

FUNDAMENTALS OF
CRYPTOLOGY

A Professional Reference
and Interactive Tutorial

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

FUNDAMENTALS OF
CRYPTOLOGY

A Professional Reference
and Interactive Tutorial

by

Henk C.A. van Tilborg
Eindhoven University of Technology

The Netherlands

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47053-5
Print ISBN: 0-792-38675-2

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2000 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Contents
Preface

1 Introduction
1.1 Introduction and Terminology
1.2 Shannon's Description of a Conventional Cryptosystem
1.3 Statistical Description of a Plaintext Source
1.4 Problems

2 Classical Cryptosystems
2.1 Caesar, Simple Substitution, Vigenère
2.1.1 Caesar Cipher
2.1.2 Simple Substitution

The System and its Main Weakness
Cryptanalysis by The Method of a Probable Word

2.1.3 Vigenère Cryptosystem
2.2 The Incidence of Coincidences, Kasiski's Method
2.2.1 The Incidence of Coincidences
2.2.2 Kasiski's Method
2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma
2.3.1 The One-Time Pad
2.3.2 The Playfair Cipher
2.3.3 Transposition Ciphers
2.3.4 Hagelin
2.3.5 Enigma
2.4 Problems

3 Shift Register Sequences
3.1 Pseudo-Random Sequences
3.2 Linear Feedback Shift Registers
3.2.1 (Linear) Feedback Shift Registers
3.2.2 PN-Sequences
3.2.3 Which Characteristic Polynomials give PN-Sequences?
3.2.4 An Alternative Description of for Irreducible f
3.2.5 Cryptographic Properties of PN Sequences
3.3 Non-Linear Algorithms
3.3.1 Minimal Characteristic Polynomial
3.3.2 The Berlekamp-Massey Algorithm
3.3.3 A Few Observations about Non-Linear Algorithms

xiii

1

1
2
4
7

9
9
9

10
10
11
13
16
16
19
20
20
20
21
22
24
25

27
27
31
31
34
38
44
46
49
49
52
58

vi

3.4 Problems

4 Block Ciphers
4.1 Some General Principles
4.1.1 Some Block Cipher Modes

Codebook Mode
Cipher Block Chaining
Cipher Feedback Mode

4.1.2 An Identity Verification Protocol
4.2 DES

DES
Triple DES

4.3 IDEA
4.4 Further Remarks
4.5 Problems

5 Shannon Theory
5.1 Entropy, Redundancy, and Unicity Distance
5.2 Mutual Information and Unconditionally Secure Systems
5.3 Problems

6 Data Compression Techniques
6.1 Basic Concepts of Source Coding for Stationary Sources
6.2 Huffman Codes
6.3 Universal Data Compression - The Lempel-Ziv Algorithms

Initialization
Encoding
Decoding

6.4 Problems

7 Public-Key Cryptography
7.1 The Theoretical Model
7.1.1 Motivation and Set-up
7.1.2 Confidentiality
7.1.3 Digital Signature
7.1.4 Confidentiality and Digital Signature
7.2 Problems

8 Discrete Logarithm Based Systems
8.1 The Discrete Logarithm System
8.1.1 The Discrete Logarithm Problem
8.1.2 The Diffie-Hellman Key Exchange System
8.2 Other Discrete Logarithm Based Systems
8.2.1 ElGamal's Public-Key Cryptosystems

60

63
63
63
63
64
65
66
67
67
69
70
72
73

75
75
80

85

87
87
93
97
98
99

101
103

105
105
105
106
107
108
109

111
111
111
114
116
116

vii

Setting It Up
ElGamal's Secrecy System
ElGamal's Signature Scheme

8.2.2 Further Variations
Digital Signature Standard
Schnorr's Signature Scheme
The Nyberg-Rueppel Signature Scheme

8.3 How to Take Discrete Logarithms
8.3.1 The Pohlig-Hellman Algorithm

Special Case:
General Case: q -1 has only small prime factors
An Example of the Pohlig-Hellman Algorithm

8.3.2 The Baby-Step Giant-Step Method
8.3.3 The Method
8.3.4 The Index-Calculus Method

General Discussion
i.e. the Multiplicative Group of GF(p)

GF(2n)
8.4 Problems

9 RSA Based Systems
9.1 The RSA System
9.1.1 Some Mathematics
9.1.2 Setting Up the System

Step 1 Computing the Modulus nU

Step 2 Computing the Exponents eU and dU

Step 3 Making Public: eU and nU

9.1.3 RSA for Privacy
9.1.4 RSA for Signatures
9.1.5 RSA for Privacy and Signing
9.2 The Security of RSA: Some Factorization Algorithms
9.2.1 What the Cryptanalist Can Do
9.2.2 A Factorization Algorithm for a Special Class of Integers

Pollard's p - 1 Method
9.2.3 General Factorization Algorithms

The Method
Random Square Factoring Methods
Quadratic Sieve

9.3 Some Unsafe Modes for RSA
9.3.1 A Small Public Exponent

Sending the Same Message to More Receivers ...
Sending Related Messages to a Receiver with Small Public Exponent

116
116
118
119
119
120
120
121
121
121
123
124
128
131
135
135
136
141
145

147
147
147
148
148
149
150
150
153
154
156
156
158
158
161
161
162
167
169
169
169
171

viii

9.3.2 A Small Secret Exponent; Wiener's Attack
9.3.3 Some Physical Attacks

Timing Attack
The "Microwave" Attack

9.4 How to Generate Large Prime Numbers; Some Primality Tests
9.4.1 Trying Random Numbers
9.4.2 Probabilistic Primality Tests

The Solovay and Strassen Primality Test
Miller-Rabin Test

9.4.3 A Deterministic Primality Test
9.5 The Rabin Variant
9.5.1 The Encryption Function
9.5.2 Decryption

Precomputation
Finding a Square Root Modulo a Prime Number
The Four Solutions

9.5.3 How to Distinguish Between the Solutions
9.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n
9.6 Problems

10 Elliptic Curves Based Systems
10.1 Some Basic Facts of Elliptic Curves
10.2 The Geometry of Elliptic Curves

A Line Through Two Distinct Points
A Tangent Line

10.3 Addition of Points on Elliptic Curves
10.4 Cryptosystems Defined over Elliptic Curves
10.4.1 The Discrete Logarithm Problem over Elliptic Curves
10.4.2 The Discrete Logarithm System over Elliptic Curves
10.4.3 The Security of Discrete Logarithm Based EC Systems
10.5 Problems

11 Coding Theory Based Systems
11.1 Introduction to Goppa codes
11.2 The McEliece Cryptosystem
11.2.1 The System

Setting Up the System
Encryption
Decryption

11.2.2 Discussion
Summary and Proposed Parameters
Heuristics of the Scheme

176
180
180
180
182
182
184
184
187
190
197
197
199

199
200
204
206
208
209

213
213
216
219
221
224

230
230
231
234
236

237
237
241
242
242
242
242
243
243
243

Not a Signature Scheme
11.2.3 Security Aspects

Guessing and
Exhaustive Codewords Comparison
Syndrome Decoding
Guessing k Correct and Independent Coordinates
Multiple Encryptions of the Same Message

11.2.4 A Small Example of the McEliece System
11.3 Another Technique to Decode Linear Codes
11.4 The Niederreiter Scheme
11.5 Problems

12 Knapsack Based Systems
12.1 The Knapsack System
12.1.1 The Knapsack Problem
12.1.2 The Knapsack System

Setting Up the Knapsack System
Encryption
Decryption
A Further Discussion

12.2 The -Attack
12.2.1 Introduction
12.2.2 Lattices
12.2.3 A Reduced Basis
12.2.4 The -Attack
12.2.5 The -Lattice Basis Reduction Algorithm
12.3 The Chor-Rivest Variant

Setting Up the System
Encryption
Decryption

12.4 Problems

13 Hash Codes & Authentication Techniques
13.1 Introduction
13.2 Hash Functions and MAC's
13.3 Unconditionally Secure Authentication Codes
13.3.1 Notions and Bounds
13.3.2 The Projective Plane Construction

A Finite Projective Plane
A General Construction of a Projective Plane
The Projective Plane Authentication Code

13.3.3 A-Codes From Orthogonal Arrays

ix

244
244
244
245
246
248
251
252
255
260
261

263
263
263
265
265
267
267
268
270
270
271
274
275
277
279
279
282
284
286

287
287
288
290
290
295
295
299
303
305

X

13.3.4 A-Codes From Error-Correcting Codes
13.4 Problems

14 Zero Knowledge Protocols
14.1 The Fiat-Shamir Protocol
14.2 Schnorr's Identification Protocol

14.3 Problems

15 Secret Sharing Systems
15.1 Introduction
15.2 Threshold Schemes
15.3 Threshold Schemes with Liars
15.4 Secret Sharing Schemes
15.5 Visual Secret Sharing Schemes
15.6 Problems

A Elementary Number Theory
A. 1 Introduction
A.2 Euclid's Algorithm
A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem
A.3.1 Congruences
A.3.2 Euler and Fermat
A.3.3 Solving Linear Congruence Relations
A.3.4 The Chinese Remainder Theorem
A.4 Quadratic Residues
A.5 Continued Fractions
A.6 Möbius Inversion Formula, the Principle of Inclusion and Exclusion
A.6.1 Möbius Inversion Formula
A.6.2 The Principle of Inclusion and Exclusion
A.7 Problems

B Finite Fields
B.1 Algebra
B.1.1 Abstract Algebra

Set operations
Group
Ring
Ideal
Field
Equivalence Relations
Cyclic Groups

B.1.2 Linear Algebra
Vector Spaces and Subspaces
Linear Independence, Basis and Dimension

309
314

315
315
317

320

321
321
323
326
328
333
341

343
343
348
352
352
354
358
361
364
369
378
378
380
382

383
383
383
383
384
386
386
387
387
389
391
391
392

xi

Inner Product, Orthogonality
B.2 Constructions
B.3 The Number of Irreducible Polynomials over GF(q)
B.4 The Structure of Finite Fields
B.4.1 The Cyclic Structure of a Finite Field
B.4.2 The Cardinality of a Finite Field
B.4.3 Some Calculus Rules over Finite Fields; Conjugates
B.4.4 Minimal Polynomials, Primitive Polynomials
B.4.5 Further Properties
B.4.6 Cyclotomic Polynomials
B.5 Problems

C Relevant Famous Mathematicians
Euclid of Alexandria
Leonhard Euler
Pierre de Fermat
Evariste Galois
Johann Carl Friedrich Gauss
Karl Gustav Jacob Jacobi
Adrien-Marie Legendre
August Ferdinand Möbius
Joseph Henry Maclagen Wedderburn

D New Functions

References

Symbols and Notations

Index

393
395
401
405
405
409
411
413
418
420
423

425
425
426
428
434
439
445
446
447
451

453

461

469

471

This page intentionally left blank.

Preface
The protection of sensitive information against unauthorized access or fraudulent changes has been of
prime concern throughout the centuries. Modern communication techniques, using computers connected
through networks, make all data even more vulnerable for these threats. Also, new issues have come up
that were not relevant before, e.g. how to add a (digital) signature to an electronic document in such a way
that the signer can not deny later on that the document was signed by him/her.

Cryptology addresses the above issues. It is at the foundation of all information security. The techniques
employed to this end have become increasingly mathematical of nature. This book serves as an
introduction to modern cryptographic methods. After a brief survey of classical cryptosystems, it
concentrates on three main areas. First of all, stream ciphers and block ciphers are discussed. These
systems have extremely fast implementations, but sender and receiver have to share a secret key. Public
key cryptosystems (the second main area) make it possible to protect data without a prearranged key. Their

security is based on intractable mathematical problems, like the factorization of large numbers. The
remaining chapters cover a variety of topics, such as zero-knowledge proofs, secret sharing schemes and
authentication codes. Two appendices explain all mathematical prerequisites in great detail. One is on
elementary number theory (Euclid's Algorithm, the Chinese Remainder Theorem, quadratic residues,
inversion formulas, and continued fractions). The other appendix gives a thorough introduction to finite
fields and their algebraic structure.

This book differs from its 1988 version in two ways. That a lot of new material has been added is to be
expected in a field that is developing so fast. Apart from a revision of the existing material, there are many
new or greatly expanded sections, an entirely new chapter on elliptic curves and also one on authentication
codes. The second difference is even more significant. The whole manuscript is electronically available as

an interactive Mathematica manuscript. So, there are hyperlinks to other places in the text, but more

importantly, it is now possible to work out non-trivial examples. Even a non-expert can easily alter the
parameters in the examples and try out new ones. It is our experience, based on teaching at the California
Institute of Technology and the Eindhoven University of Technology, that most students truly enjoy the
enormous possibilities of a computer algebra notebook. Throughout the book, it has been our intention to
make all Mathematica statements as transparent as possible, sometimes sacrificing elegant or smart
alternatives that are too dependent on this particular computer algebra package.

There are several people that have played a crucial role in the preparation of this manuscript. In
alphabetical order of first name, I would like to thank Fred Simons for showing me the full
potential of Mathematica for educational purposes and for enhancing many the Mathematica
commands, Gavin Horn for the many typo's that he has found as well as his compilation of
solutions, Lilian Porter for her feedback on my use of English, and Wil Kortsmit for his help in
getting the manuscript camera-ready and for solving many of my Mathematica questions. I also
owe great debt to the following people who helped me with their feedback on various chapters:

xiv

Berry Schoenmakers, Bram van Asch, Eric Verheul, Frans Willems, Mariska Sas, and Martin van
Dijk.

Henk van Tilborg
Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven
the Netherlands
email: henkvt@win.tue.nl.

1 Introduction

1.1 Introduction and Terminology
Cryptology, the study of cryptosystems, can be subdivided into two disciplines. Cryptography
concerns itself with the design of cryptosystems, while cryptanalysis studies the breaking of
cryptosystems. These two aspects are closely related; when setting up a cryptosystem the analysis
of its security plays an important role. At this time we will not give a formal definition of a
cryptosystem, as that will come later in this chapter. We assume that the reader has the right
intuitive idea of what a cryptosystem is.

Why would anybody use a cryptosystem? There are several possibilities:

Confidentiality: When transmitting data, one does not want an eavesdropper to understand the
contents of the transmitted messages. The same is true for stored data that should be protected
against unauthorized access, for instance by hackers.

Authentication: This property is the equivalent of a signature. The receiver of a message wants
proof that a message comes from a certain party and not from somebody else (even if the original
party later wants to deny it).

Integrity: This means that the receiver of certain data has evidence that no changes have been
made by a third party.

Throughout the centuries (see [Kahn67]) cryptosystems have been used by the military and by the
diplomatic services. The nowadays widespread use of computer controlled communication
systems in industry or by civil services, often asks for special protection of the data by means of
cryptographic techniques.

Since the storage, and later recovery, of data can be viewed as transmission of this data in the time
domain, we shall always use the term transmission when discussing a situation when data is stored
and/or transmitted.

2 FUNDAMENTALS OF CRYPTOLOGY

1.2 Shannon's Description of a Conventional Cryptosystem
Chapters 2, 3, and 4 discuss several so-called conventional cryptosystems. The formal definition of
a conventional cryptosystem as well as the mathematical foundation of the underlying theory is
due to C.E. Shannon [Shan49]. In Figure 1.1, the general outline of a conventional cryptosystem is
depicted.

In the next section we shall elaborate on concepts like language and text. This will provide a
cryptanalist with useful models when describing the output of the sender in the scheme.

Let be a finite set, which we will call alphabet. With we denote the cardinality of We
shall often use as alphabet, where we work with its elements modulo q (see
the beginning of Subsection A.3.1 and Section B.2. The alphabet can be identified with the set

In most modern applications q will often be 2 or a power of 2.

A concatenation of n letters from will be called an n-gram and denoted by
Special cases are bi-grams (n = 2) and tri-grams (n = 3). The set of all n-

grams from will be denoted by

A text is an element from A language is a subset of In the case of
programming languages this subset is precisely defined by means of recursion rules. In the case of
spoken languages these rules are very loose.

Let and be two finite alphabets. Any one-to-one mapping E of to is called a
cryptographic transformation. In most practical situations will be equal to Also often the
cryptographic transformation E will map n-grams into n-grams (to avoid data expansion during the
encryption process).

Introduction 3

It is usually called the plaintext. Alice will first transform the plaintext into the so-called
ciphertext. It will be the ciphertext that she will transmit to Bob.

Since is a one-to-one mapping, its inverse must exist. We shall denote it with Of course, the
E stands for encryption (or enciphering) and the D for decryption (or deciphering). One has

for all plaintexts

If Alice wants to send the plaintext m to Bob by means of the cryptographic transformation
both Alice and Bob must know the particular choice of the key k. They will have agreed on the
value of k by means of a so-called secure channel. This channel could be a courier, but it could
also be that Alice and Bob have, beforehand, agreed on the choice of k.

Bob can decipher c by computing

Normally, the same cryptosystem will be used for a long time and by many people, so it is
reasonable to assume that this set of cryptographic transformations is also known to the
cryptanalist. It is the frequent changing of the key that has to provide the security of the data. This
principle was already clearly stated by the Dutchman Auguste Kerckhoff (see [Kahn67]) in the 19-
th century.

The cryptanalist (Eve) who is connected to the transmission line can be:

 passive (eavesdropping): The cryptanalist tries to find m (or even better k) from c (and whatever
further knowledge he has). By determining k more ciphertexts may be broken.

 active (tampering): The cryptanalist tries to actively manipulate the data that are being
transmitted. For instance, he transmits his own ciphertext, retransmits old ciphertext, substitutes
his own texts for transmitted ciphertexts, etc..

In general, one discerns three levels of cryptanalysis:

 Ciphertext only attack: Only a piece of ciphertext is known to the cryptanalist (and often the
context of the message).

Known plaintext attack: A piece of ciphertext with corresponding plaintext is known. If a system
is secure against this kind of attack the legitimate receiver does not have to destroy deciphered
messages.

Let m be the message (a text from) that Alice in Figure 1.1 wants to transmit in secrecy to Bob.

4 FUNDAMENTALS OF CRYPTOLOGY

Chosen plaintext attack: The cryptanalist can choose any piece of plaintext and generate the
corresponding ciphertext. The public-key cryptosystems that we shall discuss in Chapters 7-12
have to be secure against this kind of attack.

This concludes our general description of the conventional cryptosystem as depicted in Figure 1.1.

1.3 Statistical Description of a Plaintext Source
In cryptology, especially when one wants to break a particular cryptosystem, a probabilistic
approach to describe a language is often already a powerful tool, as we shall see in Section 2.2.

The person Alice in Figure 1.1 stands for a finite or infinite plaintext source of text, that was
called plaintext, from an alphabet e.g. It can be described as a finite resp. infinite sequence
of random variables Mi, so by sequences

for some fixed value of n,

resp.

each described by probabilities that events occur. So, for each letter combination (r-gram)
over and each starting point j the probability

is well defined. In the case that we shall simply write . Of course,
the probabilities that describe the plaintext source should satisfy the standard statistical
properties, that we shall mention below but on which we shall not elaborate.

for all texts

The third property is called Kolmogorov's consistency condition.

Example 1.1

The plaintext source (Alice in Figure 1.1) generates individual letters (1-grams) from with
an independent but identical distribution, say So,

The distribution of the letters of the alphabet in normal English texts is given in Table 1.1 (see
Table 12-1 in [MeyM82]). In this model one has that

Introduction 5

Note that in this model also etc., so, unlike in a regular English texts,
all permutations of the three letters r, u, and n are equally likely in

Example 1.2

generates 2-grams over the alphabet with an independent but identical distribution, say
with So, for

The distribution of 2-grams in English texts can be found in the literature (see Table 2.3.4 in
[Konh81]).

Of course, one can continue like this with tables of the distribution of 3-grams or more. A different
and more appealing approach is given in the following example.

6 FUNDAMENTALS OF CRYPTOLOGY

Example 1.3

In this model, the plaintext source generates 1-grams by means of a Markov process. This process can

be described by a transition matrix which gives the probability that a letter s in the text is

followed by the letter t. It follows from the theory of Markov processes that P has 1 as an eigenvalue. Let
, be the corresponding eigenvector (it is called the equilibrium distribution of the

process).

Assuming that the process is already in its equilibrium state at the beginning, one has

Introduction 7

Let p and P be given by Table 1.2 and Table 1.3 from [Konh81] (here they are denoted by "ed"

resp. "TrPr"). Then, one obtains the following, more realistic probabilities of occurrence:

By means of the Mathematica functions StringTake, ToCharacterCode. and

StringLength. these probabilities can be computed in the following way (first enter the input

Table 1.2 and Table 1.3, by executing all initialization cells)

Better approximations of a language can be made, by considering transition probabilities that

depend on more than one letter in the past.

Note, that in the three examples above, the models are all stationary, which means that
is independent of the value of j. In the middle of

a regular text one may expect this property to hold, but in other situations this is not the case.
Think for instance of the date at the beginning of a letter.

1.4 Problems

Problem 1.1
What is the probability that the text "apple" occurs, when the plaintext source generates independent,
identically distributed 1-grams, as described in Example 1.1.
Answer the same question when the Markov model of Example 1.3 is used?

Problem
Use the Mathematica function Permutations and the input formula at the end of Section 1.3 to
determine for each of the 24 orderings of the four letters e, h, l, p the probability that it occurs in a
language generated by the Markov model of Example 1.3.

This page intentionally left blank.

2 Classical Cryptosystems

2.1 Caesar, Simple Substitution, Vigenère
In this chapter we shall discuss a number of classical cryptosystems. For further reading we refer
the interested reader to ([BekP82], [Denn82], [Kahn67], [Konh81], or [MeyM82]).

2.1.1 Caesar Cipher

One of the oldest cryptosystems is due to Julius Caesar. It shifts each letter in the text cyclicly over
k places. So, with one gets the following encryption of the word cleopatra (note that the
letter z is mapped to a):

By using the Mathematica functions ToCharacterCode and FromCharacterCode, which
convert symbols to their ASCI code and back (letter a has value 97, letter b has value 98, etc.), the
Caesar cipher can be executed by the following function:

An example is given below.

In the terminology of Section 1.2, the Caesar cipher is defined over the alphabet by:

and

10 FUNDAMENTALS OF CRYPTOLOGY

where (i mod n) denotes the unique integer j satisfying In this case,
the key space is the set and

An easy way to break the system is to try out all possible keys. This method is called exhaustive
key search. In Table 2.1 one can find the cryptanalysis of the ciphertext "xyuysuyifvyxi".

To decrypt the ciphertext yhaklwpnw., one can easily check all keys with the caesar function
defined above.

2.1.2 Simple Substitution

The System and its Main Weakness

With the method of a simple substitution one chooses a fixed permutation of the alphabet
and applies that to all letters in the plaintext.

Example 2.1

In the following example we only give that part of the substitution . that is relevant for the given plaintext.
We use the Mathematica function StringReplace.

Classical Cryptosystems 11

A more formal description of the simple substitution system is as follows: the key space is the
set of all permutations of and the cryptosystem is given by

where

The decryption function is given by as follows from

Unlike Caesar's cipher, this system does not have the drawback of a small key space. Indeed,
This system however does demonstrate very well that a large

key space should not fool one into believing that a system is secure! On the contrary, by simply
counting the letter frequencies in the ciphertexts and comparing these with the letter frequencies in
Table 1.1, one very quickly finds the images under of the most frequent letters in the plaintext.
Indeed, the most frequent letter in the ciphertext will very likely be the image under of the letter
e. The next one is the image of the letter n, etc. After having found the encryptions of the most
frequent letters in the plaintext, it is not difficult to fill in the rest. Of course, the longer the cipher
text, the easier the cryptanalysis becomes. In Chapter 5, we come back to the cryptanalysis of the
system, in particular how long the same key can be used safely.

 Cryptanalysis by The Method of a Probable Word

In the following example we have knowledge of a very long ciphertext. This is not necessary at all
for the cryptanalysis of the ciphertext, but it takes that long to know the full key. Indeed, as long as
two letters are missing in the plaintext, one does not know the full key, but the system is of course
broken much earlier than that.

Apart from the ciphertext, given in Table 2.2, we shall assume in this example that the plaintext
discusses the concept of "bidirectional communication theory". Cryptanalysis will turn out to be
very easy.

12 FUNDAMENTALS OF CRYPTOLOGY

Assuming that the word "communication" will occur in the plaintext, we look for strings of 13
consecutive letters, in which letter 1 = letter 8, letter 2 = letter 12, letter 3 = letter 4, letter 6 = letter

Indeed, we find the string "yennmhzydizeh" three times in the ciphertext. This gives the following
information about

Assuming that the word "direction" does also occur in the plaintext, we need to look for strings of
the form yizeh" in the ciphertext, because of the information that we already have on It
turns out that "qzolyizeh" appears four times, giving:

If we substitute all this information in the ciphertext one easily obtains completely. For instance,
the text begins like

in*ormationt*eor*treat*t*eunid...,

which obviously comes from

information theory treats the unid(irectional)

This gives the -image of the letters f, h, y and s...,

Continuing like this, one readily obtains completely.

13 and letter 7 = letter 11.

Classical Cryptosystems 13

Example 2.2

Mathematica makes is quite easy to find a substring with a certain pattern. For instance, to test where in a
text one can find a substring of length 6 with letters 1 and 4 equal and also letters 2 and 5 (as in the Latin
word "quoque"), one can use the Mathematica functions If. StringTake, StringLength, Do

Print and the following:

3 uysuyi

This example was taken from Table 2.1.

2.1.3 Vigenère Cryptosystem

The Vigenère cryptosystem (named after the Frenchman B. de Vigenère who in 1586 wrote his
Traicté des Chiffres, describing a more difficult version of this system) consists of r Caesar ciphers
applied periodically. In the example below, the key is a word of length The i-th letter in the
key defines the particular Caesar cipher that is used for the encryption of the letters

in the plaintext.

Example 2.3

We identify with The so-called Vigenère Table (see Table 2.3) is a very helpful

tool when encrypting or decrypting. With the key "michael" one gets the following encipherment:

14 FUNDAMENTALS OF CRYPTOLOGY

Because of the redundancy in the English language one reduces the effective size of the key space
tremendously by choosing an existing word as the key. Taking the name of a relative, as we have
done above, reduces the security of the encryption more or less to zero.

In Mathematica, addition of two letters as defined by the Vigenère Table can be realized in a
similar way, as our earlier implementation of the Caesar cipher:

By means of the Mathematica functions StringTake and StringLength , and the function
AddTwoLetters, defined above, encryption with the Vigenère cryptosystem can be realized as

follows:

Classical Cryptosystems 15

A more formal description of the Vigenère cryptosystem is as follows

and

with

Instead of using r Caesar ciphers periodically in the Vigenère cryptosystem, one can of course also
use r simple substitutions. Such a system is an example of a so-called polyalphabetic substitution.
For centuries, no one had an effective way of breaking this system, mainly because one did not
have a technique of determining the key length r. Once one knows r, one can find the r simple
substitutions by grouping together the letters for each i, and break
each of these r simple substitutions individually. In 1863, the Prussian army officer, F.W. Kasiski,
solved the problem of finding the key length r by statistical means. In the next section, we shall
discuss this method.

16 FUNDAMENTALS OF CRYPTOLOGY

2.2 The Incidence of Coincidences, Kasiski's Method

2.2.1 The Incidence of Coincidences

Consider a ciphertext which is the result of a Vigenère encryption of an English
plaintext under the key i(see also (2.1)). As explained at
the end of the previous section, the key to breaking the Vigenère system is to determine the key
length r.

In our analysis we are going to assume the very simple model of a plaintext source outputting
independent, individual letters, each with probability distribution given by Table 1.1 (see Example
1.1). We further assume that the letters in the key are chosen with independent and uniform
distribution from (so, with probability 1/26).

Let the substrings of c consisting of the i left most resp. right most symbols of c, so:

and

Let us now count the number of agreements between , i.e. the number of coordinates j
where We shall show in Lemma 2.1 that the expected value of this number

values of i:

divided by the string length i will be 0.06875 or depending on whether the
(unknown) key length r divides n – i or does not divide n – i.

Let us show by example how this difference in expected values can be used to determine the
unknown key length r.

Example 2.4

In this example we consider the ciphertext

"glrtnhklttbrxbxwnnhshjwkcjmsmrwnxqmvehuimnfxbzcwixbmhxqhhclgcipcgimg
gwcmwyejqbxbmlywimbkhhjwkcjmsmrwnxqmplceiwkcjmehtpslmmlxowmylxbxflxeebrahjwkcjm
smrwnxqm".

By means of the Mathematica functions StringTake, StringLength, Characters, and
Table . we can easily compute the number of agreements between and in any range of

Classical Cryptosystems 17

The (relative) higher values in this listing at places –6 and –18 indicate that the key length r is 6.
Indeed, the key that has been used to generate this example is the word "monkey", which has 6
letters.

This can be checked with the following analogue of the Vigenère encryption of Example 2.3.

18 FUNDAMENTALS OF CRYPTOLOGY

Proof:

If is divisible by r, then if and only if This follows directly from formula
(2.1), since (j mod r) equals (i mod r). So,

Classical Cryptosystems 19

If is not divisible by r, then by (2.1) if and only if " " Since
it follows that takes on the value with probability

1/26. We conclude that

It may be clear that with increasing length of the ciphertext, it is easier to determine the key length
from the relative number of agreements between

2.2.2 Kasiski's Method

Kasiski based his cryptanalysis of the Vigenère cryptosystem on the fact that when a certain
combination of letters (a frequent plaintext fragment) is encrypted more than once with the same
segment of the key (because they occur at a multiple of the key length r), one will see a repetition
of the corresponding ciphertext at those places.

We quote an example from [Baue97]:

Example2.5

Consider the following plaintext and ciphertext pair (where the key "comet" has been used):

In the ciphertext one can find the substring "vvqv" (of length 4) repeated twice, namely starting at
positions 1 and 11. This indicates that r divides 10. The substring "mrh" (of length 3) also occurs
twice: at positions 8 and 23. So, it seems likely that r also divides 15. Combining these results, we
conclude that r = 5, which is indeed the case.

See [Baue97] for a further analysis of the Vigenère cryptosystem.

20 FUNDAMENTALS OF CRYPTOLOGY

2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma
In this section, we shall briefly discuss a few more cryptosystems, without going deep into their
structure.

2.3.1 The One-Time Pad

The one-time pad, also called the Vernam cipher (after the American A.T. & T. employee G.S.
Vernam, who introduced the system in 1917), is a Vigenère cipher with key length equal to the
length of the plaintext. Also, the key must be chosen in a completely random way and can only be
used once. In this way the system is unconditionally secure, as is intuitively clear and will be
proved in Chapter 5. The "hot line" between Washington and Moscow uses this system. The major
drawback of this system is the length of the key, which makes this system impractical for most
applications.

2.3.2 The Playfair Cipher

The Playfair cipher (1854, named after the Englishman L. Playfair) was used by the British in
World War I. It operates on 2-grams. First of all, one has to identify the letters i and j. The
remaining 25 letters of the alphabet are put rowwise in a 5 × 5 matrix K, as follows. Put the first
letter of a keyword in the top-left position. Continue rowwise from left to right. If a letter occurs
more than once in the keyword, use it only once. The remaining letters of the alphabet are put into
K in their natural order. For instance, the keyword "hieronymus" gives rise to

The 2-gram with will be encrypted into

where the indices are taken modulo 5. If the symbols x and y in the 2-gram (x, y) are the same, one
first inserts the letter q and enciphers the text ...xqy... .

Classical Cryptosystems 21

2.3.3 Transposition Ciphers

A completely different way of enciphering is called transposition. This system breaks the text up
into blocks of fixed length, say n, and applies a fixed permutation to the coordinates. For
instance, with and . = (1, 4, 5, 2, 3), one gets the following encryption:

Often the permutation is of a geometrical nature, as is the case with the so-called column
transposition. The plaintext is written rowwise in a matrix of given size, but will be read out
columnwise in a specific order depending on a keyword. For instance, after having identified
letters a, b, ..., z with the numbers 1, 2, ..., 26 the keyword "right" will dictate you to read out
column 3 first (being the alphabetically first of the 5 letters in "right"), followed by columns 4, 2, 1
and 5. So, the plaintext

computing science has had very little influence on computing
practice

when encrypted with a 5 × 5 matrix and keyword "right" will first be filled in rowwise as depicted
below

and then read out (columnwise in the indicated order) to give the ciphertext:

mneav pgnse oiihd ctcea uschr iienu tnnct leuop yllem tfcoi

Since transpositions do not change letter frequencies, but destroy dependencies between
consecutive letters in the plaintext, while Vigenère etc. do the opposite, one often combines such
systems. Such a combined system is called a product cipher. Shannon used the words confusion
and diffusion in this context.

Ciphersystems that encrypt the plaintext symbol for symbol in a way that depends on previous
input symbols are often called stream ciphers (they will discussed in Chapter 3). Cryptosystems
that encrypt blocks of symbols (of a fixed length) simultaneously but independent of previous
encryptions, they are called block ciphers (see Chapter 4).

During World War II both sides used so called rotor machines for their encryption. Several
variations of the machines described in the next two subsections were in use at that time. We shall
give a rough idea of each one.

22 FUNDAMENTALS OF CRYPTOLOGY

2.3.4 Hagelin

The Hagelin, invented by the Swede B. Hagelin and used by the U.S. Army, has 6 rotors with 26,
resp. 25, 23, 21, 19 and 17 pins. Each of these pins can be put into an active or passive position by
letting it stick out to the left or right of the rotor. After encryption of a letter (depending on the
setting of these pins and a rotating cylinder), the 6 rotors all turn one position. So, after 26
encryptions the first rotor is back in its original position. For the sixth rotor this takes only 17
encryptions.

Classical Cryptosystems 23

Since the number of pins on the rotors are coprime, the Hagelin can be viewed as a mechanical
Vigenère cryptosystem with period We refer the reader
who is interested in the cryptanalysis of the Hagelin to Section 2.3 in [BekP82].

24 FUNDAMENTALS OF CRYPTOLOGY

2.3.5 Enigma

Classical Cryptosystems 25

The electro-mechanical Enigma, used by Germany and Japan, was invented by A. Scherbius in
1923. It consists of three rotors and a reflector. See Figure 2.4. When punching in a letter, an
electronic current will enter the first rotor at the place corresponding with that letter, but will leave
it somewhere else depending on the internal wiring of that rotor. The second and third rotors do
the same, but have a different wiring. The reflector returns the current at a different place and the
current will go through rotors 1, 2 and 3 again but in reverse order. The current will light up a
letter, which gives the encryption of the original letter.

Simultaneously, the first rotor will turn position. After 26 rotations of the first rotor the second
will turn one position. When the second rotor has made a full cycle, the third rotor will rotate over
one position.

The key of the Enigma consists of

i) the choice and order of the rotors,
ii) their initial position and
iii) a fixed initial permutation of the alphabet.

For an idea about the cryptanalysis of the Enigma the reader is referred to Chapter 5 in [Konh8l].

2.4 Problems

Problem 2.1
The following ciphertext about president Kennedy has been made with a simple substitution. What is the
corresponding
plaintext?

"rgjjg mvkto tzpgt stbgp catjw pgocm gjs"

Problem 2.2
Decrypt the following ciphertext, which is made with the Playfair cipher and the key "hieronymous" (as in
Subsection 2.3.2).

"erohh mfimf ienfa bsesn pdwar gbhah ro"

Problem 2.3
Encrypt the following plaintext using the Vigenere system with the key "vigenere".

"who is afraid of Virginia woolf"

Problem 2.4M

Consider a ciphertext obtained through a Caesar encryption. Write a Mathematica program to find all
substrings of length 5 in the ciphertext that could have been obtained from the word "Brute".
Test this program on the text "xyuysuyifvyxi" from Table 2.1. (See also the input in Example 2.2)

This page intentionally left blank.

3 Shift Register Sequences

3.1 Pseudo-Random Sequences
During and after World War II, the introduction of logical circuits made completely electronic
cryptosystems possible. These turned out to be very practical in the sense of being easy to
implement and very fast. The analysis of their security is not so easy! Working with logical circuits
often leads to the alphabet {0, 1}. There are only two possible permutations (substitutions) of the
set {0, 1}. One action interchanges the two symbols. This can also be described by adding 1
(modulo 2) to the two elements. The other permutation leaves the two symbols invariant, which is
the same as adding 0 (modulo 2) to these two elements.

Since the Vernam cipher is unconditionally secure but not very practical, it is only natural that
people came up with the following scheme.

Of course one would like the sequence to be random, but with a finite state machine and a
deterministic algorithm one can not generate a random sequence. Indeed, one will always generate
a sequence, which is ultimately periodic. This observation shows that (apart from a beginning
segment) the scheme is a special case of the Vigenere cryptosystem. On the other hand, one can try
to generate sequences that appear to be random, have long periods and have the right
cryptographic properties. Good reference books for this theory are [Bek82], [Gol67], and [Ruep86].

28 FUNDAMENTALS OF CRYPTOLOGY

In [Gol67], S.W. Golomb formulated three postulates that a binary, periodic sequence
should satisfy to be called pseudo-random. Before we can give these, we have to introduce some
terminology.

A run of length k is a subsequence of consisting of k identical symbols, bordered by
different symbols. If the run starts at moment t, one has in formula:

One makes the following distinction:

a block of length k :

a gap of length k :

The autocorrelation AC(k) of a periodic sequence with period p is defined by:

where A(k) and D(k) denote the number of agreements resp. disagreements over a full period
between and which is shifted over k positions to the left. So

Note that one can also write

Example 3.1

Consider a sequence that is periodic with period p given by its first p elements.

With the Mathematica functions Count, Length, Mod, RotateLeft, and Table one easily computes
all values of the autocorrelation function

Shift Register Sequences 29

If k is a multiple of p one has that One speaks of the in-phase
autocorrelation.

If p does not divide k, one speaks of the out-of-phase autocorrelation. The value of AC now lies
between –1 and +1.

G1 states that zeros and ones occur with roughly the same probability. One can count these
occurrences quite easily with the Mathematica function Count.

G2 implies that after 011 the symbol 0 (leading to a block of length 2) has the same probability as
the symbol 1 (leading to a block of length etc. So, G2 says that certain n-grams occur with the
right frequencies. These frequencies can be computed by means of the Mathematica functions
Count, Length, RotateLeft, Table, and Take.

30 FUNDAMENTALS OF CRYPTOLOGY

The interpretation of G3 is more difficult. It does say that counting the number of agreements
between a sequence and a shifted version of that sequence does not give any information about the
period of that sequence, unless one shifts over a multiple of the period. A related situation is
described in Lemma 2.1, where such a comparison made it possible to determine the length of the
key used in the Vigenere cipher. In cryptographic applications p will be too large for such an
approach.

Proof: Consider a cyclic matrix with top row We shall count in two different
ways the sum of all the agreements minus the disagreements between the top row and all the other
rows. Counting rowwise we get by G3 for each row i, the same contribution p.AC(k).
This gives a total value of

We shall now evaluate the above sum, by counting columnwise, the number of agreements minus
the number of disagreements between all lower entries with the top entries.

Case: p even.

By G1, the contribution of each column will be since each column counts
exactly agreements of a lower entry with the top entry and exactly p/2 disagreements.
Summing this value over all columns gives –p for the total sum. Equating the two values yields

However, Equation (3.1) implies that p.AC(k) is an integer. This is not
possible when ,

Case: p odd.

One gets for columns the contribution which is 0, and for
columns the contribution which is -2. Hence one obtains the

value for the summation. Putting this equal to yields the value

The well known and the spectral test, [CovM67], yields ways to test the pseudo-
randomness properties of a given sequence. We shall not discuss these methods here. The
interested reader is referred to [Golo67], Chapter IV, [Knut81], Chapter 3, or Maurer's universal
statistical test [Maur92].

There are also properties of a cryptographic nature which the sequence in Figure 3.1 should
satisfy.

C1: The period p of has to be taken very large (about the order of magnitude of).

C2: The sequence should be easy to generate.

Shift Register Sequences 31

C3: Knowledge of part of the plaintext with corresponding ciphertext should not enable a
cryptanalist to generate the whole -sequence (known plaintext attack).

3.2 Linear Feedback Shift Registers

3.2.1 (Linear) Feedback Shift Registers

Feedback shift registers are very fast implementations to generate binary sequences. Their general
form is depicted in Figure 3.2.

A feedback shift register (FSR) of length n contains n memory cells, which together form the
(beginning) state) of the shift register. The function f is a mapping of in

and is called the feedback function of the register. Since f can be represented as a Boolean
function, it can easily be made with elementary logical functions.

After the first time unit, the shift register will output and go to state where

Continuing in this way, the shift register will generate an infinite sequence

Example 3.2

Consider the case that and that f is given by Starting with an initial state

one can quite easily determine the successive states with the Mathematica functions Mod, Do,
and Print as follows:

32 FUNDAMENTALS OF CRYPTOLOGY

In this section, we shall study the special case that f is a linear function, say:

where all the are binary and all the additions are taken modulo 2.

The general picture of a linear feedback shift register, which we shall shorten to LFSR, is depicted
in the figure below.

The output sequence of such a LFSR can be described by the starting state
and the linear recurrence relation:

or, equivalently

Shift Register Sequences 33

where by definition. Let denote the state at time i, i.e. Then,
similarly to (3.2) one has the following recurrence relation for the successive states of the LFSR:

The coefficients in (3.2) and Figure 3.3 are called the feedback coefficients of the LFSR. If
then the corresponding switch in Figure 3.3 is open, while if this switch is closed. We

shall always assume that because otherwise the output sequence is just a delayed
version of a sequence, generated by a LFSR with its equal to 1.

As a consequence, any state of the LFSR not only has a unique successor state, as is natural, but
also has a unique predecessor. Indeed, for any the value of is uniquely determined by

by means of (3.2). Later on (in Thm. 3.22) we shall prove this property in a more
general situation.

Example 3.3

we get the following LFSR:

With starting state (1,0,0,0) one gets the subsequent list of successive states:

34 FUNDAMENTALS OF CRYPTOLOGY

Note that the state at is identical to the state at so the output sequence has
period 15.

One can easily determine the output sequence of a LFSR with the Mathematica Functions Table
Mod , and Do as follows:

Since there are precisely different states in a LFSR of length n and the all-zero state always
goes over into itself, one can conclude that the period of will never exceed

3.2.2 PN-Sequences

If an n-stage LFSR does not run cyclically through all non-zero states, it certainly does not
generate a PN-sequence. As a consequence we have the following theorem.

Shift Register Sequences 35

We want to classify all LFSR's which generate PN-sequences. To this end, we associate with an
LFSR with feedback coefficients its characteristic polynomial f(x), which is
defined as follows:

(3.5)

where by definition and by assumption.

In words, is the set of all output sequences of the LFSR with characteristic polynomial

Proof: Since (3.2) is a linear recurrence relation, obviously is a linear vectorspace. Also,
each is uniquely determined by its first n entries (the beginning
state), so the dimension of is at most n. On the other hand, the n different sequences starting
with

are clearly independent. So, the dimension of is at least n.

D

Let f be a polynomial of degree n, say with Then, the reciprocal
polynomial of f(x) is defined by

(3.6)

With a sequence we associate the power series (also called generating function)

(3.7)

Instead of writing we shall also use the notation We know that S(x) is
uniquely determined by the beginning state and the characteristic polynomial
f(x). In the following theorem and corollary, we shall now make this dependency more explicit.

36 FUNDAMENTALS OF CRYPTOLOGY

Proof:

Remark:

Note that the proof above implies that This

polynomial is of degree and has coefficients depending on the initial state and the
characteristic polynomial.

Note also that the mapping is one-to-one since

Example 3.4

Consider the LFSR with and take as beginning state Then u(x) can be
computed with the Mathematica function polynomialMod as follows:

To check Theorem 3.4 up to some term we use (3.2) to compute the up to L (here we use the
Mathematica functions Mod, Print, and PolynomialMod):

Shift Register Sequences 37

Note that the output is indeed the same as above.

Remark: Writing means the same as

Proof: From Theorem 3.4 and the remark below it we know that each member of can be
written as with degree and we know that this u(x) is unique. This proves the

-inclusion.

On the other hand, has cardinality by Lemma 3.3 and there are also exactly binary
polynomials u(x) of degree

It is now easy to prove the following lemma.

Proof: Write and and Let S(x) and T(x) be the generating functions
of resp.

Corollary 3.5 implies that and where
degree(u(x)) degree(f(x)) and degree <degree(g(x)). Since

38 FUNDAMENTALS OF CRYPTOLOGY

and both a*(x)u(x) as well as b*(x)v(x) have degree less than degree(h(x)), it follows that

3.2.3 Which Characteristic Polynomials give PN-Sequences?

The period of a polynomial / with is the smallest positive m such that f(x) divides
i.e. the smallest positive m such that (mod (f (x)). It is well defined, since the

sequence of successive powers of x, reduced modulo f (x), has to be periodic. Indeed, if
(mod f (x)) and then also (mod f (x)), because gcd(x, f(x)) = 1. (The

term x has a multiplicative inverse by Corollary B.14, so we can indeed divide by x.) We can

repeat this process until we get (mod f(x)).

Example 3.5

Let Its period can be computed with the Mathematica functions While and
PolynomialMod in the way described above. So, starting with x (trying), we compute the
successive powers of x by multiplying the previous power by x (this amounts to a cyclic shift), and then
reducing the answer modulo f(x), until we arrive at the outcome 1.

It follows from Theorem B.35 that a binary, irreducible polynomial of degree n divides
so it also follows that the period m of such a polynomial will divide

(This observation can be used to determine the period of a polynomial more efficiently, however
we shall not discuss that technique at this moment. See the end of Example 8.2)

Proof: Write Taking the reciprocal on both sides gives By
Corollary 3.5, there exists a polynomial u(x) of degree such that

Shift Register Sequences 39

Since d e g r e e (u(x) g*(x)) < degree (f* (x) g*(x)) = degree = m, we see that S(x) must have
period m or a divisor of it.

Proof: Let have period p. By Lemma 3.7, p divides m. Let It follows that

while on the other hand, by Corollary 3.5. Equating these two

expressions yields

and thus

Since f(x) is irreducible of degree n and degree it follows that f(x) divides So,
m, the period of f (x), must divide p. We conclude that

Example 3.6

Consider the irreducible polynomial which has period 5, since
Output sequences in also have period 5, by the above lemma, as can easily be

checked.

40 FUNDAMENTALS OF CRYPTOLOGY

A roundabout way to find an irreducible polynomial of degree n is to factor by means of
the Mathematica function Factor:

In Mathematica one can find an irreducible polynomial over

prime, with the function IrreduciblePolynomial for which the package
Algebra 'FiniteFields' needs to be loaded first.

Proof: Write f = f1 f2 with f1 irreducible, say of degree

By Corollary 3.5, the sequence so the period of divides by
Lemma 3.7 and Theorem B.35.

On the other hand, so by Lemma 3.2 is a cyclic shift of
and thus its period is This is only possible if n = n1, i.e. if f (x) is equal to the

irreducible factor f1 (x).

Example 3.7

Consider It is easy to check that divides and
that divides Since 3 and 7 are relatively prime, it follows that f(x) divides We
conclude that each output sequence has a period dividing 21.

This can be checked for different beginning states as follows.

Shift Register Sequences 41

1 {0, 0, 0, 0, 1}

2 {0, 0, 0, 1, 1}

3 {0, 0, 1, 1, 1}

4 {0, 1, 1, 1, 1}

5 {1, 1, 1, 1, 1}

6 {1, 1, 1, 1, 0}

7 {1, 1, 1, 0, 1}

8 {1, 1, 0, 1, 0}

9 {1, 0, 1, 0, 1}

10 {0, 1, 0, 1, 0}

11 {1, 0, 1, 0, 0}

12 {0, 1, 0, 0, 1}

13 {1, 0, 0, 1, 1}

14 {0, 0, 1, 1, 0}

15 {0, 1, 1, 0, 0}

16 {1, 1, 0, 0, 0}

17 {1, 0, 0, 0, 1}

18 {0, 0, 0, 1, 0}

19 {0, 0, 1, 0, 0}

20 {0, 1, 0, 0, 0}

21 {1, 0, 0, 0, 0}

The reader may want to try the beginning state (1, 1, 1, 0, 0) and see what the period of the output
sequence is. This output sequence could also have been generated with the LFSR with

characteristic polynomial and beginning state (1, 1, 1) (see also Example 3.11).

We are now able to prove the main result of this subsection. We remind the reader of the definition
of a primitive polynomial (of degree n), which is an irreducible polynomial with the property that x

42 FUNDAMENTALS OF CRYPTOLOGY

is a primitive element in GF This translates directly into the equivalent property that

Proof: Let have degree n.

be a PN-sequence. It follows from Lemma 3.9 that must be irreducible.
Lemma 3.8 in turn implies that must have period which makes it a primitive
polynomial.

is primitive, it certainly is irreducible. By Lemma 3.8, has the same period as
has, which is It follows that is a PN-sequence.

D

Mathematica finds a primitive polynomial of degree m over in the variable x by means of the
FieldIrreducible function

Let us check that this polynomial indeed defines a PN sequence.

1 {0, 0, 0, 0, 1}

2 {0, 0, 0, 1, 0}

3 {0, 0, 1, 0, 1}

4 {0, 1, 0, 1, 0}

5 {1, 0, 1, 0, 1}

6 {0, 1, 0, 1, 1}

7 {1, 0, 1, 1, 1}

Shift Register Sequences 43

8 {0, 1, 1, 1, 0}

9 {1, 1, 1, 0, 1}

10 {1, 1, 0, 1, 1}

11 {1, 0, 1, 1, 0}

12 {0, 1, 1, 0, 0}

13 {1, 1, 0, 0, 0}

14 (1, 0, 0, 0, 1}

15 {0, 0, 0, 1, 1}

16 {0, 0, 1, 1, 1}

17 {0, 1, 1, 1, 1}

18 {1, 1, 1, 1, 1}

19 {1, 1, 1, 1, 0}

20 {1, 1, 1, 0, 0}

21 {1, 1, 0, 0, 1}

22 {1, 0, 0, I, 1}

23 {0, 0, 1, 1, 0}

24 {0, 1, 1, 0, 1}

25 {1, 1, 0, 1, 0}

26 {1, 0, 1, 0, 0}

27 {0, 1, 0, 0, 1}

28 {1, 0, 0, 1, 0}

29 {0, 0, 1, 0, 0}

30 {0, 1, 0, 0, 0}

31 {1, 0, 0, 0, 0}

To find all primitive polynomials of degree n one can factor the cyclotomic polynomial
(see Definition B.19). With the Mathematica functions Factor and Cyclotomic this goes as
follows.

44 FUNDAMENTALS OF CRYPTOLOGY

The next corollary now follows directly from Theorem 3.10 and Theorem B.40.

The more or less exponential growth of as function of n, makes it for moderate values
of n already impossible for a cryptanalist to guess the right primitive polynomial or to check them
all exhaustively.

With the Mathematica function EulerPhi one can easily verify this.

3.2.4 An Alternative Description of for Irreducible f

We shall now solve recurrence relation (3.2) for the case that the corresponding characteristic
polynomial is irreducible. This includes, of course, the case that f is primitive, for
which we know that the corresponding LFSR outputs PN-sequences.

We follow the standard mathematical method for solving linear recurrence relations.

Substituting leads to the equation

Here A and α are elements from an extension field of GF(2) that will be determined in a moment.
Dividing the above relation by one arrives at

We shall study the case that f is irreducible in more detail. The Galois Field
(see Theorem B.16) contains a zero of f as an element. Calling this zero we

note that

with the normal coefficient-wise addition and with the regular product rule (see (B.3) and (B.4)),
but always reducing powers of α with an exponent n by means of the relation to
an expression of degree (as shown in the Example B.5, where the letter x is used instead of the
symbol).

Shift Register Sequences 45

Example 3.8

Consider f (x) = and let a be a zero of f (x), so a4 = 1 + a.

Adding the elements in GF(2)[x]/(f (x)) gives Multiplication gives
which is so the result is

This could also have been computed with the Mathematica function PolynomialMod, as follows:

n

Proof: We need to check several things.

i) The sequence clearly is a binary sequence, because L maps to

GF(2).

ii) The sequence satisfies (3.2). To see this, we check the equivalent condition

(3.3). By the linearity of L and the relation it follows that

iii) Each of the choices of leads to a different binary solution of (3.3), as we shall
now show. By Lemma 3.3, these must constitute all the elements in

Suppose that the sequences are identical. It follows from
and the linearity of L that in particular

However, the elements form a basis of because f is irreducible. It follows
from the linearity of L that for each field element in Since L was a non-
trivial mapping, we can conclude that

46 FUNDAMENTALS OF CRYPTOLOGY

A convenient non-trivial linear mapping L from to consider is the Trace function
Tr, introduced in Problem B.16.

An alternative, is the projection of an element to its constant term

Example 3.9

Take the irreducible polynomial of degree 4 (it even is primitive) and let a zero of f(x),
so The Trace function is given by

Any element, defines a unique binary sequence

defined by Below, we have taken

The output sequence, corresponding with any value of A, can be evaluated with the Mathematica functions

PolynomialMod and Table, as follows:

3.2.5 Cryptographic Properties of PN Sequences

We shall now investigate to which extent PN-sequences meet Golomb's randomness postulates Gl-
G3. After that, we check the cryptographic requirements C1-C3. As always, we let n denote the
length of the LFSR.

Ad G1: By Lemma 3.2 each non-zero state occurs exactly once per period. The leftmost bit of
each state will be the next output bit. So, the number of ones per period is and the number of
zeros per period is as the all-zero state does not occur.

Ad G2: There are states whose leftmost coordinates are of the form resp.

Thus, gaps and blocks of the length occur exactly times per
period.

The state occurs exactly once. Its successor is the all-one state, which in turn is followed

Shift Register Sequences 47

by state Therefore, there is no block of length n – 1 and one block of length n.

Similarly, there is one gap of length and no gap of length n.

Ad G3: With also by Lemma 3.2. The linearity of implies that
also The number of agreements per period between equals
the number of zeros in one period of which is by Lemma 3.2 and Gl.
Similarly, the number of disagreements is Thus, the out-of-phase autocorrelation AC(k) is

We conclude that PN-sequences meet Golomb's randomness postulates in a most satisfactory way.
Let us now check C1-C3.

Ad C1: Since the period of a PN-sequence generated by an n-stage LFSR is one can easily
get sufficient large periods. For instance, with the period is already about

Ad C2: LFSR's are extremely simple to implement.

Ad C3: PN-sequences are very unsafe! Indeed, knowledge of 2n consecutive bits, say
enables the cryptanalist to determine the feedback coefficients

uniquely and thus the whole -sequence. This follows from the matrix equation:

(3.8)

The above system has a unique solution as we shall now show. If n consecutive states of the LFSR
exist that are linearly dependent, i.e. if n consecutive states span a dimensional subspace,
then this remains so because of (3.4). This, however, contradicts the linear independence of state
(0,0, ..., 0, 1) and its n – 1 successor states. We conclude that any n consecutive states (and in
particular the n rows in the matrix above) are linearly independent. Therefore, the unknown
feedback coefficients can easily be determined.

Example 3.10

Assume that we know the following substring of length 10: 1,1,0,1,1,1,0,1,0,1. Assuming that we can

solve (3.9) by means of the Mathematica function LinearSolve as follows:

48 FUNDAMENTALS OF CRYPTOLOGY

The feedback coefficients are: One can check this quite
easily with the Mathematica Functions Table, Mod, and Do as follows:

Of course, one does not know in general what the length n is of the LFSR in use. We shall address
that problem in a more general setting in Subsection 3.3.1.

