at CRYPTO ’04, Joux
succeeded in reducing the cost to 251 calculations. A supercomputer with 256
Itanium2 processors was busy for about 13 days (80 000 CPU hours), and the
outcome was the first collision of SHA-0 ever found. You can check it out
using my Python script algor/SHA/sha0coll.py from our Web site. This was
a sensation indeed: not even an MD5 collision had been computed up to that
time despite many years’ effort. Nobody had even expected something like this
could happen to the SHA-0 algorithm. In contrast to MD4 and MD5, SHA-0
uses each message bit more than 20 times. But the authors exploited the fact
that the bit positions don’t ‘blur’ during expansion of the message (‘stretching’
it from 16 words to 80 words)—in contrast to SHA-1! When left rotated,
this single bit in SHA-1, the only difference between the two SHA versions,
has an astonishingly strong effect. How much did the NSA know back then,
considering that they submitted this correction in 1994?



342 6. Cryptographic Protocols

Staying with SHA: Xiaoyun Wang, Andrew Yao, and Frances Yao presented
an attack against SHA-1 with a 263 complexity at CRYPTO ’05, which cannot
be tested in practice, of course.

But the sting at CRYPTO ’04 was a lecture in the rump session, when the
Chinese Wang and Feng and others presented a full MD5 collision. It consisted
of two 512-bit blocks. Calculating the first block took an IBM P960 supercom-
puter about one hour. The second block was worked at on a regular PC within
from 15 seconds to 5 minutes. (Meanwhile, a notebook computer can do all
this in about 8 hours [Klima] read the article at algor/SHA/MD5 collisions.pdf
on the Web site.) This earned a standing ovation, an extremely rare thing to
happen at a scientific conference. It gets even better: MD4 collisions were said
to be computable by hand; even HAVAL and RIPE-MD (but not RIPE-MD160)
were said to be breakable, the authors explained, and collisions in SHA-0 could
be found with 240 function evaluations—2000 times faster than Joux’s attack.

The eagerly awaited work appeared much later, but no doubts arose about the
correctness of the result. The Python script algor/SHA/md5coll.py on our Web
site demonstrates the MD5 collision. Remarkably, the two blocks differ only
in six bytes, and then only in the most significant bit of them. A book cannot
be completely up to date by nature. Expect to hear of new exciting results by
the time you read this.

Practical Impact of Cryptanalysis

The question is whether these theoretically important successes are significant
for practice. The answer is, unfortunately, yes. But many said ‘no’ initially
because one cannot yet change checksum-protected documents by calculating
collisions. Some examples show what is possible in spite of this:

In [LenstraMD5], the authors constructed two different valid X.509 certificates
(we will discuss them later), of which only one was legal. More specifically,
they constructed two official RSA keys with an identical MD5 hash sum. In
practice, a fraud could look like this:

• Bob creates two different public RSA keys, A and B, with an identical
MD5 sum. He has A signed digitally by VeriSign (see next section).
Since this signs only the MD5 sum, the certificate is automatically valid
for B, too.

• Subsequently, Bob uses the private key of B to sign a loan receipt with
Alice. She checks the signature using public key B, which she received
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from Bob, and checks the VeriSign certificate for the key. Everything
appears in order.

• Bob refuses to pay his debts, stating that he had not signed. In court, he
shows key A with the valid certificate. An inquiry with VeriSign shows
that A had actually been there for verification. However, A does not
verify the signature on Alice’s contract, which meant that it was invalid.

If the judge had read this book, he would have understood immediately that
Bob must have cheated, because the two keys, A and B, could have been
constructed only together—it is still not possible to calculate B for a given
A. Furthermore, the parameters of B are unusual (different bit numbers of
the two prime factors). But I wouldn’t rely on such knowledge in court. The
consequence is that one should make sure X.509 certificates are not signed
using MD5, but at least using SHA-1 or even better SHA-256.

Another practical example is the creation of pairs of self-extracting archives
with identical MD5 checksums, as demonstrated in [Mikle]: a malicious
employee creates two such archives. The collision is hidden in a part of the data
not used otherwise. A modified code for extracting the archive tests which of
the two versions is present, and unpacks different archives or files, depending
on the version found. Version 1 is deemed in order and to be published on
the Web. The malicious employee, however, publishes Version 2 on the Net
(which only appears to be the one tested because it creates the same MD5
sum), and this version proliferates malicious software. The consequence is that
you should trust only SHA-1 checksums, or better yet SHA-256, if you cannot
trust the creator of the archive.

The new findings discussed in the previous section have no impact on HMAC
checksums. These are special MACs (i.e., checksums protected by secret keys),
which are computed by the following scheme [MenOoVan, 9.5.2]:

HMAC(msg) = hash(key || pad1 || hash(key || pad2 || msg))

where ‘||’ denotes the bitwise appending, and pad1 and pad2 are fixed bit
sequences. Other sources state XOR instead of ‘||’ (search the Net for ‘RFC
2104’). key is the secret key. You can find more information on how to build
hash functions and about the impact of cryptanalysis in [Wobhash] and in
Wikipedia articles.
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What Next?

So far, one can only compute collisions, i.e., create pairs of messages with
identical hash values. If you create an MD5 hash sum of a document, the content
of which you want to protect against forgery, then don’t be sure that nobody can
derive a second document with this checksum. In the Tripwire program that
checks system files regularly for changes on UNIX/Linux computers, the fastest
of all commonly used hash functions, i.e., MD5, is still sufficient. You can also
protect messages by MD5-HMAC. With MD5 sums for documents of unknown
origin, however, you should consider whether or not the creator could have an
interest in bringing two different versions with identical sums into circulation.

In contrast, pseudo-collisions where two equally long messages, N and N ′, for
given different equally long messages, M and M ′, can be found by,

hash(M || N) = hash(M' | | N')

which would allow you to forge digital signatures for practical purposes. But
this is currently out of the question (you can find details in [Wobhash]). And in
particular, you cannot invert a hash function, except if MD4 were reduced to
two rounds. For creating one-time passwords (Section 6.5), MD5 is probably
still acceptable. In contrast, you shouldn’t use MD4 for this purpose any longer,
though the full function has not been inverted yet.

With regard to new or updated hardware and software, you would do best to
follow the NIST recommendation and migrate to SHA-256. Though this hash
function is the slowest, it has a more compact code and should be resistant
to new types of attacks for a reasonably long time. However, nobody can tell
what surprises we may expect in the next few years, since cryptanalysis of
hash functions has only just started intensively. Rivest said once that ‘it’s not
hard to design a secure cryptographic hash function. Things get hard when it
is supposed to be fast, too.’

6.3.2 Creating Digital Signatures

Digital signatures are intended to replace signatures on paper. Let’s see what
characteristics are important.

1. The signature cannot be forged.

2. The signature was put on a document out of free will.
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3. It cannot be transferred to another document.

4. The document cannot be changed in arrears (the document is printed,
and hand-written changes have to be signed separately or initialed).

5. The signature cannot be repudiated later on.

There are several possible solutions to meet these criteria for electronic signa-
tures. We will try to develop gradually better solutions in the following.

Using Symmetric Cryptography

Any of the symmetric encryption methods offers the simplest way to electroni-
cally ‘sign’ documents. Agree on a secret key with your converser and use it to
encrypt your documents. That’s sufficient for the simplest purposes. Your con-
verser knows that only you could have created the document. If you use a good
block algorithm in a secure encryption mode (such as CBC with checksum, for
example), then nobody can change the document during the transmission.

Naturally, this has not much to do with a signature. The decrypted document is
not protected against subsequent changes, and the ‘signature’ can be verified only
by people who know the secret key. If your converser is dishonest, his knowing
the key can be a risk for you—he could perfectly forge your ‘signature’.

Using Asymmetric Cryptography for Signatures

The following method can do much more.

We know that, in asymmetric methods, a plaintext is encrypted with the public
key and decrypted with the private key. The new idea is now to use the private
key first. We simply define the plaintext as ‘ciphertext’ and decrypt it with the
private key. Of course, this produces gibberish. But everybody can encrypt this
‘product’ again with the public key, only this time, the cipher is readable.

It is often wrongly stated that the private key is used for encryption in digital
signatures. This definition can be tolerated only with the RSA method, because
it runs the same mathematical operation (computing an exponent modulo n;
see Figure 4.16) for encryption and decryption. In principle, we decrypt with
the private key and encrypt with the public key.

It is important to make this distinction when encryption and decryption use
different algorithms. However, you can also see why not every asymmetric
method is suitable for digital signatures: first of all, it has to be able to decrypt
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Figure 6.4: Using RSA for key exchange and signature.

an arbitrary text; second, the ‘encrypt’ and ‘decrypt’ operations have to be
interchangeable. RSA was the first asymmetric method well suited both for
key distribution and creating digital signatures.

This method meets Points 1 through 5 above. The security of the signature is
entirely based on the fact that the private key is never made known. However,
this method still has serious drawbacks.

• Asymmetric methods are extraordinarily slow. This means that they can-
not be used to sign extensive documents.

• The signed document is initially gibberish; it first has to be encrypted
with the public key—a time-consuming process. In practice, the signed
text will, therefore, normally be used as readable text where the signature
can no longer be checked. The risk of subsequent manipulations is high.

• When signing third-party documents, a chosen-ciphertext attack against
RSA is possible (see Section 4.5.3). For this reason, a key pair different
from the one used for key distribution should be used for signing.



6.3. Digital Signatures 347

Signatures with Asymmetric Cryptography and One-Way Hash Functions

The three drawbacks mentioned above can be avoided if we apply a one-way
hash function to the text and subsequently decrypt only the hash value with
the private key rather than applying the method to the entire text. Figure 6.5
shows how this method can be used to create a digital signature.

You can easily see that the five criteria for digital signatures mentioned above
are met and that the three drawbacks listed above are gone.

• Hash values are short, generally about 20 bytes long. This means that the
application of RSA for these ‘compressed’ texts costs less time.

• Hash values of one-way hash functions are not predictable, which means
that chosen-ciphertext attacks are not possible.

• The document can be read by everybody, and it can be checked at any
time by those who know the public key.

Many other methods are commonly used for digital signatures [SchnCr, Chapter
19], but we won’t discuss them here. I think discussing the security of such
signatures is more important.
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Figure 6.5: Using a one-way hash function and RSA for digital signature.
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6.3.3 Security of Signatures

In his attacks against Alice’s signature, Mallory is interested in putting her
valid signature on a different or modified document. He has two possibilities.

1. Mallory finds a second document to his liking; it supplies the same
hash value. (Anybody can calculate the hash value by means of the hash
function from the document, i.e., it is not secret.) This is an attack against
the one-way hash function.

2. Mallory finds Alice’s private key. He can now sign any document he
wants in Alice’s name.

Attacking the Asymmetric Method—The Remote-Future Problem

Let’s look at the second possibility. The following threats arise from using an
asymmetric cipher.

1. Alice’s private key is spied out. There are many ways to do this, but
Alice could be more careful and destroy her private key once she has
signed all important documents. But that doesn’t matter, because her
public key remains known and can still be used to check the signature.
I’m afraid, however, that Alice will not be as careful in practice, and
she wouldn’t be able to—nobody changes their public key as often as
they change their shirt.

2. Mallory could pretend his public key is Alice’s public key and sign a
document himself. We discussed this threat in Section 4.5.2. It can be
excluded with sufficient certainty.

3. Mallory breaks the asymmetric method, in this case RSA. It is generally
thought that this is currently not possible for sufficiently large prime
factors.

4. Finally, Mallory could mount the chosen-ciphertext attack described in
Section 4.5.3. In the simplest case, he puts a faked hash value on a
document and has Alice sign it.

In a narrower sense, this is not an attack against the signature itself, but Mallory
could recover one of Alice’s session keys in this way. This is worth something
indeed.

Let’s hope that Alice’s signature program computes the hash value itself. The
probability that this value represents a ciphertext to Mallory’s liking is not
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negligible. If Alice is very careful, she changes every document submitted to
her for signature just a little. Appropriate care can help exclude the threat
described.

Moreover, Alice should use a different private key for signing and for decrypt-
ing session keys, as mentioned earlier.

However, if Alice digitally signs a favorable lease contract for a 20-year period,
then the prime factors (i.e., her private key) have to remain hard to compute
over this period of time. Who can tell what methods mathematics will use in
20 years from now?

This problem is much more critical for digital signatures than it is for key
exchange. When encrypted information becomes worthless after only one year,
then hybrid methods would be our choice. Conversely, we often sign documents
that are supposed to remain valid over long periods of time.

I can currently think of only one solution: all digitally signed documents with
long-term validities should be countersigned by a trustworthy party periodically
based on the latest state-of-the-art in cryptology. You probably can imagine
what kind of cost this means. Perhaps there are already usable cryptographic
protocols that can handle the ‘aging’ of digital signatures. Perhaps the fail-stop
signatures mentioned in Section 6.6.5 could be a suitable approach. I think that
this problem will play a major role in the future.

In practice, however, public keys remain valid over long periods of time. The
Web of Trust in PGP (see Section 7.1.2), for example, even prevents frequent
key changes. The risk that Alice’s private key could be compromised one day
is, therefore, not to be neglected. Theoretically, all her signatures would then
become worthless at once. If you compare this risk with how conventional
signatures are handled, cold shivers will probably run down your spine.

The trouble is that we will need digital signatures in the near future. In Ger-
many, the first set of regulations for legal recognition of digital signatures have
already been ratified (see Section 8.2.5). Cryptologists simply must develop and
offer secure protocols and methods for digital signatures; otherwise, insecure
methods will make the race.

Attacking the One-Way Hash Function—The Birthday Attack

A ‘softer’ forging method is to outsmart the hash function. This can look like
this: Alice and Mallory sign a work-for-hire agreement. Mallory fabricates
a second contract with financial terms more to his liking, which supplies the



350 6. Cryptographic Protocols

same hash value so that Alice’s signature is valid for this contract, too. Canting
Mallory goes to court. Alice cannot prove that Mallory’s contract is forged.

How does Mallory fabricate such a contract? Suppose the hash value is only
20 bits long. Mallory is not at all interested in the complicated structure of the
hash function; instead he replaces the agreed amount of 10 000 dollars by five
times that amount. Then he marks 20 or more places in the contract which may
be changed without influencing the content: there could be eleven or twelve
blanks at one place, or another place could either read ‘this’ or ‘that’, or there
could be one or two blanks in another place, and so on. Twenty variable places
result in 220, or about one million, possibilities. He calculates the hash values
for this million easily modifiable text parts. The hash value sought is among
them with high probability. Otherwise, Mallory will just have to keep changing
some more harmless places.

Sufficiently long hash values can protect you against this. However, there is a
method that can break 40-bit hash functions as easily as 20-bit hash functions.
The method is called birthday attack, and its original name comes from a
technique often used in statistics. The question is: how many people do you
need in a group before the probability of having two people with the same
birthday exceeds 50 %? You may think of 366/2 = 183 people or something
along that line. Wrong: it takes only 23 people. If you look for somebody with
his birthday on the same day as yours, this will be the case with about every
365th person on average. But in a group of 23 people, there are 22∗23/2 =
253 pairs so that the probability for said duplicity is much higher. This is
what Mallory exploits in an attack against a 40-bit hash value: he constructs
220 benign and 220 malign contracts in the manner outlined above, i.e., by
introducing small variations. The probability is then high that there is one pair
of a benign and a malign contract that have the same hash values. Now Mallory
(who is in reality female and Alice’s secretary) foists the benign contract on
Alice. Alice unsuspectingly signs the contract, and Mallory sends it out by
email before her eyes—naturally just pretending. After work, Mallory puts
Alice’s signature on the malign contract and then really sends it, perhaps even
with a falsified timestamp.

This birthday attack works even when the benign and malign contracts have
nothing to do with one another, and Mallory uses them to create 220 variations
of each version separately.

It is apparently very easy to protect yourself against this type of attack: Alice
inserts a blank in a trivial place before Mallory’s eyes. Mallory has great trouble
not to lose her temper at that, because the probability is 1 to 1 000 000 that the
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hash value now produced occurs in none of the malign contracts. Also, Alice
should modify the contract in one of the first lines to ensure a strong impact
on the hash function.

In practice, however, you cannot expect such prudent behavior; in the real
world, people tend to ‘always’ be negligent. Furthermore, the person who
changes the contract last always has a possibility for forgery. So, we might
as well forget about this solution. This is the reason why hash functions create
sufficiently long hash values, e.g., 160 bits.

If somebody discovers a way to compute collisions at reasonable cost, then the
one-way hash function is insecure, even if its hash value may be as long as
it can get. The reason is that the collision can consist of two readable texts
with short random character strings at their beginnings—‘to protect us against

signature+
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signature+

Alice signs Mallory swaps the contract
and sends it, together
with the signature

same hash value

1,000 benign variants 1,000 malicious variants

original contract, modified by Mallory

Figure 6.6: Birthday attack against a one-way hash function with 40-bit hash
values.
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fraudulent maneuvers’, as Mallory hypocritically says [DobMD4]. Now you
understand why we required Property 4, no collision in hash functions, in
Section 6.3.1.

Subliminal Channels

For signatures, subliminal channels can be thought of as ‘true steganography’:
together with her signature, Alice sends additional information, the existence
of which can be proven only if one knows a certain secret key. This secret key
can be Alice’s private key, but not for all signature methods.

Notice the difference to steganography: steganography does not use a key, and
it hides information in a way similar to a picture puzzle. Those who know
the trick can easily recover the hidden information (unless it is encrypted). In
contrast, subliminal channels in signatures hide information cryptographically
well. A signature with additional information is still innocuous, even after
most thorough analysis. Only the use of a secret key opens up the treasure box,
showing its inner life.

Subliminal channels were first designed by Simmons in 1983 [Simmsubl]. They
are used in several signature methods. Simmons even showed that such channels
can be constructed in every signature method. The DSA signature algorithm
designed by the NSA, of all methods, offers channels that can be read without
knowing the private key. Allegedly nobody knew about it. ‘Is that so bad?’,
you will ask.

Yes, it is. If you buy a program for digital signatures and the signature algorithm
has such subliminal channels, then the program vendor can feed a few bits
of your secret key into the subliminal channel together with each of your
signatures. You can look at the program’s output—nothing provable there.
However, the program vendor or their allies record your signatures regularly.
Only they know the secret additional key for the subliminal channel. After
a sufficiently large number of signatures, they will have your private key on
their desk. Now they can perfectly forge your electronic signature, compute
all your session keys, read all your secret messages . . . that’s a fine prospect!
Section 6.7 deals with such fraudulent maneuvers.

DSA allows you to ‘plug up’ the channel using a suitable cryptographic protocol
between Alice and Bob. However, Bob can then set up his channel in a manner
that’s named cuckoo channel. Luckily, there are ways to prevent this, too.

To protect yourself from this kind of espionage, use the freely available PGP
program. You can then be sure that it has been studied and analyzed as to
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such fraud by many experts. Not for nothing is its source text digitally signed!
However, PGP is not usable for every purpose, and it was subject to license
fees for commercial use in connection with IDEA (Section 5.3.1). But there is
also GnuPG, which will be discussed in Section 7.1.4.

Known channels can be ‘plugged up’. Perhaps somebody will discover new
ones that will also be plugged up. Here we are again: the eternal race between
cryptography and cryptanalysis. However, there is the additional problem that
plugging up channels is hard to check in software. We will discuss this issue
further in Sections 6.7 and 8.3.

Bottom Line

Let’s briefly return to conventional signatures. They cannot be forged to per-
fection. ‘Wait a minute’, you will say, ‘there are enough con artists who master
this!’ True, but never entirely perfectly. You can have a modern graphologist
study things like the geometry of a signature, the writing pressure and the writ-
ing speed, the ink, and perhaps even one day microscopic palm-sweat traces.
In short, more and more characteristics of a signature can be determined as the
state-of-the-art in criminal-investigation techniques grows.

Let’s sum things up: as perfectly as a conventional signature may be imitated,
there will always be one little detail the forger just won’t get right. They can
never be sure their forgeries might be provable one day.

It is a fact from the outset that digital signatures cannot offer this kind of
‘dynamically expandable’ security. There will never be sweat traces on elec-
tronic files. If somebody manages to get your private key by computation, or
trickery, or extortion, then he can forge all your digitally signed contracts, and
you cannot prove it no matter how hard you try.

It is not sufficient to use cryptologically secure methods and protocols. Also, the
problem of determining whether or not a public key presented really belongs
to Alice has to be solved safely. PGP and PKI show two possible solutions
(Chapter 7). The private key has to be protected securely enough. Your capa-
bility of signing in a certain way cannot be stolen from you. The ‘theft’ of
two large prime numbers, in contrast, can be a kid’s game. It is not suffi-
cient to PIN-protect them. In the near future, biometric methods will surely
emerge—we will deal with this issue in Section 6.6.9.

And there is yet another problem: when manually signing you see the document
you sign. Whether or not the text on the screen is really the text you sign is
doubtful if a hacker has visited the system.
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Digital signatures mean that we have to deal with a new quality of threats. The
probability of compromise may be smaller by several orders of magnitude than
the probability that conventional signatures can be forged perfectly by current
standards. Conversely, the potential damage is higher by orders of magnitude
one can hardly estimate. We discussed something similar in Section 4.5.6.

This is a real dilemma. How insecure we become with our ethical value system
when we have to decide in such a situation can be seen in the example of
the dispute about the threats emanating from nuclear power. In the case of
signatures, in contrast, we can expect a certain amount of help from cryptology,
provided we don’t ignore the potential threats and look for ways out.

As a minimum requirement, you should use different pairs of private and public
keys for signatures and key distribution.

6.4 Key Escrow. Matt Blaze’s Attack Against the EES
Protocol

We will be dealing with a totally different field in this section. It has been
(and hopefully never will be again!) fiercely discussed in the USA and Ger-
many. It concerns key escrow. More specifically, it concerns the US standard
EES (Escrowed Encryption Standard) briefly mentioned in Section 5.7.5. In
that section, we had just looked at Skipjack, the symmetric algorithm EES
uses. In this section, we want to have a closer look at the underlying crypto-
graphic protocol. Later, in Section 8.2.3, we will discuss the legal and political
consequences and backgrounds of key escrow.

As you know, two chips currently implement EES: the Clipper chip for
encrypted phone calls and the Capstone chip for data communication. In
addition to encrypting, Capstone can also sign digitally (using DAS, the
standard developed by the NSA), handle key exchange by means of an
asymmetric method, compute hash functions (using SHA, which belongs to
DSA), and many more things. Clipper is virtually a subset of Capstone.
Nevertheless, the hot debate on EES in the USA is conducted by the buzzword
‘Clipper’, because listening in on phone calls seems to still agitate more people
than insecure data communication.

6.4.1 How Clipper and Capstone Work

As mentioned earlier, most details of Skipjack and its implementation are secret
and hidden in non-analyzable hardware. The main reason for this hide-and-seek
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game is officially that Skipjack may be used only together with key escrow.
How does this work?

Each chip contains:

• a serial number (unit ID);

• a secret chip-specific key (unit key); and

• another secret key, the so-called global family key. It is identical for all
chips in communicating devices.

All chips are tamperproof, which means that their secrets cannot (allegedly)
be read. During the production of the chips, the unit keys are split into two
subsecrets via secret sharing, as described in Section 6.2. Together with the unit
IDs, the manufacturer hands the two lists of subsecrets over to two trustworthy
authorities, in this case the NIST and the Department of the Treasury.

In a communication, the chip at the sender’s end uses the unit key to encrypt the
session key and then accommodates it in a 128-bit field, the so-called LEAF,
an acronym for Law Enforcement Access Field. Together with an initialization
vector (IV), this LEAF is created at the beginning of a communication ses-
sion and transmitted. A chip begins to work only once it has received a valid
LEAF–IV pair. The session key and the IV can be loaded into the chip reg-
isters only after they have been submitted together with the pertaining LEAF.
This prevents modified software from feeding the chip with old LEAFs and
then continuing to work with a different session key–IV pair.

Now, if a court wants to listen in on somebody, they first record an encrypted
conversation. They then determine the unit ID of the sender chip from the
LEAF. Subsequently, they use this number to request the ‘halves’ of the unit
key from the two authorities via the FBI, and then XOR the two pieces. Using
the unit key thus produced, they can compute the session key and decrypt the
conversation. For more calls from the same chip, they can continue decrypting
without checking back with the two authorities. Once the sender has been
busted, they delete the key . . .

What does a secret communication look like with the Clipper chip?

1. Alice wants to call Bob. The two of them agree on a session key (e.g.,
by means of an asymmetric method).
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2. Alice has her Clipper chip create a LEAF and an IV from the session
key, and has the chip load both the key and the IV into its registers
concurrently. She must not create the IV herself—it would mess up the
way the chip works.

3. Alice sends the LEAF together with the IV to Bob. Bob feeds in the
session key, activates his Clipper chip with the value pair obtained, and
the communication can begin.

6.4.2 How to Undermine the Protocol

At first, the method looks watertight. Provided the hardware is ‘untouchable’,
there is no way to use the chips without transmitting valid LEAFs, which
automatically forwards the valid session key to the two authorities.

Matthew Blaze of AT&T Bell Laboratories published an analysis of how to
outsmart the EES protocol at the beginning of 1994. He used the Clipper or
Capstone chip together with easily modifiable software, which means that he
used the Skipjack algorithm without the government being able to eavesdrop.

Rather than analyzing some software or unauthorized opening of a chip, Blaze
looked at the reactions of the chip to different inputs and used known informa-
tion, i.e., he used absolutely legal methods only. The report [Blazeskip] landed
like a bomb.

Blaze’s considerations are not as complicated as you may think. We will have
a closer look at them below.

LEAF Under the Magnifying Glass

First of all, Blaze found out more about the structure of LEAF in various
experiments. Figure 6.7 shows the scheme.

The most important detail is the calculation of the 16-bit checksum. It depends
at least on the IV and the 80-bit session key, probably also on the encrypted
session key. Together with the 32-bit unit ID—the chip’s serial number—this
produces a block of 128 bits. This block is encrypted using the global family
key. The cipher is the LEAF. Since the global family key cannot be read, an
eavesdropper can’t even recover the serial number from the LEAF. Anyway,
this cipher works in a mode that seems to ‘mix’ all 128 bits.

We can easily understand from the figure why Alice cannot come up with a
false LEAF to a session key and an IV. Blaze took all of this to launch two
possible attacks.
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Figure 6.7: Creating a LEAF in a Clipper or Capstone chip. The numbers
above the rectangles denote the width in bits.

Inventive Impostors

In the first attack, named LEAF feedback by Blaze, Alice and Bob agree to
outsmart the investigators. To this end, they slightly modify their software. The
following consideration shows them the way: even before a LEAF arrives at
Bob’s, his chip already knows the session key, since it had been agreed upon
with Alice. Bob can now create a LEAF with this session key himself. He thus
gets an IV different from Alice’s. Bob terminates the process and switches to
reception.

Alice doesn’t send her LEAF along; Bob feeds his chip with the LEAF he
created himself instead. This LEAF is valid, since it belongs to the session
key, and the IV matches, too—so Bob’s chip starts decrypting the session key
and Bob’s IV.

But there is a problem: Alice’s and Bob’s IVs are different. The solution
depends on the ciphering mode used, which can be set in the Capstone chip.
You know the four most important ciphering modes from Section 5.1.1.

• If Alice and Bob use the ECB mode, the IV doesn’t matter, but this mode
is too insecure.

• If they both use the CBC mode, then a faulty IV can cause only the first
64-bit block to decrypt wrongly. So Alice and Bob agree that the first
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block is ‘garbage’ and start their actual communication from the second
block onwards.

• Things are similar with the CFB mode; it also recovers after a few blocks
encrypted wrongly.

• Only the OFB mode causes damage beyond repair due to a wrong IV. If,
for some reason, Bob can receive in OFB mode only, then Alice has to
operate her chip in ECB mode and implement the OFB cipher externally
via software.

Surprisingly simple, isn’t it? Cryptological knowledge is actually required only
for the handling of faulty IVs. Nevertheless, one has to get on to the idea first!

Now you might say that all of this can be easily prevented: Bob’s chip can use
the global family key to decrypt the LEAF and find that the LEAF originates
from himself. It shouldn’t be a big deal for the chip to reject its own LEAFs.
That’s exactly the remedy Blaze suggested.

But even Blaze underestimated Bob’s slyness. The thing is that Bob bought
himself two chips, feeding the second with the LEAF that the first chip created.
There is no way for the second chip to know that the first chip is also Bob’s.

You might end up thinking that data or phone communication without LEAF
should be punished. Well, even that won’t bother Alice and Bob much. They
precede their message with another valid LEAF. The fact that the eavesdropping
investigator hears noise instead of voice can be easily explained; they simply
say that their devices are running a test (or has some key escrow center made
a mistake? Let’s hope not!).

The fact is that as long as Clipper and Capstone don’t use better protocols
(at least with cleverer ciphering modes), you can exchange Skipjack-encrypted
messages without the government learning the keys you use.

Unnoticed Fraud

The second attack against the protocol is launched from a different situation:
Bob works under third-party control so that he cannot use Clipper or Cap-
stone in a way that allows him to mount the first attack (LEAF feedback).
Bob is supposed to receive Alice’s message with a LEAF that belongs to the
session key and the IV, but that doesn’t actually contain an encrypted session
key yet.
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In this situation, Alice exploits the shortness of the checksum. She doesn’t
know how to calculate the checksum. But she knows what information Bob’s
chip can use to check Alice’s LEAF: it knows neither Alice’s serial number
nor her unit key. It can compute itself a checksum only from the session key,
the IV, and the LEAF. It will then decrypt the LEAF using the global family
key and compare the resulting checksum with the one it calculated.

Alice proceeds as follows: just like in the first attack, she creates a session key
and an IV on her chip and terminates. She then switches her chip to reception
and feeds it with the session key, the IV, and a random LEAF. The chip takes
these pieces to compute a checksum. It then decrypts that nonsensical LEAF
diligently and, from the result, takes a checksum that will naturally not match
the one it computed.

But the checksum is only 16 bits long. 16 bits correspond to 216 = 65 536
possibilities. On average, the two checksums will match after 32 768 trials, i.e.,
the LEAF will be accepted. Alice sends this LEAF instead of the correct one
along with the rest. Bob’s chip will accept it and decrypt Alice’s message with
the session key previously agreed upon. (The chip has to load the session key
directly; it cannot compute it from the LEAF since it doesn’t know Alice’s unit
key.)

The next thing Uncle Sam hears is perfect noise, for its ‘session key’ is a
random number.

A Capstone chip requires about 38 ms to check a LEAF. This translates to a
mean time of 42 minutes for finding a random but valid LEAF. This much time
passes between negotiating the session key and starting the communication. It’s
too much for a telephone conversation. Bob’s software could have a timeout
set to a couple of seconds so that Alice’s chance to outsmart Uncle Sam fades
to improbable.

Alice can solve the problem by buying many chips and paralleling her brute-
force attack. The NSA who designed the chip could easily defend itself from
this: it suffices that one Capstone or Clipper chip refuses its service for one
minute after every 50th wrong LEAF (and apart from that, it should take a
minute to start up; otherwise, Alice might briefly disconnect the chip from the
power source after each failed attempt).

And what does the NSA do? They have the chip reset itself after every tenth
failed attempt. This extends these 42 minutes to 46 minutes. In his article,
Blaze thanked the NSA staff for their extensive help in his analyses.
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A Practical Application

This heading is not totally serious. I just want to hint what consequences
breaking the EES protocol could have.

Bob works undercover in the drug-trafficking underworld. He is excellent at
reading people, he is a first-class shooter and fighter, and he is extremely wary
at the same time. Though he doesn’t know much about cryptology, he knows
that Alice (presumably the big boss) sends him encrypted messages that can be
wiretapped by the FBI. He thinks that Alice is also aware of that. She encrypts
nevertheless, because it prevents her major competitor Carol from listening in
on her.

Alice knows a cryptologist who modifies her Clipper software as described
above. When she discovers Bob’s identity, she sets up a trap for him: Bob is
to show up at a certain location at a certain time.

Bob has a dim feeling but eventually relies on the fact that Alice’s communi-
cation is wiretapped. He thinks: ‘After all, Alice knows that they listen in on
her. So she won’t be as naı̈ve as to lure me into a trap over the phone.’ Bob
has no way of knowing that Alice’s LEAF was forged (and he cannot know
theoretically either, because he doesn’t know her device’s serial number). He
shows up at the location agreed upon and, trusting that his colleagues will help
him out if need be, gets shot.

Court Evidence

Schneier [SchnCr, 24.16] lists more objections to Clipper. This chip should only
work in OFB mode, i.e., as a stream cipher. When plaintext and ciphertext are
known, then both can be used to reveal and reuse the key sequence. This means
that an OFB-encrypted data stream does not necessarily have to have been
constructed by the owner of the secret key. This is why a Clipper conversation
(or a Capstone-encrypted file transmitted) cannot be attributed to Alice in court
for the simple fact that it was encrypted with Alice’s key (or more exactly,
because the session key encrypted with Alice’s unit key is contained in the
LEAF). Alice can at least say that a dishonest investigator tampered with the
recording.

In cases of doubt, the LEAF cannot be recognized as a legal authentication.
We can think of enough scenarios where fraud is possible. For example, Alice
could mount a squeezing attack to have Bob call her and conduct a harmless
conversation with him. In reality, however, she is after his LEAF with the
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pertaining session key–IV pair. With these data and a couple of tricks, she
calls Carol pretending to be Bob (since she uses Bob’s LEAF) and tells her in
Bob’s voice about the most recent criminal activities that are pure imagination.
You can read the details of this and other attacks in [Frankcl]. These possible
compromises are another reason why the unit ID must not be recognized as
authentication.

Bottom Line

The EES protocol has many weaknesses. It is not just a matter of the fraud-
ulent maneuvers described above; the protocol does not supply any additional
evidence. This is unfortunate, because cryptology could be very helpful. Fur-
thermore, the protocol often causes the keys of uninvolved people who happen
to call a wiretapped criminal to be revealed.

You saw how problematic key escrow can be from the cryptological perspective,
let alone legal and political issues. The serious doubts about the use of Clipper
and Capstone are of both a subjective and technical nature. You now have
a rough idea of the dreadful consequences cryptologically weak hardware or
software used in masses can have. This is important in Europe, too, even though
there is logically not much interest in buying EES devices.

6.5 One-Time Passwords

You can lean back in the next three sections for they are easier than the previous
ones.

The protocols described in this section are intended to allow Alice to identify
herself unambiguously by use of a password, though Mallory is back to his
old habits. This is not a negligible threat, for example, when Alice logs into a
UNIX computer over the Internet. Though the password mechanism in modern
UNIX computers is cryptologically secure, the best password won’t do much
good when it runs across the data line in the clear as you log in.

6.5.1 The Trick with One-Way Hash Functions

Key exchange using asymmetric cryptography is out of the question for the
problem mentioned above, because Alice will probably have no computing
capacity at her disposal yet before logging on.
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There is a similar—much more frequent—situation where the user has no
computer at hand either. It relates to home banking by phone. In this case,
Alice as the bank’s customer has to authenticate herself via password, but
Mallory mustn’t be able to use the same password and pretend to be Alice
later on. This wording already contains the solution: the customer is given
many passwords and uses each one only once.

One-way hash functions enable a particularly simple and secure implementation
of this principle. The protocol was proposed by Leslie Lamport [Lamport] in
1981 and looks like this.

1. The computer creates a random key, S0.

2. It uses a one-way hash function, H , to encrypt this number over and
again, thus obtaining, for example, 100 numbers, Si :

S1 = H(S0)

S2 = H(S1)

...
S100 = H(S99)

3. It sends numbers S0, . . . , S99 to the customer/user and then deletes them.
The computer itself stores only S100.

4. A customer who wants to identify himself to the computer sends S99. The
computer checks whether H(S99) = S100. If so, the customer is deemed
to have been authenticated; otherwise, the customer will be rejected.

5. Next, the computer replaces S100 by the value S99 obtained, and the
customer deletes S99 from his list.

6. All further authentications work analogously: the customer sends a pass-
word not yet deleted with the largest index. The computer computes the
hash value for the customer password and compares it with the value
stored. If the value is accepted, the computer replaces the password value
stored.

7. When all 100 passwords have been used up, the computer creates a new
list and sends it to the customer.

This method can be highly appreciated from the cryptological viewpoint. Sim-
ilarly to UNIX, no password is stored in plaintext on the computer. Each
password is used only once, so that no attacker can get unauthorized access to
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the computer. And cryptanalysts have a hard time: they have to invert the hash
function, in addition to computing a collision.

One-time passwords also protect you against replay attacks. Up to 1994,
this had been a weakness of Novell NetWare, which transmitted passwords in
encrypted form, but used a cipher without an initialization vector. This allowed
Mallory to pretend to be Alice and to replay Alice’s password. This sort of
flaw (including copying of encrypted passwords) must have been exploited in
masses in the hard real world.

Security Problems

In practice, however, one-time passwords have a few inherent problems. First,
these passwords are random, i.e., they are hard to remember. So every user of
this system has to constantly watch their walking sticks in the knob of which
is hidden the password list. Second, the average user is always careless and
forgetful (if you want to believe system administrators). They forget to bring
their lists along or to print the new one. The system administrator has only
‘additional trouble with this’. Third, Mallory only needs to take S0 from a list
lying around openly for unauthorized login, theoretically as often as he wants.
But don’t panic just yet—these drawbacks can be widely excluded in many
situations. All it takes is to memorize only S0 and have a locally used program
compute S49 out of it (which is done, for example, in the OPIE program; see
Section 7.5). But as things are in the real world, most users will write down
their S0 anyway. So this risk remains.

Mallory can theoretically exploit this until he is filthy rich; plus he has an
almost perfect alibi: suppose Alice has to pay a rather large bill to him. Late
payment would entail a hefty collection fee. Meanwhile, Mallory has spied out
Alice’s key S0 and knows that Alice’s 47th password has just been polled. He
computes S46, logs himself on as Alice several times, but every time just very
briefly. Alice’s next connection to the computer fails. It doesn’t occur to her
that somebody might know her password. She reacts like a typical user: ‘The
computer is down.’ It’s a weekend and new password lists won’t be issued
before Monday—and Alice has to pay the collection fee.

