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Preface

Towards the end of the 1960s, under the influence of the rapid development
of microelectronics, electromechanical cryptological machines began to be
replaced by electronic data encryption devices using large-scale integrated
circuits. This promised more secure encryption at lower prices. Then, in
1976, Diffie and Hellman opened up the new cryptological field of public-key
systems. Cryptography, hitherto cloaked in obscurity, was emerging into the
public domain. Additionally, ENIGMA revelations awoke the public interest.
Computer science was a flourishing new field, too, and computer scientists
became interested in several aspects of cryptology. But many of them were
not well enough informed about the centuries-long history of cryptology and
the high level it had attained. I saw some people starting to reinvent the
wheel, and others who had an incredibly naive belief in safe encryption,
and I became worried about the commercial and scientific development of
professional cryptology among computer scientists and about the unstable
situation with respect to official security services.
This prompted me to offer lectures on this subject at the Munich Institute of
Technology. The first series of lectures in the winter term 1977/78, backed
by the comprehensive and reliable book The Codebreakers (1967) by David
Kahn, was held under the code name ‘Special Problems of Information
Theory’ and therefore attracted neither too many students nor too many
suspicious people from outside the university.
Next time, in the summer term of 1981, my lectures on the subject were
announced under the open title ‘Cryptology’. This was seemingly the first
publicly announced lecture series under this title at a German, if not indeed
a Continental European, university.
The series of lectures was repeated a few times, and in 1986/87 lecture notes
were printed which finally developed into Part I of this book. Active interest
on the side of the students led to a seminar on cryptanalytic methods in the
summer term of 1988, from which Part II of the present book originated.
The 1993 first edition (in German) of my book Kryptologie, although written
mainly for computer science students, found lively interest also outside the
field. It was reviewed favorably by some leading science journalists, and
the publisher followed the study book edition with a 1995 hardcover edition
under the title Entzifferte Geheimnisse [Decrypted Secrets], which gave me
the opportunity to round out some subjects. Reviews in American journals
recommended also an English version, which led in 1997 to the present book.
It has become customary among cryptologists to explain how they became
acquainted with the field. In my case, this was independent of the Second
World War. In fact, I was never a member of any official service—and I



VI Preface

consider this my greatest advantage, since I am not bound by any pledge of
secrecy. On the other hand, keeping eyes and ears open and reading between
the lines, I learned a lot from conversations (where my scientific metier was
a good starting point), although I never know exactly whether I am allowed
to know what I happen to know.

Luigi Sacco (1883–1970)

It all started in 1951, when I told my former professor
of formal logic at Munich University, Wilhelm Brit-
zelmayr, of my invention of an error-correcting code
for teletype lines1. This caused him to make a wrong
association, and he gave me a copy of Sacco’s book,
which had just appeared2. I was lucky, for it was the
best book I could have encountered at that time—
although I didn’t know that then. I devoured the
book. Noticing this, my dear friend and colleague
Paul August Mann, who was aware of my acquain-
tance with Shannon’s redundancy-decreasing encod-
ing, gave me a copy of the now-famous paper by
Claude Shannon called Communication Theory of Secrecy Systems3 (which
in those days as a Bell Systems Technical Report was almost unavailable in
Germany). I was fascinated by this background to Shannon’s information
theory, which I was already familiar with. This imprinted my interest in
cryptology as a subfield of coding theory and formal languages theory, fields
that held my academic interest for many years to come.

Strange accidents—or maybe sharper observation—then brought me into
contact with more and more people once close to cryptology, starting with
Willi Jensen (Flensburg) in 1955, Karl Stein (Munich) in 1955, Hans Rohr-
bach, my colleague at Mainz University, in 1959, as well as Helmut Grunsky,
Gisbert Hasenjäger, and Ernst Witt. In 1957, I became acquainted with
Erich Hüttenhain (Bad Godesberg), but our discussions on the suitability of
certain computers for cryptological work were in the circumstances limited
by certain restrictions. Among the American and British colleagues in nu-
merical analysis and computer science I had closer contact with, some had
been involved with cryptology in the Second World War; but no one spoke
about that, particularly not before 1974, the year when Winterbotham’s book
The Ultra Secret appeared. In 1976, I heard B. Randall and I. J. Good reveal
some details about the Colossi in a symposium in Los Alamos. As a science-
oriented civilian member of the cryptology academia, my interest in cryp-
tology was then and still is centered on computerized cryptanalysis. Other
aspects of signals intelligence (‘SIGINT’), for example, traffic analysis and di-
rection finding, are beyond the scope of this book; the same holds for physical
devices that screen electromechanical radiation emitted by cipher machines.

1 DBP No. 892767, application date January 21, 1951.
2 Général Luigi Sacco, Manuel de Cryptographie. Payot, Paris 1951.
3 Bell Systems Technical Journal 28, Oct. 1949, pp. 656–715.



Preface VII

Cryptology is a discipline with an international touch and a particular ter-
minology. It may therefore be helpful sometimes to give in this book some
explanations of terms that originated in a language other than English.
The first part of this book presents cryptographic methods. The second part
covers cryptanalysis, above all the facts that are important for judging cryp-
tographic methods and for saving the user from unexpected pitfalls. This
follows from Kerckhoffs’ maxim: Only a cryptanalyst can judge the secu-
rity of a cryptosystem. A theoretical course on cryptographic methods alone
seems to me to be bloodless. But a course on cryptanalysis is problematic:
Either it is not conclusive enough, in which case it is useless, or it is conclu-
sive, but touches a sensitive area. There is little clearance in between. I have
tried to cover at least all the essential facts that are in the open literature or
can be deduced from it. No censorship took place.
Certain difficulties are caused by the fact that governmental restrictions dur-
ing and after World War II, such as the ‘need to know’ rule and other gim-
micks, misled even people who had been close to the centers of cryptanalysis.
Examples include the concept of Banburismus and the concept of a ‘cilli’.
The word Banburismus—the name was coined in Britain—was mentioned in
1985 by Deavours and Kruh in their book, but the method was only vaguely
described. Likewise, the description Kahn gave in 1991 in his book is rather
incomplete. On the other hand, in Kozaczuk’s book of 1979 (English edi-
tion of 1984), Rejewski gave a description of Różycki’s ‘clock method’, which
turned out to be the same—but most of the readers could not know of this
connection. Then, in 1993, while giving a few more details on the method,
Good (in ‘Codebreakers’) confirmed that “Banburism was an elaboration
of ... the clock method ... [of] ... Różycki”. He also wrote that this elabora-
tion was ‘invented at least mainly by Turing’, and referred to a sequential
Bayesian process as the “method of scoring”. For lack of declassified concrete
examples, the exposition in Sect. 19.4.2 of the present book, based on the re-
cently published postwar notes of Alexander and of Mahon and articles by
Erskine and by Noskwith in the recent book Action This Day, cannot yet be
a fully satisfactory one. And as to cillies, even Gordon Welchman admitted
that he had misinterpreted the origin of the word, thinking of ‘silly’. Other
publications gave other speculations, see Sect. 19.7, fn. 29. Ralph Erskine, in
Action This Day, based on the recently declassified ‘Cryptanalytic Report
on the Yellow Machine’, 71-4 (NACP HCC Box 1009, Nr. 3175), gives the
following summary of the method:
‘Discovered by Dilly Knox in late January 1940, cillies reduced enormously
the work involved in using the Zygalski sheets, and after 1 May, when the
Zygalski sheets became useless, they became a vital part of breaking Enigma
by hand during most of 1940. They were still valuable in 1943.

Cillies resulted from a combination of two different mistakes in a multi-part
message by some Enigma operators. The first was their practice of leaving
the rotors untouched when they reached the end of some part of the message.



Since the letter count of each message part was included in the preamble, the
message key of the preceding part could be calculated within fine limits. The
second error was the use of non-random message keys—stereotyped keyboard
touches and 3-letter-acronyms. In combination, and in conjunction with the
different turnover points of rotors I to V, they allowed one to determine which
rotors could, and which could not, be in any given position in the machine.’
Although Banburismus and cillies were highly important in the war, it is
hard to understand why Derek Taunt in 1993 was prevented by the British
censor from telling the true story about cillies. Possibly, the same happened
to Jack Good about Banburismus.

***
My intellectual delight in cryptology found an application in the collection
‘Informatik’ of the Deutsches Museum in Munich which I built up in 1984
–1988, where there is a section on cryptological devices and machines. My
thanks go to the Deutsches Museum for providing color plates of some of the
pieces on exhibit there.
And thanks go to my former students and co-workers in Munich, Manfred
Broy, Herbert Ehler, and Anton Gerold for continuing support over the years,
moreover to Hugh Casement for linguistic titbits, and to my late brother-
in-law Alston S. Householder for enlightenment on my English. Karl Stein
and Otto Leiberich gave me details on the ENIGMA story, and I had fruitful
discussions and exchanges of letters with Ralph Erskine, Heinz Ulbricht, Tony
Sale, Frode Weierud, Kjell-Ove Widman, Otto J. Horak, Gilbert Bloch, Arne
Fransén, and Fritz-Rudolf Güntsch. Great help was given to me by Kirk
H. Kirchhofer from Crypto AG, Zug (Switzerland). Hildegard Bauer-Vogg
supplied translations of difficult Latin texts, Martin Bauer, Ulrich Bauer and
Bernhard Bauer made calculations and drawings. Thanks go to all of them.
The English version was greatly improved by J. Andrew Ross, with whom
working was a pleasure. In particular, my sincere thanks go to David Kahn
who encouraged me (“The book is an excellent one and deserves the widest
circulation”) and made quite a number of proposals for improvements of the
text. For the present edition, additional material that has been made public
recently has been included, among others on Bletchley Park, the British at-
tack on Tunny, Colossus and Max Newman’s pioneering work. Moreover, my
particular thanks go to Ralph Erskine who indefatigably provided me with
a lot of additional information and checked some of the dates and wordings.
In this respect, my thanks also go to Jack Copeland, Heinz Ulbricht, and
Augusto Buonafalce. Finally, I have to thank once more Hans Wössner for
a well functioning cooperation of long standing, and the new copy editor
Ronan Nugent for very careful work. The publisher is to be thanked for the
fine presentation of the book. And I shall be grateful to readers who are kind
enough to let me know of errors and omissions.

Grafrath, Spring 2006 F. L. Bauer
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ars ipsi secreta magistro
[An art secret even for the master ]

Jean Robert du Carlet, 1644

For it is better for a scribe
to be thought ignorant

than to pay the penalty
for the detection of plans.

Giambattista Della Porta, 1563

Giambattista Della Porta
(1535–1615)

Reciprocal cipher alphabet by
Giovan Batista Belaso, 1553
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Only a few decades ago one could say that cryptology, the study of secret
writing and its unauthorized decryption, was a field that flourished in conceal-
ment—flourished, for it always nurtured its professional representatives well.
Cryptology is a true science: it has to do with knowledge (Latin scientia),
learning and lore.
By its very nature cryptology not only concerns secretiveness, but remains
shrouded in secrecy itself—occasionally even in obscurity. It is almost a
secret science. The available classic literature is scant and hard to track
down: under all-powerful state authorities, the professional cryptologists in
diplomatic and military services were obliged to adopt a mantle of anonymity
or at least accept censorship of their publications. As a result, the freely
available literature never fully reflected the state of the art—we can assume
that things have not much changed in that respect.
Nations vary in their reticence: whereas the United States of America released
quite generous information on the situation in the Second World War, the
Soviet Union cloaked itself in silence. That was not surprising; but Britain has
also pursued a policy of secretiveness which sometimes appears excessive—as
in the COLOSSUS story. At least one can say that the state of cryptology
in Germany was openly reported after the collapse of the Reich in 1945.1

Cryptology as a science is several thousand years old. Its development has
gone hand in hand with that of mathematics, at least as far as the persons
are concerned—names such as François Viète (1540–1603) and John Wallis
(1616–1703) occur. From the viewpoint of modern mathematics, it shows
traits of statistics (William F. Friedman, 1920), combinatory algebra (Lester
S. Hill, 1929), and stochastics (Claude E. Shannon, 1941).

1 Hans Rohrbach (1948), Mathematische und maschinelle Methoden beim Chiffrieren und
Dechiffrieren. In: FIAT Review of German Science 1939–1941: Applied Mathematics,
Part I, Wiesbaden, 1948.
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Mathematicians as cryptologists. Traditionally, mainly linguists were
doing cryptanalysis. The Second World War finally brought mathemati-
cians to the fore: for example, Hans Rohrbach (1903–1993) in Germany and
Alan Mathison Turing (1912–1954) in the UK; A. Adrian Albert (1905–1972)
and Marshall Hall (1910–1990) were engaged in the field in the United States;
also J. Barkley Rosser, Willard Van Orman Quine, Andrew M. Gleason, and
the applied mathematicians Vannevar Bush (1890–1974) and Warren Weaver
(1894–1978). And there was Arne Beurling (1905–1986) in Sweden, Marian
Rejewski (1905–1980) in Poland, Hugo Hadwiger (1908–1981) in Switzer-
land; moreover Wolfgang Franz in Germany, Maurits de Vries in the Nether-
lands, Ernst S. Selmer (b. 1920) in Norway, Erkki Sten Pale (b. 1906) in Fin-
land, Paul Glur in Switzerland, and Shiro Takagi in Japan.

One could mention a few more present-day mathematicians who have been en-
gaged in official cryptology for a time. Some would prefer to remain incognito.

The mathematical disciplines that play an important part in the current state
of cryptology include number theory, group theory, combinatory logic, com-
plexity theory, ergodic theory, and information theory. The field of cryptology
can already be practically seen as a subdivision of applied mathematics and
computer science. Conversely, for the computer scientist cryptology is gain-
ing increasing practical importance in connection with access to operating
systems, data bases and computer networks, including data transmission.

Screen. Quite generally, it is understandable if intelligence services do not
reveal even the names of their leading cryptologists. Admiral Sir Hugh P. F.
Sinclair, who became in 1923 chief of the British Secret Intelligence Service
(M.I.6), had the nickname ‘Quex’. Semi-officially, Sinclair and his successor
General Sir Stewart Graham Menzies (1890–1968), were traditionally known
only as ‘C’. Under them were a number of ‘Passport Control Officers’ at the
embassies as well as the cryptanalytic unit at Bletchley Park, Buckingham-
shire. And the name of Ernst C. Fetterlein (dec. 1944), who was till the Octo-
ber Revolution head of a Russian cryptanalytic bureau (covername ‘Popov’)
and served the Government Code and Cypher School of the British Foreign
Office from June 1918, was mentioned in the open cryptological literature only
incidentally in 1985 by Christopher Andrew and in 1986 by Nigel West.2

Professional cryptology is far too much at risk from the efforts of foreign secret
services. It is important to leave a potential opponent just as much in the dark
about one’s own choice of methods (‘encryption philosophy’) as about one’s
ability (‘cryptanalytic philosophy’) to solve a message that one is not meant
to understand. If one does succeed in such unauthorized decryption—as the
British did with ENIGMA-enciphered messages from 1940 till 1945—then it
is important to keep the fact a secret from one’s opponents and not reveal it
by one’s reactions. As a result of British shrewdness, the relevant German au-

2 Turing’s biographer Andrew Hodges (1983) even misspelled the name ‘Feterlain’, possi-
bly resulting from mishearing it in a telephone conversation.
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thorities, although from time to time suspicious, remained convinced until the
approaching end of the war (and some very stubborn persons even in 1970)
that the ciphers produced by their ENIGMA machines were unbreakable.
The caution the Allies applied went so far that they even risked disinforma-
tion of their own people: Capt. Laurance F. Safford, US Navy, Office of Naval
Communications, Cryptography Section, wrote in an internal report of March
18, 1942, a year after the return of Capt. Abraham Sinkov and Lt. Leo Rosen
from an informative visit in February 1941 to Bletchley Park:“Our prospects
of ever [!] breaking the German ‘Enigma’ cipher machine are rather poor.” This
did not reflect his knowledge. But in addressing the US Navy leadership, he
wanted to keep the secret of Bletchley Park struggling hard with the German
Navy 4-rotor ENIGMA introduced a few weeks before (in February 1942),
the breakthrough coming only in December 1942.
In times of war, matériel and even human life must often be sacrificed in order
to avoid greater losses elsewhere. In 1974, Group Captain Winterbotham said
Churchill let Coventry be bombed because he feared defending it would reveal
that the British were reading German ENIGMA-enciphered messages. This
story, however, was totally false: As the targets were indicated by changing
code words, this would not in fact have been possible. But, the British were
initially very upset when, in mid-1943, the Americans began systematically
to destroy all the tanker U-boats, whose positions they had learnt as a result
of cracking the 4-rotor ENIGMA used by the German submarine command.
The British were justifiably concerned that the Germans would suspect what
had happened and would greatly modify their ENIGMA system again. In
fact they did not, instead ascribing the losses (incorrectly) to treachery. How
legitimate the worries had been became clear when the Allies found out that
for May 1, 1945, a change in the ENIGMA keying procedures was planned
that would have made all existing cryptanalytic approaches useless. This
change “could probably have been implemented much earlier” if it had been
deemed worthwhile (Ralph Erskine).
This masterpiece of security work officially comprised “intelligence resulting
from the solution of high-grade codes and ciphers”. It was named by the Bri-
tish “special intelligence” for short, and codenamed ULTRA, which also refer-
red to its security classification. The Americans similarly called MAGIC the
information obtained from breaking the Japanese cipher machines they dub-
bed PURPLE . Both ULTRA and MAGIC remained hidden from Axis spies.

Cryptology and criminology. Cryptology also has points of contact with
criminology. References to cryptographic methods can be found in several
textbooks on criminology, usually accompanied by reports of successfully
cryptanalyzed secret messages from criminals still at large—smugglers, drug
dealers, gun-runners, blackmailers, or swindlers—and some already behind
bars, usually concerning attempts to free them or to suborn crucial witnesses.
In the law courts, an expert assessment by a cryptologist can be decisive in
securing convictions. During the days of Prohibition in the USA, Elizebeth
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S. Friedman née Smith (1892–1980), wife of the famous William Frederick
Friedman (1891–1969)3 and herself a professional cryptologist, performed
considerable service in this line. She did not always have an easy time in
court: counsel for the defence expounded the theory that anything could be
read into a secret message, and that her cryptanalysis was nothing more than
“an opinion”. The Swedish cryptologist Yves Gyldén (1895–1963), a grand-
son of the astronomer Hugo Gyldén, assisted the police in catching smugglers
in 1934. Only a few criminological cryptologists are known, for example the
Viennese Dr. Siegfried Türkel in the 1920s and the New Yorker Abraham P.
Chess in the early 1950s. Lately, international crime using cryptographic
methods has again begun to require the attention of cryptanalysts.

Amateurs. Side by side with state cryptology in diplomatic and military ser-
vices have stood the amateurs, especially since the 19th century. We should
mention some serious poets, novelists and fiction writers with nothing more
than a fancy for cryptography: Stefan George, Robert Musil, and Vladimir
Nabokov, and more recently Hans Magnus Enzensberger. But that is not all.
From the revelation of historic events by retired
professionals such as Étienne Bazeries4, to the
after-dinner amusements practised by Wheat-
stone5 and Babbage6, and including journalis-
tic cryptanalytic examples ranging from Edgar
Allan Poe to the present-day Cryptoquip in the
Los Angeles Times, accompanied by excursions
into the occult, visiting Martians, and terror-
ism, cryptology shows a rich tapestry, inter-
woven with tales from one of the oldest of all
branches of cryptology, the exchange of mes-
sages between lovers. The letter-writer’s guides
that appeared around 1750 soon offered crypto-
graphic help, like De geheime brieven-schryver,
angetoond met verscheydene voorbeelden by a
certain G. v. K. , Amsterdam, 1780, and Dem Magiske skrivekunstner , Copen-
hagen, 1796. A century later, we find in German Sicherster Schutz des Brief-
geheimnisses, by Emil Katz, 1901, and Amor als geheimer Bote. Geheimspra-
che für Liebende zu Ansichts-Postkarten, presumably by Karl Peters, 1904.

Mixed with sensational details from the First and Second World Wars, an ex-
citing picture of cryptology in a compact, consolidated form first reached a

3 Friedman, probably the most important American cryptologist of modern times, intro-
duced in 1920 the Index of Coincidence, the sharpest tool of modern cryptanalysis.

4 Étienne Bazeries (1846–1931), probably the most versatile French cryptologist of modern
times, author of the book Les chiffres secrets dévoilés (1901).

5 Sir Charles Wheatstone (1802–1875), English physicist, professor at King’s College,
London, best known for Wheatstone’s bridge (not invented by him).

6 Charles Babbage (1791–1871), Lucasian Professor of Mathematics at the University of
Cambridge, best known for his Difference Engine and Analytical Engine.
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broad public in 1967 in David Kahn’s masterpiece of journalism and historical
science The Codebreakers. In the late 1970s there followed several substantial
additions from the point of view of the British, whose wartime files were at
last (more or less) off the secret list; among the earliest were The Secret War
by Brian Johnson, and later The Hut Six Story by Gordon Welchman. Cryp-
tology’s many personalities make its history a particularly pleasurable field.

Lewis Carroll. A quite remarkable role as an amateur was played by Charles
Lutwidge Dodgson (1832–1898), nom de plume Lewis Carroll, the author of
Alice in Wonderland, Through the Looking-Glass, and The Hunting of the
Snark. He liked to amuse his friends and readers with puzzles, games, codes,
and ciphers. Among the latter, he reinvented the Vigenère cipher with his
1858 Key-Vowel Cipher (restricted to 5 alphabets, see Sect. 7.4.1) and his
1868 Alphabet Cipher, moreover the Beaufort cipher (see Sect. 7.4.3) with
his 1868 Telegraph Cipher. His 1858 Matrix Cipher was the first, and very
elegant, version of a Variant Beaufort cipher (see Sect. 7.4.3). Like Charles
Babbage (1791–1871) and Francis Beaufort (1774–1857), Lewis Carroll was
an amateur who did not earn his money from cryptanalysis.

Commerce. Commercial interest in cryptology after the invention of the
telegraph concentrated on the production of code books, and around the
turn of the century on the design and construction of mechanical and elec-
tromechanical ciphering machines. Electronic computers were later used to
break cryptograms, following initial (successful) attempts during the Second
World War. A programmable calculator is perfectly adequate as a ciphering
machine. But it was not until the mid-1970s that widespread commercial
interest in encrypting private communications became evident (“Cryptology
goes public,” Kahn, 1979); the options opened up by integrated circuits coin-
cided with the requirements of computer transmission and storage. Further
contributing to the growth of cryptology were privacy laws and fears of wire-
tapping, hacking and industrial espionage. The increased need for informa-
tion security has given cryptology a hitherto unneeded importance. Private
commercial applications of cryptology suddenly came to the fore, and led to
some unorthodox keying arrangements, in particular asymmetric public keys,
invented in 1970 by James H. Ellis and first proposed publicly in 1976 by
Whitfield Diffie and Martin Hellman. More generally, the lack of adequate
copyright protection for computer programs has encouraged the use of en-
cryption methods for software intended for commercial use.

Civil rights. The demand for “cryptology for everyman” raises contra-
dictions and leads to a conflict of interests between the state and scien-
tists. When cryptology use becomes widespread and numerous scientists
are occupied in public with the subject, problems of national security arise.
Typically, authorities in the United States began to consider whether pri-
vate research into cryptology should be prohibited—as private research into
nuclear weapons was. On May 11, 1978, two years after the revolutionary ar-
ticle by Diffie and Hellman, a high-ranking judicial officer, John M. Harmon,
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Assistant Attorney General, Office of Legal Counsel, Department of Justice,
wrote to Dr. Frank Press, science advisor to the President: “The crypto-
graphic research and development of scientists and mathematicians in the
private sector is known as ‘public cryptography’. As you know, the serious
concern expressed by the academic community over government controls of
public cryptography led the Senate Select Committee on Intelligence to con-
duct a recently concluded study of certain aspects of the field.” These aspects
centered around the question of whether restraints based on the International
Traffic in Arms Regulation (ITAR) “on dissemination of cryptographic in-
formation developed independent of government supervision or support by
scientists and mathematicians in the private sector” are unconstitutional un-
der the First Amendment, which guarantees freedom of speech and of the
press. It was noted: “Cryptography is a highly specialized field with an au-
dience limited to a fairly select group of scientists and mathematicians ... a
temporary delay in communicating the results of or ideas about cryptographic
research therefore would probably not deprive the subsequent publication of
its full impact.”
Cryptological information is both vital and vulnerable to an almost unique
degree. Once cryptological information is disclosed, the government’s in-
terest in protecting national security is damaged and may not be repaired.
Thus, as Harmon wrote in 1978, “a licensing scheme requiring prepublication
submission of cryptographic information” might overcome a presumption of
unconstitutionality. Such a scheme would impose “a prepublication review
requirement for cryptographic information, if it provided necessary procedu-
ral safeguards and precisely drawn guidelines”, whereas “a prior restraint on
disclosure of cryptographic ideas and information developed by scientists and
mathematicians in the private sector is unconstitutional.”
Furthermore, in the 1980s, the Department of Justice warned that export
controls on cryptography presented “sensitive constitutional issues”.
Let us face the facts: cryptosystems are not only considered weapons by the
US government—and also by other governments—they are weapons, weapons
for defense and weapons for attack. The Second World War has taught us
this lesson.
Harmon wrote moreover: “Atomic energy research is similar in a number of
ways to cryptographic research. Development in both fields has been dom-
inated by government. The results of government created or sponsored re-
search in both fields have been automatically classified because of the immi-
nent danger to security flowing from disclosure. Yet meaningful research in
the field may be done without access to government information. The results
of both atomic energy and cryptographic research have significant nongovern-
mental uses in addition to military use. The principal difference between the
fields is that many atomic energy researchers must depend upon the gov-
ernment to obtain radioactive source material necessary in their research.
Cryptographers, however, need only obtain access to an adequate computer.”
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In other words, cryptology invites dangerous machinations even more than
atomic energy. At least the crypto weapon does not kill directly—but it may
cover up crimes.
The responsibility of the government and the scientists in view of the nim-
bleness of cryptological activities is reflected in the Computer Security Act
of the US Congress of 1987 (Public Law 100-235). It established a Com-
puter System Security and Privacy Advisory Board (CSSPAB), composed of
members of the federal government and the computer industry. While a la-
tent conflict did exist, its outbreak seemed to have been avoided in the USA
till 1993 due to voluntary restraint on the part of cryptologists (exercised by
the Public Cryptography Study Group).
In 1993, however, a crypto war broke out between the government and civil
rights groups, who felt provoked by the announcement in April 1993—which
came also as a surprise to the CSSPAB—and the publication in February
1994 of an Escrowed Encryption Standard (EES), a Federal Information Pro-
cessing Standards publication (FIPS 185). The standard makes mandatory
an escrow system for privately used keys. While this persistent conflict is not
scientific, but rather political, it still could endanger the freedom of science.
Things look better in liberal, democratic Europe; prospects are lower that
authorities would be successful everywhere in restraining scientific cryptolo-
gy. In the European Union, discussions started in 1994 under the keyword
“Euro-Encryption”, and these may also lead in the end to a regulation of
the inescapable conflict of interests between state authorities and scientists.
France dropped in 1999 its escrow system. In the former Soviet Union, the
problem was of course easily settled within the framework of the system,
but in today’s Russia, in China, and in Israel strong national supervision
continues.
A Janus face. Cryptography and cryptanalysis are the two faces of cryptolo-
gy; each depends on the other and each influences the other in an interplay
of improvements to strengthen cryptanalytic security on the one side and
efforts to mount more efficient attacks on the other side. Success is rather
rare, failures are more common. The silence preserved by intelligence services
helps, of course, to cover up the embarrassments. All the major powers in
the Second World War succeeded—at least occasionally—in solving enemy
cryptosystems, but all in turn sometimes suffered defeats, at least partial.
Things will not be so very different in the 21st century—thanks to human
stupidity and carelessness.



1 Introductory Synopsis

En cryptographie, aucune règle n’est absolue.
[In cryptography, no rule is absolute.]

Étienne Bazeries (1901)

1.1 Cryptography and Steganography

We must distinguish between cryptography (Greek kryptos, hidden) and
steganography (Greek steganos, covered). The term cryptographia, to mean
secrecy in writing, was used in 1641 by John Wilkins, a founder with John
Wallis of the Royal Society in London; the word ‘cryptography’ was coined
in 1658 by Thomas Browne, a famous English physician and writer. It is
the aim of cryptography to render a message incomprehensible to an un-
authorized reader: ars occulte scribendi . One speaks of overt secret writing:
overt in the sense of being obviously recognizable as secret writing.
The term steganographia was also used in this sense by Caspar Schott, a
pupil of Athanasius Kircher, in the title of his book Schola steganographia,
published in Nuremberg in 1665; however, it had already been used by
Trithemius in his first (and amply obscure) work Steganographia, which he
began writing in 1499, to mean ‘hidden writing’. Its methods have the goal of
concealing the very existence of a message (however that may be composed)—
communicating without incurring suspicion (Francis Bacon, 1623: ars sine
secreti latentis suspicione scribendi). By analogy, we can call this covert
secret writing or indeed ‘steganography’.
Cryptographic methods are suitable for keeping a private diary or notebook—
from Samuel Pepys (1633–1703) to Alfred C. Kinsey (1894–1956)—or pre-
venting a messenger understanding the dispatch he bears; steganographic
methods are more suitable for smuggling a message out of a prison—from Sir
John Trevanion (Fig. 13), imprisoned in the English Civil War, to the French
bank robber Pastoure, whose conviction was described by André Langie, and
Klaus Croissant, the lawyer and Stasi collaborator who defended the Baader-
Meinhof terrorist gang. The imprisoned Christian Klar used a book cipher.
Steganography falls into two branches, linguistic steganography and technical
steganography. Only the first is closely related to cryptography. The techni-
cal aspect can be covered very quickly: invisible inks have been in use since
Pliny’s time. Onion juice and milk have proved popular and effective through
the ages (turning brown under heat or ultraviolet light). Other classical props
are hollow heels and boxes with false bottoms.
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Among the modern methods it is worth mentioning high-speed telegraphy,
the spurt transmission of stored Morse code sequences at 20 characters per
second, and frequency subband permutation (‘scrambling’) in the case of tele-
phony, today widely used commercially. In the Second World War, the For-
schungsstelle (research post) of the Deutsche Reichspost (headed by Postrat
Dipl.-Ing. Kurt E. Vetterlein) listened in from March 1942 to supposedly se-
cure radio telephone conversations between Franklin D. Roosevelt and Win-
ston Churchill, including one on July 29, 1943, immediately before the cease-
fire with Italy, and reported them via Schellenberg’s Reichssicherheitshaup-
tamt, Amt VI to Himmler.
Written secret messages were revolutionized by microphotography; a micro-
dot the size of a speck of dirt can hold an entire quarto page—an extraor-
dinary development from the macrodot of Histiæus1, who shaved his slave’s
head, wrote a message on his scalp; then waited for the hair to grow again.
Microdots were invented in the 1920s by Emanuel Goldberg. The Russian
spy Rudolf Abel produced his microdots from spectroscopic film which he was
able to buy without attracting attention. Another Soviet spy, Gordon Arnold
Lonsdale, hid his microdots in the gutters of bound copies of magazines. The
microdots used by the Germans in the Second World War were of just the
right size to be used as a full stop (period) in a typewritten document.

1.2 Semagrams

Linguistic steganography recognizes two methods: a secret message is either
made to appear innocent in an open code, or it is expressed in the form
of visible (though often minute) graphical details in a script or drawing, in
a semagram. This latter category is especially popular with amateurs, but
leaves much to be desired, since the details are too obvious to a trained and
wary eye. The young Francis Bacon (1561–1626) invented the use of two type-
faces to convey a secret message (Fig. 1), described in the Latin translation
De dignitate et augmentis scientiarum (1623) of his 1605 book Proficience
and Advancement. It has never acquired any great practical importance (but
see Sect. 3.3.3 for the binary code he introduced on this occasion).

Fig. 1. Francis Bacon: Visible concealment of a binary code (‘biliteral cipher’) by means
of different types of script. Note the different forms of /e/ in the word Manere

The same steganographic principle appears to have been known in Paris at the
same time, and was mentioned by Vigenère in 1586. Despite its clumsiness it

1 Kahn spells the name Histiaeus on p. 81, Histaeius on p. 780, and Histaieus in the index of
his book The Codebreakers. Verily an example of ars occulte scribendi in an otherwise
very reliable book!
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Fig. 2. Semagram in a 1976 textbook on combinatory logic (the passage deals with the
famous Königsberg bridges problem). The lowered letters give the message
“nieder mit dem sowjetimperialismus” [down with Soviet imperialism]

has lasted well: the most recent uses known to me are A. van Wijngaarden’s
alleged usage of roman (.) and italic (.) full stops in the ALGOL 68 report.
A second steganographic principle consists of marking selected characters in
a book or newspaper; for example, by dots or by dashes. It is much more con-
spicuous than the above-mentioned method—unless an invisible ink is used—
but simpler to implement. A variant (in a book on combinatory logic) uses
an almost imperceptible lowering of the letters concerned (Fig. 2) .

Fig. 3. Visible concealment of a numeric code by spacing the letters (Smith)

A third principle uses spaces between letters within a word (Fig. 3). In this
example, it is not the letter before or after the space that is important,
but the number of letters between successive letters ending with an upward
stroke, 3 3 5 1 5 1 4 1 2 3 4 3 3 3 5 1 4 5 ... . In 1895, A. Boetzel and
Charles O’Keenan demonstrated this steganographic principle, also using a
numeric code, to the French authorities (who remained unconvinced of its
usefulness, not without reason). It appears to have been known before then
in Russian anarchist circles, combined with the “Nihilist cipher” (Sect. 3.3.1).
It was also used by German U-boat officers in captivity to report home on
the Allies’ antisubmarine tactics.
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Fig. 4. Secret message solved by Sherlock Holmes (AM HERE ABE SLANEY),
from The Adventure of the Dancing Men by Arthur Conan Doyle

All these are examples of semagrams (visibly concealed secret writing). And
there are many more. In antiquity Æneas used the astragal , in which a cord
threaded through holes symbolized letters. A box of dominoes can conceal
a message (by the positions of the spots), as can a consignment of pocket
watches (by the positions of the hands). Sherlock Holmes’ dancing men
(Fig. 4) bear a message just as much as hidden Morse code (Fig. 5): “com-
pliments of CPSA MA to our chief Col. Harold R. Shaw on his visit to San
Antonio May 11th 1945” (Shaw had been head of the Technical Operations
Division of the US government’s censorship division since 1943).

Fig. 5. Semagram. The message is in Morse code, formed by the
short and long stalks of grass to the left of the bridge, along
the river bank and on the garden wall

A maze is a good example of a clear picture hidden in a wealth of incidental
detail: the tortuous paths of Fig. 6 reduce to a graph which can be taken in
at a glance. Autostereograms which require the viewer to stare or to squint
in order to see a three-dimensional picture (Fig. 7) are also eminently suitable
for concealing images, at least for a while.
Of greater interest are those methods of linguistic steganography that turn
a secret message into one that is apparently harmless and easily understood,
although wrongly (open code). The principle is closer to that of cryptography.
Again, there are two subcategories: masking and veiling.
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Where will the balloon land, A or B?
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Fig. 6. Maze and its associated graph
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Bernhard Bauer
Fig. 7. Autostereogram

1.3 Open Code: Masking

A secret writing or message masked as an open communication requires a
prior agreement as to the true meaning of seemingly harmless phrases. This is
probably the oldest form of secrecy technique—it is to be found in all cultures.
Oriental and Far Eastern dealers and gamesters (and some Western ones) are
reputed to be masters in the use of gestures and expressions. The following
system is said to be common among American card cheats. The manner of
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holding a cigarette or scratching one’s head indicates the suit or value of the
cards held. A hand on the chest with the thumb extended means “I’m going
to take this game. Anybody want to partner me?” The right hand, palm
down, on the table means “Yes”, a clenched fist, “No, I’m working single, and
I discovered this guy first, so scram!” The French conjurer Robert Houdin
(1805–1871) is said to have used a similar system around 1845, with I, M, S,
V standing for coeur , carreau, trèfle, pique : il fait chaud or il y a du monde
means “I have hearts”, as it starts with /I/. Things were no more subtle in
English whist clubs in Victorian days; “Have you seen old Jones in the past
fortnight?” would mean hearts, as it starts with /H/. The British team was
suspected of exchanging signals at the world bridge championships in Buenos
Aires in 1965—nothing could be proved, of course.
Sometimes, a covert message can be transmitted masked in an innocent way
by using circumstances known only to the sender and the recipient. This may
happen in daily life. A famous example was reported by Katia Mann: In
March 1933, she phoned from Arosa in Switzerland her daughter Erika in
Munich and said: “Ich weiß nicht, es muß doch jetzt bei uns gestöbert werden,
es ist doch jetzt die Zeit” [I don’t know, it is the time for spring-cleaning].
But Erika replied “Nein, nein, außerdem ist das Wetter so abscheulich. Bleibt
ruhig noch ein bissel dort, ihr versäumt ja nichts” [No, no, anyway, the
weather is so atrocious. Stay a little while, you are not missing anything
here]. After this conversation, it became clear to Katia and Thomas Mann
that they could not return to Germany without risk.

Fig. 8. Tramps’ secret marks (German Zinken), warning of a policeman’s house
and an aggressive householder (Central Europe, around 1930)

Secret marks have been in use for centuries, from the itinerant scholars of
the Middle Ages to the present-day vagrants, tramps, hoboes and loafers.
Figure 8 shows a couple of secret marks, such as could still be seen in a
provincial town of Central Europe in the 1930s; Fig. 9 shows a few used in
the midwestern United States in the first half of the 20th century. Tiny
secret marks are also used in engravings for stamps or currency notes as a
distinguishing mark for a particular engraver or printer.

good for a handout bad dog police not hostile town is hostile

not generous stay away police hostile plainclothes detectives here

Fig. 9. Hoboes’ secret marks for ‘police not hostile’ and other messages
(midwestern United States, first half of 20th century)
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Languages specific to an occupation or social class, collectively known as jar-
gon, above all the kinds used by beggars, vagabonds, and other rascals, vari-
ously called argot (France, USA), cant (UK), thieves’ Latin (UK), rotwelsch
(Germany), fourbesque (Italy), alemania (Spain), or calão (Portugal), and
which serve to shield (and keep intact) a social group, often make use of
masking. Masked secret writing is therefore called jargon code.

The oldest papal code in the 14th century used Egyptians for the Ghibellines,
and Sons of Israel for the Guelphs. One French code in the 17th century
used jargon exclusively: Jardin for Rome, La Roze for the Pope, Le Prunier
for Cardinal de Retz, La Fenestre for the King’s brother, L’Écurie (meaning
either stable or gentry) for Germany, Le Roussin for the Duke of Bavaria, and
so on. A simple masking of names was used in a Bonapartist plot in 1831.

The languages of the criminal underworld are of particular steganographic
interest. French argot offers many examples, some of which have become
normal colloquial usage: rossignol (nightingale) for skeleton key, known since
1406; mouche (fly) for informer (‘nark’ in British slang), since 1389. Alliter-
ative repetition is common: rebecca for rebellion, limace (slug) for lime (file),
which in turn is fourbesque for shirt; marquise for marque (mole or scar),
which in turn is alemania for a girl; frisé (curly) for Fritz (a popular name
for a German). Not quite so harmless are metaphors: château for hospital,
mitraille (bullet) for small change, or the picturesque but pejorative mar-
mite (cooking pot) for a pimp’s girlfriend, and sac à charbon (coal sack)
for a priest. Sarcastic metaphors such as mouthpiece for a lawyer are not
confined to the underworld.

Some jargon is truly international: ‘hole’– trou–Loch for prison; ‘snow’ –neige
–Schnee or ‘sugar’– sucre for cocaine; ‘hot’– heiß for recently stolen goods;
‘clean out’ –nettoyer – abstauben for rob; ‘rock’ – galette –Kohle for money.
All kinds of puns and plays on words find their place here. The British
‘Twenty Committee’ in the Second World War, which specialized in double
agents, took its name from the Roman number XX for ‘double cross’.

Well-masked secret codes for more or less universal use are hard to devise and
even harder to use properly—the practised censor quickly spots the stilted
language. The abbot Johannes Trithemius (1462–1516), in his Polygraphiæ
Libri, six books printed in 1508–1518 (Fig. 10), presented a collection of Latin
words as codes for individual letters (Fig. 11), the Ave Maria cipher. “Head”,
for example, could be masked as “ARBITER MAGNUS DEUS PIISSIMUS”.
In fact, there were 384 such alphabets in the first book, to be used successive-
ly—a remarkable case of an early polyalphabetic encryption (Sect. 2.3.3).

It could be that present-day censors are not sufficiently well versed in Latin
to cope with that. A favorite trick in censorship is to reformulate a message,
preserving the semantics. In the First World War a censor altered a despatch
from “Father is dead” to “Father is deceased”. Back came the message “Is
father dead or deceased?”



16 1 Introductory Synopsis

Fig. 10. Title page (woodcut) of the first printed book on cryptography (1508)

Allegorical language is of little help here. In Louis XV’s diplomatic service,
Chevalier Douglas was sent on a secret mission to Russia in 1755 with an
allegorical arsenal from the fur trade, with le renard noir était cher for “the
influence of the English party is increasing”, le loup-cervier avait son prix
for “the Austrian party (under Bestuchev) retains its dominant influence”.
Bestuchev himself, who was friendly to Prussia, was le loup-cervier , while
une peau de petit-gris meant 3000 mercenaries in the pay of the British.

It is to be hoped that the chevalier was more subtle in the use of his allegorical
code than the German spies, in the guise of Dutch merchants, who—as told by
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Fig. 11.
The first entries of
Trithemius’ Ave Maria cipher

Major-General Kirke—ordered cigars in batches of thousands from Plymouth
one day, Portsmouth the next; then Gravesend and so on—1000 coronas
stood for one battleship. Their inadequate system brought their lives to a
premature end on July 30, 1915. Luck was on the side of Velvalee Dickinson,
a Japanophile woman in New York City, who kept up a lively correspondence
on broken dolls in 1944. Things came to light when a letter to an address in
Portland, Oregon was returned, and the sender’s name turned out to be false.
The lady really did sell exquisite dolls from a shop in Madison Avenue. Tech-
nical Operations Division, the agency for detecting especially hard to find hid-
den messages, and the FBI managed to produce evidence for the prosecution,
but she got away with ten years in prison and a $ 10 000 fine. In the Audrey
Hepburn movie of 1961 Breakfast at Tiffany’s, Miss Holly Golightly spent a
night behind bars because she helped a gangster conduct his cocaine dealer-
ship from his prison cell by means of “weather reports”—it did occur to her,
she admitted, that “snow in New Orleans” sounded somewhat improbable.

1.4 Cues

The most important special case of masking, i.e., of a jargon-code message,
concerns the use of a cue (French mot convenu), a prearranged phrase or
verse to mean a particular message. The importance of the message is linked
to the time of transmission; the message serves as an alarm or acknowledge-
ment. Large numbers of messages were broadcast by the BBC to the French
Résistance during the Second World War. It therefore attracted little atten-
tion when some masked messages with an importance several orders of mag-
nitude greater than the others were broadcast—for example, on June 1, 1944
when the 9 o’clock news was followed by a string of “personal messages”,
including the first half of the first verse of the poem Chanson d’Automne by
Paul Verlaine (translated: “The long sobs of the violins of autumn”); the
second half (translated: “Wound my heart with a monotonous languor”) fol-
lowed on June 5th. The German command structure had already in January
1944 been informed by Admiral Canaris’ Abwehr of the jargon code and its
significance. When the 15th Army picked up the expected cue (Fig. 12), Ger-
man command posts were warned, but for reasons that have not been fully
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Fig. 12. Extract from a log kept by the 15th Army’s radio reconnaissance section
(Lt. Col. Helmuth Meyer, Sgt.Walter Reichling).
Here, automme is to be read automne, longeur is to be read langueur

explained to this day the alarm did not reach the 7th Army, on whose part
of the coast the invasion took place within 48 hours, on June 6, 1944.

The Japanese used a similar system in 1941. For example, HIGASHI NO
KAZE AME (east wind, rain), inserted into the weather report in the over-
seas news and repeated twice, was used to announce “war with the USA”.
The US Navy intercepted a diplomatic radio message to that effect on Novem-
ber 19, 1941 and succeeded in solving it by the 28th. As tension mounted,
numerous reconnaissance stations in the USA were monitoring Japanese ra-
dio traffic for the cue. It came on December 7th—hours after the attack
on Pearl Harbor—in the form NISHI NO KAZE HARE (west wind, clear),
indicating the commencement of hostilities with Britain, which came as very
little surprise by then. Perhaps the whole thing was a Japanese double cross.

Technically, masked secret writing shows a certain kinship with enciphered
secret writing (Sect. 2.2), particularly with the use of substitutions (Chap. 3)
and codes (Sect. 4.4).

In a different category are secret writings or messages veiled as open ones
(invisibly concealed secret writing). Here, the message to be transmitted is
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somehow embedded in the open, harmless-looking message by adding nulls.
In order to be able to reconstruct the real message, the place where it is
concealed must be arranged beforehand (concealment cipher). There are two
obvious possibilities for using garbage-in-between (Salomaa): by specifying
rules (null cipher, open-letter cipher) or by using a grille (French for ‘grat-
ing’).

1.5 Open Code: Veiling by Nulls

Rules for veiled messages are very often of the type “the nth character after
a particular character”, e.g., the next letter after a space (“family code”,
popular among soldiers in the Second World War, to the great displeasure
of the censors); better would be the third letter after a space, or the third
letter after a punctuation mark. Such secret messages are called acrostics.
A practised censor usually recognizes immediately from the stilted language
that something is amiss, and his sharp eye will certainly detect what

P̆RESIDENT’S ĔMBARGO R̆ULING S̆HOULD H̆AVE ĬMMEDIATE
N̆OTICE. ĞRAVE S̆ITUATION ĂFFECTING ĬNTERNATIONAL L̆AW.
S̆TATEMENT F̆ORESHADOWS R̆UIN ŎF M̆ANY N̆EUTRALS. Y̆ELLOW
J̆OURNALS ŬNIFYING N̆ATIONAL ĔXCITEMENT ĬMMENSELY
means—a message intercepted in the First World War.
If necessary, it can help to write out the words one below the other:

↓
I N S P E C T
D E T A I L S
F O R
T R I G L E T H
A C K N O W L E D G E
T H E
B O N D S
F R O M
F E W E L L

The disguise falls away; the plain text “jumps out of the page”.
Sir John Trevanion, who fought on the Royalist side against Oliver Cromwell
(1599–1658) in the English Civil War, saved himself from execution by using
his imagination. In a letter from his friend R. T. he discovered the message
“panel at east end of chapel slides”—and found his way out of captivity
(Fig. 13).
There is a story of a soldier in the US Army who arranged with his parents
that he would tell them the name of the place he had been posted to by means
of the initial letter of the first word (after the greeting) in consecutive letters
home—from a cryptographic and steganographic point of view not such a bad
idea. However, his cover was blown when his parents wrote back “Where is
Nutsi? We can’t find it in our atlas.” The poor fellow had forgotten to date
his letters.
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Worthie Sir John: — Hop̆e, thăt is ye beste comfort of ye afflicted, can̆not

much, I fĕar me, hĕlp you now. Thăt I would saye to you, is t̆his only: if

ĕver I may be able to requite that I do owe you, stănd not upon asking

me. ’Tĭs not much that I can do: but̆ what I can do, beĕ ye verie sure

I wille. I kn̆owe that, if d̆ethe comes, if ŏrdinary men fear it, it f̆rights

not you, acc̆ounting it for a high honour, to h̆ave such a rewarde of your

loyalty. Prăy yet that you may be spared this soe bitter, cup̆. I fĕar not

that you will grudge any sufferings; on̆ly if bie submission you can turn

them away, ’tĭs the part of a wise man. Tĕll me, an ĭf you can, to d̆o

for you anythinge that you wolde have done. Thĕ general goes back on

Wednesday. Res̆tinge your servant to command. — R.T.

Fig. 13. Message to Sir John Trevanion: panel at east end of chapel slides
(third letter after punctuation mark)

Acrostics have also been used to conceal slogans. The nationalistic Austrian
mathematician Roland Weitzenböck, in the preface to his book Invarianten-
theorie (Groningen 1928), wrote “nieder mit den Franzosen” as an acrostic.
The technique of acrostics even found its way into belletristic literature. In
the classical acrostic, it was the initial letters, syllables, or words of succes-
sive lines, verses, sections, or chapters which counted. Words or sentences
(Fig. 14) were enciphered in this way, also author’s names, and even the
addressee of invectives: ‘The worst airline’, ‘Such a bloody experience never
again’. Acrostics also served as an insurance against omissions and insertions:
an early example of the present-day parity checks or error-detecting codes.
In a similar way, the chronogram conceals a (Roman) numeral in an inscrip-
tion; usually it is a date; for example, the year when the plaque was erected:
In the baroque church of the former Cistercian monastery Fürstenfeld near
Munich, in 1766 a statue of the Wittelsbachian founder Ludwig der Strenge
(1229–1294) was placed, below which there is a tablet with the chronogram

LVDoVICVs seVerVs DVX baVarVs aC paLatInVs,
hIC In sanCta paCe qVIesCIt .

(Ludwig the Severe, Duke of Bavaria and Count Palatine, rests here in holy peace.)

If the chronogram consists of a verse, then the technical term is a chrono-
stichon—or chronodistichon for a couplet.
Composers have concealed messages in their compositions, either in the notes
of a musical theme (a famous example2 is B A C H), or indirectly by means of
a numerical alphabet: if the i-th note of the scale occurs k times, then the k-th
letter of the alphabet is to be entered in the i-th position. Johann Sebastian
Bach was fond of this cipher; in the theme of the organ chorale ‘Vor deinen
Thron’, written in 1750 in the key of G major, g occurs twice (B), a once (A),
b three times (C), and c eight times (H).
Nulls are also used in many jargons: simply appending a syllable (parasitic
suffixing) is the simplest and oldest system. In French, for example,

2 In German, b is used for b flat, h for b . In G major, g is first, a second, h third, etc.
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floutiere for flou, argot for ‘go away!’; girolle for gis, argot for ‘yes’;
mezis for me; icicaille for ici

and there are hundreds of similar forms. Cartouche (18th century) has
vousi

¯
e
¯
r
¯
g
¯
e
¯

trouva
¯
i
¯
l
¯
l
¯
e bono

¯
r
¯
g
¯
u
¯
e
¯

ce gigotm
¯

o
¯
u
¯
c
¯
h
¯
e
¯

where the nulls are underlined.

Fast writing method

He must have had a special trick, said Robert K. Merton, for he 
wrote such an amazing quantity of material that his friends were 
simply astonished at his prodigious output of long manuscripts, 
the contents of which were remarkable and fascinating, from the 
first simple lines, over fluently written pages where word after 
word flowed relentlessly onward, where ideas tumbled in a riot 
of colorful and creative imagery, to ends that stopped abruptly, 
each script more curiously charming than its predecessors, each 
line more whimsically apposite, yet unexpected, than the lines 
on which it built, ever onward, striving toward a resolution in 
a wonderland of playful verbosity. Fuller could write page after 
page so fluently as to excite the envy of any writers less gifted 
and creative than he. At last, one day, he revealed his secret, 
then died a few days later. He collected a group of acolytes and 
filled their glasses, then wrote some words on a sheet of paper, 
in flowing script. He invited his friends to puzzle a while over 
the words and departed. One companion took a pen and told the 
rest to watch. Fuller returned to find the page filled with words 
of no less charm than those that graced his own writings. Thus 
the secret was revealed, and Fuller got drunk. He died, yet still a 
space remains in the library for his collected works.
Ludger Fischer / J. Andrew Ross 

Fig. 14. Self-describing acrostic

Tut Latin, a language of schoolchildren, inserts TUT between all the sylla-
bles. Such school jargons seem to be very old; as early as 1670 there are
reports from Metz (Lorraine) of a ‘stuttering’ system, where, for example,
undreque foudreque stood for un fou.
The Javanais language is also in this class:

ja
¯
v
¯
e for je ; la

¯
v
¯
ebla

¯
v
¯
anc for le blanc ; na

¯
v
¯
on for non ;

cha
¯
v
¯
aussa

¯
v
¯
ura

¯
v
¯
e for chaussure .

Other systems use dummy syllables with duplicated vowels, such as B talk
in German:

GAB
¯
A
¯
RTEB

¯
E
¯
NLAUB

¯
A
¯
U
¯
BEB

¯
E
¯

for gartenlaube (bower)
or Cadogan in French:

CAD
¯
G
¯
A
¯
DOD

¯
G
¯
O
¯
GAD

¯
G
¯
A
¯
N for cadogan.

Joachim Ringelnatz (1883–1934) wrote a poem in Bi language (Fig. 15) .
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Fig. 15.
Poem in the Bi language
by Joachim Ringelnatz

Simple reversing of the letters, called back slang, occurs in cant: OCCABOT for
‘tobacco’, KOOL for ‘look’, YOB for ‘boy’, SLOP for ‘police’. Permutation
of the syllables is found in the French Verlan (from l’envers): NIBERQUE for
bernique (“nothing doing”, said to be related to bernicles, tiny shells); LON-

TOU for Toulon, LIBRECA for calibre (in the sense of a firearm); DREAUPER

for perdreau (partridge, to mean a policeman); RIPOU for pourri (rotten);
BEUR for rebeu (Arab). More recent are FÉCA for café, TÉCI for cité.
More complicated systems involve shuffling the letters, i.e., a transposition
(Sect. 6.1). Criminal circles were the origin of the Largonji language:
leudé for deux [francs]; linvé for vingt [sous]; laranqué for quarante [sous];
with the phonetic variants
linspré for prince (Vidocq, 1837); lorcefée for La Force, a Paris prison;
and of the Largonjem language:
lonbem for bon (1821); loucherbem for boucher ; olrapem for opéra (1883).
The name Largonji is itself formed in this way from ‘jargon’.
A variant with suppression of the initial consonant is the Largondu language:
lavedu for cave; loquedu for toque; ligodu for gigo(t).
Similar formation rules lie behind the following:
locromuche for maquerau (pimp) ; leaubiche for beau;
nebdutac for tabac (1866); licelargu for cigare (1915).
These systems also have parallels in East Asia (Hanöı, Häıphong). Pig
Latin, another school language, puts AY at the end of a cyclically permu-
ted word: third becomes IRDTHAY. Cockneys have a rhyming slang with nulls:
TWIST AND TWIRL for girl, JAR OF JAM for tram, BOWL OF CHALK for talk,
FLEAS AND ANTS for pants, APPLES AND PEARS for stairs, BULL AND COW

for row , CAIN AND ABEL for table, FRANCE AND SPAIN for rain, TROUBLE

AND STRIFE for wife, PLATES OF MEAT for feet, LOAF OF BREAD for head.
The actual rhyming word is usually omitted—the initiated can supply it
from memory. Some of these expressions have entered the language (lexical-
ization): few people are aware of the origin of “use your loaf” or “mind
your plates”.
Jonathan Swift (1667–1745) was not overcautious in his Journal to Stella,
who in fact was Esther Johnson (1681–1728): in a letter on Feb. 24, 1711 he
merely inserted a null as every second character.
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Fig. 16. Lord Byron’s hypothetical message

1.6 Open Code: Veiling by Grilles

The method of the grille, which goes back to Geronimo Cardano (in De
Subtilitate, 1550, is simple to understand, but suffers from the disadvantage
that both sides must possess and retain the grille—in the case of a soldier
in the field or a prisoner, not something that can be taken for granted. It is
also awfully hard to compose a letter using it. If Lord Byron (1788–1824)—
admittedly no ordinary soldier—had used the method, his talents would have
come in extremely handy for composing a poem such as that in Fig. 16. He
would presumably also have been able to lay it out so attractively that the
plain text fitted the windows of the grille without calling attention.
Cardano, incidentally, insisted on copying out the message three times, to
remove any irregularities in the size or spacing of the letters. The method
was occasionally used in diplomatic correspondence in the 16th and 17th
centuries. Cardinal Richelieu is said to have made use of it. The modern
literature also mentions some more cunning rules; for example, to convey
binary numbers (in turn presumably used to encipher a message), in which a
word with an even number of vowels represents the digit 0, or an odd number
the digit 1.
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Veiled secret writing is a concealment cipher. In professional use, it is usually
considered as enciphered secret writing (Sect. 2.2), it shows a certain kinship
particularly in the use of nulls (Sect. 2.3.1) and of transposition (Sect. 6.1.4).

Cryptography
(secret writing)

|
| ||
| Sect. 2.2

Steganography Cryptography proper
(covert secret writing) (overt secret writing)

|
| |

Technical Linguistic
Steganography Steganography

|
| ||

Sect. 1.2 |
Semagrams Open code
(visibly concealed (invisibly concealed
secret writing) secret writing)

|
| ||

Sect. 1.3 |
Jargon code Concealment cipher
(masked (veiled
secret writing) secret writing)

| |
| | |

Sect. 1.4 Sect. 1.5 Sect. 1.6
Cue Null cipher Grille

Fig. 17. Classification of steganographic and cryptographic methods

1.7 Classification of Cryptographic Methods

Figure 17 shows a diagrammatic summary of the classification of methods of
steganography and cryptography proper as given in this and the next chapter.
Masking and veiling have been treated in detail here because they provide
a methodical guide: masking leads to substitution, veiling leads to transpo-
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sition. These are the two basic elements of cryptography proper. We shall
introduce them in the next chapter.
Steganography also reveals an important maxim: natural language—spoken,
written, or in gestures—has its own particular rules, and it is even harder
to imitate them (as in steganography) than to suppress them (as in crypto-
graphy).
Linguistic steganography is therefore treated with caution by pure crypto-
graphers; it is a censor’s job to combat it. By its very nature, an amateur
steganogram can be rendered harmless by suppressing or revealing it. For the
censorship, the actual solution is often of little importance (except, perhaps,
to provide evidence for a subsequent court case).
The professional use of linguistic steganography can be justified only in
special cases—unless it represents a concealment of a cryptographic method.

Claude Shannon (1916-2001)

Steganography and cryptography proper fall un-
der the concept of cryptology. The term cryptolo-
gia was used, like cryptographia, by John Wilkins
in 1641, to mean secrecy in speech. In 1645, ‘cryp-
tology’ was coined by James Howell, who wrote
“cryptology, or epistolizing in a clandestine way,
is very ancient”. The use of the words cryptogra-
phy, cryptographie, crittografia, and Kryptographie
has until recently dominated the field, even when
cryptanalysis was included.
Claude Shannon, in 1945, still called his confi-
dential report on safety against unauthorized de-
cryption A Mathematical Theory of Cryptogra-
phy. Within book titles, the French cryptologue
was used by Yves Gyldén (1895–1963) in 1932 and in more modern times
cryptologist by William F. Friedman (1891–1969) in 1961. The term cryp-
tology showed up in the title of an article by David Kahn in 1963; it was
used internally by Friedman and Lambros D. Callimahos (1911–1977) in the
1950s. With Kahn’s The Codebreakers of 1967, the word ‘cryptology’ was
firmly established to involve both cryptography and cryptanalysis, and this
is widely accepted now.
With the widespread availability of sufficiently fast computer-aided image
manipulation, steganography nowadays sees a revival. By subtle algorithms,
messages can be hidden within pictures.
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Nearly every inventor of a cipher system
has been convinced of the unsolvability

of his brainchild.
David Kahn

A survey of the known cryptographic methods is given in this chapter from
the point of view of securing1 established channels of communication against
(passive) eavesdropping and (active) falsification (ISO 7498). Security against
breaking the secrecy in the sense of confidentiality and privacy is the classic
goal, whereas security against forgery and spurious messages, that is to say
authentication of the sender, has only recently acquired much importance.
Besides mathematical questions, philological ones play an important part in
cryptology. A kindred topic is the unambiguous decryption of ancient scripts
in extinct languages2, an appealing field bordering on both archæology and
linguistics. Plate A shows an example, the disk of Phaistos.

2.1 The Nature of Cryptography

The objective of cryptography is to make a message or record incomprehen-
sible to unauthorized persons. This can easily be overdone, thereby making
the message indecipherable to the intended recipient—who has not experi-
enced being unable to read a hastily written note a few weeks (or even days)
later?
Seriously speaking, it is fatal if an encryption error is made or if radio com-
munications have been garbled or corrupted by atmospheric disturbances.
Any attempt to re-encipher and retransmit the same message—correctly, this
time—represents a serious security risk for reasons to be discussed in Chap-
ter 11 and Part II. Therefore, encryption discipline forbids this strictly; the
text has to be edited, without altering the content, of course. This is easier
said than done—the road to doom is usually paved with good intentions.

1 Since the discoveries of Shannon and Hamming in about 1950, mere garbling and cor-
ruption of communication channels by physical or technical means has been countered
by error-detecting and error-correcting codes, which need not be considered here.

2 Johannes Friedrich, Extinct Languages, New York 1957.
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2.1.1 Secrecy. Thus, the encryption and decryption method must not be
too complicated: it must be appropriate to the intelligence and situation of
the people who have to use it. The lowest standards apply on the battlefield.
Immediately after that comes the field of diplomacy, at any rate if the ambas-
sador is expected to carry out the encryption and decryption himself. When
Wheatstone demonstrated the method now known as PLAYFAIR (Sect. 4.2)
at the British Foreign Office in 1854, saying that three out of four boys from
the nearest school could master it, the Under-Secretary of State remarked
drily “that is very possible, but you could never teach it to attachés!”
It should also be borne in mind that many messages need be kept secret
only for as long as the events they refer to have not in any case become
public knowledge. Admittedly, it may be wiser to keep diplomatic messages
secret for decades afterwards. The British—not to mention the Russians—
are unsurpassable in this respect, as is the veil of secrecy which they cast over
their entire cryptographic system. At any rate, we need only know how long,
at least, a cryptanalyst must work on a message to read it—to break the
cipher—and then it becomes pointless to maintain that a particular method
is absolutely secure. A trench code used by the Germans on the Western
Front in 1917 (known by the French as KRUSA, because all the code groups
began with one of these five letters) was based on ‘planned obsolescence’.
The code sequence changed every month, but the French did better: they
had usually worked it out after two weeks—often after only two days.
However, a quantitative assessment of encryption methods was only made
possible by the pioneering ideas of Claude E. Shannon (see Appendix). The
suitability of the various methods was still very imperfectly understood in
the First World War, as was shown when Le Matin revealed in 1914 that the
French were reading German messages. The German General Staff made a
sudden and radical change to its encryption system on November 18th. The
change from a double columnar transposition (Sect. 6.2.4) to a VIGENÈRE
with key A B C (Sect. 8.1.2) and subsequent simple columnar transposition
was a complication illusoire (illusory complication) for the French decryptors.
Evidently the lovers, who used to declare their feelings for each other in
coded messages in the ‘personal’ columns of British newspapers about 1850,
had every confidence in their cryptosystem. Eavesdropping on these mes-
sages provided pleasure for a section of London society; this included Charles
Babbage and also Charles Wheatstone and Lyon Playfair, who broke into one
such correspondence with a suitable message of their own, thus prompting
the reaction “Dear Charlie: write no more. Our cipher is discovered.” from
the young lady. Incidentally, in spite—or possibly as a result—of Shannon’s
commendable elucidation, coded messages are said to be a regular feature of
the ‘agony columns’ to this day.
Another lady was greatly impressed by a man to whom she had given an
enciphered recipe for making gold; she alone knew the key. The man not
only informed her that he had deciphered it, but also told her the key word.
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He must be a magician, she thought. As he could
obviously read her mind, it was best to give him the
key to her heart. The year was 1757, she was the af-
fluent Madame d’Urfé , and the cavalier (who aban-
doned her soon afterwards) was Giacomo Girolamo
Casanova, Chevalier de Seingalt, whose cryptana-
lytical zeal is evidently not sufficiently well known.

Casanova

Marie Antoinette also knew how to combine love
with cryptography, as did King Edward VIII (the
later Duke of Windsor). Besides its diplomatic and
military uses, cryptography thus has its private and civil applications, not
to mention the commercial ones, such as bookseller’s price cipher, or the
packaging date for butter (Sect. 3.1.1), or the markings on car tires (Fig. 18).

Tire marks
(1) tubeless

(2) 175 is the width of the tire in mm
S stands for speed
(up to 180 km/h in the case of summer tires)
R means radial plies (omitted for crossply tyres)
14 is the diameter of the wheel rim in inches

(3) TWI = tread wear indicator
(six ribs which appear in the tread pattern
when it has worn down to 1/16 inch)

(4, 5) additional markings for Europe:
88 is the (coded) maximum load per wheel
S again means 180 km/h

(6) sidewall consists of two layers of rayon fibres

(7) tread has two layers of steel and two of rayon

(8) maximum cold inflation pressure
(applies to USA only)

(9) maximum load per wheel
(applies to USA only)

(10) brand name (11, 12) tested to European standards
4 is the country where the test took place
(in this case Holland).

(13) DOT = Department of Transportation
(the US transport ministry)

(14) manufacturer’s codes:
LM = factory; J3 = size; MEB = type;
344 = date (34th production week of 1974)

Fig. 18.
Coding system for car tires

There are some amusing stories about the supposed unbreakability of ciphers.
Over-assessment of one’s own cleverness is a regular source of advantage to the
opposing side. Sometimes the exaggeration is the work of others. It was said
of Paul Schilling von Cannstatt, one of the inventors of the electromagnetic
telegraph (1832), that “for the Russian ministry he compiled such a secret
alphabet, the so-called chiffre, that even so ingenious a secret cabinet as the
Austrians possessed could not have penetrated it in fifty years”(F.P. Fonton,
after A.V. Jarozkij). And as late as 1917, the respected periodical Scientific
American declared Vigenère’s method (Sect. 7.4.1) to be unbreakable.
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It was an ironic twist of fate that Étienne Bazeries, the great French crypto-
logist (1846–1931), who shattered a whole series of supposedly unbreakable
cryptosystems that had been presented to the French security agency, was
himself presumptuous enough to believe he had found an absolutely se-
cure method (je suis indéchiffrable, see Fig. 19). His antagonist the Mar-
quis de Viaris—the first modern cryptologist, incidentally, to make use of
mathematics—derived no small pleasure in taking his revenge by breaking
several ciphers which Bazeries sent him (Sects. 7.5.3, 14.3.1).

Fig. 19. Bazeries’ cylinder with the message je suis indéchiffrable

2.1.2 Costs. The invention and financial exploitation of enciphering and
deciphering machines is a lucrative branch of cryptography. Until the 19th
century they were mechanical; from the beginning of the 20th century au-
tomation made its appearance, around the middle of the century came elec-
tronics and more recently microelectronic miniaturization. Towards the end
of 1939, Konrad Zuse, the 30-year old German computer pioneer, stationed as
an infantryman on the Siegfried Line, also invented an enciphering machine,
an attachment to a teleprinter. He was not able to persuade the German War
Office of the advantages of his invention, which used the Vernam principle
(Sect. 8.3); he was given to understand that the authorities already possessed
good equipment of a similar nature. They were referring to Lorenz SZ 40 and
Siemens T 52, not to ENIGMA, as Zuse in 1984 incorrectly assumed.
Today’s microcomputers—roughly the size, weight, and price of a pocket
calculator—have a performance as good as the best enciphering machines
from the Second World War. That restores the earlier significance of good
methods, which had been greatly reduced by the presence of ‘giant’ computers
in cryptanalysis centres. More than that, a normal commercial microcom-
puter costing about $100—not to mention a PC—can carry out a much more
complex encryption than the classic machines were capable of.
In assessing a method based on any kind of documentation and encryption
apparatus, it must be borne in mind that such objects could fall into the
opponent’s hands (Shannon’s maxim, Sect. 11.2.3). A microcomputer fed
with a program or data on magnetic card possesses no telltale cryptographic
structure of its own—except, possibly, an alphabetic keyboard and display.
In the case of the public keys propagated for commercial communication links,
even the encryption and decryption methods are published. It is only the
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key for decryption which remains secret. Shannon’s maxim “The enemy
knows the system” is thus carried to extremes. At the same time, the increas-
ing use of public communications channels has led to authentication becoming
as much a declared objective of cryptography as secrecy is (Sects. 10.5, 10.6).

2.1.3 Cryptology and literature. Cryptological techniques are occa-
sionally used in literature. Intricately woven literary works such as Zettels
Traum (1970) by Arno Schmidt (1914-1979) just ask to be ‘decrypted’. Os-
tensibly secret messages represent a particular problem. In La physiologie du
mariage (1829), Honoré de Balzac has this passage: “La Bruyère a dit très
spirituellement: ‘C’est trop contre un mari que la dévotion et la galanterie:
une femme devrait opter.’ L’auteur pense que La Bruyère s’est trompé. En
effet: ˜˜˜ .” What then follows is a higgledy-piggledy jumble of letters, as if
a type-case had been spilt on the page. Four editions of the book, three of
them printed in Balzac’s lifetime, in fact contain four different versions. The
author must have been playing a practical joke on the reader. Nevertheless,
Bazeries investigated such a cryptogram in 1901 and found that it did not fit
any known scheme; it was une facétie de l’auteur .

There was much ado in 1878 when Ignatius Donelly, an American provincial
politician and imaginative pseudo-scientist who had already speculated on
Atlantis and a collision between the Earth and a meteor, set about finding
steganographic proof in the works of Shakespeare that the author was in
fact Sir Francis Bacon (Georg Cantor, the founder of modern set theory, also
hunted this chimæra for many years). Now if you take a long enough text,
and declare enough characters as irrelevant (perhaps also permuting the ones
that remain), then you can read anything into it—Lord Byron’s hypothetical
message in Sect. 1.6 could serve as an example. So Donelly was apparently
successful. A flood of amateurs joined in the search. None of this would have
been very remarkable, had not a certain William Frederick Friedman3, who
had studied genetics, been hired by a rich textile merchant in Geneva near
Chicago, Colonel George Fabyan. Besides funding laboratories for biology,
chemistry, and acoustics, Fabyan employed cryptologists who were supposed
to prove that Bacon was Shakespeare. Friedman was attracted by cryptology
and also by Elizebeth Smith, a young cryptologist working there. He espoused
himself to both, and became the most successful American cryptologist.

2.1.4 Deception. The official cryptological services in the 20th century
go by mysterious-sounding names, in keeping with the spirit of the times.
They are usually embedded in the secret services concerned with counter-
espionage and intelligence-gathering beyond their own borders. Most famous
are M.I.6, the British Secret Intelligence Service (S.I.S.) which is directly an-
swerable to the Foreign Office; and in the USA since 1947 the Central Intelli-
gence Agency (CIA), subordinate to the US Intelligence Board and therefore

3 Born Wolfe Friedmann in Kishinev (Moldavia) on Sept. 24, 1891. The family emigrated
to the USA the following year. He died on Nov. 2, 1969 and was buried in Arlington.
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controlled by legislatives and executives. Post-war Germany has its Bun-
desnachrichtendienst (BND), directly answerable to the Chancellor’s Office.
The actual cryptological services, especially the departments for cryptanal-
ysis, are frequently divided into diplomatic and military parts. That may
have good organizational reasons, but it often hinders the exchange of expe-
rience. In wartime Britain, the Admiralty (O.I.C., Operational Intelligence
Centre) and the Foreign Office (Department of Communications) were forced
into close cooperation by the desperate situation in 1940; Winston Churchill
chipped in and set up a powerful authority in the form of the London Control-
ling Section (L.C.S.), headed by Colonel John Henry Bevan and directly an-
swerable to the Prime Minister. Responsibility for cryptanalysis was held by
M.I.8 (Signals Intelligence Service) and its G.C.H.Q. (Government Commu-
nications Headquarters), with various nicknames, some of them with histor-
ical significance: G.C. & C.S. (Government Code and Cypher4 School, ‘Golf
Cheese and Chess Society’, ‘War Station’, ‘Station X’ (the wireless station),
‘Room 47 Foreign Office’; it was also often called B.P. (Bletchley Park), after
the place at Milton Keynes, 45 miles northwest of London, where it was
housed from 1939. Even within B.P. a certain distinction was maintained
between A.I. (Air Intelligence) and M.I. (Military Intelligence) on the one
hand, and the Navy, steeped in tradition, on the other. Both looked back on
their successes in the First World War, gained by M.I.1(b) (Military Intelli-
gence Division) of the War Office and Room 40 at the Admiralty. Postwar
G.C.H.Q. is located at Cheltenham, Gloucestershire, 90 miles west of London.
After the United States entered the First World War in 1917, rapid expan-
sion of military cryptology became necessary. As part of the AEF (American
Expeditionary Forces), G.2 A.6 (General Staff, Intelligence Section, Military
Information Division, Radio Intelligence Section) and the Code Compilation
Section of the Signal Corps found themselves under the supervision of MI-8
(Cryptological Section of Military Intelligence Division), headed by Herbert
Osborne Yardley (1889–1958). Rivalry between the Army and the Navy, lead-
ing to a bizarre split, continued throughout the Second World War: OP-20-G
was the naval cryptological organization with its cryptanalysis department
OP-20-GY, while SIS (Signal Intelligence Service) was the army counterpart
which Yardley had built up and which had been headed by William Friedman
since 1929. The experience gained in the Second World War led to a concen-
tration of resources within G.2: the Army Signal Security Agency merged
with the cryptanalysis department of the Signal Corps in 1945 to produce
the ASA (Army Security Agency), then in 1949 the AFSA (Armed Forces
Security Agency), and in 1952 the NSA (National Security Agency) under
the Secretary of Defense, led 1977–1981 by the legendary Bobby Ray Inman.
Important subdivisions are the Defense Intelligence Agency and IDA, the
Institute for Defense Analysis, which is freer and loosely connected to some
universities. NSA is located on Fort George G. Meade in Maryland.

4 Cypher is an older form of cipher, still current in Great Britain.
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In the German Reich, too, the services were split and some rivalry occurred:
the Auswärtiges Amt (foreign office) on the one hand, and the army and navy
on the other, received further competition in the Second World War from
the Reichsluftfahrtministerium and the Sicherheitsdienst (SD, “security ser-
vice”). Lieutenant-Colonel, later Colonel, Erich Fellgiebel (1886–1944), who
became in 1929 head of the Chiffrierstelle (cipher bureau) of the Reichswehr-
ministerium, was instrumental in introducing in 1934 a common enciphering
machine, the ENIGMA; but the coordination of all operations, which the
war-time OKW/Chi , the Signal Intelligence Agency (‘Cipher Branch’) of the
Supreme Command, Armed Forces, constantly demanded, was still blocked
in the autumn of 1943 by Ribbentrop, Göring, and Himmler. When coordina-
tion by WNV/Chi (Amtsgruppe Wehrmachtnachrichtenverbindungen, Abtei-
lung Chiffrierwesen) was finally achieved by order of the Führer of November
9, 1944, intelligence was firmly in the hands of Walter Schellenberg (1910–
1952), who was ambitious and always feigned devotion to his leaders Himm-
ler and Hitler, and advanced to Major-General in the SS. He died of a liver
complaint after serving a sentence of only six years passed by the Nuremberg
tribunal—the fashion designer Coco Chanel paid his funeral costs.

In post-war Germany, in 1953, an authority was established in Bad Godesberg
near Bonn whose cover name—Bundesstelle für Fernmeldestatistik (Federal
Office for Telecommunications Statistics)—was something of an understate-
ment. In fact, it was a cryptanalytical subdivision of BND; its true name was
Zentralstelle für das Chiffrierwesen (Central Office for Cryptology). A re-
organization (‘Amt für Militärkunde’) took place in 1990 by splitting off the
BSI, which deals with questions of public cryptography.

In France, 2bis (a street number in the Avenue de Trouville) was the nom
de guerre for the S.R. (Service de Renseignement) with its cryptanalytic bu-
reau (section de transmission et décryptement). The Swedish cryptanalytical
agency was known by the abbreviation FRA (Försvarets Radioanstalt), while
in Italy it was S.I.M (Servizio Informazione Militare). In Japan, Tokumu
Han (espionage department) is the name for the cryptanalytical department
of the admiralty staff intelligence group, set up in 1925, and Angō Kenkyū
Han (cipher research department) for that of the foreign ministry.

Spets otdel (‘Special Department’) was the name of the cryptographical and
cryptanalytical service of the Union of Soviet Socialist Republics, established
in 1921 by orders of Vladimir Ilyich Lenin and for some time under the
command of Lev Davidovich Trotzki.

2.2 Encryption

To summarize: cryptology is the science of (overt) secret writing (crypto-
graphy), of its unauthorized decryption (cryptanalysis), and of the rules
which are in turn intended to make that unauthorized decryption more dif-
ficult (encryption security). Plaintext is the message that will be encrypted.
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2.2.1 Vocabulary, character set. The set of characters, V , used to for-
mulate the plaintext5 is called the plaintext vocabulary or plaintext character
set. The set of characters, W , used to formulate the ciphertext or codetext is
called the cryptotext vocabulary or cryptotext character set. The individual
characters in W can also be logograms, special symbols representing a word
or phrase, such as &, %, $, £, c©; moreover †, ‡, ¶, #, @ , ℘, �, ℵ; and other
symbols. V and W can be fully different, or overlapping, or identical sets.
2.2.1.1 Let V ∗, W ∗ be the set of words constructed from V, W (plain-
text words, cryptotext words). ε indicates the empty word. Zn ⊆ Z∗ is the
set of all words of length n ; Z(n) denotes {ε} ∪ Z ∪ Z2 ∪ Z3 . . . ∪ Zn .
V ∗ is called the plaintext space , W ∗ the cryptotext space .
2.2.1.2 In all practical cases, V and W are nonempty finite sets. Theoret-
ically, however, we could allow denumerable sets V and W ; then V n and
Wn are also denumerable.

2.2.2 Encryption and decryption. An encryption is defined as a relation
X : V ∗ −−−� W ∗ . The converse relation X−1 : V ∗ ≺−−− W ∗ , defined by
x ≺−� y if and only if x �−� y , is then called a decryption.
2.2.2.1 The intended recipient of an encrypted message should be able to re-
constitute the original message without ambiguities. An encryption therefore
as a rule is injective, i.e., unambiguous from right to left (left-univalent):

(x �−� z) ∧ (y �−� z) ⇒ (x = y) .

We define Hx = {y ∈ W ∗ : x
X
�−� y} as the fiber of x ∈ V ∗ .

As a rule it is also a requirement that the encryption X be definal, that is to
say total (from left to right): Hx is nonempty for all x ∈ V ∗ .
2.2.2.2 The encryption X : V ∗ −−−� W ∗ is implemented by means of
Hilbert’s non-deterministic ‘choice operator’ η , where X(x) = η Hx . The ele-
ments of Hx (assuming there are more than one) are called variants, also
homophones of x . Thus, variants are different cryptotext words assigned to
the same plaintext word in the encryption relation X : V ∗ −−−� W ∗ .
If the relation V ∗ −−−� W ∗ is also unambiguous from left to right (right-
univalent), i.e., Hx contains at most one element for all x ∈ V ∗ , then the
encryption is functional, V ∗ −−−� W ∗ is a function V ∗−−−−� W ∗. If in addition
the relation is surjective, that is to say total from right to left, then the
encryption even becomes a one-to-one function V ∗ ≺−−−−� W ∗ .
In the functional case there are no variants; the encryption is deterministic
and thus a one-to-one mapping of plaintext space into cryptotext space.

2.2.2.3 As a rule, ε
X
�−� ε . If Hε also contains elements other than ε which

are homophones for ε ∈ V ∗ , these are called null texts or dummy texts .
Note that the set of all encryptions V ∗ −−−� W ∗ (in the case of fixed
nonempty V, W ) is non-denumerable.

5 In contrast to cleartext (‘Klartext ’), which means a text transmitted without encryption.
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2.2.3 Inductive definitions. An encryption X : V ∗ −−−� W ∗ is said
to be finite if the set of all pairs in the relation is finite. Then for suitable
natural numbers n, m we have X : V (n) −−−� W (m) .

But how can a relation V ∗ −−−� W ∗ be defined and specified? Even if it is
finite, it may very well not be practicable to list all the pairs. For that reason,
inductive rules are frequently used. This is studied in the next paragraph.

2.3 Cryptosystems

Let M =M(V, W, X̌), the encryption system, be a nonempty, as a rule finite
set X̌={χ0 , χ1 , χ2 , . . . , χθ−1} of (injective) relations χi : V (ni) −−−�W (mi).
Each χi is called an encryption step. An encryption system together with a
corresponding decryption system is a cryptosystem.

An encryption X = [χi1 , χi2 , χi3 , . . . ] is called finitely generated (by
means of the encryption system M ), if it is induced by a (terminating or in-
finite) sequence (χi1 , χi2 , χi3 , . . . ) of encryption steps χi ∈ X̌ under
the concatenation . � . , i.e.,

x
X
�−� y holds for x ∈ V ∗ , y ∈ W ∗ if and only if there exist decompositions

x = x1 � x2 � x3 � . . . � xk and y = y1 � y2 � y3 � . . . � yk with6

xj

χij

�−� yj for j = 1 , 2 , . . . k .

Example:

χi : V (ni) −−−� V (ni) : cyclic transposition of ni elements (θ = 5) ;

n0 = 3, n1 = 5, n2 = 2, n3 = 6, n4 = 6,

n e a r l y e v e r y i n v e n t o r o f a (χ0 , χ1 , χ2 , χ3, χ4)e a n l y e v r r e i n v e n y o r o f a t

2.3.1 Basic concepts. θ = |M | denotes the cardinal number of the en-
cryption system. An encryption step χi : V (ni) −−−� W (mi) is a generating
relation; the number ni is called the (maximal) plaintext encryption width,
the number mi the (maximal) crypt width of χi . The relation χi may be
nondeterministic. The encryption step is said to be endomorphic if V = W .

Speaking of homophones and variants (also optional substitutes, multiple
substitutes) and of nulls (also dummies, French nonvaleurs, German Blender,
Blindsignale, Trugchiffren), usually those of the encryption step are meant. If
the cryptotext character set of the encryption step contains words of different
length, the encryption step is called “straddling” (German gespreizt).

A generated encryption is not necessarily injective, even if the generating
encryption steps are:

6 Every x ∈ V ∗ is taken to be suitably filled up by meaningless symbols.
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Assume a �−−� · –
i �−−� · ·
l �−−� · – · ·

belong to an injective V 1 −−−−� W (4) , then in V ∗ −−−� W ∗

ai �−−� · – · · and l �−−� · – · · ;
this means that injectivity is violated (by sloppy radio operators).
2.3.2 Ciphering and coding. An encryption step χi : V (ni) −−−� W (mi)

is by its very nature finite, provided V and W are finite; it can be specified
in principle by enumeration (encryption table). An actual enumeration is
often called a code or cipher (French chiffre); the encryption step is then
called the encoding step or enciphering step. The terminological boundary
between ‘cipher’, ‘encipher’, ‘decipher’ and ‘code’, ‘encode’, ‘decode’ is fuzzy
and essentially determined by historical usage (see also Sect. 4.4). The terms
‘cipher’ and ‘code’, and more generally ‘crypt’, are also used for the elements
of W (mi) .
2.3.2.1 An encryption X = [χi1 , χi2 , χi3 , . . . ] , finitely generated by M ,
is called monoalphabetic if it comprises or uses a single encryption step (‘al-
phabet’). Otherwise it is called polyalphabetic. If M is a singleton (θ = 1) ,
then every encryption generated by means of M is monoalphabetic.
2.3.2.2 A finitely generated encryption is said to be monographic if all the
ni of the encryption steps used equal 1 , polygraphic otherwise. In a special
case of particular interest for encryption by machines, all encryption steps of
M show equal maximal encryption width n and equal maximal crypt width
m . Then M is necessarily finite. If even

χi : V n −−−� Wm

holds for all χi ∈ M , which means that no encryption step is straddling,
[χi1 , χi2 , χi3 , . . . ] is called a block encryption; a word from V n is an
encryption block. In a suitable vocabulary of character n-tuples, a block
encryption can be interpreted theoretically as a monographic encryption.
Encryption systems with χi : V n −−−� Wm for n = 2, 3, 4 establish
bigram, trigram, tetragram encryptions, which for m = 1, 2, 3 are called
unipartite, bipartite, tripartite (French bifide, trifide). Frequently V = W
and m = n are chosen, to give us a block encryption in the narrow sense.
2.3.3 Text streams. A stream (z1, z2, z3, . . .) is an infinite sequence
of blocks of characters. There is a one-to-one correspondence between the
stream (z1, z2, z3, . . .) and an infinite sequence ((z1), (z1�z2), (z1�z2�z3), . . .)
of words, the segments (z1 � z2 � . . . � zi) of the stream.
A plaintext stream is an infinite sequence of blocks (p1, p2, p3, . . .) , where
pj ∈ V n; correspondingly, an infinite sequence of blocks (c1, c2, c3, . . .), where
cj ∈ Wm , is a cryptotext stream. A stream encryption is a block encryption
of segments of a fictitious plaintext stream to segments of a likewise fictitious
cryptotext stream.
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An encryption X = [χi1 , χi2 , χi3 , . . . ] , finitely generated by M , is called
periodic (repeated key) or nonperiodic (‘aperiodic’, running key), depending
on whether the infinite sequence (χi1 , χi2 , χi3 , . . . ) finally is periodic or
not.
A monoalphabetic encryption is trivially periodic. A nonperiodic (running
key) encryption therefore is necessarily polyalphabetic. This will be given
more attention in Sect. 8.7 .
Every periodic block encryption of period r can be interpreted theoretically
as a monoalphabetic encryption, with

χ0 : V n·r −−−� Wm·r

as the sole encryption step. For running key encryptions this is not the case.
They belong fundamentally to a more powerful category of methods. There
is a one-to-one correspondence of the infinite sequence (χi1 , χi2 , χi3 , . . . ) ,
χi ∈ M , and a real number represented in a number system to the basis θ by
the fraction 0 . i1 i2 i3 ... . For fixed M , a subset of the denumerable set of ra-
tional numbers corresponds to the set of periodic block encryptions; the set
of nonperiodic (running key) encryptions thus corresponds to the non-denu-
merable set of irrational numbers between 0 and 1 .
An up-to-date example of a monoalphabetic, polygraphic block encryption
is the DES cryptosystem, a block encryption (and decryption) method prop-
agated by the National Bureau of Standards of the USA since 1977; the
encryption step (in the ECB mode) is a one-to-one endomorphic encryption,
chosen among 256 possibilities (key length 56, Sect. 9.6.1.1), a V 8 ≺−−−−� V 8

permutation with a vocabulary V = Z8
2 of 256 different 8-bit words. An

encryption step of this size cannot be documented by enumeration but is
defined algorithmically. Algorithmic definitions, however, are unsympathetic
to the use of homophones and encourage the restriction to block encryption.
There is an example of a polyalphabetic, polygraphic encryption which is
not a block encryption: plaintext encrypted word by word using a number of
code books in some periodically or nonperiodically changing order. This is
not very practical in computerized cryptography. Polyalphabetic polygraphic
block encryption is the domain of present-day computers.

2.4 Polyphony

Use of homophones and nulls has been standard in cryptography since 1400.
Around 1500, encipherings with cipher elements of different length began to
be used, and the importance of the left-uniqueness condition for straddling
encryption steps (Sect. 3.4) was recognized at the latest around 1580 by the
papal secretary of ciphers Giovanni Battista Argenti and his nephew Matteo
Argenti. The modern Fano condition “no cipher element is head of another
cipher element” (Robert M. Fano) is a sufficient condition the Argentis were
apparently familiar with. For unstraddling encryption steps, the hiatus and
thus the right decomposition can be found by counting.
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2.4.1 Polyphones. Polyphones occur if the relation X is not injective.
They are unblushingly used in English when, e.g., both the phonemes \ā\ as
in \brāk\ and \ē\ as in \frēk\ are printed ‘ea’. Cryptographically, polyphonic
enciphering steps, in which several plaintext words are assigned to one and
the same cryptotext word, make decryption a guesswork and are rare.
The ‘SA Cipher’, a code used by the British Admiralty in 1918 (Sect. 4.4.3,
Fig. 38), and the Duchesse de Berry’s cipher which used as a substitution al-
phabet LEGOUVERNEMENTPROVISOIRE (Sect. 3.2.5), are among the
very few examples of genuine polyphony. In practice, there is sufficient se-
mantic information to avoid ambiguity if, say, ‘Diesel oil’, ‘Corporal’, and
‘Paris’, or ‘runway’, ‘General’, and ‘ground fog’ are polyphones. The idea
seems to occur to amateurs more than anyone. A loving couple in England
provided Babbage with a tough nut to crack in 1853, with a polyphonic cipher
using the digits 0 . . . 9 , in which, e.g.,

1 stood for t and u, 2 for m and o, 4 for e and r, 8 for h and i .
The message began with

1821 82734 29 30 84541

which (allowing for two enciphering errors) meant “thou image of my heart”.
It seems that the lovers derived special pleasure from the unnecessary com-
plication.
However, polyphonic ciphers were used in the ancient civilizations between
the Nile and the Euphrates. As the letters of the alphabet also served as
number symbols, it was a popular pastime to add up the values of the sym-
bols representing a secret word (gematria). In this way, the isopsephon 666
mentioned in the Apocalypse (Rev. 13.18) has been taken to represent the
Emperor Nero (Fig. 20). There are said to be people who refuse to accept a
car registration involving the “number of the beast” 666.
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Fig. 20.
Value 666 associated with the
Hebrew letters for Cæsar Nero
(courtesy Ralf Steinbrüggen)

Seen from the point of view of common European languages, Arabic script
(without vowels) is also polyphonic. The puzzle of what “Pthwndxrclzp” in
James Joyce’s Finnegans Wake means is something that will keep historians
of literature (and undertakers) busy for many years.
From a technical standpoint, Bazeries’ cylinder (Fig. 19), dealt with in Sect.
7.5.3, operates with both homophones and polyphones. However, injectivity
is effectively maintained because the ‘illegal’ polyphonic texts are almost cer-
tainly meaningless (Fig. 21). Polyphony may also cause difficulties in certain
ways of cryptanalysis. Polyphone plaintexts belonging to the same cryptotext
are called variants there.
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G X Y Y S X D B R Z Z B G B B G S I C U
H Z Q X R V P I Y D L D L C C N O U H S
I A R V O T R E B I S G O D D F N A V T
J E S U I S I N D E C H I F F R A B L E
K I T T Q R J H E U O J R G G T B C B L
L O V S P Q U U T P U K E J H H C F D A
M U X R N P G R S R R N M K K U D G F C
N Y Z Q M N V X L O A P T L M B F J G F
O B A P L M B L F T N Q D M O C G K I B

Fig. 21. Several polyphonic texts for one setting of Bazeries’ cylinder

2.4.2 Word spacing. The suppression of word spacing and of punctuation,
one of the basic rules of classical professional cryptography (i.e., of “formal
ciphers”), is strictly speaking polyphony. In some cases genuine ambiguity
can occur if the position of the boundary between words is uncertain; for
example, “dark ermine” and “darker mine”. The sentences

“Five fingers have I on each hand ten in all”

“Ten digits have I on each hand five and twenty on hands and feet together”

also permit of various interpretations, depending on the punctuation; only
one interpretation makes logical sense. In the sentence

“Forget not to kiss thy wife”

the sense can only be derived from the context. Modern English can be just
as confusing:

“British Rail hopes to have trains running normally late this afternoon”

would do little to raise the hopes of frustrated travellers, while

“The Prime Minister called for an end to violence and internment as soon
as possible”

is a choice morsel for the opposition. Injectivity is often violated when there
are insufficient contextual clues:

“the captive flies.”

The phrase

“two thousand year old horses”

even allows for three different interpretations: two-thousand-year-old horses,
two thousand-year-old horses, two-thousand year-old horses .

Another example where the suppression of hyphens may cause trouble is:

“a man eating fish — a man-eating fish.”

There is hardly any practical requirement for polyphonic texts that are en-
crypted by the empty word—except, perhaps, to eliminate waffle in a text.
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2.5 Character Sets

We use N to represent |W |, the finite size of the plaintext or cryptotext
character set W . Since the case N = 1 conveys no information, it is a
requirement that N ≥ 2 . An alphabet is a linearly ordered character set.

2.5.1 Plaintext character sets. Which ones are in use depends on the
language and the epoch. In the case of Hawaiian, the character set

Z12 = {a, u, i, o, e, w, h, k, l, m, n, p} is sufficient.

In the Middle Ages, following the Latin tradition, 20 letters seem to have
been enough for most writers, including Della Porta in 1563 (Fig. 23):

Z20 = {a, b, . . . , i, l, . . . , t, v, z} .

Often /k/, /x/, and /y/ are included, or just /x/ and /y/ (Della Porta at
other times). /w/ was long written as /vv/, so making room for /&/ , as on
Leone Battista Alberti’s disk in 1466 (Fig. 26). By 1600 an alphabet of 24
characters had become a European standard,

Zw
24 = Z23 ∪ {w} , where Z23 = Z20 ∪ {k, x, y} ,

with /v/ still used for /u/. Trithemius (1508) used /w/ , see Fig. 64. In
a French translation of 1561 (Gabriel de Collange), the ‘German’ /w/ was
replaced by /&/, according to Eyraud.
In the 18th century /u/ was included:

Zuw
25 = Z23 ∪ {u, w} .

But if /j/ is required (in French, for example), then /w/ must be sacrificed
again (Bazeries, 1891):

Zju
25 = Z23 ∪ {j, u} .

/j/, /k/, /w/, /x/, /y/ are very unusual in Italian, as are /k/, /w/ in French.
Irish can do without /j/, /k/, /q/, /v/, /w/, /x/, /y/, /z/ .
From about 1900, our present alphabet,

Z26 = Z23 ∪ {j, u, w} ,
was in general use. But there are exceptions even in Middle Europe. In the
Second World War, the exiled Czech government used the extended character
set consisting of 31 letters and 13 number symbols and other characters

Z44 = {a, b, c, č, d, e, ě, f, . . . , r, ř, s, š, t, . . . , z, ž, ., ,, *, 0, 1, . . . , 9} .
The Italian cifrario tascabile from the First World War used a character set

Z36 = Z26 ∪ {0, 1, . . . , 9} .

The (present-day) Cyrillic alphabet has 32 letters (disregarding Ë):
Z32 = {A, B, V, G, D, E, �, Z, I, �I, K, L, M, N, O, P,

R, S, T, U, F, H, C, Q, X, W, �, Y, �, �, �, �} .

Otherwise many different special conventions have been used to represent
digits and, if necessary, punctuation marks and diacritic marks.
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Spaces between words are suppressed in professional cryptography. Even in
German, where the words are longer than in most languages, word spacings
are commoner than /e/.

2.5.2 Technical character sets. The cryptotext character sets in use are
usually determined by technical restraints; besides the alphabets mentioned
above, there are other technical character sets,

Z256 = Z8
2 (bytes; IBM circa 1964)

Z32 = Z5
2 (Francis Bacon 1605, 1623, Baudot 1874)

Z12 = {0, 1, 2, ... , 9, ν, ζ} (duodenary; Pascal 1654, Leibniz 1676)
Z10 = {0, 1, 2, ... , 9} (denary)
Z6 = {A, D, F, G, V, X} (senary; these letters correspond to the Morse

characters · – , – · · , · · – · , – – · , · · · – , – · · – )
Z4 = {1, 2, 3, 4} (quaternary; Alberti 1466, Caramuel 1670,

Weigel 1673. {A, C, G, T} : genetic code7)
Z3 = {1, 2, 3} (ternary; Trithemius 1518, Wilkins 1641, Fride-

rici 1685)
Z2 = {0, 1}={O , L} (binary; Bacon 1605, 1623, Leibniz 1679)

and also invented symbols, popular among amateurs (Sect. 3.1.1).
Binary8, ternary, quinary, and denary ciphers have W =̂ Z2 , W =̂ Z3 ,
W =̂ Z5 , W =̂ Z10 respectively.
2.5.2.1 The nine digits 1, 2, 3, 4, 5, 6, 7, 8, 9 have been used by the German
Kriegsmarine—iterated if necessary—to encode map coordinates (Fig. 22).

1 2 3

4 5 6

7 8 9
Fig. 22.
Digit cipher in a map grid

2.5.2.2 It is fashionable to write the ciphertext or codetext in groups of five
characters. This has its origins in the tariff regulations of the International
Telegraph Union, which since 1875 has limited the length of a word to ten
symbols (and imposed serious restrictions on the use of codes). In 1904 codes
were allowed to have up to ten letters; later, telegram charges were generally
based on groups of five (Whitelaw’s Telegraph Cipher: 20 000 pronounceable
five-letter code groups, giving 400 million ten-letter code groups).

2.5.3 Hints. In the relation X : V ∗ −−−� W ∗, the cryptanalyst knows
neither V nor X . However, from X (V ∗) , the set of actually occurring
crypt words, he can occasionally deduce the method in use (e.g., Polybios
square, Sect. 3.3.1).

7 AACACTGTATCTATTATTTG: initial sequence of the genom of the African elephant.
8 Binary in the sense of biliteral, a character set of two elements: Bacon 1605, 1623.

With explicit values a = 1, b = 2, c = 4, d = 8, etc. (abfg = 99): Napier 1617.
Positional system with binary digits: Harriot before 1621, Caramuel 1670, Leibniz 1679.
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2.5.4 The endomorphic case. If, as is often the case, the plaintext and
the cryptotext use the same character set (V =W , X endomorphic), then it
is nowadays conventional in theoretical treatments to write the plaintext and
its characters in lower-case letters, the ciphertext or codetext and its charac-
ters in small capitals. That leaves upper-case italic letters for so-called key
characters. However, Alberti’s disk (Fig. 26) used the opposite convention.
Even in 1925, Lange-Soudart’s book showed a Saint-Cyr slide (Fig. 27) with
the plaintext in uppercase and the cryptotext in lowercase.

2.6 Keys

A key (French clef, clé, German Schlüssel) serves to select a step from a
cryptosystem M . Keys allow one to change the encryption in accordance
with previously arranged rules; for example, every day, or after every message,
or after every character. Frequently, keys are organized such that they allow
one to produce the individual encryption steps by following simple rules.
The combinatorial complexity of an encryption method is determined by the
number of keys available under this method. The key technique is very varied,
and will be dealt with under the individual classes of methods. Usually, the
mapping of the key symbols onto the set of encryption steps is injective,
but there exist exceptions, such as the PORTA encryption (Figs. 65 and 82)
where always two letters represent the same encryption step.
Let K denote the key character set or key vocabulary. K∗ is called the key
space. Let kj ∈ K be the j-th key used in sequence; then kj determines an
index sj such that the encryption step is χsj ∈ M ={χ0, χ1, χ2, . . . , χθ−1} .

2.6.1 Keys are to be changed frequently. Repeated use of the same key
is equivalent to using an encryption system with only one element. Profes-
sional cryptography makes hardly any use of such fixed encryptions—except
in the case of codes. The use in diplomatic circles of the same code book
for years on end is a typical case—though one can scarcely regard the diplo-
mats of many countries as professionals in the matter of ciphers: in cities
like Vienna, there has been a lively underground market for diplomatic codes
at various times. The Soviet Union had a particular reputation for stealing
code books. 1936, a Russian agent in Haarlem (Netherlands) used a stolen
code book to decipher telegrams between the Japanese military attaché in
Berlin and his government in Tokyo. At the beginning of the First World
War, probably every European power possessed copies of one or more of the
American diplomatic code books. In August 1941 Loris Gherardi secretly
procured for the Servizio Informazione Militare a copy of the BLACK code
used by US military attachés. There is a story, told by Allen W. Dulles,
of the American minister in Rumania—an ousted politician, like so many
diplomats—who was unwilling to report the loss of his code book. He would
wait until several messages had accumulated, then take the train to Vienna
to decipher them at the embassy there. The moral is that even code books
must be changed regularly, if necessary monthly.
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Keys used for choosing a method must be a matter of mutual agreement. If
one party is cut off, then the supply of new keys is at risk, difficult, or even im-
possible. In such cases use is often made of innocent sets of letters or figures,
such as popular novels, statistical reports, telephone books, etc.—almost
everything has been used at some time, from Jaroslav Hašek’s Good Soldier
Svejk to the 1935 Statistical Almanac of the German Reich. Even this
system is vulnerable—if the source of keys is revealed, then a whole stream
of messages becomes transparent at one blow.

2.6.2 Block. Following the notation of Sect. 2.3, let X be a finitely gener-
ated block cipher, X = [ χs1 , χs2 , χs3 , . . . ] , where χsj

: pj �−−� cj .

(p1, p2, p3, . . .) , where pj ∈ V n , designates the plaintext sequence;
(c1, c2, c3, . . .) , where cj ∈ Wm , designates the cryptotext sequence,
(k1, k2, k3, . . .) , where kj ∈ K , designates the keytext sequence.
Let kj be a key which determines χsj

, Sj an operator standing for χsj
(.) .

Then we have three notations for the cryptographic equation

cj = χsj (pj) or cj = X(pj , kj) or cj = pj Sj .

Note that χi indicates the i-th encryption step in a numbered list of steps,
while χsj

is the step used to carry out the j-th step in the encryption.

2.6.2.1 If χsj
is an injective definal function, as is usually the case, then there

exists an inverse function χ−1
sj

, for which (with Y = [ χ−1
s1

, χ−1
s2

, χ−1
s3

, . . . ] )

pj = χ−1
sj

(cj) or pj = Y(cj , kj) or pj = cj S−1
j .

Thus χ−1
sj

(χsj (pj)) = pj and also χsj (χ
−1
sj

(χsj (pj))) = χsj (pj) .

2.6.2.2 If χsj is also surjective and unambiguous from left to right (func-
tional), then for all cj ∈ Wm even

χsj
(χ−1

sj
(cj)) = cj .

In the case of alternating traffic between two parties A and B, one of them
can use a sequence of χsj as both encryption and decryption steps, the other
a sequence of χ−1

sj
as both decryption and encryption steps.

2.6.3 Isomorphism. Let X again be a finitely generated block cipher.
Two plaintexts (p′1, p

′
2, p

′
3, . . .) , (p′′1 , p′′2 , p′′3 , . . .) such that p′i = p′′i S, where

S is a fixed substitution, are called isomorphic. Assume the same for two
cryptotexts (c′1, c

′
2, c

′
3, . . .) , (c′′1 , c′′2 , c′′3 , . . .) such that c′i = c′′i T , where T is a

fixed substitution. Then, for the encryption steps E′
i, E

′′
i , the following holds:

If c′i = p′iE
′
i and c′′i = p′′i E′′

i , then S E′
i = E′′

i T .
If the encryptions E′

i and E′′
i possess an inverse, then isomorphic plaintexts

encrypt to isomorphic ciphertexts, and vice versa. Then
T = (E′′

i )−1 S E′
i and S = E′′

i T (E′
i)
−1 .

If the fixed substitutions S and T possess inverses, then the keys can be
transformed one into another:

E′′
i = SE′

i T−1 and E′
i = S−1E′′

i T .
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2.6.4 Shannon. For cryptosystems V ∗−−−�W ∗ , Claude Shannon intro-
duced in 1949 an important concept: such a cryptosystem is called pure, if
(∗) for all i, j, l : Sl

←−
SjSi = Sx for some x.

Here, Si ∈ V ∗−−−�W ∗, ←−
Sj ∈ V ∗≺−−− W ∗, and Sl ∈ V ∗−−−�W ∗ ;

Sl
←−
SjSi means: first enciphering with key ki , then deciphering with key kj ,

then enciphering with key kl .
2.6.4.1 Now the following theorem holds:

• In a pure cryptosystem,
the elements {←−SjSi} of V ∗−−−�V ∗ form a semigroup.

Proof: (1) The associative law holds.
(2) The composition of two elements is an element:

(←−
SmSl)(

←−
SjSi) = ←−

Sm(Sl
←−
SjSi) = ←−

SmSx for some x . 
�

If V ∗−−−�W ∗ is, as usual, injective (left-univalent), which means there is an←−
Sl ∈ V ∗≺−−− W ∗ such that ←−

SlSl = I, the identity. If even, as is the case
with many ciphers, V ∗−−−�W ∗ is functional (right-univalent), i.e., Sl

←−
Sl = I,

then each ←−
SlSi has a left and right inverse ←−

SlSj , and the elements {←−SlSi} of
V ∗−−−�V ∗ form a group, with ←−

SlSl being the identity.
Now assume one-to-one mappings. The residue class M(m) of a message m
consists of all messages produced by enciphering m by some Si and decipher-
ing this by some Sj

−1 , which means M(m)={Sj
−1Si m}. For a pure encryp-

tion, this process is idempotent: for any y ∈ M(m), i.e. y = Sj′−1Si′m for
some Sj′−1, Si′ , we have M(y) = {(Sj

−1Si)(Sj′−1Si′ m}= {Sj
−1(SiSj′−1Si′)m}

= {Sj
−1Sx m}⊆M(m). In a pure cryptosystem, the cryptanalyst will be un-

able without further information to distinguish the messages of any given
message residue class. Thus, to protect against brute force attacks, residue
classes of pure cryptosystems should be as large as possible.
2.6.4.2 If the cryptosystem is endomorphic, i.e., V = W , as is the case with
most ciphers, then the following stronger results hold:

• In an endomorphic pure cryptosystem containing the identity I,
the elements {Si} of V ∗−−−−�V ∗ form a subsemigroup of {Sj

−1Si}:
the cryptosystem is called closed under composition (Salomaa).

• If an endomorphic pure encryption is injective and functional, then
the elements {Si} form a group, the key group of the cryptosystem.

Proof: (1) Take Sj = I in (∗). (2) Take Sj = I in {Sj
−1Si}. 
�

In an injective and functional pure cryptosystem, the encryption step is
uniquely determined by a pair of plaintext and corresponding cryptotext
characters. We may speak of a Shannon cryptosystem. Many customary
cryptosystems have this property.
2.6.4.3 An endomorphic cryptosystem where the encryption step and the
decryption step coincide, and thus the crypto procedure is symmetrically
determined, is called key-symmetric. In this case, every encryption step is
self-reciprocal, is its own inverse (Kahn: ‘reciprocal within itself’).
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Among the encryption steps we find prominently two large classes: substi-
tution and transposition. They are both special cases of the most general
encryption step V (n) −−−� W (m) . We shall start by looking at several kinds
of substitution and turn our attention to transposition in Chapter 6 .

Fig. 23. Cipher disk by Giambattista Della Porta, 1563

A simple substitution (German Tauschver-
fahren or Ersatzverfahren) is a substitution
with monographic encryption steps χi ∈ M ,

χi : V (1) −−−� W (mi) .

In the monoalphabetic case, an arbitrary χs

is selected from M and encryption is done
with the sequence X = [χs , χs , χs , ...] .
It is in this case sufficient to take a singleton
for M .

We start with the case mi = 1 for all i .

3.1 Case V (1) −−−� W (Unipartite Simple Substitutions)

The case V (1) −−−� W deals with a unipartite simple substitution, for short
just simple substitution (French substitution simple ordinaire).

3.1.1 V −−−−� W , heterogenous encryption without homophones
and nulls. This case is primeval. For W an alphabet of strangely formed,
unusual graphemes is frequently used: Examples are known from Thailand,
Persia, coptic Ethiopia and elsewhere. Such secret marks are used by Gi-
ambattista Della Porta, 1535–1615 (Giovan Battista Porta) in his cipher disk
(Fig. 23, see also Fig. 30). Charlemagne is said to have used such characters
(Fig. 24) as well as the savant and mystic Hildegard von Bingen (1098–1179).
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Fig. 24. Secret characters of Charlemagne

The Freemasons’ cipher is to be mentioned here. It goes back to the ancient
‘pigpen’ cipher, and in its modern form reads

a b c d e f g h i j k l m n o p q r s t u v w x y z

It can be memorized by the schemes

a b c (without j k l (with s (without w (with

d e f dot) m n o dot) t u dot) x y dot)

g h i p q r v z

As late as 1728, when it was broken by Britain’s Deciphering Branch, the
Czar Peter the Great used (besides nomenclators) a heterogenous substitu-
tion V−−−−�W with a bizarre cipher alphabet.
Edgar Allan Poe, famous for his literary works, used a rather trivial alphabet
of common printer’s types in his story “The Gold-Bug”(Sect. 15.10.1).
In this class is also the bookseller’s cipher for encrypting prices and dates,
a one-to-one mapping Z10−−−−�Z26 , generated by a password (‘key-phrase’
cipher). An example is

1 2 3 4 5 6 7 8 9 0
M I L C H P R O B E ,

an encryption step with the password milchprobe (‘milk sample’) used in
Germany over many years for specifying the packing date of butter. Likewise,
in Navy ENIGMA enciphering, sometimes figures were represented by letters

1 2 3 4 5 6 7 8 9 0
q w e r t z u i o p .

3.1.2 V (1) −−−� W , heterogeneous encryption with homophones
and nulls. Homophones are found already in Muslim sources, e.g., al-
Qalqashandi 1412, and in a cipher used by the Duchy of Mantua in 1401
for an exchange of letters with Simeone de Crema. The vowels—typically
the more frequent characters—were given homophones, a first sign of con-
siderations to level the character frequency. Furthermore, W was enlarged
by digits. The introduction of homophones practically enforces the introduc-
tion of nulls; otherwise homophones can be recognized easily by the constant
pattern of letters surrounding them in frequent words.

A method with homophones used even today is the book cipher: In some in-
conspicuous looking book that sender and recipient have at hand in identical
copies the plaintext letters are selected one after another; the corresponding
places: (page x, line y, position z) form the cipher group (x-y-z).
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Choosing as the cipher book the present volume, the word mammal can be
encrypted as (3-3-6) (7-15-9) (6-6-5) (5-4-6) (4-3-10) (3-5-23) .

3.2 Special Case V ≺−−−−� V (Permutations)

In the case of a one-to-one mapping V ≺−−−−� W among the examples in
Sect. 3.1.1 , W is called a mixed (cryptotext) alphabet of N characters
(French alphabet désordonné, alphabet incohérent , German umgeordnetes Ge-
heimtextalphabet), that matches a standard (plaintext) alphabet (French al-
phabet ordonné, German Standard-Klartextalphabet) V of N characters.
To define a substitution, it suffices to list in some way the matching pairs of
plaintext characters and cryptotext characters, e.g., for V = Z26, W = Z26

(for the use of lower-case letters and small capitals see Sect. 2.5.4):

u d c b m a v g k s t n w z e i h f q l j r o p x y
H E W A S R I G T O U D C L N M F Y V B P K J Q Z X

For encryption, it is more convenient, of course, to have the plaintext
characters ordered into a standard plaintext alphabet; this gives a mixed
cryptotext alphabet (often simply called ‘mixed alphabet’):

a b c d e f g h i j k l m n o p q r s t u v w x y z
R A W E N Y G F M P T B S D J Q V K O U H I C Z X L

In mathematics, this ‘substitution notation’ is customary. For decryption,
however, it is better to have the cryptotext characters ordered into a standard
cryptotext alphabet; this gives a mixed plaintext alphabet:

b l w n d h g u v o r z i e s j p a m k t q c y f x
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In case V ≺−−−−�W , |V | = |W | (and W can be renamed such that V =W ), the
encryption is endomorphic, the one-to-one mapping V ≺−−−−� V is a permu-
tation of V . Such a permutation can be accomplished in electrical imple-
mentations by interchanging N wires (German Umstecken) in a wire bundle.
For permutations in particular, mathematics uses apart from the substitution
notation the ‘cycle notation’

(a r k t u h f y x z l b) (c w) (d e n) (g) (i m s o j p q v)
in which the distinction between lower-case letters and small capitals has
to be abandoned. For encryption, one goes in the cycle where the plain-
text character is found to the cyclically next character; for decryption, to
the cyclically preceding character. Cycles of length one (1-cycles) are often
suppressed—we shall not follow this habit.
3.2.1 Self-reciprocal permutations (reflections). The most ancient
sources (apart from Egypt—we shall come back to this under ‘code’) show a
self-reciprocal (‘involutory’) permutation of V : in India, in the Kāma-sūtra
of the writer Vātsyāyana, secret writing is mentioned as one of the sixty-four
arts; Mūladev̄ıya denotes an encrypting and decrypting procedure, which is
a reflection (‘involution’):



3.2 Special Case V ≺−−−−� V (Permutations) 47

V
2

≺−−−−� V : � a kh gh c t ñ n r l y
k g n t. p n. m s. s ś

(the remaining characters are left invariant, so the permutation is not proper-
ly self-reciprocal, is not a genuine reflection). Plaintext and cryptotext alpha-
bets of a self-reciprocal permutation are said to be reciprocal to each other.

In the Hebrew Holy Scripture boustrophedonic substitution, called Athbash,
was used—although not for a cryptographic purpose—which would read in
the Latin alphabet V = Z20

V
2

≺−−−−� V : � a b c d e f g h i l
z v t s r q p o nm . Such a substitution uses the reversed

(‘inverse’) alphabet. In the case of the reflection

V
2

≺−−−−� V : � a b c d e f g h i l m
a z v t s r q p o nm Charles Eyraud speaks of a comple-

mentary alphabet (French alphabet complémentaire), see Sect. 5.6. This per-
mutation, however, is again not properly self-reciprocal (is not a genuine
reflection): /a/ and /m/ are left invariant.

Obvious is also a reflection with a shifted alphabet like the Hebrew Albam,
used in 1589 by the Argentis with V = Z20

V
2

≺−−−−� V : � a b c d e f g h i l
mn o p q r s t v z ,

or the one used by Della Porta in 1563 (see Fig. 65) with V = Z22

V
2

≺−−−−� V : � a b c d e f g h i l m
n o p q r s t v x y z .

The most general boustrophedonic case, showing the use of a password, is
presented by the following example: (V = Z26)

V
2

≺−−−−� V : � a n g e r b c d f h i j k
z y x w v u t s q p om l .

Reflections have, apart from the advantage of a compact notation, the prop-
erty which some people have held to be of great importance that encryption
and decryption steps coincide.

In the cycle notation of permutations, the last five examples would read (with
cycle outsets ordered alphabetically):

(a,z) (b,v) (c,t) (d,s) (e,r) (f,q) (g,p) (h,o) (i,n) (l,m)
(a) (b,z) (c,v) (d,t) (e,s) (f,r) (g,q) (h,p) (i,o) (l,n) (m)

(a,m) (b,n) (c,o) (d,p) (e,q) (f,r) (g,s) (h,t) (i,v) (l,z)
(a,n) (b,o) (c,p) (d,q) (e,r) (f,s) (g,t) (h,v) (i,x) (l,y) (m,z)
(a,z) (b,u) (c,t) (d,s) (e,w) (f,q) (g,x) (h,p) (i,o) (j,m) (k,l) (n,y) (r,v)

Properly self-reciprocal (‘non-crashing’) is a self-reciprocal permutation with-
out 1-cycles, which means solely with 2-cycles (‘swaps’). It is the target of
cryptanalytic attacks (Sect. 14.1) that cease to work if some of the cycles are
1-cycles (fixpoints, ‘females’).

For a binary alphabet V = Z2 , the sole nontrivial permutation is a reflection:
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V
2

≺−−−−� V : � O
L .

3.2.2 Cross-plugging. In electrical implementations, reflections are ac-
complished by swapping pairs of wires, simply by using double-ended connec-
tors (Fig. 25). Such reflections were used in the ENIGMA plugboard (German
Steckerbrett).
a b c d e f g h i j k l m

…

a b c d e f g h i j k l m
Fig. 25. Self-reciprocal permutation by cross-plugging with a pair of double-ended con-

nectors which interrupt the direct contacts.

The number d(k, N) of reflections depends on N and the number k of cinch
plugs used: d(k,N) = N !

2k·(N−2k)!·k!
=
(

N
2k

)
· (2k)!

2kk!
=
(

N
2k

)
· (2k − 1)!! , where

(2k − 1)!! = (2k − 1) · (2k − 3) · . . . · 5 · 3 · 1 = (2k)!
2kk!

.

Properly self-reciprocal permutations (‘genuine’ reflections) require N = 2ν
to be even, they consist of ν 2-cycles. The number d(N

2 , N) of all genuine
reflections is then (with a relative error < 10−3 for N ≥ 6 )

d(N
2 , N) = (N −1)!! = (N −1) · (N −3) · . . . ·5 ·3 ·1 = (2ν)!

ν!2ν ≈
√

(2ν)!
4
√

π·(ν+ 1
4 )

.

The approximate value is a rather good upper limit for (N − 1)!! .

For fixed N , however, d(k,N) is maximal for k = ν − �
√

(ν + 1)/2� :
d(5, 26) ≈ 5.02 · 109 , d(6, 26) ≈ 1.00 · 1011 , d(7, 26) ≈ 1.31 · 1012 ,
d(8, 26) ≈ 1.08 · 1013 , d(9, 26) ≈ 5.38 · 1013 , d(10, 26) ≈ 1.51 · 1014 ,
d(11, 26) ≈ 2.06 · 1014 , d(12, 26) ≈ 1.03 · 1014 , d(13, 26) ≈ 7.91 · 1012 ,
and d(3, 10) = 3150 , d(4, 10) = 4725 , d(5, 10) = 945 . Note that
2log d(10, 26)≈47.1 [bit], 2log d(11, 26)≈47.5 [bit], 2log d(12, 26)≈46.5 [bit]

and for all reflections: 2log
∑13

k=1 d(k, 26) ≈ 2log 5.33 · 1014 ≈ 48.9 [bit] .

The ENIGMA I of the Reichswehr of 1930 and the Wehrmacht ENIGMA
originally used six double-ended two-line connectors; later, beginning Octo-
ber 1, 1936, five to eight, from January 1, 1939, seven to ten, and from August
19, 1939, prevailingly ten (sometimes, e.g., key net BROWN of the Luftwaffe,
only six or seven) double-ended two-line connectors for cross-plugging.

3.2.3 Monocyclic permutations. A compact notation describes also the
monocyclic permutation (consisting of one cycle), the order of which is N :
for example, with N = 20 the cycle of the standard alphabet Z20

V
N

≺−−−−� V : (a b c d e f g h i l m n o p q r s t v x )

or its third power

V
N

≺−−−−� V : (a d g l o r v b e h m p s x c f i n q t ) ;
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in substitution notation
a b c d e f g h i l m n o p q r s t v x
B C D E F G H I L M N O P Q R S T V X A ,

a b c d e f g h i l m n o p q r s t v x
D E F G H I L M N O P Q R S T V X A B C .

The last encryption step was used by Julius Cæsar (according to Suetonius),
counting upwards three letters in the alphabet. His successor Augustus, infe-
rior in several respects to Cæsar, used the first encryption step (possibly he
could not safely count up to three); Suetonius said he also replaced x by AA .
Every power of the cycle of the standard alphabet yields (by a ‘CAESAR
shift’) a CAESAR alphabet. We shall come back to this CAESAR addition
in Chap, 5. But note: while the two encryption steps above are of the order
twenty, the second power has only the order ten, and the tenth power has
only the order two: it is a reflection as studied above. The (N−1)-th power
is the inverse of the first power and yields the decryption step.
A monoalphabetic substitution with a CAESAR encryption step was intro-
duced in 1915 in the Russian army after it turned out to be impossible to
expect the staffs to use anything more complicated. For the Prussian Lud-
wig Deubner (1877–1946) and for the Austro-Hungarian Hermann Pokorny
(1882–1956), heads of the cryptanalytic services of their respective countries,
it was a pleasantly simple matter to decrypt these messages.
By its very nature, a track on a disk, the rim of a washer, or a strip closed to
form a ring can be used to represent a full cycle. Such gadgets have found wide
use and were employed in a particular way (Sect. 7.5.3) by Thomas Jefferson
and Étienne Bazeries. The q-th power of the monocyclic permutation is
obtained by counting within the cycle in steps of q characters.

3.2.4 Mixed alphabets. For non-selfreciprocal and non-cyclic V ≺−−−−�V ,
in the most general case of a mixed alphabet (French alphabet désordonné,
German permutiertes Alphabet), substitution notation is normally used:

V ≺−−−−�V : a b c d e f g h i j k l m n o p q r s t u v w x y z
S E C U R I T Y A B D F G H J K L M N O P Q V W X Z

The short cycle notation is useful here, too. It shows the decomposition
V ≺−−−−�V : (a s n h y x w v q l f i) (b e r m g t o j) (c) (d u p k) (z) ,
into one 12-cycle, one 8-cycle, one 4-cycle, and two 1-cycles (cycle partition
12+8+4+1+1).

Serge Kanschine and Emil Jellinek-Mercedes received Dezember 27, 1911 an
Austrian patent Nr. 51 351 for a cipher typewriter, where the permutation
was simply carried into effect by caps mounted over the typewriter keys. Not
too practical: For deciphering, a second such typewriter was needed.

3.2.4.1 More mixed alphabets are obtained by a cyclic shift of one of the two
lines in the substitution notation (shifted mixed alphabets, French alphabet
désordonné parallèle, German verschobenes permutiertes Alphabet):



50 3 Encryption Steps: Simple Substitution

V ≺−−−−�V : a b c d e f g h i j k l m n o p q r s t u v w x y z
E C U R I T Y A B D F G H J K L M N O P Q V W X Z S ,

V ≺−−−−�V : a b c d e f g h i j k l m n o p q r s t u v w x y z
C U R I T Y A B D F G H J K L M N O P Q V W X Z S E etc.,

in cycle notation

(a e i b c u q m h) (d r n j) (f t p l g y z s o k) (v) (w) (x) ,

(a c r o l h b u v w x z e t q n k g) (f y s p m j) (d i) etc.

3.2.4.2 Iterated substitution, also called ‘raising to a higher power’ produces
the powers of a mixed alphabet, e.g., from the substitution SECURITY. . .
above, the second power gives

(a n y w q f) (b r g o) (c) (d p) (e m t j) (h x v l i s) (k u) (z) ,
with all cycles of even length being split in halves; in substitution notation

V ≺−−−−�V : a b c d e f g h i j k l m n o p q r s t u v w x y z
N R C P M A O X S E U I T Y B D F G H J K L Q V W Z

Shifting on the one hand, raising to a power on the other do not give the
same thing in general; they are two utterly different methods for producing
a family of up to N (sometimes less) accompanying alphabets (Chapter 7).

3.2.5 Construction of alphabets derived from passwords. The exam-
ples above show already the construction of an (endomorphic) simple sub-
stitution V ≺−−−−�V with the help of a password (French mot-clef , German
Kennwort, Losung), possibly a mnemonic key word or phrase. A classical
method uses a word from V , writes its characters without repetitions and
fills in alphabetic order with the characters not used. Examples can be found
in a little booklet of 1555 by Giovan Battista Bellaso: NOVI ET SINGOLARI

MODI DI CIFRARE ... . The method, propagated by G. B. Argenti, was still a
cryptologic standard even in the 20th century.1

This construction, however, is vulnerable: it may be easy to guess a missing
part of the password (after all, the most frequent vowels /e/ and /a/ always
are substituted by a letter from the password, if this has length 5 or more).
A small consolation is that the password should not need much fill.
More cunning methods use therefore a reordering of the password; for exam-
ple, by writing it first in lines and reading it in columns (method of Charles
Wheatstone, 1854, a transposition to be treated methodically in Sect. 6.2):

S E C U R I T Y a e i l o r u x
A B D F G H J K b f j m p s v y
L M N O P Q V W c g k n q t w z
X Z d h

This yields the alphabet

1 Allowing repetitions is bad: it leads to polyphones, e.g., the ‘key-phrase’ cipher
a b c d e f g h i j l m n o p q r s t u v x y z
L E G O U V E R N E M E N T P R O V I S O I R E

and shortens the cryptotext character set (here to 13 characters {EGILMNOPRSTUV};
{b, g, j, m, z}�→{E}, {d, r, v}�→{O}, {h, q, y}�→{R}, {f, s}�→{V}, {i, n}�→{N}, {t, x}�→{I} ).



3.2 Special Case V ≺−−−−� V (Permutations) 51

a b c d e f g h i j k l m n o p q r s t u v w x y z
S A L X E B M Z C D N U F O R G P I H Q T J V Y K W

or in cycle notation

(a s h z w v j d x y k n o r i c l u t q p g m f b) (e)

with the 1-cycle (e) .

A further method fills also the columns of the plaintext side in the alphabetic
order of the letters of the password, in the example in the order

third, second, sixth, fifth, first, seventh, fourth, eighth column

with the result
S E C U R I T Y n d a u k h r x
A B D F G H J K o e b v l i s y
L M N O P Q V W p f c w m j t z
X Z q g

This results in the alphabet
a b c d e f g h i j k l m n o p q r s t u v w x y z
C D N E B M Z I H Q R G P S A L X T J V U F O Y K W

or in cycle notation

(a c n s j q x y k r t v f m p l g z w o) (b d e) (h i) (u) .

The suppression of repetitions in the password can also be used for the con-
struction of cycles. The sentence Bazeries used évitez les courants d’air ,
“avoid drafts”(Sect. 7.5.3) produces the cycle

V
N

≺−−−−� V : (e v i t z l s c o u r a n d b f g h j k m p q x y)

3.2.6 Enumeration. The following table gives for N = 26 , for N = 10 and
for N = 2 a survey of the number Z(N) of available alphabets V ≺−−−−� V :

number of permutations Z(N) Z(26) Z(10) Z(2)
total N ! 4.03 · 1026 3 628 800 2
monocyclic (N − 1) ! 1.55 · 1025 362 880 1
reflections total ≈ (N

e )
N
2 +2 5.33 · 1014 9 496 2

genuine reflections ≈ √
2(N

e )
N
2 7.91 · 1012 945 1

derived from mnemonic passwords 104 ... 106

3.2.7 Cipher disks and cipher slides. To mechanize a substitution, the
fixed matching of the plaintext and the cryptotext characters, as found in
the substitution notation, can be arranged on a cylinder or on a strip. Two
windows allow one to see just two matching characters at any given moment.
The windows can be arranged so that only the master sees the plaintext
character, while the clerk only sees the cryptotext window and cannot grasp
the meaning of the message (Sect. 7.5.2, Gripenstierna’s machine, Fig. 66). A
selection from the N accompanying shifted alphabets is obtained if one of
the windows can be moved.
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Fig. 26.
Cipher disk (left-hand side) of
Leone Battista Alberti, 1466
(Lange-Soudart 1925)
and (right-hand side) of
Jacopo, 1526

Another possibility is to shift the plaintext alphabet with respect to the
cryptotext alphabet. This leads to the use of a pair of disks (Alberti cipher
disk, Silvestri cipher disk, Fig. 26) or a pair of strips (Fig. 27). In the latter
case it is necessary to repeat one of the alphabets (duplication). The chosen
key letter is to be placed opposite a basic mark (French repère).

a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m ...

S E C U R I T Y A B D F G H J K L M N O P Q V W X Z

Fig. 27. Cipher slide with duplicated plaintext alphabet (key g, basic mark S)

Cipher disks (French cadran, German Chiffrierscheibe), mechanical tools for
general substitution with shifted mixed alphabets, were described as early
as 1466 by Leone Battista Alberti2 (for an 18th/19th century version, see
Plate B). Cipher slides (French reglette, German Chiffrierschieber) were used
in Elizabethan England around 1600. In the 19th century they were named
Saint-Cyr slides after the famous French Military Academy. Cipher rods
(French bâtons, German Chiffrierstäbchen) serve the same purpose.

3.2.8 Cycles with windows. Mechanizing a monocyclic permutation can
also start from the cycle notation. The cycle of characters is again arranged
on a cylinder or on a strip (in the latter case the first character must be
duplicated). Two neighboring windows allow just two characters to be seen
at any given moment, the left one of which is the plaintext character, the
other one the corresponding cryptotext character.
A selection from the (up to N ) accompanying powers of a mixed alphabet
is obtained if the distance between the windows can be changed. In the case
of a strip, it is then necessary to duplicate the whole cycle. The q-th power
of the monocyclic permutation is obtained if the windows have a distance of
q characters (Fig. 28 for q = 14).

14↓—————————————↑
S E C U R I T Y A B D F G H J K L M N O P Q V W X Z S E C U R I T Y A B D F G ...

Fig. 28. Cipher strip with windows for powers of an alphabet

2 In Alberti’s illustration, differing from modern usage, capital letters are used for plain-
text, small letters for cryptotext. The character /et/ presumably stands for the sym-
bol & . The initial setting of the disk is established by lining up a key letter, say D ,
with a fixed character, say /a/.
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3.3 Case V (1) −−−�Wm (Multipartite Simple Substitutions)

3.3.1 m = 2 , bipartite simple substitution V (1) −−−� W 2 . Substitu-
tion by bigrams (bipartite substitution) was known in antiquity, and Polybios
described a quinary (|W |= 5) bipartite substitution for Greek letters. In a
modern form, Z25 is inscribed into a 5×5 checkerboard:

1 2 3 4 5 1 2 3 4 5

1 a b c d e 1 a f l q v
2 f g h i k or 2 b g m r w
3 l m n o p 3 c h n s x
4 q r s t u 4 d i o t y
5 v w x y z 5 e k p u z

Decryption with the ‘Polybios square’ on the right hand side gives for the
text semagram

3 3 5 1 5 1 4 1 2 3 4 3 3 3 5 1 4 5 1 2 4 3 2 4 1 1 3 4 3 4 1 1 3 4 3 4 4 2 3 3 1 1 4 4 4 2 4 3 3 3

of Sect. 1.2, Fig. 3, the plaintext
n e e d m o n e y f o r a s s a s s i n a t i o n .

While Polybios described how torches can represent the numbers 1–5, knock
signals are used for it in more modern times. The special Z25 −−−−� Z5 × Z5

cipher above is the ubiquitous, truly international knock cipher, used in jails
from Alcatraz to Ploetzensee by criminals as much as by political prisoners.
The normal speed of transmission is 8–15 words per minute.
In Czarist Russia, such a knock-cipher (with the Russian alphabet in a 6×6
square) was common and came to Western Europe with Russian anarchists as
part of the ‘Nihilist cipher’ (Sect. 9.4.5), it was also used steganographically,
see Sect. 1.2 . Arthur Koestler, in Sonnenfinsternis, and Alexander Solzhe-
nitsyn, in The Gulag Archipelago, reported on its use in the Soviet Union.
In general, a password is used, which is inscribed line by line and the remain-
ing characters filled in. The count Honoré de Mirabeau, a French revolu-
tionary in the 18th century, used this method in his correspondence with the
Marquise Sophie de Monnier—he, too, used it steganographically and added
6 7 8 9 0 as nulls.
The ADFGVX system, invented by Fritz Nebel (1891–1977), which was in-
stalled in 1918 on the German Western Front under Quartermaster General
Erich Ludendorff for wireless transmission (for the cryptotext alphabet Z6

see Sect. 2.5.2), worked with |W |= 6 and checkerboards like
A D F G V X

A c o 8 x f 4
D m k 3 a z 9
F n w l 0 j d
G 5 s i y h u
V p 1 v b 6 r
X e q 7 t 2 g
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Rectangular arrays are used, too. Giovanni Batista Argenti, around 1580,
used the following scheme (with W = Z10)

0 1 2 3 4 5 6 7 8 9

1 p i e t r o a b c d
2 f g h l m n q s u z

constructed in accordance with Bellaso from a password.
In general, the bipartite substitution leaves ample space for homophones:

1 2 3 4 5 6 7 8 9

9, 6, 3 a b c d e f g h i
8, 5, 2 j k l m n o p q r
7, 4, 1 s t u v w x y z .

In this example the character 0 may serve as a null. 0 , originally nulla
ziffra, still is not taken seriously everywhere.
Preferably, homophones should smooth out the character frequencies in the
cryptotext. Since the letters e t a o n i r s h in English have altogether a
frequency around 70 % a good balance is reached by

1 2 3 4 5 6 7 8 9

4,5,6,7,8,9,0 e t a o n i r s h 71.09 %
2,3 b c d f g j k l m 19.46 %
1 p q u v w x y z 9.45 % .

Another method uses a 4-letter password and decides in this way on the
outset of the cycles (00...24), (25...49), (50...74), (75...99) in defining (with
V = Z25 and W = Z2

10) a homophonic cipher, e.g., with the password KILO:

a b c d e f g h i k l m n o p q r s t u v w x y z
K 16 17 18 19 20 21 22 23 24 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
I 42 43 44 45 46 47 48 49 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
L 65 66 67 68 69 70 71 72 73 74 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
O 87 88 89 90 91 92 93 94 95 96 97 98 99 75 76 77 78 79 80 81 82 83 84 85 86

A denary (|W |= 10) bipartite cipher does not have to have homophones—
the substitution does not have to be surjective and some pairs can be left
unused. Such a cipher was used by the Swedish baronet Fredrik Gripenstier-
na in 1786—possibly based on a proposal of Christofer Polhem, if not of
Athanasius Kircher. A funny form of a bipartite cipher with homophones was
agreed upon during the development of the atom bomb by Brig. Gen. Leslie
R. Groves and Lt. Col. Peer da Silva in Los Alamos (Fig. 29), to be used in
telephone conversations for veiling special names and places. The point is
that it takes time to look up the letters, and thus homophones are selected
more at random than normally, when the encipherer is biased.

3.3.2 m = 3 , tripartite simple substitution V (1) −−−� W 3 . Substitu-
tion by trigrams (tripartite substitution) was proposed by Trithemius in the
Polygraphiæ and by Johannes Balthasar Friderici 1685, with |W |= 3 (note
that 33 = 27 > 26) for steganographic reasons. Otherwise, ternary substitu-
tions like this one are rare.
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1 2 3 4 5 6 7 8 9 0
I P I O U O P N 1

W E U T E K L O 2
E U G N B T N S T 3
T A Z M D I O E 4
S V T J E Y H 5
N A O L N S U G O E 6

C B A F R S I R 7
I C W Y R U A M N 8
M V T H P D I X Q 9
L S R E T D E A H E 0

Fig. 29.
Bipartite cipher,
used in Los Alamos in 1944
for telephone conversations

3.3.3 m = 5 , quinpartite simple substitution V (1) −−−� W 5 . Sub-
stitution by groups of five cryptotext characters (quinpartite substitution)
with |W |= 2 was used by Francis Bacon in connection with steganographic
means (note that 25 = 32 > 26). Quinpartite binary encryption was resur-
rected in the cipher machine of Vernam in 1918 (Sect. 8.3.2) and during the
Second World War in the cipher-teletype machines Siemens T52 (Geheim-
schreiber) and Lorenz SZ 40/42 (Schlüsselzusatz ), see Sect. 9.1.3 and 9.1.4 .

3.3.4 m = 8 , octopartite simple substitution V (1) −−−� W 8 . Again
with |W |= 2 (8-bit code, binary EBCDIC code, ASCII code with checkbit),
this octopartite simple substitution coincides with monopartite substitution
by bytes (Z256) in modern computers.

3.4 The General Case V (1) −−−� W (m), Straddling

The general case V (1) −−−� W (m) plainly invites the use of nulls and homo-
phones.

Simeone de Crema in Mantua (1401) used just homophones (with m = 1) .
With m=2 , apart from the use of homophones and nulls an important new
thought comes into play: straddling (German Spreizen) of the alphabet, the
mapping of V into W 1 ∪ W 2 . A cipher used at the Holy See, the papal
court, devised by Matteo Argenti after 1590, shows homophones, nulls, and
straddling. For an alphabet Z20 enriched by /et/, /con/, /non/, /che/ and
with 5, 7 serving as nulls, the encryption steps Z

(3)
20 −−−� Z2

10 ∪ Z1
10 ∪ Z0

10

are (with precedence from left to right)

che con non et a b c d e f g h i
44 64 00 08 1 86 02 20 62 22 06 60 3

82
l m n o p q r s t v z ε

24 26 84 9 66 68 28 42 80 04 88 5
40 7
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3.4.1 Caveat. Encryption steps with straddling are subject to the restric-
tion that the encryption induced by them should turn out to be left-unique—
this means that the hiatuses between the one-letter and the two-letter cipher
elements and thus the correct decomposition are well determined. As stated
in Sect. 2.4, G. B. and M. Argenti were aware of this. Their ciphers fulfill the
following conditions: W is divided up into characters used for one-character
cipher elements, W ′ = {1, 3, 5, 7, 9} and characters used for two-character
cipher elements to begin with, W ′′ = {0, 2, 4, 6, 8} . The Argentis made the
mistake of restricting also the second character of these to W ′′ . This exposes
the straddling. Otherwise, they made some more practical recommendations:
to suppress the u following the q and to suppress (Alberti) a doubled letter.
The so-called spy ciphers used by the Soviet NKVD and its followers are
straddling ciphers. They have been disclosed by convicted spies. By analogy
with Polybios squares they are described by rectangular arrays too, e.g.,

0 1 2 3 4 5 6 7 8 9
s i o e r a t n

8 c x u d j p z b k q (∗)
9 . w f l / g m y h v

where the first line contains the one-letter cipher elements.
With W = Z10 28 cipher elements are obtainable, enough for Z26 and two
special characters, . for ‘stop’ and / for letter-figure swap. Because this
cipher was subjected to further encryption (‘closing’, Sect. 9.2.1), it was toler-
able to encrypt figures—after sending a letter-figure swap sign—by identical
figure twins, a safeguard against transmission errors.
For the construction of this array passwords have been used, too. Dr. Per
Meurling, a Swedish fellow traveler, did it 1937 as follows: He wrote down
an 8-letter password (M. Delvayo was a Spanish communist) and below it the
remaining alphabet; the columns were numbered backwards:

0 9 8 7 6 5 4 3 2 1
m d e l v a y o

1 b c f g h i j k n p
2 q r s t u w x z . /

This procedure had the disadvantage that not at all the most frequent letters
obtained 1-figure ciphers. This disadvantage was also shared by the method
the Swedish spy Bertil Eriksson used in 1941: He numbered the columns
according to the alphabetic order of the letters occurring in the password, in
his case p a u s o m v e j k :

6 0 8 7 5 4 9 1 2 3
r t w x y z

3 p a u s o m v e j k
9 b c d f g h i l n q

The password was taken from a Swedish translation of Jaroslav Hašek’s novel
Paus, som Svejk själv avbröt ... . Since encryption of the most frequent let-
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ters by 1-figure ciphers also shortens the telegraphic transmission time, the
NKVD arrived in 1940 at a construction method that took this into account.
Max Clausen, wireless operator of the Russian spy Dr. Richard Sorge in
Tokyo, had to memorize the sentence “a sin to err” (very good advice for a
spy), containing the eight most frequent letters in English, 65.2 % altogether.
Beginning with a password /subway/, a rectangle was started and filled with
the remaining letters. Thereupon, columnwise from left to right in the or-
der of their appearance, first, the letters from the set {a s i n t o e r} were
assigned the numbers 0 ... 7; second, the remaining letters were assigned the
numbers 80 ... 99 :

s u b w a y
0 82 87 91 5 97
c d e f g h
80 83 3 92 95 98
i j k l m n
1 84 88 93 96 7
o p q r t v
2 85 89 4 6 99
x z . /
81 86 90 94

In this way, the Polybios rectangle marked above by (∗) is obtained in more
compact notation.
For the cyrillic alphabet, a subdivision into seven 1-figure ciphers and thirty
2-figure ciphers, altogether 37 ciphers, is suitable; it allows 5 special charac-
ters. A method that was given away by the deserted agent Reino Hayhanen,
an aide to the high-ranking Russian spy Rudolf Abel, used a Russian word
like SNEGOPAD (‘snowfall’), the first seven letters of which have a total
frequency of 44.3 % . The rectangle was formed as usual

S N E G O P A . . .
B V D � Z I �I K L M
R T U F H C Q X W �
Y � � � � . . . . .

and then rearranged with the help of a key that was changed from message
to message and was to be found at a prearranged place within the cipher
message. Finally, a closing encryption (Sect. 9.2.1) was made.

3.4.2 Russian copulation. On this occasion, it was also disclosed that the
Russians used what became to be called “Russian copulation”: the message
was cut into two parts of roughly the same length and these parts were joined
with the first after the second, burying in this way the conspicuous standard
phrases at beginning and end somewhere in the middle.
Winston Churchill called Russia “a riddle wrapped in a mystery inside an
enigma.” This is also true for Russian cryptology.



4 Encryption Steps:

Polygraphic Substitution and Coding

Simple (monographic) substitution requires a complete decomposition of the
plaintext in single characters. A polygraphic substitution allows polygraphic
encryption steps, i.e., encryption steps of the form V (n) −−−� W (m) with
n > 1 .

4.1 Case V 2 −−−� W (m) (Digraphic Substitutions)

4.1.1 Graphemes. The oldest polygraphic encryption of this type is found
in Della Porta’s De furtivis literarum notis of 1563 (Fig. 30), a mapping
V 2−−−−�W 1 . Porta showed great ingenuity in inventing 400 strange signs.

Fig. 30.
Old digraphic substitution by
Giambattista Della Porta, 1563
(Giovan Battista Porta)
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4.1.2 Bipartite digraphic encryption step V 2 −−−� V 2 . For its
representation mostly a matrix is used. In case V 2 ≺−−−−� V 2 , it is a bigram
permutation.

In the following, an example V 2 2
≺−−−−� V 2 of a self-reciprocal bigram per-

mutation is given:

a b c d e f g h i j k l m n o ...

a XZ KJ YJ HP PL EL VB CI DW XN ZL YP VN HH CC

b LP QT HE RS UR CR ZH GV WC HL YN KT WT MC KH

c DX MN AO NH SF GI WL MN AH GR BZ HS ZU YM WU

d KM YZ RY FP TR CR XE JK NY PO GJ JR PE MO VB

e QU HP QG JQ YQ OB SA NL PX OP VS AF XK XR UQ
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

The self-reciprocal character (ao �→ CC , cc �→AO ; ah �→ CI , ci �→ AH ;
af �→ EL , el �→AF ) is not superficially discernible.
Further enciphering steps V 2 ≺−−−−� V 2 can be obtained again with the help
of passwords, e.g., with /america/ and /equality/ :

a m e r i c b d f g h j k l n ...

e XZ KJ YJ HP PL EL VB CI DW XN ZL YP VN HH CC

q LP QT HE RS UR CR ZH GV WC HL YN KT WT MC KH

u DX MN AO NH SF GI WL MN AH GR BZ HS ZU YM WU

a KM YZ RY FP TR CR XE JK NY PO GJ JR PE MO VB

l QU HP QG JQ YQ OB SA NL PX OP VS AF XK XR UQ
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

(with the effect that the self-reciprocal character disappears and the encryp-
tion work becomes more cumbersome).
Establishing a matrix needs the thorough work of a cryptologist in leveling
the frequencies of the letters (Sect. 3.1.2). An imitation of the frequency
distribution of the letters in the language concerned, thus feigning a trans-
position, is possible. The ideal result is a matrix which has in every line and
in every column every letter occurring just once as first and once as second
letter, e.g.,

AB BC CA AC BA CB DD AA BB CC DD EE

CC AA BB or BD AB DA CC or BC CD DE EA AB

BA CB AC DB CD BC AA CE DA EB AC BD

CA DC AD BB DB EC AD BE CA

ED AE BA CB DC

Such matrices are called ‘Greek-Latin squares’. Apart from the case N = 6
(‘36-officer problem’ of Euler, 1779), for all natural numbers N > 2 , Greek-
Latin squares exist, usually several.
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In any case, the example given by Helen Fouché Gaines

AA BA CA DA . . .
AB BB CB DB . . .
AC BC CC DC . . .
AD BD CD DD . . .

...
...

...
...

is not suitable: it results in a monographic 2-alphabetic encryption (poly-
alphabetic encryption, Sect. 8.2) succeeded by pairwise swapping of letters.
The following table gives for N = 26 , for N = 10 , and for N = 2 a survey
of the number Z(N) of available squares V 2 ≺−−−−� V 2 (cf. Sect. 3.2.6):
number of squares Z(N) Z(26) Z(10) Z(2)
total N2 ! 1.88 · 101621 9.33 · 10157 24
genuine reflections ≈ (N2

e )
N2
2
√

2 7.60 · 10809 2.72 · 1078 3

K 1 a b c d e f g h i j k l m n o p q r s t u v w x y z
Norw.

a ca fn bl ou ih oo il bv bw er rm qm mn ab zm ns wl yc zy tr du wo oa ho ic pu a
b sk wm dg ia cw pf if vd da xz fo dh px rr iv gh mu ae qr tb og sr vu qg zt pm b
c hp no ij xp ji yf eo xh zu pl ft yv qw am qp lz bg be lc nw ap vx rs yi wy gi c
d ov gg tk ys hm tx eq qa iu zo ud gj lh bn fm ta ej hi jc sv vp rd br rh kt tw d
e di wz qo pz ag wk fl uo ll oe ph jq gl vy lf af vt cj vq yz rz fc ps pq ro aq e
f cu rf nt xr ya tg xj db sc hg zr hs em xv vr ul wn sh ku my va ad fg zp ut lb f
g sx hd vk st lk xf gn lv yr yd xg kr hc xl xw pa au eb gb li id rj tz xq wd rn g
h bq oy sb mw qx zd ar po on rx sj om as mb vs ke yy xy uj hb rc jg co fq jr pe h
i cb sl ri cf qt ek un kl nx to hk ew yo wp kj kh su xi jo of dt ml zi bk qq gu i
j vv tf fi mp ky hl qc iq na gd up tq hq xs xb wt ez mm hj vg eh dc qe ti uk cg j
k uv bt bf ux kz zw ex nh ac av tt aw ye dw dy nv wf dn sf eg lg wc kx ur pc od k
l ir ea kn le jb nu at hu zl fw ce ka jv bm ev ak cp gm yn cd kd ue xm ig fy ht l
m mv el yg ny bu cq fk wq pk oo ms sz rl pr qi te qn kf gs uc kv kc dl kp cl lp m
n je sq gz ts dk vo xo ge mj qv mi dp vf rb yj bj mg vl qs uw rq pb mh lt oz qk n
o vc gk al vz np vm by cm re wv uz yt ww gp js en tv jn bo tm sp or fj ub ck td o
p hr ah ik xn mo zk ds in dz ym ci qu dv df nk yk pt iz ef ws es ip fz ss jk ct p
q ec xc jj vb vh ot pg ib ty ch pd qz qf fd oh sa bc zj ba fp nq wa ie vi oq lw q
r wi uq ln ja gq lo rp sd ko iy si mc uu io yh ru xx qy fr hy ob ox nl uh fh ga r
s zg nf sy jw nn kq vn ld go mt pn jf he um ua za xt bb op qh gf yl md os ju ei s
t yw wg mx ol sw se rv yp us rk dx zs bz dj cn mf hx de it ai ug mk ql cs ix pi t
u gy fa ow gr vw bh ly kw ry mz pj sg jz gt dd nd et az tp jh cx iw la zq rw lm u
v gv bi oi ii zb lj hz zh nb ks cy yq jx dq ma hf wr lq jp ng gw jl rg tl lr wh v
w aj gx nr qb uf ok rt xu bp wb qd jt mr aa pv yu nj xd eu mq hw nz ze km uy tn w
x kb yx ui pw we xk fe vj gc pp ep hh zn ha zf ax do py nm xe ff so tc sm fb fx x
y fs ay ni wj wu fu ed an fv xa cv cz bs ve th cc bx ra cr im ne hn zv oj yb tj y
z kg bd wx zz zx lu jy sn zc tu is ao dr ki ls ey qj ee lx hv nc dm jd me jm kk z

Pnr.a b c d e f g h i j k l m n o p q r s t u v w x y z
0033

Fig. 31. Bipartite digraphic encryption of the RSHA call signals in Norway

A classical example is given by Fig. 31, a V 2 ≺−−−−�V 2 step for the encryption of
call signals of the R.S.H.A. radio key net in Norway. Ten such tables were fa-
bricated in Amt VI (headed up to 1941 by Jost, then Schellenberg), the For-
eign Intelligence section of Himmler’s R.S.H.A. (Reichssicherheitshauptamt),
possibly by Andreas Figl (1873–1967). The R.S.H.A. got hold of the Austrian
retired Colonel Andreas Figl, former head of the Austrian ‘Chiffrengruppe’,
together with useful documents, in 1938, when Austria was occupied (An-
schluss). The importance of this booty was “discovered” by the young Austri-
an SS-Sturmbannführer Wilhelm Höttl, later (since 1943) deputy head of the
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Vienna desk of group VI E1. Figl, held until mid-1941 in “custody” by the SS,
worked as an “advisor” and “instructor” in Berlin-Wannsee.
Höttl also helped Amt VI of the R.S.H.A., employing from mid-1944 onward
a group of Hungarian army cryptologists at Budapest, headed by Major Bibo
who in 1944 succeeded in penetrating Allen Dulles’ Bern-Washington traffic.
Figl, a very shrewd cryptanalyst, was Captain when in 1911 he built up
the cryptanalytic bureau of the k.u.k. Armee, in the best tradition of the
Viennese court. In 1915 Major Figl solved Italian cryptograms, and in 1926
he had the rank of Colonel, when he wrote a good textbook, Systeme des
Chiffrierens (243 pages with 45 supplements, Graz 1926). A planned second
volume, Systeme des Dechiffrierens, was in 1926 not allowed to be printed; a
copy, but not the original of the manuscript, now is accessible (see p. 500).
The German Auswärtiges Amt used self-reciprocal bigram tables in a lowgra-
de cipher (‘Spalierverfahren’), less secure than GEE (8.8.7) and GEC (9.2.1).