If only a string of 2 n – 1 consecutive bits of a PN-sequence is known, the feedback coefficients
are not necessarily unique, as follows from the example n = 4 and the subsequence 1101011. This
remains true even if we had used the additional information that Below we have added
NullSpace to show the dependency in the linear relations.

We have the solutions (1, 1, 0, 0) + (0, 1, 0, 1) with {0, 1}.

Since sequences generated by LFSR's fail to meet requirement C3, the next step will be to study
nonlinear shift registers. However, since so much is known about PN-sequences, it is quite natural
that one tries to combine LFSR's in a non-linear way in order to get pseudo-random sequences
with the right cryptographic properties.

Shift Register Sequences 49

3.3 Non-Linear Algorithms

3.3.1 Minimal Characteristic Polynomial

As already mentioned at the beginning of Section 3.1, any deterministic algorithm in a finite state
machine will generate a sequence which is ultimately periodic, say with period p. This
means that, except for a beginning part, will be generated in a trivial way by the LFSR with
characteristic polynomial Therefore, the sequence which was possibly made in a non-
linear way, can also be made by a LFSR (except for a finite beginning part). If this beginning part
is non empty, not every state has a unique predecessor and the output sequence certainly will not
have maximal period. We shall address this problem in Theorem 3.22. Here, we shall assume that
the output sequence is periodic right from the start. The discussion above justifies the following
definition.

The following two lemmas are needed to prove explicit statements about the linear complexity of
periodic sequences.

Proof:

it follows from Corollary 3.5 that a polynomial u(x) of degree
exists, such that one has We conclude that and thus that

which means that

one has by the same Corollary 3.5 that

50 FUNDAMENTALS OF CRYPTOLOGY

Example 3.11

The sequence is the output sequence of the LFSR with and
beginning state (1, 0, 0), as can be checked by

However, since the same output sequence can also be obtained from

the LFSR with characteristic polynomial (see also Example 3.7). As beginning
state one now has to take the first five terms of

Let for some f and suppose that one is looking for a polynomial h of smallest
degree such that Then, Lemma 3.13 suggests to check the divisors of f. That this is
sufficient will be proved later. The next lemma says when one does not need to check the divisors

of f.

Proof:

Then, It follows that there exists a proper divisor h

Shift Register Sequences 51

of f, namely f / d* with

The proof in the reverse direction goes exactly the same.

Example 3.12

S(x) is the output sequence of the LFSR in Figure 3.4.

The above calculations can be executed with the Mathematica functions PolynomialGCD,
PolynomialOuotient, and PolynomialMod.

Proof of Theorem 3.15:

Let for some divisor h of m, replace m by h and continue with this
procedure until it can be assumed that for any divisor of m.

We shall show that such an m is unique and of the form given in Theorem 3.15.

Since the period of is p, Corollary 3.5 implies that for some u(x) with
degree

52 FUNDAMENTALS OF CRYPTOLOGY

By our assumption on m and by Lemma 3.14, gcd

It follows that

i.e.

Hence

3.3.2 The Berlekamp-Massey Algorithm

Corollary 3.16 may be of help to the designer of a non-linear system to determine how safe his
system is against the kind of attack described in the discussion "Ad C3" in Subsection 3.2.5.

A cryptanalist, on the other hand, who knows a segment of the output sequence, say
can try the following strategy:

i) find the smallest LFSR that generates

ii) determine the next output bit of this LFSR and hope that it correctly "predicts" the next bit k of
the sequence.

Clearly for any sequence since any k-state LFSR will generate
simply by taking so, as starting state.

Shift Register Sequences 53

Proof: Any LFSR of length n, that is filled with the first n symbols of (which are all
zero) will output the all-zero sequence, will not be 1.

Proof: This is a direct consequence of Lemma 3.6. Indeed, let the LFSR's with characteristic
polynomial generate the first k terms of Then by Lemma 3.6,
the first k terms of will be generated by the LFSR with characteristic polynomial
1cm This 1cm has degree at most the sum of the degrees of

It follows from Definition 3.6 that for any sequence More can be said.

Proof: We already know that

Let be a sequence starting with as beginning sequence. Since the LFSR with
characteristic polynomial does generate but not it follows that
this LFSR will generate Since we can conclude that

The statement now follows with Lemma 3.17 and Lemma 3.18 from

The following theorem shows that in fact equality holds in the above lemma. The proof follows
from the Berlekamp-Massey algorithm, that constructs recursively, cf. [Mass69]. This

54 FUNDAMENTALS OF CRYPTOLOGY

algorithm is well known in algebraic coding theory for the decoding of BCH codes and Reed-

Solomon codes (see [Berl68], Chapter 7).

Proof: In view of Lemma 3.19, it suffices to find a polynomial of degree equal to
max that does output the first k + 1 terms of correctly. This is exactly what
the Berlekamp-Massey algorithm does in a very efficient way.

We shall prove the theorem by induction.

Getting the induction argument started.

Define

The sequence of length k can be generated by the (degenerate) LFSR with characteristic
polynomial

The sequence of length can be generated by any -stage LFSR, but not by a
shorter LFSR, as we already saw in Lemma 3.17. In this case,

This proves the first induction step.

The induction step:

By putting the induction hypothesis for k can be

formulated as:

(3.9)

If (3.9) also holds for and there remains nothing to prove.

If (3.9) does not hold, then

(3.10)

Let m be the unique integer smaller than k defined by

i)
ii)

so m is the index of the last increase of L.

Because we have already proved the start of the induction argument, this number is well defined. It
follows from the induction hypothesis and the above definition of m that:

Shift Register Sequences 55

Notice that

Define We claim that

will be a suitable choice for

Clearly, the first term in (3.12) has degree and the second term has degree
So, f (x) has the right degree. But also, by (3.9), (3.10), (3.11),

This proves that the LFSR with characteristic polynomial f (x) indeed can generate

Theorem 3.20 only proves that the degree of is unique. In general, the polynomial
itself will not be unique.

The algorithm, described in the proof above, can be executed and summarized as follows:

56 FUNDAMENTALS OF CRYPTOLOGY

Example 3.13

Consider the sequence

The Mathematica version of the Berlekamp-Massey algorithm that we give below makes use of the

functions Do, CoefficientList, Mod, Max, PolynomialMod, Length, and Print.Note

Shift Register Sequences 57

that we have combined the two while statements in the algorithm above into a single Do statement.
All intermediate functions are also printed.

j=l, L=0, f=1

j=2, L=0, f=1

j=3, L=0, f=1

j=4, L=0, f=1

j=5, L=0, f=1

j=6, f=1 + x6

 f=1 + x5 + x6

j=8, f=1 + x5 + x6

j=9, f=1 + x5 + x6

j=10, L=6, f=1 + x5 + x6

j=11, f=1 x5 + x6

j=12, L=6, + x6

 L=6, f=x5 + x6

j=14, L=6, f=x5 + x6

 f=x5 + x6

j=16, + x6

j=17, f=x5 x6

j=18, L=12, f =1 + x11 + x12

58 FUNDAMENTALS OF CRYPTOLOGY

3.3.3 A Few Observations about Non-Linear Algorithms

The problem with non-linear feedback shift registers, in general, is the difficulty of their analysis.
One has to answer questions like: how many different cycles of output sequences are there, what is
their length, what is their linear complexity, etc. The following theorem will make it clear that it is
possible to say at least a little bit about general non-linear feedback shift registers.

Clearly, the output sequence of a non-linear FSR does not have maximal period if there are two
different states with the same successor state. A state with more than one predecessor is called a
branch point.

Proof: Since f is a Boolean function, one can write

If for some then both states and
will have the same successor state. Thus a branch point would exist,

contradicting our assumption. We conclude that

Shift Register Sequences 59

The state has successor with
while state has successor Therefore, there are no
branch points.

There are many ways to use in a non-linear way. Below we depict two proposals that are
extensively discussed in [Ruep86]. Others ideas can be found in [MeOoV97], Chapter 6.

60 FUNDAMENTALS OF CRYPTOLOGY

3.4 Problems

Problem 3.1
Let be binary, periodic sequence of period 17, starting with the sequence 01101000110001011. To
which extent does satisfy Golomb's Randomness Postulates?
(Note for the interested reader. The sequence above has its ones at the positions corresponding to the
quadratic residues modulo 17 (see also input line above Theorem A.21). The parameters that arise when
checking G3 can be predicted by Theorem A.22 and Corollary A.24)

Problem 3.2
Express the polynomial in terms of x and gcd(m, n). (See also Problem A.3.)

Problem 3.3
Let and be the output sequences of binary LFSR's of length m resp. n, where m, Assume
that and are both PN sequences and that gcd(m, n)=l. Hence, also
gcd (see Problem A.3). Let the sequence be defined by and let p
be the period of

a) Prove that p is a divisor of
b) How many zeros and how many ones appear in a subsequence of length in the

sequence
c) Prove that must divide the two numbers determined in ii).
d) Prove that
e) How many gaps of length 1 does the -sequence have per period when m,

Problem 3.4
Let be the binary sequence defined by

Shift Register Sequences 61

So, the starts like 11010001000000010. Let be the linear complexity of
Prove that

Problem 3.5M

Let a binary sequence have period 15 and start with 010110000101010.
What is the minimal characteristic polynomial of and what is the linear complexity of this sequence?

Problem 3.6
Consider the binary, periodic sequence determined by the period and the values

and for 0 for
What is the minimal characteristic polynomial of What is the linear complexity of this sequence?

Problem 3.7M

Consider the binary polynomials The corresponding LFSR's are
denoted by LFSR(f) resp. LFSR(g). Let and denote the output sequences of LFSR(f) resp.
LFSR(g).
The sequence is defined by
The 28 different initial states generate different periodic sequences
What are the cycle lengths (=periods) of these periodic sequences? Give an initial state of each cycle.

Problem 3.8
Consider the binary shift register depicted in the figure below.

Let be the state of the shift register at time i,
a) Give the matrix T satisfying for all
b) Prove that the characteristic equation of T over R is given by

c) From matrix theory we may conclude that over

62 FUNDAMENTALS OF CRYPTOLOGY

where I is the identity matrix.
Since all elements in (3.13) are integer, equation (3.13) also holds modulo 2.
Derive a recurrence relation between

d) Which LFSR of length n gives the same output sequence as the above shift register?
What does the initial state have to be in this LFSR to generate the same output sequence?

Problem 3.9

(Hint: use Corollary 3.5 and use the partial fraction expansion over GF
Note that the expression above can be written as where Tr stands for the Trace function, as
introduced in Problem B.16.

4 Block Ciphers

4.1 Some General Principles

4.1.1 Some Block Cipher Modes

Codebook Mode

Block ciphers are conventional cryptosystems that typically handle a fixed number of symbols at a
time (under a given key) and do this encryption/decryption independent of past input blocks (see
Figure 4.1), For the encryption process, the data (plaintext) enters the block cipher from the left
and leaves it on the right as ciphertext. For the decryption, it is exactly the other way around.

In the next section we shall describe a few widely used block ciphers. At this moment, the
particular layout of such a cipher is not so important. One should view it as an electronic device
that can convert n-tuples of bits to other n-tuples at very high speeds (under a key) in such a way
that the reverse process is only feasible if one knows the key.

Assuming that the plaintext is a long binary file, one breaks it up in segments each n bits
long. The result of the encryption of is denoted by and we write

where k is the key. The decryption process will be denoted by so we have

Since an n-tuple of symbols from an alphabet can be viewed as one symbol from the
difference between an n-tuple from one alphabet or a single symbol from another alphabet is
theoretically of little importance but may be of great practical value.

Therefore, the key property of a block cipher is the lack of memory in the encryption device.

It is clear that as long as the key remains the same, the same plaintext will be encrypted to the
same ciphertext. For this reason, encryption in the mode shown in Figure 4.1 is called codebook
mode. It is as if one uses a codebook or dictionary for the encryption. It may be clear that
encrypting the same message twice under the same key is cryptographically insecure, hence, block
ciphers are normally not used in codebook mode.

64 FUNDAMENTALS OF CRYPTOLOGY

 Cipher Block Chaining

There are several standard methods to circumvent the problems mentioned above. One technique
is called cipher block chaining. We assume again that one is encrypting a long file. Each
ciphertext, say at time i, is not only transmitted to the receiver, but it is also added coordinate-
wise to the next block of plaintext

To this end, the encryption algorithm has to make use of some kind of memory device, commonly
called a buffer. See Figure 4.2 below. Of course, the buffer has to be initialized before the
encryption process can be started.

Note that by introducing memory to this system it technically has become a stream cipher.

The decryption process reverses the above process. The buffer has to be initialized with the same
initial value as was used to start the encryption. It can be part of the secret key or a just a fixed

Block Ciphers 65

constant.

The notation in Figure 4.3 stands for the inverse of the block cipher used for encryption.

Remark:

Note, that when for some in Figure 4.2, one has that i.e.
This means that the modulo sum of the two previous ciphertexts is equal

to the sum of the ciphertexts and In many situations this means that some information
about the plaintext leaks away. For instance, as we can deduce from Example 5.2 , the modulo 26
addition of two English texts (with a Vigenère Table (Table 2.3) will still have sufficient structure
to enable a unique reversal of the addition process.

The above observation is reason to go to longer block lengths than the ones most commonly in use
today (being 64 bits).

 Cipher Feedback Mode

Another way to make sure that a block cipher under the same key encrypts the same plaintext at
different moments into different ciphertexts is called the cipher feedback mode.

This method is depicted in Figure 4.4 below, but in a more general setting. In many practical
situations, for instance in many internet protocols, one wants to transmit only a few bits at a time,
say r bits, where r is less than the block length of the block cipher.

Instead of padding the r bits with n – r zeros in order to get an n-tuple that can serve as input for a
block cipher, one adds the r-tuple coordinatewise modulo 2 to the r leftmost output bits of the
block cipher. The input of the block cipher is given by the contents of a shift register (without
feedback) that at each clock pulse shifts r positions to the left to accommodate the r bits of the
previous ciphertext.

66 FUNDAMENTALS OF CRYPTOLOGY

4.1.2 An Identity Verification Protocol

In this subsection, we want to give an idea how a block cipher can be used in an identity

verification protocol. Such a protocol is a discussion between two parties in which one of them
wants to convince the other that he is authentic. An application is, for instance, a smart card of a
person, say Alice, who wants to withdraw money from her account through a card reader of a bank.

While issuing the card to Alice, the bank stores two numbers on it:

- the identity number of Alice,

- the secret key of Alice.

The key can not be accessed from the outside world; it does not even have to be known to
Alice. The identity number can be accessed by any card reader (it may even be printed or written
on the outside). They are related by

where BC stands for a block cipher and MK for the bank's master key. MK is stored in every card
reader of the bank. It would be impractical to store the secret keys of all customers in each card
reader.

The block cipher BC is also implemented on the card.

When the card is inserted into the card reader, it will be asked to present its identity number (in
our case). A genuine card reader can now compute Alice's secret key from (4.1).

The card reader generates a random string r of n bits and presents it as a challenge to the card. The
card returns as its response to the card reader. The card reader simply verifies this
calculation. If the card's answer to the challenge r is correct, the card reader "knows" that is

Block Ciphers 67

stored on the card and it will conclude that the card is authentic. Otherwise, it will not accept the
card.

The card can use the same protocol to check that the card reader is genuine. It sends its challenge
to the card reader. The reply by the card reader can only be correct if the card reader is able to
compute the secret key i.e. if the card reader knows the bank's master key MK.

Normally, a Personal Identification Code (PIN) is used to link the card to the card holder.

4.2 DES

DES

In 1974 the National Bureau of Standards (NBS) solicited the American industry to develop a
cryptosystem that could be used as a standard in unclassified U.S. Government applications. IBM
developed a system called LUCIFER. After being modified and simplified, this system became the
Data Encryption Standard (DES for short) in 1977.

Right away, DES was made available on a fast chip. This made it very suitable for use in large
communication systems. The complete design of DES has been made public at the time of its
introduction. This has never been done before, although in each textbook one can find the remark
that the security of a cryptosystem should not depend on the secrecy of the system.

We shall not give a complete description of DES. The reader is referred to [Konh81], [MeyM82],
[MeOoV97], or [Schn96].

DES is a block cipher operating on 64 bits simultaneously (see Figure 4.6).

The key consists of eight groups of 8 bits. One bit in each of these groups is a parity check bit that

68 FUNDAMENTALS OF CRYPTOLOGY

makes the overall parity in each block odd. So, although the keysize appears to be 64, the effective
keysize is 56 bits.

DES consists of 16 identical rounds. The 64 input bits are divided into two halves: the 32 leftmost
bits form L 0 and the 32 rightmost bits form

In each round, a new L and R are defined by

Here, stands for a well-defined subsequence of bits from the key K.

Further, f is function of the previous right-half and this subkey This function is defined by
means of a collection of fixed tables, called substitution tables. The outcome is added
coordinatewise modulo 2 to Note that is simply the previous right-half. (See Figure 4.7
below.).

The final output of DES is formed from and

Block Ciphers 69

In Figure 4.7 one can see that the inverse algorithm of DES can be computed from the same
scheme by simply going from the bottom to the top. Indeed, it follows from (4.2) that for all

Many people have criticized the decision to make DES a standard. The two main objections were:

i) The effective keysize (56 bits) is too small for an organization with sufficient resources. An
exhaustive keysearch is, at least in principle, possible.

ii) The design criteria of the tables used in the f-function are not known. Statistical tests however
show that these tables are not completely random. Maybe there is a hidden trapdoor in their
structure.

During the first twenty years after the publication of the DES-algorithm no effective way of
breaking it was published. However, in 1998, for the first time, a DES challenge has been broken
by a more or less brute-force attack.

 Triple DES

When it became clear that DES could no longer be used to protect sensitive data, a modification
was introduced, called Triple DES. It consists of three DES implementations in a row, except that
the middle one is orientated the other way around. Thus, one has DES, and then again
DES. See Figure 4.8 below.

Triple DES

Figure 4.8

There are two interesting things to note about this design. First of all, the third key is the same as
the first key. The effective key search is in this way. This is considered to remain
secure for many years to come.

The second observation is that the cipher in the middle is instead of DES.

These two features make it possible to keep systems in which Triple DES is implemented
compatible with single DES systems. Indeed, by taking the keys 1 and 2 the same, the above
system reduces to a single DES scheme.

70 FUNDAMENTALS OF CRYPTOLOGY

4.3 IDEA

There are quite a few alternatives to DES. One reason for looking for them may have been the
export restrictions by the American government, another, the costs and patent rights. Contrary to
DES, which uses well chosen tables in each round, some of the alternatives make use of several
mathematical primitives that are algebraically uncorrelated.

IDEA [Lai92] is such a system. The name stands for International Data Encryption Algorithm.
IDEA also handles 64 bits at a time (see the remark in Subsection 4.1.1 about this size), but has a
key of 128 bits. It consists of 8 identical rounds, which are depicted in Figure 4.9. The 64 bits are
equally divided over four blocks of 16 bits each. These blocks are called at the input
side of a typical round and on the output side. The entries denote
substrings of the key. Their composition depends on the particular round that has taken place.

The mathematical primitives in IDEA operate on these 16 bits. They are the following operations.

• Coordinatewise XOR (addition modulo 2).

In Figure 4.9, this is depicted by

In Mathematica the XOR can be performed with the Mod function (here shown on 4-tuples).

• Addition modulo

In Figure 4.9, this is depicted by a square with a plus sign in it

Interpret the two inputs as the binary representation of two integers. Add these integers modulo
and output the binary representation of the sum.

In Mathematica this can be performed with the FromDigits and IntegerDigits functions
(here shown on 4-tuples).

Block Ciphers 71

• Multiplication modulo

In Figure 4.9, this is depicted by

Interpret the two inputs (binary 16-tuples) as the binary representation of two integers modulo the
prime number Make an exception for the all-zero word which will be identified
with the integer In this way we have a 1-1 correspondence between binary 16-tuples and the
elements of (see Example B.3).

Multiply these two integers modulo and output the binary representation of the product

(but map

Since, is prime, the multiplication (as defined above) is a one-to-one mapping for
fixed a or b. Below we demonstrate this again for 4-tuples. Note that is also a prime number.

The reader is invited to multiply the sequences {1, 0, 0, 0} and {0, 0, 1, 0}.

72 FUNDAMENTALS OF CRYPTOLOGY

As with DES, IDEA can be inverted by simply going through it from the bottom to the top.

4.4 Further Remarks

RC5 is a scheme that is a little bit similar to IDEA. Its algebraic primitives are again the exclusive
or and addition modulo where w is the word length, but instead of the multiplication modulo

which only works if is prime, RC5 makes use of cyclic shifts.

The word length of RC5 is where the user can select w from 16, 32, or 64. An additional
advantage of RC5 is the freedom to choose the number of rounds in the scheme. Depending on the
required speed and security, the user may opt for many or just a few rounds.

In 1993 two attacks on block ciphers were published, that turned out to be surprisingly strong.
These methods are called linear and differential cryptanalysis (see [MatsY93], resp. [BihS93]) and
are in fact known plaintext attacks. Several proposed block ciphers were not strong enough against
these attacks, however the DES algorithm could withstand it. Later it became clear that the
inventors of DES were already aware of these attacks. For further reading we like to mention
[Knud94].

Block Ciphers 73

At the time of this writing, a collection of proposals are being studied by the (American) National
Institute of Standards and Technology (NIST for short) for a new industrial standard. The names of
these proposals are CAST-256, CRYPTON, DFC, DEAL, E2, FROG, HPC, LOKI97,
MAGENTA, MARS, RC6, RIJNDAAEL, SAFER+, SERPENT and TWOFISH (see the web page
'Advanced Encryption Standard' http://csrc.nist.gov/encryption/aes/aes_home.htm). The outcome
of this study is not yet clear.

4.5 Problems

Problem 4.1
Describe the decryption process for a block cipher used in of cipher feedback mode.

Problem 4.2
Consider a block cipher that is used in cipher block chaining mode. Suppose that during transmission,
the i-th ciphertext block, is corrupted. How many plaintext blocks will be affected?
Answer the same question for the case of cipher feedback mode.

Problem
What is the next sensible block length of IDEA, if the same scheme and the same primitives are being
used, but only the length of the registers is increased? (This length is 16 in IDEA.)
What is wrong with the intermediate values?

This page intentionally left blank.

5 Shannon Theory

5.1 Entropy, Redundancy, and Unicity Distance
In Chapter 2, we have seen that the cryptanalysis of a cryptosystem often depends on the structure
that is present in most texts. For instance in Table 2.1 we could find the key 22 (or –4), because
"tu quoque Brute" was the only possible plaintext that made sense.

This structure in the plaintext remains present in the ciphertext (although in hidden form). If the
extra information arising from this structure exceeds our uncertainty about the key, one may be
able to determine the plaintext from the ciphertext!

We shall first need to quantify the concept of information. Let X be a random variable defined on
a set by the probabilities

(5.1)

is a good measure for the amount of information given by the occurrence of the event
The base 2 in (5.1) can be replaced by other choices, but reflects our intuitive notions about
information, as we shall see. With 2 as choice for the base in the logarithm the unit of information
is a called a bit.

Let above (so). Then Now the occurrence of an event x that occurs with
probability 1 (like the sun will rise again tomorrow) gives no information whatsoever. This
corresponds nicely with

Now consider an event that occurs with probability 1/2, like the specific sex of a newborn baby.
So, now Assuming that both sexes have the same probability 1/2 of occurring, such an
outcome gives precisely one bit of information. For instance, a 1 can denote a boy and a 0 can
denote a girl. This one bit of information is again in agreement with

If an event occurs with probability 1/4, then its occurrence gives two bits of information. This is
clear in the case that there are four possible outcomes, each with probability 1/4. Each outcome
can be represented by a different sequence of two bits.

On the other hand, the amount of information that an event gives, when it has a probability of 1/4

76 FUNDAMENTALS OF CRYPTOLOGY

to occur, should be independent of the probabilities of the other possible outcomes. Thus, the
value agrees again with our intuition. Continuing in this way one gets

The expected value of stochastic variable defined over is called the entropy of X
and will be denoted by either H(X) or by where Hence,

When one often writes and h(p) instead of :

(5.4)

Since tends to 0 for " there are no real problems with the definition and the continuity
of the entropy function when some of the probabilities are 0 (or 1).

The function h(p) is depicted below (with the Mathematica functiion Plot).

Shannon Theory 77

One can give the following interpretations to the entropy H(X) of a random variable X:

- the expected amount of information that a realization of X gives,
- our uncertainty about X,
- the expected number of bits needed to describe an outcome of X .

With these interpretations in mind one expects the entropy function H(X) to have the following
properties:

The interpretations of these properties are straightforward.

P1 says that adding another event to but one with probability 0 of occurring does not affect the
uncertainty about X .

P2 states that renumbering the different events in leaves the entropy the same.

P3 says that the uncertainty about X is maximal if all events have the same probability of
occurring.

Finally, P4 states that the expected number of bits necessary to describe an outcome from is
equal to the number of bits necessary when combining events and into a single event, say

plus the number bits to necessary to distinguish between events and conditional to the
fact that event did occur.

For instance, if then and also

Although we shall not prove it here, it can be shown [Khin57] that (5.1) is the only continuous
function satisfying (5.2) yielding an entropy function satisfying the above mentioned
properties P1-P4.

Example 5.1

Consider the flipping of a coin. Let The entropy is given by
(5.4).

That is of course confirmed by the fact that one needs one bit to represent the outcome of the
tossing of a fair coin. For instance,

78 FUNDAMENTALS OF CRYPTOLOGY

Since one expects that on the average only 0.8113 bits are needed to represent
the outcome of the tossing of an unfair coin with This statement is true in the
sense that one can approach the number 0.8113 arbitrarily close. In the Chapter 6 we shall show
how this is done. The trick will be to represent the outcome of many tossings together by one
single string of bits. For instance with two tossings one can represent the outcomes as follows:

The expected length of this representation is

But each representation describes two outcomes, so this scheme needs bits per
tossing. Taking three, four, ... tossings at a time leads to increasingly better approximations of
h(1/4).

There is however a problem to address, namely that the receiver of a long string of zeros and ones
should be able to determine the outcomes of the tossings in a unique way. One can easily verify
that any sequence made up from the subsequences 111, 110, 10 and 0 can only be broken up into

these subsequences in just one way . We shall address this problem extensively in Chapter 6.

Example 5.2 (Part 1)

The 26 letters in the English alphabet can be represented with bits per letter, by coding
sufficiently long strings of letters into binary strings. Indeed, for k letters one needs bits and

thus one needs _ bits per letter, which converges to

On the other hand, the entropy of 1-grams can easily be computed with the probabilities given in
Table 1.1. One obtains 4.15 bits per letter.

Also for bi-grams and tri-grams these computations have been made (see [MeyM82], App.F. One
gets the following values:

According to some tests the asymptotic value for is less than 1.5 bits/letter!

Shannon Theory 79

If the alphabet size is q and each symbol is represented by bits, the redundancy is given by
If a different representation of the alphabet symbols is used,

say with an expected representation length of l bits per symbol, we have

The redundancy measures to which extent the length of the plaintext exceeds the length that is
strictly necessary to carry the information of the text (all measured in bits).

Let us now turn our attention to a cryptosystem consisting of cryptographic transformation
indexed by keys k from a key space Assume that the unknown plaintext is a regular English
text. In the context of this chapter we assume that the cryptanalist has unlimited computing power.
So, given a ciphertext a cryptanalist can try out all keys to check for possible plaintexts. As soon as
the ciphertext is just a few letters long, some keys can be ruled out because they lead to
impossible or improbable letter combinations in the plaintext. The longer the ciphertext, the more
keys can be ruled out. They violate the structure or interpretation of English texts. More formally,
they violate the redundancy in the plaintext. Sooner or later, only the key that was used for the
encryption remains as only candidate.

Let us return to the general setting. Let n be the length of the plaintext (in bits). There are
possible binary sequences, but only represent meaningful messages. The
probability that a decryption with the wrong key hits a legitimate message is If
all keys are tried out and all are equally likely, one expects to find
meaningful plaintexts. Let K denote the uniform distribution over the key space Then

and one can write that meaningful messages are expected. If

this number is less than 1, very likely it will be just the key used for the encryption that will
survive this analysis. The above happens if

i.e. if the redundancy satisfies

If K does not have a uniform distribution, we can still use the interpretation that H(K) denotes the
uncertainty about the key to repeat the above reasoning.

80 FUNDAMENTALS OF CRYPTOLOGY

As soon as the redundancy in the plaintext exceeds the uncertainty about the key, the cryptanalist
with sufficient resources may be able to determine that plaintext from the ciphertext. Thus, the
unicity distance indicates the user of a cryptosystem when to change the key in order to keep the
system sufficiently secure.

Example 5.2 (Part 2)

We continue with Example 5.2. Assume that a simple substitution has been applied to an English
text (see Subsection 2.1.2). Assuming that all 26! possible substitutions are equally likely, one has

If one approximates the redundancy in a text of n letters by n bits, one
obtains a unicity distance of characters.

According to Friedman [Frie73]: "practically every example of 25 or more characters
representing the mono-alphabetic substitution of a "sensible" message in English can be readily
solved." These two numbers are in remarkable agreement.

5.2 Mutual Information and Unconditionally Secure Systems
Quite often random variables contain information about each other. In cryptosystems, the plaintext
and the ciphertext are related through the key. In this section we shall give a formal definition (in
the information theoretic sense of the word) of an unconditionally secure cryptosystem

Let X and Y be two random variables, defined on resp. The joint distribution
of X and Y is often shortened to just

Similarly, the conditional probability
denoted by

It satisfies the relation

(5.5)

Shannon Theory 81

The uncertainty about X given is defined analogous to the entropy function by

It can be interpreted as the expected amount of information that a realization of X gives, when the
occurrence of is already known.

The equivocation or conditional entropy of X given Y is the expected value of
over all y. In formula,

Let H(X, Y) be defined analogously to the entropy function H for one variable.

Proof: We use (5.5) and (5.7).

The second equality follows by a symmetry argument.

In words, the above theorem states that the uncertainty about a joint realization of X and Y equals
the uncertainty about X plus the uncertainty about Y given X.

Proof: To prove i) we repeat the proof of Theorem 5.1 with

82 FUNDAMENTALS OF CRYPTOLOGY

Statements ii) and iii) follow directly from i) and the chain rule.

The amount of information (see (5.1) that a realization gives about a possible realization
can be quantified as the amount of information that the occurrence of gives minus

the amount of information that will give when is already know. We denote this by
It follows that

Note the symmetry in

The mutual information I(X; Y) of X and Y is defined as the expected value of i.e.

Proof: From (5.8) it follows that

The other statements follow from Theorem 5.1.

I (X ; Y) can be interpreted as the expected amount of information that Y gives about X (or X about

Y).

Shannon Theory 83

Example 5.3

The binary symmetric channel can be described as follows. A source sends X = 0 or X = 1, each with
probability The receiver gets with probability with probability p. It

follows that and that

We conclude that the receiver gets 1 - H(p) bits of information about X per received symbol Y.
How to approach this quantity 1 - H(p) is the fundamental problem in algebraic coding theory
[MacWS77], Section 1.6.

the receiver gets no information about the transmitted symbols,
as is to be expected.

Let us now return to the conventional cryptosystem as explained in Chapter 1. Assume that a
probability distribution is defined on the keyspace and let the sequence of random
variables

denote the plaintext, and let

denote the ciphertext. So, In most applications will be equal to Since is a
one-to-one mapping, the plaintext is uniquely determined by the key and the ciphertext, therefore,
one has

Of course the user of the cryptosystem is interested to know how much information leaks
about

In words: the uncertainty about the key together with the information that the ciphertext gives
about the plaintext is greater than or equal to the uncertainty about the plaintext. Again, this
reflects our intuition.

84 FUNDAMENTALS OF CRYPTOLOGY

Proof of Theorem 5.4:

By (5.9) and the chain rule (Thm. 5.1, which also applies to conditional entropies) one has that

In words: given the ciphertext the uncertainty about the key is at least as great as the uncertainty
about the plaintext. This reflects the property that knowing the ciphertext, one can reconstruct the
plaintext from the key, but not necessarily the other way around.

It follows that

and by Theorem 5.3 that

In cryptosystem where all keys and all plaintexts are equally likely, Corollary 5.5 states that you
need to have at least as many keys as plaintexts.

Example 5.4

Suppose that we have keys, all with probability Then

If the messages are the outcome of u tossings with a fair coin, one has in a similar way that
so, for perfect secrecy one needs

This can be realized the encryption where stands for the first u bits of the key

k and where stands for a coordinatewise modulo 2 addition. With this encryption, with each
ciphertext each possible plaintext is still equally likely.

Shannon Theory 85

5.3 Problems

Problem 5.1
Show that function satisfies properties P1-P4 in Section 5.1.

Problem 5.2

a) Prove that

b) Show that these inequalities imply that

where h(x) is the entropy function defined in (5.4).

Problem 5.3
Assume that the English language has an information rate of 1.5 bits per letter. What is the unicity distance
of the Caesar cipher, when applied to an English text?
Answer the same question for the Vigenère cryptosystem with key length r.

Problem 5.4
Consider a memoryless message source that generates an output letter X that is uniformly distributed over
the alphabet {0, 1, 2}.
After transmission over a channel the symbol Y, that is received, will be equal to X with probability 1 – p,

and it will be equal to any of the other two letters in the alphabet with probability
Compute the mutual information I (X , Y) between X and Y.

Problem 5.5
Let be a plaintext source that generates independent, identical distributed letters X from {a, b, c, d}. The
probability distribution is given by
Consider the two coding schemes:

The output sequence of the plaintext X is first converted into a {0, l}-sequence by means of one of the
above coding schemes and subsequently encrypted with the DES algorithm.
What is the unicity distance for both coding schemes?

Problem 5.6
Prove that the one-time pad is an unconditionally secure cryptosystem.

This page intentionally left blank.

6 Data Compression Techniques
It is clear from Chapter 5 (see Definitions 5.1 and 5.2) that the security of a cryptosystem can be
significantly increased by reducing the redundancy in the plaintext. In Example 5.1 such a
reduction has been demonstrated.

In this chapter we shall describe two general methods to reduce the redundancy. The process of
removing redundancy from plaintexts is called data compression or source coding.

6.1 Basic Concepts of Source Coding for Stationary Sources
Let a plaintext source output independently chosen symbols from the alphabet
with respective probabilities Symbol will be encoded into a binary string of
length

The set is called a code C for source The idea of data compression is to use such
a code that the expected value of the length of the encoded plaintext is minimal. Since the symbols
generated by the plaintext source are independent of each other, it suffices to minimize the
expected length of an encoded symbol

The minimization has to take place over all possible codes C for source There is however an
additional constraint. A receiver (decoder) has to be able to retrieve the individual messages from
the concatenation of the successive codewords. Not every code has this property. Indeed let

The sequence 010 can be made in two ways: 0 followed by 10 and 01 followed by
0. This ambiguity has to be avoided.

Example 6.1

Let and (this is the code of Example 5.1 in reversed order). This code C is
U.D., as we shall now demonstrate.

Consider a concatenation of codewords. If the left most bit is a 1, the left most codeword is 111. If on the

other hand the left most bit is a 0, the concatenation either looks like for some or it starts

with the subsequence for some positive integer k.

88 FUNDAMENTALS OF CRYPTOLOGY

Depending on whether or the left most codeword is 0, 01 resp. 011. One
can now remove this codeword and apply the same decoding rule to the remaining, shorter concatenation
of codewords.

Proof: We shall only prove that the inequality above is a necessary condition for the existence of a
U.D. code with codeword of length That it also is a sufficient condition will be
proved later in this chapter.

Let and let us assume (without loss of generality) that Then

where is the number of ways to write as or, alternatively, is the number
of ways to make a concatenation of N codewords of total length j.

Because C is U.D., no two different choices of N-tuples of codewords will give rise (when
concatenated) to the same string of length j. So,

Substitution of this inequality in (6.2) implies that for all

Since the left-hand side grows exponentially in N, while the right hand side is a linear function of
N, we conclude that

As can be seen in Example 6.1, one may have to look for a much longer prefix of the received
sequence than the length of the longest codeword to be able to decode it. This is not very practical.

The code in Example 6.1 is not a prefix code, since the codeword 0 is a prefix of the codeword 01.
The code in Example 5.1 clearly is prefix code. For the decoding of a prefix code one simply looks
for a prefix of the received sequence that is a codeword. Because the code is a prefix code this
codeword is unique. Remove it and proceed in the same way.

Note that when a prefix code is used, one only needs to examine at most bits of the received

Data Compression Techniques 89

sequence to determine the first codeword in the received sequence.

The above observation proves the next theorem.

Proof: A prefix code is U.D. by Lemma 6.2. So, it follows from the McMillan inequality (Thm.
6.1) that (6.3) is a necessary condition for a code to be a prefix code.

We shall now prove that (6.3) implies the existence of a prefix code with codewords of lengths

and a fortiori of a U.D. code with these lengths.

Without loss of generality Because of this ordering and since we
can define vectors by the binary expansion of

For instance, of length of length with a one on
coordinate etc. By definition, has length

It remains to show that no can be the prefix of a codeword Suppose the contrary.
Clearly otherwise the two words would be identical. So, and thus It also
follows that

while on the other hand

These two inequalities contradict each other.

Example 6.2

Consider and

Since the Kraft inequality is satisfied.

90 FUNDAMENTALS OF CRYPTOLOGY

The proof above gives the following codewords (we have used the Mathematica functions Length, Do.

Table, IntegerDigits, and Print);

{0}

{1, 0}

{1, 1, 0}

{1, 1, 1, 0}

{1, 1, 1, 1}

This code is a prefix code, as one can easily verify.

It is quite remarkable that the McMillan and the Kraft conditions ((6.2) and (6.3) are the same. It
follows that the smallest average value of the length of a U.D. code is equal to the smallest average
value of the length of a prefix code!

The next two theorems give bounds on the average value of the length of a prefix code (or a U.D.
code).

Proof: It follows from the well-known inequality In and from (6.2) that

Data Compression Techniques 91

Proof: Define by Then and thus

For these values of construct the code C as described in the proof of Theorem 6.3. It is
a prefix code and the expected value L of its length satisfies

We shall now apply the above corollary to N-tuples of source symbols. Since the entropy of N
independent symbols equals N times the entropy of one symbol, one gets an expected length
for an N-gram that satisfies

It follows that

So, This confirms the last of the three interpretation of the entropy function
H, that were given at the beginning of Chapter 5.

We shall now derive some properties that a prefix code with minimal expected L will satisfy.

92 FUNDAMENTALS OF CRYPTOLOGY

Proof:

P1) Suppose that and Make a new code C* from C by interchanging and
Then C* is also an U.D. code. The expected length L* of C* satisfies

This contradicts our assumption on the minimality of L.

If one can obtain by a simple renumbering of the indices.

P2) If a U.D. code exists with expected length L, then a prefix code with the same expected
length L also exists because the necessary and sufficient conditions in Theorems 6.1 and 6.2. are

the same.

P3) If one can decrease by 1 and still satisfy the Kraft inequality (6.3). By

Theorem 6.2 a prefix code with smaller expected length would exist. This contradicts our
assumption on C.

P4) If then P1 implies that is strictly greater than any of the other codeword lengths.
It follows that the left hand side in P3) will be a rational number with denominator For this

reason it can not be equal to 1.

P5) Delete the last coordinate of and call the resulting vector Let C" be the code
It follows from P3) that C* does not satisfy the Kraft inequality (6.3). So C*

is not a prefix code, while C was. This is only possible if is a proper prefix of some codeword
This means that this must have length too and also that and differ in just

their last coordinate.

Property P5 gives a clue how to construct a U.D. code with minimal expected codeword length.
The method will be described in the next section.

Data Compression Techniques 93

6.2 Huffman Codes
The Huffman algorithm [Huff52] constructs for every stationary plaintext source a prefix code that
has an average codeword length that is minimal among all U.D. codes for this source. The
algorithm has a recursive character.

If the plaintext source has only two possible output symbols, both with a non-zero probability of
occurring, the best one can do is to assign the symbols 0 and 1 to them. Clearly,
in this case.

Each recursion step consists of two parts: a reduction process and a splitting process.

The reduction process.

Let be a plaintext source which outputs independent symbols with probabilities
Replace the two symbols and by one new symbol with

probability In this way, a new source is obtained with one output symbol less
than

The splitting process.

Let be a prefix code of minimal expected length L* for the output
symbols of (to find this code in the recursion process, one may want
to reindex these symbols in order of non-increasing probabilities).

The code C is given by

for

In words, when the symbol is split up in the two symbols and the codeword will
be extended with a 0 resp. 1 (or the other way around) to distinguish them.

Example 6.3

Let and let the plaintext source output independent symbols described by the table:

To keep track of the reduction process, we use the notation for After applying
one reduction and a reordering of the probabilities in non-increasing order we get

Repeating this process, one gets

94 FUNDAMENTALS OF CRYPTOLOGY

and

and finally

For the splitting process we traverse the above process in opposite direction. We start with the
code {0,1} and at each splitting of a message into two messages, we append a zero resp. a one.

Note, how is replaced by at each step. We get

and

and

and

and as code for the source

We see that and One can easily check that and
that We use the MultiEntropy function defined in Section 5.1 and further the
Mathematica function Length.

Data Compression Techniques 95

To demonstrate this Huffman code, we apply it to a text made up by the first 6 letters of the
alphabet. We first simulate the source with the Mathematica functions Which, Random and Do

(note that joins two strings).

To encode we use the Huffman coding determined above and the function StringReplace.

To compare the length of this particular coding with the entropy we use the function MultiEntropy
defined above and the Mathematica function StringLength.

96 FUNDAMENTALS OF CRYPTOLOGY

In Mathematica, the decoding can be implemented with the function StringReplace, because this
function works from left to right, as follows.

In fact, the following figure gives a better way to describe the decoding process. Read the received
string bitwise from left to right. Depending on the input symbol follow the tree from its root to the
right: a 1 lets you go up and a 0 down. As soon as a leaf (end point) of the tree has been reached,
write down the corresponding alphabet symbol and start again at the root with the next. For
instance, the first two symbols in "00010000010000101000010011" are "00" and lead to symbol
"a". The next four symbols are "0100" and lead to "e", etc.

Data Compression Techniques 97

Proof: That C is a prefix code is straightforward. Let and denote the length of resp.
These numbers are related by and The expected lengths L
and L* of C resp. C* are related by:

From Theorem 6.7 and a reasoning like the above, we know that any prefix code for source
that minimizes the expected value of the length of an encoding for can be reduced to a code for
source that has an expected encoding length equal to Since L* was minimal for

we have Since was minimal for we
conclude that i.e. C realizes the minimal expected length for an encoding of

Proof: For the statement is obvious because the Huffman code will be equal to {(0), (1)} with
The induction argument is a direct consequence of Lemma 6.8.

6.3 Universal Data Compression - The Lempel-Ziv Algorithms
If one wants to compress data from a source with unknown statistics, the Huffman algorithm can
not be applied. For such a situation, one needs so-called universal data compression techniques.
Examples are the Lempel-Ziv algorithms (there are two of them) and a technique called arithmetic
coding (see [ZivL77], [ZivL78], resp. [RisL79]).

98 FUNDAMENTALS OF CRYPTOLOGY

In [ZivL77], the authors introduce a window of a fixed length that slides over the sequence of
source symbols, say from left to right. The sliding window consists of two parts: a larger part on
the left, called the search buffer, and a smaller part on the right, called the look-ahead buffer. The

source symbols in the search buffer have already been encoded. The encoder encodes as many new
source symbols in the look-ahead buffer as possible by looking in the search buffer for the largest
match of already encoded symbols. Suppose that the first j unencoded source symbols match with
the j symbols in the search buffer that start at position i, but that these j symbols followed by the
next source symbol, say a, could not be matched. Then the encoder outputs the triple (i, j, a) and
the sliding window will move j + 1 characters to the right.

For example, suppose that the search buffer has length 10 and the look-ahead buffer has length 5.
Let the sliding window be given by

The largest match that can be found, are the first three letters in the look-ahead buffer with the
three letters starting at position 3 in the search buffer. The encoder will send the triple (2, 3, a),
where a is the first symbol that could not be matched. The sliding window will move four
positions to the right. At the beginning, when the search buffer is empty, the first encoding will
start with (0, 0, x), where x is the first symbol of the source.

We shall now discuss a particular variant of the Lempel-Ziv codes. We follow [Well99], where
also an analysis of the performance can be found. The basic idea is that both sides (sender and
receiver) make a dictionary that represents in a smart way substrings that have been transmitted
before. If the new string of characters that is to be compressed is already in the dictionary, one
encode this string by the index of the corresponding entry in the dictionary. In general, this index
will be a lot shorter than the string. If the new string is not in the dictionary, more work has to be
done.

The dictionary that sender and receiver are making simultaneously will be (a lot) larger than the
alphabet of the source However, this dictionary will be stored in a very efficient way by

means of a so-called linked list.

The reader has to realize that the use of the Lempel-Ziv algorithm involves some overhead.
However, for files of moderate length (say, one page of text) it already makes sense to use them.

Initialization

As already remarked before, the dictionary will be stored by means of a linked list. Each entry in

the list has its own address u. The corresponding entry consists of an ordered pair (a), where
should be interpreted as a pointer to another entry in the dictionary (so is again an address) and
where a is a letter in the alphabet Let A denote the size of

Data Compression Techniques 99

To initialize the algorithm we start with a dictionary consisting of the following A + 1 entries:

Note that all these entries point to the list element with address 0. The symbol is not an element
of It is an additional symbol, serving as a punctuation mark.

To be ready for the encoding, we set the pointer value to 0 and the address pointer u to A + 1 (u
is the address of the next empty location in the linked list).

 Encoding

The interpretation of the above is the following. If (v, a) is already an entry in the dictionary then
the encoder is processing a string of symbols that has occurred at least once before. By assigning to
v the value of the address of (v, a), one will be able later on to reconstruct this list.

If (v, a) is not an entry in the dictionary, the encoder is faced with a new string that has not been
processed before. It will transmit v to let the receiver know the address of the last source symbol in
the preceding string. Further, the encoder makes a new dictionary entry (v, a) with address u. The
symbol a will serve as root of a new string. Pointer v is given the value of the address of entry
(0, a). The 0 in this entry points at dictionary entry (0,) which indicates the beginning of a new
string.

Note that the output symbols of the coding process are dictionary indices, more precisely,
addresses of the linked list. Their length grows logarithmically in the length of the dictionary. Note
also, that each new source symbol will increasingly often not give rise to a new output symbol,
because the current string will already have been encoded before.

100 FUNDAMENTALS OF CRYPTOLOGY

Example 6.4 (Part 1)

Consider a binary string that we want to compress. So, and

We initialize the coding process by putting

Note that we have used the negative number –1 instead of the null symbol

To demonstrate the coding process, we output for each new source symbol the new dictionary
(represented as linked list), the new values of u and v and the complete output sequence.

We use the Mathematica function Position that finds the place of an element in a list. Because
our list contains lists as elements we add [[1]] twice. Note that we subtract 1 from the address,
because our numbering starts with 0 instead of 1.

For instance

Now we are ready for the coding process. We use the Mathematica functions Do, If, MemberQ,
Append, andPrint.

Data Compression Techniques 101

{{0, -1}, {0, 0}, {0, 1}}, total output is {}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}}, total output is {2}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}}
, total output is {2,2}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}}
total output is {2, 2, 1}

{{0, -1}, {0, 0}, {0, 1}, {2, 1), {2, 0}, {1, 0}}
total output is {2,2,1}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1}}
total output is {2, 2, 1, 5}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1}}
total output is {2, 2, 1, 5}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1}, {4, 1}}

total output is {2, 2, 1, 5, 4}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1}, {4, 1}}
total output is {2, 2, 1, 5, 4}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1},
{4, 1}, {3, 0}}, total output is {2, 2, 1, 5, 4, 3}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1},
{4, 1}, {3, 0}}, total output is {2, 2, 1, 5, 4, 3}

{{0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, 0}, {5, 1},
{4, 1}, {3, 0}}, total output is {2, 2, 1, 5, 4, 3}

Decoding

For a proper decoding, the receiver must be able to reconstruct the same dictionary as was made by
the transmitter. He can only act whenever a new output symbol arrives. Let v be this new symbol.

By the encoding algorithm (Alg. 6.10) the arrival of v implies that a new element (say the u-th) has
to be added to the dictionary. The pointer of this new entry is given by v.

The source symbol for this entry is not known since it is the root symbol of the next string (which
has not been encoded yet by the transmitter). So, only the pair (v, ?) can be added to the dictionary.

The receiver is however able to fill in the missing symbol in the previous dictionary entry (at
address u – 1).

Further, the receiver can decode the complete source symbol string associated with the received
symbol.

We shall demonstrate the above process for the received sequence of Example 6.4.

102 FUNDAMENTALS OF CRYPTOLOGY

Example 6.4 (Part 2)

The receiver initializes just as the receiver did. So, and the dictionary is given by
HO, }, {0, 0}, {0, 1}}.

He receives the following list of symbols: {2, 2, 1, 5, 4, 3}.

The first received symbol is

So, the new dictionary entry will be {2, ?} and will have address The question mark can not

be filled in yet.

Pointer 2 in {2, ?} points at the entry with address 2 in the dictionary, which is {0, 1}. This entry
tells us that the last symbol of the previous string was a 1 and that for the preceding part we need
to go to the dictionary entry with address 0. This entry is {0, }, so we are done.

The new dictionary is given by {{0, }, {0, 0}, {0, 1}, {2, ? }}.

The second received symbol is

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with

address This entry is {0, 1}. Its source symbol gives the value of the question mark.
Therefore, we get the following dictionary{{0, }, {0, 0}, {0, 1}, {2, 1}}.

Also, a new dictionary entry has to be added, namely at address

Pointer 2 in this new entry {2, ?} points at the entry with address 2 in the dictionary, which is

{0, 1}. This entry tells us that the last symbol of the previous string was a 1 and that for the
preceding part we need to go to the dictionary entry with address 0. This entry is {0, }, so we are

done. The decoded string is just "1".

The new dictionary is given by {{0, }, {0, 0}, {0, 1}, {2, 1}, {2, ? }}.

The third received symbol is

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with

address This entry is {0, 0}. Its source symbol gives the value of the question mark. So, we

get the following dictionary {{0, }, {0, 0}, {0, 1}, {2, 1}, {2, 0}}.

Also, a new dictionary entry has to be added, namely at address

Pointer 2 in this new entry {1, ?} points at the entry with address 1 in the dictionary, which is
{0, 0}. This entry tells us that the last symbol of the previous string was a 0 and that for the

preceding part we need to go to the dictionary entry with address 0. This entry is {0, 0}, so we are

done. The decoded string is just "1".

The new dictionary is given by {{0, }, {0, 0}, {0, 1}, {2, 1}, {2, 0}, {1, ? }}.

The fourth received symbol is

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with
address This entry is {1, ?}. The pointer 1 in this entry refers to another entry in the

Data Compression Techniques 103

dictionary, namely with address 1, so to entry {0, 0}. Pointer 0 in this entry means that we are at
the root of a string. The source symbol of entry {0, 0} tells us that So, we get the following
dictionary {{0, }, {0, 0}, {0, 1}, {2, 7}, {2, 0}, {1, 0}}.

Also, a new dictionary entry has to be added, namely at address

Pointer 5 in this new entry {5, ?} points at the entry with address 5 in the dictionary, which is

{1, 0}. This entry tells us that the last symbol of the previous string was a 0 and that for the
preceding part we need to go to the dictionary entry with address 1. This entry is {0, 0}, so the
preceding source symbol is 0 and we are pointed to {0, }. This means that we are done and that
the decoded string is just "00".

The new dictionary is given by {{0, }, {0, 0}, {0, 7}, {2, 7}, {2, 0}, {1, 0}, {5, ?}}.

The reader is invited to continue this process.

6.4 Problems

Problem 6.1
Decode the string 01100111111111100011, which has been made with the code in Example 6.1.

Problem 6.2
Apply the Huffman algorithm to the plaintext source that generates the symbols a, b, c, d, e, f , g, and
h independently with probabilities 1/2, resp. 1/4, 1/8, 1/16 1/32, 1/64, 1/128 and 1/128.
What is the expected number of bits needed for the encoding of one letter? Compare this with the entropy
of the source.

Problem
Duplicate Example 6.3 for the plaintext source that generates the symbols a, b, c, d, e, f , g, and h
independently with probabilities 1/3, resp. 1/4, 1/6, 1/12, 1/15, 1/20, 1/30, and 1/60.

Problem 6.4
Apply the Welch variant of the Lempel-Ziv encoding procedure to the binary sequence
0000000000000000.
Demonstrate the first 5 steps of the decoding process.

This page intentionally left blank.

7 Public-Key Cryptography

7.1 The Theoretical Model

7.1.1 Motivation and Set-up

In modern day communication systems, conventional cryptosystems turned out to have two
essential disadvantages.

i) The problem of key management and distribution.

A communication system with n users, who all use a conventional cryptosystem to communicate

with each other, implies the need of keys and secure channels.

Whenever a user wants to change his keys or a new user wants to participate in the system n – 1
(resp. n) new keys have to be generated and distributed over as many secure channels.

ii) The authentication problem.

In computer controlled communication systems the electronic equivalent of a signature is needed.
Conventional cryptosystems do no provide this feature in a natural way, especially when there is a
conflict between sender and receiver, it is impossible to decide who is right. Any message made by
one of them could also have been made by the other.

These disadvantages prompted researchers to look for a different kind of cryptosystem.

In [DifH76], W. Diffie and M.E. Hellman published their pioneering work on public-key
cryptosystems. See Figure 7.1, where their system is depicted.

106 FUNDAMENTALS OF CRYPTOLOGY

Every user U of the cryptosystem makes a pair of matching algorithms and (or gets them
from a trustworthy authority). These algorithms operate on elements of later to be defined sets.

Algorithm has to be made public by U, while algorithm has to be kept secret by U.
Depending on the application, these algorithms must satisfy some of following properties:

PK1 and are efficient algorithms, i.e. they do not need much computing time or
memory space.

PK2 for every user U and for each possible message m.

PK3: It is infeasible to find an algorithm from that satisfies for all m.

PK4 for every user U and for each possible message m.

PK5: It is infeasible to find an algorithm from that satisfies for all m.

Properties PK3 and PK5 are not precisely formulated. Their precise meaning depends too much on
the application and may vary in time.

7.1.2 Confidentiality

We assume that properties PK1, PK2, and PK3 hold.

If Alice wants to send an encrypted message m to Bob, she first looks up the public (encryption)
algorithm of Bob. She encrypts m by applying algorithm to m. So, she sends to Bob:

Bob recovers m from the received ciphertext c by applying his (secret) algorithm to c. Indeed,

To make the system practical to use, property PK1 must hold. It is for the security of the system
that property PK3 has to be required.

PK3 makes it possible to publish the (encryption) algorithms without endangering the privacy
of the transmitted messages.

We summarize the encryption scheme in the following table.

Public Key Cryptography 107

If a user U wants to change his personal key, he simply generates a new set of matching algorithms
and satisfying PK1, PK2 and PK3 and makes public. The same has to be done when a

new user wants to participate in the communication system.