Hardly anybody will be able to prove that Mallory disturbed the synchroniza-
tion. If he has a clever system for spying out the passwords of his customers,
then he can do such maneuvers as often as he wants and continually pocket
collection fees. Nevertheless, his work is absolutely legal toward the outside,
as opposed to illegally fabricated money transfers: up to the day when the bank
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notices that all of Mallory’s customers seem to have problems authenticating
themselves all the time.

This type of attack is also a denial-of-service attack (we came across it in con-
nection with the wide-mouth frog protocol). This attack doesn’t steal or forge
information; it disturbs or frustrates an activity. Good cryptological protocols
should prevent such attacks or at least identify the initiator.

6.5.2 Attacks Against Your Bank Account

In this short section, we will make a trip into harsh reality and study an attack
against Internet home banking that has become known. The result came to me
as a surprise and I hope it will give many readers cause for thought.

Nice Theory . . .

In general, one-time passwords don’t prevent man-in-the-middle attacks. On
January 28, 1997, the German TV channel ARD demonstrated in its popular
Plusminus program how hackers can get to people’s online bank accounts
pretty easily. Like so many others within this program, the report was presented
spectacularly, without, however, giving exact information. I initially had the
following thoughts (don’t believe what you will be reading now).

Certainly no hacker ever cracked one-time passwords, because they are not
cryptanalysts in the closer sense (i.e., they don’t crack complicated encryption
algorithms). The freaks2 in that TV program might have exploited security
flaws in the application program and in the operating system, and pretended to
a customer that their computer is the bank’s. What would something like this
look like? Normally, the communication between the bank and its customers
proceeds as follows.

1. The customer fills in an electronic transfer slip and sends it to the bank,
together with a valid one-time password (in the banking trade more
elegantly called a transaction number (TAN)).

2. The bank checks the password. If it is valid, the bank accepts the transfer
and stores the customer password (Step 5 of the protocol for one-time

2I call them ‘freaks’ rather than using the infamous term ‘hacker’, because they made the
public aware of potential threats and wanted to prevent damage rather than cause it.
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passwords above). After some feedback to the customer, if applicable,
the customer will delete the password used.

The hack could be mounted in Point 1:

1. The hacker computer pretends to the customer it is the bank computer.
This is possible, because the bank computer does not authenticate itself,
and because network software, application program, and operating sys-
tem (mostly an insecure Windows system) do have security flaws.

2. The customer fills in his slip on the hacker computer without being aware
of it, and sends his one-time password to the hacker. The hacker can
confirm acceptance of the slip for the sake of good appearance.

3. The hacker changes the account number and the amount to values more
to his liking and sends both to the bank. In doing so, he may pretend
his computer is the customer’s.

4. The bank finds no error and accepts the transfer.

It is not too difficult to find a countermeasure. The attack can be prevented if the
bank computer were to identify itself using a digital signature. The pertaining
protocol could look like this.

1. The customer fills in an electronic transfer slip and sends it to his bank
without a password.

2. The bank signs the slip and returns the signature together with a trans-
action number.

3. The customer checks the signature (he obtained the bank’s public key
directly from his branch) and sends his one-time password.

In this scenario, the hacker has no chance to cheat anymore, even if he could
modify the entire data communication between the customer and the bank. The
transfer is accepted only if the password is correct, and the customer comes
out with the password only after he holds the tamperproof bank signature on
the correct slip in his hands.

The only way a hacker could interfere with this scenario is a denial-of-service
attack. To this end, the hacker would have to disturb the password in Step 3.
Naturally, this attack could be prevented, too, if the bank were to send their
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Figure 6.8: Home banking with one-time passwords and man-in-the-middle
attack.

signature on the correct, accepted password to the customer in a fourth step. But
in practice, a denial-of-service attack would be much harder than pretending to
be a bank computer anyway.

There are effective countermeasures even without digital signatures: if you are
doubtful of something, you simply write a transfer order for a non-existing
account and pass a wrong password along with it. No hacker can find this
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out. Even if he knows your habits well and discards one attempt to be on
the safe side, he doesn’t know whether you are still bluffing next time. Upon
consultation with the bank, an attempted fraud can be detected with sufficiently
high probability.

This means that the damage can be kept within boundaries in the existing
system. But once again, it showed the shockingly low level of ‘cryptology’
in some practical applications, totally in contrast to the impression advertising
tries to give.

The entire issue makes a pretty miserable impression. The user and the bank
blame each other. Both are even right in their own ways.

• The bank protected itself properly. Only the customer uses insecure
operating systems and insecure software, allowing hackers to steal his
password.

• The customer can demand that the bank let only cryptologically secure
software access their accounts. Those who work with one-time passwords
count on being wiretapped anyway. In that case, they should make another
small step to include mutual authentication. After all, the bank knows
more about security than an inexperienced customer!

It is not the ‘anarchic Internet’ that is to blame but insecure cryptographic
protocols and insecure software. It’s about time both were brought to the state-
of-the-art level.

From the cryptological viewpoint, encryption by means of hybrid methods
would certainly be a better choice. In practice, this is sometimes required for
non-readable chip cards and perhaps additional biometric systems. Until we
get to this point, however, we make do with one-time passwords, perhaps
additionally protected by digital signatures.

. . . and Cruel Practice

Those were my thoughts. They are important for systems with one-time pass-
words in any event, but they remained gray theory. Because later I heard the
truth about the attack demonstrated in that TV program.

The customers used Microsoft Internet Explorer, which activates so-called
ActiveX controls. These controls let you dial up a suitable page on the Web to
load and start an application on your local computer (similar to Java applets,
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but with less protection). It used to be customary under DOS and Windows
that this application would then have access to the entire computer. This is a
design error. The customer virtually gets his virus himself over the network.
[Donnhack] describes in detail how this is done. The attacker offers a nice
colorful page on the Web and hopes to lure bank customers visiting it, and
that’s it basically.

This security hole (you can’t speak of a ‘flaw’ anymore in this case) basically
allows a hacker everything, but the Quicken software used in the example
above made it even easier for them: home banking programs normally store
orders to the bank rather than handling them online. To save phone costs, the
customer may perhaps store his one-time passwords on the disk. A program
that somehow sometime sneaked in via Internet Explorer just needs to fit in
the attacker’s ‘additional order’, or it modifies an order stored on the disk to
the attacker’s liking. You can imagine that such an attack is not very hard to
program. Once they’ve ‘collected’ enough transfer orders, the attacker’s cute
Web site disappears mysteriously, and with it the attacker and the money from
all these transactions.

So what is the banks’ point in supplying one-time passwords in printed form
when users offer the passwords with their software de facto to the whole world?
Considering this case, we cannot but exonerate the banks from any fault. Who-
ever uses such ‘open’ systems has to be made responsible for damage incurred.
This security hole has virtually nothing to do with cryptology, but we cannot
deal with theory while ignoring the real world.

Many a Windows user may feel offended by a UNIX freak. The fact is the
security concepts of many household computers are simply insufficient for
critical tasks such as banking. And the number of critical areas increases as
more and more services are offered on the Internet.

Certainly UNIX systems (and others) have security flaws, too. A large number
of users are dealing with them intensively and they are aware of the risks.
There is still a long way to go until we’ll see acceptable security in computer
technology, considering that there wasn’t even an elementary security aware-
ness until recently. I only hope software vendors will not succeed in continuing
to downplay the threats. If they do, the consequences cannot be foretold.

6.5.3 Password Tokens

The protocols discussed so far are not always satisfying. Either Alice knows
a secret password, S0, that Mallory can spy out, or she carries a password
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list around, which Mallory could copy. And all this while one-time passwords
are particularly useful when Alice moves about in an ‘insecure environment’.
Commercial uses normally demand a higher security.

To this end, several vendors introduced devices the size of key tags or pocket
calculators that automatically generate one-time passwords to the market. Such
a piece of hardware is referred to as a token. I will introduce the RSA products
as the first example in this section. RSA named their password token SecurID
(see Figure 6.9).

Some tokens are additionally protected by PINs. This splits Alice’s secret by
the principle of ‘possessing and knowing’: to authenticate himself as Alice,
Mallory has to not only spy out her PIN (i.e., the knowledge component), but
also steal her token (the possession component). Mallory will have a hard time
if Alice always carries her token with her and never lets it out of her hands.

Figure 6.9: RSA SecurID for generating one-time passwords in hardware.



370 6. Cryptographic Protocols

However, the way these tokens work is different from what was described in
Section 6.5.1. Why? Suppose the secret password, S0, were stored in the token
RAM. At the push of a button, a one-way hash function would be applied
to it n times, and the result would be displayed. The number n would have
to be taken from a counter running backwards. Since a token may be used
many thousand times, the counter would have to be initialized to a very high
startup value, e.g., 10 000. In other words, the startup time would apply the hash
function to S0 about 10 000 times at each push of a button. The computing times
would be unacceptably long. Moreover, the number of uses would be limited
from the outset. This may not always be desirable. To solve both problems,
value S0 could be changed in a defined way when n = 0 is reached, and the
counter would be reset. And finally, the pushbutton should be protected against
inadvertent activation.

Users find the SecurID tokens more convenient. These tokens create new pass-
words (in our case six-digit numbers) by the minute. RSA produces two types
of tokens: with and without keypad. In the first version, you type your PIN on
the token keypad and enter the number read in the computer upon request. In
the second version, you put your PIN ahead of the number read and type this
conglomerate. Though this variant is cheaper, it is more insecure, of course.
More about it further below.

But how are the passwords created? One approach accommodates a secret
DES key in every token, and repeatedly encrypts a known or secret 64-bit
startup block with this key. It does not necessarily have to be DES. If you
continually encrypt two 64-bit blocks using IDEA and compute a hash value
from the 128-bits of ciphertext produced, you can certainly forestall cryptana-
lytic attacks. The server (as we call the computer Alice logs on to for reasons
of simplicity) naturally also knows the key and can check the password for
correctness.

In contrast, RSA uses a hash algorithm that has been made public (they trust
in the abilities of Ron Rivest who checked the method). A built-in clock and a
token-dependent secret value called seed are used to code a hash value every
15 seconds. The key-tag variant uses four such values to compute numbers that
change every minute. This is a clever idea. One could simply compute a hash
value from the seed and the clock every minute and display it. But if Mallory
knows that two successively displayed values are computed from numbers that
differ by 1 (or by 60), then he might be able to calculate parts of the seed, if
the hash function is vulnerable to such an attack. (I don’t think that one-way
hash functions have to be resistant to this type of attack.) However, the four
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subvalues mentioned above will differ in many bits so that such ‘differential
cryptanalyses’ can be prevented.

And the PIN? In tokens with keypads, it is simply XORed with the hash value
computed. That’s secure. As Mallory listens in on the data channel, he has no
chance to get hold of the PIN. Doubtlessly, transmitting the PIN in plaintext
ahead of the password is much more risky. But to use such a wiretapped PIN,
Mallory first has to steal the token. And if Mallory steals the token, he first has
to have listened in on the PIN. So this variant is more secure, even in plaintext.

There is another problem we haven’t considered yet: how does the server learn
the password currently created on Alice’s token? Clocks tend to be either fast
or slow, as we know, particularly when a token is exposed to blazing sun or
sharp frost. The solution is relatively simple: the server stores the current ‘time
shift’ for each token and additionally works with a time window for the token,
i.e., it also accepts passwords, for example, that would have been valid two
minutes earlier, or which should have come up three minutes later. Based on
these deviations, the server can correct the time shift, if needed. Only when the
deviation grows too large will it request the next password, which introduces
additional security. Experience has shown that this case occurs very seldom.

How Secure Are SecurID Tokens?

There are two attacks against all types of tokens: the first is the man-in-the-
middle attack—Mallory intercepts Alice’s password and talks to the server
alone from that moment onwards (this includes mainly phishing attacks). This
sort of attack is not up for discussion here, because one-time passwords can’t
protect you from them either. The other attack is somewhat more subtle: Mal-
lory cannot interfere in the connection between Alice and the server, but he
monitors the first five places of the six-digit password. He then sends all ten pos-
sible last digits over ten parallel channels faster than Alice can, thus obtaining
a connection on one channel. This is only possible if Alice uses a badly config-
ured telnet program that sends each character individually. The server can make
this attack harder, for example, by permitting not more than two or three faulty
attempts before it requests the next password (it may even use an ‘out time’).

Things get easier for Mallory if Alice uses a token without a keypad. Mallory
listens in on the PIN at the network, and then steals the token. However, theft
is ‘manual work’ and is normally soon discovered. I think a scenario where
Alice forgets her token somewhere and Mallory finds it is more realistic. This
is the reason why tokens are never distributed with the vendor’s corporate logo
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on them; only with an anonymous serial number. Without diving into this sce-
nario any further, it is clear that the probability of an illegal login is low in
this concept.

On the other hand, users might see reasons to mistrust the token vendors them-
selves. After all, they store the seeds in the token RAMs. What if they ship
the secret number to the NSA at the same time? What stands in the way of
such a scenario is the fact that the user himself agrees on the PIN; the manu-
facturer does not know it. While the NSA could certainly replay a PIN from
tokens without a keypad, it could just as easily log the unencrypted data com-
munication. A national intelligence agency normally has little interest in faking
authentications.

Probably the most scary scenario would be if Mallory succeeded in reading
the seeds from the server. That’s tantamount to a masterpiece. The devices are
shipped to the users in encrypted form. On the server’s hard disk, the seeds are
RC4-encrypted using a 128-bit key. And to get them from the memory, you
first need to grab the security blocks of the Progress database, which is a true
challenge even for a superuser.

A brute-force attack against the 64-bit seed might be possible. This would
correspond to a capacity of 256 DES crack machines working in parallel. So,
cost and benefit are far beyond a reasonable ratio! Much more interesting would
be attacks using DFA, as described in Section 4.4.5; vendors don’t like to talk
about this. But to launch DFA, one has to first own the token, and then probably
open it without deleting the RAM.

Theoretical cryptanalyses work faster than brute-force attacks; read about them
in PD/skey/SecurID/securid attack on our Web site. My impression is, however,
that this is not really significant for practical purposes. Cost and benefit have
to be in a reasonable ratio, even in espionage.

Meanwhile, special SecurID tokens work on an AES basis, but the details are
not public at the customers’ request. But there are alternatives, as we will see
in the following section.

Open Authentication, Federated ID, and the VeriSign Idea

RSA deserves respect for having developed password tokens to series maturity;
there is no question that these devices dominate the market (it is estimated that
about 16 million devices were in use in 2006). Since other vendors wanted to
have a share in this business, they joined in the Open Authentication Initiative
(OATH). This is an open standard you can download from their Web site
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at www.openauthentication.org. The core underlying this standard is the
HOTP algorithm, which is described in RFC 4226; you can download the
PD/skey/OATH/rfc4226.txt file from the Web site to this book. The basic idea
is very simple: a counter is increased with every step (pushbutton at the token),
and SHA-1 is used to compute an HMAC. The key that is used to calculate the
HMAC assumes a role similar to the seed in an RSA token. Synchronizing the
counter between token and server is a separate problem (time could also assume
the role of the counter, similarly to the SecurID token). The major benefit of
such an open algorithm is that token vendors compete, being independent of
server software. Burt Kaliski, Chief Scientist at RSA Laboratories, expressed
doubts though: relying on one single algorithm like SHA-1 was unwise, because
nobody can anticipate future cryptanalyses. While this argument appears to be
reasonable, an SHA-1–HMAC would be far from being at risk even when
SHA-1 collisions were easy to calculate. There certainly does not seem to be a
threat in the years to come. Kaliski would like to see a standard that includes
many algorithms and methods. It may evolve some day, but OATH represents
important progress.

OATH can solve another problem: if you have to token-authenticate yourself
at five different servers, you normally need five different tokens. This is cum-
bersome, and the probability of forgetting exactly which token you need at
the moment increases. This argument is not negligible: when asked who ever
forgot their tokens at the RSA Conference Europe 2006, a large number of
participants raised their hands.

It would be nice to have one single token for all vendors. In this context, we
speak of federated ID. On the other hand, such a concept can cause mistrust:
would the token cleanly separate the set of identities? What identity is actually
sent, and can the user control it? What can the vendors that the token serves
learn from one another? Does a different algorithm have to be implemented
for every vendor?

The answer to the last question is ‘no’, thanks to OATH. The other problems
can be solved by an approach of VeriSign, the most renowned and mighty
company that creates certificates and handles DNS requests for the two most
important Internet domains, .com and .net. Its concept is called VIP (VeriSign
Identity Protection) and is actually pretty simple.

• VeriSign hosts the secret keys of independent vendors contained in the
tokens and the (non-secret) serial numbers (IDs) of the tokens.

• The tokens are sold freely, independently of the user’s merchants, such
as eBay.
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• If a user wants to authenticate himself with eBay, for example, he sends
the token ID and a one-time password generated on the push of a button,
together with his personal data to eBay. eBay, in turn, strips the personal
data, sending only the token ID and the one-time password over a secure
line to VeriSign. Finally, VeriSign checks the password for validity and
returns the result.

I think the model is pretty secure based on the interests of the parties involved:
eBay will not send personal user data to VeriSign, or it would disclose its cus-
tomer data and buying activities. The token vendors don’t know where buyers
will eventually use their devices. They no longer participate in subsequent
transactions. For this reason, they have no interest in passing secret keys on to
others than VeriSign.

The obvious drawback of the method is that it binds you to a company as
mighty as VeriSign. There are certain doubts. But eventually, we always have
to weigh the advantages and disadvantages. If VeriSign demanded unacceptable
conditions for the checkup, the system would not survive in the market, and
token vendors might look for another host.

Bottom Line

The tokens discussed above appear to be a reasonable compromise in situa-
tions where secure authentication is most important. The data communication
between terminal or client and server can still be encrypted. The important thing
is that attacks will generally not go unnoticed, because the loss of an object is
more evident than stealthily listening in on a password. Tokens are cheaper and
easier to handle, compared with challenge–response methods (where servers
ask questions).

6.6 Other Protocols

Cryptographic protocols are too extensive and complicated a field to be rep-
resented in this book, even in an overview. There is ongoing research in this
field so that new scenarios—both of practical relevance and theoretical inter-
est—are continually studied. Readers interested in further reading are referred
to the literature and the Internet.

The next sections briefly describe several ingenious and practically interesting
protocols. Similar to the cryptographic algorithms, the choice was made at will.
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6.6.1 Timestamps

I’m sure I don’t have to explain that the age allocated to a file by the operating
system is helpful, but proves nothing. For practical purposes, however, it is
often necessary to have timestamps that have evidential value. This means:

• The timestamp cannot be changed stealthily in arrears.

• The document cannot be changed stealthily in arrears either.

• The document cannot be fitted with another timestamp in arrears.

The first two requirements are no problem. Alice writes ‘created on February
29, 1996, 17: 30’ in plaintext on her document, adding her digital signature
to the document. If it is doubtlessly known that this document originates from
Alice, and a wrong time would only be damaging, and her public key is also
known, then this protocol is absolutely sufficient. Nobody other than Alice can
add a different timestamp to it and digitally sign it in Alice’s name as long as
her signature is secure.

Unfortunately, this is not always enough. First of all, we could think of cases
where Alice herself has some fraudulent idea. Second, a governmental agency
that will receive ten thousand virtual documents per day in our golden elec-
tronic future cannot procure the public key of every user to check the time.
Third, it should generally be possible to check the authenticity of the docu-
ment–timestamp relationship, regardless of the author.

Notarized Timestamps

An intuitive solution to the problem is to use a trustworthy timestamp service.
Alice has to submit her document to this service, and will get it back with
timestamp and signature included. The public keys of the timestamp service
are published regularly in a daily newspaper.

To ensure that the transmission capacities on the Internet will suffice for
audio mail and cool images, Alice should only send the hash value to the
stamp service. The service would then return the signed ‘timestamp–hash
value’ pair. A short random character string appended to the timestamp by
the stamp service will remove all doubts about a potential ciphertext attack
(see Section 4.5.3).

This protocol is pretty good. Though minor drawbacks could be slight delays,
and that it will cost money, it would hardly be feasible without such minor
drawbacks.
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Nevertheless, Alice has a possibility for fraud: she can bribe the operator of a
stamp service, or put the wrong date on her document. An audit of the service
is not included in the protocol. So we need a better protocol for mass use.

Auditing the Service

There are several ways to prevent the timestamp service from being bribed.
For example, one protocol has the service sign not only the timestamp and
hash value, but additionally an identification number of Alice as well as name,
time, and signature of the last customer—everything concatenated—and then
return this conglomerate duly signed to Alice. Moreover, it will tell her the
identification number of the next customer in line after Alice.

Depending on the auditor’s persistence, this protocol can be used to determine
an arbitrary number of customers ahead and after Alice. Grossly forging a
timestamp within such a chain would be noticed immediately, since the times
stated have to be sorted in ascending order. To be able to backdate a complaint
by only one day, Alice would have to find a service that had not been used for
an entire day, and then she would have to bribe it. Not much reward in such
an undertaking.

The only problem with this scenario is that some customers could disappear
from within the chain after some years. This problem can be solved, for
example, by using distributed timestamps. To this end, Alice has her docu-
ment signed with a timestamp by many other persons. Exactly which persons
from a large set these are is determined by the hash value of her document.
This variant is secure, but costly and time-consuming.

In addition, there are protocols where the timestamp services are arranged in
a tree structure and monitored from top to bottom. Surety Technologies (an
affiliate of Bellcore) has such protocols patented in the USA.

You see that the problem is not quite as easy to solve as it appeared in the
beginning. But the security level achieved with good protocols is far beyond
a signed sheet of paper despite all doubts with regard to the security of digital
signatures. This is yet another case where cryptology can truly improve security,
rather than restoring old securities in the new world.

6.6.2 Bit Commitment

Bit commitment is an important protocol for everyday life: you need it, for
example, if you want to deposit your will on the Internet. But more about this
later.
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The scenario is as follows: Alice wants to sell Bob some piece of information,
but disclose it only once Bob has paid for it. Though Bob buys a pig in a
poke, he wants to have a guarantee that he will get this information once he
has paid, and that Alice does not replace the information stealthily by some
worthless information once she has received payment, which would mean that
he couldn’t prove anything.

Without a cryptographic solution, you would have to use sealed envelopes. A
cryptographic solution is much simpler.

1. Bob sends a random bit sequence, R, to Alice.

2. Alice appends her information, I , to R, and uses a secret key, S, to
encrypt it. She sends the cipher to Bob.

3. Bob pays for the information.

4. Alice tells him the key she used, namely S.

5. Bob decrypts Alice’s message and checks whether or not his bit sequence,
R, is at the beginning. Then he reads I .

The random bit sequence, R, prevents Alice from decrypting the cipher after
Step 2 with all possible keys until a plaintext to her liking results. She would
then send Bob the false key found in Step 4. Such a fraud can be realized
only if the information is very short (particularly if I is only one bit long, and
if it can be revealed from the least significant bit of the plaintext block). But
what if Alice knew special plaintexts which, if calculable with a second key
for a second calculable plaintext, would produce the same cipher? Random
bit sequence R prevents Bob from having to worry about such vulnerabili-
ties with this algorithm. It suffices if the algorithm is resistant to plaintext
attacks.

Other possibilities use one-way functions and random-number generators. How-
ever, the protocol introduced above is practicable and secure. Now, if you want
to deposit your will without having to pay notary fees, you proceed as follows:
have each of your potential heirs send you a random bit sequence, R, and run
Step 2 for each heir. Each heir deposits his R value and the cipher with the
other heirs. In turn, you use the same key for all of them for the sake of sim-
plicity. This key is kept in a sealed envelope at a secure location and opened
after your death. No heir will then be able to say that the envelope had been
replaced, or that he had received a forged testament.
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6.6.3 Blind Signatures

Blind signatures are signatures where the signer is not supposed to know the
contents of a document in whole or in part. In the former case, such signa-
tures are also referred to as completely blind signatures. The most important
aspect of such signatures is that the document in question existed at a specific
point in time. Such signatures were developed by Chaum for implementing
digital money at the beginning of the 1980s. We will see under what circum-
stances blind signatures are meaningful in connection with a similar protocol
(Section 6.6.7).

Without cryptology, completely blind signatures are easily possible. A notary
signs page by page with ‘document no.: . . . submitted on: . . . signature: . . .’,
where each page is disguised by the document’s author. Using cryptology, the
scheme could be such that Alice sends only a long one-way hash value of her
document to Bob, and Bob signs it. In the simplest case, Bob decrypts the hash
value with his private key. To prevent a chosen-ciphertext attack, he had better
calculate a hash value from the hash value and then decrypt this one.

Unfortunately, the method has a flaw. Bob can memorize all hash values given
to him, so he can learn the time and place when each document was signed.
This may be undesirable in some situations. Moreover, Bob could use a sub-
liminal channel to infiltrate a document number in the signature, together with
his signature, and correlate these numbers with additional information in a
secret list.

The protocol first introduced by Chaum used the following idea: Alice can
multiply her document by a random number. This makes the document inde-
cipherable so that she can give it to Bob for signature without worrying. Once
Bob has signed, she computes the random number out of it, converting Bob’s
signature into a valid one for the original document. Since multiplication and
signature have to be ‘compatible’, it is best to use the RSA method. However,
the multiplication cannot be removed from the hash function for certain. The
following method suggests itself (for the RSA method; see Figure 4.16).

1. Alice calculates the hash value, m, for her document.

2. She chooses a random number, k, which is relatively prime to module
n, and computes

t = mke mod n
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3. Bob receives t for signature. He computes

td = mdkde mod n

Now, decryption with the RSA method was just based on the equation

Mde = M mod n

for all M < n. In particular, kde = k mod n. This means that Bob actually
computed

td = mdk mod n.

4. Since k is relatively prime to n, Alice can resolve the equation

uk = td mod n

toward u, thus revealing Bob’s signature, u = md , of m.

Based on this protocol, ke is sometimes referred to as the blinding factor,
and Step 4 is said to remove the blinding factor. Later on, Bob can no longer
recover t from m. As a minimum, if Alice used only primitive roots, k of n,
then there is a k with

mke = t mod n

for each t and each m. This means that hash value m could belong to every t

that Bob memorized.

That much about completely blind signatures. Blind signatures (better termed
as ‘semi-blind signatures’) should grant Bob an insight into the document in
general, but not reveal too much. For example, Bob wants to protect himself
against signing horrendous claims. For this situation, there is no intuitive solu-
tion, neither in the physical world nor in cryptology. One possible protocol was
described by Schneier [SchnCr, 5.3]:
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Alice works on a top-secret assignment and needs a forged diplomatic passport
in her cover name. Home Secretary Bob has to sign her passport, but must
not learn her valid cover name. Alice sends him ten passports, each issued to
a different name. Bob randomly selects nine and checks whether they are in
order. He signs the tenth by the completely blind signature method. If Alice
submits a passport with illegal authorities, then the chances are 9:1 that she
will get caught.

Intensive research work on blind signatures is being done, and some are
patented by Chaum in the USA. Section 6.6.7 describes a practically relevant
use for blind signatures.

6.6.4 Zero-Knowledge Proofs

Similar mystery-mongering as with blind signatures is involved in a type of
protocol called zero-knowledge proof. Alice would prove to Bob that she owns
certain information without telling him what this information is. Naturally, the
protocol depends on the specific problem. Alice could even publish hints about
her secret so that every doubter will eventually be convinced of her knowing
the secret, whereas Alice doesn’t disclose a single bit of that secret. This variant
is called non-interactive zero-knowledge proof.

As unbelievable as this may sound, you know an example: Alice wants to make
believe she knows the two prime factors of a 1024-bit number. To this end, she
constructs a public–private key pair and uses her private key to decrypt a text
not selected by her, similar to digital signatures. She publishes the ‘plaintext’
thus created together with the public key. Everybody can do reverse ciphering
to convince themselves that Alice knows the private key and with it the two
prime factors, as we saw in Section 4.5.3.

We will see a practical use in Step 5 of the authentication protocol of Secure
Shell SSH in Section 7.3: Bob gives Alice a 256-bit random number he had
encrypted with her private key. Only Alice can reverse-calculate this number.
To prove it, she sends Bob a hash value from this number (and not the number
itself to make sure Mallory won’t get a chance).

However, zero-knowledge protocols normally work interactively. In a chal-
lenge–reply scenario, the probability that Alice really knows a secret tends
towards 1 as the number of her replies grows.

There are much more sophisticated protocols; you can find some in [SchnCr,
5.1], but you have seen what we are talking about.



6.6. Other Protocols 381

6.6.5 Fail-Stop Signatures

The idea behind this type of signature is related to probabilistic cryptography
(Section 5.8), where encryption is ambiguous, while decryption is unambigu-
ous. With fail-stop signatures, decryption is ambiguous, while encryption is
unambiguous. More specifically, many private keys should exist for each pub-
lic key. In the first case, nobody can blame Alice for having created a certain
session key. In the second case, Alice can prove that her signature was forged.
The reason is that, even if Mallory cracked the asymmetric method and recon-
structed one private key, the probability that he has not found the one Alice used
(these keys are actually equally probable; there is no cryptological assumption
behind it) is extremely high (e.g., 2100:1).

This means that Mallory’s signature will virtually always be different from
Alice’s. Alice can demonstrate in court that she created a different signature,
using officially certified documents signed by her earlier as evidence.

The first fail-stop signatures were introduced by Birgit Pfitzmann and Michael
Waidner in 1990. In her book [PfitzFSS], the author explains also how the
name came about: in the event of a cracked public key (‘fail’), Alice can prove
the fraud and revoke (‘stop’) all her signatures, for which that key was used.

Fail-stop signatures are based on cryptological assumptions, similar to regular
digital signatures, such as: the factoring of extremely large numbers is hard,
one-way hash functions are cryptologically not reversible, and so on. Fail-stop
signatures are not more ‘durable’ than regular ones. But they remove the largest
part of uncertainty: has somebody forged signatures or not? If Mallory decides
to apply his secret super crack algorithm after all, then at least he’ll most likely
get caught.

In case of damage, Alice has to first notice the fraud, of course (this is the
biggest problem in my opinion). She’d revoke all her current signatures, which
even increases the damage. She’d then reduce the damage again by checking
every single one of her old signatures that are still important (and accessi-
ble at all), and replacing them by a new one that’s more secure. Not bloody
likely! What’s more, Mallory’s forgery may by then have caused damage
beyond repair.

There might be a way to avoid this crazy repair effort after all, since digital
signatures are actually as secure as we hope them to be. Fail-stop signatures will
at least offer more certainty. This new technology may help solve the ‘durability
problem’ satisfactorily. For the time being, this protocol is rather costly. There
are no usable implementations, but let’s hope there will be in the near future.
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The downside is that fail-stop signatures are ineffective in preventing attacks
against the one-way hash function. And if Alice’s private key is stolen, then
the catastrophe is preprogrammed, regardless of the protocol used, unless cryp-
tologists can find a trick to limit this damage, too.

6.6.6 One-Way Accumulators

A one-way accumulator is a protocol that allows Alice to prove to important
people that she is a member of a secret intelligence organization without having
to disclose its member list.

This is nothing new, you might think, there are IDs after all. In the digital
world, she only needs to show an appropriately signed document.

Unfortunately, no trustworthy authority willing to sign the electronic mem-
ber IDs was to be found. Or more likely, the members fear that a national
intelligence agency is trying to infiltrate members. Headquarters would notice
this, but the ordinary members don’t carry lists around with them for security
reasons, so they cannot see whether or not an ID is forged (intelligence agen-
cies can forge). Nobody from within the organization is sufficiently immune to
extortion that his signature would be good for the member IDs.

Cryptology comes in handy here, too. A one-way accumulator can serve as
a one-way hash function defined for sequences of member names, and the
results are independent of the order computed. This means that they are similar
to a commutative sum. However, the function must not be reversible in the
cryptological sense: it should not be possible at an acceptable cost for a given
result, R, to construct two names that supply result R when using the one-way
accumulator. So calculating a sum is a poor example.

Benaloh and De Mare introduced better functions in 1994 [Benal.acc]. The
authors demonstrated a simple example based on the security of discrete loga-
rithms:

All members agree on a product, m, of two very large prime numbers and an
initial value of x0. The one-way accumulator from the values y1, . . . , yn then
has the following value:

xy1+...yn mod n

Every member obtains an identification sequence composed of his name and
a confidential character string. Alice learns the value WAlice of the one-way
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accumulator, composed of the identification sequences of all members except
her own. This value is not secret; it can be published to third parties in advance,
if need be. Moreover, the value Wall of the accumulator, composed for all
members, is published by a third party. If somebody has doubts about Alice’s
membership, they can ask for her identification sequence and compute the
accumulator from that sequence and WAlice. If the result is Wall, then Alice has
to be a member; otherwise she is a spy. Since identification sequences are made
known upon request only, no member list can be revealed by trial and error.

The security of this protocol can be compared with that of digital signatures
using a centralized service, except that it can do without the latter. It is a nice
example of showing that cryptology can still discover simple and useful things
even today.

6.6.7 Electronic Money

Just hearing the buzzword ‘electronic money’ will cause many people to think:
‘Yet another technical gadget that no one needs!’ It is understandable since
nobody wants to move our daily payment system to the Internet for the time being,
even though advertising has been going into raptures about electronic malls.

Information has become merchandise, and this merchandise is shipped increas-
ingly over the Internet. It would be natural to also be able to pay for it on
the Internet. There is certainly a lot of speculation going on about the vision
of teleshopping and customers paying electronically. I’d rather not forecast
whether and how fast this vision will gain acceptance in the real world.

But long before electronic money is widely used, cryptologists need to have
appropriate algorithms and protocols ready. Otherwise it could happen that poor
protocols are sold as the latest craze and the ‘real’ (bad) hackers celebrate for
there’s real money to be made.

There is a large number of approaches and products concerning electronic
checks or coins. To keep within the scope and volume of this book, I will
introduce and discuss one single protocol, namely one by Chaum, Fiat, and
Naor [Chaum]. This protocol itself uses several of the protocols previously
introduced, and it is pretty clever. We will only look at checks, not coins, since
we don’t want to deal with the additional problem of change.

Requirements for Electronic Money

Let’s first consider several requirements electronic checks have to meet in any
event.
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• Checks have to be covered. This is easier for electronic checks than it is
for paper ones: all electronic checks are signed by the bank and auditable
by everyone, since it will issue only covered checks.

• Checks have to be tamperproof. With electronic checks, this means in
particular that they cannot be used more than once, since copying cannot
be prevented.

The second requirement is not as easy to fulfill as the first. If we take the word-
ing literally, it means: any attempt to pay once more using the same check shall
be declared to be invalid. No matter how the protocol is handled—the mer-
chant has to have the check verified by a centralized party, which is generally
the bank itself. Such protocols are called online-payment protocols. They can
cause extremely high network loads. Moreover, every merchant has to be able
to quickly establish a connection to many or all banks, and every bank has to
be able to process its entire electronic payment traffic in real time.

This is unrealistic with the current state-of-the-art in technology, so people
developed offline-payment protocols. With an offline-payment protocol, the
merchant collects checks as usual and submits them to his bank or several
banks in ‘bundles’. In this case, submitting copied checks cannot be prevented,
so there has to be a way to detect this type of fraud beyond any doubt. The
Chaum–Fiat–Naor protocol is such an offline protocol. But there is another
important requirement:

• The payment traffic must be anonymous. This means that the merchant
learns the customer and the bank. When the merchant submits checks,
however, the bank may see that they are their checks and that they are
submitted by that merchant, but the customer must not be revealed.

Why is this so important? The bank always knows both the issuer and the
presenter of every clearing check! True, but only in theory. A considerable
part of the payment traffic still involves anonymous cash money and bills and
other hand-written papers that are not completely scanned so that they are not
completely back-traceable.

In contrast, gapless logging is no problem for digital checks and coins. ‘So
what,’ you might say, ‘let the bank know where I buy my stuff.’ That’s a dan-
gerous mistake. Payment systems can reveal behavioral patterns, such as your
preparedness to take risks, punctuality, personal preferences, contributions to
political parties, cash reserves, employment relationships, alimonies, and many
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more things. Transparent humans can be manipulated and extorted, particularly
if Mallory gets hold of your personal data. Greetings from Orwell. We will get
back to this issue in Section 8.2.2.

Part of it is (hopefully) pie in the sky, but still, we should consider these threats
today: once a non-anonymous protocol has been accepted it will be hard to
suppress it. The only thing that will be suppressed is our threat-awareness.

The protocol introduced below is anonymous.

The Chaum–Fiat–Naor Protocol

We will first have a look at the protocol and then discuss its effects.

1. Alice wants to use an electronic check to pay Bob 978 dollars. She
represents the information ‘I am Alice in Wonderland, customer num-
ber 44322 with Second Reality Bank’ unambiguously as number I , as
agreed. I could be a hash value of her personal information, for example.

2. She wants to buy a check for 978 dollars from her bank. To this end,
she creates a random number, R, which is so long that there can never
be two checks with the same number R in the world. She writes R and
the amount on the check.

3. Next, Alice creates three random number sequences, (ai), (bi), and (ci),
for example, with 40 numbers in each sequence. These numbers have
to be of the same data type as information I in Step 1. She takes these
numbers and a suitable generally known one-way hash function, h(), to
calculate two sequences, (xi) and (yi):

xi = h(ai,bi)

yi = h(ai ⊕ I,ci)

She also writes sequences (xi) and (yi) on the check.

4. Alice has her bank sign the check by means of a blind signature (see
Section 6.6.3).

To this end, she produces N such checks with the same amount (number
N is specified by the bank). For example, she submits the hash values of
these blinded checks (see Section 6.6.3). The bank randomly selects N −
1 of these checks and requests their complete disclosure. Alice has to
submit these checks, together with the blinding factor and the pertaining
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number sequences, (ai), (bi), and (ci). The bank verifies whether these
numbers really result in the sequences (xi) and (yi). The bank signs the
hash value of the non-disclosed check, returns its signature to Alice, and
debits Alice’s account with the amount of 978 dollars.

If Alice were to cheat here, it would be discovered with a probability of
(N − 1)/N .

5. Alice puts the following together:

• the amount;

• the check number R;

• the hash sum she had submitted to the bank (without the blinding
factor); and

• the bank’s signature with the blinding factor removed (see Section
6.6.3).