4.1.3 Naval ENIGMA. Properly self-reciprocal bipartite digraphic en-
cryption was used from May 1, 1937 for the superencryption of the indicators
(Spruchschlüssel) that preceded the wireless messages, encrypted by the Ma-
rine ENIGMA with basic wheel setting (see Sect. 7.3.8). There was a choice
between ten such tables with names like BACH (1940), FLUSZ (1941,Fig. 32),
STROM (1941), TEICH, UFER, etc. that had been in use; they were known to
the British who had seized them (U-110, May 1941, Gedania, June 1941; VP
5904, January 1942; U-505, June 1944), and later also reconstructed them.
The procedure was as follows: Two trigrams were chosen at random, say
S W Q and R A F, and arranged into the scheme ∗ S W Q

R A F ∗
that was filled with dummies (‘padding letters’): X S W Q

R A F P
The encipherment by a bigram table (say Fig. 32) was done with vertical pairs
X V S G W V Q X↔ , ↔ , ↔ , ↔ ;
R I A F F T P T this gives: V G V X

I F T T

The indicator was formed by reading out (vertically) VIGF VTXT; this was sent
without further encoding, preceding the encrypted message. On the receiving
side, the procedure was applied backwards: first the splitting of the indicator
into two halves, then the (self-reciprocal) bipartite digraphic substitution and
the removal of the dummies, i.e., the reconstruction of the original trigrams.
In this way, a key was negotiated between the two parties. The procedure
seemed complicated enough to lull those who invented it into a sense of
security. For the British, the obstacles nevertheless were surmountable. A
conjecture Turing had before the end of 1939 was confirmed when the German
patrol boat Polares was seized in 1940; in 1941 the British then succeeded in
reconstructing the bigram tables after a few ones had been ‘pinched’.

1 After the Second World War, Dr.Wilhelm Höttl (1915–1999) played an unsuccessful role
in the Austrian right-wing party Wahlpartei der Unabhängigen; he was arrogant (“I was
one of Hitler’s Master Spies”) and also wrote books (The Secret Front, 1954 and under
the pseudonym Walter Hagen The Paper Weapon, 1955).
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Fig. 32. Self-reciprocal bigram table FLUSZ (June 1941) of the Kriegsmarine

New sets of nine bigram tables were introduced on July 1, 1940, June 15, 1941,
Nov.1, 1941, March 1, 1943, July 16, 1944; a set of 15 was planned for May 1945.

The British should have been warned by their own successes about relying
on bigram tables. Nevertheless, the British Merchant Navy used bipartite di-
graphic substitution for the superencryption of their BAMS code. The code-
bookfell into German hands on July 10, 1940, when the German raider At-
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Fig. 33. Bipartite digraphic substitution (Geheimklappe)
for the superencryption of numeral codes

lantis seized the vessel City of Bagdad in the Indian Ocean. The B-Dienst
of the German Kriegsmarine was successful until 1943 in stripping off the
superencipherment of allied ships’ radio signals.
For the superencryption of numeral codes a permutation Z2

10 ≺−−−−� Z2
10 , as

specified by the Geheimklappe, suffices. This was a bipartite digraphic substi-
tution introduced in March 1918 by the Germans for tactical communications
on the Western Front, with one table for enciphering and one table for de-
ciphering (Fig. 33). Towards the end of the First World War, this bipartite
digraphic substitution was changed every day.
John Tiltman, ‘Chief Cryptographer’ of GC&CS, broke in 1942 a Japanese
military attaché code with superencrypted queer digraphic substitutions.

4.1.4 Tripartite digraphic substitution V 2−−−−� W 3. It is sometimes
used, e.g., the denary tripartite digraphic substitution (V = Z26, W = Z10) :

a b c d e . . .

a 148 287 089 623 094 . . .
b 243 127 500 321 601 . . .
c 044 237 174 520 441 . . .
d 143 537 188 257 347 . . .
...

...
...

...
...

...

Cryptanalytically, V 2 −−−� W (n) falls for arbitrary n into one and the same
class and can be interpreted as a |V | -fold homophonic simple substitution
of the odd-numbered letters plus a |V | -fold homophonic simple substitution
of the even-numbered letters. Correspondingly, it is trivial to break the
encryption, if, as in the example V 2≺−−−−�V 2 of Helen Fouché Gaines, a
standard cipher table is used, provided there is enough material available.
Eyraud points out that in particular the method of cutting the message into
halves, writing them in two lines, and using digraphic substitution for vertical
pairs, is a complication illusoire.
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4.2 Special Cases of Playfair and Delastelle:
Tomographic Methods

4.2.1 Playfair cipher. In 1854, Charles Wheatstone invented a special
bipartite digraphic substitution (Fig. 34); his friend Lyon Playfair, Baron of
St. Andrews, recommended it to high-ranking government and military per-
sons. The system may have been used for the first time in the Crimean War
and was reportedly used in the Boer War; the name of Playfair remained
attached to it. The military appreciated it as a field cipher because it needed
neither tables nor apparatus. The British Army adopted it around the turn
of the century and continued to keep it secret. Nevertheless, in the First
World War, by mid-1915, the Germans could solve it routinely.

The PLAYFAIR encryption step goes as follows: From a password, a per-
muted alphabet Z25 (say, omitting the J of Z26) is inscribed into a 5×5 square
(French damier):2

P A L M E T O N R S
R S T O N D F G B C
B C D F G =̇ K Q U H I
H I K Q U X Y Z V W
V W X Y Z L M E P A

and this is thought to be closed like a torus, such that the two examples
mean the same. Now, if the two letters of a bigram stand in one and the
same line (or column), each is replaced by the letter to its right (or beneath
it, respectively); e.g., both squares yield consistently

am �→ LE , dl �→ KT .

Otherwise, the first letter is replaced by the letter in the same line, but in the
column of the second letter; likewise the second letter is replaced by the letter
in the same line, but in the column of the first letter (“crossing step”, French
substitution orthogonale et diagonale). Thus

ag �→ EC , ho �→ QR .

The step is undefined if the bigram is a doubled letter3 or if the final letter
is unpaired. This situation is avoided by inserting x :

ba ll oo n is replaced by ba lx lo on ; le ss se ve n by le sx sx se ve nx .

This is a dangerous weakness. Notwithstanding, the PLAYFAIR step fasci-
nates by its relative simplicity. But because of the torus symmetry its com-
binatorial complexity is even less than that of a simple substitution.

In the third case above, the PLAYFAIR step can be interpreted as a com-
position of mappings: a mapping of the plaintext bigram into a pair of line-

2 Wheatstone actually used alphabets that were better mixed (Sect. 3.2.5), and rectangular
matrices. These important safety measures were soon dropped.

3 The advice of Leone Battista Alberti (1404–1472), in his De cifris, to suppress doubled
letters altogether (Sect. 3.4.1), was probably forgotten.
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Fig. 34. Description of the PLAYFAIR cipher, signed by its
inventor Charles Wheatstone, March 26, 1854
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and-column coordinates, a permutation of the column coordinates, and re-
translation into a bigram (similar to a spoonerism, Sect. 6.1.2):

1 2 3 4 5

1 P A L M E a g
2 R S T O N 12 35

3 B C D F G 15 32
4 H I K Q U E C

5 V W X Y Z

×

Such compositions of encryptions, that amount to a decomposition and re-
combination, are called tomographic or fractionating methods (‘chiffres à
damiers’, Auguste L. A. Collon, 1899); we shall study them in Sect. 9.4.4 .

4.2.2 Modified PLAYFAIR. It was introduced in early 1940 by the Ger-
man Army and the SD (Sicherheitsdienst , the Nazi party and government po-
litical police) as a Handschlüssel—and was, starting about mid-1941, broken
(until the fall of 1944) by the British at B.P. under Colonel John H. Tiltman
(1894–1982), who was from 1929 head of the Military Section. It was named
double casket (German Doppelkas[set]tenverfahren), also double PLAYFAIR,
two-table-PLAYFAIR, because it used (say, omitting the J ) two different
5×5 squares, one for the first, one for the second letter of the bigrams, e.g.,

A Y K I H Y X U H A
L B M N P T R K B I
Q R C O G × P M C G S
Z X V D S F D L Q V
F W U T E E N O W Z

They were not constructed from passwords, but were formed “at random” and
then distributed. As in the original PLAYFAIR, bipartite digraphic steps like

ah �→ AY , nr �→ KP , nb �→ IP

occur if plaintext letters stand in the same line (closed like a cylinder), in all
other cases a “crossing step” is used:

xk �→ LB (as marked above), likewise or �→ MN , bx �→ RY .
Moreover, the plaintext was cut into groups of predetermined length, so for
example the message

anxobergruppenfuehrerxvonxdemxbachxkiewxbittexdreixtausendxschuss
xpatronenxschickenstopx

—with /x/ for the space, which was not suppressed (Sect. 2.4.2)—was cut
into groups of, say, 17 letters and each group encrypted in the following way:

a n x o b e r g r u p p e n f u e
h r e r x v o n x d e m x b a c h
A K F M R Z C M M N T R N I Z O W
Y P W N Y S W E Y V E G H P A C H

This procedure was applied once again: ay �→ XY , kp �→ YC , fw �→ ZW , . . .
so that the final cryptotext, read off in groups of five, amounts to

XYYCZ WRUPY VQGUT UTKID NESCB IYOVA GGWX .
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The modified PLAYFAIR is, like the classical one, a little bit cumbersome
and error-prone; this results in frequent queries and brings the danger of
compromising encryption security (see Chapter 11). The violations on the
German side helped the British as much as the Prussian predilection to be
“both methodical and courteous” and to indulge in titles and other formali-
ties.
4.2.3 Delastelle cipher. A tomographic method in the purest form (“while
searching for a method of digraphic encipherment that did not require cum-
bersome 26×26 enciphering tables”, Kahn) was published in 1901 by Félix
Marie Delastelle (1840–1902), author of the Traité Élementaire de Cryptogra-
phie (Gauthier-Villars, Paris 1902): This was a one-to-one bipartite simple
(i.e., monographic) substitution (very much like a Polybios square), then a
transposition over four places, finally the same bipartite simple substitution
in reverse, e.g.,

1 2 3 4 5

1 B O R D E o n o n
2 A U X C F 12 43 or 1 4 D

3 G H I J K 14 23 2 3 X

4 L M N P Q D X
5 S T V Y Z

×

The encryption step is self-reciprocal and results in a bipartite digraphic
substitution, similar to the one in Sect. 4.1.2. For the reverse translation
another, conjugated bipartite simple substitution can be used; then the self-
reciprocal character disappears.
A warning of a complication illusoire is appropriate: a mere gliding by one
place, a Kulissenverfahren (Rohrbach 1948) does not give the wanted effect:

... a b s a l o m ...
3 2 1 1 1 5 1 2 1 4 1 1 2 4 2 3

H B E O D B C X

The cryptanalyst does not need to reconstruct the square: it suffices to in-
terpret the encryption step as a V −−−� V 2 with homophones:

a �−�

O

U

H

M

T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B

O

R

D

E

, b �−�

B

A

G

L

S

⎫⎪⎪⎪⎬
⎪⎪⎪⎭×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B

O

R

D

E

, s �−�

E

F

K

Q

Z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B

O

R

D

E

, . . .

under the side condition of overlaying:
a b s a l o m �−� HB�BE�EO�OD�DB�BC�CX .

This opens an unexpected line of attack.
An earlier example of a numeral tomographic method is found, according to
Shulman, in a 1876 publication by the Danish engineer Alexis Køhl. It is
related to a method Pliny Earle Chase invented in 1859 (Sect. 9.5.4).
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4.3 Cases V 3 −−−� W (m), V 4 −−−� W (m)

4.3.1 Gioppi. Trigraphic substitution in full generality soon leads into tech-
nical difficulties. Paper is not three-dimensional, unfortunately, so the listing
of trigrams is more cumbersome, and 263 = 17 576 trigrams is a respectable
number—a booklet of 26 pages may be needed. Trigraphic substitutions are
hard to mechanize with simple means—although the use even of small hand-
held computers can help a lot. Special substitutions by trigrams à la PLAY-
FAIR have not been very successful; the count Luigi Gioppi di Türkheim in
Milano published such a system in 1897. William Friedman dealt around
1920 with trigram substitutions as well, and that makes them somewhat in-
teresting. In the very special case of linear substitution (Chapter 5) have
trigraphic substitutions found application by Jack Levine (1958, 1963).
4.3.2 Henkels. A cipher machine, which mechanically performs a quadru-
partite tetragraphic substitution, was patented in 1922 for a certain Henkels.

4.4 The General Case V (n) −−−� W (m) : Codes

Instead of being able to encrypt 263 = 17 576 trigrams, it may be better
to be able to encrypt several hundred, thousand, or tens of thousands of
frequently occurring multigrams of different length; this means that the en-
cryption step operates on a subset C of V (n) (with a rather big n); with the
proviso that every plaintext x ∈ V ∗ can be decomposed into elements of C :

x = x1�x2�x3�. . .�xk (for some k ∈ Ù and suitable xj ∈ C ⊆ V (n)) .

This can be guaranteed by the following ‘single letter condition’: C ⊇ V .
Following Kahn, such an encryption is called a code, if the choice of C is
determined linguistically: frequent diphthongs, syllables, prefixes, endings,
words, phrases are listed in a code book together with their code groups.
The single letter condition guarantees that even queer, curious, strange words,
including those from biology and chemistry, or names of places, rivers, moun-
tains, and proper names can be encrypted. Of course, it does not mean
that every word should be resolved into individual letters and every sentence
should be split into words—on the contrary, the longer the code entry that
is found, the better; the best resolution is one that needs a minimum of
code book entries. In full generality, the optimum may not be determined
uniquely, but this indeterminism does no harm.
To maintain coding discipline is difficult. In 1918, the Commanding Officer
of the American Expeditionary Force (AEF) in France had reasons to admo-
nish the staff, that boche, to be spelled with five codegroups, should be re-
placed by German, which needs one codegroup; and that the eighteen code-
groups needed for almost before the crack of dawn were better replaced by
the two codegroups for day break. Use of codes requires high education,
since good encoding is a question of intellect; bad encoding helps the unau-
thorized decryptor to break the code. Thus, codes should be disallowed if the



4.4 The General Case V (n) −−−� W (m) : Codes 69

right people are not available. In the First World War, a Lieutenant Jäger
from the staff of the German 5th Army did a great service for the foe when
he signed his well-meaning orders to maintain signal security regularly with
his name, which, unfortunately, was missing in the codebook and had to
be spelled letter by letter every time. He “was beloved by his adversaries
because he kept them up with code changes,” writes Kahn. In 1918, Jäger
endangered both the superencipherment with the Geheimklappe and the new
codebook, the Schlüsselheft .
Coding discipline on the American side in the First World War was even
worse, according to the G.2 A.6 Chief, Major Frank Moorman, who felt
responsible for it; this is explained by a “well-known American disregard for
regulations—especially ones as persnickety as these”(Kahn).
In the Second World War things improved slightly. Cryptographic control
officers were assigned to each headquarters. Still, there were the diplomats.
The anti-hero is Roosevelt’s diplomat Robert Murphy (1894–1978), who in-
sisted, for prestige reasons, on always using a diplomatic code; the stereo-
typed beginnings “For Murphy” or “From Murphy” helped Rohrbach’s group
at the German Auswärtiges Amt to break the code. Fräulein Asta Friedrichs,
who took part in this activity, said after the war, as she was detained in Mar-
burg and saw him drive by one day: “Ich wollte ihn anhalten und ihm die
Hand schütteln,—so viel hatte er für uns getan.” [I wanted to stop him and
shake his hand—he’d done so much for us.]

Fig. 35. Hieroglyphic inscriptions: unusual forms (left) and ordinary hieroglyphs (right)

4.4.1 Nomenclators. The oldest codings, seen from the Occident, are
Chinese ideograms—although not perceived as such by the Chinese. Indeed
the lack of cryptologic achievements in the ancient high cultures of China has
been explained by the fact that written messages were anyhow understand-
able only for a few. The Egyptian hieroglyphs, however, were based—2000
years B.C.—on the principle of the rebus and on acrophony. The graphic of
a ‘rer’ (pig) supplies the character for the letter /r/, the graphic of a ‘wr’,
meaning a swallow as well as big, supplies the character for the letter /wr/;
special marks (determinatives) clarify, if necessary, the difference. Hieroglyph
writing is to a large extent coded writing—if necessary, a word can even be
decomposed into characters for single consonants. But the secrecy aspect is
missing. However, it is also missing if diplomats little by little get to know a
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code by heart and are able to give an impromptu speech in this code, as the
American consul in Shanghai did in GRAY at his retirement dinner speech
in the early 1920s (Sect. 4.4.7).
Where in Egypt inscriptions (Fig. 35) with unusual graphemes are found side
by side with plaintext, secrecy may not be intended primarily; the pompous
epigraph on a tombstone should impress and conjure arcane magical powers.
In the Occident, around 1380 the first mixtures of monographic substitutions
and polygraphic elements are found, initially for some very frequent words
only, among them et (see Fig. 26), con, non, che (Sect. 3.4), prepositions,
adverbs, particles. As soon as these collections became somewhat more volu-
minous, they were called nomenclators. An early example is shown in Fig. 36.

Fig. 36. An early nomenclator from Florence, 1554

Nomenclators kept their great importance during the whole Renaissance time.
Charles I used a nomenclator with homophones, reconstructed in 1860 by
Wheatstone: /a/ was represented by 12 ... 17 , /b/ by 18 ... 19 , and so on,
/france/ by 9476 . By 1600, some nomenclators ran to several hundred entries,
and numeral ones had code groups with up to three digits.
Nomenclators were also solved. Philip II of Spain gave his envoy Juan de
Moreo a nomenclator containing about 400 codegroups. Viète worked from
October 28, 1589 till March 15, 1590 to break the riddle, then he gave the
complete solution to his king Henri IV. King Philip, who found out that
a cipher he had thought unbreakable was compromised, complained to the
Pope that Henri had used black magic. The Pope was better informed: his
own cryptologist Giovanni Battista Argenti had also served him well, and
Philip was held up to ridicule.
In the game of political intrigues, codes played a continuing role, from the
sentence of Mary Stuart in 1587 to the conviction of the French anarchists
who had been accused in the trial of Saint-Etienne in 1892 on the basis of
secret messages Bazeries had solved.
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In the 17th century, not only the Italian principalities, but every one of
the great European courts had their Black Chamber, Cabinet Noir , Geheim-
kabinett. The statesmen had important cryptologists as aides and confidants:
Louis XIV had Antoine Rossignol, the Czarina had Christian Goldbach,
Charles II had John Wallis, and Maria Theresia had Baron Ignaz de Koch.
These people were paid well and knew their importance. Kahn writes:

“Though Wallis entreated Nottingham not to publicize his solutions for
fear France would again change her ciphers, as she had done nine or ten
times before (probably under the expert Rossignol tutelage), word of his
prowess somehow spread. The King of Prussia gave him a gold chain
for solving a cryptogram, and the Elector of Brandenburg a medal for
reading 200 or 300 sheets of cipher. The Elector of Hanover, not wanting
to depend on a foreign cryptanalyst, got Wallis’ fellow intellectual, Baron
Gottfried von Leibnitz, to importune him with lucrative offers to instruct
several young men in the art. When Wallis put off Leibnitz’ query as
to how he did these amazing things by saying that there was no fixed
method, Leibnitz quickly acknowledged it and, hinting that Wallis and the
art might die together, pressed his request that he instruct some younger
people in it. Wallis finally had to say bluntly that he would be glad to
serve the elector if need be, but he could not send his skill abroad without
the king’s leave.”

Christian Goldbach (1690–1764), from 1742 privy councillor in the Russian
Foreign Office, deciphered a letter of the French ambassador with unpleasant
remarks about the reigning czarina Jelisaweta Petrowna, the daughter of Pe-
ter the Great. Sometimes a fiasco happens, like the one the Baron de Koch ex-
perienced, when a letter to the Duke of Modena was sealed by mistake with
the signet of the Duke of Parma. Nevertheless, the Austrian emperors’ Kai-
serliche Geheime Kabinetts-Kanzlei continued into the 19th century and was
able to read among others Napoléon’s and Talleyrand’s correspondence.
In the New World, too, cryptology assumed importance and fame. George
Washington had the help of two agents, Sam Woodhull and Robert Townsend,
with the cover names CULPER SR. and CULPER JR. In 1779 they used a
nomenclator with about 800 entries, compiled by Major Benjamin Tallmadge.
Thomas Jefferson (1743–1826), too, concocted in 1785 a nomenclator (Fig. 37)
for James Madison (1751–1836) and James Monroe (1758–1831).
4.4.2 One- and two-part books. Around 1466, Leone Battista Alberti
(1404–1472), in his De cifris, made a big step forward. Apart from the ear-
liest examples, all nomenclators were up to then order-preserving mappings
of the lexicographically ordered plaintext elements onto lexicographically or-
dered literal or mathematically ordered numeral codegroups. This allowed
the user to get away with only one codebook which could be inspected for
plaintext as well as for cryptotext in the order the entries were printed.
This system, however, had a great disadvantage: as soon as the plaintext
equivalent for one codegroup was known, all codegroups standing lower could
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Fig. 37. Nomenclator, 1785, made by Jefferson for use by Madison and Monroe

only have plaintext equivalents standing lower as well. With a few established
codegroup-plaintext relations, a good deal of the fine-structure of the code
can be obtained.

Astonishingly, even during the First World War this outdated system of a one-
part nomenclator, one-part code (French dictionnaire à table unique, German
einteiliges Satzbuch) was still in practical use with the GREEN code of the
US State Department, which had up to 203 ·62=288 000 codegroups of type
CVCVC (C stands for a consonant, V for a vowel): FYTIG, MIHAK, PEDEK.

A Signalbuch of the German Kaiserliche Marine that was captured from the
cruiser Magdeburg in August 1914, was a one-part code, showing, for example,

63940 OAT Ohnmacht, -ig
63941 OAU Ohr, Ohren-
63942 OAÜ Okkupation, Okkupations, -ieren
63943 OAV Ökonomie, -isch
63944 OAW Oktant

Alberti introduced instead thoroughly mixed codes. This was emphatically
advocated around 1630 by Antoine Rossignol (1600–1682). It means, how-
ever, that for decryption a second, lexicographically or mathematically or-
dered listing of the codegroups is needed, a two-part nomenclator, two-part
code, hatted code (French dictionnaire à table double, dictionnaire à deux
tables, German zweiteiliges Satzbuch). Jefferson’s nomenclator provides an
example. A modern example with homophones from the military genre is

...
...

...
...

flap XYMAS RATPA ship
TIBAL RATPE quite

flapjack UPTON RATPI enough
flapper UPABS RATPO happy
flare OHPAP RATPU loxodromic...

...
...

...
where for a frequent plaintext word like /army/ five homophones are available:

TORMA, RAFEM, LABAR, ROMUF, IBEXO .
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Some codebooks provided digit groups (numeral codes) as well as letter
groups (literal codes). An example of a German Satzbuch from the year 1944
could have read:

a 0809 XCL

Abend 8435 PUV

aber 7463 NAS

acht 6397 DXL

Achtung 1735 APS

an 7958 EVG

auf 6734 UNO
...

...
...

b 1479 MLA

Bad 1918 TID

bald 1492 LGD
...

...
...

z 2467 VBH
...

...
...

zyklotron 5116 JLD

The Kurzsignalheft (short signal book) of the Kriegsmarine (since summer
1941) was a caption code containing codegroups for stereotyped commands:

AAAA Beabsichtige gemeldete Feindstreitkräfte anzugreifen
AAEE Beabsichtige Durchführung Unternehmung wie vorgesehen
AAFF Beabsichtige Durchführung Unternehmung mit vollem Einsatz
AAGG Beabsichtige Durchführung Unternehmung unter Vermeidung

vollen Einsatzes
The Wetterkurzschlüssel (short weather cipher) of the Kriegsmarine coded
air temperatures by a polyphonic single letter code (X was missing!):
A =̂ +28◦ B =̂ +27◦ C =̂ +26◦ D =̂ +25◦ . . . W=̂ +6◦ Y =̂ +5◦ Z =̂ +4◦

A =̂ +3◦ B =̂ +2◦ C =̂ +1◦ D =̂ 0◦ E =̂ −1◦ F =̂ −2◦ . . . Z =̂ −21◦

In a similar way, water temperature, atmospheric pressure, humidity, wind
direction, wind velocity, visibility, degree of cloudiness, geographic latitude,
and geographic longitude had to be coded in a prescribed order; a weather
report consisted of a single short word. This seemed to be very economical
and also made direction-finding reconnaissance difficult, but it was crypto-
logically utterly stupid: the superencrypted weather reports the U-boats were
ordered to broadcast regularly were for the enemy’s cryptanalysis of the su-
perencipherment almost as good as plaintext.

4.4.3 Modern codes. Around 1700, the nomenclators had 2000–3000 en-
tries, and they kept growing, although the two-part books needed more space.
Modern codes with homophones and polyphones are found in Figures 38, 39 .
The Black Chambers were dissolved in Europe in the mid-19th century (1844
in Britain, 1848 in Vienna and Paris); this ended the surreptitious, clandes-
tine opening of diplomatic and other mail. The Age of Enlightenment had its
victory. The industrial revolution brought about the telegraph and as a con-
sequence commercial codebooks with the main use of condensing telegrams
and thus lowering transmission time.
In 1845, Francis O. J. Smith published a code—The Secret Corresponding
Vocabulary. Adapted for Use to Morse’s Electro-Mechanic Telegraph—even
before the Morse alphabet was introduced. Smith had 50 000 codegroups, and
only 67 sentences. His codegroups were built up from digits (numeral code)
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Fig. 38. SA Cipher of the British Admiralty (1918).
One page of the homophonic encoding part and one page of the polyphonic decoding part

Fig. 39. Sample from the encoding part of a Japanese Navy code (1943)
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and were intended to allow (Sect. 9.2) superencryption. Later, a transition
to codes with codegroups built from letters (literal code), mainly groups of
five, took place; the number of sentences went into the hundreds, the number
of code groups up to 100 000 . Because of the great volume, one-part codes
were used again, and this even in diplomatic services and in military staffs,
although secrecy was vital there. However, this did give elaborate genuine
ciphers more and more cryptological importance.
Little by little, hundreds of commercial codes came into existence; among
the earliest were one by Henry Rogers and one by John Wills (both in 1847).
According to Friedman, in 1860, “a man named Buell published in Buffalo
his Mercantile Cipher for Condensing Telegrams”. In 1874, eight years af-
ter completion of the transatlantic cable, the widely used ABC Code by
William Clausen-Thue, a five-letter code, appeared. Other five-letter codes
were compiled by Bolton (Dictionnaire pour la Correspondance anglais), by
Krohn in Berlin (1873), and by Walter in Winterthur (1877). A four-letter
code (Chiffrier-Wörterbuch) was published by Katscher in Leipzig (1889)
and a three-letter code (Dictionnaire télégraphique, économique et secret)
by Mamert-Gallian in Paris (1874). In the USA, famous codes are named
after John Charles Hartfield (1877, continued since 1890 by his son John
William Hartfield) and Henry Harvey (1878). The codebook by Benjamin
Franklin Lieber, with 75 800 codegroups, was also translated into French and
German. Even seven-letter codes found use, such as the Ingenieur-Code (in
German) by Galland. The aim was mainly to reduce the cost of telegraphic
transmission. This was particularly important for transatlantic traffic.
In Europe, numeral codes were preferred which allowed a simple additive
superencryption. An epoch-making prototype of a four-digit code was the
Dictionnaire abréviatif chiffré by F. J. Sittler in Paris (1868), besides the
Dictionnaire pour la Correspondance télégraphique secrète by Brunswick in
Paris (1868) and the Dictionnaire chiffré by Nilac. Bazeries (1893) as well
as de Viaris produced codes; other four-digit codes were the Dizionario per
corrispondenze in cifra by Baravelli in Torino (1896), Chiffrier-Wörterbuch
by Friedmann in Berlin, and Chiffrierbuch by Steiner & Stern in Vienna
(1892).

4.4.4 Telegraph codes. The tariff policy of the International Telegraph
Union (Sect. 2.5.2.2) led in 1890 to the widespread use of five-digit codes.
Brachet in Paris published such a code in 1850 (Dictionnaire chiffré), oth-
ers are Diccionario para la correspondencia secreta by Vaz Subtil in Lisbon
(1871), Wörterbuch by Niethe in Berlin (1877), and Dictionnaire pour la
Correspondance secrète by N. C. Louis in Paris (1881). Among the later ones
were the Dictionnaire chiffré Diplomatique et Commercial by Airenti and
the Telescand Code in France, Diccionario Cryptographico in Lisbon (1892),
Nuovo Cifrario by Mengarini in Rome (1898), Cifrario per la corrispendenza
segreta by Cicero in Rome (1899), Slater’s Code by Slater in London (1906),
and Clave telegrafica by Darhan in Madrid (1912).
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4.4.5 Commercial codes in the 20th century. Many code books offered
numeral and literal codegroups as well. Until recently frequently used codes
include Bentley’s Code (since 1922), ABC Code 6th edition (since 1925),
Peterson’s Code 3rd edition by Ernest F. Peterson, Acme Code by William
J. Mitchel, Rudolf Mosse Code (since 1922), Lombard Code, and AZ Code.
The largest codebook ever in general use was compiled by Cyrus Tibbals for
the Western Union Code; it contained 379 300 entries, while the ABC Code
had only 103 000 .

In the Second World War, the Allies used the BAMS code (“Broadcasting
for Allied Merchant Ships”), which was widely compromised, as a basis of
superencryption. Plaintext would have been no worse.

For long years, an Internationaler Hotel-Telegraphenschlüssel für Zimmerbe-
stellung was reproduced in German calendar notebooks, with codegroups
ALBA for “1 Zimmer mit 1 Bett”, ARAB for “1 Zimmer mit 2 Betten”,
ABEC for “1 Zimmer mit 3 Betten”, BELAB for “2 Zimmer mit je 1 Bett”,
BIRAC for “2 Zimmer mit 3 Betten”, BANAD for “2 Zimmer mit 4 Betten”,
CIROC for “3 Zimmer mit je 1 Bett”, CARID for “3 Zimmer mit 4 Betten”,
CALDE for “3 Zimmer mit 5 Betten” and so on.

Some codes have been translated into foreign languages. The Marconi Code
(Fig. 40), by James C. H. Macbeth, is truly multilingual (nine languages in
four volumes), making true a dream of Athanasius Kircher (1602-1680).

4.4.6 Error-detecting and -correcting codes. In 1880, J. C. Hartfield
introduced for checking purposes the ‘two-character differential’ of the code-
groups (for a 27-character alphabet Z27 , from 275 = 14 348 907 codegroups
of a five-character code, there remain 274 = 531 441 ones). Around 1925,
W. J. Mitchel introduced also a check against transposition of adjacent char-
acters (leading to reverses like in LABED and ALBED), which reduced the num-
ber of usable codegroups, in the example to 440 051 . Mitchel’s idea of the
‘adjacent-letter restriction’ spread rapidly. Both the one-part code of the
Japanese Navy, dubbed JN-25A by OP-20-G (1. 6. 1939, broken Sept. 1940)
and the two-part code JN-25B (1. 12. 1940, broken March 1942) used five-
digit codegroups, divisible by 3 . These codes were forerunners of the error-
detecting and error-correcting codes introduced by Richard W. Hamming in
1950; today this checking principle is everywhere present in the bar codes of
the European Article Number (weights alternatingly 1 and 3, divisible by 10)
or in the ISBN system (weights 10, 9, 8, ..., 2, 1 in this order, divisible by 11).

4.4.7 Shortlived codes. In contrast to commercial codebooks, which are
(for not too low a price) generally accessible and therefore should have a life-
time as long as possible, diplomatic and military codes should be subjected to
“planned obsolescence” (Sect. 2.1.1), and correspondingly should be changed
as often as possible. It therefore seems hopeless to list the ones used in this
century, although often parsimony and laziness have prevented sufficiently
frequent change. US-American diplomatic codes, which were far too long in
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Fig. 40. The Marconi Code: Corresponding pages from the English-French-Spanish
and the English-German-Dutch edition

use, are RED and BLUE (before 1914), both five-digit codes, and GREEN
(from about 1914 until about 1919), likewise with five digits. Around 1920
GRAY, mentioned in Sect. 4.4.1, arrived, and was still in use under Franklin
Delano Roosevelt in 1941. Roosevelt sent Dec. 6, 1941, a note to Cordell
Hull: “Dear Cordell—Shoot this to Grew [the ambassador in Tokio]—I think
can go in gray code—saves time—I don’t mind if it gets picked up—FDR”.
Under the security-conscious Roosevelt, in the mid-1930s, the two-part code
BROWN was introduced; after 1939 the distrustful statesman nevertheless
preferred encryption systems from the Navy Department “for matters of ut-
most secrecy,” as he put it. The further diplomatic codes A-1, B-1, C-1, D-1
did not change Roosevelt’s harsh opinion about the security risk of the State
Department codes. The BLACK code appeared about 1940 .

Sometimes the code producers ran into surprises: When the American Ex-
peditionary Force (AEF) in 1917 got involved in France in the First World
War, it turned out that the War Department Telegraph Code, issued 1915,
was both unsafe and inadequate for tactical use. In great haste, the Code
Compilation Subsection of MI-8 in July 1917 started work on a suitable code;
it was ready after one year, on July 1, 1918. The Military Intelligence Code
No. 5 was a one-part code, though with two-character difference of the code-
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groups of type VCVCV, VCCVC or CVCCV . Although rather soon a better,
two-part code (Military Intelligence Code No. 9) was available, No. 5 stayed
valid until September 1, 1934, with the classification “SECRET”, then under
the short name SIGCOT it was demoted to “CONFIDENTIAL” . Likewise,
No. 9, which was taken out of use around 1923, was reactivated April 1, 1933,
demoted to “CONFIDENTIAL”, with the short name SIGSYG for the en-
cryption and SIGPIK for the decryption part. Lack of money was responsible
for this, but not even a superencipherment was prescribed, which would have
needed no investment.

4.4.8 Trench codes. On the lower military level, the combat level, codes
had sometimes a better, sometimes a worse reputation. The Kaiserliche Heer
changed in 1917 from the hitherto used turning grilles (Sect. 6.1.4) to codes.
For radio traffic in the 3-km combat zone, in March 1917 a simple digraphic
substitution, a Befehlstafel was introduced. Already in 1916 the French issued
a three-letter code, the carnet réduit , with names like olive and urbain. The
codegroups were ordered with headings like infantry, artillery, numbers, clock
times, common words, place names, cover names etc., so it was a caption code.

In March 1918, the Kaiserliche Heer made the transition step—foreseen by
the Allies—to a superencrypted, but still one-part code, a three-digit code.
The superencryption was extended to the first two digits only and was done
with the Geheimklappe (Sect. 4.1.2), which was changed frequently. The fixed
third digit allowed the occurrence of patterns and thus helped cryptanalysis.

For higher cryptanalytic security requirements, outside the 3-km combat
zone, the Germans introduced in June 1917 a two-part three-letter code
(Satzbuch). No superencryption was intended; the cryptanalytic security
of this cryptosystem was from the beginning based on planned obsolescence
(something like 14 days). The code contained a great number of homophones
(KXL, ROQ, UDZ for Anschluß fehlt) and nulls. It was called KRU code by the
Allies, because all codegroups started with one of the letters K, R, U; or also
Fritz code. Later, codegroups beginning with S were added and furthermore
some beginning with A (KRUSA code); finally the 26 letters of the alphabet
were supplemented by the mutated vowels Ä, Ö, Ü (this code was—not very
systematically—called KRUSÄ code).

The armistice in November 1918 ended this unpeaceful epoch of the ‘trench
codes’. But trench codes were not forgotten. In a manual of the US War
Department (1944) can be found: “Cipher machines cannot, as a rule, be
carried forward of the larger headquarters, such as Division. Hence, code
methods may predominate in the lower echelons and troop formations.”

This can be interpreted as the view that—in military radio traffic—‘naked’
codes without superencryption can only be tolerated at the lowest level of se-
curity. For this reason, Friedman introduced polyalphabetic enciphering with
a handy device, the M-94, as a field cipher in the US Army. During the Second
World War, even this was no longer considered sufficient in the USA. Boris
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Fig. 41.
Hagelin M-209
in combat situation

Hagelin—who had travelled in May 1940 at the last minute from Sweden
across Germany to Genoa and then boarded the Conte di Savoia to the United
States, with two of his C-36 (Sect. 8.5.2) in his luggage—impressed Friedman
and the US Signal Corps with his improved version C-38. Hagelin had to
wait for a full year while his machine was thoroughly tested. In June 1941,
the decision was made for a mechanical machine at the low-echelon level.
Figure 41 shows a soldier, rifle slung on back, enciphering with a Hagelin
M-209 cipher machine at the message center of the command post of the
3rd Division, US Infantry in Hyopchong, Korea, on October 1, 1951.

Spruchtarngerät STG-61

Indeed, Boris Hagelin had quite early considered
the use of mechanical cipher machines in the front
line. For the Hagelin C-35, the base-plate was
formed in such a way that the machine, when used
at the front line, could be strapped onto the knee
of the operator. As Hagelin writes, the operator
could walk, if necessary, with the machine fixed to
his knee—whether he liked it, is left open. For the
French constabulary, Hagelin even designed in the
1950s a pocket cipher machine of roughly the same power (CD-55, CD-57).
In connection with punch tape keys it found use in the German Army (Spruch-
tarngerät STG-61).
In the meantime, the struggle between codebooks and cipher machines has
become obsolete—microelectronics collapses the differences and opens com-
pletely new avenues.



5 Encryption Steps: Linear Substitution

Although Hill’s cipher system itself
saw almost no practical use, it had

a great impact upon cryptology.
David Kahn 1967

A linear (geometrically ‘affine’) substitution is a special polygraphic substi-
tution. The injective encryption step of a polygraphic block encryption

χ : V n −−−� Wm

with relatively large n and m is restricted in a particular way:
The finite character sets V and W are now interpreted essentially as being
linearly ordered, with a first character α(V ) and a last character ω(V ) . The
ordered character set is called a standard alphabet in the proper sense.
In this order there is for each character x except the last character exactly one
next character succ(x) ; for the last character the next character is defined as
the first one, succ(ω(V )) = α(V ) . Thus, the mapping succ defines uniquely
an inverse mapping pred ; the cyclically closed standard alphabet is a finite
non-branching (i.e., linear) cyclic quasiordering.
In V = Z|V | and W = Z|W | an addition can be defined recursively:
For a, b ∈ V or a, b ∈ W it holds that

a + α(V ) = a ;
a + b = succ(a) + pred(b) .

This means that the sets Z|V | and Z|W | are mapped uniquely and order-
preservingly on Ÿ|V | and Ÿ|W | , where ŸN denotes the group of residue classes
modulo the natural number N of the group of integers Ÿ , the elements of
which are represented by the cycle of natural numbers (0 , 1 , . . . N−1) . Ad-
dition in V and W corresponds to addition of the residue classes. Commonly,
the alphabet {α , . . . , ω} is identified with the cycle numbers (‘cyclotomic
numbers’) {0 , . . . , N−1} , where N =|V | or N =|W | .1
Addition in V or W is now carried over to V n and Wm componentwise.
Moreover we identify V = W = ŸN , V n = Ÿ

n
N , Wm = Ÿ

m
N .

1 For Z26 ↔ Ÿ26 , the identification is as follows (‘algebraic alphabet’):

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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With these definitions, a mapping ϕ : Ÿn
N −−−� Ÿ

m
N is said to be additive if

and only if
∀ x, y ∈ Ÿ

n
N : ϕ(x + y) = ϕ(x) + ϕ(y) ,

in words: “The image of the sum is the sum of the images.” Consequently
∀ x ∈ Ÿ

n
N : ϕ(x + x + . . . + x) = ϕ(x) + ϕ(x) + . . . + ϕ(x) ,

in words: “The image of a multiple is the multiple of the images.”
Indeed, ŸN is a ring and Ÿ

n
N a vector space with the origin o = (0 0 . . . 0) ;

ϕ is a linear mapping of the vector space Ÿ
n
N in the vector space Ÿ

m
N .

If N = p is prime, and only then, ŸN is even a field, the Galois field (p) .
However, in the sequel we shall not require the primality of N .
Notationally, we use a square matrix T over ŸN for the representation of
ϕ : ϕ(x) = xT with the inverse ϕ−1(y) = yT−1 .

A linear substitution χ : Ÿ
n
N −→ Ÿ

m
N is defined as the sum of a

homogeneous part, a linear mapping ϕ represented by a matrix T ∈ Ÿ
n,m
N

and a translation of the origins , represented by a vector t ∈ Ÿ
m
N :

χ(x) = xT + t .

If T is the identity, there is the special case χ(x) = x + t of a translation
(polygraphic CAESAR addition by a ‘CAESAR shift’).
If a linear mapping ϕ is injective, then it is regular, i.e., it has a unique inverse
ϕ−1 on its image. If in the sequel we assume the endomorphic case with equal
width m = n , then a regular linear mapping is a one-to-one mapping.

Example:
Given over Ÿ26 a square matrix T and a vector t ,

T =

⎛
⎝ 15 2 7

8 10 23
0 2 8

⎞
⎠ t = ( 17 4 20 )

The 3×3 matrix T and the 3-component vector t define a tripartite tri-
graphic substitution. The encryption of the trigram /mai/ =̂ ( 12 0 8 ) is

( 24 14 18 ) + ( 17 4 20 )
26� ( 15 18 12 ) =̂ /psm/ .

since the T -image of ( 12 0 8 ) , obtained by calculation modulo 26 is

( 12 0 8 )

⎛
⎝ 15 2 7

8 10 23
0 2 8

⎞
⎠ 26� ( 24 14 18 ) .

But the trigram /ecg/ =̂ ( 4 2 6 ) has the same T -image,

( 4 2 6 )

⎛
⎝ 15 2 7

8 10 23
0 2 8

⎞
⎠ 26� ( 24 14 18 ) .

Encryption by the given matrix T is therefore not injective, in fact T is not
regular and does not have an inverse. The vector ( 8 24 2 ) annihilates T .
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5.1 Self-reciprocal Linear Substitutions

The question is obvious : When is an endomorphic linear substitution χ self-
reciprocal ? The condition is that χ(x) = xT + t = χ−1(x) , thus

x = χ(χ(x)) = (xT + t)T + t = xT 2 + tT + t , from which

T 2 = I and tT + t = o
follows. This is to say that the matrix T of the homogenous part is self-
reciprocal, whence only 1 or N − 1 can be eigenvalues of T , and the trans-
lation vector t either is zero or eigenvector of T for the eigenvalue N−1 .
In particular, χ can be a reflection with a reflecting plane having as its
normal the vector v :

χ(x) = x + (1 − γ(x)) v with v �= o
where the linear functional γ fulfils the condition γ(v) = 2 (in the case
N = 2 the condition γ(v) = o) . Then χ(v) = o , and χ(o) = v . A simple
calculation confirms χ2(x) = x :

χ(χ(x)) = χ(x) + [1 − γ(χ(x))] v
= x + (1 − γ(x))v + [1 − γ(x) − (1 − γ(x))γ(v)] v
= x + (1 − γ(x))v + [ (1 − γ(x)) − 2(1 − γ(x)) ] v = x .

Example: Ÿ
2
2 → Ÿ

2
2 (N = 2 , n = 2)

χ((x1 x2)) = (x1 x2) + (1−x1−x2) (1 1) = (1 − x2 1 − x1) =

(x1 x2)
(

0 −1
−1 0

)
+ (1 1) .

χ((0 0)) = (1 1)
χ((0 1)) = (0 1)
χ((1 0)) = (1 0)
χ((1 1)) = (0 0)

(1  1)(0  1)

(1  0)(0  0)

The plaintext 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 yields the cryptotext
1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 and vice versa.

5.2 Homogeneous Linear Substitutions

5.2.1 Hill. The special case of homogeneous linear substitution, t = o ,
was studied by Hill as a cryptographic instrument (HILL encryption step).
How do we obtain T together with its inverse T−1 ? Over Ÿ, start with a
(square) matrix of determinant +1 and its inverse, e.g., with n = 4 :

T =

⎛
⎜⎝

8 6 9 5
6 9 5 10
5 8 4 9
10 6 11 4

⎞
⎟⎠ T−1 =

⎛
⎜⎝

−3 20 −21 1
2 −41 44 1
2 −6 6 −1

−1 28 −30 −1

⎞
⎟⎠
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For numerical work it is recommended to use small negative numbers as
representatives of the residue classes, thus over Ÿ26 besides

T−1 26�

⎛
⎜⎝

23 20 5 1
2 11 18 1
2 20 6 25
25 2 22 25

⎞
⎟⎠ also T−1 26�

⎛
⎜⎝

−3 −6 5 1
2 11 −8 1
2 −6 6 −1

−1 2 −4 −1

⎞
⎟⎠ .

Example: The image of the tetragram /ende/ =̂ ( 4 13 3 4 )
is calculated modulo 26 to yield /jhbl/ =̂ ( 9 7 1 11 ) :

( 4 13 3 4 )

⎛
⎜⎝

8 6 9 5
6 9 5 10
5 8 4 9
10 6 11 4

⎞
⎟⎠ 26� ( 9 7 1 11 ) ,

( 9 7 1 11 )

⎛
⎜⎝

−3 −6 5 1
2 11 −8 1
2 −6 6 −1

−1 2 −4 −1

⎞
⎟⎠ 26� ( 4 13 3 4 ) .

5.2.2 Inhomogenous case. With t = (3 8 5 20) and T as above an
inhomogeneous linear substitution χ is obtained

χ((x1 x2 x3 x4)) = (x1 x2 x3 x4)

⎛
⎜⎝

8 6 9 5
6 9 5 10
5 8 4 9
10 6 11 4

⎞
⎟⎠+ (3 8 5 20)

with the inverse substitution

χ−1((y1 y2 y3 y4)) = (y1 y2 y3 y4)

⎛
⎜⎝

23 20 5 1
2 11 18 1
2 20 6 25
25 2 22 25

⎞
⎟⎠+(3 24 21 14) .

5.2.3 Enumeration. The number of regular n×n matrices over ŸN

depends on the primality of N . A well-known result is (L. E. Dickson, Linear
groups. Leipzig 1901):
Theorem. Let N = p , p prime. The number g(p, n) of regular matrices
from Ÿ

n,n
p is equal to the number of bases of the vector space Ÿ

n,n
p , i.e.,

g(p, n) = (pn − 1) (pn − p) (pn − p2) . . (pn − pn−1) .

The number of different matrices altogether is pn2
. Thus

g(p, n) = pn2 · ρ(p, n) , where

ρ(p, n) =
n∏

k=1

(1 − (
1
p
)k) .

For the binary case N=2: g(2, 1) = 1, g(2, 2) = 21 · 3, g(2, 3) = 23 · 3 · 7,
g(2, 4)=26 ·3·7·15, g(2, 5)=210 ·3·7·15·31, g(2, 6)=215 ·3·7·15·31·63 .
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For ρ(p, n) , a limit as n goes to infinity can be given (Euler 1760):

lim
n→∞ ρ(p, n) = h (

1
p
) , where

h(x) = 1 +
∞∑

k=1

(−1)k [x(3k2−k)/2 + x(3k2+k)/2]

= 1 − x − x2 + x5 + x7 − x12 − x15 + x22 + x26 . . . .

h(x) is a ‘lacunary’ series, connected with theta series and elliptic func-
tions. For details see R. Remmert, Funktionentheorie I, Springer, Berlin 1984,
p. 263. h( 1

p ) provides for larger n a rather good estimate for ρ(p, n); some
values for primes p are

N = p h( 1
p ) lnh( 1

p )

2 0.28879 −1.24206
3 0.56013 −0.57959
5 0.76033 −0.27400
7 0.83680 −0.17817

11 0.90083 −0.10444
13 0.91716 −0.08647
17 0.93772 −0.06430
19 0.94460 −0.05699

For p > 10 , 1 − 1
p − 1

p2 gives already five correct figures for h( 1
p ) ;

−1/(p − 3
2 ) approximates lnh( 1

p ) with a relative error less than 1
p2 .

For powers of a prime, the situation is more complex.
Theorem (Manfred Broy 1981)

Let N =ps and A ∈ Ÿ
n,n
N . Then there exist Ai ∈ Ÿ

n,n
p , 0 ≤ i < s

such that A can be uniquely represented in the form A =
∑s−1

i=0 Ai pi .
A is regular if and only if A0 is regular.

From this theorem,

g(ps, n) = g(p, n) · (ps−1)n2

= (ps)n2

· ρ(p, n) = Nn2 · ρ(p, n) .

Finally, for the general case N = ps1
1 · ps2

2 . . . psk

k , the number of regular
matrices is

g(N, n) = Nn2 · ρ(p1 , n) · ρ(p2 , n) · . . . ρ(pk , n) .

Nn2
is a small number compared with the number (Nn)! of all n-partite

n-graphic substitutions: for N = 25 , n = 4 we have (Nn)! ≈ 102 184 284 ,
compared to Nn2

= 2.33 ·1022 and g(N, n) = 1.77 ·1022 . This comes close
to the number 6.20 · 1023 of simple cyclic permutations for N =25 .
For N =25 : g(25, 1)=20, g(25, 2)=300 000, g(25, 3)=2 906 250 000 000 ;
for N =26 : g(26, 1)=12, g(26, 2)=157 248, g(26, 3)=1 634 038 189 056 .
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5.2.4 Construction of reciprocal pairs of matrices. The construction
of a regular square matrix is most simply done as a product of a lower and
an upper triangular regular matrix. This means that the diagonal elements
should be invertible (Sect. 5.5, Table 1); most simply 1s are chosen. Moreover,
the transpose of the lower triangular matrix can be chosen for the upper
triangular matrix, which produces a symmetric matrix. Inversion of the
triangular matrices with the elimination method leads to the inverse matrix.

Choosing 1s in the diagonal, it is also possible, although not always preferable,
to do all the computations first in Ÿ and then to pass over to the residue
classes.

Example:⎛
⎝ 1

3 1
5 2 1

⎞
⎠

⎛
⎝ 1 3 5

1 2
1

⎞
⎠ =

⎛
⎝ 1 3 5

3 10 17
5 17 30

⎞
⎠ ;

⎛
⎝ 1

3 1
5 2 1

⎞
⎠−1

=

⎛
⎝ 1

−3 1
1 −2 1

⎞
⎠ ,

⎛
⎝ 1 3 5

1 2
1

⎞
⎠−1

=

⎛
⎝ 1 −3 1

1 −2
1

⎞
⎠ ,

⎛
⎝ 1 −3 1

1 −2
1

⎞
⎠

⎛
⎝ 1

−3 1
1 −2 1

⎞
⎠ =

⎛
⎝ 11 −5 1

−5 5 −2
1 −2 1

⎞
⎠ .

For Ÿ26 , Ÿ25 respectively,⎛
⎝ 1 3 5

3 10 17
5 17 4

⎞
⎠ ,

⎛
⎝ 11 21 1

21 5 24
1 24 1

⎞
⎠ and

⎛
⎝ 1 3 5

3 10 17
5 17 5

⎞
⎠ ,

⎛
⎝ 11 20 1

20 5 23
1 23 1

⎞
⎠

are pairs of (symmetric) mutually inverse matrices; for Ÿ10 , Ÿ2 ,⎛
⎝ 1 3 5

3 0 7
5 7 0

⎞
⎠ ,

⎛
⎝ 1 5 1

5 5 8
1 8 1

⎞
⎠ and

⎛
⎝ 1 1 1

1 0 1
1 1 0

⎞
⎠ ,

⎛
⎝ 1 1 1

1 1 0
1 0 1

⎞
⎠ .

If for given n and N the lower triangular matrix L and the upper
triangular matrix U (with 1s in the diagonal) are chosen arbitrarily and
for D an arbitrary diagonal matrix with invertible elements is taken, one
obtains up to reordering of rows and columns all pairs of mutually reciprocal
matrices L D U and U−1 D−1 L−1 .

5.2.5 The construction of a self-reciprocal matrix is scarcely more difficult:
If, for given n and N , (X , X−1) is a pair of mutually reciprocal matrices
and J is a self-reciprocal diagonal matrix, with elements +1 or −1 (more
generally, self-reciprocal in ŸN ), then X J X−1 is self-reciprocal.
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Example:⎛
⎝ 1 3 5

3 10 17
5 17 30

⎞
⎠
⎛
⎝ 1

−1
1

⎞
⎠
⎛
⎝ 11 −5 1

−5 5 −2
1 −2 1

⎞
⎠ =

⎛
⎝ 31 −30 12

100 −99 40
170 −170 69

⎞
⎠ .

For Ÿ26 , Ÿ25 , Ÿ10 , Ÿ2 the following self-reciprocal matrices are obtained:⎛
⎝ 5 22 12

22 5 14
14 12 17

⎞
⎠ ,

⎛
⎝ 6 20 12

0 1 15
20 5 19

⎞
⎠ ,

⎛
⎝ 1 0 2

0 1 0
0 0 9

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

Over Ÿ2 the identity is the only self-reciprocal diagonal matrix.

No simple expression is known for the number of self-reciprocal n×n matrices
over ŸN .

5.3 Binary Linear Substitutions

For Ÿ2 , i.e., for binary words (of length n0) of plaintext and cryptotext, the
technical execution of linear substitutions is particularly simple. The arith-
metic modulo 2 can be translated into Boolean algebra and implemented in
parallel with binary circuits of a width n0, for not too big n0 , say up to 64 .

Comparing the case Ÿ
n0×n0
2s (n = n0, N = 2s) with the case Ÿ

s·n0×s·n0
2

(n = s ·n0, N = 2) which is obtained by decomposing the 2s characters of
Ÿ

n0×n0
2s in binary words of length s , gives the following conclusion: the

number of all regular linear substitutions is 2s·n2
0 · ρ(2, n0)=K · ρ(2, n0) for

the case Ÿ
n0×n0
2s , 2s2·n2

0 ·ρ(2, s · n0)=Ks · ρ(2, s · n0) for the case Ÿ
s·n0×s·n0
2 .

We may say: The structure of Ÿ
s
2 is finer than the structure of Ÿ2s .

5.4 General Linear Substitutions

Including the Nn translations, there are roughly Nn2+n linear substitutions
altogether. Self-reciprocal homogenous linear substitutions (with N = 26)
were proposed in 1929 by Lester S. Hill2 (a precursor was F. J. Buck in 1772;
L. J. d’Auriol used in 1867 a bipartite digraphic cipher V 2 → V 2 which
possibly is a special linear substitution). Hill’s ideas were taken up in 1941
by A.A.Albert in a wave of both patriotic and mathematical enthusiasm,
in particular at a meeting of the American Mathematical Society. By then,
Hill’s ideas had already had their impact on W. F. Friedman in the USA

2 Lester S.Hill was assistant professor of mathematics at Hunter College in New York.
He received his Ph.D. in 1926 at Yale, aged 35, having been a college teacher for a
while. The paper was published in The American Mathematical Monthly under the
title Cryptography in an Algebraic Alphabet (Vol.36, p. 306–312, June–July 1929),
with a follow-up Concerning certain linear transformation apparatus of cryptography
(Vol.37, p. 135–154, March 1931). Hill received US patent 1 845 947 on his apparatus,
Feb. 16, 1932. He was until 1960 professor at Hunter College and died January 9, 1961.
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and on Werner Kunze in the German Auswärtiges Amt.3 The importance
of Hill’s invention stems from the fact that since then the value of mathe-
matical methods in cryptology has been unchallenged. Consequently in the
early 1930s mathematicians entered the cipher bureaus: besides Kunze in the
US Solomon Kullback (1907–1994), Abraham Sinkov (1907–1998), Frank B.
Rowlett (1908–1998), in the Netherlands the statistician Maurits de Vries,
and quite a few more whose names remained so far unpublished.
Lester S. Hill designed a machine for linear substitutions (n = 6) , US Patent
1 845 947 . Such a purely mechanical device with geared wheels was rather
slow, therefore in the Second World War Hill’s machines were only used
for superencrypting three-letter code groups of radio call signs—which was,
compared to hand computation, quite a saving.

5.5 Decomposed Linear Substitutions

As a further special case, linear substitution contains a certain polyalphabetic
enciphering. This occurs if T decomposes in a direct sum,
T = T1 ⊕ T2 ⊕ · · · ⊕ Tr , i.e., its matrix has blockdiagonal form,

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

T1 0 . . . 0

0 T2 . . . 0
...

...
. . . 0

0 0 0 Tr

⎞
⎟⎟⎟⎟⎟⎟⎠

where Ti is ni × ni . In this case, each Ti , together with the corresponding
part ti of t = t1 ⊕ t2 ⊕ · · · ⊕ tr , still is a polygraphic substitution, an
enciphering of ni-grams. Provided these r substitutions are pairwise differ-
ent, the encryption step is an r-fold polyalphabetic linear polygraphic step.
In other words, a whole period of a periodic polyalphabetic encryption is
comprised in the single matrix. More about this in Sect. 7.4.1 .
An important extreme case has ni = 1 , r = n . Then T is a diagonal matrix
and to every line there corresponds a simple linear substitution, a very special
unipartite monographic substitution Ti : V 1 → V 1 .
Let us study this substitution—a permutation—more closely: It reads
χ(x) = h·x+t and is certainly regular for h = 1 , yielding χ(x) = x+t . Thus,
a simple linear substitution with h = 1 is a monographic CAESAR addition
χ(x) = x + t with the inverse χ−1(x) = x − t (for t �= 0 a proper one).

3 Dr.Werner Kunze, b. about 1890, studied mathematics, physics and philosophy in Hei-
delberg, was with the cavalry in the First World War, and in January 1918 started work
on cryptology in the Auswärtiges Amt. In 1923, he solved a superencrypted French
diplomatic code, in 1936 ORANGE and later RED, two Japanese rotor-cipher machines.
Kunze was presumably the first professional mathematician to serve in a modern crypt-
analytic bureau. Kunze was, like Mauborgne, a passable violin player and Oliver Stra-
chey was known to be a good musician, while Painvin was an excellent cellist. Lambros
D. Callimahos, at NSA, was a famous flutist.
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N=2 1 M2 = C1

N=3 1 2 M3 = C2

N=4 1 3 M4 = C2

2
N=5 1 4 M5 = C43

N=6 1 5 M5 = C2

2 3
N=7 1 6 M7 = C64 5

N=8 1 3 5 7 M8 = C2× C2

2 4
N=9 1 8 M9 = C65 7

3
N=10 1 9 M10 = C47

2 3 5 7
N=11 1 10 M11 = C106 4 9 8

N=12 1 5 7 11 M12 = C2× C2

2 3 4 5 6
N=13 1 12 M13 = C127 9 10 8 11

3 9
N=14 1 13 M14 = C65 11

2 7
N=15 1 4 11 14 M15 = C4× C28 13

3 5
N=16 1 7 9 15 M16 = C4× C211 13

2 3 4 5 8 10 11
N=17 1 16 M17 = C169 6 13 7 15 12 14

Table 1a. Reciprocal pairs in ŸN for N from 2 to 17

(Bold-faced figures: Generating elements of the multiplicative group MN )
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5 7
N=18 1 17 M18 = C611 13

2 3 4 6 7 8 9 14
N=19 1 18 M19 = C1810 13 5 16 11 12 17 15

3 13
N=20 1 9 11 19 M20 = C4× C27 17

2 4 5 10
N=21 1 8 13 20 M21 = C6× C211 16 17 19

3 5 7 13
N=22 1 21 M22 = C1015 9 19 17

2 3 4 5 7 9 11 13 15 17
N=23 1 22 M23 = C2212 8 6 14 10 18 21 16 20 19

N=24 1 5 7 11 13 17 19 23 M24 = C2× C2× C2

2 3 4 6 7 8 9 11 12
N=25 1 24 M25 = C2013 17 19 21 18 22 14 16 23

3 5 7 11 17
N=26 1 25 M26 = C129 21 15 19 23

2 4 5 8 10 13 16 20
N=27 1 26 M27 = C1814 7 11 17 19 25 22 23

3 5 9 11
N=28 1 13 15 27 M28 = C6× C219 17 25 23

2 3 4 5 7 8 9 12 14 16 18 19 23
N=29 1 28 M29 = C2815 10 22 6 25 11 13 17 27 20 21 26 24

7 17
N=30 1 11 19 29 M30 = C4× C213 23

2 3 4 5 6 7 10 11 12 14 15 18 22 23
N=31 1 30 M31 = C3016 21 8 25 26 9 28 17 13 20 29 19 24 27

3 5 7 9 19 21
N=32 1 15 17 31 M32 = C8× C211 13 23 25 27 29

2 4 5 7 8 13 14 16
N=33 1 10 23 32 M33 = C10× C217 25 20 19 29 28 26 31

Table 1b. Reciprocal pairs in ŸN for N from 18 to 33

(Bold-faced figures: Generating elements of the multiplicative group MN )
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For χ(x) = x + i we write from now on also χ(x) = ρi(x) , where
ρ(x) = x + 1 .

Quite generally:
A simple linear substitution χ(x)=h · x + t=ρt(h · x) is regular,
χ−1(x)=h−1· (x − t)=h−1· ρ−t(x) if and only if h is relatively prime to N .

Table 1 gives for some values of N reciprocal pairs of h and h−1 , including
certain self-reciprocal h yielding self-reciprocal permutations.

5.6 Decimated Alphabets

The homogeneous case t = 0 has the trivial cases
h = h−1 = 1 (unchanged alphabet) and
h = h−1 = N − 1 (complementary alphabet)
and otherwise the decimated alphabets (French alphabets chevauchants, Ger-
man dezimierte Alphabete), studied by Eyraud: alphabets whose represen-
tants are the h-folds of the integers modulo N—provided h and N are
relatively prime. Thus, the alphabets are obtained by going in steps of h
(‘symbolic multiplication’, ‘decimation by h’ ).
Examples for N = 8 :

h = 1 :
(

a b c d e f g h
a b c d e f g h

)
= (a) (b) (c) (d) (e) (f) (g) (h)

h = 3 :
(

a b c d e f g h
a d g b e h c f

)
= (a) (bd) (cg) (e) (fh)

h = 5 :
(

a b c d e f g h
a f c h e b g d

)
= (a) (bf) (c) (dh) (e) (g)

h = 7 :
(

a b c d e f g h
a h g f e d c b

)
= (a) (bh) (cg) (df) (e) .

There is a distinction between the complementary alphabet with

χ(x) = (N − 1) · x N� N − x
N� −x

and the reversed alphabet, originating from the inhomogeneous case with

χ(x) = (N − 1) · (x + 1)
N� (N − 1) − x

N� −x − 1 .

The number g(N, 1) of regular homogeneous simple linear substitutions
coincides with the Euler totient function ϕ(N) , the number of numbers
from 1, 2, . . . , N − 1 relatively prime to N .
For N = ps1

1 · ps2
2 · . . . · psk

k ,

ϕ(N) = (p1 − 1) · ps1−1 · (p2 − 1) · ps2−1 · . . . · (pk − 1) · psk−1

= N · (1 − 1
p1

) · (1 − 1
p2

) · . . . · (1 − 1
ps

) .
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5.7 Linear Substitutions
with Decimal and Binary Numbers

Note the following difference: Ÿn
N belongs to V n , while ŸNn belongs to V ;

one obtains ŸNn if V n is ordered lexicographically.

5.7.1 Case N = 10 (Ÿ10n). The decimated alphabets (Sect. 5.6) are par-
ticularly interesting for amateurs encrypting n-digit decimal numbers with a
pocket calculator, since they allow use of multiplication besides addition.
Even with a mechanical adder it is easy to calculate in Ÿ10n . (For the
transition to calculation in Ÿ

n
10 , it is only necessary to dismantle the carry

device, see Sect. 8.3.3).
Example n = 2 (Ÿ100) : It suffices to know the reciprocals modulo 100 of the
primes up to 97 (excluding the divisors 2 and 5 of 100):
h = 3 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
h−1 = 67 43 91 77 53 79 87 69 71 73 61 7 83 17 39 41 3 31 37 19 47 9 33
Note that the last figure of the reciprocal is determined by the reciprocal
modulo 10 of the last figure, see Table 1, N = 10 .
This observation suggests for larger values of n a stepwise procedure: In every
step, just one new figure is suitably chosen.

Example n = 5 (Ÿ105) : The reciprocal modulo 105 of the number h = 32 413
is h−1 = 3 477 according to the following algorithm:

3 : 3 · 7 = 2 · 10 + 1
13 : 2 + 1 · 7 + 3 · x 10� 0 x= 7 13 · 77 = 10 · 102 + 1

413 : 10 + 4 · 7 + 3 · x 10� 0 x= 4 413 · 477 = 197 · 103 + 1
2413 : 197 + 2 · 7 + 3 · x 10� 0 x= 3 2413 · 3477 = 839 · 104 + 1

32413 : 839 + 3 · 7 + 3 · x 10� 0 x= 0 32413 · 03477 = 1127 · 105 + 1

The costs for the determination of the reciprocal of a n-figure number are
proportional to n2 .

5.7.2 Case N = 2 (Ÿ2n). For professional work the binary number sys-
tem is preferable. The cases n = 8 , 16 , 32 , or even 64 fit directly the
internal arithmetical architecture of microprocessors. The algorithm for the
determination of a reciprocal modulo 2n is completely analogous the deci-
mal one above, moreover it is—like the classical division algorithm for binary
numbers—simpler than that for decimal numbers.

For example, the number 1000 0000 0011 0111 = 32 823
is reciprocal modulo 216 to 0011 0101 1000 0111 = 13 703
Indeed, 32823 · 13703 = 449773569 = 1 + 6863·216 .

5.7.3 Turing in 1937. In the fall of 1937, two years before he became
seriously involved with cryptology, Alan Turing (June 23, 1912–June 7, 1954)
had thoughts about encryption by multiplication in the binary number sys-
tem. This may have occurred incidentally to other mathematicians, too.
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Turing, however, designed a relay multiplication circuit for this purpose and
built a few stages, supported by the Princeton physicist Malcolm MacPhail.
Circumstances prompted Turing to drop this project after he returned in July
1938 from his Princeton stay, but he was well prepared to take up mechani-
cal cryptanalysis on September 4, 1939, one day after the outbreak of the
war, when he entered Bletchley Park. This was a Victorian country mansion
in Buckinghamshire, halfway between Oxford and Cambridge, and was the
place to which the Government Code and Cypher School had been evacuated
in August 1939. G.C. & C.S. invited Turing as early as summer 1938, after
his return, to a course in cryptology “just in case”. He passed another one
around Christmas, and met regularly with the experienced cryptologist Dill-
wyn Knox (1884–1943), who had struggled hard in 1937 to solve Italian and
later Spanish messages encrypted by an ENIGMA without plugboard4. Gor-
don Welchman too, had been recruited into intelligence work before the war.
The first mathematician recruited by the Government Code and Cypher
School was Peter Twinn, an Oxford graduate who entered service in February
1939. He was told later that there had been some doubts about the wisdom
of recruiting a mathematician “as they were regarded as strange fellows,
notoriously unpractical” (Christopher Andrew). In fact, some other early
Bletchleyites like Turing, Welchman, and Dennis Babbage had at least some
skill at chess, not to speak of the chess masters Stuart Milner-Barry (1906–
1995), Harry Golombek, and Hugh Alexander (1909–1974), all recruited with
the help of Gordon Welchman.
Britain was well prepared for the war that was brewing; from Oxford and
Cambridge the best people, if they didn’t want to become fighter pilots, were
recruited for Bletchley Park. G.C. & C.S. , a branch of the Foreign Office, had
started in mid-1938 to become alarmed. Neither the United States nor Ger-
many had made such painstaking preparations in the recruitment of scien-
tists. In Britain, it took longer than in Germany or in the USA to recognize
the importance of mathematics for cryptanalysis, but with Turing and Welch-
man at hand the arrears were made up completely. Exploiting the talents
of unconventional and eccentric personalities enabled the Foreign Office to
establish the ablest team of cryptanalysts in British history.
In France, whose cryptology like the British one earlier was extremely lan-
guage oriented, the opportunity passed by in 1940 when its army was overrun
by the Wehrmacht and the country was occupied.

4 It may not be wise to believe the story FrederickW.Winterbotham started and Cave
Brown told in his book, that Knox and Turing travelled in the middle of 1938 to War-
saw, to meet there, arranged by the Polish Secret Service, a Pole with the pseudonym
Richard Lewinski, who allegedly had worked at the firm Heimsoeth & Rincke in Berlin as
a mathematician and engineer and had offered to procure a copy of the ENIGMA. Marian
Rejewski, in 1982, called this “a fable”. However, Harry Hinsley reports that already in
1938 the Polish Secret Service had contacted the G.C.&C.S. and Knox re ENIGMA. This
first contact, however, was not flourishing; Knox called the Polish ‘stupid and ignorant’.
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En un mot, les méthodes de transposition
sont une salade des lettres du texte clair.
[In one word, the transposition methods

give a nice mess of cleartext letters.]
Bazeries

An extreme special case, not discussed at all in Chapter 5, requires that the
matrix of the homogeneous linear substitution has only zeroes and ones as
its elements. This is for N > 2 a severe restriction. Requiring moreover
that in every row and in every column, a one occurs just once and thus the
elements are zeroes otherwise, leads to permutation matrices effectuating a
mere permutation of the vector space basis.
The transposition (German Würfelverfahren or Versatzverfahren) is a poly-
graphic substitution V n → V n , an encoding of most special kind

(x1 , x2 , . . . xn) �→ (xπ(1) , xπ(2) , . . . xπ(n))
where π ∈ γk is a permutation of {1 . . . n} , γk denoting the full group of n!
permutations.
A transposition is not a permutation of alphabet characters, but a permu-
tation of places. Its use for anagrams (bolivia – lobivia) is primeval, in
particular for the construction of pseudonyms (Améry – Mayer).

6.1 Simplest Methods

The simple classes of methods use one or a few encryption steps repeated
over and over with a not-too-big n (‘complete-unit transposition’).
6.1.1 Crab. Simplest is back slang or crab (German Krebs) : The message
is reversed word for word or in toto: LIRPA OCCABOT KOOL (Sect. 1.5).
This ‘reversed writing’ comprises ananymes like REMARQUE for Kramer, and
AVE for Eva. Crab is also known in music, for example, in the crab canon.
Palindromes are words or sentences which are invariant under a crab:

Madam été Rentner Reittier Reliefpfeiler summus

Able was I ere I saw Elba Ein Neger mit Gazelle zagt im Regen nie

Esope reste ici et se repose in girum imus nocte et consumimur igni
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Every language has its palindromes. Some more examples in English are:
Red rum&murder . A man, a plan, a canal: Panama . Ma is as selfless as I am .

Was it a cat I saw ? (Henry E. Dudeney) Madam, I’m Adam . (Sam Loyd)

Lewd did I live, & evil I did dwel . (John Taylor) Draw pupil’s lip upward .

Doc note, I dissent; a fast never prevents a fatness; I diet on cod . (Peter Hilton)

6.1.2 Spoonerism. A harmless non-cryptographic use of syllable trans-
position (n = 4) is found in the spoonerism (German Schüttelreim):
they hung flags — they flung hags dear old Queen — queer old Dean

wasted the term — tasted the worm missed the history — hissed the mystery

The transposition π : π(1, 2, 3, 4) = (3, 2, 1, 4) found in spoonerisms is used
cryptographically in Medical Greek, according to Kahn a mild epidemic dis-
ease of London medical students: POKE A SMIPE stands for smoke a pipe.

1 4 53 18 55 6 43 20

52 17 2 5 38 19 56 7

3 64 15 54 31 42 21 44

16 51 28 39 34 37 8 57

63 14 35 32 41 30 45 22

50 27 40 29 36 33 58 9

13 62 25 48 11 60 23 46

26 49 12 61 24 47 10 59

Fig. 42. Route for knight’s tour transposition (n =64)

6.1.3 Route transcription. Then there is route transcription (‘tramp’,
German Würfel): The plaintext is written in l rows of a fixed length k and
read out in some prescribed way. Thus, a k × l rectangle is used for the
encryption step, n = k × l . Frequently, a square is used, then n = k2 . For a
2 × 2 square, the spoonerism is included as an ‘overcrossing’ route.
The cryptotext can be read out in columns (row-column transcription):

i c h b i n
d e r d o k
t o r e i s
e n b a r t

I D T E C E O N H R R B B D E A I O I R N K S T

This method we have met already for the construction of an alphabet using
a mnemonic password. Variants read out along the diagonals:

E T N D O B I E R A C R E R H D I T B O S I K N

or boustrophedonically1 , alternatingly down and up the columns (every sec-
ond column in a crab):

I D T E N O E C H R R B A E D B I O I R T S K N

or even in a spiral:
T S K N I B H C I D T E N B A R I O D R E O R E .

1 Greek bustropheidon, German furchenwendig, turning like oxen in plowing.
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A more complex route is given by a knight’s tour (German Rösselsprung-
würfel) (Fig. 42); its decryption, if the start is known or can be guessed, is
not very difficult, as is familiar from knight’s tour puzzles.
Instead of rectangles, other geometric patterns have been used from time
to time, primarily triangles, also crosses of varying forms and other arrays
(Figs. 43, 44). There are no limits to fantasy. But these simple transposition
methods are quite open to cryptanalysis.

a e i n r v z
b d f h k m o q s u w y

c g l p t x

A E I N R V Z B D F H K M O Q S U W Y C G L P T X

Fig. 43. ‘Rail fence’ (Smith) transposition, n = 25

b f k o s w
a c e g i l n p r t v x

d h m q u z

B F K O S W A C E G I L N P R T V X D H M Q U Z

Fig. 44. ‘Croix Grecque’ (Muller), ‘Four winds’ (Nichols) transposition, n = 24

6.1.4 Grilles. Convenient as tools for transposition and, if the pattern is
irregular enough, more secure than the routing methods are grilles, also called
trellis ciphers (French grille, German Raster). Generally, a set of prefabri-
cated grilles is needed. An important practical simplification appears in the
turning grille, which brings the different windows of one and the same grille
into action by rotation. It was described in 1885 by Jules Verne (1828–1905)
in the story Mathias Sandorff . Grilles were used in the 18th century, for
example in 1745 in the administration of the Dutch Stadthouder William IV.

eo u r
r b t r
o o m t
h a h s

1

2

eo u r
r b t r
o o m t
h a h s

1

eo u r
r b t r
o o m t
h a h s

2

our broth er tom has

Fig. 45. Turning grille with two positions

po r u u t
i s r o l b
m r t e h g
o s a t o j
t t o t h h
h h e n j e

po r u u t
i s r o l b
m r t e h g
o s a t o j
t t o t h h
h h e n j e

po r u u t
i s r o l b
m r t e h g
o s a t o j
t t o t h h
h h e n j e

po r u u t
i s r o l b
m r t e h g
o s a t o j
t t o t h h
h h e n j e

po r u u t
i s r o l b
m r t e h g
o s a t o j
t t o t h h
h h e n j e

1

42
3

4321

our brothe r tom hath j ust got the piles john

Fig. 46. Turning grille with four positions

The mathematician C. F. Hindenburg studied turning grilles more systemat-
ically in 1796, followed by Moritz von Prasse 1799, Johann Ludwig Klüber
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1809 . There are grilles with two positions (Fig. 45) and, preferably, with
four positions (Fig. 46), which are often called Fleissner grilles2 in ignorance
of their historical origin. Nulls are used to fill empty places.
The construction of turning grilles is simple enough: A quadrant of a square
checkerboard (with an even number 2ν of rows and columns) is marked with
the numbers 1 . . . ν , all numberings produced by rotation are superimposed,
then for each number, a position of the rotated grille is selected and the cor-
responding window is cut. The turning grille of Fig. 46 is obtained like this:

1 2 3 7 4 1
4 5 6 8 5 2
7 8 9 9 6 3
3 6 9 9 8 7
2 5 8 6 5 4
1 4 7 3 2 1 .

This technique allows the production of turning grilles according to a key
pattern that lists the grille positions in the consecutive construction steps;
for example, in the following suggestive way:

.

The power of the class of turning grilles (for given n = 4ν2) can thus be
determined: For a turning grille with two positions 2n/2 possibilities, for a
turning grille with four positions 4n/4 = 2n/2 possibilities. For n = 36 as
above there exist ≈ 2.62 ·105 Fleissner grilles, the number of all permutations
is 36 ! ≈ 3.72 · 1041 .

Some of the military powers developed in the late 19th century a liking for
route transcription and turning grilles on the tactical combat level. In the
First World War, the German Heer early in 1917 suddenly introduced turning
grilles with denotations like ANNA (5 × 5),BERTA (6 × 6), CLARA (7 × 7),
DORA (8 × 8), EMIL (9 × 9) and FRANZ (10 × 10). After four months this
was discontinued—to the distress of the French, who had easily broken the
encryption. Grilles were part of the Heftschlüsselverfahren of the Wehrmacht.
Route transcription and turning grilles result in a transposition of the mes-
sage and nothing else. A precursor, the Cardano grille, gives no transposi-
tion, instead it introduces besides the characters visible through the window
a larger set of nulls (Sect. 1.6). Grilles of any sort should normally not be
used by serious cryptographers, but one cannot be sure that amateurs would
not use them. Moreover, transposition in connection with substitution is to
be taken quite seriously.

2 Eduard Baron Fleißner von Wostrowitz (1825–1888), Austrian Colonel, “Neue Patronen-
Geheimschrift” (Handbuch der Kryptographie, Wien 1881). The word ‘Patrone’, mlat.
‘father form’, specimen form, was used in the textile industry for a drawing of the weaving
pattern on checkered paper. In Jaroslav Hašek’s novel The Good Soldier Svejk a Hand-
buch der militärischen Kryptographie von Oberleutnant Fleissner is mentioned, and
other details pointing to a certain familiarity of Hašek with cryptography.
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6.1.5 Genuine Fleissner grilles. The grilles advocated by Fleissner
were quite special: they had an odd number of rows and columns. This left
a window in the middle unused, and Fleissner recommended employing it for
transmitting the starting position of the grille. In 1905, Hans Schneickert
suggested using as fillers consecutive letters in the alphabet. But this may
compromise the pattern of the windows:

4
f e o g g c n f g1 g2

k e h u h i s h1 h2 i

e c k r r h o k

a l s • e r d l •
m r f n d o o m n o1 o2

h n e t p t s p

b q e n u r k q r

f g

h i

k

l •
m n o

p

q r

© ©
© ©

©
©

© © ©
©

© ©
The ambiguities can be eliminated exhaustively: h1 collides with p, o1 with
the remaining h2 = h, g2 with the remaining o2 = o . The reconstructed grille
at the right side gives the plaintext of 48 letters in four groups of twelve

geschaeftsbu|echerordnenk|onkursdrohte|fghiklmnopqr .

6.1.6 A grille used by Erzherzog Rudolf.
Erzherzog Rudolf (1858–1899), the Austrian crown
prince, only son of Emperor Franz Josef von Habs-
burg and his wife Elisabeth von Bayern, was a non-
conformist, who finally committed suicide together
with his mistress Baroness Mary Vetsera. He was
a liberalist in opposition to the royal court and to
Austrian antisemitism. An exhibition at the Vien-
nese Hofburg shows some pieces from his private life,
among others cryptographic means he used for his
private correspondence which he had reasons to keep
secret. He used a genuine Fleissner grille with four
positions and with an odd number of rows and columns (and not an even
number, as Helen Fouché Gaines said). Figure 47 shows the 15 by 15 grille

Erzherzog Rudolf

with 224 cells Rudolf used in 1889. At that time,
it was already known that grille systems are par-
ticularly susceptible to multiple anagramming (see
Sect. 21.3). This was published in 1879 by Edward
S. Holden, based on previous work by John R. G.
Hassard and William M. Grosvenor. Thus, Rudolf
von Habsburg was just not well served by whoever
was his advisor. On the contrary, it is remarkable
that the grille he used shows many adjacent cells,
an early case of a trapdoor that may have helped
an unauthorized decipherer in the Evidenzbureau
of the Viennese police.

1

4

3

2•

Fig. 47. Fleissner grille used
by Erzherzog Rudolf
von Habsburg
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6.2 Columnar Transpositions

Serious use of transpositions requires rather large values of n, coming close
to the length of the whole message, in connection with the use of passwords,
keys for selecting the transposition from a rather powerful set of encryption
steps. In German, such a password is called a Losung .
6.2.1 Passwords. They are already used in the simple columnar transposi-
tion (French transposition simple à clef ): The plaintext is written in rows of
the chosen length k, the resulting columns are reordered according to a per-
mutation π∈γk (Losung), and the cryptotext is read out column by column:

e s w a r s c h o n d u n k e l π : 2 1 4 3︸ ︷︷ ︸
2 1 4 3 1 2 3 4
e s w a S E AW
r s c h S R H C
o n d u N O U D
n k e l K N L E

⎫⎪⎬
⎪⎭ S S N K E R O N A H U L W C D E .

For cryptanalysis equivalent is obviously the block transposition or ‘com-
plete-unit transposition’ (Gaines), French variante de Richelieu (Eyraud),
German Gruppen-Transposition, Umstellung , which is as above except that
the cryptotext is read out row by row :

e s w a r s c h o n d u n k e l π : 2 1 4 3︸ ︷︷ ︸
2 1 4 3 1 2 3 4
e s w a S E AW
r s c h S R H C
o n d u N O U D
n k e l K N L E

⎫⎪⎬
⎪⎭ S E A W S R H C N O U D K N L E .

This encryption can also be interpreted in the following way: the plaintext is
divided into blocks of k elements and each block is permuted according to π
—this means a repeated monoalphabetic polygraphic encryption step of
blocks of width k : block transposition is a complete-unit transposition.
Simple columnar transposition is carried out with pencil and paper more
easily and with less risk of error than block transposition. But although it
spreads over the whole plaintext, it offers no more cryptanalytic security than
complete-unit transposition—it is an example of a complication illusoire.

6.2.2 Rectangular schemes. For route transcription and simple colum-
nar transposition, decryption is made easier if the plaintext fits a rectangle or
square of l rows. To accomplish this, nulls are frequently used. If they are
not chosen with great care, unauthorized decryption is also much facilitated—
e.g., if the plaintext is filled up with q q q . . . q q . By no means is this filling
necessary; the length of the last row is determined by the division rest.
Since simple columnar transposition and block transposition—even with in-
complete rectangles—can be solved easily, more complicated transposition
methods are worthwhile. They all can be understood to be composite meth-
ods (see Sect. 9.1.1).
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6.2.3 Two-step methods. An additional permutation is introduced in the
mixed-rows columnar transposition (French transposition double, Givierge,
Eyraud): The plaintext is written in rows of the chosen length k according
to some permutation π1 , the resulting columns are reordered according to a
second permutation π2 , and the cryptotext is read out column by column,

e s w a r s c h o n d u n k e l π1 : 2 4 1 3 π2 : 2 1 4 3︸ ︷︷ ︸
2 1 4 3 1 2 3 4

1 e s w a 2 r s c h S R H C

2 r s c h 4 n k e l K N L E

3 o n d u 1 e s w a S E AW

4 n k e l 3 o n d u N O U D

⎫⎪⎬
⎪⎭ S K S N R N E O H L A U C E W D .

Correspondingly, the mixed-rows block transposition is handled as above, but
the cryptotext is read out row by row :

e s w a r s c h o n d u n k e l π1 : 2 4 1 3 π2 : 2 1 4 3︸ ︷︷ ︸
2 1 4 3 1 2 3 4

1 e s w a 2 r s c h S R H C

2 r s c h 4 n k e l K N L E

3 o n d u 1 e s w a S E AW

4 n k e l 3 o n d u N O U D

⎫⎪⎬
⎪⎭ S R H C K N L E S E A W N O U D .

The same effect can be attained by using π1 afterwards:

e s w a r s c h o n d u n k e l π2 : 2 1 4 3 π1 : 2 4 1 3︸ ︷︷ ︸
2 1 4 3 1 2 3 4
e s w a S E AW 1 S R H C 2
r s c h S R H C 2 K N L E 4
o n d u NO U D 3 S E AW 1
n k e l KN L E 4 N O U D 3

⎫⎪⎬
⎪⎭ S R H C K N L E S E A W N O U D .

Mixed-rows columnar or block transposition with a square can use the same
permutation both times,π2 = π1 . Taking π2 = π−1

1 gives a method attri-
buted by Kerckhoffs in 1883 to the Russian Nihilists (‘Nihilist transposition’).
For a mathematical treatment of these transpositions, we assume that plain-
text and ciphertext are represented by a rectangular (or square) matrix X of
l rows, each with k elements.
Permutation of the rows then means multiplication from the left by an
l × l permutation matrix π1 ,

X �→ π1X .

while permutation of the columns means multiplication from the right by a
k × k permutation matrix π2 ,

X �→ Xπ2 .

Row-column transcription means a matrix transposition (mirroring at the
diagonal),
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X �→ XT .

Now, block transposition is just X �→ Xπ2 , while columnar transposition is
described by a column permutation, followed by a row-column transcription:

X �→ (Xπ2)
T

therefore, since a permutation matrix is orthogonal, πT
2 = π−1

2 , also as a
row permutation with π−1

2 of the transposed matrix,
X �→ π−1

2 XT .

A mixed-rows block transposition is just
X �→ (π1X)π2 = π1(Xπ2) ,

while a mixed-rows columnar transposition reads
X �→ ((π1X)π2)

T .
or in the variant form

X �→ π−1
2 XT π−1

1 .

6.2.4 Ubchi. The double columnar transposition (French double transpo-
sition3, German doppelte Spaltentransposition, Doppelwürfelverfahren) uses
simple columnar transposition twice. This would in principle mean using two
different passwords, which for square matrices is not always done.
Double columnar transposition can be interpreted as

X �→ ((Xπ)T
π′)T = (π′)−1Xπ ,

which is indistinguishable from a mixed-rows block transposition. Both are
mappings by a cross-product πi ×πk . For the Nihilist transposition the map-
ping is a similarity transformation, the same is true for the US Army Double
Transposition in case l = k (see below). All these methods require essentially
the same cryptanalytic techniques as simple columnar transposition.

Double columnar transposition with one password was used in the US Army
for quite a while (‘US Army Double Transposition’). It was also used un-
suspectingly by the German Kaiserliches Heer—the French under Major,
later Colonel and even General, François Cartier called it ubchi , since dur-
ing German prewar manoeuvres, drill messages were marked übchi , short for
übungschiffrierung . The French learned to break the encryption from this
material and read the serious material until November 18, 1914.
Strangely, the Deutsche Wehrmacht had not learnt from this and returned to
its sins: From the outbreak of World War II until July 1, 1941 and again from
June 1, 1942 double column transposition with a password that was changed
every day served as an emergency cipher for the Heer (Handschlüsselverfah-
ren), used from regiments downwards, and for the Kriegsmarine (Reserve-
Handverfahren, Notschlüssel). This time, the British read along too. The use
of two different passwords, or even triple columnar transposition, would not
have helped: the relevant method of “multiple anagramming” was quite gen-
eral. More about cryptanalysis of columnar transposition in Chapter 21.

3 Note the difference in French: transposition double (6.2.3), double transposition (6.2.4).
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Double columnar transposition (with one password) was the preferred crypto-
graphic system of the Dutch Resistance and the French Maquis. It was also
used by the British espionage and sabotage organisation Special Operations
Executive (S.O.E.), founded by Churchill in 1942. This was finally confirmed
in 1998 by Leo Marks, former head of the S.O.E. code department.
6.2.5 Stencils. A true complication for the unauthorized decryption of
simple transpositions is the introduction of irregularly distributed positions
which are left blank: the Heftschlüsselverfahren 1937 of the Wehrmacht, which
used a 13 by 13 grille with 10 blanks per row and column, and the PA-K2 sys-
tem, Japan, 1941. The USA broke the PA-K2 stencil encryption routinely,
although often with considerable delay.
The Rasterschlüssel 44 of the German Armed Forces, introduced in March
1944, would have been no exception, had it not been introduced very late in
the war. Anyhow, the British, after the landing in Normandy, found plenty
of material; but they had to learn first the complicated deciphering. The
authorized Germans were frequently not much better off. But Rasterschlüssel
was praised by the Allies for its being practically unbreakable if used properly.

Fig. 48. Rasterschlüssel 44 of the German Armed Forces, introduced in March 1944

Figure 48 gives an example from the Schlüsselanleitung, edition of March 27,
1944 for the method called crossword puzzle by the British: The plaintext
Feind greift seit 11.45 Uhr bei Orjechow mit 8 Panzern nach Südwesten an
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was first prepared as commonly prescribed, replacing, e.g., /ch/ by /q/; the
placename was enclosed by /aa/ and /ee/, doubled and superenciphered with
the help of an ,Ortsnamenalphabet‘ (placename alphabet), here

a b c d e f g h i j k l m n o p q r s t u v w x y z
n m l y a x w f u q t d z r i v k g e o p j s h b c

In this way Orjechow produces igqalfis, and altogether the prepared plaintext,
comprising 77 characters (limits: minimal 60, maximal 200 characters), reads

feindgreiftseitelfxvierfuenfuhrbeiaaigqalfisigqalfiseemitaqtpanznaqsuedwestan.

The message is entered row by row; there are 10 blanks per row with maxi-
mally 24 rows of the stencil that was changed every day. The starting field
was chosen arbitrarily—say column bb and row ae.
The key negotiation is found in a prefix (‘Spruchkopf’) of the message com-
prising, apart from the indicator bbae, simply enciphered according to a
table at the back of the stencil, also the tactical time and the total number
of characters of the message, say 1203-77-tuzd .
From the number of minutes and the number of characters the total sum of
the digits is formed (here 0+3+7+7= 17) and the columns are counted from
the initial column (here bb) by as many columns (here 17 ). This produces
here ee, and with this column the read-off of the cipher text, following the
given numbering, is started:

1203-77-tuzd
dianm rqtvf nnris iffgp uefzg naeeh aeuta iiead
agqql wibsf fxuti teeaa eniqs sirli efese lt

It is easy to see that the deciphering is uniquely determined by reversing the
order of the steps.

6.2.6 Construction of permutations. Many schemes can be imagined
for the derivation of permutations to be used in the columnar transpositions
from a mnemonic password. One frequently mentioned in the literature goes
as follows.
Each password letter is given the number of its alphabetic ranking:

M A C B E T H
6 1 3 2 4 7 5

This is simple enough if the password has no repeated letters. If it has, a
slightly corrected scheme ranks repeated letters consecutively:

A M B A S S A D E D A L L E M A G N E
1 15 6 2 18 19 3 7 9 8 4 13 14 10 16 5 12 17 11

6.3 Anagrams

Transposition leaves invariant the bag4 of characters of a plaintext. An ana-
gram poses the problem of reconstructing from the bag the plaintext. If ana-

4 i.e., repeated elements counted one by one. The statement is also trivially valid for sets.
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grams could be solved systematically, then all transposition encryption would
be broken.
6.3.1 Origins. Anagrams have a rich history. Huyghens gave the following

a7 c5 d1 e5 g1 h1 i7 l4 m2 n9 o4 p2 q1 r2 s1 t5 u5 ,
which allows the interpretation
‘annulo cingitur tenui plano, nusquam cohaerente, ad eclipticam inclinato’

([Saturn] is girdledbya thinflat ring, nowhere touching, inclined to the ecliptic).
Newton wrote to Leibniz

a7 c2 d2 e14 f2 i7 l3 m1 n8 o4 q3 r2 s4 t8 v12 x1 ,
which could have meant ‘data aequatione quodcumque fluentes quantitates
involvente, fluxiones invenire et vice versa’ (from a given equation with an
arbitrary number of fluentes to find the fluxiones and vice versa).

Anagrams were a pastime for scientists in the 17th century, and this may be
reflected in the liking amateurs have for transposition methods even nowa-
days.

Galilei wrote to Kepler a masked anagram:
HAEC IMMATURA A ME IAM FRUSTRA LEGUNTUR O. Y.

(These unripe things are now read by me in vain);
it was to mean

‘cynthiae figuras aemulatur mater amorum’
(The mother of love [= Venus ] imitates the phases of Cynthia [= Moon ]).

(At these times, scientists paid a lot of attention to establishing priority:
Carl Friedrich Gauß published April 25, 1812 an important result on the
perturbation of the Jupiter orbit by the little planet Pallas by the presumably
binary chiffre I I I IOOOIOOIOIOOI . )
A modern example is ASTRONOMERS , which can be read as moon starers ,
but also no more stars .

King Ludwig II of Bavaria (the insane builder of Neuschwanstein) wrote the
(not very deep) masked anagram MEICOST ETTAL, to be read l’état c’estmoi.

The pharmaceutical industry makes use of anagrams, too: The trademark
KLINOMYCIN R© (Lederle) denotes the agent Minocyclin. This is only one
example of wordplay in sales promotion.

In experimental lyrics, anagram poems are found like the following one by
Francesco Gagliardi

Glück und Sommer weinen Waden, Röhricht neu,
Rad und Röcke suchen Note: Glühweinwimmern.
Randenhügel, Wut und Nock: wie Öre schimmern.
Wandertürme, Gnom in Köchern wund, eil scheu.

of type a1 c2 d2 e5 g1 h2 i2 k1 l1 m2 n5 o1 r3 s1 t1 u2 w2 ö1 ü1 .
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admonition domination alarmingly marginally
algorithms logarithms alienators senatorial
ancestries resistance antagonist stagnation
auctioning cautioning australian saturnalia
broadsides sideboards catalogued coagulated
catalogues coagulates certifying rectifying
collapsing scalloping compressed decompress
configures refocusing conserving conversing
contenting contingent coordinate decoration
countering recounting creativity reactivity
dealership leadership decimating medicating
decimation medication deductions discounted
denominate emendation denotation detonation
denouncers uncensored deposition positioned
descriptor predictors directions discretion
discoverer rediscover earthiness heartiness
egocentric geocentric enduringly underlying
enervating venerating enervation veneration
excitation intoxicate filtration flirtation
harmonicas maraschino impregnate permeating
impression permission impressive permissive
indiscreet iridescent introduces reductions
mouldering remoulding nectarines transience
ownerships shipowners percussion supersonic
persistent prettiness persisting springiest
pertaining repainting petitioner repetition
platitudes stipulated positional spoliation
procedures reproduces profounder underproof

Fig. 49. Ten-letter word anagrams (by Hugh Casement)

Among British intellectuals, anagrams are still popular today (Fig. 49). They
are also the subject of riddles in German weeklies:

IRI BRÄTER, GENF Briefträgerin
FRANK PEKL, REGEN Krankenpfleger
PEER ASTIL, MELK Kapellmeister
INGO DILMUR, PEINE Diplomingenieur
EMIL REST, GERA Lagermeister
KARL SORDORT, PEINE Personaldirektor
GUDRUN SCHRILL, HERNE Grundschullehrerin

6.3.2 Uniqueness. The question arises, whether from a heap of letters more
than one meaningful message can be constructed. Jonathan Swift already
answered this question when he pointed out in his satire Gulliver’s Travels,
that a malicious political enemy could interpret a harmless sentence like

OUR BROTHER TOM HATH JUST GOT THE PILES

by transposition (‘Anagrammatick Method’) as the conspirative message

Resist, — a Plot is brought home — The Tour.

Indeed, experience shows, and is supported by Shannon’s theory, that there
is no length for which an anagram must have a unique decryption.

Historically, it should be added that an early first form of transposition is
found in the ancient Greek skytale (σκυτάλε) that is known from the fifth
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century B.C.: a staff of wood, around which a strip of papyrus is wrapped.
The secret message is written on the papyrus down the length of the staff.
After the decline of classical culture and the collapse of the Roman empire,
the first encryption by transposition is found, according to Bernhard Bischoff,
in the mediæval handwriting of bored monks: here and there crab, vertical
writing, and play on words, often rather perfunctory.

Transposition lost its importance with the surge of mechanical cipher ma-
chines at the beginning of the 20th century, since it is hard for a mechanical
device to store a great number of letters. Things have changed since then.
Semiconductor technology now offers enough storage to encrypt effectively
with transposition, and tiny chips provide millions of bits, with very short
access time, for the price of a bus ticket. The 21st century will see trans-
position regain its true importance.



7 Polyalphabetic Encryption:
Families of Alphabets

Monoalphabetic encryption uses some encryption step (possibly a polygra-
phic one) over and over. All the encryption steps treated in Chapters 3–6
can be used monoalphabetically—in the examples this was tacitly assumed.
Genuine polyalphabetic encryption requires that the set X̌ (see Sect. 2.3) of
available encryption steps has at least two elements, i.e., that the cryptosys-
tem M has at least the cardinality θ = 2 . For the frequent case θ = N ,
where N = |V |, the French literature speaks of a chiffre carré.
The individual encryption steps can be of quite different nature; for example,
the cryptosystem M could consist of one or more simple substitutions and
one or more transpositions of some width. This could drive an unauthorized
professional decryptor crazy, since customarily all encryption steps within the
same cryptosystem should belong to the same narrow class—for example, all
substitutions, or all linear substitutions of the same width, or all transpo-
sitions. Frequently it is even required that all steps have equal encryption
width, and block encryption may be wanted for technical reasons.
The main problem is to characterize in a simple way many different encryp-
tion steps or, as one says, to generate many different alphabets. Surprisingly,
the imagination of inventors has so far left open many possibilities.

7.1 Iterated Substitutions

A natural idea is to build a cryptosystem by systematically deriving from one
encryption step (primary alphabet, German Referenzalphabet) other encryp-
tion steps. This we have seen for simple substitution in Sect. 3.2.4, where
families of derived alphabets were obtained by taking all shifts and raising to
all powers.
We shall see that both these families are constructed using the concept of
iterated substitution Si , defined by p Sj+1 = (p S) Sj for a necessarily
endomorphic (V = W ) substitution S . In fact, iterated substitution is pre-
dominant in generating accompanying alphabets.
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7.1.1 The endomorphic case. We concentrate our attention on the case
V

.≡Q, W
.≡Q . Let S : Qn≺−−−−�Qn . Then Si : Qn≺−−−−�Qn and we have

(ao) { Si : i ∈ Ù } , the group of powers of a mixed alphabet S.
With some substitutions P1 : V ≺−−−−�Qn and P2 : Qn≺−−−−�W , there is the set

(a) { P1S
iP2 : i ∈ Ù } where P1S

iP2 : V ≺−−−−�W

with the special cases (′) V =Qn, P1 = id and (′′) W =Qn, P2 = id .
Furthermore, with some additional substitution R : Qn≺−−−−�Qn , we have

(bo) { SiRS−i : i ∈ Ù } , the group of S-similarities of R .
Again, with some substitutions P1, P2 as above, there is the set

(b) { P1S
iRS−iP2 : i ∈ Ù } where P1S

iRS−iP2 : V ≺−−−−�W

The families are in any case finite, since Qn≺−−−−�Qn with finite | Q |= N
contains not more than (Nn) ! different permutations.
For S of the order h ≤ (Nn) ! , i.e., Sh = id and Si �= id for i < h , the
powers produce h different alphabets. Note, that h > Nn is possible: For
N =5 , q=1 , the substitution (in cycle notation) (ab)(cde) is of the order 6.
It may happen that h is rather small: For a self-reciprocal S , there is apart
from the identity id no other power of S .

7.1.2 Cyclic permutations. It is by no means necessary, but it may be
advantageous, to choose for S a cyclic permutation σ, of the order Nn .
The Nn powers of σ can be mechanized in this case, as already mentioned
in Sect. 3.2.8 (Fig. 28). If N is of the order of magnitude 25 , n = 2 will
rarely be surpassed. There are (Nn − 1) ! different cyclic permutations.

7.2 Cyclically Shifted and Rotated Alphabets

Once a standard alphabet in Q is distinguished, there is also a standard
alphabet fixed in Qn by lexicographic ordering. The cycle belonging to
this ordering (Sect. 3.2.3) and the corresponding substitution of the standard
alphabet are in the following denoted by ρ. The Pi and R above are then
functioning as primary alphabets.
7.2.1. With ρi for Si in Sect. 7.1.1 , we have the powered cycles

(ao) { ρi : i ∈ Ù } = { ρiρ : i ∈ Ù } = { ρρi : i ∈ Ù } ,
the group of shifted standard alphabets (French alphabets normalement par-
allèle, German verschobene Standardalphabete). Particular cases of (a) :
(a′) { ρiP : i ∈ Ù} is the set of horizontally shifted (mixed)

P -alphabets (French alphabets désordonné et parallèle) ,
(a′′) {Pρi : i ∈ Ù} is the set of vertically continued (mixed)

P -alphabets (French alphabets désordonné et étendu verticalement).
For the general case (Eyraud: alphabets non-normalement parallèles)
(a) {P1ρ

iP2 : i ∈ Ù} see Sect. 8.2.3 (and Sect. 19.5.3).
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The designations will become clear by a look at the tables for the families
of substitutions: With V = Q = W = Z26 and N = 26 , for the primary
alphabet P generated by the mnemonic password NEWYORKCITY,

a b c d e f g h i j k l m n o p q r s t u v w x y z
N E W Y O R K C I T A B D F G H J L M P Q S U V X Z

the set {ρiP : i ∈Ù} has the following table (in the form of a tabula recta,
i.e., with identical letters along the diagonals from left below to right above)

i a b c d e f g h i j k l m n o p q r s t u v w x y z

0 N E W Y O R K C I T A B D F G H J L M P Q S U V X Z

1 E W Y O R K C I T A B D F G H J L M P Q S U V X Z N

2 W Y O R K C I T A B D F G H J L M P Q S U V X Z N E

3 Y O R K C I T A B D F G H J L M P Q S U V X Z N E W

4 O R K C I T A B D F G H J L M P Q S U V X Z N E W Y

5 R K C I T A B D F G H J L M P Q S U V X Z N E W Y O
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

25 Z N E W Y O R K C I T A B D F G H J L M P Q S U V X

while the set { Pρi : i ∈ Ù} has the table

i a b c d e f g h i j k l m n o p q r s t u v w x y z

0 N E W Y O R K C I T A B D F G H J L M P Q S U V X Z

1 O F X Z P S L D J U B C E G H I K M N Q R T V W Y A

2 P G Y A Q T M E K V C D F H I J L N O R S U W X Z B

3 Q H Z B R U N F L W D E G I J K M O P S T V X Y A C

4 R I A C S V O G M X E F H J K L N P Q T U W Y Z B D

5 S J B D T W P H N Y F G I K L M O Q R U V X Z A C E
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

24 L C U W M P I A G R Y Z B D E F H J K N O Q S T V X

25 M D V X N Q J B H S Z A C E F G I K L O P R T U W Y

The horizontally shifted P -alphabets show the primary alphabet P in every
line, shifted from line to line by one position to the left; the vertically con-
tinued P -alphabets show the primary alphabet P in the first line only, and
it is continued vertically in the standard order.

7.2.2. Furthermore in Sect. 7.1.1 for the S-similarities of R, with ρi for Si,

(bo) { ρiRρ−i : i ∈ Ù }
is the group of rotated R-alphabets (the designation will be motivated in
Sect. 7.3).
For the particular case P1 =P, P2 =P−1 of (b) , there is

(b∗) { PρiRρ−iP−1 : i ∈ Ù }
the set of P -rotated (mixed) R-alphabets.
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Taking now for R the same primary alphabet NEWYORKCITY as above,
the set { ρiRρ−i : i ∈ Ù } has the table

i a b c d e f g h i j k l m n o p q r s t u v w x y z

0 N E W Y O R K C I T A B D F G H J L M P Q S U V X Z

1 D V X N Q J B H S Z A C E F G I K L O P R T U W Y M

2 U W M P I A G R Y Z B D E F H J K N O Q S T V X L C

3 V L O H Z F Q X Y A C D E G I J M N P R S U W K B T

4 K N G Y E P W X Z B C D F H I L M O Q R T V J A S U

5 M F X D O V W Y A B C E G H K L N P Q S U I Z R T J
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

21 X Z A C E S J B D T W P H N Y F G I K L M O Q R U V

22 Y Z B D R I A C S V O G M X E F H J K L N P Q T U W

23 Y A C Q H Z B R U N F L W D E G I J K M O P S T V X

24 Z B P G Y A Q T M E K V C D F H I J L N O R S U W X

25 A O F X Z P S L D J U B C E G H I K M N Q R T V W Y

The rotated or P -rotated R-alphabets show the primary alphabet R in the
first line only; along the diagonals from left below to right above the alphabet
turns up in the standard order.

7.2.3 Mechanization. The family of shifted primary alphabets can be me-
chanized, as mentioned in Sect. 3.2.7, by an Alberti cipher disk or a cipher
slide. For mechanization of rotated primary alphabets see Sect. 7.3. We shall
speak of ALBERTI encryption steps in the case of horizontally shifted P -
alphabets, of ROTOR encryption steps in the case of R-rotated standard
alphabets.

7.2.4 Cycle decomposition of an accompanying alphabet. Example:

For Q =
(

a b c d e
B ADEC

)
= (a b) (c d e) and ρ = (a b c d e) ,

one obtains

ρ Q =
(

a b c d e
b c d e a

) (
b c d e a
A DECB

)
=
(

a b c d e
A DECB

)
Q ρ =

(
a b c d e
B ADEC

) (
B ADEC
C BEAD

)
=
(

a b c d e
C BEAD

)
ρ Q ρ−1 =

(
a b c d e
ADECB

) (
A DECB
E CDBA

)
=
(

a b c d e
E CDBA

)
.

In the substitution notation the alphabets are in this example

i a b c d e

0 B A D E C
1 A D E C B
2 D E C B A
3 E C B A D
4 C B A D E

i a b c d e

0 B A D E C
1 C B E A D
2 D C A B E
3 E D B C A
4 A E C D B

i a b c d e

0 B A D E C
1 E C D B A
2 B C A E D
3 B E D C A
4 D C B E A
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In cycle notation one obtains
for the set of horizontally shifted Q-alphabets
{ (a b)(c d e) , (a)(b d c e) , (a d b e)(c) , (a e d)(b c) , (a c)(b)(d)(e) }
for the set of vertically continued Q-alphabets
{ (a b)(c d e) , (a c e d)(b) , (a d b c)(e) , (a e)(b d c) , (a)(b e)(c)(d) }
for the set of rotated Q-alphabets
{ (a b)(c d e) , (b c)(d e a) , (c d)(e a b) , (d e)(a b c) , (e a)(b c d) } .

From the theory of groups it is known that a similarity transformation ρiQρ−i

leaves the length of the cycles of a permutation Q invariant. All substitutions
from the family of R-rotated alphabets have the same cycle decomposition.
This has been called ‘The Main Theorem of Rotor Encryption’. For the
(horizontally or vertically) shifted P -alphabets, this is not the case.
In our case, the partition belonging to the cycle decomposition is 3 + 2 .
In the example of Sect. 7.2.2 , the partition is 10+8+6+1+1 , e.g., for i=0
the decomposition (a n f r l b e o g k)(c w u q j t p h )(d y x v s m )(i)(z) .

7.2.5 Size of the families. The number of different alphabets among the
accompanying ones is exactly Nn for (a), it is between 1 and Nn for (b),
depending on R . It is 1 if P is the identity; it is Nn , if ρjP �= Pρj for
j = 1 , 2 , . . . , Nn − 1 .

For small values of Nn , there are only few ‘rotors’ R fulfilling this condition.
For Nn = 4 and ρ = (a b c d) , there are only four maximal ‘rotor’ families:
{ (a b), (b c), (c d), (d a) } , { (a c b d), (b d c a), (c a d b), (d b a c) } ,
{ (a c b), (b d c), (c a d), (d b a) } , { (a b c), (b c d), (c d a), (d a b) } ;
for Nn = 3 and ρ = (a b c) only one : { (a b), (b c), (c a) } .

For Nn = 2 , there is no ‘rotor’ family of two members.

7.3 Rotor Crypto Machines

With the introduction of electric typewriters, electromechanical ciphering
machines came to the fore. For a realization of a fixed substitution P with
electric contacts, a switchboard may serve, with N entry sockets for the
plaintext characters and N exit sockets for the cryptotext characters, in-
ternally connected by N wires, Fig. 50 (a).
To obtain a realization by electric contacts for a family {Pρi} of shifted
P -alphabets, sliding contacts are put behind the exit sockets of the switch-
board, or rather the switchboard slides before a contact row, as shown in
Fig. 50 (b). In any case, flexible wires are needed, which leads to a problem
of mechanical breakage.
This can be avoided if a movable contact row is attached on the entry side as
well as on the exit side of the switchboard, coupling both rigidly. Sliding the
switchboard does it equally well, and now flexible wires are no longer needed.
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(a) (b) (c)

P Pρi ρ−iRρi

Fig. 50. Fixed substitution, shift and rotation
realized by electrical contacts

This is shown in Fig. 50 (c). Duplication of the contacts is not necessary any
longer, if a cyclically closed contact row, i.e., a movable switching drum (Ger-
man Walze), a rotor, is used. In this way, a realization of the family {ρ−iRρi}
is obtained, which gives it the name R-rotated (standard) alphabets.
Using slip-rings with a switching drum allows the realization of shifted P -
alphabets {Pρi} . This has been called more recently a half-rotor (Fig. 51).

Fig. 51.

‘Half-rotor’ of
Arvid Damm (1919)

7.3.1 Arthur Scherbius. On February 23, 1918, the
engineer and inventor Dr. Arthur Scherbius (October 30,
1878 – May 13, 1929), living at Berlin-Wilmersdorf, Hil-
degardstrasse 17, filed under the sign Sch 52638 IX/42 n
at the Reichspatentamt a patent application for a ‘Chif-
frierapparat’, an electric cipher machine, simpler and
more efficient (‘einfacher und leistungsfähiger ’) than the
ones hitherto known1 .
On April 15, 1918, Scherbius wrote to the Office of the
Imperial Navy (Reichs-Marineamt) and offered his inven-
tion for examination. A confidential position paper (on
July 16, 1918) of the Marineamt, Department D II came
to the conclusion that the cipher machine would electri-
cally transform simply by means of a keyboard the plain-
text (letters or numbers from a code book) into a cipher

1 The patent, supplemented by an application under the sign Sch 53189 IX/42 n on June
21, 1918, was granted rather late (July 8, 1925) under the number DRP 416219 for Scher-
bius’ company Gewerkschaft Securitas in Berlin, renamed in 1923 Chiffriermaschinen
A.G. (Berlin W 35, Steglitzer Str. 2). The patent application in the USA was made on
February 6, 1923; the US Patent No. 1,657,411 was granted in 1926. A British patent
No. 231502 was applied for on March 25, 1925 with German priority on March 26, 1924.
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script. The price for a single machine, including a coupled typewriter, was
given at around 4500 Reichsmark (about 1000 $) and the time for delivery was
8 weeks. The Imperial Navy stated that the device offered high security, even
if it fell into the hands of an enemy. But it did not buy the machines because
of the prevailing opinion that existing ciphering by hand was sufficient and
the use of machines was not worthwhile. Instead, the Navy suggested to the
German Auswärtiges Amt (Foreign Office) that they should examine the use
of the machine for diplomatic correspondence. They also declined the offer.

Fig. 52. Scherbius’ ENIGMA A of 1923

Fig. 53. Scherbius’ ENIGMA B of 1924 , with type-bar printing

In the early 1920s, Scherbius tried to exploit commercially his invention. In
the first models, ENIGMA A (Fig. 52) and ENIGMA B (Fig. 53), the type-
writer was an integral part. The ENIGMA A, using a type-wheel, was pre-
sented in 1923 at the International Postal Congress, held in Bern, and in 1924
at the International Postal Congress held in Stockholm. The ENIGMA B of
1924 used instead type-bars for capital letters and minuscules.

7.3.2 Rotors. The nucleus of Scherbius’ invention was what is called today
‘rotors’ in the form of wheels or drums—Scherbius used in 1918 the expression
‘Leitungszwischenträger’(Fig. 54), later he called it ‘Durchgangsräder’.

The idea of the electric contact-rotor originated before 1920 independently in
at least four places. According to Kahn, material from a patent hearing testi-
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Fig. 54. Rotoren (‘Durchgangsräder’, ‘Walzen’ ) with ten contacts from Scherbius’ pa-
tent application of 1918 and with 26 contacts from the ENIGMAC of 1925

Edward Hugh Hebern Arthur Scherbius Arvid Gerhard Damm

mony (US Patent Office Interference 77 716) shows that the American Edward
Hugh Hebern (1869 – 1952), who had in 1915 connected two electric typewrit-
ers monoalphabetically by 26 wires, made in 1917 the first drawings of a rotor
to change the connection mechanically and thus to have 26 alphabets avail-
able. He only filed for a US patent in 1921 and received one (No. 1 510 441)
at last in 1924. Thus, three other patents were filed earlier: by the German
Arthur Scherbius (1878–1929), German Patent 416 219 filed February 23,
1918, and then, almost in a dead heat, by the Dutchman Hugo Alexander
Koch (1870 – 1928), Netherlands Patent2 No. 10700 filed October 7, 1919, and
by the Swede Arvid Gerhard Damm(† 1927), Swedish Patent No. 52279 filed
October 10, 1919 (he invented half-rotors and influence letters).
None of these inventors found fortune or happiness. Hebern was treated very
badly by the US Navy in 1934 and later by the US Government; in 1941 he lost

2 The patent rights were transferred on May 5, 1922 to N.V. Ingenieursbureau Securitas;
in 1927, Scherbius’ company absorbed the patents. Karl de Leeuw disclosed in 2003
that Koch was only a figurehead for his brother-in-law, the patent attorney Huybrecht
Verhagen, who had ‘pinched’ the rotor idea from the Dutch Navy officers Theo A. van
Hengel (1875–1939) and R.P.C. Spengler (1875–1955)—they had a model built for the
Dutch Navy as early as 1915, two years before Hebern and three years before Scherbius.
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a patent interference case against International Business Machines. He had
little income when he died from a heart attack at the age of 82. Koch died in
1928. Scherbius suffered a fatal accident3; his company’s name, former-
ly Gewerkschaft Securitas, then Chiffriermaschinen Aktiengesellschaft, was
changed in 1934 to Heimsoeth & Rinke (Dr. Rudolf Heimsoeth and Elsbeth
Rinke, Berlin-Wilmersdorf, Uhlandstr. 136) and lasted at least until 1945.
Damm was an homme galant. He had moved in 1925 to Paris and died in 1927;
his company was taken over by Boris Hagelin (July 2, 1892 – Sept. 7, 1983),
who abandoned the half-rotor in 1935 and in 1939 renamed the company Ak-
tiebolaget Ingenjörsfirman Cryptoteknik. Damm is actually out of place here
in that he used his 5-contact half-rotors in pairs for a Polybios-type cipher.
In his patent application of 1918, Scherbius discussed multiple rotors, used
successively with the purpose to increase the number of generated substitu-
tion alphabets—with n rotors and a vocabulary of N characters they may
amount up to Nn. Likewise, Hebern used five rotors (two of which had a fixed
position). Scherbius proposed originally 10-contact rotors (N= 10), suited for
the superencryption of numeral codes, and 25-contact rotors (N= 25) for the
letters of the Latin alphabet (omitting j), and mentioned the cases of three
and, in the Navy proposal, of ten rotors. Later, in the first commercial models
ENIGMA A of 1923 (and ENIGMA B of 1924), he used four rotors. In this
case there is the family {R(i1,i2,i3,i4)} (i1, i2, i3, i4 ∈ {1, 2, ... , N}) , where

R(i1,i2,i3,i4) = ρ−i1 RN ρi1−i2 RM ρi2−i3 RL ρi3−i4 RK ρi4 .
For the ENIGMA A with N= 28 (normal alphabet with two additional char-
acters for spaces) there are 284 = 614656 different positions and hardly fewer
members provided RK , RL, RM and RN are suitably chosen.
With the ENIGMA C, introduced in 1925/1926, Scherbius left the provision
of a writing device and used, as already mentioned in the patent application,
glow-lamps in a display; the ENIGMA C was battery-operated (4.5 Volt) and
had in the jargon the name Glühlampentype. The cipher text was to be read
off character by character and written down by hand; it was then as a rule
sent by Morse wireless. The keyboard and the lamp field were alphabetic.

7.3.3 Reflector. When the commercial ENIGMA C of 1925/1926 was de-
signed, Scherbius’ colleague Willi Korn4 (patent filed March 21, 1926, Ger-
man Patent 452 194) presented the seemingly clever idea of introducing a re-
flector (German Umkehrwalze; in Bletchley Park sometimes misspelled Umk-
erwaltz and pronounced ‘Uncle Walter’). Since in this way each rotor came
twice into play, the misleading sentiment was that the resulting permutation
was better mixed and therefore the number of rotors proper could be reduced
to three. With these three, now exchangeable rotors, RL , RM , and RN , and

3 Actually, according to Wilhelm Fenner and Otto Leiberich, he committed suicide.
4 Korn gave the ENIGMA much of its modern form. He filed a number of patents, the

last German Patent No. 607 638 on March 5, 1930, after which there are in Berlin no
traces of Korn left. His last US patent was No. 1,938,028, issued on December 5, 1933.
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+ 4.5V
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S

Fig. 55. Electric current in a hypothetical machine with three rotors without a reflector
for push-button e and lamp H (or for push-button m and lamp S).

e

m

E

M

+ 4.5V
U RL RM RN S

Fig. 56. Electric current in a 3-rotor ENIGMAC with reflector U and stator S
for push-button e and lamp M (or for push-button m and lamp E).

a properly self-reciprocal substitution U (which requires N to be even), we
have the family {P(i1,i2,i3)} (i1, i2, i3, i4 ∈ {1, 2, ... , N}) , where

P(i1,i2,i3) = S(i1,i2,i3) U S−1
(i1,i2,i3)

and
S(i1,i2,i3) = ρ−i1 RN ρi1−i2 RM ρi2−i3 RL ρi3 .

All members of this family of KORN encryption steps are now properly self-
reciprocal permutations (see Sect. 3.2.1): N/2 pairs of letters are swapped.
Figures 55 and 56 show the electric current for the plaintext character e and
the corresponding cryptotext character H (without reflector), M (with reflec-
tor). S denotes the stator, which serves both as entry and as exit.
It was thought to be an advantage that encryption and decryption coincided
and a switch was no longer needed. The reflector solution, however, had the
consequence that no letter could be encrypted as itself. Ironically, this would
turn out in the end to be ‘a cryptologic disaster’ (Sects. 11.2.4, 14.5.1, 19.7.2).
Likewise, the fact that the electric current went through six rotors was by
some people wrongly interpreted as additional cryptanalytical security.
In the ENIGMA C (Fig. 57), ‘The Reciprocal ENIGMA’ (Hugh Foss), the re-
flector U could be inserted in two fixed positions. This and the six possible
permutations of the rotors provided 263· 2 · 6 = 210 912 initial settings with
hopefully the same number of resulting different substitution alphabets — the
number of all possible KORN encryption steps is 26!/(13! ·213) = 7.91 ·1012 .
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Fig. 57. ENIGMAC (Scherbius and Korn), 1925; righthand side: opened.
Alphabetic ordering of the keys

Fig. 58. ENIGMA D (Scherbius and Korn) 1927; righthand side: opened

The ENIGMA C (Hugh Foss: ‘Index’ machine) was replaced after two years by
the commercial ENIGMA D (Fig. 58) of 1927. Now the reflector could be set
in 26 positions like the three rotors; from the outside, it looked like another,
fourth rotor, the reflecting rotor U —but it did not move during ciphering.

Thus we have the family {P(i1,i2,i3,i4)} of genuine reflections, where
P(i1,i2,i3,i4) = S(i1,i2,i3,i4) U S−1

(i1,i2,i3,i4)
and

S(i1,i2,i3,i4) = ρ−i1 RN ρi1−i2 RM ρi2−i3 RL ρi3−i4 ,

with 264 · 6 = 2 741 856 initial settings.
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The commercial ENIGMA D (Welchman: ‘Glowlamp Machine’) was for the
first time furnished with exchangeable rotors; the machine was widely used
and went to Sweden, the Netherlands, Japan, Italy, Spain, UK, and the USA,
and was bought legally by the Polish Biuro Szyfrów. The keyboard was es-
sentially that of the standard German typewriter. Its successor, ENIGMA K,
was delivered 1938–1940 to the Swiss Army (US codename INDIGO). In the
later models for the Reichswehr, the reflecting rotor was fixed again (i4 =0).
The price of a single ENIGMA D was in 1928 about 600 Reichsmark ($ 140);
about a hundred ENIGMA K units were sold in 1941 for 760 Reichsmark each.
An ENIGMA was said to have been purchased in 1925 by Knox in Vienna.

7.3.4 “Regular” movement of the rotors. The ENIGMA had from the
very beginning a fixed key sequence generator, merely the starting position in
this key sequence was variable. It was determined by the ‘Grundstellung’ (ba-
sic wheel setting) of the rotors before beginning the encryption; the 3-letter
group shown in the windows (depending on the ring setting) was called the
‘indicator’. In the patent application of 1918, Scherbius advocated a counter-
like mechanism5, but in the ENIGMA A, B he used four Antriebsräder, with
11, 15, 17, 19 positions, with variable pitched gear drives; in the ENIGMA C
and in almost all later models he returned to the cyclometric movement of
the rotors: in the course of enciphering, the rotors (but not the reflector) were
advanced by pawls and ratchet wheel notches (however by gears and single-
toothed notches in the ENIGMA G). The rightmost rotor RN was moved by
one tooth at each enciphering step; this was called the “fast rotor”.
A truly irregular movement of the rotors did not take place, except that for
the rotors VI, VII and VIII of the Navy ENIGMA two notches were provided.

Fig. 59.
Funkschlüssel C of the Reichsmarine, 1926;
with additional vowels Ä, Ö, and Ü
(X bypassing the wheels).
Alphabetic ordering of the keys.
Three rotors are chosen out of five available ones.

7.3.5 Introduction of the ‘Steckerverbindung’. On July 15, 1928,
the Polish Cipher Bureau for the first time picked up ENIGMA-enciphered
radio signals from the Reichswehr. The GermanReichsmarine had started
experiments in 1925 with a 28-contact 3-rotor ENIGMA (Funkschlüssel C,

5 He wrote: “Der Transport der Zwischenleitungsträger kann auch, wie bei Zählwerken
[like that of counters], so erfolgen, daß z. B. Rotor 7 nach jeder vollen Umdrehung
Rotor 8 um einen Zahn weiterdreht, diese wieder in gleicher Weise Rotor 9 usw.”
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Febr. 1926, Fig. 59) with an alphabetically ordered keyboard comprising addi-
tional characters Ä, Ö, and Ü (X bypassed). The reflector could now be inser-
ted in four fixed positions, denoted by α, β, γ, δ . In 1933, minor modifications
were made to the Funkschlüssel C ; a 28-contact version including Ä, Ü was in
test use. In the Reichswehr models ENIGMA G (introduced on July 1, 1928
under Major, later Generaloberst, Rudolf Schmidt, 1925–1928 head of the
ReichswehrChiffrier-Stelle—his brother Hans-Thilo Schmidt turned out to be
a spy) and ENIGMA I (1930) there were again only 26 contacts and a key-
board similar to that of the standard German typewriter (up to the position of
the letter P); the connections from the keys to the contacts of the stator were
in alphabetic order. The reflector had one fixed position. There was also an
ENIGMA II with a typewriter; it was considered unpractical and little used.

Because of the cyclometric movement of the rotors, the middle and the slow
rotor are at rest during N steps of the fast rotor. If now a sufficiently long
fragment of ciphertext or codetext and corresponding plaintext were known
or could be guessed, there was a possibility for code breaking.

Therefore, the ENIGMA I of the Heer (introduced June 1, 1930), which be-
came later the common Wehrmacht ENIGMA, was protected by adding a
plugboard that provided for an additional (unnecessarily self-reciprocal) en-
try substitution T , called the Steckerverbindung (cross-plugging), and corre-
spondingly an exit substitution T−1 . This resulted in the

ENIGMA equation ci = pi T S(i1,i2,i3) U S−1
(i1,i2,i3)

T−1

between plaintext characters pi and cryptotext characters ci ; there was an
isomorphism (Sect. 2.6.3) between ci T Si and pi T Si , since

ci T S(i1,i2,i3) = pi T S(i1,i2,i3) U .

7.3.6 The ‘Wehrmacht’ version.When in 1934 the Reichsmarine and the
Heer agreed on a common version (Wehrmacht ENIGMA, ‘Service Enigma’),
it was under pressure from Colonel Erich Fellgiebel (1886–1944), later (from
1939) Major-General and Chief, OKW Signal Communications (Fig. 60).

The three rotors of the Reichsmarine (its name was changed in 1935 to Kriegs-
marine) ENIGMA (Funkschlüssel M, introduced in October 1934) could now
be selected respectively from a set of five (1934), seven (1938), or eight (1939)
rotors (moreover, they could be permuted). They were marked with the ro-
man numerals I, ... ,VIII . Before December 15, 1938, the Army (Heer) released
only three of the five rotors provided for their ENIGMA. The Air Force, too,
introduced on August 1, 1935 the Wehrmacht ENIGMA for its new Luftnach-
richtentruppe. Removing the exchangeable three rotors is shown in Fig. 61.

The railroad company (Deutsche Reichsbahn), the Post Office (Deutsche
Reichspost), and the Sicherheitsdienst (SD, “security service”, from Septem-
ber 1, 1937) used less-secure older models without a Steckerbrett (plugboard),
although, for example, messages concerning railroad transports in Russia
were liable to give many clues to the enemy.
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Fig. 60. 3-rotor Wehrmacht ENIGMA (1937)



120 7 Polyalphabetic Encryption : Families of Alphabets

Fig. 61.
The three removable rotors
of the Wehrmacht ENIGMA (1937)

The reflector (presumably marked “A”) of the Wehrmacht ENIGMA was
replaced on November 1, 1937 by Umkehrwalze“B”. In mid-1940, “C” turned
up, was rarely used and was withdrawn later. Then a ‘pluggable’ reflector
“D”, which could be rewired, was first observed on January 2, 1944 in traffic
to and from Norway. Fig. 62 shows a cipher document from 1944 of the Luft-
waffe ENIGMA, indicating that in 1944 the reflector “D”(Dora) was changed
every 10 days and that some Steckerverbindungen were changed every 8 hours.

Fig. 62. Cipher document No. 2744 of the Luftwaffe ENIGMA, presumably for
September 1944, showing a column ‘Steckerverbindungen an der Umkehrwalze’

A special device, the Uhr box (Plate M) was introduced in 1944 to replace the
steckering of the Wehrmacht ENIGMA plugboard by a non-selfreciprocal sub-
stitution, which also could be changed easily by turning the knob (presumably
every hour). Despite the extra security it added, it was not widely used.
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The rotors could be inserted in arbitrary order into the ENIGMA. Until the
end of 1935, this wheel order (German Walzenlage) and the cross-plugging
(German Steckerverbindung) were fixed for three months. Beginning Jan-
uary 1, 1936, they changed every month; from October 1, 1936, every day.
Later, during the Second World War, they were changed every eight hours.
The question is, why not earlier?

Another invention Paul Bernstein made already for the early ENIGMAs did
not develop into a cryptological fiasco: The ring which allowed the rotor
position (alphabet ring, index ring, German Sperr-Ring) to be read was made
movable, like a tyre mounted round the rim of the rotor core, and its position
with respect to the core, the ring setting (German Ringstellung), could be
fixed with a pin, see Plate K . Starting with the ENIGMA I, the ratchet notch
was rigidly affixed to the alphabet ring (Korn). This gave increased security.

7.3.7 The 4-rotor ENIGMA of the Navy. The Kriegsmarine, as it was
renamed in 1935, always suspicious that its Funkschlüssel M 3 could be com-
promised, introduced on February 1, 1942 for the key net TRITON a new ver-
sion Funkschlüssel M 4 (Plate I), with a fourth rotor marked β and therefore
called Griechenwalze. The extra rotor could be set, but was not moved during
encryption. The 4-rotor ENIGMA M 4 was first used only by the U-boats in
the Atlantic. By July 1, 1943, an additional rotor γ came into use. To ensure
compatibility of the new 4-rotor ENIGMA with the old 3-rotor ENIGMA, the
old reflector “B” or “C” was split into a fixed thin reflecting disk “B thin” or
“C thin”and the turnable additional rotor β or γ , respectively.6 A mixed
combination “B thin” and γ or “C thin” and β occurred occasionally.

Fig. 63. From the Wehrmacht ENIGMA operating manual, dated June 8, 1937. Setting
the ring position and rotor order were in the Navy the prerogative of an officer.
(Basic wheel setting was later expressed by letters, A = 01, B = 02, etc.)

6 Rohwer presumed in 1978 a further ‘Greek rotor’ α ; Deavours and Kruh (1985) followed
him. To this DavidKahn: “No α rotor was ever recovered”. In fact, splitting the
reflector “A”, which had disappeared in 1937, did not make sense.
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7.3.8 ENIGMA operating manual. Figure 63 shows a section from the
ENIGMA operating manual of 1937, with the daily changing rotor order,
ring settings, and cross-pluggings. The Grundstellung (basic wheel setting)
characterizes the situation of the three rotors when enciphering is started.
The Kenngruppen had no proper cryptological meaning.
With 6 (Heer from 1934), 60 (Navy from 1934, Heer and Luftwaffe from 1938),
or 336 (Navy from 1939) different rotor orders, with 263=17576 different ring
settings, and with 1.51·1014 different cross-pluggings when using 10 stecker,
the number of variations of the ‘external’ key tokens was so big that naive
people in the Wehrmacht staff had been deeply impressed.
The Grundstellung was set out in a key list and was to be used for every
single message, but the message setting (Spruchschlüssel) was not determined
a priori, but dealt with by a key negotiation, as discussed below. To use the
ENIGMA for this purpose was understandable, since the ENIGMA machine
was considered invincible; and was possibly considered by the authorities
as particularly clever, though an enciphering of higher security would have
been necessary. But neither Heer nor Luftwaffe even provided for additional
measures to protect the enciphered Spruchschlüssel; only the Navy used (from
1937) a bigram superencipherment on the basis of bigram tables (Sect. 4.1.3).
Until 1938 the following procedure held: With a general daily key, comprising
the rotor order, the cross-plugging, the ring setting, and the general basic
wheel setting of the three rotors, the sender chose ‘at random’ a 3-letter group,
enciphered it with the general basic wheel setting, and sent this “enciphered
indicator”; the recipient deciphered it and it served on both sides as the
Spruchschlüssel (“plain indicator”) for the message that followed.
But to prevent garbling in the case of noisy wireless transmissions, the
Spruchschlüssel was first doubled, and the resulting 6-letter group was en-
ciphered with the general basic wheel setting, a precaution that had al-
ready been recommended by Chiffriermaschinen A.G. for the commercial
ENIGMA C.
The feeling (or hints obtained by intelligence) that this key negotiation was
not or was no longer safe precipitated a new procedure, introduced on Septem-
ber 15, 1938. No longer was a general basic wheel setting used for the whole
day, but every message preamble contained a freely chosen 3-letter group
basic wheel setting transmitted in plain7, followed by the Spruchschlüssel
(‘indicator’), still doubled and enciphered with this basic wheel setting.
To give an example: If a transmission starts with RTJWA HWIK. ... , then rtj
is the plain basic wheel setting and WAHWIK is the doubled indicator enci-
phered with this basic wheel setting. The recipient determines with rtj from
WAH WIK the doubled plain indicator (which is to have the pattern 123 123 );
the message is deciphered with the first three letters as the indicator.

7 The daily changing of the Ringstellung made this transmission as secure (or insecure)
as the previous use of the daily-changing general basic wheel setting.
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Unfortunately, the new procedure did not remove the weakness of the old
one: The doubling was continued, and this meant a dependence among the
first and the fourth, the second and the fifth, and the third and the sixth
letter, and offered a possibility for a break. Not until May 1, 1940 was
the weakness eliminated8. That the indicator doubling was unnecessary was
confirmed when the wireless traffic still ran smoothly. The damage, however,
had already occurred and was irreparable.
Misgivings that the ENIGMA enciphering was no longer secure arose within
the German leadership, in particular that of the Navy, now and then in the
course of the war. However, the warnings were repeatedly diverted; merely
half-hearted steps were taken, like the introduction of the variable wiring of
the pluggable reflector or the ‘Uhr’, and this rather lately.

7.3.9 Dissemination of rotor machines. The Heer used ENIGMAs from
regiments upwards. An estimated total of 200 000 (Johnson) is certainly far
too high; 30 000 is a low estimate given by Deavours and Kruh. Erskine states
that at least 41 000 were built. A total of nearly 50 000 may be right. After
the Second World War, the victorious countries sold captured ENIGMA ma-
chines, at that time still widely thought to be secure, to developing countries.
In Britain, too, rotor machines were used in the Second World War: TYPEX,
developed since 1934 by O. G. W. Lywood et al. as a private venture, was
quite an improved version of the commercial ENIGMA—some models had
a pluggable reflector, and instead of the plugboard there was an entrance
substitution performed by two fixed rotors, wisely not self-reciprocal, see
Sect. 22.2.7—but the disastrous reflector (see Sect. 7.3.3) was not abolished.
In the USA, under the early influence of William Friedman (1891–1969) and
on the basis of the Hebern development, there was in the early 1930s a more
independent line of rotor machines, leading in 1933 to the M-134-T2, then
to the M-134-A (SIGMYC), and in 1936 to the M-134-C (SIGABA) of the
Army, named CSP889 (ECM Mark II) by the Navy (for CCM, see Sect. 8.5.5).
The Germans obviously did not succeed in breaking the SIGABA, which had
5 turning cipher rotors with irregular movements (see Sect. 8.5.5). It had
been made watertight by Frank Rowlett (1908–1998), Friedman’s colleague.
An interesting postwar variant of the ENIGMA with seven rotors and a fixed
reflector was built and marketed by the Italian company Ottico Meccanica
Italiana (OMI) in Rome. The Swiss army and diplomatic corps used from
1947 on an ENIGMA variant NEMA (‘Neue Maschine’) Modell 45, developed
by Hugo Hadwiger (1908–1981), Heinrich Weber (1908–1997) and Paul Glur,
built by Zellweger A.G., Uster. It had ten rotors: four (out of six) enciphering
ones and a reflector, the other ones served for rotor movement only.
Based on US experiences, and similar to TYPEX, was the rotor machine
KL-7 of NATO (see Sect. 8.5.4), in use until the 1960s.

8 The enciphering of the doubled indicator was continued for the 4-rotor Abwehr ENIGMA
(a version of the ENIGMA G) until January 1, 1944, when some improvement was made.



124 7 Polyalphabetic Encryption : Families of Alphabets

An exceptional role was played by the German Abwehr, the Intelligence Ser-
vice of the German Armed Forces, as far as ENIGMA goes: It used a ver-
sion of the old 3-rotor ENIGMA G of 1928 with a pinion/cog-wheel move-
ment of the rotors, with 11, 15 and 17 notches on the index rings (‘11-15-
17 ENIGMA’), and naturally without a plugboard—following rather closely
Willi Korn’s German Patents No. 534 947 (1928) and No. 524 754 (1929).
A few specimens of a 3-rotor ENIGMA (‘ENIGMA T’), likewise without a
plugboard, but with five-notched rotors were destined for the Japanese Navy,
but did not get out of the harbour and were captured by the Allies in Brittany.

7.3.10 Substitutions of rotors, reflectors and stators.

Wehrmacht ENIGMA (Cipher A. Deavours, Louis Kruh, Ralph Erskine,
Frode Weierud, Philip Marks):

Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z Notch

Exits: Rotor I E K M F L G D Q V Z N T OWY H X U S P A I B R C J Y

Rotor II A J D K S I R U X B L HWT M C Q G Z N P Y F V O E M

Rotor III B D F H J L C P R T X V Z N Y E I WG A K M U S Q O D

Rotor IV E S O V P Z J A Y Q U I R H X L N F T G K D C MWB R

Rotor V V Z B R G I T Y U P S D N H L X AWM J Q O F E C K H

Rotor VI J P G V O U M F Y Q B E N H Z R D K A S X L I C TW H, U

Rotor VII N Z J H G R C X M Y S WB O U F A I V L P E K Q D T H, U

Rotor VIII F K Q H T L X O C B J S P D Z R A M E WN I U Y G V H,U

Reflector A E J M Z A L Y X V BW F C R Q U O N T S P I K H G D

Reflector B Y R U H Q S L D P X N G O K M I E B F Z CWV J A T

Reflector C F V P J I A O Y E D R Z XWG C T K U Q S B N M H L

Rotor β L E Y J V C N I XW P B Q M D R T A K Z G F U H O S

Reflector B thin E N K Q A U YW J I C O P B L M D X Z V F T H R G S

Rotor γ F S O K A N U E R H M B T I Y CW L Q P Z X V G J D

Reflector C thin R D O B J N T K V E H M L F CW Z A X G Y I P S U Q

Stator a b c d e f g h i j k l m n o p q r s t u v w x y z
Note: β, followed by B thin, followed by β−1, equals B ;
e.g., β(A)=L , B thin(L)=O , β−1(O)=Y ; thus B(A)=Y .

ENIGMA D (National Archives Record Group No. 457, Heinz Ulbricht):
Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z Notch

Exits: Rotor I H RWY I P C G V X L A F U J B K O D T S M Z N Q E G

Rotor II S E WY M G D L O I U B T X K V J P A F Z C N H R Q M

Rotor III L V A D Z P C G Y B H X Q S U E T K F I J WM O R N V

Reflector I M E T C G F R A Y S Q B Z XW L H K D V U P O J N

Stator q w e r t z u i o a s d f g h j k p y x c v b n m l
Reichsbahn ENIGMA (David Hamer, Geoff Sullivan, Frode Weierud):
Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z Notch

Exits: Rotor I J G D Q O X U S C A M I F R V T P N E WK B L Z Y H V

Rotor II N T Z P S F B O K MWR C J D I V L A E Y U X H G Q M

Rotor III J V I U B H T C D Y A K E Q Z P O S G X N R MW F L G

Reflector Q Y H O G N E C V P U Z T F D J A XWM K I S R B L

Stator q w e r t z u i o a s d f g h j k p y x c v b n m l
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Swiss ENIGMA K (David H. Hamer, Geoff Sullivan, Frode Weierud):
Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z Notch

Exits: Rotor I P E Z U O H X S C V F M T B G L R I N Q J WA Y D K G

Rotor II Z O U E S Y D K F W P C I Q X H M V B L G N J R A T M

Rotor III E H R V X G A O B Q U S I M Z F L Y NWK T P D J C V

Reflector I M E T C G F R A Y S Q B Z XW L H K D V U P O J N

Stator q w e r t z u i o a s d f g h j k p y x c v b n m l

ENIGMA T (‘Tirpitz’) (David Hamer, Geoff Sullivan, Frode Weierud):
Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z Notches

Exits: Rotor I K P T Y U E L O C V G R F Q D A N J M B S WH Z X I EHMSY

Rotor II U P H Z L W E Q M T D J X C A K S O I G V B Y F N R EHNTZ

Rotor III Q U D L Y R F E K O N V Z A XWH M G P J B S I C T EHMSY

Rotor IV C I WT B K X N R E S P F L Y D A G V H Q U O J Z M EHNTZ

Rotor V U A X G I S N J B V E R D Y L F Z WT P C K O H M Q GKNSZ

Rotor VI X F U Z G A L V H C N Y S E WQ T D M R B K P I O J FMQUY

Rotor VII B J V F T X P L N A Y O Z I KWG D Q E R U C H S M GKNSZ

Rotor VIII Y M T P N Z HWK O D A J X E L U Q V G C B I S F R FMQUY

Reflector G E K P B T A U M O C N I L J D X Z Y F HWV Q S R

Stator k z r o u q h y a i g b l w v s t d x f p n m c j e

Abwehr ENIGMA No. G-312, version of ENIGMA G (David H. Hamer):
Respective entry A B C D E F G H I J K L M N O P Q R S T U VWX Y Z

Exits: Rotor I D M TW S I L R U Y Q N K F E J C A Z B P G X O H V

Rotor II H Q Z G P J T M O B L N C I F D Y AWV E U S R K X
Rotor III U Q N T L S Z F M R E H D P X K I B V Y G J CWO A

Reflector R U L Q M Z J S Y G O C E T KWD A H N B X P V I F

Stator q w e r t z u i o a s d f g h j k p y x c v b n m l
Note: ‘Notch’ stands for ‘location of the notch with respect to the listed alphabet letter on
the index ring’. ENIGMA G-312 (‘11-15-17 machine’) is multi-notched in the following way

A B C D E F G H I J K L M N O P Q R S T U VWX Y Z
Rotor I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Rotor II ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Rotor III ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

All wiring measures are made—per convention—with Ringstellung ‘A’ (Hamer).

7.3.11 Cycle decompositions. The rotors of the ENIGMA D, the Wehr-
macht ENIGMA, and some others show the following cycle decompositions
of the substitutions, which simplify identification:

ENIGMA D Wehrmacht ENIGMA
Rotor I 25+1 Rotor I 10+4+4+3+2+2+1
Rotor II 17+7+2 RotorII 8+7+3+2+2+2+1+1
Rotor III 19+6+1 Rotor III 17+8+1

Rotor IV 22+2+2Reichsbahn ENIGMA Rotor V 11+9+6
Rotor I 13+8+2+2+1 Rotor VI 14+8+4
Rotor II 15+8+2+1 Rotor VII 26
Rotor III 15+10+1 Rotor VIII 17+3+3+3
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Swiss ENIGMA K Abwehr ENIGMA No. G-312
Rotor I 26 Rotor I 20+6
Rotor II 21+3+2 Rotor II 10+7+7+2
Rotor III 14+10+2 Rotor III 22+4

7.3.12 Listing of the rotated ENIGMA alphabets. For the derivation
of the rotated alphabets see 7.2.2 . For example, rotor I of the Wehrmacht
ENIGMA generates the following rotated alphabets (with ring setting A for
core position i = 0 in Sect. 7.2.2, (bo):

Ring setting i a b c d e f g h i j k l m n o p q r s t u v w x y z

A 0 E KM F L G D Q V Z N T O W Y H X U S P A I B R C J
B 1 J L E K F C P U Y M S N V X G W T R O Z H A Q B I D
C 2 K D J E B O T X L R M U W F V S Q N Y G Z P A H C I
D 3 C I D A N S WK Q L T V E U R P M X F Y O Z G B H J
E 4 H C Z M R V J P K S U D T Q O L W E X N Y F A G I B
F 5 B Y L Q U I O J R T C S P N K V D WM X E Z F H A G
G 6 X K P T H N I Q S B R O M J U C V L W D Y E G Z F A
H 7 J O S G M H P R A Q N L I T B U K V C X D F Y E Z W
I 8 N R F L G O Q Z P M K H S A T J U B W C E X D Y V I
J 9 Q E K F N P Y O L J G R Z S I T A V B D W C X U H M
K 10 D J E M O X N K I F Q Y R H S Z U A C V B W T G L P
L 11 I D L N WM J H E P X Q G R Y T Z B U A V S F KO C
M 12 C KM V L I G D OW P F Q X S Y A T Z U R E J N B H
N 13 J L U K H F C N V O E P W R X Z S Y T Q D I M AG B
O 14 K T J G E B M U N D O V Q W Y R X S P C H L Z F A I
P 15 S I F D A L T M C N U P V X Q W R O B G K Y E Z H J
Q 16 H E C Z K S L B M Z O U W P V Q N A F J X D Y G I R
R 17 D B Y J R K A L S N T V O U P M Z E I W C X F HQ G
S 18 A X I Q J Z K R M S U N T O L Y D H V B W E G P F C
T 19 WH P I Y J Q L R T M S N K X C G U A V D F O E B Z
U 20 G O H X I P K Q S L R M J W B F T Z U C E N D A Y V
V 21 N GW H O J P R K Q L I V A E S Y T B D M C Z X U F
W 22 F V G N I O Q J P K H U Z D R X S A C L B Y WT E M
X 23 U F M H N P I O J G T Y C Q W R Z B K A X V S D L E
Y 24 E L G M O H N I F S X B P V Q Y A J Z W U R C KD T
Z 25 K F L N G M H E R W A O U P X Z I Y V T Q B J C S D

Rotor I of the Wehrmacht ENIGMA generates the cycles

A : ( a e l t p h q x r u ) ( b k n w) ( cmo y ) ( d f g ) ( i v ) ( j z ) ( s )
B : ( z d k s o g p wq t ) ( a j mv ) ( b l n x ) ( c e f ) ( h u ) ( i y ) ( r )
C : ( y c j r n f o v p s ) ( z i l u ) ( a kmw) ( b d e ) ( g t ) ( h x ) ( q )
D : ( x b i q me n u o r ) ( y h k t ) ( z j l v ) ( a c d ) ( f s ) ( g w) ( p )
E : ( w a h p l dmt n q ) ( x g j s ) ( y i k u ) ( z b c ) ( e r ) ( f v ) ( o )
...

...
...

...
...

...
...

...
Y : ( d h ow s k t a u x ) ( e n q z ) ( f p r b ) ( g i j ) ( l y ) ( mc ) ( v )
Y : ( c g n v r j s z t w) ( dmp y ) ( e o q a ) ( f h i ) ( k x ) ( l b ) ( u )
Z : ( b f mu q i r y s v ) ( c l o x ) ( d n p z ) ( e g h ) ( j w) ( k a ) ( t )
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7.4 Shifted Standard Alphabets: Vigenère and Beaufort

Referring to Sect. 7.2.1, choosing in (a′) P =ρ , gives {ρi ρ : i ∈ Ù} , the set
of horizontally shifted standard alphabets, which coincides, see (ao), with
the set {ρi : i ∈ Ù} of powers of the standard alphabet, and, likewise, see
(a′′), with the set of vertically continued standard alphabets. This case was
treated by the Benedictine abbot Johannes Heidenberg from Trittenheim on
the Moselle river, latinized Trithemius (1462–1516), in the fifth book of his
Polygraphiae in a standard regular table (‘tabula recta’, Fig. 64, French table
régulière). For its mechanization, a Silvestri disk (Fig. 26) can be used, which
carries also on the inner ring the standard alphabet, as well as a disk with the
cycle ρ of the standard alphabet and a movable window, since powers are
to be formed. The literature speaks of VIGENÈRE encryption steps. More
correctly, this trivial case should be named after Trithemius. The secondary
literature of the 19th century was unjust to Vigenère insofar as only shifted
standard alphabets were connected with his name, while his proposal actually
was not limited to this: Vigenère wrote in the table heading of a tabula recta
a mixed alphabet; obviously this was equivalent to Alberti’s disk.
The set {ρi : i ∈ Ù} is implemented electrically by a half-rotor (Fig. 51).

Fig. 64. ‘tabula recta’ of Trithemius
(Original in the State Library Munich)
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7.4.1 VIGENÈRE. Evidently, a VIGENÈRE encryption step is a linear
substitution: The cycle ρ defines the linear cyclic quasiordering of V n and
thus an addition modulo Nn (Chap. 5); the set of alphabets {ρi : i ∈ Ù} cor-
responds to the addition of shift numbers Ak (French: nombre de décalage):

{Ak : k ∈ ŸNn } with Ak : Ak(x) = y
Nn

� x + k . x − y + k
Nn

� 0

The decryption step A−1
k : A−1

k (y) = x
Nn

� y − k

amounts to a subtraction of the shift number. The case n=1 is predominant.
Such ‘cryptographic equations’ were used about 1846 by Charles Babbage
(British Museum, Add. Ms. 37205, Folio 59), but he did not publish them.

VIGENÈRE encryption comes sometimes in disguise: In 1913, when Woodrow
Wilson was President, the US State Department and the US Army introduced
a VIGENÈRE variant named ‘Larrabee’, using twenty-six cards, each one
showing the standard plaintext alphabet Z26 and the cryptotext alphabet
obtained by adding the shift number (the ‘additive’). The Italian cifrario tas-
cabile (Sect. 2.4.1) also amounts to a disguised VIGENÈRE: It is a polyalpha-
betic Z36 −−−�Z2

10 with shifted standard alphabets and with keys from Z26 .

A ‘variant’, attributed by Caspar Schott in the Schola steganographia (1659)
to his contemporary Count Gronsfeld turns out to be nothing more than a
truncated VIGENÈRE, using only ten alphabets, which were designated by
the figures 0, ... , 9 . Cryptographically this brings nothing but disadvantages.
Jules Verne describes it in his novel La Jangada, 1881. A group of French anar-
chists used it in 1892, and the cipher was broken by Étienne Bazeries. Ludwig
Föppl (1887–1976), in 1915, broke the Gronsfeld ciphers of the Royal Navy.
Lewis Carroll had a VIGENÈRE with five alphabets, designated by a, e, i, o, u.

7.4.2 BEAUFORT. The case of fixed q = q′ = Nn − 1 yields the family

{Bk : k ∈ ŸNn } with Bk : Bk(x) = y
Nn

� k − x . x + y − k
Nn

� 0

The literature calls this BEAUFORT encryption, although it was studied
already by Giovanni Sestri in 1710 and rediscovered in 1857 by Admiral Sir
Francis Beaufort (1774–1857), who is famous for the scale of wind speed.

The decryption step B−1
k : B−1

k (y) = x
Nn

� k − y

coincides with the encryption step, so the BEAUFORT encryption step (the
‘subtractor’ step) is self-reciprocal (Kahn: ‘reciprocal within itself’) but not

properly: x is fixpoint of Bk , if and only if k−x
Nn

� x, i.e., x+x = 2·x Nn

� k .

In the classical cases of VIGENÈRE and BEAUFORT encryption steps,
naturally n = 1. Incidentally, it was de Viaris9, a man oriented towards
mathematics, who in 1888 published the interpretation of the VIGENÈRE

9 Marquis Gaëtan Henri Léon de Viaris, 1847–1901, French cryptologist. De Viaris inven-
ted in about 1885 one of the first printing cipher machines—according to Kahn, the very
first were invented presumably before 1874 by Émile Vinay and Joseph Gaussin.
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and BEAUFORT encryption steps as addition and subtraction modulo N ,
after Kerckhoffs in 1883 (without knowing of the studies of Babbage) had
shown the mathematical relations between VIGENÈRE and BEAUFORT.
Before this time, and partly even later, the processes had been explained by
the slides which were in practical use (Saint-Cyr slide).
With any fixed slide position, a VIGENÈRE encryption step turns into a
normal CAESAR encryption step, while a BEAUFORT encryption step turns
into a CAESAR encryption step for the reversed alphabet.