In [DifH76], the authors suggest to use trapdoor, one-way function for the encryption. A one-way

function is a function with the following properties:

Fl) f(a) is easy to evaluate for any
F2) it is computationally infeasible to compute for almost all

A trapdoor, one-way function is a one-way function f satisfying the further property that

F3) is easy to compute given certain additional information.

Property F1 makes such a function practical to use, while property F2 makes f safe to use for
encryption purposes. Property F3 makes decryption by the receiver possible.

In daily life a telephone book can be used as a one-way function; given a name one can easily find
the corresponding telephone number but not the other way around. Looking up a telephone number
of a person amounts to finding the name of that person. This takes operations, if L is the
number of names in the telephone guide. Finding the name if the telephone number is given means
going through the whole book, name after name. The complexity is L. Property F2 is based on the
exponential relation between and L.

One-way functions f are also used to check the authenticity of a person that wants to get access to
something. Each user U has his own PIN code but in a central computer only the name of U is
stored together with the value

When U wants to get access he needs to give his name and The value will be evaluated
and sent to the computer. If this values matches user U can get access, otherwise not. The
advantage of this system is that the PIN codes do not need to be stored in the computer. So,
anybody who can read out the memory of the computer can still not determine the PIN codes.

In Chapters 8, 9, and 12 we shall discuss various proposals for trapdoor one-way functions that can
be used to turn into a public-key cryptosystem. In the next chapter we shall meet a one-way
function, which does not have a trapdoor.

7.1.3 Digital Signature

We assume that properties PK1, PK4, and PK5 hold.

If Alice wants to sign a message m that she wants to send to Bob, she applies her own (secret)
algorithm to m, so she sends

Bob recovers m from c by applying the publicly known algorithm to c. Indeed,

108 FUNDAMENTALS OF CRYPTOLOGY

The value c can be used by Bob as signature for m, because, by PK5, Alice is the only person who
can compute c from m, i.e. only she can make a c from a given message m such that

The converse however is possible: everybody is able to find a pair (m, c) such that c carries m's
signature, i.e. such that simply take any c and compute

So, Alice has to make sure that a randomly selected c has a negligible probability of leading to a
useful message This can quite easily be achieved by assuming some structure in each
message m, e.g. start with the time and date.

We summarize this signature system explained above in the following table.

Note that anybody else can also verify Alice's signature by computing so there is no secrecy.

7.1.4 Confidentiality and Digital Signature

We assume that properties PK1, PK2, PK3, PK4, and PK5 hold.

If Alice wants to send message m in encrypted form with her own signature to Bob, she combines
the techniques of Subsections 7.1.2 and 7.1.3. Thus, she uses her own secret algorithm and the
public algorithm of Bob to send

Bob recovers m from c by applying to c. Indeed,

Although everybody can look up the public it is only Bob who can recover m from c, because
only Bob knows

Bob keeps the pair which is i.e. as Alice's signature on m, just like in
Subsection 7.1.3.

We summarize this in the following table.

Public Key Cryptography 109

7.2 Problems

Problem 7.1
In a communication network every user U has its own public encryption algorithm and secret
decryption algorithm A message m from user A (for Alice) to user B (for Bob) will always be sent in
the format (c, A), with
The name of the sender in this message tells Bob from whom the message originates.
Bob will retrieve m from (c, A), by computing but Bob will also
automatically send back to Alice (note that has the same format as In
this way, Alice knows that her message has been properly received by Bob.

a) Show how a third user E (for Eve) of the network can retrieve message m that was sent by Alice to Bob.
You may assume that Eve can intercept all messages that are communicated over the network, and that C
can also transmit her own texts, as long as they have the right format.

b) Show that communication over this network is still not safe if the protocol is such that Alice sends
to Bob and that Bob automatically sends back to Alice.

This page intentionally left blank.

8 Discrete Logarithm Based Systems

8.1 The Discrete Logarithm System

8.1.1 The Discrete Logarithm Problem

In [DifH76], Diffie and Hellman propose a public-key distribution system which is based on the
apparent difficulty of computing logarithms over the finite field GF(p), p prime, which is also
often denoted by or The reader, who is not familiar with the theory of finite fields is
referred to Appendix B.

Let be a primitive element (or generator) of GF(p). So, each nonzero element c in GF(p) can be
written as

where m is unique modulo

Example 8.1

In GF(7) the element is a primitive element, as can be checked from

and

This can be done at once with

Example 8.2

In GF(197), the element is primitive. Such an element can be found with the Mathematica function

PowerList (for which the package Algebra'FiniteFields first has to be initialized). This function

finds a primitive element in and generates all its powers (starting with the 0-th). The second element in
this list is the primitive element itself.

112 FUNDAMENTALS OF CRYPTOLOGY

To check that 2 is a primitive element modulo 197 is a lot easier. The multiplicative group
has order 196, so each element has an order dividing 196 (see Theorem B.5).

With the function FactorInteger one can find the different prime factors of 196.

It now follows from

that the order of 2 modulo 197 does not divide 196/2 or 196/7, so the order must be 196.

If m is given, c can be computed from (8.1) with 1. multiplications (see [Knut81], pp.
441-466). One can realize this by creating the table (each is the
square of the previous one) and multiplying elements from this table, whose exponents add up to
m. To this end the binary representation of m can be used.

Example 8.3

Take Its binary expansion is 10101011, as follows from the Mathematica function
IntegerDigits.

So, now one has

This calculation can also be done on the fly. The leftmost 1 in the binary representation of m

Discrete Logarithm Based Systems 113

stands for Each subsequent symbol (from the left) in the binary representation implies a
squaring of the previous result, but if this symbol is a 1 also an additional multiplication by has
to be performed.

If one has to perform the same modular exponentiation many times, for instance on a smart card
implementation, there are ways to do this with fewer multiplications.

The way that addition chains are used for (modular) exponentiation, is clear. If then
Hence, can now be computed recursively.

It is, in general, not obvious how the shortest addition chain of an integer m can be found. See
[Knut81], Section 4.6.3 and [Bos92], Chapter 4.

Example 8.4

An addition chain for is the sequence 1,2,3,6,12,15.

Note that the calculation of involves 5 multiplications with this addition chain and 6 multiplications
with the binary method explained before.

In Mathematica the PowerMod function is a fast way to compute modular exponentiations.

The opposite problem of finding m satisfying (8.1) from c, is not so easy. It is called the discrete
logarithm problem, because in the exponent m can be written like

In [Knut73], pp.9, 575-576, one can find an algorithm that solves the logarithm problem. It
involves roughly operations and bits of memory space (where and are some
constants). In Theorem 8.1 a more precise analysis of this algorithm will be given. Writing

114 FUNDAMENTALS OF CRYPTOLOGY

(and forgetting about the constants), one gets the following exponential relation between
exponentiation and taking logarithms.

8.1.2 The Diffie-Hellman Key Exchange System

We shall now describe how the discrepancy in computing time between exponentiation and taking
logarithms, as depicted in Table 8.1, can be used to execute a key exchange protocol of a "public-
key cryptography"-type. Such a protocol is a method for two parties who do not share a common
secret key to agree on a common key in a secure manner.

Setting up the system:

1) All participants share as system parameters a prime number p and a primitive element
(generator) in GF (p).

2) Each participant P chooses an integer at random, computes and
puts in the public key book. Participant P keeps secret.

Using the system:

Let us now assume that Alice (A for short) and Bob (B) want to communicate with each other
using a conventional cryptosystem, but that they have no secure channel to exchange a key. With
the public key book, they can agree on the common secret key

Alice can compute by raising the publicly known of Bob to the power which only she

knows herself. Indeed,

Similarly, Bob finds by computing

If somebody else (Eve) is able to compute from (or from), she can compute the key
just like Alice or Bob did. By taking p sufficiently large, the computation time of solving this

logarithm problem will be prohibitively large. Diffie and Hellman suggest to take p about 100 bits
long. A different way of finding from and does not seem to exist.

There is no obvious reason to restrict the size of the finite field to a prime number. So, from now
on the size of the field can be any prime power (see Theorem B. 16 or Theorem B.20).

Discrete Logarithm Based Systems 115

In [Lune87], Chapter XIII, efficient algorithms to find primitive elements in finite fields are
described. See also Problem B.6 and Problem B. 10.

We summarize the key distribution system in Table 8.2.

Example 8.5 (Part 1)

Let and

Alice chooses as a random secret exponent and Bob as a random secret exponent They

compute their public key with the PowerMod function.

Alice can compute the common key with Bob by raising the publicly known to the power
which she only knows. She gets:

Bob gets the same common key by raising to the power Indeed, he gets:

116 FUNDAMENTALS OF CRYPTOLOGY

8.2 Other Discrete Logarithm Based Systems

8.2.1 EIGamal's Public-Key Cryptosystems

In [ElGa88], two public-key systems are described that are based on the discrete logarithm
problem. One can be used for encryption purposes, the other as a signature scheme.

In both systems the transmitted text is longer than the plaintext.

Setting It Up

As system parameters, all participants share a prime number p and a generator (primitive element)
of the multiplicative group The generalization to finite fields is straightforward and will be

omitted.

A variation that one sees quite often is to consider with q prime and an element of large
prime order, say p, instead of taking a primitive element. Note that by Theorem B.5, p must divide
q–1.

Each participant P chooses an integer at random, computes
and makes public. Participant P keeps secret.

As a variation, each participant can also choose his own finite field and primitive element
instead of having them as system parameters, but there seems to be little reason to do so.

EIGamal's Secrecy System

Encryption of a message for Bob.

Suppose that Alice wants to send a private message u to Bob. The message is represented by an
integer u in {0, 1, ..., p – 1}.

Alice selects a random integer r and computes

Next, Alice computes

Alice sends to Bob, the pair (R, S).

Decryption by Bob.

Discrete Logarithm Based Systems 117

Bob receives the pair (R, S) and can quite easily retrieve the message u with his own secret
with the following calculation:

Example 8.5 (Part 2)

We continue with Example 8.5. We have and as public parameters.

The number is only known to Bob.

Suppose that Alice wants to encrypt message for Bob.

Let be the random integer chosen by Alice (it is coprime with).

Alice sends the pair (R, S) computed by

To decrypt, Bob computes mod p with his own secret by means of the
Mathematica functions Mod and PowerMod. Note that PowerMod [a, –1, p] computes the
multiplicative inverse of a modulo p (see Subsection A.3.3).

An eavesdropper can not determine r from R, since we assume that taking logarithms is
intractable. For that reason, this eavesdropper is not able to divide out from S (to obtain the
secret u).

118 FUNDAMENTALS OF CRYPTOLOGY

ElGamal's Signature Scheme

Signing of a message by Alice.

Suppose that Alice wants to send a signed message u to Bob. The message is again represented by
an integer u in (0, 1, ..., |.

Alice selects a random integer r that is relatively prime to and computes

Next, Alice uses her secret exponent to compute 5 satisfying

Alice can use the extended version of Euclid's Algorithm to find S efficiently.

Alice sends to Bob the triple (u, R, S), where the pair (R, S) serves as signature on the message u.

Verification of the signature by Bob.

Bob receives the signature (R, S) together with the message u.

Bob checks this signature by verifying that

This relation has to hold because by (8.2)

Example 8.5 (Part 3)

Continuing with Example 8.5, where we have and as public parameters.

The number is only known to Alice.

Suppose that Alice wants to sign message for Bob.

Let be the random integer chosen by Alice (it is coprime with).

Alice computes

Discrete Logarithm Based Systems 119

to find the signature (R, S) = (98, 171) that she adds to her message u.

Bob checks this signature by verifying

8.2.2 Further Variations

In the ElGamal scheme, the signature on a message u consists of two parts: R, being with r
random, and S, being a solution of . Of course one can vary
this so-called signature equation.

The next three variations do exactly this. The reader that wants to know more about them than is
presented below is referred to [MeOoV96] and [Schne96].

Digital Signature Standard

In the Digital Signature Standard (see [FIPS94]) the signature equation is given by:

The system is designed by the National Security Agency (NSA) and adopted as standard by the
National Institute of Standards and Technology (NIST).

DSS adds two sequences of 160 bits each to the end of a document as guarantee of its authenticity
and integrity. To this end, it first compresses the document to a sequence of 160 bits by means of a
cryptographically secure hash function (see Section 13.2), called the Secure Hash Algorithm (see
[MeOoV96], $9.53 and [Schne96]).

To set up the system the following joint parameters are chosen:

i) A prime number q whose binary representation has a word length that is divisible by
64 and lies between 512 and 1024.

ii) A prime factor p of that is 160 bits long.

iii) A value where h is less than such that g is greater than 1.

120 FUNDAMENTALS OF CRYPTOLOGY

Since by Format's Theorem (A. 15), it follows that the multiplicative order of

g divides p. On the other p is prime, therefore, g has multiplicative order p itself (see also
Theorem B.5).

Each user U chooses a secret exponent computes and makes public.

When Alice wants to sign a file M, she first computes its 160 digits long hash value h(M) with the
Secure Hash Algorithm.

Next, she chooses a random number and adds as signature to M the numbers R and S, both
of length 160, defined by:

A receiver can check the authenticity and integrity of the received message M by evaluating:

If the document will be accepted as genuine and coming from Alice. By a simple

substitution one can verify that the relation indeed should hold.

The function of the random number r above is to hide the secret key of Alice.

Schnorr's Signature Scheme

In Schnorr's signature scheme [Schno90] the signature equation (see (8.2) is given by:

The Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel signature scheme [NybR93] is slightly different from the others. Here, R is
defined by

The signature equation (see (8.2) is given by:

In the Nyberg-Rueppel scheme, the message « can be retrieved directly from R and S , since

If u is not the hash value of a much longer other file, this feature is an advantage, because only R
and S have to be sent.

Discrete Logarithm Based Systems 121

8.3 How to Take Discrete Logarithms
When one has to take a logarithm in GF(q), the most obvious way to reduce the workload is to
factor in prime power factors, compute the logarithm for each of these factors, and then
combine the results with the Chinese Remainder Theorem (Thm. A.19). In Subsection 8.3.1, this
method will be demonstrated for a particular technique.

As we have said before, discrete logarithm based systems are often set up in a multiplicative
subgroup of GF(q). This generalization does not affect the methods that will be discussed in this
section.

8.3.1 The Pohlig-Hellman Algorithm

In [PohH78], Pohlig and Hellman demonstrate that discrete logarithms can be taken much faster
than in operations, if has only small prime divisors. We shall first demonstrate this
method for two special cases.

Special Case:

Examples of prime numbers that are a power of 2 plus one are given by and

So, let be a primitive element in a finite field GF (q). The problem is to find
satisfying (8.1) for given value of c.

Let be the binary representation of the unknown m, i.e.

Of course, it suffices to compute the unknown Since is a primitive element of GF(q) we
know (see also Theorem B.21) that and

It also follows that because the square of while (We also
use here that by Theorem B.15 the quadratic equation has as only roots.) Hence

122 FUNDAMENTALS OF CRYPTOLOGY

Therefore, the evaluation of in GF(q), which takes at most 2. multiplications, as we
have seen in Subsection 8.1.1), yields

Compute Now can be determined in the same way as above from

Compute and determine from Repeat this process until
also (and thus m) has been determined.

The above algorithm finds m from c in at most

operations, where the term +2 comes from the evaluation of the (in the i-th step has to be
squared and the outcome may or may not have to be multiplied to).

Comparing with Table 8.1, we observe that in the current case (i.e. the discrepancy
between the computational complexity of using the Diffie-Hellman scheme (one exponentiation
involving 2n multiplications) and breaking it (multiplications) is quadratic, which is not
significant enough to make the system secure.

Remark:

Note that when odd, the t least significant bits of m can be found in exactly the
same way.

Example 8.6

Consider the equation So, and Note that

Writing we find mo by evaluating

Since this is –1 we know that Compute Then can be found
from

Discrete Logarithm Based Systems 123

Again this is –1, so Compute Then m2 can be found from

Since the outcome is 1, we have _ So, and can be found from

We now also have and thus We can check this with:

General Case: has only small prime factors

Let where the are different primes and the exponents are strictly positive
(see the Fundamental Theorem in Number Theory, Thm. A.6). We assume that all are small.
Later we shall say precisely what we mean by that.

Instead of solving m from (8.1) directly, we shall determine

With the Chinese Remainder Theorem (Thm. A. 19) one can compute m efficiently from these

To determine (the others can be found in the same way) we write it in its -ary
representation. For the sake of convenience we drop all the sub- and superscripts referring to the

case.

Similarly to the Special Case we will find the coefficients by single
exponentiations.

Coefficient can be found by evaluating From Theorem B.21 it follows that
which implies that is a p-th root of unity.

124 FUNDAMENTALS OF CRYPTOLOGY

Define the primitive p-th root of unity by and make a table of
Then, because mod and we have

So, a simple table lookup of will yield

To determine we first compute and then evaluate etc., until has been
determined. Similar calculations have to be made to determine the other

For this algorithm, we have to make tables of the powers of the primitive p-th roots of unity for all
the prime factors of

The values of these factors have to be small enough to be able to store them.

Each time that we want to take a logarithm the algorithm will have to take exponentiations,
therefore, the algorithm involves

operations, if we forget about the lower order terms. Again we have a quadratic relation between
using the Diffie-Hellman key-exchange system and breaking it.

An Example of the Pohlig-Hellman Algorithm

Example 8.7

Consider Equation (8.1) with primitive element

Note that q is a prime number, so

Preliminary Calculations.

First of all we factor and compute the multiplicative inverse of 6 modulo 8101 with the
Mathematica functions Factor Integer and PowerMod.

So, and

Next we use the PowerMod function again to calculate the primitive 2-nd, 3-rd and 5-th roots of
unity: and

Discrete Logarithm Based Systems 125

So, and With the Table function we make the following three
tables:

Hence, we have tables

126 FUNDAMENTALS OF CRYPTOLOGY

The preliminary work for the Chinese Remainder Theorem consists of solving the following three

systems of linear congruence relations:

These three systems can be solved with the Mathematica function
Chinese Remainder Theorem for which we first have to load the package
Number Theory 'NumberTheoryFunctions'

So,

This concludes the preliminary work.

Solving Equation (8.1) for:

We first determine as defined in (8.2), with the method explained
above. Of course, the tables that we just made have to be consulted at each step.

First prime factor.

Hence

Second prime factor.

Discrete Logarithm Based Systems 127

Hence

Third prime factor:

Hence

The final solution m is given by:

This can easily be checked.

In Mathematica, the precalculation of a, b, and c is not really necessary, because m can be

computed directly from and with the Chinese Remainder Theorem function:

If has large prime factors, the dominant term in the workload of the Pohlig-Hellman
algorithm will be the exponentiations necessary for the generation of the tables

and the number of exponentiations, necessary to determine
the

In the next subsection, we shall explain a method to take logarithms if one (or more) of the prime
power factors of is too large to store the tables in the Pohlig-Hellman method.

128 FUNDAMENTALS OF CRYPTOLOGY

8.3.2 The Baby-Step Giant-Step Method

If one (or more) of the prime power factors of is too large for the Pohlig-Hellman method,
the method below can be used. It gives the user full freedom to balance the length of the table that
he wants to store and the remaining workfactor.

We start with an example.

Example 8.8

Consider the equation and assume that we can only store a table with 10 field elements.

We make a table of and we compute with the Mathematica
functions Table, PowerMod, GridBox, and Transpose.

We also find that

Writing we see that can be rewritten as
or as Since we have the

equivalent problem of solving

We do this by trying and each time checking if occurs in the list of
powers Note that so

To facilitate the table lookup, we sort the elements in the table of powers with the function Sort.

Discrete Logarithm Based Systems 129

Next, we try until we see the answer appear in the table above. We use the
Mathematica functions, While, MemberO, and Mod. We also print the corresponding column of

the table of sorted powers (j has to be decreased by 1, because we started the numbering of j with
0).

We conclude that and that occurs in table as 14, which is (hence
Indeed

It follows that Indeed, as can be easily checked
with:

The above method will now be stated in full generality.

130 FUNDAMENTALS OF CRYPTOLOGY

Proof: Let We make a table of the successive powers This requires
multiplications.

Next, we sort this table in operations, see [Knut73], pp.184. Together this explains the
number of operations in the precalculation.

Each of the field elements in the table needs bits of memory space. This explains the
memory requirement above.

Define i and j by

Observe that

Of course solving is equivalent to finding i and j, satisfying

To solve this equation, we simply compute for and check if the outcome
appears in the table. This will happen when so before

For each value of l we have to perform 1 multiplication and a table look-up, which costs another
operations.

For this algorithm reduces to the (both for memory and time complexity) algorithm
that was mentioned at the end of Subsection 8.1.1.

The two extreme cases of the algorithm are:

no table at all; all powers need to be tried.

complete table of is present; only a single table look-up is needed.

Note that the product of computing time and bits of memory space in the above algorithm is more
or less constant.

Discrete Logarithm Based Systems 131

8.3.3 The Pollard Method

The time complexity of the Pollard Method [Poll78] is the same as that of the Baby-Step Giant-
Step method explained in the previous section. The advantage lies in the minimal memory

requirements.

We shall explain the Pollard Method for the special case of a multiplicative subgroup G of
GF(q) of prime order. So, we want to solve from the equation (see (8.1)),
where has order p, p prime, and where is some given p-th root of unity. Note
that p divides by Theorem B.5..

Example 8.9 (Part 1)

To avoid calculations in a finite field, we take for q the prime number 4679. Note that
Further we observe that 11 is a primitive element of GF(4679) and thus that
is the generator of a multiplicative subgroup of order 2339. All these calculations can be easily checked
with the Mathematica functions PrimeQ, Factor Integer, PowerMod and the function

MultiplicativeOrder

that was introduced in Subsection B.4.1

132 FUNDAMENTALS OF CRYPTOLOGY

Further on, we shall continue with this example, when we want to solve the equation

Note that this equation must have a solution, since 3435 is indeed a 2339-th root of unity in
GF(4679). Indeed, all 2339-th roots of unity are a zero of and by Theorem B.15 there are

no other zeros of this polynomial.

In order to solve we partition the multiplicative subgroup G of GF(q) of order p, in three
subsets as follows:

We define a sequence in GF(q) recursively by and

With the sequence we associate two other sequences and in such a way that for
all

To this end, take and use the recursions

Note that by induction

As soon as we have two distinct indices i and j with we are done, because this would imply
that and thus that Provided that we have found the solution

Discrete Logarithm Based Systems 133

If which happens with negligible probability, we put and solve where

To find indices i and j with we follow Floyd's cycle-finding algorithm: find an index i
such that (so, take

To this end, we start with the pair calculate then and so on, each time
calculating from the previously calculated by the defining rules
and In this way, huge storage requirements can be avoided.

Example 8.9 (Part 2)

We continue with Example 8.9. Hence, we have an element of (prime) order
and I.e. we have the equation:

The recurrence relation for the sequence can be evaluated by means of the Which and Mod

functions.

The smallest index satisfying can quite easily be found with the help of the While

function.

So, and However, above we did not update
the values of the sequences ai and bi. We will do that now.

134 FUNDAMENTALS OF CRYPTOLOGY

Indeed, the relation gives the same value for and

The solution m of can now be determined from

That is indeed the solution can be checked with

Discrete Logarithm Based Systems 135

The in the name of this algorithm reflects the shape of the -sequence: after a while it starts
cycling around. The memory requirements of Floyd's cycle finding algorithm are indeed minimal.
The expected running time is For further details, the reader is referred to [Poll78].

8.3.4 The Index-Calculus Method

General Discussion

To describe the index-calculus method in general we consider a cyclic group G of order N
generated by an element g. So, and

In this setting we want to solve m from (see (8.1)) for a given

The basic idea of the index-calculus method consists of the following steps:

1) Select an appropriate subset S of G with the property that a large proportion of the elements
of G can be expressed as a product of elements of 5 in an efficient way. This set S is called the
factor base. An element that can be expressed as a product of elements of S is called smooth
with respect to S. Let k be the size of S. In the next two steps each element in S will be written as a
power of g.

2) Find a sufficiently large collection I of exponents i with the property that each can be
expressed efficiently as a product of elements of S, say Taking the of
both hands, we get a set of linear congruence relations

3) Treating the numbers as unknowns, solve the above system of linear
congruence relations (for this, the system of linear congruence relations has to have rank k and the
set I will have to be sufficiently large).

4) Pick a random exponent r and try to express as a product of elements of S. As soon as this
has happened, say we again take the of both hands and get

Since the values of each has already been determined in Step 3 and r was chosen, m can be
determined from this congruence relation.

Note that Steps 2 and 3 aim to solve the logarithm problem for all the elements in the factor base.
Step 4 tries to reduce the current logarithm problem to the factor base elements.

136 FUNDAMENTALS OF CRYPTOLOGY

It may be clear that the optimal size of the factor base S is a compromise between manageable
storage requirements and the probability that a random element in G (namely) can be
expressed as a product of elements of S.

In general, there are two (related) unresolved problems in the above approach.

• How can one determine a good factor base?

• How does one express an element in G as product of elements of S?

In the next subsubsections we demonstrate the above method for two special cases where more can
be said about the above two questions.

Complexity

There are many variations of the index-calculus method. Typically, their complexity grows
subexponential in while the methods described in Subsections 8.3.1, 8.3.2, and 8.3.3 are all
exponential in log2 N.

i.e. the Multiplicative Group of GF(p)

In this case, Let g be a generator of this group.

Choice of the factor base S: the first k prime numbers,

If k is sufficiently big, a large proportion of the elements in G can be expressed as product of
powers of these k primes, i.e. they will be smooth with respect to S.

Technique to express an element in G as product of elements of S: divide the element by the

Complexity

Adleman in [Adle79] analyzes this technique in detail and arrives at a complexity of

for some constant C.

Example 8.10

Consider with primitive element That 541 is prime and that 2 is a primitive element can be
checked with the Mathematica functions PrimeQ, FactorInteger, and PowerMod. Indeed, the order

of 2 divides by Theorem B.5, therefore, we only have to check that for

the divisors of

Discrete Logarithm Based Systems 137

As factor base S we take the set of the first five prime numbers, which can be generated with the
Mathematica functions Prime and Table.

We want to write each of the elements in this factor base as a power of i.e. we want to solve
the logarithm problem for the elements in the factor base. To this end, we try to find powers of

in that can be expressed as product of elements in {2, 3, 5, 7, 11}. For this, we can use
the Mathematica function FactorInteger and PowerMod.When trying

we see that we have no complete factorization in {2, 3, 5, 7, 11}.

After some trial and error we did find the elements and achieving our goal.

138 FUNDAMENTALS OF CRYPTOLOGY

Writing and taking the logarithms
on both sides gives five linear congruence relations in

For example, can be rewritten as

Taking on both sides gives the congruence relation

So, we have:

The above system of linear congruence relations can be solved with the Solve function:

Discrete Logarithm Based Systems 139

So, we know that

or, equivalently

If the above linear congruence relations are not linearly independent one has to replace some

equations by others until they are linearly independent.

Let us now find a solution of

From

we see that 345 can not be expressed as product of elements of S, nor can and

but in GF(541).

We conclude that

therefore, the solution of is given by

This can easily be checked with

140 FUNDAMENTALS OF CRYPTOLOGY

Because of the small parameters, we can find out explicitly how many elements in {1, 2, ..., 540}
can be expressed as product of elements of S. We use the Mathematica functions Select.

Flatten, Table, Sort, and Length and make use of the fact that the exponent of 2 is at most
the exponent of 3 is at most etc., in any number less than 541.

Therefore, about a quarter of all elements in G can be expressed as product of elements of S. That
means that on the average it takes four trials (choices of r) before can expressed as a product
of elements of{2, 3, 5, 7, 11}.

Discrete Logarithm Based Systems 141

All elements in can be represented by means of binary polynomials of degree in x
modulo an irreducible polynomial f(x) (see Theorem B.16). One writes

Let the polynomial denote a primitive element of Then can also be
represented by binary polynomials of degree modulo the minimal polynomial p(x) of It
follows that is a primitive element in i.e. x is a primitive element in

See Example B.6, where defines and where is a
primitive element of This element is a zero of the
primitive polynomial In the element x is a primitive
element

Equation (8.1), that we want so solve, can be reformulated as:

for every polynomial c(x) of degree find the exponent m, such that

As choice of the factor base 5 we take all binary, irreducible polynomials of degree say
(The number of such polynomials is given by Theorem B. 17).

As a technique to express an element in as a product of elements of S, we simply divide the
element by the polynomials

A polynomial u(x) that can be expressed as a product of elements of S is called smooth with
respect to S.

Complexity

Coppersmith [Copp84] analyzes this algorithm and finds as asymptotic running time

Later, further improvements have been found with names like number field sieve and function field
sieve (see [AdDM93], [Adle94], and [HelR83]).

For an excellent survey on the discrete logarithm problem we refer the reader to [Odly85].

Example 8.11

We want to take a logarithm in To represent properly and to find a primitive element in
it, we look for a primitive polynomial of degree 10. We do this with the Mathematica function
FieldIrreducible for which the package Algebra 'FiniteFields' has to be read first.

142 FUNDAMENTALS OF CRYPTOLOGY

So, we take which has x as primitive element. Equation (8.1)
now reads like:

find m such that

As factor base S we shall take the set of all irreducible polynomials of degree

The reader may remember that all binary, irreducible polynomials of degree d appear in the

factorization of (see Theorem B.35).

Hence, as factor base S we have:

We want to write each of the elements in this factor base as a power of x, i.e. we want to solve the
logarithm problem for the elements in the factor base. To this end, we try to find powers of x in

that can be expressed as a product of the polynomials
We use the Mathematica function Factor and PolynomialMod.

Discrete Logarithm Based Systems 143

We conclude that is not smooth with respect to our factor base S. After some trial and error we
find the following list of smooth powers of x:

Writing these relations give rise to eight linear congruence
relations. For instance, the last equation gives

Taking the logarithm on both sides gives the linear congruence relations

since 1023 is the multiplicative order of the primitive element x. In this way, the eight relations

above can be rewritten as

144 FUNDAMENTALS OF CRYPTOLOGY

This forms a system of congruence relations that can be solved with the Mathematica function
Solve.

So, we know that and

If the linear congruence relations are not linearly independent one has to replace some equations
by others until they are linearly independent.

Let us now find a solution of

From

we see that can not be written as product of polynomials in S, but

can.

We conclude that so the solution of
is given by

Discrete Logarithm Based Systems 145

This can be checked by

8.4 Problems

Problem
Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use
GF(p), with and primitive element
User B makes public. If what will be the common key that A and B use for their
communication?

Problem 8.2
Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use

as representation of User B makes public, which stands for
the field element If what will be the common key that A and B use for their
communication?

Problem 8.3
Demonstrate the Special Case version of the Pohlig-Helmann algorithm, that computes logarithms in finite
fields of size by evaluating in GF(257).

Problem
Check that 953 is a prime number and that 3 is a generator of Find the three least significant bits of
the solution m of the congruence relation
(See the remark in the discussion of the special case in Subsection 8.3.1.)

Problem 8.5
Compute in GF(353) with the Pohlig-Hellman algorithm.

Problem
Find a solution of in GF(197) by means of the Baby-Step Giant-Step method, when only 15 field
elements can be stored.

Problem
Check that is a primitive 2003-th root of unity in GF(4007) (note that 4007 is a prime number).
Let G be the multiplicative subgroup G of order 2003 in GF(4007) generated by Check that 2124 is an
element of G.
Determine by the Pollard method.

Problem
Check that is a generator of the multiplicative group Set up the index-calculus method with
a factor base of size 6 and determine

146 FUNDAMENTALS OF CRYPTOLOGY

Problem
Solve the equation in the setting of Example 8.11.

Problem
What is the probability that a random element is smooth with respect to the set of
irreducible, binary polynomials of degree (see Example 8.11).

9 RSA Based Systems

9.1 The RSA System
In 1978 R.L. Rivest, A. Shamir and L. Adleman [RivSA78] proposed a public key cryptosystem
that has become known as the RSA system. It makes use of the following three facts:

1) Exponentiation modulo a composite number n, i.e. computing c from for given
m and e, is a relatively simple operation (see Subsection 8.1.1).

2) The opposite problem of taking roots modulo a large, composite number n, i.e. computing m
from (which can be written as for given c and e, is, in general,
believed to be intractable.

3) If the prime factorization of n is known, the problem of taking roots modulo n is feasible.

9.1.1 Some Mathematics

From Appendix A we quote Theorem A. 14 and the definition of Euler's Totient function (Def.
A.6):

The reader can check the above in any example with the Mathematica functions GCD and
EulerPhi.

148 FUNDAMENTALS OF CRYPTOLOGY

9.1.2 Setting Up the System

Step 1 Computing the Modulus

Each user U of the system chooses two different large prime numbers, say and In the
original proposal the suggested length was about 100 digits.

Let It follows from (9.2) that

This can also be seen directly. The n integers in between 1 and are all coprime with
except for the multiples of (namely and the multiples

of (namely In this counting, one should realize that the number
has been subtracted once too often.

Example 9.1 (Part 1)

To keep this example manageable participant Bob will keep his primes reasonably small. He makes use of
the Mathematica functions Prime and EulerPhi.

RSA Based Systems 149

Step 2 Computing the Exponents and

User U chooses an integer with User U computes the
unique integer satisfying

For instance, U can use Euclid's Algorithm (see Section A.2) to find in less than

operations (Theorem A.9) with

Example 9.1 (Part 2)

The random choice of and the computation of can be made with the Mathematica functions

Random, While, and ExtendedGCD.

So, Bob has and This can be checked by the Mod calculation:

150 FUNDAMENTALS OF CRYPTOLOGY

Step 3 Making Public: and

Each user U makes and public, but keeps secret. The primes numbers and no
longer play a role. User U may use them to reduce the complexity of his calculations as we shall
see later on. They may not be made public by U.

9.1.3 RSA for Privacy

If user A, say Alice, wants to send a secret message to Bob (user B) she represents her message in
any standardized way by a number m, Next, Alice looks up the public exponent of
Bob. She will send the ciphertext c computed from

Bob can recover m from c by raising it to the power which he only knows. Indeed, for some
integer l one has

when In Problem 9.2 the reader is invited to verify that the system also works
when

We summarize the RSA secrecy system in the next table.

The public and secret exponents in the RSA system are traditionally called and to denote
the encryption resp. decryption functions that they have in this subsection.

Example 9.1 (Part 3)

We continue with the parameters of Example 9.1, so and

The encryption of message leads with the

Mathematica function PowerMod to

RSA Based Systems 151

Bob decrypts this by computing which gives m.

It is possible to reduce the work factor of the decryption process by means of the Chinese
Remainder Theorem (Thm. A. 19). Indeed, since Bob knows the factorization of n into he
can do the following.

Bob precomputes integers a and b mod n, satisfying

Next, Bob computes and where and
Note that all these calculations take place modulo the integers p and q that are

typically half the length of n. By the Chinese Remainder Theorem, is now given by

There is even an extra bonus in this approach. The exponent d in the calculations of and can
be reduced modulo resp. by Fermat's Theorem (Thm. A. 15). Indeed,

with and a similar statement is true for the mod q
calculations.

Altogether, this way of computing reduces the workload by a factor of about 4.

Example 9.1 (Part 4)

We continue with the parameters of Example 9.1, so
and To compute the solutions to

152 FUNDAMENTALS OF CRYPTOLOGY

we load the Mathematica package NumberTheory NumberTheoryFunctions

and find a and b with the function ChineseRemainderTheorem.

Next, we calculate and We get

The result of the decryption process is now given by and coincides with our
earlier decryption process.

RSA Based Systems 153

9.1.4 RSA for Signatures

The RSA system can equally be used to sign messages. To sign a message m, Bob will
compute

The receiver of c, say Alice, can easily retrieve the original message from because
Bob's parameters and are public. To check this we repeat (9.5) (with a minor variation):

for all m with The relation also holds when In
Problem 9.2 the reader is asked to prove this.

Alice should keep c as Bob's signature on m. Only Bob can have made c out of m, because he is the
only one knowing The reader is advised to reread the discussion above Table 7.2.

Example 9.1 (Part 5)

Bob signs message by computing

154 FUNDAMENTALS OF CRYPTOLOGY

Alice verifies this by computing which gives m.

9.1.5 RSA for Privacy and Signing

Suppose that Alice wants to sign a confidential message m to Bob. The solution described in
Subsection 7.1.4 , namely Alice first signs m with her secret key and then encrypts the result with
Bob's public key, can not always be applied directly in the RSA-case.

To see this, we observe that Alice would like to send

However, this mapping is not one-to-one if For instance, the messages and
will both be mapped to

Since Alice and Bob do not want to share their prime numbers, we must have In this case,
Bob can recover m as follows:

To verify this, combine (9.5) with (9.6).

Of course, there now is the problem of what to do when Bob wants to sign a confidential message
to Alice. A simple solution is to have every user U make two sets of parameters, one with its
modulus smaller than some threshold T and the other with its modulus larger than T. In this
setting, the sender uses his own smaller modulus for the signature and the receivers larger modulus
for the encryption.

RSA Based Systems 155

If there is an argument between Alice and Bob, they will go to an arbitrator. This arbitrator is
given the pair m and by Bob. As an integer, the latter is equal to
since

Just like in Subsection 9.1.4, the arbitrator now checks if

If this is the case, the message m came indeed from Alice, if not, u will not be considered as
Alice's signature on m.

Note that the arbitrator does not need to know the secret exponents of Alice or Bob to make his
decision. Therefore, Alice and Bob can continue to use their original set of parameters.

156 FUNDAMENTALS OF CRYPTOLOGY

9.2 The Security of RSA: Some Factorization Algorithms

9.2.1 What the Cryptanalist Can Do

Suppose that an eavesdropper, say Eve, gets hold of a secret message for Bob.
Once Eve knows the secret exponent of Bob, she can compute m from the ciphertext c in
exactly the same way as Bob can, namely by computing (see (9.5)).

To determine from the public exponent and the relation (see (9.4)) is
easy for Eve as soon as she knows just like Bob did when he set up the system, she will use

Euclid's Algorithm.

To find (see (9.3)) from the publicly known modulus Eve will have to find the
factorization of

At the time of the introduction of RSA, Schroeppel (not published) had a modification of a
factorization algorithm by Morrison and Brillhart [MorB75]. It involved

operations

In the next table we have made use of the Mathematica functions TableForm, Table, EXP,
Sqrt, Log, and N to give an impression of the growth of the above expression.

RSA Based Systems 157

As one can see, if n is about 200 digits long, the above cryptanalysis is clearly not tractable. On the
other hand, much larger numbers have been factored than was thought to be possible at the time
that the original RSA scheme was proposed (at the time of the printing the record stood at 512 bits
numbers). For this reason, one now sees proposals for implementations of RSA with a much larger
modulus.

An example of a fast modern factorization algorithm can be found in [LensH86]. Other methods
will be discussed in Section 9.2.3. There does exist special factorization algorithms that run faster
if n is of a special form. We shall discuss one of these methods in the next subsection.

Up to now, there seems to be no way of breaking the RSA system other than by factoring the
modulus n. There is no formal proof however that these two problems are equivalent. In Section
9.5 we shall discuss a variant of the RSA system for which it can be shown that breaking it is
equivalent to factoring its modulus.

A drawback of having to choose large moduli is that the execution of a single exponentiation takes
more time than one may like, especially when one wants to encrypt a long file. Quite often in such
a situation one shall use a hybrid system: a symmetric system with secret key k is used for
encryption of the data and the RSA scheme is used to send this key securely to the receiver (using
the public parameters of the receiver).

When generating p and q it is a bad idea to first generate p and then try out for
primality. One really wants to be large. Indeed, if a cryptanalist can guess for instance
by checking all likely values, it follows from

that also can be determined. From these two linear relations p and q can be found, which
implies that the system has been broken.

Example 9.2

Let Guessing that we get from

From and we get that

158 FUNDAMENTALS OF CRYPTOLOGY

We conclude that has to be large. A way to do this is to take q more than

In the literature one can also find a few attacks on the RSA system, that have a probability of
success which is not significantly more than the probability that a randomly chosen integer a
smaller than n has a non-trivial factor in common with n. This factor would then be p or q. The
probability that the latter happens can be evaluated with the Euler Totient function and is
given by

assuming that That one should not take p too small will follow from the factorization
algorithm that we shall discuss in the next subsection.

Because the "attacks" mentioned above have such a small probability of success, we choose not to
discuss them here. Some of the problems at the end of this chapter are based on them.

9.2.2 A Factorization Algorithm for a Special Class of Integers

We shall now briefly discuss a factorization algorithm that runs faster than the general
factorization algorithms that we shall address later under the assumption that at least one of the
prime factors of n, say p, has the property that only contains small prime factors.

Pollard's Method

In [Poll75], Pollard describes a way to factor n in steps, where p is the smallest prime divisor
of n. This explains why we have to take p and q both large.

The assumption in Pollard's method is that in the factorization of n at least one of the two
factors, say p, has the property that has only small prime factors. To be more precise, an

RSA Based Systems 159

integer is said to be smooth (see also Subsection 8.3.4) with respect to S if all its prime factors are
less than or equal to S. We shall assume that is smooth with respect to some integer S.

Example 9.3

The prime number has the property that is smooth with respect to as one can
check with the Mathematica function FactorInteger and PrimeO.

For each prime number r, the largest power of r that is still less than or equal to n can be
determined from

, or, equivalently,

Define R by

Example 9.4 (Part 1)

Consider the number and assume that at least on of its factors, say p, is smooth with
respect to It follows from

that there are 15 primes less than or equal to So, R can be calculated from (9.8) with the
Mathematica functions Prime. Log, and Floor as follows

160 FUNDAMENTALS OF CRYPTOLOGY

To see the exponents of the primes up to 50 (out of curiosity), we give

If is smooth with respect to S, each prime power that divides will also be a factor of
R, since i will be at most . It follows that divides R.

We know from Fermat's Theorem (Thm. A. 15) that any integer a, will satisfy
Since also

Now take a random integer a, and check if If this gcd is not 1, we have
found a factor of n and we are done.

If it follows from that Since it is very unlikely that also
, we shall almost certainly find a factor of n (namely p) from Note

that does not have to be evaluated for this calculation, the value of suffices.

Example 9.4 (Part 2)

To find a factor of we pick a random a in between 2 and and compute the
ged of aR with n by means of the Mathematica functions Random, PowerMod, and GCD.

It follows that is a factor of n. The other factor follows from Note that if
q is also smooth with respect to S, we would have found n as outcome of the gcd calculation.

We summarize Pollard's method in the following table.

RSA Based Systems 161

To make Pollard's method infeasible, one often chooses so-called safe primes when setting
up the RSA system. These strong primes are primes p of the form where is a
(large) prime. In this case, has just one small factor.

9.2.3 General Factorization Algorithms

The Pollard Method

Let p be an unknown prime factor of the integer n that we want to factor. Now look at the
sequence defined recursively by

Suppose that we have found indices u and v with and Then clearly
is divisible by p and very likely this gcd is equal to p.

Of course, p is not known, so we replace the above recursion relation by

Since we will find the factor p from for the same values of u and v (the
probability that other large factors of n divide this gcd is negligible).

Instead of having to store all previously computed values of we use Floyd's cycle-finding
algorithm to find an index k such that and then we take and The idea is
simply that one starts with and and recursively determines the pair from

The above is summarized in the following figure.

162 FUNDAMENTALS OF CRYPTOLOGY

Example 9.5

To find a factor of with the above method we use the Mathematica functions While,

Mod, and GCD functions.

So, 350377 is a factor of The quotient n/p is 479909, which happens to be a
prime too, as can easily be checked with the function PrimeO.

Random Square Factoring Methods

This method and the next one are related to the Index-Calculus Method discussed in Subsection
8.3.4. The reader may want to read the introduction there first, but that will not necessary for the
understanding of the discussion here. We assume that n is a composite odd integer.

The method consists of the following four steps.

Step 1:

Construct the set consisting of the first k prime numbers, so
etc. The set 5 will be called the factor base.

Step 2:

Find sufficiently many pairs such that

RSA Based Systems 163

and such that is smooth with respect to S, i.e. factors completely into elements of the factor
base S, say

with

Put Pairs satisfying property (9.10) can be found by trying random
choices of An alternative is to use any suitable recursion relation that generates candidates for

For instance, after trying one may want to try

Step 3:

Find a collection of whose product is a perfect square. Quite clearly, only the parity of the
matters in this condition, so let us put and We write

Since any vectors (all of length k) must be linearly dependent over there must be a non-
trivial linear combination adding up to Such a linear combination can be found very efficiently
with standard methods from linear algebra.

Let I denote the subset of {1, 2, ..., k} with Set

and

Step 4:

It follows from (9.10) that i.e. n divides (x - y) (x + y). Assume that
(the probability that this happens is at least 1/2 as we shall see in a moment and as

will be demonstrated more extensively in Subsection 9.5.1 for the case that n is the product of two
different primes). Then must be divisible by a non-trivial divisor of n. In other words,

yields a non-trivial factor of n.

If one has to try to find another perfect square, either by another linear
dependency between the or by exchanging one of the pairs for a new one.

Consider the congruence relation where y is assumed to have a given fixed value
that is coprime with n. Further, let be any factor in the prime power decomposition of n (see
Theorem A.6). Then has just two solutions, namely Indeed, for

this follows from Theorem B. 15. For we still have that must divide either . or
because if and then but (since n is odd, also p will be odd).

We conclude that also when

It now follows directly from the Chinese Remainder Theorem (Thm. A. 19) that relation
has solutions, where l is the number of different prime numbers dividing n.

Only two of these solutions are given by therefore, the probability that
yields a non-trivial factor of n is at least

input : integer n.
make factor base
find pairs with

164 FUNDAMENTALS OF CRYPTOLOGY

Example 9.6

Suppose that we try to factor with the above method. We first make the factor base consisting of
the first 8 primes by means of the Mathematica functions Table and Prime.

Next, we use the function Random to generate a random a, and the function
FactorInteger to factor

Unfortunately, is not smooth with respect to S, but after some trial and error we found the

following nine smooth numbers (they are put in a list called a).

RSA Based Systems 165

The exponents in the factorization of the are given by the vectors that form the rows of the
matrix U below. The vectors are the modulo 2 reductions of the They form the rows of the
matrix V below.

For instance, gives and

These two rows are the first row of the matrices U resp. V below. We use the function

MatrixForm to display them.

166 FUNDAMENTALS OF CRYPTOLOGY

To find a non-trivial linear combination of the rows of V adding up to the all-zero vector modulo
2, we use the NullSpace and Transpose functions.

We see that the first of the above linear dependencies between rows of V reflect two identical

rows, but the third one does give an index set I that can be used, namely

It leads to the values and

RSA Based Systems 167

We conclude that is a factor of Indeed

Quadratic Sieve

The complexity of this method is given by

operations.

As with the previous methods, we shall not explain all details of this factorization technique. Let n
be the number that we want to factor.

To start we need a so-called factor base S, which means that S is a list of k primes (which k primes
will be determined later).

Let and let the polynomial f(x) be defined by

Note that so It follows that if x is small in
absolute value, then also f(x) will be small (when compared to n).

For define a by and test - n for smoothness with respect to
S, i.e. test if all prime factors of b are in S. If so, we save the pair (a, b) in a list of pairs
with this property.

Note that just as in equation (9.10).

If a prime p divides then for some known value of x. This means that
and thus that n is a quadratic residue (QR) mod p. This means that the only

prime factors that will appear in the factorization of any of the will have Jacobi symbol

So, we let the factor basis S consist of the k smallest with the property that
We also add –1 and 2 to S, because the may be negative and/or even.

Now that we know how to construct a list of pairs satisfying

is smooth with respect to S,

we can continue with Step 3 in the algorithm described in the previous subsubsection.

We summarize the quadratic sieve method in the following figure.

168 FUNDAMENTALS OF CRYPTOLOGY

We shall only give an example of the first two steps of the quadratic sieve method.

Example 9.7

Let To make a factor base with 10 primes, we use the Mathematica functions Whi1e,
Length, JacobiSymbol, Prime, and AppendTo.

To try out if any of is smooth with respect to S we use the functions

TableForm ,Table, andFactorInteger:

RSA Based Systems 169

We see that we have only found three pairs namely (811,-3922), (812, -2299), and
(817, 5846).

So, we need to try a larger range of values. We leave the rest of this example as an exercise to the

reader (see Problem 9.7).

9.3 Some Unsafe Modes for RSA

9.3.1 A Small Public Exponent

We shall discuss here two particular dangers described in [Håst88] (see also [CoppFPR96]). The
first one is the situation that more people have chosen the same (small) public exponent and that a
sender wants to transmit the same message to all of them. The second danger is when a sender
wants to transmit several mathematically related messages to the same receiver, who happens to
have a small public exponent.

Both dangers may appear farfetched to the reader, but since exponentiations modulo large numbers
are still rather cumbersome, it remains very appealing in practical situations to select small public
exponents.

Sending the Same Message to More Receivers Who All Have the Same Small Public Exponent

Suppose that Alice wants to send the same secret message m to Bob, Chuck, and Dennis. Let the
public modulus of these three people be given by the numbers and Now assume that
they all happen to have the same public exponent The messages that Alice will transmit are

170 FUNDAMENTALS OF CRYPTOLOGY

Almost certainly the three moduli will be coprime (otherwise at least two of moduli are
compromised in a trivial way). The eavesdropper Eve, who intercepts and can use the
Chinese Remainder Theorem (Thm. A. 19) to determine from (9.11).

Since it can be assumed that holds. So, the above
means that Eve in fact has found the integer To compute m is now straightforward.

Example 9.8

Suppose that and Let the three intercepted messages
be given by and

To solve the system of linear congruence relations

with known right hand sides and known moduli, we use the Mathematica function
ChineseRemainderTheorem. To this end we first have to load the package
NumberTheory

We conclude that Since we
even have

To find m is now easy.

That this outcome is correct can easily be checked by means of the Mod function.

RSA Based Systems 171

Sending Related Messages to a Receiver with Small Public Exponent

Alice wants to send two secret messages, say and to Bob, who happens to have a public
exponent that is rather small. Let be Bob's modulus. Now, assume that the two messages of
Alice are related in a linear way, say where a and b are in and assume further
that eavesdropper Eve knows this linear relation.

Coppersmith et al. [CoppFPR96] describe two surprising methods for Eve to recover the plaintext
m.

Direct Method

We shall first describe this method for the case

Let the encryptions of and be denoted by resp. So, and
Then

With the Mathematica function Simplify one can verify these calculations as follows

A particular simple case is given by and i.e. Then (9.12) reduces to

172 FUNDAMENTALS OF CRYPTOLOGY

Example 9.9

Suppose that and that the messages and are related by So,
and Let and Then can be computed with the Mathematica

functions Mod and Solve as follows

So, we have found That this is indeed the solution can be verified quite easily as
follows

If and a method like the above still exists. In fact, it can be shown [CoppFPR96]
that polynomials P(m) and Q(m) exist such that each of them can be expressed as rational
polynomials in and and such that For

these polynomials are given by

Again, one can check this with

RSA Based Systems 173

To find such a solution, write and Next, substitute
and in P and Q to obtain two polynomials in m of degree Now,

equate the coefficients of m in This gives

linear equations in the coefficients of P and Q. So, there is in fact a large

solution space.

Since the number of terms in P(m) and Q(m) grows quadratic in e the above approach will still be
rather cumbersome for larger values of e.

Method through GCD calculation

For arbitrary values of e there is a more direct way to determine and from and when
they satisfy a polynomial relation that is known to the eavesdropper. Suppose that

The idea is to compute the gcd of and Indeed, since
is a zero of both polynomials, it follows that both are divisible by As a consequence, also
the gcd will contain this factor. Almost certainly the gcd will not contain any other factors.

We shall demonstrate this idea with an example.

Example 9.10

Let Further suppose that the message and are related by and
that they are encrypted into resp. We want to compute

In general, this can not be done since nB is not prime.

Also Mathematica can not do this directly. We shall simply follow the polynomial version of Euclid's
Algorithm step for step. Problems may arise, when numbers appear that are not coprime with n. This
happens rarely and is not bad at all. Indeed, one almost always finds in this way a non-trivial factor of n,
so the system will be broken!

174 FUNDAMENTALS OF CRYPTOLOGY

In the first step we calculate and and then divide by We use

the Mathematica functions PolynomialMod and Expand.

To keep the division process more manageable, we normalize by multiplying it with the
multiplicative inverse of its leading coefficient We use the Mathematica function

PowerMod.

We continue with this division process until for some k. The gcd will be given by

RSA Based Systems 175

We conclude that and that

Therefore, the secret message m is 543. One can check this with the Mathematica function

PowerMod.

176 FUNDAMENTALS OF CRYPTOLOGY

The above approach of finding m by computing a gcd is still practical for e up to 32 bits long
([CoppFPR96]).

9.3.2 A Small Secret Exponent; Wiener's Attack

Wiener [Wien90] shows that it is unsafe to use the RSA system with a small secret exponent d,
where "small" means something like This observation is of importance, because often one is
inclined to reduce the work load of the exponentiation, by choosing a small exponent. For

instance, if a smart card is used to sign messages (see Subsection 9.1.3), it will have to compute
exponentiations If the card has limited computing power, a relatively small value of d
(of course not so small that d can be found by exhaustive search) would be handy.

We first show that we can replace (9.4) by the slightly stronger relation

where 1cm denote the least common multiple. We remark that and both divide and
so does Now note that for a correct functioning of the RSA system, one only
needs that and The reason is that these two congruences
are sufficient to prove that (9.5) and (9.6) hold modulo p resp. modulo q. From the Chinese
Remainder Theorem it then follows that (9.5) and (9.6) also hold modulo n. We conclude that it is
sufficient that

The subsequent cryptanalysis will deal with this most general case. It is the cryptanalist's aim to
find d satisfying this relation (and also p and q). The above congruence can be rewritten as

where If K and G have a factor in common, the above relation may be
further simplified to

RSA Based Systems 177

One should realize that often G (and thus also g) will be very small. In a typical RSA system, p
and q will be safe primes, meaning that and with and prime. So, in
this case and or 2.

Let us rewrite (9.13) by dividing both hands by d.n () and rearranging the terms:

What we like to show is that k / (d.g) is a convergent of the continued fraction of the known
rational e/n. Since these continued fractions are easy to compute, it is then possible to find the
secret exponent d (and k and g).

Remark 1:

We shall be a little sloppy with the use of the ~ symbol. What we mean with a ~ b is something
like "a and b have the same order of magnitude".

Remark 2:

We already discussed the likelihood that g is small. If d is selected as a small integer, the value of
e will be like that of a random number in the range so also the
assumption e ~ n is very reasonable. The same holds for (see the discussion around
Example 9.2).

Remark 3:

Relation (9.14) implies that therefore, it suffices to check only the odd convergents of

e/n.

Proof of Theorem 9.2:

If e ~ n then k ~ g.d by (9.14), since the other terms there all tend to zero. It further follows from
(9.14) that

Since we conclude that

It follows from Theorem A.35 that the rational number k / (d.g) will appear as a convergent in the
continued fraction of e/n. Since and since (9.13) also implies that it
follows from Corollary A.32 that k and d.g will be obtained from one of the convergents. Because

178 FUNDAMENTALS OF CRYPTOLOGY

g is very small, we can find g and d with a small trial and error effort.