She sends this check to Bob.

6. Bob asks Alice for the name of her bank, the bank’s public key (unless
he knows it already), and then verifies the bank’s signature.

7. If it’s all right, he gives Alice a random 40-bit number, Z, consisting of
bits zi . Alice has to give merchant Bob

ai, bi, and yi, if zi = 1, or
ai ⊕ I, ci, and xi, if zi = 0.

In the first case, merchant Bob can calculate value xi from ai and bi ,
since he knows hash function h(). In the second case, he can recover yi .
This means that he knows xi and yi for every i so that he can verify the
hash value (blindly signed by the bank) stated on the check.

8. Bob ships the merchandise to Alice and sends the check number, the
amount, and all data he obtained from Alice to the bank. The bank
stores these data and credits 978 dollars to his account.

How Secure is this Protocol?

This protocol protects Alice’s anonymity. Though the bank gets the check
number from Bob as well as the amount and the data mentioned in Step 7, it
cannot recover Alice’s identity. We can think of the two numbers ai and ai ⊕ I

as a subset of secret I . The protocol uses secret splitting (Section 6.2) in this
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case. The bank learns from Bob only a subset of the secret, so it’s not much
good for them. The check number won’t help them either, because they hadn’t
seen it when signing in Step 4 (which was the reason why Alice had to create
R herself in Step 1). Finally, the hash sum was covered by the blinding factor
upon signing.

However, if Alice cheats, i.e., uses the same check twice for different mer-
chants, then her identity will be disclosed to the bank. This is the trick with
this protocol, and the most important step is the seventh. The bank verifies each
check submitted to see whether or not its number was already stored. If so, then
numbers Z in Step 7 are identical with a probability of 2−40, i.e., roughly one
trillionth. This is seldom enough so that, at least in practice, there is at least one
i in which bits zi differ on the checks given to the two merchants. The bank
recovers Alice’s identity number I by simple XOR from ai and ai ⊕ I . Should
check numbers R for different persons happen to be identical, then different i

would most likely produce different I , or I would be nonsensical.

On the other hand, if Bob submits one check twice, he gives himself away
immediately. Identical checks (with the same data sequences from Step 7) are
even rarer than one in a billion checks.

Finally, Bob cannot ‘invent’ checks himself since the bank can verify their own
signature on the check.

‘Remainder Problems’

We saw that the Chaum–Fiat–Naor protocol is cryptologically secure, and it
is anonymous as long as Alice, the bank, and Bob are the only participants.
However, if Mallory manages to wiretap the line, he can do things worse than
theft: he can intercept Alice’s check and issue it instantly, making Alice an
impostor. He can listen in on the communication between Alice and Bob and
submit the check faster than Bob, making Bob an impostor. Either way, there
would be lack of evidence. For this reason, all data communications have to be
cryptologically secure, and additional measures have to be taken in the event
Mallory breaks into Alice’s or Bob’s computer.

In the procedure above, Alice remains anonymous, but some income is recorded
at Bob’s end. This is actually nothing exciting. Every merchant accepting
checks discloses their income to their bank.

Alice incurs interest lost during the time from when the check is signed to
when it is submitted to the bank. This shouldn’t be a major problem since such
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transactions can be handled much faster on the Net than by current accounting
methods.

In contrast, the load on the network is a big deal. Every payment transaction
requires a multi-step dialogue between Alice and her bank, between Alice and
Bob, and between Bob and the bank. Not all of this has to be done online
though. Another downside is that this protocol doesn’t allow for change. This
means that Alice has to create a separate check for each ‘odd’ amount and have
it signed blindly by her bank. Interferences in the line to the bank, or in the
bank itself, will have an immediate hindering effect on the sales transaction,
which is currently not the case with ATM cards or clearing checks.

A popular topic in magazine articles seems to be the catastrophe that Alice’s
hard disk ‘goes up in smoke’. I even came across the argument that compa-
nies that restore data from destroyed disks will enjoy a strong boom. That’s
computer-technical nonsense. Electronic payment systems will initially be han-
dling small amounts for which such an expensive operation wouldn’t be worth-
while. By the time amounts get bigger users will probably have learned that
every once in a while they should back up their data—even immediately when
writing checks for 10 000 dollars and more. Also, it shouldn’t be a problem to
have one’s bank stop payment of a check with a particular number, provided
one has memorized that number.

Bottom Line

Let’s leave it at that. You probably haven’t paid for this book by e-cash, and
you are likely to pay for the next in the same manner. I find it more interest-
ing to look at how sophisticated cryptographic protocols can be. The protocol
introduced above uses three other protocols: digital signatures, blind signa-
tures, and secret splitting. The structure of digital coin protocols is even more
complicated since they have to remain completely anonymous, and coins have
to be divisible. The first protocol of this type required a transfer of about
200 Mbytes per payment. There is intensive ongoing research on practicable
and secure protocols. At the EUROCRYPT ’98, Chan, Frankel, and Tsiou-
nis [ChanFrTsi] introduced a practicable and mostly anonymous method that
can be done with 300 bytes per payment and requires only small computation
times.

At any rate, the Chaum–Fiat–Naor protocol guarantees Alice’s anonymity.
That’s a new feature that conventional check-clearance systems cannot offer.
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Whether or not it is still desirable in view of the current terror-fighting hype
might be doubtful.

6.6.8 The PIN on an ATM Card

Probably the most frequently practiced cryptography in everyday life is PIN-
authentication at an automatic teller machine (ATM). It is understandable that
the question about the security of this system is on many card owners’ minds,
and not without reason, as Figure 6.10 (though admittedly not current) shows. A
daily paper reported a yearly increase of 40 % in computer crime in 2001. Such
figures are not always reliable, of course. For one thing, the term ‘computer
crime’ is sloppy (some investigators may also use it for ATM card theft), and
second, nobody can estimate the number of unrecorded cases. But the trend is
there, and it’s real.

Since this is a book about cryptology, we won’t discuss popular methods to
steal PINs in detail. These methods include, for example:

• Using mounted mirrors to monitor the keyboard of an ATM (this has
happened at gas stations).
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Figure 6.10: Criminal development of ATM card and credit card fraud.
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• Trial-and-error recovering the four-digit number customers write on their
ATM cards (that’s always the PIN).

• Exploiting modified ATMs that pass the typed PIN on to third parties
(this has happened particularly often in Italy, where it was estimated to
account for 0.5 % of total sales loss).

• Analyzing the electromagnetic waves an ATM emits.

• Violence in any form.

The Hairspray Attack

Cryptologically more interesting is the method of impregnating ATM keyboards
with talcum powder or hairspray. Once a customer has withdrawn money from
the ATM, the ‘sprayer’ can reveal the digits the customer keyed in. ‘This won’t
do much’, you might say, ‘since the thief won’t get far without knowing the
sequence of the digits. After all, the card is swallowed after the third failed
attempt.’

Correct, but not entirely. With a four-digit PIN, there are 4! = 24 possibilities
of how the four digits are arranged. Somebody who stole eight bankcards has
8∗3 = 24 random attempts for free, which produces one winner on average.
This estimate is too pessimistic, for not all PINs consist of four different digits.
If you get 2222 as the PIN for your ATM card, you should be careful. (I
recommend the impostor to pull a carnival mask over his head in this type of
undertaking, perhaps with the face of the Secretary of the Treasury: you will
certainly be filmed while at it.)

What we have here basically is a dictionary attack launched in parallel against
several systems. (For each card, the dictionary consists of all four-digit numbers
with the given digits.)

I am perfectly aware of such attacks, because they are done for real. There are
simple countermeasures. Once I have typed my PIN, for example, I generally
wipe over all the number buttons and hold an object in my hand as I type. That’s
easy to make a habit of, sending the fraudulent attempts described above into
the realm of wishful thinking.

However, I cannot see what happens inside the teller machine. Ideally, I use
only the teller machines in the branches of my bank. But that doesn’t actually
belong to cryptology.
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How Does the PIN Work?

This section will first of all bring you to the technical state-of-the-art up to
1997. I will then discuss the migration at the turn of 1997/1998 further below
in an effort to represent the differences in a simpler way.

How does the bank create a PIN? Banks most frequently use a system developed
by IBM called the MM protection method (see Meyer and Matyas [MM]).

The bank takes

• the last four digits of the bank code;

• the customer’s account number padded to 10 digits; and

• a one-digit card sequential number.

These 15 decimal digits together produce a theoretical result of 1015 or approxi-
mately 250 possibilities, i.e., the customer data easily fits in a 64-bit block. The
bank DES-encrypts this block with a strictly secret key, the so-called PIN key.
The bank takes two bytes from the cipher to deterministically produce the PIN;
sometimes (or always, I don’t know), the bank adds an offset. In [Wcf], Anderson
states that this offset serves to produce a more easily remembered number.

In Germany, all ATMs are online-connected to the corresponding bank com-
puter. This means that the PIN key does not leave the high-security tract. The
security module that contains this key can be opened only in the presence of
two persons.

The PIN key is the vulnerability in this method. This is presumably the rea-
son why it is secret-split and fed into the system by at least two employees
independently of one another.

However, this is not quite sufficient. What happens when you withdraw cash
at an Italian ATM using your ATM card from a German bank? This ATM is
not online-connected to the pertaining computer.

To this end, every bank generates three pool keys. These pool keys are used
to create three additional PINs. The difference to the ‘basic PIN’ is included
in the card’s magnetic strip. The foreign ATM knows only one of these three
pool keys of that German bank. So it can verify the PIN the customer types in
without having to be connected online to the German bank.

These three pool keys are changed regularly; entries that became invalid in the
meantime will be deleted from the card by the ATM.
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How Secure is the PIN?

From the cryptological viewpoint, the PIN is pretty secure. There is no mean-
ingful chance for brute force at the ATM: for some reason or other, no PIN
was to begin with a zero up to the end of 1997 (probably because they thought
customers wouldn’t type it); but that still leaves 9000 possible values. The
chances are 1 to 3000 that money can be made with stolen ATM cards. That’s
not rewarding. If only every 3000th attempt succeeds, then the statistical profit
per card is only 1/3000 of the amount maximally achievable. To make sure the
impostor makes some profit from his undertakings on average, the statistically
minimum earnings should be 24 dollars to cover the cost for the carnival mask
mentioned above, even in one single theft, i.e., a thief would have to make
more than 24∗3000 = 72 000 dollars per guessed PIN. With this sort of calcu-
lation, the mask manufacturer might subsidize the banks’ loss even at a ratio
of five to ten cards per thief. (Unfortunately, there are more effective methods,
including cryptanalytical methods.)

Otherwise, there is a good reason why the PIN is created from the cipher.
Compare this method with the verification of UNIX passwords (Section 3.3)
where the password is part of the key. Here, this is out of the question, because
the PIN is limited to four digits, and brute force would be a kid’s game. Based
on current knowledge, the PIN can only be recovered by brute force. If you
hear to the contrary, don’t believe it. Whoever publicly claims to be able to
calculate the PIN without brute force (i.e., on a conventional PC, for example)
would have to exploit a DES vulnerability. As it happens, the most capable
cryptologists in the world (in the publicly accessible area) have not found it in
twenty years.

Consequently, the entire system’s security depends on keeping the four DES
keys secret. If you know the PIN key you can calculate the PIN. This means
that any ATM card or credit card turns into a gold mine, and based on the
current legal situation (which will hopefully change), banks even blame their
defrauded customers.

But brute force is no longer impossible, as the special Deep Crack and Copa-
cobana computers introduced in Section 4.4.1 showed. Most ATM cards get
stolen abroad (where the ATMs work offline with our cards). Whether or not
the thieves owned a DES crack machine might never transpire.

On the other hand, you need to know the PIN of four or five ATM cards to
mount this brute-force attack, because one PIN alone isn’t enough to reveal the
PIN key. This is not a barrier for organized crime syndicates.



6.6. Other Protocols 393

Perhaps several programmers and engineers inside the bank can get hold of the
DES keys. Perhaps they have the keys read out from offline ATMs (e.g., in
Italy). Finally, a small explosive charge will remove finger prints and scratches
(at least that’s what the criminals hope).

We could continue spinning the thread. There are just too many possibilities
to get hold of the DES keys. Though every ATM card is fitted with a tam-
perproof ‘modulated machine-readable characteristic’ (readable by infrared to
my knowledge), it can currently be read by only about a third of all ATMs out
there. So this data is not included in the PIN calculation; it only requires more
care in handling forged cards. Mind you, magnetic strip cards and card readers
are cheap and available at the computer store round the corner . . .

There is no reason to panic just yet. But we should handle our ATM cards and
credit cards as if they were a thick bundle of cash. And we now know a good
reason why we shouldn’t tell anyone that our accounts are nicely filled up.

Things are worse with credit card numbers, by the way. I came across detailed
instructions on the Internet how to evaluate these numbers and what tricks to
use to make a handsome profit. It didn’t come close to instructions on ‘how to
build bombs’; they simply wanted to remind everybody to be careful. I think we
all have a hunch about how much criminal energy people sniffing the network
put into their job. This is a good reason to transmit credit card numbers over
the Net only in encrypted form to have more security against attacks, at least
statistically.

Migration of PINs in 1997/1998

At the beginning of 1998, all European ATM cards migrated to a new system,
and their owners received new PINs. As it happened, 0 is now admissible as
the first digit. All of this raises hopes. Furthermore, it was said that 128-bit
keys would be used from then onwards. Had they migrated to using IDEA?

People jumped for joy too early: they had merely replaced DES by Triple-DES.
The good news is that this frustrates brute-force attacks, at least based on cur-
rent knowledge. The somewhat strange arithmetic ‘2∗56 = 128’ used to specify
the key length might be due to the fact that they included the parity bits.

Unfortunately, further details were not officially revealed. I know only that
every bank now has its own PIN key, and that this key never leaves their
computer center. In other words, all ATMs have to be connected online to the
bank; the PIN is verified only there, never in the ATM itself. This is why one
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needs the plaintext from which the PIN is calculated; it cannot be calculated
from the card data alone, and (hopefully customer-specific) secrets can be mixed
in. This is actually done as a banker told me. Moreover, our cards can be used
at ATMs abroad. Do they all have online connections to our country?

Remedies

The current PIN method appears theoretically secure enough, but vulnerable in
practice. If breaking into the system increases faster than shown in Figure 6.10
in the coming years, then banks should consider migrating to more reliable
methods. This won’t be cheap; we won’t like paying for it indirectly, but it
will be necessary.

The first step towards improvement was made in 1998 when the key length
was extended. Whether or not it would have been cheaper to use the whitening
method described in Section 5.2.3 is hard to say. If there were doubts about
Triple-DES, then migrating to whitening would still have been possible: one bit
on the card could tell the ATM whether or not whitening should be activated.

In addition to other cryptographic modifications, all ATM cards and credit cards
will be chip cards in the future. This is desirable at least for one reason: they
would be more robust. Not without reason are magnetic cards read several
times and the results compared in some bank. Security also increases: the
article mentioned earlier [AndKuhn.tamp] describes clearly that chip cards are
not a secure hiding place for keys, but protected chips can no longer be read out
without destroying the chip. This represents a considerable barrier for attackers;
bank chip cards can’t be bought at the store round the corner.

Details on PIN generation, including literature references, can be found in the
pin.txt and wcf.txt files on our Web site.

6.6.9 Biometric Methods

You have seen how many problems PINs, passwords, and passphrases can
cause, and there will be more examples. Bad passwords and PINs written
down noticeably are security problems that should not be underestimated; they
increase as the number of chip cards and magnetic cards and logins on various
computers rises. And to date, I don’t see any improvement in software, whereas
it could easily deny bad passwords, for example. So what next?

One intuitive way out of this dilemma is biometrics. How intensely this field
is being researched can be observed at trade fairs, like the CeBIT: the number
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of vendors grows from one year to the next. As you can see in Figure 6.11,
the wealth of ideas seems to be unlimited.

• Fingerprint: A fingerprint is taken as the finger is placed on, or moved past,
a sensor. Fingerprint sensors can be found in keyboards, mice, and special
USB sticks. utimaco Software AG even developed a crypto-smartcard with a
built-in fingerprint sensor.

Older systems could be fooled by using fingerprints printed on scotch tape.
In modern systems, expensive sensors additionally check the temperature and
some even the pulse beat and the pigmentation of the finger cup on the print.
Some people might be cruel enough to cut somebody’s finger off to use it for
identification. Modern impostors are more humane (and still very successful)
using simpler means, as the German Chaos Computer Club demonstrated: you
need a digital camera, a simple image editing tool, a printer, and some liq-
uid plaster to create a thin skin with the desired (stolen) fingerprint pasted to
your finger. The funny thing is that this system passes all live tests (for finger
authenticity). And with some extra talent, it even works under observation.
You can find the article and the link in txt/biometric/fingerprt gelatine.txt on
the Web site.

Dirty or injured fingers cause problems. Some systems compensate for injuries
by accepting different fingertips. Also, the sensors themselves can be dirty.
In addition, about 2 % to 5 % of all people don’t leave usable fingerprints
(e.g., carpenters or masons). Those who use fingerprints as a replacement
rather than an addition haven’t understood the concept of biometrics. It is a
system mistakenly believed to be highly reliable, especially since it is used
as legal evidence. But fingerprints in criminal investigations are taken dif-
ferently (by rolling all ten fingers on a sort of ink pad), and the problem of
liveness-checks doesn’t exist in this field.

Excessive use of fingerprint sensors and careless data protection can even
cause fingerprints to be worthless as legal evidence, because it is too easy to
forge them and, above all, they are not secret anymore.

• Facial recognition: Outstanding points or the three-dimensional shape of a
face are detected and measured. If you select points the distance of which does
not change, then the system would recognize you even after a night’s carous-
ing. Problems can be caused by eyeglasses, beards, injuries, anti-wrinkle
creams, aging, and photos held in front of the camera in older systems.

Figure 6.11: Examples of biometric systems.
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The use of these systems can be very convenient. One company (www.

cognitec-systems.de) showed me a screen saver that locks the screen
automatically after a set time of inactivity. To unlock the screen, the right
person either sits down and briefly looks into the camera or enters a pass-
word. This is a huge step forward against ‘sloppy daily routines’ at work!
In addition, this system cannot be fooled by showing it a photo, because it
detects changes in the perspective and shadows that always occur in the real
world. The two error values FAR and FRR (see below) can achieve about
1 % with this system.

Nevertheless, this screen saver was not well accepted. A decent technical
concept alone does not convince users; there has to also be a demand for
using it (this is why the company prefers to use their FaceVACS system in
airports). Problems in facial recognition are the high demand in computational
performance, aging, and lighting conditions (outdoor recognition can reach
error rates of up to 50 %).

• Iris scan: The pattern of the iris, just as unique as a fingerprint, is captured
by a camera. Problems can arise from its uncomfortable use, in its present
form, and due to eye or eyelid injuries, cataracts, eyeglasses, and contact
lenses. Iris scanning is not cheap. This alone seems to be barring it from
wide use despite its excellent FAR and FRR values.

• Retinal scan: This system scans the retina via infrared. The same problems as
with iris scan systems can arise here, too, and the wait times are considerable
(I know of systems with roughly a 1-minute wait time).

• Signature recognition: This system electronically detects a signature. You
probably know of a simple system: the one used by UPS where you have to
use a special pen to sign for receipt in a small screen.

A much more sophisticated system appears to be Smartpen (www.

smartpen.net). It lets you use a special pen to write on a regular sheet
of paper on a regular base. Sensors in the pen acquire all sorts of writing
characteristics, such as trait, dynamics, pressure, and pausing as well as the
angle of tilt. Signature forgers would get nowhere with data acquired like this.

Such pens would be ideally suited for ATMs if it weren’t for the problem
that they can be easily stolen, which is certainly significant considering their
rather high price. A less elegant but cheaper system is offered by Softpro
(www.softpro.de), for example, where a simple graphics tablet serves as
the writing base.

Figure 6.11: (continued )
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Nevertheless, signature recognition has considerable problems. First, the
reject rate (FRR) is high if the system is to be moderately secure. You
will have noticed that your handwriting changes, for example, after phys-
ical efforts or under stress. Another problem is that though you obtain a
huge amount of data from a Smartpen, you have to know how to evaluate
them: there is an obvious lack of theory. On the other hand, due to data pri-
vacy in some countries, including Germany, it is not possible to use arbitrary
words instead of signatures since graphologists can learn pretty much about
a personality from the handwriting.

• Hand geometry: This is a relatively old method. The geometry of hands
differs individually. There are forging possibilities similar to fingerprints (but
the hand geometry is easier to ‘steal’), and I can imagine that swollen hands
cause problems. Nevertheless, the method is the second most frequently used
system after fingerprint recognition, particularly for admission control, e.g., in
nuclear power stations, or in the students’ dining hall at Georgia University,
to reduce counterfeiting.

• Vein patterns: Similarly to retinal scan systems, these systems acquire the
extremely individual arrangement of veins in a hand. The method appears to
be robust and pretty secure against forgery, but it is not widely used yet.

• Combined methods: At the CeBIT 1998 trade fair, a system by the name of
BioID (www.bioid.com) was introduced, which acquires facial traits, voice,
and lip dynamics concurrently. It was remarkably insensitive to eyeglasses,
beards, heavy tongues, and new face wrinkles. While achieving a good FAR
with this system, however, you have to put up with a very high FRR. The
system has meanwhile disappeared.

• Methods of the future: In addition to ongoing research in voice recognition,
which is currently still unreliable (at least for civilian uses), intensive research
work has been put into acquiring other individual characteristics. A particu-
larly original system was introduced in the New Scientist dated December 12,
1999: every human has a different gait. This research work was motivated by
the desire to identify masked bank robbers on video clips. Also, shoplifters
pretending to be pregnant while smuggling stolen merchandise out of stores
could be identified by their gait (genuinely pregnant women walk differently).
These are promising prospects. However, I could also imagine that there is
a potential for surveillance of people from considerable distances, and I’m
afraid this won’t remain utopia. More about this in Chapter 8.

Figure 6.11: (continued )
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Another individual human characteristic is the dynamics of keystrokes. The
major advantage of this method is that it can continually check whether or
not the ‘right’ person is still working at a computer. The major downside is
that the error rates are high. A practical use for this method comes from an
entirely different angle: one can derive typed passwords from the keystroke
echo—it works in practice. I don’t know whether it would work for mouse
movements, though, considering our keyboard-hostile world.

Figure 6.11: (continued )

Unfortunately, biometric authentication systems have a few problems. Schneier
lists three critical points in his online magazine Cryptogram.

1. Biometrics are unique identifiers, but they are not secrets. You leave
your fingerprints on everything you touch, and your iris patterns can be
observed anywhere you look.

2. Biometrics also don’t handle failure well. Imagine that Alice is using her
thumbprint as a biometric, and someone steals the digital file. Now what?
This isn’t a digital certificate, where some trusted third party can issue
her another one. This is her thumb. She has only two. Once someone
steals your biometric, it remains stolen for life; there’s no getting back
to a secure situation.

3. And biometrics are necessarily common across different functions. Just
as you should never use the same password on two different systems, the
same encryption key should not be used for two different applications.
If my fingerprint is used to start my car, unlock my medical records,
and read my electronic mail, then it’s not hard to imagine some very
insecure situations arising.

These points are not arguments against biometrics in my opinion. There’s a
solution to every problem.

• First, at least the manufacturers I spoke with know very well that bio-
metrics is not based on secrets. The security concept has to consider this
fact. To use a specific example: suppose the BioID system (the one that
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concurrently recognizes face, voice, and lip dynamics) serves for admis-
sion control. In this case, it is hardly possible to feed the computer with
stolen data, for you will never get to it.

• Biometrics can be combined with other controls, e.g., with owning a
smartcard and knowing a PIN. In such a system, biometrics would
strongly reduce the probability that somebody can sneak in with a
stolen smartcard or PIN. In this landscape, biometrics makes classic
authentication more secure. If it is used for authentication, it must not
be the only measure. A computer that let’s you log in via fingerprint
only uses the wrong concept. There should always be another (more
cumbersome) authentication control.

• This knocked off the second point. The thing is, if Alice’s digital
thumbprint file was stolen (which hopefully doesn’t happen too often),
the fingerprint recognition system could have been combined with a PIN
and/or another method. The proper concept guarantees, here too, that
critical cases can be handled.

In contrast, there are two critical parameters in every biometric system: the false
accept rate (FAR) and the false reject rate (FRR). The FAR is the percentage
of unauthorized people passing the control, while the FRR is the percentage of
authorized people who were erroneously rejected by the device.

In the ideal case, both FAR and FRR would both be zero. Unfortunately, the
real world is not ideal; only 1 % for either value are considered excellent. This
number doesn’t appear high, but imagine an organization with 1000 employees,
where ten employees stand protesting behind the factory gate yelling for the
security inspector day in day out, while industrial spies hired by the competitor
are admitted.

Biometric systems (or better, their recognition software) can be tuned. Depend-
ing on the purpose, you select either a lower FAR or a lower FRR; keeping
both values very small doesn’t normally work. In high-security tracts, one has
to put up with wrongly rejected employees more often than not (low FAR,
higher FRR), while at the main entry there should only be a pre-selection with
low FRR (and higher FAR). The overall concept will decide here, too.

I think the most promising is the concept of variable biometrics. By my
definition, these are biometric characteristics that users can change themselves.
The two outstanding examples in Figure 6.11 are the BioID system, where the
user can say a spoken word (or an entire sentence) himself, and the analysis of
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handwriting dynamics. (Unfortunately, two points work against practice: first,
BioID does not exist anymore; the reject ratio was too high. And in the second
case, the system checks only for signatures due to data privacy and acceptance
reasons.) Variability would actually be important: imagine that Bob gets hired
by the competitor and logs himself in with the same word he used at the BioID
system. His old company would be very tempted to gain access using his known
BioID record. But certainly the old company is unable to calculate a record for
newly spoken words from the old one.

Also, when using Smartpen, a user can choose what he writes on paper.
Mnemonically advantageous would be something related to the purpose of
authenticating: for example, the name of your bank, followed by the last three
digits of your account number.

I see the future of biometrics in variable characteristics, or at least combined
methods, and not in either fingerprint, gait, or facial geometry alone. Such data
should not be used exclusively, and the concept should consider that a fingertip
can be cut, or a face can change due to many things, such as a swollen eye.

Biometrics can doubtlessly make our lives somewhat simpler and more secure
at the same time, provided it is applied properly.

If you are interested in learning more about this topic, I recommend the fasci-
nating book [WoodBiom].

6.7 Trojan Cryptography

In this section, you will be presented with a new trend in cryptographic devel-
opment that might represent a great risk for users of encryption systems, but
which has earned little notice in practice, as things typically are with cryp-
tology. I felt this personally: ‘positive’ articles in magazines like [Wobsymm]
received a vivid echo, while nobody responded to [Wobtroja].

What is Trojan cryptography about? First of all, you won’t find this term in the
literature. It is a name I use for cryptographic software or hardware that has
a backdoor built in knowingly and without the users being aware of it. (More
specifically, Trojan cryptography denotes the algorithms and/or protocols such
software or hardware uses.) The analogy with the Trojan horses used by hackers
is obvious: Trojan horses are apparently harmless programs but undermine the
user’s security with fraudulent intention. The same purpose is pursued with
Trojan cryptography. Presumably the first scientific study of such methods is
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relatively recent. The authors are Adam Young and Moti Yung who presented
their results at the CRYPTO ‘96 and EUROCRYPT ‘97 conferences.

Strictly speaking, weak cryptography also belongs to this field. For example, I
encrypted a Microsoft Word document with the primitive password ‘AAA’ and
studied it under UNIX. I was shocked to find that the text was still easy to rec-
ognize (in hexdump, for example). The ‘encryption’ changed only a few bytes
in the preliminaries, which leads the mouse-bound user to believe that the text
wouldn’t be readable without a password. I may have caught an ‘unfavorable’
case, for according to [SchwartzOLE], a particularly easy to crack variant of
the Vigenère cipher was used; there are plenty of crack programs out there. Is
this irresponsible marketing or fraud? The miserable encryption in WordPerfect
does little better: it seems to be solely based on lack of knowledge.

Dubious Features in SESAME

A good example of doubtful cryptography is SESAME, an extended European
variant of Kerberos. As we know, the Kerberos protocol protects a local com-
puter network by encrypting the entire data traffic. The entire security relies on
one or two particularly protected computers. The European SESAME project
(the source text is on the Web site) came about within the RACE Initiative and
is intended to represent a more flexible further development of that initiative.

However, a posting by Michael Roe in the sci.crypt newsgroup dated August
1, 1996, shows that SESAME is a truly ‘open’ system: whoever knows the
internals can eavesdrop almost effortlessly. The cipher used is a 64-bit Vigenère
method, which can be cracked in a fraction of a second, rather than the still
relatively secure DES. To make matters worse, the method is used in CBC
mode so that only every other block is encrypted. This naı̈ve cipher hides
behind misleading names like xor des loop, des encrypt func, and so on. The
reason might be that they’d initially planned to use DES but changed the
code again when the French protested. Schneier [SchnCr, 24.7] describes more
weaknesses in this project.

Somebody who simply wanted to replace this XOR cipher by DES would
nurture false security: line 339 of the code in src/lib/csf/csf encr.c tests whether
or not the method used is self-inverse, i.e., whether it supplies plaintext upon
repeated use. XOR has this property, DES doesn’t (like many other methods).
If the test fails, the program does no encryption at all. The user, thinking he
is particularly secure, is cheated in a particularly mean way. After all, who
checks whether or not the data traffic in a LAN is encrypted?
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Though the test can be bypassed, utmost mistrust is recommended. Why was
such a test embedded in the first place without giving any warning? How many
more backdoors might there be in SESAME?

This discovery is shocking in view of the project’s significance. I wouldn’t
be surprised to hear one day that the designers caused the software’s strange
behavior for lack of qualification.

Sending Passwords, and a Shocking Story

The examples given above are not exhaustive and basically nothing new for
cryptologists, and such a product is called snake oil. A ‘more innovative’ soft-
ware or hardware product would mix the password into the ciphertext in some
way or other. There are no limits to imagination. The bits can be hidden in the
header, or you somewhat ‘extend’ the ciphertext. Or you compress the cipher-
text to make plenty of room for sending the password along. In addition, the
vendor could encrypt the password together with a known sequential number
(using a fixed key) and mix the ciphertext created into the output. This makes
it extremely difficult for others to detect the fraud. Large-scale surveillance of
encrypted data communication would be easy in any event.

This fraud—you can’t use a more harmless name—would probably not be
detected. Ask around how many users know about the ciphering in Microsoft
Word mentioned above. And yet, its ‘quality’ is easy to check. How much
harder would it be in the current example where fraud can hardly be proven
by analyzing the ciphertext alone!

However, the method has a disadvantage for the vendor: if a hacker eventually
succeeds in discovering this hide-and-seek game, fraud can no longer be denied.
Woe betide the vendor who is not the market leader!

There is a practical example for such an approach. During the preparation of
the second edition, I came across the text you will find in txt/policy/madsen.txt
on our Web site. The author thinks this might be the biggest secret-service
scandal of the past century—but as often happens nowadays, most material
about it is found on the Internet.

In March 1992, the Iranian military counterespionage arrested Hans Bühler,
an honorable salesman of the Swiss firm Crypto AG, a leading supplier of
ciphering devices, accused of spying for Germany and the USA. Bühler was
interrogated for five hours daily for nine months, but he knew nothing about
backdoors allegedly built into the devices. Eventually, Crypto AG paid one
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million dollars to bail him out. To everybody’s surprise, he was fired after
he got back home and was requested to pay back the ransom. Obviously,
former and current employees got cold feet and told reporters that the allegation
against the firm might not have been totally unjustified after all. They hinted
that members of the NSA and the BND had designed and obviously ‘reworked’
these machines 15 years earlier. Investigations in Switzerland yielded no results.
When the Swiss media brought the matter up despite Crypto AG suing against
it, the parties agreed on an out-of-court settlement just a couple of days before
witnesses were to be heard.

Crypto’s reputation was largely damaged, of course. When rumors had it that
Crypto AG was an affiliate of Siemens AG, and that the ransom for Bühler
was said to have come from Siemens, Siemens were also pulled into the affair.
The impact was devastating. These ciphering machines had been used in the
diplomatic community in about 120 countries. Had the NSA eavesdropped on
everything? Restlessness spread everywhere, from Saddam Hussein to the Pope.
A spokesman of the Vatican even called the brains behind the affair ‘bandits’.
Libya switched to products of the Swiss firm Greta Data Systems AG. They
were believed to also have been approached by the NSA . . .

Anyway, this is how the NSA obtained (presumably via Israel) background
information on the aircraft bombing over Lockerbie, Scotland, as well as papal
secret messages, and Irish diplomatic messages during the British–Irish nego-
tiations in 1985 (in this case via the British GCHQ). But read the story; it is
as thrilling as only the real world can be.

I’m not telling you fairytales—an acquaintance of mine spoke with a former
employee of Crypto AG about the matter and heard more or less the same story
as reported. I know from that same source that keys had actually been hidden
in headers.

The consequences and implications caused by an encrypted key secretly infil-
trated can hardly be illustrated more dramatically! By the way, I find it rather
worrying that this Trojan cryptography was revealed by employees of Crypto
AG themselves only after a very long time, and not by analyzing the machines
sold. How hard must it be then to reveal the methods described in the following?

A Refinement By Means of Asymmetric Encryption

The method described here has another drawback theoretically, namely for
the intelligence agency that had this cute feature built in by the manufac-
turer. If the manufacturer encrypts the user password, then the key has to be
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contained in the software/hardware, which means that it is basically accessible.
The hacker mentioned above could sit in another country and work for that
country’s national intelligence agency. He would be listening in on everything
and nobody would know!

The manufacturer would appropriately use an asymmetric method to hide his
malicious intentions, and encrypt the user password with his own public key.
That would add yet another eavesdropping party—the manufacturer himself. If
hybrid methods were used, one could additionally send along the user’s private
key rather than the session key every time, for example, piece by piece together
with the position in the key.

This is an extraordinarily enticing method! It mightn’t be used yet; the more
important it is to know it now. It is similar to steganography, discussed in
Section 1.3, in some respect; it is steganography versus cryptography, so to
speak. But the implementation is simpler in the case discussed here: while
the steganographer has to mix in complete ciphertexts, we could do it with a
128-bit key, for example.

There are countermeasures, as the term ‘steganography’ suggests: you have to
take capacity in the data stream away from the manufacturer, preventing him
from stealthily sending a key along. What it takes are cleanly defined network
protocols, fully described headers, disclosed algorithms, access to the user’s
session key (unless it is predefined), and finally a defined padding in block
algorithms (see Section 5.1.2).

Of course, as a practitioner you know that things will never get to this point;
such requirements remain pious hopes. The best countermeasure I can think of
might be an external crypto-interface that would allow the user to procure the
entire ciphering and key management from a different manufacturer, or perhaps
program it himself. But even this proposal might hit resistance. The concept
is possible for software (though not in all cases). For hardware in general and
chip cards in particular, however, this separation might not be possible. The
Crypto AG story above shows how sad the real world can be.

The Perfect Fraud: Cleptography

Not meaning to be entirely serious, Young and Yung [Young] used this name for
a further perfection of the method described here. Nothing is hidden by stegano-
graphic methods any more; cryptography versus cryptography is used instead.

Cleptographic software or hardware uses asymmetric methods. By cleverly
choosing free parameters—during random generation, for example, in
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RSA—the manufacturer can hide parts of the private user key in his public key
such that it cannot be proven by analyzing the public key. From the outside,
the software or hardware cannot be distinguished from a correctly working one.
The authors call them a bit clumsily SETUP (Secretly Embedded Trapdoor
with Universal Protection) systems.

Young and Yung define three types of SETUP systems: weak, regular, and
strong. I briefly mentioned an example of a weak SETUP system in the last
example above: though the system apparently works all right, the fraud can be
detected by analyzing the outputs, but it cannot be used by third parties (since
they don’t know the manufacturer’s private key). Conversely, regular SETUP
systems don’t manifest whether or not a fraud is built in, even after thorough
ciphertext analysis.

It might be desirable to have a SETUP system make use of its secret capabilities
only sometimes, for example, to make it harder to prove the fraud. We speak
of a strong SETUP system when ‘honest’ and ‘dishonest’ outputs cannot be
distinguished either in the future or in the past.

The authors implemented SETUP systems for a large number of algorithms and
protocols (RSA, ElGamal, DSA, Kerberos) and demonstrated their practical
use: computation times were only slightly longer, the costs remained within a
reasonable range.

The fact that the specific implementation is rather complicated doesn’t matter,
for once it is programmed, the attack works automatically, enabling extensive
automated eavesdropping activities.

Potential Impact

SETUP systems enable particularly clever data espionage. I hope they are not
in use yet: the more reason to think about the potential impact such systems as
well as the countermeasures may have.

First of all, a hairsplitting thought about the impact: the signature law of 1997
discussed in Section 8.2.5 said that the private keys created for users must not
be stored in a trust center. An embedded SETUP trap would bypass this law by
nature (which is not in the law’s sense, of course). The thing is that, especially
with RSA key generation, the two secret prime numbers required, p and q, can
be chosen such that they allow the manufacturer to easily compute them from
the public key created (more specifically, from the pq product). Naturally, trust
centers have to meet particularly strict requirements. But the centers and the
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software they use can be audited for cleptographic attacks only provided one
knows of the existence of such attacks in the first place.

Furthermore, nobody can discount the fact that there is a potential for unnoticed
modification of trust-center software. The sheer mention of such an attack might
fill some people in charge with outrage. However, they had better consider
that the stealthy conversion of public-authority software in SETUP software
is extremely attractive, for example, for national intelligence organizations of
all flavors. Such a ‘transformation’ would doubtlessly be executed with utmost
criminal energy, for the reward is unusually high against relatively little cost
and minimal risk.

We should pay attention to the fact that keys created by trust centers are used
for signing and never ever for ciphering!

I can think of yet another use for SETUP systems: they could serve for elegant
key escrow (more about it in Section 8.2.3). In this case, the government, or the
firm itself, would be the official owner of the ‘universal key for all universal
keys’. While this might be of theoretical interest, the formulation alone points
to the risk: all, but really all, security depends on one single universal key. Once
this key is compromised (i.e., known to unauthorized parties), changing it will
be of little use. All messages of all users intercepted by eavesdroppers up to
this point can be decrypted, and nobody can prevent it. This is one of the very
big risks in cryptography; it is where it differs from the other system-security
terrain.