7.4.3 INVERSE KEY VIGENÈRE. In the English literature the
inverse key VIGENÈRE (encryption step and decryption step interchanged)

{Ek : k ∈ ŸNn } with Ek : Ek(x) = y
Nn

� x−k (= x+(−k) = −(k−x))

and the decryption step E−1
k : E−1

k (y) = x
Nn

� y + k x−y−k
Nn

� 0
is also called ‘variant Beaufort’ (Gaines); in French, ‘variante à l’allemande’.
It was proposed in 1858 by Lewis Carroll and described in 1888 by de Viaris.

7.4.4 INVERSE KEY BEAUFORT. The self-reciprocal inverse key

BEAUFORT Fk : Fk(x) = y =
Nn

� −k−x = −(k+x) , x+y+k
Nn

� 0
also described by de Viaris and by Hill, was rediscovered and named ‘variant
Vigenère’ in 1972 by Ole I. Franksen. It is also named ‘U.S.Army’ (C. Pierce).

7.4.5 BELLASO and PORTA. Before 1553, Giovan Batista Bellaso pro-
posed splitting a mixed primary alphabet with an even number N = 2ν of
characters into two halves; forming ν pairs defines a properly self-reciprocal
substitution. By shifting the second half of the pairs, a family of up to ν sub-
stitutions is generated. Bellaso gave an example for V =Z20 with five such
substitutions (BELLASO encryption steps), designated homophonically by
20 key letters arranged in quads.
Giambattista Della Porta (Giovanni Battista Porta), in 1563, used a stan-
dard primary alphabet V =Z22 and 11 such substitution alphabets (PORTA
encryption steps) designated homophonically by 22 key letters arranged in
pairs (Fig. 65). A similar arrangement with ten alphabets, and V =Z20, was
used in 1589 by G. B. and M. Argenti (see Fig. 82). However, a system of
PORTA encryption steps is not as safe as a system of BELLASO encryption
steps—similarly for a system of VIGENÈRE steps versus ALBERTI steps.

7.4.6 EYRAUD. Another family of accompanying encryption steps, in-
volving decimation, is suggested in Sect. 5.6 (EYRAUD encryption steps)

{Cq : q ∈ ŸNn ∧ gcd(q, Nn) = 1 } with Cq : Cq(x)
Nn

� q · x .

The decryption step, using q′ such that q ·q′ Nn

� 1 , is C−1
q : C−1

q (x)
Nn

� q′ ·x .
This is the family of decimated alphabets (French alphabets chevauchants,
Eyraud), the properly decimated alphabets are those with |q | �= 1 .
The most general linear substitution in the ring ŸNn is a composition of
VIGENÈRE and EYRAUD encryption steps:

Tq,i : Tq,i(x)
Nn

� q · x + i = Ai(Cq(x)) .
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Fig. 65.
Eleven self-reciprocal
alphabets for PORTA
encryption

7.5 Unrelated Alphabets

Della Porta robbed himself of the fame of being the inventor of a general
polyalphabetic substitution based on a number θ ( θ ≤ (Nn )! ) of ‘mutually
unrelated (independent)’ mixed alphabets, that is to say, of alphabets which
are not related one to another in any such a simple algebraic way as shift
or similarity transformation (Kahn: “The order of the letters in the tableau
may be arranged arbitrarily, provided no letter is omitted”).

7.5.1 PERMUTE. Although Porta described in his De furtivis literarum
notis this case of several mixed alphabets (French alphabets incohérents, Ger-
man unabhängige Alphabete), he did not illustrate it except with shifted self-
reciprocal alphabets like the ones in Fig. 65. Eyraud is inclined to give this
glory solely to the Frenchman Vigenère. Likewise, Luigi Sacco, author of
the excellent Manuale di crittografia (3rd ed., Rome 1947), favored Italy
(“trying to prove that everything was Italian first”, Kahn). Charles J. Mendel-
sohn (1880–1939), who was beyond favoritism, praised Porta as “the outstan-
ding cryptographer of the Renaissance.” When dealing with most general
permutations, we shall speak of a family of PERMUTE encryption steps.
A table for general polyalphabetic substitution with unrelated alphabets
could look like this (note the construction principle from a key phrase, namely,

passwords serve to select a method from a class of methods and keys
especially to select encryptions se ... , forming groups of, say, ten letters):
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c h a p t e r l v n b d f g i j k m o q s u w x y z
C P A S W O R D E V T B C F G H I J K L M N Q U X Y Z
R N P Q R U V W X Y Z O S E L C T A M H D B F G I J K
Y L S E T B D G H I J K N P Q U V W X Y Z F R O M A C
P V W X Z H O D S A N K E Y P B C F G I J L M Q R T U
T F G H J K M P Q R U V W X Z E C I A L Y T O S N B D
O Y P T I O N S E A B D F G H J K L M Q U V W X Z C R...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

7.5.2 Gripenstierna. General polyalphabetic substitution with unrelated
alphabets is present in the little known ciphering device of 1786, built by
the Swedish baron Fredrik Gripenstierna (1728–1804) for King Gustav III
of Sweden (Fig. 66), reconstructed by Crypto AG, Zug (Switzerland) from
documents discovered by Sven Wäsström in the State Archive Stockholm.
The device had 57 disks, each one for a different (fixed) bipartite simple
substitution Z26−−−−� Z2

10 . Considered as a polygraphic substitution with a
width of 57, permutation of the disks gave the family the immense number of
57 ! ≈ 4.05 · 1076 alphabets. Even if used with unchanged order of the disks
for a message of several hundred characters or for several such messages, the
cryptosystem was far better than anything else around at that time.

Fig. 66. First known ciphering device of Baron Fredrik Gripenstierna
(Crypto AG, Drawing by Bengt Beckman 1976)
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Likewise, in 1799, the Roman Catholic priest Johann Baptist Andres (1770–
1823) described the use of a table with 26 unrelated mixed alphabets, to be
selected periodically according to a key.
In 1915, the Swedish inventor Arvid Damm conceived a device somewhat
along these lines, using a number of exchangeable bands with unrelated mixed
alphabets in an arrangement on a drum parallel to its axis (A-21 : Fig. 67).
Next to the bands was a straight edge for the plaintext alphabet; after each
step the drum was moved one step. The straight edge for the plaintext
alphabet could be brought into two positions, which were changed with a
relatively short period. This cryptosystem was far inferior to Gripenstierna’s.

Fig. 67. A-21 (1915) by Arvid Damm (A.B. Cryptograph, Stockholm)

Polyalphabetic encryption with unrelated alphabets was used in the First
World War by a German radio station for messages to a sabotage group in
North Africa (“für GOD” system), as well as by the US Air Force and the
Royal Air Force in the Second World War for air-ground traffic (SYKO)—and
on both occasions it was insecure. SYKO consisted of thirty self-reciprocal
alphabets, printed on cards—the same old “Larrabee” idea (Sect. 7.4.1). The
alphabets were used in some cyclic order—the encipherer using an indicator
(‘pointer’) to define the beginning—for a whole day. That was far too long
and was the reason for the weakness of an otherwise good system.

7.5.3 MULTIPLEX. Restricted to full cyclic per-
mutations, polyalphabetic encryption with unrelated
alphabets has found classical use in the form of a spe-
cial ciphering device, the cylinder used by Jefferson
(between 1790 and 1800) and reinvented in 1891 by
Bazeries. The cyclic substitutions are represented one
by one as a cycle at the rim of a thin cylinder (French
rondelle). Jefferson ordered 36 such cylinders (each
one with a mixed Z26 ) into a long cylinder; Bazeries
used 20 cylinders (each one with a mixed Z25 ), as
shown by Fig. 19.
The great cryptologist William Friedman called these
families of unrelated cycles ‘multiplex systems.’

Thomas Jefferson
(1743–1826)
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1 a b c d e f g h i j k l m n o p q r s t u v x y z
2 b c d f g h j k l m n p q r s t v x z a e i o u y
3 a e b c d f g h i o j k l m n p u y q r s t v x z
4 z y x v u t s r q p o n m l k j i h g f e d c b a
5 y u z x v t s r o i q p n m l k e a j h g f d c b
6 z x v t s r q p n m l k j h g f d c b y u o i e a
7 a l o n s e f t d p r i j u g v b c h k m q x y z
8 b i e n h u r x l s p a v d t o y m c f g j k q z
9 c h a r y b d e t s l f g i j k m n o p q u v x z

10 d i e u p r o t g l a f n c b h j k m q s v x y z
11 e v i t z l s c o u r a n d b f g h j k m p q x y
12 f o r m e z l s a i c u x b d g h j k n p q t v y
13 g l o i r e m t d n s a u x b c f h j k p q v y z
14 h o n e u r t p a i b c d f g j k l m q s v x y z
15 i n s t r u e z l a j b c d f g h k m o p q v x y
16 j a i m e l o g n f r t h u b c d k p q s v x y z
17 k y r i e l s o n a b c d f g h j m p q t u v x z
18 l h o m e p r s t d i u a b c f g j k n q v x y z
19 m o n t e z a c h v l b d f g i j k p q r s u x y
20 n o u s t e l a c f b d g h i j k m p q r v x y z

Fig. 68. The twenty cycles of Bazeries

Fourteen of the twenty cycles Bazeries used—they are found in Fig. 68—
originated from whimsical dicta, passwords like

Allons enfants de la patrie, le jour de gloire est arrivé
Bienheureux les pauvres d’esprit, le royaume des Cieux
Charybde et Scilla
Dieu protège la France
Évitez les courants d’air
Formez les faisceaux
Gloire immortelle de nos äıeux
Honneur et Patrie
Instruisez la jeunesse
J’aime l’oignon frit à l’huile
Kyrie eleison
L’homme propose et Dieu dispose
Montez à cheval
Nous tenons la clef

Bazeries was not successful in convincing the French état-major général to
accept his invention—de Viaris (Sect. 14.3.1) succeeded in showing how to
break messages encrypted with the cylinder if the alphabets were known, a
realistic assumption in the military combat situation (Sect. 11.2.3). Appar-
ently, Bazeries did not know that Jefferson long before had had the same
idea, and most likely—he died in 1931, at the age of 85—he did not learn of
the late vindication of his proposal in 1922 by the US Army. A device with
thirteen cylinders was proposed in 1900 by the Italian Colonel Oliver Ducros.
The cylinders of Jefferson and Bazeries allowed the encrypted text to be read
off (Fig. 21) not only in the next, but in an arbitrarily chosen i-th line (the
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“i-th generatrix”). Thus, the encryption was polyphonic. The authorized
decryptor, after having set the cryptotext, simply looked for a line that struck
the eye. For unauthorized decryption, this complication was less harmful than
one would naively think (Sect. 14.3.1).
Normally, the order of the cylinders was left unchanged for a whole message,
even for several messages, or for a predetermined period, such as a day.
Instead of cylinders, strips with a duplication of the alphabet can be used.
Such a ciphering device was proposed in 1893 by the Frenchman Arthur
J. Hermann. It was propagated in 1914 by Captain, later Colonel Parker
Hitt, referring to Bazeries. He also had no success at first. Meanwhile,
in 1917, Russell Willson, a naval lieutenant, also invented a strip device,
the NCB (Navy Code Box), which was used in the US Navy at least until
1935. But the US Army turned after all to the Jefferson cylinder; the famous
M-94, introduced in 1922 under the influence of Friedman after substantial
improvements had been made in the alphabets by Colonel Mauborgne10,
then head of the Signal Corps’ research and engineering division. It had 25
thin aluminum cylinders the size of a silver dollar, turning on a spindle 110
mm long. The M-94 (Plate D, Fig. 69) was declared obsolete in 1943, when
sufficient M-209s (Sect. 4.4.8) were available.

Étienne Bazeries Parker Hitt Joseph O.Mauborgne

In 1934, M-138, a strip version, was adopted; one hundred strips were avail-
able and thirty were used at a time. The improved M-138-A from 1938 served
military officers and diplomats. It was thought to be so secure from unautho-
rized decryption that a radio signal from Roosevelt to Churchill, immediately
after the Atlantic Conference in August 1941, was sent via M-138-A . This
caused very much concern for the distrustful Roosevelt, who was cryptolo-
gically experienced and used Navy cryptosystems ‘for matters of utmost
secrecy’—Churchill was not well informed as far as encryption security goes.
While the Japanese seemingly were not able to break the American strip

10 It was the same Mauborgne who had in 1918 improved Vernam’s bitwise encryption
through the introduction of endless and senseless keys (‘one-time keys’), see Sect. 8.8.2.
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Fig. 69. Cryptographer
assembling M-94

cipher, the Germans did: Hans Rohrbach in 1944 (Sect. 14.3.6) broke it
without having access to the alphabets. (His success did not last long, for
soon afterwards the USA made a change to the SIGTOT Vernam-type ma-
chines.) Plate E shows the version M-138-T4 with 25 strips used at a time.
The US State Department system ‘O-2’ that Rohrbach had defeated used
from fifty available strips thirty at a time, namely, two groups of fifteen
strips each. Here was a risk: The total number of available strips should be
considerably larger than the period, i.e., the number of strips used at a time.
By the way, the US Navy used as a successor to the Cipher Box the ciphering
device CSP 642, also with thirty strips. The Japanese seized some of these
and took great pains to break messages, without success—presumably they
had not studied the methods of de Viaris and Friedman (Sect. 14.3).
For cylinder and strip cipher devices, we shall follow Friedman and denote
the encryption steps as MULTIPLEX encryption steps. They are special,
i.e., fully cyclic, PERMUTE encryption steps.

7.5.4 The Latin square requirement. In the special case θ ≤ N it can
be required that the N permuted alphabets of N characters each, written
row by row, have the following property: in no column does a character
occur more than once (Eyraud: ‘alphabets réellement non-parallèles’). In the
case θ = N , the alphabets form a ‘Latin square’ in the sense that also in
every column each character occurs just once. This requirement (with the
insufficient justification that it allows the table to be turned around) was
already mentioned in the Geheimschreibekunst of Johann Baptist Andres in
1799 (see Sect. 7.5.2) who also gave an example with his table. The tabula
recta trivially fulfills the requirement, but its alphabets are not unrelated.
The requirement can be postulated for the permuted alphabets belonging to
the cycles of a multiplex system (Sect. 7.5.3) with the effect of preventing the
de Viaris attack (Sect. 14.3.1) . Cycles derived from mnemonic passwords are
unlikely to qualify, in fact the permuted alphabets belonging to the cycles
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a b c d e f g h i j k l m n o p q r s t u v x y z

1 b c d e f g h i j k l m n o p q r s t u v x y z a
2 e c d f i g h j o k l m n p u q r s t v y x z b a
3 e c d f b g h i o k l m n p j u r s t v y x z q a
4 z a b c d e f g h i j k l m n o p q r s t u v x y
5 j y b c a d f g q h e k l m i n p o r s z t v u x
6 z y b c a d f g e h j k l m i n p q r s o t v u x
7 l c h p f t v k j u m o q s n r x i e d g b y z a
8 v i f t n g j u e k q s c h y a z x p o r d l m b
9 r d h e t g i a j k m f n o p q u y l s v x z b c
10 f h b i u n l j e k m a q c t r s o v g p x y z d
11 n f o b v g h j t k m s p d u q x a c z r i y e l
12 i d u g z o h j c k n s e p r q t m a v x y b f l
13 u c f n m h l j r k p o t s i q v e a d x y b z g
14 i c d f u g j o b k l m q e n a s t v p r x y z h
15 j c d f z g h k n b m a o s p q v u t r e x y i l
16 i c d k l r n u m a p o e f g q s t v h b x y z j
17 b c d f l g h j e m y s p a n q t i o u v x z r k
18 b c f i p g j o u k n h e q m r v s t d a x y z l
19 c d h f z g i v j k p b o t n q r s u e x l y m a
20 c d f g l b h i j k m a p o u q r v t e s x y z n

Table 2. The 20 permuted alphabets corresponding to the cycles of Bazeries

of Bazeries (Table 2) show a peculiar effect: most columns have one or two
letters occurring frequently. It is clear that many missing letters help to make
a break. The alphabets belonging to the cycles of Bazeries—irrespective of
how they are supplemented by five more—cannot give a Latin square.

Usually, a standard alphabet of N characters is chosen for the first row and
for the first column of a Latin square. For N = 2 and N = 3 there are only
the trivial solutions of a tabula recta,

a b a b c
b a b c a

c a b

For N = 4 there are, apart from the tabula recta, three more of these ‘re-
duced’ Latin squares:

a b c d a b c d a b c d a b c d
b c d a b d a c b a d c b a d c
c d a b c a d b c d b a c d a b
d a b c d c b a d c a b d c b a

The numbers grow fast: 56 for N = 5 (L. Euler 1782), 9408 for N = 6
(M. Frolow 1890), 169 42080 for N = 7 (A. Sade 1949), 53 52814 01856 for
N = 8 (M. B. Wells 1967). For N = 9 there are 377 59757 09642 58816 re-
duced Latin squares, as calculated by S. E. Bammel and J. Rothstein in 1975 ,
For N = 10 there are 75807 21483 16013 28114 89280 (E. Rogoyski 1990), for
N = 11 there are 5363 93777 32773 71298 11967 35407 71840 reduced Latin
squares (B. D. McKay and I. M. Wanless 2004).
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Two examples of Latin squares with N =10 and Z10 ={0, 1, 2, . . . , 9} are:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1 5 7 2 8 9 0 3 4 6 1 4 3 2 0 9 8 5 6 7
2 4 6 1 3 8 9 0 5 7 2 6 5 4 3 0 9 8 7 1
3 0 5 7 2 4 8 9 6 1 3 8 7 6 5 4 0 9 1 2
4 9 0 6 1 3 5 8 7 2 4 9 8 1 7 6 5 0 2 3
5 8 9 0 7 2 4 6 1 3 5 0 9 8 2 1 7 6 3 4
6 7 8 9 0 1 3 5 2 4 6 7 0 9 8 3 2 1 4 5
7 6 1 8 9 0 2 4 3 5 7 2 1 0 9 8 4 3 5 6
8 3 4 5 6 7 1 2 9 0 8 3 4 5 6 7 1 2 9 0
9 2 3 4 5 6 7 1 0 8 9 5 6 7 1 2 3 4 0 8

Table 3 shows 26 alphabets attributed to Mauborgne. They almost form a
Latin square for N =26 . Why Mauborgne provided for the three exceptions
in alphabet 16 is unknown.

0 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c e j i v d t g f z r h a l w k x p q y u n s m o
2 c a d e h i z f j k t m o p u q x w b l v y s r g n
3 d g z k p y e s n u o a j x m h r t c v b w l f q i
4 e i b c d g j l f h m k r w q t v u a n o p y z x s
5 f r y o m n a c t b d w z q p i u h l j k x e g s v
6 g j i y t k p w x s v u e d c o f n q a r m b l z h
7 h n f u z m s x k e p c q i g v t o y w l r a j d b
8 i w v x r z t p h o c q g s b j e y u d m f k a n l
9 j x r s f h y g v d q p b l i m o a k z n t c w u e

10 k d a f l j h o c g e b t m n r s q v p x z i y w u
11 l e g i j b k u z a r t s o h n p f x m w q d v c y
12 m y u v w l c q s t x h n f a z g d r b j e o i p k
13 n m j h a e x b l i g d k c r f y p w s z o q u v t
14 o l t w g a n z u v j e f y d k h s m x q i p b r c
15 p v x r n q u i y z s j a t w b d l g c e h f o k m
16 q t s e o p i d m n f x w u k y j v h g b l z c a r
17 r k w p u t q e b x l n y v f c i m z h s a g d o j
18 s o n m q u v a w r y g c e z l b k d f i j x h t p
19 t s m z k x w v r y u f i g j d a b e o p c h n l q
20 u p k g s c f j o w a y d h v e l z n r t b m q i x
21 v f l q y s o r p m h z u k x a c g j i d n t e b w
22 w h o l b d m k e q n i x r t u z j f y c s v p a g
23 x z p t v o b m q c w s l j y g n e i u f d r k h a
24 y q h a c r l n d p b o v z s x w i t e g k u m j f
25 z u q n x w r y a l i v p b e s m c o k h g j t f d

Table 3. Almost Latin square for N=26 alphabets (Mauborgne). A cyclic permutation
of the three boldface letters in line 16 establishes a correct Latin square.

Note also that rotated alphabets (Sect. 7.2.2)—in contrast to shifted alpha-
bets (Sect. 7.2.1)—usually (in particular for N ≥ 6) do not form a Latin
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square—see, for example, Sect. 7.3.12, where the first column lacks the nine
letters L, M, O, P, R, T, V, Y, Z.

7.5.5 Estimations. Simple arithmetic formulas for the number l(N) of
reduced Latin squares of N rows and columns have not been given so far.
Note that l(9) ≈ 3.78 · 1017, l(10) ≈ 7.58 · 1024, l(11) ≈ 5.36 · 1033

Erdős (1913–1996) and Kaplanski conjectured in 1946 that asymptotically
l(N) � N · (N !)N−2/eN ·(N−1)/2

( l(9) � 1.73 · 1024 , l(10) � 8.61 · 1033 , l(11) � 3.68 · 1045 ).
This estimate is not very useful, for l(11) it is wrong by 12 powers of ten.
For N ≤ 10, empirically a pretty good upper bound is

l(N) ≤
√

((N − 1)!)N−1

However, it is no longer an upper bound for l(11):
l(9) ≈ 3.78 · 1017 < 2.64 · 1018 , l(10) ≈ 7.58 · 1024 < 1.04 · 1025 ,

but l(11) ≈ 5.36 · 1033 > 6.29 · 1032 .
A very crude lower bound (Heise) is

l(N) ≥ 2! · 3! · 4! · . . . · (N − 2)! :
l(9) > 1.25 · 1011, l(10) > 5.06 · 1015, l(11) > 1.83 · 1021 .

For l(15), a value of 1.5 · 1086 has been estimated (B. D. McKay) . For l(26),
a value in the neighborhood of 10400 may be expected.
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No message is safe in cipher unless the key phrase
is comparable in length with the message itself.

Parker Hitt 1914

8.1 Early Methods with Periodic Keys

8.1.1 Alberti. The earliest attempts at polyalphabetic encryption can be
found in the manuscript Trattati in cifra of Leone Battista Alberti (1404–
1472), an essay of 25 pages he wrote in 1466 or 1467 for his friend Leonardo
Dato, the papal secretary. The Latin original De cifris (manuscript in the Va-
tican Archives—many times copied) is reproduced in Aloys Meister, Die Ge-
heimschrift im Dienste der Päpstlichen Kurie, Paderborn, Schöningh, 1906.
Alberti was not only an architect, painter, music composer, and organ player,
but also a great Renaissance scholar. He knew how to break a simple sub-
stitution cipher, and so he had thoughts on how to avoid this. He proposed
changing the substitution alphabet after every three or four words, “intro-
ducing a new meaning of the cipher letters.” For this purpose he invented a
device, the turnable cipher disk (Fig. 26), which made quite a number of de-
rived substitution alphabets available. Three or four words is on average 18
letters. Thus, Alberti unconsciously stayed below Shannon’s unicity distance
(Sect. 12.6) for simple substitution. This was great progress compared to the
then common use of homophones: While in a homophonic simple substitu-
tion Z25 −−−� Z2

10 the bigrams 89 , 43 , 57 , and 64 could mean the letter
/a/ , now every bigram of figures could mean /a/ —depending on its position
in the text. Of course, the encryptor and decryptor had identical disks.
Alberti suggested two different systems of using his disk; Luigi Sacco men-
tioned only the first, and David Kahn only the second. Sacco, an Italian
cryptologist and Eyraud, a French one, give the following explanation: A
particular letter, say /b/, is agreed upon as an indicator (French index ). The
encryptor inserts in front of every part of the text that is to be encrypted with
a new alphabet an arbitrary choice among the four figures 1 ... 4 . Whenever
a figure has been enciphered, the new position of the turnable disk is de-
termined by juxtaposing the index with the cipher equivalent of this figure.
The decryptor knows that when a figure appears in the decrypted plaintext,
his next step is to turn the disk and set the cryptotext letter against the
index . By the way, this procedure is the first instance of covert key commu-
nication, so important with modern encryption machines.
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Kahn explained the use of the figures on Alberti’s disk as a superencryption
of the quaternary code introduced by Alberti as well: a code of 336 groups
of two, three and four of the figures 1 ... 4 , to be interspersed within literal
text. Alberti (see Sect. 4.4.2) mentioned also ordering the code for encryption
in words and for decryption in code groups—an early two-part code.
By introducing polyalphabetic encryption and superencrypted code, Alberti
may be called the father of modern cryptology, without disrespect for the
architect of the Palazzo Pitti, the churches Sant’ Andrea at Mantua, Santa
Maria Novella at Florence, and the Tempio Malatestiana at Rimini. These
works established his fame, but his cryptologic relevance was forgotten for a
long time.

8.1.2 Trithemius. While Alberti changed the alphabet after every three or
four words, Trithemius proposed already in Vol. V of his Polygraphiæ (1508–
1518) to proceed after every letter to the next alphabet. He did so, however,
according to a regular, periodic progression—just line by line of his tabula
recta. Thus, his method was with respect to this far inferior to that of Alberti.
On the other hand, he used all available alphabets before an alphabet was
used a second time. Following Kahn, this is called a “progressive key” crypto-
system—not to be confused with the expression “running key” (Sect. 2.3.3)
introduced by Friedman. Modern cipher machines display a special liking for
progressive encryption, but use many more than two dozen alphabets. More
about this in Sect. 8.4.3 .
Trithemius’ encryption was a fixed cryptosystem with a period of 24; it can
be considered a monoalphabetic polygraphic encryption of width 24 . One
would not believe that such a method would be used professionally in the
20th century. Actually, it was even used with period 3 (followed by a sim-
ple columnar transposition) in 1914 by the Germans on the Western front.
The French called it ABC—in today’s language it is a periodic VIGENÈRE
encryption with special keyABC—and liked it, of course (Sect. 2.1.1).
Della Porta then showed in 1602 how a Trithemius encryption can be attacked
in special cases: If the plaintext contains three alphabetically consecutive
letters like pon in pondus, they give a triple letter in the cryptotext.
Neither Alberti nor Trithemius used key words in connection with polyal-
phabetic encryption. Giovan Battista Bellaso was the first (1553) to denote
the encryption steps consecutively with letters A, B, . . ., Z and to use
a keytext to select the alphabets—either by turning the cipher disk or by
choosing a line in a table. His keytext consisted of rather long phrases like
OPTARE MELIORA and VIRTUTI OMNIA PARENT , to be repeated if
necessary. Such a repeated key leads to a periodic polyalphabetic (mono-
graphic) encryption (Sect. 2.3.3). Still using the standard alphabet only, the
combinatorial complexity Z of this method is Nd for keys with d letters,
for the polygraphic case of width n it is Z = (Nn)d = Nn·d .
Let Md denote a system of periodic encryptions with key sequences of period d.
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8.2 ‘Double Key’

8.2.1 Bellaso and Della Porta again. Bellaso, in 1555, combined the
use of a keyword with the use of a mixed alphabet derived from a pass-
word and other ones derived from it by shifts. This decisive step was further
propagated in 1563 by 28-year-old Giambattista Della Porta (1535–1615) in
his De furtivis literarum notis, a book Kahn calls “extraordinary, with fresh-
ness, charm, and ability to instruct.”
Since the password determining the mixed alphabet was already called the
key, it became customary to speak of a ‘double cipher’ (in the French ter-
minology, this is alive even today, substitution à double clef ), but this is now
obsolete. Kahn writes: “Givierge was even then [1920s] calling polyalphabetic
systems by the almost obfuscatory ‘double substitution’ which tells absolutely
nothing at all about the system.” Givierge speaks of clef principale for the
‘actual key’. The password is sometimes called ‘second key’.
The combinatorial complexity of this method for keys with d letters and an
arbitrary mixed alphabet is for simple (monographic) encryption N ! ·Nd−1 ,
for the polygraphic case of width n it is (Nn) ! · (Nn)d−1 .
Instead of a disk, a table can be used, of course. It would read for the case
of Alberti’s disk in Fig. 26 (with {ρ−iP : i ∈ Ù} ):

a b c d e f g i l m n o p q r s t v x z 1 2 3 4
0 D L G A Z E N B O S F C H T Y Q I X K V P & M R

1 R D L G A Z E N B O S F C H T Y Q I X K V P & M

2 M R D L G A Z E N B O S F C H T Y Q I X K V P &

3 & M R D L G A Z E N B O S F C H T Y Q I X K V P
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

The decryption steps are obviously obtained, if the mixed alphabet of the
cryptotext characters in the line i = 0 is put atop a tabula recta of the
plaintext characters, in our example (with {P−1ρi : i ∈ Ù} ):

D L G A Z E N B O S F C H T Y Q I X K V P &M R

0 a b c d e f g i l m n o p q r s t v x z 1 2 3 4
1 b c d e f g i l m n o p q r s t v x z 1 2 3 4 a
2 c d e f g i l m n o p q r s t v x z 1 2 3 4 a b
3 d e f g i l m n o p q r s t v x z 1 2 3 4 a b c...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

8.2.2 Vigenère. It is just this connection of a tabula recta with an ar-
bitrary substitution (cf. Sect. 7.4) that was proposed in 1585 by Vigenère.
Proposing the use of keys as well, he obtained the full power of ALBERTI
encryption steps. He also recognized how important it was to choose quite
long key words for making cryptanalysis difficult.
Blaise de Vigenère was born April 5, 1523 in Saint-Pourçain, “halfway be-
tween Paris and Marseilles”, writes Kahn with American liberality. He went
to the Diet of Worms as a very young secretary, and subsequent travels
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through Europe in diplomatic missions widened his experience; then for the
rest of his life he served the Duke of Nevers. He read Trithemius, Bellaso,
Cardano, and Della Porta. In 1570, at the age of 47, he concentrated fully
on writing; until his death in 1596 he wrote on everything on earth, even a
Traicté des Comètes. He wrote his Traicté des Chiffres at age 62 in 1585,
“despite the distraction of a year-old baby daughter,” as Kahn writes. In
1570 Vigenère had married Marie Varé, who was many years younger. The
cryptologic book had more than 600 pages and contained a lot more than
cryptography—Japanese ideograms, alchemy, magic, kabbalah, recipes for
making gold; but also a reliable, precise reflection of the status of cryptol-
ogy at that time. Discussing polyalphabetic encryption, he followed Alberti
and Trithemius in the use of alphabets obtained by shifts, and marked the
rows by key characters as Bellaso and Della Porta had done for their self-
reciprocal alphabet. Altogether, he gave the picture of polyalphabetic simple
substitution its modern form.

8.2.3 A ‘treble key’ (French triple clef ) is obtained, if two primary alphabets
are combined with a keyed iterated substitution; for example, if for given P1,
P2 the case (a) in Sect. 7.2.1 is taken into account, i.e., the set of alphabets
{P1ρ

iP2 : i ∈ Ù} (Sect. 19.5.3). Vigenère had gone into this case by de-
noting the VIGENÈRE encryption steps with a mixed alphabet of key letters.

8.3 Vernam Encryption

Modern communication channels work in a binary alphabet Z2 = {O,L} or
Ÿ2 = {0,1} . Encrypting the symbols of the International Teletype Alphabet
CCITT No. 2 can be seen as a polygraphic (quinpartite) binary encoding with
N =2 and n=5 ; for the encryption of bytes, i.e., of 8-bit characters, which
often serve in today’s computers as basic units, we have the case N =2 and
n=8 of binary octograms, for blocks of 8 bytes N =2 and n=64 .
Restricted to VIGENÈRE encryption steps, there are 32 for Ÿ

5
2 and 256 for

Ÿ
8
2; their execution as addition modulo 32 or modulo 256 requires a cyclic

adder with a width of 5 bits or 8 bits. A suitable binary circuitry (with
n = 5) is shown in Fig. 70. Larger microprocessors today allow even 64-bit
addition and can directly encrypt byte octograms.
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8.3.1 Bitwise encryption. On the other hand, a VIGENÈRE encryption
step can be executed bit by bit. This extreme case of a bitwise encryp-
tion will become particularly important later. If a bitwise binary encryption
Ÿ2−−−−�Ÿ2 is a mapping, it is a permutation of the two characters 0 and 1 ;

the identity O : 0 �→ 0
1 �→ 1

and the reflection L : 0 �→ 1
1 �→ 0

are the only encryption steps (VERNAM encryption steps). They coincide
with the VIGENÈRE and BEAUFORT steps +0 and +1 . The encryption
is necessarily self-reciprocal, but not properly self-reciprocal. |M |= 2 is the
smallest integer that allows a polyalphabetic encryption. Thus, the key of a
VERNAM encryption is generated by a finite {O ,L}-word that is periodically
repeated, or it is an infinite {O ,L}-sequence like O L L O L O O L L O . . . .
Since in Ÿ2 the identity O can be performed by the addition of 0 and the re-
flection L by the addition of 1 , the encryption Ÿ2−−−−� Ÿ2 is a linear trans-
formation. Addition in Ÿ2 , addition modulo 2 , frequently denoted by ⊕ ,
coincides with the Boolean operation ↔ (Exclusive Or), which is also called
‘noncarrying binary addition’, since it is the sum output of a half-adder.

8.3.2 Vernam. The idea of realizing these two encryption steps by electric
contacts came in 1917 (before Lester S. Hill) to a young employee of AT & T
in New York, Gilbert S. Vernam (1890–1960).1

Vernam constructed for a commercial teletypewriter a binary VIGENÈRE
encryption supplement. The key was punched on normal 5-channel teletype
tape that could be linked to form a rather long loop. By double encryp-
tion with short loops of 999 and 1000 characters, Lyman F. Morehouse, in
Vernam’s team, obtained a key that was 999000 characters long and, more
important, was ‘senseless’ . Vernam applied on September 13, 1918 for a US
patent and obtained it in 1919 under the number 1 310 719. On the commer-
cial level, it was not successful; codes were more in demand. But the idea
was adopted in professional diplomatic and military cryptology; among others
(see Sect. 8.8.3) in the US Army SIGTOT machine and also in the Siemens
SFM T 43 (British code name THRASHER, Swedish code name QEKY).

8.3.3 Mutilated carry. Transition from a VIGENÈRE encryption step in
Ÿ2n (performed by addition of (a1 a2 a3 . . . an) in the binary system) to n
polyalphabetic VERNAM encryption steps (that is, VIGENÈRE encryption
steps in Ÿ2 with addition of a1 , of a2 , . . . , of an) amounts to dismantling
the carry part of the electronic binary addition circuitry (‘wrong addition’).
The same goes for VIGENÈRE encryption steps in Ÿ10n , performed by ad-
dition modulo 10n of numbers from {0, . . . 10n−1} . For a mechanical desk
calculator, transition to n VIGENÈRE encryption steps in Ÿ10 amounts
to dismantling the mechanical carry device (Sect. 5.7); such a mutilated desk
calculator performs polyalphabetic encryption over its full working width.

1 Vernam was a restless inventor, he obtained 65 patents of all kinds. He died in 1960 of
Parkinson’s disease.
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8.4 Quasi-nonperiodic Keys

8.4.1 Polyalphabetic encryption considered arduous. Despite the
cryptanalytic security it offered when used properly, periodic polyalphabetic
encryption with long keys found it difficult to win against the nomenclators.
It was first used in exceptional cases only: in the Papal Curia in 1590, where it
was broken by Chorrin, a decryptor of Henri IV; and by the Cardinal de Retz
in 1654 for communications with the Prince of Condé (Louis II of Bourbon)
before the outbreak of the Huguenot War, when it was broken by Guy Joly
who guessed the key word, which was the preferred method. In 1791 Marie
Antoinette used polyalphabetic encryption in her exchange of amatory and
conspiratorial letters (Sect. 2.1.1). Her lover from 1783, the Swedish Count
Axel von Fersen, concocted a Porta-like assembly of 23 self-reciprocal alpha-
bets (Fig. 71). Axel von Fersen was cautious and did not use obvious mne-
monic words but mots vides like DEPUIS, VOTRE . It was not to be blamed
on cryptanalysis that the escape of Louis XVI and Marie Antoinette ended
at the bridge of Varennes, for none of their messages had been decrypted.

A (ab)(cd) (ef)(gh)(i k)(lm) (no) (pq) (rs) (tu)(xy)(z&)
B (bk)(du) (ei) (f l) (gn)(ho)(my)(ps)(qx) (rt) (ac)(&z)
C (l r) (ad)(bg)(cz)(s&)(ek) (fm) (ht) (ix) (np)(oq)(uy)
...

...
...

...
...

...
...

...
...

...
...

...
...

Fig. 71. Marie Antoinette’s polyalphabetic self-reciprocal encryption

Before it was mechanized, polyalphabetic substitution had a reputation for
being cumbersome and prone to error. William Blair wrote in an 1819 en-
cyclopædia article: “polyalphabetic substitution requires too much time and
by the least mistake in writing is so confounded ... .”
The same complaint is found in a 17th-century Brussels book, Traitté de
l’art de dechiffrer : “... takes too long to encipher them, dropping of a single
ciphertext letter garbles the message from that point on ... .”
8.4.2 Polyalphabetic encryption considered safe. However, polyal-
phabetic substitution was also reputed to be unbreakable. Matteo Argenti
wrote, “The key cipher is the noblest and the greatest in the world, the most
secure and faithful that never was there a man who could find it out.”
Until the 19th century, the only genuine break occurred when trivial alpha-
bets with shifts were used, words of the plaintext could be guessed, and a
short key could be reconstructed—not to speak of guessing the key word, as
Della Porta and the Argentis succeeded in doing. This changed only with the
rise of systematic solution in the middle of the 19th century.
To exclude these possibilities of attack, it is advisable (Parker Hitt) to take
the period length of the keytext to be considerably larger than the whole
plaintext (quasi-nonperiodic key), or to use a nonperiodic key (Sect. 8.7).

8.4.3 Progressive encryption. But if quasi-nonperiodic encryption is
envisaged, it is advisable for the sake of security to use many more alphabets
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than one usually has key characters. These alphabets should also be se-
lected less regularly than mnemonic keywords provide for (Kahn: “irregular
sequence of alphabets”). Moreover, if a great number of alphabets are avail-
able, it may be worth using progressive encryption in the following sense:

Progressive encryption is a periodic polyalphabetic encryption that uses no
alphabet again before all other alphabets have been used. Thus, the period d
of a progressive encryption coincides with the cardinal number θ of the set of
encryption steps. A quasi-nonperiodic encryption results when the message
is shorter than θ .

Progressive encryption was already proposed by Trithemius with his tabula
recta (Sects. 7.4, 8.1.2), although with 24 shifted standard alphabets it did not
provide much security. Progressive encryption is systemic with the cylinder
and strip devices, where each alphabet is only available in one copy. Progres-
sive encryption was also favored in the mechanical or electromechanical en-
cryption machines of the first half of the 20th century. In the following,
cascading stepwise movement of a set of rotors is typically progressive.

8.4.4 ‘Regular’ rotor movement. Although nothing prevented rotors
from having many contacts (the half-rotor of the Japanese Angooki Taipu A,
Fig. 79, had 60), it seemed natural in the case of ZN to have N contacts and
thus only N alphabets. To achieve a high period for a progressive encryp-
tion, the weak solution Hebern and Scherbius found independently was to
step several rotors successively as in a counter (‘regular’, cyclometric rotor
movement). With four rotors and N =26, the period d is equal to or at least
(in ‘almost progressive encryption’) not much smaller than θ=264 =456 976 .
This is an impressive number, which means the period does not need to be
exhausted for a message the length of a typical novel. With five rotors, θ is
12 million, which is many more letters than there are in the entire Bible.

8.5 Machines that Generate Their Own Key Sequences

Crypto machines of some comfort frequently have a double function: They
perform polyalphabetic encryptions, and they generate their own key se-
quence for the selection of these encryptions. If keytext generation is in-
cluded, it is the crucial issue of mechanization.

8.5.1 Wheatstone. Trithemius used the shifted (standard) alphabets
straightforwardly one by one, and this was still done (with shifted mixed
alphabets) in the Cryptograph of Wheatstone, 1867 (Plate C). This meant
the use of a fixed key. The use of keys by Bellaso allowed the experienced
encryptor enough irregularity in the selection of the alphabets.

8.5.2 Attempts at irregularity. Keytext generators with such a long
period that normally for one message the full period by far is not exhausted,
offer an ‘irregularity in the selection of the alphabets’, caused by the enci-
pherer in choosing the starting point of the keytext cycle. Arthur Scherbius
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therefore provided in his basic patent application filed February 23, 1918
(German Patent 416 219) in the first instance the regular, cyclometric rotor
movement (“like that of counters”) only as one possibility.
Arvid Gerhard Damm, one of the inventors of the rotor principle, made in his
Swedish patent application of October 10, 1919 a first attempt at irregularity:
four gears (‘key wheels’), one for each rotor, move each half-rotor after each
encryption step a varying number of positions. This ‘irregularity’ was not
very deep, and more likely to impress a naive person was the period d =
17 · 19 · 21 · 23 of the half-rotor movement; at more than 150 000 it was about
one third of θ = 264 = 456 976 . It was almost progressive encryption.
In a later application filed on September 26, 1920 (German Patent 425 147),
there are mentioned geared drive wheels (‘key wheels’) with irregularly dis-
persed cams. For the ENIGMA A of 1923 and the ENIGMA B of 1924, both
with four rotors, the rotor movement (patented for Paul Bernstein, filed on
March 26, 1924, German Patent 429 122) was somewhat irregular insofar as
the four geared drive wheels had gaps: one wheel with 11 positions had 5
teeth and 6 gaps, one wheel with 15 positions had 9 teeth and 6 gaps, one
wheel with 17 positions had 11 teeth and 6 gaps, one wheel with 19 positions
had 11 teeth and 8 gaps. Thus, a period of d=11·15·17·19 , that is, more
than 50 000 , was obtained for the rotor movement, which was only about one
ninth of θ , but certainly again providing almost progressive encryption.
The geared drive wheels, however with notches, turned up again in Korn’s
ENIGMA G of 1928 (‘EnigmaSchlüsselmaschine mit 4Walzen und Zählwerk’).
Irregular movement through ‘gap-tooth’ cog wheels with varying numbers of
teeth and gaps was also used by the cipher machine (Plate F) of Alexander
von Kryha (patent filed January 16, 1925, German Patent 434 642), but with
a period of between 260 and 520 the machine was cryptologically very weak.
When Boris Hagelin, who took over Damm’s company Aktiebolaget Cryp-
tograph, in 1935 replaced the half-rotors by a ‘bar drum’, also called ‘lug
cage’ (German Stangenkorb), for performing BEAUFORT encryption steps,
he nevertheless continued to use irregular movement produced by ‘step
figures’ of the key wheels. For the machines C-35 (Fig. 72, Plate G), the
number of key wheels was five. In a later model C-36, improved on the advice
of Yves Gyldén, six key wheels could be used, for a period of 17·19·21·23·25·26,
more than 100 million.2 Hagelin got from France an order for 5000 machines,
to be fabricated under license by Ericsson-Colombes. In the Second World
War, 140 000 improved machines were built in the USA under license by the
typewriter company L. C. Smith & Corona, named M-209 (Plate H) by the US
Army, CSP 1500 by the US Navy. A version C-38m was used improperly by the
Italian Navy in the Mediterranean Sea. Later Hagelins (‘hags’) had a period
of 29·31·37·41·43·47 , i.e., over 2 billion. BC-543 (Fig. 73), a printing version
operated electrically from a keyboard, was used in the USA for medium-level

2 For more details see A. Salomaa, 1990, pp. 44 ff., H.Beker and F.Piper, 1982, pp. 63 ff.
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communications. Fritz Menzer from OKW/Chi developed (Fig. 73) an essen-
tially improved version C-41 with more irregular movement of its key wheels,
built as SG 41 (Schlüsselgerät 41) late in the war by the German typewriter
company Wanderer Werke. After the war, Hagelin further improved his ma-
chines. In 1952, the Hagelin-Crypto CX-52 entered the market, using six out
of twelve available key wheels (H 54 built in licence by the Dr. Hell Co., Kiel).

Fig. 72. C-35 constructed by B.C.W.Hagelin (A.B.Cryptoteknik, Stockholm)

Fig. 73. Left: BC-543 (Hagelin Cryptograph Company, USA)
Right: German copy Schlüsselgerät 41 (SG41, Hagelin: C-41) byWandererWerke

. . .. . .. . .
A D P
A D Q
A E R
B F S→
B F T
B F U. . .. . .. . .

RLRM RN

8.5.3 Wheel movement by pawls and notches. Later, when Scherbius
introduced the reflector and three movable rotors, he abandoned the gears
and replaced them by pawls and notches on the rotors. In the ENIGMA C,
ENIGMA D, and Wehrmacht models the ‘regular’ movement of the rotors
was accomplished by using one notch at the alphabet ring of each rotor. The
‘fast’ (rightmost) rotor RN moved at each encryption step. It
caused for each full turn one step of the ‘medium’ (middle) ro-
tor RM , which again for each full turn caused one step of the
‘slow’ (leftmost) rotor RL . The period was a bit less than the
maximal θ=263 , namely, 26·25·26 = 16 900, due to an anomaly
in the construction of the cam mechanism: Whenever the slow
rotor RL stepped, the medium rotor RM made an extra step.
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Except for this anomaly, there was regular, cyclometric rotor movement. The
‘Greek’ rotors β and γ that were introduced later could be set, but could not
step during operating the ENIGMA M 4.
Notches were located for the Wehrmacht ENIGMA rotors I –VIII as follows
Rotor I II III IV V VI , VII , VIII
Notch(es) at letter Y M D R H H, U
at different positions of the alphabet ring3, to be at least a little bit irregular.
But this was only a complication illusoire. Even worse, it was “a complication
that defeats itself,” as Kahn said ironically: If all rotors had the notches cut
at the same letter, the cryptanalysts would not have been able to find out
which rotor was used as the fast rotor by finding out (for known rotors) what
letter caused the turnover. The Kriegsmarine seemingly found out about this
and cut the notches on the new rotors VI and VII (1938) and VIII (1939) at the
same positions. Moreover, these rotors had two notches (Plate K): one at the
letter H , one at U . (Unlike in the commercial ENIGMA D, the notches were
on the alphabet ring. Thus, the movement depended on the ring setting.)
Although by using two notches the period was halved and the danger of a
superimposition (Sect. 19.1) increased (as a countermeasure, the permissible
length of any one message had been so drastically limited), this change made
cryptanalysis much more difficult: “We would have had great trouble if each
wheel had had two or three turnover positions instead of one” (Welchman).
The rotors of the ENIGMA T (‘Tirpitz’), see Sect. 7.3.8 , had five notches:

Rotor I , III II , IV V , VII VI , VIII
Notches at letter E H M S Y E H N T Z G K N S Z F M Q U Y

Fig. 74. Rotors of the Abwehr ENIGMA No. G-312, seen from two sides:
left with 2×26 teeth, right with pairs of teeth used as notches

The ENIGMA mainly employed for Canaris’ counter-espionage and espionage
service Abwehr—a rewired version of the ENIGMA G—had no plugboard,
but like the D model a rotating reflector. By using (see Sect. 7.3.9) pinions
and cogwheels instead of ratchet wheels and pawls it had truly cyclometric
rotor movement and allowed, in connection with a revolution counter (‘coun-
ter’ ENIGMA), backward and forward moving by means of a crank. It had
new rotors; but, as in the Wehrmacht ENIGMA, turnover positions were fixed

3 For rotors I to V, the turnover happens when (with a difference of 19 letters) the tran-
sitions Q→R, E→F, V→W, J→K, Z→A occur in the window. At Bletchley Park there
was a corresponding, rather silly mnemonic line R

¯
oyal F

¯
lags W

¯
ave K

¯
ings A

¯
bove.
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to the alphabet ring (‘index ring’). The three rotors (Fig. 74) had 17 (not 19,
as Twinn said), 15 and 11 turnover positions. This gave Dillwyn Knox quite a
headache; but he succeeded in autumn 1941 in solving it. Knox developed on
the Abwehr ENIGMA a special terminology: some particular simultaneous
movements of RN , RM , RL and the reflector he called ‘crab’ and ‘lobster’.

8.5.4 Typex. Plate L and Fig. 75 show the British TYPEX (Type-X), devel-
oped by Wing Commander Lywood and three more members of the RAF and
ready in April 1935, improved by May 1938 (but not commercially available).
It was in some respects similar to the 3-rotor ENIGMA; however, among its
five rotors the two next to the entry were settable, but wisely did not move
during operation. In this respect, TYPEX was cryptanalytically equivalent to
a 3-rotor ENIGMA with a non-involutory plugboard. The lightbulb output of
the ENIGMA was replaced by a Creed tape printer. Essential differences ex-
isted in the rotor movement: It was regular, too, but basically multinotched.
The notched rim was rigidly fixed to the rotor rim as in the commercial
ENIGMA and the rotor core was a ‘wiring slug’ sitting in a receptacle car-
rying the rotor rim and the alphabet. In some later models, the wiring slugs
could be inserted in two orientations, P or P−1 . In a typical version, five
slugs could be selected out of ten. There were rims with five, seven and nine
notches; in the last case the notches were arranged so that a turnover oc-
curred when in the window one of the letters B G J M O R T V X was
shown. All rotors when used together had identical notchings. TYPEXs, still
being used by the British until at least 1956, were supplied to NATO and
some Commonwealth countries. (ENIGMAs from the WW II surplus went
after 1945 to many small countries. Some were in use until 1975.)

Fig. 75.

Left:
TYPEX Mark II

Right:
Rotor machine
of the Ottica
Meccanica Italiana

The rotors of the Italian OMI Cryptograph-CR (Sect. 7.3.4) could be assem-
bled from a receptacle, that contained the notches, and a pair of rotor cores;
in this way, one could speak of 14 rotors, whose movement was coupled in
pairs, or of 7 rotors with a choice from

(
14
2

)
= 91 rotors (Fig. 75).

From the late 1940s until the early 1980s, the North Atlantic Treaty Orga-
nisation (NATO) used KL-7 rotor machines developed in the USA for multi-
national communications. (The US American SIGABA was considered too
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good to be shared.) The KL-7 (Fig. 76) had seven cipher rotors; it was in its
mechanical aspects faintly similar to the British TYPEX, using interchange-
able coding cylinders and rings. Plastic slip rings which controlled the irreg-
ular rotor movement could be permuted among the coding cylinders. Each
rotor had 36 contacts, providing for letters and digits. The KL-7 was one of
the last rotor machines ever produced. The security of these machines had
to be very good, since they were available even to some non-NATO countries
and were sure to fall into the other side’s hands. This shows that cryptolo-
gists in the 1960s had fully accepted Shannon’s maxim (Sect. 11.2.3) that a
cryptosystem must be safe even if the device is in the hands of the enemy.
Indeed, in 1962 the US Officer Joseph G. Helmich sold to the Sovjets tech-
nical information about rotors and key lists; he was arrested in 1982 by the
FBI. Use of the KL-7 ended at the latest in 1985 after the Walker espionage
case—at that time it was outdated anyway. The Russian counterpart M-125,
a 10-rotor machine, was named fialka (‘violet’). Five rotors moved in the
one, five in the other direction. The plugboard substitution could be varied.

Fig. 76. Rotor machine KL-7 (cover name ADONIS)

8.5.5 Hebern. Early in his career, the great William Friedman studied the
rotor machines of Hebern, who was in contact with the US Navy, and in 1925
also gave an evaluation. His test of the Hebern machine was a chef-d’œuvre.
He was given ten messages of about 300 characters, all encrypted with the
same rotor arrangement, and the initial setting of the rotors. In two weeks
of labor, he found the solution, including the reconstruction of the wiring of
at least some rotors. The resulting report was finally declassified in 1996;
obviously his index of coincidence (Sect. 16.1) is involved.
The Navy under Laurance F. Safford and the Army under Friedman, with
Sinkov, Rowlett, and Kullback, spent long years hunting for improvements to
the Hebern machine. In 1932, Hebern finally designed a satisfactory machine,
the HCM with five rotors. It had reasonably irregular rotor movement, but
still Friedman’s group was not satisfied.
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In the late 1930s or early 1940s, Friedman himself designed for the US Army
Signal Corps a machine with 3 rotors and a reflector (but no plugboard),
based largely on the ENIGMA. This led to the Converter M-325 (Patent
filed August 11, 1944) which was built after 1944 and dubbed SIGFOY but,
because of some practical drawbacks, was not generally introduced.

After 1933, again under pressure from the Navy, the ‘Electric Cipher Ma-
chine’ ECM Mark I was designed, a 1-rotor machine with rotor movement
controlled by a tape, which finally fulfilled even the highest requirements.
But Frank Rowlett succeeded in inventing further improvements, leading in
1936 to the ECM Mark II, often simply called ECM, with the US Army also
M-134-C and SIGABA, with the Navy CSP 889 (Fig. 77). The SIGABA had
15 rotors; apart from 5 cipher rotors and 5 rotors for irregular movement
sitting in a basket, another five were equivalent to a plugboard. With these
additional rotors and without using a reflector, it proved in the 1940s to be
the securest machine in the (Western) world. It was also the most expensive.
The system was in use until 1959.

CCM (‘Combined Cipher Machine), also named CSP-1700, used two adaptors
for a connection between SIGABA and TYPEX. It turned out to be insecure.

Fig. 77. Rotor machines ECM Mark II (M-134-C SIGABA, CSP 889)

8.5.6 Yardley. Japan, on the way to becoming an East Asian great power,
could not get away without diplomacy after the First World War and thus
needed cryptology. The diplomats used code books, like everyone else. The
government had advisors; the Polish captain Jan Kowalewski taught it the
simplest security measures such as Russian copulation (Sect. 3.4.2). Between
1919 and the spring of 1920, the Japanese introduced eleven codebooks,
among them voluminous ones with 25 000 code groups. The Japanese radio
signals naturally attracted the interest of the Black Chamber the US State
and War Departments were jointly running. Supported by the section MI-8
of the US War Department, the Black Chamber was organized after 1918 by
Herbert Osborne Yardley (1889–1958). Officially, it was ancillary to the Mili-
tary Intelligence Division. It was housed in New York City under strict shield-
ing after the office was broken into, since 1925 it used the cover of a code com-
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piling company, which indeed compiled and sold the Universal Trade Code.
Yardley and his people were rather industrious and diligent; in the summer
of 1921 they decrypted a telegram from the Japanese ambassador in London
to his Foreign Ministry, containing delicate information about the Interna-
tional Maritime Disarmament Conference that was just in preparation and
revealing expansionist Japanese dreams in the Far East. By 1929, the Black
Chamber had decrypted 45 000 telegrams from all parts of the globe.
On March 4, 1929, Herbert C. Hoover acceded to office as the 31st president
of the United States of America, and suddenly all that changed. Hoover’s
näıveté had the effect that he and Secretary of State Henry L. Stimson no
longer wanted the disreputable services of the decryptors; the Black Chamber
was without hesitation dissolved, effective October 31, 1929 . The working
material went to the Signal Corps of the Army, directed by Friedman. Yardley
had to find another position; at the height of the Depression this was ex-
tremely difficult. He was forced to earn money and decided in his bitterness
and distress to write a book, a startling exposé with the title The American
Black Chamber (Indianapolis, 1931). Yardley was a superb storyteller and
the book was an immediate success. But he provoked the anger and scorn
of his government. In defense, he accused the State Department of grossly
neglecting the interests of the USA in using “sixteenth-century codes,” and
stated that it had no right to bring moral pressure to bear on him. More
serious were the objections from his professional colleagues; they knew better
than Stimson that in view of the possibility of war the national interest not
only disallowed a violation of state secrets, but also called for continuity of
cryptological competence.
The Yardley case had a legislative sequel. The 73rd Congress of the USA
debated in 1933 a controversial bill introduced by the Roosevelt administra-
tion, making it punishable to publish or furnish without authorization matter
which was obtained while in the process of transmission between any foreign
government and its diplomatic mission in the United States. The freedom of
the press was infringed and Public Law 37, the Lex Yardley , went into Sec-
tion 952 of Title 18 of the United States Code, but no criminal prosecution
ensued against Yardley.
Yardley had enumerated nineteen countries whose diplomatic codes had been
compromised, among them eleven South-American countries, Liberia and
China—not surprising anyone—but also Britain, France, Germany, Spain
and the Soviet Union, where at least officially nobody could express moral
disgust (it was said that in the 1920s every larger European country was in
the possession of one or more American code books)—and Japan.
The book became a tremendous success, not least due to the public stir the
affair created. It sold 17 931 copies in the USA and a further 5 480 in Britain,
which were unheard-of numbers for a cryptology book. Translations followed
into French, Swedish, Chinese—and Japanese. A sensational 33 931 copies
were sold in Japan, showing that Yardley had touched a nerve in the Japanese
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soul.
There, a member of the House of Peers used quite impolite and harsh words;
throwing blame on his own Foreign Ministry, he spoke of a “breach of faith
committed by the United States Government”; the foreign minister and for-
mer Japanese ambassador to the United States spoke of “dishonor”. Yardley
was slandered. And still he had rendered Japan the greatest service he could
by stimulating a radical improvement of her cryptanalytic security. As a
result, the Japanese multiplied their efforts on mechanizing encryption.
In 1938, Yardley was hired by Chiang Kai-shek and subsequently broke
Japanese columnar transpositions. In 1940 he returned; he went in June 1941
to Canada to work on spy ciphers, but was replaced after six months, under
Anglo-American pressure, by the approved and reliable Oliver Strachey.

Fig. 78. Japanese ENIGMA imitation, GREEN machine

8.5.7 Green, red and purple.
Following a familiar pattern, the Japanese studied the machines of other
countries, in particular those that were accessible through the patent litera-
ture: the ENIGMA, the machines of Damm and Hagelin, and those of Hebern.
For machines with the Latin alphabet, the common Hepburn transliteration
of kana into the Latin alphabet was used. The Japanese imitation of the
ENIGMA D, denoted GREEN by American cryptanalysts, was a strange
construction with four vertically mounted rotors (Fig. 78) and did not achieve
great importance. Next, the half-rotors of Damm showed up in the Angooki
Taipu A (Cipher Machine A), called RED in American jargon. Apart from
a fixed permutation by a plugboard, it had a half-rotor with 26 slip-rings
(Fig. 79). The wiring permuted the six vowels onto them and therefore also
the 20 consonants and thus needed (two times) 60 exit contacts, since 60 is
the least common multiple of 6 and 20. The reason for this cryptologically
rather disadvantageous separation may have been in the tariff regulations of
the international telegraph union, requiring ‘pronounceable’ words.
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The Japanese RED machine was a very poor cryptosystem, not much better
than Kryha’s machine. Its predecessor M-2, used since mid-1933, had already
two half-rotors, one with six, one with 20 slip-rings, and followed Damm’s
patent 1,502,376 of July 22, 1924. Laurance Safford claimed that it was com-
pletely reconstructed in 1936 by Agnes Driscoll. In the RED machine, rotor
movement was accomplished by a gear with 47 positions, with 4, 5 or 6 gaps.
Cryptologically it performed two separate ALBERTI encryptions of the vowel
and the consonant group. It is not at all surprising that the RED machine
(Fig. 80) was attacked in 1935 by Kullback and Rowlett of the US Army and
solved in 1936. In the spring of 1936, Werner Kunze at Pers Z of the German
Auswärtiges Amt directed his interest to M-1, working with the kana alphabet
(called ORANGE in American jargon). Jack S. Holtwick from the US Navy
had a similar goal. They both succeeded, Kunze with RED by August 1938.
In 1934 RED was also broken at GC&CS by Hugh Foss and Oliver Strachey.

Fig. 79. Half-rotor with 26 slip-rings in the Japanese machine Angooki Taipu A

Fig. 80. American reconstruction RED
of the Angooki Taipu A with
two half-rotors, machine based
on patents by Arvid Damm

In 1937, Japan started the development of a much more secure encryption ma-
chine. It replaced the RED machine in the diplomatic service and was put in
operation in February 1939—the first unreadable messages picked up went
in March 1939 from Warsaw to Tokyo. The Angooki Taipu B (Cipher Ma-
chine B, also 97-shiki obun injiki, alphabetic typewriter ’97), called PURPLE
in American jargon, included a new feature, used for the first time by the
Japanese, namely, stepping switches (uniselectors), known from telephone ex-
changes. The separation into two groups of six and 20 characters was kept, al-
though later the six characters no longer had to be vowels. It turned out that
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the number of available alphabets was cut to 25, and the mapping was quite
irregular and determined by the internal wiring. To find this needed the con-
centrated, months-long work of a whole group of people, not only Frank Row-
lett, but also Robert O. Ferner, Albert W. Small, Samuel Snyder, Genevieve
Feinstein (née Grotjan), and Mary Jo Dunning. They first found the mapping
of the 6-vowel group, and they had indications that the number of alphabets
was 25. But as for the 20-consonants group, they were in the dark, and no one
could identify a known electromechanical encryption step that would produce
the observed effects. When the situation seemed almost hopeless, in midsum-
mer 1940, a newly arrived recruit from MIT, Leo Rosen, was initiated—and
he hit upon the idea that the Japanese may have used stepping switches
(Fig. 81). That gave the work a fresh impulse, and the mystery was soon sol-
ved: there were three banks of stepping switches, and the wiring connections
could be established. On September 20, 1940, an important discovery was
made by Genevieve Grotjan, and only a week later, after 18 months of work,
the first complete PURPLE solution was achieved. A working reconstruc-
tion of the machine was built; on February 7, 1941, the British in Bletchley
Park were given a copy. The RED machine had paved the way, and many
weaknesses in the encryption discipline of the Japanese gave clues, hints and
cribs, but it was a victory of the US Army cryptanalytic bureau “that has
not been duplicated elsewhere ... the British cryptanalytic service and the
German cryptanalytic service were baffled in their attempts”(Friedman).

Fig. 81. Stepping switch bank of the Japanese PURPLE machine

Strategically, the PURPLE break was of highest importance, the Americans
spoke of MAGIC. But the British had their victory, too—over the German
ENIGMA; they called it ULTRA. However, David Kahn reported that the
Russians, and Jürgen Rohwer and Otto Leiberich reported that the Germans
also solved PURPLE, which had a theoretical security ‘significantly greater’
(Stephen J. Kelley) than the 3-rotor ENIGMA and comparable to the 4-rotor
ENIGMA. Once the internal wiring of the PURPLE machine was understood,
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it proved to possess only mediocre security, comparable to RED. It seems that
the Japanese underrated the cleverness of the Americans; also they believed
that their language would protect them and would not be understood fully
elsewhere. The follow-up machines they built used stepping switches too and
were only slightly more complicated: one, called CORAL in the American
jargon, gave up the separation into 20+6; it was finally broken by OP-20-GY
with the help of Hugh Alexander from GC&CS in March 1944. Another one,
called JADE, was unique because it printed in kana symbols. Otherwise it
had only minor added complications and was broken in due course.
The Japanese also had a very transparent system in their daily plugboard ar-
rangements, and the bad habit of sending changes to the keying as encrypted
messages—thus keeping the foe, once he had broken in, always up to date.
Even the ‘key to the keys’ was discovered by Frank Raven in 1941.

8.6 Off-Line Forming of Key Sequences

8.6.1 Matrix powers. For VIGENÈRE and BEAUFORT encryption,
‘irregular’ key sequences of cycle numbers from ŸN are required. A much
favored method uses successive powers modulo N of a regular k × k matrix
T , sufficiently different from the identity. Since the number of such matrices
(Sect. 5.2.3) is less than Nk2

, some power T r must give identity for the first
time. The number r = r(T,N) is called order of the matrix T in ŸN .

For example, the matrix T =
(

0 1
1 1

)
with k = 2 has the following order

(see also Sect. 9.4.2):
N = 2 3 4 5 6 7 8 9 10 11 12 13 16 20 23 24 25 26 32 48 64 80 160
r = 3 8 6 20 24 16 12 24 60 10 24 28 24 60 48 24 100 84 48 24 96 120 240

Picking up a suitable i-j-element of the matrix powers produces a sequence
of cycle numbers with the period r(A, N) such that no smaller period exists.
A particularly convenient form of a matrix T is a k × k ‘companion matrix’
of the form

(∗) T = T (α1, α2, ..., αk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 αk

1 0 0 . . . 0 αk−1

0 1 0 . . . 0 αk−2

...
0 0 0 . . . 0 α2

0 0 0 . . . 1 α1

⎞
⎟⎟⎟⎟⎟⎟⎠

The 1-k-element of the powers of this matrix is then the last element of the
iterated vector ti = t0T

i = ti−1T , if the initial vector is t0 =(1 0 0 . . . 0 0) .
To produce these iterated vectors, a shift register with k positions is used.
Shift registers in connection with a companion matrix are also called linear
shift registers. Using a basis analysis, they allow an easy break (Sect. 20.3).
Non-linear shift registers are preferable: they form the next element of the
sequence by some arbitrary function of the last k elements.
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Simple steps for achieving non-linearity, like reversing the order of the vector
components after each step, may be dangerous: non-linearity may lead to
very short periods (Selmer 1993, Brynielsson 1993).

8.6.2 Bit sequences. For the binary case N = 2 of a VERNAM encryp-
tion, the key sequences are (0,1)-sequences, where 0 stands for the identity
O and 1 for the reflection L . For example, the matrix (k = 3)

T =

⎛
⎝0 0 1

1 0 1
0 1 0

⎞
⎠

modulo 2 yields the sequence (1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 . . . )
with the period 7 = 23−1 . Since there are 2k different k-bit vectors, and
the zero vector is invariant, it is obvious, that the maximal reachable period
is 2k−1 . One can show (Oystein 1948):

If the polynomial xk −α1x
k−1 −α2x

k−2 − . . .−αk over the field Ÿ2 = (2)
is irreducible, then every vector sequence iterated with T = T (α1, α2, ...αk))
has a period, which is a divisor of 2k−1 .

For k = 31 , the polynomial x31 + x13 + 1 is irreducible over Ÿ2 = (2);
231−1 is prime and amounts to more than 2 billion.

If 2k−1 is prime (2k−1 is then called a Mersenne prime 4), then there are
only the periods 2k−1 and 1 ; the sequence (0000 . . . ) has the period 1 .

For N = 2 , i.e., in Ÿ2 , there are only the VIGENÈRE and BEAUFORT
steps +0 and +1 , that is, the VERNAM steps O =̂ +0 and L =̂ +1 .
Polyalphabetic binary encryption needs a particularly long period and a good
mechanism for the generation of an irregular (0,1) sequence.

8.6.3 In principle, from every polyalphabetic set of block encryption steps
χi with uniform encryption width m , which can be rather large, a finite
sequence (Sect. 2.3) X = (χi1 , χi2 , . . . , χis) can be formed and X can be
iterated on an initial key u = (u1, u2, . . . , us) ; the progressive sequence

u , X(u) , X2(u) , X3(u) , . . .

is in fact periodic, but mostly with a very large period5 such that it may be
usable as a quasi-nonperiodic key sequence. As an example, in Sect. 9.5.2, X
will be defined with the help of the h-th power of u modulo a prime p ,

4 Marin Mersenne, 1644. Cataldi, in 1588, had treated 217−1, 219−1. Primality of 231−1
was proven in 1772 by Euler, of 261−1 in 1883 by Pervushin; 2127−1 had already been
proven in 1876 by Lucas. Powers, in 1911 and 1914, found 289−1 and 2107−1 to be prime.
The next primes 2521−1 , 2607−1 , 21279−1 , 22203−1, 22281−1 were discovered in 1952 by
Ralph M. Robinson using the SWAC. Fourteen more followed, then 2756839−1 (1992),
2859433−1 (1994), 21257787−1 (1996), 21398269−1 (1996), 22976221−1 (1997), 23021377−1
(1998), 26972593−1 (1999), 213466917−1 (2001), 220 996011−1 (2003), 224 036583−1 (2004),
239 402457−1 (2006) — recently the exponent was roughly doubled every two years.

5 Following Robert Floyd, the period of X can be determined with minimal storage re-
quirement in the following way: Let a0 = u , b0 = u and ai+1 = X(ai) , bi+1 = X2(bi) .
As soon as an = bn , there is Xn(u) = X2n(u) and n is a period.
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X(u) = uh mod p , Xs(u) = u(hs) mod p .

8.7 Nonperiodic Keys

A nonperiodic encryption (Sect. 2.3.3) requires θ ≥ 2 and a nonperiodic
sequence (χs1 , χs2 , χs3 . . . ) of polyalphabetic encryption steps. It is char-
acterized by the index sequence (s1 , s2 , s3 , . . .) with 0 ≤ sµ < θ , or by the
proper fraction 0.s1s2s3 . . . in a number system with the base θ ≥ 2. Thus,
there exists for every computable irrational real number and for every θ ≥ 2
a nonperiodic infinite encryption with a key sequence (k1 , k2 , k3 , . . .), where
ki

.= χsi
(see Sect. 2.6). Let M∞ denote a cryptosystem with this property.

8.7.1 Delusions. For θ = 2, a nonperiodic VERNAM encryption, such as
one with the infinite index sequence (the ‘running key’)

( L L O L O O O L O O O O O O O L . . . )

i.e., iµ =
{

L if µ = 2k for some k ,
O otherwise ,

gives no advantage compared with a periodic encryption—it is even worse.
But even a nonperiodic encryption with the key sequence (Axel Thue, 1904;
Marston Morse, 1921) of the ‘Mephisto-Polka’, as used by Max Euwe in 1929,

( L O O L O L L O O L L O L O O L O L L O . . . )
has a quite transparent law of key formation, allowing a recursive calculation.
And the fractal sequence of {O , L}-words

a0 =̂ (O)
a1 =̂ (L)
a2 =̂ (O L)
a3 =̂ (L O L)
a4 =̂ (O L L O L)
a5 =̂ (L O L O L L O L)
a6 =̂ (O L L O L L O L O L L O L)
a7 =̂ (L O L O L L O L O L L O L L O L O L L O L)

...
...

defined by the Lindenmayer term replacement system (Lindenmayer, 1968){O → L
L → O L

also has a transparent law of key formation: for i ≥ 2 it is ai = ai−2 ◦ ai−1 .
Obviously, nonperiodic sequences can be quite ‘regular’. How easily can a
nonperiodic index sequence be obtained, that is, a sequence ‘irregular’ and
nevertheless known to both the encryptor and the authorized decryptor?
The idea of taking as a key a text from a widespread book is reinvented
mainly by amateurs. According to Shannon’s rule “the enemy knows the
system being used” this leads to a fixed key, with all the dangers already
mentioned in Sect. 2.6.1 . For meaningful key texts in a common language,
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a systematic zig-zag approach for breaking the encryption exists (Sect. 14.4)
for Shannon cryptosystems with known alphabets (Sect. 2.6.4).

8.7.2 Autokeys. It is not surprising that the prospects for deriving a non-
periodic key from the plaintext were discussed very early. The decisive step
was made by Geronimo (Girolamo) Cardano (1501–1576). After Bellaso had
introduced polyalphabetic substitution with keys, Cardano used the plaintext
in his book De Subtilitate in 1550, starting the key over from the beginning
with each new plaintext word:

s i c e r g o e l e m e n t i s
S I C S I C E S I C E R G O E L .
N T F Z C L T Z V H R Y V I P E

The alphabet is Z20 ∪ {x, y} , the encryption is linear polyalphabetic with

a b c d e f g h i l m n o p q r s t v x y z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

The idea of an autokey (French autoclave, autochiffrant) was conceived with
the best intentions, was even fascinating; but Cardano presumably never tried
it. The encryption is now polyphonic, s and S as well as f and F yield N ;
i and I as well as x and X yield T ; c and C as well as p and P yield F ,
etc. The unauthorized decryptor has no more work to find the right combi-
nation among 2k ones (if the first word has k letters) than the authorized
decryptor. Bellaso tried to remedy the defect by encrypting the first word
according to Trithemius, then for each following word the first letter of the
previous plaintext word and the letters following it were used as keys:

s i c e r g o e l e m e n t i s
A B C S T V X E F G H I L M N O .
T M E Z N D M L R N V P Z G Y H

But this was still a fixed method. Then Blaise de Vigenère had the brilliant
idea of introducing a short, freely selected priming key: He chose at will the
first letter of the key (say D) and took as further key characters either (1)
those of the plaintext or (2) those of the cryptotext (‘autokey’):

a u n o m d e l e t e r n e l
(1) D A U N O M D E L E T E R N E

X I A H G U P T M L S H I X T

a u n o m d e l e t e r n e l
(2) D X H E E C O U M X G N A B Q

X H E E C O U M X G N A B Q O

In this case, the polyalphabetic encryption over Z20 (Fig. 82) was a self-
reciprocal PORTA encryption and not à la Vigenère. The second kind, how-
ever, is useless: the key is completely exposed, and the whole message (except
for the first character) can be decrypted at once (Shannon 1949).
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A B � a b c d e f g h i l
m n o p q r s t u x

C D � a b c d e f g h i l
x m n o p q r s t u

E F � a b c d e f g h i l
u x m n o p q r s t

G H � a b c d e f g h i l
t u x m n o p q r s

I L � a b c d e f g h i l
s t u x m n o p q r

M N � a b c d e f g h i l
r s t u x m n o p q

O P � a b c d e f g h i l
q r s t u x m n o p

Q R � a b c d e f g h i l
p q r s t u x m n o

S T � a b c d e f g h i l
o p q r s t u x m n

U X � a b c d e f g h i l
n o p q r s t u x m

Fig. 82. PORTA encryption for Z20 by G.B. and M.Argenti

Security is better with the first kind: It is a recurrent method, only knowing
the first key character helps. But the two dozen or so possibilities are quickly
tested. A remedy is to use a priming key of some d letters instead of only one
letter. The combinatorial complexity is nevertheless the same as that of a
periodic encryption with a key of length d . For sufficiently large d testing is
no longer feasible, but if the same priming key is used repeatedly for different
messages, superimposition (Sect. 19.1) may help break it. Thus, the priming
key should be comparable in length with the message—but then an autokey
continuation no longer makes sense.
A further disadvantage is the spreading of encryption errors—a general weak-
ness of all autokey methods.
Babbage reinvented the autokey—this time even with a mixed alphabet—
and, although he first thought it to be unbreakable, also gave solutions in
particular cases. Much later, in 1949, Shannon remarked that recurrent
VIGENÈRE encryption is equivalent to VIGENÈRE encryption of period 2

clearly a new case of a complication illusoire. If the plaintext is divided
into groups a1 a2 a3 . . . of length d and if D is the priming key, then the
following identities (mod N) hold for the cryptotext C1 C2 C3 . . . :

C1 = a1 + D, Ci = ai + ai−1 (i = 2, 3, . . .)

and thus the recurrent identities
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C1 = a1 + D

C2 − C1 = a2 − D

C3 − C2 + C1 = a3 + D

C4 − C3 + C2 − C1 = a4 − D and so on, thus the sequence

C1 , C2 − C1 , C3 − C2 + C1 , C4 − C3 + C2 − C1 , . . .

can be treated like a polygraphic VIGENÈRE of period 2 , i.e., like two al-
ternating polygraphic CAESAR additions. Even the use of a mixed alphabet
doesn’t change this. An analogous result holds for recurrent BEAUFORT .

8.7.3 Klartextfunktion. The idea of influencing the keying procedure of
encryption machines in some hidden way by the plaintext shows up again in
the patent literature around 1920 (‘influence letter’, in the patent applica-
tion of October 10, 1919, by Arvid Gerhard Damm, Swedish Patent 52279,
US Patent 1 502 376). Thus, with the cipher teletype machines T 52d and
T 52e of Siemens and SZ 42 of Lorenz, the (irregular) movement of the en-
cryption elements could be further obfuscated (“mit Klartextfunktion”) and
the encryption was practically nonperiodic. However, in the case of noisy
transmission channels this frequently led to an ‘out-of-phase’ problem with
the encryption; the Klartextfunktion was therefore, very much to the relief of
the British decryptors, used only for a few months towards the end of 1944.

8.7.4 Stream cipher. A recurrent encryption of the kind ci = f(pi, pi−1)
Cardano, Vigenère, and Babbage used is a special case of the modern stream
cipher (German Stromchiffrierung) ci = X(pi, ki) , a nonperiodic encryption
where the infinite key ki is generated by a finite automaton G as key generator
ki = G(ki−1, pi−1) , with k1 as priming key. The hidden complexity lies in G.

8.8 Individual, One-Time Keys

8.8.1 Vernam. Given the fact that recurrent encryption is not much better
than quasi-nonperiodic encryption, it is still possible that in a secure crypto-
system the sender and receiver are equipped with a theoretically unlimited
supply of secret keys, each one being genuinely irregular, with no meaning and
holding no information, being random and used only one time, an individual
key (British jargon ‘indiv(idual tables’, German jargon i-Wurm, Zahlen-
wurm). Vernam seems to have evolved this idea incidentally in 1918, but
it spread fast between the two World Wars; early traces can be found in the
USA, in the Soviet Union, and in Germany.

8.8.2 Endless and senseless. Major Joseph O. Mauborgne, later Major
General and Chief Signal Officer, US Army (1937–1941), took heed in 1918 of
Parker Hitt’s 1914 admonition—“no message is safe in [the Larrabee] cipher
unless the key phrase is comparable in length with the message itself”—and
introduced in connection with the VERNAM encryption steps (Sect. 8.3) the
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concept of a one-time key (one-time tape, one-time pad, OTP), thus welding
the epithet endless (infinite) to Morehouse’s (see Sect. 8.3.2) senseless.
In Germany, Kunze, Schauffler, and Langlotz in 1921 (if not before) proposed
blocks with 50 sheets, each one containing 240 digits (in 48 groups of fives) for
superencryption of numeral codes. Apart from one-time pads, the German
Auswärtiges Amt used superencryption by double additives (see Sect. 9.2.1).
The Soviets, too, changed to the use of individual keys in 1926 after a British
indiscretion, very much to the distress of Ernst Fetterlein, the specialist for the
Soviet Union in the British GC&CS. The Soviets kept a liking for individual
keys; Plate O shows a matchbook-sized sheet found on a Russian spy.
By their very nature, one-time keys should be destroyed immediately after
use. With Vernam-type machines, shredding the used key tape can be done
mechanically. A great practical difficulty is to provide enough key material for
heavy traffic, in particular in unstable situations on the battlefield. These dif-
ficulties are more manageable for military headquarters, at diplomatic posts,
or in a strictly two-way spy correspondence—and in such situations one-time
keys are frequently used, provided the key supply cannot be cut off.

8.8.3 Practical use. The Wehrmacht introduced in 1943 for its highest com-
mand level teletype machines with an additional key tape reader for one-time
tapes (Siemens Schlüsselfernschreibmaschine T 43, Blattschreiber T typ 37f,
Fig. 83). They were used in 1944 between the new Funkfernschreibstelle of
the OKH in Golßen, 50 miles southeast of Berlin and several Army Groups,
including the Führerhauptquartier in East Prussia, as a substitute for SZ 42.6

Later, parts of this Funkfernschreibstelle were transferred into the bunker of
the OKH near Zossen (‘Zeppelin’); in the autumn they were evacuated to
the area of Bad Reichenhall-Berchtesgaden, in the alleged alpine mountain
stronghold ‘Serail’. Scarcely more than two dozen machines were brought
into use.

Fig. 83. Siemens Schlüsselfernschreib-
maschine T43, with
Blattschreiber Ttyp 37f

The US State Department started in 1944 to use SIGTOT, a VERNAM cryp-
tosystem of the Army with one-time keys for its most secret diplomatic mes-
sages. The Army also used M-134-A (SIGMYC), a five-rotor machine whose

6 Presumably identical with the machine called THRASHER in Bletchley Park.
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rotors were moved by a one-time 5-channel tape. The VERNAM system was
in January 1943 replaced by a rotor system, too, the M-228 (SIGCUM) devel-
oped by Friedman. After a few days of practical use, Lt. Col Frank Rowlett
found a weakness of the system, which was therefore temporarily withdrawn
and replaced in April 1943 by an improved version.
Just a handful of postwar designs were true one-time key systems, among
which may be mentioned the Mi-544 from Standard Elektrik Lorenz (Ger-
many), and the Hagelin T-52 and T-55 from Crypto AG (Switzerland). The
Russians called their one-time tape machine agat (‘agate’; ,,Achat“, M-105).
8.8.4 Bad habits. The sequences of letters or digits of an individual key
should not show any regularity, should be random. Good stochastic sources
are expensive. Kahn made the following remark on Russian individual keys:
“Interestingly, some pads seem to be produced by typists and not by ma-
chines. They show strike-overs and erasures—neither likely to be made by
machines. More significant are statistical analyses of the digits. One such
pad, for example, has seven times as many groups in which digits in the
1-to-5 group alternate with digits in the 6-to-0 group, like 18293, as a purely
random arrangement would have. This suggests that the typist is striking
alternately with her left hand (which would type the 1-to-5 group on a Con-
tinental machine) and her right hand (which would type the 6-to-0 group).
Again, instead of just half the groups beginning with a low number, which
would be expected in a random selection, three quarters of them do, possi-
bly because the typist is spacing with her right hand, then starting a new
group with her left. Fewer doubles and triples appear than chance expects.
Possibly the girls, ordered to type at random, sensed that some doublets and
triplets would occur in a random text but, misled by their conspicuousness,
minimized them. Despite these anomalies, however, the digits still show far
too little pattern to make cryptanalysis possible.”
8.8.5 The category of holocryptic methods. If the individual key
comes from a stochastic source emitting all characters independently and with
equal probability, then common sense says that the plaintext encrypted with
this keytext is an ‘unbreakable’ cryptotext, is holocryptic. (The expression
was used by Pliny Earle Chase as early as 1859.) What this intuitively means,
seems to be clear at first sight; it is also worth observing that in this book all
cryptanalytic methods assume preconditions that are violated for holocryptic
encryptions. But this is no proof; in fact the problem is to give a precise
formulation of ‘holocryptic’, necessarily one of stochastic nature. The most
intelligible one so far was given in 1974 by Gregory J. Chaitin, based on the
work of A. N. Kolmogorov. Following him and Claus-Peter Schnorr (1970),
we require that for the infinite key sequence of a nonperiodic encryption (see
Sect. 2.3.3) to be rightfully called holocryptic the following holds:

For every finite subsequence there does not exist a shorter algorithmic
characterization than the listing of the subsequence—no subsequence can
be condensed into a shorter algorithmic description.
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As a consequence, no sequence generated by a machine, i.e., by a fixed algo-
rithm, is holocryptic. Algorithms in this context are to be understood in the
universal sense of the Church thesis. Thus, no digit sequences (see Sect. 8.7)
are suitable that characterize computable irrational numbers. Numbers like√

2,
√

5,
√

17 are not suited anyhow, for they can be guessed too easily.

The set of non-computable real numbers is still very large. It is not known
whether every non-computable real number defines a holocryptic encryption.
Note: tests can in the best case disprove, but cannot prove randomness.

8.8.6 Fabrication of holocryptic key sequences. Physical effects, used
today for the generation of ‘true’ random keys are based on the superimpo-
sition of incommensurable oscillations or on chaotic nonlinear systems. It
seems that they are more reliable than the noise effects of vacuum tubes and
Zener diodes used around 1950, or Geiger counter recordings. Vacuum tube
noise was used in 1943 for the production of individual keys for the British
ROCKEX system, a VERNAM encryption that served the highly sensitive
traffic of the British with the USA—about one million words per day, or in
more modern terms, the content of four 1.44-MB 2HD floppy disks per day,
or three 650-MB CD-ROMs per year.

8.8.7 Misuse of one-time keys. The practical use of one-time keys raises
its own philosophical problems. Erich Hüttenhain has reported that in the
Auswärtiges Amt, according to the security regulations, each one-time key
sheet in a block of one hundred should have existed only in one original and
one copy. In fact, nine copies were made and distributed, with permuted
ordering, to five diplomatic missions.

The “Venona breaks” of Richard Hallock, Cecil James Phillips (1925–1998),
Genevieve Feinstein, and Lucille Campbell into the highest Soviet cryptosys-
tems (attack started on Febrary 1, 1943 and was continued until 1980) were
also achieved on account of occasional re-issue of the same one-time pads.
Phillips found out in summer 1944 that the first 5-digit cipher group is the key
indicator. This break later broke the necks of the Soviet spies Julius and Ethel
Rosenberg, and revealed finally Harold ‘Kim’ Philby, Guy Burgess and Donald
Duart Maclean, Klaus Fuchs, Harry Gold, David Greenglass, Harry D. White,
Theodore Hall, and William Perl as spies. On the other hand, the Soviets were
warned in 1946 by William Weisband and in August 1949 by Philby, which
may have caused the Soviets to stop using the duplicate OTPs after 1949.

A clear violation of the idea of a holocryptic encryption is the fabrication of
key sequences by a machine. If then a cryptotext-cryptotext compromise hap-
pens between such a system and, say, a system using additives periodically,
and if the latter system is duly broken, then the one-time pad with the al-
leged stochastic key lies open. Provided there is enough material, the machine
that generated the keying sequence can be reconstructed. This happened in-
deed for the German diplomatic cipher Blockverfahren (dubbed GEE by the
American SIS): The OTP (i-Wurm) the German Auswärtiges Amt had used
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showed a regularity and Bletchley Park could even find out what machine was
involved—a TICOM report (around 1945) states that “Captured files of the
Foreign Office show that Number Printer apparatus was purchased from the
German firm Maschinenfabrik Otto Krebs and Clemens Mueller. ... Similar
apparatus was offered for sale to the British Government on 14 June 1932 by
the English firm Loranco Ltd., Engineers by a Mr Lorant”.

8.9 Key Negotiation and Key Management

8.9.1 Weakness of keys. The single characters of a key serve for the
formation or selection (see Sect. 2.6) of an encryption step in an encryption
system. Such a system can be monoalphabetic or polyalphabetic: in any case
an encryption step should never be used a second time, if scrupulous cipher
security is required.
In the monoalphabetic case, an encryption satisfying this requirement must
be polygraphic with a width that can cover a whole message. This would be a
great practical inconvenience. Thus, polyalphabetic encryptions with a lesser
width come under consideration, in particular monographic ones. Moreover,
the strict requirement never to use an encryption step a second time, may
be weakened to the requirement of an individual one-time key (Sect. 8.8),—
i.e., a key never used again as a whole—which shows a complete lack of any
regularity in the sequence of encryption steps, since this already guarantees in
the sense of Chaitin and Kolmogorov that the encryption cannot be broken.
Although before 1930 in the USA, Germany, the Soviet Union, and else-
where individual one-time keys were already highly appreciated for very spe-
cial tasks, their practical drawbacks led to a widespread tendency to accept
weaker, only relative, encryption security.

8.9.2 Dangerous key negotiation. It cannot be emphasized strongly
enough (see Sect. 2.6.1) that the key negotiation between two partners is a
particular weakness of every cryptological system. To master a frequently
large distance safely depends (see below) on the reliability of the messenger,
which is difficult to guarantee, as well as on their availability.
Therefore, there have been many attempts in the history of cryptology to
cover the key negotiation itself by cryptological remedies; possibly even by
steganographic measures.
Though it may look promising to perform the key negotiation for some cryp-
tological system within this system itself—the more if one is strongly con-
vinced of the unbreakability of such a system; just this should be avoided by
all means, since a break into the material that is serving for key negotiation
may then compromise the whole system. At least it is necessary, as the
German Navy did later in the war by using bigram tables, to submit the key
negotiation to some additional enciphering in a different kind of system.
The idea of encrypted key negotiation by a message key indicating the start-
ing position of some mechanical key generator was latent for quite some
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while and was not only propagated, e.g., for the commercial ENIGMA of
1923, but also accepted for the 3-rotor ENIGMA of the Reichswehr and of
the Wehrmacht. The key negotiation was then the entry point for the break
the young Polish mathematicians succeeded with in 1932 against the German
ENIGMA enciphered traffic. The German side—except for the Navy—had
strongly underrated the capabilities of their adversaries and had not consid-
ered it necessary to make the procedure of key negotiation more complicated;
always with the excuse, not to burden more than necessary the capacity of
the signals traffic and the capabilities of the cipher clerks.

Extravagant methods to bypass such a vulnerable key negotiation are feasible,
for example, by using two encryptions X(1), X(2) that commute:

χ
(1)
i χ

(2)
i x = χ

(2)
i χ

(1)
i x ,

say two VIGENÈRE or VERNAM encryptions. In this case, the sender en-
crypts his plain message with X(1) according to a key k(1) chosen at random
by him; the recipient applies X(2) according to a key k(2) chosen at random
by him and sends this new cipher back to the sender. This one interprets
it because of the commutativity of X(1) and X(2) as a message he has en-
crypted, which he can decrypt by means of his key k(1) . The partly decrypted
message he sends now to the recipient, who in turn interprets it as a message
he has encrypted, which he can decrypt by means of his key k(2) . Thus,
he obtains the original plain text. The disadvantage of this method is the
need for a threefold transmission. If the message is short, this can be toler-
ated. Therefore the method would be good for transmitting vital information
like passwords or a key to be used subsequently by some different encryp-
tion method. Since after all neither the plain message nor one of the keys
are transmitted openly, the method seems to be safe. However, the devil
is lurking already, as the following simple example with two VIGENÈRE
encryptions over Ÿ26 shows:

Sender A chooses key A Q S I D, which is not known to the recipient.
Recipient B chooses key P Z H A F, which is not known to the sender.

The plaintext /image/ is encrypted by the sender
with A Q S I D :

i m a g e
+ A Q S I D

I C S O H

I C S O H is sent to the recipient,
who encrypts it with P Z H A F :

I C S O H

+ P Z H A F
X B Z O M

X B Z O M is sent back to the sender,
who decrypts it with the help of A Q S I D :

X B Z O M

− A Q S I D
X L H G J

X L H G J is finally sent back to the recipient,
who decrypts it with the help of P Z H A F :

X L H G J

− P Z H A F
i m a g eand thus obtains the message /image/ .
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Over the open transmission line the two signals X B Z O M

and I C S O H are sent, whose difference exposes the key of B :
X B Z O M

− I C S O H

P Z H A F(likewise, X B Z O M and X L H G J expose the key of A).

This means that by decrypting X L H G J with the help of
this key P Z H A F the plaintext /image/ is compromised:

X L H G J

− P Z H A F
i m a g e

The reason for this possibility of a break is that the keys form a group with
respect to the composition of encryptions (see Sect. 9.1) and moreover one
that is typical for the encryption method—the cyclic group of order 26. The
encryption steps can be expected to be known.

A safeguard against the break is only given if at least one of the two decryp-
tion processes is made so difficult that it is practically intractable. This
amounts to using an encryption method where the knowledge of an en-
cryption key does not suffice to derive the decryption key efficiently. Such
a thought was expressed in 1970 by James H. Ellis (†1997), and Clifford
Cocks found in 1973 in the multiplication of sufficiently large prime numbers
the wanted practically non-invertible operation, as disclosed in 1998 by the
Communication-Electronics Security Group of the British Government Com-
munications Headquarters (G.C.H.Q.). But if so, then the recipient B might
as well publicly announce the key to be applied for messages that B should
be able to decrypt. Moreover, the first and second steps of the method can be
omitted. This produces the idea of an asymmetric encryption method, pub-
lished in this form for the first time in 1976 by Whitfield Diffie and Martin
E. Hellman—see more in Sect. 10.1.2 . The British were forced to keep silent
and had to watch how their discoveries were repeated three years later.

For asymmetric encryption, a clever realization for this secure key negotiation
‘without exchanging keys’ was patented for Diffie and Hellman in 1980. The
idea was found in 1974 by Malcolm Williamson, a colleague of Cocks.

8.9.3 Hierarchical key management. As soon as a communications
network includes a large number of nodes and links, “key handling” is to be
extended to “key management”. The secure distribution of keys becomes the
most difficult task of a key management scheme. Keys in transit must be pro-
tected from interception. Keys can be distributed on a secure path manually
by couriers (preferred by diplomats and the military) or by registered mail
(formerly preferred by commercial users) while telegraph, telephone, telefax,
and the Internet are dubious. Normally the older channels cannot be utilized
for the transmission of the secret message itself because they are too slow and,
in most cases, too expensive. Frequently, they cannot safely carry the full
load of messages. Moreover, the safe insertion of keys into a cryptosystem,
with tamperproof key carriers and “emergency clear” devices, belongs just
as much to good key management as certification of the quality of keys.
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Key management schemes that include key registration and allotment run
a risk, which can be reduced steganographically by a special abbreviation
nomenclature.
Following this line of thought and guided by practical requirenments, key
hierarchies with different security levels (master key systems, use of primary,
secondary, and tertiary keys) come under consideration. To give an example,
the primary key may be machine-generated, but since the machine itself may
fall into the hands of an enemy, a secondary key may be used, valid only for
a rather short message, say of not more than 250 characters, and protected
mildly by a system different from the main system, but which is also not
unbreakable. Therefore a tertiary key transmitted by safe means is used
that may hold for a longer period—say one day.7 For example, the Key Ex-
change Algorithm (KEA) developed by NSA, using a key length of 1024 bit,
declassified in June 1998 by the US Department of Defense, is protected by
the intractability of computing the discrete logarithm, see Sect. 10.2.4.2.
Such hierarchical systems render the task of key management even more
complex. Moreover, they run the risk of a step-by-step attack: Compromise
the key generator, compromise the secondary key, compromise the complete
system. This is particularly dangerous if the key negotiation for the secondary
key is done within the primary system: a one-time break may lead only too
easily to a permanent break.
All the rules of key management hold also for individual one-time keys. They
trivially comply with Hitt’s admonition that the keytext length be equal to
or greater than the plaintext length. But this high consumption excludes
the genuine unbreakable systems in many practical cases. Therefore they
have increasingly been superseded by provably strong8 pseudorandom key
sequences (Manuel Blum and Silvio Micali, 1984), defined as superencryption
of periodic key sequences of extremely long, guaranteed minimal period by
some specific one-way function without a known trapdoor like the discrete
logarithm (Sect. 10.2.4.2).
Progress in storing techniques may mitigate some of the practical disad-
vantages of the distribution of individual one-time keys in great quantities.
Lightweight memory disks (CD-ROMs) with a density of gigabytes per deca-
gram give individual, one-time keys a new chance to be used in high-level
diplomatic, strategic military, and commercial links where there is a real
need for absolute unbreakability.

7 For the example of the Wehrmacht ENIGMA, according to the procedure that held
from July 8, 1937 until September 15, 1938: the primary key is machine-generated,
a secondary message key (indicator) determines the starting position of the rotors of
each message, a tertiary Tagesschlüssel (Fig. 63) comprises wheel order, ring setting,
basic wheel setting (“Grundstellung”), and steckering. However, the primary and the
secondary cipher systems were identical; and the tertiary key was transmitted by courier.

8 Many so-called pseudorandom keys are ‘more pseudo than random’ (Tony Sale).
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Let us recall that an encryption X : V ∗ −−−�W ∗ is usually finitely generated
by a cryptosystem M . Let M∗ denote the set of all encryptions defined in this
way by M . An encryption method S is a subset of M∗ . There is the subset
Md of periodic encryptions with key sequences of period d , and the subset
M∞ of encryptions with non-periodic computable infinite key sequences.
A composition of two encryptions by serial connection of their encryption
steps requires that the cryptotext space of the first method coincides with
the plaintext space of the second method.
Amateurs are inclined to believe that the composition of two classes of meth-
ods offers more resistance to unauthorized decryption than either of the two
alone. That is not necessarily so. The second method can even partly or
completely counterbalance the effect of the first. To give an example, let S be
a simple substitution, generated, as usual, by a password, say the following,
which could well come from Bazeries: BASEDOW’S DISEASE IS CURABLE .
The substitution is then

a b c d e f g h i j k l m n o p q r s t u v w x y z
B A S E D O W I C U R L F G H J K M N P Q T V X Y Z

In fact, it has four 1-cycles, two 2-cycles, and one 18-cycle. Applied twice it
results in

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B N D E H V C S Q M L O W I U R F G J K P T X Y Z

where eight letters, included the frequent vowels /e/ , /a/ , are invariant.

9.1 Group Property

Some cryptosystems M with V = W have the property that the composition
of two encryption steps from M does not lead outside M . One says that such
a cryptosystem forms a group. Examples are the group P26 of all simple
substitution steps over Z26, the group P24 of all transpositions of width 24 .
For other endomorphic cryptosystems this is not necessarily so: the set of
monocyclic simple substitution steps does not form a group, since the group
identity is not monocyclic. The examples in Sect. 7.2.4 show that the set of
ALBERTI encryption steps and the set of ROTOR encryption steps for some
primary alphabets do not form a group. The composition of such steps increa-
ses the combinatorial complexity. This justifies the use of three and four
rotors in the ENIGMA. The group property would be detrimental.
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9.1.1 Key groups. However, if a cryptosystem M forms a group, then
the composition of two χs, χt ∈ M is some χι ∈ M , where ι is uniquely
determined by s and t: ι = s• t . Thus χs(χt(p)) = χs•t(p) ; .• . is the group
composition of the key characters, which form a key group (‘key space’).
An endomorphic injective cryptosystem is ‘pure’ (see Sect. 2.6.4) and thus
has a key group; it has been called ‘closed under composition’ by Salomaa.

9.1.2 Composition of methods. Examples of endomorphic encryption
methods that form a group with respect to composition of its encryptions
are the group of all linear substitutions of a given width n, the group of all
polyalphabetic (monographic) substitutions of a given period d, or the group
of all block transpositions of a given width n .
The composition of two encryption methods (‘product encryption’) leads in
general, however, to a new encryption method, although often to a related
one: the composition of two general or linear polyalphabetic encryption meth-
ods with the periods d1 and d2 is a general or linear polyalphabetic encryp-
tion method with the period lcm(d1 , d2) ; analogously for block transposi-
tion of width n1 and n2 . For substitutions, this was already pointed out by
Babbage in 1854. Here, too, the combinatorial complexity is increased.
Sometimes, the composition of two endomorphic encryption methods is com-
mutative, like the composition of the group of all simple substitutions with
the group of all block transpositions of a given width n . If two encryption
methods, each one being a group, commute, then the product encryptions
also form a group (Shannon: “The product of two pure ciphers which com-
mute is pure.”)

9.1.3 T52. The encryption steps of the cipher teletype machines made by
Siemens worked over Ÿ5

2 and used a composition of pentagraphic substitutions
(VERNAM steps operating on the 5-bit code groups) and transpositions of
the five bits (permutation of their positions)—in group-theoretic terms a sub-
set of the hyper-octahedral group of order 25 · 5! = 3840 . They were based
on a patent applied for by August Jipp and Ehrhard Rossberg on July 18,
1930. The models T 52a and T 52b were used by the Kriegsmarine from
1931; the model T 52c was first used by the Luftwaffe, and by mid-1941 was
used generally by the Wehrmacht (Geheimschreiber, British code-name ‘stur-
geon’). It is estimated that about 1000 machines were built over the years.
Encryption and decryption were controlled by ten cipher wheels ws, each one
operating a binary switch is with is = 0 or is = 1, s = 1...10 . Five wheels
w1...w5 performed on Ÿ

5
2 32 VERNAM substitutions, five more w6...w10 per-

formed transpositions generated by 2-cycles. In the T 52b this was the set
{(12)i6(23)i7(34)i8(45)i9(51)i10} ; since (12)(23)(34)(45) = (23)(34)(45)(51)
= (54321) and (23)(34)(45) = (12)(23)(34)(45)(51) = (5432) , the number of
different ones among these transpositions is 30. Altogether, the ten wheels
generated 960 alphabets. In the T52c, developed under Herbert Wüsteney
(1899–1988), a message key could be easily changed. In the T52e, due to new
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circuitry, only 16 different substitutions and 15 different transpositions oc-
curred, reducing the number of alphabets used for one message to 240 (in the
T52c, the number was only 120).
The movement of the cipher wheels was controlled by their having 47, 53,
59, 61, 64, 65, 67, 69, 71, and 73 teeth; at each step all wheels were moved
by one tooth, which gave a kind of a regular wheel movement with a period
of 47 · 53 · 59 · 61 · 64 · 65 · 67 · 69 · 71 · 73 , i.e., about 1018 .
The T 52d and T 52e (introduced in 1943 and 1944) were variants of T 52b and
T 52c, respectively, featuring more “irregular” intermittent wheel movements
and supporting an optional Klartextfunktion. The T 52b (1934) was different
from the early T 52a only with respect to improved interference suppression.
Towards the end of the war, the cipher teletype machine SFM T 43 was built
in a few copies by Siemens. It used an individual, one-time key (Sect. 8.8.3).

9.1.4 SZ. Cryptologically simpler was the cipher teletype machine SZ 40,
SZ 42, SZ 42a (Schlüsselzusatz made by Lorenz, code-name ‘tunny’. It per-
formed only VERNAM substitutions, correspondingly the encryption was
self-reciprocal. In the SZ 42 (Plate N) a first group of five cipher wheels with
41, 31, 29, 26, and 23 teeth (called χ-wheels by the British) operated with
VERNAM steps on the 5-bit code groups; at each step all χ-wheels were
moved by one tooth. A second group of five cipher wheels with 43, 47, 51,
53, and 59 teeth (called ψ-wheels) operating likewise with VERNAM steps
on the 5-bit code groups, followed serially. Two more wheels (called motor-
wheels) served for irregular movement only; one, with 61 teeth, moving with
the χ-wheels, controlled another one with 37 teeth, which in turn controlled
the simultaneous (a weakness!) movement of the ψ-wheels. The period was
more than 1019 . All wheels could be arbitrarily provided with pegs control-
ling the VERNAM switches and could also be brought to arbitrary initial
settings.
9.1.5 Olivetti. Much less is known about the practical use of this cipher
teletype machine (Italian Patent 387 482, January 30, 1941), which had only
five cipher wheels and two motor wheels, causing a weak irregularity.

9.2 Superencryption

9.2.1 Superencryption. Also called superenciphering (USA), reciphering
(UK), or closing (French surchiffrement , German Überchiffrierung, jargon
also Überschlüsselung), it is a common case of a product encryption: a literal
or numeral code is encrypted again. VIGENÈRE over Ÿ10 , i.e., with N =10 ,
is used for numeral codes; the corresponding addition modulo 10 , i.e., with-
out carry, which in military parlance was called symbolic or false addition, can
be performed on a mutilated adding machine (Sect. 8.3.3). As early as 1780,
Benedict Arnold, a spy for Britain in the New England states, used the overall
addition of 7 modulo 10 to code groups, i.e., an ordinary CAESAR addition,
for superencryption. If instead, for fragments of width m, i.e., in the crypt
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width of the code, a number is added modulo 10m (a polygraphic CAESAR
addition), one speaks of an ‘additive’. The use of additives in connection with
codes became widely known in the 19th century when commercial codebooks
began to appear. One particular kind of double superencryption went as
follows: Codebooks that had both numerical and literal codegroups (e.g.,
Fig. 40) were used to retranslate the numeral code obtained by adding the
additive into literal code. This is of particular interest if the additive, for
ease of numerical computation, is very special, like 02000. In 1876 J. N. H. Pa-
trick was convicted of having used such a system in a corruption affair in the
US Congress. The US Navy used the system in the Spanish-American War
in 1898, and it was considered to be the most secure and advanced code sys-
tem of the day—provided the additive was changed at rather short intervals.

The Foreign Office of the Deutsches Reich used from 1919 a double superen-
cipherment of a 5-digit numeral code (“Deutsches Satzbuch”, DESAB). The
pairs of additives, each one covering six five-digit groups, were taken from a
book of 10 000 lines; added up that gave 50 000 000 possible unique key se-
quences. The British tried for a long time without success to break into what
they had dubbed FLORADORA (SIS: GEC, KEYWORD), and what the
Germans had named Grundverfahren. However, in May 1940 in the German
Consulate in Reykjavik (Iceland) they seized cipher documents including a
complete copy of the DESAB 3 codebook and ten lines of additive. At first
this gave no more than slight progress achieved by testing on stereotypical
expressions. Then, in 1942, the British Consul in Lourenço Marques, the
capital of Portuguese Moçambique, obtained by lucky circumstances the ad-
ditives for the next two months. In 1943–1944, P. W. (‘Bill’) Filby and the
reactivated E. C. Fetterlein in Bletchley Park, together with S. Kullback in
Washington, succeeded in the reconstruction of the complete additive books.

Transposition may also be used for superencryption: F. J. Sittler, one of the
most successful code makers, recommended shuffling the four figures of his
code groups. If this transposition is kept fixed, however, the effect of su-
perencryption is just a new code, no more secure than the old one. If a
transposition is used, its width should be prime relative to the codelength.

9.2.2 Need for superencryption. In particularly sensitive and revealing
cases—dates and clock times, coordinates, names and so on—composition of
a code with a rather independent superencryption method is strongly indi-
cated. Superencryption of some code with a bipartite bigram substitution is
an example—it was used for a 3-figure front-line code (Schlüsselheft) in the
First World War by the German Army after March 1918. ENIGMA superen-
cryption was used for the map grid (Sect. 2.5.2.1) of the Kriegsmarine.

9.2.3 Plugboard. A fixed superencryption of the ENIGMA encryption
was accomplished by the plugboard (Sect. 7.3.3). The substitution was self-
reciprocal, but this was not necessary, for an arbitrary substitution would
have preserved the self-reciprocal character of the ENIGMA, but disallowed
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Welchman’s diagonal board. However, other cryptanalytic methods of the
Polish and the British (Zygalski sheets, Turing bombs) were insensitive to
‘steckering’ and would have worked for an arbitrary plugboard substitution.

9.2.4 ADFGVX. An early case of a thorough amalgamation by a product
encryption is the ADFGVX system of the German Army, invented in the
First World War by Lieutenant Fritz Nebel (in the Second World War signal
and communications officer in the Luftwaffe) and introduced under General
Ludendorff on the Western Front in 1918, with a bipartite 6×6 Polybios sub-
stitution (Sect. 3.3.1) in the alphabet {A, D, F, G, V, X} of clearly distinguish-
able Morse signals (Sect. 2.5.2) and a transposition of width 20 . The key was
changed every day, and it cost the French cryptologist Georges-Jean Painvin
at least a full day to decrypt the signals—if he could solve them at all.

9.2.5 ENIGMA superencryption. In the ENIGMA key net of the Kriegs-
marine, messages of particular importance were superencrypted a second time
with the ENIGMA, using message settings denoted by ANTON, BERTA, ...
from a list of 26, changed each month; this was to be marked with the plain-
text discriminant (German Kenngruppe) ‘offizier ’. The reason was crypto-
logical in nature, but directed against another audience: it screened infor-
mation from the rank and file. Late in the evening of July 20, 1944, a signal
was circulated to all German ships, and was decrypted in Bletchley Park:
OKMMM ANANA LLEXX EINSA TZJWA LKUER EJNUR DURCH OFFIZ IERZU ENTZI
FFERN OFFIZ IERJD ORAJD ERFUE HRERJ ADOLF HITLE RJIST TOTXD ERNEU
EFUEH RERIS TFELD MARSC HALLJ VONWI TZLEB ENJ ......

Walter Eytan [Ettinghausen], in charge of Z Watch in Hut 4, Bletchley Park,
did not know how macabre the wrong news was; anyhow he kept it secret from
the ever-present ‘Wrens’, young ladies of the Women’s Royal Naval Service.
Eytan remarked dryly: “Der letzte Witz seines Lebens”(last joke of his life).

9.3 Similarity of Encryption Methods

Shannon calls two classes of encryption methods S , T similar, if there exists
(independent of the keys) a one-to-one mapping A of the set of cryptotext
words of T into the set of cryptotext words of S such that
for all T ∈ T there exists S ∈ S : S = A T , i.e., S(x) = A T (x) for all x .
Encryption methods from similar classes are cryptanalytically equivalent: one
can assume that A is known (Kerckhoffs’ admonition as stated by Shannon:
“The enemy knows the system being used”). A possible way to break T is
then also suitable to break S . Classes of similar encryption methods are:
CAESAR methods and reversed CAESAR methods

(A is the ‘inverting’ substitution (Sect. 3.2.1) of the cryptotext) ,
VIGENÈRE methods and BEAUFORT methods

(A is again the ‘inverting’ substitution of the cryptotext) ,
simple columnar transposition methods and block transposition methods

(A is the matrix transposition of the cryptotext) .
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Fig. 84. Production of pastry dough

9.4 Shannon’s ‘Pastry Dough Mixing’

The composition of a multipartite monographic substitution and a trans-
position is not commutative. The composition of a proper polygraphic sub-
stitution of width k and a transposition of width k is not commutative.
The composition of a simple substitution and a VIGENÈRE method is not
commutative. Shannon has pointed out in 1945 that the composition of
non-commuting encryption methods works like a thorough “pastry dough
mixing”1 (Fig. 84), as studied by Eberhard Hopf in compact spaces2.

Fig. 85. Modular transformation

9.4.1 Confusion and diffusion. Intuitively, a composition will be effi-
cacious, if the composed methods not only do not commute, but the one is
rather independent of the other, like transposition, performing a ‘diffusion’,
and linear polygraphic substitution, performing a ‘confusion’. If the product

1 N. J.A. Sloane, Encrypting by Random Rotations. Lecture Notes in Computer Science
434, Springer 1990 .

2 Eberhard Hopf, On Causality, Statistics and Probability, Journal of Mathematics and
Physics 13, pp. 51–102 (1934).
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0 1 2 3 4

5 6 7 8 9

10 48 96 144 191

192 193 194 195 288

375 376 377 378 379

380 381 382 383 384

Fig. 86. FLB’s resurrection

encryption is not a group, it may be iterated and its combinatorial com-
plexity further increased. In the discrete spaces of encryption, however, any
iteration of a fixed transformation is finally periodic and in the end the Hopf
mixing is an illusion. This is shown in the following example of an iterated
two-dimensional picture transformation which in the first steps displays quite
convincingly its amalgamation character.

The transformation step consists of a reflection with affine distortion, followed
by a reduction to the basic format by cutting off and pasting back protruding
corners (Fig. 85). The result of successive transformation steps is shown in
Fig. 86. At first, it looks as if the portrait of FLB is going to be totally mixed
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Fig. 87. Modular transformation T

up, but after 48 steps a texture turns up and after 192 steps it reappears
fourfold like a ghost, and after 384 steps the original picture is restored. A
picture encryption of this kind with a high number of iterations carries the
danger of not concealing anything.

9.4.2 Heureka! The phenomenon can be explained: We consider the
square Q : 0 ≤ x < 1 , 0 ≤ y < 1 with toroidal connection and on it the
modular transformation (Fig. 87):

T :

⎧⎨
⎩

x′ = y

y′ =
{

x + y − 1 if x + y ≥ 1
x + y if 0 ≤ x + y < 1

.

The local affine distortion, the reflection included, is given by the matrix

T =
(

0 1
1 1

)
, which has shown up already in Sect. 8.6.1 . Note that(

0 1
1 1

)n

=
(

Fn−1 Fn

Fn Fn+1

)
, where Fi is the i-th Fibonacci number.3

Fig. 88. Modular transformation T 2

Figure 88 shows the effect of T 2 with the local affine distortion due to the
matrix(

0 1
1 1

)2

=
(

1 1
1 2

)
,

3 See F. L. Bauer, Efficient Solution of a Non-Monotonic Inverse Problem. In: W.H. J.
Feijen et al. (eds.), Beauty is our Business. Springer 1990, pp. 19–26 .
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Figure 89 finally shows the effect of T 4 with(
0 1
1 1

)4

=
(

2 3
3 5

)
=
(

−1 0
0 −1

)
+ 3 ·

(
1 1
1 2

)
.

d

a b

c b

c d

a

b

c

d

a

Fig. 89. Modular transformation T 4

Here it can already be seen that the pattern of the four points

a =
( 1

3
1
3

)
, b =

( 2
3
1
3

)
, c =

( 2
3
2
3

)
, d =

( 1
3
2
3

)
is rotated by 180◦ . Correspondingly, these four points are already fixpoints
for T 8 with the matrix(

0 1
1 1

)8

=
(

13 21
21 34

)
=
(

1 0
0 1

)
+ 3 ·

(
4 7
7 11

)
For T 16 with the matrix(

0 1
1 1

)16

=
(

610 987
987 1597

)
=
(

1 0
0 1

)
+ 21 ·

(
29 47
47 76

)
additional fixpoints appear, in fact
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(
0 1
1 1

)16( i
21
k
21

)
=
( i

21
k
21

)
+
(

29 i + 47 k
47 i + 76 k

)
.

Thus, all 400 points with the coordinates ( i
21 , k

21 ) , 0 < i < 21 , 0 < k < 21
are fixpoints of T 16 . T 48 has the matrix(

0 1
1 1

)48

=
(

1 0
0 1

)
+ 46 368 ·

(
64 079 103 682

103 682 167761

)
,(

0 1
1 1

)48( i
46368

k
46368

)
=
( i

46368
k

46368

)
+
(

64079 i + 103682 k
103682 i + 167761 k

)
.

This results in 463672 = 1992 · 2332 ≈ 2.15 · 109 fixpoints. Outside these
points there is a thorough amalgamation. However, if the blackening is re-
stricted by screening to a grid, then the resurrection of the picture is under-
standable when the set of fixpoints fits the set of mosaic points. Note that
46368 = 25 · 32 · 7 · 23 . Thus,(

0 1
1 1

)48
mod 25 =

(
1 0
0 1

)
.

This means that in the example of Fig. 86 a screening process of 32 × 32
mosaic points would have led to resurrection after 48 steps. Actually, the
screening was done with 256 × 256 mosaic points. Now,(

0 1
1 1

)48
mod 28 =

(
2 971 215 073 4 807 526 976
4 807 526 976 7 778 742 049

)
mod 28 =

(
225 64
64 33

)
(

0 1
1 1

)96
mod 28 =

(
225 64
64 33

)2
mod 28 =

(
193 128
128 65

)
(

0 1
1 1

)192
mod 28 =

(
193 128
128 65

)2
mod 28 =

(
129 0
0 129

)
(

0 1
1 1

)384
mod 28 =

(
129 0
0 129

)2
mod 28 =

(
1 0
0 1

)
Thus the result that supplements the table in Sect. 8.6.1 : N = 256, r = 384.
The chosen example of a two-dimensional picture encryption could be carried
over to text encryption by transposition, of course.

9.4.3 Shannon. He recommended quite generally compositions S F T ,
where S and T are classes of relatively simple methods and F is a (fixed)
transformation (a barrier) achieving a thorough amalgamation. In the exam-
ple of tomographic methods (Sect. 4.2) this would be the sandwiched trans-
position, in the example of mixed-rows columnar transposition (Sect. 6.2.3)
the matrix transposition. In modern applications it could be a chip, defining
a family of 64 polygraphic substitutions of width 64 bits. A warning seems to
be appropriate: blind confidence in the efficacy of such barriers is not justi-
fied, for there is always the danger of an illusory complication. Furthermore,
the better the amalgamation, the more a local encryption error will propagate
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over the whole cryptotext. Much worse, a local error in the transmitted cryp-
totext will spread over the whole decrypted plaintext (“avalanche effect”),
making it completely unreadable; with all the bad consequences (Chapter 11)
in case of a repetition. In this sense, good amalgamation is dangerously good.

9.4.4 Barriers. Tomographic methods achieve a simple, practical and
rather effective amalgamation by using first a multipartite substitution, where
the barrier is a special transposition, namely, a cutting into pieces and re-
assembling of the intermediate cryptotext, and finally by applying a multi-
graphic substitution.
It seems that the idea originated with Honoré Gabriel Riqueti Comte de
Mirabeau (1749–1791), a French publicist and politician before the time of
the French Revolution. After a bipartite, one-to-one Polybios substitution
(Sect. 3.3.1) Ÿ25 −→ Ÿ5×Ÿ5 he grouped together all the first digits, then all
the second digits. For the regrouping, he applied the inverse Polybios substi-
tution Ÿ5×Ÿ5 −→ Ÿ25 . (This was presumably followed by a steganographic
method—Bazeries, claiming that he had decrypted some authentic letters of
the Marquise Sophie de Monnier to her famous lover Honoré de Mirabeau
and mentioning the teneur pornographique, does not give further details, but
makes the remark in connection with Boetzel and O’Keenan, Sect. 1.2). The to
and fro Polybios substitution Ÿ25←→Ÿ5×Ÿ5 also interested young Lewis Car-
roll (diary note of February 26, 1858). Alexis Køhl used a Ÿ25←→Ÿ10×Ÿ10.

9.4.5 Damm and Hagelin. Instead of a transposition, the barrier can
also be from a family of linear transformations, e.g., a VIGENÈRE or BEAU-
FORT over Ÿ5 . This is the basic idea of the “Nihilist number-ciphers” (as
Helen Fouché Gaines calls it) which can be operated with a periodic or with
a running key. In this way was the to and fro Polybios substitution used in
the early cipher machines B-21, B-211 of Boris Hagelin. Hagelin used two
of Damm’s half-rotors with ten positions to obtain for each of the two Poly-
bios Ÿ5 ten different permuted 5-letter-alphabets; altogether 100 different
alphabets resulted. The rotor movement was accomplished by two pairs of
pin wheels with 17, 19, 21 and 23 teeth. The B-211 also had a plugboard.

9.4.6 Mirabeau Improved. Félix Marie Delastelle4 also discussed a to-
mographic method more general than his local one mentioned in Sect. 4.2.3:
the regrouping of larger pieces than Mirabeau (Sect. 9.4.4) had done. For the
regrouping he proposed a longueur de sériation, e.g., 7 in the following exam-
ple with a Polybios substitution derived from the password BORDEAUX :

e n v o y e z u n b a t a i l l o n i n f a n t e r i e
1 4 5 1 5 1 5 2 4 1 2 5 2 3 4 4 1 4 3 4 2 2 4 5 1 1 3 1
5 3 3 2 4 5 5 2 3 1 1 2 1 3 1 1 2 3 3 3 5 1 3 2 5 3 3 5

14 51 51 55 33 24 55 24 12 52 32 31 12 13 44 14 34 21 12 33 35 24 51 13 11 32 53 35

D S S Z I C Z C O T H G O R P D J A O I K C S R B H V K

4 Félix Marie Delastelle, 1840–1902 . Author of Traité Élémentaire de Cryptographie,
Gauthier-Villars, Paris, 1902.
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Delastelle was practical enough to choose a seriation length (longueur de
sériation) that was not too large: an encryption error would otherwise spread
over the whole message (see Sect. 11.3). But the danger of unauthorized
decryption is higher.

9.4.7 Other methods. Delastelle also discussed tomographic methods
on the basis of a tripartite substitution (Sect. 4.1.3). Other tomographic
methods used the ternary Morse code, e.g., a method called POLLUX and a
reversed Kulissenverfahren by M. E. Ohaver, which in the following example
uses encryption width 7 :

s e n d s u p
Morse symbols ··· · –· –·· ··· ··– ·– –·
code length 3 1 2 3 3 3 4
reversed 4 3 3 3 2 1 3
regrouped symbols ···· –·– ··· ··· ·– · – –·

H K S S A E G

9.5 Confusion and Diffusion by Arithmetical Operations

A thorough amalgamation is accomplished in particular by arithmetical op-
erations. A method liked by mathematicians, recently rediscovered, is based
on an arbitrary monoalphabetic block encryption of a message as a sequence
of numbers, followed by an encryption of each one of these numbers by arith-
metical operations modulo a suitable number q , possibly with re-encryption
into literal form (‘symbolic (false) addition, subtraction, multiplication’).
Addition modulo q , as well as multiplication by a factor h modulo q , was
discussed in connection with linear substitutions (Sect. 5.7). Likewise the r-th
power modulo q can be formed. These operations are increasingly amalga-
mating: multiplication as iterated addition, powering as iterated multiplica-
tion. We will see that if the inverse operations exist, they provide authorized
decryption for roughly the same effort as needed for encryption.
For given q , a plaintext block can be encrypted whose number equivalent x
fulfills the condition 0 ≤ x < q . The encryption as a number can even be
performed by customary numeral codes; this brings about a compression
that can be considerable for stereotyped texts: standard commercial codes
comprise on average 8.5 plaintext letters per five-digit group.
The number representation can be in any number system for the basis B with
B ≥ |V | that is convenient and allows fast carrying out of the arithmetical
operations. With V =Ÿ26 frequently the basis B = 100, i.e., essentially de-
cimal arithmetic (ZZ2

10) with digit pairs was used, or the basis B = 32, i.e.,
essentially binary arithmetic (ZZ5

2 ) with five-bit groups.
Today, bytes (B=256), 16-bit groups (B=216), 32-bit groups (B=232), and
64-bit groups (B=264) are commonly used.
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9.5.1 Residue classes arithmetic. For the method of multiplication
with a factor h modulo q ,

Mh(x) = x · h mod q ,
the necessary preparations have been made in Sect. 5.7 .
For prime q = p , the multiplication modulo p forms a group; for every
h �≡ 0 mod p there exists an inverse h′ such that h · h′ mod p = 1 , thus
for the multiplication in the Galois field (p) :

Mh′(Mh(x)) = x .
For non-prime q , h has an inverse (h is regular with respect to q) if and
only if it is relatively prime to q (Sect. 5.6).
For technical reasons, q is frequently chosen to be of the form q = 2k or
q = 2k−1 if computation is done in the binary system; in the decimal system
correspondingly q = 10k or q = 10k −1 . In the first cases the result is
directly found in the lower part of the accumulator (Sect. 5.7.1). In the case
q = 2k , only the odd numbers have inverses; in the case q = 2k − 1, the
non-prime q should be avoided—then one is limited to Mersenne primes.
For large values of q the determination of the inverse h′ of a given h looks
non-trivial only at first sight: the division algorithm by successive subtraction
functions also for the cycle of numbers mod q ; in fact, an analogue to the
fast division algorithm we customarily perform in a positional system for Ÿ

was given in Sect. 5.7.1 for Ÿq = {0 , 1 , 2 , 3 , . . . , q−1} ⊂ Ÿ . It can be
brought into the form shown in the following example:

17 · h′ ≡ 1 mod 1000
−1
16
33
50

}
3

220
390
560
730
900

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ 5

2600
4300
6000

}
3

thus 17 · 353 = 6001 ≡ 1 mod 1000 .
It is easy to program a microprocessor to do this efficiently. Once h′ is
determined, decryption needs the same effort as encryption.
If q is the product of two (different) primes, q = p′ · p′′ , and if
h · h′

1 ≡ 1 mod p′ and h · h′
2 ≡ 1 mod p′′ , then h · h′ ≡ 1 mod q , where

h′ ≡ h′
1 mod p′ and h′ ≡ h′

2 mod p′′ .
The residue arithmetic reduces the effort for the determination of h′ con-
siderably.
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9.5.2 Powering. The following can be stated for the method of raising a
number to a fixed power h modulo q ,

Ph(x) = xh mod q (x0 = 1) :

For prime q = p , if for some h′ h · h′ ≡ 1 mod p−1 (therefore h relatively
prime to p−1), then Ph′(x) is inverse to Ph(x) . Thus, for the raising to a
power in the Galois field (p)

Ph′(Ph(x)) = x .

Proof: To begin with,

Ph′(Ph(x)) = xh·h′
mod p = xh·(h′ mod p−1+α·(p−1)) mod p for suitable α

= xh·h′ mod p−1 · xhα·(p−1) mod p

= x1 · (xp−1 mod p)hα

From Fermat’s theorem, xp−1 mod p = 1 , thus
Ph′(Ph(x)) = x . 
�

Examples: Mutually reciprocal pairs (h , h′) can be found in Sect. 5.5,
Table 1 , e.g.,
for p = 11 : (3,7) and (9,9) (N =10) ;
for p = 31 : (7,13), (11,11), (17,23), (19,19), and (29,29) (N =30) ;
for p = 23 : (3,15), (5,9), (7,19), (13,17), and (21,21) (N =22) .

Case p = 11:
x3 mod 11 has the cycle representation (0) (1) (2 8 6 7) (3 5 4 9) (10) ,
x9 mod 11 has the cycle representation (0) (1) (2 6) (8 7) (3 4) (5 9) (10) .
x , x3 mod 11 , x9 mod 11 , and x7 mod 11 form the cyclic group C4 of order 4.

Case p = 31:
x7 mod 31 has the cycle representation A of order 4

(0) (1) (5) (25) ( 9 10 20 18) (17 12 24 3) ( 2 4 16 8)
(6) (26) (14 19 7 28) (22 21 11 13) (15 23 29 27) (30)

x11 mod 31 has the cycle representation B of order 2
(0) (1) ( 5 25) ( 9 14) (10 19) (17 22) (12 21) ( 2) (16) ( 4) ( 8)

( 6 26) (20 7) (18 28) (24 11) ( 3 13) (15) (29) (23) (27) (30)
x17 mod 31 has the cycle representation AB of order 4

(0) (1) ( 5 25) (14 10 7 18) (22 12 11 3) ( 2 4 16 8)
( 6 26) ( 9 19 20 28) (17 21 24 13) (15 23 29 27) (30)

x19 mod 31 has the cycle representation A2 of order 2
(0) (1) (5) (25) ( 9 20) (10 18) (17 24) (12 3) ( 2 16) ( 4 8)

(6) (26) (14 7) (19 28) (22 11) (21 13) (15 29) (23 27) (30)
x29 mod 31 has the cycle representation A2B of order 2

(0) (1) ( 5 25) ( 9 7) (10 28) (17 11) (12 13) ( 2 16) ( 4 8)
( 6 26) (14 20) (19 18) (22 24) (21 3) (15 29) (23 27) (30)

x7 mod 31 and x11 mod 31 generate the group C4 × C2 of order 8 .
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Case p = 23: x7 mod 23 has the cycle representation
(0) (1) (2 13 9 4 8 12 16 18 6 3) (5 17 20 21 10 14 19 15 11 7) (22)

and generates the cyclic group C10 of order 10 .

Generally, for given odd prime p, the set {Ph : h regular w. r. t. p−1} forms
an Abelian (commutative) group Mp−1, depending on p . Polyalphabetic
encryption with this group as key group is possible. The group is of order
(p−1)

2 − 1 , if (p−1)
2 is prime. A prime p such that p′ = (p−1)

2 is also a prime,
is called a safe (or ‘strong’) prime (Bob and G. R. Blakely 1978): p′ is then
called a Sophie Germain prime.
Safe primes are 5 , 7 , 11 , 23 , 47 , 59 , 83 , 107 , 167 , 179 , 227 , 263 , 347 ,
359 , 383 , 467 , 479 , 503 , 563 , 587 , 719 , 839 , 863 , 887 , 983 , 1019 , 1187 ,
1283 , 1307 , 1319 , 1367 , 1439 , 1487 , . . . ; but there are also big ones like
45·237− 1 and 10100 − 166517 . Apart from 5 and 7 , all safe primes are of
the form 12a − 1 .
Ph(x) has the trivial fixpoint x = 0 and the two normal fixpoints x = 1,
x = p − 1, besides possibly other ones. The powers Ph(x), P ′

h(x) may be
obtained as products of repeated squares; a binary representation of h and
h′ indicates how this is to be done.
For p=11 , since 310 = 112 and 710 = 1112 ; 910 = 10012 :

P3(x) = x · x2 , P7(x) = x · x2 · (x2)2 , P9(x) = x · ((x2)2)2 ,
where . · . indicates multiplication and .2 squaring, each time modulo 11 .
In fact, for n-bit numbers, with 2n < p < 2n+1, raising to a power modulo p
takes roughly the same effort as n multiplications do. With the present
tendency to displace encryption steps into microprocessor chips, arithmetical
methods will become more and more important in the future.
Especially for primes of the form p = 22k

+ 1 (Fermat primes) one arrives
at the problem of reciprocal pairs modulo 22k

; special solutions exist.
For non-prime q , the situation is more complicated. The special case where q
is a product of two (different) primes, q = p′ ·p′′ , will be treated in Sect. 10.3 .

9.5.3 Two-way communication. Since h and h′ in Sects. 9.5.1 and
9.5.2 are interchangeable, in the mutual communication of two partners A
and B the one can use h both for encryption and decryption and the other
h′ likewise both for decryption and encryption (Sect. 2.6.2).

9.5.4 Pliny Earle Chase. A harbinger for these arithmetical methods
was Pliny Earle Chase; in 1859 he described in the newly founded Mathe-
matical Monthly the following method: After some bipartite injective sub-
stitution V → W 2 with W = Z10 , one forms a number x , as Mirabeau
did (Sect. 9.4.4), from the first figures and another one y from the second
figures. Then one performs simple arithmetical operations, like multiplying
x by seven and y by nine, and finally retranslates the result into V . This
simple system offered more security than many customary schemes, although
it did not find practical use.
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9.6 DES and IDEAR©

The Data Encryption Standard (DES) algorithm was promulgated in 1977 by
the National Bureau of Standards (NBS) in the USA for use with “unclassi-
fied computer data.”5 The DES method is a block encryption for octograms
of bytes. A sequence of fixed transpositions and key-dependent, multipartite,
non-linear substitutions produces a thorough amalgamation. DES is a tomo-
graphic method; this can be seen best from the original proposal LUCIFER
by Horst Feistel, an employee of IBM (Fig. 90). Quite obviously, the impres-
sion is given that Shannon (Sect. 9.4.3) is the godfather. The key has eight
bytes, but in fact this includes eight parity bits, there are only 56 genuine
key bits. A short effective key length was desirable for the NSA.

9.6.1 The DES Algorithm. We give only a sketch of the method; for
details the official source5 may be consulted.

9.6.1.1 Encryption. The principal construction of the DES encryption step
is shown in Figure 91 : The 8-byte plaintext block is first subjected to a (key-
independent) initial transposition T and subsequently split into two 4-byte
blocks L0 and R0 . Next are 16 rounds (i = 1, 2, 3, . . . , 16) with

Li = Ri−1 and Ri = Li−1 ⊕ f(Ri−1, Ki) .

The symbol ⊕ is used for addition modulo 2 . Ki is a 48-bit key, generated
via a selection function by the given key. The final transposition T−1 , inverse
to T , ends the DES encryption step.
The function f is the central part of the algorithm (Fig. 92). The 32-bit
block Ri−1 is expanded into a 48-bit block E(Ri−1) by duplication of
certain bit positions and added modulo 2 to Ki . The resulting 48-bit block
is split into eight 6-bit groups, serving as input for each one of the eight
substitution modules S1 , S2 ... S8 (‘S-boxes’). Each of these modules imple-
ments four different nonlinear substitutions. The following table shows these
substitutions for S1 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S1: 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Bit 1 and bit 6 of the 6-bit group, interpreted as a binary number, determine
the row (and thus a substitution), bits 2 to 5 the column. For the input

5 Federal Information Processing Standards Publication 46, National Technical Informa-
tion Service, Springfield, VA, April 1977. Federal Register, March 17, 1975 and August 1,
1975. For the presentation of background information (from the point of view of N.B.S.)
see Smid M.E., Branstad D.K.: The Data Encryption Standard: Past and Future,
Proceedings of the IEEE, Vol. 76, No. 5, May 1988 .
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Plain text

Cypher text

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 1 1 1 0 1 1 0 1 1 1 0 1 1

S S S S S

S S S S S

S S S S S

S S S S S

S S S S S

P

P

P

P

P

P

Fig. 90. LUCIFER encryption (Feistel 1973)
A plain text input of a single 1 and fourteen 0’s is transformed
by the non-linear S-boxes into an avalanche of eleven 1’s.
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Plain text

Cypher text

R0L 0

L1 = R0

K1

R2 = L1 ⊕ f (R1, K2)

R1 = L0 ⊕ f (R0, K1)

R16 = L15 ⊕ f (R15, K16)

R15 = L14 ⊕ f (R14, K15)

L2 = R1

L15 = R14

L16 = R15

+ f

K2

+ f

Kn

+ f

K16

+ f

Input transposition T

Final transposition T –1

32

32

32

32

32

64

64

32

32 32

32

32

32

32

48

48

48

48

Fig. 91.
DES encryption step

110010 (row 2, column 9 in the table) the module S1 issues the bit group
1100 . The eight 4-bit output blocks of the substitution modules S1 , S2 ... S8

are concatenated and subjected to a fixed final transposition P (‘P-box’).

There remains the question of the derivation of the subkeys. First, the parity
bits of the key specified by the user are removed, then the remaining 56 bits
are transposed according to a fixed prescription and split into two 28-bit
blocks. These blocks are cyclically shifted to the left in each round by one
or more positions—depending on the index of the round. From the two of
them, according to some specified rule, a 48-bit subkey (Ki) is generated.
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Ri-1

Ki

A

B

32

32

f (Ri-1, Ki)
32

E (Ri-1)

6

4 4 4 4 4 4 4 4

6 6 6 6 6 6 6

48

48

48

E

P

+

S1 S2 S3 S4 S5 S6 S7 S8

Fig. 92.
The function f

9.6.1.2 Decryption. For decryption the same algorithm is applied, now
using the subkeys (Ki) in reverse order. The algorithm is essentially key-
symmetric: the same key is used for encryption and decryption. The rounds
of the encryption can be described by the self-reciprocal mappings

hi : (R , L) �−→ (R , L ⊕ f(R , Ki)) (processing) ,

g : (R , L) �−→ (L , R) (swapping) .

g is obviously a reflection, which for hi follows from the identity

L ⊕ f(R , Ki) ⊕ f(R , Ki) = L .

While the entire encryption is described by

DES ≡ T−1 ◦ h16 ◦ g ◦ h15 ◦ g ◦ . . . ◦ h2 ◦ g ◦ h1 ◦ T

(in the last round are no swaps), the order of the subkeys is simply reversed
for decryption:

DES−1 ≡ T−1 ◦ h1 ◦ g ◦ h2 ◦ g ◦ . . . ◦ h15 ◦ g ◦ h16 ◦ T .

Since all the mappings are self-reciprocal, composition of DES and DES−1

yields identity.
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9.6.2 Avalanche Effect. It turns out that after a few rounds each bit of
the intermediate result depends on each bit of the plaintext and of the key.
Minimal changes in the plaintext or in the key have the expected effect that
about 50 % of the bits change (“avalanche effect”).

9.6.3 Modes of Operation for DES. For a plaintext of more than eight
bytes, block encryption means dividing the plaintext into 8-byte blocks. In
some applications—e.g., if information becomes available step by step and is
to be transmitted without delay—plaintext can be shorter than eight bytes.
For both cases, a variety of modes of operation is conceivable, with differences
with respect to speed of encryption and error propagation. In the end, the
intended application will decide which mode is preferable.
The National Institute of Standards and Technology (NIST, formerly the
NBS) has standardized four different modes of operation for use in the USA—
two for each of the principal applications mentioned above.6

The ECB mode (Electronic Code Book) treats all 8-byte blocks indepen-
dently. Identical plaintext blocks result in identical cryptotext blocks. This
mode with its strictly monoalphabetic use of the DES algorithm should be
avoided as far as possible.
The CBC mode (Cipher Block Chaining) depends on the encryptment’s his-
tory. The starting point is an initialization block c0 (session key ) to be
agreed among the partners.
Encryption of the plaintext blocks m1 , m2 , m3 , . . . results in the following
cryptotext blocks c1 , c2 , c3 , . . . with

c1 = DES(m1 ⊕ c0) c2 = DES(m2 ⊕ c1) c3 = DES(m3 ⊕ c2) .

Decryption is performed by

m1 = DES−1(c1)⊕c0 m2 = DES−1(c2)⊕c1 m3 = DES−1(c3)⊕c2 .

The encryption method is now polyalphabetic, but with rather regular con-
struction of the alphabets, in fact it is an autokey method with a priming
key, protected only by the non-linearity of the barrier DES .
Apart from these stream-oriented direct encryptions are modes of operation
using the DES algorithm for the generation of pseudorandom keytext.
The CFB (Cipher Feedback) mode offers a choice of a 1-bit, 8-bit, 16-bit,
32-bit, or 64-bit output for subsequent use with another encryption method.
The OFB (Output Feedback) mode has internal feedback, the feedback mech-
anism being independent of both the plaintext and the cryptotext stream. It
is normally used to produce an 8-byte (64-bit) output. It has found applica-
tion in connection with authentication.

6 DES Modes of Operation, National Bureau of Standards (US), Federal Information Pro-
cessing Standards Publication 81, National Technical Information Service, Springfield,
VA, December 1980.
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9.6.4 Security of DES. Since the very first publications about the envis-
aged and later on the agreed-upon standard DES there were discussions and
criticism. The number of internal rounds, 16, was considered to be rather
low. The main points of attack were and still are:

• The design criteria of the S-boxes have not been disclosed—first not at
all, later rather vaguely; however, they were finally published by Don
Coppersmith in the 1990s. These barriers, essential for security, could
contain ‘trapdoors’, making unauthorized decryption easy (or at least
easier).

• The key length is relatively small. There are only Z = 256 ≈ 72 · 1015

different keys possible (for the original LUCIFER design—and this com-
parison is certainly appropriate—the number of keys was much larger,
at 2128 ≈ 340 · 1036).

• In the ECB mode, the key is kept fixed for quite a while; this mono-
alphabetic use allows classical attacks (‘building a depth’, Sect. 19.1).

On the other hand, DES is a rather fast encryption algorithm. A larger key
length, many more rounds and other things would have slowed down the chip.
The worldwide acceptance of DES as a de facto standard justifies to some
extent the design.

But in part this discussion was conducted against a background of deep
mistrust: The American National Standards Institute was suspected (and
even privily accused) of acting as the long arm of the National Security
Agency, which was supposed to have an interest in breaking encryptions.
Official announcements were not helpful in reducing suspicion.

Even today no trapdoors are (publicly) known. But there is also no proof
of their nonexistence. Certain surprising properties of the DES algorithm
have been found, like a symmetry under complementation: If both plaintext
and key are complemented, the resulting cryptotext is complemented, too.
There could be other symmetries undiscovered so far. A residue of distrust
has remained. In fact, it is to be hoped that with massive support by faster
and faster machines DES can be broken by state authorities, if the national
security of the USA makes it necessary. Private initiative should not be and
most likely is not able to solve DES.

Given that DES lacks security—in particular with the ECB mode, which
has long been disadvocated but is still used, even commercially, by mediocre
vendors—the remedy may be multiple DES encryption with independent
keys. But there is the danger of an illusory complication.

An upper limit for the effort to break a method is the brute force attack. It
should be kept in mind that DES is available for unlimited tests and thus sus-
ceptible to this attack. In 1990, Eli Biham and Adi Shamir found a cryptana-
lytic countermeasure for attacking amalgamation methods, using some small
variations of the plaintext (‘differential cryptanalysis’). For DES, it turns
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out that the brute force attack can indeed be shortened—from 256 tests with
full exhaustion to 247. Some years later Mitsuru Matsui even found a way
(‘linear cryptanalysis’) allowing a reduction of the effort to 243 tests. This is
only theoretically interesting—but tempting. In the meantime, Donald Cop-
persmith has disclosed that as early as 1974 the designers of DES tried their
best to prevent such an attack.7 The break was finally accomplished with the
appearence of faster and cheaper chips.
Since about 1980, special chips for DES have been on the market. In the
first half of the 1990s, they encrypted and decrypted at 10–20 Mbits/sec .
Figure 93 shows a chip from the early times (1979).
The DES method has become the worldwide leader on the market (irre-
spective of American export limitations). It is used by banks for electronic
cash transfer, it protects civil satellite communications and UNIX passwords.
Whether successors of DES will be equally successful remains to be seen.

Fig. 93. DES chip from 1979

9.6.5 Successors for DES. Export is free for the 40-bit algorithms RC2
and RC4 of RSA Data Security, Inc., which came on the market in 1993.
“If you get permission from the USA [for a license to export an encryption
algorithm ] that probably means it’s too easy to decrypt” (Ralph Spencer
Poore). The widespread opinion (Otto Horak, in 1996: “DES is nearing the
end of its credibility”) that the 56-bit DES, intended only for a decade, is
to be replaced soon—after all, it can be assumed that in the 20 years from
1977 to 1997 the maximal attainable speed has increased by a factor around
210—was supported in 1998 by a successful brute force break of exhaustive na-
ture. As a consequence, the NIST (National Institute of Standards and Tech-
nology) concluded that it could no longer support the use of DES for many ap-
plications, and recommended in February 1999 an interim ‘Triple-DES’ (FIPS
46-3) with 168 bits (that however trebles the time need for encryption or de-
cryption) for a few more years, until the new Advanced Encryption Standard
(AES), with key lengths of 128, 192 or 256 bits, was finalized as a Federal

7 Details are given by Susan Landau, Notices AMS Vol. 47, p. 341 and p. 450 .
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Information Processing Standard. In the end, the proposal RIJNDAEL, by
Joan Daemen and Vincent Rijmen, was selected on October 2, 2000 and
became valid on May 26, 2002. Meantime, doubts have been expressed.
Compared to DES, an essential improvement was offered by the SKIPJACK
algorithm with an 80-bit key, working in 32 rounds, which is likewise key-
symmetric. Starting from the observation that with a special computer for
$ 100 000 in 1993 exhaustion of the key set of DES would have needed8 3.5 h ,
for SKIPJACK, this would be reached within 3.5 h only in 2029, in 1993
it would need 26.2 · 220 years, in 2005 still 6.55 · 210 years, and in 2017
1.64 years—and this for the simple exhaustive (‘brute force’) attack; every
professional decryptor would find ways and means to do it faster.
Alas! Under US law, SKIPJACK, which can be obtained as a tamper-
resistant chip (MYK-78 in the Clipper system) programmed by Mykotronx,
Torrence, CA, USA, with a throughput up to 20 Mbits/sec and for a price
of some $ 10 , was until June 1998 classified and not obtainable as software.
This meant, of course, that its applicability within computer networks and
webs was very restricted, not to speak of political considerations regarding
commerce and civil rights. The role of a de facto standard that DES has
acquired is unlikely to be achieved by SKIPJACK even after declassification.
Europe, commonly more liberal than the USA, does not bind itself to the
action of the US government. Among the various unsponsored attempts to
create a successor to DES maybe the most promising is IDEAR© (Interna-
tional Data Encryption Algorithm), developed by J. L. Massey and others
since 1990, patented and registered by the Swiss Ascom Tech AG, Solothurn.
IDEA has been sold since 1993 as VLSI chip and as software without known
commercial restrictions. With a key space of 128 bits, IDEA will measure up
for the next century to a brute force attack, although for other cryptanalytic
methods, particularly those taking advantage of the enemy’s encryption er-
rors, it is just as vulnerable as SKIPJACK and DES. All these encryption
algorithms work with 8-byte plaintext blocks.
Sometimes, however, not all existing bits are used cryptologically. Thus, it
turned out in early 1998 that in a 64-bits key used worldwide for protection
of access to GSM mobile telephones (D1, D2, E-plus) the last ten bits were
constantly set to O. Consequently, a brute force attack is shortened by a
factor 1000 and reaches into the hours-till-days region.

9.6.6 Cryptosystems and cryptochips. A lot of excitement was caused
by a cryptosystem which was distributed in mid-1991, a software system
called PGP (‘Pretty Good Privacy’, jokingly also called ‘Pretty Good Piracy’).
As well as encryption and decryption algorithms (IDEA, more recently also
TripleDES and others), PGP contains means for secure key negotiation and
for authentication (Sect. 10.5). PGP has grown within a surprisingly short

8 According to M. J.Wiener, Efficient DES Key Search. CRYPTO ’93, Santa Barbara,
CA, Aug. 22-26, 1993.
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time into a de facto standard for e-mail on the Internet. PGP escaped its
originator, Philip R. Zimmermann and slipped through the meshes of US law,
very much to the dismay of the NSA, but also very much to the malicious
glee of an anarchic worldwide cypherpunk movement. In January 1996, the
US government dropped its prosecution of Zimmermann. Meanwhile, PGP
software has been marketed in the USA for something like $100 .
Anyway, national laws can not find great attention in an open world, An
example was given in March 1998 by Netscape with the release of its WWW
Software Communicator “mozilla” in source code. In order to obey the US
export laws (International Traffic in Arms Regulations, ITAR), the secure
sockets layer (SSL), which allows secure data exchange, was withheld. Within
a couple of days an Australian source made “cryptozilla” openly available, a
version of the Netscape Communicator equipped with 128-bit-algorithms for
encryption.
Anyhow, a weakness is key negotiation, in general the weakest part of all
existing cryptosystems. This was a lesson the Polish cryptanalysts taught the
Germans. Once key negotiation is broken, the whole encryption algorithm is
worthless.
Meanwhile, microprocessor chips are becoming more and more powerful. A
recent (1996) general purpose 64-bit processor chip codenamed Alpha-AXP
(211 64), made by Digital Equipment Corporation, works with a pulse fre-
quency of 300 MHz, comprises 9.3 million transistors and processes 1.2 · 109

instructions per second. Initially, it was manufactured in 0.5µ technology, i.e.,
the electrical connections have a width of 0.0005 mm. Step by step the pulse
frequency was increased; in 1999 for the successor Alpha 212 64 to about 600
MHz, using a 0.35µ technology. In 2000, DEC announced pulse frequencies
higher than 1.0 GHz and was then aiming at 0.25µ and 0.18µ technology. By
mid-2003, the Intel Pentium 4 with 3.2 GHz was going for $637 on the market.
Microprocessors are widely used nowadays in servers, desktop, and laptop
computers and are frequently connected into networks, and thus more and
more the need to protect their data cryptologically is felt. Crypto AG, Zug
(Switzerland) offered in 1996 a crypto board for stand-alone or networked
desktop PCs and notebooks, which provided user identification and access
control, encryption of hard disks, floppy disks, directories, and files at a
rate of at least 38 Mbits/sec . It had its own tamper-proof key carrier and
password storage and worked with individually generated pseudorandom keys
in a symmetric block cipher algorithm. The key management used a multi-
level key hierarchy. Master keys, data encryption keys, file keys and disk keys
had a key variety of 2124 = 2 × 1037. With dimensions 85 mm by 54 mm and
only 3.3 mm thick, the crypto board, as shown in Plate P, is geometrically
extremely small. Nevertheless, if it is used properly, it can be expected
to withstand the efforts of the largest supercomputer for quite some time.
‘Strong’ cryptography, which is unbreakable for a long while, is possible and
is worthwhile; thus, it is going win.
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The polyalphabetic encryption methods discussed so far use a key for encryp-
tion and a key for decryption. Cryptosystems with self-reciprocal encryption
steps use the same key for both, of course. Otherwise, there are two possi-
bilities:
(1) There is only one key. The same key character has its particular meaning
for encryption and for decryption. This is the case for DES (Sect. 9.6.1).
Using crypto machines, this requires a switch that allows a choice between
encryption mode and decryption mode.
(2) There are two different keys, the encryption key and the decryption key.
The crypto machine needs only one mode, but the derivation of the decryption
key from the encryption key needs extra effort.
This can be illustrated with a classical VIGENÈRE method: Case (1) uses
for encryption E and decryption D

E = {χkj
} : χkj

(x) = x + kj mod Nn

D = {χ−1
kj

} : χ−1
kj

(x) = x − kj mod Nn

while case (2) uses for decryption

D = {χ−1
kj

} : χ−1
kj

(x) = x + (−kj) mod Nn

i.e., χ−1
kj

= χ(kj)−1 where (kj)
−1 = −kj .

The derivation of (kj)
−1 from (kj) is simple enough in this example, and

since (kj)
−1, the decryption key, is to be kept secret, (kj) , the encryption

key, is to be kept secret as well. But if it were as difficult to derive (kj)
−1

from (kj) as to break the cryptotext with any other means, the encryption
key (kj) could be made public. If so, we would have an open encryption key
system. Surprisingly, such cryptosystems exist.
The question is: does such an open encryption key system (public key system
for short) offer advantages ? And if so, why was such a simple idea presented
so late—the mid-1970s—in the long history of cryptology? The answer is that
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the use of cryptographic methods in commercial networks has characteristics
that were missing in the classical two-partner situation. In fact, there are
indeed advantages in the case of a many-partner key net, as well as advantages
if authentication is given equal or even more weight than secrecy, a situation
that exists in modern global financial transactions.

10.1 Symmetric and Asymmetric Encryption Methods

10.1.1 Symmetric Methods (Private Key Methods). The key agreed
upon by two partners determines in classical cryptosystems both the encryp-
tion step and the decryption step in a simple way, which is symmetric in the
sense that both times essentially the same effort is needed. Moreover, usually
the two partners are at different times both sender and receiver, and in cases
where encryption and decryption commute (Sects. 2.6.2, 9.5.3), each needs
just one, his or her private key.
These symmetric, private key methods did not cease to exist with the ad-
vent of the electronic age, say around 1950. The DES method, discussed in
Sect. 9.6, the best known example of modern block encryption, is in this class;
there is—case (1) above—only one key, and encryption and decryption differ
only with respect to the order in which the rounds generated from the key
are applied. Encryption and decryption is fast: in 1995, about 20 Mbits/s .
Thus, cryptanalytic security depends on the secrecy of this key. Furthermore,
if the user hopes that the would-be unauthorized decryptor even with knowl-
edge of the method class will never find this key, it goes almost without saying
that under real conditions nobody would be able to encrypt a fake message
such that the recipient could decrypt it without becoming suspicious. Then,
authentication is not a problem, and it is guaranteed if and only if secrecy is
guaranteed (but see Sect. 10.5).
However, there are certain disadvantages:
(1) It is impossible for the sender of a message to prove to his partner or a

third person that he has sent a particular message. This lack of judicial
protection is a handicap for the transmission of orders and for financial
transactions.

(2) The keys have to be communicated or negotiated on a channel whose
cryptanalytic security is much higher than the security of the channel
used for normal transmissions. Spontaneous secure communication may
not be possible.