From (9.13) one can now compute and since p.q is known, one can also find the
factorization of n into p and q.

Example 9.11

Consider and Let us compute the successive convergents of e/n. We first
load the Mathematica package Number Theory and then we can use the
functions ContinuedFraction and Normal.

Let us check why the last one does not lead to d (the other cases are even simpler). Writing
leads to and An easy argument to show that this is not the

right value of d is an encryption followed by a decryption, not resulting into the original message.
We use the function PowerMod.

RSA Based Systems 179

Let us try the next convergent.

Writing leads to and From (9.13) we get

Together with we get

So, p and q are the roots of They can be found with
the function Solve

Indeed,

180 FUNDAMENTALS OF CRYPTOLOGY

9.3.3 Some Physical Attacks

Clearly physical attacks on cryptographic implementations are beyond the scope of this
introduction. Nevertheless, two such attacks will be mentioned briefly, because of their relation to
theory that we have explained here.

Timing Attack

Suppose that RSA is implemented on a hardware device (like a smartcard), and that the secret
exponentiation or in the RSA process follows a computational
scheme of the type explained in Subsection 8.1.1, i.e. any method that consists of repeated
squarings and/or multiplications. See for instance Example 8.1.3.

It is further assumed in this attack (see [Koch96]) that an observer can measure the electro-
magnetic radiation or power consumption of the device and can clock the length of the various
calculations. Typically, a multiplication takes longer than a simple squaring operation.

In this way, the attacker can determine the particular sequence of squarings and multiplications

that the program went through. Based on the outcome, he can simply compute the secret exponent
d stored on the card.

For instance, if the measurements give Sq.Sq.M.Sq.Sq.M.Sq.Sq.M.Sq.M, where Sq stands for
Squaring and M for Multiplying, we get the exponent from

The "Microwave" Attack

Suppose again that RSA is implemented on a hardware device (say a smartcard), but now assume
that the secret exponentiation or in the RSA process makes use
of the Chinese Remainder Theorem (Thm. A. 19). See for instance Example 9.1, Part 4. So, we
assume that two independent exponentiations take place on this device: one modulo p and one
modulo q, where

Now suppose that this RSA implementation is used to sign data (this is the simplest version of the
attack, cfr. [LensA96] and [BoDML97]). So, typically, the attacker presents a message m to the
smart card and would normally expect back. However, the attacker submits the

RSA Based Systems 181

smart card, when it is making its calculations, to the right kind of radiation ("just put it in a
microwave" is an oversimplification of this attack) and hopes that in one of the two
exponentiations an incorrect calculation will be made.

For instance, the smart card calculates correctly, but gets a wrong value for i.e.
The reader should remember that in the smart card values a and b are stored

satisfying

So, the card will output Now note that since and

It follows that gives a non-trivial factorization of n.

It depends on the application whether the attacker can let the card give the correct value of c too,
for instance by having the card sign m again without introducing any radiation). A way around this
problem is to let the attacker select a message c, compute with the public exponent
e and submit m when attacking the card. In this way, the correct value of c is already known
beforehand.

Example 9.1 (Part 6)

We continue with the parameters of Example 9.1, so
and

Further, and (see Ex. 9.1, Part 4).

When, the correct value of c is given by

So, when signing the card should produce

In his calculations the card computes numbers and and gets c as follows:

182 FUNDAMENTALS OF CRYPTOLOGY

However, when is calculated incorrectly due to radiation, say the card will produce

an incorrect value for and the gcd of the difference of these two numbers with n
will yield a factor of n.

The number 10177 is indeed one of the twofactors of n.

9.4 How to Generate Large Prime Numbers; Some Primality Tests

9.4.1 Trying Random Numbers

To make the RSA system practical, one needs an efficient way to generate very long prime
numbers. The following pseudo-algorithm describes a probabilistic way of how this can be done.

RSA Based Systems 183

In the next two paragraphs we shall discuss several ways to test an integer u for primality. The first
two tests do not give an absolute guarantee that u is prime, but the probability that a composite
number u meets the test can be made arbitrary small. The second test (of which only an outline
will be given in Section 9.3.3) can guarantee the primality, but it is much slower. For other tests
we refer the reader to [Knut81], Section 4.5.4.

Example 9.12

In Mathematica one can use the functions Random, PrimeO , and While to simulate the above

algorithm. Note that the parity of u is not tested below (this is not an essential part of the above algorithm

anyway).

prime number is 907

7 attempt(s)

How often does one expect to have to go through Steps 1 and 2 in the above "algorithm" before
obtaining a prime? To answer this question we have to know the fraction of the prime numbers in
the set of odd, l-digit numbers. To this end we quote the Prime Number Theorem (Th. A.2).

With the Prime Number Theorem one can quite easily obtain an approximation of the fraction of
odd, l-digit numbers that are prime. One gets

For instance, with one gets

184 FUNDAMENTALS OF CRYPTOLOGY

prime generation algorithm above will be 115.

9.4.2 Probabilistic Primality Tests

The Solovay and Strassen Primality Test

Let p be a prime number. We recall from Definition A.9 that an integer u with (read: p does
not divide u), is called a quadratic residue (QR) modulo p, if the equation

has an integer solution. If and this congruence relation does not have an integer solution, u
will be called a quadratic non-residue modulo p (NQR). The well known Legendre symbol (u / p)
(see Definition A. 10) is defined by

The Jacobi symbol (see Definition A. 11) generalizes the Legendre symbol to all odd integers
m. Let where the are (not necessarily distinct) odd primes. Then, is defined
by

In Section A.4, the reader can find all kinds of properties of the Legendre symbol and the Jacobi
symbol. These properties culminate in an extremely efficient algorithm to compute the values of
these symbols. An example can be found there. In Mathematica, both symbols can be computed
with the JacobiSvmbol function:

As a matter of fact, since m in the example above, is a prime number, it is quite easy to compute a
"square-root" of u. For a discussion of how this can be done, we refer the reader to Section 9.5. In
Mathematica one can simply use the Solve function.

RSA Based Systems 185

Indeed, as can be checked with the PowerMod function.

12703

To find a solution of the equation . for composite integers m is, in general, a very

difficult problem and intractable for large values of m (see [Pera86] for a discussion of this
problem).

If m is the product of different primes and this factorization is known (!), one can find the square
root of u by finding the square root of u modulo all the prime factors of m and then combine the
result by means of the Chinese Remainder Theorem. In Section 9.5, this method will be
demonstrated. When m has higher prime powers in its factorization, matters get much more
complicated.

Let p be a prime number, We recall from Theorem A.23 that for all integers u:

The Solovay and Strassen Algorithm [SolS77] relies on the following theorem.

Proof: If m is prime, every integer satisfies (9.15), and has gcd 1 with m, so
in this case.

So, we now consider the case that m is not a prime number. Clearly, G is a subgroup of the
multiplicative group

186 FUNDAMENTALS OF CRYPTOLOGY

It follows (from Theorem B.5) that the cardinality of G divides that of So, if we can
conclude that . This would prove the theorem. We
conclude, that it suffices to prove the existence of an element u in with

We distinguish two cases. In [SolS77], the authors omit to consider the case that m is a square. In
the proof below, which is due to J.W. Nienhuys (private communication), Case 1 will cover this
possibility.

Case 1: The number m is divisible by at least the square of some prime number. We write
with p an odd prime, and

Let u be a solution of the system simultaneous congruence relations:

By the Chinese Remainder Theorem (Thm. A. 19) such a solution u exists and is unique modulo m.

Clearly, so i.e.

It follows from (9.18), the binomial theorem, and an argument similar to the proof of Theorem

B.26 that By (9.19) we also have that By the Chinese
Remainder Theorem we now have that

Since by (9.18), it also follows that This in turn implies that
which implies that u can not satisfy (9.15). We conclude that this element u

is a member of but not of G.

Case 2: m is the product of s distinct prime numbers, say with

Let a be a quadratic non-residue modulo p1. By the Chinese Remainder Theorem there is a unique
integer u modulo m satisfying the system simultaneous congruence relations

Clearly, To show that we need to show that (9.15)

does not hold.

Since it follows that for these indices. But

because a is NQR. From the definition of the Jacobi symbol (Def. A.I 1) it follows that
In particular this implies that for any

On the other hand, (9.21) implies that for any Hence

for any and a fortiori (9.15) does not hold.

RSA Based Systems 187

We can now describe the Solovay and Strassen Algorithm.

In the algorithm above, k can be any positive integer. The probability that k independently and
randomly selected elements u will pass the two tests, given in Algorithm 9.6, while m is not prime,
is less than or equal to by Theorem 9.5. By taking k sufficiently large, the probability that a
non-prime number survives the above algorithm can be made arbitrary small.

See however the Miller-Rabin test in the next subsubsection, where we have as probability that
a composite number is not detected after k tests.

Example 9.13

To test if the odd number is prime we use the Mathematica functionsGCD, JacobiSymbol,
PowerMod, and Mod::

The reader is invited to test for primality.

Miller-Rabin Test

The Miller-Rabin test [Mill76], [RabiSOa] is based on the fact (see Theorem B.14) that the
equation has only two solutions:

So, let m be an odd integer that we want to test for primality. Assuming for a moment that m is in
fact prime, we have by Fermat's Theorem (Thm. A. 15) that any integer a with

188 FUNDAMENTALS OF CRYPTOLOGY

satisfies

Since is even, it follows that happens to be and
is even, we can repeat the argument, so in this case we conclude that

etc. In this way, one can prove the following lemma.

To test an odd integer m for primality we proceed as follows. First we write with a
odd. Next we pick a random integer and compute from left to right

As soon as one of these numbers is not in while the next one is or
we may conclude that m is composite and we can stop.

We repeat the test k times, where k is a security parameter, that will be discussed in a moment.

Let m be an integer and let u be such that
Then u is called a strong witness to the compositeness of m. It gives a proof that m is composite.

On the other hand, let m be composite and let u be an integer that satisfies or
for some then this u is called a strong liar (to the primality) of

m.

For an efficient primality test we want composite numbers to have as few strong liars as possible.

RSA Based Systems 189

Example 9.14

Let us pick a random u and compute We use

7932

1

1

We see that no matter how often we run this, we shall always get or

or

Example 9.15

A strong witness of the compositeness of m is given by the choice as we can see below.

the Mathematica functions While and EvenO to write and use Random , PowerMod ,

Print , and Do for the actual test.

190 FUNDAMENTALS OF CRYPTOLOGY

265

298

1

What remains to be done is to give an estimate of the fraction of strong liars modulo a composite
number. The next theorem says that this fraction is at most 1/4. This means that the probability
that a composite number will not be detected after k runs of the Miller-Rabin test is at most

This compares very favorably with the Solovay and Strassen primality test where this
probability can only be upperbounded by

The proof of Theorem 9.8 (see [Moni80] or [Rabi80a]) is very technical and does not give further
insight to the reader of this introduction.

will be which is less than the two "strong liars" and

9.4.3 A Deterministic Primality Test

Primality tests that prove in a deterministic way that a certain is prime or not are of course much
slower than probabilistic algorithms of the type discussed in the previous subsection.

We shall now explain the idea behind the deterministic primality test of H. Cohen and H.W.
Lenstra jr. [CohL82]. This test is an improvement of [AdPR83]. We shall not give a complete
description of this test. That would involve too much advanced and deep number theory. We
closely follow the excellent introductory article by Lenstra [LensH83].

RSA Based Systems 191

We start by quoting Fermat's Theorem (Thm. A. 15).

Let m be an integer that we want to test for primality. A single integer a that does not satisfy
(9.22), proves that m is not a prime number.

Unfortunately, the opposite is not true. For instance, satisfies (9.22), while

To see this we first compute

Let a be coprime with 561. It follows from Euler's Theorem (Thm.
A. 14) that is congruent to 1 modulo each of the three prime divisors of 561. The Chinese
Remainder Theorem (Thm. A. 19) now implies that Hence,

For the values of a that have a factor in common with 561, (9.22) can be proved in a similar way.

The reader may want to verify the above with the Mathematica functions Factor Integer and
PowerMod:

Composite integers m with the property that for all a with are
commonly called Carmichael numbers.

The converse of a slightly stronger statement than Theorem 9.10 does hold however. In the sequel,
(a / m)denotes, as usual, the Jacobi symbol.

Proof: That the relation above holds for prime numbers was already remarked on in (9.15). The
converse was first proved by Lehmer [Lehm76], but it also follows directly Theorem 9.5.

192 FUNDAMENTALS OF CRYPTOLOGY

The above theorem is of course not a very efficient primality test for numbers that are more than
100 digits long. Lenstra offers the following "attractive" alternative.

Proof: This statement is completely trivial, since and are the only divisors
of a prime number m. All other numbers in between 1 and m can not be written as power of m.

Clearly it is not this theorem that we want to use as a primality test, but a variation of it does turn
out to be very powerful. We shall show that under certain conditions every divisor of m looks a
little bit like a power of m.

Condition (9.24) can not be omitted in the theorem above. Indeed, does
satisfy (9.23), but does not satisfy (9.25). Note that therefore, no power of m will
ever be equal to one of the prime divisors of m.

All these statements can be checked with the Mathematica functions Factor Integer,
JacobSymbol, PowerMod, and Mod:

RSA Based Systems 193

Before we prove Theorem 9.13, we shall illustrate how it can be used to test the primality of
integers After the proof we shall discuss generalizations of Theorem 9.13, that
yield efficient primality tests for larger values of m.

Proof: The first matter to be addressed is Test 3. If m is prime, the probability that a random

satisfies (9.24) is 1/2 by Theorem A.23 and Theorem A.20. So, in two tries one can
expect to find an integer a satisfying (9.24). If no such integer a exists, m is not prime.

More can be said about this step. Assuming the Extended Riemann Hypothesis one can even prove
that (9.24) has a solution if m is prime. (See also [Pera86].)

If m meets the first three tests, we know from Theorem 9.13 that each divisor d of m must be
congruent to 1 or m modulo 24. Since we may assume that (otherwise consider
n/d instead of d). It follows that d is in fact equal to 1 or to (m mod 24).

194 FUNDAMENTALS OF CRYPTOLOGY

The possibility that is ruled out by Test 4. It follows that this divisor d
must be equal to 1. We conclude that m is prime.

To be able to prove Theorem 9.13 we need the following lemmas. The first gives a necessary and
sufficient condition for two integers and both having gcd 1 with 6, to be congruent to each
other modulo 24.

Proof: There are eight integers that are coprime with 6, namely 1. 5, 7, 11, 13, 17,
19 and 23. For each of these values m we calculate the values for and 3 by means
of Corollary A.24, Theorem A.25, resp. Theorem A.27 or with the Mathematica functions

JacobSymbol, which can be applied at once to a whole list of numbers.

It is easy to verify that the matrix with these three vectors as rows has the property that all columns
are different. This shows that the three values uniquely define m from
{1,5,7, 11, 13, 17, 19, 23}.

For example, by looking at the second column, we see that is uniquely defined in
{1,5,7, 11, 13, 17, 19, 23} by the three values

RSA Based Systems 195

Proof: Since m is not divisible by 3, it follows that (mod 3). Similarly, since m is odd, it
follows that (mod 8). To see this, write Then

Since, 3 and 8 are coprime, the statement follows from the Chinese Remainder Theorem.

Of course, we could have checked the above lemma with the Mathematica function Mod as follows

We are now ready to prove Theorem 9.13.

Proof of Theorem 9.13:

It is a direct consequence of condition and Lemma 9.16 that each exponent j in
(9.25) can be reduced modulo 2. This shows that (9.25) can be replaced by (9.26)

Next, note that it suffices to prove (9.25) for prime divisors d of m only. Write and
where f and g are odd and where

We shall first prove that and then use Lemma 9.15 to show that either or

Raise both sides in condition (9.24) to the power g and reduce the result modulo d. Since and
g is odd, one obtains

Since we assume that d is prime and since a can not have a factor in common with d or m, it
follows from Fermat's Theorem (Thm. A. 15) that

We conclude from these two congruence relations that

Now consider Since g is odd and we have

On the other hand (again because d is prime), we have

196 FUNDAMENTALS OF CRYPTOLOGY

It follows from the two last congruence relations that for

Note that we have replaced the congruence relation above by an equality sign. We can do this,
because both hands have value or 1.

If relation (9.27) and Lemma 9.15 together imply that

Lemma 9.15 yields that

Crucial in the application of Theorem 9.13 is the fact that we can replace (9.25) by (9.26). Because
of this, only one condition needed to be tested in the fourth step of Algorithm 9.14. The reason that
(9.25) could be replaced by (9.26) (see Lemma 9.16) is the fact that

Theorem 9.13 can only prove the primality of integers For larger values of m one
needs generalizations of Theorem 9.13. As may be expected, the exponent in Lemma 9.16 will
have to be increased in these generalizations. An example of such a generalization would be

In order to test 100-digit numbers for primality, one uses

where s is the 53-digit number

Note that if m has not more than 100 digits. A rough outline of the primality test of a 100-
digit number is as follows.

On the other hand, if the right hand side of (9.27) is equal to 1, which is also So,

RSA Based Systems 197

If m is composite, the algorithm above will sometimes yield a factor of m. The probability that this
will happen however, is very small. In most cases that m is composite, the algorithm will terminate
in Step 2 and one does not obtain a factor of m. The algorithm above can be adapted to test larger
integers for primality. The expected running time is

where c is some constant.

9.5 The Rabin Variant
In Subsection 9.2.1, it was mentioned that no other general method of breaking RSA is known
than by factoring n. In [Rabi79], Rabin proposes a variant of the RSA system, whose cryptanalysis
can be proved to be equivalent to the factorization of n.

9.5.1 The Encryption Function

In the RSA system, each user U had to select a public exponent with (see
(9.2)). In Rabin's variant, all users U take the same exponent

We remind the reader of the discussion in Subsection 9.3.1.

Since because both and are even, encryption is no longer a one-
to-one mapping. Indeed, if it follows that
the congruence relation has two solutions, namely and, similarly,
the congruence relation will have the two solutions By the Chinese
Remainder Theorem (Thm. A. 19), the congruence relation

has four solutions modulo What happens if is an easy exercise for the reader
(see Problem 9.5).

Example 9.16 (Part 1)

Consider the encryption of the message modulo the modulus
(we use the Mathematica functions Prime and PowerMod).

198 FUNDAMENTALS OF CRYPTOLOGY

To find the four messages that are mapped to the same ciphertext, we have to combine the four
systems of linear congruence relations and with the Chinese
Remainder Theorem. We have to load the package Number Theory 'Number Theory Functions' to
be able to use the function ChineseRemainderTheorem . .

To check this we calculate

RSA Based Systems 199

We note that the image space of the encryption function is not the whole set As a
consequence, this variant by Rabin can not be used in a straightforward way as a signature scheme.
(See the related Fiat-Shamir protocol in Chapter 14.)

9.5.2 Decryption

Precomputation

How does one decrypt a message in the Rabin variant of the RSA system? As
explained earlier in this section, we do this with the Chinese Remainder Theorem. As
precalculation, one computes integers a and b satisfying

The solutions a and b can easily be found as follows; for instance, to find a, we obtain
from the second congruence relation and substitute this in the first congruence relation. One gets
the congruence relation which can be solved with the extended version of
Euclid's Algorithm, (Alg. A.8). See also Example A.3.

These systems of congruence relations can also be solved directly with the Mathematica function
ChineseRemainderTheorem for which the package
Number Theory ‘Number Theory Functions‘ has to be loaded first.

Example 9.16 (Part 2)

Continuing with the parameters of Example 9.16, we need to solve

200 FUNDAMENTALS OF CRYPTOLOGY

and

and

So, and

Finding a Square Root Modulo a Prime Number

Next, one has to solve the congruence relation (and, similarly, If
the solution is obvious, so, let us assume that

For notational reasons we omit the subscript U from now on. It turns out that an immediate
technique to find x is not always possible. We consider three cases.

Case 1 :

If c is the square of some element m in (such a c is called a quadratic residue modulo p; see
Section A.4), the two solutions of are given by Indeed, if we square this
expression we get from Fermat's theorem:

Example 9.17

Consider the prime which is congruent to 3 modulo 4. The number is a quadratic

residue modulo p as can be checked with the Legendre symbol. To verify all these assertions we use the

Mathematica functions Prime, Mod , and Jacobi Symbol .

RSA Based Systems 201

The solution of is given by

To verify this we use the Mathematica function PowerMod .

Case 2:

With a slight refinement of the method used above it can be shown that the solution of
in this case is given by if and by if

See Problem 9.14, which addresses this case.

Example 9.18

Consider the prime which is congruent to 5 modulo 8. The number is a quadratic
residue modulo p as can be checked with the Legendre symbol, which is a special case of the Jacobi
symbol.

202 FUNDAMENTALS OF CRYPTOLOGY

The solution of is given by because
(otherwise the answer would be

Case 3:

A fast deterministic algorithm to solve this congruence relation does not exist. We follow
[Rabi79].

In Section A.4 we have introduced QR as the set of quadratic residues modulo p and NQR as the
set of quadratic non-residues modulo p.

are the two solutions of In other words,

over the finite field

Since it follows that the field element will never take on value 1.
Since the mapping is one-to-one for we conclude that

Let r and s denote the two solutions of the congruence relation Then and

RSA Based Systems 203

It follows from (9.33) and Theorem A.20 that for half of the admissible values of u the element
will be in and for the other half it will be in NQR. In the first case, either

or (by Theorem A.21) both and will be an element of QR or they will both be in
NQR. In the latter case, exactly one of them will be in QR and the other will be in NQR.

A property of quadratic residues modulo a prime number that we shall need later on is given by
(A. 16):

Example 9.19

As an example, consider the QR's mod 11. We introduce a new function:

So, the QR's modulo 11 are given by: 1, 3, 4, 5, and 9. We now compute with the Mathematica
function PolynomialMod:

The reader may want to verify this by means of the Mathematica functions Table, Mod,

PowerMod, andUnion .

204 FUNDAMENTALS OF CRYPTOLOGY

This is indeed equal to

It follows from the above discussion, in particular from (9.33) and (A. 16), that for a randomly
chosen

will be

The counting arguments above imply that with probability one of the first two

possibilities will occur. So, with probability we have a non-trivial factor of Since
u is known, one also has found the value of r or s.

Note that in the extremely unlikely, remaining case, namely if expression will
reduce to So, the gcd in (9.34) will contain a factor x and the other factor will yield the
solution s.

An example of the above method will be given later.

The expected number of u's that one has to try in this algorithm before finding a solution of
is the reciprocal of i.e. 2. For a discussion of other methods of taking square

roots modulo a prime number, we refer the interested reader to [Pera86].

The Four Solutions

The final step in the decryption algorithm is of course to use the Chinese Remainder Theorem to
combine each of the two solutions of with each of the two solutions of

Example 9.16 (Part 3)

We continue with the parameters of Example 9.16. So,

and the solutions of

and

and

are given by and

RSA Based Systems 205

be a ciphertext. Since and we follow Case 2 to find
the square root of c modulo p and Case 3 to find the square root of c modulo q.

modulo p by Case 2

We calculate with the Mathematica functions PowerMod and Mod

and find 1. The square root of c modulo p is thus given by

modulo q by Case 3

We want to find the zeros of modulo q. We take a random u in and compute
and hope to find a linear factor. We use the Mathematica

functions PowerMod,PolynomialGCD and

We try again

206 FUNDAMENTALS OF CRYPTOLOGY

It follows that one of the square roots is given by So, by

It follows from the Chinese Remainder Theorem (Thm. A. 19) that the four square roots of
are given by

9.5.3 How to Distinguish Between the Solutions

Let f be one of the two solutions of and let g be one of the two solutions of
Further, let a and b be the solutions of the linear congruence relations (9.30) and

(9.31).

Then, by the Chinese Remainder Theorem (Thm. A. 19), the four solutions of (9.29) are given by

One would like the sender and receiver to be able to distinguish between the four solutions in such
a way that they can agree on one of them. In some cases this can be done quite easily. Indeed, if

RSA Based Systems 207

and are both congruent to 3 mod 4, one has by Corollary A.24 that is a NQR both

modulo and modulo Hence, exactly one of f and – f is QR and the same is true for g and
– g. Replacing f by and/or g by if necessary, one has without loss of generality that

By Definition A. 11 and the second statement in Theorem A.26 we have that
while Of the

two solutions with Jacobi value one will lie in between 1 and the other will lie
between and (or both are equal to 0).

We conclude that there is a unique solution m satisfying and So,
sender and receiver can agree to use only messages of this form.

Example 9.20 (Part 1)

Let and be a received message. Repeating the decryption process explained in the
previous subsection, we get and

With the Mathematica functions Mod and JacobiSymbol, we get the following four possible messages
with their respective Jacobi symbol value.

30

58 1

19 1

47

We conclude that m = 19 is the unique solution with (m/77) = 1 and was

the message transmitted by the sender.

208 FUNDAMENTALS OF CRYPTOLOGY

If is congruent to 1 modulo 4, one can still agree to use only messages with
To get the sender and receiver could restrict themselves to

shorter messages, say 20 digits shorter, and fill up the remaining 20 digits in such a way that the
resulting message has Jacobi symbol 1 modulo

9.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n

We shall now show that breaking Rabin's variant of RSA is equivalent to factoring Of course,
when the factorization of is known to the cryptanalist, Rabin's system is in fact broken, because
the cryptanalist can use the same methods to decrypt as the receiver can (see Subsection 9.5.2).

Proof: Select a random compute and solve with
algorithm in F(n) steps. Let k be the solution found by The following four possibilities each

have probability 1/4:

Indeed, there are four different messages that are mapped to c and they are all four equally likely.

In case ii), and in case iii) So, the calculation of
will yield the factorization of n with probability 1/2. This computation involves less than
calculations by Theorem A.9, therefore, each choice of m involves at most
operations.

Since the probability of success is 1/2, one expects to need two tries.

Example 9.20 (Part 2)

Suppose that and that the value of m that we have picked is 30. Then

Now assume that Algorithm finds as solution to
(see Example 9.20 for these parameters).

Then one of the factors of n will be found from This would also have happened if

had found but not with 30 or 47.

All these calculations can easily be checked with the Mathematica function GCD.

RSA Based Systems 209

9.6 Problems

Problem 9.1
Consider the RSA system with and public key So, a plaintext m will
be encrypted into where

Prove that every ciphertext c satisfies (Hint: use Fermat's Theorem and the Chinese

Remainder Theorem.) The notation stands for
Give an easy way for a cryptanalist to recover plaintext m from ciphertext c.

Problem 9.2
Verify that the RSA secrecy system (or signature scheme) works correctly when a message m has a non-
trivial factor in common with the modulus i.e. show that

when or q (as always e and d denote the public resp.secret exponents).
(Hint: use Fermat's Theorem and the Chinese Remainder Theorem.)

Problem 9.3
Consider the RSA cryptosystem with modulus and public exponent e.
a) Prove that the number of solutions of the equation when u divides is exactly u
(hint: use the multiplicative structure of Theorem B.20)
b) Show that each solution of is a solution of and vice versa
(use Fermat's Theorem).

210 FUNDAMENTALS OF CRYPTOLOGY

c) Prove that the number of solutions of the equation is given by
d) Prove that the number of plaintexts m satisfying

(in which case encryption does not conceal a message), is given by

(Hint: use the Chinese Remainder Theorem.)

Problem 9.4
Demonstrate the principle of the Solovay and Strassen primality test on the number The number m
has been made small in this problem to keep the calculations simple. So, do not make use of numbers that
"incidentally" have a factor in common with m.

Give a Mathematica implementation of Algorithm 9.14 and test it out for two values of

Give a complete factorization of by means of Pollard's Algorithm.

Complete Example 9.7. (Hint: extend the search to

Apply the Wiener attack to and

Find a strong liar for the composite number

Problem 9.10
Suppose that Alice has sent the same secret message to B, C, D, E, and F by means of the RSA system. Let
the public moduli of these people be given by and

Assume that they all have the same public exponent
Let the intercepted messages be given by resp.

Determine Alice's message (see Example 9.8).

Problem 9.11
Suppose that Alice has sent secret messages and to Bob by means of the RSA
system. Let Bob's modulus be and Suppose that you have intercepted the transmitted
ciphertexts and that you know the above relation between and
Determine (see Example 9.10).

Problem 9.12
Consider the Rabin variant of the RSA system. So, only the number n is public.
Suppose that a message has been sent that has a non-trivial factor in common with n.
How many possible plaintexts will the receiver find at the end of the decryption process?

RSA Based Systems 211

Problem 9.13
The Rabin variant of the RSA system is used as cryptosystem with Demonstrate the
decryption algorithm of this system for the ciphertext
Which solution will come up if the method described in Subsection 9.5.3 is being followed? Why can this
method be applied?

Problem 9.14
Let and let c be a quadratic residue modulo p.
a) Show that
b) Show that the solution of is given by
c) Show that the solution of is given by (Hint: use
Theorem A.25 which implies that 2 is not a quadratic residue modulo p)

This page intentionally left blank.

10 Elliptic Curves Based Systems
It will turn out in this chapter that discrete-logarithm-based cryptosystems can also be defined over
elliptic curves. For RSA-based systems the same can be done, but there seems to be little reason to
do so. For discrete-logarithm-like systems over elliptic curves, it may very well be that smaller
parameters are possible with the same level of security as the regular systems over finite fields.

However, many questions regarding EC-systems are still open at this moment, making it unclear
what the future of these systems will be.

10.1 Some Basic Facts of Elliptic Curves
Let GF(q) be a finite field with q elements, where The number p is prime and is called the
characteristic of GF(q). If we have the set of integers modulo p.

The so-called (affine) Weierstrass equation is given by

It is defined over any field (like or), but for cryptographic purposes we shall always assume
that the coefficients are in GF(q).

If one can simplify the Weierstrass equation by means of the transformation
One obtains (with new values for a, b, and c)

If also one can apply to further reduce this form to:

If two standard simplifications of (10.1) are possible. They are given by

To verify if a point (u, v) lies on a particular elliptic curve, say is quite
easy.

214 FUNDAMENTALS OF CRYPTOLOGY

To see if contains a point with a given x-coordinate we can use the Mathematica function

Solve. Since the Weierstrass equation is quadratic in y, there will be at most two values of y (see

Theorem B. 14).

So, leads to the values i.e. to the points (3, 2) and (3, 9). The reader should try some
other values of x.

The reader is referred to Subsection 9.5.2 to find a discussion on how the square root of a

quadratic residue modulo a prime number can be determined by mathematical means.

It follows from the above that a point on an elliptic curve is completely characterized by
its x-coordinate and the "sign" of y. This reduces the storage requirement of P by almost a factor
2. If the "sign" of y can be defined as being plus one when and as
minus one otherwise.

If one can use likewise the "sign" of the left-most nonzero coordinate in the p-ary
representation of y.

For small values of p, one can find all points on by trying out all possible value of x and check
in each case if (10.1) has a solution. Below, we use the Mathematica functions Flatten, Table,

Elliptic Curves Based Systems 215

We see that for there are 14 solutions. There is a (imprecise) probabilistic argument to
predict the number of points on for each value of x, equation (10.1) will have two solutions with
probability 1/2 and no solutions with probability 1/2, leading to about q solutions.

As supporting evidence of this statement, consider the right hand side in (10.2) and assume that

If, for a given value of x, the right hand side is a square in (there are
squares, namely all even powers of a primitive element in or see Theorem A.20), there will
be two solutions for y. If the right hand side is 0, there is only one solution, namely There

are no other solutions.

A famous theorem by Hasse [Silv86] states:

Note that in the example above, we have indeed that

In general, it is very hard to find the precise number of points on an elliptic curve. There is
however an algorithm by Schoof [Scho95] which computes this number (see also [Mene93] for a
further discussion).

Although it is not necessary for the understanding of the rest of this chapter, we like to remind the
reader of the possibilities in Mathematica to make calculations over fields

Example 10.1

As an example of a curve over (see Table B.2), we can consider the
equation To test if is on the curve we first load the Mathematica package

Algebra ‘FiniteFields‘.

216 FUNDAMENTALS OF CRYPTOLOGY

Indeed, as can be checked with

10.2 The Geometry of Elliptic Curves

The reason that we are interested in elliptic curves is the addition operation that can be defined on
them. This operation will have (the point at infinity) as its unit-element and will have the
structure of an additive group.

To be able to define a suitable addition on we shall make use of the property that any line
intersecting in at least two points, will intersect it in a third. Here, a tangent point should be
counted twice. The point O at infinity is the intersection point of all vertical lines.

We shall first show a picture of an elliptic curve over the reals. We use the Mathematica function
ImplicitPlot for which the package Graphics ‘ImplicitPlot‘ has to be loaded first.

Elliptic Curves Based Systems 217

The reader is invited to change the coefficient of x in the function plotted above from
and and observe how the graph changes.

To see how the line intersects we use the additional functions Epiloq
and Line.

218 FUNDAMENTALS OF CRYPTOLOGY

To find the intersection points numerically, one can use NSolve.

When the curve is defined over we can find the intersection points of a line with the curve by
means of the Solve function as follows.

A different way to find the intersection points of a line with an elliptic curve is to
substitute in (10.1), obtain a third degree equation in x and find its factorization.

Elliptic Curves Based Systems 219

Example 10.2

Suppose that we are working over To find the intersection points of with
we factor with the Mathematica function Factor.

We get as x-values of the intersection points: and From we find the
solutions (9, 4), (4, 6), and (3, 2).

A Line Through Two Distinct Points

Let and be two distinct points on an elliptic curve (both not at
infinity). Let be the line through and How do we find the third point on the intersection
of with and the point O will be defined as this third point.

So, let us consider the case that The line though and is given by:

We discuss two cases.

Assume that the elliptic curve is already in reduced form (see (10.2)). Substitution of (10.6) into
this relation yields Since we know two roots of this third
degree equation, there must be a third one (to be called So, the same equation can also be
written as Comparing the coefficient of in both notations, we get

220 FUNDAMENTALS OF CRYPTOLOGY

and, by (10.6),

Example 10.3

Consider the elliptic curve over The points and
lie on as can be verified with the Mod function as follows:

The slope of the line through and is given by (10.6): Here we use

the PowerMod function to get the multiplicative inverse of 21 modulo 31.

The coordinates of the third intersection point of with are given by (10.7) and (10.8):

That the point indeed lies on can be verified with the calculation

Elliptic Curves Based Systems 221

We now assume reduced form (10.4). As above, we substitute (10.6) into (10.4) and look at the

coefficient of We get

Note that all minus signs can be replaced by plus signs, when

A Tangent Line

There is one more possibility that we want to discuss, namely that Let be the
tangent line to though This means that meets in and that the slope of is
the same as the derivative of in P. One usually views P as point of intersection with multiplicity
two.

Over R this situation looks like:

At this moment we exclude the possibility that is a double tangent line to (meaning that its
multiplicity is 3). If it were, the tangent line already intersects in a point with multiplicity 3.

222 FUNDAMENTALS OF CRYPTOLOGY

In the sequel, when we speak of taking a derivative of a polynomial over a finite field we mean to
take the formal derivative and then reduce the coefficients modulo the characteristic of the field.

For instance, in the derivative of is given by which
reduces to

The slope of the tangent line through a point on the curve (see
(10.2)) is given by the value of determined through implicit differentiation, so

We conclude that the tangent line through P is given by

To find the third point of the line through we can still use (10.7) and (10.8).

The slope of the tangent line through a point on the curve (see
(10.4)) is given by the value of determined from i.e. by

Hence, the tangent line through P is given by

To find the third point on through we observe that (10.9) (take reduces to

i.e.

and that (10.10) reduces to

Example 10.4

Consider the elliptic curve over GF(16), where The point
lies on this curve, as can be easily checked, once we have loaded the Mathematica package
Algebra 'FiniteFields '.

Elliptic Curves Based Systems 223

The tangent through has slope given by (10.12). So,

which is To find the other point where the tangent intersects we use (10.13) and (10.14).

So, This can all be checked easily.

224 FUNDAMENTALS OF CRYPTOLOGY

10.3 Addition of Points on Elliptic Curves

In the previous section, we have shown how the line through two points on an elliptic curve
intersects that curve in a third point and how that point can be computed efficiently. The same
holds for a line that is tangent to with the understanding that the tangent point is counted twice.

We are now ready to define an addition on The geometric idea behind the formulas below is the
following. First of all, if is a point on an elliptic curve determined by (10.1), then

If like in (10.2), this reduces to

Geometrically, this can be described as follows: compute the line through O and P. It intersects
in a third point, namely As noted before, the point O at infinity should be interpreted as the

intersection point of all vertical lines.

To add points and both not at infinity, execute the following two steps:

1) Compute the line through and (or tangent line though and find the third
point of intersection with Let this be Q.

2) The sum is defined as

The point O serves as unit element of this addition and is its own inverse.

Elliptic Curves Based Systems 225

Note that possibility iii) can be interpreted as a special case of ii).

We shall depict the two most typical cases, namely i) and ii), by means of elliptic curves over the
reals. We need again package Graphics ‘Implicitplot‘..

226 FUNDAMENTALS OF CRYPTOLOGY

Elliptic Curves Based Systems 227

The points on an elliptic curve together with the addition defined above form an additive group.
We shall not prove that here. The reader is referred to [Mene93] or [SilT92]. Note that the only
non-trivial part to verify is the associativity of the addition.

With the following Module one can compute the sum of two points (the point O at infinity will be
denoted by on an elliptic curve over with characteristic We make use of

228 FUNDAMENTALS OF CRYPTOLOGY

formulas (10.6), (10.7), (10.8) and (10.11). and use the Mathematica function Which with the
same order of cases as in Definition 10.2.

Below, we show the addition of points in a number of cases.

Elliptic Curves Based Systems 229

Observe that the tangent through (4, 6) is a double tangent, so by Definition 10.2, iii)

As is common in additive groups, 2 P will stand for similarly 3 P stands for etc.
Similarly, 0 P stands for O and stands for These multiples of P are often called the
scalar multiples of P.

The order of P is the smallest positive integer n with Since is a finite group, this notion
is well defined. The set is a cyclic subgroup of It follows that n divides

(see Theorem B.5).

Now that we have the Module EllipticAdd, defined above, it is quite easy to compute
recursively as follows:

So, on the curve the point has order 5.

In the next section, it will be important to have points available on an elliptic curve that have a
very large order. If the cardinality of is known and of a special form, for instance is a small
multiple of a large prime factor, then it is quite easy to find points on with a known large order.

As an example, consider Suppose that Then P has order 7919
or 23757. If then P has order 7919, otherwise 3 P will have this order. To check these
assertions, apply Lemma B.4 and Theorem B.5 (rewrite the multiplicative notation in the additive
notation that we use here).

230 FUNDAMENTALS OF CRYPTOLOGY

10.4 Cryptosystems Defined over Elliptic Curves
Most notions in this section can be viewed as direct translations of notions introduced in Chapter
8, but now using addition over an elliptic curve as principal operation instead of modular
multiplication. Modular exponentiation will translate into scalar multiplication.

For the above reason, it will often suffice to just present the new formulations without copying all
the proofs.

In [Demy94] one can find a RSA-like cryptosystem defined over elliptic curves. However, to break
the system it is sufficient to factor its modulus. Since the original RSA system had the same
security restriction and is faster in its calculations, there seems to be little reason to use this
generalization of RSA to elliptic curves.

10.4.1 The Discrete Logarithm Problem over Elliptic Curves

We have seen in Section 10.3 how to add points on an elliptic curve This is an operation with
relatively low complexity. To compute scalar multiples of a point P, say n,P for some integer n, we
can use repeated addition, but it is much more efficient to copy the ideas of Subsection 8.1.1.

Example 10.5

Take Its binary expansion is 10101011, as follows from the Mathematica function
IntegerDigits.

So, to compute 171 P, it suffices to compute

and add the suitable terms. This can be done on the fly as follows:

Elliptic Curves Based Systems 231

Note that we only added partial results to themselves or to P. (The reader may want to look at

Example 8.3 for the analogous modular arithmetic problem.)

Of course, addition chains may further reduce the complexity of these calculations.

The opposite problem of computing scalar multiples of a point is the following:

Although we shall see more efficient ways to solve (10.15) than by simply trying all
the methods have a complexity of the form and so they are exponentially slower than the
(logarithmic) complexity of computing n.P out of P.

10.4.2 The Discrete Logarithm System over Elliptic Curves

Now that we have formulated the discrete logarithm problem over elliptic curves, we can describe
the analogue of the Diffie-Hellman key exchange protocol (see Subsection 8.1.2).

As system parameters one needs an elliptic curve over a finite field and a point P on the
curve of high order, say the order n of P is 150-180 digits long.

Each user U of the system, selects a secret scalar computes the point P and makes
public. Alice and Bob can now agree on the common key Alice can find this

common key by computing with her secret scalar and Bob's public Bob can do
likewise.

This system is summarized in the following table.

232 FUNDAMENTALS OF CRYPTOLOGY

Example 10.6

Consider the elliptic curve over defined by The point
lies on it as can be checked with the Mathematica function Mod.

The order of P is 432. To show this, we check that and that for the
prime divisors of 432. We make use the binary expansion of these coefficients (to be found with the
function IntegerDigits). We also use of the EllipticAdd function defined in Section 10.3 and
the Do function.

Elliptic Curves Based Systems 233

Let Alice choose and Then and as can
be checked as follows (note that we have chosen very friendly secret scalars).

Alice can compute the common key with the calculation where is

her secret key. She finds

234 FUNDAMENTALS OF CRYPTOLOGY

Likewise, Bob can compute the common key with the calculation where

is his secret key. He also finds

Now that the Diffie-Hellman key exchange system over elliptic curves has been described, it really
is a straightforward exercise to show that the ElGamal protocol and the other systems, described in
Section 8.2, can be rewritten in the language of elliptic curves.

10.4.3 The Security of Discrete Logarithm Based EC Systems

In Section 8.3, various methods are described to take the discrete logarithm over a finite field. The
Pohlig-Hellman algorithm, the baby-step giant-step method, and the method can all be
directly translated into elliptic curve terminology: just replace modular exponentiations by scalar
multiplication on the elliptic curve.

At the time of this writing, the index-calculus method has defeated any attempt to transfer it
efficiently to the elliptic curve setting (see [Mill86]). That is of great cryptographic significance,
because the index-calculus method was the only one with a subexponential complexity. This
means that in regular discrete-logarithm-like systems the index-calculus method is the governing
factor in determining the size of its parameters (to keep the system computationally secure). Since
the index-calculus method is no longer around in the elliptic curve setting, one can afford much
smaller parameters to achieve the same level of security.

At the time of this writing, the XEDNI method has been proposed [Silv98] as an alternative to
solve the elliptic curve discrete logarithm problem. Further analysis is needed to determine the
implications of this method.

There are special attacks on discrete logarithm based elliptic curve cryptosystems. These attacks
make it necessary to avoid special classes of elliptic curves. In particular, one should not use

singular curves,
supersingular curves,
anomalous curves.

We shall not describe these attacks (see [MeOkV93], [SatA98], and [Smar98]. In each case the
logarithm problem over an elliptic curve can be translated to the logarithm problem over a finite

Elliptic Curves Based Systems 235

field (or an even simpler problem). We shall explain in one case that one can counter these attacks
by simply avoiding these special curves.

Before we do so, we need to introduce a new notion. We homogenize the Weierstrass equation
(10.1). This means that we multiply each term in it with the smallest power of in such a way that
all terms have the same degree:

Note that if (x, y, z) satisfies (10.16), then so does For that reason, one often normalizes
solutions to (10.16) by requiring the right-most non zero coordinate to be equal to 1.

Points (x, y) that satisfy (10.1) now lead to solutions (x, y, 1) of (10.16). The (somewhat
mysterious) point O at infinity can be represented by (0, 1, 0).

A point on a curve is a called singular if all partial derivatives and are
zero. An elliptic curve can not contain two singular points. If a curve contains a singular point
then it is called a singular curve, otherwise it is called a non-singular curve.

With some effort one can show that (10.2) defines a non-singular curve if and only if the cubic
expression on its right side has no multiple roots. For (10.3) with this is equivalent to the
condition

When (10.4) gives non-singular curves when and (10.5) when

The above means, that it is quite simple to test if a curve is non-singular or not.

We shall not give a definition of what supersingular means. Here it suffices to know that curves
defined by (10.5) are supersingular and need to be avoided. Again, it is easy to avoid these curves.

Finally, anomalous curves are elliptic curves over with the property that

236 FUNDAMENTALS OF CRYPTOLOGY

10.5 Problems

How many points lie on the elliptic curve defined in Example 10.1?

Problem 10.2
Find the intersection points over of the lines and with the elliptic curve

Problem 10.3
Find the line that is tangent to the elliptic curve over in the point (2, 7).
Where else does this line intersect the curve?

Consider the elliptic curve defined by over
Check that the points and lie on What is Compute the sum of P and Q
without using the Mathematica procedure presented in Subsection 10.3.

Problem 10.5
Consider an elliptic curve Let P on have order n. What is the order of

Consider (again) the elliptic curve defined by
Determine the orders of and What can you conclude about the cardinality of
(hint: use Theorem B.5)?
What is the cardinality of (hint: use Theorem 10.1)?
Construct a point of maximal order from P and Q.

Duplicate Example 10.6 for the elliptic curve over defined by the equation
Use for P a point of order at least one hundred.

11 Coding Theory Based Systems

11.1 Introduction to Goppa codes
In this chapter it is assumed that the reader is familiar with algebraic coding theory. A reader
without this background can freely skip this chapter and continue with Chapter 12. From
[MacWS77] we recall the following facts about Goppa codes.

Note that we have used the elements in as an index set for the coordinates of the vectors in
The notions used above mean that the elements in (which are called

codewords) form a linear subspace in of dimension at least and that different
codewords differ in at least coordinates (one says that the Hamming distance
between different codewords is at least

A decoding algorithm will map any word in that differs in at most t coordinates from a
codeword (which is unique by the triangle inequality) to that codeword. Hence, if a codeword
is transmitted and the received word differs from in no more than t coordinates
the receiver is able to recover from For this reason, t is called the error-correcting capability
of the code

Any matrix of which the rows span a particular linear code is called a generator matrix of
that code. It follows from this definition that the code can be described by

Example 11.1 (Part 1)

Let α be the primitive element in satisfying After having loaded the Mathematica
package Algebra ‘FiniteFields‘ we can generate the log table of with the functions
MatrixForm and PowerList.

238 FUNDAMENTALS OF CRYPTOLOGY

Consider the binary Goppa code of length 16 defined by That
G(x) is indeed an irreducible polynomial over can easily be checked with the Mathematica
functions GF, Table, and TableForm because it suffices to show that G(x) has no linear factors.

Coding Theory Based Systems 239

To determine the inverses in (11.1) we use the Mathenwtica package
Algebra ‘PolynomialExtendedGCD‘

and the Mathematica function PolynomialExtendedGCD. For instance,
can be found by

With the logarithm table above we can rewrite these coefficients as follows:

It follows from (A.8) that

i.e. This can be checked with the Mathematica function
PolynomialMod

240 FUNDAMENTALS OF CRYPTOLOGY

We express all the inverses in this way as polynomials by
means of

and put them as columns matrix H. Note that appears as in

column 5, because the first column corresponds to the second column has index etc.

Here, we have made use of the log table of computed earlier.

The defining equation in (11.1) can be rewritten as

Coding Theory Based Systems 241

or, equivalently, as

So, we have two linear equations for

and

These two equations can be efficiently denoted by

Expressing each power of as binary linear combination of and (or using the output
of the PolynomialExtendedGCD-calculations directly) gives the binary matrix H ':

So, another way to describe is

It is not difficult to check that C is a binary, linear code of length 16, dimension 7 and minimum
distance 5.

We call a matrix H whose nullspace is a particular linear code C a parity check matrix of C. We
write

The syndrome of a received vector is defined by:

The number of irreducible polynomials of degree t over is about (see Corollary
B.18). So, a randomly selected polynomial of degree t over will be irreducible with
probability Since fast algorithms for testing irreducibility (see [Berl68], Ch. 6 or [Rabi80])
exist, one can find an irreducible polynomial of degree t over just like in Algorithm 9.3,
by repeatedly guessing and testing.

11.2 The McEliece Cryptosystem
Based on the theory of error-correcting codes, McEliece [McE178] proposed the following secrecy
system.

242 FUNDAMENTALS OF CRYPTOLOGY

11.2.1 The System

Setting Up the System

1) Each user U chooses a suitable Goppa code of length and with error-correcting
capability To this end, user U selects a random, irreducible polynomial of degree over

and makes a generator matrix of the corresponding Goppa code
The size of

2) User U chooses a random, dense nonsingular matrix and a random
permutation matrix and computes

3) User U makes and public, but keeps and secret.

Encryption

Suppose that user Alice wants to send a message to user Bob. She looks up Bob's publicly known
parameters (of size and represents her message as a binary string of length
Next Alice chooses a random vector (error pattern) of length with at most coordinates are
equal to 1. As encryption of Alice sends to Bob

(One usually says: the weight of is at most denoted by where the weight function
w counts the number of non-zero coordinates in a vector.)

Decryption

Upon receiving Bob computes with his secret permutation matrix

where is a permutation of so it also has weight With the decoding algorithm
of the Goppa code Bob can efficiently decode He will find as error
pattern and can retrieve Multiplication of this expression on the right with (known to
Bob) yields the originally transmitted message

Coding Theory Based Systems 243

11.2.2 Discussion

Summary and Proposed Parameters

The reason that an error pattern e is introduced in (11.5), is of course to make it impossible for the
cryptanalist to retrieve from by a straightforward Gaussian elimination process.

McEliece suggests in his original proposal [McE178] to take and

Heuristics of the Scheme

The heuristics behind this scheme are not difficult to guess. Take a sufficiently long, binary, linear
block code, that can correct a large number, say t, of errors and for which an efficient decoding
algorithm exists. The code should belong to a large class of codes, making it impossible to guess
which particular code has been selected. Let n be the length of the code and k its dimension.
Manipulate the generator matrix to such an extent, that the resulting matrix looks like a random

matrix of full rank. The decoding complexity of a randomly generated code with these
parameters should be infeasible. In the next section the complexity of several decoding methods
will be discussed.

244 FUNDAMENTALS OF CRYPTOLOGY

In [BerMT77] it is shown that the general decoding problem of linear codes, i.e. how to find the
closest codeword to any word of length n, is NP-complete. We shall not explain what this notion
means exactly. We refer the interested reader to [GarJ79].

Here, it suffices to know that this characterization implies that no known algorithm can decode an
arbitrary word to its closest codeword neighbor in a running time that depends in a polynomial
way on the size of the input.

Moreover, if one were to find such an algorithm, it could be adapted to solve a large class of
equally hard problems.

Not a Signature Scheme

The encryption function of the McEliece cryptosystem maps binary k-tuples to binary n-tuples.
This mapping is not surjective. Indeed, for the proposed parameter set the number of vectors of
length 1024 at distance to a codeword is

which is an ignorable fraction of the total number of 1024-length words. So, the (secret) function

mentioned in Property PK4 (in Subsection 7.1.1) is not defined for most words in
Consequently, the McEliece system can not be turned into a signature scheme. See, also Table 7.2.

11.2.3 Security Aspects

We shall now discuss the security of the McEliece cryptosystem by analyzing four possible attacks
on the specific parameters that McEliece suggests. (The most powerful attack at this moment
seems to be [CanS98].)

Guessing and

As a cryptanalist, one may try to guess and to calculate from by means of (11.4).
Once has been recovered, it is not so difficult for the cryptanalist to find the defining Goppa
polynomial of the Goppa code that has as generator polynomial. One
can now follow the decryption algorithm of Bob to find the transmitted message

However the number of invertible matrices and permutation matrices is so astronomical
that the probability of success of this attack is smaller than the probability

of correctly guessing vector directly.

Coding Theory Based Systems 245

Exhaustive Codewords Comparison

The cryptanalist can compare the received vector with all codewords in the code generated by
Let be the closest codeword. It is at distance from (by the encryption rule (11.5)) and is

unique because the minimum distance of the code is at least It also follows from (11.5) that
With a simple Gaussian elimination process one can now retrieve the transmitted

message from

This approach involves the following number of comparisons!

Example 11.2 (Part 1)

Consider the binary code of length and dimension generated by

and suppose that is a intercepted ciphertext which is a codeword plus an
error vector of weight at most 1

We shall compare with two codewords (instead of and use again the Mod function:

So, lies at distance from which is too much.

246 FUNDAMENTALS OF CRYPTOLOGY

Now lies at distance 1 from and we conclude that (1, 0, 1, 0) was the transmitted

information.

Syndrome Decoding

The cryptanalist may compute the parity check matrix corresponding to from the equation

(see (11.3)). It has rank Next, generate all error vectors of weight at most t,
compute the syndrome for each of them, and put these in a table.

For the intercepted vector one first computes the syndrome From the table one can
find the corresponding error vector Subtracting from one gets the codeword (see
(11.5)). With a simple Gaussian elimination process one can now retrieve the transmitted message

from this vector

The work load of this attack is

Example 11.2 (Part 2)

The parity check matrix of the code introduced in Example 11.2 is given by

Coding Theory Based Systems 247

as can be checked with the Mathematica function Transpose (and MatrixForm) as follows

Next, we generate all error vectors of weight and compute their syndrome We put
these in a table. Apart from the Mathematica functions Mod, Do, and Print, we also make use of
ReplacePart, which replaces the i-th coordinate of by the specified value (here its
compliment).

With this table it is now easy to find a codeword at distance

248 FUNDAMENTALS OF CRYPTOLOGY

This is the syndrome corresponding to so the closest codeword is given by

Since the generator matrix G in this example has the form we can recover the transmitted
information from the first four coordinates in

Guessing k Correct and Independent Coordinates

The cryptanalist selects k random positions and hopes that they are not in error, i.e. he hopes that
is zero on these k positions. If the restriction of matrix to these k positions still has rank k, one
can find a candidate for the information vector with a Gaussian elimination process.

If the rank is less than k it will very likely still be close to k (see Problem 11.2). So, the Gaussian
elimination process will either lead to only a few possibilities for or to no solution at all.

For each possible candidate compute and check if it lies at distance from the
intercepted vector If so, one has found the correct

The probability that the k positions are correct is about The Gaussian elimination
process involves steps. So, the expected workload of this method is

Although this attack is the most efficient thus far, it is still not a feasible attack.

Example 11.2 (Part 3)

Guessing that coordinates 2, 4, 5, and 7 are error-free in Example 11.2 we use the Mathematica
functions Transpose and MatrixForm to get the restriction G' of the generator matrix G to
this guess and the restriction of the intercepted vector of Example 11.2 to this guess.

Coding Theory Based Systems 249

We use the Mathematica functions LinearSolve, NullSpace, and Transpose to see if the
equation

has a solution.

Apparently the restriction of G to the four coordinates has full rank. The solution (0, 1, 0, 0) gives
rise to a codeword that has distance

250 FUNDAMENTALS OF CRYPTOLOGY

Let us now try another guess.

The solution (1, 0, 1, 0) now turns out to generate a codeword at distance

We conclude that (1,0, 1,0) was the transmitted information.

To let Mathematica make guesses one first has to load the package
DiscreteMath ‘Combinatorica‘

and one can then use the Mathematica function RandomKSubset.

Coding Theory Based Systems 251

Multiple Encryptions of the Same Message

It is not safe to encrypt the same message several times with the same encryption matrix To
see this, let us consider two different encryptions of the same message say and

(see (11.5)). On the coordinates where and disagree, we know for sure that
either or has a 1. On the coordinates where and agree, we know almost for sure that both
and are error-free.