Some Ideas About Countermeasures

How can SETUP systems be prevented or, at least, how can their use be made
more difficult? Considering that the research work of Young and Yung stands
more or less alone in the world, there are only a few ideas about possible
countermeasures.

• An idea more inclined to the safe side uses freely available and popular
cryptographic software. I can think of PGP 2.6, which will be discussed
in detail in Section 7.1, or SSH, or mainly OpenSSL. For the sake of
security, if you opt for this approach, you’d better check the checksum
shipped with the product (it’s the only thing that proves that you got the
‘real software’, unless it’s an MD5 sum . . .).

For example, the PGP source code was studied by so many programmers
on the Internet that Trojan cryptography would have been discovered
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long ago. However, it is not always possible to use free software, so that
it’s no remedy for all cases.

• Where asymmetric methods can’t help, one might try to use symmetric
methods and distribute the key as described in Section 6.2.1.

• Cryptographic software should be able to combine modules of
several—ideally competing—vendors. In particular, random generation
should be detached from the program or hardware, because SETUP
systems always use ‘disturbed randomness’. However, the user should
be able to see how randomness is processed. All this is possible only if
all internal interfaces are completely disclosed. The more a manufacturer
remains silent about his product’s innards, the more mistrustful we should
be about it. I know perfectly well that this requirement is rather utopian.

• The risk of Trojan cryptography is higher in cryptographic hardware by
definition. You would best create private and public keys outside the
device using publicly checked software (PGP might serve the purpose)
and test for correct processing of the keys in the device based on its
outputs. This might be sufficient when using the RSA method. Suitable
industry standards can be helpful during the test.

• And finally, an interesting and doable countermeasure is the cascading
of several devices from different manufacturers, similar to the software
modularity mentioned above. Drawbacks are higher costs and perhaps
lower performance.

Like I said earlier, these are just ideas about countermeasures. I hope that more
solutions will be published in the years to come, and I mainly hope that this
potentially very serious threat will be perceived on a broad level.





Chapter 7

Practical Applications

So far in this book, we have learned a number of algorithms and discussed
problems in their implementation. In the previous chapter, we looked at cryp-
tographic protocols as a theoretical basis of their application, so to speak. In
this chapter, we will go a step forward, discussing the actual use, in this case,
of cryptographic programs. As before, we are interested mainly in understand-
ing the background rather than trying to achieve completeness. This is why we
will be dealing with only a few free programs in this chapter. The source texts
of all of these programs can be found on the Internet and on our web site.

Also, you shouldn’t expect operating instructions for these programs in the
following. There is plenty of documentation out there, and piles of books, espe-
cially on PGP (I recommend [GarPGP]). What these books and documents don’t
discuss extensively, though, are cryptological implementation details. This is
what you will find in this chapter. For this reason, it doesn’t really matter
that some of the programs, or the protocols used, discussed in this chapter are
outdated. The important thing is to understand the principles.

7.1 PGP—A King Among Cryptographic Programs

You’ve probably heard of the free program PGP (Pretty Good Privacy). I don’t
know of any other software that has stirred up so much dust, and that has
apparently been a thorn in the flesh of so many national intelligence agencies.

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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Why? It took the crypto-monopoly they believed to have owned away from
them. I will first discuss the ‘classic’ PGP 2.6 in the following sections, and
start dealing with OpenPGP, the currently popular standard, in Section 7.1.4.

7.1.1 Phil Zimmermann, the NSA, and US Laws

The motivation for PGP was the insight that though email is very convenient,
it is also very insecure. Most users cannot imagine that the security of email
messages corresponds to that of postcards at most. I’d even claim it’s less.
Anyone, like nosy mail sorters or postmen, who can touch the postcard can
read what’s on the back, which is not too scary since they all are honest people,
or mostly. In contrast, nobody can say what paths email messages may take on
the Internet. Your mail may be transported across countries with lots of bribable
system administrators—perhaps paid by their secret service—who knows?

I think you know the problem, so I don’t have to make an effort to convince
you. You also know that there is only one way to secure information in insecure
networks: by encrypting it.

That’s exactly what Phil Zimmermann, a computer engineer from Boulder,
Colorado, thought, too. Not all business people are conservative. Phil Zimmer-
mann had even done time for activities against the nuclear race in the early
1980s. These sorts of practical experiences may have aroused a certain dislike
of overly mighty governments. At the same time, he very well saw the large
number of surveillance possibilities that the quickly evolving Internet brought
along. As an enthusiast cryptologist, he felt a need to counter ‘Big Brother’.

Zimmermann thought of a cryptographically secure program that should allow
everybody to send encrypted emails. The name PGP for ‘Pretty Good Pri-
vacy’ was probably intentional—it was a matter of protecting people’s privacy
against the government.

PGP Was Born

Zimmermann put enormous effort into the development of PGP for about ten
years and almost ruined himself financially. In addition to his intensive dealing
with cryptology and the development of PGP, he was confronted with the law
rather unexpectedly. And what’s more, at a time when he thought he was ready
to make some money from PGP.

First of all, there were patent-law problems. He didn’t get a free license for
the RSA method. This meant that he couldn’t sell PGP, and he couldn’t
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distribute it as shareware either (money can be made with shareware in the
USA). Furthermore, a law passed in 1991 bound all vendors of communication
devices and services to supply the plaintext of data streams flowing though
their devices and networks to governmental agencies upon request. That went
far beyond the then current export regulations. It also limited potentially good
cryptography dramatically within the USA.

Zimmermann panicked. He had just replaced DES as the symmetric method
used (and which he didn’t trust any more) by his own algorithm, called Bass-
O-Matic. Though this algorithm hadn’t been studied thoroughly yet, he quickly
put together PGP Release 1.0 and gave it to a friend. This friend publicized
it in the Usenet, which meant the Internet. No matter what else was bound to
happen, PGP was no longer to be stopped. In 1992, Release 2.0 was published.
It was developed with contributions from all over the world, and implemented
the secure IDEA algorithm instead of Bass-O-Matic.

Now Zimmermann had not only patent-law problems on his back, but he was
accused of having violated the strict export regulations, which means that, in
addition to RSADSI, he now also had the FBI, the NSA, and other agencies
turned against him. However, it is unknown who actually put PGP on the
Internet.

Patent Problems

The patent issue had eventually been clarified. From 1993 onwards, Zimmer-
mann had cooperated with ViaCrypt , a company that owned a legal RSA
license. This is why the commercial PGP version was sold by ViaCrypt in
the USA. On the other hand, he got unexpected assistance from the MIT,
where RSA was originally developed. The MIT had created a software library
called RSAREF, which could be used freely for non-commercial purposes.
This is how PGP Version 2.5 came about in 1994. It was the first legally sold
version. Though it still allegedly violated the PKP patents (see Section 4.5.3),
the conflict ended in a tradeoff: Zimmermann implemented a cosmetic change
that made the new Release 2.6 incompatible with all former illegal versions.
The patent custodians could then prosecute only users of PGP Release 2.5 and
lower, while the whole world used PGP 2.6.

The Security of the USA at Stake!

As it happened, the violation of export regulations turned out to be much
more serious, for it served to ‘preserve the national security’. US Customs
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started a criminal investigation on Zimmermann for allegedly violating the
Arms Export Control Act. People all over the world started donating for Phil
to finance his law suit. The publicity of the case led to enormous pressure on
the government. If it weren’t for PGP, the discussion around the Clipper chip
(see Section 6.4) would probably have taken a different turn. Phil Zimmermann
became a celebrity.

The investigation lasted three years, but the government dropped its case with-
out indictment on January 11, 1996. However, the laws that had caused all this
stir had still not been entirely done away with.

PGP had changed the world. For the first time, everybody had a tool to pro-
tect their information effectively against third-party access. Phil Zimmermann
received loads of messages from enthusiastic users all over the world, includ-
ing countries like Latvia and even underground movements. Governmental
reactions, not only in the USA, hint that PGP seemed to also have stopped
intelligence activities. At least this would explain why the MIT was not sued
for violation of the export regulations, in contrast to Phil Zimmermann, although
they had the cryptologically high-quality RSAREF software on an ftp server
available for the whole world to download. However, this comparison made by
Garfinkel in [GarPGP] is a bit lame, because RSAREF did not directly serve
for the encryption of messages. By the letter of the law, however, exporting
RSAREF from the USA was also illegal.

Certainly, many influential people had been stirred, because the worldwide
proliferation of PGP could no longer be stopped, no matter what law.

We have anticipated a little of the topics we will discuss in Chapter 8. But it
is impossible to talk about PGP without mentioning its political impact. If you
are interested in more details about this adventurous story, I recommend you
to read [GarPGP].

7.1.2 What PGP Can Do

It can be frequently read or heard that PGP uses asymmetric methods to send
encrypted mails (meaning that the symmetric methods were ‘out’), and that
everybody can use it for free.

That’s simply nonsense! Firstly, PGP is not a mail program. It processes files
that a mailer can send, or has received. Secondly, PGP is certainly not ‘RSA-
encrypted’; it uses hybrid methods: it encrypts a session key using RSA, and
the mail file itself using IDEA.
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And thirdly, which is often overlooked, PGP is released only for private use
due to the IDEA patent. We discussed this extensively in Section 5.3.1.

Even if all of this is not breaking news to you, help rebut such misleading
allegations, because they can be damaging (partly also for OpenPGP). So, what
does PGP really do? It offers all functions required for you to cryptologically
secure your email traffic.

• PGP creates pairs of private and public keys for the RSA method.

• PGP creates random session keys, uses them to encrypt files by the IDEA
method, and adds the session key encrypted with the receiver’s public
key.

• Upon request, the program also creates ASCII text to prevent the mailer
from having problems, and converts the text formats of different oper-
ating systems (UNIX, Mac, DOS/Windows) into a uniform intermediate
format, and vice versa.

• PGP makes incoming encrypted mail readable again: it removes the ses-
sion key, decrypts it using your private key, and opens the file you
received.

• You can use PGP to digitally sign a file and check signatures. PGP offers
all functions required for key management:

– It keeps the public and private keys separate, where the private keys
can be kept in encrypted form, of course.

– You can use PGP to sign third-party public keys, add them to existing
keys, or delete or revoke keys.

– You can use PGP to check the trustworthiness of a public key.

• And finally, PGP can encrypt and decrypt regular files.

That’s a whole lot of functions. Nevertheless, PGP has ‘only’ 30 000 lines of
code. The complexity of a program does not always have to show in its length.

The Web of Trust

The interesting and typical part of PGP is how public keys are managed. If no
super algorithm is found for factoring large numbers (or quantum computers
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become reality one day; see Section 5.9), preventing man-in-the-middle attacks
is probably the only security problem in the RSA method (see Section 4.5.3). It
is a matter of proving that Bob’s public key is really Bob’s and not Mallory’s.

Using a hierarchy of certified key servers like in PEM/SMIME (see Section
7.2), where every user can fetch public keys, would have contradicted Zimmer-
mann’s philosophy. His intention was to protect PGP from excessive govern-
mental access. So the entire security of the system was not to be concentrated
in a few points that could be audited by the authorities only.

Instead, Zimmermann invented the Web of Trust: every PGP user checks the
keys of other trustworthy users. The principle is relatively simple:

Alice creates a public key and has it digitally signed by friends and acquain-
tances. Together with these ‘credentials’, she passes it on. Now, when she adds
Bob’s public key to her collection, her PGP will ask the following question: do
you accept a certification of third-party public keys by Bob’s signature? Alice
can answer in either of the following ways:

1. Yes, always.

2. Sometimes.

3. No.

4. I don’t know.

If Alice receives a third-party public key that was signed by one level-1 signa-
ture or two level-2 signatures, PGP will add it automatically as a trustworthy
key. Of course, she could also use non-certified keys, but PGP would warn her.
She could also change the levels of participants in either direction.

Alice can also check a public key directly. To this end, she creates a fingerprint
of the public key received in PGP. This is the MD5 hash sum of the key, written
as a readable sequence of 16 hexadecimal numbers, for example:

24 38 1A 58 46 AD CC 2D AB C9 E0 F1 C7 3C 67 EC

(This example represents the electronic fingerprint of Phil Zimmermann.) Alice
calls the key’s owner, Carol, and has her read the fingerprint she computed. If
things match, there is no doubt—assuming that MD5 is secure: unfortunately,
we saw in Section 6.3.1 that one can actually construct public-key pairs with
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identical MD5 hash sums (though these are not yet keys from prime-factor
products with an equal number of digits; the construction may only be a matter
of time, provided one would still be interested in it). This problem was done
away with in OpenPGP: from Version 4 (1998) onwards, it computes SHA-1
fingerprints.

It’s always a good idea to accommodate the fingerprint on calling cards or publish
it in another print form, because it virtually excludes man-in-the-middle attacks.

Eventually, this is how a web of trustworthy partners is built. Sooner or later,
all PGP users will be interconnected by at least one ‘path of trust’. A test
showed that the longest of these paths was only 14 steps long, considering that
there are hundreds of thousands of users!

The theoretical strength of this concept reflects Zimmermann’s intentions: it is
virtually impossible for ‘Big Brother’ to destroy this web, as it is impossible
to totally control the Internet, because the links are established and torn down
locally and dynamically.

At the same time, this structure causes a major vulnerability: keys cannot
be securely revoked. If a private key is stolen, then the web’s landscape
is disturbed, and even uninvolved users can be compromised. However, the
vulnerability cannot be exploited to attack the entire Web of Trust itself.

Bob

Hendrik

Marek

Theo
Helmut

Susi
James

Alice

Kurt
Egon

Figure 7.1: The ‘Web of Trust’ of PGP. Thick arrows show full trust, whereas
thin arrows denote restricted trust.
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Meanwhile there is a large number of key servers, i.e., computers that mutually
certify themselves. They are used to deposit people’s public keys in a more or
less tamperproof way (for example, www.de.pgp.net/pgp, www.keyserver.
net). The only drawback of this large number of servers is a potential for
denial-of-service attacks. But you can deposit your key, against a fee, on a
‘public’ server less exposed to these risks.

That much about the theory. You will read in Section 7.2.3 what things with
the Web of Trust look like in the real world.

Portability

One of the important and nice traits of PGP is its portability between vari-
ous operating systems. It runs on all UNIX variants as well as DOS, OS/2,
Windows, and on Macintosh, Amiga, Archimedes, and Atari computers, and
even on VMS. Encrypted messages can be exchanged among all these systems.
Ascom Systec AG, the owner of the IDEA license, even offered a commercial
mail system (Ascom Mail), which understands and creates the PGP format. I
find this approach remarkable: rather than bulkhead themselves from the free
software domain with commercial products, they coexist. This will certainly
not reduce the sale of Ascom Mail, because commercial systems also have
benefits.

In any event, this covers the domain of privately used computers. This portabil-
ity is important, because email generally connects all kinds of different systems,
which is often forgotten. Only when PGP can be used by most users all over
the world will it stand a chance to become a standard. The price to be paid for
this is that PGP cannot be operated with the favorite mouse—it is command-
line controlled. Though this is simpler and faster in many cases, it’s mega-out.
Users who don’t want to work without graphics will find a sufficiently large
number of graphical user interfaces and mailers that can be installed on top of
PGP. More about this topic in Section 7.2.3.

Let’s not dwell on the operation and functionality of PGP. You can read all
about it in the literature or the product documentation as well as on the Web site.

7.1.3 How PGP Works

We will be looking at cryptologically interesting details of the PGP implemen-
tation in the following, and dealing with this product much more than with
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any other program. In view of its wide proliferation, quality, and functionality,
PGP deserves this in every respect. I’m not looking for completeness, and it
wouldn’t be possible even if I wanted it. All information discussed here refers
to PGP 2.6.3.

Algorithms

PGP uses three cryptographic algorithms:

• IDEA for symmetric encryption of messages and files.

• MD5 for the creation of digital signatures and initialization vectors, for
computation of passwords from passphrases and fingerprints from public
keys, and for internal random generation.

• RSA for the encryption of session keys, and for the creation and verifi-
cation of digital signatures.

Passphrases

PGP uses passphrases with a maximum length of 253 characters rather than short
passwords. You will recall that we talked about passphrases in Section 5.1.4.
They are much more secure than passwords, and easier to remember. PGP takes
a passphrase and uses the MD5 one-way hash function to create a 128-bit value
that is then used as an IDEA key.

Normally, the passphrase is not displayed as you type it. But you can set the
keyboard echo in the configuration file to enable it if you want to see what
you type. Of course, this is a security risk. The scrolling window I suggested
in Section 5.1.4 might be a suitable solution.

Moreover, you can accommodate your passphrase in the PGPPASS environment
variable. That’s very risky. Under UNIX, for example, it can be read by the ps
command with suitable options (normally −f ). However, ps shows only the
beginning of the command line; more information can be recovered only by
the superuser. If you are the only user of your computer, you can write pretty
comfortable scripts using PGPPASS.

Phil Zimmermann implemented this option at the request of many users. He
warns against using PGPPASS with a script, though. You should assign a value
to the variable only via keyboard entry.
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General Security

The entire security of PGP relies on one single passphrase. It is used to encrypt
the private key, and this key, in turn, serves to verify all signatures and com-
pute session keys of incoming encrypted messages. Finally, the signatures are
eventually used to secure the integrity of files using public keys.

Since the use of PGP on multiuser systems is a somewhat insecure matter in
any event (UNIX at least allows the superuser to theoretically always read the
data from a running process), all sensitive data are overwritten by the burn()
function immediately upon their use.

In the product documentation, Zimmermann points to the fact that all systems
with virtual memories (basically all real multitasking systems and Windows)
can swap sensitive unencrypted data to the disk. Once the program is exited
or aborted, the private key might be found in the swap area in unencrypted
form. This problem can be solved by a better security concept of the operating
system, or by disabling or encrypting the swap. There is a number of security
concepts available in UNIX, where the superuser is not almighty (SELinux is
probably the best-known example). This is the only reliable way, because a
malicious or sly administrator can run a daemon that automatically analyzes
the PGP sessions of users. If you count on all superusers being malicious,
then what you can do is to find out whether or not they are logged in during
your PGP session (mind you, that’s not easy, and it’s not part of the topics of
this book). A 100 % security can never be achieved, if only by the fact that
analyzing the swap area can hardly be prevented. But a 95 % security is better
than a 30 % security.

Generating Randomness

PGP puts a lot of effort into secure random generation when looking for large
prime numbers. It uses a pretty reliable method: the user has to continue doing
wild keystrokes until the program tells him it’s enough. It then uses the time
intervals between the keystrokes, together with the computer-internal time and
the codes of the keys pressed to generate randomness. This is done by XOR-
ing the byte sequence with parts of a ‘random buffer’, and then ‘encrypting’
this part with MD5 in CFB mode. PGP already uses random numbers for this
last operation. A closer look at the functions randPoolAddBytes() and rand-
PoolStir() in randpool.c, and at the comment at the beginning of random.c
shows how much effort and care have been put into the program (these parts
were presumably implemented by Colin Plumb). That much care is required;
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Version 2.6 had an error in the XOR operation mentioned above, which weak-
ened the randomness.

The wild keystrokes mentioned above are needed only once. In all subsequent
uses, PGP securely falls back on the ‘old randomness’—more about this in the
section about the session keys.

Generating Prime Numbers

PGP initially uses these random bits to generate large prime numbers by sta-
tistical tests, as usual. The random bits determine the position where searching
for prime numbers should begin. However, rather than using the very effec-
tive Rabin–Miller method (see Section 4.5.3), it uses simple tests for Fermat’s
little theorem, i.e., it checks whether or not the tentative prime number, p,
in equation ap−1 = 1 mod p holds for a sufficiently large set of numbers, a

(slowtest() function in genprime.c). PGP previously checks for divisibility by
all prime numbers smaller than 8192 (213) (fastsieve() function in genprime.c),
and then runs the Fermat test five times. Outputs in the form of

...................++++.........+++...........+++++

appear during these tests, where each dot denotes a failed attempt in fastsieve(),
and each + sign denotes a Fermat test passed in slowtest().

Creating RSA Key Pairs

The program takes the two prime numbers, p and q, created above to compute
module n = pq and search for an exponent, e, for the public key. This exponent
has to have at least 5 bits, i.e., it has to be at least equal to 17, but it may be
longer. This means that no attack against RSA with a small exponent can be
mounted (in addition, RSA is applied only to random numbers or hash values,
respectively).

Generating Session Keys

The session keys and the initialization vector (IV) are generated based on the
information in the random.c file and ANSI standard X9.17 (see Section 5.1.4),
however with some slight modifications. The randseed.bin file is used as ‘secret
corner’, where this data is ‘washed’ before and after each use (see comments
on ‘prewash’ and ‘postwash’ in random.c):
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The ‘random pool’ randseed.bin as well as the MD5 hash value from the first
two Kbytes of the plaintext, a time marker, and non-initialized data are used
to generate a session key. Subsequently, the pool is encrypted once more with
the key just used and the IV so that no conclusions can be drawn from the
content of randseed.bin on the keys and the IV.

The first two Kbytes of the message should actually be held in memory and
not be read from the disk. But this way, PGP cannot encrypt data streams
(i.e., work as a filter), as is customary in UNIX, for example, helping to save
resources. Though PGP works like such a filter when the −f switch is set,
in reality the entire input is written to the disk, as in MS-DOS, and then read
by PGP. Compared with a real filter, this is much slower, especially with long
files, and a serious and unnecessary security risk.

But there is another reason why PGP cannot work like a filter; more about it
in a minute.

Compression and Filter Mode

A message is compressed before it is encrypted by default for reasons of higher
security and lower phone costs. (You recall from Section 3.6.4 that compression
doesn’t necessarily introduce more security. But as long as not even a chosen-
plaintext attack against IDEA is known, we don’t have to worry.)

The compression algorithm has to be able to jump back and forth within the
input data. This is the second reason why PGP cannot be used as a real filter.
Again, this reason is not mandatory. The highly efficient, popular, and free
compression program gzip (available for many operating systems) can work as a
real filter. Sure, PGP will determine whether or not compression is worthwhile,
and leave it if it isn’t. But it wouldn’t be a problem to suppress this test if the
user so wishes.

At least for the event that a user disabled compression, PGP should work as a
real filter.

IDEA Encryption

PGP uses IDEA in CFB mode (see Section 5.1.1). This means that it can do
away with padding, and what’s more, it prevents insertion attacks (which are
actually prevented by the random IV and the random session keys anyway). As
a reminder, this mode basically re-encrypts the last ciphertext block and XORs
it with the next plaintext block. This often looks slightly different in practice.
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For example, blocks are 8 bytes long in IDEA. What you do is shove the
ciphertext bytes into an 8-byte shift register and XOR one byte each with one
plaintext byte. The shift register is newly IDEA-encrypted every eight steps.

Nobody prevents you from encrypting the shift register more often, it just takes
more computation time. This is exactly what PGP does, only the distances
between encryptions can be irregular. This is one of Zimmermann’s interesting
ideas. You can find details in the comment ahead of the ideaCfbSync() function
in the idea.c file.

The IV is put right in front of the encrypted message, as usual. In addition, the
last two bytes of the IV are ahead of the unencrypted message, which is then
encrypted together with these bytes. This allows you to easily check whether or
not the correct key is used during the decryption, as described in Section 5.1.3.
The ideaCfbSync() function mentioned above seems to be intended for better
security. But even without this trick, an attacker would have two bytes of
plaintext to go with a ciphertext at most, which won’t do him any good.

Traffic Analysis

National intelligence agencies are often not interested in the contents of mes-
sages at all, while being very interested in finding who sends a message when
and to whom. Regularly recording these data supplies insightful information
about a user. You can read how this is done at

ftp.cs.colorado.edu:/pub/cs/techreports/schwartz/Email.Study.txt.Z

(This article is also included on our Web site: we will discuss this further in
Section 8.2.1.)

An encrypted PGP mail includes no information whatsoever about the receiver
or the sender. Of course, the mailer attaches such information, but it can be
easily forged. Some anonymous remailers let you blur the traces, albeit not
secret-service-proof. In contrast, PEM mail (see Section 7.2) contains a rather
large heap of information in the clear inside the header.

7.1.4 PGP Versions—OpenPGP and GnuPG

There is no question that PGP has become a standard. Though the design
leaves a couple of wishes unfulfilled (see below), it represents a cryptologically
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clean implementation. That’s much harder than designing pushbuttons and shift
registers.

Release 2.6.3 even supports 2048-bit keys, thus implementing asymmetric
cryptography on the current state-of-the-art. No vulnerability of IDEA is still
officially known, and, well, PGP made IDEA popular in the first place.

A large number of key servers all over the world deposit public keys, and the
number of users has grown to hundreds of thousands. Many mail programs have
PGP interfaces nowadays, and there is a large offer of separate user interfaces
for PGP available anyway.

Unfortunately, PGP uses MD5 as a one-way hash function. This is why signa-
tures created in PGP 2.6 are not worth much nowadays. Here is a conceptual
weakness of the program: the cryptographic modules are permanently built in
and cannot be replaced easily. (But there is a way out of the dilemma; see
Section 7.3.)

Other PGP Versions and OpenPGP

Further development of PGP and the emergence of compatible products had
been rather confusing for many people. PGP 2.6 was progressive cryptologi-
cally, but less as a program:

• The algorithms it uses are ‘permanently burnt in’; it doesn’t give you
a choice.

• Its DOS origin cannot be denied. As mentioned above, it cannot work in
a UNIX pipeline, but instead swaps intermediate results to the disk.

• It uses the same key for encrypting and signing. This is an outdated and
risky concept.

• The key management is generally in need of improvement.

The further developments it required were introduced mainly by Colin Plumb
(cryptography) and Derek Atkins (key management) with the participation of
thousands of programmers worldwide. The new release was completely rewrit-
ten and named PGP 3.0 in the announcement, but PGP 5.0 upon completion.

As usual, PGP 5.0 was not to be exported from the USA. However, this didn’t
concern its paper format; the lawmakers had obviously waved it off as of little
interest. This is how it happened that the source text of PGP 2.6.2 was printed
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pro-forma in the appendix of a book, accidentally in an easily machine-readable
font and with page numbers within C comment characters:

/* 131 */

As I wrote this section for the first edition, I received roughly the following mes-
sage on detours: ‘. . . and if you want PGP 3.0—the only place to download it
from is currently my desk. There are 2000 sheets of bound paper in the form of
four books, which will soon be cut into single sheets and fed into a scanner . . .’

The ‘cutting’ part took longer than expected, though. What came out of it
wasn’t really convincing. There was still only one library for UNIX and no
ready-made application, despite disclosure of the source text. PGP 2.6 was no
longer supported. That cut off the secure communication of Windows users
and owners of older releases using PGP 5. Rumors had it that PGP was no
longer secure, and that it contained ‘picklock keys’. Yes and no. PGP is still
secure, and picklock keys were available only upon ‘special request’. The thing
is that, meanwhile, a company called NAI had taken over further development
of PGP, and Phil Zimmermann had become an advisor to that firm. And com-
mercial users sometimes need key escrow, for example, to monitor corporate
communications, or to get hold of sensitive data in case a user lost his key.

Based on the description of PGP 5 the OpenPGP standard emerged, which has
become the foundation for all PGP products. (However, PGP 5 itself wasn’t
fully OpenPGP-compatible then.) As a sideline, Phil Zimmermann was no
longer with NAI, but supported other firms in implementing the OpenPGP
standard.

The release numbers of PGP grew quickly, having meanwhile arrived at 9.5.
NAI disclosed the source texts of some older releases. Currently (end of 2006),
PGP Corporation develops and sells the software (www.pgp.com). It’s best you
have a look around on the Net to see where PGP is currently at home.

Since the confusion that PGP 5 created, the number of PGP-encrypted emails
has decreased heavily, at least within my personal circle; I’ve been receiving
almost all mails in the clear. Has data security in the private domain fallen out
of fashion? More about this in Section 7.2.3.

GnuPG

Amidst this awkward situation, the German programmer Werner Koch began
to create free software by the name of GnuPG (GNU Privacy Guard), which
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cleanly implements the OpenPGP standard. As happens to all designers in
every software project, the product has grown out of its spiritual father’s hands.
Meanwhile, programmers all over the world had started working on its further
development, its test, or its compilation. In fact, the project had become so sig-
nificant and popular that the German government began to financially sponsor
it. Amazing how policies can change over time! Not many years earlier, there
had been hefty discussions about banning cryptography, at least with regard to
key escrow.

GnuPG was born under Linux, but it also runs on many other UNIX derivatives
(though the installation is cumbersome in some cases), and on Windows, of
course, but with German documentation (gpg4win) only. Visit www.gpg.org
for more details.

How does GnuPG differ from PGP 2.6 (and partly from its successors)?

• GnuPG is a free software without patent claims so that it can be used by
everybody, including commercial use.

• GnuPG implements several algorithms, and the embedding of additional
methods is easy. For example, Rijndael had been included in GnuPG
immediately after it became the new AES standard.

GnuPG 2.0 was announced in November 2006 (more about it below);
but the current release is still 1.4.5. It supports the asymmetric algo-
rithms ElGamal, RSA since its patent expiry in September 2000 (i.e.,
from GnuPG Version 1.0.3 and higher), and DSA (for signing). GnuPG
knows several hash functions, including MD5, SHA-1, SHA-256, and
RIPE-MD160 as well as symmetric algorithms including AES (with 128-
bit to 256-bit key lengths), CAST5, Twofish, Blowfish, Triple-DES, and
IDEA.

• GnuPG has a strongly improved security concept. For example, it con-
tinually collects randomness and uses it when creating session keys. This
makes attacks against GnuPG much harder than against PGP 2.6. Also,
sensitive memory locations where private keys are located are kept before
swapping them to the hard disk (under UNIX for the time being). That
removed a critical security flaw in the old PGP.

• The key management was expanded and improved considerably. Different
keys are used for encryption and signature. There are keys with a finite
lifespan, and keys can be revoked. A ‘universal key’ can be kept locally
on a notebook, and ‘work keys’ with a finite lifespan can be used for
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signing and separate use later on in less secure landscapes. Keys can be
sent to key servers or fetched from them directly from within GnuPG.

• Similarly to PGP 5.0 and successors, GnuPG can be embedded in mailers
and graphic user interfaces. This is important for the program’s accep-
tance. A uniform graphic interface (GPA) has been worked on for several
years, but is still unsatisfactory.

However, I constantly quarrel with the program. Its installation and first-time
use simply overtax inexperienced users. It certainly overtaxed me when I tried
to test GnuPG 2.0 under time pressure: I was supposed to download four
additional libraries from the GnuPG homepage, then compile and install them,
or the program wouldn’t run. Well, who has that time to waste other than
somebody who likes to play with the program?

There is a tutorial, plus there are FAQs, a long user manual, and an exten-
sive ManPage under UNIX. But the tutorial goes into lengths describing the
background of email security as well as asymmetric and symmetric encryption
before it deals with commands. When you finally make it to that part, however,
you won’t be able to use it, because you’ll first have to create a key. Even the
mini How-To (still in its 1999 edition) is not much better; it is designed for
experienced Linux administrators rather than for the average user. And it is the
average user, after all, who is supposed to use GnuPG for mail encryption on
their household computers!

All in all, there are many small tripwires that can unnerve users as they try
to get things done with the program. For example, it is almost impossible to
find out what symmetric method is actually used, and how the configuration
file is to be expanded. The ManPage of GnuPG 1.4.5 lists almost 300 optional
switches for calling the program in alphabetic order. Which ones are the most
important? All right, GnuPG is conceived as a plug-in for mailers, but mailers
use only a tiny part of its capabilities.

Another critical point is that it accepts lousy passwords, like passwords only
a single letter long. Though improvement had been promised, Release 1.4.5 is
still as ‘tolerant’ as ever.

There is a conflict I’m particularly interested in: Alice has GnuPG 1.0.4, which
supports AES, installed, and sends Bob an encrypted email. Since Bob uses
GnuPG 1.0.3, which doesn’t talk AES, he cannot decrypt the message. Now
what? With SSH (see Section 7.3), the server and the client could negotiate the
algorithm they want to use, but that doesn’t work for mail! There is a solution:
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Alice’s software can learn the methods that can be used from Bob’s public key.
However, for Bob to know which ones these are, he has to call GnuPG with
the −v switch set (apart from knowing how to set switches), and he cannot
change the methods in arrears once the key has been generated.

Nevertheless, the project is positive, mainly in connection with the OpenPGP
standard, which is implemented in commercial software. GnuPG could make
the old PGP dream come true, namely secure communication for everybody in
a heterogeneous world, well, if it weren’t for real-world conditions (see also
Section 7.2.3).

Anyhow, all the criticism of the current or earlier versions doesn’t change
anything of the extraordinary stir PGP caused worldwide: for the first time ever,
cryptography found general acceptance and can really be used by everyone.
The cost involved is not high—I show in [Wobpgp] how to get ready within
one hour to encrypt your mails and read them. You can find a similar text in
PD/PGP/pgp2.6.3/pgptut.txt, and for GnuPG in PD/PGP/GnuPG/microhowto
on our Web site. (The latter text is of the sort that I’d actually have expected
to get shipped with the GnuPG package.)

PGP Cracked!

This was the breaking news around the beginning of 2001 all across the Web
and eventually in the New York Times. It wasn’t entirely correct, though, because
what really happened was an attack against the OpenPGP protocol, but it was a
critical attack indeed. You can read about this on txt/cryptanalopenpgpattack.txt
on the Web site.

The attack required that Mallory had access to Alice’s computer, for example,
to stealthily modify her private RSA signature key. From then on, if Alice sent
him a message signed with the modified key, he could actually calculate her
private key and sign in her name!

You might object that Alice’s private signature key was encrypted, and how
would Mallory modify it? Well, it touches on a point where the OpenPGP
protocol has a flaw (and thus PGP as well as GnuPG): private keys are encrypted
in CFB mode only. This means that it shouldn’t be a problem to change a
certain bit. This allows an attacker to mount the attack described as Risk 6 in
Section 4.5.3. Had the key been encrypted in CBC or ECB mode, the attack
could be prevented as long as the factors p and q were not stored in separate
locations, but, for example, in alternating byte sequences. But the OpenPGP
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standard dictates both the ciphering mode and the format to ensure that you
can exchange private keys between different products.

In the event of a DSA signature based on the discrete logarithm, Mallory only
needs to modify the public signature key: he changes the logarithm base such
that it can be easily computed. This is how he reveals the secret exponent to
arrive at his goal.

Fortunately, this security flaw can be fixed. One simple solution would carry
encrypted key-dependent checksums (such as HMACs) in a separate file and
then have this file evaluated by ‘secure’ implementations. The most secure
solution is, however, to subsequently have the signature checked by its creator.
Though this costs additional computation time, it is negligible in view of the
time it takes to enter a passphrase. That’s the solution GnuPG voted for.

In general, the attack wasn’t considered to have been ‘that bad’ after all, because
while Mallory had gained access to Alice’s computer, he could just as well have
swapped her PGP program for another one more to his liking. But things are
not quite that easy. Alice might have noticed the swap. And listening in on
her passphrase isn’t that easy either. Mallory would have to be replaying at
the very moment she typed it in, or he could install a program that listens in
on it and sends him the result later. This program could also be discovered.
In contrast, if Mallory changes a bit of the private key, intercepts a signature,
and then undoes the change, what we’ll then have is an (almost) perfect crime.
Alice would never be able to prove that he can forge her signature. Meanwhile,
all PGP and OpenPGP products are secured. By the way, this example shows
how farsighted it was never to use the same keys for signature and encryption;
otherwise Mallory could even have read Alice’s communication traffic.

The actual cause of the entire trouble was once again lack of cryptological
knowledge: the CFB mode enables ‘bit-flipping attacks’, similarly to stream
ciphers, so that there has to be some integrity protection built in. This integrity
protection should not be a CBC checksum (that was the mistake in WLAN
encryption and GSM), but a cryptographic hash sum (best is an HMAC with
the passphrase as the key).

7.1.5 A Tip for Working with Keyrings

I have warned on different occasions in this book that the private key is sort of
a universal key: if it is compromised somebody can listen in on your encrypted
traffic almost effortlessly—even in arrears. This makes a costly attack reward-
ing. For example, if Alice encrypts her messages with DES, and if Mallory
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has access to a Deep Crack machine (see Section 4.4.1), it will take him about
4.5 days to read an intercepted message. That’s not worth his while. However, if
Alice uses an asymmetric method for encryption and secures her private key by
DES only, Mallory will steal the key and then has to run Deep Crack only once.
Even if Alice suspects there is a threat and switches to 256-bit AES, it’s too late.

This risk can be reduced considerably, but it takes some work. Alice cre-
ates a ‘good’ key pair and has the public key certified. She stores the private
(encrypted) key on external data media and on a secure computer, perhaps one
without network access. She then creates a ‘work key’ and signs it using her
‘good’ key. She uses this work key for daily mail traffic and changes it every
now and then, perhaps monthly. In the event that Mallory guesses her ‘work
passphrase’, or steals the decrypted private key from the storage medium (as
described as Risk 7 in Section 4.5.3), then the most he can do is read the mail
traffic of one month in arrears. GnuPG supports this work by use of keyrings.

Of course, all of Alice’s mail conversers need to know that they have to get
a new public key every month. But this effort is negligible in security-critical
applications. In practice, one can have two key pairs and need to change the
work key only if one thinks it might have been compromised, or if one wants
to use an algorithm that wasn’t supported when the key was created. However,
the cost should be in a reasonable ratio to the required security.

7.2 PEM/RIPEM, the PGP Rival, and S/MIME

PGP had only one rival to my knowledge, namely PEM. Since this was the
first concept that used a certification hierarchy, we will discuss it here, though
PEM is insufficient and doesn’t play a role today (see also [Schmeh]).

7.2.1 The PEM and S/MIME Standards Contra OpenPGP

PGP is a true child of the Internet, similar to Linux: a programmer put an
infinite amount of work into it, then other people helped improve his product.
PGP succeeded despite massive animosities from governmental authorities, as
we saw in Section 7.1.1.