(3) With a large number of partners wanting secure communication, the
number of two-way channels and therefore the number of keys becomes
quite large. For a key net with n partners, each one wanting to exchange
messages safely with everyone, (n

2 ) = n · (n − 1)/2 self-reciprocal keys
or n · (n−1) symmetric keys are necessary. For n = 1000 , the numbers
are 499 500 and 999 000.
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10.1.2 Asymmetric Methods (Public Key Methods). Dispensing with
the symmetry of the cryptosystem, the decryption key, of course, is to be
protected; but asymmetry may go so far that the encryption key is not only
unprotected but even published (public key). On a two-way channel with
partners A and B , there are now four keys: an open encryption key for B
and a corresponding private decryption key for A , an open encryption key
for A and a corresponding private decryption key for B . This is twice the
number before. But A may now receive messages from many other partners,
all knowing for their encryption the public key of A and trusting that only
the authorized receiver A can decrypt it. Thus, each partner has an open
(public) key and a private key, and the total number of keys for a key net of
1000 partners drops from nearly a million to two thousand.

This eliminates the disadvantage (3) above. As for (1) , the solution will be
taken up below and in Sect. 10.5 . And the problem under (2) disappears, for
a published key does not have to be negotiated; whenever a partner A decides
to open a communication channel with B , he may do so after consulting the
directory with the keys of all participants.

The concept of an open encryption key system was published in 1976 by
Whitfield Diffie and Martin E. Hellman.1 For its origin, see Sect. 8.9.2 .

10.1.3 Encryption and Signature Methods. Let KPi denote the public
key of the i-th partner and KCi his private key. KPi determines an encryp-
tion Ei and KCi determines a decryption Di . Both Ei and Di have
effective implementations, but {KPi} is a public directory and KCi is only
known to the i-th partner. For all partners, it is impossible (or, practically
speaking, intractable) to derive KCi from KPi .

If Ei and Di fulfill the property

(∗) Di (Ei (x)) = x ,

we speak of an (asymmetric) encryption method serving secrecy.

If moreover Ei and Di fulfill the property

(∗∗) Ei (Di (x)) = x ,

we speak of an (asymmetric) signature method serving authentication.

The asymmetric encryption method works as follows: If partner A wants to
send an encrypted message m to B , he takes from the directory under the
heading B the key KPB (this determines EB):

(A) c = EB(m)

and sends the cryptotext c over the public channel to B .
B uses his private key KCB (which determines DB) to recover the message m :

(B) DB(c) = DB(EB(m)) = m (because of (∗) )

1 New Directions in Cryptography , IEEE Transactions on Information Theory, IT-22,
Vol. 6, pp. 644–654 (1976) .
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The asymmetric encryption and signature method works as follows: If partner
A wants to send an encrypted message m signed with his signature “A” to B ,
he first encrypts m with his private key KCA (this determines DA):

(A1) d = DA(m) ,

and joins to d his signature “A”. Next he takes from the directory under the
heading B the key KPB (this determines EB) and encrypts the pair (“A”,d):

(A2) e = EB(“A”, d) = EB(“A”, DA(m)) .

A sends the cryptotext e over the public channel to B .

B uses his private key KCB (which determines DB) to recover the pair:

(B1) DB(e) = DB(EB(“A”, d)) = (“A”, d) (because of (∗) ) .

B recognizes from the part “A”, that A is the sender. B now uses the public
key KPA of A (which determines EA) to recover from d the message m :

(B2) EA(d) = EA(DA(m)) = m (because of (∗∗) ) .

By obtaining meaningful text, B is assured that he did get the message from A
since no other partner could have encrypted it with DA .

10.2 One-Way Functions

The whole success of asymmetric open encryption key systems rests on the
question: How can it be accomplished that Di , i.e., E−1

i , cannot be easily
obtained from Ei , that breaking the encryption is practically intractable?

10.2.1 Strict One-Way Functions. An injective function f : X → Y
is called a strict one-way function if the following holds:

There is an efficient2 method to compute f(x) for all x ∈X , but there is
no efficient method to compute x from the relation y=f(x) for all y ∈f [X] .

Arto Salomaa has given a striking example of a one-way function. An encryp-
tion with homophonic encryption steps Z26 −−−� Z7

10 is defined as follows:
For a letter X, some name commencing with this letter X is looked up in
the telephone directory of a large city Z, and a 7-digit telephone number
listed under this name is the cryptotext. To be concrete: for encrypting
/kindergarten/, the steps are

k �−� Koch �−� 8202310 i �−� Ivanisevic �−�8119896
n �−� Nadler �−� 6926286 d �−� Dicklberger �−�5702035
e �−� Esau �−� 8348578 r �−� Remy �−�7256575
g �−� Geith �−� 2730661 a �−� Aranyi-Gabor �−�2603760
r �−� Rexroth �−� 5328563 t �−� Tecins �−�6703008
e �−� Eisenhauer �−� 7913174 n �−� Neunzig �−�3002123

2 Efficient: With a computational effort which is polynomial (‘P’) in log |X| . If P = NP
(‘NP’: non-polynomial) would hold, no strict one-way function could exist at all.
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The following encryption of /kindergarten/ , a sequence of 12 7-digit code-
groups:

8202310 8119896 6926286 5702035 8348578 7256575 2730661 2603760
5328563 6703008 7913174 3002123

is obtained by a human operator in less than one minute of time. The de-
cryption is unique, but needs hours and hours if done manually with the help
of a telephone directory of about 2000 pages. A one-way function poses as an
encryption for the authorized decryptor quite unsurmountable difficulties.
Thus, strict one-way functions cannot be used in a reasonable way for en-
cryption of messages followed up by decryption. However, strict one-way
functions without homophones can be used for identification and authentica-
tion: A password is encrypted by a strict one-way function and is stored in
this form. Any time access is required the password presented is encrypted,
too, and the cryptotexts are compared. This scheme is applied in the widely
used operating system UNIX3, but based only on a variant of the DES algo-
rithm which does not qualify as a strict one-way function.
However, it is possible that the legal user of this system is in the possession
of an inverse telephone directory—either obtained illegally from the post
office or purchased. Such a directory makes the decryption process as simple
as encryption is. It is a hidden suspension of the one-way direction like a
trapdoor: an unsuspecting person cannot go back once he or she has passed
through, but the initiated person knows where to find the hidden knob.

10.2.2 Trapdoor One-Way Functions. For data security, which is
essentially the domain of cryptology, trapdoor one-way functions are needed,
allowing data access by decryption for the authorized user.
An injective function f : X−−−−�Y is called a trapdoor one-way function if
the following holds:

There is an efficient method to compute f(x) for all x ∈ X .
There is an efficient method to compute f−1(y) for all y ∈ f [X] , but it

cannot be derived efficiently from the relation y = f(x) for all y ∈ f [X] :
secret additional information, the trapdoor, is necessary.

The trapdoor in Salomaa’s example is the inverse directory. It can be es-
tablished legally by the user who can afford the time to do so, if he needs it
frequently (or if he can sell it), and if storage complexity does not preclude it.
This sort of preprocessing is one of the best strategies to break asymmetric
encryption systems, since they are normally used for some time.

10.2.3 The Efficiency Boundary, Function inversion breaks down for
one-way functions only because of lack of time and storage space, i.e., because
of time and storage complexity. Technological progress shifts the border line
between ‘intractable’ and ‘efficient’; at present roughly every two years the

3 UNIX is a registered trademark.
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speed of the fastest single computer is doubled and roughly every 15 months
computer costs are halved. This latter trend allows increasing parallelization.
The cryptologist counteracts this technological progress by suitably increas-
ing some of the encryption parameters, those that influence the encryption in
a sensitive way, and thus he prevents cryptanalysts surmounting the barrier.
To give an example: for some methods, the inversion of a one-way function
amounts to the decomposition of a number n into its prime factors, a huge
task compared with the multiplication of the factors to form the number n .
One of the fastest known algorithms, the ‘Quadratic Sieve’,4 has ‘subexpo-
nential complexity’, i.e., needs asymptotically of the order of magnitude

e
√

ln n·ln(ln n) = n
√

ln(ln n)/ ln n

operations. For n=1070, the exponent
√

ln (lnn)/lnn has the value ≈ 0.178 ,

correspondingly n
√

ln(ln n)/ ln n = 2.69 ·1012. The observation that in 1984 the
factorization of (1071−1)/9 needed 9.5 h on a CRAY X-MP may serve for
calibration; this amounts to roughly 80 · 106 ‘macro-computing steps’ per
second, and gives by extrapolation the following picture (assuming every two
years a doubling of the maximal attainable speed of a single computer):

n bits e
√

ln n·ln(ln n) Time 1984 Time 1994 Time 2004
1050 166 1.42 · 1010 181 s 5.66 s 177 ms
1070 232 2.69 · 1012 9.5 h 0.297 h 33.4 s
10100 332 2.34 · 1015 344 d 10.75 d 8.06 h
10120 399 1.31 · 1017 52.57 a 600 d 18.75 d
10140 465 5.49 · 1018 2.2 · 103 a 68.75 a 785 d
10155 512 6.69 · 1019 2.7 · 104 a 844 a 26.4 a
10200 664 1.20 · 1023 4.8 · 107 a 1.5 · 106 a 4.7 · 104 a

The efficiency boundary is indicated by the ‘yearlong’ work of several hundred
days. It has moved from (in 1984) n=10100 ≈2332 to n=10120 ≈2399 (in
1994) and is expected in 2004 to be n=10140≈2465, not far from 2512 .
A sensation was stirred in 1994 when a 129 decimal digits number (429 bits)
was factored into its two prime factors of 65 decimal digits each. According to
the extrapolation above a single supercomputer would have needed 3330 days.
In fact, the total work was distributed on 1600 (less powerful) computers
connected by the Internet and was finished in 8 months time. In 1999, a num-
ber with 465 bits was factorized. Starting around the year 2004, numbers with
512 binary digits will no longer give sufficient security against factorization.
More and more special computers with a high degree of parallelization are
coming into use. Whatever efforts in this way are made, there are limits

4 Based on early work by M. Kraitchik, improved by C. Pomerance (1985), P. Montgomery
(1987), R.D. Silverman (1987). The fastest version of this algorithm is called ‘Double
Large Prime Variation of the Multiple Polynomial Quadratic Sieve’ (ppmpqs). Neither it
nor the even better ‘Number Field Sieve’ method by John Pollard (1988), asymptotically

needing a number of steps of order e((ln n)1/3·(ln(ln n))2/3) = n(ln(ln n)/ ln n)2/3
, are

‘efficient’ in the sense of 10.2.1 .
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to the mastery of storage and time complexity which cannot be surpassed
for reasons of physics. For example, according to our present knowledge a
1060-bit store would need the mass of our entire solar system, likewise 1070

operations would take more time than has elapsed since the birth of the
known universe in the Big Bang, some 1018 sec ago, even if each operation
took no longer than 10−43 sec, the Planck time, the shortest time interval
that is meaningful in terms of known physics.
But these large numbers can be deceptive. There is no proof of the nonexis-
tence of an algorithm much faster than the Quadratic Sieve or other roughly
comparable ones. It could happen that prime factorization of n can be done
within a time increasing with a low polynomial in n . However, it is not likely.
As is frequently said, people have been investigating factorization for more
than two thousand years. Generally, the non-existence of other trapdoors
than the ones already known is hard to prove. And complexity theory in its
present state is little help, for it usually gives only upper bounds for the effort
needed. “There are no provable lower bounds for the amount of work of a
cryptanalyst analyzing a public-key cryptosystem” (Salomaa 1990). A newly
found trapdoor could endanger the security of a cryptosystem as much as a
direct decryption attack, bypassing the function inversion altogether. This
is a principal risk of asymmetric methods and such a big disadvantage that
their use in highly sensitive areas is rather questionable.

10.2.4 Known Examples of One-Way Functions. A proof for the
existence of strict one-way functions is hampered by the lack of sufficiently
good lower bounds for the known methods. But there are good candidates,
based upon the operations multiplication and exponentiation over the Galois
field (p) , where p is prime.

10.2.4.1 A One -Way Function without trapdoor: Multiplication of Primes.

As Turing remarked in 1937 (Sect. 5.7), it is relatively simple to multiply
two numbers of ten thousand decimal digits and therefore also two primes of
this size; on a home computer it takes only seconds. But today there is (see
Sect. 10.2.3) no efficient method (publicly) known to decompose a 200-digit
decimal number into its prime factors (apart from special cases).
Let X = {(x1, x2) | x1, x2 prime , K ≤ x1 ≤ x2} for a sufficiently large K .
The injective function

f : X → Ù defined by f(x1, x2) = x1 · x2

is therefore a one-way function. No trapdoors are known.

10.2.4.2 A One -Way Function without trapdoor: Exponentiation in (p).

Let p be prime. For a fixed a the a-exponential function in (p)
Fa : Ÿp−1 → Ÿp\{0} defined by Fa(n) = an mod p

is for sufficiently large p and a a one-way function (for Ÿp see Chap. 5).
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Example: p = 7, Ÿp\{0} = {1, 2, 3, 4, 5, 6}, a = 2:

n 0 1 2 3 4 5 6≡0
2n 1 2 4 8 16 32 64
2n mod 7 1 2 4 1 2 4 1

The computational effort for Fa is within endurable bounds even for values
of p and a surpassing 10200 . The basic idea of repeated squaring and
multiplying is as in Sect. 9.5.2; it is demonstrated by the following example
where . · . indicates multiplication and .2 squaring, each time modulo p :

a25 =
(((

a2 · a
)2)2

)2

· a , since 2510 = 110012 .

The example a = 2 , p = 7 shows that the a-exponential function is not
necessarily injective. If Fa is injective over Ÿp\{0} and thus is a group
isomorphism of Ÿp−1 and Ÿp\{0} , then a is called a primitive root of Ÿp ;
like a = 3, a = 11 , a = 12 , a = 22 for p = 31:

3n mod 31 gives a permutation with a (13+9+8) cycle decomposition
(1 3 27 23 11 13 24 2 9 29 21 15 30) (6 16 28 7 17 22 14 10 25) (4 19 12 8 20 5 26 18)

11n mod 31 gives a permutation with a (26+3+1) cycle decomposition
(1 11 24 8 19 22 18 2 28 10 5 6 4 9 23 12 16 20 25 26 7 13 21 27 15 30) (3 29 17) (14)

12n mod 31 gives a cyclic permutation with the cycle of length 30
(1 12 20 23 28 26 2 24 9 15 25 21 4 17 18 30 19 11 8 3 5 29 7 22 16 6 10 27 14 13)

22n mod 31 gives a permutation with a (24+5+1) cycle decomposition
(1 22 10 5 6 8 28 18 16 9 27 29 24 4 20 25 26 14 7 21 23 3 15 30) (2 19 11 17 12) (13)

It can be shown that for each prime p there is always at least one primitive
root. In fact their number is ϕ(p − 1), others for p = 31 are 21, 17, 13, 24 .
For special p there may be peculiarities. For example, for p = 17, 257, 65537
and all larger primes p (if any) of the form p = 22k

+ 1 (Fermat primes), 3
and 7 are always primitive roots (Albert H. Beiler, Armin Leutbecher).

If a is indeed a primitive root, Fa has an inverse F−1
a , named the (discrete)

a-logarithm function or index in Ÿp\{0} . While the exponentiation in Ÿp

is quite efficient, it is hard to get efficient algorithms for the computation of
the discrete logarithm.

Among the known algorithms for the discrete logarithm over a multiplicative
group such as Ÿp\{0}, even good ones like the ‘Giant-Step-Baby-Step’ algo-
rithm5 (Daniel Shanks 1971) need an effort proportional√

|Ÿp| =
√

p = e
1
2 ln p and thus are not efficient.

The better ‘Index Calculus’ method—which requires finding a suitable basis
of the multiplicative group, usually the first t primes and thus a huge data

5 For a running program, see Otto Forster, Algorithmische Zahlentheorie, Vieweg, Braun-
schweig 1996.
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base to be precomputed—works only in special cases, but has still subex-
ponential complexity, i.e., needs an effort of the same order of magnitude
e
√

ln p·ln(ln p) as prime decomposition by the Quadratic Sieve does.
(Ÿp, +,×) is a field, the Galois field (p) of characteristic p. More generally,
consider the Galois field (pk) , an extension of (p) , and its multiplicative
group (pk)\{0} which is still a cyclic group. It is generated by some element
x, which is a nontrivial root of the equation xpk−x = 0 . The elements of
(pk) are the pk polynomials of degree at most k−1 over the field (p) and

can be implemented as a k-dimensional vector space.

Example: p = 2, k = 3, (23) = {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1} .
x8 − x has an irreducible factor x3 + x + 1, powers reduced by x3 �→ x + 1 .

It is only the multiplicative group of (pk)\{0} that matters. For k>1, this
multiplication is different from that of the modular arithmetic. Thus, we
finally have the group isomorphism

Fa : Ÿpk−1 → (pk)\{0} defined by Fa(n) = an in (pk) .

In the example (23) with a = x and with a = x+1 :
n 0 1 2 3 4 5 6 7≡0
xn 1 x x2 x3 x4 x5 x6 x7

xn red. 1 x x2 x+1 x2+x x2+x+1 x2+1 1

n 0 1 2 3 4 5 6 7≡0
(x+1)n 1 x+1 (x+1)2 (x+1)3 (x+1)4 (x+1)5 (x+1)6 (x+1)7

(x+1)n red. 1 x+1 x2+1 x2 x2+x+1 x x2+x 1

The case p = 2 and k large has particular interest. In 1988 John Pollard
gave a variant Number Field Sieve (NFS) of the Index Calculus method,
where primes are to be replaced by irreducible polynomials—the complexity
being determined by e((ln p)1/3·(ln ln p)2/3). With massive parallel computation,
preparatory work has been done for such ambitious problems as (2503) (Don
Coppersmith 1986, Kevin McCurley 1990, Dan Gordon and McCurley 1993).

A natural next step in the use of group isomorphisms is made with the elliptic
curve method (ECM), developed by Neil Koblitz (1985), Victor S. Miller
(1985), Hendrik W. Lenstra, jr. (1986). It uses the known theory of certain
algebraic curves of third order (‘elliptic curves’) in the projective plane over
a finite field K, in particular over (pk) . Some algorithms, like the Giant-
Step-Baby-Step algorithm, can be extended to the point group of an elliptic
curve. It seems that for the rather good Index Calculus method, finding a
basis is hopeless in the case of elliptic curves. Thus, the elliptic curve method
possibly offers greater security for identification and authentication, which
makes it for the time being an interesting topic of research. Elliptic curves
over (2k) (case p = 2) are particularly advantageous, since the arithmetic
processors for the underlying field are easy to construct and relatively simple
to implement for large n.



202 10 Open Encryption Key Systems

No trapdoors are known for the methods considered so far, not even for the
case (2k) , k > 1 . For composite q, Fa(n) = an mod q has a trapdoor, if
q is a product of two different primes: the prime factorization of q allows
the preparation of a table, which with the help of the Chinese Remainder
Theorem (Sect. 10.4.3) makes calculating the discrete logarithm easier.

10.2.4.3 A Trapdoor One -Way Function: Raising to a Power modulo q

In Sect. 9.5.2, raising to a fixed power restricted to the Galois field (p) was
discussed. Now q may be composite,

Ph(x) = xh mod q .
There still exist suitable pairs (h, h′) of fixed numbers from Ÿq\{0} such that

(1) there exists an efficient method to compute Ph(x) for all x ∈ Ÿq ,
(2) there exists an efficient method to compute P ′

h(x) for all x ∈ Ÿq ,
such that Ph′(Ph(x)) = x and Ph(Ph′(x)) = x .
But if only h and q are known and q is large enough, say q > 10200 , then
there is no efficient method (publicly) known to compute h′ efficiently.
There is a trapdoor. The derivation of h′ is much easier if q is composite and
a factorization of q into two factors, both rather large, is known. This will
be discussed in more detail in Sect. 10.3 .

10.2.4.4 A Trapdoor One -Way Function: Squaring modulo q = p′ · p′′

This is the important special case h = 2 of Sect. 10.2.4.3 , using ‘quadratic
residues’, square roots modulo q, for which there is a theory that goes back
to Legendre and Gauß. An application for open encryption key systems was
studied in 1985 by H. C. Williams.
We consider first the case q = p, p prime. Table 1 in Sect. 5.5 shows for odd p
under N = p− 1 no entries for h = 2. P2 in Sect. 10.2.4.3 is neither injective
nor surjective. For the equivocal inversion of P2 we may write

√
. To give

an example, say for p = 17, by inversion of the function table we obtain:
√

1=±1
√

2=±6
√

4=±2
√

8=±5√
9=±3

√
13=±8

√
15=±7

√
16=±4 .

For prime p, there are efficient methods for the calculation of the square root
modulo p, based on Gauß’s Golden Theorem, the Law of Quadratic Recipro-
city.
The situation is different for composite q, say q = p′ · p′′ . If the prime
decomposition of q is known, then square roots ±u of a modulo p′ and square
roots ±v of a modulo p′′ can be obtained efficiently and

√
a modulo q can be

calculated easily. But for anyone who does not know the prime decomposition
of q, the computation of

√
a modulo q has been proven by M. O. Rabin (1979)

as hard as the factorization of q .
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10.3 RSA Method

The RSA method is the best known among the open encryption key methods6

and is named after Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
(1978), the US patent held until Sept. 20, 2000. The RSA method is based
on the widely accepted conjecture that under certain conditions, raising to a
fixed power modulo q is a one-way function with trapdoor (Sect. 10.2.4.3).

10.3.1 For the i-th partner in an asymmetric encryption key net, let
(1) qi = p′i · p′′i , where p′i , p′′i odd primes , p′i �= p′′i .

(2) ei , di ∈ {1 , 2 , . . . , λ(qi) − 1} ⊂ Ÿqi
\{0} , with

(2a) gcd (ei, λ(qi)) = 1 , (2b) gcd (di, λ(qi)) = 1 ,
(2c) ei · di mod λ(qi) = 1 ;

λ denotes the Carmichael function7 (Robert D. Carmichael, 1879–1967)
λ(p′i · p′′i ) = lcm (p′i − 1 , p′′i − 1) .8

The RSA method is a highly polygraphic, monoalphabetic block encryption,
with plaintext characters pj ∈ Ÿqi

and cryptotext characters cj ∈ Ÿqi
.

The following keys are used with the i-th partner:
public ei ( for encryption)9 , qi

private di ( for decryption) .
The encryption step is defined through the one-way function Ei : Ÿqi

→Ÿqi
,

Ei(mj) = mei
j mod qi = cj .

The decryption step is defined through the one-way function Di : Ÿqi
→Ÿqi

,

Di(cj) = cdi
j mod qi = mj .

This gives an asymmetric signature system, since
Di(Ei(x)) = Ei(Di(x)) = x for all x ∈ Ÿqi

.

The proof follows the one in Sect. 9.5.2. It can be based on the following
corollary of Carmichael’s theorem for relatively prime a , n :

If b ≡ b′ mod λ(n) , then ab ≡ ab′ mod n .

6 USPatent No. 4 405 829 , September 20, 1983.
7 In the original publication, instead of Carmichael’s function Euler’s function ϕ is used,

ϕ(p′i · p′′i ) = (p′i − 1) ·(p′′i − 1) . The conditions stated guarantee the conditions of the
original method.

8 For a general definition of λ(n) and its use with RSA see H.Riesel, Prime Numbers and
Computer Methods for Factorization. Birkhäuser, Basel 1985, pp. 276, 227.
λ(n) is a proper divisor of ϕ(n) provided N is the product of two distinct odd primes.
Carmichael’s theorem states: For relatively prime a , n , aλ(n) mod n=1 holds ;
λ(n) is the least exponent x such that ax mod n =1 for all a relatively prime to n .
The theorem of Carmichael “. . . is a very useful, but often forgotten, generalization of
Euler’s theorem” (H.Riesel). Indeed, Rivest, Shamir, and Adleman do not use the
theorem and Salomaa also does not in his 1990 book, nor do Beker and Piper (1982).

9 Since 2 | λ(p′i · p′′i ) , e = 2 is excluded.



204 10 Open Encryption Key Systems

10.3.2 Example (Salomaa, revised):
(ei , di) = (1031 , 31 963 885 304 131 991)

qi = 32 954 765 761 773 295 963 = 3 336 670 033 · 9 876 543 211 ;
λ(qi) = 5 492 460 958 093 347 120 = 3 336 670 032 · 9 876 543 210 / 6 .

Even this example with large numbers is unrealistic for practical security. For
demonstration we use small numbers, suitable for a hand-held calculator.
In designing a RSA cryptosystem, the trapdoor information is used: we start
with two prime numbers

p′i = 47 , p′′i = 59 .
This results in

qi = p′i · p′′i = 47 · 59 = 2773 ,
λ(qi) = λ(2773) = lcm (46 , 58) = 2 · 23 · 29 = 1334 .

Now ei is to be found, such that gcd (ei , 1334) = 1 . There are many possible
choices of numbers, like ei = 3 , 5 , 7 , . . . , 19 , 21 , 25 , 27 , 33 , 35 , 37 , 39 , . . . .
If a set {e(j)

i } is chosen, even polyalphabetic encryption is possible.
Take ei = 17 . di is obtained from ei · di ≡ 1 mod 1334 with the fast
division algorithm, which gives di =157 . (di should not become too small,
otherwise simple trial and error may help to find it (Sect. 10.4.3). It may
therefore be preferable to choose di and to determine ei .)
Thus, the encryption step is

Ei(mj) = m17
j mod 2773 .

Because of 1710 =100012 , this step can be performed efficiently by((((
m2 mod 2773

)2 mod 2773
)2

mod 2773
)2

mod 2773

)
·m mod 2773 .

The decryption step is
Di(cj) = c157

j mod 2773 .

Encoding the literal characters � (space)10 , a , b , . . . , z with the bigrams
00 , 01 , 02 , . . . , 26 , allows plaintext bigrams to be encoded with numbers
from Ÿ2773 , since 2626 < 2773 .
The message errare�humanum�est
is first encoded in blocks of length two:

05 18 18 01 18 05 00 08 21 13 01 14 21 13 00 05 19 20
and then encrypted:

1787 2003 2423 0596 0340 1684 0340 0508 2109 .
Identical plaintext blocks lead to identical cryptotext blocks—the encryption
is blockwise monoalphabetic. This ECB mode (in DES parlance, Sect. 9.6.3)
should be protected at least by an autokey as in the CBC mode. Even
periodic truly polyalphabetic encryption would be far better.

10Contrary to classical custom, Rivest, Shamir and Adleman did not suppress the word
spacing. The literature on the RSA method follows them on this.
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10.4 Cryptanalytic Attack upon RSA

Nothing should prevent the cryptanalyst from trying all classical methods
(see Part II) against RSA encryption. There are also some specific weaknesses:

10.4.1 Attack by Factorization of qi . The cryptanalyst who finds the

factorization of qi : qi = p′i ·p′′i , can calculate λ(qi) = 2·lcm (
p′i − 1

2
,

p′′i − 1
2

)
and from knowing ei also di . To protect the RSA method against this attack,
i.e., to make the factorization of qi intractable (the actual factorization is
frequently more difficult than the mere compositeness proof), the following
conditions should be fulfilled:

(1) qi = p′i · p′′i > 10200 .

(2) p′i and p′′i differ in length as dual or decimal numbers by a few digits.

(3) Neither p′i nor p′′i is small, or is taken from some table of primes,
or is of some special form.

Condition (1) prevents (Sect. 10.2.3) a brute force attack.
Condition (2) thwarts exhausive search for a representation of qi as a differ-
ence of two squares (a technique going back to Fermat 1643):

qi = p′i · p′′i = (
p′i + p′′i

2
)
2

− (
p′i − p′′i

2
)
2

with values for p′i + p′′i
2 going upwards from

√
qi .

Condition (3) thwarts exhausive search in a rather small set of primes that are
possibly factors. None of these attacks have been reported so far as having
been successful, probably because it is easy enough to obey these safeguard
measures.

10.4.2 Attack by Iteration (Sect. 9.4.2). Let

c(0) = mj (plaintext block) , c(1) = cj = Ei(mj) (cryptotext block) .

Form the sequence

c(κ+1) = Ei(c(κ)) .

The least k ≥ 1 with c(k+1) =c(1) is called the iteration exponent smj
of mj ;

smj indicates the length of the cycle to which mj belongs. smj−1 is called the
recovery exponent of mj .

Example 1: As above in Sect. 10.3.2, with mj = 0518 .
(ei , di)=(17 , 157) , qi =2773=47·59 , λ(qi) = lcm(46, 58) = 1334 = 2·23·29

c(0) = mj = 0518 (= 11 · 47 + 1)
c(1) = cj = 051817 mod 2773 = 1787 (= 38 · 47 + 1)
c(2) = 178717 mod 2773 = 0894 (= 19 · 47 + 1)
c(3) = 089417 mod 2773 = 1364 (= 29 · 47 + 1)
c(4) = 136417 mod 2773 = 0518 = mj
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Here we have arrived at plaintext , with a recovery exponent smj =3 . The un-
authorized decryptor cannot yet know this; he finds at the next iteration step:

c(5) = 051817 mod 2773 = 1787 = cj .

From the corollary of Carmichael’s theorem (see Sect. 10.3.1):

c(k) = m17k

j mod 2773 = m17k mod 1334
j mod 2773 .

But 1744 mod 1334 = 1 . Therefore c(44) = m1
j mod 2773 = mj , and 44

is an upper bound for the longest period that can occur with ei = 17 . Note
that 44 is a divisor of λ(λ(47 · 59))= λ(2 · 23 · 29) = lcm(22, 28) = 308 .11

In fact, the total of 2773 elements of Ÿ2773 is partitioned into
9 cycles of length 1 (fixpoints) ,,

42 cycles of length 4—including the cycle starting with 0518 ,
6 cycles of length 22 ,

56 cycles of length 44 .

Example 2:
(ei , di)=(7 , 23) , qi =55=5 · 11 , λ(qi)=λ(55)= lcm(4, 10)=20= 2 · 2 · 5
The example is small enough that all cycles can be listed:

9 fixpoints:
(0) (1) (10) (11) (21) (34) (44) (45) (54)

3 cycles of length 2 :
(12 , 23) (22 , 33) (32 , 43)

10 cycles of length 4 :
(2 , 18 , 17 , 8) (3 , 42 , 48 , 27) (4 , 49 , 14 , 9) (5 , 25 , 20 , 15) (6 , 41 , 46 , 51)
(7 , 28 , 52 , 13) (16 , 36 , 31 , 26) (19 , 24 , 29 , 39)(30 , 35 , 40 , 50) (37 , 38 , 47 , 53)

Since 74 mod 20 = 1 , 4 is an upper bound for the longest period that can
occur with ei = 7 . Note that λ(λ(5 · 11)) = λ(2 · 2 · 5) = lcm(1, 4) = 4 . 11

Example 3:
(ei , di)=(3 , 675) , qi =1081=23 · 47 , λ(qi) = lcm(22, 46) = 506 = 2 · 11 · 23
Since 355 mod 506 = 1 , 55 is an upper bound for the longest period that can
occur with ei = 3 . Such a cycle of length 55 is

( 512 , 768 , 430 , 531 , 629 , 98 , 722 , 683 , 209 , 284 , 995 , 653 , 16 , 853 ,
813 , 535 , 239 , 1051 , 25 , 491 , 190 , 55 , 982 , 439 , 54 , 719 , 676 , 568 ,
393 , 307 , 397 , 331 , 384 , 324 , 721 , 1041 , 860 , 1005 , 991 , 675 , 213 , 538 ,
660 , 807 , 606 , 627 , 101 , 108 , 347 , 192 , 581 , 354 , 867 , 2 , 8 ) .

Note that 55 is a divisor of λ(λ(23 ·47))=λ(2 ·11 ·23)=lcm(10, 22)=110 . 11

There are typically 16 cycles of length 55 , 12 cycles of length 11 , 12 cycles
of length 5 and again 9 cycles of length 1 (fixpoints):
(0) (1) (46) (47) (93) (988) (1034) (1035) (1080) .

11λ(2 · p′i · p′′i ) = lcm(1 , p′i − 1 , p′′i − 1) = lcm(p′i − 1 , p′′i − 1) .
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Protecting the RSA method against attack by iteration means achieving a
large recovery exponent for a large majority12 of elements mj ∈ Ÿqi

. To
allow this, λ(λ(qi)) should be as large as possible. In fact, there is the

Main theorem on the iteration attack. For all ei that are relatively
prime to λ(qi) , the iteration exponent is a divisor of λ(λ(q)) ; this bound
for the iteration exponent can be attained (see Example 2) for suitable ei .

The proof is based on the corollary of Carmichael’s theorem:

c(k) = m
ek

i
j mod qi = (mek

i mod λ(qi)
j ) mod qi

= (m
(ek mod λ(λ(qi))

i ) mod λ(qi)
j ) mod qi .

With k = λ(λ(qi)) , the result is

c(λ(λ(qi))) = m
e
λ(λ(qi))
i

j mod qi = (me0
i mod λ(qi)

j ) mod qi = m1
j mod qi = c(0) .

Thus, λ(λ(qi)) is a period and a multiple of the iteration exponent.

To prevent at least λ(qi)=λ(p′i ·p′′i )=2 · lcm (p′
i−1
2 ,

p′′
i −1
2 ) (for p′i, p

′′
i �= 2) from

becoming small, the following conditions for p′i and p′′i should also hold:

(4) both p′
i−1
2 and p′′

i −1
2 contain large prime factors.

(5) gcd (p′
i−1
2 ,

p′′
i −1
2 ) is small.

Conditions (4) and (5) are optimally fulfilled, if p′i and p′′i are safe primes
(Sect. 9.5.2): then p′

i−1
2 and p′′

i −1
2 are prime, λ(qi) = 2 · p′

i−1
2 · p′′

i −1
2 ≈ qi/2 .

The effort to find safe primes may be worthwhile, but it is an open problem
whether or not there are infinitely many safe primes.
Furthermore, preventing also λ(λ(qi)) from becoming small, in view of

λ(2 · p′
i−1
2 · p′′

i −1
2 ) = 2 · lcm ((p′

i−1
2 −1)/2 , (p′′

i −1
2 −1)/2) = 2 · lcm (p′

i−3
4 ,

p′′
i −3
4 )

means that the following conditions for p′i and p′′i should hold, too:

(6) both p′
i−3
4 and p′′

i −3
4 contain large prime factors.

(7) gcd (p′
i−3
4 ,

p′′
i −3
4 ) is small.

Conditions (6) and (7) are optimally fulfilled, if in addition
p′

i−1
2 and p′′

i −1
2 are safe primes, i.e., p′i and p′′i are doubly safe primes;

then p′
i−3
4 and p′′

i −3
4 are prime, λ(λ(qi)) = 2 · p′

i−3
4 · p′′

i −3
4 .

Doubly safe primes are 11 , 23 , 47 , 167 , 359 , 719 , 1439 , 2039 , 2879 , 4079 ,
4127 , 4919 , 5639 , 5807 , 5927 , 6047 , 7247 , 7559 , 7607 , 7727 , 9839 , 10799 ,
11279 , 13799 , 13967 , 14159 , 15287 , 15647 , 20327 , 21599 , 21767 , . . . ; also
2 684 999 , 5 369 999 , and 10 739 999 . Apart from 11, all doubly safe primes
are of the form 24a − 1 . For doubly safe primes p′i , p′′i , λ(λ(qi)) ≈ qi/8 .

12More cannot be expected, since there are always even fixpoints of the iteration; in fact
Salomaa (in his 1990 book) has shown that there always exist nine of them.
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10.4.3 Attack in Case of Small ei . The effort involved in RSA en-
cryption is small if ei is small—in the extreme ei = 3 . This may be advan-
tageous if the sender has limited computing power, e.g., in case it is a smart
card, and if the receiver does not suffer from a rather big di , e.g., in case it
is a central computer.
Using small di invites an exhaustive decryption attack and should therefore
be avoided. But using small ei is dangerous, too, in the case that one and the
same plaintext message block mj using the same power e1 = e2 = . . .=es =e
is sent to many different receivers with (presumably pairwise relatively prime)
q1 , q2 , ... qs , the cryptotexts being me

j mod q1 , me
j mod q2 , . . . me

j mod qs.
From these intercepted cryptotexts, with the help of the Chinese Remainder
Theorem, the value of m′ = me

j mod q1·q2·. . .·qs can be computed. But since
m′ is less than each of the individual moduli, the equation me

j = m′ holds.
This equation with known m′ and known small e (although involving rather
big numbers) can be solved for mj .13 The break is not complete: di is still
left open.

10.4.4 Risks. There are not only certain plaintext blocks that should be
avoided since they lead to very short recovery exponents. Example 2 shows
that there are also choices of ei that lower the maximal cycle length. Certain
choices of ei are to be avoided totally: ei = λ(qi)+1 means that di = λ(qi)+1
and Ei(mj) = Di(mj) is the identity, so all mj become fixpoints.
There are also surprising findings: If for a given product qi = p′i · p′′i of two
primes p′i, p′′i λ(qi) can be computed, then the factorization of qi can be
computed. In fact, if p′

i−1
2 and p′′

i −1
2 are relatively prime, the equations

qi − 2 · λ(qi) + 1 = p′i + p′′i and qi = p′i · p′′i determine the two factors.

10.4.5 Shortcomings. The RSA method is widely considered as practi-
cally secure, provided the conditions stated above are observed; at least no
serious successful attacks have been published.
But the RSA method has disadvantages:

RSA needs relatively long keys qi, in near future of 1024 or more bits.
RSA is slower than DES by a factor of about a thousand.

10.5 Secrecy Versus Authentication

Because it is a public key system, an open encryption key system is confronted
with a problem that classical, symmetric encryption methods have neglected
for a long time: their proponents were only concerned about the passive
enemy’s reactions, reading or eavesdropping encrypted messages transmitted
by rather unprotected channels like wire, radio signals, or optical and acoustic

13 M. J.Wiener, Cryptanalysis of short RSA secret exponents. EUROCRYPT ’89 Pro-
ceedings. Lecture Notes in Computer Science 434, Springer 1990 .
Also: IEEE Transactions on Information Theory, Vol. 36 No. 3, May 1990, pp. 553–558 .
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means. The goal of encryption was to make such cryptanalysis as difficult as
possible. The possibility of active influence on the message channel was not
taken very seriously, and the impossibility of penetration was simply taken
for granted. This was careless.

Wireless contact with spies, however, showed the problem at its human end:
a spy could be captured and somebody else could operate his radio set. Such
a Funkspiel occurred in 1942 and 1943 between the Germans and the British,
involving a Dutch underground agent. It is always necessary to insist on a
signature from the operator, although even that would not help if the oper-
ator was ‘turned around’, too. If however the operator were working under
pressure, he would often omit the ‘security checks’ he was supposed to inter-
sperse regularly as an authenticator. All this was quite similar to civil use of
signatures. In sensitive matters, authentication is as important as classical
secrecy.

But there exists a deep conflict as the following example shows: A message
with the character of an alarm can be recorded and infiltrated later, which
allows the release of false alarms. This can be suspended by a time indica-
tion within the message—but this causes a plaintext-cryptotext compromise
(Sect. 11.2.5) with the danger of a break. Secrecy and authentication are two
different things, and one does not imply the other.

The conflict is further illustrated by the role redundancy plays. An encrypted
message is better protected against cryptanalysis, the less redundancy it con-
tains; against counterfeit, the more redundancy it contains. This can be
learned from banknotes and handwritten signatures. Secrecy is antagonistic
to authentication, and to achieve both requires two measures that are in-
dependent of each other. This can be seen in the definition of a signature
method (Sect. 10.1.3) as opposed to a secrecy-only method.

Encryption methods that are also signature methods offer additional identi-
fying information according to a prearranged etiquette (‘protocol’) and prior
error-detecting and error-correcting (Sect. 4.4.6) coding.

Asymmetric methods show their strength particularly in authentication and
are useful for key negotiation, the dangerous part of key management. This
was pointed out from the beginning by Diffie and Hellman. The large amount
of time asymmetric methods require (it can be larger than symmetric meth-
ods by several powers of ten) is not only justified, it can also be afforded
for signatures as well as for key negotiation, since they are usually short
compared with messages. Asymmetric, open encryption key systems and
classical symmetric systems are not antagonistic, but supplement each other.
In international banking, the data are usually only weakly encrypted, but
authentication is given high priority (and is highly profitable).

The Digital Signature Standard (DSS) of the National Institute of Stan-
dards and Technology (NIST) of the USA is based on the Digital Signature
Algorithm (DSA), which, infringing on patents of Schnorr and ElGamal, uses



210 10 Open Encryption Key Systems

as one-way function the discrete logarithm function (Sect. 10.2.4.2). There
was criticism, in particular that it was not the RSA method that was stan-
dardized. Quite generally, cryptanalysis by preprocessing is advocated.
All one-way functions mentioned so far come from residue classes in arith-
metic. Another one-way function, which is mathematically highly interesting,
comes from the ‘knapsack problem’, a problem in integer programming.
The standardised Secure Hash Algorithm of the NIST allows on both sides
of the transmission line the formation of 160-bit check groups.

10.6 Security of Public Key Systems

Shannon certainly did not want his admonitory maxim “The enemy knows the
system being used” to be interpreted in the sense that the enemy should be gi-
ven the complete machinery. ‘Open encryption key systems’ says better than
‘public key systems’ that decryption keys and the rest are kept secret. This
openness has technical reasons, not political ones, and a necessity is made
into a virtue (nowadays also with symmetric methods, which do not need to
be open). Among the public, the expression ‘public key’ may have given the
impression that cryptanalysis is more than ever in the public domain.
This is not so, of course. Cryptanalysis is still wrapped in a mystery inside
an enigma. Nevertheless, I cannot help observing that the commercially used
open key systems must be a great joy for the professional cryptanalyst. Apart
from the system-oriented kinds of attack, all classical attack routes are wide
open. In particular, these systems will be used too long and will be used
under heavy traffic with one and the same running key started over and over
again. Clever ideas may lead to illusory complications; for example, the use
of doubly safe primes could open an avenue of cryptanalytic attack.14

The pretence of security that is given to the user is often wrongly based on
nothing but combinatorial complexity. The situation in complexity theory—
a rather difficult part of mathematics—is characterized by the fact that it
gives almost exclusively upper bounds; lower bounds, say for the effort of
factorization into primes, are not obtainable.
The elimination of the classical crypto clerk, the ‘cipher clerk’ or ‘code clerk’,
his replacement by a computer plus a typist, makes security even harder: the
elimination of encryption errors, which were once the privilege of the crypto
clerks, is by far counterbalanced by the lack of experience and shrewd intellect
that are the only remedy for dangerous cryptological mistakes.
Thus, it cannot be expected that the proposed public encryption systems are
out of the reach of expert cryptanalysts, especially in the executive author-
ities. The professionals, however, are very reserved and do not brag about
their competence, which they are more inclined to understate.

14Anton Gerold has shown that conclusions can be drawn from the module on the structure
of the doubly safe prime factors.
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Even in cryptology, silence is golden.
Laurence D. Smith

Passwords serve to select a method from a class of methods, and keys especial-
ly to select encryption steps from an encryption system. It is wise to assume
pessimistically that the enemy knows what method has been chosen—there
are not too many of them, and most cryptographers are familiar with only
a few. The ‘basic law of cryptology’, which Kerckhoffs1 had formulated as
“il faut qu’il puisse sans inconvénient tomber entre les mains de l’ennemi”
was expressed more succinctly by Shannon in 1949: “the enemy knows the
system being used.” It follows that one must be particularly careful in the
choice of a key. It is a serious mistake to use obvious words. Giambattista
Della Porta gave the express warning: “the further removed the key words
are from common knowledge, the greater the security they provide.” The
use of keys had hardly become common practice before unauthorized persons
succeeded in decrypting messages by guessing the key word.
Della Porta reported having solved a message within a few minutes, by guess-
ing at the key phrase OMNIA VINCIT AMOR. Giovanni Batista Argenti
also made the lucky guess IN PRINCIPIO ERAT VERBUM . Words such
as TORCH and LIBERTY , GLOIRE and PATRIE , KAISER and VATER-
LAND , expressing noble patriotic sentiments, may be very good for boosting
morale, but are most unsuitable as cryptographic keys. (It is astonishing
how many people choose their name or date of birth as a computer pass-
word. Perhaps they are incapable of remembering anything else.)

11.1 Cryptographic Faults

By faults we mean infringements of security; not just the use of an obvious
key, but anything which makes life easier for an unauthorized decryptor.
“Funken ist Landesverrat” (Radioing means high treason) was uttered at the
beginning of the war, according to his successor General Albert Praun, by
Major General, later General, Erich Fellgiebel, 1939–1944 Head, Signal Com-
munications of the Supreme Command, German Armed Forces (Chef der
Amtsgruppe Wehrmacht-Nachrichtenverbindungswesen im OKW). Indeed,

1 Auguste Kerckhoffs (1835–1903), Flemish professor (La cryptographie militaire, 1883).
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radio communications plainly invite eavesdropping; they should be used only
if all other, safe means of communication are exhausted or inaccessible. The
disciplined German army obeyed the rule—radio silence on the German side
prior to the beginning of the Ardennes offensive in 1944 took the Allies by
surprise—and likewise the German Navy—although at sea wire connections
cannot be used and flag signals have limited range. However, radioing was
considered by the German Air Force as ‘normal’ (J. Rohwer). Göring’s well-
known bravado could lead to excessive ‘Lust zu funken’ (desire to radio),
transmitting unnecessarily detailed reports and this not only on Air Force
matters, but even on the situation of the Army formations (R. Elble). In-
sufficient leadership and lack of supervision was characteristic of the spirit
within Göring’s Supreme Command of the Luftwaffe.

11.1.1 Compromises. Beyond such cardinal blunders, there are many
opportunities to violate cipher security. That includes, of course, typing er-
rors during encryption. These make the work of the authorized decryptor
difficult or even impossible. In the latter case, disaster is just round the
corner: he must ask for the message to be repeated. If the original word-
ing is encrypted with the same key (correctly, this time), then it is an easy
matter to compare the two messages, which will generally be identical up to
the point where the error occurred, and some ‘differential cryptanalysis’ of
this ‘plaintext-plaintext compromise’ will provide clues. If a different key is
used on the same message (‘cryptotext-cryptotext compromise’), suitable
procedures can occasionally yield the key—even if the key was a progres-
sive one in which the alphabets were not yet repeated. Incredible as it may
seem, in the Second World War the Germans frequently radioed the same
orders to several units, belonging to different key nets, using different en-
cryption methods or keys—the identical length inevitably aroused suspicion.
A telling example is given by the fact that on January 30, 1943 the promotion
of Dönitz to Admiral of the Fleet was transmitted over all key nets in iden-
tical wording—not even padding it by dummy texts of different length. The
only safe way out is to rewrite the message using different words and phrases.
Not even the Russian method (Sect. 3.4.2) of cutting the message somewhere
in the middle and joining the parts in reverse order can help in such cases.

11.1.2 Other trivialities. Another classic technical mistake is to repeat
an encrypted message in plain; for example, because the recipient has not yet
received the new key. The method and in the case of a Shannon encryption
(Sect. 2.6.4) even the key can now be reconstructed. That may compromise
not just the key for the day, but also the basic method used for constructing
or selecting the daily key, or compromise a codebook. For that reason, “woe
betide anyone who transmits plain text” was a cast-iron rule of Lieutenant
Jäger (Sect. 4.4), who was a favorite of the Allied cryptanalysis groups.
It is obviously a climax in the life of a professional cryptanalyst to expe-
rience a compromise, and equally understandable that the secret services
employ all their cunning to try and provoke such an occurrence. In 1941
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a senior Japanese civil servant managed to slip the American ambassador
Joseph C. Grew a note, with the remark that a member of the Japanese
government wanted to communicate the message to the US government but
was afraid that the military leaders might get wind of it, and would he there-
fore transmit it in the most secret diplomatic code. That was M-138-A,
and so the encrypted text of a known message flashed across the ether. Never-
theless, it was said that the Japanese failed to break M-138-A.

There was a similar story at the time of the Dreyfus affair. When Alfred
Dreyfus was arrested in 1894, on the flimsiest of accusations, and La Libre
Parole joyfully trumpeted the news, General Panizzardi, the Italian military
attaché at the Quai d’Orsay, sent a telegram back to Rome. The French
cryptanalysts, who were passed a copy, had reason to believe that Panizzardi
had used the commercial (!) Baravelli code (Sect. 4.4.3) which operated with
groups of one, two, three, and four, and that the code was then super-
encrypted. Searching for the sequence /dreyfus/, which would have to be
encoded as 227 1 98 306, they found the pattern 527 3 88 706 and so knew
that the recrypting affected only the first digit of each group (it was achieved
by renumbering the pages of the code book). They were able to decrypt the
message with the exception of the last four groups. It was suspected that
these signified uffiziale rimane prevenuto emissaria, which was taken (by
Sandherr, the chief of intelligence) as evidence of Dreyfus’ guilt. The next
day they worked out the system of page renumbering, which yielded uffizial-
mente evidare commenti stampa. This exonerated Dreyfus, but Sandherr was
unconvinced. “These things are always somewhat imprecise,” he commented.
So Matton, one of Sandherr’s subordinates, had the idea of palming a mes-
sage on Panizzardi. A double agent leaked him a text made to look like an
important message, and Panizzardi passed it on almost word for word. The
cryptanalysts were not aware of what was going on, and decrypted the mes-
sage almost immediately; Matton was now convinced he had been right. All
the same, a falsified version was presented in court, and it took until 1906 be-
fore Dreyfus was acquitted. France has still not got over its Dreyfus scandal:
in February 1994 the French Defense Minister François Léotard dismissed
the head of the Armed Forces historical archive, Colonel Paul Gaujac, for
publishing an ‘unacceptably tendentious analysis’ of the Dreyfus case.

The Austro-Hungarian empire also had its triumph. After Figl’s team had
analysed 150 words of an Italian diplomatic code used between Rome and
Constantinople, they increased their knowledge step by step by a process
of smuggling fragments of information of military relevance into an Italian
newspaper published in Constantinople. Within a month they were able to
extend their vocabulary to 2000 words.

An even simpler method is one the Russians are famous for: stealing the
plaintext from the ambassador. Italy, too, had its penetrazione squadra.
After such a theft the diplomat is quick to assure his government that the
code in use, which is now compromised, was not a very important one.
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An example of an obsolete code was the US State Department’s GRAY code
(meaning the color gray and not Gray’s method of binary encoding). When
it came into use at the end of the First World War to replace the outdated
and already compromised RED, BLUE, and GREEN, nobody thought it
would remain in use for two decades. The Foreign Service officers were so
familiar with it that they could deliver extempore speeches in GRAY. On
December 6, 1941 Franklin Roosevelt sent a memo to Cordell Hull: “Dear
Cordell—shoot this to Grew [the American ambassador in Tokyo]—I think it
can go in gray code—saves time—I don’t mind if it gets picked up. FDR.” It
was too late to achieve the desired effect; it took time to decrypt the text,
and the personal peace overture which Roosevelt wanted to communicate to
Tenno would in any case not have prevented the attack on Pearl Harbor.

11.1.3 Revealing words. These episodes show up a general method of
cryptanalysis, that of the probable word. Such words are often based on cur-
rent events; then the message must be rephrased. In the First World War,
French troops carried out attacks on German positions simply to trigger
certain ‘probable words’ in German radio transmissions—it is a good thing
that soldiers seldom know what they are risking their lives for. In the Second
World War the British sank a lighted buoy which marked a channel through
the otherwise mined entrance to Calais, merely in order to trigger a German
message containing the sequence /leuchttonne/ (Sect. 14.1).
Besides words such as attack, bombardment, etc., military communications
contain a treasure of conspicuous words and stereotyped phrases such as head-
quarters and general staff, division, and radio station. The same message re-
peated daily—even if it only reports “nothing to report”—can have a devas-
tating effect. It provides a chink for applying the method of the probable
word, just like the words love, heart, fire, flame, burning, life, death, which
Della Porta listed as being the immutable building blocks of love letters.
Stereotyped phrases can nullify the advantages of a change of key: the new
key can rapidly be deduced from the repeated sequences. Not everyone, of
course, will be as lucky as Lieutenant Hugo A. Berthold of office G.2A.6 of
the American Expeditionary Forces, who intercepted a radio transmission at
07:40 on March 11, 1918, which consisted of a string of digits and was evi-
dently in a new key; a few hours later he heard a message of the same length
but in letters—the recipient had not received the new ciphering instructions
and had requested a repeat transmission in the old key. And with the PLAY-
FAIR manual key used by the German Afrika-Korps, a similar compromise
took place when the key was changed on January 1, 1942.
It had far-reaching consequences when the existence of the forthcoming
4-rotor ENIGMA was revealed late in 1941 by several practice transmissions
in parallel with a message encrypted using the 3-rotor ENIGMA. As a result,
Bletchley Park was able to work out the wiring of the new (‘Greek’) rotor β
before the new ENIGMA M4 was officially introduced on February 1, 1942.
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Even in peacetime it is important to master the craft: because nobody
knows any better, standard texts and obvious phrases are transmitted on
manœuvres. If the wording is sufficiently unimaginative, the entire cryptosys-
tem can be revealed before a single shot is fired. As Hüttenhain wrote: “It is
a mistake to take as the main encrypting method one that has already been
used by a small circle over an extended period.” As far as the—sometimes
unavoidable—stereotyped beginnings and endings are concerned (‘For Mur-
phy’: Sect. 4.4), even the method of ‘Russian copulation’ is of little help;
nevertheless, it can put inexperienced codebreakers off the scent.

11.1.4 Dummy filling. The very fact that a message is being transmitted
may be significant. Knowing that the communications channels are likely to
be heavily loaded during a major military operation, staff officers tend to send
their personal messages a few days beforehand. This is called the underwear
effect. If conditions allow, the communications channels should be kept open
all the time, and ‘dummy filling’ sent during quiet periods—not test phrases
or excerpts from newspaper articles, but irrelevant and nonperiodic sequences,
if possible random text or better synthetic language with a multigram letter
frequency similar to some natural language (‘traffic padding’). Non-periodic
sequences can be generated by starting at random or irregular points in a
text of, say, 10 000 words. Still better, using a method proposed by Shannon
in 1945, Küpfmüller in the 1950s, an n-gram approximation is obtained from a
master text by using a shift register process: Taking the last n−1 characters,
the next word in the master text is sought that contains these consecutive
characters; then the following character is adjoined and the process is re-
peated. With a tetragram approximation, from the first chapter of a famous
novel by Thomas Mann the following synthetic nonsense text was derived:

thomas ist daher mit mein hand zeigen augen von geschaeftig
im kreissigen mauemdisellschaeftwar zur seligen durchterlich
hier familie hierheben herzigkeit mit eindrinnen tonyzu
plaudertfuenf uhr erzaehlungich regeshaehm die konnte
neigte sie dern ich was stuetzte heissgetuebrige wahrend tause

Traffic flow security by ‘padding’ with nonsense text greatly increases the
load on the unauthorized decryptor and delays his decryption of a genuine
message. On the other hand, the intended recipient must be on his guard
not to overlook an occasional genuine message in the flood of garbage.

11.1.5 Stupidity. Even thoughtless filling with /x/s, repeating a word or
the use of letter doublets can present a risk. The solution is to rephrase the
sentence or use synonyms or homophones (chosen at random!)—this includes
the use of nulls to conceal partial repetition in the vicinity of homophones.
And it is one of the basic rules of professional cryptography to suppress not
only punctuation but also word spacing. Thus it is horrifying to think that
it was common practice (if not explicit orders) in the German Wehrmacht
to insert /x/ for stop, /y/ for comma, /j/ for quotation marks, and even
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/xx/ for colon, /yy/ for hyphen. Sometimes, numbers encoded by letters
were bracketed: /y/.../y/. Important words were doubled, i.e., /anan/ for ‘to’
and /vonvon/ for ‘from’, /kk/ for klar, /krkr/ for Kriegstelegramm (‘very
urgent’). And even tripling of letters was used: /bduuu/ for Befehlshaber
der U-Boote, /okmmm/ for Oberkommando der Marine, /vvv/ alternatively
for ‘from’ (on the other hand, German /ch/ was frequently replaced by /q/).
An example is given by the message sent by the German battleship Bismarck
shortly before she sank on May 27, 1941:

KRKR FLOT TENC HEFA NANO KMMM XXTO RPED OTRE FFER ACHT ERAU
SXSC HIFF MANO EVRI ERUN FAEH IGXW IRKA EMPF ENBI SZUR LETZ
TENG RANA TEXE SLEB EDER FUEH RERX (Most immediate. Torpedo hit

right aft. Ship unmanœvrable.We fight to the last shell. Long live the Führer.)

These antics, together with the inevitable ‘by order of the Führer’ and ‘Heil
Hitler’, which nobody dared suppress, greatly aided the British in break-
ing ENIGMA. They were so used to these foolish German habits that they
became quite indignant when decrypted ENIGMA transmissions produced
meaningless sequences (in Bletchley Park jargon quatsch) at the beginning
and end of a message.
More attention was paid to these things at the time of Alberti and Della Porta
than in the 19th and 20th centuries, when people had become overconfident
of the uncrackability of superencrypted codes and other combined methods.
Suppression of double letters is only one of the ‘deliberate spelling mistakes’
which Leone Battista Alberti, in De cifris, recommended. As Giambattista
Della Porta so wisely wrote in 1563, “For it is better for a scribe to be thought
ignorant than to pay the penalty for the detection of one’s plans.” Unfor-
tunately, the more senior the officer, the less he can be expected to show the
insight needed to put up with disfigured texts. The ideal crypto clerk would
possess cold-blooded intelligence combined with poetic imagination and a to-
tal disregard of conventional spelling. Of course it is tempting to encipher
‘radio’ and ‘station’ separately, or even spell them out in letters, like the Aus-
trian clerk who was too lazy to look up the right combination; that provided
Luigi Sacco with a break in 1918 (Sect. 13.4.1). The same applies to misusing
nulls as word spacings; some members of the French résistance used ‘tabac’ as
a dummy, which may have brought the required reinforcements but also led to
the cracking of a double transposition. One careless mistake can have disas-
trous consequences. “The sending of this one message must certainly have cost
the lives of thousands of Germans” wrote Moorman, the chief of G.2 A.6,
about Berthold’s episode (Sect. 11.1.3), which revealed the plans for the Ger-
man offensive of March 21, 1918.

11.1.6 Enlightenment. It is the mark of a good signal officer that he ex-
plains to his subordinates how the slightest encrypting mistake plays into the
hands of the enemy, and he also monitors their efforts. Givierge2 writes

2 Marcel Givierge, French general, successful cryptanalyst in the Second World War, au-
thor of Cours de Cryptographie, Paris 1925.
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“encode well or do not encode at all. In transmitting cleartext, you give only a
piece of information to the enemy, and you know what it is; in encoding bad-
ly, you permit him to read all your correspondence and that of your friends.”
However, this well-meant advice should not be interpreted so literally as to
transmit radio messages without encrypting them. That happened at the end
of August 1914 with Rennenkampf’s Russian Narev army in East Prussia, be-
cause the troops had not yet received the code books and the telephone lines
were overloaded or non-existent. Hindenburg and Ludendorff won the battle
of Tannenberg thanks to the clear signals the Russians sent; nevertheless
they became popular heroes as a result. At the other extreme, the Germans
encrypted in the Second World War weather reports in the International Me-
teorological Code; as the prevailing wind is westerly in Europe, that often
provided the ‘probable word’ and lead to compromises with U-boat messages.
It would have been better to transmit such low-priority messages in Klartext.
Rohrbach recommended (Sect. 11.2.5) including vulnerability to errors when
assessing the security of a method, on the principle that humans err. Rules
of intelligence security and counter-intelligence also play an important role.

11.1.7 Proof in court. The use of easily memorized passwords and keys
provides the unauthorized decryptor with a kind of proof; for example, in
court, if he succeeds in reconstructing a key. That is particularly true if the
key has some special significance for the originator of the message.

11.1.8 Negligence is dangerous. The organizational inconvenience of
maintaining crypto security must not be underestimated. Regular changes of
key make work for all concerned. Even so, it is hard to understand why the US
State Department was still using such short key words as PEKIN and POKES
as late as 1917, though Della Porta used CASTUM FODERAT LUCRETIA
PECTUS ALGAZEL; the Argentis had used keys such as FUNDAMENTA
EIUS IN MONTIBUS SANCTIS or GLORIA DICENTUR DE TE QUIA
POTENTER AGIS . As Vigenère wrote: “the longer the key, the harder is
the cipher to break.”
A necessary condition of polyalphabetic encryption is that it be quasi-non-
periodic; that is to say, if the key is periodic it must not be significantly
shorter than the message. If necessary, a long message must be chopped up
and the parts encrypted with different keys. Hitt’s warning that “no mes-
sage is safe unless the key phrase is comparable in length with the message
itself” does not mean that the message may be as long as the period of the
key—whether or not an encrypting machine is used. Messages of over 1000
characters are in any case at risk, since automatic decryption techniques for
the M-209, for example, work well with a message of about 800 characters or
more (pure cryptanalysis, Sect. 22.2.3.1). Messages of 200–300 characters are
normally safe from such an approach; a maximum length of 500 characters
was allowed with the M-209. The limit for the Army ENIGMA was 180 char-
acters, increased to 250 characters after Jan. 13, 1940 (Sect. 8.5.3), 320 char-
acters for the Navy ENIGMA. Longer messages had to be divided into parts.
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The use of an individual key represents additional organizational effort and re-
quires extra security and counter-espionage measures. There are many situ-
ations where it becomes impossible, for example, in isolated positions where
the (safe) supply of new keys cannot be guaranteed, or where a stock of indi-
vidual keys might fall into the hands of the enemy and be used for deception.

11.1.9 Authentication. This raises the question of how a receiving sta-
tion can tell whether a radio message originates from a legitimate partner
or an impostor. The cryptographic measures mentioned in Sect. 10.5 can be
supplemented by steganographic measures (security checks), such as insert-
ing particular null characters at specific points in the cryptotext, or making
deliberate spelling mistakes at agreed points in the plain text—quite apart
from the ‘fist’, the individual transmitting style (a ‘radio fingerprint’) of the
operator who does the Funkspiel ‘playback’.

11.1.10 Unlawful attack. It is worth mentioning the most banal and most
brutal cryptanalytic method: the capture of crypt documents by espionage,
theft, robbery, or as spoils of battle. The best way of protecting oneself
against that is obvious, yet frequently ignored: What no longer exists cannot
fall into unauthorized hands! (Karl Weierstraß took that to heart with Sofia
Kovalevskaya’s letters.) The maxim applies particularly to individual keys:
the used key tape from the cipher machine should be shredded at once
(Sect. 8.8.2) or otherwise made unserviceable, as was done with the Siemens
SFM T 43. Planning for multiple use of individual keys (Sect. 8.8.7) is absurd.

11.1.11 Battlefield attack. It is a truism that war can bring rich booty.
That applies particularly to cryptological material. For example, the German
submarine U-33 was captured by the Royal Navy in the Firth of Clyde on
February 12, 1940. The otherwise reliable radio operator Kumpf forgot to
throw the ENIGMA rotors overboard. The Poles had already worked out the
wiring of the first five, but rotors VI and VII were new to the British. In Au-
gust 1940 rotor VIII was captured, too. On April 26, 1940 the German Q-boat
Polares (Vorpostenboot 26) was seized off Ålesund. The British found match-
ing plaintext and cryptotext for the previous four days, although this was not
enough to allow the encryption of the naval ENIGMA to be fully broken. The
operating instructions captured from the submarine U-13 in June were also
of little help. The breakthrough came the next year: on March 4, 1941 the
capture of the trawler Krebs in the Norwegian Vestfjord produced not only
two familiar rotors but also the complete keys for the previous month. This
allowed BP to read in March 1941 all of the February Kriegsmarine signals.
As a consequence, the reconstruction of the bigram tables used was possible.
On May 7, a planned attack on the weather ship München provided complete
keys for June (those for the current month, and the machine itself, had been
thrown overboard) and also the Wetterkurzschlüssel . The U-110 was forced
to surface in a depth-charge attack off the west coast of Ireland on May 9, 1941
and was boarded by a crew of the destroyer HMS Bulldog; the booty in-
cluded besides another ENIGMA machine a golden treasury of rules for its



11.1 Cryptographic Faults 219

use, including the BACH bigram table (Sect. 4.1.2) for encoding the indica-
tor, and also the Kurzsignalheft. Finally, there was another planned attack
on a weather ship, the Lauenburg, on June 28, 1941. The Germans managed
to ditch the ENIGMA, but the British captured the complete keys for July.
That gave Bletchley Park a breakthrough for the 3-rotor naval ENIGMA;
from then on, they could eavesdrop regularly on radio communications to and
from submarines, with only a few hours’ delay—with obvious consequences.
The introduction of the 4-rotor ENIGMA on February 1, 1942 caused a black-
out, but by December 1942 the signals could again be decrypted on a regular
basis, and the Allies gained the upper hand in the U-boat war. This was
again achieved by capture, which brought to light an incredible stupidity on
the part of Eberhard Maertens, Head, and of Ludwig Stummel, Chief of Staff,
of the Marine-Nachrichtendienst. The seizing of the U-559 off Port Said on
October 30, 1942 by HMS Petard provided a new edition of the Kurzsignalheft
and a second impression of the Wetterkurzschlüssel, which would have been
a fair prize in itself. In addition, Philip E. Archer managed on December 13
to decrypt a message that showed that when the 4-rotor ENIGMA was com-
municating with coastal stations that had only a 3-rotor machine, the fourth
rotor (the Griechenwalze) was simply placed in the neutral position. That was
a convention which made communication possible. The stupidity was that the
three-letter ring setting of the 3-rotor ENIGMA was always the same as the
first three letters of the ring setting for the 4-rotor machine. That was not ne-
cessary, but was done purely for convenience in producing the monthly or-
ders. It meant that if the enemy knew the ring setting for the 3-rotor machine,
then only 26 attempts were needed to find the setting for the ‘Greek’ rotor.
Thus, starting with December 13, 1942 the British finally cracked the 4-rotor
ENIGMA for the entire TRITON key net of the submarines (introduced in
1941); even the introduction of a second Greek rotor on July 1, 1943 did little
to alter their complete mastery of ENIGMA traffic until the end of the war.
However, the British had losses to contend with, too. In late 1940, the German
auxiliary cruiser Komet (‘Schiff 45’) under Capt. Eyssen captured bigram ci-
phers and code books from several ships of the Merchant Navy. The Allies did
not find out about it until they studied the German archives after the war.

11.1.12 Bagatelles. Even the smallest details can betray information of
great significance. In August 1941 the German submarine U-570 fell into
British hands off the coast of Iceland, almost without a scratch. The wooden
box for the ENIGMA was empty, but there was a slot for a fourth rotor.
That was confirmation of what they already suspected from references to the
4-rotor ENIGMA in manuals that had been captured, that the introduction
of this version was imminent. It is such a wealth of minor details which weave
the tapestry that keeps cryptanalysis going. Every interruption in the thread
is a setback to decryption, for a shorter or longer time, possibly for ever.



220 11 Encryption Security

11.2 Maxims of Cryptology

The [ENIGMA] machine, as it was,
would have been impregnable,

if it had been used properly.
Gordon Welchman 1982

No cipher machine alone can do its job properly,
if used carelessly. During World War II,

carelessness abounded, particularly on the Axis side.
Cipher A. Deavours, Louis Kruh 1985

Over the centuries cryptology has collected a treasury of experiences—even
the open literature shows this. These experiences, normally scattered, can
be concentrated into a few maxims for cryptographic work, in particular
for defense against unauthorized decryption. Especially now, in the era of
computers, these maxims have importance for a wider circle than ever.

11.2.1 The native abilities of man include confidence, fortitude, and with-
standing danger. These positive qualities have the side effect that man is
inclined to overrate his abilities. But

Maxim No. 1: One should not underrate the adversary.

As we have seen, the German authorities did not suspect that the Allies could
have penetrated their cryptosystems. There were isolated cases3 of appre-
hension, but the official opinion was held stubbornly. The Kriegsmarine was
the only arm of the service that improved its crypto machines decisively by
a transition on February 1, 1942 from the 3-rotor ENIGMA to the 4-rotor
ENIGMA, and by providing since 1938/1939 altogether eight rotors, com-
pared to five for the Army and Air Force ENIGMAs. Thus it accepted that
it was worthwhile to do more for its security. The German Generalstab was
confident of victory and was intellectually not prepared to take warnings seri-
ous. But even in the Navy there was a deep-rooted belief in the unbreakability
of the ENIGMA. For example, still in 1970, Kapitän zur See [Commodore]
Heinz Bonatz, once Staff Officer in the B-Dienst of the Kriegsmarine, pub-
lished in a book his näıve belief that the Allies, although they had seized
some ENIGMAs, had not broken the German cryptosystem—at worst, the
Allies would have been able to read German signals for a limited time.

It was not only the Germans who were unsuspecting. The US cryptolo-
gists, too, could not imagine that Rohrbach had broken their M-138-A. And
the Signal Security Agency of the US Army had tried to break their new
M-134-C (SIGABA), a rotor machine, without success. What would that

3 Already in 1930, First Lieutenant Henno Lucan, Second Signals Officer of the battleship
Elsaß, pointed out in a study a weakness of the ENIGMAG. With the introduction of
the plugboard in the ENIGMAI, the worries seemed to be banished.
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mean? Why couldn’t the Germans do as well as the British, who had con-
quered the ENIGMA? Typically, it was Roosevelt, the intellectual among
the Allied leaders, who always slightly distrusted the assertions of the cryp-
tologists. Did he know better the deep-rooted human habit of ignoring the
undesirable? Anyhow, the SIGABA was indeed unbreakable at these times.
It took G.C.&C.S. three war years to find out that the B-Dienst of the Kriegs-
marine did read some of their encryptions. ENIGMA decrypts gave finally
the proof that at least Naval Cypher No. 3, since June 1941 the main crypto-
system for convoy formations in the North Atlantic (German code name
Frankfurt), was broken. It was replaced by Naval Cypher No. 5, and thus,
from the middle of June 1943, as was made known after the war, the Germans
were rather cut off from the well. What would have happened if the Germans
had found out in the same way about the insecurity of their ENIGMAs?
Perhaps nothing, as a particularly crass case of the permanent underrating of
the British by Rear Admiral Eberhard Maertens and Captain Ludwig Stum-
mel shows. In fact, in March 1942, two German auxiliary cruisers were sunk.
Admiral Fricke requested an investigation—but no hints were found. Then, it
happened in mid-1943: Decrypts of signals from Allied convoys showed that
the Americans supposed there were twenty German submarines in a narrow
map square. Indeed, the wolfpack Meise with its 18 boats was in the square.
The Befehlshaber der Untersee-Boote, Großadmiral Karl Dönitz (1891–1980),
ordered Maertens to investigate, as he had done in 1941 when U-570 was
seized. “Again Maertens exculpated ENIGMA. The British U-boat situation
reports themselves stated that the Allies’ information on submarine loca-
tions was coming from direction-finding ...” (Kahn). Maertens also saved his
head by explaining falsely that they had been located by the H2S (German
code name Rotterdam-Gerät), a radar bombing aid working on a wavelength
of 9.7 centimeters, found February 2, 1943 in a British bomber shot down
over Rotterdam. Dönitz had to comply, but remained suspicious and finally
fired Maertens after an accident around the convoy SC 127 on March 12, 1944
was again explained by either treason or lack of cipher security. It is known
today that poor Maertens was the victim of tricky British disinformation.
The Russians also managed to penetrate the ENIGMA encryption. They
raised U-250 after she was sunk in the Gulf of Finland on July 30, 1944 and
recovered her ENIGMA. Opinion is divided on how far the Russians suc-
ceeded. While in a German document from January 1943 it is stated “It is
certainly true that in individual cases the Russians succeeded in decrypting
ENIGMA messages,” E. E. Thomas said in 1978 that after ten years of de-
tailed study he found nowhere any evidence to show that the Russians at any
time could decrypt the German ENIGMA radio traffic.
Whether the Soviets penetrated US cryptosystems was often debated, par-
ticularly after Isaac Don Levine, the Russian-born journalist who specialized
in Soviet affairs, became “convinced by mid-1939 from numerous conver-
sations he had with General Walter Krivitsky, the defected head of Soviet
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military intelligence for Western Europe (who committed suicide in 1941),
that the Communist cryptanalysts were reading American codes” (Kahn).

11.2.2 More harmless, but also more imperiled, are the inventors of crypto-
systems. “Nearly every inventor of a cipher system has been convinced of the
unsolvability of his brainchild,” writes Kahn. A rather tragicomic example
was offered by Bazeries himself. Working for the French government and
army, he had ruined a number of inventions by breaking test samples he
had asked for. Finally, he invented his own system and promptly dubbed
it absolutely secure. The Marquis de Viaris, whose invention Bazeries had
smashed a short while before, took revenge. He even invented a method
of cryptanalysis (Sect. 14.3) applicable for a wide class of instruments, from
Jefferson and Bazeries to M-94 and M-138-A , all using families of unrelated
alphabets. Here we are led to Kerckhoffs’ maxim:

Maxim No. 2: Only a cryptanalyst, if anybody, can judge the
security of a cryptosystem.

This knowledge can be found with Giambattista Della Porta, and was for-
mulated by Kerckhoffs in 1883. He criticized judging the encryption security
of a method by counting how many centuries it would take to exhaust all
possible combinations. Indeed, such counts of combinatorial complexity can
only give a bound for the effort necessary in the worst case, for the crudest of
all cryptanalytic methods, exhaustive search, also called ‘brute force attack’.
Everywhere in the civilized world therefore the governmental services (and
some non-governmental ones) have the double duty to design secure crypto-
systems and to break allegedly secure ones. “With code breakers and code
makers all in the same agency, NSA has more expertise in cryptography than
any other entity in the country, public or private,” wrote Stewart A. Baker,
not without pride. He is a famous lawyer, who was for a few years the top
lawyer at the National Security Agency. His praise would sound even better
from a neutral source.

11.2.3 Kerckhoffs was one of the first to deal with cryptography from a
practical point of view. In discussing questions of ease of handling (to be
treated later) he wrote: “It is well to distinguish between a cryptosystem
intended for a brief exchange of letters between a few isolated people and a
method of cryptography designed to regulate for an unlimited time the corre-
spondence between different army commanders”. He distinguished between
the cryptosystem as a class of methods (French système) and the key in the
narrower sense and postulated, as mentioned above, “Il faut qu’il puisse [le
système] sans inconvénient tomber entre les mains de l’ennemi .” [No incon-
venience should occur if the cryptosystem falls into the hands of the enemy.]
This brought Shannon to formulate more precisely:

Maxim No. 3: In judging the encryption security of a class of
methods, one has to take into account that the adversary knows the
class of methods (“The enemy knows the system being used”, Shannon).
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Otto J. Horak expressed it this way: “Security of a weak cipher method is
not increased by trying to keep it secret”.
For practical reasons, in certain situations certain methods are used prefer-
entially, others not at all. In particular, the ingrained conservatism of the
established apparatus creates certain preferences, which cannot be hidden
from the adversary (‘encryption philosophy’). Moreover, a rough differen-
tiation, like one between transposition, monoalphabetic and polyalphabetic
encryption, is possible on the basis of simple tests. There are also rules
of thumb, like Sacco’s criterium that a short cryptotext of not more than,
say, 200 characters embracing all characters of the alphabet is most likely
polyalphabetically encrypted.
Machines and other devices, including encryption documents, can fall in com-
bat into the hands of the enemy or can be stolen. This includes machines like
the ENIGMA. Following Kerckhoffs’ doctrine strictly, the ENIGMA should
have been extended at the beginning of the Second World War in one big
step to a 5-rotor machine; the rotor position (Walzenlage) should have been
changed from the first day every 6 hours (not merely three times a day from
1942 on); and every three months the rotor set should have been exchanged
completely. Admittedly, this would not have been easy, in view of the tens of
thousands of ENIGMAs, but it would have been appropriate in retrospect.
But, as Kahn wrote, “the Germans had no monopoly on cryptographic fail-
ure. In this respect the British were just as illogical as the Germans.” And
the Americans were illogical, too. Their cipher machine M-209, constructed
by Hagelin and built under license, was considerably less secure than the
ENIGMA and was also used by the Italian navy (C-38m), an Axis partner.
No wonder the Germans in North Africa in 1942 and 1943 often knew the
goals and times of American attacks. And the British, who could solve the
C-38m too, knew all they needed about the supply situation of Field Marshal
Erwin Rommel.

11.2.4 The desire of the cryptographer not to make it too easy for the ad-
versary leads to the introduction of complications of known methods. The
composition of methods (Chapter 9) has long been used for this purpose,
mainly the combination of essentially different methods, like transposition
of a monoalphabetic substitution or superencryption of code by polyalpha-
betic encryption. Specific cryptanalytic methods, however, are frequently
insensitive to such complications. At best nothing is gained, at worst the
combination offers an unforeseen entry. According to Givierge (1924):

Maxim No. 4: Superficial complications can be illusory, for they
can provide the cryptographer with a false sense of security.

In a typical case, someone excludes with the very best intention, but quite
unnecessarily, the identity as encryption step in a VIGENÈRE, under the
impression that no letter should be left untouched, and thus no letter may
represent itself. But this property allows one to determine for a sufficiently
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long probable word a few positions where it could be found (Chapter 14).
The same property is shared by cryptosystems with monocyclic alphabets,
all cylinder devices from Jefferson and Bazeries to the M-94, and all strip
devices from Hitt to the M-138-A. Moreover, all cryptosystems with proper-
ly self-reciprocal alphabets have the property too; including the ENIGMA,
thanks to the invention of the reflecting rotor, which was a masterpiece of
complication illusoire. To this, Welchman remarked “It would also have been
possible, though more difficult, to have designed an Enigma-like machine
with the self-encipherment feature, which would have knocked out much of
our methodology, including ‘females’ [Sect. 19.6.2.1].”

11.2.5 Finally, the last and perhaps the most important point is human
weakness. The encryption security is no better than the crypto clerk. The
unauthorized decryptor feeds on the faults mentioned at the beginning of this
chapter. Rohrbach’s advice was:

Maxim No. 5: In judging the encryption security of a class of
methods, cryptographic faults and other infringements of security
discipline are to be taken into account.

First of all, there are the so-called compromises, i.e., exposures of the key:
plaintext-cryptotext compromise: repetition of the transmission in clear;
plaintext-plaintext compromise of the key: transmission of two different
plaintexts, encrypted with the same key text: transmission of two ‘isologs’;
cryptotext-cryptotext compromise of the keys (‘reencipherment’,‘reencode-
ment’): transmission of two ‘isomorphs’: the same plaintext, encrypted with
two different key texts. In particular, key nets invite this compromise.

Next, there are the classical faults enabling a ‘probable word’ attack:
the frequent use of stereotype words and phrases (which flourish not only
in diplomatic and military language),
the use of a common word for a sudden or unforeseen event,
the use of short passwords and keys that can easily be guessed.

Moreover, there are the elementary rules of a good cryptographic language:
not to use double letters and frequent letter combinations like /ch/ and /qu/ ,
to suppress punctuation marks and in particular to suppress the word spacing,
to use homophones and nulls prophylactically against probable word attacks.
Plaintext prepared optimally for encryption is orthographically wrong, lin-
guistically meager, and stylistically horrible. Which commanding general
would like to phrase an order in this way, which ambassador would send such
a report to the head of his government? The answer is simple: they should
not do it themselves, but their crypto officers should have to do it for them.
Both Roosevelt and Churchill complied in the Second World War with the
needs of crypto security. But arrogant Murphy did not.
In addition, ambassadors and generals are normally disinclined to take the
time to supervise their crypto clerks; indeed most of them do not understand
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their needs and are cryptologically ignorant. When Wheatstone invented a
special bigram substitution that was later called PLAYFAIR (Sect. 4.2.1), he
could not overcome the Foreign Office’s dislike of complicated encryption.
Napoléon’s generals (using a PORTA encryption) encrypted their messages
only partly, and so did even in 1916 the Italians at the Isonzo battle.
An important principle for communication services is therefore that monitor-
ing and surveillance of their own units is at least as important as listening to
the adversary’s. To this, Erich Hüttenhain remarked: “Ein Verbündeter, der
keine sicheren Chiffrierungen verwendet, stellt ein potentielles Risiko dar.”
[An ally who does not use secure cryptography represents a potential risk.]
It is frequently said that a cryptographer’s error is the cryptanalyst’s only
hope. This hope is justified: there is always nervous stress for the crypto clerk
in diplomatic and military service and encryption errors are likely to happen.
The more complicated the method, the more mutilated will be the plaintext
that is eventually decrypted. Under pressure of time, the dangerous repeti-
tion of a message without careful paraphrasing may then seem unavoidable.
Givierge’s advice was: Chiffrez bien, ou ne chiffrez pas.
The good cryptologist knows that he cannot rely on anything, not even on
the adversary continuing his mistakes. He is particularly critical about his
own possible mistakes. Surveillance of one’s own encryption habits by an
advocatus diaboli is absolutely necessary, as the experiences of the Germans
in the Second World War showed only too clearly. Sir Stuart Milner-Barry
wrote “Had it not been for human error, compounded by a single design
quirk, the Enigma was intrinsically a perfectly secure machine.”
The design quirk, the seemingly clever idea (7.3.2), was the properly self-
reciprocal character of the enciphering caused by the introduction of the
reflector. For a facilitation of the operation a high price was paid by allowing
a dangerous encroachment.

11.3 Shannon’s Yardsticks

If somebody is willing to follow the advice given so far, there remains the
question of which method to take. The answer depends on the one side
on the degree of security desired, on the other side on the effort invested.
Claude E. Shannon (1916–2001) listed4 five yardsticks for measuring a class
of cryptographic methods:
(1) Degree of required How much does the adversary

encryption security gain from receiving a
certain amount of material ?

(2) Key length How short is the key,
how simple is its manipulation?

4 ClaudeE. Shannon, A Mathematical Theory of Cryptography. Internal Report, Septem-
ber 1, 1945. Published in: Communication Theory of Secrecy Systems. Bell System
Technical Journal 28, 656-715 (October 1949).
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(3) Practical execution of How much work
encryption and decryption is necessary ?

(4) Inflation How much longer than plaintext
of cryptotext is the cryptotext ?

(5) Spreading of How far do
encryption errors encryption errors spread?

These yardsticks are contradictory to the extent that no cryptosystem is
known (and presumably none can exist logically) that fulfills the maximal
requirements in all points. On the other hand, no point can be absolutely
ignored.
If point (1) is dropped completely, then even plaintext is acceptable. If
point (2) is dropped completely, then an individual, random, one-time key
is acceptable. If points (3) and (4) are dropped completely, then there exist
exotic cryptosystems that fulfill all other points optimally. If point (5) is
dropped completely, then methods performing a thorough amalgamation can
optimally approximate all other points.
Modern cryptography tends, depending on the situation, to use individual
keys (which require uninterrupted and secure key distribution) or amalgama-
tion methods (which require noise-free, i.e., error-correcting, communication
channels).
In situations of utmost secrecy, say between heads of states in emergency sit-
uations, the use of individual keys is quite normal, since there are usually not
very many messages. It may be appropriate even in the case of heavy traffic.
Frederick W. Winterbotham, responsible for the security of the material that
came from the B. P. decrypts of the German ENIGMA and SZ42 radio traffic
and was distributed under the cover name BONIFACE, later ULTRA, to the
field units, insisted that it was encrypted for this purpose with an individual
key. This shows on the one hand how priceless the secret material was, in
view of the trouble connected with the use of individual keys, and on the
other hand how safe the British rated individual keys, certainly rightfully so.
Did any German officer have a chance to impose such strong regulations?
In the commercial field, with DES an amalgamation method has been in use
for more than two decades now. The continuing criticism of the security of
the present de facto standard would simply be mollified if the key length,
which many consider to be too short, were increased.

11.4 Cryptology and Human Rights

Since cryptographic methods are in use, even amateurs try to break them.
Today, an amateur with access even to a middle-sized computer will find
it difficult to penetrate an encryption that satisfies professional standards.
The National Security Agency (NSA) of the USA, however, wishes to retain
a surveillance capability over any commercial message channel that comes
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under suspicion. It can be expected that the US Government will not allow
the intelligence service of a potential adversary—there are still some—to
build up a communication network under the cover of a private commercial
undertaking. The times are over when Henry L. Stimson, Secretary of State
of President Herbert Hoover, could send the Black Chamber of the State
Department to the desert (1929 !) and then justify this in his autobiography
(1948) with the reason “Gentlemen do not read each other’s mail”. Not even
President Carter showed such moral scruples. Or does this show that the
Americans under Carter did not succeed in reading Russian traffic? The end
of the Cold War means only a reduction and not a cessation of the latent
danger of being spied on.

11.4.1 The conflict between the state and the citizen. But cryptology
is not only an issue concerning the diplomatic and military authorities of
different states. One should not forget that the permanent conflict of interests
between the citizen or the individual and the state representing society at
large is affected by cryptology. On the one side there is the undeniable right
of the citizen (or of a corporation) to protect his or her private sphere (or
its commercial interests) by efficient cryptosystems, on the other side there
is the constitutional duty of the state to protect its internal and external
security, which may require penetration of encrypted messages for intelligence
purposes.
The position of the state was expressed by Charles A. Hawkins, Acting As-
sistant Secretary of Defense, USA on May 3, 1993, as follows: “The law
enforcement and national security communications argue that if the public’s
right to privacy prevails and free use of cryptography is allowed, criminals
and spies will avoid wire taps and other intercepts.” The privacy of letters
is not absolute even in civilized countries, and in cases that are regulated by
laws it can be suspended for the benefit of the state—but not for the benefit
of private persons. Encrypted messages are no exception—just the use of
cryptography creates a certain initial suspicion.
On the other side, precisely in the USA where most citizens see possession
of firearms as their constitutional right, the possession of the crypto weapon
is also not seen to be a state monopoly. Europe, with its somewhat different
history, does not go so far in this respect.
Whitfield Diffie distilled it to a short formula: “... an individual’s privacy as
opposed to Government secrecy”. In Europe there is reason enough to insist
on freedom from the authoritarian state. Thus, there is a need to find within
the framework of each political constitution a means to regulate governmental
cryptanalysis; a borderline is to be defined. This is already required by the
existing legal framework. Strangely, the larger countries have more difficulties
here in achieving results than the smaller ones; Austria, for example, being
more advanced than Germany.
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A solution is also necessary in the interest of world trade. In the USA, the
rule for trading cryptological equipment with foreign partners is: “Encryption
for the purpose of message authentication is widely allowed, whereas encryp-
tion for the purpose of keeping information private raises eyebrows”(David
S. Bernstein). As a case in point, Philip R. Zimmermann, according to his
lawyer, was in 1994 facing a charge for violating the International Traffic
in Arms Regulations, because he fed into the Internet and thus made freely
available the cryptosystem PGP (Pretty Good Privacy, Sect. 9.6.6), which
counts as war material (‘cryptographic devices, as well as classified and un-
classified data related to cryptographic devices’, Category XIII). The charge
was dropped in 1996, but the situation is unsatisfactory.

11.4.2 Solution schemes. To regulate the conflict between the protection
of the private sphere of the law-abiding citizen, guaranteeing the confiden-
tiality of his or her messages on the one side, and on the other the fulfillment
of the functions of the state, several schemes have been drawn up:
(1) A limitation of the use of cryptosystems in the civilian domain by a

requirement to seek official approval, either in individual cases or for
types of usage, imposed upon commercial vendors (the inhibition of cer-
tain methods alone, except the use of individual keys, is not sufficient,
since it invites circumvention).

(2a) A restriction of encryption security by regulating the availability of
suitable cryptosystems in the civilian domain. The agency that makes
the cryptosystems available can at the same time give the citizen a
cryptanalytic guarantee and thus can increase the incentive for volun-
tary conformity (a commercial vendor may serve as market leader with
state support).

(2b) Like (2a), but in conjunction with inhibition of the use of other crypto-
systems in the civilian domain.

(3) An escrow system, requiring the deposition of the complete data for
each cryptosystem used in the civilian domain, the escrow agency being
independent and required to maintain confidentiality.

Further proposals may come up, as well as mixtures between the ones listed
above. It is to be expected that different democratic states will come to dif-
ferent solutions within the scope of their sovereignty. In France, for example,
a solution along the lines of (1) which could be considered undemocratic is
already established, and the Netherlands flirted for a while with such a regu-
lation. In January 1999, the French Government lifted the obligation, which
was disobeyed anyway. In Germany, there has been for quite some time a
tendency toward a solution like (2a), with a recently created Bundesamt für
Sicherheit in der Informationstechnik (BSI), subordinate to the Ministry of
the Interior; one might guess that it could develop into a solution like (2b).
This liberal fundamental position was in June 1999 confirmed by the new
Federal Cabinet. It is not yet apparent what solution the United Kingdom
with its ‘Official Secrets Act’ will adopt. In the USA, in 1993, a solution
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along the lines of (3) was advocated by the Clinton administration (a key
escrow system5, see below). It caused loud protest, and a modification in the
direction of (2a) with a kind of voluntary submission was still under discus-
sion in 1999. For the European Union, insofar as it legislates on this question
at all, neither (1) nor (3) are feasible options.

Furthermore, it can be imagined what such a disorder of different regulations
means for international commercial vendors. Trade in cryptographic devices
crossing international borders is already difficult enough: “International use
of encryption plunges the user headfirst into a legal morass of import, ex-
port and privacy regulations that are often obscure and sometimes contradic-
tory” (David S. Bernstein). International travel with a laptop computer was
potentially punishable. Martha Harris, Deputy Assistant Secretary of State
for Political-Military Affairs, stated on February 4, 1994: “We will no longer
require that US citizens obtain an export license prior to taking encryption
products out of the US temporarily for their own personal use. In the past,
this requirement caused delays and inconvenience for business travellers.”

11.4.3 SKIPJACK. The Escrowed Encryption Standard concerns the
encryption algorithm SKIPJACK (Sect. 9.6.5) within the CLIPPER chip. To
be stored in escrow by two separate escrow agents are two ‘chip unique key
components’. These components are released to an authorized government
official only in conjunction with authorized electronic surveillance and only
in accordance with procedures issued and approved by the Attorney General.
The key components are needed to construct by addition modulo 2 the ‘chip
unique key’. An 80-bit message setting (‘session key’) KS, negotiated between
partners or distributed according to a security device, serves as in DES to
form an initialization block c0 for the encryption process which can be used
monoalphabetically in a mode corresponding to the Electronic Code Book or
chained in an autokey way in a mode corresponding to Cipher Block Chaining
(Sect. 9.6.3). Most important, the chip contains an emergency trapdoor, the
‘Law Enforcement Access Field’ LEAF, where the current session key is
stored in encrypted form; by using the chip unique key the session key is
obtained. Thus, following a court order, a government-controlled decrypt
device can survey the channel. Every time a new conversation starts with a
new session key, the decrypt device will be able to extract and decrypt the
session key from the LEAF. Except for an initial delay in getting the keys,
intercepted communications can be decrypted in real time for the duration
of the surveillance. Thus, even voice communication in digitized form can be
surveyed.

Unlike DES, the SKIPJACK algorithm itself was kept secret by the authori-
ties “to protect the LEAF” even though security against a cryptanalytic at-
tack as such does not require the algorithm to be kept secret. Moreover, the

5 Escrowed Encryption Standard (EES), Federal Information Processing Standards Pub-
lication (FIPS PUB) 185, Feb. 9, 1994.
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SKIPJACK algorithm was classified as SECRET — NOT RELEASABLE
TO FOREIGN NATIONALS. It therefore was not suitable as an interna-
tional de facto standard. In 1998, these restrictions were finally dropped.
In fact, the ‘Law Enforcement Access Field’ trapdoor is rather primitive.
It is openly accessible along the transmission line so that unauthorized de-
cryptors can give it their best efforts. Dorothy E. Denning has studied some
of the practical questions that arise. Silvio Micali (‘Fair Cryptosystems’,
US Patent 5 276 737, January 4, 1994) has proposed improved cryptosystems
that cannot be misused either by criminals or by state officials. Anyhow, by
the year 2003 SKIPJACK seemed to have been a failure.
For real-time, interactive communications, Thomas Beth and others proposed
in 1994 to make the investigative law enforcement agency an active partici-
pant in the protocol used by the sender and receiver to establish the session
key, in such a way that the two parties cannot detect the participation of the
agency. The novelty of this approach, however, lies in the possibility that in
the case of noninterception the network provider can prove this fact.

11.4.4 State intervention. Mistrust felt by some citizens (or legal corpo-
rations) against state power is not diminished by some recent experiences; for
example, in the USA with actual or alleged encroachments of the National
Security Agency into the development of encryption algorithms like DES.
It was said that giving NSA responsibility for approving and recommend-
ing encryption algorithms is “like putting the fox in charge of guarding the
hen house.” In 1957, there were also reports of close contacts between William

Boris Hagelin
(1892–1983)

F. Friedman, the grand old man of American mili-
tary cryptology, and Boris Hagelin from Crypto AG,
good friends in wartime, which aroused suspicions.
Thus, a third party is mentioned, who stands outside
the philosophy of balancing constitutional rights on
privacy and state rights on law enforcement but can-
not be overlooked in view of his economic impor-
tance: the commercial vendor. It is in the interest
of this party to have good relations with both the
citizen as potential client and the state as supervisor
(and sometimes client, too). At best, the vendor is
an honest broker between the other two parties.

However, this role is impeded by a certain dishonesty the state authorities
force upon commercial vendors by making injunctions upon their trading
with foreign partners which do not hold for their inland trade with the state
itself. This hardly accords with the rules of global free trade.

11.4.5 The balance: security against freedom. One cannot help fee-
ling that cryptology at the beginning of the third millennium is still kept
within a Black Chamber. The state authorities are to that extent impene-
trable and can cling to their last shreds of omnipotence. But there is a firm
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foundation of rights the state authorities cannot give up, for there has to be a
balance of power. Not only the sole remaining superpower, the USA, but also
the smaller powers in Europe will find it necessary that civilian and commer-
cial cryptography and cryptanalysis come to an agreement with the state.
The United Kingdom, with its long tradition of democracy yet its hitherto
very tight security in matters of cryptanalysis, adheres to the motto that he
who does not protect his own security endangers the security of his friends.
But the claims of the civilian and commercial world are to be taken seriously.
It would hardly be politically acceptable if in the USA patent applications
for cryptosystems were blocked under the authority of the Invention Secrecy
Act of 1940 or the National Security Act of 1947. Likewise, sensitivity about
the protection of private or personal data is a political factor that cannot be
overlooked. In the USA, policy on domestic controls is still inconclusive, as
was shown by the furor over FIDNET (Federal Intrusion Detection Network)
and CESA (Cyberspace Electronic Security Act) in 1999.

11.4.6 Liberalization. It was pushed in 1997 by international organiza-
tions like the OECD and EU. In December 1998, in the scope of the Wasse-
naar Arrangement on Export Control for Conventional Arms and Dual-Use
Goods and Technologies, comprising 28 nations, some guidelines for a rather
liberal export control of cryptographic products were achieved. In particu-
lar, exports of 64-bit encryption algorithms were decontrolled by the member
countries of the Wassenaar Arrangement.
Then, on September 16, 1999, the Clinton administration announced its in-
tention of further liberalization, allowing “the export and reexport of any en-
cryption commodity or software to individuals, commercial firms, and other
non-government end-users in all destinations”. The new policy will simplify
US encryption export rules and rests on the following three principles: a
technical review of encryption products in advance of sale, a streamlined
post-export reporting system, and a process that permits the government to
review exports of strong encryption to foreign governments. This relieves the
feelings of the US Commerce Department and of US business. “Restrictions
on terrorist-supporting states, their nationals and other sanctioned entities
are not changed by this rule.” This may console the US Department of Jus-
tice. How necessary it is was demonstrated by the September 11, 2001 terror-
ist attack on the United States of America. Thus, the Bush administration
is unlikely to support further liberalization.
Altogether, the US government expects that “the full range of national inter-
ests continue to be served by this new policy: supporting law enforcement and
national security, protecting privacy, and promoting electronic commerce”.
And on January 12, 2000 the Bureau of Export Administration (BXA) pub-
lished the new liberal regulations for software export, which continue to hold.
Software houses can now transmit freely over the frontier source code for in-
ternal use, merely a copy is to be sent to BXA.
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11.4.7 Prospects. Still, it is to be hoped that in the long run there will
be a victory of common sense. Above all, the aim of scientific work on strong
cryptosystems for civilian and commercial channels is more than ever

to find lower bounds for the complexity of unauthorized decryption using
a precisely defined type of computer, under realistic assumptions on the
lack of discipline among non-professional users.

It is a worthwhile task to give the user of a cryptosystem a guaranteed amount
of security. This includes the need for open source code of the cryptosystem,
since every cryptosystem with an unpublished algorithm may contain un-
pleasant surprises.



Plate AThe disk of Phaistos, a Cretan-Minoan clay disk of about
160 mm diameter from the 17th century B.C. (the plate
shows the side A), is covered with graphemes with clear
word spacing. A decryption that is generally accepted does
not seem to exist. “The torn and short text does not reveal
its meaning without further clues” (J. Friedrichs).



Plate B Two cipher disks, presumably from the 18th/19th century.
The upper disk is in the style of a nomenclator. On the
plaintext side it contains both alphabet letters and several
syllables and frequently occurring words; on the cryptotext
side it uses two-place decimal numbers.



Plate CThe ‘Cryptograph’ of Wheatstone, a device in the form of
a clock, was shown for the first time at the Paris World Ex-
hibition in 1867. It is a polyalphabetic cipher device: the
hand is moved clockwise each time to the next cleartext let-
ter, which slowly moves the disk with the mixed cryptotext
alphabet.



Plate D The U.S. Army Signal Corps Cipher Device M-94 in cylin-
drical form with 25 aluminum disks of 35 mm diameter, each
one with a mixed alphabet of 26 letters engraved on the rim,
goes back to the models of Jefferson and Bazeries. Introdu-
ced in 1922 under the influence of W. F. Friedman for lower-
level military communications, it was in wide use until 1942.



Plate EStrip cipher M-138-T4 used by the U.S. Army and U.S. Navy
in the Second World War, based on a proposal by Parker
Hitt in 1914. The 25 removable paper strips were numbered
and used in prearranged order. The encryption was crypto-
logically equivalent to the M-94 .



Plate F The cipher machine ‘Kryha’ was invented by Alexander von
Kryha, Berlin-Charlottenburg, in about 1926. It is a poly-
alphabetic cipher device with a fixed periodic key of length
442. Irregular movement of the cryptotext disks is achie-
ved by a wheel with a varying number of teeth. Despite its
cryptological weakness, this neat machine sold well in many
countries.



Plate GThe Hagelin cipher machine ‘Cryptographer’ C-36, made
by the Aktiebolaget Cryptoteknik, Stockholm, in 1936, has
self-reciprocal encryption by BEAUFORT encryption steps
performed by the ‘lug cage’, an invention of Boris Hagelin.
The irregular movement is based on the use of keying wheels
with different graduation, namely with 17, 19, 21, 23, and
25 teeth, which gives a key period of length 3 900 225 . For
such a purely mechanical machine, this was a pioneering
achievement.



Plate H The M-209 was an improved Hagelin C-36. Under Hagelin
license, it was manufactured by Smith-Corona for the U.S.
Army; it had an additional keying wheel with 26 teeth which
increased the period to 101 405 850 . When the crank was
turned, the lettered wheels moved pins and lugs that shifted
bars in the cylindrical cage; the bars acted like cogs that
turned a wheel to print the cipher letter on the roll of tape
behind the knob.



Plate IRotor cipher machine ENIGMA, as invented by Arthur
Scherbius in 1918, with light bulb display (‘glow lamp ma-
chine’) and plugboard (in front); 4-rotor version M4 for the
Kriegsmarine, 1944. It enciphered with 3 (out of 8) normal
rotors and 1 (out of 2) reflecting rotors (Griechenwalzen
β, γ), the introduction of which stopped the British rea-
ding German U-boat signals from February to December
1942.



Plate K ENIGMA rotors: The internal wiring has 26 electrical con-
nections between the contacts on the one side and those on
the other side.
Above: Rotor I with visible setting ring and pegs provided
wizh springs.
Below: Rotor VIII with two notches.



Plate LThe British TYPEX was an improved copy of the German
3-rotor ENIGMA; it had two extra rotors (not movable du-
ring operation) that made penetration much more difficult.
It was actively used in British communications, and also
to help decrypt German signals after their key was broken.
The plate shows a TYPEX Mark III Serial No. 376.





Plate NOn-line cipher teletype machine Lorenz SZ 42 Schlüssel-
zusatz, made by C. Lorenz A.G., Berlin, about 1943. A
cipher machine for teletype Baudot signals, British cover
name ‘tunny’, it was used at the strategic level down to
Army headquarters. Twelve keying wheels with different
graduation, using (from left to right) 43, 47, 51, 53, 59, 37,
61, 41, 31, 29, 26, 23 teeth, and irregularly spaced pegs,
produce a key of very high period. Five pairs of wheels
each control five VERNAM substitutions of the 5-bit code;
two wheels (‘motor wheels’) serve for irregular movement
only. The SZ 40/SZ 42 encryption was penetrated by the
British due to an encryption fault on the German side and
was then read regularly using the electronic COLOSSUS
machines.

Plate M The Uhr box was used to replace the steckering of the Wehr-
macht ENIGMA plugboard by a non-reciprocal substitu-
tion, which also could be changed easily by turning the knob
(presumably every hour) selecting one out of 40 positions.
First use by the German Air Force in July 1944, by the Ger-
man Army in September 1944. Despite the extra security it
added, the Uhr box was not widely used.



Plate O One-time pad of Russian origin, small enough to fit in the
palm of a hand. The typewritten numbers have figures in
Russian style.



Plate PCrypto board, manufactured 1996 by Crypto AG, Zug
(Switzerland), to be used for stand-alone or networked com-
puters to provide access protection, secrecy of information,
integrity of information, and virus protection. This highly
reliable hardware with very long mean time between failure
can be stored without batteries.



Plate Q CRAY-1 S (1979). CRAY Supercomputers originated from
the famous CRAY-1, designed by Seymour Cray (1928–1996)
and in use since 1976, when it had a market price of $ 8 mil-
lion. Supercomputers contain a very large number of integra-
ted circuits allowing highly parallel work, but requiring very
compact technology. They work at extremely high speed and
need extensive cooling. First used for cryptanalytic tasks;
civil versions have been available under certain limitations
since 1979. The series continued with CRAY-2, CRAY X-MP,
CRAY Y-MP, CRAY C 90, CRAY J90 leading to CRAY T 90,
whose configuration T932 comprises 32 processors. A massi-
vely parallel line was opened by the model CRAY T3D, the
more recent model CRAY T3E (July 1996) is liquid-cooled
and has up to 2048 processors, using the DEC Alpha EV-5
(211 64) chip, each one running at 600 megaflops, 1.2 teraflops
peak performance (1998: T3E-1200E 2.4 teraflops).
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Il ne faut alors ni se buter,
ni se rebuter,

et faire comme en politique:
changer son fusil d’épaule.

[One should neither run
one’s head against a wall

nor get scared away
and should act like in politics:

change one’s opinion.]
Étienne Bazeries, 1901

“Deciphering is, in my opinion,
one of the most fascinating of arts,

and I fear I have wasted upon it
more time than it deserves.”

Charles Babbage, 1864

Charles Babbage
(1791–1871)

A Masterpiece of a Multiple Cryptotext-Cryptotext-Compromise of the Keys:

vonreichsmarschallgoeringanalleeinheitenderluftflottendreiund
zweiundfuenfoperationadlertaginkuerzesterzeitwerdensiediebrit
ischeairforcevomhimmelfegenheilhitler

(Tagesbefehl by Hermann Göring, August 8, 1940)



The
Machinery

Cyclometer Bombe Colossus
(Poland) (United Kingdom) (United Kingdom)

Bazeries’ quotation warns with Gallic charm against overestimating the sys-
tematics of the cryptanalytic methods we discuss in this second part.1

Apart from the simple but generally intractable method of exhaustion, these
methods have their roots in the inherent properties of language, which are
hard to eradicate even by the most refined encryption. For a systematic treat-
ment, the invariants of cryptological methods are established and used. Both
pattern finding and frequency analysis are based on invariants of monoalpha-
betic (monographic or polygraphic) encryptions. But even polyalphabetic
encryption leaves invariant a certain linguistic-statistical parameter, called
Kappa. This allows the reduction of repeatedly used polyalphabetic encryp-
tions, especially of periodic ones, to monoalphabetic encryptions. For trans-
position, which is a polygraphic encryption of a very special kind, exploiting
this specialty leads to the use of contact frequencies.

According to William F. Friedman (who coined the term in 1920), cryptanaly-
sis involves the determination of the language employed, the general crypto-
system, the specific key, and the plaintext; usually in this order. Cryptanal-
ysis requires applying the right means at the right place in the right way. An
anonymous British officer expressed it in 1918 like this:

The would-be solver will need a dogged obstinacy, which however
must not render him incapable of discarding a supposed clue.

Givierge expressed it drastically:

Certains rasoirs excellents sont pourtant tout à fait dangereux
dans les mains d’un singe.
[Some excellent razors are after all still dangerous in the hands of an ape.]

1 The first systematic collection of rules of thumb for cryptanalysis was published in 1474
in Pavia by Cicco Simonetta, secretary of the Dukes of Sforza.
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It should be noted that as a rule active cryptanalytic attacks both against
governmental and against commercial communication channels are punish-
able, and against private communication may provoke a lawsuit for damages.
However, since we need knowledge of cryptanalytic methods to be able to
reflect on the secure use of cryptographic methods, in particular on avoid-
ing illusory complications, we hope to be excused on scientific grounds for
discussing cryptanalysis prophylactically.

Frequently, cryptanalysis is not only a question of material effort, but also of
the time available. Much news is, as the saying goes, futile as soon as it is out
of date, and in some areas messages become old-fashioned quickly. Patrick
Beesly (Very special intelligence, London 1977) remarked in this respect:

It should, however, be emphasized that cryptanalysis must be swift
to be of real operational use.

And Friedman stated:

The best that can be expected is that the degree of security be great
enough to delay solution by the enemy for such a length of time that
when the solution is finally reached, the information thus obtained
has lost all its ... value.

In fact, the Rasterschlüssel 44 of the German Wehrmacht (Sect. 6.2.5), a hand
cipher introduced in 1944 for the tactical level, was broken by the Allies. But
when used without mistakes, its solution took considerable time, e.g., some of
the 18 messages sent by the 3rd Panzer Division on February 3, 1945 were read
23 days after transmission; all were read after 29 days. “There was no point
in the Allies learning on February 26 that on February 3 14 000 litres of fuel
had arrived for the 8th Panzer Grenadier Regiment . This disappointing situ-
ation prompted Nigel de Grey, B.P.’s senior administrator, to recommend the
end of the undertaking that kept about 100 people occupied” (M. J. Cowan).

Sometimes, solutions of cryptograms have been given which were little more
than guesswork. The requirements for a successful reliable unauthorized de-
cryption fluctuate, depending on the situation, between a rational recon-
struction of 90% of the plaintext (Meyer-Matyas) and a complete disclosure
not only of the message, but of the key, too, and of the whole cryptosystem
(Rohrbach).

Encryption devices and machines seem to be no longer of immediate value
once they are out of use. Planned obsolescence (Sect. 2.1.1) is a good strata-
gem—it minimizes the risk in case crypto tools are stolen or seized. The
time scale to be applied depends very much on the genre of the messages:
ten hours for artillery fire commands may correspond to ten years in diplo-
matic telegrams. But even outdated codebooks or cipher tables are revealing.
Practical cryptanalysis makes use of many tiny details about the adversary’s
pecularities, habits, and preferences and records them carefully. In this sense,
cryptanalysis feeds on the results it has already attained. Success breeds more
success.
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Cryptanalysis is nurtured to a good part by encryption errors and even by
lesser mistakes of the adversary. Luigi Sacco sarcastically said:

Les chiffreurs se chargent suffisamment d’aider l’ennemi.
[The cipherers are sufficiently occupied to help the enemy.]

Asymmetric cryptosystems allow a publication of the encryption keys (‘public
key’) and indicate a liberalization of cryptography (‘public cryptography’),
which also entails an increased public awareness of cryptanalysis generally—
although the cryptologic services of the government agencies see this side of
public cryptography rather reluctantly. These agencies do not see themselves
as instruments for the education of the masses. To give an example with
respect to the modes of operation of standardized DES, Philip Zimmermann
reports that “... the authors of a number of [these encryption packages] say
they’ve never heard of CBC or CFB mode. The very fact that they haven’t
even learned enough cryptography to know these elementary concepts is not
reassuring.” Cryptanalysis is not going to die out.
Cryptanalysis is also already on the free market. The company Access Data
Recovery (87 East 600 South, Orem, Utah 84058, USA)—and this is not the
only example—sold in 1997 for some $ 100 a program, developed by Eric
Thompson, which penetrates into the built-in encryptions of WordPerfect,
Lotus 1-2-3, MS Excel, Symphony, Quattro Pro, Paradox and MS Word—
and this not by exhaustive trial and error, but by genuine cryptanalytic
methods. Some people buy it when they have forgotten their password, and
police officers use it, too, if they want to read confiscated data.
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Gewöhnlich glaubt der Mensch, wenn er nur Worte hört,
es müsse sich dabei doch auch was denken lassen.

Goethe
[Men always believe, when they hear words, there must be thought behind them, too.]

The cardinal number of a class of methods—corresponding to the number
of available keys—is a criterion for the combinatorial complexity of the en-
cryption. As a measure of security against unauthorized decryption, it gives
an upper bound on the work required for an exhaustive search under the
assumption that the class of methods is known (Shannon’s maxim: “The
enemy knows the system being used.”)

We shall frequently make use of an improved Stirling formula1 for n!

n! = (n/e)n√2πn·(1+ 1
12n− 1

2
+O( 1

n3 )) =
√

2πe(n/e)n+ 1
2 ·(1+ 1

12n− 1
2
+O( 1

n3 ))

with the numerical values√
2π = 2.506 628 275 . . . ,

e = 2.718 281 828 . . . ,
√

2πe = 4.132 731 353 . . .

and of the asymptotic formula for the base 2 logarithm of the factorial2

ldn! = (n + 1
2 ) (ldn − ld e) + 1

2 (ldπ + ld e + 1) + ld e ( 1
12 n − 1

360 n3 + O( 1
n5 ))

with the numerical values
ld e = 1.442 695 041 . . . ,

1
2 (ldπ + ld e + 1) = 2.047 095 586 . . . .

|V | , the cardinal number of the alphabet V , is abbreviated by N .
Z =|S | denotes the cardinal number of the class of methods S .

In the following the combinatorial complexities Z are compiled for some
classes of methods S . ldZ, the information of the class of methods S , is
measured in [bit] . 10log Z is measured in [ban] =̂ 1/10log 2 [bit] ≈ 3.32 [bit],
a unit introduced by Turing, with the practical unit 1 [deciban] ≈ 0.332 [bit].

1 26! = 403 291 461 126 605 635 584 000 000 = 223 · 310 · 56 · 73 · 112 · 132 · 17 · 19 · 23
2 ld x denotes the logarithm with the base 2: ld x = ln x/ ln 2 = 10log x / 10log 2 .
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12.1 Monoalphabetic Simple Encryptions

Simple substitutions are monographic. Leaving homophones and nulls out of
consideration, we can restrict our interest essentially to permutations.

12.1.1 Simple Substitution in General (special case n=1 of Sect. 12.2.1)

12.1.1.1 (Simple substitutions, Sect. 3.2)
Permutations V ≺−−−−� V show the same cardinal number as one-to-one map-
pings (without homophones) of V into W (m) , independent of W and m :

Z = N ! �
√

2πe

(
N

e

)N+ 1
2

≈ 4.13 ·
(

N

e

)N+ 1
2

ldZ �
(

N +
1
2

)
· (ldN − 1.44) + 2.05

For N = 26 : Z ≈ 4.03 ·1026 , ldZ ≈ 88.382 [bit], log Z ≈ 266.06 [deciban] .

12.1.1.2 (monocyclic simple substitutions, Sect. 3.2.3)

Permutations V
N

≺−−−−� V with exactly one cycle, of the maximal order N :

Z = (N − 1)! �
√

2πe

(
N − 1

e

)N− 1
2

≈ 4.13 ·
(

N − 1
e

)N− 1
2

ldZ �
(

N − 1
2

)
· (ld (N − 1) − 1.44) + 2.05

For N = 26 : Z ≈ 1.55 ·1025 , ldZ ≈ 83.682 [bit], log Z ≈ 251.91 [deciban] .

12.1.1.3 (properly self-reciprocal simple substitutions, Sect. 3.2.1)

N is even, N = 2ν for a properly self-reciprocal permutation V
2

≺−−−−� V .

Z = (N − 1)!!
def
= (N − 1)(N − 3)(N − 5) . . . · 5 · 3 · 1 �

√
2 ·
(

N

e

)N
2

ldZ � N

2
· (ldN − 1.44) +

1
2

For N = 26 : Z ≈ 7.91 ·1012 , ldZ ≈ 42.846 [bit], log Z ≈ 128.98 [deciban] .

12.1.2 Decimated Alphabets (special case n = 1 of Sect. 12.2.2)
Assuming a linear cyclic quasiordering of the alphabet, Sinkov’s ‘decimation
by q ’ (Sect. 5.6) .

Z = ϕ(N) ,where ϕ is the Euler totient function (Sect. 5.6)

ldZ = ldN +
∑k

µ=1ld ρ(pµ, 1) (see Sect. 12.2.2)

For N = 26 : Z = 12 (Sect. 5.5, Table 1b),
ldZ ≈ 3.58 [bit], log Z ≈ 10.79 [deciban] .
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12.1.3 CAESAR Addition (special case n = 1 of Sect. 12.2.3)

CAESAR addition V
+

≺−−−−� V , a shift, is the monoalphabetic special case of
a VIGENÈRE substitution (Sect. 7.4.1).

Z = N

ldZ = ldN

For N = 26 : Z = 26 , ldZ ≈ 4.70 [bit], log Z ≈ 14.15 [deciban] .

12.2 Monoalphabetic Polygraphic Encryptions

The combinatorial complexity of polygraphic substitutions depends on the
encryption width n .

12.2.1 Polygraphic Substitution in General

Permutations V n ≺−−−−� V n show the same cardinal number as one-to-one
mappings of V n into W (m), independent of W and m :

Z = (Nn)!

ldZ �
(

Nn +
1
2

)
(n · ldN − 1.44) + 2.05

For N = 26 : Z = (26n)! , ldZ ≈ (26n + 1
2 )(4.70n − 1.44) + 2.05 .

Digraphic substitutions: ldZ ≈ 5.39·103 [bit], log Z ≈ 1.62·104 [deciban];
Trigraphic substitutions: ldZ ≈ 2.22·105 [bit], log Z ≈ 6.70·105 [deciban];
Tetragraphic substitutions: ldZ ≈ 7.93·106 [bit], log Z ≈ 2.39·107 [deciban].

PLAYFAIR substitutions show the same cardinal number as monocyclic
simple substitutions with N = 25 :

Z = 25!/(5·5) ≈ 6.20·1023 , ldZ ≈ 79.038 [bit], log Z ≈ 237.93 [deciban] .

12.2.2 Polygraphic Homogeneous Linear Substitution
(HILL Transformation)

Assuming a linear cyclic quasiordering of the alphabet, from Sect. 5.2.3

Z = Nn2 · ρ(N,n) , where for N = ps1
1 ps2

2 . . . psk

k

ρ(N,n) = ρ(p1, n)ρ(p2, n) . . . ρ(pk, n).
ldZ = n2 ldN +

∑k
µ=1ld ρ(pµ, n) .

For large n approximative values for ρ(p, n) in Sect. 5.2.3 ;
for large n and not too small p with ld e ≈ 1.44 ,

ld ρ(p, n) ≈ 1.44 / ( 3
2 − p) .

For N = 26 and large n : ρ(2, n) ≈ 0.289 and ρ(13, n) ≈ 0.917 , thus
ρ(26, n) ≈ 0.289 · 0.917 = 0.265 ; altogether:

For N = 26 and large n :

Z ≈ 0.265·26n2
, ldZ ≈ 4.70 n2−1.92 [bit] , log Z ≈ 14.15 n2−5.78 [deciban] .
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Z ldZ

12.2.1 Substitution
in general (26n) ! (26n + 1

2 )(4.70n − 1.44) + 2.05

12.2.2 HILL
transformation 0.265 · 26n2

4.70n2 − 1.916

12.2.3 CAESAR addition 26n 4.70n

12.2.4 Transposition n! (n + 1
2 )(ldn − 1.44) + 2.05

Table 4. Complexity of monoalphabetic (polygraphic) encryption steps

Fig. 94. Combinatorial complexity of polygraphic substitutions
of width n , for N = 26

12.2.3 Polygraphic Translation (Polygraphic CAESAR Addition)

Polygraphic CAESAR addition V n +
≺−−−−� V n with encryption width n , a

shift, is a special case of inhomogeneous linear substitution, where T is the
identity matrix.

Z = Nn , ldZ = n ldN

For N = 26 : Z = 26n , ldZ ≈ 4.70 · n [bit], log Z ≈ 14.15 · n [deciban] .
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ldZ

n = 1 n = 4 n = 16 n = 64 n = 256

8.84 · 101 7.93 · 106 3.22 · 1024 1.08 · 1093 2.07 · 10365

3.58 73.29 1.20 · 103 1.93 · 104 3.08 · 105

4.70 18.80 75.21 300.83 1 203.31

4.58 44.25 296.00 1 684.00

for N = 26 depending on the encryption width n

12.2.4 Transposition
Transpositions of width n are subsumed (somewhat surprisingly) under
linear substitutions, since they are linear substitutions whose matrix is a
permutation matrix. The complexity is therefore independent of N .

Z = n !
ldZ = (n + 1

2 )(ldn − 1.44) + 2.05

12.2.5 Summary on Monoalphabetic Substitutions

The combinatorial complexities of monoalphabetic substitutions are tabu-
lated in Table 4 and shown graphically in Figure 94 .
Note that the complexity of transposition (12.2.4) surpasses the complexity
of polygraphic CAESAR addition (12.2.3) at about n = N · e (for N = 26
just at n = 68 with ldZ ≈ 320.2 [bit] ).
For N = 26 , transposition reaches at n = 26 simple (monogram) substitution;
homogeneous linear substitution with ldZ ≈ 4.70 n2 − 1.916 surpasses
at n = 5 simple (monographic) substitution with ldZ ≈ 88.38 [bit],
at n = 34 digraphic substitution with ldZ ≈ 5.386 · 103 [bit].
Polygraphic CAESAR addition (12.2.3) is surpassed at n = 2 by polygraphic
homogeneous linear substitution (12.2.2) .
Note that a block transposition of width n is polygraphic, but also mono-
alphabetic—it is obfuscating to call n a ‘period’.

12.3 Polyalphabetic Encryptions

The combinatorial complexity of the most general polyalphabetic (periodic)
encryption with d unrelated alphabets is the product of the complexities of
the different alphabets. For the case of d related alphabets the complexity
is correspondingly smaller.



242 12 Exhausting Combinatorial Complexity

Z ldZ

12.3.1 PERMUTE substitution (26!)d 88.38 · d

12.3.2 MULTIPLEX substitution (25!)d 83.68 · d

12.3.3 ALBERTI substitution 26! 26d−1 4.70 · d + 83.68

12.3.4 VIGENÈRE substitution 26d 4.70 · d

Table 5. Complexity of polyalphabetic (monographic) cryptosystems

12.3.1 PERMUTE Encryption with d Alphabets

Z = (N !)d

ld Z = d · ((N + 1
2 ) (ldN − 1.44) + 2.05)

For N =26 : Z ≈(4.03·1026)d, ldZ ≈88.38 · d [bit], log Z ≈266.1 · d [deciban].

12.3.2 MULTIPLEX Encryption with d Alphabets

Z = ((N − 1) !)d

ld Z = d · ((N − 1
2
) (ld (N − 1) − 1.44) + 2.05)

For N =26 : Z ≈(1.55·1025)d, ldZ ≈83.68 · d [bit], log Z ≈251.1 · d [deciban].

12.3.3 ALBERTI Encryption with d Alphabets

Z = N ! Nd−1

ld Z = d · ld N + (N − 1
2 )(ld (N − 1) − 1.44) + 2.05

For N =26 : Z ≈ 1.55 · 1025 · 26d , ld Z ≈ 4.70 · d + 83.68 [bit] ,
log Z ≈ 14.15 · d + 266.1 · d [deciban].

12.3.4 VIGENÈRE or BEAUFORT Encryption with d Alphabets

Z = Nd

ld Z = d · ld N

For N =26 : Z = 26d , ld Z ≈ 4.70 · d [bit] , log Z ≈ 14.15 · d [deciban].

12.3.5 Summary of Polyalphabetic Encryption

The combinatorial complexities of polyalphabetic substitutions are tabulated
for the monographic case n = 1 in Table 5 and are shown graphically in
Figure 95 .
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ldZ

d = 1 d = 10 d = 100 d = 1000 d = 10000

88.38 883.82 8 838.20 88 381.95 883 819.53

83.68 836.82 8368.15 83681.51 836 815.36

88.38 130.69 553.73 4 784.12 47 088.08

4.70 47.00 470.04 4 700.44 47 004.40

for N = 26 depending on the number d of alphabets used

Fig. 95. Combinatorial complexity of polyalphabetic encryption
with a number d of alphabets used, for N = 26

Note that the VIGENÈRE or BEAUFORT encryption and (monoalphabetic)
simple substitution have the same complexity for d ≈ N + 1

2 − N−ln 2π
ln N

(in the case N =26 , for d=19 ; in the case N =262 , for d=573).
MULTIPLEX encryption with d alphabets and (monoalphabetic) polygra-
phic substitution with width n have approximately the same complexity for
d ≈ n · Nn−1 (precisely, in the bigram case n=2 and N =26, for d = 55 ).
The complexity of the VIGENÈRE or BEAUFORT encryption with period
d = h and polygraphic CAESAR addition with width n = h coincide. For
N = 10 , an adding machine with h positions can be used, the mechanical
carry device of which has been dismantled in the first case, not in the second
case (Sect. 5.7.1 and Sect. 8.3.3).
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12.4 General Remarks on Combinatorial Complexity

In studying combinatorial complexity theoretically, the whole class of meth-
ods is envisaged. Practically, the unauthorized decryptor will often be able
to find restrictions caused by the encryptor’s habits or stupidity. The cir-
cumstances matter, too.

12.4.1 For example, the cylinder of Jefferson and Bazeries has without
knowledge of the disks the complexity of a MULTIPLEX encryption; with
knowledge of the disks3 however only of a transposition. For d = 25 (M-94)
this means a reduction from Z =(26 !)25 ≈ 1.38·10665 to Z =25 ! ≈ 1.55·1025,
or from ldZ ≈ 2209 [bit] to ldZ ≈ 83.68 [bit] . A similar situation exists
with an Alberti disk: If it falls into the hands of the enemy, the ALBERTI
encryption collapses to a VIGENÈRE encryption; Z correspondingly drops
from (N !) ·Nd−1 to Nd, or for N = 26, ldZ from 4.70 · d + 83.68 to 4.70 · d .

12.4.2 Note, too, that the complexity of double transposition is Z = (n !)2

and thus is somewhat smaller than that of transposition with doubled width,

Z =(2n) !=(n !)2 ·
(
2n
n

)
, where asymptotically

(
2n
n

)
�4n/

√
π · (n + 1

4 + 1
32·n ) .

But this means only that exhaustion, given a fixed time limit, carries further
for double transposition, which does not contradict the empirical fact that
in a region of complexity where exhaustion is not tractable, cryptanalysis of
double transposition is much more difficult than cryptanalysis of columnar
transposition with doubled width.

12.4.3 Finally, it is remarkable that for a VIGENÈRE encryption, Z and
ldZ depend only on Nd and thus (for N = 2k) are invariant under tran-
sition to binary encoding: (2k)d = 2(k·d) . In contrast to this, the com-
plexity ((2k)!)d of PERMUTE encryption is reduced drastically, by a divisor
(2k−1)!)d , under transition to binary encoding: 2(k·d) =((2k)!)d/((2k −1)!)d .

12.5 Cryptanalysis by Exhaustion

It should be clear that combinatorial complexity is a measure of security
only in the sense that it is a measure of the effort needed for a particular
kind of unauthorized decryption, albeit a very simple and very general one,
which we shall call exhaustion attack. After guessing a class of encryption
methods, we construct all plaintexts that lead under some encryption process
of one of these methods to a given cryptotext (all ‘variants’), and then read
the ‘right’ message, or ‘gather’ it in the true meaning of the word. This
attack can lead to more than one gathered message, which shows that the
decryption is not unique—more precisely, that encryption is not injective for
the encryption method one has guessed at. This can mean that one has to

3 ‘A crypto device can fall into the hands of the enemy’: Maxim No. 3 (Sect.11.2.3) .
Bazeries invented his device in 1891, eight years after Kerckhoffs had published his
advice.



12.5 Cryptanalysis by Exhaustion 245

H V Z D U V F K R Q G X Q N H O D O V L F K L Q E R Q Q D Q N D P L F K C

I WA E VWG L S R H Y R O I P E P WM G L M R F S R R E R O E Q M G L D

J X B F WX H M T S I Z S P J Q F Q X N H M N S G T S S F S P F R N H M E

K Y C G X Y I N U T J A T Q K R G R Y O I N O T H U T T G T Q G S O I N F

L Z D H Y Z J O V U K B U R L S H S Z P J O P U I V U U H U R H T P J O G

M A E I Z A K P WV L C V S M T I T A Q K P Q V J WV V I V S I U Q K P H

N B F J A B L Q XWM DWT N U J U B R L Q RWK XWW J W T J V R L Q I

O C G K B C M R Y X N E X U O V K V C S M R S X L Y X X K X U KW S M R J

P D H L C D N S Z Y O F Y V P W L WD T N S T Y M Z Y Y L Y V L X T N S K

Q E I M D E O T A Z P G Z WQ X M X E U O T U Z N A Z Z M Z W M Y U O T L

R F J N E F P U B A Q H A X R Y N Y F V P U V A O B A A N A X N Z V P U M

S G K O F G Q V C B R I B Y S Z O Z GWQ VWB P C B B O B Y O AWQ V N

T H L P G H RWD C S J C Z T A P A H X RWX C Q D C C P C Z P B X RWO

U I M Q H I S X E D T K D A U B Q B I Y S X Y D R E D D Q D A Q C Y S X P

V J N R I J T Y F E U L E B V C R C J Z T Y Z E S F E E R E B R D Z T Y Q

WK O S J K U Z G F V M F CWD S D K A U Z A F T G F F S F C S E A U Z R

X L P T K L V A H GWN G D X E T E L B V A B G U H G G T G D T F B V A S

Y M Q U L MWB I H X O H E Y F U F M CWB C H V I H H U H E U G CWB T

Z N R V M N X C J I Y P I F Z G V G N D X C D I W J I I V I F V H D X C U

A O S WN O Y D K J Z Q J G A HWH O E Y D E J X K J J W J G W I E Y D V

B P T X O P Z E L K A R K H B I X I P F Z E F K Y L K K X K H X J F Z E W

C Q U Y P Q A F M L B S L I C J Y J Q G A F G L Z M L L Y L I Y K G A F X

D R V Z Q R B G N M C T M J D K Z K R H B G H M A N MM Z M J Z L H B G Y

E S WA R S C H O N D U N K E L A L S I C H I N B O N N A N K A M I C H Z

F T X B S T D I P O E V O L F M B M T J D I J O C P O O B O L B N J D I A

G U Y C T U E J Q P F W P M G N C N U K E J K P D Q P P C P M C O K E J B

Table 6. 26 variants of a CAESAR encryption : H V Z D U V F K R Q ...

look for a narrower class of encryption methods. We shall come back to this
phenomenon under the catchword ‘unicity distance’. If no message can be
gathered, the guess as to the class of encryption methods was erroneous—or
a mistake was made in the encryption process.
Proceeding by exhaustion ‘running down the alphabet’ is only tractable, of
course, if the number of variants to be scrutinized is not gigantic. However,
it is not necessary to gather for each scrutiny the full alleged plaintext; an
escape should be possible as soon as a tiny part of the tentative deciphering
is found to be absurd.
We illustrate exhaustion with two small examples, where the cardinality of
the alleged plaintexts which are to be scrutinized is about two dozen variants:

a) CAESAR addition with Ÿ26: 26 variants (Table 6) ,
b) transposition with width 4: 24 variants (Table 7) .

The method of exhaustion is also indicated if the number of ‘probable word’
keys that are given or guessed is not too large. In the Renaissance the reper-
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toire of familiar quotations was not too big—proverbs like VIRTUTI OMNIA
PARENT, SIC ERGO ELEMENTIS, IN PRINCIPIO ERAT VERBUM, to
mention a few that are present in the cryptologic literature. Indeed even to-
day one finds from amateurs up to statesmen a predilection for programmatic
keywords: TORCH, BARBAROSSA, DESERT STORM.

S A E W S H R C N U O D K L N E L I A S H N C I O N B N N A A K I H M CW

A S E WH S R C U N O D L K N E I L A S N H C I N O B N A N A K H I M C N

A E S WH R S C U O N D L N K E I A L S N C H I N B O N A A N K H M I C N

E A S WR H S C O U N D N L K E A I L S C N H I B N O N A A N K M H I C Z

S E AW S R H C N O U D K L N E L A I S H C N I O B N N N A A K I M H CW

E S AWR S H C O N U D N K L E A L I S C H N I B O N N A N A K M I H C Z

S W E A S C R H N D O U K E N L L S A I H I C N O N B N N K A A I C M HW

W S E A C S R H D N O U E K N L S L A I I H C N N O B N K N A A C I M H A

W E S A C R S H D O N U E N K L S A L I I C H N N B O N K A N A C M I H A

E W S A R C S H O D N U N E K L A S L I C I H N B N O N A K N A M C I H Z

E S WA R S C H O N D U N K E L A L S I C H I N B O N N A N K A M I C H Z

S WA E S C H R N D U O K E L N L S I A H I N C O N N B N K A A I C H NW

W S A E C S H R D N U O E K L N S L I A I H N C N O N B K N A A C I H M A

WA S E C H S R U U N D E L K N S I L A I N H C N N D B K A N A C H I M A

AW S E H C S R U D N D L F K N I S L A N I H C N N O B A K M A H C I M N

S AW E S H C R N U D O K L E N L I S A H N I C O N N B N A K A I H C MW

A S W E H S C R U N D D L K E N I L S A N H I C N O N B A N K A H I C M N

AW E S H C R S U D O N L E N K I S A L N I C H N N B O A K A N H C M I N

WA E S C H R S D U O N E L N K S I A L T N C H N N B O K A A N C H M I A

W E A S C R H S D O U N E N L K S A I L I C N H N B N O K A A N C M H I A

E WA S R C H S D D U N N E L K A S I L O I N H A N N D A K A N M C H I Z

A E W S H R C S U D O N L N E K I A S L N C I H N B N O A A K N H M C I N

E AW S R H C S O U D N N L E K A I S L O N I H B N N O A A K N M H C I Z

S E WA S R C H N D D U K N E L L A S I H C I N O B N N N A K A I M C HW

Table 7. 24 variants of a transposition of width 4 : S A E W S H R C N U ...

12.6 Unicity Distance

Pursuing stepwise, letter by letter, the buildup of the feasible plaintext frag-
ments leads to the observation that after a certain rather clearly defined
length the decision for just one plaintext can be made confidently. The
number of characters up to this length is called the empirical unicity dis-
tance U of the class of methods in question. Remarkably, in the two ex-
amples of Table 6 and Table 7 with almost equal complexity (Z ≈ 25 and
ldZ ≈ 4.64) the unicity distance is roughly equal, i.e., about four characters.
There are, for example, only very few 4-letter words allowing an ambiguous
CAESAR decryption, in English (Z26) : mpqy: ADEN, KNOW; aliip: DOLLS,

WHEEL; afccq: JOLLY, CHEER ; in German (Z26) : zydd: BAFF, POTT; qfzg:
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LAUB, TICK; qunq: EIBE, OSLO; himy: ABER, NORD, KLOA(KE), (ST)OPSE(L)

( Z25! ) . Only words with different letters are here essential.
The unicity distance can be estimated by experienced cryptanalysts for en-
cryptions with much larger complexity Z , like monoalphabetic simple sub-
stitution (Z = 26! , ldZ = 88.38) : for clearly shorter cryptotexts, there
is ambiguity, for clearly longer cryptotexts, there is a unique solution. In
the case of monoalphabetic simple substitution, the empirical unicity dis-
tance has been reported to be between 25 and 30 : “... the unicity point, at
about 27 letters. ... With 30 letters there is always a unique solution to a
cryptogram of this type and with 20 it is usually easy to find a number of
solutions” (Shannon 1945); “Practically, every example of 25 or more char-
acters representing monoalphabetic encipherment of a ‘sensible message’ in
English can be readily solved” (Friedman 1973). Experimental checks with
encryption methods of very large complexity Z support the empirical law:

The unicity distance depends (for one and the same natural language)
only on the combinatorial complexity Z of the class of methods.
Moreover, it is (for not too small Z ) proportional to ldZ .

This quantitative result was still unpublished around 1935. Only qualita-
tive insights, like “The key should be comparable in length with the mes-
sage itself” (Parker Hitt 1914, Sect. 8.8.2) have been known since Kasiski
(Sect. 17.4), although presumably Friedman had an inkling. It means that
the whole influence of the redundant language underlying the text can only
be expressed in the proportionality constant. This was a starting point for
the foundation of Claude E. Shannon’s information theory, which he wrote
as a classified report in 1945. It was released to the public in 1949.
Assuming Friedman’s value U = 25 for monoalphabetic simple substitution,
ldZ ≈ 88.382 results in an empirical calibration for the proportionality:

(∗) U ≈ 1
3.535 ldZ ≈ 1

1.064
10log Z.

Table 8 has been computed according to Sect. 12.2 and (∗) for different width
n of monoalphabetic polygraphic substitution (Z26 , English language).

n = 1 n = 4 n = 16 n = 64 n = 256

Substitution in general 25 2 244 000 1024 1093 10365

Homogeneous linear substitution (1.02) 22 340 5 500 88 000
CAESAR addition (1.34) 6 22 86 340
Transposition (1.30) 13 85 480
Table 8. Empirical unicity distance U , extrapolated according to (∗), rounded up (N=26)

The values in parentheses turn out to be too small to be meaningful.4

4 The rule has the following background in information theory:
The value 4.7 = ld 26 [bit/char] is split into 3.5 bit per character (74.5%) redundancy
and 1.2 bit per character (24.5%) information (for Z26 and the English language).
For the theoretical foundation, see the appendix Axiomatic Information Theory.
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In particular, there results
for digraphic substitution in general U ≈ 1 530 ,
for trigraphic substitution in general U ≈ 63 000 ,
for tetragraphic substitution in general U ≈ 2 250 000 .

For periodic polyalphabetic encryption, the empirical unicity distance of a
basic monoalphabetic encryption is to be multiplied with the length d of the
period. Thus, for VIGENÈRE encryption, based on CAESAR addition steps

with d = 102 U ≈ 134
with d = 104 U ≈ 13 400
with d = 106 U ≈ 1 340 000 .

If for an encryption method an empirical unicity distance exists, it may be
expected that by suitable attacks other than exhaustion the breaking of an
encryption becomes easier and less uncertain with increasing length of the
cryptotext, whereas after some length near the unicity distance the solution
becomes unproblematic, provided sufficient effort can be made. For holocryp-
tic (‘unbreakable’) encryptions (Sect. 8.8.4), no unicity distance exists.

12.7 Practical Execution of Exhaustion

The practical execution of exhaustion proceeds by stepwise increasing the
length of the fragments of the texts, cutting out each time the ‘impossi-
ble’ variants and leaving the ‘possibly right’ ones. The tables of bigrams
and trigrams printed in the literature show that in English, French, or Ger-
man among 676 bigrams about half are ‘possible’, among the 17 576 trigrams
only about a thousand. The execution can easily be carried out interactively
with computer help if the number of variants to begin with is not much larger
than ten thousand. On the monitor screen fragments of five to eight charac-
ters are easily picked out at a glance, and at least 100 of those selections can
be made in one minute, which means 6 000 initial variants can be scanned
in an hour. Later the number of variants remaining is reduced drastically,
so in less than two hours the ‘right’ solution should be found or its nonexis-
tence shown. For the examples in Tables 6 and 7 this can be seen in Figures
96 and 97. Even a reader who is only vaguely familiar with the language
will find it not difficult to weed out the senseless instantiations. In order to
eliminate marginal influence, we have started with the 6th column.
Note that according to Sects. 12.3.3 and 12.2.4 ,
for VIGENÈRE (a polyalphabetic CAESAR addition)

Z = 17 576 for period 3 , Z = 456 976 for period 4 ;
for transposition (a special polygraphic encryption)

Z = 40 320 for width 8 , Z = 362 880 for width 9 .
This shows the (restricted) range of the exhaustion attack. For general
monoalphabetic simple substitution and PLAYFAIR substitution, with Z of
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V V F V F K?
W WG WGL WGL S ?
X X H X H M?
Y Y I Y I N ?
Z Z J Z J O Z J OV Z J OV U ?
A A K A KP ?
B B L B L Q?
C C M C MR ?
D D N D N S ?
E E O E OT E OT A E OT A Z ?
F F P F P U F P U B F P U B A ?
G GQ GQV ?
H H R H R W?
I I S I S X I S X E I S X E D ?
J J T ?
K KU KU Z KU Z G?
L L V L V A L V A H L V A H G?
M MW MWB ?
N N X N X C ?
O OY OY D OY D K?
P P Z P Z E P Z E L P Z E L K P Z E L KA P Z E L KA R ?
Q QA ?
R R B R B G R B GN R B GN M?
S S C S C H S C H O S C H ON S C H ON D S C H ON D U S C H ON D U N•
T T D T D I T D I P T D I P O T D I P OE T D I P OE V ?
U U E U E J ?

Fig. 96. Exhaustion for 26 variants of a CAESAR encryption

H H R H R C H R C N ?
S S R S R C ?
R R S R S C R S C U R S C U O?
H H S H S C H S C O H S C OU H S C OU N H S C OU N D H S C OU N D N ?
R R H R H C ?
S S H S H C ?
C C R C R H ?
S S R S R H S R H D ?
R R S R S H R S H D R S H D O R S H D ON R S H D ON U ?
C C S ?
S S C S C H S C H O S C H ON S C H ON D S C H ON D U S C H ON D U N•
C C H C H R C H R N ?
S S H S H R S H R D ?
H H S H S R ?
C C S ?
H H C H C R ?
S S C S C R ?
C C R C R S ?
H H R H R S H R S D ?
R R H R H S ?
C C H C H S C H S D C H S D D ?
R R C R C S ?
H H C H C S ?
R R C R C H R C H N R C H N D ?

Fig. 97. Exhaustion for 24 variants of a transposition of width 4
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a
b
c a
d b

a e a c
b f a b d
c g b c e
d h c d f
e i d e a g
f j e f b a h a
g k f g c b i b
h l g h d c j c a
i m h i e d k d a b
j n i j f e l e b c
k o j k g f m f c d
l p k l a h g n g d e
m q l m b i h o h e f
n r m n c j i p i f g

a o s n o d k j q j g a h
b p t o p e l k a r k h b i
c q u p q a f m l b s l i c j
d r v q r b g n m c t m j d k
e s w a r s c h o n d u n k e l
f t x b s t d i p o e v o l f m
g u y c t u e j q p f w p m g n
h v z d u v f k r q g x q n h o ←−
i w a e v w g l s r h y r o i p
j x b f w x h m t s i z s p j q
k y c g x y i n u t j a t q k r
l z d h y z j o v u k b u r l s
m a e i z a k p w v l c v s m t
n b f j a b l q x w m d w t n u
o c g k b c m r y x n e x u o v
p d h l c d n s z y o f y v p w
q e i m d e o t a z p g z w q x
r f j n e f p u b a q h a x r y
s g k o f g q v c b r i b y s z
t h l p g h r w d c s j c z t a
u i m q h i s x e d t k d a u b
v j n r i j t y f e u l e b v c
w k o s j k u z g f v m f c w d
x l p t k l v a h g w n g d x e
y m q u l m w b i h x o h e y f
z n r v m n x c j i y p i f z g
a o s w n o y d k j z q j g a h
b p t x o p z e l k a r k h b i
c q u y p q a f m l b s l i c j
d r v z q r b g n m c t m j d k
e s w a r s c h o n d u n k e l
f t x b s t d i p o e v o l f m
g u y c t u e j q p f w p m g n
h v z d u v f k r q g x q n h o
i w e v w g l s r h y r o i p
j x f w x h m t s i z s p j q
k y g x y i n u t j t q k r
l z h y z j o v u k u r l s
m i z k p w v l v s m t
n j l q x w m w t n u
o k m r y x n x u o v
p l n s z y o y v p w
q m o t z p z w q x
...

...
...

...
...

...
...

...

Fig. 98.
Strip method for the
solution of a
CAESAR encryption
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the order of magnitude 1025, it is useless, at least in its pure form with human
interaction. Computers can help to weed out the impossible variants much
faster, but this may still not be sufficient. However, if high combinatorial
complexity can be drastically lowered by other, suitable means, exhaustion
may come within reach. In other words:

The exhaustion attack, although by itself alone rather insignificant,
is in combination with other, likewise automatic attacks the funda-
mental method of intelligent cryptanalysis.

Exhaustion is also used by the authorized decryptor in case of polyphone
encryptions. The best known example is polyalphabetic encryption with un-
related monocyclic substitution alphabets, used with the cylinder of Jefferson
and Bazeries, where the plaintext is to be found among two dozen variants.

12.8 Mechanizing the Exhaustion

12.8.1 Exhausting substitution. For the exhaustion of a simple CAE-
SAR addition there exists a mechanization by the strip method. Ready-made
strips containing the duplicated standard alphabet are used to demonstrate
the cryptotext and all plaintext variants as well (Fig. 98). Cylinders con-
taining the standard alphabet on their rim can be used as well. Here, the
mechanical decryption aid is nothing but an encryption device, applied back-
wards. This can be applied to other mechanical devices, too. For example,
an ENIGMA imitation can be used to find the one among 263 = 17 576 rotor
positions which gives a cryptotext fragment for a probable word—provided
the rotors have fallen into the cryptanalyst’s hands.

12.8.2 Exhausting transposition. For the exhaustion of a transposition
of known width n , the cryptotext is written horizontally as an array of n
columns, then the sheet is cut into n vertical strips, which can be permuted
(Fig. 99).

Fig. 99.
Scissors-and-paste method
for the solution
of a transposition

12.8.3 Brute force contra Invariance. Cryptanalysis by exhaustion is
a brute force method and as such is subject to limits of power. In the next
chapters, methods of cryptanalysis are discussed, which are more cleverly
based on “the ‘invariant’ characteristics of the cryptographic system em-
ployed” (Major Solomon Kullback, in: Statistical Methods in Cryptanalysis,
1935). Kullback continues: ,,A cryptographic system which has no invariant
characteristic would be secure against unauthorized decipherment“.



13 Anatomy of Language: Patterns

No matter how resistant the cryptogram, all that is really needed
is an entry, the identification of one word, or of three or four letters.

Helen Fouché Gaines 1939

Language contains an internal frame of regularities that are hard to extirpate.
Particularly resistant are repeated patterns.

13.1 Invariance of Repetition Patterns

Invariance Theorem 1: For all monoalphabetic, functional simple
substitutions, especially for all monoalphabetic linear simple substitu-
tions (including CAESAR additions and reversions),
repetition patterns of the individual characters in the text are invariant.

The plaintext w i n t e r s e m e s t e r
encrypted by a CAESAR addition Z L Q W H U V H P H V W H U ,
or with a reversed alphabet D R M G V I H V N V H G V I ,
or with a permuted alphabet V A H O R M N R G R N O R M ,
has an invariant pattern of character repetition. According to Shannon, pat-
terns are just the ‘residue classes’ of simple substitutions. Text particles with
the same repetition pattern are called ‘idiomorphs’.

Monoalphabetic and functional polygraphic substitutions V (n)−−−−� W (m)

leave the patterns of polygram repetitions (observing the hiatuses) invariant.
By contrast, transpositions do not preserve repetition patterns. Homophonic
and particularly polyalphabetic substitutions destroy repetition patterns.

Patterns are usually denoted by finite sequences of numbers in normal form,
i.e., each number has at its first appearance (from left to right) only smaller
numbers to its left. 1233412526 is in normal form.
In the cryptotext V A H O R M N R G R N O R M from above, N R G R N has the
pattern 12321 , N R G R N O R has the pattern 1232142 , O R M N R G R N O R M

has the pattern 12342524123 . The pattern 12321 of N R G R N is particularly
conspicuous. Moreover, the fragment O R M occurs twice. Thus, the pattern
12345675857456 of V A H O R M N R G R N O R M describes some text with
fragments of 6 and 8 letters that rhyme.
In fact, we know that w i n t e r s e m e s t e r is a solution, but there is hardly
another idiomorph solution in German, and most likely none in English.
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abbacy cabbage cabbala sabbath scabbard baccalaureate maccabee
staccato affable affair baggage braggart haggard laggard allah allay ballad
ballast fallacy gallant installation mallard palladium parallax wallaby
diagrammatic flammable gamma grammar mamma programmatic annalist
annals bandanna cannabis hosanna manna savannah appal apparatus
apparel apparent kappa arrack arraign arrange arrant arras array barrack
barracuda barrage carragheen embarrass narrate tarragon warrant
ambassador assail assassin assault assay cassandra massacre massage
passage vassal wassail attach attack attain rattan attar battalion coattail
rattan regatta wattage piazza beebread boob booby deed deedless indeed
doodle ebbed eccentric bedded reddear redden shredder wedded effect
effeminate effendi efferent effervesce effete begged bootlegger egged legged
pegged trekked aquarelle bagatelle belle chancellery chanterelle driveller
dweller excellent feller fontanelle gazelle groveller hellebor hellenic
impellent intellect jeweller libeller mademoiselle nacelle pellet propeller
repellent seller teller traveller emmet barrenness comedienne fennec fennel
jennet kennel rennet tenner pepper stepper zeppelin deterrent ferret
interregnum interrelation overreact parterre terrestrial adressee dessert
dresser essence essential finesse largesse lessen messenger noblesse
quintessence tesselate vessel begetter better burette corvette curette fetter
gazette getter letter marionette pirouette rosette roulette setter silhouette
geegee googol heehaw capriccio pasticcio forbidding yiddish difficile
difficult griffin tiffin biggish bacilli billiard billion brilliant chilli cyrillic
fillip illicit illinois illiquid illiberal illiterate illimitable lilliput milliard
millibar milligram milliliter millimeter milliner millionaire millivolt
penicillin postillion shilling silliness tranquillize trillion trillium vanillin
gimmick immigrant imminent immiscible immitigable finnish innings
pinniped zinnia pippin irrigate irritate admission commission dissident
dissimilar dissipate emission fissile fission fortissimo missile mission
missive omission permission permissive acquitting fitting kittiwake civvies
noon broccoli sirocco apollo collocate colloid colloquial colloquium follow
hollow rollout common accommodate commode commodore commotion
connote opponent opportune oppose opposite borrow corroborate corrode
horror morrow sorrow blossom crossover blotto bottom cotton grotto
lotto motto ottoman risotto glowworm powwow peep poop career seesaw
teeter teethe teetotal teetotum toot toothache tootle hubbub succulent
succumb succuss pullup nummulite unnumbered chaussure guttural

Fig. 100. Instantiations of the pattern 1221 in English
(after Hugh Casement)

Short patterns allow many instantiations by meaningful words or fragments
of those. The pattern 1221 allows in English the idiomorphs compiled
in Fig. 100. The list (excluding proper names) is intended to contain all the
words or fragments (without grammatical variations) listed in Cassell’s
English Dictionary.
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Note that this list contains only a few words from the military genre like
assa(ult), atta(ck), (b)atta(lion), (b)arra(ck), (z)eppe(lin), (sh)ippi(ng),
(m)issi(le), (c)ommo(dore) ; furthermore not very many words from the
diplomatic genre like affa(ir), (amb)assa(dor), assa(ssin), (chanc)elle(ry),
(sh)illi(ng), immi(grant), (comm)issi(on). The search space for instan-
tiations of a pattern is considerably narrowed down by knowledge of the
circumstances.
Apart from 1221 , other interesting patterns of four figures are 1211 , 1212 ,
1231 , 1232 , 1122 , 1112 , 1111 . While for the first four patterns instantia-
tions exist like lull(aby), (r)emem(ber), (b)eave(r), digi(t), it is hard to find
natural ones for the remaining patterns. Note that a pattern like 123245678
means that the eight characters involved are different, otherwise the pattern
should better be written ∗232∗∗∗∗∗ and would not express more than the
pattern 121 does. A rather large pattern with more than one repeated figure
normally has very few or zero instantiations, 12134253 allows the words
pipelike, pipeline, piperine ; 1233412526 solely curriculum .
The conclusion is clear: Words and phrases that form a conspicuous pattern
should be eliminated by the encryption clerk, usually by paraphrasing, as
was regularly done for the British Admiralty’s traffic. A notorious example is
1234135426 , which allows in German nothing but the ominous instantiation
heilhitler . Who would have dared in the Reich of Hitler to eliminate this
stereotyped ending? Kerckhoffs even pointed out that repetitions like the
French pouvez-vous vous défendre should be avoided. But in clear contrast to
this, it was common practice in military signal units to put emphasis on a
group by repeating it, like OKMMMANAN (Sect. 9.2.5) in German signals. The
Allies did the same: SC48SC48 in a signal to the Allied Convoy SC48 (Bees-
ly) or CHICKEN-WIRE£CHICKEN-WIRE and HUDDLE-TIME£HUDDLE-TIME in a
message from Bletchley Park to operational units, transmitting the decryp-
tion of a German signal concerning American passwords and replies (Lewin).
The number of patterns with n elements equals the number of partitions of
n into a sum of natural numbers, the Bell number B(n) , which grows rather
fast with n , as the following table shows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
B(n) 1 1 2 5 15 52 203 877 4 140 21 147 115 975 678 570 4 213 597

13.2 Exclusion of Encryption Methods

Theorem 1 can be used negatively to exclude monoalphabetic, functional sim-
ple substitutions—namely if the cryptotext contains no more patterns than
a random text. But caution is advised. For example, the lack of doubled
characters does not mean much. Since the work of G. B. and M. Argenti, pro-
fessional cryptographers have known the rule of impeding pattern finding by
suppressing doubling of characters even in the plaintext, e.g., writing sigilo
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instead of sigillo (Sect. 11.1.5). Also the classical suppression of the word
spacing is meant to diminish the formation of patterns (Sect. 13.6.1). Sup-
pression is a polyphonic step; in rare cases, suppression of the word spacing
leads to a violation of injectivity: the messages that were translated the
messages that we retranslated , or we came to get her we came together.