To be more precise, if the error vectors and are truly randomly chosen, as they should be, one
expects the following values

For instance, when the parameters are and one expects on roughly
coordinates.

Also, one expects

coordinates where and agree. At most three of these coordinates are likely to be corrupted.

By removing in every possible way coordinates from the coordinate set where and agree,
one almost surely finds a coordinate set that is error free and on which the matrix still has full
rank (see Problem 11.2). With a simple Gaussian elimination process one recover from

When the same message has been encrypted more than two times, it is correspondingly easier to
break the system.

252 FUNDAMENTALS OF CRYPTOLOGY

11.2.4 A Small Example of the McEliece System

Example 11.1 (Part 2)

The Goppa code of Example 11.1 has a generator matrix G that can be

computed from the parity check matrix H by means of the Mathematica function Nullspace..

The generator matrix G of will be transformed into where S is
an invertible matrix and P a permutation matrix, as follows:

Coding Theory Based Systems 253

A possible encoding of the information sequence (1, 1, 0, 0, 1, 0, 0, 1) is given by

254 FUNDAMENTALS OF CRYPTOLOGY

Note that errors have been introduced at coordinates 5 and 9.

An eavesdropper has no efficient algorithm to find the information vector from the word

The legitimate receiver will first compute with the Mathematica function Inverse..

Next, this vector has to be decoded with a decoding algorithm of the Goppa code

Such a method has not been discussed here. The outcome turns out to be

the vector This can be checked by computing and compare that
with The difference is an error vector of weight 2 which is exactly

To find the legitimate receiver computes

This is indeed the original message.

Coding Theory Based Systems 255

11.3 Another Technique to Decode Linear Codes
A large research effort has been made in the past to find decoding algorithms for general linear
codes. The McEliece cryptosystem has only intensified this quest. Most of these algorithms are of
the type that was discussed before: find k coordinates where the generator matrix has full rank and
where the received vector is error free. Such a technique is called information set decoding.

Here we describe a technique introduced by Van Tilburg [vTbu88] (see also [LeeB88]).

Let us demonstrate one cycle of the above algorithm. We continue with Example 11.2.

Example 11.2 (Part 4)

256 FUNDAMENTALS OF CRYPTOLOGY

The matrix G is already in standard form. We also see that the first four coordinates of lead to a

codeword that has distance 2 to

To make a swap we pick as non-zero entry from columns 5-7 in G. We perform a swap of the
2-nd and 5-th column of G, by using the function:

To bring this in systematic form we use the Mathematica function RowReduce.

Coding Theory Based Systems 257

In order to analyze the complexity of the bit-swapping algorithm, we let denote the
conditional probability that exactly of the first k positions of are in error after a swap given
that precisely l were in error before the swap

Then the following straightforward relations hold:

Example 11.3 (Part 1)

Consider a (binary) code with parameters and Then The values of

and can be computed (and printed) from (11.6) and (11.7) with the Mathematica

functions Min, Do, and Print .

Note that the probability of a successful swap gets smaller for smaller values of l.

258 FUNDAMENTALS OF CRYPTOLOGY

Proof:

The first equality in equation (11.9) follows directly from the definition of The
second equality follows from (11.8).

To show (11.10), we note that from state there are three possible directions for the algorithm
to follow:

i) with probability it goes to state in one step.

ii) with probability it stays in state and so one can expect the algorithm to
reach state steps.

iii) With probability it goes back to state / and so one expects it to reach state in
steps.

The above proves the following recurrence relation

which reduces to (11.10) because

Note that in the calculations of only probabilities of the form play a role.

Example 11.3 (Part 2)

Continuing with Example 11.3, we see that the values of can be computed recursively with
(11.9) and (11.10).

Coding Theory Based Systems 259

Proof:

The expected number of steps to reach state 0 when one starts in state j, is given by the
expected number of steps to reach state from state j, plus the expected number of steps to
reach state from state etc. This explains the inner sum in (11.11):

The probability of starting in state j is equal to the probability that a randomly selected k tuple

contains j errors. This probability is equal to the fraction of the number of t-tuples out of n that
have intersection j with a given k-tuple (and intersection with the other positions). So,
this probability is given by

Now, take the product of the two factors above and sum it over all values of j.

Example 11.3 (Part 3)

It follows from Theorem 11.4 that the expected number of swaps that are needed in a code with
and (as introduced in Example 11.3) to get 12 error-free coordinates is given

by:

260 FUNDAMENTALS OF CRYPTOLOGY

The above bit swapping algorithms gives a significant improvement (also asymptotically) over the
methods explained in Subsection 11.2.3. For the strongest result in this area we refer the reader to
[BaKT99].

11.4 The Niederreiter Scheme
The Niederreiter scheme [Nied86] is a variation of the McEliece cryptosystem. It applies the very
same idea to the parity check matrix of a linear code. The scheme is summarized in the Table 11.2
below.

So, again we have a Goppa code (see (11.1)) defined by user's U Goppa
polynomial of degree Let be a parity check matrix of this code. It has
size where is the dimension of the code.

The code is correcting which implies that every vector of weight
has a unique syndrome Existing decoding algorithms for Goppa codes find

efficiently from its syndrome.

Just like in the McEliece system, the structure of the Goppa code has to be hidden from the matrix
This is done by computing

where is a invertible matrix and a permutation matrix of size (see
(11.4)).

The matrix has to be made public, together with the value

If Alice wants to send a message to Bob, she looks up Bob's public parameters and She
represents her message by means of a (column) vector of weight She computes
and sends that as her ciphertext to Bob.

Bob first multiplies on the left with He obtains by (11.12). Since
is a permutation of and thus also of weight the decoding algorithm of Bob's Goppa

code will find efficiently. The message can now be recovered by multiplying on
the left with

Coding Theory Based Systems 261

11.5 Problems

Problem 11.1
What is the probability that k columns in a random binary matrix have rank k? How about the
probability that columns in this matrix have rank?
Compute these two probabilities for and

Problem 11.2
Let C be a linear code of length and dimension Assume that at most three errors have
occurred. What is the complexity of the various attacks described in Subsection 11.2.3.

Let C be a linear code of length 11 and dimension 6. Suppose that two errors have occurred.How many
swaps are expected to get 6 error-free coordinates if one follows Algorithm 11.2?

This page intentionally left blank.

12 Knapsack Based Systems

12.1 The Knapsack System

12.1.1 The Knapsack Problem

In [MerH78], Merkle and Hellman propose a public key cryptosystem that is based on the
difficulty of solving the knapsack problem. Since then, other knapsack related cryptosystems have
been suggested, most of which turned out to be insecure. An exception, up to now, is the Chor-
Rivest scheme proposed in [ChoR85], but in [Vaud98] it is shown that the suggested parameters in
[ChoR85] are also insecure.

Note that we do not ask for a solution of (12.1), the question is only if there exists a solution.
Finding a {0, 1}-solution to (12.1) is of course at least as difficult as just finding out whether a
solution exists.

For large n the knapsack problem is intractable to solve. In fact it has been shown that the
knapsack problem is NP-complete (see [GarJ79] or a very short discussion in Subsection 11.2.2).

For some sequences it is not difficult to find a {0, 1}-solution to (12.1), resp. to show that no
such solution exists. For example, with the sequence equation (12.1) will have
a solution if and only if Finding the solution is very easy in this case.

A much more general class of sequences exists, for which (12.1) is easily solvable. This is
the class of so-called super-increasing sequences.

A sequence is called super-increasing, if for all

264 FUNDAMENTALS OF CRYPTOLOGY

Algorithm 12.1 solves the knapsack problem for super-increasing sequences. It actually finds the
solution for each right hand side 5 for which (12.1) is solvable. The idea is very simple:
since it follows that in a solution

Now, subtract from S and determine in the same way. So, recursively for

If at the end one has found the solution to (12.1), otherwise one may conclude
that (12.1) does not admit a solution.

Example 12.1 (Part 1)

Consider the super-increasing sequence and the right hand side
To see if (12.1) has a solution we apply Algorithm 12.1.

Because Next, we see that so we have We subtract as from S and get
1098. We see that this new value of S satisfies The final solution is {1, I, 0, 1, 1, 0}.

Below the same process is written in Mathematica. We make use of the functions Length, Whi1e, If,
and Join. The solution is formed by prepending each newly found value

Knapsack Based Systems 265

Indeed

12.1.2 The Knapsack System

Setting Up the Knapsack System

The knapsack cryptosystem, as proposed in [MerH78] is based on the apparent difficulty of
solving the knapsack problem and the ease of solving this problem for super-increasing sequences.

Each user U makes a super-increasing sequence of length Next, U selects integers
and such that

and

User U computes the numbers

and makes the sequence known as his public key.

As a precalculation for the decryption, user U also computes mod

The number mod can be computed with the extended version of Euclid's Algorithm (Alg.
A.8). Indeed, since this algorithm will give X and Y such that

It follows that

Each user keeps the super-increasing sequence and the numbers and secret.

Example 12.1 (Part 2)

We continue with the parameters of Example 12.1. So, Bob chooses
as his super-increasing sequence. Further, he selects

266 FUNDAMENTALS OF CRYPTOLOGY

which satisfies and which is coprime with

Next, he calculates Here, we do this with the Mathematica function Mod. To
check the conditions above we need the GCD function.

So, is the public key.

For this small value of it already takes some effort to solve the knapsack problem (try 101077).

The number mod can be found with the ExtendedGCD and Mod functions.

It follows that Indeed

Knapsack Based Systems 267

Encryption

Suppose that Alice wants to send a message to Bob. She looks up the public encryption key
of Bob. Next, she represents her message by a binary vector of length

(or by more vectors of this length if the messages is too long).

Alice will send to Bob the ciphertext

Example 12.1 (Part 3)

We continue with the parameters of Example 12.1.So, Bob's public key is given by

Let Alice's message be Then the ciphertext that she will send will be

Decryption

When Bob receives a ciphertext C he will first multiply it with and reduce the answer modulo
(both are his secret parameters). It follows that

Inequality (12.3) implies that So, we can rewrite the above equation as follows:

Since the sequence is super-increasing, Bob can now apply Algorithm 12.1 with
as right hand side to recover the message

Example 12.1 (Part 4)

We continue with the parameters of Example 12.1.

Assume that Bob has received First Bob computes with

and

268 FUNDAMENTALS OF CRYPTOLOGY

He gets 45789. To solve (12.1) he can use the
KnapsackForSuperlncreasingFunction defined earlier.

The knapsack system is summarized in the table below.

Even though the knapsack cryptosystem does not have the signature property, for a short while it
gained an enormous popularity. The main reason is the low complexity of its implementation. In
applications, both encryption and decryption can take place at very high data rates.

The authors [MerH78] recommend the users to take length a sequence satisfying

(it will automatically be super-increasing), and a modulus such that

Knapsack Based Systems 269

Note that also (12.3) is satisfied.

It is further recommended that user U makes a permuted version public instead of
itself to disguise the order of the original super-increasing sequence. In this way, a cryptanalist has
no information about which element in the public knapsack came from (the smallest knapsack
element) for instance.

The idea of multiplying a super-increasing sequence with a constant modulo is of course to
obtain a knapsack that looks random. To increase this effect and thus to increase the security of the
knapsack cryptosystem, [MerH78] advises to iterate this multiplication.

Hence, each user U also selects and with computes
and makes public instead of

It makes sense to iterate this process of modulo-multiplication, as is illustrated in the following
example.

Example 12.2

Let n = 3 and consider Multiplying this sequence with 17 modulo 47 gives
Multiplying this sequence with 3 modulo 89 gives

These calculations can be verified with the Mod function.

It is impossible to find integers W and N that map directly into Indeed the

congruence relations

imply that N divides Since 37 is a prime, it follows that It also
follows that These values of W and N however violate the third congruence relation

This shows that an iteration of modulo-multiplications can not always be replaced by a single
modulo-multiplication.

270 FUNDAMENTALS OF CRYPTOLOGY

The above example also demonstrates something else. Note that the second iteration mapped the
not-super-increasing knapsack {38, 29, 11} into {25, 87, 33}, which after a reordering is a super-
increasing sequence.

This also makes it clear that cryptanalist Eve does not have to guess the original integers and
(and also and in the iterated case) to convert the public key back into a super-

increasing sequence. Eve can also decrypt the ciphertext, if she is able to obtain another super-
increasing sequence from

These observations demonstrate two important things:

1) Iteration does not necessarily increase the security of the system.

2) It may be easier for a cryptanalist to map the public knapsack into a super-increasing
sequence other than the original.

Some critics of the knapsack cryptosystem did not trust the linearity of the system. Their
intuition/experience told them that the knapsack cryptosystem was bound to be broken.

The reader should remember that the general knapsack problem is NP-complete. This implies in
particular that no known algorithm solves it in polynomial time. However, the property of NP-
completeness has never been proved for the restriction of the knapsack problem to the subclass of

knapsacks, obtained by a single modulo-multiplication of a super-increasing sequence. In 1982,
Shamir [Sham82] showed that the single iteration version of the knapsack system can be broken
with very high probability in polynomial time. This attack was later generalized by others (see
[Adle83] and [Bric85])

In Section 12.2, an outline of the much more general attack by Lagarias and Odlyzko [LagO83]
will be given.

12.2 The

12.2.1 Introduction

In the original knapsack cryptosystem it is assumed that the secret sequence is super-
increasing. However, this is not crucial for a knapsack-based cryptosytem. It only makes the
decryption easy, because of Algorithm 12.1. The only essential requirement is that the plaintext-to-
ciphertext mapping in (12.6) is one-to-one.

Since the general knapsack problem is NP-complete, no known algorithm solves it in polynomial
time. Still, it is quite possible that polynomial-time algorithms do exist, which solve with some
positive probability any knapsack problem in a large subclass of knapsack problems. Such an
algorithm would make the knapsack system unsuitable for cryptographic purposes.

Knapsack Based Systems 271

In this section, we shall often use the vector notation for a knapsack
Before we give an outline of the Lagarias and Odlyzko attack (also called the
[LagO83], we have to define a few new notions.

Example 12.3

For instance, the density of the knapsack {22, 89, 345, 987, 4567, 45678} is as can
be checked with the Mathematica functions Max, Log, Length, and N.

The density serves as measure for the information rate of a knapsack system. Indeed, the
numerator is the number of message bits that are stored in the sum C of the knapsack (see (12.6)).
The denominator is a good approximation of the average number of bits needed for the binary
representation of C. For instance, with the density is as it should

be.

We shall show further on that the Lagarias and Odlyzko attack is more likely to break the knapsack
system if its density is smaller.

This may sound like a heavy restriction, but one should realize that nobody likes to use a
cryptosystem that has a non-trivial positive chance to be broken.

12.2.2 Lattices

272 FUNDAMENTALS OF CRYPTOLOG Y

We say that the n independent vectors form a basis for the lattice Note that the
basis of a lattice is certainly not unique. Normally, the order of the basis vectors does not matter,
but in the sequel such an order will matter. We shall use the notation to indicate a
particular ordering.

Example 12.4

Consider the lattice with basis and It consists of all points of the form
with Below part of this lattice is depicted.

For the that we shall describe later on, it is of great importance to find a vector in of
short length, or even better to find a complete basis of short vectors for For this reason, we need
to study basis transformations more carefully.

The Gram-Schmidt process is a well known algorithm from linear algebra to transfer a basis
of a linear (sub)space into an orthogonal basis, i.e. in a basis with

the property that all vectors are orthogonal to each other, i.e. It goes as
follows:

where

Knapsack Based Systems 273

Example 12.5

To demonstrate the Gram-Schmidt process we take

This can also be done in Mathematica. We first load the Mathematica package
LinearAlgejbra ‘Orthogonalization‘ and then run GramSchmidt. The result will be
orthonormal basis, i.e. we obtain a set of n orthogonal vectors that have been further divided by
their length to give them unit-length.

As we can see in the example above, the vectors will, in general, no longer have
integer coordinates. In the context of integer lattices that is an undesirable situation.

In the next subsection we shall discuss an (integer-valued) basis for lattice that is not completely
orthonormal, but has two other attractive properties.

274 FUNDAMENTALS OF CRYPTOLOGY

12.2.3 A Reduced Basis

Let denote the standard Euclidean norm or length of a vector So,

An alternative definition of a y-reduced basis can be given as follows. Let be the k-dimensional
linear subspace of spanned by or, equivalently, by

Let be the orthogonal complement of Define as the projection of onto

In particular, Then it can be shown (see [LagO83]) that the two conditions in
Definition 12.4 are equivalent to

resp.

Note that (12.8) implies that the projection of onto should not be too small in size (when
compared with the length of The inequality in (12.9) says that the projection of onto is
relatively small.

These two statements can be interpreted by saying that the vectors in a y-reduced basis are of
comparable size and all point in different directions.

In the sequel, y will always be 3/4. The (see [LenLL82]) is a very effective way to
find a y-reduced basis for a lattice It will not be described in full detail here (see however
Subsection 12.2.5). We quote the following facts from [LenLL82].

Knapsack Based Systems 275

In fact, Prop. 1.12 in [LenLL82] shows that no vector in a reduced basis can be very long.

12.2.4 The

We can now present the idea behind the We want to find a solution to the knapsack
problem (see (12.1)).

The idea of the attack will be to convert the parameters of the knapsack problem into a basis of
some integer lattice Then we find a short vector in this lattice with the basis reduction
algorithm. The hope will be that this short vector can be transformed back into the solution

Step 1:

Define the vectors

Together they form a basis for a

Note that for the solution one has

So, this vector has length which is relatively very short, e.g., if the knapsack has length
n = 100 we have

Step 2:

Find a reduced basis for with the algorithm ([LenLL82]).

Step 3:

Check if one of the "short" vectors has the property that and that
each of the first n coordinates is either 0 or for some constant

If so, check if the vector is a solution of (12.1). If it does, STOP,

otherwise continue with Step 4.

Step 4:

Repeat Steps 1, 2 and 3 with S replaced by If these steps result in a solution for

this new knapsack problem then defined by will be the solution of
the original knapsack.

276 FUNDAMENTALS OF CRYPTOLOGY

Example 12.6

Consider the knapsack problem with

Let us first make the vectors as indicated by (12.10). We use the Mathematica functions

Transpose, Append, IdentityMatrix, Do, Table, andMatrixForm.

The vectors form the basis of a lattice

Next we use the Mathematica function LatticeReduce to find a reduced basis.

We see that only the last output is a two-valued vector on its first 10 coordinates. One of the

values is indeed 0, the other value is Trying out gives

indeed

Knapsack Based Systems 277

The computing time of Steps 1 and 3 in the is ignorable. Therefore, the running time of
this algorithm is essentially (twice) the running time of the as given by in Theorem
12.2. There is in no guarantee that the will find a solution of the knapsack problem.
However the authors of [LagO83] give the following analysis of the

Theorem 12.4 states that for any and sufficiently large one can solve the knapsack problem
for almost all knapsacks with density

With some additional work [LagO83], the inequality above can be weakened to

for any fixed and This inequality is probably not the best possible one.

12.2.5 The Basis Reduction Algorithm

Recall that the must find a basis for an integer lattice that meets the
requirement given in Definition 12.3:

278 FUNDAMENTALS OF CRYPTOLOGY

The makes use of the following procedure:

The now runs as follows:

For further reading see [LenLL82]. Notice that only the basis is adjusted in this
algorithm. No vector enters the reduced basis, they are only used in the calculations.

Knapsack Based Systems 279

12.3 The Chor-Rivest Variant

The Chor-Rivest scheme [ChoR85] is a knapsack based cryptosystem that does not convert a
secret knapsack, for which the knapsack problem is easy to solve, into the public knapsack, for
which the knapsack problem should be intractable. It does make use of the standard conversion of
integers to binary sequences of fixed length. Further, it employes a fixed constant, a fixed choice
of an irreducible polynomial, a fixed choice of a primitive element, a fixed permutation, and an
exponentiation in a finite field for which the logarithm problem is tractable.

In [Vaud98], it is shown that the parameters suggested in [ChoR85] are not secure. The author
gives suggestions to repair the original proposal. Here we shall only explain the original idea of the
Chor-Rivest scheme.

Setting Up the System

1) Each user U selects a finite field for which the logarithm problem is feasible (also
by the cryptanalist). For instance, in view of the Pohlig-Hellman Algorithm explained in
Subsection 8.3.1, this can be achieved by letting have only small prime factors. Further, the
characteristic for some k, should satisfy

To represent uses a random irreducible polynomial f(x) of degree k over The
elements of can be represented by p-ary polynomials of degree (see Theorem B. 15).

Note that, for reasons of clarity, we have omitted the subscript U in the above choices by U).

2) User U selects a random primitive element in Primitive means that each non-zero
element in can be written as some power of where Note that being an
element in is also a p-ary polynomial of degree less than k.

3) For each user U determines the discrete logarithm of the field elements with
respect to the primitive element In other words, one needs to find exponents
satisfying

This is feasible by our assumption in 1).

4) Finally, user U has to select a random permutation of and a random
element He computes the numbers

and makes these numbers public together with the value

280 FUNDAMENTALS OF CRYPTOLOGY

(The reader should recall that is the order of the multiplicative group of see Theorem

B.20).

Example 12.7 (Part 1)

Bob selects the finite field An irreducible, binary polynomial f(x) of degree 3
over can be found with the Mathematica function IrreduciblePolynomial, once the package
Algebra ‘FiniteFields‘ has been loaded.

So, It turns out that is a primitive element in This can be

checked as follows. From we see that the order of any element is either

1, 11, 31, or 342 (see Theorem B.5). But does not have order 11 or 31, as can be checked

with the following calculations. (We use the GF-function. Note that f342 represents

To get a random primitive element in Bob raises to the power i with

(see Lemma B.4). We use the functions Random, GCD, and While.

Knapsack Based Systems 281

We find The random primitive element will be which is by

It follows from

To determine the numbers satisfying we use

We conclude that

This can be checked with:

A few more things need to be done by Bob. He has to select a random number
and a random permutation of We load the Mathematica package
DiscreteMath ‘Combinatorica‘ and use the function RandomPermutation.

So, and meaning that

(The reader should watch out here. Mathematica labels the entries in a list starting with 1, while
we start with 0.)

282 FUNDAMENTALS OF CRYPTOLOGY

The public key is given by the sequence (12.12): We use the functions Table and

Mod.

Bob makes public and also

Encryption

Now suppose that Alice wants to send a secret message to Bob. She looks up the public parameters
and k of Bob. She calculates Alice's message is a number M in between 1

and

Alice represents her message (in a manner that is shown below) as a binary string
of length p and weight k (exactly k of the are equal to 1), so

Alice will send

Example 12.7 (Part 2)

Suppose that Alice wants to send a message to Bob. She looks up Bob's public parameters

and (see Example 12.7). So, she knows that (and

Let Alice's message be (which indeed lies in between 1 and

This can be represented by the binary sequence as shown
below.

The ciphertext c that Alice will send will be which is 264 in this case.

Knapsack Based Systems 283

There is a recursive way to map a number M, into a binary string

of length p and weight k. It makes use of the well-known identity:

we put and decrease M by This new value will be in between 1

and and can be described by a string of length and weight

On the other hand, if put and describe M by a string of

length and weight k.

Example 12.8

To find out into which binary sequence of length 7 and weight 3 the integer will be mapped, we
follow the algorithm below, which makes use of the Mathematica functions Table , If , Do, and

Binomial.

284 FUNDAMENTALS OF CRYPTOLOGY

Decryption

Bob receives c, which is in fact by (12.14). He computes
with his secret (see (12.12)).

Next, Bob computes Now note that in

This means that

Next, we add a suitable multiple of f(x) to to make its polynomial representation monic. So,
for some is monic.

Since also is monic, the above in fact implies that

It follows that if and only if is a zero of a(x).

We summarize the decryption process in the following algorithm.

Example 12.7 (Part 3)

We continue with Example 12.7. Assume that Bob receives the ciphertext

Bob's secret parameters are and

Bob subtracts k.D from c,

Knapsack Based Systems 285

Next he raises a to the power C. To write this as a polynomial we use the function

ElementToPolynomial.

Next, Bob has to add f(x) to get the monic polynomial a(x). We use the function
PolynomialMod.

We factor this by means of the function Factor.

The inverse permutation of can be computed with InversePermutation (in the package
DiscreteMath ‘Combinatorica‘ that we have already loaded)

We subtract 1 from these elements because acts on instead of We get

From this we see that the numbers 2, 4, and 6 are mapped to 1,4, and 2 under In other
words, maps 1, 2, and 4 to 2, 4, resp. 6.

286 FUNDAMENTALS OF CRYPTOLOGY

We conclude that the message vector has ones on the coordinates 1, 2, and 4 (and thus zeros on
the coordinates 0, 3, 5, and 6), i.e. the message vector is given by

This is indeed equal to the value that was chosen during encryption.

12.4 Problems

Problem 12.1
Solve the knapsack problem if the elements are given by 333, 41,4, 172, 19, 3, 80, and 11 and if the total
size of the knapsack equals 227.

Problem 12.2
Solve the knapsack problem if the elements are given by 31, 32, 46, 51 63, 72 and 87 and if the total size of
the knapsack equals 227.

A knapsack cryptosystem has the numbers 381, 424, 2313, 2527, 2535, 3832, 3879, and 4169 as public
key. They are obtained by multiplying the elements of a super-increasing sequence by and
reducing the result modulo 5011.
Decrypt message 11678.

Problem 12.4
be a sequence of different prime numbers and let P be their product. The numbers

are defined by
Let where each element is either 0 or 1.
Give a simple algorithm to recover the numbers from S.

be the ciphertext obtained through a knapsack encryption with
as public knapsack.

Apply the to find the plaintext.

Problem 12.6
Which integer will be mapped to the binary vector (1, 1,0, 1, 1,0, 1,0, 1, 1) by Algorithm 12.5?

Work out a complete Chor-Rivest cryptosystem example (including encryption and decryption) for the
parameters

13 Hash Codes & Authentication Techniques

13.1 Introduction
In Section 1.1 we mentioned confidentiality (privacy) as the first reason why people use
cryptosystem. Of course, this goal is very important and it does lead to interesting mathematical
issues, but for the vast majority of data secrecy is not the user's prime concern.

Authentication and integrity on the other hand are almost always essential. Think, for instance, of
receivers of data files, E-mail messages, fax, etc. Violation of the confidentiality does (in general)
little harm, but significant damage may be done if somebody else is able to tamper with data files.

When studying authentication schemes one needs to distinguish between the following goals:

i) Does one want unconditional security or just computational security?

ii) Do the various parties trust each other or not?

iii) Is there a mutually trusted third party?

iv) Are the data files typically very long or just short?

v) Is confidentiality also an issue?

vi) Is the system intended for multiple use or just for single use?

The first two distinctions especially, have lead to completely different research areas. The main
topic of Section 13.3 will be authentication schemes with unconditional security. This means that
even with unlimited computing power the opponent can not break the system.These schemes are
usually called authentication codes and a particular subclass of them is called A-codes.

Computationally secure systems are based on mathematical assumptions like the infeasibility of
factoring large numbers or of taking discrete logarithms. These methods are called digital
signature schemes and have already been discussed in Sections 8.1.2, 8.2.1, 8.2.2, and 9.1.4.

If a file is very long and confidentiality is not an issue a very common technique to add proof of
authenticity and/or integrity to it, is to send it just like it is and then add a relatively short sequence
of bits (e.g. 100-200) that depend in an intricate way on all the bits in the original message. This
tail should be proof that the message indeed came from the assumed sender and that its contents
have not been changed.

The standard way to realize this is to hash the file in a cryptographically secure way into a short
sequence and compute a signature on this hash value. It is the signature of the hash value that is
appended to the original file. If an authentication scheme is slow in its implementations (as is the

288 FUNDAMENTALS OF CRYPTOLOGY

case with digital signature schemes), this two-step approach may make them very practical.

In many applications, the hash function also makes use of a secret key that sender and receiver
share. These systems, which are called Message Authentication Codes (MAC's) are not
unconditionally secure, because somebody with unlimited computing power can, in principle, try
out all keys.

Hash functions and MAC's are the topic of Section 13.2.

13.2 Hash Functions and MAC's
We do not intend to give a formal description of various types of hash codes. For our purposes, a
global understanding of these codes and their properties suffices.

A hash function (or hash code) is a mapping h from the set of all sequences of symbols from
an alphabet to where m is some fixed positive integer. So, each sequence over (of
arbitrary length) will be mapped to a sequence over of length m. In typical applications

} and the value of m ranges somewhere between 64 and 256.

Since one normally wants very fast implementations of hash functions h, we also require that it is
easy to evaluate the hash value for any sequence over

To make a hash function cryptographically secure, one often requires one or more of the following
properties to hold.

H1: The hash function h is a one-way function (see Section 7.1.2), i.e. for almost all outputs b
it is computationally infeasible to find an input such that

H2: The hash function h is weak collision resistant. This means that for a given value of a it is
computationally infeasible to find a second value such that

H3: The hash function h is strong collision resistant This means that it is computationally
infeasible to find a pair of values such that

The implications of these requirements may be clear to the reader. For instance, H2 implies that if
the hash values h(a) of a file a is protected by a digital signature, one can not replace it by another
file a' with the same hash value, simply because it is infeasible to find such an

Property H3 is even much stronger and makes it possible to convince a judge that the system has
been compromised.

Example 13.1

Consider and To hash one simply takes This hash
value depends on all symbols in a and is easy to compute, but it does not meet any of the requirements

Hash Codes & Authentication Techniques 289

Example 13.2

Consider again and To hash one computes If n
is a large composite number, property H1 will hold, because taking square roots modulo such an integer n
is considered to be infeasible (see Theorem 9.18).

With the Mathematica functions Mod and Length this hash function can be easily evaluated.

Properties H2 and H3 are not met, because –a will have the same hash value as a. Also, when one

coordinate is increased and the next one decreased by the same amount, the hash value remains

the same.

Even if a hash function meets properties it is still possible to intercept a transmission

and replace it with another file For this reason, one sometimes wants to

introduce a secret key, shared by sender and receiver. The hash function h will now be called a

message authentication code (MAC) and is a function of where is the key space,

just as in conventional cryptosystems.

Example 13.3

Let and With we denote a DES encryption of a block u of length under key k .
Assume that k is the key that Alice and Bob share.

Now, consider a binary file of length l that Alice is going to send to Bob. Alice first pads it
with sufficient zeros to make the length a multiple of 64. Let L be this new length. To compute the hash
value on Alice follows the following algorithm:

290 FUNDAMENTALS OF CRYPTOLOGY

The receiver duplicates the above calculations to verify that the file has not been changed and was
indeed sent by Alice.

Of course, we could have used any other block cipher instead of DES in this example.

It is also possible to use a block cipher as a keyless hash function. To this end one also makes the
key a public parameter.

The implicit assumption when using a block cipher for authentication purposes is that for a fixed
key it behaves as a random permutation on the input set. Also, one hopes that the block cipher is
cryptographically secure. In the next section, authentication codes will be discussed that are not
based on any mathematical assumption.

There are many different standards for hash functions. The reader is referred to [MeOoV97] and
[Schn96].

13.3 Unconditionally Secure Authentication Codes

13.3.1 Notions and Bounds

No authentication scheme can give an absolute guarantee that an accepted message comes from a

particular user, say Alice. For instance, there is always a small probability that a (randomly or
otherwise) generated sequence could have been made by Alice, but in fact was not. It will then be
accepted by others as a genuine document from Alice.

It follows that it is necessary to define and compute the probability of a successful fraud. However,
in such computations there is an essential difference between assuming the computational security
of certain problems (as we do in public key cryptosystems), or not making any further assumptions
at all (unconditional security). This last situation will be the topic of this section.

We shall assume that Alice and Bob trust each other and have agreed upon a secret key. This
assumption is not really necessary, but then the notion of a trusted third party (like an arbitrator)

must be introduced.

Let us start with a simple example.

Hash Codes & Authentication Techniques 291

Example 13.4

Alice wants to send a single bit of information (a yes or a no) to Bob by means of a word of length 2. Alice
and Bob have 4 possible keys available. Alice and Bob make use of the following matrix:

So, message 1 will be sent as word 11 under the third key.

The probability that somebody else can successfully impersonate Alice is 1/2, because only two of
the four words in {00, 01, 10, 11} are possible as transmitted word under the joint secret key of
Alice and Bob.

An opponent Eve who tries to replace a transmitted message by another one will know that only
two keys can possibly have been used, but she does not know which one. So, the probability of a

successful substitution is also 1/2. For instance, if Eve intercepts 01, she knows that either
message 1 was sent (under key 1) or message 0 was sent (under key 3). In the first case, she needs
to transmit 00 and in the second case it should be 11, therefore, she succeeds with probability 1/2.

The above scheme even gives secrecy, because every transmitted word can come from message 0
or from message I (both with probability 1/2).

The general definition of an authentication code (we deviate here from the standard notation in the
theory of authentication codes in order to avoid confusion with the standard notation in the theory
of error-correcting codes) is as follows:

An authentication code can be depicted by a table U with the rows indexed by the keys k in the
columns indexed by the codewords c in C and entry (k, c) in U given by m if an exists such
that (such an m is unique by (13.1)) and by a hyphen if such an m does not exist. We
shall call this table the authentication matrix of the code.

292 FUNDAMENTALS OF CRYPTOLOGY

In Example 13.4 above, and The authentication
matrix of this code is given by Table 13.1.

Condition (13.1) implies that is an injective mapping for each possible key.

When Bob receives codeword from Alice, he will accept it as a signed version of message
, where m is uniquely determined by Here k is the key that Alice and Bob have

agreed upon. To make the system practical, should be easily invertible for each key. To this end,
(and C) will often have a much simpler structure.

By taking and we see that an A-code is a special case of an
authentication code.

A good authentication code is designed in such a way that fraudulent words are spread evenly
over C, while the subset of words that the legitimate receiver expects, knowing the common key

is only a fraction of this set.

Thus the aim of an authentication code is that not only Bob, but also an arbitrator, can check the
authenticity of a properly made c (in the case of an A-code by verifying that in the case
of a general authentication code by checking that c is in the image space of , but an
impersonator who does not know the key has only a small probability of getting a word c accepted.
An attack by an impersonator is called an impersonation attack.

The same should be true if the enemy wants to replace a genuine codeword c (made with the
proper key) by another one, say that represents a different message. This kind of attack is called
a substitution attack. Note that in this case, some information on the key is available to the
opponent. We shall not discuss systems in which the same key can be safely used more than once
by the legitimate users.

In the following definitions we shall assume that keys will be chosen from with a uniform
distribution and that messages will be chosen from with a uniform distribution.

Let us assume that a general authentication code is being used by Alice and Bob. To maximize the
probability of a successful impersonation, the opponent can do no better than select and send a
codeword that will have the highest probability of being accepted by the legitimate receiver.
This is the case if for the maximum number of keys the codeword c will be in the image
space of

Another way of saying this is that one looks for the column in the authentication matrix that has
the maximum number of non-hyphen entries. The column index c of that column will be sent.

Hash Codes & Authentication Techniques 293

In Example 13.4, each codeword is the image of a message under exactly two of the four keys
(each column counts two non-hyphens). So,

In case of a substitution attack one has intercepted a codeword This restricts the possible
keys that may have been used by sender and receiver to The best attack for
the opponent is to search among those codewords that are possible with these keys for the one that
occurs the most often.

A different way of saying this is that in the authentication matrix of the code one looks at the
column under the intercepted c and removes all rows from the matrix that have a hyphen in that
column (these rows are indexed by a key that can not have been used). Also delete the column
indexed by c. Among the remaining columns one looks for the one with the largest number of non-
hyphen entries. The column index c' of that column will be substituted for c.

In Example 13.4, each codeword is the image of a message under exactly two of the four keys. For
each of these two keys, the other possible message will be mapped to a distinct codeword. So,

The maximum of the two probabilities in (13.2) and (13.3) is often called the probability of
successful deception. In formula

Since an authentication function is injective for each it follows that exactly
codewords must be authentic for any given key. In other words, it follows that each row of the
authentication matrix U of an authentication code has exactly non-hyphen entries. Since U
has rows and columns it follows that the average number of non-hyphen entries over the
columns of U is So, the maximum fraction of non-hyphen entries per column
is at least This proves the following theorem.

294 FUNDAMENTALS OF CRYPTOLOGY

Similarly, in the case of the substitution attack the restriction of the authentication matrix U to the
rows where an intercepted codeword c has non-hyphen entries consists of
rows, each with non-hyphen entries. After deleting the column indexed by c, this
restriction has columns. So, the average value of the relative frequency of non-hyphen
entries in this restriction of U is This proves the following bound.

If the messages and keys are not uniformly distributed over the message space and key space, it is
still possible to derive lowerbounds on and In these lowerbounds, functions appear
that we have discussed in Chapter 5. For the proofs of the next two theorems, we refer the
interested reader to [Joha94b].

The bound in (13.7) is called the square root bound. Authentication codes meeting this bound are
called perfect.

Hash Codes & Authentication Techniques 295

For further reading on authentication codes, we refer the reader to [GilMW74], [MeOoV97],
[Schn96], and [Simm92].

13.3.2 The Projective Plane Construction

In [GilMW74] one can find a nice description of a perfect authentication scheme. We first need to
describe what a projective plane is, before we can explain this construction

A Finite Projective Plane

A projective plane is a kind of geometric object that differs somewhat from planes in regular
Euclidean geometry. It is defined in a formal way by a set of axioms, that among others does not
allow for parallel lines! After the definition we shall give a construction of these projective planes
that will explain the name "projective".

We start with a finite set whose elements are called points. Further, is a collection of subsets
called lines. We shall say that a point "lies" on a line if Also, two lines may

"intersect" in a point, etc., so, we adopt all the regular terminology from geometry. To avoid
trivialities, we shall assume that all lines contain at least two points

Property PP-1 is there to avoid the following object in our considerations. All lines have
cardinality two and go through the same point (depicted below) except for one line which goes
through the remaining points

296 FUNDAMENTALS OF CRYPTOLOGY

Proof:

Proof of PP-4: Every line contains exactly points.

Our first step is to show the claim that each point in lies on at least three different lines. Let us
start with four points and S no three of which are colinear (see PP-1). For each of these
points, any of the other three defines a unique line through them by PP-2. For a point not on any
of the lines going through two of the points and the claim is also trivial (each of these
four points defines a unique line through We leave it as an exercise to the reader to prove the
claim for a point that is on one of the six lines going through two of the points and

Now, consider an arbitrary point We know that at least three lines go through it. Let be a
point on one of these lines, say on line We shall show that all the other lines through have the
same cardinality. To this end, let be the points on line m through P (where

) and let be the points on line n through (where We
need to show that

For each there is a unique line through and by PP-2. By PP-3 this line will intersect
n in a point, say This is a one-to-one mapping, because a line through and can not
intersect m in two points (by PP-3). We conclude that By interchanging the role of m and n
we may conclude that

So, all the lines through except possibly for the line that also meets have the same cardinality
By putting on one of the other lines through P, say n, and repeating the above argument,

we may conclude that all lines through P have cardinality

Hash Codes & Authentication Techniques 297

Let U be another point. For exactly the same reason as above, all the lines through U have the
same cardinality, say However one of these lines also goes through P by PP-2. It follows
that

Proof of PP-5: Every point lies on exactly lines.

Consider a point P and a line m not through P. Let the points on m be numbered
Each point on m together with P defines a unique line passing through them

(property PP-2). These lines are all different by the uniqueness property in PP-2. On the other
hand, every line through P must intersect m in a unique point. We conclude that lines pass
through P.

Proof of PP-6:

Consider a point P. There are lines through P, each containing n other points. This gives rise
to points. There are no other points in by PP-2.

Similarly, consider a line There are points on it, each being on n other lines. This gives rise
to lines. There are no other lines in by PP-3. (Notice the symmetry between points
and lines in Definition 13.5.)

Example 13.5

Take Then Each line contains three points and each point lies on three lines. This
projective plane is depicted in the following figure.

The 7 lines in this figure are the three outer edges, the three bisectors and the circle in the middle.

So, consists of the following seven lines:

The projective plane of order 2 is unique and is called the Fano plane.

298 FUNDAMENTALS OF CRYPTOLOGY

A projective plane is often described by means of its incidence matrix. This the matrix A of which

the rows are indexed by the lines the columns by the points and where

The incidence matrix of the Fano plane (with the labeling given in the figure above) is

The properties in Definition 13.5 and Theorem 13.6 can be directly translated into the following
matrix requirements.

PP-2 Every two different columns of A have inner product 1.
PP-3 Every two different rows of A have inner product 1.
PP-4 Every row of A has ones.
PP-5 Every column of A has ones.
PP-6 Matrix A has rows and columns.

These properties can be summarized in the formula

where is the all-one matrix of size and the identity matrix (of the
same size).

For the example above we can check this with the Mathematica functions Transpose and

MatrixForm.

Hash Codes & Authentication Techniques 299

A General Construction of a Projective Plane

There is a general construction of projective planes of order where is a prime power. There are
other constructions of projective planes, but they all have an order that is a prime power. It has

been shown that no projective plane exists of order 6 and 10.

Let denote a 3-dimensional vectorspace over the finite field of elements. Its
elements are vectors with in The cardinality of is Let

Each line through can be described by a non-zero vector

Of course, non-zero scalar multiples of will give rise to the same line in So, there are
different lines through

Similarly, a plane through in can be described by a non-zero vector

Again, non-zero scalar multiples of will give rise to the same plane in therefore, there
are different planes through A different way to describe a plane

through is

Each non-zero point on a plane through defines a line through As before, non-zero scalar
multiples of this point define the same line. We conclude that there are
lines (through on a plane (through

Each line can be embedded in a plane by
selecting any of the points not on the line. Of course, not all these planes are different. A
particular plane containing can be obtained by any of the points in the plane
not on the line. It follows that each line (through lies on exactly planes
(through

300 FUNDAMENTALS OF CRYPTOLOGY

Remark 1:

It is easy to get confused here. The projective points correspond to lines in (through 0) and
the projective lines correspond to planes in (through 0).

Remark 2:

Note that we have already verified the properties PP-4, PP5, and PP-6 mentioned in Theorem 13.6.

Proof:

Proof of PP-1:

The four lines through and each of the points (1,0, 0), resp. (0, 1, 0), (0, 0, 1), (1, 1, 1) define
four projective points in no three of which lie on a projective line. The reason is that no three of
these four points in lie on the same plane through

Proof of PP-2:

Let P and be two different projective points, and let them be defined by the lines
and in There is exactly one plane containing these two

lines, namely This plane defines the unique projective line
through P and

Proof of PP-3:

Let and m be two different projective lines. They correspond to two planes in through
The line of intersection of these two planes is a line through which defines the unique projective
point on both and m.

There are different techniques of generating a set of non-zero points in that will

give rise to different lines and planes through in (see (13.9) and (13.10)), i.e. to
different projective points and projective planes.

A nice way, as we shall see in the following example, is to take a primitive element in say
represent it as vector in and take as points the elements 1, Indeed, let

Since has order it follows that has order It also
follows that (see Theorem B.29 and the Remark at the end of
Subsection B.4.6). This means that for each the points and in

give rise to the same projective point and thus we only have to consider 1,

Example 13.6

Take To find a primitive polynomial of degree 3 over GF(3), we first have to load the Mathematica
package Algebra ' FiniteFields' ... After that we can apply the function FieldIrreducible.

Hash Codes & Authentication Techniques 301

So, can be described by the set of ternary polynomials modulo Let
be a zero of f(x). Since f(x) is a primitive polynomial, it follows that has order 26.

This can be checked with

The element in this case. Indeed,

So, the projective points can be found by computing In this
example, we take the equivalent set to keep the output uniform in appearance.

302 FUNDAMENTALS OF CRYPTOLOGY

To check if a projective point lies on the projective line defined by

(see (13.10)), we need to check if In Mathematica this
can be done as follows (the [[1]] removes the subscript in the presented output).

So, we are now ready to generate the projective plane of order 3. We present it by means of its
incidence matrix.

We can check the properties PP-2, PP3 and PP4, PP5 by computing (see (13.8))

Hash Codes & Authentication Techniques 303

The Projective Plane Authentication Code

In words, the message set consists of the points on the key space consists of all points not
on the code set C consists of all lines in except for itself.

Finding the message back from the received codeword c is quite easy. Just intersect with
Their intersection point is the message.

That the above scheme defines an authentication code is easy to check. Its parameters are given in
the following theorem.

The reader may want to check the above theorem on the Fano plane below. The four points not on
form the key space the three points on the message space and the other six lines the

codeword set C.

304 FUNDAMENTALS OF CRYPTOLOGY

Proof of Theorem 13.8:

The parameters in this theorem follow directly from Theorem 13.6.

To compute we observe that an opponent can do no better than to select as a codeword a line c
that contains as many points outside (these are the possible keys) as possible. However, this

number of points outside is independent of the choice of c. It is n by PP-4. So, by (13.2),

Similarly, if the opponent has observed codeword c (not equal to there are still n keys (points on

c but not on possible. Let P be the intersection of c with To replace it with another message
(point on the opponent can do no better than select a line through such a point with as
many points on c as possible. But by PP-2 this number is 1, independent of the choice of c and d,
namely the unique point of intersection of c and d. So, by (13.3),

The authentication codes coming from projective planes, are perfect because and are all
which is equal to

Moreover, so, Theorem 13.5, tells us that the message set is of
maximal size given this key set.

A construction of authentication codes by means of shift register sequences can be found in
[Joha94a]. Its implementation is simpler than the projective plane construction above. For large
message sets, e.g. data files, the codes discussed in Section 13.3.4 may be more practical.

Hash Codes & Authentication Techniques 305

13.3.3 A-Codes From Orthogonal Arrays

Note that the above implies that each symbol occurs exactly times in each row.

Example 13.7 (Part 1)

An example of an OA(4, 5, 1) is given by

The following theorem shows how orthogonal arrays define A-codes in a natural way.

Proof: The parameters of this A-code follow from those of U.

The chance that an impersonation attack succeeds is because each symbol occurs equally
often in a row of U.

The probability of a successful substitution attack is also The reason is that each intercepted
authenticator occurs with each possible symbol, no matter which message was intercepted and
which message one wants it to be replaced with.

Example 13.7 (Part 2)

For instance, in the matrix U defined above, message 4 under key 13 will be authenticated by

306 FUNDAMENTALS OF CRYPTOLOGY

When, message 4 is intercepted with authenticator 1, one knows that the key is among

{2, 8, 11, 13}. Mathematica can find these positions with the functions Flatten and Position.

Each other row has all four symbols on these four locations. This can be checked with the
functions MatrixForm and Transpose. The [[1]] below gives the restriction of the matrix to

the rows indexed by the elements of the list l.

There is a great deal of literature on orthogonal arrays. See [Hall67] or [BeJL86] for constructions,
bounds and existence results. For instance, it is known that an exist for all prime
powers q, because orthogonal arrays with these parameters exist if and only if projective planes of
order q exist (see Theorem. 13.7 for a construction of a projective plane of order q).

Below we give a sketch of the proof of this result.

Let be a projective plane of order Pick any of the lines in Number the points on by
and the other points by

Let be the collection of all lines through except for itself. By PP-5, each
has cardinality Number the lines in each from 1 to

Define as k, where k, is the index of the unique line in
that meets (which is the unique line in through and Then U is an

Hash Codes & Authentication Techniques 307

Example 13.8

Consider the incidence matrix A of the projective plane of order 3 in Example 13.6.

We define a function RowSwap to perform row exchanges in a matrix.

Next we perform some column permutations on A to get a line as top row with all its points on

the left. We use the Transpose function.

308 FUNDAMENTALS OF CRYPTOLOGY

Next we perform a number of row exchanges to get the subsets nicely aligned will appear
in rows 2, 3, 4, in rows 5, 6, 7, etc).

The last 9 columns define the orthogonal array OA(3, 4, 1). For instance, column 5 minus its first
entry looks like (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1). This vector is the concatenation of four three-
tuples, each containing one l. It will be mapped to four entries in {1, 2, 3}, depending on whether

the 1 is on the first coordinate, the second, or the third, therefore, column 5 will be mapped to

(1, 2, 3, 3).

In this way the last 9 columns are mapped with the Mathematica functions Table, If, and Do to
the matrix:

Hash Codes & Authentication Techniques 309

This is indeed an OA(3, 4, 1) and hence it defines an A-code with

and

Note that the last 9 columns in U (or A) can be further permuted to get

13.3.4 A-Codes From Error-Correcting Codes

In [JohKS93] it is shown how authentication codes can be constructed from error-correcting codes
(EC-codes) and vice versa. In this subsection we shall show how to convert an EC-code to an A-
code. Our description is slightly different from the original one.

Let C be any EC-code over GF(q), i.e. C is a subset of V(n, q), the n-dimensional
vectorspace over GF(q), with minimum Hamming distance The latter means that all elements
in C, which are called codewords, differ in at least coordinates from each other. The dimension
n of V(n, q) is also called the length of C.

Let C have the additional property that

where stands for the all-one vector.

For instance, any linear code containing the all-one vector satisfies (13.11). Note that (13.11)
implies that q divides the cardinality of C.

The relation ~ defined on C by

defines an equivalence relation on C. Let M be a subcode of C, containing one representative from
each equivalence class. So, M has cardinality and

Let be any enumeration of the codewords in M . As message set for the
authentication code that we are constructing, we take This means
that we have a 1-1 correspondence between the subcode M and the index set It is often

310 FUNDAMENTALS OF CRYPTOLOGY

convenient not to distinguish between these two sets. So, from now on we shall speak of message
instead of message i.

Example 13.9 (Part 1)

Consider the binary linear code C with generator matrix

This means that C consists of the 16 vectors in the (binary) linear span of the rows. It is easy to
check that different codewords in C differ in at least 3 coordinates. This makes C a (7, 16, 3) code

in V(7, 2). Some readers may recognize C as a Hamming code.

That the all-one word is in C can easily be checked.

It follows that C satisfies (13.11).

As subcode M of C we take all codewords in C with first coordinate equal to 0. So, M consists of

the linear span of the lower three rows of G. The message set will be identified

with M.

The key set of the authentication code that we are constructing, will consist of the pairs

with and

The authenticator of message under key is simply given by

So, the authenticator set is just GF(q).

Hash Codes & Authentication Techniques 311

Remark:

To make acceptably low, one needs EC-codes with close to n. For q-ary codes this is no

problem, as we shall see in Example 13.10. Of course, q also needs to be large.

Proof of Theorem 13.10:

The parameters in (13.14) follow immediately from the construction.

To compute we note that an opponent who wants to impersonate the sender needs to find the
right authenticator for his message However, for each coordinate the set

is equal to GF(q). In other words, each symbol occurs equally often as
authenticator of So, the probability that the opponent will choose the correct authenticator is

independent of the choice of the authenticator and independent of the message that the
opponent tries to transmit. This proves that

An opponent who wants to replace an authenticated message (where by another
authenticated message, knows that the key in use is from a set of n possible keys To be more
precise, for each coordinate there is exactly one value of such that

The optimal strategy for the opponent who wants to substitute another authenticated message for
is to find a message such that in for as many of those n keys as

possible. This symbol is the authenticator for that will be accepted most likely.

It remains to show that will be accepted in at most cases, which implies that the

probability of a successful substitution is at most This assertion follows
from

because and are different words in the code C and are in different
equivalence classes).

Example 13.9 (Part 2)

To illustrate the second part of the proof above, we continue with the code of Example 13.9. If
Alice wants to send message 7, she finds with the Mathematica function IntegerDigits

from:

312 FUNDAMENTALS OF CRYPTOLOGY

(Remember that all messages had their first coordinate equal to 0.)

Suppose, that Alice and Bob have agreed upon key (3, 1),. Then Alice will append the

authenticator (mod 2) to her message, therefore, Alice will send

Opponent Eve, observing this codeword, can conclude that the key is in the set
To verify

this, we use the Mathematica functions Table and Mod.

Suppose now that Alice wants to send message 5. The corresponding codeword is given by

If Eve chooses as authenticator she has a probability of 4/7 of getting her message
accepted, because exactly four of the possible keys would lead to this authenticator. With
authenticator this probability is 3/7. (We use the Mathematica functions Length and

Intersection to test this.

Hash Codes & Authentication Techniques 313

Example 13.10

The q-ary Reed-Solomon code of dimension k (see [MacW77]) has length and minimum distance

By multiplying each coordinate with a suitable constant, one may assume that Theorem

13.10 gives an A-code with parameters:

The method explained in this section is certainly not the only way to make A-codes from EC-
codes. It does have the property that each impersonation attack has the same probability of success
(namely 1 / q).

Since every message can have each symbol in as authenticator, it follows that the
codeword set C has cardinality .q. This implies that Theorem 13.2 holds with equality.

In [JohKS93] the authors also show how to convert an A-code into an error-correcting code.

314 FUNDAMENTALS OF CRYPTOLOGY

13.4 Problems

Problem 13.1
Prove that properties PP-1,PP2,PP3 in Definition 13.5 imply that a projective plane also contain four lines,
no three of which go through the same point.

Problem 13.2
Prove that the Fano plane is unique (apart from a relabelling of the points and lines).

Problem 13.3
Compare the Projective Plane Authentication Code construction (see Definition 13.6) with the
authentication code with defined by the one-time path, i.e. with (modq).
Also, answer this question when is a random subset of of size

Problem 13.4
Check that the rows of the incidence matrix in Example 13.6 can be permuted in such a way that the matrix
becomes a circulant (each row is cyclic shift to the right of the previous row).

Problem
Use the same technique as in Example 13.6, to determine the top row of an incidence matrix of a projective
plane of order 5.
Cycle this row around and check that it does define a projective plane of order 5.

Problem
Convert the orthogonal array OA(4, 5, 1) in Example 13.7 into a projective plane of order 4.

Problem 13.7
Show that condition (13.11) in Theorem 13.10 can be replaced by the requirement that C contains at least
one codeword of weight n.

Problem
Repeat Example 13.9 (both parts) for the ternary code generated by

14 Zero Knowledge Protocols
Cryptographic protocols are exchanges of data between two or more parties following a precise

order and format with the goal of achieving a particular security. Of course, the above definition is

not very precise, but we have already seen some examples of cryptographic protocols. One is the
identity verification protocol in Subsection 4.1.2, another is the Diffie-Hellman key exchange
protocol in Subsection 8.1.2 and a few others are mentioned in Section 8.2.

A zero-knowledge proof' is a technique to convince somebody else that one has certain knowledge,
without having to reveal even a single bit of information (or a fraction thereof) about that
knowledge. As a consequence, the verifier nor any passive eavesdropper gains any information
from taking part in any number of executions of the protocol.

One may think of using a zero-knowledge protocol in the situation that one wants to use an ATM
to withdraw money from a bank account. Instead of having to enter a PIN-code it should be
enough to convince the teller that one knows this PIN-code. One wants to do this in such a way
that no information about the PIN-code is released. In the next section, we shall give an example
of how this can be done. In Section 14.2, another identity verification will be presented.

14.1 The Fiat-Shamir Protocol
As in Subsection 4.1.2, we are again in the situation that a smart card wants to convince a smart
card reader that it is genuine. A trusted party that has to issue these cards selects a large composite
number n, for instance n is the product of two large primes p and q, just as in the RSA system. The
number n is a system parameter known to all parties.