The situation was totally different with PEM (Privacy Enhanced Mail). As
the name suggests, PEM pursued a goal similar to PGP. However, PEM didn’t
start out as a program, but as a standard that was elaborated by many experts.
The standard was initially described in RFCs 1113 through 1115; more current
versions are RFCs 1421 through 1424 of February 1993 (you will find these
on our Web site).
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The encryption method PEM dictates is DES in the form of an MD5 hash
function, which shouldn’t come as a surprise since it is a US standard.

Key Management

An important difference between PEM and PGP is how public keys are man-
aged. Rather than using a Web of Trust, PEM relies on a centralized server
hierarchy that is compatible with the X.509 protocol (see Figure 7.2).

When Alice wants to send a message to Bob, Bob first sends his certificate
to Alice. This certificate was signed by Egon. Alice uses Egon’s public key
to check his signature. Egon’s public key was signed by Kurt. Kurt’s public
key was signed by both Helmut and James. James’s key was signed by Marek,
and Marek’s key was signed by Alice herself. So Alice can verify that Bob’s
certificate is authentic.

Each computer underneath the root server makes a generally readable cer-
tificate available, which was signed by the computers above and below that
computer within the hierarchy, and which contains the certified public key (as
well as an expiration date, the algorithms, the name of the issuer, etc.).

The construction of such hierarchies is related to PKIs (Public Key Infras-
tructures). There was an enormous hype about these PKIs, especially toward
the end of the 1990s. Difficulties with the organization and acceptance had
been totally underestimated; you may compare this with the ‘dotcom bubble’.

Helmut

Kurt

James

Marek

Alice

Theo

Hendrik

Egon Susi

Bob

Figure 7.2: Hierarchical model of PEM. Superimposed computers mutually
sign their certificates; the thick arrows show the path along which Alice checks
Bob’s certificate.
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In his online magazine Cryptogram, Schneier referred to them as a failure. You
can find more details in [Schmeh].

Potential for Fraud

The server hierarchy requires that a third-party public key always be checkable
by definition. This is a clear advantage over the Web of Trust of PGP. This
auditing ability can be easily implemented, and certificates can also be stored in
easily accessible databases. Mallory cannot mount a man-in-the-middle attack
as long as he can’t forge digital signatures or compromise servers.

Another advantage over PGP is that it enables key revocation. However, this
is not so simple: the validity has to be checked for every certificate newly
received. To this end, a remote or local database that stores invalid certificates
can be queried. This database could be compromised. However, in any event
key revocation in the PEM protocol is more secure than within the Web of
Trust.

A theoretical weakness of the server hierarchy is its potential to be compro-
mised. For example, Kurt could be working for a national intelligence agency
and have sold his private key to them. The agency intercepts Bob’s certificate
and instead of it sends their own with a different key signed by EgonII, who
in reality is a computer inside the agency. EgonII and Kurt seem to be certi-
fying each other. Since the agency knows Kurt’s private key, they can do this
even without Kurt knowing about it. The agency can intercept mails exchanged
between Alice and Bob, decrypt them and re-encrypt them to forward them to
whoever.

Helmut’s signature can’t prevent this fraud either, since nothing about Kurt
has changed toward the outside: his public key remains the same, only his
signatures are ‘reconstructed’ by the agency.

I gave a black-and-white depiction: PEM is supposed to protect its users from
private attackers, while PGP is supposed to protect them from governments or
national intelligence agencies. More specifically:

• PEM fully relies on the immunity of the server hierarchy, thus reliably
excluding the usual man-in-the-middle attack. On the other hand, fraud
is potentially possible by compromising the server. Furthermore, PEM
requires continual access to the network.

• PGP cannot reliably exclude a man-in-the-middle attack, but it can with
a rather high probability, because compromising one computer within the
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network doesn’t normally do an attacker any good, and the network can
even repair itself.

The optimum is probably somewhere in the middle. It would be desirable to
have a hierarchy that cannot be compromised, or where a few compromised
servers couldn’t put the security at stake. I can think of an approach similar
to the timestamp protocol discussed in Section 6.6.1, where several computers
secure themselves.

It would be helpful if the PEM hierarchy was not a tree structure, but every
server had to be certified by several servers above it. The ANSI standard
X509.3 represents an improved development in this direction, but discussing it
would go beyond the scope and volume of this book.

Traffic Analysis

PEM headers contain a whole range of information, particularly about senders
and receivers. This allows an intruder to easily determine who communicates
with whom, even if people use anonymous remailers. Though this might not
be important in practice, it may have played a role for some people to vote for
PGP and against PEM.

S/MIME Contra OpenPGP

PEM is hardly used anymore; S/MIME is the only thing people talk about in
addition to (or preferred over) OpenPGP nowadays. A full discussion of the
standard would go beyond the scope and volume of this book. And it doesn’t
really matter, because there is a wealth of literature on this popular mail encryp-
tion format developed by RSA (see, for example, [Schmeh; KirPGP]). Similarly
to PEM, S/MIME uses a hierarchy (PKI), and it is compatible with PEM, at
least its older versions are. The fact that it was embedded in MIME mail and
has been supported by major manufacturers, including RSA and Microsoft,
actually speak in favor of this standard rather than for OpenPGP. Moreover,
S/MIME let’s you encrypt large attachments. Meanwhile, PGP followed up
on it with the PGP/MIME standard (which is supported by several products,
including the Mutt mailer).

However, things took a different turn. According to [KirPGP], about 60 % to
70 % of all encrypted mails were exchanged in OpenPGP format in 2001. One
of the reasons could have been the large number of platforms that support
OpenPGP—and OpenPGP simply has a more flexible structure. For example,
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in contrast to S/MIME, OpenPGP supports several signatures and user IDs for
each key. Furthermore, OpenPGP already has a working key-server network
that people can easily access to fetch public keys. This makes it relatively
easy, for example, to exchange OpenPGP-compliant encrypted mail with a
new converser, while the strict certification hierarchy of S/MIME can cause
problems if two conversers are not embedded in the same structure. Perhaps
all these problems are only apparent, but I seldom found an S/MIME signature
among the mails I received; I found OpenPGP-compatible signatures more
often.

7.2.2 RIPEM

Insiders know that paper is unusually patient in the electronic data processing
landscape. In particular, a standard formulated by theoretical considerations can
exist for a long time without having an impact worth mentioning on practice,
because there are no suitable implementations.

PEM is undoubtedly one of these standards. The best-known implementation
was called RIPEM (Riordan’s Internet Privacy Enhanced Mail) by Mark
Riordan (you can find two articles about it on the Web site). RIPEM runs
on many UNIX variants as well as DOS, Windows, OS/2, Macintosh, and
Windows NT.

However, RIPEM was not a full implementation of PEM; in particular, it had
no key management. More specifically, RIPEM didn’t process PEM certifi-
cates yet, except the Macintosh version. An expansion was planned. Public
keys were fetched using the finger command directly from the computer con-
cerned. Moreover, RIPEM was able to create fingerprints, like PGP, for easy
key verification.

RIPEM served primarily for email authentication and secondarily for encryp-
tion, while it is rather the other way around with PGP. RIPEM processes only
simple text files (and no Microsoft Word files, for example), and the line length
is limited to 1023 characters.

Riordan emphasizes two important benefits he thinks PEM has over PGP (in
two articles on the Web site in the FAQs): The first is that PEM was an official
standard while PGP is compatible only within itself. The second benefit is that
PGP violated patent rights and was exported illegally. (That’s not bad for the
users, don’t you think?)

Both arguments have become irrelevant. OpenPGP and S/MIME have become
the de-facto standards on the Internet. In particular, the security concept of
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OpenPGP is likely to be found more attractive by the average user. Though
the Web of Trust doesn’t fit well into corporate structures, OpenPGP doesn’t
ban certification hierarchies. The PEM concept might be better suited for com-
mercial use, particularly within corporations, because there doesn’t need to be
privacy for emails. Also, while not everything has to be kept secret within cor-
porations, authentication is of utmost importance. Corporations are more likely
to use S/MIME.

7.2.3 Email Encryption in Practice: Disillusionment

This book is intended to help you to better understand cryptological concepts
and to get a feel for why algorithms and protocols come in the form they do,
and where pitfalls are hidden. I think this justifies looking at a totally outdated
piece of software like PEM, or to discuss an encrypted file system called CFS
(further below).

Nevertheless, I don’t think I should be discussing mail encryption from the
solely technical perspective without taking a closer look at the sad practice.
My mail conversers amount to a three-digit number, but only a handful of
them encrypt their mails. Take it literally: they are less than five. Typically,
there is no ‘real’ business partner among them.

Following the slogan, ‘don’t trust statistics you haven’t forged yourself’, I
decided one day to do a little poll among acquaintances and business partners
at the CeBIT 2002 trade show: ‘How many encrypted mails did you receive and
how many did you send last year?’ Since the people I asked were IT security
experts without exception, I expected an untypical, even prettified result. But
it was rather as I had feared: 9 out of 23 people I addressed hadn’t encrypted
anything at all, 9 others exchanged less than 20 encrypted mails (out of sev-
eral thousand), including two for ‘experimental purposes’ only. Even PGP and
GnuPG promoters encrypted on a strictly selective basis, i.e., only messages
that they classified worth protecting (and how do you classify this?). The rep-
resentative of the then PGP owner used an expired key. Another person signed
all mails (without encrypting them), three persons encrypted many mails, and
one single person actually protected about 5 to 10 mails per day to fend off
eavesdropping. Interestingly, this very person had nothing to do with the devel-
opment or sales of encryption software. Another person remembered having
heard that only about 4 % of all companies were said to use mail encryption at
all. Unfortunately, the source of this statement is unknown.

Excluded from these ‘statistics’ were a few cases of symmetric encryption
where keys are distributed by phone, for example. If you are interested in
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reading more about disillusionment, read the magazine article [Wobmail2] (also
online at www.lanline.de).

The Technical Side of the Problem. . .

When PGP emerged, computer users were real gurus, and the Internet was used
by a restricted ‘elite’. People had a permanent email address, and attachments
were unheard of. Without wanting to make it sound like a reproach—this
concept still sticks on OpenPGP.

For example, I think it’s a conceptual mistake to permanently bind a mail
address to a public key (there is no logical reason for it). The mail address can
be changed, but only by its owner, and then she has to ensure that the changed
key is distributed somehow or other. This is as difficult and unreliable in the
Web of Trust as key revocation. In practice, Alice wants to send a PGP mail
to Bob’s private mail address, but her mail program says that it cannot find a
key for that address. This is in order, because mail programs manage identities
on mail addresses and not on the key-IDs of public keys. It is not in order
that many mailers cannot handle this simple problem. From the mailers tested
on Linux (Pine, Mutt, Kmail, Mozilla with Enigmail), only Kmail handled the
task reasonably: it let me store the ‘mail address-to-key’ allocation. However,
I had to put the key on the highest trust level within the Web of Trust to be
able to encrypt at all, which is a conceptual error.

Another problem relates to the incompatibility between Inline-PGP and PGP/
MIME. The first of these two formats is the one used in PGP 2.6, which encrypts
only the mail body itself. The second of these two formats is the ‘answer’ of
OpenPGP to S/MIME. It also encrypts attachments. However, only very few
mailers can handle PGP/MIME, or they understand only one of the two formats
by default. For example, Pine (as well as the WinPT plugin of Windows) can
process only Inline-PGP, while Mutt deals only with PGP/MIME and gives the
average user who wants to use Inline-PGP a hard time.

Things look a little better when it comes to the compatibility between GnuPG
and PGP. GnuPG users should set -openpgp for encryption to make sure they
won’t use algorithms and other extras that only GnuPG knows. Mail traffic will
then work nicely, at least it did with one of my readers of the Polish edition
of this book. The thing is you first have to notice the problem.

Much more critical is the incompatibility of the two OpenPGP and S/MIME
worlds. GnuPG 2.0 emerged at the time of writing this; it is the first tool to pro-
cess S/MIME. However, the installation is cumbersome and the documentation
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is incomplete. There seems to still be a long way to go to get a mailer plugin that
optionally handles OpenPGP and S/MIME, depending on the incoming mail.

You can read more about typical problems with encrypted mail in the article
[Wobmail].

I turned back to the command line for receiving encrypted mail (not for sending,
though), because that takes me to the goal fastest. I took that decision when I
received a mail from a sender with a slightly faulty release of Squirrel Mail.
A blank at the end of the marker line

-----BEGIN PGP MESSAGE-----

brought up the error message ‘no valid OpenPGP data found’, and guessing
at riddles began. As it happens, I use a script that controls the vim editor to
remove known errors in advance. My command line doesn’t really speak in
favor of a successful integration in mailers.

. . . and the ‘Human’ Side

Bruce Schneier wrote in his book [SchnCr] that if the average Web surfer clicks
on a button that promises dancing pigs on his computer monitor, and instead
gets a hortatory message describing the potential dangers of the applet, he’s
going to choose dancing pigs over computer security any day. In email terms,
if a user doesn’t see an urgent reason to encrypt mail he won’t. You cannot
expect a user to understand why he should encrypt mail, or what happens
when he does. And things are still cumbersome in practice, as we saw in
the previous section. Linux designers favor the Mutt mail program, which is
believed to excellently integrate GnuPG. But to configure Mutt, you have to
read the ManPage of muttrc, which is about 4000 lines of text. Who has that
kind of time to waste? What’s more, you have to know that Mutt obstinately
prefers the PGP/MIME format, while the sender of an Inline-PGP mail has no
idea what mailer the receiver uses.

Even if you eventually let yourself be talked into using your pal’s favorite
mail encryption tool, there is yet another problem: you left your private key in
another location, so you still can’t read his mails (it happened to me in three
distinct cases). As things like these normally happen especially when mails are
really important and things are urgent, I decided I’d rather sign them, but leave
them unencrypted to get things done.
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All right, so what’s left of the pretty concept of the Web of Trust? I interviewed
several dozen qualified and highly security-aware Linux users to find out which
of them verified a key using the Web of Trust. Only one of the interviewed
people did so, and he wasn’t even totally sure about it. The lesson I took home
was that, unofficially, people admit that the popular ‘key-signing parties’ are
hardly suited to build a web of trust, but rather they are sports: the one out of
many key owners who can be reached over as short a path as possible wins
the trophy.

Those who doubt the authenticity of a public OpenPGP key are advised to
better check the fingerprint over the phone. I have done it once in ten years.

Admittedly, all of this sounds pretty pessimistic, but it shows vividly how little
a pretty theory is worth if you forget to consider the actual target group.

7.3 Comfortable and Secure: SSH and OpenSSH

PGP could cryptographically secure the worldwide email data traffic. SSH
(Secure Shell) encrypts the data traffic in local area networks. Again, we will
first have a look at the outdated Version 1 of SSH, before we discuss the
current OpenSSH package. We are interested in the background rather than
in the application. To understand what Secure Shell can do, we make a short
excursion into the world of networked UNIX computers.

Working Within the Inhouse Net

Computers can be used as standalone machines, but they are generally net-
worked over the TCP/IP network protocol—now for over a quarter of a century,
by the way. You know this network in its worldwide form—it’s the Internet.
In contrast, a local area network (LAN) is an ‘inhouse network’, also referred
to as a ‘TCP/IP network’. Later on, a LAN went by the name of intranet and
was advertised as a ‘revolution’, while it was simply an Internet with the plug
to the world pulled.

A large number of standard helper programs ensure in every UNIX system
that this network can be used transparently. Here, ‘transparent’ means that the
user should be able to use a service without impairment, ideally without even
noticing anything. For example, the Network File System (NFS) lets users
embed files residing on remote computers into their own directory hierarchy
and use these files as if they were on their own computer; even the application
programs won’t notice anything. We will get back to this issue in Section 7.4.
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NFS has certain drawbacks, but it is not always necessary. rlogin (remote
login), rsh (remote shell ), and rcp (remote copy) are important for internal
use. These three tools are used like those by the same name, but without the
leading ‘r’: you can log on to a remote computer (rlogin), or just execute a
command there (rsh), or copy files between remote computers (rcp). A special
file by the name of .rhosts in the user’s home directory on the target computer
is even more useful: if it contains the name of the calling computer together
with the user name, then that user can log in without a password (and only
then will rsh and rcp work, by the way). If the .rhosts file is missing, then the
target computer will ask for a user password.

The security philosophy behind this concept is as follows for rsh and rcp:
logged in on one computer—access to all ‘friend’ computers. rlogin without
.rhosts is not much more secure: the password runs across the network in the
clear, and everybody within the organization can basically listen in on it.

This doesn’t make UNIX an insecure system. There is a clean separation
between running programs, their data, and the operating system. Nobody can
access third-party files without permission, nobody can use their program to
simply bring UNIX down. But those who want to work comfortably in the net-
work do normally give way to an eavesdropper. rlogin is hardly more secure
than telnet, the open barn door.

If you try to log on to a remote computer from your home computer over
an Internet provider, the rhost mechanism will refuse its service, because the
provider normally assigns a dynamic (i.e., variable) Internet address, and the
target computer doesn’t know you by that address. You will learn the solution
to this problem below.

Stuffing Up Security Holes

The solution for the three standard tools—rlogin, rsh, and rcp —is Secure
Shell (SSH): it provides for cryptographically secure authentication, and uses
a hybrid method to encrypt the data traffic. This means that it reliably thwarts
IP- or DNS-spoofing attacks (where Mallory pretends to be Alice), and the inter-
ception of passwords and data. SSH was developed by Tatu Ylönen of the Uni-
versity at Helsinki, and was not intended to be freely used for non-commercial
purposes. You can find the source text of version 1.2.26 for analytical purposes
on our Web site.

This SSH version is one of the programs you would like to see more often. It
probably worked on all UNIX systems (and OS/2, while the Windows world
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used something else, for example, Putty). What’s more, it was easy to install,
well documented, and easy to use. Unfortunately, all of this applied to the
version mentioned here only; more about this further below. We will then call
it SSH1.

Of course, we are interested in the cryptography of this software package.

SSH1 can use five different methods for symmetric encryption:

• IDEA (in CFB mode);

• Blowfish (in CBC mode);

• DES (in CBC mode);

• Triple-DES (in CBC mode); and

• RC4 (the stream cipher discussed in Section 5.6; called ‘arcfour’ here).

You can select a method by configuration or switch on the command line. The
interface is very simple and visible from the program code. For example, it is
up to the user to integrate their own algorithms and to check the encryption
functions based on reference implementations. I’d like to see this in every piece
of cryptographic software.

Authentication and Key Exchange

The Secure Shell uses the RSA algorithm as its asymmetric method. The pro-
tocol it uses is interesting; it serves to authenticate computers and users, and
for secure session-key distribution. In detail, it looks like this:

1. Upon installation, the program creates a fixed pair of 1024-bit keys on
every participating computer. The public key is called ‘public host key’
in an ASCII file that everybody can read. The private key is in a file
that only the superuser can access.

2. When starting the SSH daemon sshd (a program that should be started
up on system startup), an additional pair of 768-bit server keys is created.
The public part of it is the ‘server key’, while the private component is
not stored anywhere, but kept in memory. This key pair is changed at
hourly intervals.

3. The user, say Alice, additionally creates a 1024-bit ‘user authentication
key’. Both components are saved to files, where the private key is IDEA-
encrypted with a passphrase, like in PGP.
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4. When Alice tries to log herself into Bob’s computer, Bob sends her two
public keys: the server key and the public host key. Alice checks whether
or not the public host key matches the locally stored key.

5. If it does, then Alice creates a random session key, and encrypts it
using the two public keys of Bob’s computer consecutively, and sends
the cipher to Bob. From then onwards, the entire message traffic is
encrypted. This has interesting consequences:

Bob needs two private keys to decrypt the session key. If Mallory suc-
ceeds in breaking into the server (Bob’s computer) and stealing both
private keys, he can decrypt Bob’s network traffic of the last hour at
most, because the server key is changed every hour. The public host key
is still required, because only this key authenticates the server.

This method is an important improvement versus the usual hybrid meth-
ods. But it can be used only in direct network contact. This is the reason
why it is not a choice for PGP, since the mail end nodes don’t have to
be continually connected. Email can be ‘buffered’, sometimes even for
days in earlier times.

6. Now Alice knows almost for sure that she is communicating with Bob’s
computer. But Bob wants to be sure Mallory is not pretending to be
Alice: Alice has to be authenticated. That’s where the user authentication
key comes into play.

Bob uses Alice’s user authentication key to encrypt a 256-bit random
number. He sends this number to Alice. Alice knows the corresponding
private component and can compute the random number and return it.
This authenticates her.

Here too, Ylönen recognized a potential risk: if Mallory broke into the
server, he could mount a chosen-ciphertext attack against RSA (see
Section 4.5.3). For example, he could do the following:

• Alice tries to log into Bob’s computer, but actually communicates
with Mallory’s computer. While Alice is busy doing Steps 4 and 5.

• Mallory starts a session on Carol’s computer. He pretends to be Alice
and waits to get the 256-bit random number encrypted with Alice’s
public key from Carol.

• He sends this number to Alice, who has no idea what’s going on, and

• Returns the decrypted value to Mallory. Mallory forwards the value
to Carol and authenticates himself as Alice.
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From then on, Mallory can read Alice’s session on Bob’s computer and
sniff about in Alice’s directories on Carol’s computer at the same time!

To prevent such a scenario from happening, Alice doesn’t send the
decrypted number, but only its hash value to Bob. Mallory can’t do
anything with this.

7. Now, the two parties have authenticated themselves, and the actual ses-
sion can begin.

However, if Mallory broke into Bob’s computer and managed to become a
superuser, he’d still read everything. No protocol can prevent this.

SSH is usually configured such that the .rhosts files mentioned above can be
read and evaluated by SSH, but leads to an additional authentication by means
of RSA. Since insecure tools like rlogin work nevertheless, every user should
rename .rhosts to .shosts: SSH will handle this file like .rhosts, whereas rlogin
will look around in vain. The RSA authentication should be admitted only in
risky computer environments.

If you start the ssh command with the −v switch set, you can see in detail
how this authentication runs. Figure 7.3 shows an example. The average user
won’t notice anything.

Comfortable Use is Imperative

Security is generally uncomfortable. Ylönen knows that, too. Consequently, he
tries to make the installation and use as simple as possible. To compile and
install the UNIX version that comes with this book, it normally suffices to
execute just four commands:

configure
make
make install
/usr/local/sbin/sshd&

Remember that SSH can be used on different hardware and all kinds of dif-
ferent UNIX variants. This installation cannot be compared with Windows
programs that normally come in turnkey packages. Their installation is usually
limited to copying files, and perhaps automatically updating a few configuration
files.
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txt/addis/book>ssh -v~$pf
SSH Version 1.2.17 [i386-univel-sysv4.2MP], protocol version 1.5.
Standard version. Does not use RSAREF.
Reading configuration data/home/wobst/.ssh/config
Reading configuration data/etc/ssh_config
ssh_connect: getuid 100 geteuid 0 anon 0
Connecting to ESIXV4Wo [88.0.0.1] port 22.
Allocated local port 1020.
Connection established.
Remote protocol version 1.5, remote software version 1.2.17
Waiting for server public key.
Received server public key (768 bits) and host key (1024 bits).
Host 'esixv4wo' is known and matches the host key.
Initializing random; seed file/home/wobst/.ssh/random_seed
Encryption type: idea
Sent encrypted session key.
Received encrypted confirmation.
No agent.
Trying RSA authentication with key 'wobst@SHL'
Received RSA challenge from server.
Enter passphrase for RSA key 'wobst@SHL':
Sending response to host key RSA challenge.
Remote: RSA authentication accepted.
RSA authentication accepted by server.
Requesting pty.
Requesting shell.
Entering interactive session.
Last login: Thu Feb 13 12:52:06 1997 from shl/home/wobst>date
Thursday, 13 February 1997, 14:09:00 MET
/home/wobst>exit
/dev/pts001
times:0m0.32s 0m0.39s
0m0.26s 0m0.92s
type ENTER
Connection to ESIXV4Wo closed.
Transferred: stdin 2, stdout 136, stderr 32bytes in 71.0 seconds
Bytes per second: stdin 0.0, stdout 1.9, stderr 0.5
Exit status 0txt/addis/book>

Figure 7.3: Trace of an ssh login on a remote computer. The details are output
when using the ‘−v’ switch; normally nothing appears, except the prompt. Only
the ‘date’ command was used in this example.

The ssh daemon sshd should execute automatically upon system start, which
represents a routine task for the administrator. I won’t describe how public
keys are distributed here. They are normally distributed upon the first attempt
to establish a connection, or perhaps automatically.
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The user normally has to type only one command, which is ssh-keygen. If there
is a risk, even just theoretically (which is always the case), that somebody
might break into your computer, you should encrypt your private key with a
passphrase (the program pops up an opportunity). But you will then have to
enter this passphrase every time you use SSH, which is unacceptable for some
users. While users don’t normally notice when they are given more security,
they get upset when requested to enter passwords.

This motivated Ylönen to write another program called ssh-agent, which keeps
the private key in memory, and can be executed within a regular UNIX ses-
sion. It speeds the connection establishment up considerably. (You can see in
Figure 7.3 that ssh-agent wasn’t running when I logged the prompts: it requests
a passphrase.)

SSH can be easily configured such that every user can continue working in the
familiar way, except for the one-time entry of a password when they log in.
When communicating with computers that don’t have Secure Shell installed,
SSH outputs a warning and automatically falls back on the customary tools,
i.e., rlogin, rcp, and rsh.

Even the X-protocol is encrypted by default, and an integrated, undocumented
compression (switch −C) comes in handy for slow transmission lines (mainly
when using the PPP network protocol over a modem). And finally, SSH can
also be used as a secure transmission channel for other applications.

Unfortunately, there is a painful drawback: security costs computation time.
The IP protocol slows down considerably on a regular PC (which you won’t
notice on a Pentium-100 and better), and computations on 1024-bit keys are
time-consuming. On the configuration I used back then, the remote execution
of the date command took about 0.7 seconds (the IP connection has to first be
established and then torn down even for such a tiny command). When I used
SSH (and ssh-agent), this time increased to between 4 and 5 seconds.

This delay plays a subordinate role on modern computers when you log in or
copy long files. But it is a big deal when you use SSH and bad shell scripts
that transport 500 small files individually using scp. Regardless of the crypto-
graphic program you use, there are only two solutions: either you get yourself
a multiprocessor machine with eight kernels, or you improve the application by
packing all of these files into an archive and ship the archive across the network.

You should use SSH to log on to remote computers in any event, because short
additional wait times won’t play a role there. And if encrypting the data traffic
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does take a lot of time, whereas you are mainly interested in an interception-
proof login, then you can always enter ‘ssh -c none hostname’: in this case, the
current data traffic is not encrypted. However, at least the Blowfish cipher (use
the blowfish option) is fast enough to pull an interception-safe backup over the
network.

SSH Everywhere: Proliferation and Licenses

SSH1 was once in use in about 10 000 organizations across roughly 50 coun-
tries, according to Ylönen’s own statements. What I particularly like about SSH
is its simple interfaces to the cryptographic modules, and the well-designed
security concept.

The private use of SSH1 used to be free. For commercial use, there was a
bunch of license terms and conditions for third-party contributions, which are
stated in the COPYING file, among others.

Unpleasant Development

The protocol was changed with Release 2.0: it’s now called IETF SSH Secure
Shell protocol. The new SSH2 was available only for commercial use and
didn’t support the SSH1 protocol any more. That was extremely disappointing.
All those people who wanted to communicate with servers that ran SSH2 were
supposed to buy the software, even for private use. Compared to SSH1, that
was a step backwards, no doubt: imagine you have to quite often log on to your
work computer from home over an Internet provider. No problem over SSH1.
As mentioned earlier, there wouldn’t be any other way anyway, because the
company computer can’t possibly know your IP address, since it is normally
assigned by the provider. Now, your company would have to migrate to SSH2,
and you’ve got a problem.

Ylönen himself (who participated in the commercial development) recommends
in several mailing lists to use only the new protocol since the old was insecure.
One reason might be the Bleichenbacher attack discussed as Risk 5 in connec-
tion with RSA in Section 4.5.3, where I mentioned simple countermeasures.
SSH1 would make this attack harder in any event, because changing the keys
on an hourly basis would mean that an attacker would have one hour at most.
With one million requests, this would result in a rate of about 300 requests per
second, which generally requires additional expensive hardware on the server
side. In addition, the attacker himself would have to do a lot of computations
and need special hardware. You can read in PD/SSH/ssh1 insecure.txt on the
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Web site about the fact the attack isn’t even realistic in the opinion of people
who spread the warning themselves.

This suggests that the propagated migration to the SSH2 protocol must have had
a different reason. Bleichenbacher’s work is quoted, but the countermeasures
he suggested were left out. Perhaps sound financial interests played the most
important role. That wouldn’t be all that bad if SSH2 supported the old protocol,
of course, with the countermeasures suggested by Bleichenbacher in place.
Unfortunately, this was not so.

The public domain responded by developing free products compatible with
SSH2. A shell by the name of LSH wasn’t very successful. Meanwhile, the
OpenSSH program (www.openssh.com) is widely used. It was born on the free
UNIX variant FreeBSD and is further developed there. The current versions of
OpenSSH support both SSH protocols. It can be ported to most UNIX systems.

Among other things, SSH2 offers a password-free authentication over RSA,
and DSA keys that are kept on the local computers. This is clearly more secure
than password-logins, the more so since the keys can also be kept on external
data media, such as USB sticks. All the details would go beyond the scope and
volume of this book, and wouldn’t introduce any cryptological novelty anyway.

I’m not really happy with the new SSH in spite of it all. The versions change
faster than the weather in Iceland, the configuration is extremely complicated
and holds a large number of pitfalls. Nothing remained of the fast and com-
fortable way SSH1 secured your data traffic. Fortunately, OpenSSH is at least
an integral part of all Linux distributions, and it is used instead of rlogin, etc.,
by default. Yes, no kidding: you even have to separately install and activate
rlogin and telnet to be able to use them. The password-login works right off the
bat. You don’t have to learn anything. That’s how security should be: always
activated in the regular case, whereas everything else requires your intervention.

Still, I can’t help criticizing it a bit: if you try to log in without a password and
happen to make only a tiny wee mistake, you are in for it: you’ll be looking
for the cause infinitely. Since I don’t usually configure such a login, it happens
to me over and again. Together with the change from Version 3.6 to Version
3.7, the so-called ‘X-forwarding’ was disabled in the configuration file without
any comment. What this means is that, if you want to open an X-terminal on a
target computer, you now have to enter ‘ssh -X’, while the documentation still
tells you how it was done previously. These are little things that aggravate.
However, compared with GnuPG, OpenSSH is definitely friendlier. And don’t
forget: the Windows world still uses the totally insecure telnet standard.
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7.4 CFS-Encrypted Hard Disks

The software products discussed so far helped secure the local and remote data
traffic between computers, but how is a computer’s local security ensured?
UNIX users, for example, set corresponding access privileges for sensitive
directories. This means that other users cannot change to these directories and
read the files they contain.

This doesn’t fend off nosy superusers (i.e., administrators) though. Their access
privileges are not limited. Security holes in UNIX systems are usually due to
the fact that somebody can become an unauthorized superuser. Which users
know whether a security hole has been discovered in their system and whether
or not it is already being exploited? And even if it isn’t, if somebody has
somehow physical access to your computer (which should always be assumed
for notebooks), they can use a Linux-Live CD, such as Knoppix, and easily
delete the superuser password, copy at will, and then reset everything back to
normal.

The only thing that helps in these cases is to encrypt sensitive files. This is
cumbersome and insecure. Application programs don’t normally work with
encrypted files. As long as they aren’t open, they are normally on the disk in
the clear. Only once the program is exited can you encrypt them. Even if your
word processor offers good cryptography, nobody can guarantee that the data
haven’t been stored on the disk in the clear in the meantime.

Crypto-file systems put an end to this type of worry. Such files are accessed
as usual, but the data on their way between the disk and the application are
encrypted and decrypted transparently. In multiuser systems like UNIX, crypto-
file systems wouldn’t protect your files from an administrator accessing either
the memory or the swap area, but they help: dismantling and analyzing the
hard disk after work (or stealing the notebook) won’t help James Bond much
despite the modern analyzer in his wrist watch, at least in general. However,
it would be desirable to have operating systems that would reliably delete data
no longer required from the swap area from time to time. No administrator can
do this; it’s a system task. Clever users use crypto-file systems for the swap
area, too, but it can significantly reduce the performance.

CFS and NFS

I’ll be talking about some totally outdated software in this section once again!
Crypto-file systems are used under Windows as well as under Linux and UNIX
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today, but there is rather complex software behind them. It is instructive to
analyze a simpler package that also shows the typical problems.

CFS (Cryptographic File System) was developed by Matthew Blaze from
1992 onwards. We know Blaze from the attack against the Clipper chip protocol
(see Section 6.4). CFS Release 1.3.3 can be found on our Web site. CFS Release
1.3.3 consists of roughly 8500 lines of source code and is used on some UNIX
systems, mainly BSD and SunOS variants, but also AIX by IBM, HP/UX,
Irix, Solaris, and (with problems) Linux. Its quality lags behind that of SSH:
it is not written in a particularly portable and efficient way, its installation
is cumbersome, and the encryption methods used are fixed on 64-bit block
algorithms. I couldn’t test it myself, but I know that CFS reduces performance
considerably. This is the price to be paid for security, which sometimes appears
to be higher than that for SSH.

CFS uses the Network File System (NFS) mentioned in Section 7.3 from within
UNIX. The latter embeds file trees in remote computers such that they virtually
reside on your own hard disk. With CFS, the file trees actually reside on your
own disk, except that the data on their way from and to the file system are
encrypted. That doesn’t change anything, either for the application or for the
user. The only thing is that the user has to use the cattach command to ‘attach’
a file tree into the current hierarchy before starting to work. To ‘detach’ the
file tree, he uses cdetach. cattach requests a password. Outsiders won’t even
recognize file names, let alone file contents. That’s not all, but we are interested
in cryptology rather than in UNIX.

Encryption with Some Particularities

Things are not as simple as they may appear. Disks cannot be encrypted as
you would encrypt files: they need to remain freely accessible. For example, a
program has to be able to read the 34th, the 666 231st, and then the 11 004th
byte from a file without getting into trouble. However, encryption is generally
sequential, except in ECB mode and stream ciphers. But the latter don’t allow
you to hold a sufficiently long key stream in spare. For one thing, this stream
would have to be at least as long as all confidential data together—that causes
capacity problems. Second, computing it in advance would cost much time.
And the simple ECB mode is too insecure. Now what?

Blaze had a simple and good idea to solve this problem [BlazeCFS]. Though he
creates a key stream, that stream has a length of only 256 Kbytes (rather than
128 Kbytes as stated in the README file). After XORing the entire stream
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with the data, you start all over again. Theoretically, this is a Vernam cipher
(see Section 2.4.2), but with a period of 4 Mbits. Though this blurs internal data
structures, it is not resistant to plaintext attacks. For this reason, he encrypts
the output once more using a 64-bit block algorithm in ECB mode. This makes
the method secure.

This combination of quasi-stream cipher and block cipher is effective. Free
access to the encrypted file won’t pose any problem.

To read the 666 231st byte from a file, we first compute the offset in the key
stream:

256 Kbytes are 262 144 bytes, so the offset is 666 231 − 2∗262 144 =
141 943.

This byte is included in the 64-bit block, which is formed from bytes 141 936
through 141 943.

To decrypt things, we XOR the eight bytes 666 224 through 666 231 of the
encrypted file with the eight key bytes 141 936 through 141 943, decrypt the
result using the block algorithm, and pick the 7th byte from there.

While humans may find this hard, it is a kid’s game for computers.

CFS Cryptography in Detail

The cipher looks a bit different in the program than it is described in the
article [BlazeCFS]. Instead of a single cipher stream, CFS creates two cipher
streams, here denoted S1 and S2. A key K2 (the secondary byte field in the
program) is used to create these two streams. A second key K1 (the primary
byte field in the program) is used with the block cipher. An 8-byte field called
vect (described as perturbation vector in the program) takes the place of the
initialization vector. This field has a different value for each file. The cipher
looks symbolically as follows:

C = S2 ⊕ DESK1(P ⊕ S1 ⊕ vect)

DES is used by default, as the formula suggests. Other possible methods include
Triple-DES and SAFER-SK128, which is described in [SchnCr]. This is basi-
cally a more complex variant of whitening (see Section 5.2.3).
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To calculate the vect field, you fill the four least significant bytes with the file’s
Inode number (a number that serves for unique identification of files) and the
four uppermost bytes with the file’s modification time. Everything is then taken
and DES-encrypted using the 56-bit key (stripped of the most significant bits)
that was constructed from the fixedkey character string.

This little trick guarantees that no files with identical contents can produce
the same ciphers. Furthermore, the cipher of a slightly modified file never
resembles the file’s previous version. From the cryptological point of view, the
DES encryption using fixedkey is even superfluous. The code apparently had
been changed in this place (fhmkfileent() function, cfs fh.c file), but not in a
consistent way. By the way, modern 64-bit UNIX systems wouldn’t evaluate
the modification time, only the Inode number. This would be a critical security
flaw (slightly modified files can be recognized as such).

The important XORing with vect can be suppressed using the −l switch for
cattach. This is not a wise thing to do. This operation consumes minimal
resources, compared with the DES encryption, but its cryptological effect is
considerable.

The computation of the key streams S1 and S2 appears to be strange at first.
CFS encrypts the numbers 0 through 32 767 (215 − 1) in hexadecimal repre-
sentation in the ECB mode, where the highest digit is set equal to 1 when
computing S2:

S1 = {DES("00000000")| DES("00000001")|...| DES("00007FFFF")}
S2 = {DES("10000000")| DES("10000001")|...| DES("10007FFFF")}

This simple structure of S1 and S2 is certainly a welcome test condition for
owners of a DES Crack machine. With good algorithms, however, the risk is
smaller than it looks: this is the so-called counter mode we didn’t discuss in
Section 5.1.1, but which is still considered to be secure. It is used in UMTS
and ZigBEE (and in the IEEE standard 802.15.4), among others.