13.3 Pattern Finding

Theorem 1 can be used positively, if there are reasons to assume that a
monoalphabetic, functional simple substitution is present. Examples of this
sort are frequently found in textbooks for amateurs.

13.3.1 An example. In the following example by Helen Fouché Gaines
(spaces, denoted by � , are not suppressed)

F D R J N U � H V X X U � R D � M D � S K V S O � P J R K � Z D

Y F Z J X � G S R R V T � Q Y R � WD A R WD F V � R K V � D R

K V T � D F � S Z Z D Y F R � D N � N V O V T S X � S A WV Z R

the guess is at simple substitution. Helen Fouché Gaines starts by noticing
words with the pattern 1231 , i.e., the two-letter fragments �RD� , �MD� ,
�DF� , and �DN� ; the occurrence of D in each one suggests trying the instan-
tiations /of/ , /on/ , /or/ , /do/ , /go/ , /no/ , /to/ ; i.e., the entry D =̂ o .
And there are two occurrences of the pattern 12341 , i.e., the three-letter
fragments �RKV� and �QYR� have R in common, which also occurs in
�RD� . Among the 3-letter plaintext words that start with /d/ , /g/ , /n/ ,
or /t/ , /the/ is reasonable. Assuming RKV =̂ the , �DRKVT� becomes
�otheT� and T =̂ r would be almost certain. Thus, five letters are tentatively
known and the partial decryption reads

F o t J N U � H e X X U � t o � Mo � S h e S O � P J t h � Z o
Y F Z J X � G S t t e r � Q Y t � Wo A t Wo F e � t h e � o t
h e r � o F � S Z Z o Y F t � o N � N e O e r S X � S A We Z t

Confirmation comes from GSRRVT turning into GStter . For the other three-
letter word QYt /not/ , /got/ , /out/ , /yet/ are disqualified, since /e/ and
/o/ are already determined, /but/ would do it. Furthermore there are only
the possibilities DF =̂ on and DN =̂ of (or swapped) left, since /r/ is
already determined. In the first (happy) case there is now the following
fragment

n o t J f U � H e X X U � t o � Mo � S h e S O � P J t h � Z o
u n Z J X � G S t t e r � b u t � Wo A t Wo n e � t h e � o t
h e r � o n � S Z Z o u n t � o f � f e O e r S X � S A We Z t

Now, SZZount is read as /account/ and this leads also to a solution for
ZounZJX , namely councJX as /council/ . The following fragment is
obtained:

n o t i f U � H e l l U � t o � Mo � a h e a O � P i t h � c o
u n c i l � G a t t e r � b u t � Wo A t Wo n e � t h e � o t
h e r � o n � a c c o u n t � o f � f e O e r a l � S A We c t



256 13 Anatomy of Language: Patterns

This can be read in plaintext at first sight, maybe apart from Helly, which
could be a proper name.
The phases of decryption shown here could be called ‘pace’ (until after the
entry three to five characters are tentatively found), ‘trot’ (until about eight
to ten characters are found and there is no doubt any more) and ‘gallop’ (the
remaining work). This is reflected in the build-up of the decryption table:

A . . D . F G H . J K . M N O P Q R S T U VWX Y Z
o h t r en f b ui a l cs m g d w y p

Only H is still unclear, as B , C , E , I , L do not occur in the cryptotext.
At this last phase one should try to reconstruct the full decryption table. The
reader may have noticed that N and F were standing for each other; oF , oN

becoming /on/ , /of/ . The same is seemingly true for A and S , D and O ,
P and W , R and T , U and Y . If the encryption were self-reciprocal,
then K =̂ h would imply H =̂ k , and Helly would be plaintext /kelly/ .
The whole encryption table reconstructed this way would be

A B C D E F G H I J K L M N O P Q R S T U VWX Y Z

s q z o v n m k j i h x g f d w b t a r y e p l u c- - - - - - - - - - - - - -
Since the underlined letters of the lower row run backwards, there is presum-
ably a construction of the substitution alphabet from a mnemonic password.
In fact, reordering produces the self-reciprocal substitution1

� c u l p e r a b d f g h i
z y x w v t s q o n m k j . The final result is

n o t i f y � k e l l y � t o � g o � a h e a d � w i t h � c o
u n c i l � ma t t e r � b u t � p o s t p o n e � t h e � o t
h e r � o n � a c c o u n t � o f � f e d e r a l � a s p e c t

A district attorney could base an indictment on this absolutely plausible de-
cryption revealing the system completely. A “systematic and exact recon-
struction of the encryption method and of the passwords and keys used”(Hans
Rohrbach 1946) is required if cryptanalysts are witnesses for the prosecution,
like Bazeries in 1898 in the lawsuit against the Duke of Orléans, or Elizebeth
Friedman, the wife of W. F. Friedman, in a trial against the Consolidated
Exporters Company, a smuggling organization at the time of prohibition.

13.3.2 Aristocrats. It should be clear that the decryption of the example
above was this easy because word spacings have not been suppressed, con-
trary to professional tradition. Not to suppress spaces is among the rules of
the game ‘Cryptos’ found in American newspapers (Fig. 101), at least for the

1 Samuel Woodhull and Robert Townsend in 1779 provided General Washington with valu-
able information from New York, which was occupied by English troops; they used as
cover names CULPER SR. and CULPER JR. (Sect. 4.4.1). Was this shortened from
CULPEPER, which is sometimes used in the cryptographic literature for the construc-
tion of keys? Edmund Culpeper, 1660–1738, was a famous English instrument maker.
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Cryptoquip
K I O S P X

X

F I E V B O S F E F P M H

Y I M K K J F I E V B J F K Y F -I

K O HM

The Cryptoquip is a simple substitution cypher in which each 
letter used stands for another. If you think that X equals O, it 
will equal O throughout the puzzle. Single letters, short words, 
and words using an apostrophe can give you clues to locating 
vowels. Solution is accomplished by trial and error.

Today’s Cryptoquip clue: S equals C

  Yesterday’s Cryptoquip— GLUM GOLFER TODAY
STUDIES SNOWMEN ON FAIRWAY. © 1977 King Features Syndicate, Inc.

Cryptoquip
K R K K R L H P L R U I O Z G K A Y M -

M G O R A U L Y P Q , Q R U A H U L Z I U
The Cryptoquip is a simple substitution cypher in which each 
letter used stands for another. If you think that X equals O, it 
will equal O throughout the puzzle. Single letters, short words, 
and words using an apostrophe can give you clues to locating 
vowels. Solution is accomplished by trial and error.

Today’s Cryptoquip clue: I equals M

  Yesterday’s Cryptoquip— TRICK HARMONICA MAKES
PRETTY HARMONY AT PARTIES.

© 1977 King Features Syndicate, Inc.

Fig. 101. Cryptoquips from Los Angeles Times, 1977

sort that goes under the name ‘aristocrats’: Spaces and punctuation marks
remain strictly untouched, only letters are allowed in the cryptotext character
vocabulary, and no letter may represent itself. The length of the cryptotext
in genuine aristocrats (without ‘clues’) is 75–100 characters, i.e., rather long
in view of a unicity distance of ≈ 25 for a simple substitution with permuted
alphabet; in return for this the cryptotext may contain the most extraordi-
nary and queer American words (but no foreign words) and apart from being
formally grammatically correct, does not need to make sense; to understand
it may be as difficult as to understand the cryptogram itself. Words from
biology like pterodactyl, ichtyomancy, and from mathematics like syzygy
may occur, but also yclept, crwth, and cwm may be found. The text can be
chosen such that the normal frequencies of letters and phrases are completely
faked, which means that the methods based on frequency analysis, to be dis-
cussed in following chapters, are useless (“the encipherer’s full attention has
been given to manipulation of letter characteristics”, H. F. Gaines).
Kahn gives the solution of a cryptogram of the sort ‘aristocrat’ that describes
itself: Tough cryptos contain traps snaring unwary solvers: abnormal fre-
quencies, consonantal combinations unthinkable, terminals freakish, quaint
twisters like ‘myrrh’.

13.3.3 Lipograms. There are texts (lipograms) written totally without
/e/ ; most famous is the (artistically unpretentious) novel Gadsby (Fig. 102)
by Ernest Vincent Wright (Wetzel Publishing Co., Los Angeles 1939, 287
pp.). Wright wrote in the preface that he had fixed the /e/ key on his
typewriter, because now and then an /e/ wanted to slip into the manuscript.
Along this line, but with higher pretension, was also Georges Perec (1936–
1982) with his 1969 novel La disparation (English translation A Void by
Gilbert Adair, HarperCollins 1995, 285 pp.). Perec, who also played with
acronyms, acrostics, anagrams, and palindromes and indulged in linguistic
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Fig. 102. Page from Gadsby by Ernest Vincent Wright

activism—he used computer programs and presented in 1969 a palindrome
of 5 000 letters— published a history of lipograms in 1973. Earlier, in 1820,
a Dr. Franz Rittler in Vienna published the novel Die Zwillinge, written to-
tally without /r/ . Even earlier, in 1800, Gavrila Romanovich Dershavin, an
important Russian poet (1743–1816), wrote the novel A Waggish Wish com-
pletely without /r/ and with only very few /o/ .
James Joyce, too, wrote cryptic prose. The last words in Finnegans Wake:

End here. Us then. Finn, again!
Take. Bussoftlee, mememormee!
Till thousendsthee. The keys to. Given!
Lps. A way a lone a last a loved a long the.

if given to a decryptor, would cause him great trouble. Joyce’s earlier novel
Ulysses already contained plenty of cryptological puzzles.
Cryptologically, these curiosities have little importance, of course, any more
than the cryptological decorations Vladimir Nabokov included in his works.
Václav Havel took the right point of view when he made fun of the Marxist-
Leninist party (secret) language, the Ptydepe and its bureaucratic successor,
the Chorukor.
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13.4 Finding of Polygraphic Patterns

One of the reasons for the use of codes is the suppression of conspicuous
patterns. But wrongly designed codes that do not pay regard to frequently
used longer phrases, and particularly wrong use of codes, will ruin this.

13.4.1 Luigi Sacco. He became in 1916, at age 32, chief of the Reparto crit-
tografico of the Italian headquarter at the Isonzo and Piave front in northern
Italy. He received on June 30, 1918 two radio signals with the same ending

. . . . 4 92073 06583 47295 89255 07325 58347 29264 .
This was a grave mistake of the Austrians; but even worse, the fragment
073∗∗5834729 was repeated in the short distance of 18 letters. This gave a
clear indication for a 3-figure code ending with

492 073 065 834 729 589 255 073 255 834 729 264 .
Sacco had some experience with Austrian habits and reason to conjecture
that carelessly a longer word had been encoded letter by letter. The code
group pattern was 123456727458 and Sacco, an engineer, had the splendid
idea to read it r a d i o s t a t i o n . The lazy Austrian code clerk had not
seen a need to look up the code groups for r a d i o and s t a t i o n . And
if in exceptional cases—e.g., for proper names—letter by letter encoding was
unavoidable, then such a disclosure of the code for single letters should not
happen at the beginning or the end of the text.
Anyhow, this gave Sacco an entry to decrypt other words encrypted letter by
letter and thus to break the whole code. But the Austrians did cryptanaly-
tically at least as well. In the Kriegschiffrengruppe under the command of
Colonel Ronge was an Italian section in which Major (later Colonel) Andreas
Figl did excellent work, like Major (later Lieutenant-Colonel) Hermann Poko-
rny in the Russian section—aided by the adversary’s stupidity.

13.4.2 Pattern book. But even without Sacco’s imagination there would
have been an immediate entry using a prefabricated list of patterns and their
instantiations. For the entry 123456727458 of length 12 with 4 repetitions,
the instantiation r a d i o s t a t i o n is very likely unique, and if not, trial
and error with only a few instantiations would give immediate results.

13.5 The Pattern Method of the Probable Word

So far, only formal considerations have been used, assuming no more than
a guess at the natural language underlying the crypt. We now take other
information into account. Much beloved for an entry into a monoalphabetic
simple substitution is the method of the probable word (French mot pro-
bable, German wahrscheinliches Wort). It is not a conspicuous pattern in
the cryptotext that we seek (and look later for its instantiations); instead,
a search for the pattern of the probable word is made in the cryptotext—
whether, and if so, where it may occur. Each such cryptotext fragment
together with the probable word forms a ‘crib’.
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13.5.1 Cribs. This method was already described by Giovanni Battista Por-
ta (1535–1615) in De furtivis, 1563. If according to the circumstances division
is a probable word, a search for the pattern 12131 of (d)ivisi(on) is indicated.
From Figure 109 it can be seen that in the military genre the danger of find-
ing a wrong word with this pattern is rather small, although the word is
short. Instead of a word, whole phrases can be used like ‘Oberkommando der
Wehrmacht’ or ‘Combined Chiefs of Staff’. Particularly suited are stereo-
typed expressions frequently used at the beginning and ending of plaintexts
in both the commercial and the military world. Examples like

reference to your letter

Hochachtungsvoll Ihr

An SS-Gruppenführer Generalleutnant der Waffen-SS Berger, BerlinW. 35,
SS-Hauptamt, mit der Bitte um absprachegemässe Weitergabe

From Algeria to Washington, 21. 7. To the State Department in Wash-
ington. Strictly confidential. Most urgent and personal for Deputy Under
State Secretary. From Murphy

show that there are usually enough cribs. Even Russian copulation, the
arbitrary cutting of the text and recombining it in the wrong order, is of
no avail, for it does not remove patterns at all. Moreover, insight into the
situation of the adversary and empathy can initiate a chain reaction that
Jack Good has described well as “success leading to more success.” More in
Sect. 19.7. And if no cribs turn up, they can be provoked: In the sequel of
certain war actions, words like attack or bombardment are to be expected.

13.5.2 Murphy and Jäger. Immortal credit for a success on the German
side in the Second World War was gained by the American diplomat and
later Deputy Secretary of State Robert Daniel Murphy (1894–1978), who
insisted on underlining his importance in his telegrams by always using the
expressions ‘From Murphy’ or ‘For Murphy’. Nevertheless, Lieutenant Jäger,
also mentioned in Sect. 4.4, stole the show. Obedience is no substitute for
discipline, which requires brains and is therefore rare. To report regularly
‘Nothing to report’ is a self-contradictory action.

13.5.3 Führerbefehl. The following fictitious example by Uwe Kratzer
(Fig. 103), based on an infamous Führerbefehl in the year 1939, shows how
far a single probable word can carry. According to the circumstances it could
be guessed that the year ‘1939’ occurs in the plaintext and in view of the
bombastic style Hitler’s generals had adopted, it could not even be excluded
that despite all precautions ‘neunzehnhundertneununddreissig’ would oc-
cur literally. This would suggest a search for the pattern 1231 of ‘neun’,
although it is very short and many mishits (‘blind hits’) were to be expected.

Indeed, this pattern occurs a few times (Fig. 104), in particular as HQGH

four times, as QHXQ twice in the third line from below and once in the
second line from below. For ‘neunzehnhundertneun’, the second occurrence
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J H K H L P H N R P P D Q G R V D F K H Z H L V X Q J Q U H

L Q V I X H U G L H N U L H J V I X H K U X Q J Q D F K G H

P D O O H S R O L W L V F K H Q P R H J O L F K N H L W H Q

H U V F K R H S I W V L Q G X P D X I I U L H G O L F K H P

Z H J H H L Q H I X H U G H X W V F K O D Q G X Q H U W U D

H J O L F K H O D J H D Q V H L Q H U R V W J U H Q C H C X

E H V H L W L J H Q K D E H L F K P L F K C X U J H Z D O W

V D P H Q O R H V X Q J H Q W V F K O R V V H Q G H U D Q J

U L I I D X I S R O H Q L V W Q D F K G H Q I X H U G H Q I

D O O Z H L V V J H W U R I I H Q H Q Y R U E H U H L W X Q

J H Q C X I X H K U H Q P L W G H Q D E D H Q G H U X Q J H

Q G L H V L F K E H L P K H H U G X U F K G H Q L Q C Z L V

F K H Q I D V W Y R O O H Q G H W H Q D X I P D U V F K H U

J H E H Q D X I J D E H Q Y H U W H L O X Q J X Q G R S H U

D W L R Q V C L H O E O H L E H Q X Q Y H U D H Q G H U W D

Q J U L I I V W D J H U V W H U Q H X Q W H U Q H X Q C H K

Q K X Q G H U W Q H X Q X Q G G U H L C L J D Q J U L I I V

C H L W Y L H U X K U I X H Q I X Q G Y L H U C L J

Fig. 103. Fictitious encryption of a Führerbefehl in the year 1939

J H K H L P H N R P P D Q G R V D F K H Z H L V X Q J Q U H

L Q V I X H U G L H N U L H J V I X H K U X Q J Q D F K G H

P D O O H S R O L W L V F K H Q P R H J O L F K N H L WH Q

H U V F K R H S I W V L Q G X P D X I I U L H G O L F K H P

Z H J H H L Q H I X H U G H X W V F K O D Q G X Q H U W U D

H J O L F K H O D J H D Q V H L Q H U R V W J U H Q C H C X

E H V H L W L J H Q K D E H L F K P L F K C X U J H Z D O W

V D P H Q O R H V X Q J H Q W V F K O R V V H Q G H U D Q J

U L I I D X I S R O H Q L V W Q D F K G H Q I X H U G H Q I

D O O Z H L V V J H W U R I I H Q H Q Y R U E H U H L W X Q

J H Q C X I X H K U H Q P L W G H Q D E D H Q G H U X Q J H

Q G L H V L F K E H L P K H H U G X U F K G H Q L Q C Z L V

F K H Q I D V W Y R O O H Q G H W H Q D X I P D U V F K H U

J H E H Q D X I J D E H Q Y H U WH L O X Q J X Q G R S H U

D W L R Q V C L H O E O H L E H Q X Q Y H U D H Q G H U W D

Q J U L I I V W D J H U V W H U Q H X Q W H U Q H X Q C H K

Q K X Q G H U W Q H X Q X Q G G U H L C L J D Q J U L I I V

C H L W Y L H U X K U I X H Q I X Q G Y L H U C L J

Fig. 104. Occurrences of the pattern 1231

in the third line from below has just the right distance from the occurrence in
the second line from below. This entry, provoked by the repetition of QHXQ,
provides a first tentative decryption in Figure 105. Obviously, there are more
dates at the end of the text. It does not need much imagination to read the
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J e h e L P e N R P P D n d R V D F h e Z e L V u n J n r e
L n V I u e r d L e N r L e J V I u e h r u n J n D F h d e
P D O O e S R O L t L V F h e n P R e J O L F h N e L t e n
e r V F h R e S I t V L Q d u P D u I I r L e d O L F h e P

Z e J e e L n e I u e r d e u t V F h O D n d u n e r t r D

e J O L F h e O D J e D n V e L n e r R V t J r e n z e z u
E e V e L t L J e n h D E e L F h P L F h z u r J e Z D O t
V D P e n O R e V u n J e n t V F h O R V V e n d e r D n J

r L I I D u I S R O e n L V t n D F h d e n I u e r d e n I

D O O Z e L V V J e t r R I I e n e n Y R r E e r e L t u n
J e n z u I u e h r e n P L t d e n D E D e n d e r u n J e
n d L e V L F h E e L P h e e r d u r F h d e n L n z Z L V

F h e n I D V t Y R O O e n d e t e n D u I P D r V F h e r
J e E e n D u I J D E e n Y e r t e L O u n J u n d R S e r
D t L R n V z L e O E O e L E e n u n Y e r D e n d e r t D

n J r L I I V t D J e r V t e r n e u n t e r n e u n z e h
n h u n d e r t n e u n u n d d r e L z L J D n J r L I I V

z e L t Y L e r u h r I u e n I u n d Y L e r z L J

Fig. 105. Fragmentary decryption with the help of ‘neunzehnhundertneun’

g e h e i P e N R P P D n d R V D F h e Z e i V u n g n r e
i n V f u e r d i e N r i e g V f u e h r u n g n D F h d e
P D O O e S R O i t i V F h e n P R e g O i F h N e i t e n
e r V F h R e S f t V i Q d u P D u f f r i e d O i F h e P

Z e g e e i n e f u e r d e u t V F h O D n d u n e r t r D

e g O i F h e O D g e D n V e i n e r R V t g r e n z e z u
E e V e i t i g e n h D E e i F h P i F h z u r g e Z D O t
V D P e n O R e V u n g e n t V F h O R V V e n d e r D n g
r i f f D u f S R O e n i V t n D F h d e n f u e r d e n f
D O O Z e i V V g e t r R f f e n e n v R r E e r e i t u n
g e n z u f u e h r e n P i t d e n D E D e n d e r u n g e
n d i e V i F h E e i P h e e r d u r F h d e n i n z Z i s
F h e n f D V t v R O O e n d e t e n D u f P D r V F h e r
g e E e n D u f g D E e n v e r t e i O u n g u n d R S e r
D t i R n V z i e O E O e i E e n u n v e r D e n d e r t D

n g r i f f V t D g e r V t e r n e u n t e r n e u n z e h
n h u n d e r t n e u n u n d d r e i z i g D n g r i f f V

z e i t v i e r u h r f u e n f u n d v i e r z i g

Fig. 106. Further fragmentary decryption with the help of ‘vieruhrfuenfundvierzig’

very end as ‘vieruhrfuenfundvierzig’. This gives the fragmentary decryption
of Figure 106, which means there are already a dozen characters decrypted:

. . . d e f g h i . . . . n . . . r . t u v . . . z

. . . G H I J K L . . . . Q . . . U . W X Y . . . C
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Pieces of the text in Figure 106 can be read quite fluently. This results in
/m/ for P, /s/ for V, /c/ for F, /a/ for D, /o/ for R and confirms that we
are on the right path. Now 17 characters are reconstructed:

a . c d e f g h i . . . m n o . . r s t u v . . . z
D . F G H I J K L . . . P Q R . . U V W X Y . . . C

Figure 107 shows this last intermediate result which can be read fluently.

g e h e i m e N o m m a n d o s a c h e Z e i s u n g n o e
i n s f u e r d i e N r i e g s f u e h r u n g n a c h d e
m a O O e S o O i t i s c h e n m o e g O i c h N e i t e n
e r s c h o e S f t s i n d u m a u f f r i e d O i c h e m
Z e g e e i n e f u e r d e u t s c h O a n d u n e r t r a
e g O i c h e O a g e a n s e i n e r o s t g r e n z e z u
E e s e i t i g e n h a E e i c h m i c h z u r g e Z a O t
s a m e n O o e s u n g e n t s c h O o s s e n d e r a n g
r i f f a u f S o O e n i s t n a c h d e n f u e r d e n f
a O O Z e i s s g e t r o f f e n e n v o r E e r e i t u n
g e n z u f u e h r e n m i t d e n a E a e n d e r u n g e
n d i e s i c h E e i m h e e r d u r c h d e n i n z Z i s
c h e n f a s t v o O O e n d e t e n a u f m a r s c h e r
g e E e n a u f g a E e n v e r t e i O u n g u n d o S e r
a t i o n s z i e O E O e i E e n u n v e r a e n d e r t a
n g r i f f s t a g e r s t e r n e u n t e r n e u n z e h
n h u n d e r t n e u n u n d d r e i z i g a n g r i f f s
z e i t v i e r u h r f u e n f u n d v i e r z i g

Fig. 107. Last intermediate decryption of the Führerbefehl

The complete encryption table reads
a b c d e f g h i j k l m n o p q r s t u v w x y z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Here at the latest it turns out that the encryption is a genuine Caesar addi-
tion. If we had assumed this and used an exhaustive search, we would have
been sure after a few steps. But who could know it?
Figure 108 presents the final result, the Weisung Nr. 1 für die Kriegsführung.
The example is fictitious, and an order of this significance would not be
encrypted by a CAESAR addition—and it would not go by radio, but by
courier. However, with enough imagination one could perhaps see Admiral
Wilhelm Canaris (1887–1945), the head of the Abwehr, the counter-espionage
organisation of the O.K.W. and conspirator against Hitler, passing on the text
so that a simple agent could radio it to Sweden.

13.5.4 Invariance against choice of substitution. The example would
have been treated in exactly the same way if any other monoalphabetic sub-
stitution were present. This shows that the pattern finding method is totally
independent of the kind of (simple) substitution it is up against.
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g e h e i m e k o m m a n d o s a c h e w e i s u n g n o e
i n s f u e r d i e k r i e g s f u e h r u n g n a c h d e
m a l l e p o l i t i s c h e n m o e g l i c h k e i t e n
e r s c h o e p f t s i n d u m a u f f r i e d l i c h e m
w e g e e i n e f u e r d e u t s c h l a n d u n e r t r a
e g l i c h e l a g e a n s e i n e r o s t g r e n z e z u
b e s e i t i g e n h a b e i c h m i c h z u r g e w a l t
s a m e n l o e s u n g e n t s c h l o s s e n d e r a n g
r i f f a u f p o l e n i s t n a c h d e n f u e r d e n f
a l l w e i s s g e t r o f f e n e n v o r b e r e i t u n
g e n z u f u e h r e n m i t d e n a b a e n d e r u n g e
n d i e s i c h b e i m h e e r d u r c h d e n i n z w i s
c h e n f a s t v o l l e n d e t e n a u f m a r s c h e r
g e b e n a u f g a b e n v e r t e i l u n g u n d o p e r
a t i o n s z i e l b l e i b e n u n v e r a e n d e r t a
n g r i f f s t a g e r s t e r n e u n t e r n e u n z e h
n h u n d e r t n e u n u n d d r e i z i g a n g r i f f s
z e i t v i e r u h r f u e n f u n d v i e r z i g

Fig. 108. Final decryption: Weisung Nr. 1 für die Kriegsführung

13.6 Automatic Exhaustion of the Instantiations
of a Pattern

Helen Fouché Gaines points out that prefabricated lists of words with the
same pattern can help to solve the most confounded monoalphabetic substi-
tutions.

13.6.1 Listings. It can be safely assumed that the professional cryptana-
lytic bureaus know this and that they have made practical use of it, at least
since computers with large magnetic tape storage became available in about
1955. More recently, by private initiative, tables specifying English instantia-
tions for patterns of up to 12 letters were published 1971, 1972 by Jack Levine,
and for patterns of up to 15 letters 1977, 1982, 1983 by Richard V. Andree.
The listing is appropriately done in the KWIC (‘Key Word in Context’) way,
printing the left and right context in parenthesis. Figure 109 shows a some-
what multilingual example for the pattern 12131 of (d)ivisi(on) . Note
that anana(s) and (r)ococo do not belong to the pattern 12131 , but to the
pattern 12121 .
Such collections of patterns can be produced mechanically on the basis of a
dictionary of the language or languages in question, today even by optical
scanning. In this way, however, the word spacing prevents contacts between
words; patterns originating from the suppression of the space are not taken
into account. Also grammatical endings may be neglected.
It is therefore better to start from a large text base of the genre in question,
comprising up to a billion characters—say a newspaper year on a CD.
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(m)acada(m) ebene (fr)igidi(ty)
(m)ahara(ni) (l)edere(inband) (r)igidi(ty) (l)oboto(my)

alaba(ma) (h)egeme(ister) (n)ihili(sm) (s)olomo(n)
(m)alaga (v)eheme(nt) (b)ikini (d)oloro(sa)
(c)alama(ry) (b)elebe(n) (m)iliti(a) (g)onoko(ccus)
(p)alata(l) (b)elege(n) imiti(eren) (m)onolo(gue)
(m)alaya (g)elege(n) (l)imiti(eren) (m)onopo(ly)
(t)amara eleme(nt) (d)irigi(eren) (m)onoto(ny)
(p)anama (t)eleme(try) (v)isiti(eren) (t)opolo(gy)
(s)araba(nd) (h)elene (c)ivili(an) (d)oxolo(gy)
(f)arada(y) (s)elene (d)ividi(eren)
(k)araja(n) (g)elese(n) (d)ivisi(on)
(c)arapa(ce) eleve(n) (c)umulu(s)
(c)arava(n) eleve
(c)atama(ran) (h)exere(i)
(c)atara(ct)
(c)atafa(lque) (s)tatut

Fig. 109. Two-language KWIC list of words with the pattern slkl 12131 of (d)ivisi(on)

13.6.2 Search for patterns. Computer-aided, interactive work is useful
when for a given probable word instantiations of the pattern of this word—
to be displayed on the screen—are looked for. Computer help is particularly
necessary if no probable word is available and no pattern is given, but rare
patterns or repeated patterns2 in the cryptotext are to be extracted. If some
exist (i.e., if the text is long enough), this almost certainly leads to an entry. It
goes without saying that subsequent computer-aided fragmentary decryption
can be done semi-automatically, with little interactive intervention.
If it is done systematically, this intuition-free method of pure pattern finding
can be fully automated; working without semantic assumptions, it is a first
example of a cryptotext-only attack (‘pure cryptanalysis’). The problem is to
keep the search space small and the number of permissible variants low, and
thus to reduce the exhaustive element in the method. To this end, several
refinements of pattern finding can be applied. One of them uses coupled
pattern finding in the following sense.

13.6.3 Coupling of patterns. If two or more patterns are investigated,
it frequently happens that some instantiations are mutually exclusive. This
reduces the search space. To give an example, in the cryptotext

S E N Z E I S E J P A N O A I A O P A N C A H A O A J
1 2 3 2 1 4 2 1 2 1 3 1

the patterns 1232142 and 12131 occur; the instantiation s e m e s t e (r) for
1232142 , mentioned in Sect. 13.1 , allows only a few of the instantiations for
12131 , namely those that are compatible with e H e s e ; from the list of
Figure 109 this is only (g) e l e s e (n) . But there is another instantiation for

2 The search for repeated patterns will be taken up again in Sect. 17.4 .
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1232142 , namely g e r e g n e (t) ; with this instantiation are compatible only
those instantiations for 12131 that are compatible with e H e g e ; which
from the list of Figure 109 are (g) e l e g e (n) and (b) e l e g e (n) . P=̂n
from the instantiation g e r e g n e (t) collides with J=̂ n both from
(g) e l e g e (n) and from (b) e l e g e (n) . This attempt aborts.
This shows how two short patterns can be coupled. The background of this
consideration is the finding of one unified pattern

S E N Z E I S E J P A N O A I A O P A N C A H A O A J
1 2 3 2 1 4 2 5 6 2 7 2 1 2 8

and its instantiations.
Coming back to the decryption, with s e m e s t e r for O A I A O P A and
g e l e s e n for C A H A O A J we have now tentatively found seven letters
and the following fragment:

S E r Z E m S E n t e r s e m e s t e r g e l e s e n
For S , E and Z , the choice of plaintext characters has 19 ·18 ·17 = 5814
possibilities. The search space could be reduced further by investigating the
dozen or so instantiations for S E n t e r , each time trying 17 cases of
instantiations of Z . These 12 ·17 ≈ 200 computer-aided tests take only a few
seconds. One decryption obtained this way is

w i r d i m w i n t e r s e m e s t e r g e l e s e n
The reader who has doubts about this decryption (after all, not everybody
is so very familiar with a text in an obscure foreign language) or who thinks
that a text much shorter than the unicity distance for monoalphabetic simple
encryption may allow more than one decryption will become more confident
when following Rohrbach’s advice and finding out that the encryption is a
CAESAR addition with a key 22

26� −4 . That should do it. It is to be noted
that again in the decryption method no use was made of the peculiarities of
a CAESAR addition.

13.6.4 Reduction of the search space. It should be expected that in a
monoalphabetically encrypted cryptotext the number of patterns of length,
say, up to 15 is proportional to the length of the text. The number of cou-
plings between the patterns, however, grows at least quadratically with the
length, such that the restrictions arising from couplings increase rapidly and
reduce the search space correspondingly, which means there is a length of
text for which the pure pattern finding method regularly succeeds.

13.7 Pangrams

A special case of patterns consists of those containing no repeated characters,
especially long patterns of the form 123456789. . .N . Necessarily, N ≤ N ,
where N is the cardinality of the plaintext vocabulary. Instantiations of these
patterns are called non-pattern words or pangrams.3

3 Richard V. Andree, Nonpattern Words of 3 to 14 Letters, Raja Press, Norman, Okla-
homa 1982.
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Andree lists about 6000 non-pattern words each of length 6 and length 7,
4200 of length 8, 2400 of length 9, and 1050 of length 10. There are still
several hundred non-pattern words of length 11 such as
‘abolishment’ ‘atmospheric’ ‘comradeship’ ‘exculpation’ ‘filamentous’
‘hypogastric’ ‘nightwalker’ ‘questionary’ ‘slotmachine’ ‘spaceflight’
and some dozen of length 12 such as
‘ambidextrous’ ‘bakingpowder’ ‘bodysnatcher’ ‘disreputably’
‘housewarming’ ‘hydrosulfite’ ‘springbeauty’ ‘talcumpowder’ .
Even some non-pattern words of length 13 are listed: ‘bowstringhemp’
‘doubleparking’ ‘doublespacing’ ‘groupdynamics’ ‘publicservant’
and one non-pattern word of length 14: ‘ambidextrously’ .
Note that in these examples word spacing is suppressed. There are, of course,
also longer non-pattern sentences. Non-pattern words or sentences of some
rather large length N should be avoided or suppressed in the plaintext, since
they at once expose a decryption of N letters to an exhaustive search in a
rather small search space.
Genuine pangrams are sentences containing every letter just once (N =N).
In English, genuine pangrams in very free language are possible, for example,

cwm, fjord-bank glyphs vext quiz (Dmitri Borgmann),
squdgy fez, blank jimp, crwth vox (Claude E. Shannon),
Zing! Vext cwm fly jabs Kurd qoph (author unknown).

Good approximations are
waltz, nymph, for quick jigs vex bud (28 characters),
jackdaws love my big sphinx of quartz (31 characters),
pack my box with five dozen liquor jugs (32 characters).

In German or French, no genuine pangram is known. Approximations are
sylvia wagt quick den jux bei pforzheim (33 characters),
bayerische jagdwitze von maxl querkopf (34 characters),
zwei boxkaempfer jagen eva quer durch sylt (36 characters).
Qui, flamboyant, guida Zéphire sur ses eaux (35 characters; Guyot, 1772).

Internationally known for many years are the test texts for teletype lines
kaufen sie jede woche vier gute bequeme pelze
the quick brown fox jumps over the lazy dog
voyez le brick geant que j’examine pres du wharf.

The French language is particularly rich in vowel contacts, like in oüıe,
and therefore suitable for vowel-pangrams, containing every vowel just once.
Good examples are ossuaire (charnel-house), oripeau (tinsel), ouaille (lamb-
kin), and with only six letters oiseau.
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14.1 Non-Coincidence Exhaustion
of Probable Word Position

Pattern finding, using the positive coincidence of two text patterns, is neces-
sarily restricted to monoalphabetic encryptions. But for a wide class of
polyalphabetic encryptions, namely for those with fixpoint-free encryption
steps, whose alphabets have the property “no letter may represent itself,”
there is never a ‘crash’ between plaintext and cryptotext. This allows us
to exclude certain positions of a probable word and thus establishes the re-
maining ones as possible positions. It is a probable word attack by exhausting
positions. Exhaustion runs only over the length of the text and is feasible.
The precondition that no letter may represent itself holds more often than
one might think at first. It may happen that an encryptor avoids fixpoints
with the very best intentions. Monoalphabetic simple substitutions do this re-
gularly, and for ‘aristocrats’ (Sect. 13.3.2) it is even prescribed. Furthermore,
polyalphabetic substitutions using a collection of such alphabets—in particu-
lar MULTIPLEX (fully cyclic) encryption steps—inherit the property.
Moreover, all polyalphabetic substitutions with properly self-reciprocal al-
phabets have the ‘non-crashing’ property, i. e., are fixpoint-free. This includes
among others methods with PORTA encryption steps (Sect. 7.4.5) (requiring
N = |V | even), but not those with BEAUFORT encryption steps (Sect. 7.4.3).
The non-coincidence exhaustion attack usually allows several possible posi-
tions of a tentative probable word, which need to be investigated exhaustively.
If for a Shannon cryptosystem (Sect. 2.6.4) the alphabets are known and if
the probable word really does occur, this gives an entry, leading to the recon-
struction of a part of the key. In the case of a key with a known construction
principle, that’s it; in the case of a periodic key, large parts of the plain-
text are disclosed. In the monoalphabetic case, of course, non-coincidence
exhaustion works, too.
For the phrase “Erloschen ist Leuchttonne” (Sect. 11.1.3) there are in the
following cryptotext under fixpoint-free encryptions, e.g., ENIGMA steps,
only two positions possible (all others lead to a crash, marked by boldface):
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YOAQUTHNCHWS YTI WHTOJ QMTCF KUS L Z VS MF NGTDUQNYAVH

e r l o s c he n i s t l e u c ht t o n n e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
e r l o s c he n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
→ e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c he n i s t l e u c h t t o n n e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e uc h t t o n n e
e r l o s c h e n i s t l e u c h t t o n ne

e r l o s c h e n i s t l e u c h t t o nn e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
e r l o s c h e n i s t l e u c h t t o n n e

e r l o s c h e n i s t l e u c h t t o n n e
e r l o s c h e n i s t l e u c h t t o n ne

e r l o s c h e n i s t l e u c h t t o nn e
e r l o s c h e n i s t l e u c h t t o n n e

→ e r l o s c h e n i s t l e u c h t t o n n e

Quite a number of mechanical cryptosystems are susceptible to this exhaus-
tion attack. First of all, there are the strip and cylinder multiplex encryptions
(Sect. 7.5.3), whose non-identical alphabets are monocyclic substitutions.
Second, there are machines working ‘for facilitation’ self-reciprocally. Then
every alphabet is self-reciprocal. If 1-cycles (fixpoints) are excluded for tech-
nical reasons, then the precondition “no letter may represent itself” holds.
While the crypto machines of Boris Hagelin, working with mechanical BEAU-
FORT steps, did not exclude 1-cycles, the electrical ENIGMA disallowed
them, thus suffering from a weakness which was a consequence of introduc-
ing the reflecting rotor—meant to be a particular smartness. It would be hard
to believe that Group IV (Erich Hüttenhain) of the Cipher Branch OKW,
watching over the security of their own systems, did not know of this possi-
bility for a break, but presumably they underestimated it. In any case, it was
an essential piece of good luck for the work of the Polish Biuro Szyfrów and
of the British decryptors in Bletchley Park. But the strip cipher CSP-642,
used equally carelessly in the US Navy, was also a polyalphabetic multiplex
encryption with multiple mixed alphabets and it was also endangered; the
Japanese made use of this after they had seized the strip devices on the
Wake and Kiska islands. At OKW/Chi, Wolfgang Franz worked on US strip
ciphers.
Short probable words allow many hits, of course, and thus also many mishits.
The total probability of hits in looking for a word of length n is
Pn = (1− 1/N)n � e−n/N ; n should be large enough to make Pn somewhat
smaller than the frequency of the probable word. Figure 110 shows some
values of Pn for the usual case N =26.
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n Pn [%] n Pn [%] P−1
n

1 96.15 12 62.46
2 92.46 16 53.39
3 88.90 25 37.51 2.67
4 85.48 32 28.51 3.51
5 82.19 50 14.07 7.11
6 79.03 64 8.126 12.31
8 73.07 100 1.980 50.50

10 67.56 128 0.660 358.92
200 0.039 2550.75

Fig. 110. Total probability Pn [%] of hits for non-coincidence exhaustion (N=26)

The following plaintext of length 60 (Konheim) is encrypted by ENIGMA:
m a n y o r g a n i z a t i o n s r e l y o n c o m p u t e r s a
G R S U Z T L D S Z N KWN E R D P F B O V V Q N O B K Y I Q N J

Non-coincidence exhaustion for the 8-character word /computer/ should show
for the first 26 positions about 19 (26×0.7307) possible positions. In fact, 21
of the positions cannot be excluded and thus there are actually 20 mishits:

G R S U Z T L D S Z N K WN E R D P F B O V V Q N O B K Y I Q N J

c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

→ c o mp u t e r
→ c o mp u t e r

c o mp u t e r
→ c o mp u t e r

/computer/ is indeed a very short word, /oberkommandoderwehrmacht/ (24
characters) would do much better (Sect. 19.7.1). A count gives for the first
36 positions of this word 14 possible positions (all mishits), compared with
the expected 36·0.3901=14.04 . A probable word of length n = 100 has not
yet a good chance of avoiding some mishits in a text fragment of length 300;
for n=100 and a text of length 300, we have 300 ·P (100)=300 ·0.01980 ≈ 6 ,
for n =200 in a text of length 2500, we have 2500·P (200)=2500·0.00039 ≈ 1 .
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14.2 Binary Non-Coincidence Exhaustion
of Probable Word Position

More information about the encryptions of a polyalphabetic cryptosystem
may improve the situation with respect to mishits. To give an example,
assume polyalphabetic PORTA encryption steps mapping one half of the
alphabet into the other half and vice versa (Sect. 7.4.5), say with V = Z26

{a b c d ... l m} 2
≺−−−−� {n o p q ... y z} .

The binary pattern of a text is obtained if every character is replaced by
0 or 1 , depending on whether it is from the first or the second half of the
alphabet.
Now assume that the same text as above is somehow PORTA encrypted:

m a n y o r g a n i z a t i o n s r e l y o n c o m p u t e r s a
P R G B F I O Z G P L Y C N E E D GW S A I K Q D O B K J Q C M P

/computer/ has the binary pattern 0 1 0 1 1 1 0 1 , thus in the cryptotext
complete non-coincidences with this pattern are to be looked at:

P R G B F I O Z G P L Y C N E E D G WS A I K Q D O B K J Q C M P

1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

→ 0 1 0 1 1 1 0 1
0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1

In this example, even with a rather short probable word, the binary coinci-
dence exhaustion has no mishits, while the non-coincidence exhaustion does
not exclude 21 of the positions and thus has 20 mishits. Even the shorter word
/comp/ with the binary pattern 0101 has only three mishits—compared with



272 14 Polyalphabetic Case: Probable Words

the expected 26 · ( 1
2 )4 = 1.62 possible positions. For PORTA encryptions,

probable words of a few characters are in general already sufficient to distin-
guish between a genuine hit or a total miss. The same is true for encryptions
à la Gronsfeld (see Sect. 7.4.1) using a truncated Vigenère table.
The word /oberkommandoderwehrmacht/ contains the 11-character word
/kommandoder/ with the pattern

0 1 0 0 0 1 0 1 0 0 1
It cannot be present in the plain text of this example, since every position
leads to a crash:

P R G B F I O Z G P L Y C N E E D G WS A I K Q D O B K J Q C M P

1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0 1

14.3 The De Viaris Attack

Even against the strip and cylinder multiplex encryptions, working with
monocyclic unrelated alphabets allowing non-coincidence exhaustion accord-
ing to Sect. 14.1 , the unauthorized decryptor can do more. This discovery
was made unhappily by Étienne Bazeries, the great practitioner of cryptanal-
ysis, when his allegedly unbreakable device was ridiculed by his opponent De
Viaris. Incidentally, the attack of De Viaris in 1893, improved by Friedman
in 1918, does not presuppose that the alphabets are monocyclic.

14.3.1 De Viaris. The general method requires that the device is in the
hands of the unauthorized decryptor. Since nothing prevents the number
of disks or strips from being two dozen or more, there is always a number
of permutations big enough to exclude trivial exhaustion. The maximal pe-
riod is determined by the system and the known alphabets could be tested
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against columns of monographically encrypted characters (Sect. 18.2.5); but
the depth of the material as a rule is not sufficient to succeed with a frequency
analysis.

For the special case of the strip and cylinder devices there is the seeming
complication by homophony. It will turn out that homophony does not hinder
the unauthorized decryptor much more than the authorized one. For the
moment, let us assume that the (homophonic) cryptotext fragment is read
from the k-th row after the plaintext row (in the k-th generatrix, Sect. 7.5.3).
Beginning with small values of k , there would be in the worst case two dozen
trial and error cases. We also assume, for simplicity, that a probable text
will be short enough not to be cut by the period hiatus of the encryption.

Now, for fixed k and a given probable plaintext word, we determine the set
of all characters occurring on the disks or strips in the k-th generatrix. With
this basic information we investigate all positions of the probable word to
find out for which ones the cryptotext could have been obtained at all. For
a short probable word we expect there to be several possibilities to follow
up. If the probable word is long enough, it may happen that no possibility
is found, in which case transition to another generatrix is indicated. If this
is unsuccesful for every generatrix, then the probable word is not present
in the plaintext despite our assumption—which may also mean that it was
interrupted.

For Bazeries’ cylinder with 20 disks and an example of a cryptotext that goes
back to the military genre of Givierge,

F S A M C R D N F E Y H L O E R T X V Z

L R M Q U U X R G Z N B O M L N D N P V

R T M U K H R D O X L A X O D C R E E H

V R E X Z G U G L A B S E S T V F N G H

the De Viaris decryption attack goes as follows:

Let the probable word be /division/. For the 20 cycles of Bazeries (Fig. 68),
Figure 111 (a) displays the encryptions of /division/ for the first generatrix.
Thus, the sets of crypto characters that occur are to be read vertically under
the plaintext characters /d/, /i/, /v/, /i/, /s/, /i/, /o/, /n/ of /division/ .

Sliding a paper strip with the cryptotext along these sets, we can decide for
every position of the probable word whether all the corresponding letters in
the cryptotext are found among the available ones. For example, this is not
the case for the following position, adjusted with the fragment FSAMCRDN ,

d i v i s i o n
F S AMC R D N F E Y H L O E R T X V Z

where only the four letters in boldface type (instead of eight) are found. The
same is true for the next position, adjusted with the fragment SAMCRDNF,

d i v i s i o n
F S A MC R D N F E Y H L O E R T X V Z
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(a) d i v i s i o n
1 E J X J T J P O
2 F O X O T O U P
3 F O X O T O J P
4 C H U H R H N M
5 C Q T Q R Q I M
6 C E T E R E I M
7 P J B J E J N S
8 T E D E P E Y H
9 E J X J L J P O
10 I E X E V E T C
11 B T I T C T U D
12 G C Y C A C R P
13 N R Y R A R I S
14 F B X B V B N E
15 F N X N T N P S
16 K M XMV M G F
17 F E X E O E N A
18 I U X U T U M Q
19 F J L J U J N T
20 G J X J T J U O

(b) d i v i s i o n
1 HM A M X A S R
2 J B E B Z B E S
3 I L E L Z L M Q
4 Z E R E O E K J
5 U MOM Q M N E
6 U X Q X N X Z J
7 J V K V D V F T
8 M U J U D U F X
9 L N H N I N V U
10 P R D R Z R A J
11 H S L S R S N G
12 K B R B U B Z V
13 U T L T B TM X
14 K F H F Z F R T
15 K R N R E R X U
16 S O J O Z O R H
17 J O Y O B O C D
18 B C L C U C R Y
19 J Q F Q M Q Z A
20 J P N P A P E T

Fig. 111. Encryptions of /division/ , (a) 1st generatrix (with FSAMCRDN),
(b) 4th generatrix (with HLOERTXV)

where again only the four letters in boldface type (instead of eight) are found.
For the next but one position, adjusted with the fragment AMCRDNFE,

d i v i s i o n
F S AMC R D N F E Y H L O E R T X V Z

there is also no hit. Continuing in this way, the first generatrix can be
excluded for all positions of /division/ .

Now we turn to another generatrix. In Figure 111 (b) encryptions of the word
/division/ for the fourth generatrix are displayed. Again the sets of crypto
characters that occur are to be read vertically under the plaintext characters
/d/, /i/, /v/, ... of /division/ . Beginning again from the left, we get a hit
for the twelfth position with the fragment HLOERTXV for the first time,

d i v i s i o n
F S A M C R D N F E Y H L O E R TXV Z

All eight letters (in boldface type) are found among the available ones and
seven of them just once, and they determine the corresponding alphabet.
However, for H there is a choice between the first and the eleventh alphabet,
as Figure 111 shows.

14.3.2 Warning. At this moment some additional knowledge about the
system can be made use of. In principle, any alphabet, unrelated or accom-
panying, could be used several times. For VIGENÈRE encryption steps this
would be quite normal. Progressive encryption (Sect. 8.4.3) limits this, in or-
der to prevent accumulation of material encrypted with the same alphabet.
For cylinder and strip devices progressive encryption is systemic; it seems to
increase security to have each cylinder or strip available only once and thus
to use it within the period exactly once. But as soon as the alphabets fall
into the hands of the foe, this is actually a complication illusoire.
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Under the assumption of progressive encryption, which holds for Bazeries’
cylinder, H =̂ d excludes the eleventh alphabet, since this is already need-
ed uniquely for R =̂ s . Thus, so far the order of the cylinders is partly
determined as follows:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 3 5 4 11 13 15 12 ∗

Furthermore, to exclude the possibility of a mishit, we investigate whether in
a distance of 20 characters a meaningful decryption results. For the fragment
BOMLNDNP the result

L R M Q U U X R G Z N B O M L N D N P V
1 3 5 4 11 13 15 12

z h p n r m y k 24.

a i n m a t i n → 0.

B O M L N D N P 1.

c j l k d n s q 2.

d k k j b s t t 3.

shows a convincing decryption /ainmatin/: for this round the first genera-
trix was used. Furthermore, in a distance of 40 characters for the fragment
AXODCREE the result

R T M U K H R D O X L A X O D C R E E H
1 3 5 4 11 13 15 12

A X O D C R E E 22.

b z i c o e z z 23.

c a q b u m l l 24.

d e p a r t a s → 0.

e b n z a d j a 1.

produces the convincing decryption /departas/: for this round the 22nd
generatrix was used.
The plaintext fragment /departas/ can be supplemented in two ways: to
/departasixheures/ or to /departaseptheures/. Considering the fact that
6 o’clock would be rather early, we try /departaseptheures/ as next probable
word, which is cut into /departase/ and /ptheures/. This last one is treated
in Figure 112 ; for the third generatrix the encryptions of /ptheures/ are dis-
played. In the position immediately following, with the fragment VREXZGUG

(chances for a hit are 1:206) there is indeed a genuine hit
p t h e u r e s
VR E X Z G U G L A B S E S T V F N G H

which determines the positions of four more, not yet treated cylinders:
R =̂ t requires the 7th, X =̂ e the 6th, G =̂ r the 10th, G =̂ s the 9th
cylinder. In Figure 112, the cylinders so far determined are marked. From
the remaining ones, Z =̂ u requires uniquely the 17th cylinder, while three
cases are left open: V =̂ p requires the 16th or 20th, E =̂ h the 14th or 18th,
U =̂ e the 2nd or 8th cylinder.
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p t h e u r e s
• 1 S X K H Y U H V Total probability of hit

2 S Z L U C V U X
• 3 Q Z J D R V D X 12

25 × 13
25 × 14

25 × 13
25 × 13

25 × 14
25 × 13

25 × 11
25• 4 M Q E B R O B P

• 5 L O D H V Q H I ≈ 1 : 206
• 6 L Q D X E N X P
• 7 J R Q D B U D T e �→ {A, B, C, D, G, H, L, O, R, S, T, U, X}

8 D M X U L S U V
• 9 V F Y L Z D L G h �→ {B, C, D, E, J, K, L, M, N, O, P, Q, X, Y}
• 10 T A M R O G R Y
• 11 Y S M T N D T U p �→ {B, D, J, L, M, Q, S, T, U, V, X, Y}
• 12 V F N S D Z S C
• 13 Y S P D C T D X r �→ {A, D, G, L, N, O, Q, S, T, U, V, X, Y, Z}

14 B I E T P A T Y
• 15 X E O A L Z A U s �→ {A, C, G, I, L, P, T, U, V, X, Y}

16 V B C G D U G Y
17 U X P O Z L O A t �→ {A, B, E, F, I, M, O, Q, R, S, U, X, Z}
18 T U E S C D S I
19 S A B C M X C Y u �→ {A, B, E, F, I, M, O, Q, R, S, U, X, Z}
20 V A K C E Y C L

Fig. 112. Encryptions of /ptheures/ , 3rd generatrix (with VREXZGUG)

The result is the following distribution of 19 of the total of 20 cylinders:
16 14 27 617 10 9 ∗ ∗ ∗ 1 3 5 4 11 13 15 12 ∗20 18 8

The remaining decryption is a trifling matter: with the 13 cylinders whose
situation is determined so far, there is a fragmentary decryption

Marquis deViaris
(1847–1901)

F S A M C R D N F E Y H L O E R T X V Z
∗ a ∗ r o i ∗ i ∗ ∗ ∗ d i v i s i o n ∗
L R M Q U U X R G Z N B O M L N D N P V
∗ p ∗ r t e ∗ a ∗ ∗ ∗ a i n m a t i n ∗
R T M U K H R D O X L A X O D C R E E H
∗ r ∗ e i m ∗ s ∗ ∗ ∗ d e p a r t a s e

V R E X Z G U G L A B S E S T V F N G H
p t h e u r e s ∗ ∗ ∗ p x x x x x x x ∗

which immediately suggests two further fragments:
/la troisieme/, /demain/, allowing us to fill all but
the 20th position, and after that the 20th position,
too. The complete order of the cylinders, the pass-
word, can be reconstructed:

16 7 18 6 17 10 8 9 2019 2 1 3 5 4 11 13 15 12 14

The complete decryption is (note the patching nulls at the end):

F S A M C R D N F E Y H L O E R T X V Z
l a t r o i s i e m e d i v i s i o n s

L R M Q U U X R G Z N B O M L N D N P V
e p o r t e r a d e m a i n m a t i n s

R T M U K H R D O X L A X O D C R E E H
u r r e i m s s t o p d e p a r t a s e

V R E X Z G U G L A B S E S T V F N G H
p t h e u r e s s t o p x x x x x x x x
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14.3.3 Syllables. Even if a probable word is missing, the De Viaris attack
may work. Following Givierge (1925), frequent bigrams, trigrams, and tetra-
grams are used. We shall show this for the French and English standard
ending /ation/. For each generatrix, for each plaintext letter, the sets of
possible cryptotext letters are prefabricated. Figure 113 shows this for the
first generatrix. Since the associated sets comprise only roughly half of the
letters, the danger of mishits is again not too great.

a t i o n
1 B U J P O Total probability of hit
2 E V O U P
3 E V O J P 12

25 × 11
25 × 12

25 × 10
25 × 12

25
4 Z S H N M
5 J S Q I M ≈ 1 : 51
6 Z S E I M
7 L D J N S
8 V O E Y H
9 R S J P O
10 F G E T C
11 N Z T U D a �→ {B, C, E, F, I, J, L, N, R, U, V, Z}
12 I V C R P
13 U D R I S t �→ {D, E, G, H, O, P, R, S, U, V, Z}
14 I P B N E
15 J R N P S i �→ {B, C, E, H, J, M, N, O, Q, R, T, U}
16 I H M G F
17 B U E N A o �→ {G, I, J, M, N, P, R, T, U, Y}
18 B D U M Q
19 C E J N T n �→ {A, C, D, E, F, H, M, O, P, Q, S, T}
20 C E J U O

Fig. 113. Encryptions of /ation/ , 1st generatrix

Methodically, the attack of De Viaris and Friedman and in particular the
variant of Givierge try to find many small islets which can be enlarged into
archipelagos, which in turn can be merged into continents, and so on.

14.3.4 Transitive cryptosystems. As noted above, the general De Viaris
attack does not presuppose the alphabets to be monocyclic. We can now
see clearly that both binary coincidence exhaustion (Sect. 14.2) and non-
coincidence exhaustion (Sect. 14.1) are special cases where the cryptotext
character sets associated with a plaintext character are formed systematically.
In order to avoid mishits, the smaller the associated crypto character sets are,
the better for the decryptor. On the other hand, for this reason the general
De Viaris attack breaks down if each of the associated sets is the full crypto-
text vocabulary. A cryptosystem with this defensive property we shall call
transitive. Necessarily then the number of alphabets is greater than or equal
to N . The Bazeries cylinder of 20 disks violated this condition. M-138-A
from the USA used 30 strips, and it should be expected that the alphabets
were always selected (out of 50 or 100) to give a transitive cryptosystem.

If the number of alphabets equals N , then for a transitive MULTIPLEX cryp-
tosystem the alphabets of N characters each form a Latin square (Sect. 7.5.4).
The 26 alphabets attributed to Mauborgne (Sect. 7.5.4, Table 3) are (almost)
constructed this way. Equivalently, for each pair of plaintext and cryptotext
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characters the corresponding key is even uniquely determined. But this is
just the condition characterizing a Shannon cryptosystem (Sect. 2.6.4).

14.3.5 Famous French cryptologists. The French Marquis Gaëtan Henri
Léon de Viaris (gallicized di Lesegno) was born on February 13, 1847 at
Cherbourg, son of a captain of artillery. At age 19, De Viaris entered the
famous École Polytechnique, at age 21 he went to sea; later he became prefect
of police and finally infantry officer. His interest in cryptology arose around
1885; he first made his reputation inventing a printing cipher machine. He
was, after Babbage, the first to use mathematical relations in cryptology,
namely when characterizing linear substitutions in a series of articles in 1888.
In 1893 he wrote the cryptanalytic essay L’art de chiffrer et déchiffrer les
dépêches secrètes which made him famous. In 1898, he also published a
commercial code. He died on February 18, 1901.

Marcel Givierge was Major and assistant to Colonel Cartier when he started
in 1914, after the outbreak of the First World War, to build up the decryp-
tion bureau of the French General Staff. In 1925, when his book Cours de
Cryptographie was published, he was Colonel; later he was promoted General.
Not without pride he remarked that one mot probable was worth quintillions
of trials.

Under Givierge worked Major Georges-Jean Painvin, a genius of a decryptor
who had studied paleontology and after the war became an important tycoon.

14.3.6 Rohrbach. One of the few cases in the 20th century of an enlight-
ening and open report on successful professional cryptanalysis is due to the
peculiar situation after the end of the Second World War, when the FIAT Re-
view of German Science was written. In the series on applied mathematics,
Hans Rohrbach reported on cryptology, and this included details of break-
ing the ‘American Strip Cipher O-2’, as Rohrbach calls it, a variant of the
M-138-A for the diplomatic service of the US State Department in Berne,
Stockholm and Madrid, which was accomplished in the German Sonderdi-
enst Dahlem of the Auswärtiges Amt. In 1979, a quite detailed report, writ-
ten in the second half of 1945, was published for the first time. It comprised
the work of the mathematicians Werner Kunze, Hans Rohrbach, Anneliese
Hünke, Erika Pannwitz, Hansgeorg Krug, Helmut Grunsky, and Klaus Schultz
—not to forget the linguists Hans-Kurt Müller, Asta Friedrichs, Annemarie
Schimmel, Joachim Ziegenrücker, and Ottfried Deubner. The work started
in November 1943 with collecting and sorting a rich legacy of cryptotexts,
mainly addressed to or sent from the US Embassy in Berne, Switzerland
(where Allen W. Dulles, Office of Strategic Services (O.S.S.), Chief of the US
espionage network O.S.S.(S.I.) in Europe, was stationed), which showed
(1) frequent parallels, including longer ones, but never longer than 30 char-
acters and frequently of length 15,
(2) frequent parallels between messages of the same day, but never in two
messages of different days in the same month,
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(3) no parallels between two messages, if one was before and the other after
August 1, 1942 .
The conclusion was that after 15, sometimes after 30 characters a change
in the encryption was made, that the password was changed daily, and that
on August 1, 1942 a more fundamental change in the encryption system
was made. This allowed the working hypothesis of a polyalphabetic mono-
graphic encryption of period 15. The encryption system used was unknown
to Rohrbach, but it was known that the US cryptologists had a liking for
cylinder and strip ciphers. However, even so, Rohrbach did not have the al-
phabets. It was therefore not possible to start with a plain De Viaris attack.
Further studies using Hollerith punch card machines showed that
(4) if the messages were broken into blocks (‘Zeilen’) of 15 characters, all
repetitions of at least 8 characters appeared vertically in the same columns.
This confirmed the assumption of a polyalphabetic monographic encryption
of period 15; moreover from stereotyped repetitions (‘From Murphy’, ‘Strictly
Confidential’) at the beginning of the messages it could be deduced that
no letter could represent itself, and that the same plaintext in the same
position would give cryptotexts without coincidences. This all focused the
suspicion onto a polyphonic encryption with monocyclic alphabets, as done
by a cylinder or strip cipher, and not by a machine. Thus, 15 or 30 alphabets
had to be determined for each day.
But the legacy was rich, with a daily average of 15 messages, each with 40
blocks of 15 characters. These blocks had to be grouped in ‘families’ encryp-
ted with the same set of alphabets, presumably selected from a supply of more
than 15, in the same order. Moreover, the blocks had to be grouped in classes
according to the generatrix to which they belonged. Once the blocks were
coordinated in this way, the cryptanalysts dealt with monoalphabetic en-
cryptions. With massive use of Hollerith punch card machines and of special
equipment built by Krug, the coordination proceeded in small steps of form-
ing ‘nuclei’; for this task they used the Chi test (Chapter 16, Sect. 18.2.5).
The most voluminous class (‘Class III’) finally comprised 3000 blocks, grouped
into 25 families of between 60 and 150 blocks. For the reconstruction of the
alphabets finally they used the probable word fragments /tion/ and /ation/,
supported by the bigram triplets /in/, /an/, /on/ and /in/, /an/, /un/ .
Rohrbach describes vividly the process of crystallization in this task. After
about one year, the undertaking ran under its own power. Class III was first
worked out fully and its 2×15 strips determined. Some of these strips oc-
curred in other classes, too; for example, 18 in Class I. In the end, Rohrbach’s
group found out that 50 strips altogether had been used—we know today that
this corresponds to the facts. The classical De Viaris method then gave the
selection and order of the strips belonging to the daily passwords, of which
40 were identified.
Thus, all messages encrypted with ‘O-2’ could be read. To speed it up, Kunze
even had a semiautomatic device built for the changing of the lines in a search
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for the right generatrix. Unfortunately for the German side (and for the
Finns, who also read the US State Department ciphers), fortunately for the
Anglo-American one, shortly after full use could be made of the results of the
break, the State Department changed in mid-1944 to the more modern and
secure SIGTOT machines with individual keys, provided by the US Army.
By September 1944 the well was dry. Moreover, the efficiency of Sonderdienst
Dahlem was suffering under Allied bombing. Then, the Russian army came
closer and closer to its evacuation site in Silesia. Towards the end, it moved
to a castle in Thuringia, and was transported to Marburg when the Western
Allies left Thuringia. Meanwhile, the Forschungsamt of the Reichsluftfahrt-
ministerium, Göring’s eavesdropping agency, was not much better off.
The Japanese tried also to break the CSP-642, but not very successfully.
Friedman had armored it against a De Viaris and Givierge attack, and only
a non-coincidence exhaustion of probable word positions was feasible. How
well the Russians managed is unknown.

14.4 Zig-Zag Exhaustion of Probable Word Position

Some methods use a probable word to reconstruct the key, which is only possi-
ble, of course, if plaintext and cryptotext determine the key uniquely (Shan-
non cryptosystems, Sect. 2.6.4). This is trivially so with monoalphabetic
encryption, even if polygraphic with a large width. It is also the case with
polyalphabetic encryptions having a key group (Sect. 9.1.1). Most prominent
representatives are all linear substitutions, where the key—be it periodic or
not—can be simply calculated by subtraction provided the alphabetic order is
known. This possibility was studied in 1846 by Babbage for VIGENÈRE and
BEAUFORT encryptions. Among the non-linear substitutions that obey the
Shannon condition, ALBERTI encryptions and PORTA encryptions bring no
complications provided the reference alphabets are known.
It is doubly dangerous to use a meaningful keytext in a common language.
If for a polyalphabetic Shannon cryptosystem—periodic or not—the encryp-
tion steps are known, then the possible positions of a probable word in the
plaintext are those that give reasonable keytext fragments; they can be ex-
haustively determined.
In this case, however, the role of plaintext and keytext can also be exchanged.
In a meaningful keytext there is most likely also a probable word that gives
a reasonable plaintext fragment.
As an example, we assume the cryptotext

B A W I S M E WO O P G V R S F I B B T J T WL H WWA H T M J V B

has been encrypted over Ÿ26 with VIGENÈRE steps. As a probable word
in the keytext we assume the frequent word THAT which holds rank 7 in
the frequency list for English. Exhausting the positions of this word in the
keytext gives the following fragments of plaintext,

itwp hpiz dbst plml zfed txwv lpov dhow vhpn ... dtha hatt ,
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among which the eighth, the last but one, and the last one look promising.
Guessing now that dhow can be continued dhowever results in the prolonged
key fragment THATCANB . The last two fragments dtha and hatt overlap
and are mutually exclusive, but it will turn out that dtha is the right one.
On the plaintext side, words can be guessed, too; e.g., should leads to

JTIOHJ , IPUYBB , EBESTT, QLYKLL , ... ,
where the third position fits. Thus should and dhowever overlap to form to-
gether shouldhowever , corresponding to EBESTTHATCANB . Extended to
THEBESTTHATCANBE , this gives a plaintext extension that fits and reads
itshouldhoweverb , which in turn suggests an extension to itshouldhoweverbe
and so on.
Such a zig-zag interplay will frequently result in a complete decryption
(Friedman 1918); in the given example plaintext and keytext read as follows
(compare the quotations in the introduction to Part II ):

i t s h o u l d h o w e v e r b e e mp h a s i z e d t h a t c r y
T H E B E S T T H A T C A N B E E X P E C T E D I S T H A T T H E D

Nonperiodic keytext does not prevent zig-zag exhaustion; what matters is
that both the keytext and the plaintext have clearly more than 50% redun-
dancy.

14.5 The Method of Isomorphs

Encryptions based on rotated alphabets also suffer from the defect that the
alphabets may not form a Latin square. Thus, an avenue of attack is opened.
14.5.1 Knox and Candela. This can be demonstrated by the method of
isomorphs for breaking ROTOR encryptions, used as early as 1937 (if not ear-
lier) by Dillwyn Knox in a break of the Italian ENIGMA without plugboard
and later against Franco in Spain, but described in the open literature1 only
in 1946 by Rosario Candela. The method of isomorphs was called rodding
(‘cliques on the rods’) or méthode des bâtons by the French; its existence was
the main reason for the introduction (as early as 1930!) of the plugboard
in the Reichswehr ENIGMA. In the 1936–1939 Spanish Civil War, Italian
and Franco forces used the ENIGMA without plugboard—the Italian Navy
even as late as in 1941—and the method of isomorphs, originally discovered
for the ENIGMA C by Hugh Foss around 1927, served the cryptanalytic ef-
forts of the British (Knox, 1937), the French and, according to Rohrbach,
the German sides. In 1939, Colonel Tiltman solved the Swiss ENIGMA K.
Assume the polyalphabetic substitution is of the form (pi plaintext character,
ci cryptotext character)

1 Knox, in 1938/1939, gave the essence of his experience with the unsteckered ENIGMA
and his unsuccessful attacks on the Wehrmacht ENIGMA to Turing, who summarized
in his Treatise on the Enigma (the ‘Prof’s book’, about 1940) the ‘long and complicated
hand process’ (Mahon) under the heading ‘The Saga’.
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(∗) ci = pi Si U S−1
i

with known alphabets Si, whose order is known, too—the unknown key is
the starting index of the sequence and possibly U . With the isomorphic
(Sect. 2.6.3) sequences ciSi and piSi , i.e.,

ciSi = piSi · U ,

ciSi is the monoalphabetic image of piSi under U .

In general, two arbitrarily chosen sequences are not isomorphic: the sequences
(a l l e . . .) and (g a n g . . .) are not isomorphs, because, e.g., the pairs (l,a) and
(l,n) , as well as the pairs (a,g) and (e,g) , are contradictory (they ‘scritch’).

Cryptanalysis needs for a given probable word p=(pi, pi+1, . . . pi+k) a suit-
able index i such that the sequences pS =(piSi, pi+1Si+1, . . . pi+kSi+k) and
cS =(ciSi, ci+1Si+1, . . . ci+kSi+k) are isomorphs. Contradictions lead to an
exclusion of the index. Among the suitable indexes is certainly the right
one, if the probable word occurs; the longer the probable word is, the fewer
mishits are to be expected.

The precondition (∗) above is fulfilled in the case (bo) of Sect. 7.2.2 with
Si = ρ−i . This situation occurs specifically with the commercial machines
ENIGMA C and ENIGMA D without plugboard, with 3 rotors and fixed or
movable reflectors (Sect. 7.3.2, where the plugboard T is the identity), with

Si = S(i1,i2,i3) =ρ−i1 RN ρi1−i2 RM ρi2−i3 RL ρi3

as soon as all rotors used are explored—this is so with a commercial ma-
chine anyhow—and their order is known (in the worst case, for a 3-rotor
ENIGMA there are six orders of the rotors to be tested). Moreover, U is self-
reciprocal in the ENIGMA case; this leads to some further possibilities of
‘scritching’ and the exclusion of an index, i.e., a rotor position, as well as to a
positive confirmation of a suitable index by the appearance of a self-reciprocal
substitution. The possibility of mishits is reduced; the self-reciprocal charac-
ter of the ENIGMA helps the decryptor.

Moreover, thanks to the regularity (Sect. 8.4.4) of the ENIGMA rotor move-
ment it is normally not necessary to test all 263 = 17 576 or 264 = 456 976
rotor alphabets. It usually suffices to consider only the 26 positions of the fast
rotor RN lying between two steps of the medium rotor RM . The two other
rotors remain fixed for the while and form together with U a pseudo-reflector

U ′
i = U ′

(i2,i3)
= ρ−i2 RM ρi2−i3 RL ρi3 · U · ρ−i3 R−1

L ρi3−i2 RM ρi2 .

With S′
i =S(i1) =ρ−i1 RN ρi1 : ciS

′
i = piS

′
i · U ′

(i2,i3)
.

14.5.2 Method. For the practical performance of the method of isomorphs
there exists again a strip method, the strips (‘rods’) carrying the columns
of the rotated alphabets. Following an example by Deavours and Kruh, the
following probable word is to be compared with a fragment of the cryptotext:

r e c o n n a i s s a n c e
U P Y T E J O J Z E G B O T
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e T

Fig. 114. c O

Method of isomorphs with rods (méthode des bâtons) n B

a G L P

s E M Y F Z

s Z W K E G B G

i J E D X L J V N Y

a O S L J P F D D R R N

n Z S J O F K T U I Z O U X

n E V Z O D Y B C W Q C L K H D

o T E Y Y M Y I F N H J N Y P U M X

c Y W J J G L R F J X R B O J K S B G C

e P W L X D K V Q L X B M U X I T O F T N D

r U Y P X F F I C R K S M G W H J P A R K I O V

M C G Z F B U J H O R T W A C M N Q S E E S W A

L H E I V G U N Q B B K S B C W W G Q Y H J L Y L U

U A F W J C R Y Q R N G X U A Q W I B N D N R D M S H Q

R H B S D H O N N U J A J B P M B M C O I J X K U X E C

N Z N P Z I K X J H T W N T L J C P U W C G D L J Y A G

X O R L L A U D T M A I Q I I F U C Z L J C W T F Q K J

E Y U V P F B X A G S M D S E P Z H T H K M X I C V R W

W E H C S Z T C S N H P I Y O W T B P E S T P E Y P J B

L Y M U F V I D H O R C C S V O P I B A H L U B I L Y V

V D G J K H S V R W X H J X N D B J F K D A O X P X I C

B E N T E L Y A X L R B K Y C N F R I R A K K H H B O D

V W O Z L O S U R H W I S Q M T I G V J W Q W O W E I L

A B W T M B X Q W E X J H V S N V C A Y G K A G G R N A

B V L Y U G Y C X A P R D P M S A Z U I N P D V M W O W

T R H Z J A Q G P K U G A L R T U V B O F Q Q F G Q G T

Y D E R F H V J U R O C W X S L B F C I U I V L L X L P

S H A W C I P W O J K Z G B K Q C M K N E N P F M Y F Z

O K K Q Y Q L B K Y W V N E P K K E Z O K H W K E G B G

A X R M I F X V W I A F F R J G Z T V G E D X L J V N Y

E C J Y P B B C A O D M U W F S V D S L J P F D D R R N

H W Y C H Y E D D I Q E E Q R W S J O F K T U I Z O U X

U D I F W U R L Q N V T K X V Z O D Y B C W Q C L K H D

Z E O S G E W A V O P D E Y Y M Y I F N H J N Y P U M X

T M I X M L Q W P G W J J G L R F J X R B O J K S B G C

A B N R G D X T W L X D K V Q L X B M U X I T O F T N D

B X O Y L S Y P X F F I C R K S M G W H J P A R K I O V

→ J U G Z M C G Z F B U J H O R T W A C M N Q S E E S W A

Y Q L H E I V G U N Q B B K S B C W W G Q Y H J L Y L U

U A F W J C R Y Q R N G X U A Q W I B N D N R D M S H Q
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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The test is to be made with the rotor I of the Wehrmacht ENIGMA, the
columns are given in Sect. 7.3.5 . Plaintext word and cryptotext fragments are
formed with the ‘rods’. The confrontation is character by character, as shown
in Fig. 114 . In each line, except the one denoted by the arrow, there are
contradictions (one of them is always marked by bold type). For example,
in the first full line, the pairs A Q and H Q as well as B N and D N violate
injectivity; the pairs R Y and R D violate uniqueness of the encryption step;
and the pairs X U and U A , U A and A Q , F W and W I , A Q and Q R ,
Q R and R D , H Q and Q R , B N and N G , D N and N G violate the self-
reciprocal property. On the other hand, in the line denoted by the arrow,
there are the 2-cycles (J U) , (M C) , (S E) and the self-reciprocal property is
not even once violated; this single hit gives the following pair of isomorphs:

j g m g f u h r w c n s e w
U Z C Z B J O T A M Q E S A

Thus, rotor I is confirmed as ‘fast’ rotor RN . Moreover, the 14 pairs of entry
and exit characters define already nine 2-cycles of the pseudo-reflector U ′

(i2,i3)
,

namely (A W) , (B F) , (C M) , (E S) , (G Z) , (H O) , (J U) , (N Q) , (R T) . The
method obviously does not require very long probable words.
From a prefabricated catalogue with 2× 262 = 1352 entries of all U ′

(i2,i3)
the

position and order of the two rotors II and III serving for RM and RL can
be determined. With such an indicator setting the decryption can be carried
through on an ENIGMA replica. The method is characterized as ‘meet in
the middle’. Switzerland, like other small nations, used ENIGMAs without a
plugboard (of course with changed rotor wiring) during (and partly after) the
Second World War (US codename INDIGO). With the help of prefabricated
catalogues, the Germans thus read all their news. On the British side, Mavis
Lever was an expert in rodding, she used it in 1940 and 1941 against the
Italian Navy and was instrumental in helping the British fleet win the battle
of Matapán. According to Hugh Alexander, Alan Turing even had a machine
built (the ‘click machine’) for doing the rodding mechanically. It needed
8-letter cribs.

14.5.3 Investigation in two parts. The analysis above is based on the
assumption that the medium rotor RM , given the shortness of the probable
word, does not move. If it does, however, then on the hiatus the pseudo-
reflector is changed, and the investigation decomposes into two parts, without
becoming essentially more difficult. In the Wehrmacht ENIGMA, there is
even the advantage that the position of the notch and thus the ring-setting
is disclosed (in the commercial ENIGMA, the notch was fixed to the rotor,
and for each rotor the position of the notch was known). If there are two
isomorphic texts (c′, p′) and (c′′, p′′) before and after the hiatus, then some
2-cycles of the pseudo-reflector U (1) before and some 2-cycles of the pseudo-
reflector U (2) after the hiatus are known; this helps to find the position and
order of the medium rotor RM . For U ′

(i2,i3,i4)
this reduces the volume of the

catalogue to 2 × 262 = 1352 entries. All this is within easy reach.
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An example (Deavours 1980) may illustrate this: We seek to investigate the
following pair of a (rather long) probable word and a cryptotext fragment:
g e n e r a l f e l d m a r s c h a l l k e s s e l r i n g
L Z H X B T F W U I O V B C A R X S N C V Z Y X N E H F W B

We assume that the investigation of the fragment g e n e r a l at the key
letters Q ...W has given a hit and two isomorphs, which can be continued
for the key letters X, Y, Z (but not any further) and completed in this way
reads
e x o v l y l x r u
M R H F D T D R X G

i.e., the 2-cycles (E M), (R X), (H O), (F V), (D L), (T Y), (G U) are parts
of U (1) . The remaining text is to be linked up with key letters A ... J , which
turns out indeed to give a hit and yields the two isomorphs

b d a q r w r l j b s p f q c o b o o z
N R W X D A D J L N M Y H X I E N E E T

and the 2-cycles (B N), (D R), (A W), (Q X), (J L), (S M), (P Y), (F H),
(C I), (E O), (T Z) as parts of U (2) . The two sets have in common the
eleven characters D, E, F, H, L, M, O, R, T, X, Y .
For the rotor that is supposed to be the medium rotor the following table of
rotated P -alphabets is assumed:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A L W F T B A X J D S C K P R Z Q Y O E H U G M I V N
B O M X G U C B Y K E T D L Q S A R Z P F I V H N J W
C X P N Y H V D C Z L F U E M R T B S A Q G J W I O K
D L Y Q O Z I W E D A M G V F N S U C T B R H K X J P
. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

For the eleven common characters D, E, F, H, L, M, O, R, T, X, Y there result
the following tables of U (1) and U (2) images:
U (1): a b c d e f g h i j k l m n o p q r s t u v w x y z

l m v o d e h x y r t

A K P G Z T B J I V O H
B D L V S G U Y N J Z F
C U E J R Y H C I O S Q
D G V H N O Z E X J C B
. . . . . . . . . . . .. . . . . . . . . . . .

U (2): a b c d e f g h i j k l m n o p q r s t u v w x y z
r o h f j s e d z q p

A O Z J A S E B T N Y Q
B Z S Y C E P U G W R A
C S R C V L A H Y K B T
D C N E I A T Z O P U S
. . . . . . . . . . . .. . . . . . . . . . . .

Comparing now A of U (1) and B of U (2) , we find the common letter
Z in the line A under h, in the line B under d :

a b c d e f g h i j k l m n o p q r s t u v w x y z
A K P G Z T B J I V O H
B Z S Y C E P U G W R A
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However, in the corresponding cutting from the table of rotated P -alphabets
a b c d e f g h i j k l m n o p q r s t u v w x y z

A L W F T B A X J D S C K P R Z Q Y O E H U G M I V N
B O M X G U C B Y K E T D L Q S A R Z P F I V H N J W

isomorphism is violated. Thus, this rotor position ‘scritches’.
Comparing on the other hand B of U (1) and C of U (2) , one finds
the letter L in the line B under e , in the line C under l ,
the letter V in the line B under f , in the line C under h ,
the letter S in the line B under h , in the line C under d ,
the letter Y in the line B under o, in the line C under r :

a b c d e f g h i j k l m n o p q r s t u v w x y z
B D L V S G U Y N J Z F
C S R C V L A H Y K B T

Compared with the corresponding cutting from the table of rotated P -alpha-
bets,

a b c d e f g h i j k l m n o p q r s t u v w x y z
B O M X G U C B Y K E T D L Q S A R Z P F I V H N J W
C X P N Y H V D C Z L F U E M R T B S A Q G J W I O K

there is agreement in all cases (with Y for S, U for L, C for V, S for Y). Thus,
we have an isomorphism and this rotor position is a hit; the characterizing
position of the notch of the medium rotor is found. Practically, this deter-
mination of the rotor position can also be performed with rods carrying the
lines of the table of rotated P -alphabets.

14.5.4 Pluggable reflector. A variant of the method allows one to
determine all 2-cycles of an unknown reflector U . This became necessary
for the Allies, when in early 1944 the Germans from time to time used a
‘pluggable’ reflector in the Luftwaffen-ENIGMA (see Sect. 7.3.3). Now, the
method of isomorphs is carried through for all 263 = 17 576 initial indexes,
with suitable probable words. This was not feasible manually and required
special machines. The relay machine AUTOSCRITCHER (workable 1944)
and the electronic machine SUPERSCRITCHER (workable 1946)2 were built
in the USA by the F Branch of the Army Signal Security Agency under the
command of Colonel Leo Rosen.

14.5.5 Opposing the steckering. The plugboard ruins the method of
isomorphs, because the unknown plugboard connection (‘steckering’) veils
the probable plaintext word. Now, it is necessary to find repeated pairs of

2 Scritch is a dialect variant of screech. In the open literature, the words scritch, scritchmus
were used without detailed explanation, e.g., by Derek Taunt (1993) when describing
the atmosphere of the work at Bletchley Park with reference to the duties of Dennis
Babbage, mentioning also the pluggable reflector. The origin of the term is therefore
to be sought in Britain. David J. Crawford and Philip E. Fox reported in 1992 that
they built the AUTOSCRITCHER and SUPERSCRITCHER, but were not informed
about the cryptanalytic background. Recent work by Cipher A.Deavours (1995) has
established the connection with the method of isomorphs.
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plaintext and corresponding cryptotext characters. Each group of such pairs
is mapped under the plugboard substitution into a group of corresponding
characters from two isomorphs. Isomorphism requires that the groups are not
split when all rotor positions are tested. The machines AUTOSCRITCHER
and SUPERSCRITCHER were designed to carry out this task, too. The US
Navy’s DUENNA and the British GIANT were related.
A manual procedure (‘Hand-Duenna’) was described in 1944 by C. H. O’D.
Alexander (now contained in the ‘Fried Reports’ of the U.S. Army liaison).

14.6 A Clever Brute-Force Method: EINSing

For progressive polyalphabetic encryption with a known sequence of known
alphabets, all that is needed is to bring the alphabets in phase with the
cipher text. For not too long periods, this can be easily mechanized by
prefabricating a catalog with the cryptotext equivalents of a very frequent
short word, like in German /der/, /und/, /die/, etc., or a word often used
in the circumstances, like the German numeral /eins/. For example, the 26
positions of the single rotor I of the Wehrmacht ENIGMA (see Sect. 7.3.12)
encipher /eins/ as follows:

A L Y F F
B F L U X
C B Q Q M
D N K NW
E R R J C
F U S TW
G H A A B
H M P S C
I G L H U
J N I R Z
K O E X T
L WO R P
M L VWB
N H N X F
O E C P I
P AMU V
Q K S O A
R RMK U
S J RWB
T Y S A C
U I K D K
V O P Q Z
W I J V V
X N F P S
Y O RWO
Z G V X Y

AMU V P
B Q Q M C
E C P I O
F L U X B
G L H U I
G V X Y Z
H A A B G
H N X F N
I J V V W
I K D K U
J RWB S
K S O A Q

−→ L VWB M
L Y F F A
M P S C H
N F P S X
N I R Z J
N K NW D
O E X T K
O P Q Z V
O RWO Y
RMK U R
R R J C E
U S TW F
WO R P L
Y S A C T

and lead to the following
catalogue in alphabetic order

For the cryptotext fragment UYPMMBMDYLVWBHZB, four-letter groups a
are to be looked up successively in the catalogue and there is at the thir-
teenth trial the hit LVWB with key letter M . Entering the complete
cryptotext fragment UYPMMBMDYLVWBHZB into the table of rotated al-
phabets in Sect. 7.3.12 (Fig. 115) reveals the plaintext which turns out to
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read /nummerzwoeinsaqt/ ; the surrounding of /eins/ makes sense and thus
gives confirmation.

The method was applied by Turing for the 17576 rotor positions of the 3-rotor
plus reflector Wehrmacht ENIGMA to decipher the remaining signals of a
day, after one signal was broken and thus the wheel order and steckering of
this day were known.

Turing had chosen /eins/ as a probable word when he found in his deci-
phered naval traffic of five days in November 1938 that /eins/ occured in
about 90% of all messages. Another test word used was /krkr/, indicating
a priority message. The British started in 1940 using this method, called
EINSing, and finally even machines, the ‘drag grenades’, for mechanizing it
were built by the US Navy, allowing arbitrary cribs of four letters or less, e.g.,
frequent words like /der/ or /und/, and also camouflaged priority tokens,
like /bine/ or /muke/ .

a b c d e f g h i j k l m n o p q r s t u v w x y z
A E K M F L G D Q V Z N T O W Y H X U S P A I B R C J
B J L E K F C P U Y M S N V X G W T R O Z H A Q B I D
C K D J E B O T X L R M U W F V S Q N Y G Z P A H C I
D C I D A N S W K Q L T V E U© R P M X F Y O Z G B H J n
E H C Z M R V J P K S U D T Q O L W E X N Y© F A G I B u
F B Y L Q U I O J R T C S P© N K V D W M X E Z F H A G m
G X K P T H N I Q S B R O M© J U C V L W D Y E G Z F A m
H J O S G M© H P R A Q N L I T B U K V C X D F Y E Z W e
I N R F L G O Q Z P M K H S A T J U B© W C E X D Y V I r
J Q E K F N P Y O L J G R Z S I T A V B D W C X U H M© z
K D© J E M O X N K I F Q Y R H S Z U A C V B W T G L P w
L I D L N W M J H E P X Q G R Y© T Z B U A V S F K O C o
M C K M V L© I G D O W P F Q X S Y A T Z U R E J N B H e
N J L U K H F C N V© O E P W R X Z S Y T Q D I M A G B i
O K T J G E B M U N D O V Q W© Y R X S P C H L Z F A I n
P S I F D A L T M C N U P V X Q W R O B© G K Y E Z H J s
Q H© E C Z K S L B M Z O U W P V Q N A F J X D Y G I R a
R D B Y J R K A L S N T V O U P M Z© E I W C X F H Q G q
S A X I Q J Z K R M S U N T O L Y D H V B© W E G P F C t
T W H P I Y J Q L R T M S N K X C G U A V D F O E B Z
U G O H X I P K Q S L R M J W B F T Z U C E N D A Y V
V N G W H O J P R K Q L I V A E S Y T B D M C Z X U F
W F V G N I O Q J P K H U Z D R X S A C L B Y W T E M
X U F M H N P I O J G T Y C Q W R Z B K A X V S D L E
Y E L G M O H N I F S X B P V Q Y A J Z W U R C K D T
Z K F L N G M H E R W A O U P X Z I Y V T Q B J C S D

Fig. 115. Method of EINSing for decrypting UYPMMBMDYLVWBHZB

14.7 Covert Plaintext-Cryptotext Compromise

The probable word methods have the aim of recovering the plaintext. A
plaintext-cryptotext compromise does not need this, although in fortunate
cases it gives the chance to recover the key and thus far more than just
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one plaintext. Technically, all methods that work for probable words are
applicable, and comfortably long words can be chosen.
It can be suspected (or hoped—depending on what side one takes) that direct
plaintext-cryptotext compromises3 are not too frequent. But there are indi-
rect ones, where the plaintext has been obtained by decryption and one is now
confronted with a cryptotext obtained by encryption of the same plaintext
with another cryptosystem. There are many kinds of negligence and stupid-
ity that can lead to such a situation, which starts out as a harmless-looking
cryptotext-cryptotext compromise.
There is an immense number of possible ways that such a compromise can
occur. One can be found in the organizational problems of key supply. A radi-
cal change in the cryptosystem cannot always be carried through smoothly
and it may happen that a message, still sent in the old key, is repeated in
the new key. How serious this danger is can be judged from the proverb:
“The risk that a cryptosystem is broken is never greater than at the end of
its lifetime.” Erich Hüttenhain reported that between 1942 and September
1944 a number of so-called CQ signals (‘call to quarters’, signals of general
interest), sent from the State Department in Washington to its diplomatic
outposts, were read by the Germans. The CQ strip sets for the M-138 were
identical for all embassies. Thus, once the cipher was broken, a compromise
was almost bound to happen when a transition to new strip sets was made.
Moreover, for many methods used in practice, as soon as the system is
known a plaintext-cryptotext compromise is particularly dangerous because
even the key is exposed and thus a deep break into the cryptosystem is
possible. Hüttenhain concluded in retrospect (1978) that no encryption
method should be used that is susceptible to plaintext-cryptotext compro-
mise (,,Es dürfen also keine Chiffrierverfahren verwendet werden, die gegen
Klar-Geheim-Kompromisse anfällig sind“). In combination with Kerckhoffs’
maxim, Hüttenhain’s maxim excludes many beloved classical cryptosystems;
it excludes all those having the Shannon property (see Sect. 2.6.4).
Errors are bound to happen everywhere. Kahn remarked to this “the Ger-
mans had no monopoly on cryptographic failure. In this respect the British
were just as illogical as the Germans”. He could have added ‘the Americans’.

3 The verb ‘to compromise’ means, according to Merriam-Webster’s, among other things
‘to put in jeopardy, to endanger by some act that cannot be recalled, to expose to some
mischief’. In cryptology, the use of the word ‘compromise’ has this particular flavor.
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We can only say that the decryptment
of any cipher even the simplest will at times

include a number of wonderings.
Helen Fouché Gaines 1939

Decryption as discussed so far, based on patterns, uses the common skeleton
of the language underlying the plaintext. The decryption strategy to be
discussed now uses the internal organs, different from one natural language
to another. It aims at the stochastic laws of the language, particularly at
character and multigram frequencies. This aspect of cryptography goes back
to a manuscript of the Arab philosopher Jaakub Ibn Ishak al-Ki.nd̄ı (about
800–870) and was published by Leone Battista Alberti (De Cifris, 1466). A
theoretical explanation of the stability of character frequency goes back to
Ferdinand de Saussure (1857–1913), published in 1916.
First of all, there is the obvious

Invariance Theorem 2: For all simple transpositions,
frequencies of the individual characters in the text are invariant.

15.1 Exclusion of Encryption Methods

Theorem 2 can be used negatively to exclude transpositions—namely if the
cryptotext shows individual character frequencies which are definitely not
those of the presumed language of the plaintext. But caution is also advised.
For example, data on technical measurements may well have frequencies dif-
ferent from those of usual natural languages.

15.1.1 An example. The cryptotext
F D R J N U H V X X U R D MD S K V S O P J R K Z D Y F Z J
X G S R R V T Q Y R WD A R W D F V R K V D R K V T D F S Z
Z D Y F R D N N V O V T S X S A WV Z R

shows R, D, V, S as the most frequent characters, while B, C, E, I, L are
very rare, indeed they are missing. It cannot be obtained from an English,
German, French, or Italian plaintext by transposition. In fact, it is a simple
substitution, see Sect. 13.3.1 .

15.1.2 A counterexample. On the other hand, it cannot be excluded
that the cryptotext (Sect. 12.5, Table 7)

S A E WS H R C N U O D K L N E L I A S H N C I O N B N N A
A K I H M C WN Z A MC G I M I H E E N N A U F K N N C T I
T I H MD R T E WO A T A I M T A L K B U E A F Z L N U S E
A S D E N .....
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with E and T among the most frequent individual characters and with V, P, J,
Q, X and Y missing originated from transposition of a German text.

15.1.3 Plausible reasoning. Theorem 2 is also used (logically inadmissi-
bly) in the sense of plausible reasoning: If the frequency distribution of the in-
dividual characters is that of some natural language, then presumably trans-
position has happened. The naive argument is: What else—which other pro-
cedure would leave invariant the frequency distribution of the individual char-
acters? This may be plausible if one is sure that nobody would have taken the
trouble to devise an encryption completely different from transposition, which
leaves the frequency distribution invariant, but this is no proof and a judge-
ment could not be based on it. In fact, a homophonic polygraphic substitu-
tion, say a code, can easily be made to imitate prescribed character frequen-
cies. W. B. Homan described in 1948 a coding method that gives all characters
equal frequencies (‘equifrequency cipher’). The same is achieved with strad-
dling by Shannon’s and Huffman’s redundancy-eliminating ‘optimal’ coding.
Such tricks, however, will not dupe the professional unauthorized decryptor
for long. Nevertheless, in 1892 the great Bazeries, attempting to break a
message seized from a group of French anarchists, was delayed for a fortnight
because he was misled by six nulls adjoined to the beginning and to the
end, and by several rare letters sprinkled into the message. In fact, it was
a VIGENÈRE with period 6, otherwise a triviality for Étienne Bazeries.
It may have been a mistake to adjoin just as many letters as the period
was, but maybe he could not imagine such a stupidity. Part of the deadly
message, by the way, read: La femme et lui sont des mouchards, s’il m’arrive
quelque chose, songe à les supprimer [He and the woman are spies; if anything
happens to me, take care to let them disappear].

15.2 Invariance of Partitions

Partitions are to this chapter what patterns were to Chapter 13: the abstract
vehicle for the invariance of frequencies. A partition is a decomposition of a
natural number M into a sum of natural numbers mi ,

M = m1 + m2 + m3 + . . . + mN .
To every text of length M there belongs a partition of M , namely the number
of occurrences of the N individual characters in the text with the vocabulary
ZN . Zeros are usually suppressed, thus the text /monoalphabetic/
has the partition 14 = 2+2+1+1+1+1+1+1+1+1+1+1 .
Therefore, we speak of a partition of the number of characters in the text.
There is a fundamental theorem parallel to Theorem 1 (Sect. 13.1):

Invariance Theorem 3: For all monoalphabetic, functional simple
substitutions, especially for all monoalphabetic linear simple substitu-
tions (including CAESAR additions and reversals),
partitions of the individual characters in the text are invariant.



292 15 Anatomy of Language: Frequencies

The monoalphabetic encryption of the text /wintersemester/ by functional
simple substitutions, whatever they may be, consists of 4 specimens of some
character, 2 specimens of some other character, 2 specimens of some third
character and so on. The partition is 4+2+2+2+1+1+1+1 and is invariant.
Given the encryption

Z L Q W H U V H P H V W H U

and assuming that the unauthorized decryptor knows the frequencies of cer-
tain plaintext letters, namely /e/ four times, /r/ twice, /s/ twice, /t/ twice,
/i/ once, /m/ once, /n/ once, /w/ once, then he would know that

H =̂ e , {UVW} =̂ {r s t} , {LPQZ} =̂ {i m n w} .
and has a polyphonic decryption (bold-faced letters)

i i i ir r r r r rm m m ms e s s e e s s e sn n n nt t t t t tw w w w

In fact, the unauthorized decryptor knows a little bit less, for he knows
the frequencies of all the plaintext letters only approximately. According
to the inherent rules of a language, each character χi appears only with a
certain probability pi (from a ‘stochastic source’ Q), such that the frequency
mi = Q[χi] of its occurrence is close to M · pi , with M = ΣN

i=1mi.

a b c d e f g h i j k l mn o p q r s t u v w x y z

Fig. 116. Frequency profile, English language

a b c d e f g h i j k l mn o p q r s t u v w x y z

Fig. 117. Frequency profile, German language
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15.3 Intuitive Method: Frequency Profile

To arrive at an intuitive method of decrypting monoalphabetic substitutions,
it is recommended to visualize the ‘frequency profile’ of the language under
consideration.
In the English language (Fig. 116), the frequency profile shows a marked e-
peak and a somewhat smaller a-peak. There is also the marked elevation, of
the r-s-t ridge, and two smaller ones, the l-m-n-o ridge and the h-i ridge.
In the German language (Fig. 117), the frequency profile is rather similar,
but the e-peak is more marked, there is a wider r-s-t-u ridge, and a wider
f-g-h-i ridge. Both languages show a j-k depression and a p-q depression and
a very marked v-w-x-y-z lowland.
The discrepancies between any of the major European languages, like French,
Italian, or Spanish, are no greater than those between English and German.
In the Romance languages, the a-peak is more marked and there is an isolated
i-peak. At a glance, they are rather alike.

15.3.1 CAESAR. For a transposition, a frequency count gives a profile
close to that of the language under consideration. But also a monoalphabetic
simple linear substitution (see Sect. 5.5) with h = 1, a CAESAR addition, is
detected at first glance:

Invariance Theorem 4: For all CAESAR additions,
the frequency profile of the text is simply cyclically shifted.

The cryptotext of M = 349 characters

H V Z D U V F K R Q G X Q N H O D O V L F K L Q E R Q Q D Q

N D P L F K C Z D Q J P L F K P H L Q H D Q N X Q I WQ L F

K WP L W G H U D X WR P D W L N D E O D X I H Q C X O D V

V H Q G L H V L F K L Q I X H Q I MD H K U L J H P X Q WH

U Z H J V V H L Q K H U D X V J H E L O G H WK D WE D K Q

V WH L J WU H S S H U X Q W H U E D K Q V WH L J WU H S

S H U D X I U H L V H WD V F K H D E V WH O O H Q I D K U

N D U WH D X V G H U P D Q W H O WD V F K H Q H K P H Q U

H L V H W D V F K H D X I Q H K P H Q I D K U N D U WH D E

J H E H Q C X P C H L WX Q J V V WD Q G D E H Q G C H L W

X Q J H Q N D X I H Q Q D F K G U D X V V H Q J H K H Q X Q

G H L Q W D A L K H U D Q Z L Q N H Q

has the frequency profile shown in Fig. 118. Obviously, the encryption is a
CAESAR addition with a shift by 3 . (The decrypted text is from a novel by
Heinrich Böll.)

15.3.2 Warning. But note that Theorem 4 cannot be reversed: A cycli-
cally shifted frequency profile is compatible with a composition of a transpo-
sition and a CAESAR addition.
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1 0 5 36 9 10 9 54 9 10 21 23 1 8 8 10 41 3 4 0 19 22 24 18 0 4

A B C D E F G H I J K L M N O P Q R S T U V WX Y Z

Fig. 118. Frequency profile for the cryptotext Böll of Sect. 15.3.1

15.3.3 Another warning. The method may be misleading under excep-
tional circumstances, e.g., with the following cryptotext of 175 characters:

V Q P O U T K T K B I K T C B N H P K O H U P T I P X Z P V

I P X B C V O D I P G C S K H I U Z P V O H G P M L T E K E

G K O E B D I B N Q K P O B N B O X K U I C P Z T B O E H K

S MT P G I K T P X O B N B O P G T P E P N K O U K O H B O

E I B Q Q Z K O E K WK E V B MK U Z U I B U Z P V U I K T

E S B X O U P I K N B T K T B G MZ U P B T V H B S C P X M

The frequency profile (Fig. 119) shows a considerable deviation from that
in Figs. 116 or 117. One could think of an exotic language. The suspicion
that the encryption is also a CAESAR addition (over Z25) with a shift by 1 :
“upon this basis i am going to show you .....”—is raised by the strip method
of Sect. 12.7 , which already gives ‘upon’ for the first four characters without
reasonable doubt. The breakdown of the frequency-oriented intuitive method
comes from the fact that the frequencies of the characters are distorted: the
text is a lipogram taken from Gadsby (see Sect. 13.3.2, Fig. 102).

0 18 5 2 9 0 6 7 12 18 1 5 6 15 20 4 0 4 11 11 7 1 6 0 7

A B C D E F G H I K L M N O P Q R S T U V WX Y Z

Fig. 119. Frequency profile for the cryptotext of Sect. 15.3.3

15.4 Frequency Ordering

For a monoalphabetic simple linear substitution with h = −1 (especially
for a reversal) the frequency profile is simply right-left reflected. For values
of h different from 1 and −1 and for non-linear simple substitutions, the
frequency profile is useless: the letter neighborhoods are torn. Naive intuition
uses the frequency ordering in this case: The most frequent character in the
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cryptotext should correspond to the most frequent letter of the language
under consideration. After removing this cryptotext and plaintext character
pair, the procedure is repeated until all characters are exhausted and all the
encryption steps are established.

15.4.1 Drawbacks of frequency ordering. Theoretically, the method
should work, at least for sufficiently long texts—sufficiently long would mean
that the few lipograms that may exist would also be submerged in the mass of
‘normal’ texts. But the example given in Sect. 15.2, leading to a polyphonic
situation even if the true frequencies of the plaintext letters are known, shows
a fundamental limitation of this procedure: There may be cryptotext letters
of the same frequency, and the choice is then non-deterministic.
Moreover, even long texts normally show considerable fluctuations of char-
acter frequencies. ‘The’ frequency distribution of English is a fiction, and
at best the military, diplomatic, commercial, or literary sublanguages show
some homogeneity; indeed even the same person may speak a different lan-
guage depending on the circumstances. Correspondingly, statistics on letter
frequencies in different languages are quite variable. Moreover, most of the
older counts were based on texts of only 10 000 or fewer letters. For the
frequency ordering there are already great differences in the literature:
For the English language:

eaoidhnrstuycfglmwbkpqxz (E. A. Poe 1843)
etaoinshrdlucmfwypvbgkqjxz (O. Mergenthaler 1884)
etoanirshdlcfumpywgbvkxjqz (P. Valério 1893)
etaonisrhldcupfmwybgvkqxjz (H. F. Gaines, O. P. Meaker 1939)
etoanirshdlcwumfygpbvkxqjz (L. D. Smith 1943)
etoanirshdlufcmpywgbvkxzjq (L. Sacco 1951)
etaonirshdlucmpfywgbvjkqxz (D. Kahn 1967)
etaonrishdlfcmugpywbvkxjqz (A. G. Konheim 1981)
etaoinsrhldcumfpgwybvkxjqz (C. H. Meyer, S. M. Matyas 1982)

For the French language:
eusranilotdpmcbvghxqfjyzkw (Ch. Vesin de Romanini 1840)
ensautorilcdvpmqfgbhxyjzkx (F. W. Kasiski 1863)
esriantouldmcpvfqgxjbhzykw (A. Kerckhoffs 1883)
easintrulodcpmvqfgbhjxyzkw (G. de Viaris 1893)
enairstuoldcmpvfbgqhxjyzkw (P. Valério 1893, M. Givierge 1925)
eaistnrulodmpcvqgbfjhzxykw (H. F. Gaines 1939)
etainroshdlcfumgpwbyvkqxjz (Ch. Eyraud 1953)

For the German language:
enrisdutaghlobmfzkcwvjpqxy (Ch. Vesin de Romanini 1840)
enirsahtudlcgmwfbozkpjvqxy (F. W. Kasiski 1863)
enirstudahgolbmfzcwkvpjqxy (E. B. Fleissner von Wostrowitz 1881)
enritsduahlcgozmbwfkvpjqxy (P. Valério 1893)
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enrisatdhulcgmobzwfkvpjyqx (F. W. Kaeding 1898)
enritsduahlcgozmbwfkvpjyqx (M. Givierge 1925)
enirstudahgolbmfczwkvpjqxy (A. Figl 1926)
enirsadtugholbmcfwzkvpjyqx (H. F. Gaines, J. Arthold 1939)
enristudahglocmbzfwkvpjqxy (L. D. Smith 1943)
enritsudahlcgozmbwfkvpjqxy (L. Sacco 1951)
enisrtahduglcofmbwkzvpjyqx (Ch. Eyraud 1953)
enisratduhglcmwobfzkvpjqxy (W. Jensen 1955)
enisratdhulcgmobwfkzpvjyxq (A. Beutelspacher 1987)
enirsatdhulgocmbfwkzpvjyxq (F. L. Bauer 1993, SZ3-92)

Reliable figures for Italian, Spanish, Dutch, and Latin can be found in the
book by André Lange and E.-A. Soudart, 1925.
For the first dozen or so letters there exist pretty mnemonic strophes, like

English: etaoinshrdlu (LINOTYPE)
French: esarintulo (Bazeries, Givierge)
German: enirstaduhl (Hüttenhain)
Italian: eiaorlnts (Sacco)

The frequency distribution in English was reflected already in the length
of the Morse code symbols of telegraphy—Morse counted the letters in the
type-case of a printer’s shop in Philadelphia and found: 12000 /e/, 9000 /t/,
8000 /a/, /i/, /n/, /o/, /s/, 6400 /h/. For technical reasons, the frequency
distribution of letters in English also influenced the arrangement on the key-
board of the type-setting machine LINOTYPE (Figure 120) of Ottmar Mer-
genthaler (1854–1899).

e s c v x

t h m b z

a r f g fi

o d w k fl

i l y q ff

n u p j ffi

Fig. 120.
Original keyboard
of the LINOTYPE
(Ottmar Mergenthaler 1884)

15.4.2 Frequency counts. For the German language, in 1898 the stenog-
rapher F. W. Kaeding (1843–1934) made an extensive frequency count. For
the purpose of stenography he studied texts comprising altogether 20 million
syllables and thus had 62 069 452 letters (with ä, ö, ü replaced by ae, oe, ue).
We can presume that this count is large enough to avoid bias.
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The frequency ordering mentioned above is based on this count. If we con-
fronted it with the frequency ordering for the cryptotext Böll in Sect. 15.3.1
(Fig. 118), putting letters with the same frequency in alphabetic order, we
obtain the decryption table

54 41 36 24 23 22 21 19 18 10 10 10 9 9 9 8 8 5 4 4 3 1 1 0 0 0

H Q D W L V K U X F J P E G I N O C S Z R A M B T Y

e n r i s a t d h u l c g m o b z w f k v p j y q x .

Decrypting the beginning of the cryptotext Böll ,

H V Z D U V F K R Q G X Q N H O D O V L F K L Q E R Q Q D Q ,

with this table produces a totally unacceptable plaintext:

e a k r d a u t v n m h n b e z r z a s u t s n g v n n r n .

Taking the cryptotext letters of equal frequency in a different order does not
improve the situation. In fact, the decryption table is obtained by counting
backwards three letters and reads

H Q D W L V K U X F J P E G I N O C S Z R A M B T Y

e n a t i s h r u c g m b d f k l z p w o x j y q v ,

so the true decryption has only e and n correct and reads

e s w a r s c h o n d u n k e l a l s i c h i n b o n n a n .

15.5 Cliques and Matching of Partitions

Figure 121 shows that in the example above the true frequency ordering dif-
fers considerably from the one based theoretically on probabilities: there are
local permutations, where /r/ and /v/ jump by 5 positions, and /d/, /l/,
and /o/ by 6. Others jump only by one or two—but whether large or small,
every crossover ruins the right association of plaintext and cryptotext char-
acters. Only a few letters—among others /e/ and /n/ —are paired correctly.
Certainly, the shortness of the cryptotext Böll is responsible for fluctuations,
but not completely, as we shall see in a moment.

e n a t i s h r u c g m b d f k l z p w o x j y q v

e n r i s a t d h u l c g m o b z w f k v p j y q x

Fig. 121. Confrontation between observed frequencies and probability based frequencies

There is no fully automatic decryption on the basis of frequency ordering.
The reason is that even longer texts show fluctuations, and the empirically
determined probabilities fluctuate as well. This leads to crossovers in the
frequency order.
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Fig. 122. Fluctuations of the frequency of the individual letters in newspaper German
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15.5.1 Fluctuations. In fact, not only the frequency order, but also the
individual frequencies given in the literature show deviations. We therefore
investigated the fluctuations that are to be expected in German texts of
100, 1 000, 10 000, and 100 000 characters. A typical result is given in Figure
122 (the dotted line gives the mean frequency). The text basis of 681 972
characters was a collection of all political commentaries taken from a daily
newspaper in March 1992 (henceforth called SZ3-92). It clearly shows the
overlapping of the fluctuation regions and how it decreases, the longer the
text is. The fluctuation itself decreases roughly with the square root of the
length of the text, as Figure 123 shows for the letter /e/.
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100 1000 10000 100000 681972

Fig. 123. Fluctuations of the frequency of the letter /e/ in German
depending on the length of the text

Specifically, we made the experiment of confronting the frequency order of
Meyer-Matyas (Sect. 15.4.1) with a rather long English text of 29 272 char-
acters (taken from this book), whose letter frequencies are given in Fig. 124.

3879 2697 2240 2151 2133 2082 1910 1907 1415 1095 1035 995 780
e t a n o i r s h d l c m

765 719 687 620 551 469 404 277 230 101 55 45 30
u f p y g w b v k x z q j

Fig. 124. Frequency distribution in an English text of 29 272 characters

Figure 125 shows the resulting confrontation. There are fewer crossovers, but
there are still some. We could not expect, even for a 100 000-letter crypto-
gram, to make substitutions by simply following a good frequency table and
be absolutely sure of coming out with the correct solution.

e t a n o i r s h d l c m u f p y g w b v k x z q j

e t a o i n s r h l d c u m f p g w y b v k x j q z

Fig. 125. Confrontation between (above) observed frequencies in an English text
of 29 272 characters and (below) probability-based frequencies (Meyer-Matyas)
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If the long English text is subjected to a simple substitution and then de-
crypted by means of a confrontation of the observed and the probability-based
frequency orderings, a fragment of it reads as follows:

i v e s t h e c e o t m s n e r c s g p t i d i w g h a r c i d d e c t

e l a t s e a r m s g i f e x p e s n e o c e r e v e o t h e i p e o d

n t e s a t m s e r h i y r t h n r t h e r e e x p e s n e o c e r o i

s u a d d g r c a t t e s e l c a o b e c i o c e o t s a t e l n o t i

a f e y u a x n u r f i s c s g p t i w s a p h n c y i s k n o p a s t

It cannot be read fluently, and only after fixing an irritating 3-cycle between
/i/, /o/, and /n/, and a 2-cycle between /r/ and /s/, can it serve as a rough
decrypt. The true text (see the beginning of Sect. 11.2) is:

o v e r t h e c e n t u r i e s c r y p t o l o g y h a s c o l l e c t

e d a t r e a s u r y o f e x p e r i e n c e s e v e n t h e o p e n l

i t e r a t u r e s h o w s t h i s t h e s e e x p e r i e n c e s n o

r m a l l y s c a t t e r e d c a n b e c o n c e n t r a t e d i n t o

a f e w m a x i m s f o r c r y p t o g r a p h i c w o r k i n p a r t

15.5.2 Cliques. Rather than working with a frequency ordering of char-
acters, it is preferable to work with an ordering of ‘equifrequency’ cliques of
characters that are hard to separate on account of their frequencies.

For the English language there is a decomposition of the set of letters into
cliques, essentially given by Laurence Dwight Smith in 1943:

{etaoin} {srh} {ld} {cumfpgwyb} {vk} {xjqz} ,
or somewhat more finely decomposed,

{e} {t} {aoin} {srh} {ld} {cumf} {pgwyb} {vk} {xjqz} ,
which can be further decomposed for long and ‘normal’ texts into

{e} {t} {ao} {in} {srh} {ld} {cu} {mf} {pgwy} {b} {v} {k} {xjqz} .

For the German language too there exists a decomposition of the set of letters
into cliques, essentially given by André Lange and E.-A. Soudart in 1925:

{e} {nirsatdhu} {lgocmbfwkz} {pvjyxq} ,
or somewhat more finely decomposed, as clearly suggested by Figure 122

{e} {n} {irsat} {dhu} {lgocm} {bfwkz} {pv} {jyxq} ,
which can be further decomposed for long and ‘normal’ texts into

{e} {n} {ir} {sat} {dhu} {lgo} {cm} {bfwkz} {pv} {jyxq} .

With interactive computer support, an exhaustive procedure is indicated,
which treats the cliques one after another. In particular, if the decomposition
is fine enough to allow cliques of two or three elements, the exhaustive effort
is feasible.
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{e} {t} {a} {noi} {rs} {h} {dl} {c} {mufp} {ygw} {b} {v} {k} {xzqj}

{e} {t} {aoin} {srh} {ld} {cumf} {pgwyb} {vk} {xjqz}

Fig. 126. Confrontation of the cliques

For the example of the long English text (Fig. 125), the actual clique and
below one of the standard cliques from above are confronted in Figure 126 .
In this case, the rough decryption was still rather good because the cliques
did not overlap too much and there was a clear gap between /a/ and /n/,
between /s/ and /h/, and between /c/ and /m/. In such cases only a few
exhaustive trials are necessary.

15.5.3 Example. For the short cryptotext Böll of Sect. 15.3.1 with the fre-
quencies in Figure 118 no such fine decomposition into cliques will work.
54 H and 41 Q suggest H =̂ e and Q =̂ n , but in view of the next frequencies
36 D, 24 W, 23 L, 22 V, and 21 K, it cannot be expected that the cliques {ir}
and {sat} are separated. But D is well separated and it looks tempting to set
D=̂ i . This would leave {rsat} confronted with {WLVK}, which means 4!=24
trials. Unfortunately, none of these give reasonable texts. In fact, the next
two frequencies 19 U and 18 X are so close that a crossing-over into the clique
{dhu} might be responsible. This would mean that 8!=40 320 trials were to
be made, which is outside the reach of exhaustion.

{H} {Q} {D} {L U V W K X} {G O J F P E I N} {R Z C S} {Y M B A T}

{e} {n} {i r} {s a t} {d h u} {l g o} {c m} {b f w k z} {p v} {j y x q}

Fig. 127. Confrontation of the cliques for the cryptotext Böll of Sect. 15.3.1

Figure 127 shows the confrontation of the cliques. Obviously, for short texts
mechanical decryption on the basis of individual letter frequencies does not
work. At least, other stochastic peculiarities of language must be taken into
account, like bigram frequencies. This will be studied in Sect. 15.7 .

15.5.4 Empirical frequencies. For the English language, Table 9 gives
empirical relative frequencies µi = mi/M , the result of a count by Meyer-
Matyas, based on 4 000 000 characters in a corpus of everyday English. Solo-
mon Kullback pointed out in 1976 that the genre of communications gives rise
to strong fluctuations, and diffentiates ‘literary English’ with a frequency for
/e/ of 12.77% from ‘telegraphic English’ with a frequency for /e/ of 13.19% .
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For the German language, the text basis SZ3-92 with a total of M = 681 972
characters gives results which are likewise tabulated in Table 9 .
The numerical values in Table 9 may serve as a hypothetical probability
distribution of a stochastic source.

character English German character English German

a 8.04% 6.47% n 7.09% 9.84%
b 1.54% 1.93% o 7.60% 2.98%
c 3.06% 2.68% p 2.00% 0.96%
d 3.99% 4.83% q 0.11% 0.02%
e 12.51% 17.47% r 6.12% 7.54%
f 2.30% 1.65% s 6.54% 6.83%
g 1.96% 3.06% t 9.25% 6.13%
h 5.49% 4.23% u 2.71% 4.17%
i 7.26% 7.73% v 0.99% 0.94%
j 0.16% 0.27% w 1.92% 1.48%
k 0.67% 1.46% x 0.19% 0.04%
l 4.14% 3.49% y 1.73% 0.08%
m 2.53% 2.58% z 0.09% 1.14%

Table 9. Hypothetical character probabilities of a stochastic source
in English and in German

For the German language, the frequency of /e/ is skewed by the crypto-
graphic custom of decomposing /ä/, /ö/, /ü/ into /ae/, /oe/, /ue/ .
George K. Zipf and Benôıt Mandelbrot have published empirical formulas for
the relative frequency of the k-th letter which fit many languages astonish-
ingly well, namely

p(k) ∝ 1/k and p(k) ∝ 1/(k + c)m for suitable positive c, m .

The actual values for the English language are shown graphically in Figure
128. A convincing theoretical explanation has not been given.

......................................................................................................

•

•
• • • • • • •

• •
• • • • • • • • • • • • • • •

e | t | a o | i n |s r h | l d |c u |m f | p g w y |b |v |k |x j q z ‘English’

Fig. 128. Relative frequencies of characters in the English language (Meyer-Matyas count)
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15.6 Optimal Matching

15.6.1 Squared distance. The frequency deviation between a given text
T with M characters and an expected text TQ of equal length from a stochas-
tic source Q can be measured by the squared distance d(T, TQ),

d(T, TQ) =
∑N

i=1(mi − M · pi)2 .

Here pi denotes the probability for the appearance of the i-th character χi

(i = 1 . . . N) in the stochastic source Q, mi the frequency of χi in the text
T , where

∑N
i=1 mi = M .

Let σ be a permutation on the cryptotext characters. The value of
dσ = dσ(T, TQ) =

∑N
i=1(mi − M · pσ(i))2

measures the concordance between the cryptotext T with the observed fre-
quencies mi and a cryptotext expected under the permutation σ from the
stochastic source Q ;

minσ dσ = minσ

∑N
i=1(mi − M · pσ(i))2

characterizes a permutation achieving optimal concordance, which therefore
is a candidate for the decryption. Because of fluctuations, permutations
bringing dσ close to the minimum are also candidates for correct decryption,
but with increasing dσ they become less and less interesting.

15.6.2 Minimization. Obviously
∑N

i=1 p2
σ(i) =

∑N
i=1 p2

i and thus

min
σ

N∑
i=1

(mi − M · pσ(i))2 =
N∑

i=1

m2
i + M2

N∑
i=1

p2
i − 2M max

σ

N∑
i=1

mi · pσ(i) .

To find candidates for decryption, it therefore suffices to consider the follow-
ing maximum:

max
σ

N∑
i=1

mi · pσ(i)

Theorem: Assume mi ≥ mi+1 for all i .∑N
i=1 mi · pσ(i) is maximal, if and only if pσ(i) ≥ pσ(i+1) for all i .

Proof : Since every permutation can be expressed as a chain of swaps of two
elements, it suffices to investigate the contribution of a swap of two elements
χj , χk to the sum. Then

mj · pσ(j) + mk · pσ(k) ≥ mj · pσ(k) + mk · pσ(j) if and only if
(mj − mk) · (pσ(j) − pσ(k)) ≥ 0 , i.e., if and only if pσ(j) ≥ pσ(k) . 
�

The result, that the optimal concordance is reached by matching in the fre-
quency ordering, is supplemented by the strategy of finding other candidates
for the decrypting permutation by swaps of pairs of characters χj , χk such
that each time

(mj − mk) · (pσ(j) − pσ(k))
is minimal.
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15.6.3 Example. We assume the probabilities pi of Table 9 and investigate
the CAESAR encrypted text Böll of Sect. 15.3.1 (with the frequencies mi in
Fig. 118, M = 349). Using a decryption σ0 according to the frequency order
of Table 9 (German), there results for

∑N
i=1 mi · pσ(i) a maximal value,∑N

i=1 mi · pσ0(i) = 2634.56% = M · 7.5489% .

If D=̂ i , W=̂ r is swapped to D=̂ r , W=̂ i , which corresponds to the frequency
order of Kaeding, then the value is slightly diminished by
(36−24)·(7.73%−7.54%) = 2.28% = M · 0.0065 to become∑N

i=1 mi · pσ1(i) = 2632.28% = M · 7.5424% .
For the correct decryption σ∗, we even obtain a value with a larger deviation∑N

i=1 mi · pσ∗(i) = 2585.95% = M · 7.4096% .

Value of
∑N

i=1 m2
i in this example: 9347 = M2 · 7.6740% ,

Value of M2
∑N

i=1 p2
i according to Table 9 : 9275.7162 = M2 ·7.6155% ,

Value of M ·
∑N

i=1 mi · pσ0(i) : 9194.6144 = M2 · 7.5489% ;
Value of dσ0(T, TQ) =

∑N
i=1(mi− M · pσ0(i))

2 : 233.4874 = M2 · 0.1917% .

Mimimizing dσ(T, TQ) does not give the correct decryption σ∗ !

.a .b .c .d .e .f .g .h .i .j .k .l .m .n .o .p .q .r .s .t .u .v .w .x .y .z

a. 1 32 39 15 10 18 16 10 77 18 172 2 31 1 101 67 124 12 24 7 27 1

b. 8 58 6 2 21 1 11 6 5 25 19

c. 44 12 55 1 46 15 8 16 59 1 7 1 38 16 1

d. 45 18 4 10 39 12 2 3 57 1 7 9 5 37 7 1 10 32 39 8 4 9 6

e. 65 11 64 107 39 23 20 15 40 1 2 46 43 120 46 32 14 154 145 80 7 16 41 17 17

f. 21 2 9 1 25 14 1 6 21 1 10 3 2 38 3 4 8 42 11 1 4 1

g. 11 2 1 1 32 3 1 16 10 4 1 3 23 1 21 7 13 8 2 1

h. 84 1 2 1 251 2 5 72 3 1 2 46 1 8 3 22 2 7 1

i. 18 7 55 16 37 27 10 8 39 32 169 63 3 21 106 88 14 1 1 4

j. 2 4 4

k. 28 8 3 3 2 1 3 3

l. 34 7 8 28 72 5 1 57 1 3 55 4 1 28 2 2 2 12 19 8 2 5 47

m. 56 9 1 2 48 1 26 5 3 28 16 6 6 13 2 3

n. 54 7 31 118 64 8 75 9 37 3 3 10 7 9 65 7 5 51 110 12 4 15 1 14

o. 9 18 18 16 3 94 3 3 13 5 17 44 145 23 29 113 37 53 96 13 36 4 2

p. 21 1 40 7 8 29 28 26 42 3 14 7 1 2

q. 20

r. 57 4 14 16 148 6 6 3 77 1 11 12 15 12 54 8 18 39 63 6 5 10 17

s. 75 13 21 6 84 13 6 30 42 2 6 14 19 71 24 2 6 41 121 30 2 27 4

t. 56 14 6 9 94 5 1 315 128 12 14 8 111 8 30 32 53 22 4 16 21

u. 18 5 17 11 11 1 12 2 5 28 9 33 2 17 49 42 45 1 1 1

v. 15 53 19 6

w. 32 3 4 30 1 48 37 4 1 10 17 2 1 3 6 1 1 2

x. 3 5 1 4 1 4 1 1

y. 11 11 10 4 12 3 5 5 18 6 4 3 28 7 5 17 21 1 3 14

z. 5 2 1 1

Table 10. Bigram frequencies (in %%) in English (after O.Phelps Meaker)
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15.7 Frequency of Multigrams

Even more than frequencies of individual characters, multigram frequencies
imprint a language. Their importance is illustrated by

Invariance Theorem 3(n): For all monoalphabetic, functional simple
substitutions, especially for all monoalphabetic linear simple substitu-
tions (including CAESAR additions and reversals),
partitions of n-grams within the text are invariant.

15.7.1 Frequency tables. According to the theorem, the frequency of
n-grams in a cryptotext can be used for decryption, too. However, for N =26
there are already 676 bigrams and 17 576 trigrams; only in rather long crypto-
texts will enough bigrams and trigrams be found, and in short texts even
bigrams are quite rare, therefore the influence of fluctuations is substantial.
Cryptanalysis of monographic encryptions on the basis of bigrams alone in-
stead of single characters does not bring great advantage.
The frequencies of bigrams (as indicated by Tables 10, 11) and trigrams are
even more unbalanced than those of single characters. The 19 most frequent

.a .b .c .d .e .f .g .h .i .j .k .l .m .n .o .p .q .r .s .t .u .v .w .x .y .z

a. 8 31 27 11 64 15 30 20 5 1 7 59 28 102 4 51 53 46 75 2 3 1 2

b. 16 1 1 101 3 1 12 1 9 1 8 9 6 4 14 1 1 1

c. 2 2 1 242 1 14 1 2 1

d. 54 3 1 13 227 3 4 2 93 1 3 5 4 6 9 3 10 11 6 16 3 4 3

e. 26 45 25 51 23 26 50 57 193 3 19 63 55 400 6 13 1 409 140 55 36 14 23 2 1 11

f. 19 2 9 25 12 3 1 7 1 5 1 2 9 1 18 4 20 24 1 1 1

g. 20 3 12 147 2 3 3 19 1 3 9 3 5 6 1 14 18 18 11 4 3 3

h. 70 4 1 14 102 2 4 3 23 1 3 25 11 19 18 1 37 11 47 11 4 9 3

i. 7 7 76 20 163 5 38 12 1 1 12 25 27 168 20 2 17 79 78 3 5 1 5

j. 9 9 2 5

k. 26 1 2 26 1 1 1 7 1 10 1 1 24 1 13 5 14 9 1 1 1

l. 45 7 2 14 65 5 6 2 61 1 7 42 3 4 14 2 2 22 27 13 3 2 3

m. 40 6 1 8 50 4 4 3 44 2 3 4 23 3 15 7 2 10 8 14 4 3 2

n. 68 23 5 187 122 19 94 17 65 5 25 10 23 43 18 10 10 74 59 33 18 29 25

o. 3 8 15 7 25 6 5 9 1 1 3 31 17 64 1 6 50 19 9 3 3 7 1 6

p. 16 3 10 6 2 4 4 11 5 23 1 3 4

q. 2

r. 80 25 9 67 112 18 27 19 52 4 23 18 20 31 30 9 15 54 49 48 12 17 14

s. 36 10 89 20 99 7 13 9 65 2 11 9 12 7 28 22 8 76 116 15 9 10 2 7

t. 57 8 1 35 185 5 10 14 59 2 4 11 9 9 15 3 31 50 23 26 8 21 1 26

u. 3 8 16 5 78 27 8 4 2 3 7 21 119 5 33 48 23 1 3 2 1

v. 3 37 9 43

w. 34 48 36 1 1 17 1 9

x. 1 1 1

y. 1 1 1 1

z. 4 1 1 28 1 11 1 2 1 2 1 7 43 1 9 1

Table 11. Bigram frequencies (in %%) in German (text basis SZ3-92)



306 15 Anatomy of Language: Frequencies

bigrams in English and the 18 most frequent bigrams in German (they com-
prise 92.93% of all bigrams) are presented in Tables 12 and 13; the 98 most
frequent trigrams in English and the 112 most frequent trigrams in German
(they comprise only 52.11% of all trigrams) are presented in Tables 14 and 15 .
Comparing values published in the literature, it is important to know whether
the word spacings are taken into consideration; sometimes (for example, in
Fletcher Pratt 1939) only bigrams and trigrams within words are counted.
The counts show even more fluctuations than those of individual characters,
as can be seen from Tables 12 and 13 . Frequency tables for several other
Indo-Germanic languages have been published by Gaines and Eyraud.
Tables 10 and 11 show at a glance that the matrix of bigram frequencies is
not symmetric. Common bigrams with rare reverses (German Dreher) are
/th/, /he/, /ea/, /nd/, /nt/, /ha/, /ou/, /ng/, /hi/, /eo/, /ft/, /sc/, /rs/ ;

they are useful for the dissolution of cliques. On the other hand, the following
pairs of bigrams show roughly the same frequency:

/er/ - /re/, /es/ - /se/, /an/ - /na/, /ti/ - /it/, /on/ - /no/, /in/ - /ni/,
/en/ - /ne/, /at/ - /ta/, /te/ - /et/, /or/ - /ro/, /to/ - /ot/, /ar/ - /ra/,
/st/ - /ts/, /is/ - /si/, /ed/ - /de/, /of/ - /fo/ .

15.7.2 Word frequencies. Quite interesting are the frequencies of words,
i.e., of multigrams with a space at the beginning and the end. The order of
the most frequent words is

in English: the of and to a in that it is I for as with was his
he be not by but have you which are on or her ,

in German: die der und den am in zu ist daß es ,

in French: de il le et que je la ne on les en ce se son
mon pas lui me au une des sa qui est du ,

in Italian: la di che il non si le una lo in per un mi
io piu del ma se ,

in Spanish: de la el que en no con un se su las los es
me al lo si mi una di por sus muy hay mas .

The only one-letter-words in English are a and I ; two-letter-words include
an at as he be me re we if in is it of on or ox do go no so to up my .

The most frequent words by far in the Indo-Germanic languages are the
non-content words1 (French mots vides, German Formwörter, inhaltsleere
Wörter), namely articles, prepositions, conjunctions, and other auxiliary par-
ticles, in contrast to conceptual words (German Begriffswörter) like substan-
tives, adjectives, and verbs. The 70 most frequent words of the English
language are non-content words, and among the 100 most frequent ones are
only ten conceptual words. Historical nomenclators paid attention to them.

1 In English, non-content words are the only ones not capitalized in headlines.
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Table 10 Kullback Sinkov Eyraud

th 315 156 270 330
he 251 40 257 270
an 172 128 152 167
in 169 150 194 202
er 154 174 179 191
re 148 196 160 169
on 145 154 154 134
es 145 108 115 149
ti 128 90 108 126
at 124 94 127 127
st 121 126 103 116
en 120 222 129 146
or 113 128 108 91
nd 118 104 95 122
to 111 100 95 79
nt 110 164 93 124
ed 107 120 111 125
is 106 70 93 79
ar 101 88 96 83

Table 12. The nineteen most frequent bigrams in English (frequencies in %%)

Table 11 Bauer-Goos Valerio Eyraud

er 409 340 337 375
en 400 447 480 443
ch 242 280 266 280
de 227 214 231 233
ei 193 226 187 242
nd 187 258 258 208
te 185 178 222 178
in 168 204 197
ie 163 176 222 188
ge 147 168 160 196
es 140 181 168
ne 122 117 143
un 119 173 169 139
st 116 124 118
re 112 107 213 124
he 102 117 124
an 102 92 82
be 101 96 104

Table 13. The eighteen most frequent bigrams in German (frequencies in %%)
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the 353

ing 111

and 102

ion 75

tio 75

ent 73

ere 69

her 68

ate 66

ver 64

ter 63

tha 62

ati 59

for 59

hat 55

ers 54

his 52

res 50

ill 47

are 47

con 46

nce 45

all 44

eve 44

ith 44

ted 44

ain 43

est 42

man 40

red 40

thi 40

ive 38

rea 38

wit 37

ons 37

ess 36

ave 34

per 34

ect 33

one 33

und 33

int 32

ant 32

hou 31

men 30

was 30

oun 30

pro 30

sta 30

ine 29

whi 28

ove 28

tin 28

ast 28

der 28

ous 28

rom 28

ven 28

ard 28

ear 28

din 27

sti 27

not 27

ort 27

tho 26

day 26

ore 26

but 26

out 25

ure 25

str 25

tic 25

ame 24

com 24

our 24

wer 24

ome 24

een 24

lar 24

les 24

san 24

ste 24

any 23

art 23

nte 23

rat 23

tur 23

ica 23

ich 23

nde 23

pre 23

enc 22

has 22

whe 22

wil 22

era 22

lin 22

tra 22

Table 14. The 98 most frequent trigrams in English (frequencies in %%)

ein 122

ich 111

nde 89

die 87

und 87

der 86

che 75

end 75

gen 71

sch 66

cht 61

den 57

ine 53

nge 52

nun 48

ung 48

das 47

hen 47

ind 46

enw 45

ens 44

ies 44

ste 44

ten 44

ere 43

lic 42

ach 41

ndi 41

sse 39

aus 36

ers 36

ebe 35

erd 33

enu 33

nen 32

rau 32

ist 31

nic 31

sen 31

ene 30

nda 30

ter 30

ass 29

ena 29

ver 29

wir 29

wie 28

ede 27

ese 27

auf 26

ben 26

ber 26

eit 26

ent 26

est 26

sei 26

and 25

ess 25

ann 24

esi 24

ges 24

nsc 24

nwi 24

tei 24

eni 23

ige 23

aen 22

era 22

ern 22

rde 22

ren 22

tun 22

ing 21

sta 21

sie 21

uer 21

ege 20

eck 20

eru 20

mme 20

ner 20

nds 20

nst 20

run 20

sic 20

enn 19

ins 19

mer 19

rei 19

eig 18

eng 18

erg 18

ert 18

erz 18

fra 18

hre 18

hei 18

lei 18

nei 18

nau 18

sge 18

tte 18

wei 18

abe 17

chd 17

des 17

nte 17

rge 17

tes 17

uns 17

vor 17

dem 17

Table 15. The 112 most frequent trigrams in German (frequencies in %%)

15.7.3 Positions. The frequencies of a letter depend very often on its
position within a word. For example, the letter /e/ in German stands

in first position 7.7%
in second position 21.7%
in third position 16.5%

...
in third from last position 8.8%
in second from last position 7.7%
in last position 15.0%
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15.7.4 Average word length. Although in cryptography word spacing
is suppressed professionally, the average word length is an important charac-
teristic of a language (Table 16). In the German language, word lengths are
distributed as follows:

1 0.05% 5 11.55% 9 3.67% 13 1.40% 17 0.38%
2 8.20% 6 11.66% 10 2.64% 14 0.59% 18 0.16%
3 28.71% 7 6.04% 11 3.24% 15 0.65% 19 0.10%
4 13.49% 8 4.43% 12 2.06% 16 0.32%

15.7.5 Word formation. Vowels and consonants usually alternate. Vow-
els provide the singable sound pattern of any language. In French they can
occur quite accumulated: oüıe, äıeul; even in sequences: j’ai oui dire; less
evident in English: aeon, pious, quoit . Consonants in Arabic languages form
the backbone of writing, and occur accumulated in Slavic languages as well:
czyszczenie (Polish), cvŕčak (Serbo-Croatian), nebezpečenstv́ı (Czech).
Welsh shows strange patterns: in rhy ddrwg (“too bad”), y and w denote vow-
els, Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch is the name
of a railroad station in Wales. In English, words with a 4-consonant sequence
like sixths are very rare, in German Schlacht, schlecht, schlicht, Schlucht are
8-letter words with one vowel only, and words like Erstschlag, herrschst with a
7-consonant sequence can be obtained by composition and grammatical con-
struction. Vowel distances show typical frequences, too: in German (without
spaces)

1 20.77% 5 2.63%
2 25,06% 6 1.03%
3 35.95% 7 0.15%
4 14.75% 8 0.03%

Table 16 gives a comparison of the average word length, the vowel frequency,
the frequency of the five dominant consonants {l n r s t}, and the infrequent
letters for five important languages with a Latin alphabet and for Russian.

average vowel {l n r s t} rare
word length frequency frequency letters

English 4.5 40% 33% j q x z
French 4.4 45% 34% k w
German 5.9 39% 34% j q x y
Italian 4.5 48% 30% j k w x y
Spanish 4.4 47% 31% k w
Russian 6.3 45%

Table 16. Characteristics of word formation

15.7.6 Spacing. For informal ciphers that preserve word spacing and
possibly also punctuation, bigram tables contain also frequencies for letters
at the beginning and the end of a word, and trigram tables contain frequencies
for bigrams at the beginning and the end of a word and for one-letter words.
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If word spacings (and possibly also punctuation marks) are not suppressed,
they should be included in the encryption. Thus, the space may become the
most frequent character. In German, spaces are about as frequent as /e/,
while in English spaces are markedly more frequent than /e/ .
If, as in ‘aristocrats’, spaces are preserved, they are encrypted by themselves
and thus one character is decrypted from the outset. This simplifies an entry
considerably. Experienced amateur cryptologists may sometimes read such
informal ciphers at first glance. “Not infrequently, the cryptogram which
retains its word-divisions can be read at sight ... and this regardless of how
short it may be” (Helen Fouché Gaines, 1939).
In professional cryptology, there are good reasons for using formal ciphers and
discussing them, as we have done. If for technical reasons, as in teletype com-
munication and with an ASCII code, special control symbols are available,
they should be used with discretion and not be mixed with the cryptographic
process—a well-trained and responsible crypto clerk will know this.

15.8 The Combined Method of Frequency Matching

In an attempt to mechanize the decryption of monoalphabetic simple substi-
tutions, particularly in the case of short texts, it may be wise to combine the
information on frequencies of individual characters, bigrams, and possibly
trigrams, in the sense that bigram frequencies are taken into account as soon
as a clique of characters cannot be separated by monogram frequencies, and
trigram frequencies as soon as even bigram frequencies do not separate the
clique. More than trigrams are unlikely to be useful. In case no probable
words are utilized, this is also a cryptotext-only attack, using nothing more
than an assumption as to the underlying natural language.

15.8.1 Example. For the cryptotext of 280 characters (Kahn 1967)
G J X X N G G O T Z N U C O T WMO H Y J T K T A MT X O B

Y N F G O G I N U G J F N Z V Q H Y N G N E A J F H Y O T W

G O T H Y N A F Z N F T U I N Z A N F G N L N F U T X N X U

F N E J C I N H Y A Z G A E U T U C Q G O G O T H J O H O A

T C J X K H Y N U V O C O H Q U H C N U G H H A F N U Z H Y

N C U T W J U WN A E H Y N A F O WO T U C H N P H O G L N

F Q Z N G O F U V C N Z J H T A H N G G N T H O U C G J X Y

O G H T N A B N T O T WG N T H N T X N A E B U F K N F Y O

H H G I U T J U C E A F H Y N G A C J H O A T A E I O C O H

U F Q X O B Y N F G

a frequency count of the letters results in
17 4 13 0 7 17 23 26 5 12 3 2 2 36 25 1 5 0 0 23 20 3 6 9 13 8

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

There is no indication of a shifted frequency profile and a CAESAR addition
can be excluded by a short exhaustive test. The frequency order is:
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36 26 25 23 23 20 17 17 13 13 12 9 8 7 6 5 5 4 3 3 2 2 1 0 0 0

N H O G T U A F C Y J X Z E W I Q B K V L M P D R S

Assume that in the circumstances the plaintext is English. A confrontation
with the frequency order of the English language, as given by Kahn in 1967,

e t a o n i r s h d l u c m p f y w g b v j k q x z

suggests in view of the marked decrease from 17 (for A and F) to 13 (for C

and Y) the cliques {e} {t} {aonirs} . Thus

N =̂ e , H =̂ t and {OGTUAF} =̂ {aonirs} .

Bigram frequencies can be used to separate this clique. Table 17 shows the
relevant segment of a bigram table for the English language (10 000 charac-
ters), Table 18 the bigram count for the present text.

.e .t .a .o .n .i .r .s .h .l .d .u .c
e. 39 80 131 46 120 40 154 145 15 46 107 7 64
t. 94 53 56 111 8 128 30 32 315 12 9 22 6
a. – 124 1 2 172 16 101 67 – 77 15 12 39
o. 3 53 9 23 145 13 113 37 3 17 16 96 18
n. 64 110 54 65 9 37 5 51 9 10 118 12 31
i. 37 88 18 63 169 – 21 106 – 39 16 – 55
r. 148 63 57 54 12 77 18 39 3 12 16 6 14
s. 84 121 75 71 19 42 18 41 30 6 6 30 21
h. 251 22 84 46 2 72 8 3 5 3 1 2 2
l. 72 19 34 28 1 57 2 12 – 55 28 8 8
d. 39 39 45 37 5 57 10 32 3 7 10 8 4
u. 11 45 18 2 33 5 49 42 2 28 11 – 17
c. 55 38 44 59 – 15 7 1 46 16 – 16 12

.N .H .O .G .T .U .A .F .C .Y .J .X .Z
N. – 1 – 5 4 5 5 7 1 – – 1 3
H. 3 2 4 1 2 1 1 – 1 9 1 – –
O. – 4 – 4 7 1 2 1 2 – – – –
G. 4 2 6 2 – – 2 – – – 3 – –
T. 1 4 1 – – 3 3 – 1 – 1 3 1
U. – 1 – 2 4 – – 3 5 – – – 1
A. 1 1 – – 2 – – 4 1 – 1 – 1
F. 3 2 1 2 1 2 – – – 1 – – 1
C. 2 1 4 1 – 1 – – – – 2 – –
Y. 7 – 3 – – – 1 – – – 1 – –
J. – 2 2 – 1 2 – 2 1 – – 3 –
X. 3 – 2 – – 1 – – – 1 – 1 –
Z. 3 1 – 1 – – 1 – – – 1 – –

Table 17. Bigram frequency table for the thirteen most frequent letters in English

Table 18. Bigram count in appropriate order for cryptotext of Sect. 15.8.1
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In Table 17 it can be seen that /a/, /i/ and /o/ avoid contact among them-
selves (they have no ‘affinity’), except for the bigram /io/ . /oi/ is rare. In
Table 18, O, U and A also avoid contact; OA occurs twice while AO does not
occur. This indicates that

O =̂ i , A =̂ o and therefore also U =̂ a .
It fits well that OU becomes /ia/ , which occurs a few times. Moreover, NU,
which would represent /ea/, is frequent, while UN, which is missing, would
represent the rare /ae/. Thus, the large clique is broken, and there remains
only the fragment {GTF}=̂{nrs} , which could even be exhausted.
The argument about contact was based on vowel contact. This is a peculiarity
of the English language. The term ‘vowel-solution method’ to be found in
the English literature (Helen Fouché Gaines, 1939) is accidental and does not
describe a general method. In other languages, vowels have no tendency at
all to avoid contact.
In English (and elsewhere) the consonant /n/ also has contact preferences:
/n/ is regularly preceded by a vowel. This makes T rather than G, F and
something from the next clique {C, Y} a candidate. It can be assumed that

T =̂ n and {GF}=̂{rs} .
Another handle gives /h/: /th/ is very frequent and /he/ and /ha/ are
frequent. The remaining G, F and C show no suitable contacts; this suggests
that Y =̂ h .
Indeed, HY (for /th/) is very frequent, YN (for /he/) and YO (for /ha/) are
frequent.
So far, seven of the ten most frequent characters are tentatively determined
(and one test on {GF}=̂{rs}would decide about two more):

N H U A T O ∗ ∗ Y ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
e t a o n i r s h d l u c m p f y w g b v j k q x z .

15.8.2 Continuation of the example. After this entry, which was a
walk, the solution should move to a trot. Indeed, the partial decryption

G J X X e G G i n Z e a C i n WM i t h J n K n o Mn X i B

h e F G i G I e a G J F e Z V Q t h e G e E o J F t h i n W

G i n t h e o F Z e F n a I e Z o e F G e L e F a n X e X a
F e E J C I e t h o Z G o E a n a C Q G i G i n t J i t i o
n C J X K t h e a V i C i t Q a t C e a G t t o F e a Z t h
e C a n W J a We o E t h e o F i Wi n a C t e P t i G L e
F Q Z e G i F a V C e Z J t n o t e G G e n t i a C G J X h
i G t n e o B e n i n WG e n t e n X e o E B a F K e F h i
t t G I a n J a C E o F t h e G o C J t i o n o E I i C i t
a F Q X i B h e F G

suggests a series of improvements: in the first line Mith means with ,
whence M =̂ w , and JnKnown means unknown , whence J =̂ u , K =̂ k .
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thinW in the second line means thing , whence W =̂ g ; in the fourth line
IethoZ means method , whence I =̂ m , Z =̂ d ; the word intuition fits.
And there are more fragments that can help to find the remaining letters
from the clique {hdlcwum}, namely /l/ and /c/ .

However, the choice between (G, F)=̂(r, s) and (G, F)=̂(s, r) should be made
good first. The occurrence of FG in the second line and the fact, that the
bigram /sr/ is very rare, gives

G =̂ s , F =̂ r

a very good chance. We now have the partial decryption

s u X X e s s i n d e a C i n g w i t h u n k n o w n X i B

h e r s i s me a s u r e d V Q t h e s e E o u r t h i n g
s i n t h e o r d e r n a me d o e r s e L e r a n X e X a
r e E u C me t h o d s o E a n a C Q s i s i n t u i t i o
n C u X k t h e a V i C i t Q a t C e a s t t o r e a d t h
e C a n g u a g e o E t h e o r i g i n a C t e P t i s L e
r Q d e s i r a V C e d u t n o t e s s e n t i a C s u X h
i s t n e o B e n i n g s e n t e n X e o E B a r k e r h i
t t s ma n u a C E o r t h e s o C u t i o n o E mi C i t
a r Q X i B h e r s

Now in the first line suXXess means ‘success’, whence X =̂ c , and deaCing
means ‘dealing’, whence C =̂ l .

Altogether, we now know all but a few rare letters:

N H U A T O F G Y Z C J X I ∗ ∗ ∗ M W ∗ ∗ ∗ K ∗ ∗ ∗
e t a o n i r s h d l u c m p f y w g b v j k q x z .

The resulting text can be read fluently:

s u c c e s s i n d e a l i n g w i t h u n k n o w n c i B

h e r s i s me a s u r e d V Q t h e s e E o u r t h i n g
s i n t h e o r d e r n a me d o e r s e L e r a n c e c a
r e E u l me t h o d s o E a n a l Q s i s i n t u i t i o
n l u c k t h e a V i l i t Q a t l e a s t t o r e a d t h
e l a n g u a g e o E t h e o r i g i n a l t e P t i s L e
r Q d e s i r a V l e d u t n o t e s s e n t i a l s u c h
i s t n e o B e n i n g s e n t e n c e o E B a r k e r h i
t t s ma n u a l E o r t h e s o l u t i o n o E mi l i t
a r Q c i B h e r s

and our procedure gallops along to bring almost by itself B =̂ p , E =̂ f ,
Q =̂ y , V =̂ b . In the third line /rname doers eLera nceca/ causes a
stumble, but then in the sixth-seventh line we read /rigin altex tisve rydes/ ,
i.e., L =̂ v , P =̂ x . All actually occurring letters are determined and only
/j/, /q/, and /z/ remain open.
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During this gallop, we find three encryption errors:
in the third line, the fourth group should read ZB

¯
NFG ;

in the seventh line, the third group should read NV
¯
JHT ; and

in the eighth line, the first group should read OGHY
¯
N .

15.8.3 Final result. If this is not enough to convince a doubtful reader,
then we can also reconstruct the password for the substitution: apart from
the three missing letters, alphabetic ordering of the plaintext letters gives

a b c d e f g h i j k l m n o p q r s t u v w x y z
U V X Z N E W Y O ∗ K C I T A B ∗ F G H J L M P Q ∗ .

The password NEWYORKCITY cannot be overlooked; it also yields for the
non-occuring cryptotext characters R =̂ j , D =̂ q , S =̂ z .
The message in readable form, freed from the three encryption errors (whose
positions are marked by underlining), is worth consideration:

“Success in dealing with unknown ciphers is measured by these four
things in the order named: p

¯
erseverance, careful methods of analysis,

intuition, luck. The ability at least to read the language of the original
text is very desirable, b

¯
ut not essential.” Such is th

¯
e opening sentence

of Parker Hitt’s Manual for the Solution of Military Ciphers.
Colonel Parker Hitt (1877–1971) published in 1916 one of the first serious
books in the USA on cryptology and dealt in this book for the first time with
the systematic decryption of a PLAYFAIR encryption (Sect. 4.2.1). Hitt later
became vice-president of AT&T and president of its cryptological offspring
International Communication Laboratories. Hitt’s sentence states that se-
mantic support is not decisive for the success of unauthorized decryption
and has been understood as encouraging mechanized solution of the labori-
ous part (pure cryptanalysis).
Note that this decryption was carried out solely with frequency considera-
tions, i.e., on the basis of Theorem 3 and Theorem 3(2). Other aids like
pattern finding and probable words were not given a place. More on mixed
methods in Sect. 15.9 .

15.8.4 Matching a posteriori. The correct decryption shows a matching
of the observed bigram frequencies and the expected frequencies based on
the bigram probabilities. This is detailed in Table 19 for the thirteen most
frequent letters after appropriate permutations. It can be interpreted as a way
to break up the monogram cliques and leads to a combinatorial problem. A
simple mechanical procedure for efficient execution of this optimal matching
process is not known.