The security of the Fiat-Shamir protocol [FiaS87] will be based on the assumption that taking
square roots modulo a large composite number n is, in general, intractable. This is the same
assumption that was made in the Rabin variant of the RSA system (Section 9.5). In Theorem 9.18,
it was shown that the problem of finding a square root modulo a composite number is as hard as
factoring it.

The trusted party computes an identity number ID for the smart card that should have the
additional property that

for some integer s. The number ID may be computed from the name of the card holder and other
relevant data, but a few bits should be left open for the trusted party to complete in order to make
ID the square of an integer modulo n (ID has to be a quadratic residue mod p and mod q).

316 FUNDAMENTALS OF CRYPTOLOGY

The trusted party computes the square root s of ID (it can do this, because it knows the
factorization of n, see Subsection 9.5.3) and stores s in a segment of the memory of the smart card

that is not accessible from the outside world.

One round of the Fiat-Shamir Protocol is depicted in Figure 4.1 below.

The smartcard or card holder makes the identity number ID known to the card reader. To prove
that the card was indeed issued by the trusted party, the card wants to convince the card reader that
it knows s, the square root of ID modulo n.

To this end, the card generates a random number r, computes its square

and sends that to the card reader. In the jargon of this field, t is called a witness to the card's
knowledge of r.

The card reader selects a random number e from 10, 1} and presents that as a challenge to the card.

How the protocol responds to the challenge depends on the value of e.

If the card simply sends the random number r back. The card reader then checks if its square
is indeed equal to the value t that it received earlier from the card.

If , the card computes the product of the random number r and the secret square root
s, and sends u to the card reader. The card reader checks if is indeed equal to modulo n,
which should be the case, since and

In Figure 14.1, these two alternatives are combined in the response The card
reader checks if

Zero Knowledge Protocols 317

It may be clear that if the card can supply r (when and at the same time can supply r.s (when
it must know the square root s of ID. It is also clear that if the smart card fails the test in

(14.3), the card reader will reject the smart card.

If an unauthorized smart card knows beforehand the value of the challenge e, it can fool the card
reader. This is obvious in the case. In this case, the smart card takes a random r, presents

as witness and later presents r itself as response. The secret square root s never
played a role in these calculations.

If the illegitimate card knows that the challenge will be 1, it generates a random r, computes
and presents this value of t to the card reader. After having received the

challenge the smart card will present The card reader checks (see (14.3)) if is
congruent to t. ID modulo n. This is obviously the case with and

Note that the unauthorized card can not meet the challenge if he makes the wrong guess about the
challenge. So, it will be caught with probability 1/2, if the smart card selects its challenge at
random.

For this reason, smart card and card reader will run k times through the above protocol, where k is
a security parameter. A smart card that does not know the value of s can guess the k random
challenges with probability so it will be caught with probability

The card should not use the same random number r twice, because as soon as the card reader
knows both r and r.s (through u), it can calculate the secret square root s.

The idea of proving certain things without revealing any information about it is counter-intuitive,
but very powerful. There is a growing field of applications of zero-knowledge proofs.

Examples are electronic voting schemes that make it possible to cast votes in an anonymous way.
On the other hand, the voter will be caught when attempting to vote twice. In these schemes, it can
be checked that all votes have been counted in the final tally.

Another application is a payment system that allows you to withdraw money from your account in
digital form and spend it anonymously. Even your own bank can no longer trace it to you.
However, if you try to double spend the money, your identity can be recovered.

14.2 Schnorr's Identification Protocol
Schnorr's identity verification protocol [Schn91] is based on the difficulty of the discrete logarithm
problem (Table 8.1). As in the Diffie-Hellman scheme, all participants share some parameters.
First of all there is a finite field GF (q) (this could be if q is prime) and a prime divisor p of

. Let be a primitive element of GF(q) and take Then is a primitive p-th root
of unity. This means that are all different and that

318 FUNDAMENTALS OF CRYPTOLOGY

Example 14.1 (Part 1)

and Take and To check that q is
prime and that is a primitive element in (which makes a primitive p-th root of unity), we use
the Mathematica functions Prime, PrimeO, and the function MultiplicativeOrder (defined in Appendix

D) which computes the multiplicative order of an element..

Each participant P (P for prover) selects a random secret exponent computes and
makes this value public. It is assumed that other participants are able to verify that is indeed
public parameter. This can be realized if a trusted authority signs or if the public values are
posted on a trusted "bulletin board". If someone else, say V for Verifier, wants to check identity

he does this by checking that P knows the corresponding Of course, P does not want release
the secret value of to anyone. Therefore, he uses a cryptographic protocol to convince V that he
has knowledge of

Example 14.1 (Part 2)

Prover P has identity number and secret exponent Indeed,

Zero Knowledge Protocols 319

Schnorr's identification protocol goes as follows. The verifier is presented with identity number
yp. Next, prover P generates a random exponent r, computes and presents this
value to the verifier V as a witness to his secret The verifier selects a random number s,

and hands this to P as challenge. Prover P responds by computing and
gives this value to V. The verifier checks that This relation should hold, because

This scheme is depicted in the following diagram.

Example 14.1 (Part 3)

In the input below, the above protocol is executed. The Mathematica functions Random, Mod, and
PowerMod are used

320 FUNDAMENTALS OF CRYPTOLOG Y

Of course, the prover will only be able to give the right response if he knows satisfying
If he does not know he can guess the correct value of u with probability The

value of p will be very large to make the discrete logarithm problem intractable (see Subsection
8.1.1).

Note that in the relation only the values u and s are known to V. In other words, the
random value r makes sure that no information on xp is leaked to V. This observation also shows
that the prover should not use the same random number r twice. Indeed, from two relations

and with known and the verifier can easily determine r
and the secret One has

Example 14.1 (Part 4)

For the same witness, we generate a second challenge and response.

To find xp we compute

The value 18126 is indeed the secret exponent xp of the prover.

14.3 Problems

Problem
Duplicate Example 14.1 for Find a suitable value for q.

15 Secret Sharing Systems

15.1 Introduction
In this chapter we shall not introduce a new cryptosystem, but we shall discuss a related topic. We
start with an example from [Liu68].

"Eleven scientists are working on a secret project. They wish to lock up the documents in a
cabinet so that the cabinet can be opened if and only if six or more of the scientists are present.
What is the smallest number of locks needed? What is the smallest number of keys to the locks
each scientist must carry?"

Clearly, for each 5-tuple of scientists there has to be at least one lock, that can not be opened by
them. Also each of the six remaining scientists has a key of that lock. More than one such lock per

5-tuple is not needed. So, locks are needed and each scientist carries keys. These

numbers can be calculated with the Mathematica function Binomial.

The solution above is of course not very practical. Similarly, the described situation is not very
realistic. However, there exists very real situations where one wants to share some sensitive
information among a group of people, in such a way that only certain privileged coalitions are able
to recover the secret information. Examples are a masterkey of a payment system or a private key
that one does not want to store in a single place.

In a general setting, if P is a privileged group of people, meaning that they should be able to
recover the secret data, then any other group containing P as a subgroup, should also be privileged.
Also, if N is not privileged then any subset of JV should not be privileged.

322 FUNDAMENTALS OF CRYPTOLOGY

In the example above, consists of all subsets of U of size at least 6 and N of
all the other subsets of U. It is a special case of what is generally called a threshold scheme.

It is often convenient to list only the set of the minimal elements of denoted by which can
be obtained from by leaving out each element of that properly contains another element of
Similarly, one often represents by the subset consisting of its maximal elements.

An access structure is called complete or perfect if each subset of U is either in P or in N.

The value (to be called the share of i) should be interpreted as partial information of participant
i on the secret S. In information theoretical notation (see Chapter 5), SSS1 and SSS2 can be
reformulated as

Note that in secret sharing schemes that are not perfect, there may be coalitions C, of
participants that are able to recover some information on the secret S (so,
without being privileged.

Secret Sharing Systems 323

15.2 Threshold Schemes
A secret sharing scheme is called an (n, k)-threshold scheme, if consists of all subsets
of U of cardinality and consists of all subsets of U of cardinality By definition, a
threshold scheme is a perfect secret sharing scheme. Properties SSS1 and SSS2 can be
reformulated as

[TS1] Knowledge of k or more different makes S computable.

[TS2] Knowledge of at most different leaves the secret S completely undetermined, more
precisely all possible values in 5 are still equally likely.

Shamir describes (see [Sham79]) the following general construction of schemes
when ,S is a finite field where q has to be larger than n. Here, we shall assume that q is a
prime number, say in which case S is just the set of integers modulo p. The
generalization to will be immediate.

This system is based on the well known fact that a line is uniquely defined by any two points on it,
that a parabola is uniquely defined by three points on it, etc. In general, a polynomial of degree

is uniquely determined by any k points on it.

Example 15.1 (Part 1)

In order to construct a scheme for secret in we hide the secret in the
polynomial (note the use of the Mathematica function Mod)

324 FUNDAMENTALS OF CRYPTOLOGY

where the coefficients of are selected at random from

The values of the shares can be computed with the Mathematica function Table.

To check that the values given by (15.2), form a scheme, we have to
check the two conditions TS1 and TS2.

Ad TS1:

Suppose that participants combine their shares
With the LuGrange Interpolation Formula, it is quite easy to determine

Indeed,

since the expression on the right hand side has degree just as does by (15.1). and since
the right hand side takes on value for just as does.

Note that by (15.1), the secret S is given by therefore, in the calculation of the Lagrange
Interpolation Formula, one can take right from the start.

Example 15.1 (Part 2)

Suppose that participants 1, 3, 6, and 9 want to retrieve the secret S. They pool their shares (1, 3),
(3, 15), (6, 13), and (9, 4).

The LaGrange Interpolation Formula can be performed with the Mathematica function
InterpolatinPolynomial. The function PolynomialMod is used for the reduction

modulo 19.

The value of the secret S is the constant term in this expression. So,

Ad TS2:

Suppose that shares , are known for some It follows from (15.1) and (15.3) that
there are exactly polynomials satisfying and with any fixed value

Secret Sharing Systems 325

for

Indeed, for any fixed value of and any fixed group of other participants and any given
set of imaginary values of their shares, there is unique meeting all requirements. This is a

direct consequence of the LaGrange Interpolation Formula.

Example 15.1 (Part 3)

Suppose that participants 1, 3, and 9 attempt to retrieve secret S by pooling their shares (1, 3),
(3, 75) and (9, 4).

Then the secret S can still take on any value (and each of these values is still equally likely).
Indeed, adding the pair (0, S) to the above three shares leads to a unique polynomial through
(0, S) and the three shares. This follows from the LaGrange Interpolation formula and can be
checked as follows.

Remark 1:

In the generalization to arbitrary fields the n participants are labeled by different non-zero
field elements and the share of the i-th participant will be the pair

326 FUNDAMENTALS OF CRYPTOLOG Y

A way to realize this is to choose a primitive element (generator) label the participants
from 1 to n and give the i-th participant as share the pair

Remark 2:

The threshold scheme explained here assumes a trustworthy authority. It is also a system that can
be used only once. As soon as participants have exchanged their shares to retrieve the secret, these
shares are compromised. A new set of shares has to be set up for later use. In the literature one can
find proposals that relax these conditions.

15.3 Threshold Schemes with Liars
In [McE181] a variant of the construction above is proposed, that can handle the situation that
some of the participants provide false information, so the share they provide does not have the
correct value. Some participants may want to do this to prevent others from getting access to the
secret data. It will turn out that it takes two extra shares to recover the secret for each incorrect
share that is contributed. So, if participants pool their shares to recover the secret, at most t
of the shares should be false.

Proof: The polynomial used to compute the shares, is of degree and has the
additional property that at least of the correct shares lie on it. Could there be another
polynomial, say with the same properties? The answer is no. Indeed, since there are only

shares, any two subsets of at least correct shares must have an intersection of at least k
(honest) shares. These k shares lie on and on , Since both and have degree at
most it follows that

To determine the participants can try out all possible functions of degree through k of
the shares until a function passes through of them. Of course, this is not an efficient way.
For an efficient technique, the theory of error-correcting codes is needed (as in Chapter 11). The
shares that are defined above in fact define codewords in a so-called
shortened Reed-Solomon code with parameters

Secret Sharing Systems 327

We refer the reader, who is not familiar with this theory, to [MacWS77], Chapter 11. Both the
Berlekamp-Massey algorithm or the Euclidean algorithm give efficient ways to decode this code.
In the context of our problem, where shares are known, one has to interpret the other

shares as erasures. If the number of erasures plus twice the number of errors is less than
the minimum distance of a code, one can still correct these errors and erasures. Here

is indeed less than Efficient algorithms exists (see [Berl68], Section
10.4 and [SugK76]) to correct these errors and erasures for Reed-Solomon codes.

Remark 1: By taking Construction 15.2 reduces to Construction 15.1.

Remark 2: If only shares are available and t of them are incorrect, then is not
necessarily uniquely determined. For instance, it is possible that of shares all of them
except the first t lie on one polynomial of degree while all these shares except the last t lie
on another polynomial of degree (the intersection of the shares sets has cardinality

In this case, there is however partial information on the secret.

Example 15.2

Consider and

Of the four shares (1, 4), (2, 1), (3, 5), (4, 4), each three define a parabola, leaving the other point as

incorrect value.

328 FUNDAMENTALS OF CRYPTOLOGY

Of the 17 possible secrets four are possible, all with equal probability.

15.4 Secret Sharing Schemes
Although there is a lot of literature on secret sharing schemes, there are also many central
questions that still need to be answered. For this reason, we only discuss one example of a secret
sharing scheme. The reader is referred to [Bric89] and [Dijk97] to find a discussion of various
generalizations of the technique explained here. For a general introduction to secret sharing
schemes we refer to [Stin95].

Assume that we have as access structure the set with
and This means that any subset of U

containing both users 1 and 2, or users 2 and 3, or users 3 and 4 is a privileged set, while any other
combination of users is non-privileged. Figure 15.1 depicts this situation.

The secret sharing scheme for this access structure will be set up in two steps. In the first step we
want to share one bit (or byte or string) of information among the four participants.

Let s be a secret bit that we want to share among the participants of our access structure
The trusted authority selects two random bits a and b and gives the following shares to the
participants:

Secret Sharing Systems 329

The + sign stands for addition modulo 2. The reader may easily verify that this scheme meets
requirements SSS1 and SSS2. For instance, participants 1 and 2 can compute 5 from
where a comes from 1 and from 2.

Example 15.3

For instance, if the Trusted Authority wants to share secret among the four participants, he may

choose and The shares of 1, 2, 3, 4 will be 1, resp. (0,0), I, 0.

Participants 2 and 4 can not recover s, because they only know and b (twice). Participants 3 and 4
can recover the secret s by adding their shares and

We see that in the scheme of Figure 15.2 participant 2 has to store twice as many bits as is the size
of the secret. This ratio can be improved by superimposing a permuted version of the scheme to
itself.

Hence, now we consider a secret consisting of two bits s1 and s2 .The trusted authority selects four
random bits a, b, c, and d. He gives the following shares to the participants:

In this scheme, the ratio between the size of the secret and the size of the longest share (this ratio is
called information rate) is 2/3. It can be shown that such a ratio is always at most 1. Secret
sharing schemes that have an efficiency rate equal to 1 are called ideal.

There is a general matrix description of constructions of the above type. We shall explain it again
for the example above.

The secret sharing system is described by the matrix of the trusted authority and the matrices
of the participants 1,2, 3, and 4. The first two columns are labeled by the secret bits and

and the next four columns by the random variables (a, b, c, and d). Each row of represents one
entry of the share of participant i (expressed in terms of the secret bits and the random bits). The
same holds for where we view as his share.

330 FUNDAMENTALS OF CRYPTOLOGY

To see that these matrices indeed represent the secret sharing scheme we multiply them with the
vector

We get the secret of the trusted authority and the shares of all the participants, so this is exactly the
scheme that we had above.

The properties of a secret sharing scheme can now be translated as follows.

Secret Sharing Systems 331

To check that the first row of lies in the linear span of the rows of and we use the
Mathematica package LinearAlgebra'MatrixManipulation' and the functions
AppendColumns, MatrixForm, LinearSolve, and Transpose.

This shows that the first row of is the modulo-2 sum of the first row of and the first row of

Similarly, one can verify that can not be recovered by participants 1 and 3 in this way: the 2-nd

row (and also the 1-st) of is not in the linear span of the rows of and

332 FUNDAMENTALS OF CRYPTOLOGY

We conclude this section by remarking that it is not so much a problem to make a perfect secret
sharing scheme for a particular access structure, as it is to make an efficient one, i.e. with high
information rate. Indeed, an inefficient secret sharing scheme for a particular access
structure goes as follows. Let s be the secret to be shared. For each select
random bits satisfying the binary congruence relation:

If then participant u gets one of these

In the example of and we
get in this way as share for secret s:

A more compact way to denote this secret sharing scheme is

This scheme has efficiency rate 1/2 and uses three random variables, as opposed to the two random
variables in the scheme of Figure 15.2.

Secret Sharing Systems 333

15.5 Visual Secret Sharing Schemes
In visual secret sharing schemes the secret to be shared consists of an image consisting of black
and white (or of colored) pixels. Here we shall only discuss the black and white case, where
"white" should be understood as "transparent". For instance, the number 3 can be depicted as
follows.

The shares consist of transparencies of the same shape also with black and white pixels. The idea
of a visual secret sharing scheme for an access structure is that privileged subsets of
participants should be able to determine the secret by putting their transparencies on top of each
other, while non-privileged subsets should obtain no information on the secret from their shares.

A visual secret sharing scheme can not be realized in a straightforward way. As soon as a pixel in a
particular share is black, the corresponding pixel in the secret will also be black. To solve this
problem, each pixel in the secret and in the shares will be subdivided in m subpixels, where m is
called the expansion factor of the scheme. The assumption will be that two visual threshold values

exist such that:

• if at most subpixels of a pixel are black, the pixel will be interpreted by the human eye as
white,

• if at least subpixels of a pixel are black, the pixel will be interpreted as black.

If the number of black subpixels lies strictly between and we assume that the human eye
will not decide. The difference is an indication for the level of contrast that is still present in
an image if all pixels meet one of the above two requirements. There is biological evidence
supporting the assumption that it is the relative difference in light intensity that is of importance to
the human eye. See [VerT97] for a longer discussion.

In the context of visual secret sharing schemes, we have additional problems to face. For instance,
if the shares of a non-privileged set are put on top of each other and a pixel contains more than
black subpixels, we know that the secret will be black at that place. Of course, such situations have
to be avoided.

It should be clear that once we have a visual secret sharing scheme for one pixel, we can use it for
the other pixels too, creating in this way a visual secret sharing scheme for the entire secret..

334 FUNDAMENTALS OF CRYPTOLOGY

Here, we shall only explain a visual secret sharing scheme for a scheme. This
means that any two participants should be able to recover the secret, while a single person should
have no information at all about even one pixel. Before we do so, we describe the simple case
where there are just two participants. We make the expansion factor Let us call the
following two subdivisions of a pixel L and R (for left black resp. right black):

It is clear that L and R put atop each other gives a black pixel, while both and are still
half white and half black. Therefore, we can make a construction with threshold values
and

Below we give an example of possible shares that participants 1 and 2 have for the secret number
3 above.

The reader can verify this by making transparencies of these two shares and putting them on top of
each other.

There are many constructions known of threshold schemes. We shall describe a
general construction for Each particular implementation of the construction will lead to its
own values for the expansion factor m and the threshold values and It makes use of two
matrices, and that will be used to distribute shares among the n participants for a white
resp. black pixel. These matrices are further characterized by two values r and and have to
satisfy the following properties:

VTS1: Matrix consists of n identical copies of row

VTS2: All row sums in are equal to r.

VTS3: Every pair of rows in has inner product

Secret Sharing Systems 335

The numbers m, r, and will be related. They can not take on any value.

Example 15.4 (Part 1)

Take and Let the matrices and be given by

Note that and satisfy properties VTS1-VTS3 for and

The matrices and define two classes of matrices:

To distribute the shares for a particular pixel, the trusted authority takes either or
depending on whether the pixel is white or black, permutes the columns in a random way and
gives the i-th row to participant i,

Participant j makes the j-th subpixel white or black, depending on whether the j-th coordinate of
his share is 0 or 1.

Example 15.4 (Part 2)

Suppose that the pixel that needs to be shared is black. The trusted authority selects a random
permutation P with the Mathematica package DiscreteMath'Permutations' and the function

RandomPermutation as follows

This gives rise to the following permutation matrix (we use the functions Table, Do, and

MatrixForm):

336 FUNDAMENTALS OF CRYPTOLOGY

Multiplying on the right with P gives the matrix

Putting the six subpixels in a array in rowwise order, we get the following four shares for

this black pixel:

The reader can easily check that any two of these shares, when put atop of each other, will give

five black subpixels and one white.

If the original pixel would have been white, we would have had

Secret Sharing Systems 337

This means that all four shares would have looked like

Since each row in both and has the same number of ones (namely r) and since and
are made from these by multiplying them on the right by all possible permutation matrices, it

follows that each vector of length m and weight r occurs equally likely as a share for a white pixel
as for a black pixel. This shows that our construction has as lower visual threshold value

Because is multiplied by a permutation matrix, it follows from VTS1 that when two
participants have shares of a white pixel and they combine them, they do not gain anything.

On the other hand, any two rows of have weight r by VTS2 and inner product by VTS3. This
remains so if is multiplied by a permutation matrix. It follows that any two shares of a black
pixel have entries equal to one. In the example above and giving
ones in any combination of two shares.We conclude that the construction by means of and

has a higher visual threshold value

We have proved the following general construction:

338 FUNDAMENTALS OF CRYPTOLOGY

By taking and in the above corollary, one gets the construction of Example 15.4.

Indeed, and The visual threshold

values are given by and

A disadvantage of the family of constructions described in the Corollary above, is the high
expansion factor m.

A reader who is familiar with the theory of block designs and t-designs may have guessed from
conditions VTS2 and VTS3 that these notions often play a role in the construction of a visual
threshold scheme. We shall explain one particular construction.

Let p be any prime number. We recall from Definition A.9 that an integer u, is called a
quadratic residue (QR) if the congruence relation (mod p) has a solution in How to
determine if a number u is a quadratic residue is explained in Section A.4. With Mathematica one
can do this with the function JacobiSvmbol, , which will output 1 if and only if M is a QR.

For instance, that has a solution follows from

The Jacobi symbol is normally denoted by or just by if there is no confusion about the

value of p. Actually, the value of is defined to be 0, when and when and u
is not QR.

Secret Sharing Systems 339

Proof:

Fixing a row index i of we see that takes on all values in It follows from
Theorem A.20 that each row in has weight

Now consider the matrix Matrix can be obtained from X by replacing all
its -1 -entries by 0. Consider two rows of X and let them be indexed by and Note that

This means that the matrix X is skew-symmetric and that the entry in row is equal to
minus the entry in row We conclude that, apart from a reordering of the coordinates, rows

and will look like

where the two rows may have been interchanged.

The inner product of rows and in is given by the value of a (since all in X are
replaced by 0 to get To find the values a, b, c, d we calculate first

The first equality follows from the substitution the second one follows from Theorem

A.22, since mod p.

Hence, we have the following relations:

These equations have a unique solution: and We conclude
that the inner product of two different rows in is

The Corollary is now a direct consequence of Construction 15.5.

340 FUNDAMENTALS OF CRYPTOLOGY

Example 15.5

Take The matrix can be made with the Mathematica functions JacobiSymbol, , If, and

Array as follows:

So, we have a (11, 2)-visual secret sharing scheme with expansion factor and threshold
values and

Secret Sharing Systems 341

15.6 Problems

Problem
Set up a Shamir (5, 3)-threshold scheme for the secret 15 in GF(17).
Show how participants 1,2 and 3 can recover the secret.
Show that for participants 1 and 2 together each element in GF(17) is an equally likely candidate for the
secret.

Problem
Consider a Shamir (7, 4)-threshold scheme in GF(23), where the participants 1,3,4, and 6 pool their shares
(1,13), (3, 19), (4, 19), and (6, 6) to retrieve the secret S. What will this secret be?
Suppose that participant 5 shows his share (5, 3). Why is one of these five people lying?
Let all also participants 1 and 8 contribute there share: (2, 4) and (8, 12). Determine the liar and the real
secret.

Problem
Construct a (7, 4)-threshold scheme over the finite field (see Theorem
B.15).
What are the shares of the participants for secret which stands for the field element a13?
Show in detail how participants 2, 4, 5, 7 recover S.

Problem 15.4
Consider the following scheme over

Give the matrix description of this scheme.
Prove that it is a secret sharing scheme for access structure with

and
What is the information rate of this scheme? Is it perfect? Is it ideal?

Problem 15.5
Make a visualization of a set of possible shares for a black pixel in (7, 2)-visual threshold scheme, as
constructed in Corollary 15.7.
What is the expansion factor of this scheme and what are its visual threshold values?

This page intentionally left blank.

Appendix A Elementary Number Theory

A.1 Introduction
Let denote the set of natural numbers, the set of integers, and the set of real numbers.

An integer d divides an integer n, if for some We shall denote this by If such
an integer k does not exist, d does not divide n. This will be denoted by

To check if the integer d divides the integer n, the Mathematica function IntegerO can be used
in the following way.

The Mathematica function Divisor gives a list of all divisors of a number n. For instance:

An integer is said to be prime, if 1 and p are its only positive divisors. With
we introduce a natural numbering of the set of prime numbers.

Valuable Mathematica functions in this context are Prime and PrimeO:

generating the 35-th prime number.

telling if the input (here 1234567) is prime.

344 APPENDICES

Proof: Suppose the contrary. Let be the set of all primes. Next, we observe that the
integer is not divisible by any of the primes Let n be the smallest
integer n that is not divisible by any of the primes It can not be a prime number,
because it is not in the list It follows that n has a non-trivial factor d. But then this
factor d is divisible by at least of the primes and so does n. A contradiction.

Between two consecutive primes there can be an arbitrary large gap of non-prime numbers. For
example, the elements in the sequence are divisible by respectively

Therefore none of them is prime.

In Mathematica, this function is denoted by PrimePi [n].

The next theorem [see [HarW45], p.91] , which we shall not prove, tells us something about the
relative frequency of the prime numbers in

Two important definitions are those of the greatest common divisor and least common multiple of
two integers.

Elementary Number Theory 345

To show the existence of gcd, we introduce the set

Let m denote the smallest element in U. We shall show that m satisfies (A.1) and (A.2). Clearly, if
f divides both a and b then f also divides m. So, m does satisfy (A.2). Now, write

(subtract or add m sufficiently often from (resp. to) a until the remainder r lies in
between 0 and). If then (since both a and m are in U). This contradicts the
assumption on the minimality of m. So, which means that m divides a. Similarly, m divides
b. So, m satisfies (A.1) too.

The uniqueness of gcd(a, b) follows from (A.1) and (A.2). Indeed, if d and both satisfy (A1)
and (A.2), it follows that and Since both d and are positive, it follows that

In a similar way, the existence and uniqueness of lcm[a, b]can be proved.

Alternative definitions of gcd(a, b) and 1cm[a, b] are:

346 APPENDICES

The functions GCD and LCM can be evaluated by Mathematica as follows:

If two integers have a gcd equal to 1, we say that they are coprime. A consequence of the above is
the following important theorem.

The following lemma seems too obvious to need a proof.

Proof: Since Theorem A.3 implies that for some integers x and y.
So, Since d divides a b, it follows that d also divides which equals b.

Proof: Use Lemma A.4 and induction on k.

With an induction argument the following theorem can now easily be proved.

Elementary Number Theory 347

Let in and in Then one easily checks that

The Mathematlca expression FactorInteger [n] gives the factorization of an integer n. The
outcome is a list of pairs. Each pair contains a prime divisor of n and its exponent.

348 APPENDICES

A.2 Euclid's Algorithm
Let a and b be two positive integers with Clearly, any divisor of a and b is a divisor of a and

and vice versa. So, Writing one has for the
same reason that If (and we may conclude that
otherwise we continue in the same way with a and r. So, we write have

etc., until one of the arguments indeed divides the other. This algorithm is
an extremely fast way of computing the gcd of two integers and it is known as Euclid's Algorithm.

With the Mathematica functions While, ,Floor , and Print, the above algorithm runs like this

If one also wants to find the coefficients u and v satisfying Theorem A.3, this algorithm can be
adapted as described below. Note that by leaving out the lines involving the integers ui and vi, this
(extended) algorithm reduces to the simple version above.

Elementary Number Theory 349

Again Mathematica knows this extended version of Euclid's Algorithm as a standard function. It is
called ExtendedGCD.

Note that in the example above one indeed has that

Proof of Algorithm A.8:

First observe that the elements form a strictly decreasing sequence of non-negative
integers. So the algorithm will terminate after at most b iterations. Later in this paragraph we shall
analyze how fast Euclid's Algorithm really is.

From the recurrence relation the algorithm it follows that

This proves the first equality in (A.8). We shall now prove that for all k,

Note that substitution of in this relation proves the second equality in (A.8).

For and the above relation holds by our choice of the initialization values for
and We now proceed by induction. It follows from the recurrence relations in the algorithm and
from the induction hypothesis, that

350 APPENDICES

Of course there is no need to keep all the previously calculated values of and stored in the
program. Only the last two of each together with will suffice. The reason for introducing them
in the algorithm was only to facilitate the readability of the proof above.

With the Mathematica functions While , Floor, and Print, the above algorithm runs like this:

We would like to conclude this section by saying something about the complexity of Euclid's
Algorithm. It may be clear that this algorithm is at it slowest if at each step the quotient qk has
value 1 (if possible). This is the case if for all and that

In other words, the smallest value of b (and arbitrary such that the evaluation of
gcd(a, b) takes steps is given by and where the sequence is the
famous sequence of Fibonacci numbers defined by

By letting Mathematica operate repeatedly on a list of two consecutive Fibonnacci numbers (the
function Nest is used for this), one gets the following method to evaluate these numbers (in the
example and are computed):

Elementary Number Theory 351

This could also have been done directly with the function Fibonacci.

The reader may check the above analysis in the following way.

Note that the GCDiterations algorithm above does not affect the values of a and b (contrary to our
implementation of the simple version of Euclid's algorithm). It also makes use of the Mathematica
function Mod that will be discussed in the next section.

352 APPENDICES

Plugging in in the defining recurrence relation of the Fibonacci numbers, so in

leads to the quadratic equation which has as zero's: Without

proof we state the following upperbound on the complexity of Euclid's Algorithm. The reader may
prove it with induction on b (distinguish the cases and

A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem

A.3.1 Congruences

The Mathematica function gives the unique integer such that

An easy test if the integers a and b are congruent of each other modulo m is given by the following
example:

Elementary Number Theory 353

The most commonly used complete residue systems modulo m are the sets {0, 1, ..., m – 1} and
{1, 2, ..., m – 1}. With the Mathematica functions one can generate these
systems.

Clearly the m integers form a complete residue system modulo m if and only if for
each pair one has that

The congruence relation modulo defines an equivalence relation (see Definition B.5) on A
complete residue system is just a set of representatives of the m equivalence classes.

Proof: Write and with It follows from for some
that Since it follows from Lemma A.4 that

i.e.

Proof: We use criterion (A.9). By Lemma A. 10, implies that
This in turn implies that

354 APPENDICES

A.3.2 Euler and Fermat

Often we shall only be interested in representatives of those residue classes modulo m, whose
elements have coprime with m. The number of these classes is denoted by the following function.

In Mathematica, this function can be evaluated with the EulerPhi [n]function. For instance

corresponding to the eight elements: 1, 2, ,4, 7, 8, 11, 13, and 14. Later on in this section, we see
how the function can be efficiently computed.

It is quite easy to see in an example which of the m integers in between 1 and m are contributing
to which term with When we have the divisors 1, 3, 5 and 15 of m. The eight
elements 1, 2, ,4, 7, 8, 11, 13, 14 all have gcd 1 with 15 (note that the four
elements 3, 6, 9, 12 have with 15, the two elements 5, 10 have and the
single element 0 has

Proof of Theorem A.12:

Let d divide m. By writing one sees immediately that the number of elements r,
with is equal to the number of integers i with and
therefore, this number is

On the other hand, gcd(r, m) divides n for each integer r, It follows that
This statement is equivalent to what needs to be proved.

Elementary Number Theory 355

The following non-standard Mathematica statement evaluates sums of function values f[d] over
all divisors d of a given integer m.

One can use this function to check Theorem A. 12.

A reduced residue system can be quite easily generated by means of the following newly defined
functions.

Analogously to Lemma A. 11 one has the following lemma.

356 APPENDICES

With the above lemma one can easily prove that the classes in a reduced residue system form a
multiplicative group (see Subsection B.1.1).

It is quite easy to check this theorem in concrete cases.

Exponentiations modulo some integer can be performed much faster in Mathematica with the
PowerMod [a, b, m] function, which reduces all intermediate results in the computation of
modulo m.:

Proof: Let be a reduced residue system modulo m. By Lemma A. 13

Elementary Number Theory 357

Since each factor is coprime with m, one can divide both hands by by Lemma A. 10.
This results in (mod m).

Let p be a prime number. Since every integer i, is coprime with p, it follows that
Euler's Theorem implies the next theorem for all values of a except for a's that are a

multiple of p. For these values, the statement in the next theorem is trivially satisfied.

This can easily be checked in individual cases with the Mathematica function PowerMod.

As we have just observed, for prime. Because exactly one of every p consecutive
integers is divisible by p, we have the following stronger result:

Proof: Let m and n be coprime and let and be reduced residue
systems modulo m resp. n. It suffices to show that the integers
and form a reduced residue system modulo m n. It is quite easy to check that the
integers and are all distinct modulo m n and that they are

coprime with m n. (Use Lemma A. 15 and formula (A.9)).

358 APPENDICES

It remains to verify that any integer k with is congruent to modulo m n
for some and

From Lemma A. 13 we know that integers i and j, and exist for which

and

This implies that both m and n divide Since it follows from (A.4)
and (A.7), that also m.n divides

Proof: Combine (A. 10) and Lemma A. 16.

;]

In Section A.5 we shall see how a direct counting argument also proves Theorem A. 17.

With the Mathematica functions Length and EulerPhi and the function CoPrimes (which

makes use of CoPrimeQ) defined above one can check Theorem A. 17 as follows:

A.3.3 Solving Linear Congruence Relations

The simplest congruence relation, that one may have to solve, is the single, linear congruence
relation

Elementary Number Theory 359

Proof: That gcd(a, m)/b is a necessary condition for (A.11) to have a solution x is trivial. We
shall now prove that it is also a sufficient condition.

Let and write and where By Lemma
A. 11, the congruence relation has a unique solution modulo Clearly, a
solution x of satisfies So, each solution x modulo m can be

written as Write Then for each

Hence, the numbers represent all the solutions modulo m of

The solution of can easily be found with the extended version of
Euclid's Algorithm. Indeed, from (see Theorem A.3), it follows that (mod m).
So, the solution x is given by b u (mod m). If one often writes for the unique
element u satisfying

Example A.1 (Method 1)

To solve we note that which indeed divides 26.

We first solve With the extended version of Euclid's Algorithm we find
So, and can be computed from

By the theorem above, has the numbers 14 and as solutions modulo 34.

Example A.2 (Method 2)

To solve we first check if gcd(123456789, 179424673)
divides 135798642. Next, we compute mod 179424673 and then compute

135798642 which gives 21562478 as solution .

Instead of using Euclid's Algorithm to compute mod 179424673, we can also use
Eider's Theorem. Indeed, implies that and thus that

360 APPENDICES

So, the number 172609538 is the multiplicative inverse of 123456789 modulo 179424673. The
solution x of the congruence relation is given by:

We can check this:

The Mathematica function PowerMod computes the multiplicative inverse of a number very
efficiently in the following way:

The Mathematica function Solve gives all the solutions of the congruence relation
if they do exist.

To get only the solutions, one can execute

Elementary Number Theory 361

The reader is invited to try

A.3.4 The Chinese Remainder Theorem

We shall now discuss the case that x has to satisfy several, linear congruence relations
simultaneously, say with for Dividing the i-th relation
by one gets as before the congruence relation with

By the proof of Theorem A. 18, a solution of this congruence relation is equivalent
to a solution of one of the d congruence relations In view of
this, we restrict our attention to the case that

Proof: Suppose that and both form a solution. Then By
Lemma A.4, mi divides for all It follows that Hence, if
the k congruence relations have a simultaneous solution, it will be unique modulo

On the other hand, since there are as many different values for x modulo as there are
possible k-tuples of reduced right hand sides there must be a one-to-one
correspondence between them.

362 APPENDICES

The proof above does not give an efficient algorithm to determine the solution of (A. 12). We shall
now explain how this can be done.

Let and let be the unique solution modulo

With Euclid's Algorithm is easy to determine. Indeed from (A.14) it follows that is a multiple
of defined by say for some The value of r follows from
(A. 13). Indeed, r is the solution of Hence

The numbers can be stored using at most k bits of memory space.

The solution of (A.12) is now given by

Example A.3

To solve

we rewrite these congruences as

which reduces to

i.e.

Next we compute the solutions of

Writing we find with Theorem A. 18, (or the
Solve function) that and thus that

We conclude that

Elementary Number Theory 363

To solve congruence relations with all the mutually prime with the
Chinese Remainder Theorem with Mathematica, we first read the package
NumberTheory `NumberTheoryFunctions`

Such a system can now be solved with the Mathematica function
ChineseRemainderTheorem that is available in the above package. We demonstrate this by
determining and in the above example.

When considering the system of congruence relations where the

are relatively prime and where for it is quite easy for Mathematica to
reduce this system to the equivalent system which can be solved
with the Chinese Remainder Theorem function. We use the functions PowerMod and Mod for this
reduction. They operate equally well on vectors (coordinatewise) as on numbers.

We demonstrate this with the parameters of the example above.

364 APPENDICES

A.4 Quadratic Residues
Let p be an odd prime. The quadratic congruence relation

can be simplified by dividing the congruence relation by a followed by the
substitution In this way, reduces to a quadratic
congruence relation of the type:

The Legendre symbol is a special case of the following function.

The Jacobi symbol (and a fortiori the Legendre symbol) can be evaluated with the standard
Mathematica function Jacobi Symbol [u, m]. So, we can check if 12 is a quadratic residue
modulo 13 (indeed by means of the Jacobi Symbol[12, 13] which should give
value 1.

We want to derive some properties of the Legendre symbol.

Let Then, also The polynomial has at most two zeros

Elementary Number Theory 365

in GF(p) (see Theorem B.15), so modulo p there can not be more than two different solutions to
It follows that the quadratic residues modulo p are given by the integers

or, alternatively, by the integers We conclude that there are exactly

QR's and NQR's. This proves the first of the following two theorems.

The reader can check the above theorem in concrete examples by means of the following two
Mathematica functions.

Proof: This theorem will be a trivial consequence of Theorem A.23 later on. We shall present here
a more elementary proof.

If p divides u or v the assertion is trivial, because both hands are equal to zero. The proof in case
that p does not divide u or v is split up in three cases.

Case 1: u and v are both QR.

366 APPENDICES

Then and for some integers a and b. It follows that
So u.v is QR.

Case 2: Exactly one of u and v is QR, say u is QR and v is NQR.

Suppose that also u.v is QR. Then there exist integers a and b such that and
Since it follows that A contradiction!

Case 3: Both u and v are NQR.

From Lemma A.11 we know that i . u, runs through all non-zero elements
modulo p. For the values of i for which i is QR, we have by Case 2 that i.u is NQR. So, for
the values of i for which i is NQR, it follows that i.u is QR. So u.v is QR.

Although the next theorem will never be used in this textbook, we do mention it, because it is
often needed in related areas in Discrete Mathematics.

Proof: If p divides v, the statement is trivial. When p does not divide v, one has by Theorem A.21
and Theorem A.20 that

Let u be QR, say By Format's Theorem So, the

QR's are zero of the polynomial over GF(p). Since a polynomial of degree over
GF(p) has at most different zeros in GF(p) (see Theorem B. 15), one has in GF(p):

It also follows that if u is NQR. Since by Fermat's Theorem and

since has only 1 and –1 as roots, it follows that if u is NQR.
This proves the following theorem for all u coprime with p. For the theorem is trivially true.

Elementary Number Theory 367

Proof: if and only if

Another value of the Legendre symbol that we shall need later on is

Proof:

Dividing both hands in the above relation by yields

The assertion now follows from Theorem A.23.

We recall the definition of the Jacobi symbol in terms of the Legendre symbol

368 APPENDICES

Proof: The first two relations hold for the Legendre symbol and, by (A.17), also for the Jacobi
symbol. The third relation is a direct consequence of (A.17).

To see that the fourth relation is a direct consequence of (A. 17) and Corollary A.24, it suffices to

observe that a product of an odd number of integers, each congruent to 3 modulo 4, is also
congruent to 3 modulo 4, while for an even number the product will be 1 modulo 4. The proof of
the last relation goes analogously (now use Theorem A.25).

One more relation is needed to be able to compute fast. We shall not give its proof, because
the theory goes beyond the scope of this book. The interested reader is referred to Theorem 99 in
[HarW45] or Theorem 7.2.1 in [Shap83].

With the relations in Theorem A.25, Theorem A.26, and Theorem A.27 one can evaluate the
Jacobi symbol very quickly.

Example A.4

It should be easy for the reader to verify that the above method has roughly the same complexity as
Euclid's Algorithm.

Elementary Number Theory 369

Of course we could have evaluated directly with Mathematica, as we have seen before.

A.5 Continued Fractions
Quite often one wants to approximate a real number by means of a rational number. For instance,
many people use 22/7 as an approximation of A better approximation of is already given by
333/106 and again better is 355/113. One has to increase the denominator to 33102 to get the next
improvement.

It is the theory of continued fractions that explains how to get such good approximations.

370 APPENDICES

Clearly, each finite continued fraction represents a rational number. One can find it by simplifying
the continued fraction step by step, starting with

etc.

In Mathematica this can be achieved with the function Normal.

We shall now show that the opposite is also true: each rational number has a finite continued
fraction.

Proof: Let represent a rational number. We apply the simple version of Euclid's
Algorithm (Alg. A.7) to the pair (a, b), so we put and compute recursively

(and thus for some integer m.
Then

We conclude that a/b has as continued fraction.

Elementary Number Theory 371

It is important to observe that the representation of a rational number as a finite simple continued
fraction, where all the are positive, is not completely unique. Although the manner in
which the qi' s are calculated with the simple version of Euclid's Algorithm (see proof above)
gives a unique value of the it is clear that in the last step we have since

As the last term in the expansion is a positive integer, and not equal to one, we can therefore
rewrite the last term as follows:

This shows that has the same value as

The last term in a continued fraction can be chosen in such a way as to make the number of terms
in the expansion either even or odd, if that would be convenient.

Formula (A. 18) suggests the following way of computing a continued fraction of a number

I

Example A.5

To get the next term, we compute

We continue with

372 APPENDICES

We conclude that and thus that the continued fraction is given by [1, 4, 2]. We can check
this quite easily:

To let Mathematica compute the continued fraction of a number, first the package

NumberTheory'ContinuedFractions has to be loaded.

To find the continued fraction of a rational number, one can use the function
ContinuedFraction.

If is not rational, one has to include the number of terms that one wants to see.

Elementary Number Theory 373

To express such a continued fraction as a regular fraction, one can use the Mathematica function
Normal again.

If a continued fraction is given in the form one gets the regular continued fraction
by means of the function ContinuedFractionForm. The reader should know that in
Mathematica the numbering of the indices starts with 1, 2, etc.

To obtain the continued fraction of a number a in the form one can just appends
[[1]] to the function ContinuedFraction[n].

These convergents can be quite easily evaluated with the functions Table, Normal, Take,
ContinuedFractionForm. and Length.

374 APPENDICES

Each convergent, being a rational number, can be written as The values of and can be
found with the Mathematica functions Numerator and Denominator.

The next theorem gives a nice relation between a continued fraction and its convergents. To be

able to shorten the proof, we shall relax our usual restriction of the integrality of the

Proof: The proof is by induction on k.

For we have so indeed and

For we have so indeed and

Assume that the theorem has been proved up to a certain value of k. So,

Elementary Number Theory 375

Now substitute above. Then

A small result, that we need later, is the inequality

where is the k-th Fibonnaci number, defined by and the recurrence relation
The inequality follows with an easy induction argument from

and the recurrence relation in which (use

Proof: The proof is again by induction on k. For we have by Theorem A.30 that

To prove the step from k to we use the recurrence relation in Theorem A.30:

Proof: This is an immediate consequence of Indeed, each number
dividing and must also divide –1.

376 APPENDICES

Proof: By Lemma A.31 and Theorem A.30

This proves (A.20) and (A.21). That the even convergents form a strictly increasing sequence
follows from (A.21), which implies that (the are positive). For the same
reason, the odd convergents are strictly decreasing.

To show that each even convergent, say is less that any odd convergent, say we first
observe that by (A.20). We combine this with the above to get

Finally, by (A. 19) and (A.20), for

thus, the difference between two consecutive convergents tends to zero as k tends to infinity. This
shows that the limit of the even convergents must be the same as the limit of the odd convergents.

Elementary Number Theory 377

Example A.6

Below we have listed the first 10 convergents of in their natural ordering.

The next two theorems will be stated without their proofs. These can be found in any introduction
to continued fractions, e.g. [Rose84], but the arguments are too technical for our purposes.

For instance, since is a convergent of we now know that only rationals with a denominator
greater than 113 may lie closer to than does.

378 APPENDICES

This theorem says that a rational number r/ s that lies at distance at most from a number
will appear as convergent in the continued fraction of that number.

A.6 Möbius Inversion Formula, the Principle of Inclusion and
Exclusion

A.6.1 Möbius Inversion Formula

Often in Discrete Mathematics a function f is defined in terms of another function, say g. The
question is, how g can be expressed in terms of f. With the theory of partially ordered sets and the
(generalized) Möbius Inversion Formula one can frequently solve this problem (see Chapter IV in
[Aign79]). In this section we shall discuss two important special cases.They both follow from the
theory, mentioned above, but it turns out that they can also be proved directly.

Often we shall need an explicit factorization of an integer n. We no longer want the strict ordering
of the prime numbers given by etc.. However, different subscripts will still denote
different prime numbers.

In other words, is the multiplicative function satisfying and
for any prime p. Mathematica has the standard function MoebiusMu [n] to evaluate

The Möbius function is defined in this peculiar way to have the following property.

I

Elementary Number Theory 379

Proof: For the assertion is trivial. For we write as above
Then and thus

The reader may want to check the above lemma by means of:

Proof: Let For each d with we write Then
which by Lemma A.36 is 1 for (i.e. and is 0 for

Proof: By the definition of g(n) and Lemma A.37

380 APPENDICES

•

Proof: Substitute and in the Möbius Inversion Formula.

Example A.7

From Theorem A.12 we know that Euler's Totient Function satisfies

It follows from the Möbius Inversion Formula (Thm. A.38) that for

This proves Theorem A.17 in a different way.

Theorem B.17 in Section B.3 will show a nice application of the Multiplicative Möbius Inversion
Formula.

A.6.2 The Principle of Inclusion and Exclusion

We shall conclude this section with another useful principle. To develop some intuition, consider
the integers in between 0 and p.q–1, where p and q are different primes. We want to evaluate

directly, i.e. we want to count the number of integers i, that are coprime with
p.q. Of course, this number is p q minus the number of integers i, that have a
nontrivial factor in common with p.q, i.e. that are divisible by p or q. There are q multiples of p in
the range and similarly p multiples of q. However, one of the multiples of p is
also a multiple of q, namely 0 itself. We conclude that

as it should be according to Theorem A. 17.

Elementary Number Theory 381

Proof: An element s in S that satisfies exactly r of the k properties is counted

times in the right hand side, just as in the left hand side.

We leave it as an exercise to the reader to prove Theorem A.17 directly from the definition of the
Euler Totient Function and the above principle (Hint: Let denote the prime numbers
that divide n, take and say that element has property if s is
divisible by

382 APPENDICES

A.7 Problems

Problem
Let be the prime factorization of an integer n. How many different divisors does n have?
For check your answer with the Mathematica function DivisorSigma [k,n] which computes

Problem
Compute u and v such that

Problem A.3
Prove that for every positive integer a. (Hint: reduce the pair {m, n},

to and then follow the simple version of Euclid's Algorithm).

Problem
a) Check that 563 is a prime number.
b) Use Euclid's algorithm to compute
c) Solve

Problem A.5
Find the solutions of Note that and use the results of Problem
A. 4.

Problem A.6
a) Determine Check the result with the EulerPhi function.
b) Compute the two least significant digits of without using the computer.

Problem
Solve the system of congruence relations (hint: use Theorem A.19):

Problem
Determine the Jacobi Symbol (7531, 3465).

Problem A.9
Use the Chinese Remainder Theorem to solve (Hint: first reduce it to several
systems of linear congruence relations).
How many different solutions are there modulo 143?

Problem A.10
Determine the first five terms of the continued fraction of f, the largest zero of Determine
also the first five convergents.
What do you conjecture about the other terms in the continued fraction of f? Prove this conjecture (hint:
use Algorithm A.29 and the definition of f).

Problem A.ll
Prove Theorem A.17 with the Principle of Inclusion and Exclusion (Thm. A.40) and the definition of
the Euler function

Appendix B Finite Fields
Introductory Remarks

Most readers will be familiar with the algebraic structure of the sets of rational, real, and complex
numbers. These sets have all the properties with respect to addition and multiplication that one
may want them to have. They are called fields.

In discrete mathematics, in particular in the context of cryptology and coding theory, fields of
finite cardinality play a crucial role. In this chapter, an introduction will be given to the theory of

finite fields.

The outline of this is as follows:

In Section B.1, we recapitulate the basic definitions and properties of abstract algebra and of linear
algebra. In particular, we shall show that the set of integers modulo a prime number from a finite
field. In Section B.2, a general construction of finite fields will be given. In Section B.3 a formula
is derived for the number of irreducible polynomials over a given finite field. This shows that
finite fields exist whenever the size is a power of a prime. An analysis of the structure of finite
fields will be given in Section B.4. In particular, it will be shown that a finite field of size q exists
if and only if q is a prime power. Moreover, such a field is unique, its additive group has the
structure of a vector space and its multiplicative group has a cyclic structure.

B.1 Algebra
Although we assume that the reader is already familiar with all notions discussed in this and the
next subsection, we offer this summary as a service to the reader.

B.1.1 Abstract Algebra

Set operations

Let S be a nonempty set. An operation * defined on 5 is a mapping from into S. The image of
the pair (s, t) under * is denoted by s*t. Examples of operations are the addition + in and the

multiplication in The operation * is called commutative if for all s and t in S:

An element e in S that satisfies

384 APPENDICES

will be called a unit-element of (S, *).

If (S ,*) has a unit-element, it will be unique. Indeed, suppose that e and both satisfy S.1. Then,
by using S.2 twice one gets

Example B.1

Take S as the set of integers and + (i.e. addition) as operation. This operation is commutative and

has 0 as unit-element.

Example B.2

Let S be the set of real matrices with matrix multiplication as operation. This operation is not
commutative, e.g.

On the other hand, this set S does have a unit-element, namely Compute for instance:

Group

Property Gl tells us that there is no need to write brackets in strings like g*h*k. The element h in
Property G3 is unique. Indeed, if h and both satisfy G3, then

In the same way one can show that for each
the equations

Finite Fields 385

and

have a unique solution in G, namely

resp.

The reader easily checks that in Example B.1 shows a commutative group. Other well-
known examples of commutative groups are: and

Example B.2 does not yield a group because not all matrices have an inverse (e.g. the all-zero
matrix).

Let (G, *) be a group and H a subset of G with the property that (H, *) is also a group, then H will
be called a subgroup of G. It can be shown (see Problem B.3) that H is a subgroup of G if and only
if

for every

Let and define Then is a commutative subgroup of
as one can easily check.

Example B.3

Let and define as the reduced residue system

The cardinality of set by Definition A.6.

It follows from Lemma A.13 that the product of two elements in can again be represented by an

element in Clearly, 1 is en element of which is the unit element under this multiplication. That

each element in has a multiplicative inverse follows from Theorem A. 18 (note that with one

has that and thus the equivalence relation has a unique solution).

We conclude that the multiplicative group is a commutative group of cardinality

Commutative groups are also called Abelian groups. Quite often, Abelian groups are represented
in an additive way: the operation is denoted by a plus sign and the unit-element is called the zero
element (denoted with a zero). An abelian group in this notation is called an additive group.

The most commonly used additive group in this introduction will be but in Chapter 10, we
shall see another example (see Theorem 10.2).

We shall now consider the more interesting situation that two operations are defined on a set. The
first will be denoted by the second by g .h.

386 APPENDICES

Ring

I

From now on we shall often simply write g h instead of g . h. The (additive) inverse of an element
g in the group will simply be denoted by just as we write 2g for and 3g for

Note that 0 really behaves like a zero-element, because for every ~ one has that
and similarly that

Suppose that the operation • is commutative on Then the ring is called
commutative. Examples of commutative rings are but also

when

Let be a ring and S a subset of R with the property that is itself a ring, then 5

will be called a subring of R. Note that is a subring of which in turn is a
subring of

Ideal

Let It is easy to check that any integer multiple of an m-tuple, is also an m-tuple. It

follows that is an ideal in

Now suppose that has a unit-element, say e, then some elements in R may have an inverse in
R i.e. an element b such that This inverse, which is again unique, is called the
multiplicative inverse of a and will be denoted by . Clearly, the element 0 will not have a
multiplicative inverse. Indeed, suppose that for some Then for each one has
that

It follows from the above that when can not be a group. However, may
very well have the structure of a group.

Finite Fields 387

Field

Unlike some rings, a field can not have so-called zero-divisors, i.e. elements f and g, both unequal
to 0, whose product f g is equal to 0. Indeed, suppose that f g = 0 and Then,

so every element in F is zero.

If a subring of a field has the structure of a field, we shall call it a subfield of

Examples of fields are the rationals the reals and the complex numbers
each one being a subfield of the next one.

We speak of a finite group ring or field of order n, if G, resp. R, and
F are finite sets of cardinality n. For finite fields it is customary to denote the cardinality by q.

In this chapter, we shall study the structure of finite fields. It will turn out that finite fields of order
q only exist when q is a prime power. Moreover, these finite fields are essentially unique for a
fixed prime power q. This justifies the widely accepted notation or GF(q) (where GF stands for
Galois Field after the Frenchman Galois) for a finite field of order q. Examples of finite fields will
follow in Section B.2.

Analogously to commutative rings, we define a commutative field to be a field, for
which is commutative. The following theorem will not be proved, but is very important
[Cohn77, p. 196].

Equivalence Relations

388 APPENDICES

Let U be the set of straight lines in the (Euclidean) plane. Then "being parallel or equal" defines an
equivalence relation.

In Section A.3 we have seen another example. There and for a fixed the relation
was defined by if and only if m divides a – b.

Let be an equivalence relation defined on a set U. A non-empty subset W of U is called an
equivalence class, if

It follows from the properties above, that an equivalence class consists of all elements in U, that
are in relation with a fixed element in U. Clearly, the various equivalence classes of U form a
partition of U. The equivalence class containing a particular element w, will be denoted by < w >.