CFS runs a continuous loop, which is aborted several times after a given time
for cryptographic random generation. Since more or less unexpected events can
occur in a multiuser system, there can be hardly predictable events (truerand.c
file). The CFS author says that this method is pretty secure but slow, and it has
to be tested separately for every computer. This is risky, because errors intro-
duced from porting can remain undetected. There is a note in the documentation
about the esm Session Manager.
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Can CFS Be Recommended?

The defects mentioned above refer to the innards and probably don’t decrease
the value of CFS. It is important not to call cattach with the −l switch (see
previous section). The relatively poor portability is not nice but understandable
(CFS sits deep within the operation system) and acceptable, because CFS runs
locally. Users of other UNIX systems can look around for something else.
More critical is the loss in performance, in my opinion. While the fastness of
a file system doesn’t play a role for a word processor, CFS can be extremely
disturbing when processing long records in a database. I don’t consider it wise
to use DES of all things (or even Triple-DES, which is three times slower
in software), because this algorithm was primarily conceived for hardware.
SAFER-SK128 would be about five times faster, but utmost caution is advised,
according to Schneier [SchnCr, 14.4]—not least because the NSA could have
its hands in it. How about Blowfish, RC4/5/6, Twofish, or even AES?

However, cryptographic file systems are good concepts. They separate cryp-
tography from applications and make things easier to audit. Only the swap area
should be cleaned up by the system from time to time. . .

7.5 OPIE, S/Key, and Logdaemon: Secure Login

Three free software packages, namely S/Key (which probably means ‘Secure
Key’), OPIE (One-time Passwords In Everything), and Logdaemon, use
one-time passwords for authentication (or, more exactly, for login) in UNIX
systems. S/Key was developed by members of Bellcore in the early 1990s,
representing presumably the first of this type of program. OPIE came about
on the basis of S/Key in the US Naval Research Laboratories (NRL) and is
downwards compatible with S/Key. It was renamed because S/Key is a brand
name, whereas OPIE is the unprotected name of free software. Logdaemon
was developed by Wietse Venema, the author of the popular SATAN security
program; it can do a lot more. We are interested in the implementation of
one-time passwords in this package. The following section discusses OPIE
representatively for the other two programs.

How to Use OPIE

As long as you move about on known computers within the Internet or an
intranet, you should use SSH for the required protection. However, if you
work on a third-party system and want to log in to your computer at home,
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it is almost mandatory to use one-time passwords. The reason is that nobody
knows whether the administrator of that third-party system has a replay daemon
running. Furthermore, SSH won’t help you much on third-party systems.

All three programs optionally use MD4 or MD5 as a one-way hash function. Even
though MD4 was inverted in reduced form, and MD5 will probably suffer a simi-
lar destiny in the near future, it is still suitable for computing one-time passwords,
because the cracking of MD5 modifications was based on collision computations,
which means that it doesn’t put the use of digital signatures at stake.

OPIE and Logdaemon replace the usual login mechanism with rlogin, ftp, and
su (as opposed to S/Key). The latter is important for the situation described
above, where you log in to your own computer from an external computer and
have to act as a superuser.

In practical work, OPIE is slightly different than explained in Section 6.5.

First of all, the entries are only 64 bits long. The right 64 bits of the 128-bit
hash value are XORed with the left 64 bits. This has ergonomic reasons that
will be explained further below. This is not likely to jeopardize the security.

Second, you always begin with the startup password, S0 (see Section 6.5 for
denotations). A local ‘OPIE calculator’ requests S0 and takes it to compute
S49, for example. The result is to be transferred to the password entry. If you
use OPIE in a window system, you can easily use its cut-and-paste function;
otherwise, the entry has to be manual. The password S0 is calculated from
a sequential number (called seed here), and a secret password that you enter
when initializing the password list and which is easier to memorize than one-
time passwords. Both the password and the seed are ‘made into’ S0 in the
keycrunch() function (called opiekeycrunch in OPIE talk) via MD4 or MD5. So,
when having an OPIE calculator program handy, you don’t have to memorize
a secret password.

Since the manual entry of numbers (including hexadecimal numbers) is incon-
venient, OPIE translates the hash sum into six readable words. That’s pretty
easy: you will find a list with 2048 entries of English words each at most four
letters long in libopie/btoe.c. Each word stands for a piece of 11-bit informa-
tion (211 = 2048), so six words stand for 66 bits. These are 64 bits for the
actual password and 2 bits for the checksum. All you need to do is to enter a
passphrase, for example,

GILL HUED GOES CHUM LIEU VAIN
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Of course, you can print the passwords if there’s no computer around, but
you’d have to watch the list carefully.

What you’d normally do is you’d create 100 passwords in spare (or more if
you plan on going on a long trip). A shell script called opieremind that nice
administrators have running regularly reminds all users concerned by email
that less than 15 passwords are left. This means that it’s about time to run
opiepasswd again to create a new password list. Otherwise, OPIE warns you
upon login when less than ten or five passwords are left.

Some Doubts

One-time passwords are very secure from the cryptological point of view. A
new password list should be created only directly at the computer concerned or
over a secure connection (e.g., using SSH) to ensure that eavesdroppers at the
network can never intercept a valid password. Still, a few weaknesses remain:

• The password verification is only based on a required minimum length.
This is 4 with S/Key and Logdaemon, and 10 with OPIE. That’s not
strong enough a protection. It gives way to dictionary attacks, for example.
Ciphering errors shouldn’t play a role in modern software anymore.

• OPIE and Logdaemon let you specify ‘trustworthy’ networks from where
you can log in (using the usual password). If you work at your own com-
puter you won’t be working with one-time passwords. But it is impossible
to activate OPIE for dynamically assigned IP addresses—you’d have to
state the network address. This is hindering in practice. Logdaemon is
more flexible in this respect and should be preferred over OPIE and
S/Key.

• OPIE borrowed special data structures from the UNIX system, which
means that it is not particularly portable (except for opiekey, the ‘OPIE
calculator’, which is a pure computing program). The program comes
from the BSD world, and you can tell. Porting it to non-BSD and non-
Sun systems is difficult. Logdaemon seems to be doing better in this
respect.

• There are several inconsistencies (e.g., ‘OPIE’ in the program, ‘OTP’ in
the documentation) and plenty of typos, leaving a bad impression.

If you are not allowed to use the login program on your system, have a look at
skeysh, a program that belongs to Logdaemon. It is similar to an S/Key login
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once you’ve logged yourself in, and has to have superuser privileges (called
suid root).

If you can’t get any of the three programs running on your system, or if your
administrator is not nice, you can write yourself a C program (or there might
already be one) that verifies one-time passwords, and is then invoked instead of
the shell. Only if the test passes does this C program invoke the right shell. The
benefit is that this program could test whether or not the login is via modem and,
if not, skip the password verification. The administrator only needs to register
this new shell for the user and won’t have any other additional work. If he
doesn’t even want to do this wee bit, you can invoke the program from within
profile. Watch for potential interrupts—execute the trap command first—and
set an environment variable so that you won’t end up in a continuous loop.
This could look like this for the Bourne and Korn shells:

trap '' 1 2 3 15
[ "$MY_OPIE_WAS_CALLED" ] && exec my_opie
...

The my opie program allocates a value to the environment variable MY OPIE
WAS CALLED, for example, ‘yes’, and invokes the shell with leading ‘−’ sign
if the password verified successfully, so it becomes the login shell. More details
would go beyond the scope and volume of this book.

With this, the UNIX password will lose its significance. However, this still
doesn’t provide you with a secure ftp access.

Unfortunately, you will have to enter two passwords in every login from now
onwards: first the ‘right’ one, then the one-time password. Before going on a
trip, you may want to change your ‘right’ password and activate the login via
one-time password. Upon your return, you can undo everything. That’s only
a makeshift solution. But you saw that one can always try to build a solution
from the tools available.

7.6 An RC5a Implementation

In closing this discussion, I will introduce the shortest program in this chapter,
namely my own implementation, rc5a, of the RC5a algorithm described in
Section 5.4.3. It is a C program about 650 lines long and primarily designed
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for the encryption of data streams, which means that rc5a works as a filter.
The user interface is Spartan: the command line

rc5a <plaintext >ciphertext

suffices for encryption. For decryption, you just add an optional argument:

rc5a a <ciphertext >plaintext.

The password is requested interactively, but it can also be told by using the
CRYPTKEY environment variable (which is a security risk, of course).

You can find shell scripts for easy encryption of single files and for the creation
of encrypted archives on our Web site. In general, rc5a is conceived as a
helper program to be embedded in other programs. The main function, which
is responsible for the Spartan interface, is only a few lines long. It is best to
have a look at the function rc5a() to see how components of the program, such
as password entry, key management, and the actual encryption and decryption,
are built into other software.

I tested the program on a number of different UNIX platforms (UnixWare 2.0,
ESIX V4.2MP, HP-UX 9.0, Sinix 5.42, SunOS 4.1, OSF/1 3.0, Ultrix 4.3,
SuSE-Linux 6.4 . . . 9.0, . . .), and no problem arose when porting it to Windows
NT either (see Section 5.4.4). Using unsigned long as the data type for the
WORD macro (see below), I even managed a DOS porting of the decrypted
part for 16-bit compilers, though the input/output detour required some tricks.
The terminal control upon entering a password requires POSIX compatibility,
but the few machine-specific routines at the end of the program are marked as
such and easily replaced anyway.

The speed of rc5a ranges from 240 Kbytes per second on a PC 486-33 to
about 1.5 Mbytes per second on a 133-MHz Pentium PC (both computers run-
ning ESIX V4.2). The two macros ROTL and ROTR, which are responsible for
rotating 32-bit words, make the performance drop. The speed improves slightly
when using assembler commands instead of these macros, but not dramatically.
Notice that the speeds measured are gross indicative values, i.e., they corre-
spond to times actually required for encrypting files on the hard disk. Many
such benchmarks state only a theoretical data throughput!
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By default, the rc5a program works with 32-bit words, 12 rounds, a keybox size
of 16 (= 24), and passphrases with lengths of up to 255 bytes. This means that
it implements an RC5a(32,12,*) algorithm (the asterisk stands for passphrases
of virtually unlimited length). The number of rounds can easily be increased;
it is passed when main() invokes the function rc5a(). The program can easily
be ported to 64-bit machines. You just need to edit the following macros in the
program header:

#define WORD unsigned long

#define WEXP 6

#define P32 0xb7e151628aed2a6b
#define Q32 0x9e3779b97f4a7c15

(The names P64 and Q64 would be better.) The last two constants are equal
to 264∗(e − 2) and 264∗(

√
5 − 1)/2), where e denotes the base of natural loga-

rithms: e = 2.718281828. . .

With RC5a(64,*,*), however, you can no longer evaluate encrypted texts on
32-bit machines. I therefore recommend to use this modification only locally.
The 64-bit algorithm is twice as fast as the 32-bit algorithm with the same
number of rounds under OSF/1 on an Alpha machine. (I recommend 16 rounds
for RC5a(64,*,*); the effective speed increased only by 75 %.)

Byte Order

You probably know that different processors have different byte orders. This
means that the four bytes of the 32-bit hexadecimal number

0x04030201

can have this order inside a machine, but they could also be 0x01020304, or
even 0x02010403 on PDP-11 computers. This makes clear that the left rotation
of this number by, say, 17 bits, produces a different value on each machine.
An important feature of RC5a is that this program tests the byte order, and
always writes the cipher in the byte order of Intel processors (the so-called
little-endian representation).
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The practical consequence is that RC5a-encrypted texts can be exchanged
between Intel computers and Sun workstations, for example. The reference
implementation in [RivRC5] does not use a binary input and output, which
means that it doesn’t solve the byte-order problem.

Cryptographic Details: Passphrase and Ciphering Mode

When entering a passphrase, the check passphrase() function currently only
verifies whether it contains both letters and numbers, and whether it is at least
six characters long. It is very easy to modify this function.

The ciphering mode is more interesting. If you set the macro SIMPLE CBC
(compiler switch -DSIMPLE CBC ) during the compilation, then rc5a works
in CBC mode. By default, however, it doesn’t XOR the plaintext with the
last ciphertext block, but instead carries two 32-bit words, CBC A and CBC B,
along in parallel for the encryption. In every ciphering step, CBC A is increased
by the left half ciphertext block rotated, and CBC B is decreased by the right
half ciphertext block rotated. The rotation amounts are determined from the
right or left plaintext half blocks, respectively:

CBC_A += ROTL(A,B0)
CBC_B -= ROTR(B,A0)

(B0, A0 are the plaintext half blocks.) Admittedly, this is a willful ciphering
mode and very much tailored to RC5. But I haven’t discovered a vulnerability
yet. In the event that you need a self-synchronizing mode, you can convert
‘+ =’ and ‘− =’ into simple equal signs, while still using a novel type of
mode (meanwhile I’m doubtful of such experiments, but keep the mode for
compatibility reasons).

If you want to use RC5 instead of RC5a, you simply set

#define KEYBOX_BITS 0

to make each keybox consist of one single element only, and RC5a will turn
into RC5. A good compiler will then create a code that’s just as short as if you
compiled RC5 directly. The use of RC5a won’t have measurable performance
losses anyway.
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The Header Structure

The CBC mode requires a random initialization vector that can be accom-
modated in a header. I used this in RC5a for building in a checksum (as
described in Section 5.1.3) and the version number in this header. Again, this
is programmed a little willfully:

The header of an encrypted file consists of six plaintext blocks (i.e., 48 bytes).
The first four blocks are random (more about this in a minute); the fifth block
contains the version and release numbers (the version in half block A and the
release in B); and the sixth block contains a checksum.

The first four blocks are filled in the machine-dependent function make
random(). I use the output of the UNIX command ps with those options that
list the largest amount of information about all processes running in the system
(start time, process number, addresses, owners, states, etc.). Even if you are the
only user of a UNIX system, many processes can be active so that the output
of the command cannot be predicted. Though the execution of the command
costs some time, I didn’t find this to be a disturbance.

The make random() function compresses a long field, B0...n, to four blocks,
F0...3, by the formula

Fk% 4 = Fk% 4 ⊕ A
A = A ⊕ (Bk <<< A)

where k%4 is the divisional remainder when dividing k by 4, Bk is a 32-bit
word from the field (the output of ps), and A is a 32-bit word. Neither A nor
F is initialized.

The background is a sufficiently strong mixing of the bits of B. Careful cryptog-
raphers would use a hash function at this point, but I think that’s just introducing
unnecessary overhead. The computation of the checksum is just as easy (see
the check head() function). Its main purpose is also to provide a sufficiently
probable pretest for a password rather than cryptographic security—and it does
meet this requirement.

The header is encrypted in ECB mode. During the decryption, RC5a first checks
the checksum and then the version and release numbers. In the event that the
ciphering mode or the algorithm change, then future versions should be able
to decrypt all previous versions based on the version and release numbers. It
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might even help to increase the security by simply decrypting and subsequently
encrypting with the same program.

Padding

RC5a pads the last block, as described in Section 5.1.2, using a simple ‘count
byte’ at the end. The fact that it might append up to eight bytes doesn’t matter
in view of a 48-byte header.

A Treacherous Friend: Variable Number of Rounds

Taking a closer look at the program will reveal that RC5a already comes in
Version 2.0. This is because I discarded Version 1.0 (which implemented ‘only’
RC5, by the way) pretty soon. The main reason was a variable number of
rounds, for example, depending on the last ciphertext block. I thought back
then that it would be particularly secure, because cryptanalysts usually focus
on algorithms with constant numbers of rounds. As it happens, variable numbers
of rounds are actually a welcome vulnerability for cryptanalysts.

Suppose we know a few plaintext–ciphertext pairs, and that the ECB mode
is used for encryption, for the sake of simplicity. When encrypting in step
k with r rounds, and then later on the same plaintext in step k′ with r + 1
rounds (which is known to the cryptanalyst), then he knows the input for the
last round in step k′: the ciphertext from step k. We saw in Section 5.4.2 how
the one-round RC5 can be broken.

In CBC mode, though the encryption of identical plaintexts in successive steps
is very improbable, it is better, and we don’t have to worry about these types
of attacks. This is why I recommend a constant number of rounds. You can
use RC5a in ECB mode, too (it just takes a simple change to the program).

7.7 Bottom Line

Hopefully you have realized that you have to look behind the scenes in cryp-
tographic software (as opposed to other much praised, colorful and easy-to-use
applications). I realize that this is diametrically against the current trend. How-
ever, unless we do a sound evaluation, the probability to get snake oil is simply
too high: products that make bizarre pseudo-scientific claims of amazing new
breakthroughs in technology are almost certainly snake oil. I haven’t found a
doable way out of this situation. Vendors of poor software should be pilloried,
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and users should be made aware of the risks and damages incurred. But try to
get a security person to admit that vulnerabilities in their software have been
exploited.

We have only dealt with a tiny part of existing software in this chapter. I doubt
whether the evaluation of the most important programs would even fit into one
book. But I’m sure you saw the things I wanted to make a point of.

Among the programs discussed here, SSH is probably the best in terms of
user friendliness, security, and functionality. That doesn’t hurt PGP, though: it
was the first really popular cryptographic program, offered users all over the
world security across all operating systems, and even had an impact on political
affairs. It is still unprecedented in its field—the exchange of secure email.

What’s missing is perhaps the most important and best free cryptography soft-
ware: OpenSSL. It can be used both as a library for C programs and in scripts
thanks to its command-line interface. The reason I mention this thoroughly
tested and very secure software only in this section is very simple: there is an
excellent book on it, namely Secure Programming Cookbook for C and C++
[ViegaMess]. Although it is a cookbook for programmers, as the title suggests,
it belongs on your bookshelf, just as does [FergSchnPract], if you want to
design on your own.

Finally, I spare you a discussion of snake-oil products. The cryptanalysis of
such programs is rather an issue that belongs to Chapters 2 and 3, i.e., historic
cryptography.



Chapter 8

Cryptology, Politics,
and Business

We arrive at the end of this book and get back to its beginning: what role does
cryptology play today and in the future? We know more about this fascinating
field than we did at the beginning. So we can be more specific and try to
propose solutions to the problems.

8.1 The End of the Crypto-Monopoly

When our notion of values was essentially connected to material goods, it
was primarily a matter of protecting them against theft and destruction. Our
entire security technology and laws are still oriented to this: locks, doors,
alarm systems, estate regulations, deed registrations, and so on. In contrast,
the protection of knowledge, such as by patents or copyrights, is much more
complicated.

Really sensitive information that had to be kept secret was in the hands of
diplomats, intelligence agencies, and militaries. No wonder these were the home
of cryptology. According to [KahnCode], who consulted many militaries and
members of intelligence agencies, cryptanalysis helped win more information
about the adversary than the entire espionage activities in World War II. Better
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yet, cryptanalysis was decisive for the outcome of the war. Some examples
from this era and the time after show this rather dramatically.

• The landing of the allied forces in World War II would have been delayed
considerably if the Enigma code of the submarines hadn’t been broken.
It is assumed that nuclear bombs would have fallen over Europe.

• The battle near the Midway Islands stopped the Japanese in the Pacific.
This battle would surely have taken a different turn if the Japanese had
introduced their new secret code in May 1942, as planned, and not in
June—the battle took place at the beginning of June. Cryptanalysis had
an important part in the success of the USA.

• The German Wehrmacht threatened to land in Great Britain. After a few
disasters for the British navy, which indicated the fact that the German
radio reconnaissance listened in on them, the code was finally changed,
and the tide turned suddenly.

• The fall of a French fortress in Vietnam was believed to have happened
because of cryptology.

You can find a large number of historical events in the book by Kahn mentioned
above.

Cryptology was once a power factor and a monopoly of governments. This
changed quickly when a demand for secrecy of information emerged among
firms and then increasingly among individuals. The turning point in public
cryptological research was probably triggered by the publication of DES in
the mid-1970s. The entire matter may really have been caused by a misunder-
standing between the NSA and the NIST (see Section 4.3.1). Nevertheless, the
demand for a generally accessible secure method had become urgent by the
development of computer technology anyway. In cryptological research work
from those times I know about, DES (in addition to asymmetric methods)
played an extraordinary role. Finally, a good algorithm had become known and
could be analyzed.

Meanwhile, cryptology has become an everyday matter for everybody. It will
hardly protect anybody from business-secret theft. The most you can do is to
sue the thief if you find him. By then it is normally too late in our fast-paced
world. Interception-proof transmission channels will remain exceptional cases,
if only for cost reasons. Furthermore, theft of information can seldom be proved.
What remains is cryptography as a means of protecting against theft. The way
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toward a phase where protection of information will be a matter of course will
probably be painful, but we have to go this way. Books like [SchnFear] show
how difficult the entire security issue is, but this would go beyond the scope
and volume of this book.

8.2 The Role of Politics Today

We don’t know what non-public cryptological research looked like in the past
and what it looks like today. The figures about the NSA mentioned at the end
of Section 3.1 suggest that a considerable part of this research is still secret.
We also don’t know what the NSA can decrypt and how fast. There isn’t even
more than speculation about the computer technology it uses.

But I’m convinced that even the NSA cannot eavesdrop everything. It may be
in a position to capture and evaluate communications. To underpin this daring
statement, I will deviate briefly from cryptology to the question: how real is
the anonymous threat by national intelligence agencies really?

8.2.1 A Look Into the World of Intelligence Agencies

This heading intentionally sounds a bit sensationalistic: I think this section is
important and I want to draw the attention of many readers to it. Some things
discussed in the following are based on speculation, for a well-known reason:
since I don’t work for an intelligence agency, I know only a little for sure. If
I worked for such an agency, I would also know its methods (which is by no
means the same). But then, I wouldn’t be allowed to write about it in this book.

Anyhow, the sure facts, paired with obvious assumptions and the knowledge
of technical possibilities, render a scary picture. This section alone would be
enough motivation to write a book about cryptology. If you want to know
more, I recommend you to read the book [WinkSpy] written by the former
NSA employee Ira Winkler, who was out on spying assignments for firms to
find security holes. In Section 1.1 of his book, he describes how an intelligence
agency works, which is much more prosaic than Joe Average might think—and
yet much more dangerous than we want to believe. The following is targeted
in exactly this direction.

Traffic Analysis

As mentioned earlier, national intelligence agencies are often not interested
in what a message contains, but who sent the message to whom and when.
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The evaluation of this type of information is referred to as traffic analysis.
The article by Schwartz and Wood, (on our Web site www.wileyeurope.com/
go/cryptology) is very illuminating in this respect (see also the end of Section
7.1.3). This article was written in 1992 when the Internet was ‘small’. The
authors collected data crossing 15 mail nodes over a period of two months.
At the end, they had about 1.2 million emails of about 50 000 users on 17 000
computers in 31 countries. The significant growth of information happened in
the first few days; the daily information yield then dropped by a factor of 10.
Based on their analysis, the authors could clearly make out single groups of
interest without previously having searched for specific topics. Also, it didn’t
matter if one email user belonged to several such groups.

The remarkable thing about this analysis is that Schwartz and Wood weren’t
interested in the email contents at all; they only acquired who mailed to whom
how often.

You might think: ‘So what, let the NSA know who I converse with!’ Unfortu-
nately, things are not that harmless. I will show this in another example.

There were once ‘eternal phone cards’ that reloaded themselves after use. Early
in 1997, a case reported in Dresden had it that three users of such cards were
busted while still in the phone booth. Of course, nobody would tell us how the
trap the three fell into worked. But this example shows that card phones must
be somehow online-connected to some center. It is also known that each phone
card has a unique serial number, and that this number is reported to a center
(together with all connection data) upon each call.

From the purely technical point of view, we have to assume that the owner of
a phone card, though initially anonymous, can be identified perhaps after 20
or fewer calls made with this card thanks to his calling structure, at least in
theory. This also means that he can be allocated to calls he conducted earlier.
If this type of information harvesting does actually take place (I’m afraid it
does), then it will certainly not become public in the next ten years.

More speculation: owners of cell phones tell their networks pretty good move-
ment patterns, and the data acquired are forwarded to the center at intervals
of about 10 to 15 minutes. Theoretically, cell phones would even allow some-
body to do a highly precise radio position finding, though it appears to be too
expensive yet, at least for the network operators. However, based on the rough
radio cells, it is often possible to clearly determine when you have used which
railway route or highway. Together with other information about you, this can
produce your travel destination or the length of your trip.
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Though network operators say that movement patterns are not yet acquired
comprehensively, and that they delete the connection data after 80 days at the
latest, we don’t know what copy is meant. Once gathered without the users’
consent, this type of data remains available forever. If what the Swiss paper Son-
ntagszeitung once wrote is true, then the Swiss police logged the movements of
about one million cell phone users over a half-year period. In the name of the
fight against terror, this type of data acquisition is likely to be legally enforced
in Europe. The discussion about the technical feasibility has already begun.

Within the scope of so-called locally based services (LBS) of cell phone
providers, the business world even wishes for an exact location finding of all
users to be able to inform them of their special offers in time. Since October 1,
2001, a law in the USA requires providers to locate each handset two-thirds of
the time to a 125-m accuracy. Data privacy laws in the USA are less restrictive
than they are in Europe in general: if you give your personal data to a merchant
(e.g., when acquiring a customer card), then the merchant owns your data, and
he can sell it or do whatever he deems fit.

With the technical means available today and in the near future, you can collect
incredible amounts of interesting information easily to keep ‘in stock’. At the
appropriate time (when the person concerned becomes of interest or falls out
of favor for some reason or other), ‘one’ can fall back on it. Research work on
national intelligence agencies showed that this takes only little personnel cost.
It is estimated to amount to a few dozen or hundred employees per country.

Imagine an investigator telling you where you had been at a certain time after
many years. You don’t even remember yourself, and threw out your appoint-
ment book years ago. Greetings from Orwell.

You think this is gray theory? The text of the Telecommunications Surveil-
lance Directive (Fernmeldeverkehr-Überwachungs-Verordnung; FÜV) of May
18, 1995, valid in Germany, is primarily about traffic analysis of monitored sub-
scriber lines (including cell phones). However, considering the large variety of
information to be supplied, the text suggests that authorized government agen-
cies have access to connection details, too. There is currently a fierce dispute
about the passing on of position-finding information to government agencies.

There is more evidence on the evaluation of the phone traffic mentioned above.
In 1997, a reference application of a supercomputer concerned the so-called
call records analysis in the telecommunications area, which is nothing but traf-
fic analysis. More specifically, it relates to two Sun Ultrasparc 10000s with
64 processors each and a total disk capacity of 8.5 Tbytes (i.e., 8500 Gbytes)
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and 56-Gbyte memory. A Sun representative argued that this gigantic hard-
ware deployment was required, for example, to grant discounts for preferred
phone numbers. Well, businesses seem to do everything to keep their customers
happy. By the way, this is possible thanks to the thorough digitalization of the
telephone network.

Similar computers were produced by other manufacturers, including DEC, SGI,
IBM, and Hewlett-Packard. And we are talking only of the civilian area here.

The NCR corporation shipped a data-warehouse application to Mannesmann;
that’s a huge database with a capacity of about 1.2 Tbytes [InfWeek]. To my
knowledge, the biggest data warehouse with a data capacity of 24 Tbytes is
in use at Wal-Mart. How these data are evaluated is not disclosed, ‘because
data warehousing allows you to be very close to the core of corporate strategy’
[InfWeek]. It is less likely to know whether or not a national intelligence agency
is granted access.

The bad thing about traffic analysis is that we cannot prevent it. Schwartz and
Wood recommend the ‘ethical use’ of such algorithms. No comment. Also, so-
called mix servers that anonymize Web access and have been used successfully
(see anon.inf.tu-dresden.de) catch only a small part of our broad data
trace and are hardly used, compared with the usual Web traffic. Meanwhile, it
is believed that mix servers supply all data upon the request of investigative
agencies.

Noticed something about the years mentioned? Everything is history! Today,
in the name of the fight against terror, data about us that accrue somehow
somewhere are openly requested to be made available. Including in Germany,
the homeland of data privacy. The technical possibilities have greatly evolved,
and meanwhile people have started to publicly become aware of the problem.
I ask myself whether it isn’t already too late. Read about the megalomaniac
project named ‘Information Awareness Office’ (IAO) in Wikipedia (and is
included on the Web site under txt/policy/Information Awareness Office.html).
You will be amazed just how hungry for data they all are out there. This project,
formerly called TIA (Total Information Awareness) and probably going by the
name of Tangram in the near future, tries to acquire simply everything about
all citizens of all countries to (initially) support the fight against terrorism.

Topic Analysis

Traffic analysis is still a current topic, but there are meanwhile much better
surveillance methods. Traffic is out, topic is in—contents are already being



8.2. The Role of Politics Today 465

acquired automatically. Of course, this doesn’t mean that computers have
already evolved to being able to understand contents, but they can classify
them automatically. One of the most important technologies in this respect
seems to be the N-gram Analysis developed and patented by the NSA. Com-
puters can use this method to quickly sort large quantities (several million)
of messages by author, language, content, writing style, and so on. There is
no longer a programmer at his desk wracking his brain about sorting criteria.
For example, the computer is fed with 100 emails from a range of interesting
topics or circle of authors, and then filters ‘suspect’ emails all on its own. You
see how naı̈ve it is to believe that intelligence agencies’ computers could be
overfed by appending words like ‘coke’ or ‘bomb-building instructions’. The
remarkable thing is how insensitive the N-gram Analysis is to errors: according
to the NSA research workgroup, about 10 % to 15 % of all characters can be
faulty. You can easily imagine where this is important: in writing recognition
for automatic evaluation of telefaxes.

This technique is also doubtful in that it has been commercially available since
1994. Businesses are also highly interested in classifying by contents. I knew
a product (Xtra Secure, www.thunderstore.com; which didn’t use N-gram
Analysis though) that assigned security not only by access privileges, but also
by the contents of files or emails. This means that a trainee wouldn’t have
unauthorized access to sensitive data even if the administrator forgot to set his
access privileges right. Or she can read files, but cannot pack them into email
and send them to somebody. This is major progress, but the same technique
can be used to achieve a new quality of corporate internal surveillance.

An Octopus by the Name of Echelon

Yet another sensational heading—and one that has a good reason, because we
are talking of widely proven findings about global interception activities.

The technically most interesting forms of eavesdropping by major Western
intelligence agencies appeared to have arranged themselves in the strictly secret
worldwide espionage network known as the Echelon system. This system
appears to mainly work out of one single gigantic power center—the NSA, as
you might have guessed.

There is quite a lot of information on Echelon on the Internet. One interest-
ing starting point is to launch your favorite search engine to look for +NSA
+UKUSA (in this spelling). Another source of information is looking for ‘Ech-
elon’ in Wikipedia. It is rewarding. However, a large amount of information
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seems to be from the same source: the book Secret Power by Nicky Hager,
which appeared in New Zealand in 1996 [Hager]. It must have been shocking
for the intelligence agencies concerned to see the word ‘Echelon’ printed at all
(ask around who knows it in Germany). When Hager’s book appeared, intel-
ligence agencies were said to have held crisis meetings where they considered
withdrawing the book from the market right away. Eventually, it was found
that this would have given the book even more publicity (it was reprinted
in the same year, by the way). Figure 8.1 shows a rough overview of the
system.

The Echelon system is organized and realized by the NSA (National Security
Agency). It serves for worldwide surveillance of email, fax, telex, telephone, cell
phone, and other wireline and wireless communication types.

Echelon monitors primarily non-military targets: governments, organizations, firms,
and individuals. From the entire communications (including phone calls) eaves-
dropped, the system filters and sorts interesting messages automatically, which may
then be classified manually, and finally archived.

Echelon is implemented within the UKUSA alliance, which is an intelligence agen-
cies’ alliance, and its members include the USA (NSA), Canada (CSE), Great
Britain (GCHQ), Australia (DSD), and New Zealand (GCSB). The system has
interception stations in other countries, such as Germany, Japan, South Korea,
and Turkey. There are stations even in countries like China, but they won’t profit
much from the information won there. Every member country selects by the cri-
teria of the others concurrently. The five UKUSA organizations are the largest
and least known intelligence agencies in their own countries. But the NSA is
behind all of them. It is believed to be the only one that has access to all infor-
mation.

Echelon includes a large number of subsystems, which are known only in part:

• Interception stations for international communication satellites (particularly
for the US Intelsat series).

• Interception stations for local message satellites.

• Relay stations for espionage satellites.

• A system for wiretapping radio-relay paths (terrestrial and from orbit), which
concerns most phone connections.

Figure 8.1: A few basic facts on the Echelon system.
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• Dozens of listening and position-finding posts eavesdrop the short- and long-
range radio traffic (mobile radio, marine radio, microwave radio, diplomatic
communications).

• Lines are said to be tapped directly, but little is known (see below).

There are five stations to eavesdrop Intelsat communications:

• Near Morwenstow in Cornwall (Great Britain) for the Atlantic, Europe, and
the Indian Ocean.

• An NSA station near Sugar Grove, about 250 km south of Washington, DC,
for communications of Atlantic satellites to North and South America.

• An NSA station in Yakima in the state of Washington, 200 km south of
Seattle, for the Pacific and the Far East.

• Waihopai in New Zealand (was important in the Falkland and Vietnam wars).

• Geraldton in Western Australia for the rest of the Pacific region.

A station of the British GCHQ in Hong Kong disappeared in time before the city
came to China.

Local satellites are eavesdropped, among others, in:

• Menwith Hill in northern England (the largest station with 22 satellite termi-
nals; played an important role in the Gulf War).

• Shoal Bay near Darwin in northern Australia (for Indonesia communications).

• Leitrim south of Ottawa in Canada (for Latin America).

• Misawa in northern Japan.

The known NSA station in Bad Aibling near Rosenheim in southern Germany pre-
sumably served to receive signals from (and control) ground-level flying espionage
satellites which, in turn, scan the radio and relay traffic in western Europe (?). The
white balloons are intended to hide the direction of the antennas, by the way.

It is estimated that there is a total of about 120 active ground stations. An analysis of
the antennas suggested that about 40 stations wiretap the message communications

Figure 8.1: (continued )
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in Western countries, 50 additional stations wiretap the countries of the former
Soviet Union, and the remaining 30 stations serve for addressing their own espi-
onage satellites.

An example of direct wiretapping of lines is an anonymous brick building in Lon-
don (8 Palmer Street), which eavesdrops on all telexes within the city, both inbound
and outbound. The existence of this station became known because a former GCHQ
employee broke his silence and said to the Observer : ‘This has got nothing to do
with security. One simply mustn’t listen in on every telex. And they replay every-
thing: embassies, businesses, even birthday greetings—they record everything. And
they filter all that stuff with the dictionary.’

Figure 8.1: (continued )

Whether the largest station in Europe at Gablingen with 100-m high antenna
grids with a diameter of 300 m (where huge computer equipment on twelve
underground floors is said to be working) also belongs to Echelon is not known.

Even embassies are utilized for data espionage. In 1980 (!), the existence of an
‘extraordinarily clever technology’ that fills an entire embassy room and which
can be used to track any arbitrary phone conversation in the town became
known.

Every UKUSA intelligence agency filters concurrently for the other agencies,
but again: the NSA seems to be the only one which can access all, really all
information. It also accounts for the largest part of hardware and know-how
within the alliance.

These details are really ‘hot’. Even politicians have been fooled by intelligence
agencies. For example, David Lange, New Zealand’s Prime Minister from 1984
to 1989, calls it a scandal in the foreword to Secret Power to have been told so
little about the things described in the book. When New Zealand declared itself
a non-nuclear weapon zone in 1984, it was officially banned from the UKUSA
alliance. In reality, however, all listening posts continued working happily and
supplied the NSA with strategic information. As a sideline, the UKUSA alliance
was founded in 1948, and its existence is denied, according to Hager.

You are probably asking yourself how Hager got hold of that kind of informa-
tion. He says how in his book. For example, he compared the internal telephone
directory of the Department of Defense with the official list of employees. All
the people not listed there must be working for an intelligence agency. The
author did more than ten years of research work and interviewed about 50
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ex-employees of intelligence agencies. In his book, he describes the structure
and top echelon of New Zealand’s GCSB (which is even less known there than
the NSA is in Germany), including the layout of rooms in the headquarters and
a few interception stations. You actually get the impression that an intelligence
agency was spied out by use of intelligence-agency methods.

There was something about these issues in the media at regular intervals, and
an EU Echelon Committee had even been founded to especially deal with
commercial and industrial espionage (see further below). They had hardly any
doubt of the existence of this interception system, they even knew a couple of
technical possibilities, and they classified the role of cryptography as a ‘defense
measure’. On the Web site to this book, read txt/policy, which is a report by
Gerhard Schmid to the European Parliament on this issue, or the official report,
which is very detailed.

It has become clear meanwhile that even Echelon is just one of many activities
concentrated on global communications traffic. In mid-2006, for example, it
transpired that the NSA monitors the network traffic independently without the
assistance of the telecom groups: up to 16 servers in every interception unit
analyze data in the amount of up to 2 gigabytes per second. I spare myself the
details and sources, since there is plenty of material on these issues on the Net.
Furthermore, such reports will have been replaced by more spectacular ones by
the time this book goes to print. Let’s rather talk about the theory of how such
data volumes can be processed and what role cryptology plays or can play.

Stifling the Information Flood?

The most frequent response to my Echelon narration is this: ‘Well, that can
only concern a very small part of messages; the NSA can’t possibly replay or
evaluate everything.’ This seems logical in view of the huge and continually
growing data traffic.

Sure, the rosy years when it was possible to control a large part of all messages
are over. But it would be dangerous to underestimate the technical possibili-
ties of intelligence agencies. The so-called STOA report entitled ‘Interception
Capabilities 2000’ of the EU gives a highly interesting insight. However, it is
140 Kb long and not easy to read. This is probably why it is not well known.
Much information contained in this chapter originates from this report.

Interception is comprised of two steps: one, wiretapping the data line; and
two, evaluating the data stream. As it happens, the technologies in both fields
are further advanced than is generally assumed. Figure 8.2 shows examples of
hardware used but long outdated.
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• A firm called AST offers SONET OC-48 computers; it has a module which
can record and analyze a data stream of about 2.5 gigabits per second. A
memory of 48 Gbytes of RAM ensures the required buffering as the load
changes. This hardware feeds a so-called trail mapper, which automati-
cally recognizes and processes all common US and EU standards (including
ATM).