15.8.5 A different approach. Instead of looking for the plaintext be-
longing to a cryptotext, it is sometimes easier to reconstruct the encryption
alphabet directly, provided it has been generated by a password along the
method of Sect. 3.2.5 . This reconstruction could have been started in the
example above as soon as the first nine letters (including G, F) were found:
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e t a o n i r s h l d u c
e 1.1 2.2 3.7 1.3 3.4 1.1 4.3 4.1 0.4 1.3 3.0 0.2 1.8
t 2.6 1.5 1.6 3.1 0.2 3.6 0.8 0.9 8.8 0.3 0.3 0.6 0.2
a – 3.5 – 0.1 4.8 0.4 2.8 1.9 – 2.2 0.4 0.3 1.1
o 0.1 1.5 0.3 0.6 4.1 0.4 3.2 1.0 0.1 0.5 0.5 2.7 0.5
n 1.8 3.1 1.5 1.8 0.3 1.0 0.1 1.4 0.3 0.3 3.3 0.3 0.9
i 1.0 2.4 0.5 1.8 4.7 – 0.6 3.0 – 1.1 0.4 – 1.5
r 4.1 1.8 1.6 1.5 0.3 2.2 0.5 1.1 0.1 0.3 0.4 0.2 0.4
s 2.4 3.4 4.4 2.0 0.5 1.2 0.5 1.1 0.8 0.2 0.2 0.8 0.6
h 7.0 0.6 2.4 1.3 0.1 2.0 0.2 0.1 0.1 0.1 – 0.1 0.1
l 2.0 0.5 1.0 0.8 – 1.6 – 0.3 – 1.5 0.8 0.2 0.2
d 1.1 1.1 1.3 1.0 0.1 1.6 0.3 0.9 0.1 0.2 0.3 0.2 0.1
u 0.3 1.3 0.5 0.1 0.9 0.1 1.4 1.2 0.1 0.8 0.3 – 0.5
c 1.5 1.1 1.2 1.7 – 0.4 0.2 – 1.3 0.4 – 0.4 0.3

N H U A T O F G Y C Z J X

N – 1 5 5 4 – 7 5 – 1 3 – 1
H 3 2 1 1 2 4 – 1 9 1 – 1 –
U – 1 – – 4 – 3 2 – 5 1 – –
A 1 1 – – 2 – 4 – – 1 1 1 –
T 1 4 1 – – 3 3 – 1 – 1 3 1
O – 4 1 2 7 – 1 4 – 2 – – –
F 3 2 2 – 1 1 – 2 1 – 1 – –
G 4 2 – 2 – 6 – 2 – – – 3 –
Y 7 – – 1 – 3 – – – – – 1 –
C 2 1 1 – – 4 – 1 – – – 2 –
Z 3 1 – 1 – – – 1 – – – 1 –
J – 2 2 – 1 2 2 – – 1 – – 3
X 3 – 1 – – 2 – – 1 – – – 1

Table 19. Expected bigram frequencies and
observed ones after suitable character concordance

U ∗ ∗ ∗ N ∗ ∗ Y O ∗ ∗ ∗ ∗ T A ∗ ∗ F G H ∗ ∗ ∗ ∗ ∗ ∗
a b c d e f g h i j k l m n o p q r s t u v w x y z

There is a gap of two letters between A and F and two letters from
{B, C, D, E} could be squeezed in, while two others would build up the
password. This leads to six cases to be treated exhaustively, the attempt
that henceforth succeeds being

U ∗ ∗ ∗ N E ∗ Y O ∗ ∗ C ∗ T A B D F G H ∗ ∗ ∗ ∗ ∗ ∗
a b c d e f g h i j k l m n o p q r s t u v w x y z

This is a highly speculative method, which nevertheless is intellectually chal-
lenging. The reconstructed password is NEWYORKCITY .
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15.9 Frequency Matching for Polygraphic Substitutions

Polygraphic substitutions can be treated like simple substitutions if the
m-grams are understood as individual characters. Nevertheless, this results
in a large alphabet of Nm characters. But from the 676 bigrams of standard
English normally only some hundred show up (Table 10), from the 17 576
trigrams not many more. m-grams have a markedly biased frequency distri-
bution, facilitating an unauthorized entry.

15.9.1 A reducible case. Special bigram substitutions have peculiar
methods to solve them. A trivial case is encryption with the standard matrix
and permutations for column and row entries:

a m e r i c ...
e AA AB AC AD AE AF ...
q BA BB BC BD BE BF ...
u CA CB CC CD CE CF ...
a DA DB DC DD DE DF ...
l EA EB EC ED EE EF ...
i FA FB FC FD FE FF ...
...

...
...

...
...

...
...

It can be reduced (Sect. 4.1.2) to a monographic 2-alphabetic encryption with
period 2, which is treated in Chapter 17 .

15.9.2 Using a hidden symmetry. PLAYFAIR encryption (Sect. 4.2.1),
once favored even by the British and German armies and also by amateurs,
is not only of limited complexity, but has also a hidden torus symmetry. This
has the following consequence: if a plaintext bigram contains the letter X ,
then the two letters of its encryption are selected among only eight letters,
namely those in the row or in the column of X :

P A L M E L M E P A U H I K Q

R S T O N T O N R S Z V W X Y

B C D F G D F G B C E P A L M
H I K Q U K Q U H I N R S T O

V W X Y Z X Y Z V W G B C D F

Furthermore, the encryption of a reversed bigram is frequently the reversed
encrypted bigram—in fact in all cases where a ‘crossing step’ was applied.
While the bigram frequencies are preserved under PLAYFAIR encryption,
the individual character frequencies are not: there is a tendency for a larger
clique of more frequent and a larger clique of less frequent characters to
develop.
Intuitive attacks against PLAYFAIR are based on the bigram frequencies in
connection with the peculiarities just mentioned. In practice, probable words
are also used. Systematic treatments were first begun in 1916 by Colonel
Parker Hitt, in 1918 by André Langie and in 1922 by W. W. Smith. In the
Second World War, wherever PLAYFAIR was used it was routine solved; for
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example, the modified PLAYFAIR (Sect. 4.2.2) used as a field cipher by the
German Afrika-Korps, fared no better.
The unauthorized decryptor of a polygraphic encryption normally has good
reasons to assume that he knows the position of the multigram hiatus. That
can be an error: If a message encrypted in PLAYFAIR is decorated with an
odd number of initial nulls, the message is out of phase. It is not so much
more difficult to try the two cases, but first one has to have the right idea.

15.10 Freestyle Methods

A clear separation of the methods, as made in this book, serves mainly the
understanding and is indispensible if computer support is to be programmed.
But an interplay of these methods, be it by a human or by a machine, can
increase the efficiency of the attack. Inevitably, experienced cryptanalysts
working ‘manually’ will combine available methods. The literature includes
some pertinent reports by people like Bazeries, Hitt, Friedman—including
amateurs like Babbage who were gifted with imagination.

15.10.1 A famous cryptogram. A particularly nice example has en-
tered the world literature. In 1843, Edgar Allan Poe (1809–1849) wrote a
short mystery story, “The Gold-Bug”, containing an encrypted message and
its solution. The alphabet is a funny hodgepodge made from figures and
other symbols available to the printer—Poe was an homme de lettres. The
cryptotext of 203 letters was like this:2

5 3 ‡ ‡ † 3 0 5 ) ) 6 ∗ ; 4 8 2 6 ) 4 ‡ . ) 4 ‡ ) ; 8 0 6 ∗ ; 4 8 † 8 ¶
6 0 ) ) 8 5 ; 1 ‡ ( ; : ‡ ∗ 8 † 8 3 ( 8 8 ) 5 ∗ † ; 4 6 ( ; 8 8 ∗ 9 6 ∗
? ; 8 ) ∗ ‡ ( ; 4 8 5 ) ; 5 ∗ † 2 : ∗ ‡ ( ; 4 9 5 6 ∗ 2 ( 5 ∗ – 4 ) 8 ¶
8 ∗ ; 4 0 6 9 2 8 5 ) ; ) 6 † 8 ) 4 ‡ ‡ ; 1 ( ‡ 9 ; 4 8 0 8 1 ; 8 : 8 ‡
1 ; 4 8 † 8 5 ; 4 ) 4 8 5 † 5 2 8 8 0 6 ∗ 8 1 ( ‡ 9 ; 4 8 ; ( 8 8 ; 4 (
‡ ? 3 4 ; 4 8 ) 4 ‡ ; 1 6 1 ; : 1 8 8 ; ‡ ? ;

Poe allows Legrand, the hero of the story, to begin with the remark that the
cryptosystem (he calls it ‘cryptograph’) was adequate to the mental power
of Captain Kidd, the bad guy of the story, thus impenetrable for a simple
sailor, although it was ‘a simple species’. Legrand, who boasts about having
solved secret messages a thousand times more complicated, concludes that
according to the geographic circumstances French or Spanish would come
into consideration, but that fortunately the signature ‘Kidd’ clearly points
to English. He also notes the lack of word-division spaces and complains
that this makes the task more difficult. He therefore starts with a table of
individual character frequencies:

33 26 19 16 16 13 12 11 10 8 8 6 5 5 4 4 3 2 1 1

8 ; 4 ‡ ) ∗ 5 6 ( † 1 0 9 2 : 3 ? ¶ – .

2 The numerous reprints and translations are abundant in typographic errors within these
six lines. It can be seen how difficult the work of a printer is, if he lacks the feedback
control of semantics.
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His first assumption is 8 .= e , which is backed by the frequent occurrence of
a double /e/ in English—an argument on bigrams. Then he looks for the
most frequent trigram /the/ , a pattern 123 with 8 at the end. He finds
seven occurrences of ; 4 8 , and therefore assumes ; =̂ t , 4 =̂ h .

“Thus, a great step has been taken.” The entry is achieved. The fifth and the
sixth line, partly decrypted, read:

1 t h e † e 5 t h ) h e 5 † 5 2 e e 0 6 ∗ e 1 ( ‡ 9 t h e t ( e e t h (
‡ ? 3 h t h e ) h ‡ t 1 6 1 t : 1 e e t ‡ ? t .

t h e t ( e e in the fifth line reminds Legrand immediately of ( =̂ r . This
gives him t h e t r e e t h r ‡ ? 3 h t h e and suggests /thetreethroughthe/.
Therefore ‡ =̂ o , ? =̂ u , 3 =̂ g . Next, in the second line he finds †8 3 ( 8 8 , i.e.,
† e g r e e suggesting /degree/ and † =̂ d ; and four characters later ; 4 6 ( ; 8 8 ∗,
i.e., t h 6 r t e e ∗ , to be read /thirteen/, whence 6 =̂ i and ∗ =̂ n .

Now almost all of the frequent characters (except a and s) are determined.
The partly decrypted text is:

5 g o o d g 0 5 ) ) i n t h e 2 i ) h o . ) h o ) t e 0 i n t h e d e ¶
i 0 ) ) e 5 t 1 o r t : o n e d e g r e e ) 5 n d t h i r t e e n 9 i n
u t e ) n o r t h e 5 ) t 5 n d 2 : n o r t h 9 5 i n 2 r 5 n – h ) e ¶
e n t h 0 i 9 2 e 5 ) t ) i d e ) h o o t 1 r o 9 t h e 0 e 1 t e : e o
1 t h e d e 5 t h ) h e 5 d 5 2 e e 0 i n e 1 r o 9 t h e t r e e t h r
o u g h t h e ) h o t 1 i 1 t : 1 e e t o u t

Instantly Legrand finds from g 0 5 ) ) and h o ) t 0 ) =̂ s , 0 =̂ l , 5 =̂ a ,
as well as furthermore 2 =̂ b , . =̂ p , ¶ =̂ v , 1 =̂ f , : =̂ y , 9 =̂ m , – =̂ c .

The (monoalphabetic) encryption step is the mapping involving 20 letters

8 ; 4 ‡ ) ∗ 5 6 ( † 1 0 9 2 : 3 ? ¶ – .
e t h o s n a i r d f l m b y g u v c p

and the plaintext in more readable form gives the clou:

“A good glass in the Bishop’s hostel in the Devil’s seat—forty-one degrees
and thirteen minutes—northeast and by north—main branch seventh limb
east side—shoot from the left eye of the death’s-head—a bee-line from the
tree through the shot fifty feet out.”

15.10.2 Remark. Typically, there was not a word to say that it could not
have been a polyalphabetic encryption. Poe was monoalphabetically minded.

15.11 Unicity Distance Revisited

Knowledge of the probability of an n-gram helps to understand how exhaus-
tion in Sect. 12.7 accomplishes the sorting out of the ‘right’ plaintext and
why a unicity distance exists. An unlikely sequence of characters is hardly
a ‘right’ message, but we can hope that a sequence of characters with a
probability near 1 may be ‘right’. The unicity distance is the smallest length
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length 1 length 2 length 3 length 4 length 5
V F K R Q 0.76 0.02
WG L S R 2.03 0.04
X H M T S 0.01 0.01
Y I N U T 0.01 0.06 0.06
Z J O V U 1.21 0.03 0.05
A K P WV 5.96 1.88 0.01
B L Q XW 1.77 2.35
C M R Y X 3.17 0.03
D N S Z Y 5.22 1.44 0.01
E O T A Z 17.98 1.58 0.11 1.27
F P U B A 1.23 0.19 0.03
G Q V C B 3.25
H RWD C 4.61 9.54 0.45
I S X E D 7.97 20.30 0.01
J T Y F E 0.06
K U Z G F 1.12 2.34
L V A H G 3.19 0.71 0.11
MWB I H 2.47 0.86
N X C J I 11.06 0.03
O Y D K J 2.00 0.14 0.01
P Z E L K 0.59 0.05
Q A F M L 0.01
R B G N M 6.42 6.38 0.05
S C H O N 7.48 22.84 90.51 98.73 100.00
T D I P O 5.55 9.09 8.56
U E J Q P 4.87 20.09 0.03

100.00 100.00 100.00 100.00 100.00
Table 20. Step by step sorting out of the ‘right’ plaintext

according to n-gram probabilities (in %)

of a text that has probability near 1 for one of the possible decryptions and
probability near 0 for all other possible decryptions.
A human sorts out the ‘right’ plaintext (‘running down the list’) by an opti-
cal and cerebral perception process, but this can be simulated by statistical
analysis.
For the example of Table 6, beginning with the sixth columns, this is shown
in Table 20. The multigram probabilities have been determined by the text
basis SZ3-92 and are normalized to 100% , empty fields mean probabilities
below 0.005%. The unicity length is in this example clearly 5 .
This exhaustion, however, has its limits if it goes into the ten thousands of
trials, and is inappropriate for full monoalphabetic encryption if no further
information can be used.

No monoalphabetic substitution can
maintain security in heavy traffic.

David Kahn 1967
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Riverbank Publication No. 22,
written in 1920 when Friedman was 28,

must be regarded as the most important
single publication in cryptology.

David Kahn 1967

Astonishingly, given a monoalphabetically encrypted cryptotext, it is easier
to say whether it is in English, French, or German, than to decrypt it. This
is also true for plaintext: there is a reliable method to test a sufficiently long
text for its membership of a known language, without ‘taking notice’ of it—
without regarding its grammar and semantics—and there is a related test
to decide whether two texts belong to the same language, without closely
inspecting them.
Indeed, there exists a particular invariant of a text under monoalphabetic
encryption, which is discussed in the following, and a related invariant of a
pair of texts which is even invariant under a polyalphabetic encryption of
both texts with the same key. And these invariants have peculiar values
which differentiate between most of the common Indo-Germanic languages.

16.1 Definition and Invariance of Kappa

Given a pair of texts T = (t1, t2, t3, . . . tM ) , T ′ = (t′1, t
′
2, t

′
3, . . . t

′
M ) of equal

length M > 1 over the same vocabulary ZN .
The relative frequency of finding in the two texts the same character at
the same position (the character coincidence, in the sequel marked by ∗) is
called the Kappa of the pair of texts (William F. Friedman 1925, ‘index of
coincidence’, often abbreviated I.C. ). Thus

Kappa(T, T ′) =
M∑

µ=1

δ(tµ, t′µ)/M

with the indicator function (‘delta function’)

δ(x, y) =
{ 1 if x = y

0 otherwise
.
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Example 1 (M = 180)
T : t h e p r e c e d i n g c h a p t e r h a s i n d i c a t e d h o wa m
T ′: wo u l d s e e mt h a t o n e wa y t o o b t a i n g r e a t e r s e

∗ ∗ ∗
o n o a l p h a b e t i c c i p h e r c a n b e s o l v e d e v e n i f
c u r i t y wo u l d b e t o u s e mo r e t h a n o n e a l p h a b e

∗ ∗
t h e o r i g i n a l wo r d l e n g t h s a r e c o n c e a l e d a n
t i n e n c i p h e r i n g a me s s a g e t h e g e n e r a l s y s t
∗ ∗ ∗ ∗ ∗ ∗
d t h e s u b s t i t u t i o n a l p h a b e t i s r a n d o mi t i s
e mc o u l d b e o n e t h a t u s e s a n u mb e r o f d i f f e r e

∗ ∗ ∗ ∗
p o s s i b l e t o f i n d a s o l u t i o n b y u s i n g f r e q u e
n t a l p h a b e t s f o r e n c i p h e r me n t w i t h a n u n d e

∗ ∗
Example 2 (M = 180)
T : e s t a u c h t v o n z e i t z u z e i t i mme r wi e d e r e i n m
T ′: u n t e r s c h we i z e r p o l i t i k e r n wa e c h s t d i e a n

∗ ∗ ∗ ∗
a l a u f u mk u r z d a r a u f e i l f e r t i g d e me n t i e r t
g s t d e n n a e c h s t e n z u g r i c h t u n g e g z u v e r p a s

∗
z u we r d e n d a s g e r u e c h t d a s s s i c h d i e o e l e x p
s e n a u s s e n mi n i s t e r r e n e f e l b e r s a h s i c h j e

∗
o r t i e r e n d e n l a e n d e r v o md o l l a r l o e s e n wo l
t z t u e b e r r a s c h e n d e i n e r f o r d e r u n g a u s d e m

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
l e n z u v e r d e n k e n wa e r e e s i h n e n f r e i l i c h n i
s t a e n d e r a t a u s g e s e t z t e i n b e i t r i t t s g e s u

∗ ∗ ∗ ∗ ∗ ∗

In example 1 (English) there results Kappa(T, T ′) = 17/180 = 9.44%; in
example 2 (German) Kappa(T, T ′) = 21/180 = 11.67%.

16.1.1 Dependence on language. Obviously
Kappa(T, T ′) ≤ 1 , where
Kappa(T, T ′) = 1 if and only if T

.= T ′ .

There is the empirical result that sufficiently long texts T ∈S, T ′∈S from one
and the same language S (or rather from the same genre of this language)
have values Kappa(T, T ′) close to some κS , while κS varies from language to
language. In the literature the following values of κS are given:
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S N κS (Kullback 1976) κS (Eyraud 1953)

English 26 6.61% 6.75%
German 26 7.62% 8.20%
French 26 7.78% 8.00%
Italian 26 7.38% 7.54%
Spanish 26 7.75% 7.69%
Japanese (Romaji) 26 8.19%
Russian 32 5.29% 4.70%

The values in the literature fluctuate: 6.5–6.9% for English, 7.5–8.3% for
German. From the text corpus mentioned in Sect. 15.5.4 , there results for
the English language a value of κe = 6.58%, from the text basis SZ3-92 for the
German language a value of κd = 7.62%, in good agreement with the values
of Kullback. French and Spanish, for example, come very close. Bletchley
Park, in WW II, calculated κd ≈ 1

17 = 5.88% for German Navy signals.
The values for κS , the empirical Kappa of a language S, seem to reflect
somewhat the redundancy of the languages: The translation of the Gospel of
St. Mark, with 29 000 syllables in English (according to H. L. Mencken), needs
in the Teutonic languages on average 32 650 syllables, in the Romance lan-
guages on average 40 200 syllables (36 000 in French), in the Slavic languages
on average 36 500 syllables. But there is no strict connection.

16.1.2 Language recognition. Two results stand out:
Invariance Theorem 5: For all polyalphabetic, functional simple sub-
stitutions, especially for all polyalphabetic linear simple substitutions
(including VIGENÈRE additions and BEAUFORT subtractions),
the Kappa of two texts of equal length, encrypted with the same key,
is invariant.

Invariance Theorem 6: For all transpositions,
the Kappa of two texts of equal length, encrypted with the same key,
is invariant.

Provided Kappa is typical, the cryptotext reveals the underlying language.

16.1.3 Expectation values. The expectation value 〈Kappa(T, T ′)〉QQ′

for the Kappa of two texts of equal length M over the same vocabulary ZN is
calculated from the probabilities pi, p′i of the appearance of the i-th character
in the ‘stochastic sources’ Q, Q′ of the texts: The expectation value for the
appearance of the character χi in the µ-th position of the texts is pi · p′i ;
which gives the expectation value for Kappa(T, T ′)

〈Kappa(T, T ′)〉QQ′ =
N∑

i=1

pi · p′i .

If the two sources are identical, Q′ = Q, then p′i = pi and

(∗) 〈Kappa(T, T ′)〉Q =
N∑

i=1

p2
i .
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This equation relates the definition of Kappa with the classical urn experi-
ment of probability theory.

Theorem: For identical sources Q′ = Q ,
1
N ≤ 〈Kappa(T, T ′)〉Q ≤ 1 ;

the left bound is attained for the case of equal distribution: QR : pi = 1
N ,

and only for this case; the right bound is attained for every deterministic
distribution Qj : pj = 1, pi = 0 for i �= j , and for no other distribution.
As said above, from the hypothetical probability distribution in Sect. 15.5.4,
Table 8 ,

κe = 〈Kappa(T, T ′)〉English = 0.06577 ≈ 1
15 ,

κd = 〈Kappa(T, T ′)〉German = 0.07619 ≈ 1
13 .

For the source with equal distribution QR (N = 26) ,

κR = 〈Kappa(T, T ′)〉R = 0.03846 = 1
26 .

Thus, the Kappa test differentiates English and German sources clearly from
a source with equal distribution:

κe/κR = N · κe = 1.71 , κd/κR = N · κd = 1.98 .
A rule of thumb for the common languages is:
The ratio 〈Kappa(T, T ′)〉S/〈Kappa(T, T ′)〉R is close to two.

16.2 Definition and Invariance of Chi

Given again two texts of equal length M over the same vocabulary of N
characters, T = (t1, t2, t3, . . . tM ) , T ′ = (t′1, t

′
2, t

′
3, . . . t

′
M ) . Let mi, m′

i de-
note the frequency of the appearance of the character χi in the texts T , T ′ ,
respectively; then

∑N
i=1 mi = M ,

∑N
i=1 m′

i = M .

Chi denotes the ‘cross-product sum’ (Solomon Kullback, 1935)

Chi(T, T ′) = (
N∑

i=1

mi · m′
i)/M

2 .

Written homogeneously, the definition is

Chi(T, T ′) = (
N∑

i=1

mi · m′
i)/( (

N∑
i=1

mi) · (
N∑

i=1

m′
i) ) .

The two texts in Sect. 16.1, Example 1 , have the following frequencies

a b c d e f g h i j k l m n o p q r s t u v w x y z
T 15 6 8 9 21 3 4 10 17 0 0 8 2 14 13 6 1 8 11 14 5 2 2 0 1 0

T ′ 15 6 4 5 30 4 4 9 8 0 0 6 6 15 12 4 0 10 10 17 8 0 4 0 3 0

This results in Chi(T, T ′) = 2151
180·180 = 6.64% .
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For the two texts in Sect. 16.1, Example 2 , the frequencies are

a b c d e f g h i j k l m n o p q r s t u v w x y z
T 10 0 4 11 35 4 2 5 15 0 2 10 6 14 7 1 0 15 7 9 9 3 4 1 0 6

T ′ 11 3 6 6 33 2 7 7 12 1 1 2 2 16 2 2 0 15 18 16 10 1 2 0 0 5

This results in Chi(T, T ′) = 2492
180·180 = 7.69% .

16.2.1 Chi. In analogy to Sect. 16.1.1 , for simple geometric reasons

Chi(T, T ′) ≤ 1 , where
Chi(T, T ′) = 1 if and only if T and T ′ are built

from one and the same character.
If all mi are equal, mi = M/N , then (for arbitrary m′

i)
Chi(T, T ′) = 1

N = κR .

Empirically, one finds again that for sufficiently long texts from one and the
same language S (or from the same genre of this language) not only are
values of Chi rather close to some value typical for the language, but also
this value is close to the value of Kappa for this language. This will be
clarified in Sect. 16.3 .

16.2.2 Psi. There is the important special case T ′ = T , m′
i = mi . Let

Psi(T ) = Chi(T, T ) =
N∑

i=1

m2
i /M

2 .

From Steiner’s theorem, 0 ≤
∑N

i=1(mi− M
N )2/M2 =

∑N
i=1 m2

i /M
2− 1

N ,
1
N ≤ Psi(T ) ≤ 1 , where

Psi(T ) = 1
N = κR if and only if all mi are equal,

Psi(T ) = 1 if and only if T is built
from one and the same character.

For the rare case M ≤ N of an extremely short text even
1
M ≤ Psi(T ) , where Psi(T ) = 1

M if and only if mi ∈ {0, 1}.
16.2.3 Invariance. Chi and Psi have invariance properties, too. In con-
trast to Kappa , there is a weaker statement:

Invariance Theorem 7: For all monoalphabetic, functional simple
substitutions, especially for all monoalphabetic linear simple substitu-
tions (including VIGENÈRE additions and BEAUFORT subtractions),
the Chi of two texts of equal length, encrypted with the same key, as
well as the Psi of a text, are invariant.

Invariance Theorem 8: For all transpositions,
the Chi of two texts of equal length, encrypted with the same key, as
well as the Psi of a text, are invariant.

In so far as Kappa, Chi or Psi are characteristic for a language, the language
can be determined from the cryptotext.
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16.2.4 Expectation values. The expectation value 〈Chi(T, T ′)〉QQ′ for
the Chi of two texts T ∈S, T ′∈S of equal length M over the same vocabulary
ZN is calculated from the probabilities pi, p′i of the appearance of the i-th
character in the ‘stochastic sources’ Q, Q′ of the texts: The expectation value
for the multitude of the character χi in T is pi · M , in T ′ is p′i · M , giving
the expectation value for Chi(T, T ′)

〈Chi(T, T ′)〉QQ′ =
N∑

i=1

pi · p′i .

If the two sources are identical, Q′ = Q, then p′i = pi and

(∗) 〈Chi(T, T ′)〉Q =
N∑

i=1

p2
i .

In particular,

〈Psi(T )〉Q =
N∑

i=1

p2
i .

Theorem: For identical sources Q′ = Q ,
1
N ≤ 〈Chi(T, T ′)〉Q ≤ 1 ,

and in particular
1
N ≤ 〈Psi(T )〉Q ≤ 1 .

The left bound is attained for the case of equal distribution: QR : pi = 1
N ,

and only for this case; the right bound for every deterministic distribution
Qj : pj = 1, pi = 0 for i �= j , and for no other distribution.

Amazingly, the expectation values marked by (*) 〈Kappa(T, T ′)〉Q (see
16.1.3) and 〈Chi(T, T ′)〉Q coincide. It will turn out that there is a relation
even between Kappa(T, T ′) and Chi(T, T ′) .

16.3 The Kappa-Chi Theorem

For the following, we need two auxiliary functions gi,µ , g′i,µ.

Let gi,µ =
{ 1 if tµ, the µ-th character of T , equals χi

0 otherwise

Let g′i,µ for T ′ be defined correspondingly. Then

δ(tµ, t′ν) =
N∑

i=1

gi,µ · g′i,ν and

mi =
M∑

µ=1

gi,µ , m′
i =

M∑
ν=1

g′i,ν .
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16.3.1 Definition. Let T (r) be the text T shifted cyclically by r positions
to the right. Then the number of coincidences between T (r) and T ′ is

Kappa(T (r), T ′) =
M∑

µ=1

δ(t(µ−r−1) mod M +1, t
′
µ)/M .

In particular, Kappa(T (0), T ′) = Kappa(T, T ′) .

16.3.2 Kappa-Chi Theorem. We now formulate the connection between
Kappa and Chi :

1
M

M−1∑
ρ=0

Kappa(T (ρ), T ′) = Chi(T, T ′) .

Thus, Chi(T, T ′) is the arithmetic mean of all Kappa(T (r), T ′) .

Corollary :
1
M

M−1∑
ρ=0

Kappa(T (ρ), T ) = Psi(T ) .

Proof:
1
M

∑M−1
ρ=0 Kappa(T (ρ), T ′) =

1
M · 1

M ·
∑M−1

ρ=0

∑M
µ=1 δ(t(µ−ρ−1) mod M +1, t

′
µ) =

1
M · 1

M ·
∑M

ν=1

∑M
µ=1 δ(tµ, t′ν) =

1
M · 1

M ·
∑M

ν=1

∑M
µ=1

∑N
i=1 gi,µ · g′i,ν =

1
M · 1

M ·
∑N

i=1

∑M
ν=1

∑M
µ=1 gi,µ · g′i,ν =

1
M · 1

M ·
∑N

i=1 (
∑M

ν=1 g′i,ν) · (
∑M

µ=1 gi,µ) =
1
M · 1

M ·
∑N

i=1 m′
i · mi =

Chi(T, T ′) . 
�

It now becomes evident that in Sect. 16.1 the values for Kappa with 9.44%
and 11.67% (accidentally) turned out rather high compared with the average
values 6.64% and 7.69% in Sect. 16.2 .

16.4 The Kappa-Phi Theorem

The case T ′ = T shows the peculiarity that Kappa(T (0), T ) = 1 , while for
r �= 0 essentially smaller ‘normal’ values of Kappa(T (r), T ) are found. Thus,
the case r = 0 is untypical in the averaging process, and it would be more
natural to extend the mean over the remaining m − 1 cases only:

1
M − 1

M−1∑
ρ=1

Kappa(T (ρ), T ) .
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16.4.1 Kappa-Phi Theorem. Now

1
M−1 ·

∑M−1
ρ=1 Kappa(T (ρ), T ) =

1
M−1 · (

∑M−1
ρ = 0 Kappa(T (ρ), T ) − 1) = 1

M−1 · (M · Psi(T ) − 1) =
1

M−1 · ((
∑N

i=1 m2
i /M) − 1) = 1

M−1 · 1
M · ((

∑N
i=1 m2

i ) − M) =
1

M−1 · 1
M · (

∑N
i=1(m

2
i − mi)) = 1

M−1 · 1
M · (

∑N
i=1 mi · (mi − 1)) .

Thus, we define a new quantity

Phi(T ) = (
N∑

i=1

mi · (mi − 1))/(M · (M − 1))

and state the Kappa -Phi theorem:

1
M − 1

M−1∑
ρ=1

Kappa(T (ρ), T )) = Phi(T ) .

The calculation of Phi(T ) presents the small advantage, compared with
Psi(T ) , that not only for the case mi = 0 but also for mi = 1 nothing
is contributed to the sum. This is useful for the rare letters in short texts.
Note that Phi(T ) = 0 holds if and only if all mi ∈{0, 1} .
But there is another reason why people in the field work predominantly with
Phi instead of Psi : it was Solomon Kullback who, using suitable stochastic
arguments, first proposed the test for Phi (apart from the test for Chi ).

Example 3: For the cryptotext T (M = 280) of Sect. 15.8.1 , with the fre-
quencies stated there,

2802 · Psi(T ) = 289+16+169+0+49+289+ 529+676+25+144+9+4+4+
1296+625+1+25+0+0+529+400+9+36+81+169+64 = 5438 ,

280 · 279 · Phi(T ) = 272+12+156+0+42+272+ 506+650+20+132+6+2+2+
1260+600+0+20+0+0+506+380+6+30+72+156+56 = 5158 , thus

Psi(T ) = 5438/78400 = 6.936% ; Phi(T ) = 5158/78120 = 6.603% .

Moreover, with the frequencies of bigrams, i.e., with the text T ∗∗ = T×T (1),
one obtains
Psi(T ∗∗) = 871/77841 = 1.119% ; Phi(T ∗∗) = 592/77562 = 0.763% .

16.4.2 Difference. Phi(T ) is not very different from Psi(T ) : Since

M · Psi(T ) = (M − 1) · Phi(T ) + 1 ,

Psi(T ) − Phi(T ) = 1−Phi(T )
M = 1−Psi(T )

M−1 , thus

Phi(T ) ≤ Psi(T ) .

Moreover, M−N
M−1 · 1

N ≤Phi(T ) (useful for the frequent case M >N >1) holds;
equality holds if and only if all mi are equal.
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16.4.3 Invariance. Phi has the same invariance properties as Psi :
Invariance Theorem 7(phi): For all monoalphabetic, functional sim-
ple substitutions, especially for all monoalphabetic linear simple sub-
stitutions (including VIGENÈRE additions and BEAUFORT subtrac-
tions),
the Phi of a text is invariant.

Invariance Theorem 8(phi): For all transpositions,
the Phi of a text is invariant.

16.4.4 Expectation values. The expectation value 〈Phi(T )〉(M)
Q for the

Phi of a text T of length M is calculated likewise from the probabilities pi

of the appearance of the i-th character in the ‘stochastic source’ Q of the
text: The expectation value for Phi(T ) depends on M , too:

〈Phi(T )〉(M)
Q = M

M−1 · (
∑N

i=1 pi · (pi − 1
M )) . Thus

〈Phi(T )〉(M)
Q ≥

{
M

M−1 · ( 1
N − 1

M ) = 1
N · M−N

M−1 if M ≥ N
0 if M ≤ N

;

equality holds if and only if all mi are equal.

As M gets larger and larger, the expectation value for Phi(T ) approaches
the expectation value for Psi(T ) , namely

〈Phi(T )〉(∞)
Q =

∑N
i=1 p2

i .

16.5 Symmetric Functions of Character Frequencies

The invariance stated in Theorems 7 and 8 for Psi holds for all symmetric
functions of the character frequencies mi . The simplest nonconstant polyno-
mial function is indeed

∑N
i=1 m2

i . It is a member of the following interesting
family:1

Psia(T ) =

⎧⎪⎨
⎪⎩

(
∑N

i=1(mi/M)a)1/(a−1) if 1 < a < ∞
exp(

∑N
i=1(mi/M) · ln(mi/M)) if a = 1

maxN
i=1(mi/M) if a = ∞

with the normalization
∑N

i=1(mi/M) = 1 . Psi2 is Psi . Generalizing the
result of Sect. 16.2.2 ,
For all a in the domain 1 ≤ a ≤ ∞ ,

Psia(T ) = 1
N = κR if and only if all mi are equal.

The interesting new functions are Psi1 and Psi∞ , which are the continuous
limit functions of the family. Psi1 has also the representation

Psi1(T ) =
N∏

i=1

(mi/M)mi/M .

1 With x · ln x ↗ 0 for x ↘ 0 ; xx ↗ 1 for x ↘ 0 .
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Fig. 129. Graph of the Renyi a-entropy for N = 2

The logarithmic quantity −ldPsia(T ) is called the Renyi a-entropy of T
(Rényi, 1960)2; the family has the following representation:

−ldPsia(T ) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
a−1 · ld (

∑N
i=1(mi/M)a) if 1 < a < ∞

−(
∑N

i=1(mi/M) · ld (mi/M)) if a = 1

−maxN
i=1 ld (mi/M) if a = ∞

Renyi 1-entropy −ldPsi1 is the Shannon entropy (Claude E. Shannon 1945)3.
Renyi 2-entropy −ldPsi2 should be named the Kullback entropy.
Figure 129 shows the graph of −ldPsia for N = 2 and for some values of a .

For the English text T (M = 280) of Sect. 15.8.1 , for single characters,

Psi1(T ) = 5.852% −ldPsi1(T ) = 4.095
Psi2(T ) = 6.936% −ldPsi2(T ) = 3.850 (Sect. 16.4.1)
Psi∞(T ) = 12.857% −ldPsi∞(T ) = 2.959 .

For bigrams, the entropy values are slightly smaller,√
Psi1(T × T (1)) = 9.37% − 1

2 ldPsi1(T × T (1)) = 3.42√
Psi2(T × T (1)) = 10.58% − 1

2 ldPsi2(T × T (1)) = 3.24 (Sect. 16.4.1)√
Psi∞(T × T (1))= 17.96% − 1

2 ldPsi∞(T × T (1)) = 2.48 .

2 Alfréd Rényi (1921–1970), Hungarian mathematician.
3 Claude E. Shannon (1916–2001), American mathematician, engineer, and computer sci-

entist, first became famous in 1937 with a publication on relay circuits and Boolean
algebra (A Symbolic Analysis of Relay and Switching Circuits. Trans.AIEE 57, 713-
723, 1938). In 1941, at Bell Laboratories, he worked on mathematical problems in
the communication of noisy and secret messages. This led him into information the-
ory (A Mathematical Theory of Communication, Bell System Technical Journal, July
1948, p. 379, Oct. 1948, p. 623 and, together with Warren Weaver, Mathematical The-
ory of Communication. Univ. of Illinois Press, Urbana 1949).
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It may be laid down as a principle that it is never worth
the trouble of trying any inscrutable cypher unless its

author has himself deciphered some very difficult cypher.

Charles Babbage 1854

The Babbage rule would have deprived cryptologists of some
of the most important features of modern cryptography, such

as the Vernam mechanism, the rotor, the Hagelin machine.

David Kahn 1967

Even if a multitude of independent alphabets is used, periodic polyalphabetic
encryption contains one element which is difficult to hide: the number of keys
in the period of the encryption. This is based on the following stationariness
property of stochastic sources: If P is a plaintext (of length M) from a
source Q , then P (s) , the plaintext P shifted cyclically by any number s of
positions, is from the same source.

Theorem 1: Let pi be the probability for the appearance of the i-th char-
acter in the source Q. Let d be the period of a periodic, polyalphabetic,
functional, simple and monopartite encryption (for simplicity we assume that
d|M). Then the encryption C of a plaintext P and C(k·d) , shifted cyclically
by k ·d positions, are from the same source, therefore

〈Kappa(C(k·d), C)〉Q =
N∑

i=1

p2
i for all k .

Proof: The encryption of P (k·d) , the cyclically shifted P , coincides with
C(k·d), the cyclically shifted encryption of P . According to Sect. 16.1.3 (∗),
〈Kappa(C(k·d), C)〉Q = 〈Kappa(P (k·d), P )〉Q =

∑N
i=1 p2

i . 
�

On the other hand, such a statement cannot be made on 〈Kappa(C(u), C)〉Q ,
where d � | u . As a rule, C(u) =C ′ and C come from stochastic sources Q′ and
Q which are independent of each other. Thus, if u is not a multiple of d ,

〈Kappa(C(u), C)〉Q′Q =
∑N

i=1 p′ipi may fluctuate around 1
N .

At least this is so if there are enough alphabets, and if they are chosen such
that they achieve a thorough mixing of the character probabilities.
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G E I E I A S G D X V Z I J Q L M W L A A M X Z Y Z M L W H

F Z E K E J L V D X W KW K E T X L B R A T Q H L B M X A A

N U B A I V S M U K H S S P W N V L W K A G H G N U M KW D

L N R W E Q J N X X V V O A E G E U W B Z W M Q Y M O M L W

X N B X M W A L P N F D C F P X H W Z K E X H S S F X K I Y

A H U L M K N U M Y E X D MW B X Z S B C H V W Z X P H W L

G N A M I U K

Fig. 130. Cryptotext of G.W.Kulp (containing the groups LMW, LAAM and MLW)

17.1 The Kappa Test of Friedman

17.1.1 Example. William F. Friedman proposed plotting Kappa(C(u), C) ,
the index of coincidence between C(u) and C . For the cryptotext in Figure
130, this plot is shown in Figure 131 (without u = 0, which is outside the
frame). For multiples of 12, high values are obtained, indicating that 12
might be a period.
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Fig. 131. Kappa plot for the (English) cryptotext of G.W.Kulp

17.1.2 Kulp. The cryptotext of Figure 130 has a history. It was submitted
by a Mr. G. W. Kulp to a newspaper in Philadelphia, Alexander’s Weekly
Messenger, following a request by the cryptologically versed Edgar Allan Poe,
to send in monoalphabetically encrypted texts with word divisions preserved.
It was published February 26, 1840 (Fig. 133). Poe demonstrated in a later
issue that the alleged crypto was not following the rules—he did so by showing
that any monoalphabetic substitution of suitable proper English words for
LMW, LAAM and MLW leads a contradiction, and stated that the crypto, “a
jargon of random characters having no meaning whatsoever”, was false (“an
imposition”). A glance at the frequency distribution, shown in Figure 132,
indeed reveals its balanced nature. Thus, frequency matching could not work.

12 7 2 5 10 4 6 9 6 3 10 12 14 9 2 4 4 2 7 2 7 7 16 15 4 8

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Fig. 132. Frequency distribution in the cryptotext of G.W.Kulp
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17.1.3 Objections. This suggests that the encryption might be polyal-
phabetic. In fact, the cryptotext gives a value of 1586

187·186 = 4.56% for Phi ,
or 1773

1872 = 5.07% for Psi , close to κR = 1
N and too low for monoalphabetic

encryption of an English text. Bigram substitution was also excluded by the
rules, and PLAYFAIR was only invented in 1854. Anyhow, as already said,
Poe was strictly monoalphabetically minded.

Fig. 133. Facsimile of the cryptotext of G.W.Kulp (1840)

(it was found out later that the printer made several errors,
e.g., reading q as g , and also suppressed one letter)

17.1.4 Determination of the period. Figure 131 shows that a few values
of Kappa come close to κe but most of them are slightly above or below κR.
Large values of Kappa caused by a period should also show large values for
all multiples; this rather excludes 5 and 15, while 12 cannot be dismissed.
For the cryptotext of Kulp, a monographic encryption, polyalphabetic with
a period of twelve is a promising hypothesis, but no more.
The cryptotext of Kulp, with its 187 characters, is rather short; for longer
texts the multiples of a period stand out much better. This can be seen in
Fig. 134 for a text of 300 characters and in Figure 135 for a text of 3 000
characters, where the period catches the eye.

17.2 Kappa Test for Multigrams

The Kappa plot is not limited to single characters. Bigrams and more gen-
erally multigrams can be understood as characters, which however enlarges
the vocabulary considerably.
For bigrams, κ∗∗

R = 1
N2 =14.8%% . It is only important, how much κ∗∗

S is bigger
than κ∗∗

R , and it turns out that the factor of about 2 in the monographic case is
replaced by a factor 4.5–7.5 for bigrams (Fig. 136): For English, according to
Kullback, κ∗∗

e is close to 69%% , for German, according to Kullback and Bau-
er, κ∗∗

d is close to 112%% . This means a clearer separation of the levels. For
trigrams, κ∗∗∗

S is by a factor 18–40 larger than κ∗∗∗
R = 1

N3 =0.569%% , but even
with 3 000 characters the fluctuation is remarkable (Fig. 137). According to
Alexander, the factor is about 100 for tetragrams, about 15000 for hexagrams.
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Fig. 134. Kappa plot for a (German) text of 300 characters
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Fig. 135. Kappa plot for a (German) text of 3 000 characters

17.3 Cryptanalysis by Machines: Searching for a Period

17.3.1 Use of punch cards. It can be safely assumed that in the USA the
methods of Friedman and Kullback were applied during the Second World
War, and this by machines. As early as in 1932, Thomas H. Dyer of the
US Navy had used IBM punched card accounting machines for speeding up
the work, the US Army followed in 1936. In 1941, the year of Pearl Harbor,
SIS , the Signal Intelligence Service of the US Army, had 13 accounting



334 17 Periodicity Examination
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Fig. 136. Kappa plot for bigrams (German text of 3 000 characters)

................................................................................................................... κ∗∗∗
R

↓ ↓ ↓ ↓

•

•

• • • •

•

• • •

•

•

• • • • • • • • •

•

•

•

• •

•

• • • • •

•

• •

•

• • • •

•

•

•

• •

•

•

•

•

Fig. 137. Kappa plot for trigrams (German text of 3 000 characters)

machines at work; in 1945, at Arlington Hall, the number was 407 machines.
IBM received $750 000 per year for rent.

In Germany, accounting machines were used, too. They were, as elsewhere,
particularly needed (see also Sect. 18.6.3) for stripping superencryption from
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codes. But they were also helpful for performing a Kappa test. For this
purpose, they were also used (according to Kahn and Takagi) by the Japanese.
Forerunners of such automatic processing by punch card machinery were
perforated sheets of paper (‘overlay sheets’), used in Britain and elsewhere.
If used for coincidence counts, the cryptotext was recorded by punched holes
in a binary 1-out-of-26 code. While for a single coincidence count it suffices
to write the texts one below the other, as done in Sect. 16.1, for a Kappa
test the count is to be done repeatedly for shifted texts. Then the extra
effort in preparing the overlay sheets is worthwhile, since the coincidences
are seen ‘at a glance’ by light shining through the hole. This coincidence
determination is not only much quicker, it is also more reliable. Figure 138
shows such sheets as they were used in Bletchley Park, where they were called
‘Banbury sheets’, because the punching was done in Banbury, a nearby small
town. Single character coincidences as well as multigram coincidences can be
detected and counted this way (Fig. 139).
Punching the Banbury sheets can be done by hand. Using some simple
machinery, a more refined coding, which saves paper, can be made, e.g.,
a 2-out-of-5 code for use in encoding decimal digits, or a 2-out-of-10 code,
enough to encode both letters and digits, as was used in the German OKW
Cipher Branch by Willi Jensen. However, these codings, including the tele-
type 5-bit code, require more complicated means for automatic detection and
registration of coincidences.

17.3.2 Recording of repetitions. In the Cipher Branch of the German
OKW (dubbed OKW/Chi, Group IV Analytische Kryptanalyse, headed by
Erich Hüttenhain), a special device was built by Willi Jensen for the deter-
mination of coincidences (‘Doppler’) and distances. Called the Perioden- und
Phasensuchgerät (Fig. 140), it worked with two identical 5-channel teletype
punched tapes, closed into a loop. One of the loops contained an additional
blank punch. With each completed cycle through a pair of scanners, the
phase between the two messages was shifted by one position. This ‘saw-
buck’ principle seems to have been well known and used at several other
places, too. The scanners were photoelectric and used for comparison a relay
circuitry (Zeichenvergleichslabyrinth). The recording was done mechanically,
and for a given shift the length of a stroke was proportional to the length of
the repeated sequence (the ‘length of the parallel’). After a completed cycle
the recording unit moved forward one position.
Moreover, a second recording unit counted only the bigram coincidences, a
third one the trigram coincidences, and so on up to 10-gram coincidences
(‘parallels’). The devices automatically gave a Kappa plot for single charac-
ters, bigrams, etc. With a scanning speed of 50 characters per second this
took two hours for a text of 600 characters and was about a hundred times
faster than work by hand. The device was destroyed at the end of the war.
The available material on the work of Jensen contains no references to Fried-
man, but it can be safely assumed that at least his early, published work



336 17 Periodicity Examination

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
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Fig. 138. Perforated sheet with segment of the cryptotext in Fig. 130
NUBAIVSMUKHSSPWNVLWKAGHGNUMKWDLNRWEQJNXXVVOAEGEU
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Fig. 139. Overlay of two perforated sheets with segments of the cryptotext in Fig. 130 ,
shifted by 72 characters

NUBA I V SMUKHS SPWNVLWKAGHGNUMKWDL N R WEQJNXXV V OAEG E U

CFPXHWZK EXHS SF X K I Y A HULMKNUMY E XDMW B XZSBCHVWZXPHWL

∗∗∗ ∗∗ ∗ ∗

was known to Hüttenhain. However, he could have known about Friedman’s
main work1 of 1938–41, which was classified, only by intelligence.

1 William F. Friedman, Military Cryptanalysis, War Department, Office of the Chief Sig-
nal Officer. Washington, D.C.: USGovernment Printing Office. Vol. I: Monoalphabetic
Substitution Systems 1938, 1942. Vol. II: Simpler Varieties of Polyalphabetic Substitu-
tion Systems 1938, 1943. Vol. III: Simpler Varieties of Aperiodic Substitution Systems
1938, 1939 . Vol. IV: Transposition and Fractionating Systems 1941. A copy is in the
University of Pennsylvania Library, Philadelphia, PA.
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Fig. 140. Registration of coincidences in a Perioden- und Phasensuchgerät
(Willi Jensen, Hilfsgeräte der Kryptographie. Draft of a Thesis, 1953)

17.3.3 The Robinsons. In Britain, the manual work with perforated
sheets was mechanized by the HEATH ROBINSON2, ready in May 1943.

2 W.Heath Robinson was a British cartoonist who drew magnificent and lovely but im-
practical machines for all possible and impossible tasks. There were copies of HEATH
ROBINSON called PETER ROBINSON and ROBINSON AND CLEAVER—names of
London department stores. By the end of 1943, 12 ROBINSONs had been ordered.
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Designed by C. E. Wynn-Williams, it had comparator and counting circuits
and could read photoelectrically two loops of 5-channel teletype punched
tapes with up to 2 000 characters per second, thanks to some electronic cir-
cuitry for fast counting. According to Donald Michie, HEATH ROBINSON
used the saw-buck principle, too, and should have served well for coincidence
examination and the finding of repetitions. It was flexible enough to serve also
for stripping superencipherment and forming difference tables (Sect. 19.3).
Actually, after W. M. Tutte had explored the internal structure of the cipher
teletype machine SZ 40 (Sect. 19.2.6), the machine was used mainly for the
Ÿ2 addition of a key text to the cryptotext, shifted until the right phase was
met. SUPER ROBINSON (finished May 1945) had four tapes; DRAGON
(for ‘dragging text through’) had similar objectives. While the Bletchley
Park version was electronic, the American DRAGON was made with relays.
SUPER ROBINSON was still suffering mechanical wear. An improvement
was COLOSSUS, which had one loop stored internally with the help of vac-
uum tubes and thus was able to process 5 000 characters per second without
mishap. We shall come back to ROBINSONs and COLOSSUS in Sect. 19.3 .

17.3.4 Comparators. More is now known on American special devices
for periodicity examination by Kappa test (‘I.C.’) through the work of Colin
Burke. Vannevar Bush (1890–1974), well known already for his pioneering
work on analog computers (the Differential Analyser) for solving differential
equations, started in 1937 to build a device for counting coincidences, named
COMPARATOR, for OP-20-G, the cryptologicaL branch of the US Navy, fol-
lowing specifications of its head, Joseph N. Wenger. It worked in a 1-out-of-26
code, too. But unlike the British, who at first used approved engineering tech-
nologies, Bush had high-flying plans for very fast photoelectric scanning and
electronic counters (in a 1-out-of-10 code). In 1937 it was risky to make an
electronic device with more than 100 vacuum tubes working together. The
project also failed for organizational reasons. Nevertheless, it was contin-
ued, which can be explained perhaps with the role Bush played as director
of the National Defense Research Committee (later Office of Scientific Re-
search and Development) during the war. Its slow and insufficient progress
not only robbed Admiral Stanford Caldwell Hooper, Chief of Naval Commu-
nications and his aide Wenger, the proponent of pure cryptanalysis that runs
without intuitive guidance, of their immediate success, but also delayed the
Navy’s OP-20-GY in its use of cryptanalytic machinery. Correspondingly, in
1941, if not earlier, the USA was surpassed in its cryptanalytic knowledge
and machine potential against machine-encrypted communication channels
by Britain. It was not until 1946 that things turned around.
Pure cryptanalysis, however, had its strong advocates among the mathemati-
cally minded cryptologists. A small group under the experienced Agnes Dris-
coll née Meyer, with the support of the mathematician Howard T. Engstrom,
attacked the ENIGMA with methods of pure cryptanalysis. For this task the
microfilm machine HYPO (the ‘Hypothetical Machine’) was built in 1942,
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and was operational late in 1943. It was directed against German ‘offizier’
messages, i.e., superencrypted ENIGMA messages, and against ‘duds’, mes-
sages where steckering, ring setting and rotor order are known, but the initial
rotor position is not, or against garbled cipher text. Specially oriented against
the Japanese rotor machines were the relay machines VIPER and PYTHON
(designed about 1943) and descendants like the electronic RATTLER.

17.3.5 RAM. Next to Kappa, Chi can also be used in periodicity exami-
nation, as we shall show in Sect. 17.5 . The Chi test, proposed by Kullback
in 1935, was not favored in 1937, because it involved not only counting but
also additions and even multiplications; however it was adopted in 1940, and
in the RAM machines (‘Rapid Analytical Machines’) in 1944 it achieved the
success it deserved. In principle, the COLOSSUS machines were able to per-
form a Kullback examination, but whether this was actually done is not clear.
As soon as electronic universal computers were ripe, they were used in crypt-
analytic work. The first special-purpose, dedicated computer models named
DEMON, OMALLEY, HECATE, WARLOCK were in use by the end of the
1940s, then an advanced COMPARATOR, GOLDBERG3, and the ATLAS I
and ATLAS II computers became operational at the beginning of the 1950s.
More and more of the effort in cryptanalysis was transferred into the pro-
gramming of universal computers with fast special and often secret additional
circuitry (Supercomputer CRAY, Plate Q).

17.4 Kasiski Examination

As a meager limit case of the Kappa plot for multigrams, only long multigrams
that occur repeatedly are determined, and the distances between the repeti-
tions are recorded. This search for ‘parallels’ (Parallelstellensuche) was pub-
lished in 1863 by F. W. Kasiski; before the age of Friedman and Kullback,
it was then the preferred systematic means of attack by professional decryp-
tors against polyalphabetic encryption, and shattered at least in the periodic
case the widespread belief that this encryption is unbreakable (Sect. 8.4.2).

17.4.1 Early steps. Unsystematic attacks on polyalphabetic encryptions
started shortly after they were invented. Giambattista Della Porta was some-
times lucky: OMNIA VINCIT AMOR was the (too) short and not at all
esoteric key once used by an incompetent clerk, and it took Della Porta only
a few minutes to guess it and break into the encryption. He himself used only
long keys and advocated the use of keys far from daily use. And Giovanni
Batista Argenti, given by his lord Iacomo Boncampagni, Duke of Sora—
nephew of Pope Gregor XIII—the following cryptogram to test his ability,

Q A E T E P E E E A C S Z M D D F I C T Z A D Q G B P L E A Q T A I U I

solved it quickly, as he wrote, on October 8, 1581; he was guessing the key

3 Said to be named after Rube Goldberg, American counterpart to Heath Robinson. Pos-
sibly an allusion to Emanuel Goldberg, an inventor of photoelectric sensing.
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INPRINCIPIOERATVERBUM and relying on the fact that the Duke had al-
ways used self-reciprocal permutations of the kind Della Porta had described
in 1563 (see Sect. 7.4.4, Fig. 65)—why should the Duke have invented some-
thing on his own? The plaintext was the beginning of the Æneid of Vergil

arma virumque cano troiæ qui primus ab oris .
Della Porta had early on a methodical idea: If with an Alberti disk the crypt
alphabet is shifted at every step by one position, then certain frequently
occurring bigrams like /ab/, /hi/, /op/ and trigrams like /def/ (in deficio)
or /stu/ (in studium) generate letter repetitions in the cryptotext. Della Por-
ta found MMM and 51 positions later MMM again, and he concluded that
the key should have period 17 and be repeated three times, since the period
51 would be too long and the period 3 too short for a clever cipher clerk.

Della Porta came within a hair’s breadth of finding Kasiski’s method. All it
needed was to understand that the pattern 111 did not matter, but just the
repetition itself of some cryptotext fragment, caused by a coincidence of a fre-
quent plaintext fragment with one and the same piece of the repeated key,
which should normally happen only in a distance which is a multiple of the
period. Had Della Porta noticed this and published, polyalphabetic encryp-
tion would not have been invulnerable still at the time of Edgar Allen Poe.

The following simplified example by Kahn may illustrate the Kasiski exami-
nation: Assume a VIGENÈRE method in Ÿ26 works with a key RUN of the
(too) small length 3 :

t o b e o r n o t t o b e t h a t i s t h e q u e s t i o n
R U N R U N R U N R U N R U N R U N R U N R U N R U N R U N
K I O V I E E I G K I O V N U R N V J N U V K H V M G Z I A———— —————— ——

Then the key fragment RUNR meets the plaintext fragment /tobe/ twice
in a distance 9 , which results in the repeated fragment KIOV, moreover the
key fragment UN meets the plaintext fragment /th/ twice in a distance 6 ,
which results in the repeated fragment NU . The distances 9 and 6 must be
multiples of the period, which can only be 3 (or 1).

A similar example with a key COMET of length 5 is
t h e r e i s a n o t h e r f a mo u s p i a n o p l a y
C OME T C OME T C OME T C OME T C OME T C OME
V V Q V X K G M R H V V Q V Y C A A Y L R WM R H R Z M C———— ——————— ———

In this example the distances of the repeated fragments are 10 and 15, so the
period can only be 5 (or 1).

17.4.2 Babbage on decryption. Ten years before Kasiski, Charles Bab-
bage may have had an inkling of the importance of repetitions. Not only
did he like to read the monoalphabetically encrypted messages in the agony
columns of the Victorian London gazettes, he also liked to look inside polyal-
phabetics with word division. His dealing with linear simple encryption steps
led him in 1846 to a description of VIGENÈRE encryption steps by mathe-
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matical equations (Sect. 7.4.1, 7.4.3), and thus he could find solutions by
using probable words in the plaintext as well as in the key. Via such suc-
cesses, as the Babbage papers in the British Museum show, he developed
an understanding for the subtleties of periodic encryptions, although even if
he found out about the importance of Kasiski repetitions, as Ole Immanuel
Franksen suggested in 1984, he did not write about this.
Thus, the honor of first finding a systematic means of attack against polyal-
phabetic encryption, not even limited to linear substitutions, and hence
founding modern cryptology, goes to a retired Prussian infantry major. Fried-
rich W. Kasiski was born November 29, 1805 in Schlochau, West Prussia (now
Czluchow, Poland). In 1822 he entered the East Prussian 33rd Füsilier-
Regiment Graf Roon, where he served until 1852. In his leisure time he turned
to cryptography. In 1863 his 95-page booklet Die Geheimschriften und die
Dechiffrirkunst was published by the respected Mittler & Sohn in Berlin.
At first, his publication caused no sensation, and Kasiski turned disappointed
to natural history, where he won local fame. The revolution in cryptology
he initiated took place after his death on May 22, 1881. Kerckhoffs com-
mended Kasiski’s work in an important paper of 1883, and the books of de
Viaris in 1893 and Delastelle in 1902 were based on this. Around the turn of
the century the revolution was under way, and the vulnerability of periodic
polyalphabetic encryption was generally accepted among professionals.
In the light of William F. Friedman’s discovery in 1925 of the index of co-
incidence, the Kasiski examination appears to be a rough method. Bigram
repetitions are neglected, ‘because they are so frequent’, and single char-
acter repetitions anyway—while Kappa counts all repetitions and asks only
whether there are more than average. Ignoring bigram repetitions was also
justified by the fact that in rare cases they can come about accidentally. Even
with trigrams this occurs, and it disturbs the analysis—while the index of
coincidence, because of its stochastic nature, is unaffected.
The Kasiski examination establishes as the period the greatest common divi-
sor of the distances of the recorded repetitions, excluding pragmatically those
that are considered annoying and presumed to be nothing but accidental
repetitions. In this respect, the Kasiski examination is intuitive and un-
friendly to mechanization. Moreover, the Kasiski examination needs longer
texts to be conclusive about a period than the Friedman examination.
Accidental repetitions are frequently observed and easily explained in case
of linear substitutions. The reason is the commutative law that holds for
addition modulo N : /anton/ with the key BERTA and /berta/ with the key
ANTON give the same. This effect occurs with more than average frequency
if both plaintext and key are from the same natural language, particularly
from the same genre. Repetitions in the keytext can also lead to ‘wrong
repetitions’ in the cryptotext—keys with words like DANSEUSECANCAN,
VIERUNDVIERZIG can irritate the unauthorized decryptor. We shall come
back to this in Sect. 18.5 .
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17.4.3 An example. The model examples in the literature for a Kasiski
examination almost always show window-dressing: they present more repe-
titions than can be expected on average. For the following example (Kahn)
this cannot be said. The plaintext turns out to be a worthwhile recommen-
dation from Albert J. Myer (1866), US Signal Corps officer. The cryptotext
reads:

A N Y V G Y S T Y N R P L WH R D T K X R N Y P V Q T G HP

H Z K F E Y U M U S A YWV K Z Y E Z M E Z U D L J K T U L

J L K Q B J U Q V U E C K B N R C T H P K E S X M A Z O E N

S X G O L P G N L E E B MM T G C S S V M R S E Z M X H L P

K J E J H T U P Z U E DWK N N N RWA G E E X S L K Z U D

L J K F I X H T K P I A Z M X F A CWC T Q I D U W B R R L

T T K V N A J WV B R E AWT N S E Z M O E C S S V M R S L

J M L E E B MM T G A Y V I Y G H P E M Y F A RW A O A E L

U P I U A Y Y M G E E M J Q K S F C G U G Y B P J B P Z Y P

J A S N N F S T U S S T Y V G Y S

The character frequency count is shown in Figure 141; it is too uniform to be
explained by a monoalphabetic substitution or by a transposition. Thus, sus-
picion falls on a polyalphabetic substitution. This is supported by the wealth
of repetitions seen when a Kasiski examination is made. There are nine
repetitions of length 3 or more, among which some are very long, like LEEB-

MMTG and CSSVMRS. Their distances are listed in Figure 142 together with
their prime factor decompositions. The greatest common divisor is 2, but this
very small apparent period is presumably caused by accidental repetitions.

14 8 7 5 22 6 12 8 5 11 14 13 16 13 4 13 5 11 18 15 14 10 9 7 16 11

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Fig. 141. Frequency count in the cryptotext of Myer

Fragment Distance Prime factor decomposition

YVGYS 280 23 · 5 · 7
STY 274 2 · 137
GHP 198 2 · 32 · 11
ZUDLJK 96 25 · 3
LEEBMMTG 114 2 · 3 · 19
CSSVMRS 96 25 · 3
SEZM 84 22 · 3 · 7
ZMX 48 24 · 3
GEE 108 22 · 33

Fig. 142. Prime factor decomposition of distances of Kasiski repetitions
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Following Kasiski verbatim, the distances are to be decomposed into factors,
the factor most frequently found being the period. The literature interprets
this, following M. E. Ohaver, usually that all factors (i.e., not only the prime
factors) are to be listed (Fig. 143). This leads to the possibility of two fac-
tors occurring equally often, in which case the larger one will be taken if it
is a multiple of the smaller one—otherwise it might be better to follow two
possibilities. In Figure 143, apart from the factor 2 which we have dismissed
as too small, the factors 3 and 6 both occur 7 times. This would make the
factor 6 our candidate. As it turns out this is right, but we should put it
down to luck. The correct rule, to take the greatest common divisor of all
causal repetitions, suffers from the defect that we will only know afterwards
which ones were causal. Intuitively we are inclined to omit those ‘annoying’
repetitions whose distance does not contain an otherwise most-frequent prime
factor—in Fig. 142 both YVGYS and STY do not contain the otherwise fre-
quent factor 3 . Since YVGYS is rather long, it is hard to believe that it is
accidental, but otherwise 2 would be the period, which is even harder to
believe. If both GHP and LEEBMMTG were omitted, 12 would be a candidate
for the period. But since LEEBMMTG is very long, this is unlikely, too. Thus,
one has to live with the suspicion that 6 is the period.

Fragment Distance 2 3 4 5 6 7 8 9 10 11 12 14 16 18 19 20 21 22 24

YVGYS 280 √ √ √ √ √ √ √ √ ( ? )
STY 274 √ ( ? )
GHP 198 √ √ √ √ √ √ √

ZUDLJK 96 √ √ √ √ √ √ √ √

LEEBMMTG 114 √ √ √ √

CSSVMRS 96 √ √ √ √ √ √ √ √

SEZM 84 √ √ √ √ √ √ √ √

ZMX 48 √ √ √ √ √ √ √ √

GEE 108 √ √ √ √ √ √ √

Fig. 143. Factors of the distances of Kasiski repetitions

No doubt, this shows another weak side of the Kasiski examination. A too-
small value of the alleged period, caused by an accidental repetition, ruins the
subsequent process of reconstruction of the alphabets. On the other hand, it
can happen that the greatest common divisor of all the distances is a multiple
of the genuine period. This not only causes an increase in the subsequent
work load, but also makes the reconstruction of the alphabets less safe.

Under all circumstances, the Friedman examination is more reliable than the
Kasiski examination.

Anticipating the later decryption (Sect. 18.1), we note that STY and YVGYS

will turn out to be accidental repetitions, originating from a linear substi-
tution over Ÿ26 . The key is SIGNAL, and YVGYS originates the first time
from /signa/+GNALS, the second time from /gnals/+SIGNA; STY comes
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the first time from /als/+SIG, the second time from /sig/+ALS. This is ef-
fected by the use of a key word SIGNAL out of the genre of the plaintext.
It complicates unauthorized decryption and is desirable for the cryptograph.
By the way, it also blunts the aggressiveness of the Kappa and Chi tests.

Accidental repetitions can also occur without being the result of commuta-
tivity. The great French cryptologist Étienne Bazeries once had no luck with
a BEAUFORT encryption: In 1898, in a telegram from the insurgent Duke
of Orléans,

GNJLN RBEOR PFCLS OKYNX TNDBI LJNZE OIGSS HBFZN ETNDB .....

he found a Kasiski repetition TNDB of length 4 with a distance 21, but it was
accidentally produced by ERV E −/lesd/ and by IERV −/prou/ (the
key actually was: V ENDREDIDIXSEPTFEV RIER). The two further
repetitions EO and AQ of length 2 occurred with distances 22 and 13 . What to
do? Bazeries was more confident of the longer repetition TNDB and assumed
the period 21, but this was a dead end that cost him much time. In the end,
it turned out that only the short repetition EO of length 2 with the period 22
was causal. Bazeries remarked bitterly “en cryptographie, aucune règle n’est
absolue.” [in cryptography, hardly any rule is absolute.]

17.4.4 Machines. Despite its weakness the Kasiski examination was still
used as an auxiliary in the Second World War. The Cipher Branch of the Ger-
man OKW developed and employed a special Parallelstellensuchgerät (Willi
Jensen)—apart from the Perioden- und Phasensuchgerät (Sect. 17.3.2), us-
able for a Friedman examination. The cryptotext was punched in a 2-out-of-
10 code (Sect. 17.3.1) on film tape in two copies. One copy (A) was closed
into a loop and ran continuously through a scanner, while the second one
(B) advanced one position in its scanner for every finished loop of (A) (saw-
buck principle, see Sect. 17.3.2). In case of coincidence, two holes met at the
scanner, which could be discriminated by a photoelectric cell. With the help
of a diaphragm of varying breadth, it was possible to detect in turn bigram,
trigram, ... repetitions; within the available accuracy of measurement repe-
titions with up to 10 characters could be searched for. The registration was
done by a spark on an aluminum plate movable in two directions, one for
(A) and one for (B). The device was rather fast: to run a bundle of texts
of 10 000 characters altogether, requiring 108 comparisons, took less than 3
hours. It served mainly to obtain quick information on texts in the bundle
that were encrypted with the same key, then for detailed investigation the
Perioden- und Phasensuchgerät was used. The device was destroyed at the
end of the war, before it had been very long in practical use.

In the USA, Bush built for OP-20-G in 1943 TETRA (nicknamed ICKY,
TESSIE, see also 18.6.3), that could find long repetitions, or patterns of
identical subgroups, and allowed a flexible selection of combinations through
a plugboard. Around mid-1944, under Friedman, development of a universal
cryptanalytic machine using microfilm, the Eastman 5202, started.
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17.4.5 Memex. Photoelectric sensing, as used by the German, US and Bri-
tish cryptanalysts, goes back to early attempts to use it for document retrie-
val. In 1927, Michael Maul of Berlin received patents which were assigned to
IBM as US Patents 2 000 403 and 2 000 404 . The work of Emanuel Goldberg
(‘Statistical machine’, US Patent 1 838 389, Dec. 29, 1931; filed April 5, 1928)
preceded Bush’s 1937 plans both for the COMPARATOR and for the first
document retrieval system RAPID SELECTOR (later to become ‘Memex’).

17.5 Building a Depth and Phi Test of Kullback

With a guess at the period d of a polyalphabetic encryption, a simple manual
process for determining the number of coincidences for shifts by k·d positions
consists of writing the cryptotext in lines of length d, thus forming d columns
T1, T2, T3, . . . Td . In the parlance of cryptanalysts, this is called ‘writing out
a depth’ or ‘building up a depth’.

G E I E I A S G D X V Z

I J Q L M W L A A M X Z

Y Z M L W H F Z E K E J

L V D X W K W K E T X L

B R A T Q H L B M X A A

N U B A I V S M U K H S

S P W N V L W K A G H G

N U M K W D L N R W E Q

J N X X V V O A E G E U

W B Z W M Q Y M O M L W

X N B X M W A L P N F D

C F P X H W Z K E X H S

S F X K I Y A H U L M K

N U M Y E X D M W B X Z

S B C H V W Z X P H W L

G N A M I U K

φρ 14 16 12 16 30 16 14 14 18 12 18 10 Σ=190

Fig. 144. Cryptotext of G.W.Kulp, in twelve columns

Figure 144 shows the result for the cryptotext of G. W. Kulp with the guessed
period d = 12 (for the definition of φρ see Sect. 17.5.2). Coincident single
characters (dopplers) with the minimal distance d catch the eye immediately,
e.g., Z in column 12, in the first and second lines. But also repetitions with a
distance k ·d are easily seen, e.g., another Z in column 12, in the last line but
two. Bigram repetitions (bigram dopplers) show up, too, e.g., the bigram WK

in the fourth and seventh lines, the bigram MW in the second and eleventh
lines, the bigram WZ in the twelfth and last but one lines, the bigram NU in
the sixth, eighth, and last but two lines.
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17.5.1 Forming the columns. The minor effort of arranging the cryp-
totext in u columns allows more than finding some Kasiski repetitions. If
the guess as to the period is correct, then and only then is each column Tρ

encrypted monoalphabetically. This should be tested by forming the Phi(Tρ)
for ρ = 1, 2, . . . , u − 1, u (for convenience, we may assume u|M). In the posi-
tive case, values close to κS and much larger than κR = 1

N should be expected
for all Phi(Tρ) ; in the negative case, they should fluctuate. This is the Phi
test of Kullback, a very sharp criterion for the examination of the period.

17.5.2 Phi test is better than Kappa test. It may be appropriate to
form a mean of the values Phi(Tρ) for ρ = 1, 2, . . . , u − 1, u :

Phi(u)(T ) = 1
u ·

u∑
ρ=1

Phi(Tρ) = 1
u ·

u∑
ρ=1

N∑
i=1

m
(ρ)
i · (m(ρ)

i − 1)
/

(M
u · (M

u − 1)) ,

where m
(ρ)
i is the frequency of the i-th character in the ρ-th column. Thus

Phi(u)(T ) = u ·
u∑

ρ=1

φρ/(M · (M − u)) , where φρ =
N∑

i=1

m
(ρ)
i · (m(ρ)

i − 1) .

Similar to the derivation in Sect. 16.4.1 , there is the

Kappa -Phi(u) Theorem:
1

M − 1

M−1∑
ρ=1

Kappa(T (u·ρ), T ) = Phi (u)(T ) .

Thus, Phi (u)(T ) is the arithmetic mean of all Kappa(T (u·ρ), T ) , i.e., of all
coincidences at distances that are a multiple of u . It turns out to be a very
sharp instrument.

17.5.3 Example. For u = 12 there are twelve alphabets, from each one
there are 16 or 15 characters in a column. Calculation of φρ gives (Fig. 144):
for the first column with three S , three N , two G :

φ1 = 6 + 6 + 2 = 14 ;
for the second column with three N , three U , two B , two F :

φ2 = 6 + 6 + 2 + 2 = 16 ;
for the third column with three M , two A , two B , two X :

φ3 = 6 + 2 + 2 + 2 = 12 ;
for the fourth column with four X , two K , two L :

φ4 = 12 + 2 + 2 = 16 ;
for the fifth column with four I , three M , three V , three W :

φ5 = 12 + 6 + 6 + 6 = 30 ;
for the sixth column with four W , two H , two V :

φ6 = 12 + 2 + 2 = 16 ;
and so on. Thus,∑12

ρ=1 φρ = 190 , Phi (12) = 12 · 190/(187 · 175) = 6.97% .

Note that κe = 6.58% . Thus, u = 12 could well be the period.
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G E I E I A S G D X V

Z I J Q L M W L A A M

X Z Y Z M L W H F Z E

K E J L V D X W K W K

E T X L B R A T Q H L

B M X A A N U B A I V

S M U K H S S P W N V

L W K A G H G N U M K

W D L N R W E Q J N X

X V V O A E G E U W B

Z W M Q Y M O M L W X

N B X M W A L P N F D

C F P X H W Z K E X H

S S F X K I Y A H U L

M K N U M Y E X D M W

B X Z S B C H V W Z X

P H W L G N A M I U K

φρ 8 6 8 12 10 8 10 4 8 16 20 Σ=110
Fig. 145. Cryptotext of G.W.Kulp, in eleven columns

For u = 11 there are eleven alphabets, and from each there are 17 characters
in a column. Figure 145 shows, there is a doppler W with distance 11 in the
second and third lines, and a doppler V in the first, sixth and seventh lines
of the eleventh column. There are no bigram dopplers any longer.

Calculation of φρ gives (Fig. 145):∑11
ρ=1 φρ = 110 , Phi(11) = 11 · 110/(187 · 176) = 3.68% .

Note that κR = 3.85% . Phi (11) is remarkably smaller than Phi (12) and even
smaller than κR. u = 11 has little chance to be the period.

G E I E I A S G D X V Z I

J Q L M W L A A M X Z Y Z

M L W H F Z E K E J L V D

X W K W K E T X L B R A T

Q H L B M X A A N U B A I

V S M U K H S S P W N V L

W K A G H G N U M K W D L

N R W E Q J N X X V V O A

E G E U W B Z W M Q Y M O

M L W X N B X M W A L P N

F D C F P X H W Z K E X H

S S F X K I Y A H U L M K

N U M Y E X D M W B X Z S

B C H V W Z X P H W L G N

A M I U K

φρ 4 4 12 10 18 10 8 12 10 10 14 8 6 Σ=126
Fig. 146. Cryptotext of G.W.Kulp, in thirteen columns
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For u = 13 there are thirteen alphabets, and from each there are 14 or 15
characters in a column. Figure 146 shows that calculation of φρ gives∑13

ρ=1 φρ = 126 , Phi(13) = 13 · 126/(187 · 174) = 5.03% .
Thus, u = 13 also is not a good candidate for the period.

In this way Phi(u) can be calculated for u = 2, 3, 4, . . . and plotted (Fig. 147).
The value for u = 12 is much more conspicuous than in Fig. 131. It can be
seen that the Kullback examination is a finer instrument than the Friedman
examination.
There is a further peak at u = 24, which should be expected. But there
are also peaks, although slightly smaller, at u = 6 and even at u = 18. It
therefore cannot be excluded that u = 6 is the period. (The discussion of the
example will be continued in Sect. 18.5.3 .)

................................................................................................................... κR

................................................................................................................... κe

↓ ↓ ↓ ↓

• • • • •

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

→u

Fig. 147. Phi(u) plot for the cryptotext of G.W.Kulp, suggesting plaintext is in English

17.6 Estimating the Period Length

From the Kappa-Phi theorem of Sect. 16.4.1 we obtain for the expectation
values of a cryptotext Q (with a key of period d )

〈Phi(T )〉(M)
Q = 1

M−1

∑M−1
ρ=1 〈Kappa(T (ρ), T )〉Q .

From a remark at the beginning of this chapter, we may deduce that
〈Kappa(T (k·d), T )〉Q = κS ,

moreover, we may find, if u is not a multiple of d,
〈Kappa(T (u), T )〉Q ≈ κR = 1

N

Assuming furthermore for simplicity that M is a multiple of the period d,
then in the sum above: κS appears M

d − 1 times, κR appears M − M
d times;

thus 〈Phi(T )〉(M)
Q is a mean of κS and κR,

(M − 1) · 〈Phi(T )〉(M)
Q ≈ (M

d − 1) · κS + ((M − 1) − (M
d − 1)) · κR .

Assuming that the observed Phi(T ) approximates the expectation value, we
find (Abraham Sinkov, around 1935):

(M − 1) · Phi(T ) ≈ (M
d − 1) · κS + ((M − 1) − (M

d − 1)) · κR .
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Although only an estimation, this fundamental relation shows qualitatively
how with constant stochastic source, but increasing period of a polyalphabetic
encryption, the value of Phi changes.

For large M and d # M one can work with

Phi(T ) ≈ 1
d

· κS + (1 − 1
d
) · κR

almost as well.
Sinkov’s relation can be solved for d :

(
M

d
− 1) ≈ (M − 1) · (Phi(T ) − κR)

κS − κR
, i.e.,

d ≈ κS − κR

(κS − Phi(T ))/M + (Phi(T ) − κR)
.

For large M and d # M

d ≈ κS − κR

Phi(T ) − κR
.

can also be used.
For example, for the cryptotext of G. W. Kulp with M = 187 , according to
Sect. 17.1.3 , Phi = 4.56% , so with κS = κe = 6.58%, κR = 1

N = 3.85%
we obtain

d ≈ 2.73%
(2.02%/187) + 0.71%

= 3.79 or simplified

d ≈ 2.73%
0.71%

= 3.85 .

This value is low compared with a presumptive period d = 12 , and would fit
better with d = 6 . But the estimate is rather unstable and should not be
taken too seriously. The Sinkov estimate can only give support to a serious
Kasiski, Friedman, or Kullback examination if the period is small.
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Provided the period d of a polyalphabetically encrypted text is determined
sufficiently reliably, and by building a depth can be reduced to solving d
monoalphabetic encryptions, one can try to reduce the accompanying alpha-
bets—if possible—to a primary alphabet. In case of VIGENÈRE encryption,
an exhaustion of all accompanying standard alphabets by matching profiles
(Sect. 18.1) is easy enough. The same aligning can be done in the case of
ALBERTI encryption, if one of the standard alphabets is known or has
been found out (Sect. 18.2). In general, however, a mutual aligning of all
alphabets (Sect. 18.3) is needed to reconstruct the unknown primary alpha-
bet (Sect. 18.4). For this purpose, a Kullback examination will work wonders.
The case of unknown unrelated alphabets, where each one is to be determined
by itself, cannot be treated this way.

18.1 Matching the Profile

In view of the wide acceptance VIGENÈRE encryption has found, it may
often be worthwhile to try this entry, which does not need much effort. Thus,
if d is the period, d profiles are to be plotted. The strip method for ex-
haustion (Chapter 12) and pattern finding (Chapter 13) for the individual
monoalphabetic CAESAR additions do not work, since the texts are torn to
pieces (German zerrissen).

2 0 0 0 1 0 2 3 0 6 3 3 3 0 0 0 0 0 6 1 5 2 5 0 2 4

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Fig. 148. Frequency distribution in the first column of the cryptotext of Sect. 17.4.3

18.1.1 Using a depth. Thus, for the example of Myer’s text (Sect. 17.4.3)
we recommend building a depth and counting the frequencies for each of the
six columns. For the first column, i.e., for the subtext consisting of the 1st,
7th, 13th, ... characters, the result can be seen in Figure 148 . Even without
plotting, the English profile is immediately recognizable: NOPQR is the v-
w-x-y-z lowland, to its left JKLM is the r-s-t-u ridge. Then DEFGH is at
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the right distance to be the l-m-n-o ridge, which does not show clearly. But
the cryptanalyst has to be prepared for such fluctuations, in particular if the
depth is not large. This remark applies also to the observation that W does
not have the frequency one would expect for the e-peak.
With S : S =̂ a the first column is aligned, and it can be expected that
the whole is a VIGENÈRE system. The first key letter S is found. With the
other columns a similar procedure is carried through, to give us step by step
the key

SIGNAL ,
which is confirmed by subsequent decryption of the whole cryptotext. With
fragments leading to causal repetitions underlined, the plaintext is

i f s i g n a l s a r e t o b e d i s p l a y e d i n t h e

p r e s e n c e o f a n e n e m y t h e y m u s t b e g u a

r d e d b y c i p h e r s t h e c i p h e r s m u s t b e c

a p a b l e o f f r e q u e n t c h a n g e s t h e r u l e

s b y w h i c h t h e s e c h a n g e s a r e m a d e m u s

t b e s i m p l e c i p h e r s a r e u n d i s c o v e r a

b l e i n p r o p o r t i o n a s t h e i r c h a n g e s a

r e f r e q u e n t a n d a s t h e m e s s a g e s i n e a

c h c h a n g e a r e b r i e f f r o m a l b e r t j m y e

r s m a n u a l o f s i g n a l s

Now we can even see how the causal repetitions were accomplished: the lon-
gest, LEEBMMTG, originates from a repeated combination of /frequent/ with
GNALSIGN; another one, ZUDLJK, from a repeated combination of /mustbe/
with NALSIG. CSSVMRS comes from /changes/ with ALSIGNA. Strangely,
the repeated occurrence of /cipher/ in the plaintext did not lead to a repe-
tition. SEZM, GHP, ZMX, GEE are caused by /sthe/, /the/, /her/, /are/
meeting ALSI, NAL, SIG, GNA . YVGYS and STY are accidental repetitions.

18.1.2 Plotting the profiles. In the case of relatively long keys the depth
is small, and it may be difficult to recognize frequency differences. Then
there is still the simple possibility of a graphical plot. For the cryptotext of
G. W. Kulp (Fig. 130) the preparatory work of forming the columns for d = 12
was already done in Sect. 17.4 , and the alignment can immediately follow
the Kullback examination of the period. From Fig. 144 the twelve profiles
in Fig. 149 are derived. In Fig. 150 they are aligned to match somewhat the
frequency profile of English. The trial was successful here, too.
The 11th column is misleading: /e/, the most frequent character, does not
occur. Quite generally it can be said that in case of small sets of characters
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1st column

2nd column

3rd column

4th column

5th column

6th column

7th column

8th column

9th column

10th column

11th column

12th column

Standard
A B C D E F G H I J K L M N O P Q R S T U V WX Y Z

Fig. 149. Profiles for the cryptotext of G.W.Kulp
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U =̂ a

N =̂ a

I =̂ a

T =̂ a

E =̂ a

D =̂ a

S =̂ a

T =̂ a

A =̂ a

T =̂ a

E =̂ a

S =̂ a

Standard
a b c d e f g h i j k l mn o p q r s t u v w x y z

Fig. 150. Aligned profiles for the cryptotext of G.W.Kulp
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it is preferable to align first the rare characters, particularly the rarest ones,
the missing ones. Then some of the /e/ —the ones in the third, fourth, fifth,
ninth and tenth column—give a good clue.
In this way, it turns out that the plaintext /a/ corresponds in the first alpha-
bet to U, in the second alphabet N, in the third alphabet I, in the fourth,
eighth and tenth alphabets T, in the fifth and eleventh alphabets E, in the
sixth alphabet D, in the seventh and twelfth alphabets S . In the ninth alpha-
bet A corresponds to plaintext /a/, therefore this substitution is the identity.
To suppress it in the case of a VIGENÈRE would be a technical error, since
this would open the possibility of a non-coincidence attack (Sect. 14.1).
The alignment is certainly facilitated here by the fact that one alphabet
occurs three times. The repeated occurence of a letter in the key (here
T three times, E and S two times) is a technical error, too and should be
avoided by all means.
The key word is now revealed as

UNITEDSTATES .

This makes sense in the circumstances of Philadelphia in 1840. In the sense of
Rohrbach’s maxim, the decryption, with the key period d=12 , is completely
convincing. Thus, Edgar Allen Poe was a little bit unfair in saying the text
was an imposition. For the curious, the decrypted text is given in Fig. 151 .
The decryption was successfully done in 1975 and published by Brian J.
Winkel in Martin Gardner’s column in Scientific American, August 1977.

m r a l e x a n d e r h o w i s i t t h a t t h e m e s s e

n g e r a r r i v e s h e r e a t t h e s a m e t i m e w i

t h t h e s a t u r d a y c o u r i e r a n d o t h e r s a

t u r d a y p a p e r s w h e n a c c o r d i n g t o t h e

d a t e i t i s p u b l i s h e d t h r e e d a y s p r e v

i o u s i s t h e f a u l t w i t h y o u o r t h e p o s t

m a s t e r s

Fig. 151. Plaintext of the Kulp message, as solved by Mark Lyster and Brian J.Winkel

18.2 Aligning Against Known Alphabet

Aligning the alphabets with the naked eye may seem difficult in Fig. 149 , say
with the first or with the eighth column.

18.2.1 Using Chi. Computational means turn out to be a sharper instru-
ment. A natural idea is to determine the alignment shift by calculating the
Chi between the frequencies of the alphabet in question and the primary al-
phabet. This is shown in Figure 152 for the unshifted standard alphabet and
in Figure 153 for the suitably shifted alphabet with /a/ corresponding to U .

In the first case (a =̂ A) the value 64.81/16 %= 4.05% results for Chi; in the
second case (a =̂ U) the markedly larger value 86.03/16 % = 5.38%.
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0 1 1 0 0 0 2 0 1 1 0 1 0

A B C D E F G H I J K L M ×
]

20.08
8.04 1.54 3.06 3.99 12.51 2.30 1.96 5.49 7.26 0.16 0.67 4.14 2.53

a b c d e f g h i j k l m

3 0 0 0 0 3 0 0 0 1 1 1 0

N O P Q R S T U V W X Y Z ×
]

44.73
7.09 7.60 2.00 0.11 6.12 6.54 9.25 2.71 0.99 1.92 0.19 1.73 0.09 ———
n o p q r s t u v w x y z 64.81

Fig. 152. Chi for standard alphabet against first column

0 0 1 1 1 0 0 1 1 0 0 0 2

U V W X Y Z A B C D E F G ×
]

37.37
8.04 1.54 3.06 3.99 12.51 2.30 1.96 5.49 7.26 0.16 0.67 4.14 2.53

a b c d e f g h i j k l m

0 1 1 0 1 0 3 0 0 0 0 3 0

H I J K L M N O P Q R S T ×
]

48.66
7.09 7.60 2.00 0.11 6.12 6.54 9.25 2.71 0.99 1.92 0.19 1.73 0.09 ———
n o p q r s t u v w x y z 86.03

Fig. 153. Chi for standard alphabet against first column, shifted a =̂ U

Table 21 lists the Chi values for all shifts. It turns out that besides a =̂ U

also a =̂ J and a =̂ F are distinguished. These three choices need further,
exhaustive treatment. a =̂ M results in the smallest value of Chi.
This shows that a periodic VIGENÈRE system can be decrypted mechani-
cally under reasonably fortunate circumstances. For a text as long as that in
the case Kulp vs. Poe this is not only successful, but also feasible with the
support of a personal computer.

18.2.2 Strip method. The basic idea of aligning against a primary
alphabet—in case of a VIGENÈRE system the standard alphabet, in case
of an ALBERTI system a mixed alphabet fallen into unauthorized hands—
albeit without calculation of the Chi, is found rather early in the literature. A
common version uses strips as in Sect. 12.8.1 for the primary alphabet, with
the most frequent characters (in English the nine characters e t a o n i r s h)
printed in boldface or in red color—in mechanical solutions in the Second
World War (Ernst Witt, Hans Rohrbach) using semitranslucent paper—and
with the rarest characters (in English the five characters j k q x z) missing.
Using a column of the cryptotext as line, the corresponding plaintext—which
is torn, however—is to be found in some other line, and it is plausible to take
a line with a maximum of boldface characters, provided that line has no
or only a few missing characters. This is shown in Figure 154 for the first
column

G I Y L B N S N J W X C S N S G

of the example of G. W. Kulp, Fig. 144. The line marked by a =̂ U clearly
stands out. The line marked by a =̂ F has two boldface characters more,
but also one rare letter. As indicated by the values in Table 21, the problem



356 18 Alignment of Accompanying Alphabets

Alignment Chi
a =̂ A 4.05% ←−
a =̂ B 3.54%
a =̂ C 3.70%
a =̂ D 2.64%
a =̂ E 4.38%
a =̂ F 5.54% ←−
a =̂ G 4.07%
a =̂ H 2.97%
a =̂ I 2.98%
a =̂ J 5.13% ←−
a =̂ K 4.43%
a =̂ L 3.60%
a =̂ M 1.72% ←−
a =̂ N 4.30%
a =̂ O 4.85%
a =̂ P 4.11%
a =̂ Q 3.01%
a =̂ R 2.77%
a =̂ S 4.71%
a =̂ T 3.59%
a =̂ U 5.38% ←−
a =̂ V 3.71%
a =̂ W 3.37%
a =̂ X 2.65%
a =̂ Y 4.18%
a =̂ Z 4.62%

Table 21.
Calculated values of Chi
for standard alphabet against first column

emerges of deciding between these two keys U and F for the first column.
The remaining lines, e.g., a =̂ J , are inferior. a =̂ M shows the worst case.

18.2.3 Additional help. As soon as the shift is determined for a second
column, too, we can hope that bigram frequencies will help in such decisions,
in our case between the competing keys U and F . The determination of the
individual key letters is thus mutually supporting.

18.2.4 Slide method. A related method uses a slide or a disk, corre-
sponding exactly to the original, carrying the standard alphabet or a mixed
alphabet fallen into unauthorized hands. The most frequent letters on the
plaintext side are again specially marked, say in boldface type, and the rarest
ones omitted. On the cryptotext side, the observed frequencies are marked,
say by strokes. For the letters of the column G I Y L B N S N J W X C S N S G ,
the frequencies are marked as follows (Fig. 155):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z .
Then the two slides or disks are moved against each other until the ‘boldest’
confrontation is found. Clearly, this is only a variant of the method above.
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a
b a
c a b
d b c
e c d
f d e
g a e f a a
h b f g b b
i c g h c c
: d h i d d
: e i : e e
l a f a : : f a f
m b g b : l g b g
n a c h c l m h c h
o b d i d m n i d i
p c e : e a n o : e :

a : d f : f b o p : f :
b r e g l g c p : l g l

a c s f h m h d : r m h m a
b d t g i n i e r s n i n b
c e u h : o : f s t o : o c
d f v i : p : g t u p : p d
e g w : l : l h u v a : l : e
f h : : a m r m i v w b r m r f

→ g i y l b n s n : w : c s n s g a =̂ A
h : : m c o t o : : y d t o t h
i : a n d p u p l y : e u p u i
: l b o e : v : m : a f v : v :
: m c p f r w r n a b g w r w :
l n d : g s : s o b c h : s : l
m o e r h t y t p c d i y t y m a =̂ U
n p f s i u : u : d e : : u : n
o : g t : v a v r e f : a v a o
p r h u : w b w s f g l b w b p
: s i v l : c : t g h m c : c :
r t : w m y d y u h i n d y d r
s u : : n : e : v i : o e : e s
t v l y o a f a w : : p f a f t
u w m : p b g b : : l : g b g u a =̂ M
v : n a : c h c y l m r h c h v
w y o b r d i d : m n s i d i w
: : p c s e : e a n o t : e : : a =̂ J
y a : d t f : f b o p u : f : y
: b r e u g l g c p : v l g l :
a c s f v h m h d : r w m h m a
b d t g w i n i e r s : n i n b a =̂ F
c e u h : : o : f s t y o : o c
d f v i y : p : g t u : p : p d
e g w : : l : l h u v a : l : e
f h : : a m r m i v w b r m r f
g i y l b n s n : w : c s n s g
. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

Fig. 154.
Strip method:
Search for the
‘boldest’ line
(for first column
in Fig. 144)

18.2.5 Reach of the method. This principle of ‘controlled exhaus-
tion’ can be used in all cases where it is known how to obtain from a primary
substitution all other substitutions, among others also in case of ROTOR
encryption steps. A depth of at least 6–9 is aimed at, i.e., normally 6–9
cryptotext letters per key letter are required for success.
In other words, to prevent this attack, the plaintext should not be longer
than six times the key length.
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a b c d e f g h i . . l mn o p . r s t u v w . y . a b c d e f g h i . . l mn o p . r s t u v w . y .

A B C D E F G H I J K L M N O P QR S T U VWX Y Za =̂ U

a b c d e f g h i . . l mn o p . r s t u v w . y . a b c d e f g h i . . l mn o p . r s t u v w . y .

A B C D E F G H I J K L M N O P QR S T U VWX Y Za =̂ F

a b c d e f g h i . . l mn o p . r s t u v w . y . a b c d e f g h i . . l mn o p . r s t u v w . y .

A B C D E F G H I J K L M N O P QR S T U VWX Y Za =̂ M

Fig. 155. Slide for decryption of a column of torn text

a =̂ U: a good match a =̂ F: a good match, too a =̂ M: a bad match

Moreover, the method can also be used for polyalphabetic encryption with
arbitrary unrelated alphabets that have fallen into unauthorized hands—say
a whole cylinder M-94 or a whole strip device CSP 642 , or that have already
been grouped in families (Sect. 14.3.6). Then no more is needed than to test
a column of the torn plaintext against every single alphabet. Again, use of a
personal computer will be sufficient.
However, the depth of the columns will frequently be too short to succeed
with this method. Normally, at least 40 or 50 cryptotext letters per key letter
will be required for success.

18.3 Chi Test: Mutual Alignment
of Accompanying Alphabets

If the primary alphabet is not known, it is still possible to align mutually the
individual accompanying alphabets and again to replace the polyalphabeti-
cally encrypted cryptotext by a monoalphabetically encrypted intermediary
cryptotext, which can be treated with the methods of Chapters 12–15 . This
procedure is also useful if the primary alphabet is the standard alphabet, but
this fact has not been recognized, say because the cryptotext is rather short.

11 8 12 9 12 8 3 4 10 21 5 7 19 9 20 10 8 20 12 4 8 15 22 13 7 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Fig. 156. Frequency distribution in the cryptotext of Sect. 18.3.1

18.3.1 Example. The following cryptotext (Abraham Sinkov 1968) of 303
characters has a well-balanced frequency distribution shown in Figure 156 ,
which does not suggest monoalphabetic encryption.

S WW J R G P R D N F MW J E X E WG R Z J Q D N V J Z R V

S Z X O J VWWR O V B H R M M O F D L I P A X V E Z WU T

C Z O Z A A Q Q J L U P K Z Z X U M J A P C Z O E B AW Z R
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Z Y K Z I P O F O L U O C R E N Y K R I C A M O X I O O R R

Z J K O L VWW J N V P K Z A A F O C A M Z O M R C J Z D Y

E J X E L X R F Q I Z J C M A R J VW I D S W Z X A S O T R

B J B Z O Q P X M I P D J V Z Z X H G Q S Z F D Q F J Z J R

B MW I C E Z MW L M E C V Y VW Z O X TWH S R U U B M T

N S J DW S S O OW C U N J Y V J E W I P P F S L M O Q V Y

C VWR I S MM HW X M E J Y N U Z M V M XWC R N B R D E

S N B

The value of Phi is 4.58% and confirms the conjecture. There are nine
repetitions of length 3, but no longer ones, and the distances are:

WWJ : 125 = 5 · 5 · 5
RZJ : 100 = 2 · 2 · 5 · 5
JVW : 132 = 2 · 2 · 3 · 11
VWW : 90 = 2 · 3 · 3 · 5
CZO : 21 = 3 · 7
ZAA : 70 = 2 · 5 · 7
PKZ : 60 = 2 · 2 · 3 · 5
ZZX : 121 = 11 · 11
CAM : 28 = 2 · 2 · 7 .

The Kasiski examination is unable to differentiate between the two possible
periods 5 and 7 . However, this can be done with a Kullback examination.
Writing a depth in 7 columns yields the low value Phi(7) = 4.44%, while for
a depth in 5 columns the calculation of the values of φρ as shown in Figure 157
yields Phi(5)=5·(196+236+258+262+240)/(303·302)=6.51% , a much higher
value in the expected range. Since also the frequencies are rather unbalan-
ced, each column could indeed be monoalphabetically encrypted. However,
none of the columns seems to have a frequency distribution with a shifted
profile belonging to English, German, or French, as a glance ahead at Figure
158 shows. Thus, not a VIGENÈRE system, but more generally an ALBERTI
system seems likely, and we have to determine its primary mixed alphabet.
Fig. 158 presents the profiles for the five columns, intuitively aligned.

18.3.2 Obtaining an intermediary cryptotext. If the text were ten
times as long, we could treat every column separately and in the end perhaps
be surprised to find that all the alphabets have a common primary alpha-
bet. But with 61 or 60 characters in a column, the text basis is too small
to do this. Therefore, we can only hope that under the assumption of an
ALBERTI system the five alphabets can be mutually aligned such that a
monoalphabetically encrypted intermediary cryptotext of 303 characters is
obtained, enough to use standard methods.
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1st column
3 3 5 1 3 2 1 0 2 0 0 0 5 4 0 4 1 1 6 1 3 7 0 4 0 5

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

φ1 = 1962nd column
2 2 1 1 2 1 0 0 0 10 0 0 4 1 5 6 1 1 4 0 4 1 5 2 2 6

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

φ2 = 2363rd column
1 3 3 0 2 5 0 3 0 2 5 0 4 1 6 0 3 2 0 0 0 1 11 3 0 6

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

φ3 = 2584th column
0 0 2 7 1 0 2 1 1 8 0 0 5 0 7 0 1 7 2 1 1 3 3 1 0 7

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

φ4 = 2625th column
5 0 1 0 4 0 0 0 7 1 0 7 1 3 2 0 2 9 0 2 0 3 3 3 5 2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

φ5 = 240
Fig. 157. Frequency distribution for five columns and values of φρ

1st column
A B C D E F G H I J K L M N O P Q R S T U V WX Y Z

2nd column
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

3rd column
K L M N O P Q R S T U V WX Y Z A B C D E F G H I J

4th column
R S T U V WX Y Z A B C D E F G H I J K L M N O P Q

5th column
WX Y Z A B C D E F G H I J K L M N O P Q R S T U V

Fig. 158. Profiles for five columns, intuitively aligned

To obtain the mutual alignment of the i-th and the k-th columns, Chi is
calculated for the i-th column, shifted cyclically by q positions, and the k-th
column, for q = 0 . . . N−1. Normally, in this sequence all the values fluctuate
around κR with one exception, which should be in the neighborhood of κS ,
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and the corresponding q giving the alignment shift. Table 22 shows this for
the first and second column, with the resulting alignment A(1)=̂X(2). This
confirms the alignment of the profiles for the 1st and the 2nd column in
Fig. 158.

Alignment Chi

A(1)=̂A(2) 157/612 = 4.22%
A(1)=̂B(2) 133/612 = 3.57%
A(1)=̂C(2) 162/612 = 4.35%
A(1)=̂D(2) 122/612 = 3.28%
A(1)=̂E(2) 144/612 = 3.87%
A(1)=̂F (2) 138/612 = 3.71%
A(1)=̂G(2) 102/612 = 2.74%
A(1)=̂H(2) 170/612 = 4.57%
A(1)=̂I(2) 119/612 = 3.20%
A(1)=̂J (2) 126/612 = 3.39%
A(1)=̂K(2) 188/612 = 5.05%
A(1)=̂L(2) 83/612 = 2.23%
A(1)=̂M (2) 160/612 = 4.30%
A(1)=̂N (2) 133/612 = 3.57%
A(1)=̂O(2) 165/612 = 4.43%
A(1)=̂P (2) 137/612 = 3.68%
A(1)=̂Q(2) 106/612 = 2.85%
A(1)=̂R(2) 172/612 = 4.62%
A(1)=̂S(2) 130/612 = 3.49%
A(1)=̂T (2) 123/612 = 3.31%
A(1)=̂U (2) 190/612 = 5.11%
A(1)=̂V (2) 132/612 = 3.55%
A(1)=̂W (2) 148/612 = 3.98%
A(1)=̂X(2) 236/612 = 6.34% ←−
A(1)=̂Y (2) 91/612 = 2.45%
A(1)=̂Z(2) 154/612 = 4.14%

Table 22.
Calculated values of Chi
for first column
against second column

Abraham Sinkov indicates different alignment strategies: a chaining one with
an alignment of the 2nd column against the 1st, the 3rd column against the
2nd, the 4th column against the 3rd, the 5th column against the 4th, and
so on, possibly cyclically closed; a starlike one with an alignment of the
2nd column against the 1st, the 3rd column against the 1st, the 4th column
against the 1st, the 5th column against the 1st, and so on. The chain has the
disadvantage that the results cannot be better than the effect of the weakest
alignment in the chain. The star has the disadvantage that the common
reference may be ill-chosen. In general, bypasses are sometimes necessary.

A weak alignment occurs if more than one value of Chi is raised above the
background. This happens in our example for the calculation of Chi between
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the 3rd and the 4th column. As Table 23 shows, there is almost no difference
between A(3)=̂H(4) and A(3)=̂N (4) . It is possible to follow up several cases,
and also possible to bypass weak alignments. In our example it turns out
that the chain as well as the star work well with the alignment A(3)=̂H(4).
This in the end gives the alignment shown in Figure 158 .

Alignment Chi

A(3)=̂A(4) 187/61·60 = 5.11%
A(3)=̂B(4) 86/61·60 = 2.35%
A(3)=̂C(4) 148/61·60 = 4.04%
A(3)=̂D(4) 164/61·60 = 4.48%
A(3)=̂E(4) 165/61·60 = 4.51%
A(3)=̂F (4) 117/61·60 = 3.20%
A(3)=̂G(4) 82/61·60 = 2.24%
A(3)=̂H(4) 231/61·60 = 6.31% ←−
A(3)=̂I(4) 122/61·60 = 3.33%
A(3)=̂J (4) 110/61·60 = 3.01%
A(3)=̂K(4) 143/61·60 = 3.91%
A(3)=̂L(4) 109/61·60 = 2.98%
A(3)=̂M (4) 150/61·60 = 4.10%
A(3)=̂N (4) 229/61·60 = 6.26% ←−
A(3)=̂O(4) 53/61·60 = 1.45%
A(3)=̂P (4) 180/61·60 = 4.92%
A(3)=̂Q(4) 146/61·60 = 3.99%
A(3)=̂R(4) 103/61·60 = 2.77%
A(3)=̂S(4) 204/61·60 = 5.57%
A(3)=̂T (4) 108/61·60 = 2.95%
A(3)=̂U (4) 126/61·60 = 3.44%
A(3)=̂V (4) 190/61·60 = 5.19%
A(3)=̂W (4) 114/61·60 = 3.11%
A(3)=̂X(4) 124/61·60 = 3.39%
A(3)=̂Y (4) 145/61·60 = 3.96%
A(3)=̂Z(4) 124/61·60 = 3.39%

Table 23.
Calculated values of Chi
for third column
against fourth column

Thus, the example shows how a periodic ALBERTI encryption under reason-
ably fortunate circumstances can be reduced mechanically to an intermediary
cryptotext which is most likely monoalphabetically encrypted. In this exam-
ple from Sinkov, 60 cryptotext letters per key letter were more than sufficient.
The support obtainable from a personal computer is enough.

18.3.3 A side result. In Figure 158 it may be noticed that the letters,
read vertically, which produce AXKRW, BYLSX, CZMTY, DANUZ and so on,
give among others ROBIN . This is presumably the 5-letter key word. We
shall come back to this observation in Sect. 18.4 .
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18.4 Reconstruction of the Primary Alphabet

The monoalphabetically encrypted intermediary text is produced by system-
atic change of letters, as suggested by Fig. 158: the fragment SWWJR is trea-
ted as follows:

SWWJR = S(1)W(2)W(3)J(4)R(5) = S(1)Z(1)M(1)S(1)V(1) = SZMSV(1)

Altogether there is the following intermediary cryptotext, expressed in the
alphabet (1) of the first column:

(1) S Z M S V G S H M R F P M S I X H M P V Z M G M R V M P A Z

S C N X N V Z M A S V E X A Q M R V M P I S Q G Z E C M D X

C C E I E A T G S P U S A I D X X C S E P F P X I B D M I V

Z B A I M P R V X P U R S A I N B A A M C D C X B I R E A V

Z M A X P V Z M S R V S A I E A I E L E M C E V V C M P M C

E M N N P X U V Z M Z M S V E R M L F M D V M I B A V E C V

B M R I S Q S N V M P G Z E D Z A X P U S C V M U F M P S V

B P M R G E C C F P M H S E C V Z P X B T Z X B V U X R V X

N V Z M A S V E X A C X D S C V M U F M P S V B P M R G E C

C Y M A M S P C Q A X P U S C N X P V Z M A M L V N E H M I

S Q R

Its frequency distribution with respect to the alphabet (1) is
20 10 21 7 19 6 7 4 14 0 0 3 40 9 0 23 5 13 24 2 8 31 0 20 1 16

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

An entry is obviously
M(1)=̂ e , V(1)=̂ t , S(1)=̂ a .

From the frequently occurring trigram VZM =̂ tZe one obtains
Z(1)=̂ h .

Working freestyle, one can from the occurrence of /heat/ tentatively con-
jecture that /temperature/ occurs, indeed the repetition
VMUFMPSVBPM=̂ teUFePatBPe occurring towards the end of the seventh
line and again in the ninth has the requested pattern. This gives already

U(1)=̂ m , F(1)=̂ p , P(1)=̂ r , B(1)=̂ u .
At the beginning of the fifth line there is
VZMAXPVZMSRV =̂ theAXrtheaRt =̂ thenortheast . Thus

A(1)=̂ n , X(1)=̂ o , R(1)=̂ s .
The decryption now moves to a gallop, since e t a o n r s h and some rare
letters are already determined: from the fragmentary decryption

a h e a t G a H e s p r e a I o H e r t h e G e s t e r n h

a C N o N t h e n a t E o n Q e s t e r I a Q G h E C e D o

C C E I E n T G a r m a n I D o o C a E r p r o I u D e I t

h u n I e r s t o r m s a n I N u n n e C D C o u I s E n t

h e n o r t h e a s t a n I E n I E L E e C E t t C e r e C
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E e N N r o m t h e h e a t E s e L p e D t e I u n t E C t

u e s I a Q a N t e r G h E D h n o r m a C t e m p e r a t

u r e s G E C C p r e H a E C t h r o u T h o u t m o s t o

N t h e n a t E o n C o D a C t e m p e r a t u r e s G E C

C Y e n e a r C Q n o r m a C N o r t h e n e L t N E H e I

a Q s

one deduces step by step
G(1)=̂ w , H(1)=̂ v , I(1)=̂ d , C(1)=̂ l , N(1)=̂ f , E(1)=̂ i ,
Q(1)=̂ y , D(1)=̂ c , T(1)=̂ g , L(1)=̂ x , Y(1)=̂ b ,

and ends up with a plaintext that obviously makes sense:
a h e a t w a v e s p r e a d o v e r t h e w e s t e r n h

a l f o f t h e n a t i o n y e s t e r d a y w h i l e c o

l l i d i n g w a r m a n d c o o l a i r p r o d u c e d t

h u n d e r s t o r m s a n d f u n n e l c l o u d s i n t

h e n o r t h e a s t a n d i n d i x i e l i t t l e r e l

i e f f r o m t h e h e a t i s e x p e c t e d u n t i l t

u e s d a y a f t e r w h i c h n o r m a l t e m p e r a t

u r e s w i l l p r e v a i l t h r o u g h o u t m o s t o

f t h e n a t i o n l o c a l t e m p e r a t u r e s w i l

l b e n e a r l y n o r m a l f o r t h e n e x t f i v e d

a y s

At that moment the primary alphabet is reconstructed up to an arbitrary
shift. Nothing is known about /j/, /k/, /q/, /z/ , which do not show up.
The decryption determined so far reads for the first and the second column

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(1) n u l c i p w v d ∗ ∗ x e f ∗ r y s a g m t ∗ o b h
(2) c i p w v d ∗ ∗ x e f ∗ r y s a g m t ∗ o b h n u l

Assuming that ROBIN (see 18.3.3) indeed was the key word, the lines for
the key letters R and O in a ‘tabula recta’ would be obtained by cyclic shifts

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

with the headline of the ‘tabula recta’ shifted accordingly
s a g m t ∗ o b h n u l c i p w v d ∗ ∗ x e f ∗ r y .

Now even the ‘second’ key, the password for the construction of the alphabet,
becomes transparent: if the alphabet sequence is written in five columns

s o l v e
a b c d f
g h i ∗ ∗
m n p ∗ r
t u w x y
∗

the password /solve/ suddenly appears. The primary alphabet is con-
structed according to the method discussed in Sect. 3.2.5 . In this way, we
can even complete the alphabet:
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s o l v e
a b c d f
g h i j k
m n p q r
t u w x y
z

Correspondingly, the completed headline is
s a g m t z o b h n u l c i p w v d j q x e f k r y .

With this result, the decryption is perfect in the sense of Rohrbach’s maxim.
Causal repetitions (see 18.3.1) are RZJ and VWW, which both become /the/;
PKZ is decrypted /and/ ; WWJ is /hea/ in hea(t) and in (nort)hea(st) , ZAA

is /din/ in (colli)din(g) and in (an)d in . The quite unlikely occurrence of
the four accidental repetitions JVW, CZO, ZZX, CAM is confirmed; they have
distances 2 · 2 · 3 · 11 , 3 · 7 , 11 · 11 , 2 · 2 · 7 , all missing the factor 5 .

18.5 Kerckhoffs’ Symmetry of Position

In Sect. 18.4, for methodical reasons, a free-style frequency analysis was per-
formed. Frequently, there are clues for probable words leading to a pattern
analysis, which may also give decryption of rare characters in some of the ac-
companying alphabets. In 1883, Auguste Kerckhoffs detected that it is pos-
sible in suitable cases to infer from such a decryption of characters of some col-
umn the decryption of characters of some other, separate column. He called
the corresponding property of the accompanying alphabets, based (Chap-
ter 5) on the commutativity of addition in ŸN , symétrie de position (sym-
metry of position). The method, generally known under Kerckhoffs’ name,
is explained in the following using an original example from Kerckhoffs.

18.5.1 Example. Let the cryptotext of 150 characters be

R B N B J J H G T S P T A B G J X Z B G J I C E M Q A M U W

I V G A G N E I MW R E Z K Z S U A B R R B P B J C G Y B G

J J M H E N P M U Z C H GWO U D C K O J K K B C P V P M J

N P G KW P WA DW C P B V M R B Z B H J W Z D N M E U A O

J F B M N K E X H Z AWMWK A Q M T G L V G H C Q B MW E

and assume that a Kasiski examination of the bigram repetitions RB, BJ,
BG, RE, MJ, PQ has raised suspicion of a polyalphabetic encryption of pe-
riod 5, possibly with accompanying shifted alphabets. As mots probables
of the telegram dated from September 2, 1882 and sent from London to the
Agence Havas in Le Caire (Cairo) are listed Arabie, Wolseley1, Suez, Ismäılia,
canal, général, soldats . Kerckhoffs first makes a frequency analysis of the five
columns and finds that in the first column J(1)=̂ e , in the second and fourth
B(2)=̂ B(4)=̂ e , in the third M(3)=̂ e , in the fifth Z(5)=̂ e is a reasonable
guess. This gives him a partial decryption

1 Lord Garnet J.Wolseley, Commander-in-Chief of the British Army.
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R B N B J J H G T S P T A B G J X Z B G J I C E M Q A M U W

∗ e ∗ e ∗ e ∗ ∗ ∗ ∗ ∗ ∗ ∗ e ∗ e ∗ ∗ e ∗ e ∗ ∗ ∗ ∗ ∗ ∗ e ∗ ∗

and he tries in the circumstances the hypothesis that this should be completed
to le général Wolseley ..... . This gives an entry

R B N B J J H G T S P T A B G J X Z B G J I C E M Q A M U W

l e g e n e r a l w o l s e l e y ∗ e ∗ e ∗ ∗ ∗ ∗ ∗ ∗ e ∗ ∗

Thus G(5)=̂ l ; then he tries a continuation with télégraphie :

R B N B J J H G T S P T A B G J X Z B G J I C E M Q A M U W

l e g e n e r a l w o l s e l e y t e l e g r a p h i e ∗ ∗

This is the prehistory; the specific method starts here. So far we have

a b c d e f g h i j k l m n o p q r s t u v w x y z
(1) J Q R P

(2) B I A T H X

(3) G M N C A Z

(4) E B T

(5) Z G J M S

The symmetry of position is now introduced: To start with, lines (2) and
(4) must be identical (because of B(2)=̂ B(4)=̂ e, T(2)=̂ T(4)=̂ l ), which when
supplemented gives

a b c d e f g h i j k l m n o p q r s t u v w x y z
(2) E B I A T H X

(4) E B I A T H X

Since J occurs in lines (1) and (5) and J(1)=̂ e , J(5)=̂ n = e + 9 we conclude
that the whole line (5) is shifted against the line (1) by nine positions to the
right. This gives a determination of eight cryptotext characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
(1) G J M Q R S P Z

(5) Z G J M Q R S P

But line (3) and line (5) are also connected, among others by M(3)=̂ e ,
M(5)=̂ p = e + 11 . This leads to the following fixation of eleven cryptotext
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
(1) G J M Q N R S P C A Z

(3) G J M Q N R S P C A Z

(5) C A Z G J M Q N R S P

Finally, line (2) and line (3) are connected by one letter, namely A: A(2)=̂ i
and A(3)=̂ s = i + 11 . This now gives connections between all five alphabets
and a fixation of seventeen cryptotext characters:
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a b c d e f g h i j k l m n o p q r s t u v w x y z
(1) G H J M Q N X R E S P B I C A Z T

(2) E S P B I C A Z T G H J M Q N X R

(3) G H J M Q N X R E S P B I C A Z T

(4) E S P B I C A Z T G H J M Q N X R

(5) I C A Z T G H J M Q N X R E S P B

Decryptions are still missing for the nine cryptotext characters D, F, K, L,

O, U, V, W, Y . However, it can be expected that with 17 out of a total
of 26 characters the further decryption is trifling. Indeed, the fragmentary
decryption of the first three lines of the telegram

R B N B J J H G T S P T A B G J X Z B G J I C E M Q A M U W

l e g e n e r a l w o l s e l e y t e l e g r a p h i e ∗ ∗
I V G A G N E I MW R E Z K Z S U A B R R B P B J C G Y B G

s ∗ a i l i a q u ∗ l a t t e n ∗ s e u l e m e n t q ∗ e l

J J M H E N P M U Z C H GWO U D C K O J K K B C P V P M J

e s e r v i c e ∗ e t r a ∗ ∗ ∗ ∗ r ∗ ∗ e ∗ ∗ e c o m m u n

provides V, W with the probable word Ismäılia. Obvious filling of gaps gives
U, Y and if in the third line transports is recognized, then D, K, O are given.
F and L both occur only once (in the fifth line of the telegram) and are
harder.
But there is already a better way to bring the decryption to an end: a
password used in the formation of the alphabet has emerged and is obviously
RESPUBLICA . Thus, the five alphabets used can be completed to give

a b c d e f g h i j k l m n o p q r s t u v w x y z
(1) D F G H J K M Q N O X R E S P U B L I C A Z Y T V W

(2) E S P U B L I C A Z Y T V W D F G H J K M Q N O X R

(3) G H J K M Q N O X R E S P U B L I C A Z Y T V W D F

(4) E S P U B L I C A Z Y T V W D F G H J K M Q N O X R

(5) L I C A Z Y T V W D F G H J K M Q N O X R E S P U B

In the completed column under plaintext /a/ appears DEGEL (French dégel ,
thaw) as the key word, which makes sense.
Finally, the whole encryption table (tabula recta) is shown as Table 24. It
remains open which line should be the first; following Kerckhoffs also here,
we choose the line with the password at the end. If then the lines, i.e., the
alphabets, are numbered from A to Z, the key word of length 5 is FRHRW .
But the ‘true’ key DEGEL uses the column under plaintext /a/ .
The plaintext reads: “Le général Wolseley télégraphie d’ Ismäılia qu’il attend
seulement que le service de transports et de communication soit complètement
organisé pour faire une nouvelle marche en v...”.
Summarizing, the symétrie de position allows one “to extort more plaintext
from a paucity of ciphertext” (David Kahn).
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a b c d e f g h i j k l mn o p q r s t u v w x y z
A Z Y T V WD F G H J K M Q N O X R E S P U B L I C A
B Y T V WD F G H J K M Q N O X R E S P U B L I C A Z
C T V WD F G H J K M Q N O X R E S P U B L I C A Z Y
D V WD F G H J K M Q N O X R E S P U B L I C A Z Y T
E WD F G H J K M Q N O X R E S P U B L I C A Z Y T V
F D F G H J K M Q N O X R E S P U B L I C A Z Y T V W
G F G H J K M Q N O X R E S P U B L I C A Z Y T V WD
H G H J K M Q N O X R E S P U B L I C A Z Y T V WD F
I H J K M Q N O X R E S P U B L I C A Z Y T V WD F G
J J K M Q N O X R E S P U B L I C A Z Y T V WD F G H
K K M Q N O X R E S P U B L I C A Z Y T V WD F G H J
L M Q N O X R E S P U B L I C A Z Y T V WD F G H J K
M Q N O X R E S P U B L I C A Z Y T V WD F G H J K M
N N O X R E S P U B L I C A Z Y T V WD F G H J K M Q
O O X R E S P U B L I C A Z Y T V WD F G H J K M Q N
P X R E S P U B L I C A Z Y T V WD F G H J K M Q N O
Q R E S P U B L I C A Z Y T V WD F G H J K M Q N O X
R E S P U B L I C A Z Y T V WD F G H J K M Q N O X R
S S P U B L I C A Z Y T V WD F G H J K M Q N O X R E
T P U B L I C A Z Y T V WD F G H J K M Q N O X R E S
U U B L I C A Z Y T V WD F G H J K M Q N O X R E S P
V B L I C A Z Y T V WD F G H J K M Q N O X R E S P U
W L I C A Z Y T V WD F G H J K M Q N O X R E S P U B
X I C A Z Y T V WD F G H J K M Q N O X R E S P U B L
Y C A Z Y T V WD F G H J K M Q N O X R E S P U B L I
Z A Z Y T V WD F G H J K M Q N O X R E S P U B L I C

Table 24. Table of alphabets (tabula recta) for the example of Kerckhoffs

18.5.2 Volapük. The Fleming Auguste Kerckhoffs (the complete list of his
given names is Jean-Guillaume-Hubert-Victor-François-Alexandre-Auguste,
his nobility name was von Nieuwenhof ) was born January 19, 1835 in Nuth
in the duchy of Limburg (now in Belgium). He went to school near Aachen,
studied after a stay in England at the university of Luik (Liège, Lüttich),
became a high school teacher in modern languages and worked as a trav-
eling secretary, to find finally a position in Melun, south-east of Paris. He
was somewhat eccentric as a teacher, but very active in learned societies.
In 1873, he became a French citizen, and in 1873–1876 he studied at the
universities of Bonn and Tübingen and became Docteur ès lettres. In 1878
he was given a chair for German Language at the École des Hautes Études
Commerciales and at the École Arago in Paris. His first contribution to cryp-
tology was in 1882, when he wrote—for unknown reasons—La cryptographie
militaire. This 64-page article in the Journal des Sciences militaires, January
and February 1883, and Kasiski’s work of 1863 are the foundation stones of
scientific cryptology in the 19th century.
However, for most people Kerckhoffs’ fame stems from his ardent and tragic
support for the international, universal language Volapük, proposed in 1879
by Johann Martin Schleyer. Kerckhoffs was appointed in 1887 Dilekel (direc-
tor) of the International Volapük Academy. Like Esperanto (1887) and other



18.5 Kerckhoffs’ Symmetry of Position 369

later proposals, Volapük was unable to establish itself. Kerckhoffs lived long
enough to see the decline of Volapük and died broken-hearted in 1903.

18.5.3 An example with a surprise. The symmetry of position is also
useful in dealing with a VIGENÈRE system, of course. We shall show this
for the cryptotext of G. W. Kulp (Fig. 130), first assuming only that it is an
ALBERTI system, and that there are reasons to expect a period of 12 . To
begin with, we write a depth of 12 columns as in Fig. 144,

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

G E I E I A S G D X V Z
I J Q L M W L A A M X Z
Y Z M L W H F Z E K E J
L V D X W K W K E T X L
B R A T Q H L B M X A A
N U B A I V S M U K H S
S P W N V L W K A G H G
N U M K W D L N R W E Q
J N X X V V O A E G E U
W B Z W M Q Y M O M L W
X N B X M W A L P N F D
C F P X H W Z K E X H S
S F X K I Y A H U L M K
N U M Y E X D M W B X Z
S B C H V W Z X P H W L
G N A M I U K

and start from the observation that /e/, /t/, and /a/, the three most frequent
letters in English, have the following distances: t + 7 = a, a + 4 = e, as well
as t + 11 = e . We now look for the most frequent cryptotext characters in
the same column with these differences, 4 or 7 or 11 . In fact, we find six
triples :

(3) (4) (6) (7) (10) (12) plain

B M W L M L t+7
I T D S T S a+4
M X H W X W e

This finding also suggests that the 4th and the 10th columns, as well as the
7th and the 12th columns are subordinate to the same key.
Using a systematic procedure we form for every column the pairwise differ-
ences between the most frequent cryptotext characters and list those with
the differences 4, 7, 11 . There are more cases:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) plain

N B M W L M M X L t+7
N I T E D S A T E S a+4

Y R M X I H W X E X W e
Shift 0 19 14 25 10 9 24 25 6 25 10 24

This ‘difference method’ is only a variant of the symétrie de position. Note
that the word UNITEDSTATES shines through in the middle line. The shifts
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needed to align the columns with the first column are given in a footline. They
produce a key; decryption with respect to this key reduces the cryptotext to
a monoalphabetically encrypted intermediary cryptotext. Subtraction of the
respective key letters gives the beginning of this text

G L U F Y R U H X Y L B

I Q C M C N N B U N N B

Y G Y M M Y H A Y L U L

L C P Y M B Y L Y U N N .

Further decryption by means of a frequency analysis offers no problems, and
the intermediary encryption turns out to be a CAESAR addition—we did not
use this at all—with U =̂ a ; decryption is performed by counting forward six
places in the alphabet order. Equivalently, the key UNITEDSTATES may
be used for the original, polyalphabetically encrypted text. The beginning of
the plaintext is therefore (compare Sect. 18.1.2):

m r a l e x a n d e r h
o w i s i t t h a t t h
e m e s s e n g e r a r
r i v e s h e r e a t t .

The ‘difference method’ which sprang up here will again be found useful
for stripping off superencrypted code in the next section, since it is totally
free of frequency analysis. If in the symmetry of position method frequency
considerations were included, one could guess that in the above triples the
last line, which is more densely populated than the other two, corresponds
to /e/ (the most frequent letter) and thus the first line to /t/ and the second
line to /a/. Since /a/ is the zero element in Ÿ26, this observation also clari-
fies why the key word UNITEDSTATES shone through. (There are also
‘wrong’ differences, e.g., in the third column M and X with difference +11).

18.6 Stripping off Superencryption:
Difference Method

We resume the discussion of Sect. 18.3 . The (mutual) alignment of accompa-
nying alphabets does not refer to the plaintext, which is regained only from
the monoalphabetically encrypted theoretical intermediary text (Sect. 18.4).
This reflects the fact that ALBERTI steps are compositions: monoalphabetic
functional substitution, followed by polyalphabetic VIGENÈRE addition.

18.6.1 A strip. Thus, the technique of Sects. 18.3, 18.5 is also applicable
for superencrypted code, i.e., for a composition (Sect. 9.2.2) of coding and
following VIGENÈRE over Ÿ26 (literal code) or Ÿ10 (numeral code). The
latter case is called in English parlance ‘stripping off a numerical additive
from enciphered code’, French libeller par soustraction de l’additive, German
Subtraktion einer Überschlüsselungszahl. Enciphered code is ‘encicode’ for
short, and the code taken from the codebook is ‘plain code’ or ‘placode’ for
short.
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Assuming a certain width of the placode (normally known, e.g., 5) and a
certain period, say 15, columns of equally superencrypted placode words
(columns of encicode groups) are formed. Frequently occurring plaintext
words or phrases lead to frequency differences in each column of encicode
groups. If the material is voluminous enough, this may allow the calculation
of the mutual Chi of two columns and thus help alignment, but frequently the
material will not be rich enough to establish by mutual alignment a reference
encicode.

18.6.2 Again symmetry of position. But there is still the symétrie de
position. Two encicode groups that are prominent in two columns belong to
the same placode if and only if their difference equals the difference of the
additives that belong to the columns. Note that differences, according to
Shannon, are the ‘residue classes’ of linear polygraphic substitutions.
To give an example, assume there are three columns and in each one are
found three prominent encicode groups,

(1) (2) (3)

47965 60597 27904
69451 34689 41537
11057 10056 26443

If 47965 from the first and 60597 from the second column of enci-
code groups belong to the same placode, then 11057 from the first and
34689 from the second column of encicode groups belong also to one and the
same placode, since

47965 − 11057 = 60597 − 34689 = 36918 .
To find such coincidences systematically, for each column of encicode groups
all mutual differences are calculated, in our example a three-by-three matrix
for each column of encicode groups (note that addition is done without carry):

(1) (2) (3)

00000 88514 36918 00000 36918 50541 00000 86477 01561
22596 00000 58404 74192 00000 24633 24633 00000 25194
74192 52606 00000 50569 86477 00000 09549 85916 00000

With this information, we also find relations between encicode groups in
different columns:
Within the first and within the second column, we have

36918 = 47965 − 11057 = 60597 − 34689 ;
therefore, between the first and the second columns, there is

47965 − 60597 = 11057 − 34689 = 87478 .
Within the second and within the third column, we have

24633 = 34689 − 10056 = 41537 − 27904 ;
therefore, between the second and the third columns, there is

34689 − 41537 = 10056 − 27904 = 93152 .
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Reducing the second column of encicode groups (2) relative to the first one
(1) by adding everywhere in (2) the difference 87478 , and reducing the third
column of encicode groups (3) relative to the first one (1) by adding every-
where in (3) the difference 87478 (for (2) against (1)) and then the difference
93152 (for (3) against (2)); altogether therefore the difference 70520 , we
obtain:

(1’) (2’) (3’)

47965 47965 97424
69451 11057 11057
11057 97424 96963

Shift 0 87478 70520

The next step is to look in the first column of encicode groups for another
occurrence—though more rare—of 97424 , likewise in the (reduced) third col-
umn of encicode groups for another occurrence—though more rare–of 47965 ;
moreover for occurrences of 69451 , 97424 , 96963 . With luck, further com-
monly occurring placodes can be discovered.

18.6.3 Use of machines. This procedure, although logically simple, re-
quires cumbersome calculations and it is unsurprising that in the 1920s crypt-
analysts sought mechanical support for the alignment. Punch card equipment
was available and was suited for the task. Particularly in the Second World
War, British (J. H. Tiltman, Sept. 1939), Americans (T. H. Dyer, R. J. Fabian,
Nov. 1940), and Germans (H.-G. Krug) relied upon such help.
Next, special devices were built. In the Cipher Branch of the German Ober-
kommando der Wehrmacht (Armed Forces High Command), a Differenzenre-
chengerät was designed that processed encicode groups punched on tape with
the help of mechanical scanners and relay circuitry. It provided seven differ-
ences of five-digit groups per second and recorded the output on a typewriter,
and was thus 10 to 15 times faster than a human calculator at top speed.
In contrast to these digital methods, analog devices with photoelectric mea-
surement for tetragrams were used to determine the most frequently occur-
ring placodes, both in the Chi Branch of the OKW and in the Sonderdienst
Dahlem unit of the German Foreign Ministry. For the reduction, i.e., the
subtraction of a difference from a column of encicode groups with known
relative basis, special optical analog devices were designed during WW II by
the mathematician Ernst Witt (1911–1991).
Less is known about special devices used by the Allies of the Second World
War. The HEATH ROBINSON and COLOSSUS machines built in Bletchley
Park handled binary additives, but were oriented mainly against teletype
cipher machines like the Lorenz Schlüsselzusatz SZ 42 (Sect. 19.2.6). In the
USA, the COPPERHEAD machines of 1943, technologically on the level
of HEATH ROBINSON, worked with optical scanning, too, and were used
against Japanese superencrypted codes, finding the additives. A non-digital
variant was ICKY, used for multigrams of long length, allowing both a 1-of-26
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and a 2-of-5 coding. Comparable, perhaps, with German developments was
the TESSIE machine of 1942, a device built by the Eastman company for
the US Navy, working with photoelectric measurement, which was used to
find four-digit encicode groups needed for stripping off a superencryption. It
was directed both against the Japanese high level fleet code and the German
‘brief signals manual’ for U-boats that was used to flash location messages
and tapped by the Allies for cribs.
The Abwehr traffic with the ‘11-15-17’ ENIGMA G machine (Sect. 7.3.9)
was normally broken by hand methods, but in extremely difficult cases ma-
chines would be employed. While at Bletchley Park two special Bombes
(FUNF, see Sect. 19.6.4) were used, the US Coast Guard preferred HYPO (see
Sect. 17.3.4) and had plans for special attachments (‘multi-notched grenades’)
to Bombes; however they were not made during the war.

18.7 Decryption of Code

At the very end, after stripping off the superencryption, there remains the
decryption of the intermediary encicode, the reconstruction of the code book
(‘book-building’). The intermediary encicode is shifted against the placode
by a constant, but this is totally irrelevant for the work to be done, which
is mainly linguistic in nature. Systematically, this work belongs rather in
Chapter 15. It is much simplified if the code is a one-part code (Sect. 4.4.2);
then a codegroup lying between two groups with already known plaintext
equivalents has an in-between plaintext equivalent. At this point, imagina-
tion and vision, association and combination find ample scope for application.
Book-building is that part of cryptanalysis where mathematics alone is help-
less. A systematic treatment of the linguistic side of cryptanalysis was first
attempted (in 1892) by Paul Louis Eugène Valério.

18.8 Reconstruction of the Password

The advantage offered by accompanying alphabets is that they result from a
single primary alphabet. This can only help the hurried cryptographer if he
can easily remember or construct the primary alphabet. For this purpose,
passwords (Sect. 3.2.5) are very popular. Reconstructing them not only gives
the unauthorized decryptor additional security but can also be used methodi-
cally. The use of meaningful passwords therefore creates a weakness.

18.8.1 Friedman. At first sight, what William F. Friedman presented in
1917 looks like a conjurer’s trick: Let the primary alphabet be

a b c d e f g h i j k l m n o p q r s t u v w x y z
N T U V P W X J F Y Z D K Q C A B O G R L I S H M E

It turns out that it is monocyclic with the cycle

( a n q b t r o c u l d v i f w s g x h j y m k z e p ) .
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Now, starting from an arbitrary character, say /a/ , the substitution is
iterated and the results are written down cyclically with distances of 1, of 3,
of 5 ... :

N Q B T R O C U L D V I F W S G X . . . ,

N * * Q * * B * * T * * R * * O * . . . ,

N * * * * Q * * * * B * * * * T * . . . ,

and so on. This gives altogether

1 N Q B T R O C U L D V I F W S G X H J Y M K Z E P A

3 N D J Q V Y B I M T F K R W Z O S E C G P U X A L H

5 N K X I C Q Z H F U B E J W L T P Y S D R A M G V O

7 N G R Y L E F Q X O M D P W B H C K V A S T J U Z I

9 N T C D F G J K P Q R U V W X Y Z A B O L I S H M E
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

and produces with the distance 9 a sequence that contains a meaningful pass-
word: ABOLISHMENT . Now taking on the plaintext side the same sequence
but shifted 9 places to the right, the following substitution is obtained:

a b o l i s h m e n t c d f g j k p q r u v w x y z
9 N T C D F G J K P Q R U V W X Y Z A B O L I S H M E

Reordering yields the initial alphabet, whose construction from the key-
word is now clarified: it is the ninth power of the cycle with the password
a b o l i s h m e n t:

( a b o l i s h m e n t c d f g j k p q r u v w x y z )

The conjurer’s trick becomes better understood if one realizes that for ev-
ery distance an alphabet is obtained, from which by reordering the initial
alphabet is regained, e.g., for the distance 7 :

a s t j u z i n g r y l e f q x o m d p w b h c k v
7 N G R Y L E F Q X O M D P W B H C K V A S T J U Z I

although this one does not produce a meaningful password. Or with the
distance 1 one obtains, of course,

a n q b t r o c u l d v i f w s g x h j y m k z e p
1 N Q B T R O C U L D V I F W S G X H J Y M K Z E P A

In fact, the third power of this alphabet reconstructs the password, since
3 times 9 equals 1 modulo 26 .

18.8.2 Friedman again. William F. Friedman also gave in 1918 a process
for the reconstruction of passwords in the very general case (Sect. 3.2.5) of an
ALBERTI system with passwords both for the plaintext side and the cryp-
totext side. We shall come back to this in Sect. 19.5.3 .
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The quality of a machine
depends largely on its use.

Boris Hagelin

Among the cryptographic faults listed in Chapter 11, the compromises are
worst, because they open methodical lines of attack. Next to the plaintext-
cryptotext compromise, discussed in Sect. 14.6, we deal in this chapter first
with plaintext-plaintext and then with cryptotext-cryptotext compromises.

19.1 Kerckhoffs’ Superimposition

Polyalphabetic encryption with periodic keytext, even with unknown and
unrelated alphabets, provides no security against unauthorized decryption.
Once the period is determined (Chapter 17), building of a depth (Sect. 17.5)
leads to a monoalphabetically encrypted plaintext. However, the plaintext is
torn, which makes the decryption of very short texts difficult or impossible
(Sects. 18.2.5, 18.3.2).

But even if the key is not periodic or comparable in length to the plaintext,
the methods of Chapter 18 can be applied whenever a number of plaintexts
are encrypted with the same key. Provided the cryptotexts can be adjusted to
be in phase with the keytext, this plaintext-plaintext compromise of the key
likewise allows one to build a depth, i.e., to build columns of cryptocharacters
or of encicode groups, each one consisting of monoalphabetically encrypted
(but still torn) plaintext. Auguste Kerckhoffs also discussed this situation in
his 1883 paper. The in-phase adjustment of several texts is called superim-
position (German Überlagerung). Superimposition will only work if plenty
of plaintexts encrypted with the same key sequence are available and can be
adjusted, but because of the logistic problems of key assignment, this is very
likely if encryption machines are used which have the same or only slightly
varying starting position of the (mechanically generated) key. In this way,
John H. Tiltman1 succeeded in breaking the older ENIGMA without plug-
board (British codename ‘rocket’), used by the German Reichsbahn in the
Second World War for the transmission of timetables for transport trains.

1 “... he was charming and intelligent and though he looked military he certainly didn’t
behave like a stuffed shirt.”(Robin Denniston)
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It is evident that the periodic use of a not-too-long key, which leads to some
repetitions, also means a plaintext-plaintext compromise—but since this was
common practice, it was not called so. This observation has the consequence
that all methods usable for the determination of a key period can also be
used to test whether the different plaintexts are in phase, and if they are not,
to adjust them. In this case, the Kappa test or the Chi test will be just right.

19.1.1 Example. The following superimposition example given by Kerck-
hoffs assumes that the plaintexts are in phase. With altogether 13 of them,
it gives a conveniently simple exercise (typographic errors are corrected):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(i) U H Y B R J I M B C F A MM F J H D M R I Q

(ii) U HW P R B Q L K I B L WR E J R B K L H I X B Q E X H M

(iii) I E WH C H Q K Q M T M V G J J E D Z V A

(iv) UWV R R H I K M C WWR G H D C X S R Q H

(v) U H S H A H K S V C J W Z V X J Y N D M Q Q N

(vi) Y H V H M A G Q K C WX P V I H HW L Z V L T H V

(vii) L H V H A A G R L P F M S O H I P W Z Z J E L Q R BW

(viii) S WU I R X I C J U F S H GW R S Z B A A L

(ix) U HWH V A Y U L C J WO U K D E B K Q

(x) YWX H Y H B A L G B V P S W I WW J R R H

(xi) WQ R E X B I E N H M V Y M H S I Y M

(xii) S WU H D H P J J C K X G M H L

(xiii) G Q V Q R V O T Q Q S P WR

Kerckhoffs begins with the statement that frequency counts presumably give
H(2) =̂ e , H(4) =̂ e , H(6) =̂ e ; and R(5) =̂ e , I(7) =̂ e , L(9) =̂ e , C(10) =̂ e ,
and that because of the many coincidences the second, the fourth, and the
sixth positions fall under the same key (wisely he does not assume U (1) =̂ e ).

Cryptotext (iv) would then be decrypted (iv) ∗∗∗∗e ee∗∗∗..... , which suggests
looking for a word that ends with ée ; l’ armée would be suitable:
(iv) larme ee∗∗∗..... . Cryptotext (v) with (v) le∗e∗ e∗∗∗∗..... suggests
(v) legen eral∗..... . Cryptotext (vi) suggests the hunch (vi) ∗ere∗ v∗∗∗∗.....,
this leaves a choice between (vi) serez vous∗..... or (vi) ferez vous∗..... .
Cryptotext (vii) with (vii) ∗eren vo∗e∗..... is interpreted by Kerckhoffs
somewhat convincingly as (vii) neren voyez..... . He then continues with the
remaining cryptotexts. But he has already made an entry.

Superimposition as a methodical idea is also suited for the case of unrelated
alphabets. Provided that not too many different alphabets are used, say
not more than two dozen in the case of monographic alphabets, and that the
cryptotext is long enough that most of these alphabets are used at least a few
times, then the effective depth of the material is correspondingly multiplied as
soon as the identity of these alphabets is established. If the key is formulated
in German, then on average every sixth key character is an E and thus every
sixth alphabet is the same. In English, this holds for every eighth alphabet.
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19.1.2 Symmetry of Position again. In the present case the further
decryption would be cumbersome detailed work, had not Kerckhoffs made the
assumption that we have accompanying alphabets which are simply shifted
and thus the symétrie de position, the climax of his work (Sect. 18.5), can be
used. Then everything goes like clockwork. Some of the decrypted messages
are (the genre is French North Africa):

(i) leprefetdepoliceestici ‘ le préfet de police est ici ’
(ii) lespertesdelennemisontgrandes ‘ les pertes de l’ennemi sont grandes’
(iii) onsemetsurladefensive ‘ on se met sur la défensive’
(iv) larmeeestentreeaucaire ‘ l’ armée est entrée au Caire’
(v) legeneralestaalexandrie ‘ le général est à Alexandrie’
(vi) serezvousenetatderesister ‘ serez vous en état de résister’
(vii) nerenvoyezpaslesprisonniers ‘ ne renvoyez pas les prisonniers’ .
It turns out that Kerckhoffs used the same ALBERTI steps as in Sect. 18.5.1.
The key is periodic; it can be reconstructed with a Kerckhoffs encryption
table (Table 24) from the longest text (ii) and runs thus

JEMEMETSSURLADEFENSIVE|JEMEMET ... .

19.2 Superimposition for Encryptions with a Key Group

Under favorable circumstances even the extreme case of a superimposition of
only two cryptotexts encrypted with the same key is not hopeless, provided
the alphabets are known. This was outlined for the first time in 1918 by the
great American cryptologist William Frederick Friedman.
19.2.1 Pure encryption. We assume in this section that the cryptosystem
is not only, as usual, injective and definal, i.e., for every encryption step
χs : V (n) −−−� W (m) there exists a decryption step χ−1

s : W (m) −−−� V (n) :

χ−1
s (χs(p)) = p for all p∈V (n),

but also that it is functional and surjective (Sect. 2.2.2, 2.6.2):

χs(χ−1
s (c)) = c for all c∈W (m) .

Then |V (n)| = |W (m)| . In this case, it is convenient to identify plaintext
characters and cryptotext characters, thus n = m , V

.≡ W , and the endo-
morphic case χs : V n ≺−−−−� V n is assumed. Thus, let M ⊆ V n ×V n be the
cryptosystem, |V | = N . M is the key space.

The important assumption is now that the endomorphic cryptosystem M is
pure (see Sects. 2.6.4, 9.1.1), i.e.,that it is closed under composition: The
composition of two encryption steps χs ∈M , χt ∈M belongs to the set M
of encryption steps: χs(χt(p)) = χs•t(p) , whereby s • t is uniquely defined.
The composition is associative: χr•s(χt(p)) = χr(χs•t(p)) . Since we have
assumed that every encryption step χs ∈ M has an inverse χ−1

s ∈ M , the
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encryption steps build a group under composition, the key group M (see
Sect. 9.1.1). χs−1(p) is defined by χ−1

s (p).

Trivially, the key group can be a singleton M = {id} ; or it can have Nn

elements, say M = {id, χ, χ2, χ3, . . . χNn−1, } , where χ is monocyclic; or it
can have maximally (Nn)! elements, M

.≡ V n ≺−−−−� V n .

Now let c′ = (c′1, c
′
2, c

′
3, . . .) and c′′ = (c′′1 , c′′2 , c′′3 , . . .) be isologs, two crypto-

texts that are encryptions with the same key k = (k1, k2, k3, . . .) of the two
plaintexts p′ = (p′1, p

′
2, p

′
3, . . .) and p′′ = (p′′1 , p′′2 , p′′3 , . . .) :

c′i = χki(p
′
i) , c′′i = χki(p

′′
i ) .

Furthermore, we assume that the cryptosystem is transitive (Sect. 14.3.4).
Then the key group M is a transitive permutation group in the classical sense
that there exists a character a∈V n such that for each character y∈V n there
exists an encryption step χt ∈M such that y = χt(a) . This implies that the
number of keys is greater than or equal to the power of the alphabet V n ,
|M | ≥ Nn , and every character of V n can be related injectively to a key. In
other words, the characters are equivalence classes of the keys.

We may also assume a Shannon cryptosystem (Sect. 2.6.4), where the key ki

is uniquely determined by a pair consisting of plaintext character pi and
cryptotext character ci , which implies |M | ≤ Nn . In general, the key ki

does not need to be uniquely determined by pi and ci .2

Thus, we have a pure, transitive Shannon cryptosystem with |M | = Nn , be-
longing to a Latin square. The relation between characters and keys is one-
to-one; identification of keys and characters according to s=χs(a) results in

s • t=χs•t(a)=χs(χt(a))=χs(t) and thus χs(p)=s • p , χs•t(p)=χχs(t)(p) .

Furthermore,
χs−1(c) = s−1 • c = χ−1

s (c) .

Now it makes sense to speak of χ−1
c′

i
(c′′i ) , the cryptotext character c′′i de-

crypted with the cryptotext character c′i as in-phase key. A simple calcula-
tion shows the important result that under the given conditions the key in
χ−1

c′
i

(c′′i ) is canceled out, or more precisely,

χ−1
c′

i
(c′′i ) = χ−1

p′
i
(p′′i ) .

19.2.2 Differences. For (endomorphic) Shannon cryptosystems with a
transitive key group, we form the difference di =def χ−1

c′
i

(c′′i ) of the two ob-
served in-phase cryptotexts and look for two plaintexts p′i , p′′i such that their
difference χ−1

p′
i
(p′′i ) equals di . This can be attempted in a zig-zag way much

2 Only if (Nn)! = Nn , i.e., for Nn = 1 or Nn = 2, is the key necessarily a priori
determined. This includes as interesting case only V

.
≡ Z2, n = 1 ; then there are only

the two encryption steps: identity O and reflection L (Sect. 8.3.1); pi = ci gives ki
.
= O,

pi 	= ci gives ki
.
= L .
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like in Sect. 14.4 ; to solve it uniquely two plaintexts are needed such that the
sum of their redundancies (Sect. 12.6, footnote 4) is at least 100%.

If the encryption steps even form a commutative group with respect to com-
position, then we have Kerckhoffs’ symétrie de position,

χs(t) = χt(s) .

For (endomorphic) cryptosystems with a commutative key group, the key
k is uniquely determined both by p′ and c′ and by p′′ and c′′ , since with
c′i = χki

(p′i) also c′i = χp′
i
(ki) and thus ki = χ−1

p′
i
(c′i) . They are neces-

sarily Shannon cryptosystems; if |M | > Nn , then the key group is not
commutative. We shall find such key groups in Sect. 19.2.4 .
Moreover, in the commutative case, since χp′

i
(di) = p′′i holds, χdi(p

′
i) = p′′i

holds too. Thus p′′i results from p′i by encryption with di as key.

For every key group there is a set of dual encryption steps {χ̆s} with
χ̆s(p) = s • p−1 , χ̆−1

s (c) = c−1 • s and χ̆s•t−1(p) = χ̆χ̆s(t)(p) .

Now χ̆−1
c′

i
(c′′i ) = χ̆p′′

i
(p′i) . For the case of a commutative key group the dual

encryption is self-reciprocal: χ̆−1
s (t) = χ̆s(t) .

19.2.3 Cyclic key groups. If (for n = 1) accompanying alphabets are
constructed by a cyclic shift of a primary alphabet of N characters, then
the number of keys coincides with the number of characters; in fact the key
group is commutative and is the cyclic group of order N . Thus, VIGENÈRE
encryption has this group as key group, with addition modulo N as a model,
whereas BEAUFORT encryption (as used in the Hagelin M-209) is the dual
of VIGENÈRE encryption. Here, the primary alphabets are known anyway.
ALBERTI encryption can be treated as well, if the difference is modified. In
the encryption table of Kerkhoffs’ example, Table 24, with ρ as generating cy-
cle (see Sect. 7.2) of the (mixed) alphabets and with the primary substitution

a b c d e f g h i j k l m n o p q r s t u v w x y zP : ,
Z Y T V W D F G H J K M Q N O X R E S P U B L I C A

there is A = ρ0P , B = ρ1P , C = ρ2P , D = ρ3P , . . . , Z = ρ25P .
We may assume that P is known already, say because an ALBERTI disk has
fallen into the wrong hands.
We now take up again the cryptotexts (i) and (ii) of Sect. 19.1.1 . Forming
from c′′ =def

(ii) and c′ =def
(i) the P -modified difference di = χ−1

P−1c′
i
(P−1c′′i ) ,

we find that di =̂ ρδiP if and only if in the known mixed alphabet of P one
has to go δi steps in order to get from c′′i to c′i . The result is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

c′′ U HW P R B Q L K I B L WR E J R B K L H I

c′ U H Y B R J I M B C F A MM F J H D M R I Q

d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515
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Now di = χ−1
P−1c′

i
(P−1c′′i ) = χ−1

P−1p′
i
(P−1p′′i ) ; the known d can be interpreted

as cryptotext, obtained under χ−1 with P−1p′ as (unknown) key from P−1p′′ .
This swapping of roles opens up all possible attacks for the determination of
the key, using key patterns and key letter frequencies.

For example, di = a (which occurs for i = 1, 2, 5, 16) means identity of
p′i and p′′i . In French, this happens with a frequency of about 30% for
p′i = p′′i = /e/ , while p′i = p′′i = /a/ and p′i = p′′i = /s/ each occur with
a frequency of only 10% . (In fact, the bold assumption /e/ would be ful-
filled for i = 2, 5, 16 , while /l/ occurs for i = 1 ). In view of the information
given about the genre, the method of the probable word is to be recom-
mended. Thus, assuming we are dealing with the French language and in the
circumstances the probable word ennemi , it remains to check exhaustively
whether there corresponds to one of the possible positions of ennemi in p′′ a
meaningful French word in p′ (or vice versa). The following successive trials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ e n n e m i ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ e n k g m w ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ e n n e m i ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ e k p e a t ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ ∗ e n n e m i ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ ∗ b p n s x x ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ ∗ ∗ e n n e m i ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ ∗ ∗ g n b p b t ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

and some more are unsuccessful, but in the 13th position (and nowhere else)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e n n e m i ∗ ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ l i c e e s ∗ ∗ ∗ ∗

emerges with /licees/ as a fragment that can be enlarged reasonably into
/police est/ . (In p′ , /ennemi/ is a flop.) Now with interchanging the roles
of p′ and p′′ comes
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e l e n n e m i s ∗ ∗ ∗
d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ p o l i c e e s t ∗ ∗ ∗
suggesting enlargement to /de l’ ennemi sont/ . Backwards again we get

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d e l e n n e m i s o n t

d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e p o l i c e e s t i c i

In this way, a probable word can serve as a seed which in a zig-zag manner
grows to the right and to the left in both texts. The method allows especially
the use of non-content words, endings and prefixes, which are not rare; in
English /and/, /the/, /that/, /which/, /under/, /tion/, in French /les/,
/que/, /ion/, in German /und/, /ein/, /ung/, /bar/, /heit/, /unter/ . In
our example a new seed is successful, and with /les/ in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ l e s ∗ ∗ ∗ ∗ ∗ ∗ d e l e n n e m i s o n t

d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ l e p ∗ ∗ ∗ ∗ ∗ ∗ e p o l i c e e s t i c i

we may try perhaps /leprefetd/ in p′ and get with a little bit of luck a
confirmation by the supplemented /lespertes/ in p′′ :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p′′ l e s p e r t e s d e l e n n e m i s o n t

d a a x c a o l p l b l d h v p a s k b u p p
δ 0 0 23 2 0 14111511 1 11 3 7 2115 0 1810 1 20 1515

p′ l e p r e f e t d e p o l i c e e s t i c i

This ends the decryption of the two cryptotext fragments. Only the decryp-
tion of the shorter one of two such texts can be obtained in this way, of
course, but there is still the key that has not been used so far. It can be
reconstructed now: Juxtaposition of p′ and c′ gives according to Table 24,
which was assumed to be known,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

c′ U H Y B R J I M B C F A MM F J H D M R I Q
p′ l e p r e f e t d e p o l i c e e s t i c i

k J EMEM E T S S U RLADE F EN S I V E

and again confirmation by a ‘meaningful’ key sentence, which could be con-
tinued periodically. For the success of this zig-zag method, it was sufficient
that both plaintexts had distinctly more than 50% redundancy.

19.2.4 Other key groups. The key group we just dealt with, typical for
ALBERTI encryption and especially for VIGENÈRE (dually: BEAUFORT)
encryption, is as said above the cyclic group CN of order N , where we have
V =W =ŸN . It is only one example for groups of prescribed order. For Ÿ26 ,
there is besides C26 another commutative group: the direct product C13 ×C2
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of the cyclic group of order 13 and the cyclic group of order 2. It is the group
generated by 13 PORTA encryptions which is obtained by an intermediate
coding Ÿ26−−−−� Ÿ13×Ÿ2 . There is also a non-commutative group of order 26,
the dieder group D13, with the generators S and T ; S13 = T 2 = (ST )2 = I
which it seems has so far no relevance in cryptology.
For Ÿ25 there is next to the cyclic group C25 a further commutative group:
the direct product C2

5
.= C5 × C5 of two cyclic groups of order 5 , obtained

by the intermediate Polybios coding Ÿ25 −−−−� Ÿ5 × Ÿ5 . There is no non-
commutative group of order 25 . For Ÿ10 there is next to the cyclic group
C10 the commutative group C2 × C5 reached by the intermediate biquinary
coding Ÿ10 −−−−� Ÿ2 × Ÿ5 . There is also the non-commutative Dieder group
D5 with the generators S and T ; S5 = T 2 = (ST )2 = I .
In view of binary coding, particularly interesting groups are those of order 2n .
For arbitrary j the commutative groups C2j and Cj

2
.= C2 × C2 × . . . × C2 are

most prominent. For j = 2 we have the cyclic group of order 4 and Klein’s
Vierergruppe. For j = 3 there are additionally the non-commutative quater-
nion group Q and the non-commutative Dieder group D4 with the generators
S and T ; S4 = T 2 = (ST )2 = I , both without cryptological relevance. This
remark also applies to a handful of non-commutative groups for j = 4, 5 .
For the difference between Ÿ2n and Ÿ

n
2 (as well as for the difference between

Ÿ10n and Ÿ
n
10) , namely the lack of the carry mechanism, see Sect. 8.3.3 .