Let (R, + , ·) be a commutative ring with (multiplicative) unit-element e and let (S, + , ·) be an
ideal in (R, + , ·). We define a relation on R by

The reader can easily verify that (B.1) defines an equivalence relation. Let R/S (read: R modulo S)
denote the set of equivalence classes. On R/S we define two operations by:

It is easy to verify that these definitions are independent of the particular choice of the elements a
and b in the equivalence class < a > and < b > . We leave it as an exercise to the reader to prove
the following theorem.

The ring (R /S , + , ·) is called a residue class ring of R modulo S. In the next section we will see
applications of Theorem B.2.

Finite Fields 389

Cyclic Groups

Before we conclude this section, there is one more topic that needs to be discussed. Let (G,) be a
finite group and let a be an element in denote a a, a a a, etc. Consider the
sequence of elements in G. Since G is finite, there exists a unique integer n such that
the elements are all different, while for some It follows
that , etc.. We shall now show that j = 0, i.e. that Suppose that j > 0. Then it
would follow from that . However, this contradicts our definition of n. We
conclude that the n elements are all distinct and that

It is now clear that the elements form a subgroup H in G. Such a (sub)group H
is called a cyclic subgroup of order n. We say that the element a generates H and that a has
(multiplicative) order n.

Since all elements in a cyclic group are a power of the same element, it follows that a cyclic group
is commutative.

Proof:

It follows that an element a in G has order d if and only if and for every prime
divisor p of d.

To find the multiplicative order of an integer a in (so gcd(a, m) = 1), it follows from Euler’s
Theorem (Thm. A. 14) and Lemma B.3 that one only has to check the divisors of The
following module does this in an efficient way. It makes use of the Mathematica functions GCD,
Divisors, EulerPhi, and PowerMod.

390 APPENDICES

Let m be the order of a. Since is an integer, it follows that

From Lemma B.3, we conclude that m divides n/gcd (k, n). To prove the converse, we observe that
Lemma B.3 implies that n divides k m. Hence, n/gcd(k, n) divides m.

Continuing with the same parameters as above, we have for instance:

Analogous to (B.1), one can define for every subgroup (H, ·) of a finite group (G, ·) an
equivalence relation ~ by

The equivalence classes are of the form

as one can easily check. They all have the same cardinality as H. It follows that the number of
equivalence classes is As a consequence divides This proves the following theorem.

Proof:

Finite Fields 391

B.1.2 Linear Algebra

Vector Spaces and Subspaces

Let denote an arbitrary field.

It is customary to call the elements of a vector space vectors although they need not be vectors in
the heuristic sense.

Examples of vector spaces over are:

i) the set of n-tuples over

ii) the set of polynomials over of degree less than n.

Often, it is clear from the context over which field a vector space is defined. In that case, the field
will no longer be mentioned.

In order to determine whether a given subset of a vector space is a subspace, it is not necessary to
check all eight vector space properties. For instance property 1 holds for all because it
is satisfied a fortiori by all elements in V. We have

Every vector space V has two so-called trivial subspaces: {o} and V.

392 APPENDICES

Let V be a vector space and let be elements of V . An expression of the type

is called a linear combination of

The set of all linear combinations of is a subspace of V, which is called the subspace
spanned by and will be denoted by

Linear Independence, Basis and Dimension

Probably the most important concept when dealing with vector spaces is the concept of linear
(in)dependency.

Suppose that the set of vectors is linearly dependent. Then, there is a linear
combination where at least one This enables us to write

Thus, we get a different description of
linear dependency.

This implies in particular that any set of vectors that includes the zero-vector o is linearly
dependent.

Now let W be a subspace of a vector space V, and let

In particular, if W = V we have a basis for the vector space V itself.

For instance, if the following set of vectors is a basis for V:

Finite Fields 393

This basis is usually called the standard basis.

In the definition we considered only a finite basis. Not every vector space is spanned by a finite
number of vectors. Take for example and V is the vector space of all real-valued functions
on .

It can be proved that in every vector space a basis exists. Here we will be concerned only with
vector spaces which are spanned by a finite number of vectors. The following theorem is very
important.

A basis for a vector space is not uniquely determined; however, in the case of a finite basis the
number of vectors in a basis is uniquely determined.

Inner Product, Orthogonality

Let V be a vector space over the field .

Bilinear means that the following properties should hold for all

This is a very general definition of an inner product. If in particular or usually
additional properties are required. For instance, in real vector spaces one wants (u, u) to be positive
definite, i.e. (u, u) > 0 for all vectors In this case, the length or norm of u is defined by

and often denoted by

If then the standard inner product is defined by

394 APPENDICES

If the field is finite then there may exist nonzero vectors u such that (u,u) = 0. For instance, in
the vector space where with standard inner product, any vector u with an even
number of nonzero coordinates is orthogonal to itself.

Let U be a subspace of V. In many applications it is useful to consider the set of all vectors
orthogonal to U.

In formula:

The following properties hold for subspaces U and W of a finite dimensional vector space V.

In the case where with standard inner product, we have a simple representation of Let

have:

where the superscript T denotes the transpose of a vector, i.e. the column vector with the same
coordinates as v has.

be a basis for U, and let A be the m × n-matrix with rows Then we

Finite Fields 395

B.2 Constructions
The set of integers modulo that was introduced in Section A.3, can also be
described as the residue class ring (see Theorem B.2), since is an ideal
in the commutative ring This residue class ring is commutative and has < 1 > as
multiplicative unit-element. The ring is often denoted by

Proof:

Suppose that m is composite, say and Then
while and So the ring

has zero-divisors and thus it can not he a field.

Now suppose that m is prime (See also the Example B.3). We have to prove that for every
equivalence class , there exists an equivalence class < b >, such that

For this it is sufficient to show that for any a with there exists an
element b, such that (mod m).This however follows from Lemma A. 13 or Theorem A. 18.

For convenience, one often leaves out the brackets around the representatives of equivalence
classes, therefore with a one really means

Later we shall see that for p prime, is essentially the only finite field with p elements.
We shall denote it by In information and communication theory one often works with

which just consists of the elements 0 and 1.

We are now going to construct finite fields

Let be a commutative field (not necessarily finite) and let be the set of polynomials
over F, i.e. the set of expressions

where and The largest value of i for which is called the degree of

Addition and multiplication of polynomials is defined in the natural way.

396 APPENDICES

Example B.4

Let and consider and Then and

In Mathematica we can perform these calculations the function PolynomialMod as follows

It is now straightforward to verify the next theorem.

Analogously to the concepts defined in Appendix A for the set of integers, one can define the
following notions in divisibil i ty, reducibility (if a polynomial can be written as the
product of two polynomials of lower degree), irreducibility (which is the analog of primality), gcd,
1cm, the unique factorization theorem (the analog of the fundamental theorem in number theory),
Euclid's Algorithm, congruence relations, etc. We leave the details to the reader.

The following Mathematica functions can be helpful here: PolynomialMod (which also reduces
one polynomial modulo another), Factor, PolynomialGCD, PolynomialLCM. Their usage
is demonstrated in the following examples:

Finite Fields 397

With the package Algebra ̀ PolynomialExtendedGCD` one can use the Mathematica function
PolynomialExtendedGCD:

One particular consequence of Theorem B. 12 is stated in the following theorem and its corollary.

The solution of the above congruence relation can again be found with
PolynomialExtendedGCD. Indeed, from

we can conclude that the congruence relation has the solution
as one can easily check with:

398 APPENDICES

Another important property of F[x] is given in the following theorem.

Proof: For n = 1 the statement is trivial. We proceed by induction on n.

Let be a zero of a polynomial f (x) of degree n over F (if no such u exists, there is nothing to
prove). Write degree It follows that r(x) is a
constant, say r. Substitution of x = u in the relation above shows that t = 0. We conclude that

Now q(x) has degree n – 1, thus, by the induction hypothesis, q(x) has at most n–1 zeros in F.
Since a field can not have zero-divisors, we know that each zero of f (x) is either a divisor of x– u
or a zero of q(x). It follows that f(x) has at most n zeros in F.

Let s(x) be a non-zero polynomial in F[x]. It is easy to check that the set

forms an ideal in the ring We denote this ideal by (s(x)) and say that s(x) generates
the ideal (s(x)).

Conversely, let be any ideal in with Further, let s(x) be a
polynomial of lowest degree in S. Take any other polynomial f(x) in S and write

degree degree With properties I and Rl, we then have that
also r(x) is also an element of S. From our assumption on s(x) we conclude that r(x) = 0 and thus
that s(x) divides f(x).

It follows from the above discussion that any ideal in the ring is generated by a single
element! A ring with this property is called a principal ideal ring.

From now on we shall restrict ourselves to finite fields. Up to now we have only seen examples of
finite fields with p prime.

Let of degree n. We shall say that f is a p-ary polynomial. Let f (x) be the ideal
generated by f(x). From Theorem B.2 we know that is a commutative ring
with unit-element It contains elements, represented by the p-ary polynomials of degree

Finite Fields 399

Proof: (Compare with Theorem B.11 and its proof.)

Suppose that with degree and degree Then
while and

is a ring with zero-divisors. Hence it can not be a
field.

On the other hand, if f(x) is irreducible, any non-zero polynomial a(x) of degree will have
a multiplicative inverse u(x) modulo f(x) by Corollary B.14. For this u(x) one has

It follows that is a field. We know already that
it contains

Example B.5

Let q = 2. The field, consists of the two elements 0 and I. Let

is a finite field with elements. These eight elements can be represented by
the eight binary polynomials of degree Addition and multiplication have to be performed modulo

For instance

Thus, is the multiplicative inverse of in the field

In Mathematica one can find an irreducible polynomial over

prime, with the function IrreduciblePolynomial for which the package
Algebra `FiniteFields` needs to be loaded first.

In Mathematica the field defined by the p-ary polynomial f(x) of degree can be described by
Addition, subtraction, multiplication, and division can be performed as

follows:

400 APPENDICES

or as follows:

Two questions that arise naturally at this moment are:

1) Does an irreducible, p-ary polynomial f (x) of degree n exist for every prime number p and
every integer n? If so, then we have proved the existence of finite fields for all prime powers q

2) Do other finite fields exist?

The first question gets an affirmative answer in the next section. The second question gets a
negative answer in Section B.4.

Finite Fields 401

B.3 The Number of Irreducible Polynomials over GF(q)
In this section we want to count the number of irreducible polynomials over a finite field
Clearly, if f(x) is irreducible, then so is for Also the ideals (f(x)) and
are the same, when therefore, we shall only count so-called monic polynomials of
degree n, i.e. polynomials, whose leading coefficient (the coefficient of xn) is equal to 1.

To develop some intuition for our counting problem, we start with a brute force attack for the
special case that We shall try therefore to determine I(n).

There are only two binary polynomials of degree 1, namely

By definition, both are irreducible. Thus, I(1) = 2.

By taking all possible products of one finds three reducible polynomials of degree 2:

and

Since there are binary polynomials of degree 2, it follows that there exists only one
irreducible

polynomial of degree 2, namely

So,

Each 3-rd degree, reducible, binary polynomial can be written as a product of the lower degree
irreducible polynomials and In this way, one gets

and .Since there are binary polynomials of degree 3, we
conclude that there are

irreducible, binary polynomials of degree 3.

The two binary, irreducible polynomials of degree 3 are:

and

At this moment it is important to note that for the counting arguments above, we do not have to
know the actual form of the lower degree, irreducible polynomials. We only have to know how
many there are of a

certain degree.

402 APPENDICES

Indeed, to find I(4) we can count the number of reducible, 4-th degree polynomials as follows:

number
product of four 1 - st degree polynomials 5

- product of one 2 - nd degree polynomial and
two 1 - st degree polynomials

product of two 2 - nd degree polynomials 1

- product of one 3 - rd degree polynomial and
one 1 - st degree polynomial

total = 13

It follows that there are irreducible, binary polynomials of degree 4. So, I(4) = 3.

With some additional work one can find these three irreducible, 4-th degree polynomials:

and

Continuing in this way one finds with the necessary perseverance and precision that I(5) = 6 and
I(6) = 9, etc.

The above method does not lead to a proof that for all let alone to an
approximation of the actual value of I(n).

We start all over again.

Let be an enumeration of all q-ary, irreducible, monic polynomials, such that
the degrees form a non-decreasing sequence. So, the first polynomials have degree 1, the next

polynomials have degree 2, etc..

Any q-ary, monic polynomial f(x) has a unique factorization of the form

where only finitely many are unequal to zero. It follows that f(x) can uniquely be represented
by the sequence Let be the degree of and let n be the degree of f(x). Then

So, the polynomial f(x) is in a unique correspondence with the term

in the expression

i.e. in

Finite Fields 403

Since there are exactly q-ary, monic polynomials of degree n, the above proves that

or equivalently

From our particular ordering we know that for exactly values of i, thus, the above
relation can be rewritten as:

Now take the logarithm of both sides and differentiate the outcome. One obtains:

Multiplying both sides with z yields

Comparing the coefficients of z on both sides gives the relation

Proof: Apply the Möbius Inversion Formula (Thm. A.38) to (B.5).

We can evaluate quite easily in Mathematica (see DivisorSum and MoebiusMu)

It is now quite easy to determine the asymptotic behavior of and to prove that its value is
always positive.

First of all, since all monic, polynomials of degree one are irreducible by definition. It
follows from (B.5) that

404 APPENDICES

Hence

On the other hand (B.5) and (B.6) imply that

Together with (B.6) this proves the first statement in the following theorem.

Proof: That follows directly for For n = 1 and 2, this follows from Theorem B.17,

but also directly from and as one can easily prove

directly.

The reader may want to verify this approximation for some particular cases with the following
Mathematica input:

It follows from this corollary that a randomly selected, monic polynomial of degree n is irreducible
with a probability of about 1/n. With the Mathematica function Factor one can easily check if a
particular polynomial is irreducible or not.

Finite Fields 405

B.4 The Structure of Finite Fields

B.4.1 The Cyclic Structure of a Finite Field

It follows from Theorem B.11, Theorem B.16 and Theorem B.18, that finite fields exist
for all prime powers q. If q is a prime number can be represented by the integers modulo p. If q
is a power of a prime, say can be represented by p-ary polynomials modulo an
irreducible polynomial of degree m. We state the above as a theorem.

Later in this section we shall see that every finite field can be described by the construction of
Theorem B.16. But first we shall prove an extremely nice property of finite fields, namely that
their multiplicative group is cyclic! By Theorem B.5, we know that every non-zero element in
has a multiplicative order dividing q – 1.

Proof: By Theorem B.5, every non-zero element in has a multiplicative order d, which divides
q – 1. On the other hand, suppose that contains an element of order say Then
all d distinct powers of are a zero of It follows from Theorem B. 15 that every d-th root of
unity in is a power of It follows from Lemma B.4 that under the assumption that contains
an element of order d, will contain exactly elements of order d, namely with
GCD[i, d] = 1.

406 APPENDICES

Let a(d) be the number of elements of order d in Then the above implies that

and also that

On the other hand, Theorem A. 12 states that So, we conclude that

In particular, which means that contains primitive elements and that
is a cyclic group.

To check if a particular element in GF(q) has order it suffices to check that
and that for every prime divisor of d. See also the discussion below Lemma B.3.

To find a primitive element in prime, the Mathematica function PowerList can be used.
It finds a primitive element in and generates all its powers (starting with the 0-th). The second
element in this list is the primitive element itself. First, the package Algebra `FiniteFieids`
needs to be loaded.

Problems B.6 and B.10 indicate an efficient way (due to Gauss) to find a primitive element in a
finite field.

Finite Fields 407

Proof: For the statement is trivially true. By Theorem B.5 or Theorem B.21, any
has an order dividing q – 1. So, it satisfies and thus also Since the
proof now follows with an easy induction argument.

•

Proof: Every element in is a zero of by Corollary B.22, therefore, the right hand side
above divides the left hand side. Equality now follows because the expressions on both sides are
monic and of the same degree.

Corollary B.23 will be used later as a tool to check if a certain element in fields containing is
actually in itself.

Example B.6

Consider the finite field with It contains elements,
which can be represented by binary polynomials of degree The element x, representing the class

is not a primitive element, since So x has order 5 instead of
15. With Mathematica this can be checked as follows:

408 APPENDICES

The element is primitive element (its order is 15), as one can see in Table B.1. It is also easy

to verify. Indeed, has an order dividing 15. So, one only has to check that raised to

the power 3 or 5 does not reduce to 1 modulo f(x).

Multiplication is easy to perform with Table B.I. For instance

The element is a zero of the irreducible polynomial since

Therefore, in with the element x is a primitive element. See

Table B.2.

Finite Fields 409

B.4.2 The Cardinality of a Finite Field

Consider the elements e, 2 e, 3 e, etc. in Since is finite, not all these elements can be
different. Also, if i e = j e, with also (j – i) e = 0. These observations justify the following
definition.

410 APPENDICES

Proof: Suppose that the characteristic c can be written as c' c", where and . Then
while and So, c' e and c" e are zero-divisors. This contradicts

the assumption that is a field.

In words, two fields are isomorphic if after renaming the elements in them they behave exactly the
same with respect to the operations addition and multiplication.

Proof: The subset forms a subfield of which is isomorphic to
under the isomorphism

In view of the lemma above, we can and shall from now on identify the subfield in of

Conversely, the field is called an extension field of

Proof: Let be a basis of over i.e. every element in can be written as

where and there is no dependency of the field elements over It follows
that this representation is unique and thus

At this moment we know that finite fields can only exist for prime powers q. Theorem B .20
states that indeed does exist for prime powers q. That all finite fields with the same value of q
are isomorphic to each other will be proved later.

order p with the field The subfield is often called the ground field of

Finite Fields 411

B.4.3 Some Calculus Rules over Finite Fields; Conjugates

Proof: Let Then gcd(p, i!) = 1, so

and with the binomial theorem, we have that

where the last equality is obvious for odd p, while for p = 2 this equality follows from + 1 = –1.

To demonstrate this we use again the Mathematica function PolynomialMod.

Proof: Use an induction argument on k and on n. Start with

412 APPENDICES

The following theorem often gives a powerful criterion to determine, whether an element in a field
of characteristic p, actually lies in the ground field

Proof: The p elements in the subfield satisfy by Corollary B.23. On the other hand, the
polynomial has at most p zeros in by Theorem B.15.

Let be an element in a field of characteristic p, but not in Then by the previous
theorem. Still there is relation between and

Proof: Write Since one has by Corollary B.22 and Theorem
B.29 that

In and a similar thing happens. If f(x) is a polynomial over the reals and
then also where is the complex conjugate of

The following theorem states that the number of different elements only depends
on p and the (multiplicative) order of

Finite Fields 413

Proof: By Lemma B.3 (twice), one has that if and only if (mod n), and thus if
and only if (mod n), i.e. if and only if i = j (mod m).

Example B.7

Consider with (see Example B.6). The field element x has
order 5. The multiplicative order of 2 modulo 5 is 4. and are all different, while
Indeed, (mod f(x)), while (mod f(x)), as can be checked
with the Mathematica functions Table and PolynomialMod:

B.4.4 Minimal Polynomials, Primitive Polynomials

Proof: Clearly, m(x) is a polynomial over Write We have to show that the
coefficients mi are in the ground field To this end we shall use the powerful criterion of
Theorem B.29.

It follows from Theorem B.27 and Corollary B.22 (with n = 1) that

414 APPENDICES

Hence

Comparing the coefficients of xpi on both hands yields It follows from Theorem B.29

that So, m(x) is a polynomial in .

From Theorem B.30 and Theorem B.31 it follows that no polynomial in of degree less than
m can have as a zero. So, m(x) is irreducible over

Proof: Combine Theorem B.30, Theorem B.31, and Theorem B.32.

So, m(x), as defined in Theorem B.32, is the monic polynomial of lowest degree over having
as a zero. That is the reason why m(x) is called the minimal polynomial of over p. It has and
all the conjugates of as zeros. The degree of the minimal polynomial m(x) of an element is
often simply called the degree of over

If m(x) is the minimal polynomial of a primitive element, then m(x) is called a primitive
polynomial. Mathematica finds a primitive polynomial of degree m over in the variable z by

means of the FieldIrreducible function.

Let f(x) be a primitive polynomial over of degree m. A table (like Table B.2) in which each
non-zero element in the finite field is represented as a polynomial in x of
degree and as a power of x is called a log table of that field. These tables are very practical to
have when extensive calculations need to be done in the field.

Finite Fields 415

These logarithm tables can be made quite easily by Mathematica. Depending on whether one
wants Mathematica to select a suitable primitive polynomial or enter one's own, one can type :

or

416 APPENDICES

To determine in a field GF[p, m] or, conversely, to find i such that is equal to a particular
element in GF[p, m], one can use the Mathematica functions FieldExp[GF[p, m], i], resp.
FieldInd[GF[p, m] [{list}]] (essential for this calculation is the assignment True to PowerListQ).

There are several ways to find the minimal polynomial of a field element. We shall demonstrate
two methods.

Method 1:

Let be a zero of the binary primitive polynomial So, has order 31 and the
conjugates of are and Then the minimal polynomial of can be found
by:

Method 2:

Let be a zero of the binary primitive polynomial To find the minimal
polynomial of we first compute and using

Finite Fields 417

We use the Mathematica function CoefficientList to convert the coefficients into
vectors. Note that we use the Join function to pad the output with zeros to make all vectors
of length 5.

We need to find a linear dependency between 1, and say with
To this end we use the Mathematica functions NullSpace and Transpose.

This leads to the minimal polynomial g(x) of

We conclude that has minimal polynomial

418 APPENDICES

B.4.5 Further Properties

Let m(x) be the minimal polynomial of an element of degree m. It follows from Corollary B.33
that the expressions take on different values. For these
expressions addition and multiplication can be performed just as in (B.3) and (B.4), where the
relation has to be used to reduce the degree of the outcome to a value less than m .It is
quite easy to check that one obtains a field, that is isomorphic to

If m(x) is primitive, one has that the elements are all different modulo m(x), just as
the elements are all different. See for instance, Example B.6, where the

primitive element has minimal polynomial Table B.2 shows the
field

Proof: Consider the residue class ring This ring is a field with

elements by Theorem B.16. The field element is a zero of m(x), since

It follows from Corollary B.22 that is a zero of
By Corollary B.33 we conclude that m(x) divides

Also the converse of Lemma B.34 is true.

Proof: Let There are irreducible polynomials of degree m over all of which divide
by Lemma B.34. The sum of their degrees is Since

degree by (B.5), it follows that the irreducible, monic, p-ary

polynomials of degree form the complete factorization of

Example B.8

(see Section B.3).

Finite Fields 419

Proof: By Theorem B.35, f(x) divides On the other hand,

by Corollary B.23.

Proof: Write and let be any finite field of order q.Let f(x) be any irreducible, p-ary
polynomial of degree m. We shall show that is isomorphic to By Corollary B.36,

contains m zeros of f(x). Let be one of these m zeros. Since f(x) is irreducible in , there
is no lower degree polynomial over with as zero. This implies that the m elements

are independent over thus, any element in can be written as

The isomorphism between and is now obvious.

Proof: The following assertions are all equivalent;

i)
i i) divides
iii) divides
iv) divides

v) is a subfield of .

Example B.9

It follows from Corollary B.38 that contains as a subfield, while it does not contain as a

420 APPENDICES

subfield. From Table B.2 one can easily verify that the elements 0, 1, and form a subfield of

cardinality in

B.4.6 Cyclotomic Polynomials

Consider a finite field of characteristic p. So, for some By Theorem B.5, every
element in has an order dividing Let and let be a primitive n-th root of unity
in For instance, where is a primitive element in Let and put
Then is a primitive d-root of unity. Clearly, the d elements 1, are a zero of By
Theorem B.15, no other element in is a zero of

If had order then by Lemma B.4 also has order d. So, with a zero of
also its conjugates are zeros of It follows from Theorem B.32 that is the product of
some minimal polynomials over and thus that is a polynomial over

By Theorem B.21, has degree Since is a primitive n-th root of unity, it follows that

Proof: Apply the Multiplicative Möbius Inversion Formula (Corollary A.39) to (B.8).

Example B.10

This can also be evaluated with Mathematica:

Finite Fields 421

or directly with the Mathematica function Cyclotomic:

If one can write

The expression for in Theorem B.39 seems to be independent of the finite field. This is not
really true, because in the evaluation of that expression the characteristic does play a role.

All the irreducible factors of have the same degree, because all the zeros of have the
same order d. Indeed, by Theorem B.32, each irreducible factor of has as degree the
multiplicative order of p modulo d.

In particular we have the following theorem.

Proof: A primitive, p-ary polynomial of degree m divides and this cyclotomic
polynomial has only factors of this type. The degree of

Example B.11: p = 2

where

Indeed, there are primitive polynomials of degree 4. See also Example B.6.

422 APPENDICES

A way to find all primitive polynomials of degree m over is to factor

Example B.12

Remark:

In this chapter we have viewed and p prime, as an extension field of however all the
concepts defined in this chapter can also be generalized to , So, one may want to count the
number of irreducible polynomials of degree n in or discuss primitive polynomials over
etc. We leave it to the reader to verify that all the theorems in this appendix can indeed be
generalized from and to resp. simply by replacing p by q and q by

Example B.13

The field can be viewed as the residue class ring where is an element in

satisfying

Finite Fields 423

B.5 Problems

Problem B.1
Prove that is a group.

Problem B.2
Prove that the elements of a reduced residue class system modulo m form a multiplicative group.

Problem B.3
Let be a group and H a non-empty subset of G. Then is a subgroup of if and only if

for every

Problem B.4
Prove that there are essentially two different groups of order 4 (hint: each element has an order dividing
4).

Problem B.5
Find an element of order 12 in the group Which powers of this element have order 12. Answer
the same question for elements of order 6, 4, 3, 2 and 1.

Problem B.6
Let denote a commutative group. Let a and b be two elements in G of order m resp. n.
a) Assume that gcd Show that has order
b) Assume no longer that gcd Determine integers s and t such that and

c) Construct an element in G of order lcm[m, n].

Problem
Find the multiplicative inverse of over GF(2) (hintl: Thm. B.13; hint2).

Problem
How many binary, irreducible polynomials (hintl: Def.B.15; hint2: Thm. B.17) are there of degree 7 and
8?

Problem B.9
Make a log table of (hint: x is a primitive element). Use this table to express

as power of x.

Problem B.10
Let have order What is the probability that a random non-zero element
has an order n dividing m? Give an upperbound on this probability.
Construct an element of order lcm[m, n] (hint: see Problem B.6).
(In fact, this method leads to an efficient to find a primitive element in a finite field. It is due to Gauss.)

Problem B.11
Which subfields are contained in GF(625)? Let a be a primitive element in GF(625). Which powers of
constitute the various subfields of GF(625)? (Hint: Cor. B.38.)

Problem B.12
Prove that over GF(2):
(Hint: use Cor. B.28.)

424 APPENDICES

Problem B.13
How many binary, primitive polynomials are there of degree 10? (Hint: Thm. B.40.)

Problem B.14
Determine the binary, cyclotomic polynomial (hint: Thm. B.39). What is the degree of the
binary factors of

Problem B.15
What is the degree of a binary, minimal polynomial of a primitive 17-th root of unity (hint: Thm. B.32)?
How many such polynomials do exist? Prove that each is its own reciprocal. Determine these polynomials
explicitly.

Problem B.16
The trace mapping Tr is defined on GF(p), p prime, by

a) Prove that Tr(x) GF(p), for every (hint: Thm. B.29). So, Tr is a mapping from to
GF(p).
b) Prove that Tr is a linear mapping (hint: Cor. B.28).
c) Prove that Tr takes on every value in GF(p) equally often (hint: use Theorem B.15).
d) Replace p by q in this problem, where q is a prime power, and verify the same statements.

Appendix C Relevant Famous Mathematicians

Euclid of Alexandria

Born: about 365 BC in Alexandria, Egypt

Died: about 300 BC

Euclid is the most prominent mathematician of antiquity best known for his treatise on geometry
The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics
teacher of all time.

Little is known of Euclid's life except that he taught at Alexandria in Egypt. The picture of Euclid
above is from the 18th Century and must be regarded as entirely fanciful.

Euclid's most famous work is his treatise on geometry The Elements. The book was a compilation
of geometrical knowledge that became the centre of mathematical teaching for 2000 years.
Probably no results in The Elements were first proved by Euclid but the organization of the
material and its exposition are certainly due to him.

The Elements begins with definitions and axioms, including the famous fifth, or parallel, postulate
that one and only one line can be drawn through a point parallel to a given line. Euclid's decision
to make this an axiom led to Euclidean geometry. It was not until the 19th century that this axiom
was dropped and non-euclidean geometries were studied.

Zeno of Sidon, about 250 years after Euclid wrote: ,,The Elements, seems to have been the first to
show that Euclid's propositions were not deduced from the axioms alone, and Euclid does make
other subtle assumptions."

The Elements is divided into 13 books. Books 1-6, plane geometry: books 7-9, number theory:
book 10, 's theory of irrational numbers: books 11-13, solid geometry. The book ends with a

426 APPENDICES

discussion of the properties of the five regular polyhedra and a proof that there are precisely five.
Euclid's Elements is remarkable for the clarity with which the theorems are stated and proved. The
standard of rigour was to become a goal for the inventors of the calculus centuries later.

More than one thousand editions of The Elements have been published since it was first printed in
1482.

Euclid also wrote Data (with 94 propositions), On Divisions, Optics and Phaenomena which have
survived. His other books Surface Loci, Porisms, Conics, Book of Fallacies and Elements of Music

have all been lost.

Euclid may not have been a first class mathematician but the long lasting nature ofThe Elements
must make him the leading mathematics teacher of antiquity.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euclid.html

Leonhard Euler

Born: 15 April 1707 in Basel, Switzerland

Died: 18 Sept 1783 in St Petersburg, Russia

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory.

Euler's father wanted his son to follow him into the church and sent him to the University of Basel
to prepare for the ministry. However geometry soon became his favorite subject. Euler obtained
his father's consent to change to mathematics after Johann Bernoulli had used his persuasion.
Johann Bernoulli became his teacher.

He joined the St. Petersburg Academy of Science in 1727, two years after it was founded by
Catherine I the wife of Peter the Great. Euler served as a medical lieutenant in the Russian navy
from 1727 to 1730. In St Petersburg he lived with Daniel Bernoulli. He became professor of
physics at the academy in 1730 and professor of mathematics in 1733. He married and left Johann
Bernoulli's house in 1733. He had 13 children altogether of which 5 survived their infancy. He
claimed that he made some of his greatest discoveries while holding a baby on his arm with other
children playing round his feet.

Relevant Famous Mathematicians 427

The publication of many articles and his book Mechanica (1736-37), which extensively presented
Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the
way to major mathematical work.

In 1741, at the invitation of Frederick the Great, Euler joined the Berlin Academy of Science,
where he remained for 25 years. Even while in Berlin he received part of his salary from Russia
and never got on well with Frederick. During his time in Berlin, he wrote over 200 articles, three
books on mathematical analysis, and a popular scientific publication Letters to a Princess of
Germany (3 vols., 1768-72).

In 1766 Euler returned to Russia. He had been arguing with Frederick the Great over academic
freedom and Frederick was greatly angered at his departure. Euler lost the sight of his right eye at
the age of 31 and soon after his return to St Petersburg he became almost entirely blind after a
cataract operation. Because of his remarkable memory was able to continue with his work on
optics, algebra, and lunar motion. Amazingly after 1765 (when Euler was 58) he produced almost
half his works despite being totally blind.

After his death in 1783 the St. Petersburg Academy continued to publish Euler's unpublished work
for nearly 50 more years.

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory. In number theory he did much
work in correspondence with Goldbach. He integrated Leibniz's differential calculus and Newton's
method of fluxions into mathematical analysis. In number theory he stated the prime number

theorem and the law of biquadratic reciprocity.

He was the most prolific writer of mathematics of all time. His complete works contains 886
books and papers.

We owe to him the notations f(x) (1734), e for the base of natural logs (1727), i for the square root
of -1 (1777), for pi, for summation (1755) etc. He also introduced beta and gamma functions,
integrating factors for differential equations etc.

He studied continuum mechanics, lunar theory with Clairaut, the three body problem, elasticity,

428 APPENDICES

acoustics, the wave theory of light, hydraulics, music etc. He laid the foundation of analytical
mechanics, especially in his Theory of the Motions of Rigid Bodies (1765).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euler.html

Pierre de Fermat

Born: 17 Aug 1601 in Beaumont-de-Lomagne, France

Died: 12 Jan 1665 in Castres, France

Pierre Fermat's father was a wealthy leather merchant and second consul of Beaumont-de-

Lomagne. Pierre had a brother and two sisters and was almost certainly brought up in the town of
his birth. Although there is little evidence concerning his school education it must have been at the
local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeau in the second half of the 1620s.
In Bordeau he began his first serious mathematical researches and in 1629 he gave a copy of his
restoration of Apollonius's Plane loci to one of the mathematicians there. Certainly in Bordeau he
was in contact with Beaugrand and during this time he produced important work on maxima and
minima which he gave to Etienne d'Espagnet who clearly shared mathematical interests with
Fermat.

From Bordeau Fermat went to Orléans where he studied law at the University. He received a
degree in civil law and he purchased the offices of councillor at the parliament in Toulouse. So by
1631 Fermat was a lawyer and government official in Toulouse and because of the office he now
held he became entitled to change his name from Pierre Fermat to Pierre de Fermat.

For the remainder of his life he lived in Toulouse but as well as working there he also worked in
his home town of Beaumont-de-Lomagne and a nearby town of Castres. From his appointment on
14 May 1631 Fermat worked in the lower chamber of the parliament but on 16 January 1638 he
was appointed to a higher chamber, then in 1652 he was promoted to the highest level at the
criminal court. Still further promotions seem to indicate a fairly meteoric rise through the
profession but promotion was done mostly on seniority and the plague struck the region in the
early 1650s meaning that many of the older men died. Fermat himself was struck down by the

Relevant Famous Mathematicians 429

plague and in 1653 his death was wrongly reported, then corrected:

I informed you earlier of the death of Fermat. He is alive, and we no longer fear for his health,
even though we had counted him among the dead a short time ago.

The following report, made to Colbert the leading figure in France at the time, has a ring of truth:

Fermat, a man of great erudition, has contact with men of learning everywhere. But he is rather
preoccupied, he does not report cases well and is confused.

Of course Fermat was preoccupied with mathematics. He kept his mathematical friendship with
Beaugrand after he moved to Toulouse but there he gained a new mathematical friend in Carcavi.
Fermat met Carcavi in a professional capacity since both were councillors in Toulouse but they
both shared a love of mathematics and Fermat told Carcavi about his mathematical discoveries.

In 1636 Carcavi went to Paris as royal librarian and made contact with Mersenne and his group.
Mersenne's interest was aroused by Carcavi's descriptions of Fermat's discoveries on falling
bodies, and he wrote to Fermat. Fermat replied on 26 April 1636 and, in addition to telling
Mersenne about errors which he believed that Galileo had made in his description of free fall, he

also told Mersenne about his work on spirals and his restoration of Apollonius's Plane loci. His
work on spirals had been motivated by considering the path of free falling bodies and he had used
methods generalised from Archimedes' work On spirals to compute areas under the spirals. In
addition Fermat wrote:

I have also found many sorts of analyses for diverse problems, numerical as well as geometrical,
for the solution of which Viète's analysis could not have sufficed. I will share all of this with you
whenever you wish and do so without any ambition, from which I am more exempt and more
distant than any man in the world.

It is somewhat ironical that this initial contact with Fermat and the scientific community came
through his study of free fall since Fermat had little interest in physical applications of
mathematics. Even with his results on free fall he was much more interested in proving
geometrical theorems than in their relation to the real world. This first letter did however contain
two problems on maxima which Fermat asked Mersenne to pass on to the Paris mathematicians
and this was to be the typical style of Fermat's letters, he would challenge others to find results
which he had already obtained.

430 APPENDICES

Roberval and Mersenne found that Fermat's problems in this first, and subsequent, letters were
extremely difficult and usually not soluble using current techniques. They asked him to divulge his
methods and Fermat sent Method for determining Maxima and Minima and Tangents to Curved
Lines, his restored text of Apollonius's Plane loci and his algebraic approach to geometry
Introduction to Plane and Solid Loci to the Paris mathematicians.

His reputation as one of the leading mathematicians in the world came quickly but attempts to get
his work published failed mainly because Fermat never really wanted to put his work into a
polished form. However some of his methods were published, for example Hérigone added a
supplement containing Fermat's methods of maxima and minima to his major work Cursus
mathematicus. The widening correspondence between Fermat and other mathematicians did not
find universal praise. Frenicle de Bessy became annoyed at Fermat's problems which to him were
impossible. He wrote angrily to Fermat but although Fermat gave more details in his reply,
Frenicle de Bessy felt that Fermat was almost teasing him.

However Fermat soon became engaged in a controversy with a more major mathematician than
Frenicle de Bessy. Having been sent a copy of Descartes' La Dioptrique by Beaugrand, Fermat

paid it little attention since he was in the middle of a correspondence with Roberval and Etienne
Pascal over methods of integration and using them to find centres of gravity. Mersenne asked him
to give an opinion on La Dioptrique which Fermat did describing it as

groping about in the shadows.

He claimed that Descartes had not correctly deduced his law of refraction since it was inherent in
his assumptions. To say that Descartes was not pleased is an understatement. Descartes soon found
reason to feel even more angry since he viewed Fermat's work on maxima, minima and tangents as
reducing the importance of his own work La Géométrie which Descartes was most proud of and
which he sought to show that his Discours de la method alone could give.

Descartes attacked Fermat's method of maxima, minima and tangents. Roberval and Etienne
Pascal became involved in the argument and eventually so did Desargues who Descartes asked to
act as a referee. Fermat proved correct and eventually Descartes admitted this writing:-

... seeing the last method that you use for finding tangents to curved lines, I can reply to it in no

other way than to say that it is very good and that, if you had explained it in this manner at the

Relevant Famous Mathematicians 431

outset, I would have not contradicted it at all.

Did this end the matter and increase Fermat's standing? Not at all since Descartes tried to damage
Fermat's reputation. For example, although he wrote to Fermat praising his work on determining
the tangent to a cycloid (which is indeed correct), Descartes wrote to Mersenne claiming that it
was incorrect and saying that Fermat was inadequate as a mathematician and a thinker. Descartes
was important and respected and thus was able to severely damage Fermat's reputation.

The period from 1643 to 1654 was one when Fermat was out of touch with his scientific
colleagues in Paris. There are a number of reasons for this. Firstly pressure of work kept him from
devoting so much time to mathematics. Secondly the Fronde, a civil war in France, took place and
from 1648 Toulouse was greatly affected. Finally there was the plague of 1651 which must have
had great consequences both on life in Toulouse and of course its near fatal consequences on
Fermat himself. However it was during this time that Fermat worked on number theory.

Fermat is best remembered for this work in number theory, in particular for Fermat's Last
Theorem. This theorem states that has no non-zero integer solutions for x, y and z
when . Fermat wrote, in the margin of Bachet's translation of Diophantus's Arithmetica

I have discovered a truly remarkable proof which this margin is too small to contain.

These marginal notes only became known after Fermat's son Samuel published an edition of
Bachet's translation of Diophantus's Arithmetica with his father's notes in 1670.

It is now believed that Fermat's 'proof' was wrong although it is impossible to be completely
certain. The truth of Fermat's assertion was proved in June 1993 by the British mathematician
Andrew Wiles, but Wiles withdrew the claim to have a proof when problems emerged later in
1993. In November 1994 Wiles again claimed to have a correct proof which has now been
accepted.

Unsuccessful attempts to prove the theorem over a 300 year period led to the discovery of
commutative ring theory and a wealth of other mathematical discoveries.

Fermat's correspondence with the Paris mathematicians restarted in 1654 when Blaise Pascal,
Etienne Pascal's son, wrote to him to ask for confirmation about his ideas on probability. Blaise
Pascal knew of Fermat through his father, who had died three years before, and was well aware of

432 APPENDICES

Format's outstanding mathematical abilities. Their short correspondence set up the theory of
probability and from this they are now regarded as joint founders of the subject. Fermat however,
feeling his isolation and still wanting to adopt his old style of challenging mathematicians, tried to
change the topic from probability to number theory. Pascal was not interested but Fermat, not
realising this, wrote to Carcavi saying:

I am delighted to have had opinions conforming to those of M Pascal, for I have infinite esteem for
his genius... the two of you may undertake that publication, of which 1 consent to your being the
masters, you may clarify or supplement whatever seems too concise and relieve me of a burden

that my duties prevent me from taking on.

However Pascal was certainly not going to edit Fermat's work and after this flash of desire to have
his work published Fermat again gave up the idea. He went further than ever with his challenge
problems however:

Two mathematical problems posed as insoluble to French, English, Dutch and all mathematicians

of Europe by Monsieur de Fermat, Councillor of the King in the Parliament of Toulouse.

His problems did not prompt too much interest as most mathematicians seemed to think that
number theory was not an important topic. The second of the two problems, namely to find all
solutions of for N not a square, was however solved by Wallis and Brouncker and
they developed continued fractions in their solution. Brouncker produced rational solutions which
led to arguments. Frenicle de Bessy was perhaps the only mathematician at that time who was
really interested in number theory but he did not have sufficient mathematical talents to allow him
to make a significant contribution.

Fermat posed further problems, namely that the sum of two cubes cannot be a cube (a special case
of Fermat's Last Theorem which may indicate that by this time Fermat realised that his proof of the
general result was incorrect), that there are exactly two integer solutions of and that the
equation has only one integer solution. He posed problems directly to the English.
Everyone failed to see that Fermat had been hoping his specific problems would lead them to
discover, as he had done, deeper theoretical results.

Around this time one of Descartes' students was collecting his correspondence for publication and
he turned to Fermat for help with the Fermat - Descartes correspondence. This led Fermat to look
again at the arguments he had used 20 years before and he looked again at his objections to
Descartes' optics. In particular he had been unhappy with Descartes' description of refraction of

Relevant Famous Mathematicians 433

light and he now settled on a principle which did in fact yield the sine law of refraction that Snell
and Descartes had proposed. However Fermat had now deduced it from a fundamental property
that he proposed, namely that light always follows the shortest possible path. Fermat's principle,
now one of the most basic properties of optics, did not find favour with mathematicians at the
time.

In 1656 Fermat had started a correspondence with Huygens. This grew out of Huygens interest in
probability and the correspondence was soon manipulated by Fermat onto topics of number theory.
This topic did not interest Huygens but Fermat tried hard and in New Account of Discoveries in the
Science of Numbers sent to Huygens via Carcavi in 1659, he revealed more of his methods than he
had done to others.

Fermat described his method of infinite descent and gave an example on how it could be used to
prove that every number of the form could be written as the sum of two squares. For
suppose some number of the form could not be written as the sum of two squares. Then
there is a smaller number of the form which cannot be written as the sum of two squares.
Continuing the argument will lead to a contradiction. What Fermat failed to explain in this letter is
how the smaller number is constructed from the larger. One assumes that Fermat did know how to
make this step but again his failure to disclose the method made mathematicians lose interest. It
was not until Euler took up these problems that the missing steps were filled in.

Fermat is described as

Secretive and taciturn, he did not like to talk about himself and was loath to reveal too much about
his thinking. ... His thought, however original or novel, operated within a range of possibilities
limited by that [1600-1650] time and that [France] place.

Carl B Boyer says:

Recognition of the significance of Fermat's work in analysis was tardy, in part because he adhered

to the system of mathematical symbols devised by Francois Viète, notations that Descartes's
Géométrie had rendered largely obsolete. The handicap imposed by the awkward notations

operated less severely in Fermat's favourite field of study, the theory of numbers, but here,
unfortunately, he found no correspondent to share his enthusiasm.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Fermat.html

434 APPENDICES

Evariste Galois

Born: 25 Oct 1811 in Bourg La Reine (near Paris), France

Died: 31 May 1832 in Paris, France

Famous for his contributions to group theory, Evariste Galois produced a method of determining
when a general equation could be solved by radicals.

Galois' father Nicholas Gabriel Galois and his mother Adelaide Marie Demante were both
intelligent and well educated in philosophy, classical literature and religion. However there is no
sign of any mathematical ability in any of Galois' family. His mother served as Galois' sole teacher
until he was 12 years old. She taught him Greek, Latin and religion where she imparted her own

scepticism to her son. Galois' father was an important man in the community and in 1815 he was
elected mayor of Bourg-la-Reine.

The starting point of the historical events which were to play a major role in Galois' life is surely
the storming of the Bastille on 14 July 1789. From this point the monarchy of Louis 16th was in
major difficulties as the majority of Frenchmen composed their differences and united behind an
attempt to destroy the privileged establishment of the church and the state.

Despite attempts at compromise Louis 16th was tried after attempting to flee the country.

Following the execution of the King on 21 January 1793 there followed a reign of terror with
many political trials. By the end of 1793 there were 4595 political prisoners held in Paris. However
France began to have better times as their armies, under the command of Napoleon Bonaparte,
won victory after victory.

Napoleon became 1st Consul in 1800 and then Emperor in 1804. The French armies continued a
conquest of Europe while Napoleon's power became more and more secure. In 1811 Napoleon was
at the height of his power. By 1815 Napoleon's rule was over. The failed Russian campaign of
1812 was followed by defeats, the Allies entering Paris on 31 March 1814. Napoleon abdicated on
6 April and Louis XVIII was installed as King by the Allies. The year 1815 saw the famous one
hundred days. Napoleon entered Paris on March 20, was defeated at Waterloo on 18 June and

abdicated for the second time on 22 June. Louis XVIII was reinstated as King but died in

Relevant Famous Mathematicians 435

September 1824, Charles X becoming the new King.

Galois was by this time at school. He had enrolled at the Lycée of Louis-le-Grand as a boarder in
the 4 th class on 6 October 1823. Even during his first term there was a minor rebellion and 40

pupils were expelled from the school. Galois was not involved and during 1824-25 his school

record is good and he received several prizes. However in 1826 Galois was asked to repeat the
year because his work in rhetoric was not up to the required standard.

February 1827 was a turning point in Galois' life. He enrolled in his first mathematics class, the
class of M. Vernier. He quickly became absorbed in mathematics and his director of studies wrote:

It is the passion for mathematics which dominates him, I think it would he best for him if his

parents would allow him to study nothing but this, he is wasting his time here and does nothing
but torment his teachers and overwhelm himself with punishments.

Galois' school reports began to describe him as singular, bizarre, original and closed . It is
interesting that perhaps the most original mathematician who ever lived should be criticised for
being original. M. Vernier reported however

Intelligence, marked progress but not enough method.

In 1828 Galois took the examination of the Ecole Polytechnique but failed. It was the leading
University of Paris and Galois must have wished to enter it for academic reasons. However, he
also wished to enter the this school because of the strong political movements that existed among
its students, since Galois followed his parents example in being an ardent republican.

Back at Louis-le-Grand, Galois enrolled in the mathematics class of Louis Richard. However he
worked more and more on his own researches and less and less on his schoolwork. He studied
Legendre's Géométrie and the treatises of Lagrange. As Richard was to report

This student works only in the highest realms of mathematics.

In April 1829 Galois had his first mathematics paper published on continued fractions in the
Annales de mathématiques . On 25 May and 1 June he submitted articles on the algebraic solution
of equations to the Académie des Sciences. Cauchy was appointed as referee of Galois' paper.

436 APPENDICES

Tragedy was to strike Galois for on 2 July 1829 his father committed suicide. The priest of Bourg-
la-Reine forged Mayor Galois' name on malicious forged epigrams directed at Galois' own
relatives, Galois' father was a good natured man and the scandal that ensued was more than he
could stand. He hanged himself in his Paris apartment only a few steps from Louis-le-Grand where
his son was studying. Galois was deeply affected by his father's death and it greatly influenced the
direction his life was to take.

A few weeks after his father's death, Galois presented himself for examination for entry to the
Ecole Polytechnique for the second time. For the second time he failed, perhaps partly because he
took it under the worst possible circumstances so soon after his father's death, partly because he
was never good at communicating his deep mathematical ideas. Galois therefore resigned himself
to enter the Ecole Normale, which was an annex to Louis-le-Grand, and to do so he had to take his
Baccalaureate examinations, something he could have avoided by entering the Ecole
Polytechnique.

He passed, receiving his degree on 29 December 1829. His examiner in mathematics reported:

This pupil is sometimes obscure in expressing his ideas, but he is intelligent and shows a
remarkable spirit of research.

His literature examiner reported:

This is the only student who has answered me poorly, he knows absolutely nothing. I was told that
this student has an extraordinary capacity for mathematics. This astonishes me greatly, for, after
his examination, I believed him to have but little intelligence.

Galois sent Cauchy further work on the theory of equations, but then learned from Bulletin de
Férussac of a posthumous article by Abel which overlapped with a part of his work. Galois then
took Cauchy's advice and submitted a new article On the condition that an equation be soluble by
radicals in February 1830. The paper was sent to Fourier, the secretary of the Academy, to be
considered for the Grand Prize in mathematics. Fourier died in April 1830 and Galois' paper was
never subsequently found and so never considered for the prize.

Galois, after reading Abel and Jacobi's work, worked on the theory of elliptic functions and abelian
integrals. With support from Jacques Sturm, he published three papers in Bulletin de Férussac in

Relevant Famous Mathematicians 437

April 1830. However, he learnt in June that the prize of the Academy would be awarded the Prize
jointly to Abel (posthumously) and to Jacobi, his own work never having been considered.

July 1830 saw a revolution. Charles 10th fled France. There was rioting in the streets of Paris and

the director of École Normale, M. Guigniault, locked the students in to avoid them taking part.
Galois tried to scale the wall to join the rioting but failed. In December 1830 M. Guigniault wrote
newspaper articles attacking the students and Galois wrote a reply in the Gazette des Écoles ,
attacking M. Guigniault for his actions in locking the students into the school. For this letter
Galois was expelled and he joined the Artillery of the National Guard, a Republican branch of the
militia. On 31 December 1830 the Artillery of the National Guard was abolished by Royal Decree
since the new King Louis-Phillipe felt it was a threat to the throne.

Two minor publications, an abstract in Annales de Gergonne (December 1830) and a letter on the
teaching of science in the Gazette des Écoles (2 January 1831) were the last publications during
his life. In January 1831 Galois attempted to return to mathematics. He organised some
mathematics classes in higher algebra which attracted 40 students to the first meeting but after that
the numbers quickly fell off. Galois was invited by Poisson to submit a third version of his memoir
on equation to the Academy and he did so on 17 January.

On 18 April Sophie Germain wrote a letter to her friend the mathematician Libri which describes
Galois' situation.

... the death of M. Fourier, have been too much for this student Galois who, in spite of his
impertinence, showed signs of a clever disposition. All this has done so much that he has been
expelled form École Normale. He is without money... They say he will go completely mad. I fear
this is true.

Late in 1830 19 officers from the Artillery of the National Guard were arrested and charged with
conspiracy to overthrow the government. They were acquitted and on 9 May 1831 200 republicans
gathered for a dinner to celebrate the acquittal. During the dinner Galois raised his glass and with
an open dagger in his hand appeared to make threats against the King, Louis-Phillipe. After the
dinner Galois was arrested and held in Sainte-Pélagie prison. At his trial on 15 June his defence
lawyer claimed that Galois had said

To Louis-Phillipe, if he betrays

438 APPENDICES

but the last words had been drowned by the noise. Galois, rather surprisingly since he essentially
repeated the threat from the dock, was acquitted.

The 14th July was Bastille Day and Galois was arrested again. He was wearing the uniform of the
Artillery of the National Guard, which was illegal. He was also carrying a loaded rifle, several
pistols and a dagger. Galois was sent back to Sainte-Pélagie prison. While in prison he received a
rejection of his memoir. Poisson had reported that:-

His argument is neither sufficiently clear nor sufficiently developed to allow us to judge its rigour.

He did, however, encourage Galois to publish a more complete account of his work. While in
Sainte-Pélagie prison Galois attempted to commit suicide by stabbing himself with a dagger but
the other prisoners prevented him. While drunk in prison he poured out his soul

Do you know what I lack my friend? I confide it only to you: it is someone whom I can love and

love only in spirit. I have lost my father and no one has ever replaced him, do you hear me...?

In March 1832 a cholera epidemic swept Paris and prisoners, including Galois, were transferred to
the pension Sieur Faultrier. There he apparently fell in love with Stephanie-Felice du Motel, the
daughter of the resident physician. After he was released on 29 April Galois exchanged letters with
Stephanie, and it is clear that she tried to distance herself from the affair.

The name Stephanie appears several times as a marginal note in one of Galois' manuscripts.

Galois fought a duel with Perscheux d'Herbinville on 30 May, the reason for the duel not being
clear but certainly linked with Stephanie.

You can see a note in the margin of the manuscript that Galois wrote the night before the duel. It
reads

There is something to complete in this demonstration. I do not have the time. (Author's note).

It is this which has led to the legend that he spent his last night writing out all he knew about group
theory. This story appears to have been exaggerated.

Relevant Famous Mathematicians 439

Galois was wounded in the duel and was abandoned by d'Herbinville and his own seconds and
found by a peasant. He died in Cochin hospital on 31 May and his funeral was held on 2 June. It
was the focus for a Republican rally and riots followed which lasted for several days.

Galois' brother and his friend Chevalier copied his mathematical papers and sent them to Gauss,
Jacobi and others. It had been Galois' wish that Jacobi and Gauss should give their opinions on his
work. No record exists of any comment these men made. However the papers reached Liouville
who, in September 1843, announced to the Academy that he had found in Galois' papers a concise
solution

...as correct as it is deep of this lovely problem: Given an irreducible equation of prime degree,

decide whether or not it is soluble by radicals.

Liouville published these papers of Galois in his Journal in 1846.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Galois.html

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)

Died: 23 Feb 1855 in Göttingen, Hanover (now Germany)

Carl Friedrich Gauss worked in a wide variety of fields in both mathematics and physics
incuding number theory, analysis, differential geometry, geodesy, magnetism, astronomy and
optics. His work has had an immense influence in many areas.

At the age of seven, Carl Friedrich started elementary school, and his potential was noticed almost
immediately. His teacher, Büttner, and his assistant, Martin Bartels, were amazed when Gauss
summed the integers from 1 to 100 instantly by spotting that the sum was 50 pairs of numbers each
pair summing to 101.

440 APPENDICES

In 1788 Gauss began his education at the Gymnasium with the help of Büttner and Bartels, where
he learnt High German and Latin. After receiving a stipend from the Duke of Brunswick-
Wolfenbüttel, Gauss entered Brunswick Collegium Carolinum in 1792. At the academy Gauss
independently discovered Bode's law, the binomial theorem and the arithmetic- geometric mean,
as well as the law of quadratic reciprocity and the prime number theorem.

In 1795 Gauss left Brunswick to study at Göttingen University. Gauss's teacher there was
Kaestner, whom Gauss often ridiculed. His only known friend amongst the students was Farkas
Bolyai. They met in 1799 and corresponded with each other for many years.