• The FDF (Fast Data Finder) chip by TRW supports topic analysis and can
filter several gigabytes of data daily based on ten thousands of interest patterns
in online operation.

• The Model 132 by AST is a voice-channel demultiplexer that can scan 56 700
phone channels in parallel, and pick out 3000 arbitrary ones for further
evaluation.

• The firm IDEAS offers systems the size of credit cards that fit in a laptop
and can evaluate eight cell phone channels in parallel (probably including
decryption). Meanwhile that’s outdated, too. Special laptops are believed to
be able to scan all active cell phones in the environment automatically for
‘interesting’ numbers.

Figure 8.2: Examples of hardware that can be used for wiretapping data
channels.

That’s not all, of course. It is known that radio-relay paths, satellites, and
submarine cables are also wiretapped. We shouldn’t assume that the data traffic
of the entire Internet would be too big a mouthful for the NSA: a large part of
the international communication runs over eight nodes where the interception
capacity is sufficient, at least in theory.

We already know a little about the second interception level: topic and traffic
analyses are extensively used in any event. The data traffic is certainly filtered
at several levels to master the data flood. Former NSA Director Studeman
confirmed this and commented on the monitoring of fast data traffic: ‘A cer-
tain system outputs one million messages for further processing within half an
hour, for example. Filters leave 6500, and then maybe 1000 really interesting
ones. Ten of these messages are selected, and one single report is written at the
end.’ This is roughly how one can think of the monitoring of the Internet. In
Great Britain, a 1-terabyte database stores the entire Usenet postings of the past
90 days for further evaluation. Important Web sites are continually checked for
changes. For example, the popular site www.jya.com has been visited by the
NSA every morning.
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As a sideline, the German Internet providers set up the central node DE-CIX
intended for routing about 80 % of the data traffic in Frankfurt. And in Frankfurt
of all places, where the NSA once rented the main post office to wiretap a
central switching node of the telephone network (the official tenant was the
BND; see [SchHad]).

However, illegal interception activities no longer appear to be the backbone
of national intelligence agencies. It is estimated that 80 % of the informa-
tion is from publicly accessible sources. Our privacy shrinks, and we can’t
prevent it even with the best data protection. More about this further below.
The information edge of the national intelligence agencies in general and the
NSA in particular might be on account of their capabilities for evaluating this
information better than anybody else.

An unknown percentage of interesting messages are surely missed by systems
like the Echelon. But as long as we don’t know better we have to assume that
potentially no phone conversation, no fax, no data transmission over intercon-
tinental networks (e.g., the Internet), and certainly no email is secure against
this system. Though the encryption of email doesn’t prevent traffic analysis, it
does prevent a more detailed analysis of the content (if it is good).

What Can’t Be Done

To spare you sleepless nights (though it gets worse!), I list a few problems the
NSA doesn’t seem to be able to solve below.

• While the evaluation of non-encrypted emails and printed faxes (using
OCR software for writing recognition) is very easy, handwriting recogni-
tion seems to cause big headaches. One reason might be that bad hand-
writing is deciphered in context, and computers don’t understand contexts.

• Voice recognition is even harder. When a Berliner and a Bavarian talk on
the phone they’ll probably have problems the first time. This is true more
so for computers which don’t even know what dialect and context people
are talking in. Many unclearly articulated words can eventually be under-
stood only in context. Computers don’t know how to do this. It is believed
that several research contracts assigned by the NSA to solve this problem
have failed. One can conclude from this that listening in on spoken tele-
phone traffic is still hard physical work, requiring enormous intelligence
manpower input, despite digitalization. What makes you worry though is
the article on the Oasis computer program, which is believed to trans-
form voice to text. You find more about it in txt/policy/oasis.txt on the
Web site.
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• It is believed that there is already some sort of automatic voice recog-
nition. But according to vendors of biometric systems, they still have a
high error rate. In any event, intense research work is done in this field.
In my opinion, it is conceivable that small Webcams in telephone booths
for (still also unreliable) face recognition could identify a person more
or less reliably, combined with voice recognition, in the near future.

• Naturally, the NSA cannot read emails encrypted in PGP or GnuPG if
you’ve properly protected your private key, unless the NSA already has
quantum computers, which I don’t believe. In a real-world case, it was
much easier to get hold of the content of PGP mail: a hardware keylogger
had been built into the keyboard of the person concerned; it revealed the
passphrase that protected the private key.

What’s All This For?

Though this section almost goes beyond the scope and volume of this book,
we should ask ourselves what the motives are behind these obviously highly
important activities.

The espionage targets that became known originally related to the Cold War,
as you might have expected. For example, the radio traffic of Soviet trawlers
and Soviet Antarctic stations were located and tapped out of New Zealand. All
information about the French nuclear tests in the South Pacific was tracked in
detail. This already touched strategic military information about allies. National
intelligence agencies also provide the business world with important informa-
tion from industrial espionage. For example, the New Zealand agency GCSB is
said to have spied on the Japanese negotiating meat prices in the early 1990s.
The financial gain from this information was said to have been so high it might
have paid for New Zealand’s Tangimoana station. The STOA report mentions a
1.2-billion-dollar contract for the SIVAM surveillance system for the Brazilian
rainforest. In this case, the NSA wiretapped phone calls between Thomson-
CSF and Brazil in 1994, and the US corporation Raytheon was eventually
awarded the contract (since it knew its competitor’s price offers). Incidentally,
Raytheon was the supplier of important equipment for Echelon ground stations.
The European Airbus Consortium lost a 6-billion-dollar contract for Saudi Ara-
bia to McDonnell Douglas since the NSA had stored all phone calls and faxes
between the negotiating parties via wiretapped telephone satellite.

As expected, there has also been abuse. For example, Margaret Thatcher had
two unpopular ministers tailed by the Canadian intelligence agency CSE (to
make sure the British GCHQ would officially remain clean in the event it was
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disclosed). It won’t take you by surprise to hear that organizations such as
Amnesty International are under surveillance by the UKUSA agencies.

Without question, the use of intelligence information is extremely important for
the business world. This can even be behind an apparent investigation of illegal
weapon trafficking (Nicky Hager mentions such an example). But even if this
kind of ‘intelligence service’ is really of national interest because it’s good for
national business, there is a fly in the ointment: only the big global corporations
have access to these sources, which necessarily promotes monopolization. This
is presumably the scope of the activities of the small but not unimportant US
FinCEN intelligence agency, which is believed to be responsible for insufficient
encryption of financial transactions.

8.2.2 Privacy Shrinks

Joe Average sees the biggest threat in that potentially everybody can be spied
on in view of current technologies, even in arrears, as opposed to old spy
thrillers. Intelligence agencies collect data illegally and keep it in stock, and
the storage and (continually improving) evaluation of these data are no longer
a problem today. Expect to be asked in the year 2011 what you did on March
13, 2008 at about 15.00 hours in front of 27 Garden Street in Forest Town.
You might have long forgotten where this place was at all. Schneier [SchnLie]
even thinks that in a few generations from now we will record our entire lives,
and that everybody not carrying his ‘recorder’ on him will be a suspect. I am
slowly starting to think so, too.

Some strategists may think the transparent humans from Orwell’s book 1984
will become feasible in the foreseeable future. They may find this possibility
too enticing to let even the slightest scruple spring up. This is evidenced by
agreements on a global ‘interception system’ between the EU and the FBI.
Specifically, a resolution was passed at a conference of the European justice
and home ministers in Brussels at the end of November 1993. Among other
things, this resolution foresees an expert group to define single steps in the con-
struction of this interception system. A declaration made in 1994, but publicized
only in 1996, requests that telecommunication providers decrypt all messages
for intelligence agencies. And not only that: they are to supply all connection
data (including failed dial attempts), and decode and decompress all messages!
In doing this, network providers have to ensure that their customers don’t know
anything about these activities. German readers will recall the Telecommunica-
tions Surveillance Directive mentioned earlier. You find more details in the file



474 8. Cryptology, Politics, and Business

feb97 state.txt on the Web site. Countries not participating in such agreements
are involuntarily eavesdropped, as already happens with the Echelon system.

Outdated Ideas

What I have said above underpins the cliché of almighty intelligence agencies.
While they certainly have comprehensive access to your data, there are many
other organizations that know a lot about you. For example, do you have a
customer card for your favorite department store? It might not worry you if
this store knows that you bought a huge pack of diapers for 14.95 pounds at
11.47 on September 23. But the more buying transactions are recorded, the
more information can be won about you.

• Do you prefer hot sales or brands? Do you respond to price reductions?
Do you look for a good price–performance ratio?

• Do you pick articles from the front shelf, or do you discover ‘hid-
den’ stuff?

• Do you buy regularly or on certain days of the month? (Aha, that’s
probably when you get your paycheck.)

• What books, perfumes, and clothes do you prefer?

• Has your buying pattern changed over the past few years?

You see that appropriate software can help build a personality image from
‘totally harmless’ buying activities. You will now better understand why you
get discounts on your customer card. I recall the data harvesting at Wal-Mart
mentioned above, that comprises at least 24 TB. This is 24 times more than all
postings in Usenets (newsgroups) of the past 90 days. (By the way, these Usenet
postings are stored in Great Britain and are presumably regularly evaluated by
the GCHQ [Wobghm].)

If you now think that this can’t happen in Germany, believing that things like
this aren’t allowed, I have to disappoint you. Apart from the fact that infor-
mation has no national borders anymore, I want to briefly tell you something
about a cashier slip I got in a renowned clothing store in March 2001. I paid
with my bank card and accidentally signed that the firm is authorized to ask
my bank for my name and address in case the debit cannot be honored. That’s
all right. But then there was some small print: ‘I agree that in the event of
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dishonoring the bill, then this fact may be added to a bad-credit file and trans-
ferred to other companies who also use this debit system.’ We aren’t talking
about trade-protection associations here! It might be enough for my account to
just happen to be in the red due to a fraudulent access when the store tries to
debit this amount. My name will then be ‘going around’, while I haven’t done
anything wrong. Such information cannot be ‘undone’.

The technical possibilities already available today go far beyond our imagi-
nation. For example, the Racal systems were introduced at a price of 2000
pounds per unit in Great Britain in 1994. These are cameras that acquire and
pass on vehicle license plates automatically. These systems form the Ring of
Steel around London: no single car can enter or leave London without being
reported immediately. These activities had originally been motivated by the
tracking down of Northern Irish terrorists. The telephone surveillance in the
EU is said to be on account of crime prevention.

Great Britain seems to be at the front when it comes to the surveillance of
individuals. Statistics have it that every Londoner is acquired and stored in 300
cameras per day on average. So-called stroboscopic cameras (like the Danish
Jai camera, for example) can acquire several hundred faces in a few seconds.
Though face recognition is still relatively flawed, it will perhaps help to filter
suspect persons in a crowded stadium much faster than humans could in the
future. NeuroMetric, a firm based in Florida, says it can compare 20 faces
against a database with 50 million records per second. Luckily, there is still
a big gap between wish and reality: the error rate in face recognition in an
outdoor area can be 50 %.

Another characteristic that could be used for identification is the human gait,
as we know from the section on biometrics. Already today, microphones can
be integrated in chips, directional microphones can listen in on conversations
from a distance of hundreds of meters, and relatively cheap laser microphones
can make you understand conversations behind window panes from several
kilometers away. Does anything remain private?

Almost nothing. However, the methods mentioned last show only what can be
achieved using unlawful means. One has to know them, because data privacy
isn’t as well protected in all countries as it is in Germany. If you take a connecting
flight at London Heathrow airport, your face is likely to be stored, and who knows
where it will land next? Data privacy at home won’t help you much there.

But lawful means also help to continually create better and better profiles,
because the data track we leave behind grows continually wider. Whether you
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make a speech somewhere, or see a medical doctor, or get books from a lending
library, or pay for your purchases by bank card, or write letters to newspaper
editors—nothing will be lost, and some will even land on the Internet.

Personal data are increasingly managed by private organizations, often beyond
any control, because customer lists are corporate secrets. Nobody outside these
organizations knows what happens to these data (and whether some are illegally
sold). So let’s be matter-of-fact and limit ourselves to the discussion of technical
possibilities.

A security expert once said at a conference in 2000: ‘It’s correct that they know
all about you. It’s wrong to think they all cooperate.’ This is the current state
of affairs (in Germany!), but it might be totally different tomorrow. See Profes-
sor Cochrane’s homepage (www.labs.bt.com/library/cochrane/index.

htm). We won’t be permanently able to prevent a lot of personal data from
‘starting to walk’. The extent of the illegal address trade suggests what the
practice looks like. Trading with data is legal in other countries. In the USA,
individuals don’t own the data about themselves. They belong to the businesses
that collect them. A merchant might sell them. If you are interested in these
issues, I recommend the book Secrets and Lies by Bruce Schneier [SchnLie].

It seems that nobody actually knows how to handle these problems. The article
in txt/policy/globueberwachung.txt shows how fateful data gathering can be
when it falls into the wrong hands by using the example of Norwegian Jews in
World War II. On the other hand, we shouldn’t try to stubbornly ‘stonewall’,
but instead think of how to live in a world with meager privacy. Some protests
seem stilted. After all, car license plates are there for publicly showing who
a car belongs to. Is it really that bad if their registration is automated? Could
you prevent it? I don’t think so. We have to learn to accept it.

There is a much harder problem: our communications are increasingly elec-
tronic, which means that they can be stored forever, as opposed to the volatility
of traditional voice communication. A silly joke you mailed out to your pals
five years ago can all of a sudden make you a target in a terror investigation.
How do we handle this?

For one thing, I think there is plenty of catching up to be done. Also—an
issue that would easily make a separate chapter—we have to ask ourselves
how far the protection of information can or may be carried. The reason is
that, in contrast to material goods, the value of information doesn’t increase as
it becomes scarcer. Readers interested in this issue should read the fascinating
book [DRM]; it only appears to be dry reading matter at first.
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So this is the background on which we have to see the benefits of cryptography.
Cryptography should be a matter of fact for firms, and individuals should be
responsible for their own data protection. While politicians are still trying to set
up fortresses (‘the passing on of data is strictly forbidden’), practice undermines
the walls in several places.

These kinds of considerations spoil the joy about ‘revolutionary’ changes upon
the release of hard cryptography in some countries. In France, for example,
secure encryption is now also permitted to individuals. The nasty US export
regulations (limiting key lengths to 40 bits in export versions, with a few
exceptions) seem to have been removed. This is certainly a loss for eager
eavesdroppers. In the meantime, however, a large number of other possibilities
for espionage have emerged, and increasingly more insecure computer systems
can be cracked, some even automatically. Also, the pressure of the business
world to permit secure cryptography grew considerably in the 1990s. With
their restrictive export policies, the USA even harmed their own cryptographic
software manufacturers, because European (including German) manufacturers
meanwhile happily jumped into this ‘market gap’. We will get back to this
issue in Section 8.2.4.

8.2.3 Key Escrow

As mentioned in the last section, demands for more data protection in the busi-
ness world have increased strongly. Something has to be done. But influential
circles that appreciate the role of cryptology won’t have their power restricted
voluntarily. Zimmermann’s PGP slogan, ‘encryption for everybody’, must have
been a thorn in their sides back then.

On the other hand, politicians in many countries confirm that the protection
of secrets is necessary for individuals, too, because this is the only way the
information society will work. The bridge to overcome this conflict of interests
is referred to as key escrow. Everybody may encrypt, but the ‘government’
should be allowed to read it upon demand. It should be given the secret key
somehow. As usual in such matters, organized crime has been stated as the
reason for this key escrow. If we can’t get hold of the communications of
these criminals, so the argument goes, they will turn into a huge threat.

The consequence was a hefty discussion in many countries, including Germany.
People shouldn’t look only at their own countries. I recommend studying the
Crypto Law Surveys by Bert-Jaap Koops, which you find in the txt/policy/claw
1996.txt directory on the Web site. Which give an overview of the legal status
in many countries as of 1996. Compare this with the content of claw2001.txt!
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This is why key escrow continues to be utopia. We already saw this in the
discussion about the Clipper chip. Figure 8.3 lists some substantial arguments.

This kind of insight apparently made it all the way to the highest circles. The
wish for key escrow has certainly not disappeared, but when uninformed and
suspicious citizens eventually boycott e-commerce because of this, then that’s
beyond a joke. Law-abiding people suffer from key escrow (and use the new
media insufficiently, so they are not profitable for the future industry), while
criminals have no problem in bypassing the laws. That’s absurd.

It is more meaningful in my opinion to focus more on catastrophic insecurity
of software and hardware used currently, see, for example, the attack against
home banking described in Section 6.5. The consequential damage can hardly
be estimated!

Key escrow is wishful thinking and just fighting the symptoms. When it first
emerged, the telephone also opened up totally new options for criminals. Back
then, people used codewords to protect themselves from being eavesdropped.
This didn’t lead to banning the telephone, of course. As a sideline, a request
to submit codeword books and the ban on using own codebooks would have
corresponded to key escrow.

Nevertheless, there is a legal field of application for key escrow: internal cor-
porate use. Sensitive encrypted data need to be decrypted even if the key was
lost by carelessness, or in case of software or hardware failures. Furthermore,
the management of a corporation is entitled to check outgoing mails for confi-
dential data. But that’s a technical rather than a political problem and, as such,
doesn’t belong in this chapter.

Feasibility

A ban on secure cryptography becomes necessary. This is hard to control and
unacceptable for firms. No national key escrow is possible in international data
traffic.

Bypassing Potential

Cryptologically secure steganography (similar to subliminal channels for digital
signatures) will be developed and used. Algorithms implemented in hardware can
be slightly protected against key escrow by whitening. The use of secure algorithms
will be camouflaged in many different ways.

Figure 8.3: Arguments against key escrow.
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Risks Due to Abuse

A stolen ‘picklock’ (perhaps only after its generation, similar to eavesdropping on
the Clipper chip) is related to a much smaller risk for the investigators, compared
with the theft of other information. The risk of corruption and bribing is very high.

Both individuals and businesses are almost defenseless in the event of a political
overthrow.

Relativity

Key escrow is expensive. Huge amounts of data have to be searched to filter a
comparatively small amount of interesting information that merely complement
other data harvested in a traditional way. The major part concerns information on
law-abiding citizens. The protection of these data (which is never perfect anyhow)
against misuse and abuse causes costs not to be underestimated.

Harmfulness

The information society needs strong cryptology. Key escrow would hinder or even
stop the required public research in this field. Limitation to a few algorithms is a
basic risk. Cryptography needs diversity; otherwise it is too dangerous.

Acceptance

When the public is informed about the matter, strong resistance has to be expected,
which increases the creativity in finding bypasses.

Figure 8.3: (continued )

8.2.4 Export Regulations and Patents

This section discusses two other obstacles hindering the development of cryp-
tology: export restrictions for cryptographic software and hardware, and patent-
law issues. This discussion will be short, because both issues have come up
several times in this book already.

Export Restrictions

Export restrictions are usually mentioned in connection with the US export
laws, which turned into a barrier for many US firms. These laws allowed them
to export only software and hardware with an effective key length of up to
40 bits. With the SSL protocol used in the Netscape Navigator browser, for
example, an additional 88 key bits were shipped in an unprotected way. The
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following concept would probably have been better: the user sees a 128-bit
key, but the key space comprises only 240 elements due to secret dependencies
between the bits. These dependencies would be known only to the manu-
facturer, and surely to the NSA. However, the question is how long such a
dependency could be kept secret. One would have to implement it in a crypto-
logically secure and variable way. This would certainly be a challenging task
for research.

How much would it cost to brute-force break such a key? Suppose a very fast
implementation of the algorithm (e.g., in assembler language) on a Pentium chip
manages the decryption of one million plaintexts in one second. 240 keys cor-
respond to about 1012 possibilities, i.e., the Pentium Pro chip would take about
500 000 seconds on average. That’s almost 6 days. Using the time–memory
tradeoff and several computers, the cost can be arbitrarily reduced. In short,
this key space is already much too small for current and privately available
computer technology, let alone special hardware. The only protection could
be the secret bit dependencies within an externally longer key, as mentioned
above.

Netscape didn’t use such dependencies, and what’s more, in software that was
supposed to handle credit card numbers. However, the attacks that became
known were much less clever than one would expect: hackers stole credit card
numbers directly from Web servers, since they had been lying around there with
almost no protection in place. This shows impressively that good cryptography
is only part of comprehensive security.

Toward the end of the 1990s, even politicians and intelligence agencies appar-
ently realized that secure cryptography ‘cannot be avoided’. I assume that the
business world had its share in arriving at this realization. Export regulations
changed so quickly that I couldn’t keep up, and I have to refer you to the
Internet to learn the current status. Meanwhile, products using 128-bit keys
may be exported from the USA within corresponding approval procedures. It
is probably more rewarding to turn one’s interest away from algorithms and
key lengths and instead to look at backdoors built in application software, or
better yet, to automated hacker techniques.

There has also been much speculation about the Wassenaar accord that
includes export regulations for 33 countries, including the EU countries. As
usual, the last meeting of the Wassenaar countries took place at a secret loca-
tion near Vienna, Austria, and we know accordingly little about the agreements
made there. Rumors have it that public-domain software was not concerned.
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Let’s stick to the facts: the German government financed a project in connection
with the GnuPG mail encryption software (see Section 7.1.4) and supported
its proliferation. Doesn’t that speak for itself?

Patent-Law Issues

Things are slightly different when it comes to patents. Somebody who develops
software knows how much money and time is involved. Good cryptographic
algorithms are even harder to develop and to study. So, the question as to who
is supposed to pay for this work is justified.

One solution could be publicly financed research. That’s one reason why all
software developed at universities is a priori free in the USA. This is how a
considerable part—if not the largest part—of free UNIX software came about,
and subsequently has had a positive effect on developments all over the world.
I just mention two buzzwords: ‘Linux’ and ‘Open Source’.

However, not all research is publicly financed. Shareware would be a good
concept: users voluntarily pay a one-time fee for using the program, and pro-
liferation of the software itself would be unlimited. (Experience has shown
that shareware doesn’t work in Germany, though.) But only programs can
be shareware, algorithms can’t. Imagine you work in a bank’s procurement
department, and you’ve just bought a novel type of ATM from IBM with the
following note: ‘This ATM implements the cryptographic shareware algorithms
and protocols SDETY, XPKKL, and ACS-15. Please transfer the amount of
200 dollars each to. . .’

I guess there are currently only two ways to make money with algorithms.

• One, you can keep your algorithm secret and charge license fees for its
usage. This was the case with RC4 for seven years until this algorithm
was disclosed in an unauthorized way (see Section 5.6). Now basically
everybody can use it legally, though RSA might sue.

That’s the big disadvantage for designers: once your product is disclosed,
the source of money starts drying up. The disadvantage for users is that
the algorithm cannot be studied globally. Nobody knows whether it has
become known to good cryptanalysts, and whether they have found a
backdoor. This should ideally cause acceptance problems among users
so that they will reject this algorithm. The real world is far from being
ideal, though. Imagine RC4 had been cracked before it was disclosed. A
large number of programs use this algorithm.
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• Two, you can have your algorithm patented. This is (fortunately) not
possible in Germany, but it is in other countries, including the USA and
Switzerland.

Trying to get your algorithm patented can often backfire. For example, the
Swiss IDEA patent is applicable in Germany, too. Many people thought
the fees for commercial use were too high. According to a vendor of
cryptographic products, he would never pay such an amount just for
an algorithm. The consequence was that people held on to DES, even
in critical banking applications. The vendors of IDEA apparently hurt
themselves with too dashing an attempt to make money. Also, an IDEA
chip found little attention in the industry. Apart from Brokat, the bank-
ing software mentioned in Section 5.3 and used at Deutsche Telekom, I
haven’t heard of IDEA being commercially used in a long time.

The claim made by PKP (Public Key Partners) to cover all asymmet-
ric methods with their patent led to a temporary preference for the
Diffie–Hellman method from autumn 1997 onwards, because that meth-
od’s patent was the first to expire after 17 years. RSA can also be used
without restrictions since September 20, 2000. These patents apply only
in the USA and in Canada.

The RC5 patent was to bring its owner, RSA Laboratories, small and per-
haps one-time license fees for using this algorithm commercially (private use
remained free). The patent’s purpose—financing other research work at RSA
Laboratories—was acceptable in any event. Would it have been a meaningful
concept? RC6, the improved successor, would have had to remain free from
patent, according to the AES challenge, had it won. It didn’t, and RC6 is now
patented nevertheless. But Rijndael, the AES winner, is free and commonly
used. What does the patent for RC6 bring? The question about RC5 licenses
has also become less interesting. It will certainly not be enough to finance the
RSA firm.

I’m not the only one who thinks that patents and cryptographic algorithms
don’t go well together.

8.2.5 Digital Signatures

Germany passed a law for legal acceptance of digital signatures (signature
law) in August 1997. This initiative was initially seen as progress (I thought
so, too, as you can read in earlier editions), and people hoped it would have a
positive effect.
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We can see by the example of fax machines what can happen to an unregulated
development: faxes cannot be used as legal evidence, but still, you can order
merchandise, or make reservations, or whatever by fax. People simply think
that the convenience of using faxes is much greater than the loss due to forged
orders, and the business world bets on an insecure system.

But forged digital signatures can have more fateful consequences than faxes; it
depends on the field of use. A legal framework would, therefore, be welcome.

Unfortunately, the effect of the signature law evaporated. Where are the cer-
tification entities, where are the applications that were to make everyday life
easier? Though the law regulated the practical use, it failed to create spaces
of freedom for it. Digital signatures weren’t put on an equal footing with
handwritten signatures. A decision to this effect would have been left up to
the court in specific cases. What’s more, the BSI (the German Federal Office
for IT Security, which is part of the BND) published technical specifications
for the methods to be used. Many businesses didn’t like this at all, argu-
ing that ‘we’re not going to let them tell us what technology to use’. The
requirements on certification entities entitled to generate and certify public
keys were extremely high. The effect was that there are almost no certification
entities.

Eventually, the EU brought this nasty matter back on track. It demanded uni-
form and more liberal regulations, which the Germans initially didn’t like at
all. But eventually, the House of Parliament passed a new signature law in
February 2001. Digital signatures are now supposed to be applicable across all
states concerned, and there are (almost) no technical provisions. In turn, the
certification entities are responsible for damage incurred.

The new law didn’t bring about a decisive breakthrough. Similarly to the sad
story about theory and practice in mail encryption, described in Section 7.2.3,
wish and real world are poles apart. Bruce Schneier once said: ‘The economic
barriers to security are far greater than the technical ones.’ Except in emails,
I only use digital signatures on my electronic income-tax returns. Apart from
the huge problems in the startup phase, I can’t get rid of the impression that it
worked much faster, simpler, and was less erroneous with paper and pen.

8.3 What Next?

Now that you’ve read this book you will better understand what was said in
Section 1.2.2: cryptology is only a member in a long security chain, but a
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special one. The potential risks from bad cryptology are higher than the risks
from poorly secured material assets.

• Communication intruders don’t usually leave traces, and data theft can
often not even be proved.

• Cracked algorithms have retroactive consequences: encrypted messages
intercepted at an earlier date can perhaps be decrypted and used later on
when technology marches on.

• With too strong a proliferation of one single weak encryption algorithm,
or a program using it, there is a risk of massive compromise with unpre-
dictable consequences. Suppose 70 % of digital signatures were created
using the program of one single commercial vendor (which expressly
excludes PGP), and the asymmetric method used would be RSA.

None of the users would presume that the program doesn’t use real ran-
domness when generating RSA keys; instead, it uses prime numbers from
a set consisting of a few million elements. When deemed necessary, a
government agency could quickly factor these keys, collect global infor-
mation, and pay considerable amounts of money to the dishonest vendor
for his kindness.

In general, the current information security landscape looks rather gloomy,
mainly in the private area. Apart from the totally insufficient security of the
widely used Windows systems and a large quantity of PC software, security
doesn’t rank high in firms either, because it is (still) too expensive and doesn’t
increase operational profits. Denying vulnerabilities (I like to recall the overly
used claim of ‘100 % reliable technology’) is cheaper. All it takes is to keep
secret the innards of an operating system and application software as well
as the encryption algorithms used, and hope that hackers won’t find these
vulnerabilities. By the time they do, one would long have the next release
ready, which would naturally be much better and more secure, though not
totally for free.

No Reason to Panic

Nevertheless, there is actually no reason to be downcast; on the contrary, there
is a lot to do. Cryptology gives us the tools that can make our world more
secure. We have learned several interesting approaches in this book to dispel
the concerns expressed above.
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• The hourly change of the server keys in the Secure Shell (SSH1
(Section 7.3) limits retroactive damage caused by somebody breaking
into a computer.

• The Web of Trust of PGP almost prevents even intelligence agencies
compromising large parts of email connections. The decisive property of
this network is that even a clever attacker would initially compromise
only small parts of the network, which would be discovered. Even bet-
ter, ‘insecure customers’ can be ‘circumvented’. I guess power-securing
works that way. Unfortunately, this beautiful concept plays almost no
role in practice, as we saw in Section 7.2.3, but the Internet is based
on the same philosophy and has successfully resisted all attacks to date.
Perhaps this kind of error-tolerance should be planned into security more
often than it is?

The timestamp time series from Section 6.6.1 is another example of a
mutual protection that can hardly be broken.

• Supporting several encryption algorithms as in SSH reduces the risks
related to blindly using cryptography. Clean interfaces to the algorithms
improve the situation further: suspicious users can embed their own algo-
rithms, or compare the outputs of the methods implemented with those
used in reference implementations. Moreover, it is not a problem (rather
a cost issue) to use modified or stronger algorithms from other vendors,
or to combine them with the algorithms built in. Problems can arise with
ciphering hardware.

My ideal is that cryptologists would find a ‘component kit’ of algorithms,
where any combination of its parts produces a method roughly equally
secure and, on the other hand, one could plausibly show that no uniform
cryptanalysis of all of these methods would be possible.

• Fail-stop signatures offer at least a possibility to discover fraud, probably
even to prevent it.

• Variable, combined biometric methods and two-factor authentications
close dangerous security holes, which are caused solely by using weak
passwords or many PINs.

In our buying decisions, in negotiations with vendors, and in product reviews,
we will all be able to contribute to convincing software vendors to disclose the
security-critical details of their programs provably as a matter taken for granted
one day. This is currently utopia, but a quarter of a century ago when IBM
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and DEC dominated the market nobody would have believed that a largely
vendor-independent system like UNIX (and today Linux) would proliferate so
strongly (and that, over such a long period of time, an insecure and unstable
system like Windows would dominate one day).

In closing, Kahn writes in his book [KahnCode] that cryptographers are about to
win the race over cryptanalysts. Compared with the state of affairs up to World
War II, this may be true, but we should beware of too much optimism—or do
you happen to know what state non-public cryptological research has reached
meanwhile? (If you do, let me know, by all means!)

In any event, cryptologists have to do a lot of research to make security
compromises provable or even prevent them, and at an acceptable cost. It
is theoretically even possible that cryptology will help make the information
society more secure than it is today, but the way to get there is long.
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AES Advanced Encryption Standard. The successor of DES accepted in 2001. It is the
Belgian Rijndael algorithm discussed in Section 5.5.

Altavista Popular Internet search engine (www.altavista.com). Though Google has
meanwhile ‘taken’ the market, its search syntax is weaker than Altavista’s. Another
place to find material on cryptology is Wikipedia.

Anonymous remailer A computer (or better, a mail node) used for forwarding emails,
which automatically strips sender information. There are pseudo-remailers that
keep the true sender address stored locally (so that it can be given to the police),
and real remailers, which prevent the path from being traced back, even if the
remailer operator is extorted.

Asymmetric encryption (aka public-key method) An encryption method that uses
two keys. The public key is used for encryption, whereas the private key is used
for decryption. Asymmetric methods are used for encryption in general, and for
session-key exchange in symmetric methods, and for authentication, especially
for digital signatures (Sections 4.5 and 6.3).

Attacker A person who uses a software program and/or corresponding hardware to
eavesdrop on communications, forge data, or pretend to be somebody else. A con-
ventional attacker replays an encrypted message and decrypts it later. An attacker
can also be a program running in the background, which collects passwords within
a local network automatically for somebody to evaluate them.

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd
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Authentication A cryptologically secure method to verify the originator of a message,
trying to prevent the sender from pretending to be somebody else. For example,
by keying in a PIN at an ATM, the ATM authenticates the customer, because only
he is assumed to know the PIN to an account. The receiver of a message identifies
the sender, whereas the sender authenticates himself (proving his identity).

Avalanche effect Particularly strong diffusion of a block algorithm: every changed
bit of the plaintext block should change every bit of the ciphertext block. If
the probability of changing a ciphertext bit deviates from 50 %, then this is a
vulnerability differential cryptanalysis could exploit (see Section 4.4.2).

Bletchley Park A strictly fenced-off area in Great Britain, where during World War
II, encrypted messages of the German Wehrmacht were decrypted in masses,
especially from the Enigma. At the beginning of 1944, about 7000 people worked
at the Park, decrypting up to 90 000 messages per month (see Section 2.5.2).

Block, block algorithm A plaintext or ciphertext section that is encrypted or decrypted
as a whole. Algorithms that encrypt only blockwise are called block algorithms
(see ‘stream cipher’).

Blowfish A block algorithm developed by Bruce Schneier, which can be freely used;
it is thought to be secure to date (see Section 5.7.4).

Breaking a method Using an approach to decrypt messages encrypted with a given
encryption method without knowing the secret key. A method is deemed not to
have been broken if it resists the most effective attack known by trial-and-error
testing all possible keys (see ‘brute force’).

Brute force Trial-and-error testing all possible keys to reveal a plaintext. With 40-bit
keys (e.g., in the international version of Netscape Navigator), brute force takes
several computation hours on an extremely fast general-purpose computer (depend-
ing on the algorithm and the type of test). 56-bit keys (DES) require special
hardware, such as the Deep Crack computer (see Section 4.4.1). In contrast, 80-bit
keys (Skipjack) are secure into the near future. Brute force is basically impossible
against 128-bit keys (IDEA) with the current technology. (One billion computers
working in parallel, doing one billion decryptions per second each, would take
ten million years; see Section 5.9.)

BSD Important UNIX variant, mostly popular in academic fields (representatives
include SunOS and Free BSD). Large parts of it were integrated in SystemV.4
(see ‘System V’).

Caesar cipher Probably the simplest ciphering method (Section 2.1); no longer used.
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Capstone chip A chip produced by Mykotronx for encrypted data communications
with key escrow (Section 6.4.1).

CBC (Cipher Block Chaining) A ciphering mode used in block algorithms (Section
5.1.1).

CFB (Cipher Feedback) A ciphering mode used in block algorithms (Section 5.1.1).

Character coincidence Two characters coincide in the same positions when com-
paring two texts, which is important for computing the index of coincidence
(see ‘kappa’).

Cipher A gibberish text (aka ‘ciphertext’) produced by ciphering (encrypting) a plain-
text.

Ciphering error An error made in the encryption, impairing the security of the cipher.
These errors often depend on the encryption method used. A typical example is
selecting bad passwords (Section 3.1 and Figure 3.1).

Ciphering mode An operating mode that specifies how single plaintext and ciphertext
blocks are computed in block algorithms (Section 5.1.1). The four commonly used
modes are ECB, CBC, CFB, and OFB.

Ciphertext (aka ‘cipher’) The result of an encryption.

Ciphertext attack A cryptanalytic method that exploits only the ciphertext.

Clipper chip A variant of the Capstone chip for encrypted telephone communications.

Codebreaker A person who breaks encryption codes (as opposed to a cryptanalyst
who develops the underlying theory).

Complexity theory A subsection of mathematics that tries to estimate the cost involved
in solving a problem. It is very important for cryptology, because it is thought
that only complexity theory can make reliable statements about the security of
current encryption algorithms.

Compromise A successful cryptological attack against an encryption method or a
cryptographic protocol.

Confusion The act of blurring the relationship between a plaintext and the correspond-
ing ciphertext in the same text positions, as opposed to diffusion (Section 4.1.2).



490 Glossary

Congruence In number theory, a subsection of mathematics, the term denotes equations
with remainders when divided by integers: a ≡ b (mod n) (also written as ‘a = b

mod n’), which means that the integers, a and b, leave the same remainder when
divided by the integer module, n (see Section 4.5.3).

Cryptanalysis The art of decrypting an encrypted message without knowing the secret
key, or, more generally, bypassing the secret-key defense without knowing this
key (e.g., by forging a digitally signed document). This is the counterpart of
cryptography.

Cryptographic protocol Cryptography implemented in practice, where several parties
walk through a well-defined sequence of actions. Cryptographic protocols can
be broken, just like cryptographic algorithms; their formalization is difficult (see
Chapter 6).

Cryptography The art of designing encryption algorithms; the counterpart of crypt-
analysis. Cryptography without knowing cryptanalysis is not meaningful (but that
doesn’t hold for the opposite!).

Cryptology Term used for cryptanalysis and cryptography together.

Daemon A program in UNIX that runs continually in the background, even when no
user is working at the computer. For example, a daemon listens in on a network
and establishes a connection when it hears a request. Other daemons adjust the
system clock, or monitor the mouse port, or handle print jobs, or restrict user
access to certain software, and some intercept passwords!

Denial-of-service attack A special type of attack against digital communication aimed
at disturbing the traffic of messages in an untraceable way, or using cryptological
means to prevent communication (e.g., by maliciously swapping a key to pre-
vent further communication, but not by physically cutting a cable between two
computers). Section 6.5.1 uses an example.

DES (Digital Encryption Standard) Still one of the most widely used encryption meth-
ods (Sections 4.3 and 4.4). DES is a product algorithm using 56-bit keys and
64-bit blocks.

Dictionary attack An attack against a reduced key space, where the structure of this
key space can be described by a known basic set of keys (a dictionary), and by
possibly modifying these keys. The most insightful example is the Crack program
(Section 3.3).

Diffie–Hellman key exchange A cryptographic protocol for session-key distribution
based on discrete logarithms (see Section 6.1.1).
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Diffusion A property of block algorithms which ensures that information about parts
of a plaintext block influence the entire ciphertext block (see also ‘confusion’). A
particularly strong diffusion is the avalanche effect (Section 4.1.2).