0 t 4 o 2 h n m 5 l r g i p c v e z d b s y f x a w j 3 u q k 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 4

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 25. Binary coding used in cryptography, based on CCITT 2 (Table 27)
0: Blank, 1: Letter Shift, 2: Word Space, 3: Figure Shift, 4: Carriage Return, 5: Line Feed

(B.P.: / 8 9 5 or + 3 4 )
(FRA: 6 3 5 4 1 2 )

19.2.5 The special case C5
2 of Vernam. A representation of Ÿ25 is the

1929 vocabulary of the International Teletype Alphabet No. 2 (CCITT 2),
going back to Baudot in 1874 and Donald Murray in 1900. The 5-channel
representation suggests an encryption (Sect. 8.3.1) ci = pi ⊕ ki by addition
modulo 2, the key group of which is C5

2
.= C2 ×C2 ×C2 ×C2 ×C2 (and not

C25), namely an encryption with 32 alphabets, generated by substitutions O
(identity) or L (reflection), see Sect. 8.3.1, of the five binary characters. The
actual coding Ÿ32−−−−�Ÿ

5
2 of CCITT 2 is shown in Table 25. Apart from 26

(lowercase) letters there are six control characters of the teletype machine,
whose function is meaningless on the cryptographic line; we designate them
with 0, 1, 2, 3, 4, 5 and use 2 as a word separator (actually, 1 2 was used;
this was a weakness, see Sect. 19.2.11). Table 26 shows the natural encryption
table which, based on addition modulo 2, one can presume to be known.
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0 a b c d e f g h i j k l m n o p q r s t u v w x y z 2 3 4 5 1

0 0 A B C D E F G H I J K L M N O P Q R S T U VWX Y Z 2 3 4 5 1
A A 0 G F R 5 C B Q S 4 N Z 1 K 3 Y H D I W 2 X T V P L U O J E M
B B G 0 Q T O H A F 1 L P J S Y E K CWM D V U R 2 N 4 X 5 Z 3 I
C C F Q 0 U K A H G 4 S E M L 5 P O B 2 J V D T XW 3 1 R Y I N Z
D D R T U 0 4 2 WX K 5 I 3 Y S Z 1 V A N B C Q G H M O F L E J P
E E 5 O K 4 0 N 3 Y U R CWX F B Q P J 2 Z I 1 L M H T S G D A V
F F C H A 2 N 0 Q B J I 5 1 Z E Y 3 G U 4 X RWV T O M D P S K L
G G B A HW 3 Q 0 C M Z Y 4 I P 5 N F T 1 R X 2 D U K J V E L O S
H H Q F G X Y B C 0 L 1 3 I 4 O N 5 A V Z 2 WR U D E S T K M P J
I I S 1 4 K U J M L 0 F D H G R V T Z N A P E O Y 3 WQ 5 X C 2 B
J J 4 L S 5 R I Z 1 F 0 2 B Q UWX M E C 3 N Y O P V G K T A D H
K K N P E I C 5 Y 3 D 2 0 XWA Q B O S R 1 4 Z M L G V J H U F T
L L Z J M 3 W 1 4 I H B X 0 C V R 2 S O Q 5 Y N E K U A P D G T F
M M 1 S L Y X Z I 4 G QWC 0 T 2 R J P B N 3 5 K E D F O U H V A
N N K Y 5 S F E P O R U A V T 0 H G 3 I D M J L 1 Z B X 4 Q 2 CW
O O 3 E P Z B Y 5 N VWQ R 2 H 0 C K L X 4 1 I J S F D M A T G U
P P Y K O 1 Q 3 N 5 T X B 2 R G C 0 E MW I Z 4 S J A U L F V H D
Q Q H C B V P G F A Z M O S J 3 K E 0 X L U T D 2 R 5 I WN 1 Y 4
R R DW 2 A J U T V N E S O P I L M X 0 K G F H B Q 1 3 C Z 5 4 Y
S S I M J N 2 4 1 Z A C R Q B D XW L K 0 Y 5 3 P O T H E V F U G
T TWD V B Z X R 2 P 3 1 5 N M 4 I U G Y 0 Q C A F S E H J O L K
U U 2 V D C I R XW E N 4 Y 3 J 1 Z T F 5 Q 0 B H G L P A M K S O
V V X U T Q 1 W 2 R O Y Z N 5 L I 4 D H 3 C B 0 F A J K G S P M E
W WT R X G L V D U Y O M E K 1 J S 2 B P A H F 0 C I 5 Q 4 3 Z N
X X V 2 WH M T U D 3 P L K E Z S J R Q O F G A C 0 4 N B I Y 1 5
Y Y P N 3 M H O K E WV G U D B F A 5 1 T S L J I 4 0 2 Z C X Q R
Z Z L 4 1 O T M J S Q G V A F X D U I 3 H E P K 5 N 2 0 Y R BWC
2 2 U X R F S D V T 5 K J P O 4 M L WC E H A G Q B Z Y 0 1 N I 3
3 3 O 5 Y L G P E K X T H D U Q A F N Z V J M S 4 I C R 1 0 WB 2
4 4 J Z I E D S L M C A U G H 2 T V 1 5 F O K P 3 Y X B NW 0 R Q
5 5 E 3 N J A K O P 2 D F T V C G H Y 4 U L S M Z 1 QW I B R 0 X
1 1 M I Z P V L S J B H T F AWU D 4 Y G K O E N 5 R C 3 2 Q X 0

Table 26. Encryption table (Latin square) for teletype symbols: addition modulo 2 in Ÿ
5
2

It is regular to use key letters 0, A, B, C, . . . , Z, 2, 3, 4, 5, 1 denoting the
keys. Note that in Table 26 the key letter 0 in the first line acts as a neutral
element, since it leaves the letters unchanged. Moreover, the key letter 1 in
the last line acts as an inverter, interchanging pairwise (‘swapping’)

0 and 1, a and m, b and i, c and z, d and p, e and v, f and l, g and s,
h and j, k and t, n and w, o and u, q and 4, r and y, x and 5, 2 and 3.

However, it is easily seen that the remaining 30 keys also have this property,
for example, key letter A in the second line swaps

0 and a, b and g, c and f, d and r, e and 5, h and q, i and s, j and 4,
k and n, l and z, m and 1, o and 3, p and y, q and h, t and w, u and 2.

Thus, the encryption step and its reciprocal, the corresponding decryption
step, coincide. Bitwise binary encryption is necessarily self-reciprocal, the
matrix in Table 26 is symmetric—which is a great advantage for practical
work. Moreover, it can be seen from Table 26 that the key letter could be
reconstructed if a pair of plaintext letter and corresponding cryptotext letter
were given. For example, if the plaintext letter w was encrypted by the
cryptotext letter G , the key letter was D.
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19.2.6 Cryptanalysis of Vernam encryption. The teletype coding was
widely known from the turn of the century, and via Vernam the professional
cryptologists were also familiar with it; the obvious natural key group C5

2

was concretely known. Thus, all preconditions for an attack as in Sect. 19.2.3
were fulfilled, and in particular the key character could be reconstructed
(because of the commutativity of the key group) from plaintext character
and cryptotext character.

A fictitious example of a break may have gone like this: Two cryptotexts of
roughly the same length near 4000, picked up by the British at the time of
the German attack on Crete in mid-May 1941 on a Wehrmacht line Vienna-
Athens, contained after coinciding preambles, presumably in phase, the frag-
ments (in B. P. called a ‘depth of two’)

c′′ 2 WH N R G 1 A T U A P L B V RWO U F Y P B S X Z N R 4 J S R

c′ L 0 G 2 A WG H 2 Z K B V Z V Q Z WY K YW J I 0 K T 5 A Z 2 K

The British formed the difference d=c′′⊕ c′ (performing addition modulo 2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

c′′ 2 WH N R G 1 A T U A P L B V RWO U F Y P B S X Z N R 4 J S R

c′ L 0 G 2 A WG H 2 Z K B V Z V Q Z WY K YW J I 0 K T 5 A Z 2 K

d f w c w d d v q k p n k n 4 0 x 5 j l 5 0 s l a x v m 4 j g g s

and used the probable word /2kreta2/ to find a reasonable counterpart. They
discovered at the fourth position

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′′ ∗ ∗ ∗ 2 k r e t a 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d f w c w d d v q k p n k n 4 0 x 5 j l 5 0 s l a x v m 4 j g g s

p′ ∗ ∗ ∗ n i a 2 u n d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
A short look at the map of Greece suggests for p′′ a supplementation to
/chania/ and gives:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′′ a u f 2 k r e t a 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d f w c w d d v q k p n k n 4 0 x 5 j l 5 0 s l a x v m 4 j g g s

p′ c h a n i a 2 u n d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Now some more geographic names, following the /und/ , could be tried.
Another way takes a further probable word, say /2angriff2/. The people at
Bletchley Park had success in position 19 of p′′ with:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′′ a u f 2 k r e t a 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 a n g r i f f 2 ∗ ∗ ∗ ∗ ∗
d f w c w d d v q k p n k n 4 0 x 5 j l 5 0 s l a x v m 4 j g g s

p′ c h a n i a 2 u n d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ f e n 2 o s t w a e ∗ ∗ ∗ ∗

Now it is almost finished: the missing piece in p′ should read /2die2haefen/ ,
followed by /ostwaerts2/. This gives:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′′ a u f 2 k r e t a 2 w i r d 2 d e r 2 a n g r i f f 2 d e r 2 g

d f w c w d d v q k p n k n 4 0 x 5 j l 5 0 s l a x v m 4 j g g s

p′ c h a n i a 2 u n d 2 d i e 2 h a e f e n 2 o s t w a e r t s 2

In readable form:

‘ auf kreta wird der angriff der g .....’
‘ chania und die haefen ostwaerts .....’

The cryptanalysts could proceed similarly with other fragments of the text.
The exacting cross-ruff was certainly fascinating, too.

The British could now also reconstruct the key. However, since in Cn
2

subtraction and addition coincide, first the right pairing of plaintexts and
cryptotexts had to be found. The two possible juxtapositions result in:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′ c h a n i a 2 u n d 2 d i e 2 h a e f e n 2 o s t w a e r t s 2

k1 M H BW S T S WWO T T O T E A L L OC B NWA T MWA D E G T

c′ L 0 G 2 A WG H 2 Z K B V Z V Q Z WY K YW J I 0 K T 5 A Z 2 K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p′′ a u f 2 k r e t a 2 w i r d 2 d e r 2 a n g r i f f 2 d e r 2 g

k2 Z U Q 0 N B 3 6 M C M 2 H O E V T B R N B D E 0 F 5 K J 5 3 0 Y

c′ L 0 G 2 A WG H 2 Z K B V Z V Q Z WY K YW J I 0 K T 5 A Z 2 K

The two possible keys differ by d. The cryptanalysts may well have deci-
ded for a less irregular key text, like k1, assuming that the machine had a
reasonably uncomplicated mechanism showing some local regularity.

19.2.7 Historical remark: Baudot and the teletype alphabet, Ver-
nam. The invention of a ‘printing telegraph’ by David Edward Hughes in
1855 had to wait a long time before it came into practical use. A large step
forward was made by the French engineer Jean Maurice Émile Baudot (1845–
1903) who invented a system of telegraphy where, in contrast to the Morse dot
and dash system, all symbols were encoded by groups of the same length—32
letters and other symbols were represented by groups of five characters, the
characters meaning ‘current’ (mark) or ‘non-current’ (blank). This kind of
encoding—it can be traced back to Francis Bacon (1605)—allowed a simple
mechanism for teleprinting, with a keyboard on the sending side, and was
superior to the teletype machine Hughes had invented.

Baudot was one of the great pioneers of modern telegraphy. In 1895, Au-
gust Raps (1856–1920) invented a Schnelltelegraph for the Siemens company.
After the turn of the century, further improvements were made by Fred-
erick George Creed and Donald Murray. In the USA progress was made
by Edward Kleinschmidt (1875–1977) with the Springschreiber , which after
1927 was built under licence by C. Lorenz A.G. in Berlin. Herbert Wüsteney
(1899–1988) designed modern devices for the Siemens company that came
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into public use in 1933 through the German Reichspost . In 1939, the German
public telex network had 1500 subscribers.

Table 27. International Teletype Alphabet No. 2 (CCITT2)
The following correspondence, known from the typewriter keyboard, holds between figures
and letters: 1

.= q, 2
.= w, 3

.= e, 4
.= r, 5

.= t, 6
.= y, 7

.= u, 8
.= i, 9

.= o, 0
.= p.

In 1929, the ‘International Teletype Alphabet No. 2’ (CCITT 2), going back
to Donald Murray (1900), was introduced. Table 27 shows the representa-
tions. It has 26 letters and 26 other symbols, as well as control symbols for
letter shift (↓) and figure shift (↑), for space (|||), carriage return (<), line
feed (≡). A bullet means ‘current’, a blank ‘non-current’; the all-blank com-
bination No. 32 (‘void’ ) was not to be used. Thus, to transmit the letter F
and the word FED, the signals are in ‘neutral’ (non-polar) signalling systems

—|—|—|——|—|— —|—|—|——|—|——|—|————|——|—|——|—|—|—
F F E D

Gilbert Vernam

The polyalphabetic bitwise encryption discussed
above was proposed in 1918 by the young Amer-
ican engineer Gilbert S. Vernam (1890–1960), an
employee of A. T. & T., when he was charged by his
boss R. D. Parker with developing a secrecy system
for teletype communication (US Patent 1,310,719).
Since 5-channel punched paper tape was frequently
used to run teletypewriters, Vernam thought of
punching a tape of key symbols as well. A one-time
key (see Sect. 8.8) could be used, genuinely random,
endless and senseless, to give unbreakable encryp-
tion. In effect this meant only that the addition
table for the bitwise encryption of 5-bit groups had

to be implemented by suitable electromechanical circuitry. As to the key,
sender and recipient had to have identical copies, since the encryption was
self-reciprocal. But key distribution would cause a problem anyhow. Thus,
sacrificing the holocryptic key, key generation by identical mechanisms in
the encryption devices was a way out. Both Siemens und Halske A.G and
C. Lorenz A.G. in Berlin went this way with commercial machines. In the
USA it was done rather late and in a more clandestine way by the Army
Signal Intelligence Service with the SIGTOT machine of 1944.



19.2 Superimposition for Encryptions with a Key Group 387

The cipher teletype machine T 52 (Geheimschreiber), built by the Siemens
company, was openly described in the German Patent No. 615 016 by August
Jipp and Ehrhard Rossberg (Sect. 9.1.3); the US Patent No. 1 912 983 for
Jipp, Rossberg, and Eberhard Hettler was granted June 6, 1933. Thus it
was not too difficult for the British in Bletchley Park to judge the situation
realistically. The cipher teletype machines SZ 40 (Schlüsselzusatz ), developed
in the mid-1930s, and the improved SZ 42, developed since 1938 with variants
A, B, and C, were built by the Lorenz company. Luckily for the British, the
Schlüsselzusatz used only the 32 Vernam encryption steps originating by sub-
stitutions O or L of the five binary characters, while the Geheimschreiber ,
as explained in the patent, used also permutations of the bits (Sect. 9.1.3,
more in Sect. 19.2.10), and thus had a key set with many more than 32 keys.

In the Lorenz Schlüsselzusatz (Plate N) a first group of five cipher wheels
(called χ-wheels by the British, χ1, χ2, χ3, χ4, χ5), with 41, 31, 29, 26, and
23 teeth operated with Vernam steps on the 5-bit code groups; at each step
all χ-wheels were moved by one tooth, “the most interesting feature of the
SZ 40/42”(Franz-Peter Heider 1998). A second group of five cipher wheels
(called ψ-wheels by the British, ψ1, ψ2, ψ3, ψ4, ψ5) with 43, 47, 51, 53, and 59
teeth operating additionally with Vernam steps on the 5-bit code groups, fol-
lowed serially. Thus, a double Vernam encryption was performed. Two extra
wheels served to produce irregular wheel movement (they were correspond-
ingly called ‘motor-wheels’ or µ-wheels); one, denoted µ1, with 61 teeth,
moving with the χ-wheels, controlled by means of its cams the movement
of another one, µ2, with 37 teeth, which in turn controlled the simultaneous
movement of the ψ-wheels; at each step all ψ-wheels were moved by one tooth
if permitted by the cams of the µ2 (‘irregular movement’). The order of the
wheels was (from left to right) χ1, χ2, χ3, χ4, χ5, µ2, µ1, ψ1, ψ2, ψ3, ψ4, ψ5 .

As with the Siemens machine, the numbers of teeth were chosen such that
they have no common multiple. Thus, the period was 41 · 31 · 29 · 26 · 23 · 37 ·
61 ·43 ·47 ·51 ·53 ·59 , i.e., more than 1019 . All wheels could be arbitrarily set
up with cams controlling the Vernam switches. They could also be brought
by thumb wheels to arbitrary initial settings determined by the operating
instructions. They clicked into position with a number showing.

The double Vernam encryption in the Lorenz machine did not really compen-
sate for the additional complication that the permutations introduced into
the Siemens machine and the two motor wheels turned out to be no great bar-
rier either. The British were lucky that the Siemens machine was not meant
to be used for wireless communications, the signals they could intercept were
for the most part encrypted with the weaker Lorenz machine.

19.2.8 ZMUG: Tiltman. To use at the highest level of the German
Wehrmacht-Nachrichtenverbindungen the cipher teletype machines SZ 40 and
SZ 42, which generated their key by a semiregular movement, was thus utterly
risky if a plaintext-plaintext compromise could not be excluded.
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19.2.8.1 In July and August 1941, the German army tested a Hellschreiber
line between Vienna and Athens having an SZ 40 Schlüsselzusatz on both
ends. They transmitted 12-letter indicators preceding the message in clear
language, using a spelling alphabet as shown in Fig. 159, where the resulting
indicator MGLOBLCOODKQ is written by hand across the top of the W/T
‘red form’ sheet. The sloping text is typical for the Hellschreiber record, it
is glued to the sheet.

Fig. 159. Facsimile of a British Hellschreiber recording of a German message (08/08/1941)

Cleartext: ///// //MAR THA99 GUSTA V99LU DWIG9 9OTTO 99BER TA99L
UDWIG 99GUS TAV99 OTTO9 9OTTO 99DOR A99KO NRAD9 9QUEL LE999

When the British studied these enciphered signals, they found hints that a
VERNAM-type encryption based on teletype machines was involved, in par-
ticular when some of the message indicator spellings were corrupted (h0inrich
for heinrich, th0o3or for theodor) in a message sent out on July 22, 1941. It
was observed that the corrupted name and its correct form had 5-bit tele-
type representations differing only in the first bit. This could be explained
by some fault in a teletype machine. Thus, it was a natural assumption
that a VERNAM system was used, but not one of the Siemens machines as
described in the patent of 1930, which used ten keying wheels leading to a
10-letter indicator, while the observed indicators had 12 letters.
The fact that the VERNAM system has a key group (see Sect. 19.2.1, pure
encryption) considerably simplifies the cumbersome encryption and decryp-
tion process, but it also makes unauthorized decryption easier. When August
Jipp and Ehrhard Rossberg applied for the Geheimschreiber patent in 1930
there was no indication of this danger in the unclassified literature. But
several of the cryptanalytic services studied the description of this machine
and it can be safely assumed that at least some British very early found out
about some weaknesses even the Siemens Geheimschreiber offered.
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19.2.8.2 A lack of crypto discipline is the enemy of good cryptography and is
the hope of the unauthorized decryptor. As well as laziness, thoughtlessness is
dangerous. Thus, in July and August 1941 a lot of test messages were sent on
the Vienna-Athens line and since these contained no information that should
be kept secret, nobody on the German side was disturbed when ‘isologs’ oc-
cured, that is, two messages encrypted in-phase with the same key. On July
3, 1941, a pair of isologs with the indicator DKTNFQGWAOSH (nicknamed
afterwards WAOSH) was found; on July 21, 1941 another one with the in-
dicator KONPAENGFQBZ (nicknamed afterwards GFQBZ). These isologs,
starting in July 1941, were clearly evident to the British, since the identical
indicator, expressing the initial setting of the wheels, was transmitted openly
in front of the message. The whole SZ 40 cipher system was compromised by
this error. The British recorded pairs of isologs in the hope that something
like the Siemens Geheimschreiber with a letter subtractor cipher was used.
By July 1941 their assumptions were confirmed. A group 33zzz11 (meaning
+++), which had appeared occasionally in clear preambles, was tried as the
clear at the front-end of one message, and the clear of the other message from
the pair came out as seven letters of the word spruchnummer (message num-
ber), usually found at the beginning of a message. This was enough evidence
that a so-called additive cryptosystem was used on the Hellschreiber link; it
was given the codename Tunny.

JohnTiltman (1894–1982)

The disaster for the Germans indeed developed much
earlier than one might have expected. As reported in
1993 by Jack Good (first allusions were made in 1978
by Brian Johnson and in 1983 by Andrew Hodges), a
plaintext-plaintext compromise occured even before
the Schlüsselzusatz came into regular use, when, dur-
ing tests, as a consequence of a mistake by a German
telegraphist, two rather long messages p′′, p′ were sent
with the same indicator HQIBPEXEZMUG (nick-
named ZMUG); two isologs of roughly 4000 charac-
ters, coinciding in the first seven characters, were
recorded. As it turned out, the first message was corrupted by atmospheric
noise and had been sent again. It should have been repeated identically,
which, however, is rather difficult, and the operator made minor deviations.
The compromise allowed Colonel (later Brigadier) John H. Tiltman to deduce
painstakingly the two plaintexts from the difference d of the two recorded
cryptotexts c′, c′′ (a ‘depth of two’), using the fact that the difference p′ −p′′

of the plaintexts is invariant under in-phase encryption: p′ − p′′ = c′ − c′′ .
(Note, that for addition modulo 2, subtraction coincides with addition.)
19.2.8.3 As is now known, the accident happened on August 30, 1941.
The first 120 characters of the two messages are shown below, together with
the differences that Tiltman formed (this can be checked with the help of
Table 26):
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c′′ J S H 5 N Z Y M F S 0 1 1 5 I V K U 1 Y U 4 N C E J E G P B

c′ J S H 5 N Z Y Z Y 5 G L F R G X O 5 S Q 5 D A 1 J J H D 5 O

d 0 0 0 0 0 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 70 51 52 53 54 55 56 57 58 59 60

c′′ M N T Q M A 0 U 4 Y L 1 Q I J L Y V I N U B 2 3 R 5 WE V G

c′ B K S U C B T T O 5 E 4 T S L E 3 F G Z Y U H V H 3 H E E 0

d s a y t l g t q t q w q u a b w c w m x l v t s v b u 0 1 g

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

c′′ Q I 2 4 5 G R J M L C Y 5 0 H K A S 1 I S 5 X U N S R Z Z B

c′ T G 2 H H 1 Q J X V K 1 B J M K 2 O M Z Y V I N 3 H M C 3 D

d u m 0 m p s x 0 e n e r 3 j 4 0 u x a q t m 3 j q z p 1 r t

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

c′′ D B B 1 C L S Q H H U H 5 X D 0 F N 3 J 3 V O C A D J C D N

c′ U Q 3 4 Z R 2 M R M O H 5 J Q PWU E Y C P R G 1 L D A T I

d c c 5 q 1 o e j v 4 1 0 0 p v p v j g v y 4 l h m 3 5 f b r

The task now is to test the occurrence of a probable word in one of the mes-
sages. If Tiltman tried as a probable word the very frequent word geheim2 ,
he would have succeeded twice in finding an intelligible counterpart,

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

p′′ ∗ ∗ ∗ ∗ g e h e i m 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g e h e i m 2 ∗ ∗ ∗ ∗ ∗ ∗
d u m 0 m p s x 0 e n e r e j 4 0 u x a q t m 3 j q z p 1 r t c c 5 q 1
p′ ∗ ∗ ∗ ∗ n 2 d e u t s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e r a t t a c ∗ ∗ ∗ ∗ ∗ ∗
n2deuts can easily be supplemented to an2deutsch , and erattac leads to
2militaerattache2 ; the gap is filled by an2deutschen2milita . Thus already, there
results a probable fragment for p′ with a length of 29 characters

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

p′′ ∗ ∗ ∗ ∗ g e h e i m 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g e h e i m 2 ∗ ∗ ∗ ∗ ∗ ∗
d u m 0 m p s x 0 e n e r e j 4 0 u x a q t m 3 j q z p 1 r t c c 5 q 1
p′ ∗ ∗ ∗ a n 2 d e u t s c h e n 2 m i l i t a e r a t t a c h e 2 ∗ ∗ ∗
that produces 29 consecutive characters for p′′ as well:

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

p′′ ∗ ∗ ∗ 1 g e h e i m 2 2 k r 2 2 3 3 z z 0 1 g e h e i m 2 2 k r ∗ ∗ ∗
This shows that, in accordance with a pet silliness on the German side,
geheim was doubled; the doubling of the complete group 1geheim22kr2233zz

leads to an extension for p′, which makes sense apart from two discrepancies
(positions 94,98):

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

p′′ 0 1 g e h e i m 2 2 k r 2 2 3 3 z z 1 2

d t m 3 j q z p 1 r t c c 5 q 1 o e j v 4
p′ t a e r a t t a c h e 2 i ©w 2 a t ©g e n

The discrepancies are probably the result of sloppiness and can be corrected.
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One could continue in this zig-zag fashion. However, by this stage, if not
earlier, the suspicion arises that the rest of the message p′ is simply shifted
against p′′ , and this by 39 positions, since an2deutschen2militaerattache2 in the
position 103 of p′′ makes sense again, producing in p′ lagg11nr33mwoou211g (in
readable form, and with a typing mistake corrected, lage nr.2997�g , where �
means a space):

86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

p′′ e i m 2 2 k r 2 3 3 3 z 1 1 2 ∗ ∗ a n 2 d e u t s c h e n 2 m i l i t

d z p 1 r t c c 5 q 1 o e j v 4 1 0 0 p v p v j g v y 4 l h m 3 5 f b r

p′ t t a c h e 2 i n 2 a t h e n ∗ l a g g 1 1 n r 3 3 m w o o u 2 1 1 g

Thus, the continuation can now be produced mechanically by looking ahead
39 characters, until new deviations occur—quite similar to the autokey fallacy
Shannon described (Sect. 8.7.2). It is reported that Tiltman finished the de-
ciphering in two months. This may have been because further errors caused
by noise made the break more difficult than a retrospective analysis shows.
Anyhow, an uninterrupted message was constructed using this particularly
lucky situation. Normally only isolated parts of the message will be found
by such a cross-ruff technique. This was why Tiltman’s attempts with the
very first pairs of isologs failed. However, when later teletype machines were
used instead of the Hellschreiber , a second text staggered by a few characters
will be produced if “the paper tape is pulled back a few characters into
the length of blank tape which ordinarily precedes the start of the plaintext
message”(Donald Michie). In this way, the operator assured himself that the
initial characters of the plaintext cannot be lost. The effect is disastrous.

19.2.8.4 Incidentally, if the probable word nummer2 is tried in p′′, a possible
success turns up in the positions 7,8,9,10,11,12,13 :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p′′ ∗ ∗ ∗ ∗ ∗ ∗ n u m m e r 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d 0 0 0 0 0 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e

p′ ∗ ∗ ∗ ∗ ∗ ∗ n r 2 3 3 u p ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
nummer can most likely be extended to spruchnummer and there is a change
from nummer to nr ; this suggests successive continuations shifted by 4
positions (a ‘stagger’ of 4 characters):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p′′ s p r u c h n u m m e r 2 3 3 u p ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d 0 0 0 0 0 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e

p′ s p r u c h n r 2 3 3 u p w u 2 e ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p′′ s p r u c h n u m m e r 2 3 3 u p w u 2 e ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d 0 0 0 0 0 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e

p′ s p r u c h n r 2 3 3 u p w u 2 e p x i 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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The plaintext piece nr233upwu2epxi2, in readable form nr�7027�30/8 (where
� means a space), seems to contain the date; knowing the German pre-
dilection for doubling important pieces of text, upwu2epxi2 can be tested for
further occurrences in p′. There is success in positions 29,30,31,32,33,34,35,36,37,38 ;
a repeated fragment upw shows up in p′′:

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3940

p′′ h n u m m e r 2 3 3 u p w u 2 e ∗ ∗ ∗ ∗ ∗ ∗ ∗ w q p 2 z z 2 u p w ∗ ∗
d 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e s a y t l g t q t q

p′ h n r 2 3 3 u p w u 2 e p x i 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ u p w u 2 e p x i 2 ∗ ∗
Prefixing the second occurrence of upwu2epxi2 by 2 in p′ now has the
consequence of prefixing wqp2zz2upw by q in p′′ . This suggests testing an
occurrence of qwqp2 in p′ , which is successful in positions 22,23,24,25,26, with
the counterpart pmim2 in p′′. This almost completes the search and results
in

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3940

p′′ h n u m m e r 2 3 3 u p w u 2 e p m i m 2 ∗ q w q p 2 z z 2 u p w u 2

d 0 0 f o u g f l 4 m a q s g 5 s e k z r 0 y w h e s a y t l g t q t q

p′ h n r 2 3 3 u p w u 2 e p x i 2 q w q p 2 ∗ 2 u p w u 2 e p x i 2 q w

The remaining gap from position 41 to position 62 can be closed similarly:

41 42 43 44 45 4647 48 49 50 51 52 5354 55 56 57 58 59 60

p′′ 2 e p m i m 2 q w q p 2 z z 1 1 3 3 2 ∗
d w q u a b w c w m x l v t s v b u 0 1 g

p′ q p z 1 1 k r 2 k r 2 g e h e i m 3 3 ∗
That the enciphering was made by addition modulo 2, with the consequence
that subtraction coincides with addition (i.e., the enciphering was self-recipro-
cal3), was irrelevant for the zig-zag method and only facilitated clerical work.
19.2.8.5 Note that both the availability of probable words and the frequent
occurrence of doubling contributed to the successful break. The frequently
used control characters 1, 2, 3 of the teletype machine helped, too. Most
helpful, however, was the fact that large parts of the plain messages were
merely shifted:

p′′ reads: spruchnummer�7027�30.8.�∗1210�++�7027�30.8.�∗1210�++�∗∗∗
geheim��kr��++geheim��kr��+an�deutschen�milit.....

p′ reads: spruchnr�7027�30/8�∗1210�∗�7027�30/8�1210+kr�kr�geheim∗∗∗
an�deutschen�militaerattache�in�athen∗lage nr.2997�g.....

A complication in the deciphering could have been that the date in p′,
233upwu2epmim2, in readable form �7027�30.8.�, was written slightly differ-
ently in p′′ , namely 233upwu2epxi2, in readable form �7027�30/8� .

3 Note that here the self-reciprocal enciphering, which was considered advantageous in
practice, did not have the drawback the Enigma had, that no letter can be encrypted
by itself: the key letter 0 , acting as a neutral element, leaves the letters unchanged.
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19.2.9 ZMUG: Tutte. The two messages themselves were most likely
of little value. What was important was that a fragment of about 4000
characters of key generated by the hitherto almost unknown machine was
exposed, since c′ = p′⊕k leads to k = c′⊕p′ (note that ⊕ means addition
modulo 2). It started with (at B.P., 0 was represented by a dot, 1 by a cross)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

k CWV S 5 S B 3 ZB EY 3 BH BBHOZ I VT 4 X K ∗ F S C
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0
2 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1
3 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1
4 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1
5 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

k R 4 E I O 2 PHKZ PVEGF C ZDY 3 ZXYRY X 4 GG ∗
1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0
2 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1
3 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0
4 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1
5 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

k ∗ ∗ 3 QO 3 VRGC R Z FRT J OVCQ S XU I O 2 NFY X
1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1
2 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0
3 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1
4 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1
5 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

k I WX 2 Y DH 4 J T M I E ZP DN J I C YRB 5 U YFMKM
1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 01 1 0 1 0 1 0 1 1 1 0 1 0
2 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0
3 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1
4 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1
5 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1

19.2.9.1 With the reconstructed key fragment it was possible to analyze the
key generator of the German Tunny machine. First, it was necessary to find
the periods of the individual keying wheels (whose existence could be inferred
by analogy to the Siemens cipher teletype machine T 52). One could hazard
a guess from the fact the indicator HQIBPEXEZMUG had 12 letters that
there was a total of 12 keying wheels. Since none of the channels 1 to 5 of
the 5-bit-key k had a period of length below 100, it was to be assumed
that each channel was enciphered by a composition of (at least) two keying
wheels, which the British called Chi -wheels and Psi -wheels, where first the
Chi -wheels and second the Psi -wheels were applied. By an examination of
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periodicity (see Chap. 17) William Thomas Tutte (1917–2002) from Trinity
College, Cambridge , in B.P. since May 1941, first found in October 1941 the
periods of the Chi wheels, in particular 41 for χ1 , as is shown in Figure 160 .

Fig. 160. Periodicity examination of the keying wheel χ1 , Kasiski repetitions: A, B, C .
Keying sequence written in lines of length 41. A dot represents 0, a cross 1

Next, the periods of the Psi wheels were determined and the manner in which
the two motor wheels µ1, µ1 functioned was found out. (For the complete key
k, we shall write k=χ ⊕ ψ̂, where χ denotes the effect of the Chi -wheel pat-
terns and ψ̂ the combined effect of the Psi -wheel patterns and their motion,
which is controlled by the motor wheels. ψ̂ will be called the extended Psi.)
This exposure of the key generator mechanism was accomplished by the shy
young graduate student in chemistry Tutte, who later became a mathemati-
cian well known in graph theory. He finished the task in December 1941. By
January 1942, the whole structure of the machine that had been used for the
HQIBPEXEZMUG message was discovered. It was indeed ‘pure cryptanaly-
sis’. It turned out at the end of the war that Tunny was the Lorenz cipher
teletype machine SZ 40/SZ 42, SZ 42A, SZ 42B.
19.2.9.2 Analyzing the pairs of isologs WAOSH and GFQBZ (in March
1942) now went much faster in the light of the experience ZMUG had brought,
and some previous assumptions were confirmed. It was also found that the
wheel order in WAOSH was the same as in ZMUG, and that the patterns
of the Psi -wheels in WAOSH were identical with the Psi -wheel patterns of
ZMUG, but the patterns of all other wheels were different. More isologs were
found in February and March 1942. In the end it was well established that:
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the order of the wheels was fixed;
the Psi -wheel patterns remained unchanged over periods that could exceed

one month (the patterns were changed every six months, then every
month after October 1942);

the Chi -wheel patterns remained unchanged over periods of many days
(the patterns were changed once each month);

the patterns of the motor wheels were changed comparatively frequently
(actually every day).

By July 1942, traffic was broken currently and a Tunny replica was working.
With the analysis of many pairs of isologs, the mechanism of the motor wheels
was understood. The observation of the frequent occurrence of repeated
letters in the extended Psi stream ψ̂ was made by Tutte in the first place. It
led him to propose (in August 1942) that, in analyzing mechanically the initial
setting of the wheels, the differences ∆ψ̂ (‘Delta Psi’) of consecutive letters
in ψ̂ should be used4. Differencing (‘Delta-ing’) ψ̂ would produce a high pro-
portion of the particular letter 0 = (00000), the neutral element of addition.
Hand methods (‘Turingery’) performed in Major (later Colonel) Ralph P. Tes-
ter’s group showed its effectiveness and gave the Cambridge professor Max
Newman support for his attempts in 1943 to mechanize the determination of
the initial wheel setting, which is discussed in Sects. 19.3.6 and 19.3.7 .

19.2.10 T 52. Around 1928, the Siemens company was contacted by
Eberhard Hettler on behalf of the Reichsmarine (German Navy), regarding
the matter of cipher teletype machines. He requested that instead of using
an unwieldy key tape, the key should be generated inside the cipher machine
by cipher wheels with some form of irregular movement—an idea that had
been used already with the commercial Enigma that the Reichsmarine was
familiar with. Periodicity of the key was a likely outcome of this approach,
but the German authorities did not have the scruples Mauborgne had had.

19.2.10.1 The encryption steps of the cipher teletype machines Siemens
developed (T 52, British codename ‘Sturgeon’) comprised5, apart from 32
different Vernam-type encryption steps operating on the 5-bit code groups,
also transpositions of the five bits—permutations of their positions, as ex-
plained below. This was a remarkable improvement over Vernam, since it led
to many more than the 32 substitution alphabets of Table 26.

The models T 52a (1930) and T 52b (1934) were used by the Reichsmarine
from 1931; the model T 52c (1938) was first used by the Luftwaffe, and later
replaced by a variant T 52ca which was used generally by the Wehrmacht
and by mid-1943 simply again called T 52c. The model T 52e —semiofficially
dubbed Geheimschreiber—appeared in 1942–1943. It is estimated that about

4 The process of delta-ing works as follows: a change from 0 to 1 or vice versa produces

a 1, a continuation of 1 or 0 produces a 0.
5 In group-theoretic terms a subset of the hyper-octahedral group of order 25 · 5! = 3840 .
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1000 machines were built between 1930 and 1945. Early, incomplete informa-
tion on the Geheimschreiber was given by Brian Johnson and David Kahn.
Encryption and decryption was controlled by ten cipher wheels denoted
w1...w10, each one operating a binary switch i1...i10 assuming one of the two
positions 0 or 1 . Five switches i1...i5 could perform the 32 Vernam substi-
tutions on the 5-bit code groups; following this, the remaining five switches
i6...i10 could perform altogether 2 · 2 · 2 · 2 · 2 = 32 permutations generated
by five swaps or non-swaps according to the positions 0 or 1 of the binary
switches i6...i10. How this was done in the T 52a is shown in Fig. 161.

1

2

3

4

5

i6

i7

i8

i9

i10

Fig. 161. Generation of 30 permutations in the T 52a

19.2.10.2 The diagram shows a permutation of the lines numbered 1...5
on the left side (indicating the bits of the plaintext letters), resulting in the
bits of the cryptotext letters; as is shown in Figures 162 and 163, crossing
the lines produces a swap, going straight ahead produces a non-swap.

1

2

3

4

5

i6=1    (12)

i7=1    (23)

i8=1    (34)

i9=1    (45 )

i10=0
1

2

3

4

5

i6=0

i7=1    (23)

i8=1    (34)

i9=1    (45)

i10=1    (51)

=

2

3

4

5

1

2

3

4

5

1

Fig. 162. Identity (12)(23)(34)(45) =(23)(34)(45)(51)
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i6=0

i7=1    (23)

i8=1    (34)

i9=1    (45)

i10=0
1

2

3

4

5

i6=1    (12)

i7=1    (23)

i8=1    (34)

i9=1    (45)

i10=1    (51)

=

1

3

4

5

2

1

3

4

5

2

Fig. 163. Identity (23)(34)(45) = (12)(23)(34)(45)(51)

In fact, there are only 30 different permutations among the 32 permutations.
This can be shown as follows:
A swap of the lines i and k will be denoted by (ik) . Since
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(12)(23)(34)(45) = (23)(34)(45)(51) = (54321) (see Fig. 162)
and (23)(34)(45) = (12)(23)(34)(45)(51) = (5432) (see Fig. 163) ,
the number of different permutations cannot be greater than 30; in fact, it
can be easily checked that it is 30. Altogether, the ten cipher wheels generate
the large number of 960 encryption alphabets for a vocabulary of 32 letters.
Thus, there are in most cases many encryption steps that map the i-th plain-
text letter pi of a message into the i-th cryptotext letter ci : the whole en-
cryption step is not uniquely determined by the plaintext letter pi and the
cryptotext letter ci . This makes unauthorized decryption more difficult, it
would have meant a serious complication for the zig-zag deciphering method
using differences, to be discussed in Sect. 19.2.10.4.
However, if the plaintext letter pi is the 5-bit code group 1 = (11111) or
the 5-bit code group 0 = (00000), then the encryption step is uniquely
determined by the cryptotext letter ci , since any permutation of its bits
leaves (11111) and (00000) invariant.
Now to the ten cipher wheels mentioned above, denoted by w1 ... w10 . The
movement of these wheels was controlled by their having 47, 53, 59, 61, 64,
65, 67, 69, 71, and 73 teeth, these numbers being chosen because they have
no common multiple. At each encryption step all wheels were moved on one
tooth by a pawl mechanism. This gave a kind of a regular wheel movement
with a period of 47 · 53 · 59 · 61 · 64 · 65 · 67 · 69 · 71 · 73 , i.e., nearly 1018.
Cams sitting on the rims of the wheels and forming a very irregular pattern
controlled the switches i1...i10 . The positioning of these cams, which could
not be altered easily, formed part of an operating set-up remaining valid for
some period of time. An essential part of the operating instructions was the
starting position of the cipher wheels, which could be adjusted by thumb
wheels. Each of the 10 cipher wheels w1...w10 could be connected to various
elements of the Vernam switches i1...i5 and permutation switches i6...i10 .
19.2.10.3 The models T 52d and T 52e (introduced in 1943 and 1944) were
variants of T 52a/b and T 52c, respectively, featuring more “irregular”—
i.e., intermittent—wheel movements and supporting an optional Klartext-
funktion6. The T 52b (1934) was different from the T 52a only with respect
to improved interference suppression.
In the T 52c, developed under Herbert Wüsteney (1899–1988), a different ini-
tial setting of the keying wheels could be used for each message (‘message
key’). In the new T 52c (the T 52ca), as a consequence of new circuitry, only
16 different substitutions and permutations occurred, reducing the number

6 Abbreviated KTF by the British, this was a tricky device where the encryption step was
influenced by the 5th bit of the plaintext letter two steps back, thus sometimes also called
¯̄P 5 or P5 (2 back) (‘Plaintext Bit 5 two steps back’)—an idea that goes back to the
Swedish inventor Arvid Damm in a 1919 patent application. It not only caused difficul-
ties for the unauthorized decryption, but on noisy transmission channels also difficulties
for the authorized recipient. For the Lorenz Schlüsselzusatz, it was experimentally in-
troduced in March 1943 and broken by the British in April 1943, it reappeared in June
1944 in the SZ 42B .
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of encryption alphabets used for one message to 256—in the T 52e, it was
16·15 = 240. The different variants T 52a/b, T 52c, T 52ca, and T 52e were in-
compatible. A transmission line had normally the same variant on both ends.

19.2.10.4 The British were less concerned with the Geheimschreiber , even
though two T 52 machines were captured in North Africa by units of the
British Eighth Army, and, according to Hinsley, B.P. “understood the design
and method of operation [of the T 52] by the summer of 1942”. One reason
was that T 52a/b and T 52c were used by the German Army exclusively on
land lines, partly because synchronization of the early T 52 was not stable
enough on noisy wireless channels. Thus there was much less traffic available.
The T 52c and T 52e were used on wireless lines by the German Air Force,
but since the standards of cryptanalytic security were so low in Air Force
Enigma traffic, it was hardly necessary to deal with their T 52 traffic as well.
On the other hand, breaking into the disciplined Enigma traffic of the Ger-
man Army was more difficult, and so Tunny traffic was correspondingly more
valuable. Ernst S. Selmer said “Later versions [of Sturgeon] were occasion-
ally, but not routinely broken by B.P.”. Nevertheless, the British knew how
to do it: quite a number of Geheimschreiber encryptions, the first ones in
the summer and autumn of 1942 on the Sicily-Libya line, using a T 52c were
broken. Later, a T 52b was found in Tunisia and it was discovered that the
code wheels of this type moved regularly and that they did not combine,
as was established with the T 52c. Then, in July 1943 a depth of five was
found which resisted all attempts to break it. It only succumbed a year later,
in June 1944, to a sustained attack. It turned out that it was enciphered
on a new machine, the T 52d. These results were achieved despite the more
difficult cryptanalytic situation arising from the fact that the key ki was
not uniquely determined by a pair consisting of plaintext character pi and
cryptotext character ci . The wiring that led to the 30 permutations used
in the T 52a/b and T 52d (Fig. 161) was known from the German and US
patents. The methods of attack that had proved useful against the SZ 42
could be extrapolated (with a grain of salt), although the reconstruction of
the key was necessarily somewhat more elaborate. Indeed, permutation leaves
the numbers of 0s and 1s invariant, thus identical plain letters at the same po-
sition in a plaintext-plaintext compromise would lead to 0 (‘void’) as the dif-
ference of the crypt letters and thus to two identical crypt letters, while plain
letters different in all bits would lead to 1 (‘letter shift’) as the difference of
the crypt letters and thus to two crypt letters different in all bits. Aside from
these unique cases, there is some uncertainty (‘polymorphism’) involved in
the cryptanalysis: for example, the ten letters a s d z i r l n h o (Table 28),
all having two 1s and three 0s, are mapped among themselves under permu-
tation of their five bits, they are in the same permutation class 1203.

The construction of the cipher wheels of the Geheimschreiber was also ba-
sically known. The changes in T 52a/b that led to the T 52c were minor;
the irregular movements of T 52d and T 52e were not quite as irregular as



19.2 Superimposition for Encryptions with a Key Group 399

| | | | |0 | e 5 2 4 t | a s d z i r l n h o | u j w f y b c p g m| k q 3 x v | 1
| | | | |0 | 1 0 0 0 0 | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 | 1 16| | | | |

0 | 0 1 0 0 0 | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 | 1 8| | | | |. | . . . . . | . . . . . . . . . . | . . . . . . . . . . | . . . . . | .| | | | |
0 | 0 0 1 0 0 | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 | 1 4| | | | |
0 | 0 0 0 1 0 | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 | 1 2| | | | |
0 | 0 0 0 0 1 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 | 1 1| | | | |
0 | 1 2 3 4 5 | 6 7 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 24 25 | 26 27 28 29 30 | 31

Table 28. International Teletype Alphabet No. 2 in class order

they could have been. It was hoped that encryptions with Klartextfunktion,
involving an autokey (‘autoclave’), would be very difficult for the unautho-
rized decryptor—and for the authorized recipient, too, if the radio channel
was noisy. Klartextfunktion was practically nonexistent on T 52.

Arne Beurling (1905–1986)

19.2.11 Beurling on T52. Studying picked-up
German teletype signals of May 25 and 27, 1940, the
Swedish mathematician Arne Beurling (February 3,
1905 – November 20, 1986), working for the Swedish
cipher bureau FörsvarsväsendetsRadioanstalt (FRA),
needed only about two weeks to break into a German
T 52a/b teletype line to Oslo running over Swedish
territory—how he accomplished this he did not dis-
close, he never revealed the exact way he went for
his initial break and used to say ‘A magician does
not reveal his tricks’. But, according to P. W. Jones,
Beurling gave at least the enigmatic hint “that threes and fives were impor-
tant”. Thus, he obviously had observed from some cleartext chatter that the
Germans had the habit of using stereotypes like the sequence 12 of ‘Letter
Shift’ 1 (3 at FRA) and ‘Word Space’ 2 (5 at FRA) in such abundance that
frequently plaintext pairs of a 1 and a 2 would occur at the same position.
Thus he was helped by careless signal operators on the German side whose
lack of discipline led to frequent plaintext-plaintext compromises like

1 2 1 2 1 2 1 2
A L Z G J M G U H 3 ...

1 2 1 2 Q R V
N P 3 U M W F Z 1 4 ...

1 2 Q R V
G R Q U M A A 4 J T ...

1 2 1 2 Q R V
L Y Z G J M O R Y Y ...

1 2
B O T A 1 W F Z 1 4 ...

Note that all the coincident (bold-faced) 5-bit groups are of the permuta-
tion class 1302 . Guessed plaintext pairs 1 2 are added, followed furthermore
by Q R V (‘Do you understand?’), an international standard phrase. For the
fourth column, cryptanalysis that bypasses the polymorphism goes as follows:
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A comparison of (plain) 2: 00100 (crypt) G: 01011 and
(plain) 1: 11111 (crypt) U: 11100

shows that G and U have a coincident bit only in the second position, while 2

and 1 have it only in the third position. This suggests, that the permutation
involved in column 4 moves the bit in the third position 3 to the second
position 2 . Assuming the permutation to be π=(2 3 ), π−1(G)= 00111 and
the additive key is O: 00011 since 00111 = 2: 00100 ⊕ O: 00011.
Moreover, the seventh column allows more pairwise comparisons:.
(plain) 1: 11111 (crypt) G: 01011 (plain) 1: 11111 (crypt) G: 01011
(plain) 2: 00100 (crypt) F: 10110 (plain) Q: 11101 (crypt) O: 00011

(plain) 1: 11111 (crypt) G: 01011 (plain) R: 01010 (crypt) A: 11000
(plain) V: 01111 (crypt) R: 01010 (plain) Q: 11101 (crypt) O: 00011

The transitions indicated by deviating bits are 3 → 4, 4 → 2, 2 → 3, 1 → 5,
to be completed by 5 → 1 . Thus the permutation for the seventh column

is guessed to be
( 1 2 3 4 5
5 3 4 2 1

)
= (15)(234), and under this assumption the

additive key can be calculated in all the four cases and is in each case the
same, O: 00011, as is easily checked.
Once the initial break was made, Beurling had no difficulty to find and use
more cribs. In the end, he was able to reconstruct the T 52a/b machine
completely and even had replicas built (Fig. 164 shows such an ‘apparat’).
On June 17, 1942, the Germans were warned of the break by Finnish sources,
but did not react appropriately. By mid-September 1942 the Swedes were
even able to penetrate the T 52c and later the T 52ca traffic. The break ended
temporarily in 1943 when the Germans changed the indicator procedures, and
failed finally with the introduction of the improved T 52d. However, the Swe-

Fig. 164. Geheimschreiber replica ‘apparat’ of the Swedish cryptanalytic bureau FRA
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dish cryptanalysts Carl-Gösta Borelius, Tufve Ljunggreen, and Bo Kjellberg,
under the leadership of Lars Carlbom, broke in April 1943 even the Lorenz
SZ 40 (Swedish codename QEKZ) machine. Intercepted radio traffic from the
improved SZ 42 machine was solved by FRA in September 1943.

19.3 COLOSSUS

After the structure of the Tunny machine was unveiled in Bletchley Park (the
Sturgeon machine was captured later in North Africa), the first practical task
was to find the keying sequence, i.e., the wheel patterns for a whole period—
ψ for six months, χ for one month, µ for one day; by 1944 for all wheels every
day. This was, when possible, achieved by ‘dragging’ probable words (‘cribs’)
along the cryptotext. The British in Bletchley Park called the determination
of the periodic 0-1 sequences produced by the cams on the keying wheels
‘wheel breaking ’. It was mainly this wheel breaking that was done by hand in
Tester’s section ‘Hut F’ by a group of people called the ‘Testery’, including,
apart from Tutte, the famous mathematicians M. H. A. Newman (1897–1984)
and J. H. C. Whitehead (1905–1960); then Peter Hilton, Donald Michie, and
Shaun Wylie, patronized by Alan Turing; but also people like Roy Jenkins.

Wheel breaking was the most difficult and demanding of all the problems
encountered in breaking Tunny. Wheel breaking was neccessary in particular
for the frequently changing µ-wheels. Once the cam patterns were known,
the remaining practical task was to find the right initial setting of the keying
wheels for each message (the ‘wheel setting’). Once this was achieved, a
replica of the Tunny machine (built by Sid W. Broadhurst and Frank Morrell
and finished by June 1942) printed the decrypted plain text.

Max Newman
(1897–1984)

19.3.1 The Turing–Newman test. The first pro-
cess to be mechanized was wheel setting. This work
was initiated and guided by Maxwell Herman Alexan-
der (Max) Newman, who was convinced of pure crypt-
analysis and felt uncomfortable working with hand
methods. His group was called the ‘Newmanry’.

Wheel setting in the parlance of Max Newman meant:
the reconstructed key stream and the particular cryp-
totext stream had to be brought into phase, with the
assistance of some test such as a Friedman Kappa test
or Turing’s refinement thereof—Turing’s ‘method of
scoring’, as Jack Good called it, his ‘deciban theory’,
derived from ENIGMA Banburismus (Sect. 19.4.2).

The Kappa test was discovered in the early 1920s by the American cryptolo-
gist William F. Friedman. Kappa is the ‘index of coincidence’ (often abbrevi-
ated I.C.) between two texts, i.e., the number of coinciding characters divided
by the total number of characters. While Kappa for two arbitrary cryptotexts
(based on an alphabet of 26 characters) is normally close to 1/26 = 3.8%,
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it is usually much higher when two texts are in the same natural language,
even if they are encrypted (in-phase) by the same key, about 7% for English
or German. For details, see Sect. 16.1 .
Some notational details are now required. Two 5-bit letters a and b coincide
if and only if their sum modulo 2 is (00000), i.e., a ⊕ b = 0. Thus, counting
coincidences between two texts amounts to counting the number of occur-
rences of 0 in the sum of the two texts. Note that for addition modulo 2,
as said before, subtraction coincides with addition.7 Thus, two 5-bit letters
a and b coincide if and only if their difference modulo 2 is (00000).
To demonstrate this in the special case that is of interest here, we take some
German text8 of 440 letters together with this text shifted by one letter.
Next we form the delta. Coincidences, marked by an asterisk, occur where
the delta is 0 .

d e r 1 2 f u e h r e r 1 2 h a t 1 2 f u e r 1 2 d i e 1 2 we i t e r e 1 2 k
e r 1 2 f u e h r e r 1 2 h a t 1 2 f u e r 1 2 d i e 1 2 we i t e r e 1 2 k a
4 j y 3 d r i y v j j y 3 t q wk 3 d r i j y 3 f k u v 3 q l u p z j j v 3 j a

a mp f f u e h r u n g 1 2 a u f 1 2 s i z i l i e n 1 2 f o l g e n d e 1 2 r
mp f f u e h r u n g 1 2 a u f 1 2 s i z i l i e n 1 2 f o l g e n d e 1 2 r i
1 r 3 0 r i y v f j p s 3 u 2 r l 3 e a q q h h u f w3 d y r 4 3 f s 4 v 3 c n∗
i c h t l i n i e n 2 b e f o h l e n y y 2 3 3 q ml 1 1 2 n a c h 1 2 a u s f
c h t l i n i e n 2 b e f o h l e n y y 2 3 3 q m l 1 1 2 n a c h 1 2 a u s f a
4 g 2 5 h r r u f 4 x o n y n i wf b 0 z 1 0 o 1 c f 0 3 4 k f g j 3 u 2 5 4 c∗ ∗ ∗
a l l 1 2 d e r 1 2 ma s s e 1 2 d e r 1 2 i t a l i e n i s c h e n 1 2 k r a
l l 1 2 d e r 1 2 ma s s e 1 2 d e r 1 2 i t a l i e n i s c h e n 1 2 k r a e
z 0 f 3 f 4 j y 3 o 1 i 0 2 v 3 f 4 j y 3 5 p wz h u f r a j g y f w3 j s d 5∗ ∗
e f t e 1 2 i m1 2 a n g r i f f s r a u m1 2 r e i c h e n 1 2 d i e 1 2 d e
f t e 1 2 i m1 2 a n g r i f f s r a u m1 2 r e i c h e n 1 2 d i e 1 2 d e u
n x z v 3 5 g a 3 u k p t n j 0 4 k d 2 3 a 3 c j u 4 g y f w3 f k u v 3 f 4 i∗
u t s c h e n 1 2 k r a e f t e 1 2 a l l e i n 1 2 a u c h 1 2 b e i 1 2 g r u
t s c h e n 1 2 k r a e f t e 1 2 a l l e i n 1 2 a u c h 1 2 b e i 1 2 g r u p
q y j g y f w3 j s d 5 n x z v 3 u z 0 wu r w3 u 2 d g j 3 x o u b 3 v t f z∗
p p e n we i s e r 1 2 z u s a mme n f a s s u n g 1 2 n i c h t 1 2 me h r
p e n we i s e r 1 2 z u s a mme n f a s s u n g 1 2 n i c h t 1 2 me h r 1

0 q f 1 l u a 2 j y 3 y p 5 i 1 0 x f e c i 0 5 j p s 3 4 r 4 g 2 k 3 o x y v y∗ ∗ ∗
1 2 a u s y 1 2 u m1 2 d e n 1 2 g e l a n d e t e n 1 2 f e i n d 1 2 i m1 2

2 a u s y 1 2 u m1 2 d e n 1 2 g e l a n d e t e n 1 2 f e i n d 1 2 i m1 2 a
3 u 2 5 t r 3 a 3 a 3 f 4 f w3 v 3 wz k s 4 z z f w3 d n u r s p 3 5 g a 3 u

7 We shall use the symbol ⊕ meaning addition mod. 2 as well as subtraction mod. 2 .

8 From July 13, 1943, Generalfeldmarschall Keitel to Generalstab des Heeres.
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a n g r i f f 1 2 i n 1 2 d a s 1 2 me e r 1 2 z u r u e c k z u we r f e n x
n g r i f f 1 2 i n 1 2 d a s 1 2 me e r 1 2 z u r u e c k z u we r f e n x 1

k p t n j 0 l 3 5 r w3 f r i g 3 o x 0 j y 3 y p f f i k e v p h l j u n f z 5∗ ∗
1 2 mi t 1 2 we i t e r e n 1 2 f e i n d l a n d u n g e n 1 2 a u c h 1 2 i
2 mi t 1 2 we i t e r e n 1 2 f e i n d l a n d u n g e n 1 2 a u c h 1 2 i m
3 o g p k 3 q l u p z j j f w3 d n u r s 3 z k s c j p 3 f w3 u 2 d g j 3 5 g

m1 2 we s t e n 1 2 d e r 1 2 i n s e l 1 2 mu s s 1 2 g e r e c h n e t 1 2

1 2 we s t e n 1 2 d e r 1 2 i n s e l 1 2 mu s s 1 2 g e r e c h n e t 1 2 w
a 3 q l 2 y z f w3 f 4 j y 3 5 r d 2 wf 3 o 3 5 0 g 3 v 3 j j k g o f z k 3 q∗

There are, in fact, only 14 letter coincidences for a length of 440, or 3.2%.
Indeed, the index of coincidence for texts shifted by one place is lower than
the usual Kappa of 7.6% for the German language. However, if a count
is made of the occurrence of all the 32 symbols in the delta, the following
surprising distribution is obtained:
0 a b c d e f g h i j k l m n o p q r s t u v w x y z 2 3 4 5 1

14 10 2 6 11 3 33 15 5 10 30 14 7 0 10 9 13 9 17 9 5 22 14 17 7 21 16 12 61 17 15 6

f occurs with 7.5% and j with 6.8% , and 3 even with 13.9% (while the
average is 1/32 = 3.125%). Thus, the differences of two consecutive letters
show a much bigger deviation from randomness than the German text itself.
Moreover, subtracting two consecutive letters was the simplest thing one
could do by machine operation. This starting point of Tutte’s Delta process,
devised in October 1942, was described by Max Newman in his 1943 notes.
The count should be made also for each one of the five tracks of impulses. It
results in significant deviations from randomnes, too:

track: 1 2 3 4 5
number of 1: 61.6% 60.5% 43.4% 57.3% 47.0%
number of 0: 38.4% 39.5% 56.6% 42.7% 53.0%

19.3.2 Newman’s Theorem. For the following, we define9 for plain
letter stream p, cipher letter stream c and key stream k

∆p = p ⊕ p(1) , ∆c = c ⊕ c(1) and ∆k = k ⊕ k(1) ,
where p(1), c(1) and k(1) are p, c, k shifted by one position.
Now c = p ⊕ k is equivalent to p = c ⊕ k
and ∆c = ∆p ⊕ ∆k is equivalent to ∆p = ∆c ⊕ ∆k .
The key stream k for the Tunny machine is a sum of the key stream χ
generated by the Chi -wheels and the extended key stream ψ̂ generated by
the action of motor wheels µ1, µ2 moving the Psi -wheels. Thus with

k = χ ⊕ ψ̂ ,
p ⊕ ψ̂ is equivalent to c ⊕ χ and ∆p ⊕ ∆ψ̂ is equivalent to ∆c ⊕ ∆χ .

9 In the B.P.-based literature, p , c , k , χ , ψ , h are often represented by P, Z, K, X, S, D
(D denoting “de-chi”, meaning “freed from Chi”).
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Note that while the periods of the five Chi -wheels are fixed and can be
assumed to be known, the ψ̂-streams are non-periodic and depend on the
cam patterns of the two motor wheels. However, whenever the motor wheels
are not moving, then there is a (00000) = 0 in the ∆ψ̂-stream. It is this that
makes the Delta process so important: With the knowledge of χ alone—the
knowledge of the Chi -wheels cam patterns—by forming in phase c ⊕ χ , a
mutilated plaintext (‘pseudoplaintext’) h = p ⊕ ψ̂ will be obtained, and
since ∆h = ∆p ⊕ ∆ψ̂ , even ∆h = ∆p whenever ∆ψ̂ = 0 , i.e., whenever the
motor wheels are not moving.
In simple words: The zeros in the ∆ψ̂ stream acted as windows in the
∆h stream, through which some ∆p letters (delta-ed plaintext) could be
glimpsed10. Therefore, wheel setting was done by forming c ⊕ χ(i) for all
phase-shifts i , observing the scores of deviation from randomness.

19.3.3 German attempts to keep randomness. The German side was
worried about this decomposition of the task, in particular given that for each
one of the Chi -wheels the constant period could be discovered by the enemy
by means of a small number of tests, say 41 for the wheel χ1. Therefore, start-
ing in March 1942 and regularly by 1943, the cam pattern of the motor wheels
and of the Psi -wheels was chosen so that ∆ψ̂ was ‘close to random’, i.e., for
ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5 the probability of ∆ψ̂i = 1 and of ∆ψ̂i = 0 did coincide,

Prob[∆ψ̂i =1] = Prob[∆ψ̂i =0] = 1
2 .

There is a basic theorem (set out in handwritten notes by Newman, whose
function appears to be that of an operating manual for the Heath Robinson)
on the probabilities of the occurrence of 0 and 1 in a mod 2 sum of two bit
streams a, b:

Prob[a ⊕ b =0] = 1
2 + 2 · (Prob[a =0]− 1

2 ) · (Prob[b =0]− 1
2 )

Prob[a ⊕ b =1] = 1
2 − 2 · ( 1

2 −Prob[a =1]) · ( 1
2 −Prob[b =1])

Proof: Since a ⊕ b =0 if and only if (a = 0 ∧ b = 0) ∨ (a = 1 ∧ b = 1),
Prob[a ⊕ b =0] = Prob[a =0] · Prob[b=0] + Prob[a =1] · Prob[b=1]
= Prob[a =0] · Prob[b =0] + (1 − Prob[a =0]) · (1 − Prob[b =0])
= 2 ·Prob[a =0]·Prob[b =0] − Prob[a =0] − Prob[b =0]) + 1
= 1

2 + 2 ·(Prob[a =0]·Prob[b =0] − 1
2 Prob[a =0] − 1

2 Prob[b =0] + 1
4 )

= 1
2 + 2 ·(Prob[a =0] − 1

2 ) · (Prob[b =0] − 1
2 ) .

Similarly for Prob[a ⊕ b = 1] . 
�

According to Newman’s Theorem, the probability of the occurrence of 1 in
a modulo 2 sum of two bit streams is 1

2 , if it is 1
2 for one of the bit streams.

It followed that for i = 1, 2, 3, 4, 5

Prob[ ∆pi ⊕ ∆ψ̂i = 1] = 1
2

and thus
Prob[ ∆ci ⊕ ∆χi = 1] = Prob[ ∆ci ⊕ ∆χi = 0] = 1

2 .

10Assuming, for example, that the probability for the motor wheels moving is 3
4
, then in

the average every fourth letter of ∆h coincides with the plaintext letter from ∆p .
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19.3.4 British countermeasures. Presumably, achieving this balanced
situation on each bit stream was a motivation on the German side for the
introduction of the motor wheels. But there was a snag in it: Tutte revealed,
examining two bit streams together, the surprising fact that although each
one was in itself ‘close to random’, taken together they can provide informa-
tion about the corresponding pair of Chi -wheels.

This can be seen mathematically as follows: Since

Prob[∆ψ̂i=1]= Prob[∆ψi=1]·m, where m = Prob[motor wheels move]< 1,

from 1
2 = Prob[∆ψi=1]·m and 1

2 = Prob[∆ψj=1]·m
simply comes

Prob[∆ψi=1] = Prob[∆ψj =1] = q , where q = 1
2·m > 1

2 , or m · q = 1
2 ,

which means that there is a common value q > 1
2 for all five streams11. With

the typical value of m = Prob[motor wheels move] = 26
37 = 0.703 , the choice

q = Prob[∆ψi=1] = 0.71 was indeed made in March 1942 on the German
side, while in August 1941 q = Prob[∆ψi=1] ≈ 1

2 had been observed in B.P.

Now, when using two bit streams, denoted by the subscripts i, j ,
Prob[∆hi⊕∆hj = 0] = Prob[(∆ψ̂i ⊕ ∆ψ̂j) ⊕ (∆pi ⊕ ∆pj) = 0]

is to be worked out. According to Newman’s Theorem,

Prob[∆ψi ⊕ ∆ψj = 0]

= 1
2 + 2 · (Prob[∆ψi =0]−1

2 ) · (Prob[∆ψj =0]−1
2 )

= 1
2 + 2 · (q − 1

2 )2 .

Furthermore, ∆ψ̂i ⊕ ∆ψ̂j = 0 results if

either the wheels do not move, probability (1 − m),
or they do move and ∆ψi⊕∆ψj = 0 , probability m · ( 1

2 + 2 · (q − 1
2 )2) .

Altogether Prob[∆ψ̂i ⊕ ∆ψ̂j = 0] = (1 − m) + m · ( 1
2 + 2 · (q − 1

2 )2) .

But, surprisingly, m drops out since 1
2 = Prob[∆ψi=1]·m , or m · q = 1

2 :

(1 − m) + m · ( 1
2 + 2 · (q − 1

2 )2) = 1 + m · 2 · q · (q − 1) = 1 + (q − 1) = q .

Therefore,

(∗) Prob[∆ψ̂i ⊕ ∆ψ̂j = 0] = Prob[∆ψi =1] = q > 1
2 ,

which shows that ∆ψ̂i ⊕ ∆ψ̂j is not random.

Furthermore, let r be the proportion of repeated letters in the plaintext.
Then ∆pi ⊕ ∆pj =0 can happen in the following ways:

11To avoid this, the German side should have used five motor wheels instead of the single
one µ2 .
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(1) ∆pi =0 and ∆pj =0 because of a repeat, with probability r ;
there remains a non-repeat with probability 1−r , equally divided among
the four cases (0,0), (0,1), (1,0), (1,1) of values of (∆pi,∆pj) , thus

(2) ∆pi =0 and ∆pj =0 , with probability 1−r
4 ;

(3) ∆pi =1 and ∆pj =1 , with probability 1−r
4 ; altogether

(∗∗) Prob[∆pi ⊕ ∆pj =0] = r + 1−r
4 + 1−r

4 = 1+r
2 .

By virtue of Newman’s Theorem, from (∗) and (∗∗)
Prob[∆hi ⊕ ∆hj =0] = 1

2 + 2 · (q − 1
2 ) · ( 1+r

2 − 1
2 ) = 1

2 + (q − 1
2 ) · r > 1

2 ,

since r > 0 for meaningful plaintext streams ∆pi and ∆pj .
This shows that indeed the sum of two ∆h-streams is not random. In simple
words, it means that B.P. had found out that Tunny still was not safe and
that there was a way to break it in a large-scale, machine-supported attack.

The deviation from 1
2 (in B.P. jargon ‘bulge’) is proportional to the deviation

from 1
2 of Prob[∆ψi=1] and to the proportion r of repeated characters in

the plain text.
Typically, q = 0.75 , r = 0.2 and thus Prob[∆hi⊕∆hj = 0] = 0.55 . Hence,
a probably correct wheel setting is obtained if for a text of length n the score
for 0 in a stream ∆hi ⊕ ∆hj is about 0.55 · n , not too far away from the
random case 0.5 ·n . This shows that wheel setting by testing two tracks was
still not a particularly stable procedure.

19.3.5 Further motivation for creating the Newmanry. When this
problem analysis was completed by Newman, it was decided in December
1942 to look into the possibility of setting the Chi -wheels for individual mes-
sages by forming c ⊕ χ(i) for all phase-shifts i , once the cam patterns of
the Chi -wheels had been recovered in the Testery. Newman at once commis-
sioned an electro-mechanical machine, the ‘Heath Robinson’.
The hand methods used so far required a minimum message length of about
4000, and relied on the information contained in the message indicators.
However, starting in October 1942, the Germans abolished 12-letter indica-
tors, ‘noticing that they were giving away information that need not be given
away’ (Tutte). Instead, message indicators were taken from a numbered list
(the ‘QEP’ system) and the British had to rely completely on depths pro-
duced by the frequent sending of as many as 10 messages on the same QEP
number. This was first observed on the new links Codfish (Saloniki – Berlin)
and Octopus (Army Group A –Führerhauptquartier [Hitler’s headquarters]).
The Vienna – Athens link closed down in October 1942 .
Starting in August 1942, the German side was instructed to use meaningless
text (‘Quatsch’) at the beginning of a message to prevent stereotyped begin-
nings as cribs. A deciphered intercept from March 7, 1943 on the line Squid
(Army Group Süd in the Ukraine) shows this, and also the stupid practice
of text doubling:
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schornsteinfeger22
anna3ff2nr3m2yyq2umemrf2vv2kk12
anna3ff2nr3m2yyq2umemrf2vv2l l12
havxd2332qiwyr2tmfm2qrfp2vv2kk12
havxd2332qiwyr2tmfm2qrfp2vv2l l12
2an2art3m12kdr3m1232e212beim2pz3m12aok232on122h3m12gr3m12sued23vv2kk12
2an2art3m12kdr3m1232e212beim2pz3m12aok232on122h3m12gr3m12sued23vv2l l12
332w12schw3m12art3m12abt3m12332uet2muszte2drei2zwoelftonner2zugmaschinen2mit2
genehmigung hoeh3m12art3m12kdr3m1223epi22zur22332rm12pz3m12div3m12abstellen3
m12alle2bemuehungen2des2battr3m12chefs2zugmaschinen2zurueckzubekommen2sind2ge
scheitert3m122

In readable form this message—a complaint from an artillery colonel—says:
anna/ff nr. 661 7.3.43 havxd 18264 5.3.1430
an art. kdr. 3 beim pz. aok. 1, h. gr. sued
2 schw. art. abt. 735 muszte drei zwoelftonner zugmaschinen mit
genehmigung hoeh. art. kdr. 308 zur 4. pz. div. abstellen. alle bemuehungen
des battr. chefs zugmaschinen zurueckzubekommen sind gescheitert.

[2nd battery artillery detachment 735 was ordered to hand over three lorries
to the 4th armored division and has not got them back.]

19.3.6 The electromechanical Robinsons. The task of setting the Chi -
wheels required that both the cipher text and the prepared key text were
running through a machine simultaneously, and many times over, since all
phase shifts had to be investigated. The problem could be treated function-
ally by what had been called on the German side the ‘saw-buck’ principle:
shifting the key against the cryptotext after each round by one step.12 The
Newmanry was formed early in 1943. In April 1943, a first model of a fast ma-
chine, ‘Heath Robinson’, went into operation. Its two loops, one for the cryp-
totext, one for the key, were punched on tape. Some more Robinsons were
built, including ‘Peter Robinson’, ‘Robinson and Cleaver’, ‘Super Robinson’.
Normally, Robinson was started with the wheels χ1 and χ2, following an
early suggestion of November 1942 by Tutte; with a cipher of length 3000,
41 ·31 ·3000 logical comparisons were needed. It turned out that a ciphertext
should have a minimum length of about 2500 to be successful. Similar work
was required to find the wheel setting for χ3, χ4 and χ5. Success was by no
means always guaranteed, the statistical properties of the messages varied
considerably.

19.3.7 The electronic Colossi. Keeping the two tapes of the Robinson
synchronized was problematic and also led to mechanical wear. Thus, the en-
gineer Tom Flowers, assisted by Sid Broadhurst, Bill Chandler and Allen
Coombs developed an improved version, where the key function was internally
generated by electronic circuitry and the other tape—it was thousands of
characters long—was read photoelectrically at a speed of 5 000 characters
per second. Tapes up to 25 000 characters long could be put on the pulleys.

12Actually, apart from the normal, ‘long’ runs testing two channels, so-called ‘short’ runs
using four already-determined wheel settings and testing the fifth channel could some-
times be used.
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Most important was that the new machine used electronic switching circuits
and was accordingly very fast. Moreover, since preparation of a key tape
was no longer necessary, the key could be changed very quickly, if required.
In December 1943, the prototype model, dubbed Colossus I, was ready. By
February 1944 it was operational against Tunny and successful against the
Rome–Berlin link Bream. It was the first functioning electronic computing
device in the world. On June 1, 1944, just in time for the D-Day landings in
Normandy, the improved Colossus II came into use (Fig. 165).

Fig. 165. Partial view of Colossus (presumably Colossus VI). The closed
loop tape for the cryptotext, the plugboard field, and an array
of tubes, presumably of type Mullard EF36, are clearly visible.

The internal electronic circuits with 1500 tubes involved 12 thyratron ring
stores13 of a length between 23 and 61, corresponding to the keywheels. One
valve in a particular ring was conducting at any given moment, then its
neighbor took over, at a clock rate of 5000 characters per second. The tape
reader could also handle 5000 characters per second—in five parallel channels
25 000 bits per second.14 Colossus allowed flexible plugboard programming of
elementary Boolean operations and binary (biquinary) arithmetic, in 5-fold
parallelization. The improved Colossus II with about 2 400 tubes was also
able to perform conditional branching, and it had a ‘logic switching panel’

13Johnson was misinformed in 1978 and assumed that Colossus was directed against the
Siemens machine T 52. He therefore mentions 10 thyratron rings instead of 12, correspon-
ding to the 12 keywheels of the SZ 40. The correction was made in 1980 by Rex Malik.

14D.Michie claims that “in the Mark II version of the machine an effective speed of 25 000
char/sec was obtained by a combination of parallel operation and short-term memory”.
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for presetting and manually changing Boolean operations during the run. A
‘long’ run with the 41 · 31 · 3000 logical operations mentioned above took 12
minutes. Ten Colossi were built, two more were planned.

19.3.8 Rectangle method. The Colossi were more versatile than the
Robinsons. According to Jack Good, Donald Michie showed in 1944 that,
thanks to the flexible plugboard programming, the Colossi could also be used
for ‘wheel-breaking’ the Chis. This normally involved more than 20 different
runs on Colossus, and took several hours of continuous effort. Typically a
cryptotext of 15 000 letters was required.
This process, called the ‘rectangle method’ (since two wheels were involved),
investigated the indexes of coincidence (in B.P. jargon ‘cross-products’ or
‘flags’) between the pseudoplaintexts ∆hi, ∆hj . This was done by counting
the number of occurrences of 0 in ∆hi⊕∆hj , i.e., the number of coincidences
in the streams ∆ci ⊕∆cj (read from punched tape) and ∆χi ⊕∆χj (the cor-
responding pulse streams being generated internally). Frequently ∆h1, ∆h2

were chosen, resulting in a 41×31 rectangle of the positions of the χ1-wheel
and the χ2-wheel. For a cipher text of length about 15 000 characters, the
period of 31 · 41 = 1271 in the movement of the two Chi -wheels allows just
12 complete tests (12·1271=15 252). The balances of the scores for 0 and 1
were filled into the 1271 cells (u−v for u 0s and v 1s). This was the basis
for an iterative process of approximating the cam patterns (too complicated
to be described here), which converged for long enough cipher texts.
In another typical situation, the indexes of coincidence between ∆h1, ∆h2,
∆h3, ∆h4 on the one side and ∆h5 on the other side were formed, resulting in
four rectangles: a 41×23 rectangle, a 31×23 rectangle, a 29×23 rectangle, and
a 26×23 rectangle. This produced a tentative cam pattern for the χ5-wheel
and embryonic parts of the cam pattern for the other χ-wheels.
For making rectangles, a small special machine, called Garbo, was used.
There were also specialized counting machines and other auxiliary machines.
Proteus was used for short cribs, the crib was dragged through a difference
of two isologs. Aquarius was used for dealing with pauses during an auto-
transmission while the tape was reset or replaced by another tape. Miles
could add two streams (modulo 2); impulses could be permuted by plugging.

19.3.9 Crib runs. Plaintext-plaintext compromises of the key, such
as ZMUG that started the Fish success, occured continually until mid-1944.
The first step, superimposing two cryptotexts encrypted with the same key
and reconstructing the two plaintexts (‘cribbing’), was usually done in the
Testery by hand, much as Tiltman had done. Mechanical support was given
at times in the form of so-called ‘crib runs’ on the Robinsons and the later
Super Robinson (also called Double Robinson, or (US Jargon) Dragon, from
‘dragging text’). Next-to-obvious cribs like
2angriff2 2der2feind2 2taetigkeit2 2aufklaerung2 2heeresgruppe2
([attack] — [the enemy] — [activity] — [reconnaissance] — [army group] )
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were a tremendous help, as were typical CCITT 2 forms produced by letter-
figure-shifts such as
3m12armee (in readable form .�armee ) 3m12div3m (in readable form .�div.)
3m12pz3m (in readable form .�pz. ) 12roem23 (in readable form �roem�↑,

where ↑ means Figure Shift).
‘Cribbing’ produced the key k, which in a second step had to be decomposed
into its χ- and ψ̂-part, k = χ ⊕ ψ̂ .
This was a more time-consuming task, as Tutte had experienced. However,
the periods of the Chi wheels and of the Psi wheels were already known.

19.3.10 5202. The US Army used the 5202, a 35-mm-film COMPARATOR
(17.3.4) for sliding Tunny text against a known key sequence, capable of com-
plex comparisons and statistical tests; it was not operational until April 1945.

19.3.11 Evaluation of the British cryptanalytical attack on Tunny.
Newman’s success was based on Tiltman’s and Tutte’s work and on the sup-
port Tester and his ‘Testery’ gave with manual and linguistic methods (and
also by deriving plaintext p from ‘pseudoplaintext’ h, as was done in the
Turingery). Essential, however, was Newman’s belief in pure, mathematical
cryptanalysis. Lack of insight on the German side also contributed to the
success. Above all, while the CCITT 2 code was already ill-suited to the
needs of cryptographic security, the German predilection for doubling made
the situation worse. And the use in the Lorenz machine of five pairs of ci-
pher wheels, each one for a single-bit-channel, allowed what was, in principle,
an enormous cryptanalytic problem to be decomposed into five independent
problems, each much simpler. This weakness was only superficially cured by
the German’s introduction of non-periodic movement of the Psi -wheels by
means of the motor wheels, and the possibility of the subtle analysis that the
British carried out was overlooked. It would have been better if the motor
wheels had not stopped the ψ-wheels, but had made them move two steps
from time to time. Likewise, it would have been better, as said before, to use
five motor wheels, one for each track, instead of the single one µ2 . German
arrogance prevented this. In fact, the introduction of the motor wheels was,
compared with the Siemens T 52, an ‘illusory complication’. Donald Michie
remarked: “If the motor wheels had been omitted from the German design,
it is overwhelmingly probable that the Fish codes would never have been
broken”.
It is no denigration of the British success to state that the Colossus machines,
the first electronic computers, were mainly oriented towards a very limited
set of functions, i.e., computing only in a very special sense, and that their
control was roughly at the same level as the machines Z 3 (1941) and Z 4
(1944) of Konrad Zuse (1910 – 1995), which were loop-controlled, too; Zuse’s
machines, however, were not electronic.
Whether the Colossus machines were used for tasks other than ‘wheel-setting’
and ‘wheel-breaking’—they could well have been—remains open.
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19.3.12 The importance of the break. In the USA, there was no elec-
tronic cryptanalytical development comparable to the British Colossus until
mid-1944. Vannevar Bush’s attempts to build a similar electronic machine,
called the COMPARATOR, suffered from a number of engineering failures.
But “by the time Japan surrendered, the Americans were building electronic
machines [the 5202 machine] using twice as many tubes as the British Colos-
sus”(Burke). Actually, the non-cryptanalytic ENIAC, finished in February
1946, had approximately ten times as many valves.
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Fig. 166. Some wireless teletype connections with SZ 40, SZ 42,
broken between November 1942 and July 1944 by Bletchley Park cryptanalysis

After 1943 the British supplemented the ENIGMA stream of messages mainly
from the German Air Force with their successful breaking of the German
Funkfernschreibverbindungen (wireless teletype connections) within the high-
est command structure, which mainly used SZ 40 and SZ 42. Although the
decryption normally took up to a few days because wheel breaking was in-
volved, the strategic intelligence received in this way was worth the effort.

Tunny breaks (Fig. 166) included (to mention only a few) the Codfish link be-
tween the Berlin center in Strausberg (‘HOSF’) and HGrE (Army Group E)
in Thessaloniki (from November 1942) and the Herring link between HGrC
(Army Group C of Field Marshal Albert Kesselring) in Rome and PzAOK5
(Field Marshal Erwin Rommel’s Panzerarmee) in Tunis (from January 1943).
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From May 1943 the Bream link between Berlin and HGrC (Army Group C)
was broken, as was the Squid line between the Führerhauptquartier cen-
ter ‘ANNA’ near Königsberg, operated by GenStdH (General Staff of the
Army), and HGrSüd (Army Group South) in the Ukraine from March 1943.
One important consequence was that the German attack against Kursk in
July 1943 was a disaster. In 1944, these early breaks were supplemented by
many more, among them the Jellyfish15 link between Berlin and the OBWest ,
(Supreme Commander West, Field Marshal Gerd von Rundstedt), and one in
the Gurnard link between Berlin and the OBSüdost (Supreme Commander
South-East, General Alexander Löhr). The Germans were unsuspecting.

The British had bad luck, too. On June 10, 1944, four days after the D-Day
landings and ten days after Colossus II went into operation, they lost their
entry into the link from Berlin to von Rundstedt and then in July also into
the link from Berlin to Kesselring; only in September 1944 did they catch
up again. These setbacks were brought about by a radical addition to the
Lorenz machine—in the Tunny literature called ‘limitations’—similar to the
Klartextfunktion ‘Plaintext Bit 5 Two steps back’ on the Siemens machine.
When more and more Colossus machines came into use, their growing success
against the SZ 42 came just in time to compensate for the growing difficul-
ties in ENIGMA decryption. The British successes culminated in volume
in March 1945; from then on the collapsing Wehrmacht no longer provided
enough work for Bletchley Park.

19.4 Adjustment ‘in Depth’ of Messages

The examples so far invited immediate superimposition, since the cryptotexts
were already in phase (‘in depth’)—as they were in the operation of the Swiss
army ENIGMA, which used the same initial setting for all messages of one and
the same day. If two cryptotexts are encrypted with different initial settings
of the same (mechanically generated) key sequence, they must be mutually
adjusted (‘fitted’) to be in phase for superimposition. This can be achieved
as in Sect. 17.1 by a Kappa examination. The cryptotexts are presumably
properly adjusted as soon as their mutual Kappa becomes maximal and is
close to κS , which indicates whether the keys overlap at all.

19.4.1 Direct use of the indicator for adjustment. Sometimes texts
can be adjusted more simply. If for the encryption of a series of messages
a frequently changing key is to be used, it may be recommended to start
each message at a different key position of one and the same key sequence.
Avoiding a prearranged protocol, it is common practice to indicate at the
beginning of the message the starting position. This so-called indicator
(German Spruchschlüssel , not to be confused with discriminant, German
(Schlüssel-)Kenngruppe, which indicates the system to be used) may mean

15Jellyfish was considered in B.P., according to Jack Good, to be the least difficult to break.
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anything from the page and line in a book used for the key text to the initial
setting of the wheels of an encryption machine. This hides the key, of course,
but it does not prevent direct adjustment, if from the indicators of two mes-
sages their phase difference can be calculated or somehow determined—then
it is only a complication illusoire, frequently overlooked. (In professional en-
cryption, the indicator was therefore encrypted itself, as for example in the
ENIGMA traffic.)
19.4.1.1 A simple example deals with indicators for the superencryption of
code. If the indicator simply shows the page and line in a book, only the
number of lines per page has to be found out to calculate the phase shift—
and even this number is commonly roughly known. This is the situation
in the following example by Kahn of a 4-digit code with 4-digit numbers as
additives, the indicator in front of the message comprising 2 digits for the
page and 2 digits for the line. If five messages use the same page, say 62,

(i) 6218 6260 7532 8291 2661 6863 2281 7135 5406 7046 9128 .....
(ii) 6216 3964 3043 1169 5729 3392 1952 7572 2754 7891 6290 .....
(iii) 6218 4061 6509 4513 1881 0398 3402 8671 4326 8267 6810 .....
(iv) 6218 5480 9325 3811 4083 5373 4882 8664 8891 6337 5914 .....
(v) 6217 7260 8931 8100 5787 6807 2471 0480 9892 1199 8426 .....
they can be adjusted immediately:

1 2 3 4 5 6 7 8 9 10

(i) 6260 7532 8291 2661 6863 2281 7135 5406 7046 9128 .....
(ii) 3964 3043 1169 5729 3392 1952 7572 2754 7891 6290 6719 7529 .....
(iii) 4061 6509 4513 1881 0398 3402 8671 4326 8267 6810 .....
(iv) 5480 9325 3811 4083 5373 4882 8664 8891 6337 5914 .....
(v) 7260 8931 8100 5787 6807 2471 0480 9892 1199 8426 1710 ..... .

For a frequency analysis of the columns of encicode groups there is usually
not enough material. In the case of linear substitution, in particular for an
additive superencryption in Ÿ

4
10, as should be assumed in the present case, the

symétrie de position introduced in Sect. 18.6.2 can help. Thus, the difference
method forms for every column a difference table, of which two examples (for
the first and for the fifth column) are given in Fig. 167.

1 5
0000 5101 2209 1880 8339 0000 9391 6575 1590 4492
5909 0000 7108 6789 3238 1719 0000 7284 2209 5101
8801 3902 0000 9681 6130 4535 3826 0000 5025 8927
9220 4321 1429 0000 7559 9510 8801 5085 0000 3902
2771 7872 4970 3551 0000 6618 5909 2183 7108 0000

Fig. 167. Two examples of difference tables

In view of the large size of 8 difference tables, each with 20 essential entries, it
is preferable to order all entries for finding multiple occurrences. Figure 168
shows a suitable segment of such a table.
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difference in Ÿ
4
10 column line

...
...

...
8209 = 0480 − 2281 6 (v)−(i)

→ 8801 = 4061 − 6260 1 (iii)−(i)

→ 8801 = 5373 − 7572 5 (iv)−(ii)

9077 = 6509 − 7532 2 (iii)−(i)

9106 = 5914 − 6810 10 (iv)−(iii)

→ 9220 = 5480 − 6260 1 (iv)−(i)

→ 9220 = 1881 − 2661 4 (iii)−(i)

9308 = 3811 − 4513 3 (iv)−(iii)

→ 9391 = 1952 − 2661 4 (ii)−(i)

→ 9391 = 6337 − 7046 9 (iv)−(i)

→ 9391 = 6810 − 7529 10 (iii)−(ii)

9510 = 5373 − 6863 5 (iv)−(i)...
...

...
Fig. 168. Differences occurring, ordered

If now a difference occurs repeatedly, then the subtrahends are to be sub-
tracted in the respective columns. As shown in Fig. 169, for the difference
8801, 6260 is to be subtracted in column 1, 7572 in column 5; likewise for
the difference 9391, 2661 is to be subtracted in column 4, 7046 in column
9, 7529 in column 10. Here these two subtractions cover already these origi-
nating from the difference 9220, which is a confirmation that the phases were
adjusted correctly.

1’ 2 3 4’ 5’ 6 7 8 9’ 10’
(i) 0000 7532 8291 0000 9391 2281 7135 5406 0000 2609 ....
(ii) 5909 5729 3392 9391 0000 2754 7891 6290 9773 0000 ....
(iii) 8801 6509 4513 9220 3826 3402 8671 4326 1221 9391 ....
(iv) 9220 9325 3811 2422 8801 4882 8664 8891 9391 8495 ....
(v) 2771 8100 5787 4246 5909 0480 9892 1199 1480 4291 ....

6260 2661 7572 7046 7529
Fig. 169. Partially reduced messages

In the reduced columns in Figure 169, the placode groups 0000, 9391,
9220, 8801, 5909 occur repeatedly. The groups in slanted typeface below
the columns give the relative key. Further reductions (not listed here) are pos-
sible, they bring all five messages into a monoalphabetically encrypted inter-
mediary text, into a relative placode, which can be treated as in Sect. 18.3.2 .
The difference method does not always work as well as it may seem from this
example. Frequently, only islands of interconnected groups are found at first,
and further material is needed to join them into archipelagos. If the depth
of the messages is insufficient, it may still happen that only partial solutions
can be reached. Moreover, wrong coincidences of differences may occur. In
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our example, the difference 1480 originates not only from the column 9 :
1480 = 8426 − 7046, but also from the column 6 : 1480 = 4882 − 3402 .
This would indicate a reduction of column 6 by 3402 . This, however, would
introduce wrong placode groups, as one would find out later.
19.4.1.2 The experts in the cryptanalytic service of the German Auswär-
tiges Amt , Paschke, Kunze, Schauffler, and Langlotz, had a long standing
in the profession. They all joined the office in 1918 or 1919, first headed by
Capt. Kurt Selchow. Adolf Paschke was the nominal head of the linguistic
section. Dr. Werner Kunze, the mathematician (at that time a rarity in the
cryptanalytic service) started attacking a French superencrypted code in 1921
and finally reconstructed it in 1923; he resumed this work in 1927. Thus, he
had long years of experience in stripping off superencryption of code. The
unit was first camouflaged as Z section of Division I, Personnel and Budget;
in 1936, a reorganization changed its name into Pers Z.
The cumbersome stripping work was mechanically supported and semiauto-
mated. Hans-Georg Krug built such ‘robots’, as Kahn called them, partly
from punch card equipment, partly from standard telecommunications com-
ponents. With this help, Hans-Kurt Müller, Asta Friedrichs and others suc-
ceeded in decrypting the diplomatic code of the USA, effective August 1941
till the summer of 1943. Allen W. Dulles (1893–1969), who was then the
US Secret Service boss in Europe, suspected nothing, until warned by Hans
Bernd Gisevius from the German Widerstand . Similar ideas were followed
at OKW/Chi , the cipher branch of the OKW, by the engineers Wilhelm
Rotscheidt and Willi Jensen, as mentioned in Sect. 18.6.3 . And the B-Dienst
of the Kriegsmarine succeeded in solving the British naval cyphers.
The Allies and some bureaus of the neutrals used the same techniques. “The
single most common cryptanalytic procedure of the war [was] the stripping
of a numerical additive from enciphered code” (David Kahn).
In 1936, Kunze did fine work, too, in solving the Japanese ORANGE rotor
machine (Sect. 8.5.7) and later the RED machine. Foreign Minister Joachim
von Ribbentrop considered Pers Z as a special weapon in his struggle with his
rivals “Reichsmarschall” Hermann Göring and “Reichsführer SS” Heinrich
Himmler. Notwithstanding this, OKW/Chi and AA/Pers Z continued to be
successful: Cort Rave (1917–2001) reported16 that during the war his team,
a group of linguists, technicians and mathematicians, solved day by day the
PURPLE signals of the Japanese ambassador Hiroshi Oshima.

19.4.2 The Polish ‘clock method’ and Banburismus at B.P. Direct
adjustment was impossible for the indicator systems used with the ENIGMA.
Thus something like a search for repetitions or a coincidence count along the
lines discussed in Chap. 16 was necessary. The adjustment of the messages
was Stage 1 of both the method (called the ‘clock method’) of Jerzy Różycki
(1909–1942) and its elaboration by Turing in Bletchley Park (Jack Good),

16Personal communication via both Otto Leiberich and Jürgen Rohwer.
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where it was called ‘Banburismus’ because the long overlay sheets of paper
(‘banburies’) containing the messages in a 1-out-of-26 code (see Fig. 138) were
produced in Banbury, a little town near Oxford. Turing and Good developed
for the purpose of the ‘in depth’ adjustment a particular method of ‘scoring
the repeats’ (in jargon called ROMSing), which means weighing the repeti-
tions: intuitively one would expect that, for example, two bigram repetitions
favored adjustment more than four monogram repetitions. Turing used a
logarithmic unit [ban] (Chap.12), a decimal counterpart to Shannon’s binary
unit of information [bit]; 1 [ban] =̂ 1/10log 2 [bit] . 1 [deciban] ≈ 0.332 [bit],
the practical unit used in Bletchley Park, corresponds to 1 [dB] (decibel).

Turing and Shannon obviously developed their ideas independently and met
only around the end of 1942. “Turing and I never talked about cryptogra-
phy”(Claude Shannon). It could well be, as Ralph Erskine thinks, that before
July 1941 the cryptanalysts in Bletchley Park were unaware of the Kappa
test of Friedman (Sect. 17.1) or the Phi test of Kullback (Sect. 17.5). In fact,
Turing speaks of ‘repetition frequency’ (in his Treatise on the Enigma, the
‘Prof’s book’, written in late summer or early autumn 1940), Jack Good and
Hugh Alexander use the expression ‘repeat rate’ for Friedman’s ‘index of coin-
cidence’. And Good uses ‘weight of evidence’ (Charles Saunders Peirce 1878)
where Shannon speaks of the amount of ‘information’. Turings ‘Sequential
Bayes Rule’(Michie) contrasts Abraham Wald’s ‘Sequential Analysis’ of 1943.

Anyhow, Turing was ahead of Friedman in one respect. Friedman’s philoso-
phy was based primarily on investigating the coincidence of single characters,
and even in Kullback’s work of 1935 only the coincidence of bigrams was given
attention, the coincidence of trigrams was only marginally mentioned. How-
ever, in the Prof’s book and in Alexander’s summary thereof, the probability
for coincidence of n-grams with rather high n is discussed and the method
of scoring is sketched. Clearly, two trigram repeats, for example, score more
points than three bigram repeats, and for tetragrams and hexagrams Alexan-
der mentions their probability which is about 100·( 1

26 )4 and 1500·( 1
26 )6. This,

however, is much larger than (κd)4 or (κd)6 (with κd ≈ 2 · 1
26 ) one would have

if four or six independent coincidences occured. Heptagrams (n=7), octa-
grams (n=8), and sometimes even enneagrams (n=9) turning up in examples
are considered to give practically certainty about the adjustment differences.

19.4.2.1 We now give two examples of Stage 2 of the method. The ‘clock
method’ of Jerzy Różycki was intended for dealing with the indicator dou-
bling system of the 3-rotor Wehrmacht ENIGMA. The adjustment of the
cryptotexts results in a difference in the plain indicators: If two messages are
found with encrypted 3-letter indicators that coincide in the first two letters,
say A U Q and A U T, then the plain indicators also coincide in the first two
letters, and the difference of their third letters, i.e., the shift for adjustment,
equals the difference of Q and T . Thus, at least the fast rotor RN (the initial
setting of which was indicated by the third letter of the message setting) was
under observation. Deavours and Kruh give the following example: From sev-
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eral pairs of ‘in depth’ messages, the third position of the encrypted indicator
showed the following observed values:

first message R F N B D T N M K M
second message F K K Y Y Y Q Q O C
adjustment difference modulo 26 07 12 03 11 04 02 14 21 06 06

These data form two disconnected chains of 8 and 4 letters:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

R . . . Q . . F . M . . . . . C N . . K . . . . . O
B . . . . . . D . T . Y . . . . . . . . . . . . . .

Sliding the plaintext alphabet along the first chain, a non-crashing situation
with a reciprocal pair, namely (k n) , is found for the following shift mod 26:

u v w x y z a b c d e f g h i j k l m n o p q r s t
R . . . Q . . F . M . . . . . C N . . K . . . . . O

Using all possibilities for reciprocal pairs, the following hull is obtained
u v w x y z a b c d e f g h i j k l m n o p q r s t
R . . . Q . . F J M . B . . . C N . D K T . Y U . O

where, among the letters J B D T Y U that appear additionally, B D T Y
have the correct relative distance that is found in the second chain.
There are the seven 2-cycles (bf)(cj)(dm)(kn)(ot)(qy)(ru) . Thus, fourteen
possible starting positions of the fast rotor are revealed by the fourteen cases
BCDFJKMNOQRTUY of the third letter of the encrypted message setting.
We shall see how for the rotors I ... V the position of one notch (Sect. 8.5.3)
could be determined, and thus which rotor was used as the fast rotor. This
meant in the Polish bomba (19.6.3.4) and with the Zygalski sheets (19.6.3.5)
a reduction in the number of rotor orders to be tested from 60 to 12 = 4 · 3 .
19.4.2.2 The situation is not very different with the Navy indicator system,
which was the object of Turing’s elaboration of Różycki’s clock method.
Again, if a message pair is found with ‘Verfahrenkenngruppen’ (i.e., encrypted
message settings, see Sect. 19.6.4.1) that coincide in the first two letters, say
B B C and B B E , then the message settings also coincide in the first two
letters, and the difference of their third letters, i.e., the shift for adjustment,
equals the difference of C and E .
The following example goes back to a 1945 report by A.P. Mahon that was
recently released: From several pairs of messages adjusted with the Banbury
sheets, with the following pairs of nearby encrypted message settings and
corresponding adjustment differences mod 26

B B C B B E 02 E N F E P Q 07
R WC R WL 13 I U S I U Y 03
Z DR Z I X 05 S U D S WI 23
P I C P N X 21

the third position of the encrypted indicator shows the following values:
first message setting C C R C F S D
second message setting E L X X Q Y I
adjustment difference modulo 26 02 13 05 21 07 03 23
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The first four of these data form a chain of the letters R X C E L :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

R . . . . X . . . . C . E . . . . . . . . . . L . .

Sliding the plaintext alphabet along the chain until a non-crashing situation
is found, the following shift modulo 26 is possible:

t u v w x y z a b c d e f g h i j k l m n o p q r s
R . . . . X . . . . C . E . . . . . . . . . . L . .

Forming the hull of reciprocal pairs and using in addition the remaining three
data, a non-crashing solution is obtained

t u v w x y z a b c d e f g h i j k l m n o p q r s
R S . . Y X I . . D C F E . . Z . . Q . . . . L T U

There are seven 2-cycles: (cd)(ef)(iz)(lq)(rt)(su)(xy) . Thus, fourteen
possible starting positions of the fast rotor are revealed by the fourteen cases
CDEFILQRSTUXYZ of the third letter of the encrypted message settings.

19.4.2.3 Now comes Stage 3. In the second example, for the pair (R W C,
R W L) of encrypted message settings the plain message settings are of the
form (∗∗d, ∗∗q) . Stephen Budiansky writes: “The brilliant part of Turing’s
method17 was the next leap”. Mahon describes it as follows: The turnover
notch was located at a different position on the various rotors. On rotor IV,
for example, it occurred between J and K (see Sect. 8.5.3). He continues
to show that this leads to a contradiction, since the transition at J→K lies
between d and q and would mean a turnover of the middle wheel. Thus,
rotor IV is ruled out as the fast rotor; likewise rotor II with a transition at
E→F and rotors VI, VII and VIII with a transition at M→N.

Indeed, the ‘clock method’ and Banburismus at B.P. served to rule out rotors
in the rightmost position and thus to reduce drastically the number of rotor
orders to be tested: usually for the Navy ENIGMA with luck from 336 to
42 = 7·6, otherwise (i.e., in the case of rotors VI, VII, VIII) to 126 = 3·42; for
the Army and Air Force ENIGMA from 60 to 12 = 4·3 . By more sophisticated
reasoning, sometimes in addition rotors could be excluded as a middle rotor.

19.4.2.4 Banburismus was an essential help at B.P. until September 1943,
when enough Turing–Welchman BOMBEs were available. Joan Murray née
Clarke (1917–1996) is said to have been one of the best Banburists in B.P.
(Alexander). But “to use Banburismus procedure [for Naval ENIGMA] the
codebreakers needed to know [a large part of] the content of the bigram
tables. ... It was November 1940 before the Banburismus procedure helped
to break a Naval Enigma setting for the first time. Three days were broken:
April 14, May 8 and June 26, 1940” (Hugh Sebag-Montefiore). Unfortunately
it turned out that a new set of bigram tables had been introduced on 1 July.

17Budiansky forgets to mention that this was also a brilliant idea Różycki had in about
1935: “... the clock, devised by Jerzy Różycki ... made it possible in certain cases to de-
termine which rotor was at the far right side on a given day in a given Enigma net.”
(W�ladis�law Kozaczuk, 1985).
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So Banburismus could not be tried out on subsequent messages until the new
set of bigram tables was reconstructed.

19.4.3 Depth cribbing and in-depth adjusting by double cribbing.
A pair of isologs in an ENIGMA cipher, forming a ‘depth of two’, allows one
to make a particular use of a crib for one of the ciphertexts to obtain a frag-
ment of the plaintext belonging to the other ciphertext: not only lead iden-
tical ciphertext letters in some position to identical plaintext letters in this
position, but moreover the self-reciprocal property means that this also holds
crosswise, as demonstrated in the following example (Mahon 1945) with bold
letters:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B H N W S M S A W M N T C K N N P Z
w e t t e r f u e r d i e n a c h t
C N N J T R Q N W S T T C X R C D S L D
. . t . . m . . e . . i e . . n . . . .

In the circumstances of the example, minesweepers played a role and the mes-
sage could contain a boat number; moreover a tripling of the ‘m’ designating
the boat class could be guessed. This leads to conjecture

m i t m m m d r e i s i e b e n e i n s , in clear ‘M 371’ .
Since the crib is to be tested only in the few non-scritching positions (see
Sect. 14.1), the method is quite effective, provided good insight into the en-
emy’s usage has already been built up.
Cribbing can also be used for in-depth adjusting of two ciphertexts: a hit is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25

Q W A W S U H D W M T N C N K H P Z F H Y
v o r h e r s a g e b e r e i c h d r e i

F D Q R L T U L E W G D Q P B O X N Z R N C I O Z
z u s t a n d o s t w a e r t i g e r k a n a l x

This method, which helped the Banburists in particular during the blackout
in 1942, died with Banburismus in autumn 1943, when enough BOMBEs
were available.

19.5 Cryptotext-Cryptotext Compromises

A dangerous situation occurs in practice if a message is to be repeated only
insignificantly changed; for example, by correcting a typing mistake. If the
corrected message is sent again with the same key, a plaintext-plaintext com-
promise starts from the position of the mistake, with all the bad effects
discussed so far.
A classic example of such an attack was offered in December 1938 and January
1939 by a pair of radio signals from the Rumanian military attaché in Paris
to his Foreign Ministry, which differed in length by only two 5-letter groups.
According to Hüttenhain, OKW/Chi succeeded in decrypting the signals, it
turned out that only the plaintext fragment /Heft 17/ of the first signal was
replaced by the plaintext fragment /Heft 15 statt 17/ in the second signal.
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19.5.1 Cryptotext-cryptotext compromise of the keys. If the cor-
rected message is sent again with a different key, a cryptotext-cryptotext
compromise occurs up to the position of the mistake. Such a mistake (reenci-
pherment, reencodement) happens frequently. A particularly dangerous risk
of a break exists if this is done in the same system: the resulting ‘isomorphic’
(Sect. 2.6.3) cryptotexts have equal length, which is very conspicuous.
Cryptotext-cryptotext compromise of the keys is inherent in message key net
systems if a circular message is to be sent out, possibly to dozens or hundreds
of recipients, each with their own key. It seems that German cryptologists
underrated this danger, that their signal officers were not warned enough, and
that this negligence continued till the end of the war. Rear Admiral Ludwig
Stummel, responsible for the cryptanalytical security of the radio signals of
the German Navy, introduced in 1943 a great number of key nets and in mid-
1944 gave each U-boat its own key (Sonderschlüssel). It was thought this
would give the adversary so much individual work that it would contribute
to Germany’s cryptanalytical security. But it was a self-defeating complica-
tion: for top secret ‘offizier’ messages, it was “... actually helpful, because
the same message would often appear in several keys, sometimes on differ-
ent days”(Rolf Noskwith). Even Stummel could not manage to formulate
important general orders for each key net or even for each boat individually.
When in 1942 the 4-rotor ENIGMA (see Sect. 11.1.11) was introduced only for
the submarines, compromises were frequently caused by transmitting general
orders for the other ships encrypted with the 3-rotor ENIGMA. Here the 1914
warning of Sir Alfred Ewing, head of Room 40 , would have been appropriate:
“It is never wise to mix your ciphers. Like mixing your drinks, it may lead
to self-betrayal.” But Grossadmiral Karl Dönitz’s staff did it anyway.
We cannot properly speak of a cryptotext-cryptotext compromise of the keys
if they are public. But note that only the encryption keys are public, not
the decryption keys, and they are what we mean—in a symmetric encryption
method, there is no difference. In fact, the risk of cryptotext-cryptotext
compromise is inherent in public-key cryptosystems.
In the jargon of Bletchley Park, a cryptotext-cryptotext compromise of the
keys was called a ‘kiss’. One could not have better expressed the joy at such
a stroke of luck. Fortunately for the British, the smaller boats of the German
Navy did not have ENIGMAs, but had to use a simple bigram encryption
(Werftschlüssel). The large ships did not have this key or did not like to
use it. If now certain messages—warnings about floating mines—had to be
transmitted quickly, nobody took the trouble to reformulate the plaintexts.
The British occasionally provoked such situations with the aim of establish-
ing cryptotext-cryptotext compromises of the difficult 4-rotor ENIGMA with
the easily breakable simple bigram substitution. With British humor, they
called this ‘gardening’. In fact, this technique meant a transition to a clas-
sic plaintext-cryptotext compromise situation, where the decrypted message
furnishes a ‘crib’ of not only probably, but certainly contained words.
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On May 7, 1941, the German weather ship München was captured by the
British Navy and the Wetterkurzschlüssel fell into British hands. From the
weather reports of the U-boats, decrypted by George McVittie (1904–1988), a
flow of kisses originated, filling the cribs of Bletchley Park for the ENIGMAs;
this continued until 1944. The bridge players were pleased about these ‘cross-
ruffs’18. Seizing U-559 on October 30, 1942 even resulted in a compromise
of the new 4-rotor ENIGMA by weather reports. This and the break of the
Kurzsignalheft for convoy sighting reports prefixed by the Morse signal ‘B bar’
helped to bring an end to the blackout on SHARK (‘Triton’) in 1942.
The lesson is that the collateral use of code superenciphered by a one-time key
generated by a machine, together with repeatedly used additives, if the latter
encryption is broken already, compromises the ‘individual’ key and leads to a
reconstruction of the machine that produced it. This misadventure befell the
German AA (AuswärtigesAmt) which used, presumably because of a shortage
of one-time key material, on the line Berlin-Dublin in parallel the GEC
(FLORADORA) double superencryption of code which was already (see Sect.
9.2.1) broken by the British. A long part of the one-time key, codenamed
GEE, could thus be investigated. It turned out (see Sect. 8.8.7) that it was
generated by a machine; an SIS team led by Thomas Waggoner was able to
reconstruct it. Thus, the total traffic of the AA, considered unbreakable, was
laid open.

19.5.2 Reduction to a plaintext-plaintext compromise. For the
case of a VIGENÈRE encryption, in particular superencryption by additives,
a cryptotext-cryptotext compromise can be reduced simply to a plaintext-
plaintext compromise: the plaintext is regarded as keytext, the keytext as
plaintext. This is just another case of the swapping of roles we saw in
Sect. 19.2.3 . This means that the methods of superimposition and of symétrie
de position are applicable. It is not required that the polyalphabetic encryp-
tion is periodic. The precondition for the swapping of roles is again that the
keys are in prose and thus show frequency characteristics and/or patterns.
To give an example, there are five signals of equal length

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920 2122232425 2627282930

(i) T C C V L E S K P T X M P VW H Y M V G X B O R V CWA R F

(ii) V L L B V C KW F P E H E C F C G N Z E K K K V I H D D I D

(iii) M Y Y R D M J WM C U I G L O K M X L R E WH X M R J H A S

(iv) B K Q T Z B Z WKW Z X G Z O V T B A T KWM G M R J K L P

(v) M Y Y V H BW J D X C P C Z O H V T S I V M E B S O H R A U

3132333435 3637383940 41424344

(i) R R D Y C T K L B L M G L W

(ii) S V F K Q A J V C R F K L K

(iii) H B R N U T R V G J X J P W

(iv) K OWH U C B D U F T V E F

(v) S D A N I T Y H F K Z Z WG

18A cross-ruff was successfully played in July 1918 by J.Rives Childs of G.2A.6, A.E.F.
on the Mackensen telegram about the withdrawal of German troops in Rumania.
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and there is reason to expect a linear substitution. For each column, the
differences over Ÿ26 are determined. Six of these columns show coincidences
in particularly many differences: 2, 4, 7, 9, and 11, as indicated in Fig. 170.

1 13 18
0 24 7 18 7 0 11 9 9 13 0 25 15 11 19
2 0 9 20 9 15 0 24 24 2 1 0 16 12 20
19 17 0 11 0 17 2 0 0 4 11 10 0 22 4
8 6 15 0 15 17 2 0 0 4 15 14 4 0 8
19 17 0 11 0 13 24 22 22 0 7 6 22 18 0

22 27 36
0 17 5 5 15 0 19 13 13 15 0 19 0 17 0
9 0 14 14 24 7 0 20 20 22 7 0 7 24 7
21 12 0 0 10 13 6 0 0 2 0 19 0 17 0
21 12 0 0 10 13 6 0 0 2 9 2 9 0 9
11 2 16 16 0 11 4 24 24 0 0 19 0 17 0

Fig. 170. Six difference tables belonging to the columns 1, 13, 18, 22, 27, 36

19.5.2.1 The difference method again. We start with the remark that
t + 7 = a, a + 4 = e, t + 11 = e ; this fits table 18, with (t, a, e) = (M, T, X) ;
t + 7 = a, a + 4 = e, t + 11 = e ; this fits table 27, with (t, a, e) = (W, D, H) .
This connects columns 18 and 27. Furthermore,
t + 7 = a, a + 2 = c, t + 9 = c ; this fits table 1, with (t, a, c) = (M, T, V) ;
t + 7 = a, a + 2 = c, t + 9 = c ; this fits table 36, with (t, a, e) = (T, A, E) .
This connects columns 1 and 36. Next, column 22 connects columns 36 and 27
by means of 9, 11; column 13 connects columns 1 and 18 by means of 2, 4.
(It will turn out that the differences 9 and 11 in the first line of Table 13 are
accidental.)
Taking now the first column as reference and aligning the other five columns
on the basis of the most frequent differences produces the following skeleton:

1′ 13′ 18′ 22′ 27′ 36′ 1′′ 13′′ 18′′ 22′′ 27′′ 36′′

(i) T G M M M M a n t t t t

(ii) V V N V T T and a partial c c u c a a

(iii) M X X H Z M decryptment t e e o g t .

(iv) B X B H Z V i e i o g c

(v) M T T X X M t a a e e t

+ 0 9 0 15 10 7
This skeleton (with the shift indicated by slanted numbers) can be tested by
the columns 5, 6, 7, 10, 12, 19, 20, 24, 30, 31, 33, 37, 38 to obtain:

5′ 6′ 7′ 10′ 12′ 19′ 20′ 24′ 30′ 31′ 33′ 37′ 38′

(i) X P T X B H Z X X W V M B

(ii) H N L T W L X B V X A L L

(iii) P X K G X X K D K M M T L .

(iv) L M A A M M M M H P R D T

(v) T M X B E E B H M X V A X

+ 14 15 25 22 11 14 7 20 8 21 5 24 10
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The multiple occurrence of six characters X, M, T, B, G, V, corresponding to
the most frequent letters e, t, a, i, n, c indicates that we are on the right
track. The other frequent characters L, A, K can be used to continue the
formation of differences. This gives an adjustment for 40 of the 44 columns.

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′ 13′ 14′ 15′ 16′ 17′ 18′ 19′ 20′ 21′ 22′

(i) T E B V X P T L U X Z B G G B G M H Z X M

(ii) V N K B H N L X K T G W V N K B N L X K V

(iii) M A X R P X K X B G W X X W T J X X K E H

(iv) B M P T L M A X P A B M X K T U B M M K H

(v) M A X V T M X K I B E E T K T G T E B V X

+ 0 24 1 0 14 15 25 25 21 22 24 11 9 15 21 1 0 14 7 0 15
23′ 24′ 25′ 26′ 27′ 28′ 29′ 30′ 31′ 32′ 33′ 34′ 35′ 36′ 37′ 38′ 39′ 40′ 41′ 42′ 43′ 44′

(i) O X K M B K X W H Y L B M M B G Z A X

(ii) K B X T E B V X L A X P T L L H F A L

(iii) H D B Z I T K M R M A T M T L L X E X

(iv) M M B Z L E H P E R U T V D T Z T T G

(v) E H H X W T M X T V A H M A X K Y L H

+ 0 20 11 10 25 7 8 21 10 5 13 1 7 24 10 21 12 11 25

19.5.2.2 Swapping of roles. As before, the additives written in the
footlines are to be added to the intermediary text letters to obtain the original
cryptotext characters. Thus, they are themselves a CAESAR encryption of
the pseudo-plaintext (the original key) which reads:

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920 2122232425 2627282930
A Y B A O P Z Z VW Y L J P V B ∗ A O H A P A U L ∗ K Z H I

3132333435 3637383940 41424344
V K F N B H Y K V M ∗ ∗ L Z

Now exhaustion is indicated: among the 26 possible adjustments the addition
of 19 yields the following fragmentary English plaintext:

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920 2122232425 2627282930
t r u t h i s s o p r e c i o u ∗ t h a t i t n e ∗ d s a b
3132333435 3637383940 41424344
o d y g u a r d o f ∗ ∗ e s

In cleartext, the complete quotation, from Churchill’s autobiography of 1949,
reads: “In wartime, truth is so precious that she should always be attended
by a bodyguard of lies” (Churchill to Roosevelt and Stalin, November 1943).
The five pseudo-keys (the five original plaintexts) can be reconstructed easily,
confirming the partial decryptment above. They are taken from a well-known
‘children’s book’ for non-children:

“Alice was beginning to get very tired of sitting by he[r sister on the bank ...]”
“ ‘Curiouser and curiouser!’ cried Alice (she was so much s[urprised ...] )”
“They were indeed a queer-looking party that assemble[d on the bank ...]”
“It was the White Rabbit, trotting slowly back again, an[d looking ...]”
“The Caterpillar and Alice looked at each other for so[me time in silence ...]”
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19.5.3 A direct product of keys. In the very general case of polyalpha-
betic encryptions with unrelated alphabets, a method can be tried that may
even work with only two encryptions of the same plaintext, provided the two
keys are periodic with known periods of different length.

The following example of such a cryptotext-cryptotext compromise, first pub-
lished by Sinkov in 1968, explains the procedure that is found in a classified
1938 work of Friedman, declassified in 1984.

There are two messages observed on the same day, of 149 characters each:

(i) WC O A K T J Y V T V X B Q C Z I V B L A U J N Y B B T M T

J G O E V G U G A T K D P K V G D X H E WG S F D X L T M I

N K N L F X M G O G S Z R U A L A Q N V I X D XW E J T K I

Y A O S H N T L C I V Q M J Q F Y Y P B C Z O P Z V O GW Z

K Q Z A Y D N T S F WG O V I I K G X E G T R X L Y O I P

(ii) T X H H V J X V N O M X H S C E E Y F G E E Y A Q D Y H R K

E H H I N O P K R O Z D V F V T Q S I C S I M J K Z I H R L

C Q I B K E Z K F L O Z D P A O J H M F L V H R L U K H N L

O V H T E H B N H G M Q B X Q Z I A G S U X E Y R X Q J Y C

A I Y H L Z V M Q V Q G U K I Q D M A C Q Q B R B S Q N I

Since the two cryptotexts have equal length, a suspicion arises that the plain-
texts are identical. First, an examination of the period is appropriate. It
turns out that the key for the first cryptotext presumably has period 6 , the
key for the second presumably 5 . In this case, 30 is a period both (unknown)
keys have in common. Then each character coincidence between the two texts
should be repeated in a distance of 30 positions. Indeed the write-up above
shows the XX coincidence in column 12 repeated in column 42 as D D coinci-
dence, in column 72 as Z Z coincidence, and so on. A similar repetition holds
for the columns 15, 45, 75, and so on. This observation strongly corroborates
the conjecture that both cryptotexts belong to one and the same plaintext.

In fact,

12 + 30i =
{

0 (mod 6)
2 (mod 5) , 15 + 30i =

{
3 (mod 6)
5 (mod 5) .

Therefore, the 6th alphabet of the first message should coincide with the 2nd
alphabet of the second message, and the 3rd alphabet of the first message
should coincide with the 5th alphabet of the second message. A calculation
of the corresponding Chi gives high values supporting this hypothesis.

Sinkov’s method now decomposes the two messages according to the two keys
used. The six alphabets used in keying the first message are named α, β, γ,
δ, ε, ζ and the five alphabets used in keying the second message are named
ι, κ, λ, µ, ν . Thus, the beginning of this decomposition reads:



19.5 Cryptotext-Cryptotext Compromises 425

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920 2122232425 26272829 30

α W J B B Y
β C Y Q L B
γ O V C A B
δ A T Z U T
ε K V I J M
ζ T X V N T

ι T J M E E D
κ X X X E E Y
λ H V H Y Y H
µ H N S F A R
ν V O C G Q K

More entries can be made into this diagram: Since both cryptotexts belong
to the same plaintext, column 2, column 7, and column 12, all showing X for
key κ , can be superimposed. In the same way, column 3, column 13, and
column 28, all showing H for key λ , can be superimposed. Moreover, column
16 , and column 21, both showing E for key ι ; column 17, and column 22,
both showing E for key κ ; column 18, and column 23, both showing Y for
key λ , can be superimposed. This gives the following array:

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920 2122232425 26272829 30

α W J B J J B B Y B
β C C Y C Q L B
γ O V O C A A B O
δ T A T T Z U Z U T
ε K V I J I J M
ζ X T X X V V N T

ι T J M E E D
κ X X X E E Y
λ H V H Y Y H
µ H N S F A R
ν V O C G Q K

Superimposition can be done in the same way also in the lines ι, κ, λ, µ,
ν : column 13, and column 19, both showing B for the key α , can be super-
imposed, and so on. This superimposition is extended, of course, over the
full length 149 of the messages. Altogether, we obtain the following rather
complete array:

1 2 3 4 5 6 7 8 9 10 11121314 15 16171819 20 21222324 25 26272829 30

α W J B M D J P B J BWM J N B U J N X Y L B J D
β Q C K E X C Y X K C K Q E C A K L C A T B K C
γ L A O C V K AWV O N A O L C A Z O G A Z Q S B O A K
δ G Z T A F Z F T Z T G A Z U X T I Z U X L T Z
ε Y M D R K F M K D V M D Y R M I J D W M I J S D M F
ζ I X Q Z D T X D Q X Q I Z X E V Q P X E V N G Y Q X T
ι T E U Z J E S Z M E T U E C Q E C H O D E J
κ I X Q Z D T X D Q X Q I Z X E V Q P X E V N G Y Q X T
λ J S H B S V H I S H J B S Y H N S Y M A H S
µ S R F H N R G N F R F S H R M F Y R M A B Q F R
ν L A O C V K AWV O N A O L C A Z O G A Z Q S B O A K

→ A B C H D E B F D C G B C A H B I J C K B I J L Q M N C B E
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31323334 35 36373839 40 41424344 45 46474849 50 51525354 55 56575859 60

α J B Y U J B P B WB J H M P WY D WB J W
β C G K T L G C K X X Y K X Q K C E Y Q T X Q K C Q
γ A O N Q G A O V VWO V L O A C W L Q K V L O A L
δ Z T E L I Z T F F T F G T Z E A G L F G T Z G
ε M D P V S W M D K K D K Y D M P R Y S F K Y D M Y
ζ X H Q G P H X Q D D Q D I Q X Z I G F T D I Q X I
ι E M O Q E Z Z S Z T E U S T O J Z T E T
κ X H Q G P H X Q D D Q D I Q X Z I G F T D I Q X I
λ S K H M N K S H V H J H S B V J M J H S J
µ R F I B Y R F N N G F N S F R I H G S B J N S F R S
ν A O N Q G A O V VWO V L O A C W L Q K V L O A L

→ B O C P G Q K O B C D D F C D A C B P H F A Q R E D A C B A

61626364 65 66676869 70 71727374 75 76777879 80 81828384 85 86878889 90

α N B Y D J M B W Y M R J Y B N N B J W M B W
β A K T C E G K Q T E U C T K A V A K C Q E K X Q
γ Z O N Q K A C O L Q C A Q O Z F I Z O A L C J O V L
δ X T L Z A T G L A Z L T X X T Z G A T F G
ε J D V S F M R D Y S R M D A D J J D M Y R D K Y
ζ V Q G T X Z H Q I G Z X G J Q V V Q X I Z K Q D I
ι C M O J E U T O U E O C X L C E T U Z T
κ V Q G T X Z H Q I G Z X G J Q V V Q X I Z K Q D I
λ Y H I M S B K H J M B D S M H Y Y H S J B H J
µ M F B R H F S B H P R B F M K M F R S H F N S
ν Z O N Q K A C O L Q C A Q O Z F I Z O A L C J O V L

→ J C G Q E B H O C A Q H S T B Q U C J V W J C B A H X C D A

91929394 95 96979899 00 01020304 05 06070809 10 11121314 15 16171819 20

α Y N B X T U M U B M Y W L P M J U Z BWU M
β T A K L E L K E J T X Q Y B E C L V K Q L E
γ Q Z O E G C G N O C Q V L BW S C A G R F O L G C
δ L X T S I A I T A L F G A Z I T G I A
ε S J D H WR W V D R S K Y R M OW D YW R
ζ G V Q N B P Z P Q Z G D I Y Z X P Q I P Z
ι O C H Q U Q M U O Z T S D U E Q X T Q U
κ G V Q N B P Z P Q Z G D I Y Z X P Q I P Z
λ M Y H N B N I H B M J A V B S E N H J N B
µ B M F T A Y H Y F H X B N S G Q H R Y K F S Y H
ν Q Z O E G C G N O C Q V L BW S C A G R F O L G C

→ Q J C Y Z L 1 K H K G C H 2 Q D A N F M H B 3 K 4 V C A K H

1.. 21222324 25 26272829 30 31323334 35 36373839 40 41424344 45 46474849

α KWN MW N Y U Y O U Y X M U B M J L P B U
β Q A E Q X A T B X L T V G L X T E L K E C Y K L
γ L Z C L V Z Q S V G Q F I G V Q C G O C A B WO G
δ G X A G F X L F I L I F L A I T A Z T I E
ε Y J R Y K J S K W S WK S R WD R M DW P
ζ I V Z I D V G D P G H P D G N Z P Q Z X Y Q P
ι A T C U T Z C O D Z Q O X Q Z O H U Q U E S Q
κ I V Z I D V G D P G H P D G N Z P Q Z X Y Q P
λ J Y B J Y M N M U K N M B N H B S A V H N
µ S M H S N M B Q N Y B K Y N B A H Y F H R G F Y I
ν L Z C L V Z Q S V G Q F I G V Q C G O C A B WO G

→ 5 A J H A D J Q M D K Q 6 V O K D Q L H K C H B N F C K P
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As we should have expected, the alphabets named γ and ν are identical19,
likewise the alphabets named ζ and κ. Not all fields of entries are filled, and
some columns such as 8 and 17 could possibly be identical. Indeed, there are
a total of 32 different columns, which are ad hoc abbreviated with A...Z and
1...6 and listed in the footlines (marked by →) more or less in the order
of their formation in the superposition process. 32 characters—that is more
than the 26 letters of the common alphabet. In fact, nothing prohibits the
adversary from using a plaintext alphabet of more than 26 characters. But
most likely some columns mean the same plaintext character. Thus, we have
presumably reached a monoalphabetically encrypted intermediary text, but
the encryption includes homophones—a rather surprising result.
Fortunately, it will turn out that the victims of homophony are not the
most frequent characters—as they often are for the purpose of equalizing
the frequencies—but just the rare ones; they are too rare to provide enough
material to fill the fields.

19.5.4 Intermediate encryption. It is given by the footlines of the array
A B C H D E B F D C G B C A H B I J C K B I J L Q M N C B E
B O C P G Q K O B C D D F C D A C B P H F A Q R E D A C B A
J C G Q E B H O C A Q H S T B Q U C J V W J C B A H X C D A
Q J C Y Z L 1 K H K G C H 2 Q D A N F M H B 3 K 4 V C A K H
5 A J H A D J Q M D K Q 6 V O K D Q L H K C H B N F C K P

which shows clearly the frequency distribution of English, with a peak-C and
B, A, H, D, O, N of about equal frequency. Among the many ways that would
give an entry, we assume that /treasurysecretary/ is a probable word that
fits the pattern 12345627538231427 of the beginning. With eight letters, a
lot is achieved:

t r e a s u r y s e c r e t a r I J e K r I J L Q M N e r u
r O e P c Q K O r e s s y e s t e r P a y t Q R u s t e r t
J e c Q u r a O e t Q a S T r Q U e J V W J e r t a X e s t
Q J e Y Z L 1 K a K c e a 2 Q s t N y M a r 3 K 4 V e t K a
5 t J a t s J Q M s K Q 6 V O K s Q L a K e a r N y e K P

/yesterday/ in the second line catches the eye, but does not help much.
A few places earlier /congress/ brings more. There are now twelve letters
determined and only two from the etaonirsh are still missing, /i/ and /h/ :

t r e a s u r y s e c r e t a r I J e n r I J L o M N e r u
r g e d c o n g r e s s y e s t e r d a y t o R u s t e r t
J e c o u r a g e t o a S T r o U e J V W J e r t a X e s t
o J e Y Z L 1 n a n c e a 2 o s t N y M a r 3 n 4 V e t n a
5 t J a t s J o M s n o 6 V g n s o L a n e a r N y e n d

Now we get rid of some homophones: /henry/ in the first line means that I
homophone with F is /y/ . For the /i/ it is more difficult, but in the last line
we can read /no signs/ , provided 6 homophone with D is /s/ . Thus:

19For further manual work one will identify the corresponding lines but in programmed
execution it is simpler to repeat them.
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t r e a s u r y s e c r e t a r y h e n r y h L o M N e r u
r g e d c o n g r e s s y e s t e r d a y t o R u s t e r t
h e c o u r a g e t o a S T r o U e h i W h e r t a X e s t
o h e Y Z L 1 n a n c e a 2 o s t N y M a r 3 n 4 i e t n a
5 t h a t s h o M s n o s i g n s o L a n e a r N y e n d

which presents in the second line /to muster/, in the third line /approve
higher taxes/ (S and T homophone), in the fourth line /help finance a costly
war in vietnam/ , whence finally in the first line the name /henry h fowler/
emerges and the decryption is finished. The plaintext reads:

t r e a s u r y s e c r e t a r y h e n r y h f o w l e r u
r g e d c o n g r e s s y e s t e r d a y t o m u s t e r t
h e c o u r a g e t o a p p r o v e h i g h e r t a x e s t
o h e l p f i n a n c e a c o s t l y w a r i n v i e t n a
m t h a t s h o w s n o s i g n s o f a n e a r l y e n d

19.5.5 Reconstruction of the encryption table. So far, the 32 columns
reduced to 21 characters; 5 characters are still missing in the plaintext. The
fragmentary encryption table is as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z

α M B X N T L K U Y R J OWD Z P
β E J K G A V L T U C X Q B Y
γ=ν C N O I Z F B G Q E A V L K R S J W
δ A E T X S I L Z F G U
ε R V P D J O W S H M K Y F A I
ζ=κ Z Q N H V B Y F P G X D I T J K E
ι U M H L C X A Q O E Z T J D S
λ B I H K Y E A N M D S U J V
µ H X I F A M K T J Y B P R N S Q G

H G P C L O J V N R K Q S B D A E U M X F
→ 2 W 1 Y 5 T 6 4 I

3 Z

The complete encryption table (tabula recta) could be reconstructed if the
alphabets were obtained by shifting a primary alphabet. This turns out to be
the case, and a method developed by Friedman (mentioned in Sect. 18.8.2)
allows one to reconstruct the primary alphabet. For the decryption this was
not necessary, but it helps to fulfill Rohrbach’s maxim.

19.5.5.1 Friedman starts from the observation that in the desired encryp-
tion table all columns are derived from a single one by cyclic shift. Picking
out, say, the lines λ and µ, then at some unknown distance k below /t/ are
the characters J and S , below /r/ the characters S and R , below /s/ U and N ,
then N and Y , Y and M , M and B , B and H , H and F , finally V and G —all
with the same distance k . Thus, we have already three chains

J-S-R , U-N-Y-M-B-H-F V-G

with the distance k. But the characters J and S are also found below /r/ in
the lines α and λ, then at the same distance k there are also the characters
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W and J, R and D, O and U, U and N, P and V, L and A. The chains can be
extended with the new links; we now have

W-J-S-R-D , O-U-N-Y-M-B-H-F , P-V-G and L-A .
J and D have the distance 3k ; in the lines ι and α are found below /u/ the
characters J and D , thus not only U and M, O and Y, but also C and N,
X and T, A and K, Q and U, E and J, Z and O, T and W, S and P have distance
3k . We now have the chains

T-E-∗-W-J-S-R-D-P-V-G , Q-C-O-U-N-Y-M-B-H-F-∗-X , L-A-∗-∗-K .
We can now close these chain fragments by observing that W, G, to be found
in the lines α and δ , have the distance 7k , thus this is also the distance of J

and Z, B and T, M and A, U and I, H and E, Y and L, which closes the cycle:
T-E-K-W-J-S-R-D-P-V-G-Z-Q-C-O-U-N-Y-M-B-H-F-I-X-L-A- .

19.5.5.2 But this is not necessarily the original order. With the method of
Sect. 18.8.1, the fifth power

T-S-G-U-H-A-J-V-O-B-L-W-P-C-M-X-K-D-Q-Y-I-E-R-Z-N-F-

brings success: the sequence
H A J V O B L W P C M X K D Q Y I E R Z N F T S G U

results—columnwise—from the password HOPKINS by the method described
in Sect. 3.2.5 :

H O P K I N S

A B C D E F G

J L M Q R T U

V W X Y Z .

With this sequence, a tabula recta is built (Table 29), it also turns up as
the column of keys. To determine the headline, the following can be done:
A ‘rich’ line like the one named with γ = ν in the fragmentary encryption
table, reordered, reads:

r x s e l t y a u o g p v h c i w n
γ = ν H A J V O B L W P C M X K D Q Y I E R Z N F T S G U

The other lines considered so far drop into place and determine further plain-
text characters. Altogether a fragmentary headline is obtained:

∗ r x s e l t y ∗ a f m u ∗ o ∗ g p v h c i ∗ w n d
where only the rare plaintext characters /b/, /j/, /k/, /q/, /z/ are still
missing. This headline now also discloses its secret; it is built by the method
described in Sect. 3.2.5 with the password /johns/ .

j o h n s
a b c d e
f g i k l
m p q r t
u v w x y
z .

Johns Hopkins
(1795 – 1873)
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This settles the five missing characters, too. The encryption table in Table 29
falls under the heading ‘treble key’ (Sect. 8.2.3). The passwords /johns/ and
HOPKINS are obvious allusions to Johns Hopkins, American financier and
philanthropist.20

The keys are fittingly CIPHER and GROUP as can be seen from the
entries for αβγδεζ and ικλµν in Table 29 . The original encrypted messages
are obtained in the following way:

t r e a s u r y s e c r e t a r y h e n r y h f o w l e r u
C I PHER C I PHER C I PHER C I PHER C I PHER
WC O A K T J Y V T V X B Q C Z I V B L A U J N Y B B T M T

t r e a s u r y s e c r e t a r y h e n r y h f o w l e r u
GROUP GROUP GROUP GROUP GROUP GROUP
T X H H V J X V N O M X H S C E E Y F G E E Y A Q D Y H R K .

j a f m u z o b g p v h c i q w n d k r x s e l t y

δ H H A J V O B L W P C M X K D Q Y I E R Z N F T S G U

A A J V O B L W P C M X K D Q Y I E R Z N F T S G U H

J J V O B L W P C M X K D Q Y I E R Z N F T S G U H A

V V O B L W P C M X K D Q Y I E R Z N F T S G U H A J

λ O O B L W P C M X K D Q Y I E R Z N F T S G U H A J V

B B L W P C M X K D Q Y I E R Z N F T S G U H A J V O

L L W P C M X K D Q Y I E R Z N F T S G U H A J V O B

W W P C M X K D Q Y I E R Z N F T S G U H A J V O B L

γ=ν P P C M X K D Q Y I E R Z N F T S G U H A J V O B L W

α C C M X K D Q Y I E R Z N F T S G U H A J V O B L W P

M M X K D Q Y I E R Z N F T S G U H A J V O B L W P C

X X K D Q Y I E R Z N F T S G U H A J V O B L W P C M

K K D Q Y I E R Z N F T S G U H A J V O B L W P C M X

D D Q Y I E R Z N F T S G U H A J V O B L W P C M X K

Q Q Y I E R Z N F T S G U H A J V O B L W P C M X K D

Y Y I E R Z N F T S G U H A J V O B L W P C M X K D Q

β I I E R Z N F T S G U H A J V O B L W P C M X K D Q Y

ε E E R Z N F T S G U H A J V O B L W P C M X K D Q Y I

ζ=κ R R Z N F T S G U H A J V O B L W P C M X K D Q Y I E

Z Z N F T S G U H A J V O B L W P C M X K D Q Y I E R

N N F T S G U H A J V O B L W P C M X K D Q Y I E R Z

F F T S G U H A J V O B L W P C M X K D Q Y I E R Z N

T T S G U H A J V O B L W P C M X K D Q Y I E R Z N F

S S G U H A J V O B L W P C M X K D Q Y I E R Z N F T

ι G G U H A J V O B L W P C M X K D Q Y I E R Z N F T S

µ U U H A J V O B L W P C M X K D Q Y I E R Z N F T S G

Table 29. Encryption table with permuted headline

20The Johns Hopkins University in Maryland, USA, was the place where in the Second
World War the proximity fuze was developed.
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19.6 Cryptotext-Cryptotext Compromise:
ENIGMA Indicator Doubling

The double encipherment of each text setting was a gross error.
Gordon Welchman 1982

The Poles were known for the high standard of their cryptanalytic abilities:
They won their war against Russia in 1920 with the help of cryptanalysis.

As W�ladys�law Kozaczuk disclosed in 1967,21 a typical case of cryptotext-
cryptotext compromise allowed from 1932 on the Polish Biuro Szyfrów under
Major Gwido Langer (‘Luc’) with its German section B.S.-4 under Maksy-
milian Ciȩżki (1899 –1951) and the young mathematicians Marian Rejewski,
Jerzy Różycki, Henryk Zygalski (they had been trained as students in Poznan
University since 1929 by Ciȩżki) to penetrate the encryption of the German
Wehrmacht , whose practice transmissions of ENIGMA-encrypted radio sig-
nals in the Eastern provinces of Prussia gave a copious supply of cryptotexts.

It was a typical problem of machine encryption with a key sequence gen-
erated by the machine itself (Sect. 8.5). If every message is started with its
own initial setting, immediate superimposition is inhibited. But it was widely
considered too difficult and prone to mistakes to prearrange such new initial
settings for every message. This did not hold for the ENIGMA only, but is
the general problem of key negotiation and key administration. Therefore,
as already mentioned in Sect. 19.3, indicators are used for the ‘message set-
ting’ of the rotors. Of course, they should not give the setting plainly, but
must be themselves somehow encrypted.

Thus, it was thought to be a clever idea to use the encryption machine itself
for this purpose. One specific weakness with both the Army and Air Force
ENIGMAs was that the encryption of the indicator was based exclusively
on the ENIGMA itself. However, for the 4-rotor Navy ENIGMA, at least a
bigram superencryption was done, starting May 1, 1937 .

Another weakness was that (for reasons to be given below) the plain indicator
was doubled before encryption—the old treacherous trick—thus introducing a
tiny cryptotext-cryptotext compromise at the very beginning of the message,
a fixed place. All this was the fault not of the machine, but of the rules for
operating it. B.P. called the indicator doubling system ‘boxing’ or ‘throw-on’.

The fancy idea of doubling the indicator seems to go back to recommendations
of Scherbius’ Chiffriermaschinen A.G. for the commercial ENIGMA of 1924.
Otherwise, the security of the ENIGMA seemed to be high. A Tagesschlüssel ,

21 In his book Bitwa o tajemnice: S�lużby wywiadowcze Polski i Rzeszy Niemieckiej
1922-1939, Warsaw 1967 (in Polish), which was largely overlooked in the West (a re-
view, in German, was published in the Ostdeutscher Literaturanzeiger, Holzner Verlag,
Würzburg, tome XIII, no. 3 in June 1967). However, in 1968, Donald Cameron Watt (in
a foreword to Breach of Security by David Irving, London 1968) revealed that in 1939
Britain “received from Polish Military Intelligence keys and machines for decoding Ger-
man official military and diplomatic ciphers”. This seemed unbelievable, until in 1973
the French General Gustave Bertrand, who had been involved in the deal, confirmed it.
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valid for one day for all machines in a ‘key net’, determined, apart from the
Steckerverbindung , the order (and later also the choice) of the three rotors
(Walzenlage), the internal ring setting (Ringstellung) on each rotor, and a
basic wheel setting (Grundstellung , ground setting) of the rotors. With the
machine set accordingly, a freely chosen 3-letter group, the plain indicator,
in Bletchley Park called the message setting or text setting (German Spruch-
schlüssel), was doubled and encrypted, and the resulting 6-letter group, the
encrypted doubled indicator (German chiffrierter Spruchschlüssel) was trans-
mitted after a preamble (in plain) containing call-sign, time of origin, and
number of letters in the cryptotext. Then the message followed, encrypted
with the indicator as initial setting. The authorized recipient first decrypted
the encrypted indicator with his Tagesschlüssel and checked whether it was
correctly doubled in order to find the initial setting for decryption of the cryp-
totext proper. This encryption procedure was valid until September 15, 1938.
Weakening the security of the cryptotext proper by using an indicator was
accepted without scruples by the Germans, since the indicator was protected
well by the ENIGMA, which was judged to be indéchiffrable. Nobody ob-
served that this was logically a vicious circle. Anyhow, the ENIGMA seemed
to have enough combinatory complexity, and when after July 15, 1928 more
and more radio signals of the German Army encrypted with ENIGMA G ap-
peared in the ether, the Polish bureau, although familiar with the commercial
ENIGMA, which had been on the open market since 1926, was not able to
break in at first. (The internal wiring of the rotors in the military ENIGMA
of 1930 was different from that in the commercial version, of course.)
The reason for doubling the plain indicator, the ‘double encipherment of
each message setting’, was that radio signals then were frequently disturbed
by noise. An encrypted indicator corrupted during transmission would cause
nonsense in the authorized decryption, with all the risks of repetition. To
transmit the whole cryptomessage twice for the sake of error-detection seemed
out of the question. Thus, the error-detecting possibility was restricted to the
plain indicator. But this led to a much more dangerous compromise which
could have been avoided. And the doubling was not necessary at all: When
it was discontinued on May 1, 1940, ENIGMA traffic did run smoothly.
How did the Polish cryptanalytic service B.S.-4 find out about the indicator
at all? Ciȩżki’s people discovered around 1930 quickly, using standard tech-
niqes, that two signals which started with the same 6-letter group showed a
higher character coincidence near κd, thus they invited superimposition. As
a consequence, the initial setting of the rotors was determined by the first
6-letter group—in other words, it was an indicator. Since it was clear that it
was not plain, it could only be somehow encrypted. But how was this done?

19.6.1 France I. It is not known whether the Poles had reasons to believe
the Germans would be stupid enough to use the ENIGMA itself for the indica-
tor encryption. In any case, they found in 1931 help from their French friends.
The spy Hans-Thilo Schmidt (1888–1943, with code name ASCHE, Asché, the
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French pronunciation of H.E.), workinguntil1938 in the Chiffrier-Stelle of the
Reichswehrministerium, had since November 1931 forwarded via the secret
agent ‘Rex’ manuals on the use of the ENIGMA, on the encryption procedure,
and even Tagesschlüssel for September and October 1932 (including the ring
settings and cross-pluggings for these months) to the French grand chef, then
Major, later Général Gustave Bertrand (1896–1976, code-name ‘Godefroy’,
‘Bolek’) who forwarded them in turn to the Polish bureau. (Hans-Thilo
was arrested on March 23, 1943 and allegedly shot in July 1943; actually he
committed suicide on September 16, 1943. His brother, Generaloberst Rudolf
Schmidt, commander of the 2. Panzerarmee, was dismissed on July 10, 1943.)

19.6.2 Poland I. Ciȩżki’s young aide, the highly gifted22 Marian Rejewski
(1905 – 1980)—he knew him since 1929 and had hired him permanently in
1932—had first to find out how the French gift could be made useful. Ac-
cording to a report by W�ladys�law Kozaczuk in 1984, he proceeded as follows.

19.6.2.1 He had already guessed that each signal began with the 6 letters of
the encrypted doubled indicator.23 Let P1, P2, P3, P4, P5, P6 (Rejewski used
the letters A, B, C, D, E, F ) denote the permutations performed upon the
1st, 2nd, 3rd,. . . 6th plaintext letter, starting with some basic wheel setting.

From aPi = X and aPi+3 = Y (i = 1, 2, 3) it follows that a = X P−1
i and

thus XP−1
i Pi+3 = Y . The properly self-reciprocal character of the ENIGMA

was known. Therefore, P−1
i = Pi and it follows even that XPiPi+3 = Y .

The known characters X, Y standing in the 1st and 4th, or the 2nd and 5th,
or the 3rd and 6th positions of the cryptotext thus impose conditions on the
three products PiPi+3 of the unknown reflections P1, P2, P3, P4, P5, P6.

1. AUQ AMN 9. HNO THD 17. NXD QTU 25. SJM SPO 33. WK I RKK

2. BNH CHL 10. HXV TT I 18. NLU QFZ 26. SUG SMF 34. XRS GNM

3. BCT CGJ 11. IKG JKF 19. OBU DLZ 27. TMN EBY 35. XOI GUK

4. CIK BZT 12. IND JHU 20. PVJ FEG 28. TAA EXB 36. XYW GCP

5. DDB VDV 13. JWF MIC 21. QGA LYB 29. USE NWH 37. YPC OSQ

6. EJP IPS 14. KHB XJV 22. RJL WPX 30. V I I PZK 38. ZZY YRA

7. FBR KLE 15. LDR HDE 23. RFC WQQ 31. VQZ PVR 39. ZEF YOC

8. GPB ZSV 16. MAW UXP 24. SYX SCW 32. WTM RAO 40. ZSJ YWG

Fig. 171. 40 different observed encrypted doubled indicators to the same Tagesschlüssel

22Marian Rejewski’s intuitive abilities are illustrated by the following episode: In the
commercial ENIGMA D, the contacts on the entry ring belonged to letters in the order
QWERTZU... of the letters on the keyboard. This seemed to be different with the
military ENIGMA I . Rejewski said to himself “the Germans rely upon order” and tried
around New Year 1933 the alphabetic order (see Sect. 7.3.2)—and that was it. Knox,
who had long racked his brain about this question, was told the solution in July 1939 by
Rejewski. Penelope Fitzgerald, Knox’s niece reported “Knox was furious when he learned
how simple it was”. Later, he was chanting “Nous avons le QWERTZU, nous marchons
ensemble”(Peter Twinn).

23For the commercial ENIGMAs, as said above, indicator doubling was openly recommen-
ded. Moreover, Rejewski observed that signals starting with the same first letter always
showed the same fourth letter; likewise for the second and the fifth letter and for the third
and the sixth (see, for example, Fig.171). This was a clear hint at indicator doubling.
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Figure 171 presents 40 different encrypted doubled indicators. They show that
for P1P4 the character a goes into itself (1.), likewise

the character s goes into itself (24.), while
the character b goes into c and vice versa (2., 4.),
the character r goes into w and vice versa (22., 32.). For the

remaining characters it turns out that they belong under P1P4 to the cycles
(d v p f k x g z y o) (5., 30., 20., 7., 14., 34., 8., 38., 37., 19.) and
(e i j m u n q l h t) (6., 11., 13., 16., 29., 17., 21., 15., 9., 27.) .

In short, P1P4 has two 1-cycles, two 2-cycles and two cycles of ten characters,
and since this embraces all 26 characters, P1P4 is fully determined. For P2P5

and P3P6 the work is similar. The cycle determination is complete if every
character occurs at least one time in the first, the second and the third
position; as a rule this requires fifty to a hundred messages—this much was
certainly the result of a busy manœuvre day. Thus, there was the lucky result

P1P4= (a) (s) (b c) (r w) (d v p f k x g z y o) (e i j m u n q l h t)
P2P5= (d) (k) (a x t) (c g y) (b l f q v e o u m) (h j p s w i z r n)
P3P6= (a b v i k t j g f c q n y) (d u z r e h l x w p s m o)

The 1-cycles (‘females’)24 play a particular role: Since each one of the permu-
tations P1, P2, P3, P4, P5, P6 because of its self-reciprocal character consists of
2-cycles (‘swappings’) only, PiPi+3x = x implies that there exists a character
y such that Pix = y and Pi+3y = x , i.e., both Pi and Pi+3 contain the 2-
cycle (x y) . In the given example, both P1 and P4 contain the 2-cycle (a s) .
A theorem of group theory about products of properly self-reciprocal permu-
tations states that the cycles of PiPi+3 occur in pairs of equal length: if

Pi contains the 2-cycles (x1y1) , (x2y2) , . . . , (xµyµ) , and
Pi+3 contains the 2-cycles (y1x2) , (y2x3) , . . . , (yµx1) , then

PiPi+3 contains the µ-cycles (x1x2 . . . xµ) , (yµyµ−1 . . . y1) .
Thus, if one of the cycles of PiPi+3 is written in reversed order (←) below
the other one, then the 2-cycles of Pi can be read vertically—provided the
cycles are in phase. To find this phase is the problem. It could be solved by
exhaustion, for P1P4 above in 2·10 trials, for P2P5 above in 3·9 trials.
19.6.2.2 But Marian Rejewski found a shortcut. He observed that the en-
crypted indicators actually used showed deviations from equal distribution,
which probably meant that the German crypto clerks, like most people play-
ing in the lottery, were unable to choose the message setting truly at random.
Thus, Rejewski directed his interest primarily to conspicuous patterns, and
he was right. In fact, the German security regulations were not too clear on
this point, and a German officer who had given the order to take as message
setting the end position of the rotors in the previous message could argue
that he had made sure the message setting was changed after every message.

24 In the jargon of Bletchley Park the term ‘female’ was used, originating from the Polish
pun te same (‘the same’) ↔ samiczka (‘female’). Most people in Bletchley Park did not
know—in fact did not have to know—the Polish origin and found their own explanations,
like female: screw for a threaded hole.
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Thus, it was common practice to use even stereotyped 3-letter groups like
/aaa/, /bbb/, /sss/ . When in the spring of 1933 the mere repetition of letters
was explicitly forbidden, it was too late. The Poles had already made their
entry into the obscurity of the ENIGMA. Later, the bad habit developed of
using horizontally or vertically adjacent letters on the keyboard:
/qwe/ , /asd/ (horizontally); /qay/ , /cde/ (vertically), etc.

Rejewski’s frequency argument was that the most frequently occurring en-
crypted indicator 24. SYX SCW , which had occurred five times, should cor-
respond to a most conspicuous pattern. There were still a number of those
to be tested. Assume we test with the plain indicator aaa . This fits in P1

with the 2-cycle (a s), in P2 it gives the 2-cycle (a y), in P3 the 2-cycle (a x);
it fits in P4 with the 2-cycle (a s), in P5 it gives the 2-cycle (a c), in P6 it
gives the 2-cycle (a w) . Thus, for P3 and P6 the phase of the two cycles

↓
→ ( a b v i k t j g f c q n y )
← ( x l h e r z u d o m s p w)

is already determined; in a zig-zag the 2-cycles of P3 and P6 , beginning with
(a x) , can be calculated:

P3= (a x) (b l) (v h) (i e) (k r) (t z) (j u) (g d) (f o) (c m) (q s) (n p) (y w)

P6= (x b) (l v) (h i) (e k) (r t) (z j) (u g) (d f) (o c) (m q) (s n) (p y) (w a)

P3 contains among others the 2-cycle (q s). Thus, the plain indicator to
1. AUQ AMN has the pattern ∗∗s ; since P1 contains among others the
2-cycle (as) , it even has the pattern s∗s . If one now guesses that the plain
indicator to AUQ AMN reads sss , then in P2 , apart from (a y) , also (s u)
is determined. Thus, the phase for the cycles of P2 and P5 is also fixed:

↓ ↓
→ ( a x t ) ( b l f q v e o u m) ( d )
← ( y g c ) ( j h n r z i w s p ) ( k ) .