Digital signature A character string in a digital document that allows a person who knows
the author’s public key to verify whether that document really originates from this
author, and that it hasn’t been changed (see also ‘authentication’, ‘integrity’). It
cannot be forged without knowing the secret private key of the author.

Digram In the general sense, a pair of consecutive letters in a text. Digrams are
important in classical cryptography (see Section 2.3).

Discrete logarithm See ‘primitive root’.

DSA (Digital Signature Algorithm) A very secure method for creating digital signa-
tures developed by the NSA. DSA is an integral part of DSS (Digital Signature
Standard), and uses SHA (Secure Hash Algorithm) as a one-way hash function.

DSS See ‘DSA’.

e-cash (electronic cash) Digital money; Section 6.6.7 discusses a protocol for e-cash.

ECB (Electronic Codebook) A ciphering mode used in block algorithms (Section
5.1.1).

Echelon A worldwide surveillance system of the NSA that monitors most international
communications, and parts of national civilian communications (Section 8.2.1).

EES (Escrowed Encryption Standard) US standard for devices in connection with key
escrow (see ‘Clipper’, ‘Capstone’, and Section 6.4).

Encoding The deterministic conversion of a text for the purpose of adapting it to special
transmission channels (e.g., Morse code, base64, MIME). This conversion does
not depend on keys. Encoding is often confused with ciphering. The difference is
that encoded text can be easily read if the encoding method is known, whereas
ciphering requires the knowledge of a secret key.

Enigma Famous German ciphering machine that was used to encrypt a considerable
part of German communications (particularly those of German submarines) during
World War II (Sections 2.5.1 through 2.5.3).

Exhaustion method See ‘brute force’.



492 Glossary

Fail-stop signature A special type of digital signature where many private keys
belong to one public key. This helps to make provable successful attempts to
break the underlying asymmetric method and the forgery of a digital signature
(Section 6.6.5).

FEAL A block algorithm that was originally conceived as a DES substitute, but later
proved to be extraordinarily insecure (Section 5.7.3).

Feistel network A particularly simple structure of a product algorithm that uses only
one key-dependent function. The reversion of this function does not have to be
computed during encryption (Section 4.2).

Fingerprint The MD5 checksum of a public key, which is used, for example, to
verify the authenticity of this public key by phone. Fingerprints have become
known mainly from the PGP software package.

Firewall A computer (or program) used to protect an intranet from external attacks
based on some well-defined method. For example, a firewall may accept only
specific types of data packets, check on senders, etc.

Flat or non-linear key space All keys in a flat key space are equally strong. The oppo-
site is a non-linear key space. While the existence of weak keys is an undesirable
side effect, algorithms with non-linear key spaces are aimed at ensuring that peo-
ple unaware of the technique use only weak keys, making their ciphers particularly
easy to decrypt. Only people knowing the internals of the algorithm can encrypt
securely. This concept is even riskier than key escrow. Cryptologists are, therefore,
interested in proving that the key space is flat.

GnuPG (GNU Privacy Guard) An email encryption program available for free and
without license fee that implements the OpenPGP standard, in contrast to PGP
Version 5.0 and higher (Section 7.1.4).

Half block The left or right half of a block, i.e., the least significant or most significant
32 bits in a 64-bit block. Half blocks are important in Feistel networks.

Hash function A sort of mapping that calculates checksums for data streams such that
all possible function values occur roughly equally. The checksum is also called
hash sum or hash value. Hash functions are important in search algorithms, and
special hash functions are the one-way hash functions used in cryptography.

Hybrid method A cryptographic protocol where messages are encrypted by use of
a common symmetric method, whereas the corresponding (random) session key
is distributed by means of an asymmetric method. Hybrid methods have become
very popular, e.g., in PGP (Section 4.5.2).
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IDEA A product algorithm mainly used in PGP; works with 128-bit keys and 64-bit
blocks, and is considered to be very secure.

Identification The act of identifying the author of a message. The receiver identifies
the sender, whereas the sender authenticates himself (proves his identity).

Initialization vector (‘IV’ for short) A random block required in many ciphering modes
as the first block. The IV causes the encryption of identical or almost identical
plaintexts to produce totally different ciphertexts. Furthermore, it prevents various
cryptanalytic attacks (e.g., pattern recognition).

Integrity A state proving that a (digital) document has not been tampered with, which
is often guaranteed by digital signatures.

IV Short for ‘initialization vector’.

Kappa (Character coincidence) A statistical quantity produced from two ciphertexts,
which can be used to determine the period length in a Vigenère cipher
(Section 3.6.1).

KEA A public-key algorithm used by the NSA in Clipper chips (Section 6.1.1).

Kerberos A protocol for authentication and encryption in local area networks (LANs),
which relies on one or two trustworthy computers rather than using an asymmetric
method. Nevertheless, it has several flaws. Kerberos is not discussed in this book.

Key escrow An attempt toward governmental regulation of cryptography: people can
continue encrypting their stuff, but the government must be given the keys some-
how upon request (see Sections 6.4 and 8.2.2).

Key stream See ‘stream cipher’.

Left rotation See ‘rotation’.

Linear expression In algebra, an expression in the form of a1x1 + · · · + anxn, where
xi are variables and ai are constants. In cryptology, for example, 64-bit numbers
take the place of real numbers, an addition corresponds to bitwise XOR, and a
multiplication corresponds to bitwise AND. This turns a linear expression into
a XOR sum of bits selected from integer data types (e.g., machine words; see
Section 4.4.4).

MAC (Message Authentication Code) A one-way hash function the hash sum of which
can be calculated only provided one knows the secret key. The simplest example
is the encryption of a hash sum by means of a symmetric method. A secure and
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generally used method is the HMAC checksum (see [MenOoVan, 9.5.2]). MACs
are used in tamperproof checksums (e.g., as a defense against viruses), but also
in certain protocols for digital money (MilliCent).

MARS IBM’s proposal for the AES challenge; it is very secure, effective, and fast,
like all five final AES candidates.

MD2, MD4, MD5 Three important one-way hash functions (see Section 6.3.1).

Multiple encryption The repeated encryption of a text using the same or different
encryption algorithms. In most cases, this is believed to increase the security, but
cryptanalysis doesn’t seem to have made much progress in this field (at least in
public research). The best known example of multiple encryption is Triple-DES
(see Section 5.2.1).

NBS (National Bureau of Standards) Former name of the NIST.

Negative pattern search Some encryption methods (e.g., Enigma, ciphering cylinders)
do not transform any character onto itself. This helps exclude certain patterns that
could be exploited in the plaintext (see Section 3.4.1). It is important in classic
(character-oriented) cryptology, but not significant for current algorithms due to
the avalanche effect.

N-hash A cryptographically insecure one-way hash function (see Section 6.3.1).

NIST (National Institute of Standards and Technology) A Department of the US Sec-
retary of Commerce which, among other things, specifies cryptographic standards
(including DES, EES, and DSS). Cooperates closely with the NSA.

NSA (National Security Agency) A US authority dealing intensively with cryptology
and worldwide surveillance. Estimated to employ 40 000 people (including at least
2000 mathematicians); disposes of extremely fast computation technology (being
the single largest buyer of hardware in the world), and also produces computers
itself. Though the NSA was founded by Truman in 1952, its existence became
publicly known in connection with the development of DES in the early 1970s.

OFB (Output Feedback Mode) A ciphering mode used in block algorithms (see
Section 5.1.1).

One-time pad A random byte or bit sequence that is at least as long as the plaintext.
Encryption and decryption are done by simple XORing with the plaintext or
ciphertext, respectively. One-time pads are currently the only method with proven
security (Section 2.6).
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One-time password A cryptographic protocol (Section 6.5) enabling authentication
over insecure lines, used without asymmetric methods. A password is used only
once so that intercepting one-time passwords is worthless. One-time passwords
are important in home banking or when somebody works at their own computer
from third-party computers.

One-way hash function A sort of mapping that creates checksums for data streams,
where no data can be reconstructed from a given checksum at a reasonable cost.
An additional requirement is non-collision (Section 6.3.1).

OpenPGP A standard developed on the basis of PGP Version 5.0 and higher for secure
email communication. Other than in PGP, it is also implemented in GnuPG and
other products (see Section 7.1.4).

Passphrase A long character string used instead of traditional passwords six or eight
characters long. Passphrases can be sentences (including punctuation marks and
blanks), or phrases. Passphrases should be preferred over passwords since they
offer more security. Passphrases are used, for example, in PGP.

Permutation Mathematically, the mapping of a biunique (one-to-one transformation)
mapping of a finite set onto itself. Colloquially, an arrangement of a finite number
or character set. Transposition ciphers (Section 2.2.4) are actually block algo-
rithms, where plaintext blocks are encrypted by permutation. Extremely vulnerable
to differential cryptanalysis, if used by itself (Section 4.4.2).

PGP (Pretty Good Privacy) The most popular free program used to encrypt files and
email (see Section 7.1).

Plaintext A piece of readable text to be encrypted.

Plaintext attack A cryptanalytic method where a small part of the plaintext is normally
known.

Playfair method A special digram cipher (see Section 2.3).

Polyalphabetic substitution A special substitution cipher, where the substitution rule
depends on the position in the text. Examples are the Enigma and the Vigenère
cipher.

Polygraphic substitution A special substitution cipher, where several characters
together are substituted based on a large table. Corresponds to current block
algorithms with a typical block length of two characters (then called digram
substitution) or three characters (then called trigram substitution).



496 Glossary

Primitive root A number g is the primitive root modulo of a prime number, p,
if the p − 1 numbers, g0, g1, . . . , gp−2, produce all possible p − 1 remainders,
1, 2, . . . , p − 1, when divided by p. In other words, the number-theoretical equa-
tion y ≡ gx (mod p) can always be solved in x for each y that differs from 0
(x is the discrete logarithm of y to base g). Primitive roots are required in asym-
metric methods that are based on the discrete logarithm, e.g., the Diffie–Hellman
congruence (see Section 6.1.1).

Private key A secret key known only to its creator and used in asymmetric encryption
methods, where it can also be used for decryption, as opposed to the public key.

Probabilistic method A special asymmetric method, where many public keys belong
to one private key. A well-known representative is the method by Blum, Blum,
and Shub (see Section 5.8).

Probable word A character string that is assumed to occur in a plaintext (often a
specific word). Pattern search or negative pattern search can be used to find the
position of a probable word, which means that a plaintext attack was successful.
Probable words are relevant mainly in classic cryptanalysis (see Section 3.4.1, for
example).

Product algorithm A special block algorithm, where the same key-dependent encryp-
tion function is applied to a block several times in a row. The use of this function
is referred to as a round, and round’s keys are derived from that key. The encryp-
tion function is applied in every round, depending on the pertaining round’s key
(see Section 4.1.4).

Public key A publicly known key used in asymmetric encryption methods; it is used
only for encryption.

Public-key method See ‘asymmetric encryption’.

Quantum computer To date, a hypothetical computer that works by the laws of
quantum mechanics. If quantum computers existed, they could be used to quickly
break all currently secure public-key methods (see Section 5.9).

Quantum cryptography A field involving physics and cryptographic protocols that
enables you to safely prove an eavesdropping attempt. Quantum cryptography
enables secure exchange of information (e.g., key exchange), but it is extraor-
dinarily hard to implement in practice and, if achieved, considered a technical
masterpiece (see Section 5.8).

RC4 A fast encryption method that is very easy to program and apparently secure to
date. It is a stream cipher (see Section 5.6).
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RC5 A very simple and fast block algorithm that uses variable parameters (block
length, key length, number of rounds); see Section 5.4 as well as Section 5.4.3
for a discussion of RC5a.

RC6 The successor of RC5 (see Section 5.4.4), and one of the five final AES candi-
dates.

Reduced key space We speak of a reduced key space when a potentially good algo-
rithm uses only relatively few keys out of the theoretically possible number of
keys due to poor implementation. It represents a vulnerability to dictionary attacks.
Good examples are older versions of Netscape Navigator (Section 5.1.4); see also
Section 3.3.

Replay attack A special cryptanalytic attack. Though the attacker may not be able to
decrypt an intercepted message, he can copy it and replay it later, perhaps authen-
ticating himself by mimicking somebody else. The idea is to intentionally disturb
or forge data traffic, or to break into a third-party system. This was exploited in
Novell Netware (encrypted passwords had no sequential number or timestamp).

Residual class Any set of all integers that leave the same remainder with regard to a
given module (see also ‘congruence’).

Reversing drum A stationary rotor used in the German ciphering machine, the
Enigma, which permutes the output and returns it backwards across the rotors
(see Section 2.5.1).

Right rotation See ‘rotation’.

Rijndael The Belgian algorithm that won the AES challenge and the accepted DES
successor. It is very fast, very small, and very simple. No vulnerability has become
known to date (see Section 5.5).

RIPE (RACE Integrity Primitives Evaluation) A collection of European security
standards proposed within the RACE (Research and Development in Advanced
Communication Technologies) Initiative.

RIPE-MD, RIPE-MD160 One-way hash functions used in RIPE. In addition to SHA
(see ‘DSA’), RIPE-MD160 is considered to be very secure and preferred over
RIPE-MD.

ROT13 A Caesar cipher (used in news readers) where each letter is substituted by its
13th successor. Applying the method twice reproduces the original text. ROT13
does not allegedly offer cryptological security, but makes the undesirable reading
out of character strings from program texts harder.
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Rotation A computer operation where a word (consisting, for example, of 32 bits) is
shifted to the left or right by a few bits, and the bits pushed out are shoved back in
again at the other side. In this book, rotation is mainly relevant for RC5. Example:
right-rotating the binary number 00001011 by 2 bits produces 11000010.

Rotor A rotating disk with 26 (or more) sliding contacts each on its outer sides, which
are internally wired such that each contact on the left side connects exactly with a
contact on the right side. This means that rotors implement a substitution in hard-
ware that depends on the rotor’s position. Rotors were used in rotor machines,
with the Enigma being the best-known representative (see Section 2.5.1).

Round, round’s key See ‘product algorithm’.

S-boxes Special substitution tables used in the DES algorithm; they are the most
important component for the security of this algorithm.

Serpent The proposal submitted by Anderson, Biham, and Knudsen to the AES chal-
lenge. It is presumably the most secure algorithm among the five final candidates,
but not the fastest.

SESAME The European project initially conceived as the Kerberos substitute. The
software had serious cryptological weaknesses (see Section 6.7).

Session key A random key created by a computer for use in a symmetric method. It
is valid only for the duration of the transmission of a single message and often
distributed by means of asymmetric encryption (see ‘hybrid method’).

SETUP system (Secretly Embedded Trapdoor with Universal Protection) A term intro-
duced by Young and Yung to refer to Trojan cryptography, where parts of the
private key are hidden in the public key in software or hardware such that the
fraud cannot be proved by analyzing the output (see Section 6.7).

SHA See ‘DSA’.

Skipjack algorithm A secret encryption algorithm developed by the NSA for the
Clipper and Capstone chips (see Section 5.7.5).

Snefru Probably the first one-way hash function (see Section 6.3.1).

Stream cipher In contrast to block algorithms, a continuous (symmetric) encryption,
where a byte or bit stream is created in dependence on a secret key, and that
stream is XORed with the plaintext or ciphertext. The bit stream is also called
key stream and used like a one-time pad (see Section 4.1.3).

Substitution A way of encrypting by systematically substituting the plaintext characters
based on a given permanent table. The substitution encryption is very vulnerable
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to statistical cryptanalysis. It can be cracked by a ciphertext attack with known
text structures on a computer within fractions of seconds.

Symmetric encryption The common type of encryption, where one single secret key
is used for both encryption and decryption. These methods are secure when
used in combination with session keys. A problem is normally the key distri-
bution.

System V A UNIX variant mainly used in the commercial area (examples include SCO
UNIX, UnixWare, and Irix). It was extensively unified with BSD from Release
V.4 and higher.

Topic analysis A new type of interception method that classifies documents automati-
cally by their contents so that huge amounts of data can be searched in a targeted
way. This is mainly significant for national intelligence organizations, but it can
also be used within security concepts of commercial or industrial organizations
(secret information is automatically encrypted, and access privileges are regu-
lated by contents). The method is based, among others, on the N-gram analysis
developed by the NSA.

Traffic analysis A type of analysis that logs parameters of a message, such as sender,
receiver, time and date, length, etc., rather than its contents (because it is encrypted,
for example). Someone can collect huge amounts of such data and yield an aston-
ishing amount of insightful information.

Transposition A special permutation, namely the transposition of two elements (each
permutation can be represented as a sequence of a finite number of transpositions).
In cryptology, a transposition cipher is an encryption method that permutes
fixed-length blocks.

Trigram See ‘polygraphic substitution’.

Triple-DES A variant of DES that does triple encryption, but uses only two DES keys:

ciphertext = DESkey_1(DES−1
key_2(DESkey_1(plaintext)))

This method is intended to solve the problem with the DES key length that had
been found to be too short, while ensuring optimal hardware compatibility (see
Section 5.2.1).

Trojan cryptography A term used by the author of this book for implementations of
cryptographic software or hardware that allow the vendor to unsurveillably listen
in on encrypted messages.
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Twinkle A yet hypothetical device based on an idea by Shamir, which could be used
to factor large numbers faster than currently possible. This is important for the
security of the RSA method (see Section 4.5.3).

Twofish A further developed variant of Blowfish, one of the five final AES candidates.
It is a very secure, flexible, and fast algorithm.

Unicity distance A concept that measures the amount of ciphertext required such
that there is only one reasonable plaintext. This number depends both on the
characteristics of the plaintext and the key length of the encryption algorithm. The
unicity distance for standard English ASCII text is 5.9 characters (approximately
47 bits) when using 40-bit keys. However, practical cryptanalysis requires much
more ciphertext. The unicity distance has information-theoretical significance.

Vernam cipher A bitwise Vigenère cipher, i.e., a bitwise stream cipher with one
periodic key stream. Vernam cipher is sometimes used synonymously for one-time
pads (see Section 2.4.2).

Vigenère cipher The simplest polyalphabetic substitution, where a keyword is repeat-
edly written over a plaintext. The ciphertext is produced by adding superimposed
characters. This book mainly discussed XORing rather than addition (which is a
Vernam cipher in the closer sense). However, both methods can be treated equally
(see Section 2.4.1).

Weak keys Special keys which, when used, reduce the security of the encryption
method. An unusual example: every sequence of zero bytes is a (very) weak
key in the Vigenère cipher since it leaves the plaintext unchanged during the
encryption. If there are many weak keys in an encryption method, then it is
worthwhile for an attacker to assume that a weak key was used to achieve his
goal faster. If the attempt fails, the attacker might additionally use other methods
(see Section 4.4.3).

XOR A basic computer operation between two binary numbers: bits in the same
positions are XORed (exclusive XOR):

0 XOR 0 = 0, 1 XOR 1 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1.

This is usually denoted as ⊕: a ⊕ b.



Appendix A.1

Sources of Information

The Web site to this book at www.wileyeurope.com/go/cryptology is not a
‘crypto Web site’ in the usual sense. People familiar with the matter will miss
several things, or criticize the fact that the world has meanwhile switched to
using the next-but-one release of a popular program. The software and texts on
this Web site are merely intended to help you find further reading and refer-
ences. For example, you will find the popular PGP Release 2.6.3, whereas PGP
9.50 had already been available when this book went to the print. However, I
selected all software primarily to give you a chance to look inside the source
code and understand how it works.

Some programs (such as book/vigenere/vig crack.c or book/trans/trans.c) are
demonstration programs to allow you to experience cryptanalysis, or (as with
trans) see the weaknesses of an algorithm.

Also, there is a large number of texts, including sources for this book and
further reading sources. I’d have liked to fully explore many highly interesting
texts (e.g., txt/chipcrack/andkuhn.html or txt/enigma/hinsley.txt) in this book,
but that would have gone beyond its scope and volume.

You won’t find programs of less cryptologic interest, such as dictionary attacks
against Vigenère-encrypted files or pkzip, or programs to break the Microsoft-
Word encryption. Good Internet addresses to look for cryptologic software,
include:

Cryptology Unlocked Reinhard Wobst
Ò 2007 John Wiley & Sons, Ltd

501



502 A.1. Sources of Information

• www.jya.com/crypto.htm

• www.cryptome.org

• ftp.cert.dfn.de, /pub/docs/crypt and /pub/tools/crypt directories

• ftp.funet.fi:/pub/crypt

• www.rsasecurity.com/rsalabs

Everything about the AES algorithms can be found at

• www.nist.gov/aes

Other interesting addresses are:

• www.cs.auckland.ac.nz/∼pgut001/links.html (a very extensive
link collection by Peter Gutmann)

• www.cl.cam.ac.uk/users/rja14 (homepage of Ross Anderson with
many details of technical interest)

I particularly recommend this address:

• www.counterpane.com/crypto-gram.html (where you can read and
subscribe to Bruce Schneier’s online-magazine cryptogram —an incred-
ible source of current and interesting information!)

You should also take note of the following points:

Copyright and Liability

All files on our Web site are either programs I wrote myself—you can pass
them on for free or use them freely, observing the copyright—or procured
directly from the Internet. Though you may pass on the latter, you cannot
use them freely—observe the copyright to each of those programs. Also pay
attention to the import and export regulations for cryptologic software in force
in the countries concerned.
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As usual with free software, you use it at your own responsibility; nobody will
provide support for it, or guarantee for that software’s proper working.

Sources

Internet addresses tend to change from time to time. I couldn’t always state
them. Considering the quality and availability of current search engines (I
mainly had to use Altavista back then), it is probably easiest to launch your
favorite search engine and find the addresses on the Internet.

Data Formats and Language

Texts are available in one or several formats: PostScript (.ps), PDF (.pdf),
HTML files (.html), or simple ASCI (.txt or no extension). Almost all texts
are in English. I do not share some critics’ comments that all texts should be
supplied in one single format: Some texts are available in PostScript format
only; searching for them is hardly possible. But exactly this can be important
in research work.

Most programs are available in C source code.

Operating systems

Most programs and program packages are from the UNIX/Linux world. You
find portability notes in the corresponding README files. I tested my own
programs exclusively under UNIX and Linux, but some of them surely run on
any systems and any C compiler (more comments further below).

A.2 Web Site to This Book

Our Web site includes five directories on the highest level:

book The programs I created, and which are discussed
in this book.

algor Cryptographic algorithms.
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cryptana Cryptanalytic software.

txt Text from the Internet.

PD Free software packages, such as PGP.

book directory:

WP directory:

newwpcrack.c C program to break the WordPerfect 5.1
encryption. It was discussed in Section 3.5.2.

wph.c Short helper program to determine constant parts
in the headers of WordPerfect files; it is invoked
as follows:

wph file1 file2 . . .

vigenere directory:

vigenere.c This C program executes a Vigenère cipher of a
data stream (XORing with a periodically repeated
password). It is invoked on the command line:

vigenere keyword <plaintext>ciphertext

Repeated use turns the ciphertext back into the
plaintext. The program is intended only to create
ciphertexts for cryptanalysis.

vigcrack.c For cryptanalysis of Vigenère-encrypted files. Its
operation is discussed in the source code. The
program was discussed in Section 3.6.3.

distr.c Helper program for vigcrack.c; see there.

vigc crk.c For cryptanalysis of Vigenère-encrypted
compressed files; see Section 3.6.4. Its invocation
is explained in the source code.

C, eng, wp Frequency profiles for C programs, English texts,
and a German WordPerfect file, determined by
distr. You can easily create such files yourself.

trans directory:

escher.c, trans.c trans is the ‘pseudo-encryption’ of an image,
included as an include file escher.c. (You can also
use other images in the X11 pixmap format, but
you have to edit the dimensions in trans.c.)
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To run this program, you need Tcl/Tk and a UNIX
system, because trans requires ‘real pipelines’
(they are merely emulated in DOS/Windows). The
invocation is explained in the program and in
Section 4.1.5. The images reappears after 72-fold
encryption. The effect is amazing.

fcrypt directory:

fcrypt.c This is the fcrypt encryption program discussed in
Section 3.7. There is no documentation; you find a
description in [Wobfcrypt]. Don’t use this method!
The program is included for analysis only!

secshare directory: Includes the Python script (plus C program) for
secret-sharing implementation, as discussed in
Section 6.2.

algor directory:

A5 directory:

a5-article.txt Description of the A5 algorithm for cell phones in
the digital D- and E-networks (see Section 5.7.2).

a5.c Implementation of the algorithm in C.

a3a8.c Implementation of the secret A3 and A8
algorithms as they are used in the D2-network
(see Section 6.1.3).

gsm.txt Description of the security mechanism of cell
phones (see Section 6.1.3).

AES directory: The AES implementations from www.nist.gov/aes
(see Section 5.5).

blowfish directory: The implementation of the Blowfish algorithm
from Section 5.7.4; including test data.

idea directory: An implementation of the IDEA algorithm (5.3)
by De Moliner (Zurich, Switzerland).

DES directory:

karndes directory: DES implementation by Philipp Karn; a very
small and simple implementation of the algorithm.

osthes directory: A much more extensive DES implementation by
Stig Ostholm, including built-in ciphering modes,
different key formats, etc.
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enigma directory: A simple Enigma simulation; you can use it to
study how this machine works in detail.

FEAL directory:

feal8.c, feal8.h The 8-round FEAL from Section 5.7.3.
fealnx.c, fealnx.h The improved (but not secure) FEAL-NX version

(see Section 5.7.3).

MD2 directory: An implementation of the MD2 one-way hash
function (Section 6.3.1).

MD5 directory: An implementation of the MD5 one-way hash
function (Section 6.3.1), together with some
articles about MD5 cryptanalysis.

MD160 directory: An implementation of the RIPE-MD160 one-way
hash function (Section 6.3.1).

RC2 directory: Description and implementation of the RC2
algorithm, which has been disclosed meanwhile.

RC5a directory: This includes my RC5a implementation, discussed
in Section 7.6, together with some shell
procedures and the crack program for the
one-round RC5 (Section 5.4.2); see README file.
Moreover, this directory includes sirc5a.cpp, my
implementation ported from S&I to Windows NT
(in C++), as discussed in Section 5.4.3. The
source code is intended for analysis; to use it, you
should fall back on the crypto-library in PD/S+I.

RC6 directory: Source texts and documentation of RC6
(Section 5.4.4).

SEAL directory: Implementation of the SEAL algorithm from
Section 5.6.4.

SHA directory:

MD5 collisions.pdf Articles by Klima [Klima].

md5coll.py Python script to verify the correctness of a special
MD5 collision. The value of the msg variable is
arbitrary—the collision works always
(incremental behavior of the hash function).
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sha0coll.py Similarly to md5coll.py, a Python script to verify
SHA0 collisions. You need OpenSSL (as a
command-line tool) to start, since SHA-0 is not
supported by any of the modules that comes with
Python.

sha256-384-512.pdf Description of the SHA-256, SHA-384, and
SHA-512 algorithms.

sha256.c Source text from GnuPG for SHA-256; I slightly
modified it so that it can be compiled and used on
its own. You find a use example at the end of the
source text.

Skipjack directory: The Skipjack algorithm from
www.nist.gov/encryption/skipjack-
kea.htm discussed in Section 5.7.5. The
PostScript and PDF files can be found on the
homepage in this rather poor quality.

cryptana directory:

crack directory: The dictionary attack against UNIX passwords
discussed in Section 3.3.

pkcrack directory: The program to break the pkzip cipher by Peter
Conrad discussed in Section 5.7.1. It requires
33 MB of virtual memory and a lot of
computational power!

subscrack directory: The Python script to automatically break
substitution code, discussed in Section 2.2.1,
including German and English documentation.
Dictionaries are not included, but the
documentation describes how to create them.

txt directory:

biometric directory:

fingerprt gelatine.txt Description by Chaos Computer Club (CCC) how
to forge fingerprints for sensors (in German).

FAQ directory: The FAQ (Frequently Asked Questions) lists on
cryptology often found on the Internet; good
educational material.
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You also find memo.txt, an important essay by
Bruce Schneier, which you should absolutely
read if you are interested in designing your own
algorithms.

The file cryptanalysis.ps is an introduction by
Schneier into modern cryptanalysis with
practical exercises. If you are shocked by how
difficult the article is, particularly compared to
this book, you are right . . .

PEM directory: Three RFC files on the PEM standard and two
on RIPEM (RIPEM.Questions,
RIPEM.Vulnerabilities).

wpcrack directory: The crack programs for the WordPerfect
encryption (see Section 3.5.1) widely found on
the Internet; they differ considerably from my
newwprcrack.

chipcrack directory:
andkuhn.html The fascinating article by Anderson and Kuhn

on hardware analysis, mentioned in
Section 4.4.5, among others. Must read!

crpanahard.html Considerations on the design and security of
hardware for cryptologic purposes; authors:
Goldberg and Wagner, known by their
exploitation of the small key space in an older
Netscape version (see Section 5.1.4).

dfa10.txt Improvement by Anderson and Kuhn of the
DFA method by Biham from Section 4.4.5.

rossdes.html Attack against DES by means of parity and
‘burnt-in’ memory modules by Anderson (4.4.5).

winnemr.html Study on the eavesdropping possibilities by
electromagnetic radiation.

cryptana directory:
biham.html, biham.ps,

biham.txt
Description of the DFA attack by Biham (4.4.5).

dpa.txt, dpafaq.txt Two articles by Kocher, including one on
‘differential power analysis’, mentioned in
Section 5.10.
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netscape broken.txt,
netscape answer.txt

Report by Goldberg and Wagner on the small
key space in the Netscape Navigator and the
reply by Netscape Communications Corporation.

mod3.ps Schneier’s mod-3 cryptanalysis of RC5P from
Section 5.4.2.

openpgpattack.txt A discussion of the attack against the OpenPGP
protocol published in the beginning of 2001,
including links (see end of Section 7.1.4).

pkcs.ps Bleichenbacher’s attack against the RSA
protocol PKCS#1; see Risk 5 in Section 4.5.3.

pkdfa.html Article by Kocher on the above mentioned
attacks against secure hardware: The problems
are known and considered!

rc5 linear.ps Heys’ attack against RC5 (see [HeysRC5]).

shamirA5.ps The cryptanalysis of the GSM algorithm A5 by
Biruykov and Shamir (see Section 5.7.2).

timing attack.ps Description of Kocher’s timing attack
(Section 5.10).

viscrypt.ps Shamir’s ‘visual cryptanalysis’ (Section 4.4.1),
as proposed at the EUROCRYPT ‘98.

wlanrc4.txt Article on huge security holes in the RC4
implementation in the WLAN standard (wireless
LAN, the alternative to Bluetooth).

des directory:

attack-on-8-round-
des.txt

Description of the attack against an 8-round DES
by means of differential linear cryptanalysis;
authors: Hellman and Langford (Section 4.4.4).

des56.txt Report on the DES Challenge II, a successful
brute-force attack against DES in
January/February 1998 (Section 4.4.1).

ec directory:

pin.txt Description of securing PINs of EC bank cards
(see Section 6.6.8) (in German; an FAQ list of
the de.comp.security newsgroup).
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wcf.txt Description of adventurous malfunctions in
securing the PINs of ATMs in Great Britain (by
Anderson). Must read!

enigma directory: Nine text files about the history of the Enigma;
must read: hinsley.txt (copy of a seminar by Sir
Harry Hinsley on the impact of the Enigma on
World War II, dated October 19, 1993. Hinsley
is the official historian on the work of the
British intelligence agency in World War II).

gsm directory:

gsm secur.txt Detailed technical description of the
functionality of GSM telephones, and
authentication and encryption methods (see also
algor/A5 directory.

Source: www.l0pht.com/∼drwho/cell/gsm/
gsm-secur/gsm-secur.html.

gsm press.txt Press release of SDA (Smartcard Developers
Association) dated April 13, 1998, on cloned
GSM phones and security flaws (see
Section 6.1.3).

gsm faq.txt Detailed information about the attack described
in gsm press.txt.

gsm offic.txt: Statement of the GSM operators that the attack
described is ineffective and the shortened A5
key was to serve only to increase ‘flexibility’.

UMTS sec.pdf Speech by Mike Walker on UMTS security at
the EUROCRYPT 2000. A good introduction to
the field; mentions the weaknesses of GSM at
the same time. However, you may never have
seen so many abbreviations in so small a space.
This style seems to be common in the
telecommunications industry.

3gpp.txt Overview of UMTS security documents.

gsm crack bbk.pdf Work by Barkan, Biham, and Keller on breaking
the A5/1 algorithm of GSM telephones (see
Section 5.7.2).
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policy directory:

Email.Study.txt The article by Schwartz and Wood on traffic
analysis mentioned in Section 8.2.1. This material
is still current though it is of October 1992!

Privacy.txt A statement by Professor Cochrane (British
Telecom; see www.labs.bt.com/library/cochrane/
index.htm) on disappearing privacy in the
information age; radical, but interesting (also in
connection with Section 8.2.2).

bbhitech.txt A discussion on how intelligence agencies can
exploit modern technology for surveillance of large
groups of people, already practiced in some
countries, e.g., Thailand. It is interesting to read
about the ‘data traces’ US citizens leave behind
already today.

cdt policy.txt Discussion of the Clipper chip, export restrictions,
key escrow, etc.

claw1996.txt This is the Crypto-Law Survey by Bert-Jaap Koops
mentioned in Section 8.2.3. It gives an overview on
crypto-laws in many countries (as of July 1996).
The list is merely indicative, since the laws change
constantly.

claw2001.txt The version of claw.txt in 2001—a lot has changed
since then!

crptlawwirt.txt Statement of the business world on the draft law for
digital signatures and regulations of the use of
cryptography (favoring the first law, while
criticizing the second draft). Must read!

cryptverbot.html Statements of several political parties and
organizations on the regulation of cryptography.

echelon schmid.pdf Detailed report of the Echelon Commission of the
EU Parliament on the Echelon surveillance system.

eml.txt Fortune report dated February 3, 1997, on the
practices and possibilities of replaying e-mail,
breaking into computers, etc., in the USA; includes
huge amounts of interesting facts, and deals
intensively with the hacker scene.
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feb97 state.txt Report on the negotiations between the FBI and
the EU on a global telephone monitoring system.
Rather shocking!

fuev.txt Telecommunications Surveillance Directive
(Fernmeldeverkehr-Überwachungs-Verordnung;
FÜV) of May 18, 1995.

globuberwachung.txt Discussion of modern surveillance possibilities
based on the Schengen Treaty and the Sirene
System. The example of the destiny of Norwegian
Jews in World War II is used to show how ‘useful’
data harvesting in stock can be in such cases.

ic2kreport.txt The STOA report of the EU, mentioned in
Section 8.2.1, which deals in detail with the
technical possibilities of intelligence agencies.

Information
Awareness
Office.html

Wikipedia page of November 2006 on IAO,
formerly TIA, the extensive surveillance system
planned for fight against terror.

kahn.txt David Kahn’s backing of key escrow; author of
the fascinating book [KahnCode].

madsen.txt A highly interesting contribution on the obvious
involvement of the NSA in Crypto AG
(Switzerland). The affair became public in 1992
when an alleged Swiss spy was bailed out from
Iraqi prison. This is the only use of ‘real Trojan
cryptography’ I know of (see Section 6.7). The
article is a must-read for every cryptologist who is
interested in more than mathematics!

nsa-hersh.txt Text on the discussion in Section 8.2.1 as to how
‘fatal’ cryptography and modern data-transmission
methods might have become for intelligence
agencies—certainly useful to prevent becoming
paranoid, but one shouldn’t underestimate the
NSA.

nsaabout.txt Presentation of the NSA on itself on its
homepage; among other things, it mentions that
the NSA produces hardware, and that it is the
largest employer of mathematicians.
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nsasec.txt, nsasec.ps Text on the security manual for NSA employees
that somehow ‘leaked’. I recommend this reading
if you are interested how large intelligence
agencies work.

oasis.txt An article on the Oasis program, which is said to
be able to convert audio files (e.g.,
phone-conversation replays) automatically into
plaintext. This can be very significant for
interception technologies.

schmid bericht.html Speech by Gerhard Schmid on Echelon at the EU
Parliament; good overview.

quant directory:

matthaeus-
diplom.pdf

The work by Matthias Halder on optical data
transmission by means of quantum cryptography
between the Zugspitze and the Wendelstein
mountains in the Alps (Section 5.8).

quantumcon.txt An interesting and popular article on quantum
cryptography as discussed in Section 5.8. It
mainly describes the enormous technical problems.

qc-grover.txt A well-written introduction to the theory of
quantum computers; easy to understand.

stego directory:

mimic.txt Description of the so-called mimic functions by
Peter Wayner (see Section 1.3, Figure 1.2).

PD directory:

CBW directory: Crypt Breaker’s Workbench by Robert Baldwin
that breaks the old UNIX encryption, crypt (see
Section 2.5.3).

CFS directory: The cryptographic file system by Blaze discussed
in Section 7.4.

PGP directory:

pgp2.6.3
subdirectory

PGP Version 2.6.3 (see Section 7.1).

inpgp50.txt The innards of PGP 5.0 (see Section 7.1.4).
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GnuPG directory:

microhowto.txt,
microhowto.eng

Strongly simplified instructions for getting started
with GnuPG. These instructions help you to send
and received encrypted mails on the command
line within one hour of learning.

pgp2x.html Instructions for migrating from PGP 2.6 to
GnuPG.

SESAME directory: The European SESAME project, which is
supposed to replace Kerberos. This software is
highly insecure (see Section 6.7). I just included it
for readers to perhaps find more vulnerabilities.

S+I directory:

SICryptLib11OS.zip The rudimentary crypto-library, which includes
my RC5a algorithm ported to Windows NT, by
the courtesy of S+I.

SSH directory:

ssh.tgz Secure Shell SSH, Version 1.2.26, discussed in
Section 7.3 (this is a compressed. tar archive).

ssh1 insecure.txt Text warning of the insecurity of SSH1.

skey directory: Three program packages for one-time passwords
in UNIX; see Section 7.5; and algorithms for
authentication.

OPIE subdirectory: OPIE Version 2.22.

logdaemon
subdirectory:

Logdaemon Version 5.6.

skey subdirectory: S/Key Version 1.1.

OATH
subdirectory:

rfc4226.txt Description of the HOTP algorithm based on
OATH.

SecurID
subdirectory:

securid attack Description of a cryptanalysis of the RSA SecurID
Token.
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