In a zig-zag the 2-cycles of P2 and P5 , beginning with (a y), can be calculated:

P2= (a y) (x g) (t c) (b j) (l h) (f n) (q r) (v z) (e i) (o w) (u s) (m p) (d k)

P5= (y x) (g t) (c a) (j l) (h f) (n q) (r v) (z e) (i o) (w u) (s m) (p b) (k d)

Another frequently occurring encrypted indicator was 22. RJL WPX , which
occurred four times. The corresponding plain indicator has the pattern ∗bb .
P1 can only have the 2-cycles (r b) or (r c) . In the first case with the more
likely plain indicator bbb : P1 contains the 2-cycle (b r), P4 the 2-cycle (r c).
For a pairing of the 10-cycles, another encrypted indicator may be used, say
15. LDR HDE . Since P3 and P6 contain (r k) and (k e) , P2 and P5 contain
(d k) and (k d) , the pattern of the plain indicator is ∗kk . This suggests
again the stereotype kkk , with the result that P1 and P4 contain the 2-cycles
(l k) and (k h) . Thus, the phase for the cycles of P1 and P4 is also completely
fixed:

↓ ↓
→ ( a ) ( b c ) ( d v p f k x g z y o )
← ( s ) ( r w) ( i e t h l q n u m j ) and thus
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P1= (a s) (b r) (c w) (d i) (v e) (p t) (f h) (k l) (x q) (g n) (z u) (y m) (o j)
P4= (s a) (r c) (w b) (i v) (e p) (t f) (h k) (l x) (q g) (n z) (u y) (m o) (j d)

Altogether the first three permutations read in ordered form:
P1 = (a s) (b r) (c w) (d i) (e v) (f h) (g n) (j o) (k l) (m y) (p t) (q x) (u z)
P2 = (a y) (b j) (c t) (d k) (e i) (f n) (g x) (h l) (m p) (o w) (q r) (s u) (v z)
P3 = (a x) (b l) (c m) (d g) (e i) (f o) (h v) (j u) (k r) (n p) (q s) (t z) (w y)

Mathematics did defeat the obscurity of the (improperly used) ENIGMA.

19.6.2.3 The reconstruction of all plain indicators used on this busy manœu-
vre day is now possible (Fig. 172), as reported by Tadeusz Lisicki (1910–1991).
The bad habits of the ENIGMA crypto clerks are evident. First, the use
of stereotypes has led to multiple use of identical indicators, something that
should by no means happen. Second, a look on the keyboard of the ENIGMA
(Fig. 173) is frightening: only two out of forty, namely abc and uvw , are
not keyboard stereotypes; instead they are alphabet stereotypes. Neither
the crypto clerks nor their signal officers would have dreamed that peaceful
practice transmissions with an innocently invented combat scenario would
give away so much of the secret of the ENIGMA.25

sss : AUQ AMN ddd : IKG JKF xxx : QGA LYB ert : VQZ PVR

rfv : BNH CHL dfg : IND JHU bbb : RJL WPX ccc : WTM RAO

rtz : BCT CGJ ooo : JWF MIC bnm : RFC WQQ cde : WKI RKK

wer : CIK BZT l l l : KHB XJV aaa : SYX SCW qqq : XRS GNM

ikl : DDB VDV kkk : LDR HDE abc : SJM SPO qwe : XOI GUK

vbn : EJP IPS yyy : MAW UXP asd : SUG SMF qay : XYW GCP

hjk : FBR KLE ggg : NXD QTU ppp : TMN EBY mmm : YPC OSQ

nml : GPB ZSV ghj : NLU QFZ pyx : TAA EXB uvw : ZZY YRA

f f f : HNO THD j j j : OBU DLZ zui : USE NWH uio : ZEF YOC

fgh : HXV TTI tzu : PVJ FEG eee : VII PZK uuu : ZSJ YWG

Fig. 172. 40 different indicators decrypted

Fig. 173. Keyboard of the ENIGMA

19.6.2.4 The Polish Bureau certainly learned something also from the con-
tent of the decrypted signals. But much more important was that the com-
promise had endangered the wiring of the rotors. Since the indicator analysis
involved only the first six letters, it was mostly only the core of the fast rotor

25According to Patrick Mahon, Dilly Knox found the method too, which was called by
Turing a ‘Saga’, to apply it by not knowing the correct QWERTZU (see Sect. 19.6.2,
fn. 22), which also prevented him from solving Enigma’s rotor wiring.
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RN (the rightmost one) which was moved, and the two other ENIGMA rotors
remained in 20 out of 26 cases at rest. This, together with the material from
ASCHE, was sufficient for Rejewski et al. in December 1932 to reconstruct the
wiring of the fast rotor core, and since the rotor order at that time was chan-
ged every quarter (from 1936 every month, later every day), each rotor came
finally under examination by the Polish Biuro Szyfrów. Once all the plain
indicators of a day were decrypted, all the signals that day could be decrypted
with the help of Polish ENIGMA replicas. But what about the next day?

19.6.2.5 Reconstruction of the basic wheel setting (German Grundstellung)
was accomplished with the help of a theorem of group theory, which was
highlighted by Deavours as “the theorem that won World War II”. It says

S and TST−1 have the same cycle decomposition (‘characteristic’) .
Therefore, Marian Rejewski and his co-workers since September 1932 made
use of the fact that the cycle lengths in the three observable PiPi+3 are inde-
pendent of the choice of the cross-plugging (and of the ring setting anyway).
The number of essentially different cycle arrangments is the number of parti-
tions of 26/2 = 13 , which is 101 ; three such partitions—in the example above
the partitions (‘characteristics’) 10+2+1, 9+3+1, 13 —in general character-
ize uniquely the 6·26·26·26 ≈ 105 basic wheel settings. Rejewski, supported
by Różycki and Zygalski, was now able to produce with the help of the
ENIGMA replica a catalogue for every rotor order containing the partitions
of the cycles for all basic wheel settings. For this purpose, an electromechan-
ical device called the ‘cyclometer’ was built in the factory AVA in Stepinska
Street, Warsaw. The Biuro Szyfrów finished the catalogue in 1937; to find
the Tagesschlüssel then took no longer than 10–20 minutes. Unfortunately
for the Poles, on November 1, 1937 the Germans changed the reflecting rotor.

19.6.2.6 There remained the problem of finding the ‘right’ ring setting on
the rotor core. The exhaustive treatment could be simplified by an observa-
tion Rejewski had made in 1932, thanks to the material of ASCHE: most plain-
texts started with /anx/, where /x/ replaced the word space �. According
to Kerckhoffs’ admonition, it had to be expected that the machine was in the
wrong hands, so it was pretty silly to use a stereotyped beginning. We shall
resume this trivial case of a plaintext-cryptotext compromise in Sect. 19.7 .

19.6.2.7 The Poles also used for a while a method they called metoda rusztu
(‘grill method’, ‘grid method’), which was “manual and tedious”, as Rejewski
says. It was usable only as long as the number of cross-pluggings was small
(six up to October 1, 1936) and served to determine the ring setting of the
fast rotor, as published in 1980 by Tadeusz Lisicki in Józef Garlińskis book.

19.6.3 Poland II. All this success was only possible because of the properly
self-reciprocal character26 of the ENIGMA rotor encryption; the reflecting ro-
tor of Scherbius and Korn turned out to be a grandiose illusory complication.

26The simply self-reciprocal encryption machines of Boris Hagelin did not suffer from this
defect—nevertheless the M-209 was broken from 1942 by the Germans in North Africa.
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19.6.3.1 On May 1, 1937, introduction of additional bigram tables for the
superencryption of the indicators (see Sect. 4.1.3) stopped the Poles from rea-
ding the Marine ENIGMA any longer. This was a very sad blow for them, but
by a combination of luck and skill they recovered slightly on May 8, 1937 when
they found a crib: They had observed that sometimes very long messages were
broken into parts, the continuation being marked by a prefix /fort/ (“Fort-
setzung”) and also by a reference number, which had before mid-1937 its
figures coded by the letters in the top line of a German typewriter keyboard

1 2 3 4 5 6 7 8 9 0
q w e r t z u i o p

and enclosed by /y/ and then doubled. Thus, /forty/ was a crib for such
messages. They had a suspicion and tried, with success since the continua-
tion of the plaintext obtained read /fortyweepyyweepy/, “Fortsetzung 2330”.
After this entrance into the encryption, the Poles had no difficulty in finding
the rotor order, ringstellung and steckering of this particular message, and
since these were in 1937 changed not too frequently, they had good reasons
to hope for a complete break once they had found the basic wheel setting
(German Grundstellung). Luckily for Poland, a German torpedo boat with
the call sign AFÄ had not been provided in time with the instructions for the
new indicating system and sent on May 1, 1937 a message in the old system
the Poles were familiar with, and more messages were exchanged on May 2
and May 3, enough for the basic wheel setting to be found (a guess for the
rotor order and steckering was already known from the /fortyweepyyweepy/
message). It turned out that indeed a message of April 30, broken in the old
system, had the same rotor order and steckering. Thus, the Poles tried and
were successful in breaking individually messages from the intermediate days
May 2, 3, 4, 5—about 15 per day, altogether almost 100—not knowing how
the new indicator system worked.

To find out this was left to Alan Turing in Britain, two and a half years la-
ter. But the Poles expressed already the conjecture that some kind of a bi-
gram substitution was involved. With the next change in the rotor order and
steckering the Polish became blind. But their result filled with admiration the
few people in B.P. who were in 1939 allowed to know about this achievement
rightfully. “Forty Weepy” was for a long time a magic formula for insiders.

19.6.3.2 In 1938, the situation was aggravated. The Germans changed the
encryption procedure on September 15, and introduced on December 15 a
fourth and a fifth rotor, giving 60 = 5·4·3 instead of 6 = 3·2·1 possible rotor
orders.

The Poles had to find out the wiring of the new rotors quickly, and they were
lucky. Among the traffic they regularly decrypted were signals from the S.D.
(Sicherheitsdienst), the intelligence service of the Nazi Party. The S.D. did
not change their encryption procedure before July 1, 1939, but introduced
the new rotors in December 1938. These rotors came from time to time into
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the position of the fast rotor and their wiring could be reconstructed the
same way as previously with the first three rotors.

The use of two methods, one of which possibly was compromised, was a grave
error.

As an aside, there is a story of how B.S.-4 came to read the S.D. signals. The
Sicherheitsdienst officers were distrustful of everybody and encoded their
messages by hand before giving them to an ENIGMA operator for superen-
cryption. The Poles, decrypting all ENIGMA traffic, obtained meaningless
text and thought at first the cryptotext was encrypted in a different system.
Then, one day in 1937, the three letter word /ein/ was read. This could only
mean that a plaintext group by mistake was mixed with a code; probably
the numeral 1 had not been transcribed and the ENIGMA operator knew no
better than to send /ein/ instead. The Poles then found it easy to break the
simple hand-encrypted code.

19.6.3.3 The new encryption procedure, valid until the end of April 1940,
did not use the same basic wheel setting for all messages of the day, but
for each message an arbitrary basic wheel setting was to be chosen, which
should precede the signal in plain. With this chosen basic wheel setting (in
B.P. called ‘indicator setting’), as before, a randomly chosen plain indicator,
still doubled, was to be encrypted and also used as the message setting for the
encryption of the text. To give an example, for a signal beginning (after the
plain preamble) with RTJWA HWIK ..... , rtj is the basic wheel setting, WAH

WIK is the encrypted doubled indicator, encrypted with rtj . For this situa-
tion, we shall write in the sequel rtj |WAH WIK . The authorized recipient uses
the basic wheel setting rtj to find from WAH WIK the plain indicator doublet
(which has the pattern 123123 ); then decrypts the cryptotext with the first
three letters (the true indicator) as the message setting. As long as the ring
setting and rotor order had not fallen into the wrong hands, the foe could do
nothing with the openly displayed basic wheel setting. The search space still
contained respectively 105 456 or 1 054 560 possibilities: 263 ring settings,
and 6 rotor orders; increased by December 1938 to 60 = 5 · 4 · 3 rotor orders.

19.6.3.4 The methods Rejewski and his friends had used so far did not work
any longer, since they were based on the multiple use of the same basic wheel
setting for a full day. But the Germans, almost incredibly, kept the doubling
of the plain indicator27 and thus allowed the attack of searching for a pattern,
i.e., for the pattern 123123 , at a known position. This method would have
worked before, too, but in the fall of 1938, there was no choice but to go to the
trouble of much more work. The Poles therefore thought of mechanization.
Rejewski ordered in October 1938 six machines from the factory Wytórnia
Radiotechniza AVA (Ing. Antoni Palluth), each one simulating one of the six

27While the double encipherment of each message setting was discontinued by May 1, 1940
for the service ENIGMAs, it was reintroduced for the Navy key net ,Süd‘ around August
1941 and was still employed in January 1944—‘an astonishing blunder’ (Ralph Erskine).



440 19 Compromises

rtj

dqx

hpl

rtj+3

dqx+3

hpl+3

#1

#2

#3

#4

#5

#6

w w w
1

equal?

equal?

equal?

coincidence?

Fig. 174. Abstract function of a Polish bomba (October 1938)

rotor orders, and tested in parallel on them the 17 576 positions of the rotor
core (in B.P. called ‘rod-positions’), which needed at most 110 minutes.

The ‘right’ ring setting on the rotor core was found using the 1-cycles in the
following way. The machine was built from three pairs of ENIGMA rotor sets.
In each pair the rod-positions of all rotors were shifted by three; the position
of the rotor sets of the first pair was shifted by one against the position of
the rotor sets of the second pair, which in turn was shifted by one against
the position of the rotor sets of the third pair.

As soon as there was enough material to provide three encrypted doubled
indicators such that the same character appeared once in the first and the
fourth, once in the second and the fifth, and once in the third and the sixth
position—like the letter W in (the example goes back to Rejewski)

rtj | WAH WIK

dqx | DWJ MWR

hpl | RAW KTW

—and thus, as in Sect. 19.6.2.1, exhibited a 1-cycle (‘fixpoint’), a promising
attack was possible (Fig. 174). The machine was started with the three initial
settings rtj, dqx and hpl , and the common character W was input repeatedly
as a test character until in each one of the three pairs the same character
triple occurred twice, i.e., the pattern 123123 was found. Such a coincidence
triggered a simple relay circuit to stop the whole machine, whose appearance
led the Poles to call it the bomba28. Of course, sometimes there were mishits.

28According to Tadeusz Lisicki, it was originally named by Jerzy Różycki after an ice-cream
bombe. While they were eating it, the idea for the machine came to him and his friends.
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If then the core position was revealed, a comparison of the encrypted dou-
bled indicators with the encryptions produced by the ENIGMA replica re-
constructed the ring setting and the cross-plugging. In this way, by end-1938,
all signals of the day (later of the 8-hour shift) from one and the same key
net (during the war there were up to 120 such key nets) could be decrypted.

〈RN 〉
z ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
y ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
x ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
w ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
v ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
u ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
t ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
r ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
q ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
p ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
o ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
n ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
m ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
l ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
j ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
i ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
h ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
g ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
e ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
c ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
b ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
a ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

a b c d e f g h i j k l m n o p q r s t u v w x y z 〈RM 〉
Fig. 175. Zygalski sheet K413

14 for rotor order IV-I-III, 〈RL〉 = k ; holes show
possible 1-cycles (fixpoints) of P1P4 for basic wheel setting 〈RL〉〈RM 〉〈RN 〉

The bomba was sensitive to cross-pluggings, and the method worked only
if the test character (in the example above the letter W) was ‘unplugged’.
The likelihood for this to happen was around 50% , as long as five to eight
plugs were used. If three different fixpoints had been allowed, as the British
originally had in mind, the likelihood would have dropped to 12.5% .

19.6.3.5 For overcoming the difficulties, another kind of mechanizing was
developed in autumn 1938 by Henryk Zygalski (1908–1978), namely a ‘punch
card catalog’ for determining the Tagesschlüssel from about ten to twelve (ar-
bitrary) fixpoints. For the six rotor orders it was calculated for P1P4, P2P5

or P3P6 , whether for a wheel setting 〈RL〉〈RM 〉〈RN 〉 of the rotors RL, RM ,
RN some fixpoint is possible at all. For each one of the 26 letters 〈RL〉 this
was recorded in a 〈RM 〉×〈RN 〉 matrix by (Fig. 175) a punched hole (‘female’);



442 19 Compromises

between 30% and 50% of the squares on a sheet contained holes. To allow full
overlay, sheets of 51×51 fields, made by horizontal and vertical duplication,
were used. By superimposing the sheets aligned according to their wheel set-
ting 〈RM 〉〈RN 〉, the core position was determined, as a rule uniquely as soon
as about ten to twelve fixpoints were available. Most important, the method
was insensitive to the cross-plugging used and was still useful when ten plugs
were used after August 19, 1939—as long as the double encipherment lasted.
The Zygalski sheets had the drawback that a different sheet was needed for
each rotor order, their number grew rapidly: from 3! = 6 as long as three
wheels were in use to 5!/2! = 60 as soon as five wheels came into use and
even to 8!/5! = 336 when for the Navy ENIGMA eight wheels were available.
Therefore, when the Germans introduced December 15, 1938 the fourth and
fifth rotor, the Poles were helpless for quite a while.
19.6.3.6 The Germans had always tried by suitable encryption security
not to become victims of a Kerckhoffs superimposition, and finally became
victims of a trivial weakness, the doubling of the indicator.

19.6.4 British-Polish cooperation I. In a meeting on January 9–10, 1939
in Paris, the Polish Lieutenant Colonel Gwido Langer (1894–1948) supple-
mented his French connections by contacts with his British colleagues. With
an increasing danger of war, a a closer cooperation was necessary. The result
was a meeting on July 24–25, 1939 in Warsaw of Alfred Dillwyn Knox, the
leading British cryptanalyst in the Foreign Office (he died February 27, 1943
from stomach cancer), his boss Alastair G. Denniston (1881–1961), the head of
the Government Code and Cypher School (G.C. & C.S.) and the mysterious
‘Mr. Sandwich’ (Commander Humphrey Sandwith) with the French Comman-
dant Gustave Bertrand and Capitaine Henri Braquenié, and with the Pol-
ish side, represented by Ciȩżki, Langer, and the Grand Chef Colonel Stefan
Mayer. Rejewski, Różycki, and Zygalski proudly presented all their results
in Pyry, to the south of Warsaw. At this occasion, the French as well as the
British were promised Polish replicas of the ENIGMA with all its five rotors,
the one for B.P. was handed over in the diplomatic pouch by then Major
Bertrand to General Menzies, in London on August 16, 1939—just in time.
Since the crisis that led to the Munich Conference of September 1938 the
British had looked for somewhere to evacuate their cryptological service, to
insiders known as ‘Room 47’ of the Foreign Office, that worked from the
address 56 Broadway (Whitehall), Westminster. They found it in Bletchley
Park (B.P. for short, radio codename and also cover name ‘Station X’), geo-
graphically well located about fifty miles north of London. Before war broke
out in 1939, the G.C. & C.S. was established there and reinforced. Among its
many duties was decryption of the ENIGMA, and the group around Knox
proposal of punched sheets (Zygalski sheets) which they called ‘canvasses’.
John Jeffreys (dec. May 1940) supervised their preparation; they were ready
in January 1940. However, for the bomba idea a development was necessary
in B.P. in order to cope with now sixty instead of formerly six rotor orders.
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Oliver Strachey29 had several times arranged contacts between the young
Alan Mathison Turing, who already had a reputation as a logician and had
been interested since childhood in cryptology, and the G.C. & C.S. The head
of the cryptanalytic service, Knox, was a classics scholar, who in 1915 had
preferred Room 40 of the Admiralty to a Fellowship at King’s College in
Cambridge, and already had experience with the commercial ENIGMA used
by the Italians. On September 4, 1939, the second day of the Second World
War, Turing reported to B.P. He worked on a further development of the
Polish bomba and was later joined in this by Gordon Welchman (1906–1985),
who also had arrived September 4 . Turing had experience with relay circuitry
(Sect. 5.7.3) and thus was not merely theoretically interested in cryptology.
His contacts with G.C. & C.S. may have reached back to 1936.

Around January 24, 1940, B.P. for the first time broke an ENIGMA key, the
key RED for January 6 of the carelessly transmitting Luftwaffe, and contin-
ued to do so, using Zygalski sheets made in the Cottage in Bletchley Park.

19.6.4.1 Informed after Pyry about the “Forty Weepy” results, Alan Turing
started in September 1939 where the Polish had left off in May 1937. Turing
has described this in his typewritten treatise (‘Prof’s book’) probably writ-
ten in 1940. He starts with four messages from May 5, 1937 with 8-letter
indicators, and 3-letter message settings already decrypted by B.S.-4,

K F J X EWTW P C V
S Y L G EWU F B Z V
J M HO UV Q G M E M
J M F E F E V C M Y K

and says: “The repetition of the E W [in the first two lines] combined with
the repetition of the V suggests that the fifth and sixth letters describe the
third letter of the window position [message setting], and similarly one is led
to believe that the first two letters of the indicator represent the first letter
of the window position, and that the third and fourth represent the second.
Presumably this effect is somehow produced by means of a table of bigramme
equivalents of letters, but it cannot be done simply by replacing the letters of
the window position with one of their bigramme equivalents, and then putting
in a dummy bigramme, for in this case the window position corresponding
to J M F E F E V C would have to be say M Y Y instead of M Y K .
Probably some encipherment is involved somewhere.”
Therefore, Turing waited for a more complicated procedure, “the two most
natural alternatives” being
1) encoding the letters of the message setting by bigrams and enciphering
the result at the basic wheel setting (Grundstellung), or

29Oliver Strachey (1874–1960), husband of the feminist Ray Strachey, father of the com-
puter scientist Christopher Strachey, and brother of the writer Lytton Strachey, replaced
in 1941 in the Canadian cryptanalytical services (‘Examination Unit’) the former US
Major Herbert Osborne Yardley, who had fallen into disgrace in the United States.
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2) enciphering the message setting at the basic wheel setting (Grundstellung)
and encoding the letters of the result by bigrams.

Turing thinks that “The second of these alternatives was made far more
probable by the following indicators [and message settings] occurring on the
2nd May E X D P I V J O V O P

X X E X J X J Y V U E
R O X X J L WA N U M

With this second alternative we can deduce from the first two indicators that
the bigrammes E X and X X have the same value, and this is confirmed from
the second and third [indicators] where E X and X X occur in the second
position instead of the first.” Turing’s guesses were supported when the mes-
sage settings V O P, V U E, N U M were decoded using the basic wheel set-
ting obtained from the AFÄ messages. The problem of the Navy indicator
system was fundamentally solved by the end of 1939. However, without
knowing the bigram tables used, no further progress could be expected.

Turing decided early in 1940 to analyze German Navy signals that had been
intercepted in November 1938, when only 6 steckers were in use and hand
methods attacking cribs were possible. In particular, interrogation in Nov.
1939 of a prisoner of war, Funkmaat Meyer, disclosed that the German Navy
now used spelling for numerals, so, for example, /fort zwo drei drei nul/.
Thus, the ‘Forty Weepy’ method gave cribs. Alan Turing, Peter Twinn and
two ‘girls’, as Turing calls them, started an attack, using an EINS catalogue
(see Sect. 14.6), on the November 28, 1938 traffic. After a fortnight of work,
this day was broken and five others between November 24 and 29 came out
on the same rotor order. The rotor order and Ringstellung seemed to remain
constant for about a week; the number of steckers was still 6, moreover the
same letter was never steckered on two consecutive days—a grave mistake.
Reconstructing the bigram table was at that moment only partly possible and
the only hope was oriented towards a ‘pinch’. It actually happened April 26,
1940, when the German Q-boat Polares (Schiff 26) was seized off Ålesund,
giving steckering and message setting for April 23 and 24, operator logs giving
cribs for April 25 and 26 traffic, and, most important, exact details of the
method of working of the indicator system, confirming Turing’s discoveries.

The method as such is outlined in Sect. 4.1.3. It uses two trigrams picked
from a book (the K-book, ‘Kenngruppenbuch’); while the first one (‘Schlüssel-
kenngruppe’, key net indicator), say C I V , had no immediate cryptological
importance, the second one (‘Verfahrenkenngruppe’), say T O D, when de-
crypted with the Grundstellung , gave the message setting to be used by the
sender and by the recipient. Thus, the Verfahrenkenngruppe can be called
‘encrypted message setting’. The basis for the bigram substitution was now,
with two dummies, the grouping

∗ C I V
T O D ∗ .Q C I V

T O D X
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Using the cribs the Ålesund pinch had produced, further entries in the bigram
table were within reach. In small steps, some progress was made during
1940, using suspicions that in June the bigram tables had changed. The sig-
nals of May 8 turned out to be particularly obstinate, and only in November
an old hand, Hugh Foss, solved them, together with its paired day, May 7.
Later still, the signals of June 27 were broken—no change in the bigram tables
had happened. It happened nonetheless on July 1, 1940. In February 1941,
the traffic of April 28 was broken on a crib, using a BOMBE for 336 rotor or-
ders in succession. Shortly after, a planned raid, the Lofoten pinch of the
trawler Krebs, ended the period of misery and started a rich flow of decrypts
of the Naval ENIGMAs produced by a choir of crib runs on BOMBEs, EINS-
ing (Sect. 14.6), and in particular the Banburismus procedure (Sect. 19.4.2).

19.6.4.2 When in mid-January 1940 Turing met Rejewski, who had fled to
France, in Gretz-Armainvilliers, north of Paris, he was, according to Rejew-
ski, very interested in the Polish ideas for defeating the cross-plugging. By
then, he had arrived at his own ideas (see Sect. 19.7), but of course he could
not mention how far he had come. It was only natural that Turing tried to
improve the Polish bomby to make them insensitive to cross-plugging like the
Zygalski sheets. The British, like the Poles, were afraid that with fewer and
fewer self-steckered letters their methods would soon become useless. Thus,
Turing wanted to get rid of the restriction to ‘self-steckered’ letters.

He wanted late in 1939, as Joan Murray née Clarke remem-
bers the argument, to test all 26 letters in parallel to see
what output they would have; this would allow a ‘simul-
taneous scanning’ of all 26 possibilities of the test letter.
Thus, Turing thought of replacing the Scherbius rotors by
‘Turing rotors’, each one having both on the entry side
and exit side two concentric rings of contacts—one for the
journey towards the reflector, one for the return journey—both mimicking
the same ENIGMA rotor. Likewise, the reflector would have two rings of
contacts. This modification would have input and output by 26 wires in par-
allel, and result in a double-ended scrambler (Welchman, US parlance ‘com-
mutator’), really representing a classical ENIGMA substitution Pi = SiUS−1

i

for i = 1 . . . 263 . In accordance with its self-reciprocal character, the scram-
bler had to be input-output symmetrical; this was provided for by a symmet-
ric wiring between the contacts of the inner and outer rings of the reflector.

a b c d

+12 V

e f g h i j k l m n o p q r s t u v w x y z

#1

#4

rtj

rtj+3

26

Fig. 176. Hypothetical Turing version of the Polish bomba (with ‘simultaneous
scanning’). Diagram of one of the three feedback cycles of length 2
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In this Turing version, the Polish bomba amounted to three closed cycles,
each built from two double-ended scramblers; one such cycle is shown in
Figure 176 . Turing had thus managed to strip off the superencryption by
the cross-plugging mechanically. And he recognized that the 1-cycles, the said
females of the Zygalski sheets, being natural fixpoints of a mapping, could be
determined by an iterative feedback process, which normally diverged and
thus indicated that the rotor positions in question did not allow a fixpoint;
if it did not diverge, it gave the fixpoint. The logician Turing, familiar with
the reductio ad absurdum, thus turned to the general principle of feedback.

Technically, the distinction between the divergent and the non-divergent case
was made by a ‘test register’ attached to the 26-line bus of the feedback (in
Fig. 176 from #4 to #1). Voltage is applied to the wire belonging to the test
letter (W in our example). In the divergent case all light bulbs of the test
register light. In the non-divergent case the feedback cycle of the fixpoint is
electrically isolated from the remaining wiring; correspondingly either exactly
one light bulb (the one belonging to W) is lit, or all light bulbs but this one
are, depending on whether the cross-plugging was correctly chosen or not.

A battery of double-ended scramblers was to be moved simultaneously. Thus
Turing could have simulated a Polish bomba. But he wanted more and the
actual development took a different, much more general path (Sect. 19.7).

In the last quarter of 1939, Turing’s design had progressed far enough that
Bletchley Park was allowed to ask the British Tabulating Machine Company
in Letchworth to build a machine, which was also called BOMBE. Harold
‘Doc’ Keen, with a crew of twelve people, finished it by March 1940. Later,
Keen was equally successful in building the 4-rotor-BOMBE MAMMOTH.

Welchman, by the way, late in 1939 when he was still a novice, arrived inde-
pendently at similar conclusions, although at first he was not involved in the
ENIGMA decryption by machines. He also reinvented the Zygalski sheets,
not knowing that John Jeffreys in another building already had a production
line going. Likewise, he did not know of Turing’s ideas, but this was intended.

19.6.4.3 Turing may have already thought before the Pyry meeting of mak-
ing use of probable words to break into ENIGMA. After this meeting, having
heard about the bomba, he turned his thoughts to mechanizing his method.
The major advantage with the device Turing had in mind was that it not
only found the rotor order, like the Zygalski sheet, but it also found at least
one stecker. “It was he who first formulated the principle of mechanizing a
search for logical consistency based on a probable word”(Andrew Hodges).

Turing’s ideas and precautions were guided by Knox’s remark at Pyry that
the Germans could again change their encryption procedure and give up the
indicator doubling. Then, having learned in the meantime from decryptions
a lot on the habits and styles of the Germans, the British hoped to be able to
produce the necessary feedbacks efficiently with probable words the Germans
used so plentifully: /wettervorhersage biskaya/, /wettervorhersage deutsche
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bucht/ etc., or /obersturmbannführer/, obergruppenführer/ etc., or /keine
besonderen ereignisse/ . Thus, B.P. was prepared when on May 1, 1940,
shortly before the campaign in France, the next change came: Heer and
Luftwaffe dropped the indicator doubling and put Zygalski sheets out of ac-
tion; the Polish bomba would have been useless. (The Kriegsmarine superen-
crypted the message indicator with a bigram substitution, see Sect. 4.1.2).
The Turing BOMBE prototype ‘Victory’ entered service on March 14. Start-
ing August 8, 1940, improved versions followed, nicknamed ‘Agnes’, ‘Jumbo’,
‘Ming’. [More about the mode of operation in Sect. 19.7 .] Moreover, Turing
had designed the BOMBE in a way that allowed universal working.
If, however, the probable word method would not work or if not enough
BOMBEs were available, there was still the fundamental possibility of an
alignment ‘in depth’ for superimposition (Sect. 19.3), and the Banburismus
procedure, performed to reduce the number of rotor orders to be tested.

19.6.5 France II. Rejewski, Zygalski and Różycki, escaping the Polish dis-
aster, fled via Rumania to France. End of September 1939, they joined the
French radio intelligence group under Commandant Bertrand (‘Barsac’) in
the Château de Vignolles near Gretz-Armainvilliers (cover name Poste de
Commandement Bruno), 30 miles southeast of Paris. Starting January 3,
1939, when the British liaison officer Capt. MacFarlane brought the first set,
and carried on until the German attack (‘Fall Gelb’) on France in May 1940,
‘Group Z’ worked with Zygalski sheets provided by Bletchley Park, and solved
mainly German Army administration signals (key net GREEN), nearly the
same number as B.P.: on January 17, 1940 the messages of October 28, 1939,
on January 28, 1940 those of September 3, 1939); later, more important, Luft-
waffe signals (key net RED), and finally, after the Norway invasion, the sig-
nals of Fliegerführer Trondheim (key net YELLOW: starting April 10, 1940).
On the British side, the first success concerned the GREEN key of October 25,
1939, broken around January 17, 1940 and the RED key of January 6, 1940,
broken around January 25, 1940. Communication between B.P. and Bruno
was well established, by April 1940 even a direct teletype line was operating.
After the collapse of France, P.C. Bruno was first transferred on June 24, 1940
to Oran in Algeria, then in October 1940 transferred back to the Château des
Fouzes near Uzès (cover name ‘Cadix’) in the unoccupied part of France.
Since the Zygalski sheets had become useless by May 1, 1940, the Poles and
British had to rely for a while on cillies and Herivel tips (Sect. 19.7). The Pol-
ish unit under Lieutenant-Colonel Gwido Langer, named ‘Expositur 3000’ by
the British, was evacuated November 9, 1942, after the landing of the Allies
in North Africa and the German occupation of the rest of France; Rejewski
and Zygalski were imprisoned for a while in Spain and reached London via
Gibraltar on August 3, 1943. They continued under Major Lisicki from the
Polish General Staff with cryptanalytic work on hand ciphers (Doppelwürfel-
verfahren); however, they were kept at Stanmore, away from Bletchley Park
with the Turing–Welchman BOMBEs and the COLOSSUS machines.
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19.7 Plaintext-Cryptotext Compromise: Feedback Cycles

On May 1, 1940 the ENIGMA system was practically open for the British.
A probable word attack, a plaintext-cryptotext compromise, would profit
from the sharpness of the Turing (and Welchman) feedback idea pursued since
1939. And Turing had designed the British BOMBE in a way that allowed
this. Thus, a method was resumed that Rejewski had used in 1932 (see
Sect. 19.6.2.6). So, systematically, this chapter belongs at the end of Chap. 14.

The British had to prepare the menu day by day, and they found enough
cribs to do so. Meanwhile, they were helped by continuing violations of
even the simplest rules of cryptosecurity on the German side. John Herivel
observed in May 1940 that for the first signal of the day the wheel setting
was frequently very close to (if it did not actually coincide with) the position
of the wheels for the ring setting of the day (‘Herivel tip’). Moreover, the
use of stereotyped indicators continued, which the British placed under the
heading ‘cillies’30. There was also the abuse of taking the basic wheel setting
as the indicator, called JABJAB by its discoverer Dennis Babbage. When
the German supervisors finally reacted, the damage was already irreparable.

Cryptosecurity discipline was lowest in the Air Force of the pompous parvenu
Göring. From May 26, 1940 on, before the Turing–Welchman BOMBE was
working, mathematicians and linguists in B.P. regularly managed to read the
ENIGMA signals of the Luftwaffe (key net RED), while for the signals of the
Kriegsmarine (key net DOLPHIN, ‘Heimische Gewässer’, later ‘Hydra’) they
had to wait until June 1941 before they had mastered the bigram superen-
cryption of the message keys. In December 1940, they succeeded in breaking
into the radio signals of the SS (key net ORANGE). From September 1942 on,
Field Marshal Rommel’s ENIGMA traffic with Berlin (net CHAFFINCH) was
no longer secure, and from mid-1942 on the British achieved deep and lasting
breaks, above all in the heavy Luftwaffe traffic (key net WASP of Fliegerkorps
IX, GADFLY of Fliegerkorps X, HORNET of Fliegerkorps IV, SCORPION
of Fliegerführer Afrika). Most obstinate, to British judgement, was the radio
communication of the German Heer , which was a consequence of the solid
training of the operators. Before the spring of 1942, no ENIGMA traffic line
of the Heer except one, VULTURE I in Russia (June 1941), was broken.

19.7.1 Turing BOMBE. In the general probable word attack, Turing
(and in parallel Welchman) used instead of the three isolated, two-fold cy-
cles of the bomba a whole system of feedback cycles formed by a battery of
first 10 and later 12 double-ended scramblers. Such feedback cycle systems,
which are independent of the steckering, are obtained from a juxtaposition
of a probable word and a fragment of the cryptotext. Fortunately, for long

30Singular: cilli. Sometimes interpreted ‘sillies’. Welchman, 1982: ‘I have no idea how the
term [sillies] arose’. Budiansky: abbreviated name of the girlfriend of a German wireless
operator. Sebag-Montefiore: the word comes from CIL, which was the first message
setting worked out in this way. None of these explanations is convincing.
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enough probable words the non-coincidence exhaustion method (Sect. 14.1)
allows one to exclude many juxtapositions; furthermore conspicuous probable
words are often at the beginning or the end of the message (unless Russian
copulation has been used). Therefore, it is not unrealistic to establish a new
feedback cycle system for every new juxtaposition; there are not too many.
The following example31 goes back to C. A. Deavours and L. Kruh. Let

OVRLJ BZMGE RFEWM LKMTA WXTSW VUINZ GYOLY FMKMS GOFTU EIU...

be the cryptotext and /oberkommandoderwehrmacht/ the probable word.
The third leftmost position not excluded by non-coincidence gives the ‘crib’
# 1 4 5 7 8 9 11 12 13 14 15 17 19 24

o b e r k o m m a n d o d e r w e h r m a c h t
O V R L J B Z M G E R F E W M L K M T A W X T S W V U I N Z

with 10 letters A D E K M O R S W Z connected by 14 transitions
(note: calligraphic letters like E stand for both e and E).
The 13 different pairings of plaintext and cryptotext letter can be compressed
into a directed graph with ten nodes and 13 edges, shown in Fig. 177. The
graph contains one true cycle (EAM). The self-reciprocal character of the
double-ended scramblers, reflected in the symmetric electrical connection of
their inputs and outputs, means a transition to an undirected graph. From
this graph, a subgraph may be selected, in jargon a ‘menu’—for our example
the graph with eight nodes and ten transitions shown in Fig. 178 at the upper
right corner. Each cycle (in Turing’s parlance ‘closure’) in this subgraph
establishes a feedback in the Turing BOMBE setup. A menu with six letters
and four cycles is of course more lucrative than one with twelve letters and
one cycle: it reduces the danger of mishits.
Corresponding to such a subgraph with ten transitions, ten double-ended
scramblers are now connected (with 26-line buses) and a test register is con-
nected, say at E (Fig. 178). To some entry, say e , voltage is applied.
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Z

O

K

#13

#4

#8 #12

#14

#9

#24

#1#7

#17

#11

#5

#15
#19

Fig. 177. Plaintext letter / cryptotext letter pairings for juxtaposition (‘crib’),
True cycle (MEA), (#14, #9, #7)

31Rotor order IV I II, reflector B , cross-plugging (VO)(WN )(CR)(T Y)(PJ )(QI) .
Ring setting AAA (000) , message setting tgb .
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Fig. 178. Turing BOMBE setup for feedback cycle system of Fig. 177

The positions 14, 9, 7 form a cycle (‘closure’): denoting the internal con-
tacts with a, b, c, . . . y, z , the cross-plugging with T , and the substitution
performed by scrambler #i with Pi , we obtain the relations

eT = mTP7 , mT = aTP9 , aT = eTP14 , or eT = eTP14P9P7 .

Thus, eT is a fixpoint of P14P9P7 .

But the positions 4, 15, 8, 7 form also a cycle: at first we have the relations

eT = rTP4 , wT = rTP15 , wT = mTP8 , eT = mTP7 ;

since the scrambler substitutions are self-reciprocal, we obtain

eT = mTP7 , mT = wTP8 , wT = rTP15 , rT = eTP4 , or
eT = eTP4P15P8P7 . Thus, eT is also a fixpoint of P4P15P8P7 .

Moreover, the positions 4, 5, 11, 13, 17 form a cycle: using again that the
scrambler substitutions are self-reciprocal, we obtain the relations

eT =rTP4 , rT = kTP5 , kT = dTP11 , dT = tTP13 , tT = eTP17 .

Thus, eT is even a fixpoint of P17P13P11P5P4 .
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Assume that the position of the scramblers is not the ‘right’ one. Then (nor-
mally, i.e., if enough cycles exist) the voltage spreads over the total system
and all the test register light bulbs are lit. A relay circuit discovers this
divergent case and moves the scramblers on to the next position.
Now assume that the position of the scramblers is the ‘right’ one, i.e., the one
used for encryption (such that the scrambler #4 maps rT=/r/ into eT=E ).
Then there are two subcases. If the cross-plugging is correctly chosen, i.e.,
the entry e to which voltage is applied is indeed /e/ , then the voltage does
not spread, and apart from the light bulb belonging to e no lamp is lit. If,
however, the cross-plugging is not correctly chosen, then the voltage (nor-
mally, i.e., if enough cycles exist) spreads over the whole remaining system
and all lamps are lit except one, which indicates the cross-plugging. In both
of these convergent subcases, the machine setting and the light bulb indi-
cation can be noted down. The scrambler position determines the correct
position of the rotor core. It can be a mishit. This can be quickly decided
by using the resulting setting to try to decrypt the surrounding text.
The possibility of Turing’s feedback cycle attack was totally overlooked by the
young Gisbert Hasenjäger (b. June 1, 1919), responsible for the security of the
ENIGMA in the OKW Cipher Branch, Referat IVa, Security of Own Ciphers
(Karl Stein, 1913–2000), founded in 1942. This attack, as was shown above, is
strongly supported by the properly self-reciprocal character of the ENIGMA
(using KORN encryption steps); however, it would also work in principle for
non-selfreciprocal double-ended scramblers, although such cycles occur much
less frequently. For example, the only true cycle in Fig. 177 is the cycle

7 9 14
m a e
E M A

and very long probable words would be needed to make the attack succeed,
or a larger menu would be needed. For example, in the feedback cycle system
of Fig. 177, the crib would allow one to adjoin a node U connected with A, or
a node V connected with M, or a few more. There is, compared to Fig. 178,
even one cycle more in the example: from T over Z, O, M, E to T . But this
would increase from 10 to 13 the number of scramblers needed in the setup.

19.7.2 Turing–Welchman BOMBE. Gordon Welchman (1906–1985)
improved the Turing feedback cycle attack quite decisively by taking all rela-
tions effected by the self-reciprocal character of the typical ENIGMA cross-
plugging explicitly into account. Whenever Turing’s BOMBE stopped, the
nodes like A, D, E , K and so on were assigned certain internal contacts.
Fig. 179 shows such a halting configuration, with two ‘self-steckered’ inter-
pretations A-a, E-e and two interpretations D-t and T-d indicating a cross-
plugging (T D) . But the two interpretations W-m and M-x contradict the
self-reciprocal character of the cross-plugging. The BOMBE should not have
halted in such a configuration; the contradiction found by this reasoning
should have caused divergence inside the BOMBE’s electrical wiring.
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Gordon Welchman
(1906–1985)

W-m M-x

E-e

A-a

R-z

K-f

D-t T-d

Fig. 179. Contradictory halting configuration
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Fig. 180. Welchman BOMBE setup for feedback cycle system of Fig. 177
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Welchman found in November 1939 a simple electrical realization of such
a ‘forming the reflexive hull with respect to cross-plugging’, the ‘diagonal
board’ shown in Figure 180 . Its functioning is explained in Figure 181 :
Assume eT = dT P11P5P4 . The bold overlay in the wiring shows how the
electrical connection made by the scramblers from e in bus E to d in bus D is
supplemented by the diagonal board with a fixed electrical connection from
d in bus E to e in bus D .

a b c f g h i j l mn o p q s u v w x y z

a b c f g h i j l mn o p q s u v w x y z

a b c f g h i j l mn o p q s u v w x y z

a b c f g h i j l mn o p q s u v w x y z

a b c f g h i j l mn o p q s u v w x y z

T

D

K

R

E

#17

#13

#11

#5

#4

d e k r t

d e k r t

d e k r t

d e k r t

d e k r t

Fig. 181. Functioning of the ‘diagonal board’ of Welchman for the example of Fig. 177

With Welchman’s improvement, Turing’s feedback cycle attack attained its
full power and the efficiency of the BOMBE increased dramatically: fewer
cycles were needed to fill the test register. This not only helped to save
scramblers, it also allowed shorter cribs and thus increased the chance that
the middle rotor remained at rest. So Welchman is the true hero of the
BOMBE story in Bletchley Park. Devours and Kruh (1985) formulated it in
a way that may console Hasenjäger:

“It is doubtful that anyone else would have thought of Welchman’s idea
because most persons, including Turing, were initially incredulous when
Welchman explained his concept.”
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19.7.3 More BOMBEs. People in Bletchley Park who called the ag-
gregate of scramblers together with the test register and the diagonal board
a ‘bomb’ were not made aware of the Polish origin of the name and idea.
‘Agnes’32, the first Turing–Welchman production BOMBE after the proto-
type ‘Victory’, (which did not yet have a diagonal board) was ready by mid-
August 1940; a ‘bomb run’ needed 17 minutes for a complete exhaustion
of one rotor order. In the spring of 1941 (‘Ming’: end of May 1941) there
were 8 BOMBEs at work, and 12 towards the end of the year, built by the
British Tabulating Machine Company in Letchworth. The number increased
rapidly to 30 in August 1942, 60 in March 1943, and about 200 at the end
of the Second World War. B.P. cracked tens of thousands of German mili-
tary messages a month. At the Eastcote outstation, operated by the 6812th
Signal Security Detachment, US Army, there were 10 bombes in operation:
ATLANTA (Fig. 182), BOSTON, CHICAGO, HOUSTON, MINNEAPOLIS,
NEW YORK, OMAHA, PHILADELPHIA, ROCHESTER, and SAN FRAN-
CISCO. Other outstations were located in Adstock, Gayhurst, and Stanmore.

Fourteen BOMBEs, called ‘Jumbo’, had an attachment (called a ‘machine
gun’) to resume work when a stop occurred and a contradiction of the steckers
was found. Some dubbed ‘Funf’ were directed against the Abwehr ENIGMA.

However, running the bombe on naval ENIGMA needed in the worst case 336
wheel orders to be checked, against 60 for the Air Force and Army ENIGMA.
Such a complete run would take at least about 96 hours (4 days), and Hut
8, working against the Naval ENIGMA, was short of bombe time in 1942.

In the USA, both Army and Navy developed high-speed versions of the
BOMBE that were in service for a few years after the end of the war.

The X-68 003 of the US Army (SIS), a genuine relay machine constructed by
Samuel B. Williams from Western Electric/Bell Labs, in operation since Oc-
tober 1943 and equipped with 144 double-ended scramblers, became known33

as MADAME X; using stepping switches it allowed a quick change of the
crib. The simulation of scramblers by relays was slow, but avoided rotating
masses. Developed with the help of Bell Laboratories, it was directed against
3-rotor ENIGMAs, and was unwieldy against the 4-rotor ENIGMAs of the
Kriegsmarine. Only one MADAME X was actually built, it corresponded in
power to six or eight British BOMBEs. Design and construction cost a mil-
lion dollars which was not thought cost-effective compared with the Navy’s
BOMBEs.

19.7.4 4-rotor BOMBEs. For the US Navy Op-20-G, Joseph Desch at
NCR, who had experience with rapid circuitry for elementary particle coun-
ters and thus a reputation in electronics, accepted in September 1942 the
ambitious commission to build 350 BOMBEs, each one several times larger

32Turing had dubbed it originally ‘Agnus Dei’.
33 It is unclear whether the name is an allusion to Agnes Driscoll née Meyer, the brave fight-

er for pure cryptanalysis (Sect. 17.3.4), who was referred to in Op-20-G as ‘Madam X’.
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Fig. 182. British BOMBE ‘Atlanta’ (standard model) in Eastcote.
36 scramblers, a scrambler being formed by three vertically adjacent rotors

Fig. 183. US Navy BOMBE for 4-Rotor-ENIGMA.
16 scramblers, a scrambler being formed by four vertically adjacent rotors
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than the Turing–Welchman BOMBE. Moreover, it was expected to have these
machines operating by the spring of 1943. Desch and his group “thought
that American technology and mass production methods could work mir-
acles”(Burke). Desch, however, rejected the request by Joseph N. Wenger
to build an electronic version: “An electronic BOMBE was an impossibil-
ity.” He was wise: for a ‘super-BOMBE’ he had calculated 20 000 tubes,
while the British needed only about 2000 tubes for COLOSSUS.
The British could do no more than help the Navy of their ally. Howard Eng-
strom had sent Joseph Eachus in July 1942 to Bletchley Park. Turing traveled
November 7–13, 1942 on the Queen Elizabeth over the Atlantic Ocean and
departed again from New York harbor on the night of March 23, 1943 on the
troop carrier Empress of Scotland to arrive with luck in a British harbor on
March 29. He made good use of the four months in the USA, meeting also
Claude Elwood Shannon at Bell Labs while doing work on voice scrambling.
Turing found Op-20-G well budgeted for money and the most able people, but
security measures tighter than those for the Atomic Bomb project prevented a
deeper contact. NCR in Dayton, Ohio provided the setting for the BOMBEs.
Despite the efforts of Eachus, it took longer than expected, and by the spring
of 1943 only two prototypes, ADAM and EVE, were halfway ready. Franklin
Delano Roosevelt himself gave the project support and impetus. Turing was
in February 1943 also shown the buildup of the Army Bombe X-68 003.
Meanwhile, the situation in the Atlantic improved for the Allies, mainly
thanks to B.P. decryptions. Desch had particular problems with fast spin-
ning electromechanical scramblers with brush contacts. In mid-June 1943
it was hoped to overcome the difficulties soon. When on July 26, 1943, 13
production models did not function at all, it looked like the whole project
would be killed.
But Desch did not give up. The mechanical difficulties were surmounted
step by step and reliability increased. In September 1943, the first ma-
chines built by NCR were sent from Dayton to Washington, where they
were to start work. By mid-November 50 BOMBEs were in operation, alto-
gether 125 were built. In 1944, success was certain, although it took slight-
ly longer than optimistically projected and cost almost three times as much
as planned, but after all a Desch BOMBE N-530, N-1530 (the project was so
secret that the machine did not even have a name) cost only $ 45 000 .
Britain did not have the first of its very few 4-wheel bombes until early
summer 1943. The US Navy 4-rotor BOMBE (Fig. 183) Desch had developed
comprised 16 4-rotor scramblers and a Welchman diagonal board and was
200 times faster than the Polish bomba, 20 times faster than the Turing–
Welchman BOMBE (the specification had said 26 times faster). It was still
30% faster than the 1943 British Bombe attachment WALRUS (‘COBRA’)
directed against 4-rotor ENIGMAs of the Kriegsmarine. Op-20-G had caught
up: by December 1943 the decryption of a ‘Triton’ ENIGMA signal took on
average only 18 hours, compared to 600 in June 1943. In contrast to their
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British cousins, they localized the scrambler positions and controlled the
whole job by digital electronics with 1500 thyratrons (gas-filled tubes). The
Desch BOMBEs proved to be so reliable that by the end of 1943 all work on
the decryption of the ‘Triton’ key net of the German U-boats was assigned
to the US Navy—a great step forward from the rivalries of mid-1942.
The BRUSA pact Cooperation in Code/Cipher Matters of May 1943 between
the USA and the UK, and for their navies in particular the Holden34 Agree-
ment of October 1942 “began to move the two nations towards a level of un-
precedented cooperation” (Burke) in cryptanalysis. But some frictions and
tensions remained. “It was not until the UKUSA agreement of 1946 that
the two nations forged that unique relationship of trust that was maintained
throughout the Cold War”(Burke).

VIPER and PYTHON were American machines directed against the Japa-
nese rotor cipher machines. They were built from relays and stepping swit-
ches, and little by little equipped with electronic additions.
Finally, towards the end of the war, the inevitable transition to truly elec-
tronic machines was made: Op-20-G built RATTLER against Japan’s JN-157
while SIS built in 1945 a successor to the relay-based AUTOSCRITCHER
which was correspondingly called SUPERSCRITCHER35. Op-20-G also built
DUENNA, which did not enter service until November 1944, and the British
built GIANT, a contraption of four bombes linked together with common
control—names that did not exist until recently in the open literature. All
these machines were directed against cross-plugging and reflector plugging.
Another subject Alan Turing approached in 1943, after his return from the
USA, was speech encipherment. The design of DELILAH started in Sep-
tember 1943, construction in June 1944; it was just finished by May 6, 1945.

19.7.4 The advent of computers. The idea of the universal stored-pro-
gram computer, which had originated in mid-1940 with Eckert and Mauchly
and had been elaborated by von Neumann and Goldstine, was pretty soon, al-
though not publicly, influencing cryptanalysis with machines. James T. Pen-
dergrass of Op-20-G, in a report submitted late in 1946 and kept Top Secret
until 1993, strongly advocated the use of universal computers. It started in
1948 with ABNER at SIS (a development that took four years) and the AT-
LAS efforts going back to August 1947 at Op-20-G (supplementing those al-
ready mentioned in Sects. 17.3.5 and 18.6.3 ). The National Security Agency,
the ‘super’ authority, successor to both SIS and Op-20-G, gave great impact
to the emerging computer field. Howard H. Campaigne, Samuel S. Snyder,
and Erwin Tomash reported on the influence of US cryptological organiza-
tions on the aspiring digital computer industry. Some former Navy reserve

34Carl F.Holden, Capt. USNavy, Director of Naval Communications.
35The expression ‘scritchmus’ comes from the jargon of Bletchley Park (“I cannot now

recall what technique was nicknamed a scritchmus,” wrote Derek Taunt) and the method
was developed by Dennis Babbage. For the origin see also Sect. 14.5 . Ralph Erskine
thinks ‘scritching’ comes from ‘scratching out contradictions’.
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officers, Howard T. Engstrom, William C. Norris, and Ralph Meader founded
a private company, Engineering Research Associates, Inc. (E.R.A.) early in
1946; they were assisted by Charles B. Tompkins and John E. Howard and
cooperated with Joseph Eachus and James T. Pendergrass of Op-20-G. They
developed computers in close contact with the Navy. The milestone was
Task 13, renamed ATLAS in 1948, delivered in December 1950. This led to
a marketing of the computer ERA 1101 (announced in December 1951). Its
successor (Task 29, code-named ATLAS II, completed in 1953) was marketed
as ERA 1103 and was an immediate success. E.R.A. became a Remington
Rand subsidiary in 1952. By 1954, Remington Rand enjoyed a strong sec-
ond position in the market with the improved 1101A (and the UNIVAC II
developed by the Eckert-Mauchly group).
Their competitor IBM, the leader on the market, announced in 1951 the De-
fense Calculator, renamed IBM 701 and marketed in 1953; the initial delivery
of the 701 to a commercial buyer took place in April 1953, of the ATLAS II
to the government in October 1953. IBM’s STRETCH developed from the
N.S.A. HARVEST of 1962.
In the 1970s, Seymour R. Cray (1925–1996), an electrical engineer who for-
merly worked at E.R.A. under Engstrom, formed his own company and in
1976 designed the CRAY-1 . N.S.A. still partly relies on commercial manufac-
turers. The sensitive circuitry of CRAY computers hides some of the crypt-
analytic algorithms N.S.A. is relying upon. The Cold War in its present,
miniature form has crept into the chips.
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It would not be an exaggeration to state
that abstract cryptography is identical

with abstract mathematics.
A. Adrian Albert 1941

20.1 Reduction of Linear Polygraphic Substitutions

In favorable cases, a linear polygraphic substitution with an encryption width
n can be reduced to an exhaustion of width n, namely if a decryption of a
set of n frequently occurring crypto n-grams into a set of n plain n-grams
can be guessed. This is sometimes easier than it looks at first sight, if a long
enough probable word can be assumed that is met in n different phases.

20.1.1 Example. To keep the computations verifiable, we limit ourselves
to an example with n = 3. Given the cryptotext

F D Y S W I J X N Z N S N R E N H UWA WM I E I E XW S X

E S I G Q J N T B D BWD P U ... ... ...

we assume that we have in the circumstances a linear polygraphic substitution
of width 3 over the standard alphabet—possibly a second trial in a series
of trials with increasing encryption width. The cryptotext then reads in
trigrams over Ÿ26

5 3 24 18 22 8 9 23 13 25 13 18 13 17 4 13 7 20 22 0 22 12 8 4

8 4 23 22 18 23 4 18 8 6 16 9 13 19 1 3 1 22 3 15 20 .... .... ....

and we assume that the (boldface) trigrams 13 17 4 , 22 0 22 and 6 16 9

appear quite frequently in the further cryptotext. In view of the very frequent
occurence of /ation/ in English, French and German, we can try the conjec-
ture that the three plaintext trigrams /ati/, /tio/ and /ion/ are involved; in
which order remains to be seen.
In Ÿ26 the plaintext trigrams are 0 19 8 , 19 8 14 and 8 14 13 . Therefore,
the matrix X of the linear substitution is determined as follows, where P is
a permutation matrix unknown at the moment:⎛

⎝ 0 19 8
19 8 14
8 14 13

⎞
⎠X = P

⎛
⎝ 13 17 4

22 0 22
6 16 9

⎞
⎠ .
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There are six solutions in Ÿ26 for the 6 = 3! permutations. We can imagine
that after trying two or three of them, we found the following⎛
⎝ 0 19 8

19 8 14
8 14 13

⎞
⎠X =

⎛
⎝ 22 0 22

6 16 9
13 17 4

⎞
⎠ to give X =

⎛
⎝ 12 8 17

8 18 24
13 19 14

⎞
⎠ ,

which seems to be the right path, since translated into the letter alphabet,

X =

⎛
⎝M I R

I S Y
N T O

⎞
⎠ comes from the ‘reasonable’ password MINISTRYO [F ].

This confirms the solution in Rohrbach’s sense.

20.1.2 A pitfall. But there is a complication. If we now try to decrypt
the cryptotext, we might look for an inverse matrix X and surprisingly find
there is none. In fact, the use of a ‘reasonable’ password does not guarantee
that the encryption is injective, and X is not injective: the vector (0 13 0)
is annihilated by X . This means, that even the authorized decryptor has the
fun of looking for the ‘right’ solution:

to 5 3 24 belong 8 0 5 =̂ i a f and 8 13 5 =̂ i n f ;
to 18 22 8 belong 14 4 12 =̂ o e m and 14 17 12 =̂ o r m and so on.

The polyphone decryption is:
a e i c b f g ai f o m d r e t i n o n a i o an r v p o s t n
e i g i a h hl a d o s a t o n b o t o r ... ... ... .r v t v n u u

The correct plaintext is easily discovered: “inform direction of national radio
station about our ... .”

20.2 Reconstruction of the Key

If a quasi-nonperiodic key of a polyalphabetic linear polygraphic substitution
of width n is generated by iteration of a regular n × n matrix A over ŸN , a
swapping of roles between plaintext and keytext can be made. A probable
word of length k, k ≥ n2 + n is shifted along the cryptotext and subtrac-
ted in every position. What remains is in favorable cases a key fragment
(sM+1, sM+2, . . . sM+n2+n, sM+k) of a length k ≥ n2 + n . The n equations

(sM+1, sM+2, . . . sM+n) A = (sM+n+1, sM+n+2, . . . sM+2n)
(sM+n+1, sM+n+2, . . . sM+2n) A = (sM+2n+1, sM+2n+2, . . . sM+3n)

(sM+2n+1, sM+2n+2, . . . sM+3n) A = (sM+3n+1, sM+3n+2, . . . sM+4n)
...

(sM+n2−n+1, sM+n2−n+2, . . . sM+n2) A = (sM+n2+1, sM+n2+2, . . . sM+n2+n)

in ŸN suffice to determine A ; for k > n2 +n we even have an overdetermined
system of linear equations.
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To give an example, the three pairs of numbers (1 0), (3 5), (23 22) are
obtained from (1 0) by two iterations with a matrix A ; A is determined by

(1 0)A=(3 5) and (3 5)A=(23 22) ; thus
(

1 0
3 5

)
A=

(
3 5
23 22

)
and the result in Ÿ26 is A=

(
3 5
8 17

)
.

If in the favorable case the position of the probable word fits, then the system
can be solved, and for the overdetermined case some such systems are solvable
and give a common solution, strongly indicating a correct solution. In the
unfavorable case that the position of the probable word does not fit, the
system or one of the systems may not be solvable. If it is accidentally solvable,
then the keytext can be prolonged and subtracted from the crypto text, which
as a rule produces nonsense text—indicating a flop. For a sufficiently long
probable word, the key is normally completely revealed, and mishits should
not occur.

20.3 Reconstruction of a Linear Shift Register

Linear shift registers in the wider sense fall as a special case under the kind of
attack treated in Sect. 20.2 . In this case, the matrix A is an n×n companion
matrix (Sect. 8.6.1),

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 αk

1 0 0 . . . 0 αk−1

0 1 0 . . . 0 αk−2

...
0 0 0 . . . 0 α2

0 0 0 . . . 1 α1

⎞
⎟⎟⎟⎟⎟⎟⎠ .

If a key is generated by iteration with such an n×n companion matrix, then
a fragment of length 2n of the key text suffices to reconstruct the companion
matrix and thus to generate the whole key.
Again, to keep the computations easily verifiable, we limit ourselves to an
example with n = 4. Assume we have the following cryptotext:

C G V J F M C I H T X U F S D Y V L M R ... ... ... ... ...

Assume, too, that in the circumstances the encryption is a monographic,
simple VIGENÈRE with a quasiperiodic key sequence generated by a linear
polygraphic substitution of width 4 in Ÿ26 . Among the probable words we
conjecture the word /broadcast/ .
We may start with the hypothesis that the probable word is right at the
beginning. We then have the situation (p plaintext, k key, c=p+k ciphertext)
c C G V J F M C I H T X U F S D Y V L M R ...

2 6 21 9 5 12 2 8 7 19 23 20 5 18 3 24 21 11 12 17 ...
p b r o a d c a s t

1 17 14 0 3 2 0 18 19
c − p 1 15 7 9 2 10 2 16 14
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This yields the iteration equation in Ÿ26⎛
⎜⎜⎜⎝

1 15 7 9
15 7 9 2
7 9 2 10
9 2 10 2
2 10 2 16

⎞
⎟⎟⎟⎠
⎛
⎜⎝

0 0 0 t1
1 0 0 t2
0 1 0 t3
0 0 1 t4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

15 7 9 2
7 9 2 10
9 2 10 2
2 10 2 16
10 2 16 14

⎞
⎟⎟⎟⎠

and the overdetermined linear system⎛
⎜⎜⎜⎝

1 15 7 9
15 7 9 2
7 9 2 10
9 2 10 2
2 10 2 16

⎞
⎟⎟⎟⎠
⎛
⎜⎝

t1
t2
t3
t4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

2
10
2
16
14

⎞
⎟⎟⎟⎠ ,

which cannot be solved: The first four lines can be transformed by Gaussian
elimination into⎛

⎜⎝
1 15 7 9
0 1 9 9
0 0 1 17
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

t1
t2
t3
t4

⎞
⎟⎠ =

⎛
⎜⎝

2
18
0
8

⎞
⎟⎠ ,

with a solution by back-substitution
t4 = 8, t3 = 20, t2 = 0, t1 = 24 ,

but this obviously does not fulfill the fifth equation.

The next hypothesis to be tested could be that the probable word begins at
the second position of the plaintext, which leads to the situation

c C G V J F M C I H T X U F S D Y V L M R ...
2 6 21 9 5 12 2 8 7 19 23 20 5 18 3 24 21 11 12 17 ...

p b r o a d c a s t
1 17 14 0 3 2 0 18 19

c − p 5 4 21 5 9 0 8 15 0

and to the iteration equation in Ÿ26⎛
⎜⎜⎜⎝

5 4 21 5
4 21 5 9
21 5 9 0
5 9 0 8
9 0 8 15

⎞
⎟⎟⎟⎠
⎛
⎜⎝

0 0 0 t1
1 0 0 t2
0 1 0 t3
0 0 1 t4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

4 21 5 9
21 5 9 0
5 9 0 8
9 0 8 15
0 8 15 0

⎞
⎟⎟⎟⎠ .

This yields the overdetermined linear system⎛
⎜⎜⎜⎝

5 4 21 5
4 21 5 9
21 5 9 0
5 9 0 8
9 0 8 15

⎞
⎟⎟⎟⎠
⎛
⎜⎝

t1
t2
t3
t4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

9
0
8
15
0

⎞
⎟⎟⎟⎠ ,
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which can be solved: the first four lines can be transformed by Gaussian
elimination into⎛

⎜⎝
1 6 25 1
0 1 23 7
0 0 1 4
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

t1
t2
t3
t4

⎞
⎟⎠ =

⎛
⎜⎝

7
18
23
3

⎞
⎟⎠ ,

with a solution by back-substitution
t4 = 3, t3 = 11, t2 = 4, t1 = 17,

which obviously does fulfill the fifth equation:
9×17+0×4+8×11+15×3 = 286 =11×26 = 0 modulo 26

The iteration matrix for the continuation of the key text is thus in Ÿ26

A =

⎛
⎜⎝

0 0 0 17
1 0 0 4
0 1 0 11
0 0 1 3

⎞
⎟⎠ with the inverse A−1 =

⎛
⎜⎝

12 1 0 0
7 0 1 0
9 0 0 1
23 0 0 0

⎞
⎟⎠ .

Therefore, the key k = c − p can be supplemented to

2 5 4 21 5 9 0 8 15 0 15 7 25 4 24 23 20 9 19 3 ...

and leads to the following decryption (p = c − k)

c C G V J F M C I H T X U F S D Y V L M T ...
2 6 21 9 5 12 2 8 7 19 23 20 5 18 3 24 21 11 12 17 ...

k 2 5 4 21 5 9 0 8 15 0 15 7 25 4 24 23 20 9 19 3 ...
0 1 17 14 0 3 2 0 18 19 8 13 6 14 5 1 1 2 19 14 ...

p a b r o a d c a s t i n g o f b b c t o ... .

(“A broadcasting of BBC tonight announced the Allied invasion to be ex-
pected within forty-eight hours.”)

The last column of the iteration matrix is deduced from the password

(FID)DLER
.= (5 8 3) 3 11 4 17 .

For a key sequence generated by a binary linear shift register in connection
with a VIGENÈRE over Ÿ2, i.e., a VERNAM , everything said above holds,
too. A shift register encryption should be nonlinear to avoid this line of
attack (Beth et al. 1982).
Quite generally, linear substitutions are much more vulnerable to cryptana-
lytic attacks than non-linear ones.
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Abandonner les méthodes de substitution pour celles de transposition
a été changer son cheval borgne pour un aveugle.

[Abandoning the methods of substitution for those of transposition
was like changing one’s one-eyed horse for a blind one.]

Étienne Bazeries 1901

Transpositions were for a while the favorites of the military, particularly in the
late 18th and early 19th century in France, Germany, Austria, and elsewhere.
They seemed to be suitable above all as field ciphers (‘trench codes’) for the
lower ranks. Bazeries, around 1900, made fun of this and generally ascribed
to transposition systems that seemed difficult at first sight a complication
illusoire. Cryptanalysts usually loved adversaries that used simple transpo-
sitions (like the German Abwehr hand ciphers) because they promised to be
easy prey; likewise the literature treats cryptanalysis of transpositions as
relatively unsophisticated.

21.1 Transposition

Simple transposition (Sect. 6.2.1), i.e., throwing single characters about, with
small encryption width n , can be treated for very small known n by system-
atic studies of contact in bigrams, possibly also in trigrams and tetragrams of
characters. In the Second World War, the cryptanalytic services in the Ger-
man Auswärtiges Amt (Pers Z) and Oberkommando der Wehrmacht (Chi)
used special machines, called Spezialvergleicher and Bigrammbewertungsgerät
(Rohrbach, Jensen) for the semiautomatic solution of simple column trans-
position and simple block transposition. Essentially, the exhaustive scissors-
and-paste method of Sect. 12.8.2 was mechanized. A piece of cryptotext was
confronted with the whole cryptotext in all relative positions and for the
observed bigrams the theoretical bigram frequencies were multiplied, then
positions where this product was high were singled out. The method is even
helpful if the columns of a columnar transposition do not all have the same
length.
For the US Army, towards the end of the war SIS built FREAK, a bigram
counter based on electric condensers, a substitute for the 1943 NCR-built
MIKE which, according to Burke, was “a huge electromechanical contrap-
tion.”
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21.1.1 Example. We consider an example of this ‘contact method’ for the
following cryptotext:

S S N K L H O N I W MM E U N T A H U L I N N A H N C I N F C I E R O

N A C B A M Z G H N K T HWC D E S I N K C A I E A N I M

Counting the frequencies of single letters results in a distribution not very
different from that of the German language and allows us to consider trans-
position. The total number of characters is 64, which even suggests a trans-
position with an 8 × 8 or 4 × 16 square. Trying the 8 × 8 square

S I A H E M W C
S W H N R Z C A
N M U C O G D I
K M L I N H E E
L E I N A N S A
H U N F C K I N
O N N C B T N I
N T A I A H K M

we take a column (it could also be a line) that contains many frequent char-
acters, say the 5th, ERONACBA, and confront it with the other columns. The
resulting bigrams and their expected frequency (see Table 11, in %%) is given
in the following diagram (empty entries mean a frequency below 0.5%%):

ES 140 E I 193 EA 26 EH 57 EM 55 EW 23 EC 25
RS 54 RW 17 RH 19 RN 31 R Z 14 R C 9 RA 80
ON 64 OM 17 OU 3 OC 15 OG 5 OD 7 O I 1
NK 25 NM 23 NL 10 N I 65 NH 17 N E 122 NE 122
AL 59 A E 64 A I 5 AN 102 AN 102 A S 53 AA 8
CH 242 CU CN CF CK 14 C I 1 CN
BO 8 B N 1 BN 1 BC BT 4 B N 1 B I 12
AN 102 AT 46 AA 8 A I 5 AH 20 AK 7 AM 28

The confrontation of the column ERONACBA with the column SSNKLHON

shows clearly higher frequencies than the others. Multiplying the frequencies
gives the value 1.41 × 1014 × 10−32 = 1.41 × 10−18 , while all other columns
give values below 3.74 × 109 × 10−32 = 3.74 × 10−23 . Because of this good
result, the next column we test is the first, SSNKLHON. Now the confrontation
with the not yet used columns gives

S I 65 SA 36 SH 9 SM 12 SW 10 S C 89
SW 10 SH 9 SN 7 S Z 7 S C 89 S A 36
NM 23 NU 33 NC 5 NG 94 ND 187 N I 65
KM 1 KL 10 K I 7 KH 1 K E 26 KE 26
L E 65 L I 61 LN 4 LN 4 L S 22 LA 45
HU 11 HN 19 HF 2 HK 3 H I 23 HN 19
ON 64 ON 64 OC 15 OT 9 ON 64 O I 1
NT 59 NA 68 N I 65 NH 17 NK 25 NM 23

This time, confrontation with the column WCDESINK stands out, not as
clearly as before, but with a product of 3.50 × 1012 × 10−32 = 3.50 × 10−20

still indubitably, since all others are below 5.39×1011×10−32 = 5.39×10−21 .
Daring to continue with the 7th column WCDESINK, the next confrontation
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gives a preference for the 3rd column AHULINNA. If the columns which are
singled out in this way are written side by side, the result so far is

ESWA
RS CH
ONDU
NK E L
AL S I
CH I N
BONN
ANKA

Surprisingly, this is already plaintext; since the columns used so far are the
5th, the 1st, the 7th and the 3rd, it is quite likely that the transposition uses
a 4 × 16 square. The remaining columns are simply subjected now to the
same permutation, doubling the length of the columns:

M I CH
ZWAN
GM I C
HM E I
N E AN
K U NF
T N I C
H TM I

The complete plaintext reads
,,es war schon dunkel als ich in bonn ankam ich zwang mich meine ankunft
nicht mi [t der automatik ...]“(Heinrich Böll, Ansichten eines Clowns, 1963).

21.1.2 Shifted columns. In the example just discussed the first column of
the plaintext had more of the frequent letters than the other columns. This
will usually not be the case, and not only the contact to the right, but also
the contact to the left will need to be investigated. As soon as the very first
or the very last column of the plaintext is reached, continuation makes sense
only with columns shifted by one place. Using trigram frequencies increases
the number of exhaustive steps, but may give more stable permutations.

21.1.3 Caveat. We have seen that simple transposition with fixed en-
cryption steps of some width provides no security if the text is a few times
longer than the width. Transposition with a width equal to the length of the
text, as a rule, allows more than one ‘meaningful’ solution, even for very long
texts. A smart lawyer therefore could have saved Brother Tom of Jonathan
Swift (Sect. 6.3), if he had found another, harmless solution of the anagram.
However, the security this kind of transposition offers rests fully on the one-
time use of the permutation of the places, which means an individual key. As
soon as such an encrypting transposition step is used a few times, the simple
attack of Sect. 21.1.1 can be tried, and a specific method to be discussed in
Sect. 21.3 .

21.1.4 Codegroup patterns. Even when code has been superencrypted
by simple transposition, it can be treated in the way mentioned above if
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its codegroups have certain patterns. For example, this is the case if ‘pro-
nounceable’ codegroups are built in a vowel-consonant pattern, like CVCVC
in the GREEN code of the US State Department (Sect. 4.4.2). Still in the
Second World War, the US State Department used codes of type CVCVC and
CVCCV , a property which also helped AA/Pers Z (Sect. 19.4.1.2) to strip off
an additive.

21.1.5 Illusory complication. Furthermore, the ‘contact method’ works
also for mixed-rows columnar transposition and mixed-rows block transposi-
tion (Sect. 6.2.3), since the contact is only occasionally interrupted. It yields
an intermediate cryptotext with permuted lines; for example, in our 8 × 8
square

M I CHZWAN AL S I CH I N ONDUNKEL NEANKUNF

GM I CHME I ESWARSCH TN I CHTMI BONNANKA .

Both Givierge and Eyraud pointed out that transposition double in the form
of mixed-rows columnar transposition and mixed-rows block transposition,
including Nihilist transposition, are not much more resistant than the sim-
plest columnar transposition. The double suggests a complication illusoire.

21.2 Double Columnar Transposition

Double columnar transposition (Sect. 6.2.4)—except in particular cases, as in
Sect. 6.2.5—is a much harder task for the unauthorized decryptor. The reason
is that after the first transposition all contacts are completely torn. Eyraud
treats the case in some detail, but is unable to give a complete method. Koza-
czuk describes how the Polish side solved German Doppelwürfelverfahren.
Kahn: “... in theory the cryptanalyst merely has to build up the columns
of the second block by twos and threes so that their digraphs and trigraphs
would in turn be joinable into good plaintext fragments. But this is far more
easily said than done. Even a gifted cryptanalyst can accomplish it only on
occasion; and even with help, such as a probable word, it is never easy.”
A really powerful means of attack, if possible, is multiple anagramming.

21.3 Multiple Anagramming

For the most general case of transposition, even with a width about as large as
the full text, including also grilles and route transcriptions, there is a general
method, requiring nothing more than that two plaintexts of the same length
have been encrypted with the same encryption step, i.e., that the encrypting
transposition step has been repeated at least once. Such a plaintext-plaintext
compromise suggests a parallel to Kerkhoffs’ method of superimposition.

21.3.1 Example. The method is based on the simple fact that equal en-
cryption steps perform the same permutation of the plaintext. The crypto-
texts are therefore written one below the other and the columns thus formed
are kept together. Assume we have (in phase) the cryptotext fragments
(Kahn) GHINT and OWLCN .
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This means that the five pairs G H I N T
O W L C N

are to be anagrammed. Among the 5×4 = 20 combinations only the following
twelve (in descending contact order)

TH NG GT IN TI NI GH H I IG TN HT GI
NW CO ON LC NL CL OW WL LO NC WN OL

have sufficiently large contact at both levels. Using only the first four com-
binations, there is just the meaningless solution INGTH

LCONW and even with the
first eight combinations only cyclic shifts of this solution are obtained, as the
following graph with five nodes and eight branches shows:

G
O

N
C

I
L

H
W

T
N

Using also the ninth combination, there is a further solution NIGTH
CLONW which

is senseless. Only with the first eleven combinations is the meaningful solu-
tion NIGHT

CLOWN (and its cyclic shifts) obtained, which can be seen from the
following graph with five nodes and eleven branches:

G
O

N
C

I
L

H
W

T
N

Thus, NIGHT and CLOWN are the solutions obtained by multiple anagram-
ming. “There will be one order—and only one—in which the two messages
will simultaneously make sense” was in 1879 the empirical finding of Ed-
ward S. Holden.

21.3.2 Practical use. The example shows that multiple anagramming of
two or more cryptotexts can be treated as a graph-theoretic problem, where
the number of nodes equals the length of the texts. Mechanized calculation
of the feasible combinations is possible. The combinatorial complexity of the
search problem of finding a path through all nodes without visiting a node
twice limits the length of texts that can be treated this way. If about half a
dozen texts of length say 25, 36, 49, 64, 81, or 100 are given, as was frequently
the case with field ciphers, multiple anagramming with some computer sup-
port can be done quickly. Multiple anagramming is particularly important for
transpositions made by means of grilles and route transcriptions, since these
devices are prefabricated and as a rule destined for multiple use. Superen-
cryption of a polyalphabetic substitution (chiffre à triple clef of Kerkhoffs)
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by transposition withstands the contact method of multiple anagramming.
This is not to say that there are no other ways to attack it.

21.3.3 Hassard, Grosvenor, Holden. Transposition can also be done
with words instead of with letters; then multiple anagramming of words is
the cure. Multiple anagramming was invented or at least for the first time
made public in 1878—five years before Kerckhoffs—by John R. G. Hassard
and William M. Grosvenor, two editors of the New York Tribune (which co-
operated), and independently in 1879 by E. S. Holden, already mentioned, a
mathematician at the US Naval Observatory in Washington. The reason for
such a massive effort was a scandal in the US Senate, based on some hun-
dreds of encrypted telegrams. An amateurish system was used: plaintext
with disguised proper names and revealing words was written into a grille,
and four such grilles were used with 15, 20, 25, and 30 words. The telegrams
were decrypted independently and coinciding solutions were obtained which
ensured their correctness and authenticity. Revealing the scandal had deep
political consequences, moreover the American public became intensely in-
formed about secret codes and how to break them. Possibly the preference
in the USA for cryptograms as a pastime stems from this source.
In 1914, the French under Colonel François Cartier had learned their lesson
when they were confronted with the Heer of the German Kaiser, which used
a double columnar transposition as trench code. This was not new for the
French, since the Germans stupidly had used the method already in peacetime
to a great extent for drill messages. To make it more obvious, all signals were
marked by the codegroup ÜBCHI (Übungschiffre) in the preamble; the French
therefore called the system ubchi . With multiple anagramming they could
pretty soon decrypt the messages at least in large fragments (a typical situ-
ation). This allowed them to reconstruct the password. On October 1, 1914
Cartier and his aides Adolphe Olivary, Henri Schwab, and Gustave Freyss
gave the decryption rule to various French headquarters, enabling them to
read the German wireless traffic as quickly as the Germans themselves. This
situation lasted until mid-November 1914.
The generals of the Kaiserliche Heer then made a terrible blunder: they
changed from the obstinate, time-consuming double columnar transposition
to a simple columnar transposition, superencrypted by a VIGENÈRE ad-
dition with key ABC, which could be done in the head. This complica-
tion illusoire—stripping off the addition only needed a look at the frequency
profile—allowed the French to use contacts in solving a single columnar trans-
position, which was a simple matter. The situation lasted until May 1915
and saved the French a lot of work.
Although Le Matin had published the story of the French success in October
1914, the German army returned to transposition at the end of 1916, this
time using a turning grille. This lasted four months and caused no problem
for the French, of course.
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Insufficient cooperation in the development of one’s own proce-
dures, faulty production and distribution of key documents, incom-
plete keying procedures, overlooked possibilities for compromises
during the introduction of keying procedures, and many other cau-
ses can provide the unauthorized decryptor with opportunities.

Erich Hüttenhain1 1978

The history of cryptology shows that the unauthorized decryptor feasts on the
mistakes of the adversary (Sect. 11.2.5). Simple encryption errors are made by
crypto clerks. Tactical and strategic cryptographic faults occur in intelligence
and communication organizations at all levels up to generals and directors.
This even includes political questions of organization. The split among the
services in Germany before and during the Second World War, ultimately
but not merely a consequence of the rivalry between Ribbentrop, Göring, and
Himmler, and the division into Sonderdienst Dahlem in the Abteilung Pers Z
of the Auswärtiges Amt, Chiffrierabteilung (Chi) in the Oberkommando der
Wehrmacht, B-Dienst of the Kriegsmarine, Forschungsamt of the Reichs-
luftfahrtministerium (founded 1933), and Amt VI of the Reichssicherheits-
hauptamt was extremely counterproductive; the British concentrated their
services from the very beginning of the tensions under the Foreign Office in
the Government Code and Cypher School, and even the military services did
not feel badly served, not to mention the secret services, M.I.6 (under Stewart
Menzies) and the American O.S.S. (under David Bruce); the partners all sat
together in Winston Churchill’s secret ‘London Controlling Section’ (L.C.S.) .
But both the Germans and the British (with their ‘need to know’ doctrine)
maintained internal barriers for reasons of intelligence security; their effect
was that no one division could learn enough from the others to be useful,
which also allowed them sometimes to hush up flops and failures.
It is more a matter for historians than for cryptologists to judge to what
extent results from cryptology have influenced war and peace. A voluminous
journalistic record includes everything from serious discussion to sensation-
alist revelations.

1 Dr. Erich Hüttenhain (January 26, 1905 –December 1, 1990) studied mathematics (Hein-
rich Behnke) and astronomy in Münster. In 1936 he entered the Cipher Board (Chi) of
the Oberkommando der Wehrmacht (OKW); he was finally head of group IV (ana-
lytic cryptanalysis) in the Hauptgruppe Kryptanalyse of Ministerialrat Wilhelm Fenner
who worked there from 1922 and considered mechanized solving ‘a remote possibility, the
fancy of some analysts’ (Rebecca Ratcliff). After the war Hüttenhain directed from 1956
until 1973 an office of the Federal Government in Bad Godesberg, the Bundesstelle für
Fernmeldestatistik, later renamed more fittingly Zentralstelle für das Chiffrierwesen
(‘German Cipher Board’). His successor (1973–1993) was Dr.Otto Leiberich.
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Nigel de Grey

Dillwyn Knox

Erich Hüttenhain

Georges-JeanPainvin

William Friedman (seated) with (from left)
Solomon Kullback,
Frank Rowlett and
Abraham Sinkov
(Arlington Hall, 1944)

Hans Rohrbach Andreas Figl Yves Gyldén

Fig. 184. Some famous 20th century cryptanalysts

22.1 Success in Breaking

Cryptography itself has its enemies. Generals and ambassadors sometimes
consider the trouble not worthwhile. They may feel that depending on a
crypto clerk is time-wasting and humiliating, and may doubt his or her hon-
esty. The great philosopher Voltaire even went so far as to call codebreakers
charlatans: ceux qui se vantent de déchiffrer une lettre sans être instruit des
affaires qu’on y traite ... sont de plus grands charlatans que ceux qui se van-
teraient d’entendre une langue qu’ils n’ont point apprise [Those who boast of
being able to decrypt a letter without being informed on the affairs it deals
with ... are greater charlatans than those who would boast of understanding a
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language they had not learned]. And the Earl of Clarendon, a hundred years
earlier, wrote in a letter to the doctor John Barwick “I have heard of many
of the pretenders of that skill, and have spoken with some of them, but have
found them all to be mountebanks.” In 1723, the British House of Commons
spoke of the ‘mystery of decyphering’. Public opinion on cryptographers has
improved slightly since. Still, cryptanalysts cannot do miracles.
Some names of successful unauthorized decryptors have become known: in
the First World War the British William R. Hall, Nigel de Grey, Malcolm Hay
of Seaton, Oswald Thomas Hitchings, the French Georges Painvin, François
Cartier, Marcel Givierge, the US American Parker Hitt, J. Rives Childs,
Frank Moorman, Joseph O. Mauborgne, Herbert Osborne Yardley, Charles
J. Mendelsohn, the Italian Luigi Sacco, the Austrian Maximilian Ronge, An-
dreas Figl, Hermann Pokorny, the Prussian Ludwig Deubner and the Bavar-
ian Ludwig Föppl. Many more were forgotten and never publicized. In the
Second World War, there was an even greater number of persons involved in
codebreaking, many during wartime only. In Fig. 184, photographs of some
famous 20th century cryptanalysts can be found. In a recent book edited by
Francis Harry Hinsley and Alan Stripp, memoirs of some 30 Bletchleyites,
as they were proudly called, are collected. It is partly accidental whether a
cryptanalyst becomes known—Fedor Novopaschenny at the Reichswehr Chi-
Stelle, Walter Seifert and Georg Schröder at the Forschungsamt, and Fritz
Neeb at Army Group Mitte are examples. Cort Rave (see Sect. 19.4.1.2)
remained totally unnoticed, and so did until recently Hans-Joachim Frowein
from theB-Dienst and Sergei Tolstoy, a great codebreaker of the Soviet Union.

22.1.1 B-Dienst, Chi-Stelle, Sonderdienst Dahlem. A person who
lived in the background until David Kahn made his name public is Wilhelm
Tranow. A former radioman in the Kriegsmarine, he cracked Royal Navy
signals in the First World War and was successful again in 1935. During
the Second World War he was Head Cryptanalyst of the German Navy’s
B-Dienst2. Perhaps as a result of the way the Second World War ended,
little has been known about German codebreaking (apart from Rohrbach’s
success), but it would be wrong to conclude that there were none. As an
unbiased historian, David Kahn describes the situation in mid-1943 of the
B-Dienst under the regime of the experienced and energetic Tranow as fol-
lows: “... the B-Dienst was at the height of its powers, solving 5 to 10%
of its intercepts in time for Dönitz to use them in tactical decisions. Early
information sometimes enabled him to move his U-boats so that a convoy
would encounter the middle of the pack.” One thousand men worked for
Tranow at Berlin headquarters, and 4000, many intercept operators, in the
field (Kahn). Indeed, from April 1940 on, the B-Dienst broke a third to a
half of the current naval cypher, including the British Merchant Navy Code.
When the British introduced Naval Cypher No. 2 (German codename ‘Köln’)

2 Short for Beobachtungsdienst , originated from the Beobachtungs- und Entzifferungs-
dienst of the Kaiserliche Marine, therefore sometimes also called χB-Dienst or xB-Dienst.
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Fig. 185. Entry in the war diary (June 15, 1943) of the Chief, German Navy radio recon-
naissance: “Since at present none of the main English cyphers can be read ...
The identified change of the ‘Frankfurt’ key was communicated by X-B report
1145A to ... ”

on August 20, 1940, it was partly broken towards the end of 1940 and fully in
February 1941, and remained so for more than two years. Thus during the cli-
max of the U-boat war, Naval Cypher No. 3 (German codename ‘Frankfurt’),
introduced in June 1941 for the Allied Atlantic convoys, was compromised.
The task included stripping off the superencryption of what actually was a
code, and for this purpose six Hollerith tabulating machines were used to find
parallels. By the end of 1942, 80% of the signals were deciphered, but only
10% in time to be operationally useful. Dönitz conceded that more than half
of his total information came from this source. It ran dry only when Comman-
der (later Vice Admiral Sir) Norman Denning’s suspicions were aroused by
ENIGMA sources decrypted in Bletchley Park, whereupon the British Navy
and the British Merchant Navy discontinued Naval Cypher No. 3 on June
10, 1943 (Fig. 185) and started to use Naval Cypher No. 5 together with Tilt-
man’s stencil subtractor, a grille introduced by mid-1943. Nevertheless, the
Germans still obtained some decryptions (Fig. 186). The British command, like
the German, did not like to believe that their codes might be insecure. Patrick
Beesly blames the defeat on Bletchley Park, which was offensively minded
and did little to defend the security of their own encryption methods.
Colin Burke reports that there was rivalry and a choked flow of information
between the United Kingdom and the United States of America in 1942. This
stopped at the naval side in October 1942, continued on the army side until
about September 1943; finally, however, an unprecedented cooperation and
relationship of trust developed.
The question has been asked: Did cryptanalysis decide the Battle of the At-
lantic? Jürgen Rohwer and Harry Hinsley have pointed out that the situation
was quite balanced as long as the British were forced to wage defensive war-
fare. Only after mid-1943, when the Allies were strong enough to turn to an
offensive anti-U-boat war, was the German U-boat command crippled.
The success of the B-Dienst had tradition: When the war broke out, it could
already read Naval Cypher No. 1, a 4-digit superencrypted code; this became
possible following a compromise in 1935 in the Abyssinian War with a widely
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Fig. 186. Comparison of a radio signal of CINCWA from September 14, 1943 to convoy
ONS 18 with a decryption by the B-Dienst of the Kriegsmarine: ... vermutlich
Treffpunkt ... 16.9. 1400 Uhr [German summer time] Position 56 08 N 16 19 W

used 5-digit naval code that was already broken. During the attack on Norway
in April–May 1940, the Kriegsmarine always had a precise picture of the sit-
uation in the British Admiralty. This explains somewhat the surprisingly for-
tunate course of events for the Germans. Tranow’s great success went back to
First World War experiences. Kahn cites an anonymous source: “If one man
in German intelligence ever held the keys to victory in World War II, it was
Wilhelm Tranow.” With the criminal Hitler there was no key to this victory.
The Chi-Stelle of the German Reichswehr, according to Hüttenhain, broke the
traffic between the French War Ministry and the French army departments
early in the 1930s. However, their encryption was miserable: a numeral
code which remained fixed for many years was superencrypted by a periodic
VIGENÈRE modulo 10 with a period varying between 7 and 31. All sig-
nals could be read. Only between Paris and Savoy was a different method
used, involving a transposition for superencryption. In 1938, OKW’s Chi
succeeded here, too. When war started on September 3, 1939, the French
War Ministry ordered this method to be used throughout. Thus, the Ger-
mans could read the French wireless signals from the first day without delay,
which explains the advantages they had in the battle of France in June 1940.
France had made the mistake (Sect. 11.1.3) of adopting as her main method
an encryption method that had already been in restricted use for some time.
Rohrbach’s lasting success between 1942 and September 1944 against the
strip cipher method of US diplomacy was already discussed in Sect. 14.3.6 .
The so-called CQ radio signals of the State Department in Washington to
all its diplomatic missions played an important role in creating cryptotext-
cryptotext and even plaintext-cryptotext compromises.
Less important was the success mentioned in Sect. 19.4.1 against the Ruma-
nian military attaché. But military attachés as a rule are quite promising
goals, with a mixture of military and diplomatic habits leading to interfer-
ences. While Field Marshal Rommel in North Africa was fighting against
the British 8th Army under Field Marshal Montgomery in the fall of 1941,
the Germans of the Forschungsamt in Berlin succeeded in penetrating the
traffic of the American Military Attaché in Cairo, Colonel Frank Bonner
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Fellers (later Brigadier General and military secretary to General Douglas
MacArthur)—partly because Fellers had the persistent habit of beginning
his signals with stereotypes, partly because Italy, then still at peace with the
USA, had its penetrazione squadra ‘borrow’ the codebook from the Ameri-
can Embassy in Rome in order to copy it. Fellers reported day by day in
the brand new BLACK code among other things the plans of the 8th Army
for the next day, which could always be forwarded to Rommel within a few
hours. The USA was cryptologically an unsafe ally of Britain. Italy was
more prudent, or at least she thought so: The Chief of the Italian Intelli-
gence Service, General Cesare Amè, did not provide the Germans with the
codebook, but gave them only decryptions. Since the Germans also recorded
the cryptotext signals, they had a perfect plaintext-cryptotext compromise
and could reconstruct the codebook, and could even check the trustworthiness
of their ally. The break had catastrophic consequences in June 1942 for an
Allied convoy bound for Malta. Bletchley Park once more cast suspicion on
their friends and Fellers had to resign. Nevertheless, he was decorated with
the Distinguished Service Medal. He was almost as bad as Robert D. Murphy.

In using their Hagelin M-209 machines, the cipher clerks of the US Army
proved no more disciplined than their German colleagues: they chose for
message keys preferably six initial letters from their girlfriends’ names, and
thus usually the same keys a whole day long. Such in-phase encryptions
allowed Erich Hüttenhain to penetrate daily the none-too-secure Beaufort
encryption. Field Marshal Erwin Rommel profited from this (Otto Leiberich).

22.1.2 Angō Kenkyū Han. Japan tried in the 1930s to break not only
Chinese codes, but primarily American ones. This was not too difficult, since
despite Yardley’s warning (Sect. 8.5.6) US diplomatic cryptology was still ir-
responsible. Under Roosevelt a new code, BROWN, was introduced, but
it came into the hands of a gang of safe-crackers in Zagreb, and thus was
probably compromised, yet it was not taken out of use since ‘only’ criminals
were involved. And Stanley K. Hornbeck wrote to his boss, the Secretary
of State Stimson: “Mr. Secretary: I have the feeling that it is altogether
probable that the Japanese are ‘breaking’ every confidential telegram that
goes to and from us.”The unreliability of American diplomatic codes was ac-
cepted as inevitable. In this situation it is not astonishing that the decryption
service of the Japanese Foreign Ministry, AngōKenkyū Han, was sometimes
successful in decrypting the simpler codes, e.g., GRAY . But it had no joy
with BROWN and TokumuHan, the decryption service of the admiralty, was
also unlucky. Nothing but a raid could help; under the command of Cap-
tain Hideya Morikawa, towards the end of 1937 the BROWN code and the
strip cipher device M-138, the appearance of which was not known to the
Japanese, were photographed in the American consulate in Kobe. Neverthe-
less, they did not manage to read the M-138 traffic. The TokumuHan sailors
then concentrated on the related strip cipher device CSP 642 of the US Navy
(Sect. 14.1). They got results only slowly, because their methods were behind
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the times. But they had received the BAMS code (Sect. 4.4.5) from the Ger-
mans, whose raider ship Atlantis had captured it on July 10, 1940. The Ja-
panese only had to strip the superencryption, which they managed, of course.

In the opposite direction there was more success. The USA, carrying the
main load of the Allied war effort in the Pacific theater, scored also the most
solutions of Japanese wireless signals. Japan may have felt that she was
protected by her language being strange and impenetrable to Westerners; but
this was not the case. The Americans broke Japanese codes and ciphers in
the 1920s (Yardley), 1930s (Holtwick), and 1940s (Rosen). There are reliable
reports (see Sect. 19.4.1.2) that also the German side broke continually the
PURPLE traffic of its ally.

Little is known about US American success in breaking Soviet encryption
after the Venona breaks. In 1972, during the Strategic Arms Limitation
Talks, NSA made a hit, “but the solution came by a fluke, made possible by
a Soviet enciphering error” (Kahn). Such a thing may happen now and then.
And if it happened more often, there were good reasons not to brag about it.

22.1.3 Glavnoye Razvedyvatelnoye Upravlenie (Razvedupr, GRU).
The ‘Chief Intelligence Directorate’ of the Soviet Union—notwithstanding
its reputation in eavesdropping, spying, theft, and blackmailing—also had
cryptanalytical successes, e.g., against Swiss diplomacy working with Hagelin
machines as well as against Italy, not to speak of smaller nations.

Toward the end of the Second World War, the number of ENIGMA cipher
documents seized by the Red Army grew to such an extent that the per-
centage of successes against Wehrmacht ENIGMA traffic was considerable.
However, it seems that there were no codebreaking machines comparable to
the Polish, British, and US American BOMBEs. In the Cold War era, ac-
cording to Louis Tordella, the Soviet Union was even successful against the
rotor machine KW-7 used by NATO. In 1992, David Kahn found a Rus-
sian living at the time in Britain, Victor Makarov, who had worked as an
interpreter in the 16th Directorate of the K.G.B. (Director: General Andrei
Nicolayevich Andreyev) and was familiar with its work. From him and by
later contact with Andreyev, Kahn learned some details, among which was
the contention that, from the end of 1941, Soviet cryptanalysts under Sergei
Tolstoy had success against the Japanese PURPLE machine. However, a
technically complete picture of Soviet cryptanalysis is still lacking.

22.2 Mode of Operation of the Unauthorized Decryptor

Since I am not a professional day by day decryptor, I feel it difficult and easy
at the same time to speak about the work of the unauthorized decryptor.
Difficult, because I have collected my experiences without the pressure of the
professional environment and without sweat and tears. Easy, because I am
not in danger of being infatuated by success or embittered by failures. How-
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ever, my mathematical approach has helped me to systematize cryptological
attack and defense.
Anyhow, the literature and my personal contacts have shown me that pro-
fessional decryptors do not have an easy life. Marian Rejewski (August 16,
1905 – February 13, 1980), for example, went back after the war to communist
Poland and had to choose a job as a business director rather than to make a
university career. Alastair Denniston advised his son Robin: “Do what you
like to do, but don’t do what I do.” Robin Denniston became a publisher.
Sometimes it may have been difficult to keep absolutely silent, and this also
for twenty, thirty or forty years; especially in situations like the one Irving
John Good experienced: he was stationed in a hotel near Bletchley Park and
was treated by a retired banking clerk to a lively description of a commercial
ENIGMA which his bank had used in his earlier days.

It is naturally only the work of the unauthorized decryptor which is of math-
ematical interest, where here an experienced decryptor is understood. Expe-
rience in decryption must be won through many years of practice. Thus the
decryptor, depending on his situation and inclination, will develop either a
more linguistic or a more mathematical orientation. Solutions of sufficiently
complicated methods are the collective works of several decryptors of both
orientations, either of which in turn has yet further specialists. The mathe-
maticians in particular need specialists in machine methods.

Hans Rohrbach 1949

Deciphering is an affair of time, ingenuity, and patience.

Charles Babbage 1864

The cryptographer’s main requisites are probably patience, accuracy, stamina,
a reasonably clear head, some experience, and an ability to work with others.

Christopher Morris 1992

22.2.1 Glamour and misery. The work of the professional cryptologist
is thankless; he is not allowed to celebrate his success in public or with his
friends, and not even his family will be allowed to know what he is doing. He
is permanently in danger of being abducted or blackmailed. Such restrictions
usually persist even after active duty.
On the other hand, Ralph V. Anderson, who in 1940 entered the code room
at the US Navy Department in Washington, D.C. and in 1946 joined the
Department of State in cryptography, where he served for almost twenty
years, confessed “If I had been given the choice of any position I wanted, I
would have chosen the one I had.”
22.2.2 Personality. It seems to be most difficult to give general rules and
advice for the attitude to be applied in unauthorized decryption. Certainly,
dogged obstinacy will be needed. But Bazeries, who was a very successful
cryptanalyst, recommended changer son fusil d’épaule , trying a new line of
attack, which will only help people with enough imagination. Not to be
blinkered, not to follow the beaten track; this is more easily said than done.
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Fresh ideas will help. The example of Alan Turing and Gordon Welchman
shows this: in their inexperience lay their strength. Therefore they were
better than Dillwyn Knox, who was much more experienced, but also less
daring. As a team, Turing and Knox were unbeatable, and even Turing and
Welchman together achieved more than the mere sum of their working power.

One thing will not happen to the successful unauthorized decryptor: he will
not be discouraged by the alleged complexity of the task. The Poles were so
successful because they automated any analysis that was too time consuming
for hand work after they had found the idea. The expectations of OKW/Chi
for how long it would take to break the ENIGMA were cut by parallelization
by a factor of six and by mechanization by a factor of at least twenty. The
Welchman Bombe even makes trillions of cross-plugging possibilities irrel-
evant, as Welchman remarked proudly, because the avalanche propagation
of the voltage in a relatively simple feedback circuit is done “in less than a
thousandth of a second.”

Sometimes, an interchange helps, as in the case of Hugh Foss. “Foss had
returned from sick leave in the late Summer [1940] and joined Turing, Twinn
and Kendrick. Everyone else having worked on May 8th [signals] till they
were heartily sick of it, it was handed over to Foss who, not having seen it
before, did not view it with the same aversion. After months of work he
finally succeeded [November 1940] in finding ... the menu for the bombe ... .
This success was undoubtedly due to Foss’ pertinacity; he did not know
the mathematical theory to the extent that Turing did but he had endless
perseverance and Banburism was a problem on which this quality always paid
a good dividend” (Hugh Alexander). B.P. memorizes May 8th as ‘Foss’ Day’.

22.2.3 Strategies. In principle there are infinitely many ways of crypt-
analytic attacks. In the following, only a rough survey of the strategies of
cryptanalysis is given.

22.2.3.1 The purest form of unauthorized decryption makes no assumption
whatsoever. This pure cryptanalysis does not use and does not need the lin-
guist, for it is mathematical in nature. In some cases of a plaintext-plaintext
compromise, e.g., determination of the period of a polyalphabetic encryption
(Chap. 18) or in-phase adjustment and superimposition of several polyalpha-
betic encryptions with different initial key settings, as well as in the case of
a cryptotext-cryptotext compromise (Chap. 19), pure cryptanalysis performs
a reduction to an intermediate language which is a monoalphabetic, possibly
polygraphic encryption of the plaintext language. Thus, as David Kahn said,
it functions in principle even for a language that the unauthorized decryptor
does not know, e.g., the last intermediate text of a composition of two or more
encryptions, say superencrypted code where the codebook is not known.

Pure cryptanalysis is directly suited for execution by a machine and it can be
written in the form of a computer program (Gillogly 1995). Pure cryptanaly-
sis as a rule needs only somewhat longer texts than any of the attacks below.
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22.2.3.2 Pure cryptanalysis is an extreme case of the cryptotext-only at-
tack (‘known cryptotext attack’), which allows only reflections and assump-
tions on the kind of language the plaintext is taken from. Typically, the
distribution of the frequencies of the single characters in the cryptotext is
investigated. If it is reasonably close to one of several natural languages that
could come under consideration, all encryption methods can be excluded
which level frequencies, in particular proper polygraphic ones (provided they
do not feign frequencies, as discussed in Sect. 4.1.2 ) and proper polyalpha-
betic encryptions; among the remaining monoalphabetic ones are functional
simple substitutions, transpositions and their compositions. If even the indi-
vidual letter frequencies are close to those of some natural language, proper
simple substitutions can be excluded; among the remaining ones are trans-
positions, as well as polygraphic encryptions feigning a transposition.
Thus a frequency examination (Chap. 15) may break a monoalphabetic en-
cryption; it may also be used to strip a simple substitution from a transpo-
sition.
However, if the distribution of the frequencies of the single characters in
the cryptotext is leveled, then (provided the use of polyphones can be ex-
cluded) suspicion about a polyalphabetic and/or polygraphic encryption is
justified. Both possibilities are to be taken into consideration. In the first
case, pure cryptanalysis may help to find a reduction to a monoalphabetic
simple or proper polygraphic substitution, which may be treated with a fre-
quency examination (Chap. 15) of single characters or of polygrams. These
examinations are already linguistic in nature.

22.2.3.3 Much more linguistic are the methods based on a partial or com-
plete plaintext-cryptotext compromise. They use probable words or phrases
as starting points for pattern finding (Chaps. 13, 14). There is the known
plaintext attack and the chosen plaintext attack, which differ only in the way
the compromise is achieved, passively or actively. The known plaintext attack
needs sly, clever guesses of plaintext fragments. Sympathetic understanding
of the adversary’s feelings, of his ways of thinking, of his idioms and phrase-
ology is required, and this is helped by knowing not only the adversary’s
language, but also his milieu.
The British in Bletchley Park had champions in preparing the confronta-
tions of plaintext fragments and cryptotext, the cribs (Sect. 19.7.1); only a
few of them can be mentioned here. As well as the linguist Hilary Hinsley
née Brett-Smith and the linguistically versed mathematician Shaun Wylie,
there were also people with a kind of abstract ability for pattern finding in
Bletchley Park: the chess champion Hugh Alexander and the formally gifted
Germanic philologist Mavis Batey née Lever. Her abilities can be illustrated
by the fact that she noticed one day the absence of the letter L in a long
fragment of ENIGMA cryptotext. To notice this was already unheard of.
But she also concluded that this was caused by a long filling with plaintext
/l/. This successful assumption led to the determination of the setting, to a
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lasting break, and finally to the victory of the British fleet over the Italian
on March 28, 1941 near Cape Matapán on the Greek coast.
Success in the known plaintext attack requires, moreover, that the unautho-
rized decryptor is in possession of all the results of intelligence, from combat
reconnaissance, from interrogation of prisoners, from questioning of civilians,
from eavesdropping, from spies, and particularly from decryptions achieved
by other decryptors. This requirement is very much in conflict with security
measures (‘need to know’ doctrine) and also politically unrealistic—otherwise
it would have been best if in the Second World War Churchill himself had
prepared the cribs.
The chosen plaintext attack, on the contrary, needs cunning in producing
a compromise. Cunning is inexhaustible. Events that have been reported
vary from inducing a certain combat action, like artillery fire in the First
World War and the ‘erloschen ist leuchttonne’ trick in the Second World
War (Sect. 11.1.3 ), to foisting a message on the adversary, like the Japanese
cuckoo’s egg and Figl’s newspaper forage (Sect. 11.1.2 ).
A third case, derived plaintext attack, comes from a cryptotext-cryptotext
compromise if one of the systems is already broken and the plaintext can
thus be obtained. This ‘continuation of a break’ was a frequent stratagem
in Bletchley Park, where the emergency situations leading to a cryptotext-
cryptotext compromise were deliberately induced (‘gardening’, Sect. 19.4.1 ).
22.2.3.4 A particular sort of attack, the chosen ciphertext attack, may be
used in the case of asymmetric methods with a public key for encryption,
when the functioning of a tamper-proof ‘black box’ for decryption is wanted,
i.e., the private key is to be revealed.

22.2.4 Hidden dangers. A cryptotext-cryptotext compromise is par-
ticularly insidious because it is so easily overlooked. It may be caused by
the installation of many key nets if there is a lack of cipher discipline (see
Sect. 19.4.1) or it may be a consequence of cryptological thoughtlessness (e.g.,
indicator-doubling with the ENIGMA until May 1940, Sect. 19.6.1 ). Specific
methods of attack are also discussed in Sects. 19.4 and 19.5 . Cryptotext-
cryptotext compromises allow pure cryptanalysis which can be done with
supercomputers. Since for public keys cryptotext-cryptotext compromise is
inherent in the system, the danger hopefully prompts increased wariness.

22.2.5 Deciphering in layers. For a composition of encryption meth-
ods, one normally aims at stripping off one encryption after another. This
is easier if a superencryption is made over an encryption method that has
been used for some time and has been broken in the meantime: the interme-
diate text is then considered to be in a a known language. It is particularly
simple if the superencryption method is already broken, for then the compo-
sition is no more resistant than the newly introduced method (S.D. superen-
cryption, Sect. 19.6.3.1). Quite generally it can be stated that the German
Armed Forces could not have educated their adversaries better regarding the
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ENIGMA: they introduced refinements in small steps, each time late enough
so that the Poles and the British had mastered the last step. And this hap-
pened on other occasions too: When in April 1944 at Mykonos documents
on a Reserve-Handschlüssel-Verfahren fell into the wrong hands, the method
was not changed totally, but only slightly and stepwise, educating the British.

22.2.6 Violence. Cryptanalysis in the proper sense does not include pro-
curement of the adversary’s encryption documents and devices (up to whole
machines) by illegal purchase, spying out at customs offices, theft and burgla-
ry, or combat missions and raids (Sect. 11.1.10). The experiences of the Se-
cond World War have fully confirmed Kerckhoffs’ admonition and Shannon’s
maxim “The enemy knows the system being used.” The SIGABA (ECM
Mark II) of the US Army was one of the few devices of the Second World War
that did not fall into the hands of the enemy, and this perhaps only because
after the D-Day landings the war in Europe was over in less than a year.

Moreover, the destruction of the wire-bound communication channels of the
adversary, which the Allies executed before and during the landings in Nor-
mandy, assisted cryptanalysis: its effect was “to force a proportion of useful
intelligence on to the air” (Ralph Bennett).

22.2.7 Prevention. What can be done to prevent cryptanalysis, to protect
communication channels? The most important defensive weapon seems to
be imagination. It is necessary to enter completely into the cryptanalytic
thinking of the hypothetical unauthorized decryptor, and to be able psycho-
logically to do so. Inhibitions are as out of place as arrogance is. The defen-
der, the designer of the method or of the machine and its operation, should
not only have some imagination, he or she must have enough imagination to
sense the imagination of the attacker.

There are three cases of grave thoughtlessness from the rich story of the
ENIGMA decryption (for 1. and 2., examples are to be found in Fig. 62):

1. It was absolutely unnecessary to rigorously abstain from using the same
rotor in the same position on two consecutive days, as the Luftwaffe did (‘non-
crashing wheel order’). This mock randomness saved the British a lot of work
in finding the wheel order, once a continuous flow of encryptions was estab-
lished. The German Navy dictated that the rotor order always contained a
rotor VI, VII, or VIII (which reduced the number of rotor orders used to 276),
moreover that on the second day of a pair of odd-even-numbered days the ro-
tor order and ring setting were the same as for the first day (this meant that
on the second day cribs had only to be run on one rotor order). Over the years
it turned out that the German keymakers were allowed to have preferences
and were ignorant of the concept of randomness: so they used in each month
seven of the eight rotors exactly twice and one once in the leftmost rotor posi-
tion, or from not using the same rotor order twice in the same month. On oc-
casion, hair-rising flaws occurred, so when in April 1944 in the key net TUR-
TLE (U-boats in the Mediterranean Sea) the March keys were repeated, or
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when in April 1944 in the key net SEAHORSE (‘Bertok ’, Berlin-Tokyo traf-
fic) the rotor order and ring setting were constant for each of three decades.
2. It was bad to avoid the use of two consecutive letters, like /a/ and /b/,
for steckering, since this reduced the number of plugboard connections to be
tested in the bombes and even allowed the British to build a special catch
circuit which they wittily called CSKO, ‘consecutive stecker knock-out’. With
the German Navy, a letter was never steckered for two days in succession.
This was a most encouraging discovery for B.P., since it meant as long as the
Navy still used 6 steckers then, having broken the steckering for one day, 12
unsteckered letters for the next day were known.
3. It was stupid to make the entrance substitution (performed by the plug-
board) self-reciprocal, thus allowing the diagonal board. Neither the British
TYPEX nor the Japanese PURPLE had this ‘simplification’. In fact, the Ger-
mans occasionally used the Uhr box3 (Plate M), an artificial and awkward at-
tachment that made the plugboard substitution (but not the full ENIGMA
encryption) non-involutory, putting the diagonal board ‘out of business’
(Welchman). The Uhr box was to be changed frequently—a telling sign
that the German authorities in 1944 had serious doubts about the security
of the ENIGMA, but could not help it anymore.

The faults around the ENIGMA were called by Welchman “a comedy of
errors.” He wrote: “The German errors ... stemmed from not exploring the
theory of the Enigma cipher machine in sufficient depth, from weakness in
machine operating procedures, message-handling procedures, and radio net
procedures; and above all from failure to monitor all procedures.” Then he
went on to mention the indicator doubling, the ‘cillies’ and Herivel tips,
‘Parkerism’ (a habit of the German producer of operating instructions that
flourished in 1942 of repeating entire monthly sequences of discriminants,
ring settings, wheel orders, or steckers; e.g., SCORPION settings were copies
of PRIMROSE settings for the previous month); and not least ‘inadvertent
assistance’ of German staff members in providing cribs. All these faults may
be blamed solely on people: he wrote “the [ENIGMA] machine as it was
would have been impregnable if it had been used properly.”4

22.3 Illusory Security

Welchman could have added ironically that just this can never be expected—
in line with Rohrbach’s maxim (Sect. 11.2.5) that no machine and no crypto-
system will ever be used properly all the time. The wartime cryptanalyst and

3 The Uhr box, introduced in 1944, amounts to using 10 stecker pairs and has 40 positions,
10 of which (0, 4, 8, ... , 36) preserve involution. The scrambler inside performs a
permutation with the cycle representation (1 31 5 39 9 23 17 27 33 19 21 3 29 35 13 11)
(0 6 16 26) (2 4 18 24) (12 38 32 22) (14 36 34 20) (7 25) (8 30) (10 28) (15 37) .

4 Nevertheless, German cipher security improved throughout 1944 and the first half of 1945
(Ralph Erskine, Philip Marks)—when it was too late. But the worst mistake, repeated
from 1933 until 1945, was introducing cryptographic improvements in a piecemeal fash-
ion, as Marian Rejewski has characterized it by enumerating more than a dozen steps.
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peacetime mathematician Hans Rohrbach knew it. Adolf Paschke, Vortragen-
der Legationsrat of AA and nominal head of the linguistic group in Pers Z,
knew it as well. He strongly advocated against using the ENIGMA in the
diplomatic channels even for topics of lesser importance, like visa regula-
tions. Cipher machines were frowned upon. The Geheimschreiber T 52a was
considered unsafe; in fact it was discovered in the AA how it could be crypt-
analyzed without much labor. This explains the parallel success Beurling
had. And T 52e messages transmitted by Military Attachés on German AA
channels were decrypted by Pers Z people themselves. Only for non-secret
traffic within Germany on wire lines was T 52c considered acceptable. One
exception was made in 1944 on the wireless line between Madrid and Berlin,
where an SZ 42 Schlüsselzusatz was used for messages up to Geheim, but not
for the top classification Geheime Reichssache. This reflects the caution Pers
Z took. And Erich Fellgiebel, Chief of OKW Signal Communications, is said
to have it expressed by exaggerating: ‘Funken ist Landesverrat’ (Sect. 11.1).

Otherwise and elsewhere, the spirit of illusory security blossomed. Whereso-
ever there was a chance for a quicker and less secure cryptographic method, it
had good prospects. Wishful thinking prevailed. Typically, a warning coming
on August 10, 1943, apparently from a source around the Swiss Colonel Mas-
son, that Britain was reading the ENIGMA traffic (Fig. 187), was ignored.

Fig. 187. From the Kriegstagebuch (KTB) of the Befehlshaber der U-Boote, 13. 8. 1943.
Report, apparently from a Swiss source (KO= Kriegsorganisation, i.e.,Abwehr),
‘DecipheringGermanNavy code.All orders are read’. (Courtesy Ralph Erskine)

Apart from the rare cases when individual keys were used at all, let alone
made properly and run with care, very few cryptological systems remained
unbroken between 1900 and 1950. In the ENIGMA case, the Navy key nets
‘Neptun’, ‘Thetis’, ‘Aegir ’ and ‘Sleipnir ’ were impregnable, but some of them
had very little traffic or carried messages considered not to be important
enough by the Allies.

Sometimes there is for quite a while a balance between the cryptanalyti-
cal successes of two powers. For example, “in the war at sea during 1939–
1942, Germany gained as much from cryptanalysis as Britain did” (John
Ferris). After all, there was “the German seizure of British codebooks from
the steamer Automedon on November 11, 1940” (John Ferris). However, af-
ter mid-1943 the situation changed thanks to intensified British precautions.

Supervision of one’s own side’s traffic was occasionally done; for example,
when Rowlett found a weakness as Friedman’s Converter M-228 SIGCUM
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went into operation in January 1943 (see Sect. 8.8.6). It would have paid back
if, for example, an OKW Special Group had supervised the ENIGMA traffic
of Göring’s undisciplined Luftwaffe key net RED; they would have found the
leakages the British profited from early enough to stop further disastes.

But even supervision does not help, if it is done insufficiently. Paschke knew,
of course, that the AA one-time pads were fabricated mechanically by an
array of 48 five-digit counters; after every printing step, most of them were
moved forward at an irregular interval (‘complementary propulsion’). As a
special precaution, consecutively printed sheets were never assembled into
the same block. This seemed to be completely sufficient, but it was not, as
the GEE–GEC story (see Sect. 19.5.1) shows.

22.4 Importance of Cryptology

The reader who has read this book chapter by chapter may at first have found
it difficult to suppress a smile from time to time. The history of cryptology
is full of exciting, funny, personal stories. That makes it attractive even for
the layman.

Little by little, however, somber shadows are cast over the scene. The battle
of Tannenberg gives a first example. The entry of the USA into the First
World War was triggered by a telegram on January 16, 1917 from the German
Foreign Minister Arthur Zimmermann to the ambassador in Mexico, Heinrich
von Eckardt, that was decrypted in London’s Naval Intelligence Department
25 (NID 25, commonly called Room 40) of the Admiralty by Nigel de Grey
(1886–1951), assisted by Alfred Dillwyn Knox (1884–1943). Its content—a
proposal to stir up Mexico against its northern neighbor—was brought to the
notice of President Wilson, who concluded that “right is more precious than
peace.” And the events of the Second World War were played out in front of
a hideous backdrop. The decades of the Cold War displayed a cruelty which
the romantics of spy novels cannot wipe away.

Talking to a former cryptanalyst in his official capacity always needs tact and
discretion. Sometimes one confronts the arrogance of the professional who
shows that he knows something but does not say what he knows. However, to
be prudent is good advice for the professional, as the example of Welchman
shows; he faced persecution after publication of his book The Hut Six Story.

22.4.1 Scruples. Cryptanalysis was felt by many of the people involved
as a heavy burden, not so much because of the nervous stress, but because
of conflicts of conscience. To give a serious example: A codebreaker may
have for years successfully worked against a potential enemy, and the foe
may suddenly become an ally. Such a situation happened following the June
22, 1941 German aggression of the Soviet Union, when Churchill gave orders
for an abrupt halt of British activities against the USSR. Actually, ‘it was not
until December that the Russion section [of GC&CS] was closed down. Even
then, the Poles [within GC&CS] were told to continue intercepting traffic and
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trying to break it’ (Michael Smith). M.I.5 continued to keep a watch on the
Russians. ‘The preparations for the second Cold War had already begun’.
Cryptology shares this hardship not only with other branches of mathematics
and computer science which are in danger of misuse but to a large extent with
other sciences like physics, chemistry, and biology—it may suffice to mention
the keywords nuclear energy, poison gas, and genetic manipulation. The
price our century has paid for the enormous progress of science—which no-
body wishes to forfeit—must also be paid by the scientists themselves. They
must measure up to high requirements of humanity. The decline of some
communist systems of injustice and the increasing bewilderment of people
faced with unlimited possibilities raises the hope that scientists will show in-
sight and discretion. Thus, cryptology no more deserves condemnation than
do the natural sciences. With a positive accent the back-cover text of the
book by Meyer and Matyas says: “Cryptography is the only known practical
means for protecting information transmitted through large communication
networks such as telephone lines, microwave, or satellite.” Elsewhere we read:
“Cryptology has metamorphosized from an arcane art to a respectable sub-
discipline of Computer Science.” A common saying puts it this way: “Today,
code-making and code-breaking are games anybody can play.”
In fact, original scientific papers on cryptological themes are found today not
only in the few specialist journals and symposia, but here and there also in
computer science, particularly in theoretical computer science. Contact and
mutual fertilization occur mainly with the emerging theory of complexity and
the theory of formal languages; moreover, from mathematics, number theory
and combinatorics are confederates.

22.4.2 New ideas: Covert proof, ‘zero-knowledge’ proof. Crypto-
logy itself has developed new ways of thinking in connection with the in-
formation theory of Shannon and Rényi, and in connection with public-key
cryptosystems has pushed new concepts such as asymmetric cryptosystems
and authentication to the fore. Authentication even widens the aspect of
secrecy to more general perspectives of communication. The central concept
is the protocol, an agreed-upon method and procedure of communication;
a cryptographic protocol between two partners includes not only measures
based on mistrust against a third party, but also on mutual partial mistrust.
The problem may be how two partners can share certain secrets without
thus sacrificing other secrets. Another problem may be how two partners
can build up confidence step by step without the risk of revealing some se-
crets. Applications in daily private, public, political, and economic life are
obvious; they concern the behavior of spouses, powers, parties, and firms.
Everyday examples are the certification procedure of the holder of a check
card, confirmimg that he or she is its legitimate possessor and thus its legal
owner, or a licensing negotiation, where the inventor has to convince the pre-
sumptive licensee about the usefulness and efficiency of his method, without
compromising this before the contract is signed. This is the idea of a covert
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proof, ‘zero-knowledge’ proof: the partner will not be told anything that he
could not find out himself.
The problem is quite old: In the times of Tartaglia and Cardano, mathemati-
cians tried to keep their methods secret. They were willing to apply a method,
say for the solution of algebraic equations by radicals, secretly to examples
they were given by an opponent, and then, after a short while, to present a so-
lution of the specific example like a rabbit from a hat, which everybody could
easily check for correctness. Step by step, the spectators’ confidence in the
efficiency and correctness of the hidden method increased, until it was estab-
lished without reasonable doubt, and still the method had not been given
away. As we know, poor Niccolò Tartaglia was not successful at this game,
and Cardano managed to trick him out of his method for cubic equations.
He deserves our sympathy; today he would have found a better defense.

22.4.3 Deciphering the secrets of nature. Cryptanalysis in the widest
sense even surpasses the frame of communication engineering. The scientific
exploration of nature is frequently a cryptanalysis of her secrets.
To give only one example: X-ray crystallography of proteins is a cryptanalytic
task. To be determined is the phase function that belongs to a given ampli-
tude function (in a three-dimensional space) measured in an X-ray refraction
image. Assumptions on the structure of the molecules—e.g., the double helix
structure of DNA as successfully guessed by Watson and Crick—play the role
of probable words. This aspect was already discussed by Alan Turing and
David Sayre in the 1950s.
A very serious aim has the cognitive task of detecting patterns of any hitherto
unknown sort in a mass of data, which corresponds to advanced methods of
cryptanalysis, like Friedman examination and Kullback examination.
Finally, there is the main occupation of the thinking man: recognizing situa-
tions, forming concepts, elaborating abstractions. This, too, is in the widest
sense a cryptanalytical task: It means finding something secret, something
already existing in secrecy. Reading between the lines is the task, and intel-
ligence is needed. Pure cryptanalysis tries to do this without further knowl-
edge, without the help of intuition, but its results are limited, as is the reach
of Artificial Intelligence. Where it works, it has the advantage of running
automatically. The wide orchestra of cryptanalysis, however, uses intuition
too, uses slyness and cunning.
To show this interplay has been the main aim of this book. Cryptanalysis as
a prototype for the methods in science: this has been my guiding principle
in writing this book. Charles Babbage said (Passages from the Life of a
Philosopher): “Deciphering is, in my opinion, one of the most fascinating of
arts, and I fear I have wasted upon it more time than it deserves.” I have
spared no pains, and I hope I have not wasted my time.
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The logic of secrecy was the mirror-image
of the logic of information

Colin Burke 1994

Perfect security was promised at all times by the inventors of cryptosystems,
particularly of crypto machines (Bazeries: je suis indéchiffrable). In 1945,
Claude E. Shannon (1916 – 2001) gave in the framework of his information
theory a clean definition of what could be meant by perfect security. We show
in the following that it is possible to introduce the cryptologically relevant
part of information theory axiomatically.
Shannon was in contact with cryptanalysis, since he worked 1936 – 1938 in
the team of Vannevar Bush, who developed the COMPARATOR for determi-
nation of character coincidences. His studies in the Bell Laboratories, going
back to the year 1940, led to a confidential report (A Mathematical Theory
of Cryptography) dated Sept. 1, 1945, containing apart from the definition
of Shannon entropy (Sect. 16.5) the basic relations to be discussed in this ap-
pendix. The report was published four years later: Communication Theory
of Secrecy Systems, Bell System Technical Journal 28, 656-715 (1949).

A.1 Axioms of an Axiomatic Information Theory

It is expedient to begin with events, i.e., sets X ,Y,Z of ‘elementary events’,
and with the uncertainty1 (Shannon: ‘equivocation’) on events—the uncer-
tainties expressed by non-negative real numbers. More precisely,
HY(X ) denotes the uncertainty on X , provided Y is known.
H(X ) = H∅(X ) denotes the uncertainty on X , provided nothing is known.

A.1.1 Intuitively patent axioms for the real-valued binary set function H:
(0) 0 ≤ HY(X ) (“Uncertainty is nonnegative.”)

For 0 = HY(X ) we say “Y uniquely determines X .”
(1) HY∪Z(X ) ≤ HZ(X ) (“Uncertainty decreases, if more is known.”)

For HY∪Z(X ) = HZ(X ) we say “Y says nothing about X .”
The critical axiom on additivity is
(2) HZ(X ∪ Y) = HY∪Z(X ) + HZ(Y) .

This says that uncertainty can be built up additively over events. Since in
particular H(X ∪ Y) = H(X ) + H(Y), H is called an ‘entropy’ in analogy
to the additive entropy of thermodynamical systems.

1 The term ‘uncertainty’ was used as early as 1938 by Solomon Kullback.
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The classical stochastic model for this axiomatic information theory
is based on pX(a) = Pr [X = a], the probability that the random
variable X assumes the value a , and defines (Nyquist, 1944)

H∅({X}) = −
∑

s : pX(s) >0

pX(s) · ld pX(s)

H∅({X} ∪ {Y }) = −
∑

s,t : pX,Y (s,t) >0

pX,Y (s, t) · ld pX,Y (s, t)

H{Y }({X}) = −
∑

s,t: pX|Y (s/t) >0

pX,Y (s, t) · ld pX|Y (s, t)

where pX,Y (a, b) =def Pr[(X = a) ∧ (Y = b)] and pX|Y (a/b) obeys
Bayes’ rule for conditional probabilities:

pX,Y (s, t) = pY (t) · pX|Y (s, t) , thus

−ld pX,Y (s, t) = −ld pY (t) − ld pX|Y (s, t) .

A.1.2 From the axioms (0), (1), and (2), all the other properties usually
derived for the classical model can be obtained.
For Y = ∅, (2) yields
(2a) HZ(∅) = 0 (“There is no uncertainty on the empty event set”)

(1) and (2) imply
(3a) HZ(X ∪ Y) ≤ HZ(X ) + HZ(Y) (“Uncertainty is subadditive”)

(0) and (2) imply
(3b) HZ(Y) ≤ HZ(X ∪ Y) (“Uncertainty increases with larger event set”)

From (2) and the commutativity of . ∪ . follows
(4) HZ(X ) − HY∪Z(X ) = HZ(Y) − HX∪Z(Y)

(4) suggests the following definition:
The mutual information of X and Y under knowledge of Z is defined as

IZ(X ,Y) =def HZ(X ) − HY∪Z(X ) .

Thus, the mutual information IZ(X ,Y) is a symmetric (and because of (1)
nonnegative) function of the events X and Y. From (2),

IZ(X ,Y) = HZ(X ) + HZ(Y) − HZ(X ∪ Y) .

Because of (4), “Y says nothing about X” and “X says nothing about
Y” are equivalent and are expressed by IZ(X ,Y) = 0 . Another way of
saying this is that under knowledge of Z , the events X and Y are mutually
independent.

In the classical stochastic model, this situation is given if and only if
X, Y are independent random variables: pX,Y (s, t)=pX(s)·Y (t) .

IZ(X ,Y) = 0 is equivalent with the additivity of H under knowledge of Z :

(5) IZ(X ,Y) = 0 if and only if HZ(X ) + HZ(Y) = HZ(X ∪ Y) .
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A.2 Axiomatic Information Theory of Cryptosystems

For a cryptosystem X , events in the sense of abstract information theory are
sets of finite texts over Zm as an alphabet. Let P be a plaintext(-event), C
a cryptotext(-event), K a keytext(-event).2 The uncertainties
H(K), HC(K), HP (K), H(C), HP (C), HK(C), H(P ), HK(P ), HC(P )
are now called equivocations.
A.2.1 First of all, from (1) one obtains

H(K) ≥ HP (K) , H(C) ≥ HP (C) ,
H(C) ≥ HK(C) , H(P ) ≥ HK(P ) ,
H(P ) ≥ HC(P ) , H(K) ≥ HC(K) .

A.2.1.1 If X is functional, then C is uniquely determined by P and K ,
thus

(CRYPT) HP,K(C) = 0 , i.e.,
IK(P, C) = HK(C) , IP (K, C) = HP (C)

(“plaintext and keytext together allow no uncertainty on the cryptotext.”)

A.2.1.2 If X is injective, then P is uniquely determined by C and K , thus

(DECRYPT) HC,K(P ) = 0 , i.e.,
IC(K, P ) = HC(P ) , IK(C, P ) = HK(P )

(“cryptotext and keytext together allow no uncertainty on the plaintext.”)

A.2.1.3 If X is Shannon, then K is uniquely determined by C and P , thus

(SHANN) HC,P (K) = 0 , i.e.,
IP (C, K) = HP (K) , IC(P, K) = HC(K)

(“cryptotext and plaintext together allow no uncertainty on the keytext.”)

A.2.2 From (4) follows immediately
HK(C) + HK,C(P ) = HK(P ) , HP (C) + HP,C(K) = HP (K) ,
HC(P ) + HC,P (K) = HC(K) , HK(P ) + HK,P (C) = HK(C) ,
HP (K) + HP,K(C) = HP (C) , HC(K) + HC,K(P ) = HC(P ) .

With (1) this gives

Theorem 1:

(CRYPT) implies HK(C) ≤ HK(P ) , HP (C) ≤ HP (K) ,
(DECRYPT) implies HC(P ) ≤ HC(K) , HK(P ) ≤ HK(C) ,

(SHANN) implies HP (K) ≤ HP (C) , HC(K) ≤ HC(P ) .

A.2.3 In a cryptosystem, X is normally injective, i.e., (DECRYPT) holds.
In Figure 188, the resulting numerical relations are shown graphically. In the

2 Following a widespread notational misusage, in the sequel we replace {X} by X and
{X} ∪ {Y } by X, Y ; we also omit ∅ as subscript.
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H(K) H(C)
≥ ≤

HP (K) HP (C)
∨ ∨

H(P )

≤ ≥≥ ≤
HC(K) HC(P ) HK(P ) HK(C)

Fig. 188. Numerical equivocation relations for injective cryptosystems

classical professional cryposystems, there are usually no homophones and the
Shannon condition (2.6.4) holds. Monoalphabetic simple substitution and
transposition are trivial, and VIGENÈRE, BEAUFORT, and in particular
VERNAM are serious examples of such classical cryptosystems.
The conjunction of any two of the three conditions (CRYPT), (DECRYPT),
(SHANN) has far-reaching consequences in view of the antisymmetry of the
numerical relations:

Theorem 2:
(CRYPT) ∧ (DECRYPT) implies HK(C) = HK(P )
(“Uncertainty on the cryptotext under knowledge of the keytext equals
uncertainty on the plaintext under knowledge of the keytext,”)

(DECRYPT) ∧ (SHANN) implies HC(P ) = HC(K)
(“Uncertainty on the plaintext under knowledge of the cryptotext equals
uncertainty on the keytext under knowledge of the cryptotext,”)
(CRYPT) ∧ (SHANN) implies HP (K) = HP (C) .
(“Uncertainty on the keytext under knowledge of the plaintext equals
uncertainty on the cryptotext under knowledge of the plaintext.”)

In Figure 189, the resulting numerical relations for classical cryptosystems
with (CRYPT), (DECRYPT), and (SHANN) are shown graphically.

H(K) H(C)
≥ ≤

HP (K) === HP (C)
∨ ∨

H(P )

≤ ≥
HC(K) === HC(P ) HK(P ) === HK(C)

Fig. 189. Numerical equivocation relations for classical cryptosystems
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A.3 Perfect and Independent Key Cryptosystems

A.3.1 A cryptosystem is called a perfect cryptosystem, if plaintext and
cryptotext are mutually independent:

I(P, C) = 0 .

This is equivalent to H(P ) = HC(P ) and to H(C) = HP (C)
(“Without knowing the keytext: knowledge of the cryptotext does not
change the uncertainty on the plaintext, and knowledge of the plaintext
does not change the uncertainty on the cryptotext”)

and is, according to (5) , equivalent to H(P, C) = H(P ) + H(C) .

A.3.2 A cryptosystem is called an independent key cryptosystem, if plain-
text and keytext are mutually independent:

I(P, K) = 0 .

This is equivalent to H(P ) = HK(P ) and to H(K) = HP (K)
(“Without knowing the cryptotext: knowledge of the keytext does not
change the uncertainty on the plaintext, and knowledge of the plaintext
does not change the uncertainty on the keytext”)

and, according to (5) , is equivalent to H(K, P ) = H(K) + H(P ) .

H(K) H(C)
≥ ≤

HP (K) === HP (C)≤ ≥
(independent key) (perfect)

∨ ∨
H(P )

(perfect) ≥ ≤ ≥ ≤ (independent key)

HC(K) === HC(P ) HK(P ) === HK(C)

Fig. 190. Numerical equivocation relations for classical cryptosystems,
with additional properties perfect and/or independent key

A.3.3 Shannon also proved a pessimistic inequality.

Theorem 3K : In a perfect classical cryptosystem (Fig. 190),

H(P ) ≤ H(K) and H(C) ≤ H(K) .

Proof: H(P ) ≤ HC(P ) (perfect)
HC(P ) ≤ HC(K) (DECRYPT), Theorem 1
HC(K) ≤ H(K) (1) .

Analogously with (CRYPT) for H(C) . 
�

Thus, in a perfect classical cryptosystem, the uncertainty about the key is
not smaller than the uncertainty about the plaintext, and not smaller than
the uncertainty about the cryptotext.
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From (SHANN) ∧ (DECRYPT) with Theorem 1 we find HC(P ) = HC(K) ;
after adding H(C) on both sides, according to (2) we get H(P, C) = H(K, C).
In a perfect cryptosystem, H(P, C) = H(P ) + H(C) .
Further, according to (2), H(K, C) = H(K) + HK(C) . Thus

HK(C) = H(P ) − (H(K) − H(C)) = H(C) − (H(K) − H(P )) .

In Figure 191, this result is displayed graphically.

H(K)
≥

∨
HP (K) === HP (C) ======= H(C)

∨HC(K) === HC(P ) === H(P )

≥
HK(P ) === HK(C)

Fig. 191. Numerical equivocation relations for perfect classical cryptosystems

A.3.4 By a cyclic shift of K, C, P :

Theorem 3C : In a classical cryptosystem with independent key,

H(K) ≤ H(C) and H(P ) ≤ H(C) as well as

HC(P ) = H(K) − (H(C) − H(P )) = H(P ) − (H(C) − H(K)) .

A.4 Shannon’s Main Theorem

A.4.1 For a classical cryptosystem which is both perfect and independent
key, Theorems 3K and 3C imply immediately that H(K) = H(C) .

A.4.2 A cryptosystem with coinciding H(K) and H(C) shall be called
a cryptosystem of Vernam type. Examples are given by encryptions with
VIGENÈRE, BEAUFORT, and particularly VERNAM encryption steps, but
also by linear polygraphic block encryptions.
In the stochastic model this condition is particularly fulfilled, if both C and
K are texts of k characters with maximal H(K) and maximal H(C) :

H(K) = H(C) = k · ldN .

Main Theorem (Claude E. Shannon 1949):
In a classical cryptosystem, any two of the three properties

perfect ,
independent key ,
of Vernam type

imply the third one.
The proof is obvious from Figure 190.
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A.4.3 A sufficient condition for a classical cryptosystem to be perfect is that
it is independent key and of Vernam type; these conditions can be guaranteed
from outside. Then H(P ) ≤ H(C) = H(K) .
In the stochastic model, perfect security requires with H(P ) ≤ H(K) that
the key possesses at least as many characters as the plaintext, which means
that every description of the key is at least as long as the key itself (Chaitin’s
requirement, Sect. 8.8.4).
Thus, perfect security requires safe distribution of an independent key which
provides for every plaintext character a key character—an extreme require-
ment, which frequently cannot be fulfilled in practice. Non-perfect practical
security is guaranteed only by the time required for breaking the encryption.

A.4.4 Shannon discussed a further property of a cryptosystem. We call a
cryptosystem ideal (Shannon: strongly ideal), if cryptotext and keytext are
mutually independent:

I(K, C) = 0 .

This is equivalent to H(K)=HC(K) and to H(C)=HK(C) .

According to Shannon, ideal cryptosystems have practical disadvantages: for
a perfect cryptosystem, H(K) = H(P ) must hold. Perfect ideal cryptosys-
tems are necessarily adapted to the plaintext language, which usually is a
natural language. In this case, rather complicated encryption algorithms are
necessary. Also, transmission errors inevitably cause an avalanche effect. In
fact, we have here a practically unattainable ideal.

A.5 Unicity Distance

The condition HC(P ) > 0 expresses that for known cryptotext there remains
some uncertainty on the plaintext. For a classical cryptosystem with in-
dependent key (not necessarily perfect) this means, by Theorem 3C ,

H(K) > H(C) − H(P ) .

We now use the stochastic model, with plaintext words V ∗ and cryptotext
words W ∗ over a character set V = W of N characters. We restrict our
attention to words of length k .
Following Hellman (1975), we assume that NP and NC are numbers such
that among the Nk words of length k the number of meaningful, i.e., possibly
occurring, ones is just (NP )k and the number of occurring cryptotexts is
just (NC)k . Then NP ≤ N and NC ≤ N . If all these texts occur with
equal probability, then in the stochastic model

H(P ) = k · ldNP , H(C) = k · ldNC .

Furthermore, we assume that Z is the cardinality of the class of methods,
i.e., the number of key words. Assume that all these key words occur with
equal probability. Then
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H(K) = ldZ .

The inequality above, meaning the existence of an uncertainty, turns into

ldZ > k · (ldNC − ldNP )

or, provided ldNC > ldNP ,

k < U, where U =
1

ldNC − ldNP
· ldZ .

Thus, if k ≥ U , there is no uncertainty. U is a unicity distance (Sect. 12.6).

If NC is maximal, NC = N , i.e., if all possible cryptotexts occur with equal
probability, and if NP < N , i.e., plaintexts are in a natural language, then
the condition ldNC > ldNP is certainly fulfilled, and the unicity distance is

U =
1

ldN − ldNP
· ldZ ;

it is determined solely by the Shannon entropy ldNP of the plaintext words.
This depends in turn on the cryptanalytic procedure. If the analysis is limited
to single-letter frequencies, then the Shannon entropy ldN

(1)
P is to be consid-

ered, the values of which are not very different in English, French, or German,
and amount in the Meyer-Matyas count to ldN

(1)
P ≈ 4.17 [bit], where N = 26

and ldN = ld 26 ≈ 4.70 [bit]. Furthermore, with ldN
(2)
P ≈ 3.5 [bit] for bi-

gram frequencies and ldN
(3)
P ≈ 3.2 [bit] for trigram frequencies, we find

(1) U ≈ 1
0.53 ldZ for decryption with single-letter frequencies,

(2) U ≈ 1
1.2 ldZ for decryption with bigram frequencies,

(3) U ≈ 1
1.5 ldZ for decryption with trigram frequencies.

For plaintext words, the average length is about 4.5 and the corresponding
Shannon entropy about ldN

(w)
P ≈ 2.6 [bit], thus

(w) U ≈ 1
2.1 ldZ for decryption with word frequencies.

The Shannon entropy of the English language under consideration of all, even
grammatical and semantic, side conditions is considerably smaller; a value of
about ldN

(∗)
P ≈ 1.2 [bit] seems about right. This gives the unicity distance

(∗) U ≈ 1
3.5 ldZ for decryption in freestyle,

which is also given in Sect. 12.6 .

For simple (monographic) substitution with Z = 26 ! , we have ld Z = 88.38
(Sect. 12.1.1.1); this leads to the values 167, 74, 59, 42, and 25 for the
unicity distance, which are confirmed by practical experience. The situation
is rather similar for the German, French, Italian, Russian, and related Indo-
European languages.



A.7 Impossibility of Complete Disorder 495

A.6 Code Compression

Although Shannon was led to his information theory by his occupation with
cryptological questions during the Second World War, information theory,
in the form relevant and interesting for communication engineering, has no
secrecy aspects. Its practical importance lies more in showing how to increase
the transmission rate3 by suitable coding, up to a limit which corresponds to
a message without any redundancy—say a message P of k characters with
the maximal uncertainty H(P ) = k · ldN .
The cryptological results above apply immediately to communication chan-
nels. Theoretically, a transmission requiring ld 26 = 4.70 [bit/char] can be
compressed by coding to one requiring only about 1.2 [bit/char]. A good ap-
proximation of this rate needs tremendous circuitry. The simplest case of a
Huffman coding works on single characters only and reduces the transmission
rate only to about 4.17 [bit/char], while Huffman coding for bigrams and tri-
grams, which needs a larger memory, does not bring a dramatic reduction. In
future, however, economic and practical redundancy elimination by Huffman
coding for tetragrams should be within reach using special chips.
The situation is different for the transmission of pictures. The compression
obtainable by relatively simple methods is remarkable and finds increasingly
practical use. For these applications, the truism of post-Shannon cryptology,
that code compression of the plaintext is a useful step in improving the
practical security of a cryptosystem, is particularly appropriate.

A.7 Impossibility of Complete Disorder

When in the 1920s the use of independent (“individual”) keys was recom-
mended, their fabrication did not seem to be a problem. That an individual
key should be a random sequence of key characters was intuitively clear. Af-
ter the work of Shannon and particularly of Chaitin in 1974, all attempts to
produce a random sequence algorithmically had to be dropped. If keys were
to be generated by algorithms, genuine random keytexts were not attainable.
Thus, some order had to remain—the question was which one.
Consequently, ‘pseudorandom sequences’ with a long period were increas-
ingly suspected of having hidden regularities that would help cryptanalysis,
although concrete examples are so far lacking in the open literature. The pro-
fessionals responsible for the security of their own systems were faced with
more and more headaches, while aspiring codebreakers could always hold out
the hope of unexpected solutions.
Strangely, at about this time a similar development took place in mathe-
matics. In 1973, H. Burkill and L. Mirsky wrote:

3 Note the Sampling Theorem: A message being limited to frequencies up to f0 [sec−1]
can be represented by sampling it every 1

2f0
[sec] (Whittaker, 1915; Shannon, 1940).
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”There are numerous theorems in mathematics which assert, crudely
speaking, that every system of a certain class possesses a large sub-
system with a higher degree of organization than the original system.”

We give a number of examples:
(1) Every graph of n nodes contains either a large subgraph of k nodes
which is connected, or a large subgraph of k nodes which is unconnected.
(k is the Ramsey number, e.g., k = 6 for n = 102, F. P. Ramsey 1930)
(2) Every bounded infinite sequence of complex numbers contains a conver-
gent infinite subsequence. (K. Weierstrass 1865)
(3) If the natural numbers are partitioned into two classes, at least one of
these classes contains an arithmetic series of arbitrarily large length.
(Issai Schur about 1925, B. L. van der Waerden 1927)
(4) Every partial order of n2 + 1 elements contains either a chain of length
n + 1 or a set of n + 1 incomparable elements. (R. P. Dilworth 1950)
(5) Every sequence of n2 + 1 natural numbers contains either a monotoni-
cally increasing or a monotonically decreasing subsequence of length n + 1 .
(P. Erdős, G. Szekeres 1950)
Between these and some other examples there seemed to be no connection,
before Paul Erdős, in 1950 (‘Complete chaos is impossible’), tried a synopsis
and found a general theorem which gave many single results by specializa-
tion. Under the name Ramsey Theory (F. P. Ramsey, 1903–1030), this has
led since 1970 to many subtle mathematical works on disorderly systems with
orderly subsystems; for example, in 1975 ‘on sets of integers containing no
k in arithmetic progression’ by E. Szemerédi. The fundamental impossibility
of complete disorder should be interpreted as a warning to cryptologists, to
be careful with the use of machine-produced keys—at the moment only a
theoretical danger, but nevertheless a serious one.
Marian Rejewski, Polish hero of decryption, expressed the warning in 1978
in the following form:

“Whenever there is arbitrariness, there is also a certain regularity.”
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Föppl, Ludwig, 128, 472
FOREIGN see ‘Aegir ’ (key net)
formal cipher, 38, 310
Forschungsamt des RLM, 280, 472, 474
Forschungsstelle der Reichspost, 10
Forster, Otto, 200
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Różycki, Jerzy, VII, 166, 415, 415-418,

431, 437, 440, 442, 447
RSA method, 203-205, 207-208, 210
R.S.H.A.Amt VI , 60, 61, 470
Rudolf, Erzherzog von Habsburg, 97, 97
Rudolf Mosse (code), 76

Rundstedt, Gerd von, 411, 412
running key, 36, 140, 158, 179, 210
running down the alphabet, 245
Russian copulation, 57, 151, 215, 260, 449
Russians, 3, 10, 11, 28, 49, 53, 71, 150,

152, 162, 163, 217, 227, 280, 476, 485

SA Cipher, 37, 74
Sacco, Luigi, VI, 131, 139, 216, 223, 236,

259, 295, 296, 472, 500
safe primes, 183, 207
Safford, Laurance F., 3, 150
Saga, 281, 436
Saint-Cyr slide, 41, 52, 129
Sale, Tony, 168
Salomaa,Arto, 43, 146, 170, 196, 197, 199,

203, 204, 207, 499
Sampling Theorem, 495
Sandherr, Jean, 213
Sandwith, Humphrey, 442
‘saw-buck’ principle, 335, 338, 344, 407
Satzbuch, 72, 73, 78, 172
Sayre, David, 486
S-box, 184, 185, 189
Schauffler,Rudolf, 162, 415
Schellenberg,Walter, 10, 32, 60
Scherbius, Arthur, 111, 112, 113, 114, 145,

147, 445
Schiff 26 (ship), 218, 444
Schiff 45 (ship), 219
Schilling von Cannstatt, Paul, 28
Schimmel, Annemarie, 278
Schleyer, Johann Martin, 368
Schlüsselgerät 41, 147
Schlüsselheft, 69, 172
Schlüsselkenngruppe, 412, 444
Schlüsselzusatz, 171, 372, 387-389, 397,

Plate N
Schmidt,Arno, 30
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Taunt,Derek, VIII, 286, 457
Technical Operations Division, 17
telegraphic English, 301
Telescand (code), 75
teletype code CCITT2 (Ÿ

5
2,Ÿ25 ), 382

ten-letter code, 40
ternary substitution, 54
TESSIE, 373
Tester, Ralph, 395, 401, 406, 409, 410
Testery, 401, 406, 409, 410
test register, 446, 449, 451, 453, 454
test texts for teletype lines, 267
TETRA, 344
tetragram, 35
tetragraphic substitution, 68, 248
text setting see message setting
theta series, 84
‘Thetis’ (key net), 483
thieves’ Latin, 15
Thomas, E. E., 221
Thompson, Eric, 236
THRASHER, 143, 162

three-digit code, 78
three-letter code, 75, 78
‘throw-on’ indicator system, 431
Thue,Axel, 158
Tibbals, Cyrus (code), 76
Tiltman, John H., 63, 66, 375, 387, 389, 389
Timms, Geoffrey A., 499
Tokumu Han, 32, 475
Tolstoy, Sergei, 472, 476
Tomash, Erwin, 457
tomographic methods, 64-67, 179-180
Tompkins, Charles B., 4587
Tordella, Louis, 476
totient function ϕ , 90, 203, 238
Townsend,Robert, 71, 256
traffic analysis, VII
traffic padding, 212, 215
Tranow,Wilhelm, 472, 474
transitive cryptosystem, 277, 378
translation, 81, 240
transposition, 24, 93-105, 169-174, 178-

179, 184, 216, 240-241, 244-249, 251,
290-291, 293, 322, 324, 328, 395, 464

–, block, 98, 169, 464
–, double columnar, 27, 100, 244, 467
–, feigning a, 59
–,mixed-rows block, 99, 100, 467
–,mixed-rows columnar, 99, 100, 178, 467
–,Nihilist, 99
–, simple columnar, 98, 140, 153
transposition double, 99, 100
trapdoor, 189, 197- 202, 203
– one-way functions, 197
‘treble key’, 142, 430
trellis cipher, 95
trench codes, 78, 464
Trevanion, Sir John, 9, 19
trifide, 35
trigram, 35
– coincidences (repetitions), 335, 416
– frequencies, 305, 308, 340
– repetitions, 341, 344, 359, 365
trigraphic substitution, 68, 239, 248
tripartite, 35
triple clef , 142, 430
triple-DES, 190
Trithemius, 9, 15, 16, 17, 39, 40, 54, 127

140, 142, 145, 159
‘Triton’, SHARK (key net), 121, 219, 456-

457
Trotzki, Lev Davidovich, 32
‘tunny’, 171, 389, 393-394, 395, 398, 401,

403, 406, 408, 410–412, 499
Turbot (link), 411



Index 523

Turing,Alan Mathison, VII, 2, 2, 61, 91-92,
173, 199, 237, 281, 284, 288, 395, 401, 410,
415-418, 436, 438, 443-457, 478, 486, 498

Turing BOMBE, 173, 447, 448-451, 454
Turing-Welchman BOMBE, 451-456
Turingery, 395, 410
turning grille, 78, 95-96
turnover, 148, 149, 418
Türkel, Siegfried, 5, 499
TURTLE (key net), 481
Tut Latin, 21
Tutte,William Thomas, 338, 393–395,

401–406, 410
‘Twenty Committee’, 15
Twinn, Peter, 92, 149, 433, 439, 444, 478
two-character differential, 76
2-cycle, 48, 169, 284-286, 300, 434-435
two-part code, two-part nomenclator, 72
TYPEX, 123, 149-151, 482, Plate L

ubchi, 100, 469
U-boat U-13,U-33, 218
U-boat U-110, 61, 218
U-boat U-505, 61
U-boat U-559, 219, 421
U-boat U-570, 219
Uhr box, 120, 482, Plate M
Ulbricht, Heinz, 124
ULTRA, 4, 155, 226
Umkehrwalze, Umkerwaltz, 114, 120
unambiguous, 26, 33 42
unauthorized decryption, 2,3,25,26,32, 97,

101, 106, 134, 159, 169, 180, 189, 194, 211,
215, 217, 220, 224, 230, 232, 235, 237, 244,
251, 272, 273, 278, 291, 292, 314, 316, 317,
341, 344, 355, 356, 358, 373, 375, 388, 389,
397, 399, 467, 470, 472, 476, 478, 481

uncertainty, 487
‘Uncle Walter’, 114, 120
unicity distance, 104, 139, 246-248, 257,

266, 318-319, 493-494
unipartite, 35, 44-46, 87
Universal Trade Code (Yardley), 152
UNIX, 197
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Solution for the second Cryptoquip of Fig. 101:

I=m . Entry with search for patterns results in 1211234 (for KRKKRLH) and
53675 (for ULZIU) . Among the one or two dozen possible instantiations only
very few are not too weird. Among those, /peppery/, followed by (for 5r675)
/aroma/ are suitable and lead to further success:

KRKKR LH P L RU I OZGK AYMMGORA U LYPQ , QRUAH UL Z I U
p e p p e r y r e p e r , e y r
p e p p e r y r e am o p e a r , e a y a r oma
p e p p e r y c r e am s o u p u s e a r c , e a y a r oma
p e p p e r y c r e am s o u p i u s e a r i c h , h e a y a r oma
p e p p e r y c r e am s o u p d i u s e d a r i c h , h e a d y a r oma
p e p p e r y c r e am s o u p d i f f u s e d a r i c h , h e a d y a r oma