Gauss left Göttingen in 1798 without a diploma, but by this time he had made one of his most
important discoveries - the construction of a regular 17-gon by ruler and compasses This was the
most major advance in this field since the time of Greek mathematics and was published as
Section VII of Gauss's famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick
had agreed to continue Gauss's stipend, he requested that Gauss submit a doctoral dissertation to
the University of Helmstedt. He already knew Pfaff, who was chosen to be his advisor. Gauss's
dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find a job so devoted himself to research.
He published the book Disquisitiones Arithmeticae in the summer of 1801. There were seven
sections, all but the last section, referred to above, being devoted to number theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously,
published the orbital positions of Ceres, a new 'small planet' which was discovered by G Piazzi, an
Italian astronomer on 1 January, 1801. Unfortunately, Piazzi had only been able to observe 9
degrees of its orbit before it disappeared behind the Sun. Zach published several predictions of its
position, including one by Gauss which differed greatly from the others. When Ceres was
rediscovered by Zach on 7 December 1801 it was almost exactly where Gauss had predicted.
Although he did not disclose his methods at the time, Gauss had used his least squares
approximation method.

In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss
investigated its orbit. Olbers requested that Gauss be made director of the proposed new
observatory in Göttingen, but no action was taken. Gauss began corresponding with Bessel, whom
he did not meet until 1825, and with Sophie Germain.

Relevant Famous Mathematicians 441

Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy personal life for the
first time, his benefactor, the Duke of Brunswick, was killed fighting for the Prussian army. In
1807 Gauss left Brunswick to take up the position of director of the Göttingen observatory.

Gauss arrived in Göttingen in late 1807. In 1808 his father died, and a year later Gauss's wife
Johanna died after giving birth to their second son, who was to die soon after her. Gauss was
shattered and wrote to Olbers asking him give him a home for a few weeks,

to gather new strength in the arms of your friendship - strength for a life which is only valuable

because it belongs to my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and
although they had three children, this marriage seemed to be one of convenience for Gauss.

Gauss's work never seemed to suffer from his personal tragedy. He published his second book,
Theoria motus corporum coelestium in sectionibus conicis Solem ambientium, in 1809, a major
two volume treatise on the motion of celestial bodies. In the first volume he discussed differential
equations, conic sections and elliptic orbits, while in the second volume, the main part of the work,
he showed how to estimate and then to refine the estimation of a planet's orbit. Gauss's
contributions to theoretical astronomy stopped after 1817, although he went on making
observations until the age of 70.

Much of Gauss's time was spent on a new observatory, completed in 1816, but he still found the
time to work on other subjects. His publications during this time include Disquisitiones generales
circa seriem infinitam, a rigorous treatment of series and an introduction of the hypergeometric
function, Methodus nova integralium valores per approximationem inveniendi, a practical essay

on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion of
statistical estimators, and Theoria attractionis corporum sphaeroidicorum ellipticorum
homogeneorum methodus nova tractata. The latter work was inspired by geodesic problems and
was principally concerned with potential theory. In fact, Gauss found himself more and more
interested in geodesy in the 1820's.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up
with the existing Danish grid. Gauss was pleased to accept and took personal charge of the survey,
making measurements during the day and reducing them at night, using his extraordinary mental

442 APPENDICES

capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel, reporting on his
progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun's rays
using a design of mirrors and a small telescope. However, inaccurate base lines were used for the
survey and an unsatisfactory network of triangles. Gauss often wondered if he would have been
better advised to have pursued some other occupation but he published over 70 papers between
1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the
idea of mapping one surface onto another so that the two are similar in their smallest parts . This

paper was published in 1825 and led to the much later publication of Untersuchungen über

Gegenstände der Höheren Geodäsie (1843 and 1846). The paper Theoria combinationis
observationum erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to
mathematical statistics, in particular to the least squares method.

From the early 1800's Gauss had an interest in the question of the possible existence of a non-
Euclidean geometry. He discussed this topic at length with Farkas Bolyai and in his
correspondence with Gerling and Schumacher. In a book review in 1816 he discussed proofs
which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he
believed in the existence of non-Euclidean geometry, although he was rather vague. Gauss

confided in Schumacher, telling him that he believed his reputation would suffer if he admitted in
public that he believed in the existence of such a geometry.

In 1831 Farkas Bolyai sent to Gauss his son János Bolyai's work on the subject. Gauss replied

to praise it would mean to praise myself.

Again, a decade later, when he was informed of Lobachevsky's work on the subject, he praised its
"genuinely geometric" character, while in a letter to Schumacher in 1846, states that he

had the same convictions for 54 years

indicating that he had known of the existence of a non-Euclidean geometry since he was 15 years
of age (this seems unlikely).

Relevant Famous Mathematicians 443

Gauss had a major interest in differential geometry, and published many papers on the subject.
Disquisitiones generales circa superficies curva (1828) was his most renowned work in this field.
In fact, this paper rose from his geodesic interests, but it contained such geometrical ideas as
Gaussian curvature. The paper also includes Gauss's famous theorema egregrium:

If an area in can be developed (i.e. mapped isometrically) into another area of the values of
the Gaussian curvatures are identical in corresponding points.

The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in
1817, who stayed until her death in 1839, while he was arguing with his wife and her family about
whether they should go to Berlin. He had been offered a position at Berlin University and Minna
and her family were keen to move there. Gauss, however, never liked change and decided to stay
in Göttingen. In 1831 Gauss's second wife died after a long illness.

In 1831, Wilhelm Weber arrived in Göttingen as physics professor filling Tobias Mayer's chair.
Gauss had known Weber since 1828 and supported his appointment. Gauss had worked on physics
before 1831, publishing Uber ein neues allgemeines Grundgesetz der Mechanik, which contained
the principle of least constraint, and Principia generalia theoriae figurae fluidorum in statu
aequilibrii which discussed forces of attraction. These papers were based on Gauss's potential
theory, which proved of great importance in his work on physics. He later came to believe his
potential theory and his method of least squares provided vital links between science and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander
von Humboldt attempted to obtain Gauss's assistance in making a grid of magnetic observation
points around the Earth. Gauss was excited by this prospect and by 1840 he had written three
important papers on the subject: Intensitas vis magneticae terrestris ad mensuram absolutam

revocata (1832), Allgemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsätze in

Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden

Anziehungs- und Abstossungskräfte (1840). These papers all dealt with the current theories on
terrestrial magnetism, including Poisson's ideas, absolute measure for magnetic force and an
empirical definition of terrestrial magnetism. Dirichlet's principal was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove
an important theorem, which concerned the determination of the intensity of the horizontal
component of the magnetic force along with the angle of inclination. Gauss used the Laplace
equation to aid him with his calculations, and ended up specifying a location for the magnetic

444 APPENDICES

South pole.

Humboldt had devised a calendar for observations of magnetic declination. However, once Gauss's
new magnetic observatory (completed in 1833 - free of all magnetic metals) had been built, he
proceeded to alter many of Humboldt's procedures, not pleasing Humboldt greatly. However,
Gauss's changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff's laws, as
well as building a primitive telegraph device which could send messages over a distance of 5000
ft. However, this was just an enjoyable pastime for Gauss. He was more interested in the task of
establishing a world-wide net of magnetic observation points. This occupation produced many
concrete results. The Magnetischer Verein and its journal were founded, and the atlas of
geomagnetism was published, while Gauss and Weber's own journal in which their results were
published ran from 1836 to 1841.

In 1837, Weber was forced to leave Göttingen when he became involved in a political dispute and,

from this time, Gauss's activity gradually decreased. He still produced letters in response to fellow
scientists' discoveries usually remarking that he had known the methods for years but had never
felt the need to publish. Sometimes he seemed extremely pleased with advances made by other
mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Göttingen University widow's fund. This
work gave him practical experience in financial matters, and he went on to make his fortune
through shrewd investments in bonds issued by private companies.

Two of Gauss's last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine
description of his supervisor

... usually he sat in a comfortable attitude, looking down, slightly stooped, with hands folded
above his lap. He spoke quite freely, very clearly, simply and plainly: but when he wanted to
emphasise a new viewpoint ... then he lifted his head, turned to one of those sitting next to him,
and gazed at him with his beautiful, penetrating blue eyes during the emphatic speech. ... If he
proceeded from an explanation of principles to the development of mathematical formulas, then he
got up, and in a stately very upright posture he wrote on a blackboard beside him in his peculiarly
beautiful handwriting: he always succeeded through economy and deliberate arrangement in

making do with a rather small space. For numerical examples, on whose careful completion he

placed special value, he brought along the requisite data on little slips of paper.

Relevant Famous Mathematicians 445

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted
by Hemstedt University. It was appropriately a variation on his dissertation of 1799. From the
mathematical community only Jacobi and Dirichlet were present, but Gauss received many

messages and honours.

From 1850 onwards Gauss's work was again of nearly all of a practical nature although he did
approve Riemann's doctoral thesis and heard his probationary lecture. His last known scientific
exchange was with Gerling. He discussed a modified Foucalt pendulum in 1854. He was also able
to attend the opening of the new railway link between Hanover and Göttingen, but this proved to
be his last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning
of 23 February, 1855.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Gauss.html

Karl Gustav Jacob Jacobi

Born: 10 Dec 1804 in Potsdam, Prussia (now Germany)

Died: 18 Feb 1851 in Berlin, Germany

Karl Jacobi founded the theory of elliptic functions.

Jacobi's father was a banker and his family were prosperous so he received a good education at the
University of Berlin. He obtained his Ph.D. in 1825 and taught mathematics at the University of
Königsberg from 1826 until his death, being appointed to a chair in 1832.

He founded the theory of elliptic functions based on four theta functions. His Fundamenta nova

theoria functionum ellipticarum in 1829 and its later supplements made basic contributions to the
theory of elliptic functions.

In 1834 Jacobi proved that if a single-valued function of one variable is doubly periodic then the
ratio of the periods is imaginary. This result prompted much further work in this area, in particular

446 APPENDICES

by Liouville and Cauchy.

Jacobi carried out important research in partial differential equations of the first order and applied
them to the differential equations of dynamics.

He also worked on determinants and studied the functional determinant now called the Jacobian.
Jacobi was not the first to study the functional determinant which now bears his name, it appears
first in a 1815 paper of Cauchy. However Jacobi wrote a long memoir De determinantibus
functionalibus in 1841 devoted to the this determinant. He proves, among many other things, that
if a set of n functions in n variables are functionally related then the Jacobian is identically zero,
while if the functions are independent the Jacobian cannot be identically zero.

Jacobi's reputation as an excellent teacher attracted many students. He introduced the seminar
method to teach students the latest advances in mathematics.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Jacobi.html

Adrien-Marie Legend re

Born: 18 Sept 1752 in Paris, France

Died: 10 Jan 1833 in Paris, France

Legendre's major work on elliptic integrals provided basic analytical tools for mathematical
physics.

Legendre was educated at Collège Mazarin in Paris. From 1775 to 1780 he taught with Laplace at
École Militaire where his appointment was made on the advice of d'Alembert. Legendre was
appointed to the Académie des Sciences in 1783 and remained there until it closed in 1793.

In 1782 Legendre determined the attractive force for certain solids of revolution by introducing an
infinite series of polynomials which are now called Legendre polynomials.

Relevant Famous Mathematicians 447

His major work on elliptic functions in Exercises du Calcul Intégral (1811,1817,1819) and elliptic
integrals in Traité des Fonctions Elliptiques (1825,1826,1830) provided basic analytical tools for
mathematical physics.

In his famous textbook Éléments de géométrie (1794) he gave a simple proof that is irrational as

well as the first proof that is irrational and conjectured that is not the root of any algebraic
equation of finite degree with rational coefficients i.e. is not algebraic.

His attempt to prove the parallel postulate extended over 40 years.

In 1824 Legendre refused to vote for the government's candidate for Institut National. Because of
this his pension was stopped and he died in poverty. Abel wrote in October 1826

Legendre is an extremely amiable man, but unfortunately as old as the stones.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Legendre.html

August Ferdinand Möbius

Born: 17 Nov 1790 in Schulpforta, Saxony (now Germany)

Died: 26 Sept 1868 in Leipzig, Germany

August Möbius is best known for his work in topology, especially for his conception of the
Möbius strip, a two dimensional surface with only one side.

August was the only child of Johann Heinrich Möbius, a dancing teacher, who died when August
was three years old. His mother was a descendant of Martin Luther. Möbius was educated at home
until he was 13 years old when, already showing an interest in mathematics, he went to the College
in Schulpforta in 1803.

In 1809 Möbius graduated from his College and he became a student at the University of Leipzig.

448 APPENDICES

His family had wanted him study law and indeed he started to study this topic. However he soon
discovered that it was not a subject that gave him satisfaction and in the middle of his first year of
study he decided to follow him own preferences rather than those of his family. He therefore took
up the study of mathematics, astronomy and physics.

The teacher who influenced Möbius most during his time at Leipzig was his astronomy teacher
Karl Mollweide. Although an astronomer, Mollweide is well known for a number of mathematical
discoveries in particular the Mollweide trigonometric relations he discovered in 1807-09 and the
Mollweide map projection which preserves angles and so is a conformal projection.

In 1813 Möbius travelled to Göttingen where he studied astronomy under Gauss. Now Gauss was
the director of the Observatory in Göttingen but of course the greatest mathematician of his day, so
again Möbius studied under an astronomer whose interests were mathematical. From Göttingen
Möbius went to Halle where he studied under Johann Pfaff, Gauss's teacher. Under Pfaff he
studied mathematics rather than astronomy so by this stage Möbius was very firmly working in
both fields.

In 1815 Möbius wrote his doctoral thesis on The occultation of fixed stars and began work on his
Habilitation thesis. In fact while he was writing this thesis there was an attempt to draft him into
the Prussian army. Möbius wrote

This is the most horrible idea I have heard of, and anyone who shall venture, dare, hazard, make
bold and have the audacity to propose it will not be safe from my dagger.

He avoided the army and completed his Habilitation thesis on Trigonometrical equations.
Mollweide's interest in mathematics was such that he had moved from astronomy to the chair of
mathematics at Leipzig so Möbius had high hopes that he might be appointed to a professorship in
astronomy at Leipzig. Indeed he was appointed to the chair of astronomy and higher mechanics at
the University of Leipzig in 1816. His initial appointment was as Extraordinary Professor and it
was an appointment which came early in his career.

However Möbius did not receive quick promotion to full professor. It would appear that he was
not a particularly good lecturer and this made his life difficult since he did not attract fee paying
students to his lectures. He was forced to advertise his lecture courses as being free of charge
before students thought his courses worth taking.

Relevant Famous Mathematicians 449

He was offered a post as an astronomer in Greifswald in 1916 and then a post as a mathematician
at Dorpat in 1819. He refused both, partly through his belief in the high quality of Leipzig
University, partly through his loyalty to Saxony. In 1825 Mollweide died and Möbius hoped to
transfer to his chair of mathematics taking the route Mollweide had taken earlier. However it was
not to be and another mathematician was preferred for the post.

By 1844 Möbius's reputation as a researcher led to an invitation from the University of Jena and at
this stage the University of Leipzig gave him the Full Professorship in astronomy which he clearly
deserved.

From the time of his first appointment at Leipzig Möbius had also held the post of Observer at the
Observatory at Leipzig. He was involved the rebuilding of the Observatory and, from 1818 until
1821, he supervised the project. He visited several other observatories in Germany before making
his recommendations for the new Observatory. In 1820 he married and he was to have one
daughter and two sons. In 1848 he became director of the Observatory.

In 1844 Grassmann visited Möbius. He asked Möbius to review his major work Die lineale
Ausdehnundslehre, ein neuer Zweig der Mathematik (1844) which contained many results similar

to Möbius's work. However Möbius did not understand the significance of Grassmann's work and
did not review it. He did however persuade Grassmann to submit work for a prize and, after
Grassmann won the prize, Möbius did write a review of his winning entry in 1847.

Although his most famous work is in mathematics, Möbius did publish important work on
astronomy. He wrote De Computandis Occultationibus Fixarum per Planetas (1815) concerning

occultations of the planets. He also wrote on the principles of astronomy, Die Hauptsätze der
Astronomie (1836) and on celestial mechanics Die Elemente der Mechanik des Himmels (1843).

Möbius's mathematical publications, although not always original, were effective and clear
presentations. His contributions to mathematics are described by his biographer Richard Baltzer in
as follows:

The inspirations for his research he found mostly in the rich well of his own original mind. His
intuition, the problems he set himself, and the solutions that he found, all exhibit something

extraordinarily ingenious, something original in an uncontrived way. He worked without
hurrying, quietly on his own. His work remained almost locked away until everything had been put

into its proper place. Without rushing, without pomposity and without arrogance, he waited until
the fruits of his mind matured. Only after such a wait did he publish his perfected works...

450 APPENDICES

Almost all Möbius's work was published in Crelle's Journal, the first journal devoted exclusively
to publishing mathematics. Möbius's 1827 work Der barycentrische Calkul, on analytical
geometry, became a classic and includes many of his results on projective and affine geometry. In
it he introduced homogeneous coordinates and also discussed geometric transformations, in
particular projective transformations. He introduced a configuration now called a Möbius net,
which was to play an important role in the development of projective geometry.

Möbius's name is attached to many important mathematical objects such as the Möbius function
which he introduced in the 1831 paper Uber eine besondere Art von Umkehrung der Reihen and
the Möbius inversion formula.

In 1837 he published Lehrbuch der Statik which gives a geometric treatment of statics. It led to the
study of systems of lines in space.

Before the question on the four colouring of maps had been asked by Francis Guthrie, Möbius had
posed the following, rather easy, problem in 1840.

There was once a king with five sons. In his will he stated that on his death his kingdom should be

divided by his sons into five regions in such a way that each region should have a common

boundary with the other four. Can the terms of the will be satisfied?

The answer, of course, is negative and easy to show. However it does illustrate Möbius's interest in

topological ideas, an area in which he most remembered as a pioneer. In a memoir, presented to
the Académie des Sciences and only discovered after his death, he discussed the properties of one-
sided surfaces including the Möbius strip which he had discovered in 1858. This discovery was
made as Möbius worked on a question on the geometric theory of polyhedra posed by the Paris
Academy.

Although we know this as a Möbius strip today it was not Möbius who first described this object,
rather by any criterion, either publication date or date of first discovery, precedence goes to
Listing.

A Möbius strip is a two-dimensional surface with only one side. It can be constructed in three
dimensions as follows. Take a rectangular strip of paper and join the two ends of the strip together

Relevant Famous Mathematicians 451

so that it has a 180 degree twist. It is now possible to start at a point A on the surface and trace out
a path that passes through the point which is apparently on the other side of the surface from A.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Mobius.html

Joseph Henry Maclagen Wedderburn

Born: 2 Feb 1882 in Forfar, Angus, Scotland

Died: 9 Oct 1948 in Princeton, New Jersey, USA

Joseph Wedderburn made important advances in the theory of rings, algebras and matrix theory.

He entered Edinburgh University in 1898, obtaining a degree in mathematics in 1903. Wedderburn
then pursued postgraduate studies in Germany spending 1903-1904 at the University of Leipzig
and then a semester at the University of Berlin.

He was awarded a Carnegie Scholarship to study in the USA and he spent 1904-1905 at the
University of Chicago where he did joint work with Veblen. Returning to Scotland he worked for
4 years at Edinburgh as assistant to George Chrystal. From 1906 to 1908 he served as editor of the
Proceedings of the Edinburgh Mathematical Society.

In 1909 Wedderburn was appointed a Preceptor in Mathematics at Princeton where he joined
Veblen. However World War I saw Wedderburn volunteer for the British Army and he served,
partly in France, until the end of the war.

On his return to Princeton he was soon promoted obtaining permanent tenure in 1921. He served

as Editor of the Annals of Mathematics from 1912 to 1928. From about the end of this period
Wedderburn seemed to suffer a mild nervous breakdown and became an increasingly solitary
figure. By 1945 the Priceton gave him early retirement in his own best interests.

Wedderburn's best mathematical work was done before his war service. In 1905 he showed that a
non-commutatiove finite field could not exist. This had as a corollary the complete structure of all
finite projective geometries, showing that in all these geometries Pascal's theorem is a

452 APPENDICES

consequence of Desargues' theorem.

In 1907 he published what is perhaps his most famous paper on the classification of semisimple
algebras. He showed that every semisimple algebra is a direct sum of simple algebras and that a
simple algebra was a matrix algebra over a division ring.

In total he published around 40 works mostly on rings and matrices. His most famous book is
Lectures on Matrices (1934).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Wedderburn.html

Appendix D New Functions

AddTwoLetters

AddTwoLetters adds two letters modulo 26, where

Example:

CaesarCipher

Applies the Caesar cipher with a given key to a given plaintext of small letters.

Example:

ColumnSwap

ColumnSwap interchanges columns i and j in matrix B.

454 APPENDICES

Example:

CoPrimeQ

CoPrime test if two integers are coprime, i.e. have gcd 1.

Example:

CoPrimes

CoPrimes generates a list of all integers in between 1 and n that are coprime with n. In other
words, it generates a reduced residue system modulo n.

Coprimes makes use of the function CoPrimeQ defined earlier.

New Functions 455

Example:

DivisorProduct

DivisorProduct calculates

Example:

DivisorSum

DivisorSum calculates

Example:

456 APPENDICES

EllipticAdd

EllipticAdd evaluates the sum of the points P and Q on an elliptic curve over given by the
equation Here p is prime,

Example:

{3, 9}

New Functions 457

Entropy

Computes the entropy function.

Example:

ListQuadRes

ListQuadRes gives a listing of all the quadratic residues modulo p.

Example:

MultiEntropy

MultiEntropy evaluates

Example:

458 APPENDICES

MultiplicativeOrder

MultiplicativeOrder computes the multiplicative order of an integer a modulo n, assuming that
they are coprime. So, it outputs the smallest positive integer m such that (mod n).

Example:

KnapsackForSuperIncreasingSequence

KnapsackForSuperIncreasingSequence finds the {0, 1}-solution of the knapsack problem
where is a superincreasing sequence.

Example:

New Functions 459

{1, 1, 0, 1, 1, 0}

RowSwap

RowSwaps interchanges rows i and j in matrix B.

Example:

This page intentionally left blank.

References
[Adle79] Adleman, L.M., A subexponential algorithm for the discrete logarithm problem with

applications to cryptography, in Proc. IEEE 20-th Annual Symp. on Found. of Comp. Science, pp.
55-60, 1979.

[Adle83] Adleman, L.M., On breaking the iterated Merkle-Hellman public key cryptosystem, in
Proc. 15-th Annual ACM Symp. Theory of Computing, pp. 402-412, 1983.

[Adle94] Adleman, L.M., The function field sieve, Lecture Notes in Computer Science 877,
Springer Verlag, Berlin, etc., pp. 108-121, 1995.

[AdDM93] Adleman, L.M. and J. DeMarrais, A subexponential algorithm for discrete logarithms
over all finite fields, Mathematics of Computation, 61, pp. 1-15, 1993.

[AdPR83] Adleman, L.M., C. Pomerance, and R. Rumely, On distinguishing prime numbers from
composite numbers, Annals of Math. 17, pp. 173-206, 1983.

[Aign79] Aigner, M., Combinatorial Theory, Springer Verlag, Berlin, etc., 1979.

[BaKT99] Barg, A., E. Korzhik and H.C.A. van Tilborg, On the complexity of minimum distance
decoding of long linear codes, to appear in the IEEE Transactions on Information Theory.

[Baue97] Bauer, F.L., Decrypted Secrets; Methods and Maxims of Cryptology, Springer Verlag,
Berlin, etc., 1997.

[BekP82] Beker, H. and F. Piper, Cipher Systems, the Protection of Communications, Northwood
Books, London, 1982.

[Berl68] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill Book Company, New York,
etc., 1968

[BeMT78] Berlekamp, E.R., R.J. McEliece and H.C.A. van Tilborg, On the inherent intractability

of certain coding problems, IEEE Transactions on Information Theory, IT-24, pp. 384-386, May
1978.

[BeJL86] Beth, T., D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press,

Cambridge, etc., 1986.

[BihS93], Biham E. and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Spinger Verlag, New York etc., 1993.

[BoDML97] Boneh, D., R.A. DeMillo, and R.J. Lipton, On the importance of checking
cryptographic protocols for faults, Advances in Cryptology: Proc. of Eurocrypt'97, W. Fumy, Ed.,
Lecture Notes in Computer Science 1233, Springer Verlag, Berlin, etc., pp. 37-51, 1997.

462

[Bos92] Bos, J.N.E., Practical privacy, Ph.D. Thesis, Eindhoven University of Technology, the
Netherlands, 1992.

[Bric85] Brickell, E.F., Breaking iterated knapsacks, in Advances in Cryptography: Proc. of
Crypto '84, G.R. Blakley and D. Chaum, Eds., Lecture Notes in Computer Science 196, Springer
Verlag, Berlin etc., pp. 342-358, 1985.

[Bric89] Brickell, E.F., Some ideal secret sharing schemes, The Journal of Combinatorial
Mathematics and Combinatorial Computing, Vol. 6, pp. 105-113, 1989.

[CanS98] Canteaut, A. and N. Sendrier, Cryptanalysis of the original McEliecese cryptosystem,
Advances in Cryptology: Proc. AsiaCrypt'98, K. Ohta and D. Pei, Eds., Lecture Notes in Computer
Science 1514, Springer, Berlin etc., pp. 187-199, 1998.

[ChoR85] Chor, B. and R.L. Rivest, A knapsack type public key cryptosystem based on arithmetic

in finite fields, in Advances in Cryptography: Proc. of Crypto '84, G.R. Blakley and D. Chaum,
Eds., Lecture Notes in Computer Science 196, Springer Verlag, Berlin etc., pp. 54-65, 1985.

[CohL82] Cohen, H. and H.W. Lenstra Jr., Primality testing and Jacobi sums, Report 82-18, Math.
Inst., Univ. of Amsterdam, Oct. 1982.

[Cohn77] Conn, P.M., Algebra Vol.2, John Wiley & Sons, London, etc., 1977.

[Copp84] Coppersmith, D., Fast evaluation of logarithms in fields of characteristic two, IEEE
Transactions on Infprmation Theory, IT-30, pp. 587-594, July 1984.

[CopFPR96] Coppersmith, D., M. Franklin, J. Patarin, and M. Reiter, Low-exponent RSA with
Related Messages, Advances in Cryptology: Proc. of Eurocrypt'96, U. Maurer, Ed., Lecture Notes

in Computer Science 1070, Springer Verlag, Berlin, etc., pp. 1-9, 1996.

[CovM67] Coveyou, R.R. and R.D. McPherson, Fourier analysis of uniform random number

generators, J. Assoc. Comput. Mach., 14, pp. 100-119, 1967.

[Demy94] Demytko, N., A new elliptic curve based analogue of RSA, Advances in Cryptology:

Proc. of Eurocrypt'93, T. Helleseth, Ed., Lecture Notes in Computer Science 765, Springer
Verlag, Berlin, etc., pp. 40-49, 1994.

[Denn82] Denning, D.E.R., Cryptography and Data Security, Addison-Wesley publ. Comp.,

Reading Ma, etc., 1982.

[DifH76] Diffie, W. and M.E. Hellman, New directions in cryptography, IEEE Transactions on

Information Theory, IT-22, pp. 644-654, Nov. 1976.

[Dijk97] Dijk, M. van, Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, Eindhoven
University of Technology, the Netherlands, 1997.

References 463

[ElGa85] ElGamal, T., A public-key cryptosystem and a signature scheme based on discrete

logarithms, Advances in Cryptology: Proc. of Crypto'84, G.R. Blakley and D. Chaum, Eds.,
Lecture Notes in Computer Science 196, Springer Verlag, Berlin, etc., pp. 10-18, 1985.

[FiaS87] Fiat, A. and A. Shamir, How to prove yourself: Practical solutions to identification and

signature problems, Advances in Cryptology: Proc. of Crypto'86, A.M. Odlyzko, Ed., Lecture
Notes in Computer Science 263, Springer Verlag, Berlin, etc., pp. 186-194, 1987.

[FIPS94] FIPS 186, Digital Signature Standard, Federal Information Processing Standards
Publication 186, U.S. Department of Commerce/N.I.S.T., National Technical Information Service,
Springfield, Virginia, 1994.

[Frie73] Friedman, W.F., Cryptology, in Encyclopedia Brittanica, p. 848, 1973.

[GarJ79] Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman and Co., San Fransisco, 1979.

[GilMS74] Gilbert. E.N., F.J. MacWilliams, and N.J.A. Sloane, Codes which detect deception,

Bell System Technical Journal, Vol. 53, pp. 405-424, 1974.

[Golo67] Golomb, S.W., Shift Register Sequences, Holden-Day, San Fransisco, 1967.

[Hall67] Hall, Jr.. M., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Ma., 1967

[HarW45] Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers, Clarendon
Press, Oxford, 1945.

[Håst88] Håstad. J., Solving simultaneous modular equations of low degree, SIAM Journal on
Computing, 17, pp. 336-341, 1988.

[HelR83] Hellman, M.E. and J.M. Reyneri, Fast computation of discrete logarithms over GF(q),
in Advances in Cryptography: Proc. of Crypto '82, D. Chaum, R. Rivest and A. Sherman, Eds.,
Plenum Publ. Comp., New York, pp. 3-13, 1983.

[Huff52] Huffman, D.A., A method for the construction of minimum-redundancy codes, Proc. IRE,
14, pp. 1098-1101, 1952.

[Joha94a] Johansson. T., A shift register of unconditionally secure authentication codes, Designs,
Codes and Cryptography, 4, pp. 69-81, 1994.

[Joha94b] Johansson, T., Contributions to Unconditionally Secure Authentication, KF Sigma,
Lund, 1994.

[JohKS93] Johansson, T., G. Kabatianskii, and B. Smeets, On the relation between A-codes and
codes correcting independent errors, Advances in Cryptography: Proc. of Eurocrypt '93, T.
Helleseth, Edt., Lecture Notes in Computer Science 765, Springer Verlag, Berlin etc., pp. 1-10,
1993.

464

[Kahn67] Kahn, D., The Codebreakers, the Story of Secret Writing, Macmillan Company, New
York, 1967.

[Khin57] Khinchin. A.I., Mathematical Foundations of Information Theory, Dover Publications,
New York, 1957.

[Knud94] Knudsen, L.R., Block Ciphers–Analysis, Designs and Applications, PhD Thesis,

Computer Science Department, Aarhus University, Denmark, 1994.

[Knut69] Knuth, D.E., The Art of Computer Programming, Vol.2, Semi-numerical Algorithms,

Addison-Wesley, Reading, MA., 1969.

[Knut73] Knuth, D.E., The Art of Computer Programming, Vol.3, Sorting and searching, Addison-
Wesley, Reading, M.A., 1973.

[Knut81] Knuth, D.E., The Art of Computer Programming, Vol.2, Semi-Numerical Algorithms,

Second Edition, Addison-Wesley, Reading, MA., 1981.

[Koch96] Kocher, P.C., Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
Other Systems, Advances in Cryptology: Proc. of Crypto'96, N. Koblitz, Ed., Lecture Notes in
Computer Science 1109, Springer Verlag, Berlin etc., pp. 104-113 , 1996.

[Konh81] Konheim, A.G., Cryptography, a Primer, John Wiley & Sons, New York, etc., 1981.

[Kraf49] Kraft, L.G., A Device for Quantizing, Grouping and Coding Amplitude Modulated
Pulses, MS Thesis, Dept. of EE, MIT, Cambridge, Mass., 1949.

[LagO83] Lagarias, J.C. and A.M. Odlyzko, Solving low-density subset problems, Proc. 24th

Annual IEEE Symp. on Found. of Comp. Science, pp. 1-10, 1983.

[Lai92] Lai, X., On the design and security of block ciphers, ETH Series in Information
Processing, J.J. Massey, Ed., vol. 1, Hartung-Gorre Verlag, Konstantz, 1992)

[LeeB88] Lee, P.J. and E.F. Brickell, An observation on the security of McEliece's public-key
cryptosystem, in Advances in Cryptography: Proc. of Eurocrypt'88, C.G. Günther, Ed., Lecture
Notes in Computer Science 330, Springer Verlag, Berlin etc., pp. 275-280, 1988.

[Lehm76] Lehmer, D.H., Strong Carmichael numbers, J. Austral. Math. Soc., Ser. A 21, pp.

508-510, 1976.

[LensA96] Lenstra, A.K., Memo on RSA signature generation in the presence of faults, Sept. 1996.

[LenLL82] Lenstra, A.K., H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational

coefficients, Math. Annalen, 261, pp. 515-534, 1982.

[LensH83] Lenstra, H.W. Jr., Fast prime number tests, Nieuw Archief voor Wiskunde (4) 1, pp.
133-144, 1983.

References 465

[LensH86] Lenstra, H.W. Jr., Factoring integers with elliptic curves, Report 86-16, Dept. of
Mathematics, University of Amsterdam, Amsterdam, the Netherlands.

[Liu68] Liu, C.L., Introduction to combinatorial mathematics, McGraw-Hill, New York, 1968.

[Lüne87] Lüneberg H., On the Rational Normal Form of Endomorphisms; a Primer to
Constructive Algebra, BI Wissenschaftsverlag, Mannheim etc., 1987.

[MacWS77] MaeWilliams, F.J. and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland Publ. Comp., Amsterdam, etc., 1977.

[Mass69] Massey, J.L., Shift-register synthesis and BCH decoding, IEEE Transactions on

Information Theory, IT-15, pp. 122-127, Jan. 1969.

[MatY93] Matsui, M. and A. Yamagishi, A new method for known plaintext attack of FEAL
cipher, Advances in Cryptology: Proc. Eurocrypt'92, R.A. Rueppel, Ed., Lecture Notes in
Computer Science 658, Springer, Berlin etc., pp. 81-91, 1993.

[Maur92] Maurer. U., A universal statistical test for random bit generators, Journal of Cryptology,

5, pp. 89-105, 1992.

[McE178] McEliece, R.J., A public-key cryptosystem based on algebraic coding theory, JPL DSN
Progress Report 42-44, pp. 114-116, Jan-Febr. 1978.

[McE181] McEliece, R.J. and D.V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm.
ACM, vol. 24, pp. 583-584, Sept. 1981.

[McMi56] McMillan, B., Two inequalities implied by unique decipherability, IEEE Trans. Inf.

Theory, IT-56, pp. 115-116, Dec. 1956.

[Mene93] Menezes, A.J., Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
Boston etc., MA, 1993.

[MeOkV93] Menezes, A.J., T. Okamoto, and S.A. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite filed, IEEE Transactions on Information Theory, IT-39, 1639-1646, 1993.

[MeOoV97] Menezes, A.J., P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, etc. 1997.

[MerH78] Merkle, R.C. and M.E. Hellman, Hiding information and signatures in trapdoor
knapsacks, IEEE Transactions on Information Theory, IT-24, pp. 525-530, Sept. 1978.

[MeyM82] Meyer, C.H. and S.M. Matyas, Cryptography: a New Dimension in Computer Data

Security, John Wiley & Sons, New York, etc., 1982

[Mill76] Miller, G.L., Riemann's hypothesis and tests for primality, Journal of Computer and
System Sciences, 13, pp. 300-317, 1976.

466

[Mill86] Miller, G.L., Use of elliptic curves in cryptography, Advances in Cryptology: Proc.
Crypto'85, H.C. Williams, Ed., Lecture Notes in Computer Science 218, Springer, Berlin etc., pp.

417-426, 1986.

[Moni80] Monier. L., Evaluation and comparison of two efficient probabilistic primality testing

algorithms, Theoretical Computer Science, 12, pp. 97-108, 1980

[MorB75] Morrison, M.A. and J. Brillhart, A method of factoring and the factorization of
Math. Comp. 29, pp. 183-205, 1975.

[Nied86] Niederreiter, H., Knapsack type cryptosystems and algebraic coding theory, Problems of
Control and Information Theory, 15, pp. 159-166, 1986.

[NybR93] Nyberg, K. and R.A. Rueppel, A new signature scheme based on the DSA giving

message recovery, 1st ACM Conference on Computer and Communications Security, ACM Press,
1993, pp. 58-61.

[Odly85] Odlyzko, A.M., Discrete logarithms in finite fields and their cryptographic significance,
Advances in Cryptology: Proc. Eurocrypt '84, T. Beth, N. Cot and I. Ingemarsson, Eds., Lecture
Notes in Computer Science 209, Springer, Berlin etc., pp. 224-314, 1985.

[Patt75] Patterson N.J., The algebraic decoding of Goppa codes, IEEE Transactions on
Information Theory, IT-21, pp. 203-207, Mar. 1975.

[Pera86] Peralta, R., A simple and fast probablistic algorithm for computing square roots modulo
a prime number, presented at Eurocrypt'86, J.L. Massey, Ed., no proceedings published.

[PohH78] Pohlig, S.C. and M.E. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Transactions on Information Theory, IT-24, pp.
106-110, Jan. 1978.

[Poll75] Pollard, J.M., A Monte Carlo method for factoring, BIT-15, pp. 331-334, 1975.

[Poll78] Pollard, J.M., Monte Carlo methods for index computations (mod p), Mathematics of
Computations 32, pp. 918-924, 1978.

[Rabi79] Rabin, M.O., Digitalized signatures and public-key functions as intractable as
factorization, MIT/LCS/TR-212, MIT Lab. for Comp. Science, Cambridge, Mass., Jan. 1979.

[Rabi80a] Rabin, M.O., Probabilistic algorithms for testing primality, Journal of Number Theory,
12, pp. 128-138, 1980.

[Rabi80b] Rabin, M.O., Probabilistic algorithms in finite fields, SIAM J. Comput. 80, pp.
273-280, 1980.

[RisL79] Rissanen, J. and G. Langdon, Arithmetic coding, IBM Journal of Research and
Development, 23, pp. 149-162, 1979.

References 467

[RivSA78] Rivest, R.L., A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM, Vol. 21, pp. 120-126, Febr. 1978.

[Rose84] Rosen, K.H., Elementary Number Theory, Addison-Wesley Publ. Comp., Reading,
Mass, 1984.

[Ruep86] Rueppel, R.A., Analysis and Design of Streamciphers, Springer-Verlag, Berlin etc.,
1986.

[SatA98] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli
47, pp. 81-92, 1998.

[Schne96] Schneier, B., Applied Cryptography, 2nd Edition, John Wiley & Sons, New York, etc.,
1996.

[Schno90] Schnorr, C.P., Efficient identification and signatures for smart cards, In: Advances in
Cryptology-Crypto'89, Ed. G. Brassard, Lecture Notes in Computer Science 435, Springer Verlag,
Berlin, etc., pp.239-252, 1990.

[Schno91] Schnorr, C.P., Efficient signature generation by smart cards, Journal of Cryptology 4,
pp. 161-174, 1991.

[Scho95] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Théorie des

Nombres de Bordeaux, 7, pp. 219-254, 1995.

[Sham79] Shamir, A., How to share a secret, Communications of the A.C.M., Vol. 22, pp.
612-613, Nov. 1979.

[Sham82] Shamir, A., A polynomial time algorithm for breaking the basic Merkle-Hellman

cryptosystem, in Proc. 23-rd IEEE Symp. Found. Computer Sci., pp. 145-152, 1982.

[Sham49] Shannon, C.E., Communication Theory and Secrecy Systems, B.S.T.J. 28, pp. 656-715,
Oct. 1949.

[Shap83] Shapiro, H.N., Introduction to the Theory of Numbers, John Wiley & Sons, New York,

etc., 1983.

[Silv86] Silverman, J.H., The Arithmetic of Elliptic Curves, Springer Verlag, Berlin, etc., 1986.

[Silv98] Silverman, J.H., The XEDNI calculus and the elliptic curve discrete logarithm problem,

preprint.

[SilT92] Silverman J.H. and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in
Mathematics, Springer-Verlag New York Inc.,1992.

[Simm92] Simmons, G.J., A survey of information authentication, in Contemporary Cryptology:
the Science of Information Integrity, G.J. Simmons, Ed., IEEE Press, New York, pp. 379-419,
1992.

468

[Smar98] N. Smart, The discrete logarithm problem on elliptic curves of trace one, Journal of
Cryptology, to appear.

[SolS77] Solovay, R. and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput 6,
pp. 84-85, March 1977.

[Stin95] Stinson, D.R., Cryptography: Theory and Practice, CRC Press, Inc., Boca Raton, 1995.

[SugK76] Sugiyama, Y., M. Kashara, S. Hirasawa and T. Namekawa, An erasures-and-errors
decoding algorithm for Goppa codes, IEEE Transactions on Information Theory, IT-22, pp.
238-241, Mar. 1976.

[vTbu88] van Tilburg, H., On the McEliece public-key cryptosystem, Advances in Cryptography:
Proc. of Crypto '88, S. Goldwasser, Ed., Lecture Notes in Computer Science 403, Springer Verlag,
Berlin etc., pp. 119-131, 1989.

[Vaud98] Vaudenay, S., Cryptanalysis of the Chor-Rivest cryptosystem, Advances in
Cryptography: Proc. of Crypto '98, H. Krawczyk, Ed., Lecture Notes in Computer Science 1462,
Springer Verlag, Berlin etc., pp. 243-256, 1998.

[VerT97] Verheul, E.R. and H.C.A. van Tilborg, Constructions and properties of k out of n visual

secret sharing shemes, Designs, Codes and Cryptography, Vol. 11, No. 2, pp. 179-196, May 1997.

[Well99] Wells, R.B., Applied Coding and Information Theory, Prentice Hall, Upper Saddle River
NJ, 1999.

[Wien90] Wiener, M.J., Cryptanalysis of Short RSA Secret Exponents, IEEE Transactions on
Information Theory, IT-36, pp. 553-558, May 1990.

[ZivL77] Ziv, J. and A. Lempel, A universal algorithm for sequential data compression, IEEE
Transactions on Information Theory, IT-23, pp. 337-343, 1977.

[ZivL78] Ziv, J. and A. Lempel, Compression of individual sequences by variable rate coding,
IEEE Transactions on Information Theory, IT-24, pp. 530-536, 1978.

Symbols and Notations
(a, b) greatest common divisor, 344, 345

[a, b] least common multiple, 345

Jacobi symbol, 364

R/S residue class ring, 388

(s(x)) ideal generated by s(x), 398

congruent, 352

length of vector, 393

orthogonal complement, 394

Goppa code, 237

Möbius function, 378

number of primes 344

Euler totient function, 354

Legendre symbol, 364

output space of LFSR, 35

AC(k) auto-correlation, 28

redundancy, 79

d(u) density of a knapsack, 271

elliptic curve, 213

gcd greatest common divisor, 344, 345

f* minimal characteristic polynomial, 35

linear complexity, 52

F[x] ring of polynomials over F, 395

finite field of q elements, 387

GF Galois field, 387

470

h(p) entropy, 76

H(X) entropy, 76

conditional entropy, 81

number of irreducible polynomials of degree n over 401

I(n) number of binary, irreducible polynomials of degree n, 401

I(X,Y) mutual information, 82

1cm least common multiple , 345, 344

linear complexity, 52

N non-privileged set (of an access system), 322

NQR quadratic non-residue , 364

probability of a successful deception, 293

probability of a successful impersonation attack, 293

probability of a successful substitution attack, 293

privileged set (of an access system), 322

cyclotomic polynomial, 420

QR quadratic residue , 364

Tr trace function, 424

V(n,q) n-dimensional vectorspace over GF(q), 309

w(x) weight of a vector, 242

integers modulo p, 395

Index

A

Abelian group, 385
access structure, 322

complete, 322
perfect, 322

A-code (for message authentication), 292
Johansson's construction of A-code from EC-code, 309
from orthogonal array, 305

active cryptanalist, 3
addition of points on an elliptic curve, 225
addition chain, 113
additive group, 385
address, 98
alphabet, 2
algorithm

addition of points on an elliptic curve , 225
Baby-step Giant-step (for taking discrete logarithms), 130
Berlekamp-Massey, 56

bit swapping, 255
Cohen and Lenstra (deterministic primality test 1), 193
continued fraction, 371
conversion from integer to binary weight k vector, 283
decryption of Chor-Rivest, 284
Euclid (simple version), 348

(extended version), 349
factoring algorithms

Pollard p-1, 158

161
quadratic sieve, 167
random squares method, 162
Gauss (to find a primitive element), 423

Gram-Schmidt (for orthogonalization process), 272
Huffman (for data compression), 93
index-calculus (for taking discrete logarithms), 135
Floyd's cycle-finding algorithm, 133
knapsack problem for superincreasing sequences, 264

472

(for a lattice basis reduction), 277
Lempel-Ziv (for data compression), 97
message authentication code based on DES, 290
Miller-Rabin primality test, 188
Pohlig-Hellman, 121
Pollard p-1 (for factoring), 158

(for factoring), 161
(for taking discrete logarithms), 131

primality tests
Cohen and Lenstra (deterministic primality test 1), 193
Miller-Rabin (probabilistic primality test), 188
Solovay and Strassen (probabilistic primality test), 187

quadratic sieve factoring algorithm, 167
Secure Hash (SHA), 119
Solovay and Strassen (probabilistic primality test), 187
taking square roots modulo a prime number, 199

anomalous curve, 235
associative (operation), 384

attack
chosen plaintext, 4
ciphertext only, 3
Coppersmith (on RSA with related messages), 171
exhaustive key search, 10
impersonation, 292
incidence of coincidences (of Vigenère cryptosystem), 16
known plaintext, 3
Kasiski's method (of Vigenère cryptosystem), 19
known plaintext, 3

(on the knapsack system), 275
Lagarias and Odlyzko, 270
microwave attack (physical attack of RSA), 180
substitution, 292
timing (physical attack of RSA), 180
Wiener (of RSA with small d), 176

authentication, 1
code, 291

from error-correcting codes, 309
from orthogonal array, 305
from projective plane, 303

matrix, 291
message authentication code, 289

Index 473

authenticator, 292
auto-correlation, 28

in-phase, 29
out-of-phase, 29

B

Baby-step Giant-step (for taking discrete logarithms), 130
basis, 392

lattice, 272

self-orthogonal, 394
self-orthonormal, 394
standard, 393
y-reduced (of a lattice), 274

Berlekamp-Massey algorithm, 56
bi-gram, 2
binary symmetric channel, 83
bit (unit of information), 75
bit swapping algorithm, 255
block, 28
block cipher, 63

Data Encryption Standard, 67
DES, 67

IDEA, 70

RC5, 72

Triple DES, 69
bound (square root), 294
branch point, 58
buffer

look-ahead, 98
search, 98

474

c
Caesar cipher, 9

Carmichael number, 191
chain rule for conditional entropy, 81
challenge in

Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

channel (secure), 3
characteristic (of a field), 409
characteristic polynomial, 35
Chinese Remainder Theorem, 361
Chor-Rivest cryptosytem, 279
chosen plaintext attack, 4
cipher (see cryptosystem)

block, 63
stream, 21

cipher block chaining, 64

cipher feedback mode, 65
ciphertext, 3
ciphertext only attack, 3
code

A- (for message authentication), 292
authentication, 291
Goppa, 237
hash, 288
instantaneous, 88
message authentication, 289
prefix, 88
source, 87
uniquely decodable, 87
U.D., 87

codebook mode, 63
codeword, 237
Cohen and Lenstra (deterministic primality test; version 1), 193
collision resistant

strong, 288
weak, 288

column transposition (cipher), 21
commutative (operation), 383
complete

Index 475

access structure, 322
residue system, 353

computationally secure, 287
conditional

entropy, 81
probability, 80

confidentiality, 1
congruence relation

linear, 358
quadratic, 364

congruent, 352
conjugate, 412
consistency condition (of Kolmogorov), 4
continued fraction, 369
conventional cryptosystem, 3
convergent, 373
Coppersmith's attack on RSA with related messages, 171
coprime, 346
cryptanalist, 3

active, 3
passive, 3

cryptanalysis, 1
differential (for block ciphers), 72
incidence of coincidences, 16
Kasiski's method, 19
linear (for block ciphers), 72
the method of the probable world, 11

cryptographic transformation, 2
cryptography, 1
cryptology, 1
cryptosystem

Caesar, 9
Chor-Rivest, 279
column transposition, 21
conventional, 3
Data Encryption Standard, 67
DES, 67
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
ElGamal public key cryptosystems, 116

secrecy scheme, 116

476

signature scheme, 118
Enigma, 24
Hagelin, 22
IDEA, 70
knapsack, 268
LFSR, 32
linear feedback shift register, 32
logarithm system (key exchange), 115
McEliece (secrecy scheme), 243
Niederreiter (secrecy scheme, 261
one-time pad, 20
Playfair, 20
polyalphabetic substitution, 15
product, 21
public key, 105
Rabin (variant to RSA), 197
RC5
RSA, 72

secrecy, 150
signature, 153
signature and privacy, 155

simple substitution, 10
symmetric, 3
transposition, 21
Triple DES, 69
unconditionally secure, 84
Vernam, 20

Vigenère, 13
curve

anomalous, 235
elliptic, 213
singular, 235
supersingular, 235

cyclic group, 389
cyclotomic polynomial, 420

D

data compression, 87
Huffman, 93
Lempel-Ziv, 97
universal data compression, 97

Index 477

Data Encryption Standard, 67
deception, 293
decoding

algorithm, 237
information set, 255

decryption, 3
degree of

field element, 414
polynomial, 395

density of a knapsack, 271
dependent (linearly), 392
depth (of an orthogonal array), 305
derivative, 222
DES, 67
dictionary, 98
differential cryptanalysis (for block ciphers), 72
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
digital signature schemes

Digital Signature Standard, 119
ElGamal, 118

Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

Digital Signature Standard, 119
dimension of

linear code, 237
vector space, 393

discrete logarithm problem, 113
discrete logarithm problem over elliptic curves, 231
distance

Hamming (between codewords), 237
minimum (of a code), 237
unicity (of a cryptosystem), 80

distributive, 386
divide

integer, 343
polynomial, 396

478

E

ElGamal public key cryptosystems, 116
secrecy scheme, 116
signature scheme, 118

elliptic curve, 213
encryption, 3
Enigma, 24
entropy, 76

conditional, 81
equivalence

class, 388
relation, 387

equivocation (conditional entropy), 81
error-correcting capability, 237
Euclid

algorithm (simple version), 348
algorithm (extended version), 349
person, 425
theorem of, 344

Euler
person, 426
theorem of, 356
totient function, 354

exhaustive key search, 10
expansion factor (of a visual secret sharing scheme), 333
extension field, 410

Index 479

F

factorization algorithms
Pollard p-1, 158
Pollard 161
quadratic sieve, 167
random squares method, 162

Fano plane, 297
feedback

coefficients, 33
function, 31
mode, 66
shift register, 31

Fermat
person, 428
theorem of, 357

Fibonacci numbers, 350
field, 387

extension, 410
ground, 410
sub-, 387

finite, 387
Floyd's cycle-finding algorithm, 133
function

feedback, 31
generating, 35

hash, 288
Möbius, 378
multiplicative, 357
one-way, 107

one-way function for hash functions, 288
trapdoor, 107

Fundamental Theorem of Number Theory, 347

480

G

Galois
field, 387
person, 434

gap, 28
Gauss

algorithm (to find a primitive element), 423
person, 439
quadratic reciprocity law, 368

gcd, see greatest common divisor
generate a

group, 389
ideal, 398

generating function, 35
generator of finite field, 405
generator matrix of a linear code, 237
GF, 387
Golomb's randomness postulates, 29
Goppa code, 237
Gram-Schmidt algorithm (for orthogonalization process), 272
greatest common divisor of

integers, 344
polynomials, 396

ground field, 410
group, 384

Abelian, 385
additive, 385
cyclic, 389
multiplicative, 385
sub-, 385

H

Hagelin rotor machine, 22
Hamming distance (between codewords), 237
hash code/function, 288
Hasse (theorem on the number of points on a curve), 215
homogenize, 235
Huffman algorithm (for data compression), 93

Index 481

I

IDEA, 70
ideal, 386
ideal secret sharing scheme, 329
identity verification protocol

based on a block cipher, 67
Fiat-Shamir, 316
Schnorr, 319

impersonation attack, 292
incidence matrix, 298
incidence of coincidences, 16
inclusion and exclusion, principle of, 381
independent (linearly), 392
index (of an orthogonal array), 305
index-calculus method (for taking discrete logarithms), 135
inequality

Kraft, 89
MacMillan, 88

information, 75
mutual, 82
rate (of a secret sharing scheme), 329
set decoding (of a linear code), 255

inner product, 393
standard, 393

in-phase autocorrelation, 29
instantaneous code, 88
integrity, 1
inverse (in general), 384

multiplicative, 386
inversion formula of Möbius, 379
irreducible (polynomial), 396
isomorphic (of two fields), 410

482

J

Jacobi
person, 445
symbol, 364

joint distribution, 80
Johansson construction of A-code from EC-code, 309

K

Kasiski's method, 19
key, 3

exhaustive search, 10
space, 3
exchange system, 114

Diffie-Hellman (modular arithmetic), 115
Diffie-Hellman over elliptic curves, 232

knapsack
cryptosystem, 268

problem, 263
known plaintext attack, 3
Kolmogorov's consistency condition, 4
Kraft inequality, 89

L

L3 – algorithm (for a lattice basis reduction), 277
L3 – attack (on the knapsack system), 275

Lagarias and Odlyzko attack, 270
LaGrange interpolation formula, 324
language, 2
lattice, 271

1cm, see least common multiple
least common multiple

for integers, 345
for polynomials, 396

Legendre
person, 446
symbol, 364

Lempel-Ziv data compression technique, 97
length of

addition chain, 113
code, 237

Index 483

feedback shift register, 31
vector, 393

LFSR, 32
line (in projective plane), 295
linear

combination, 392
complexity, 49
congruence relation, 358
cryptanalysis (for block ciphers), 72
equivalence, 49
feedback shift register, 32
(sub-)space, 391

linearly
dependent, 392
independent, 392

linked list, 98
logarithm system, 115
log table, 414
look-ahead buffer, 98

M

MAC (message authentication code), 289

MacMillan inequality, 88
Markov process, 6
matrix

authentication, 291
incidence, 298
generator, 237
parity check, 241

maximal element (of an access structure), 322
message authentication code, 289
microwave attack (physical attack of RSA), 180
Miller-Rabin (probabilistic primality test), 188
minimal

characteristic polynomial, 51
distance (of a code), 237
element (of an access structure), 322
polynomial, 413

minimum distance (of a code), 237
Möbius

function, 378

484

inversion formula, 379
multiplicative inversion formula, 380
person, 447

modes of encryption of a block cipher
cipher block chaining, 64
cipher feedback mode, 65
codebook, 63

modulo, 352
monic (polynomial), 401
multiplicative

function, 357
group, 385
inverse, 386
inversion formula of Möbius, 380
order of a group element, 389

mutual information, 82

N

n-gram, 2
Niederreiter encryption scheme, 261
non-privileged subset of an access structure, 322
non-singular curve, 235
NP-complete problem, 244
NQR, 364
n-th root of unity, 405

primitive, 405
Nyberg-Rueppel signature scheme, 120

O

one-time pad, 20
one-way function for

hash codes, 288
public key cryptosystem, 107

operation(s), 383
Abelian, 385
associative, 384
commutative,383
distributive, 386

order of
cyclic group, 389
element in a group, 389

Index 485

finite field, 387
multiplicative (of a group element), 389
projective plane, 296

orthogonal, 394
array, 305

complement, 394
self-, 394

out-of-phase autocorrelation, 29

P

parity check matrix of a linear code, 241
passive cryptanalist, 3
perfect

access structure, 322
authentication code, 294
secrecy, 84

period of
polynomial, 38
sequence, 28

periodic sequence, 28
plaintext, 3

source, 4
plane

Fano, 297
projective, 295

Playfair cipher, 20
PN sequence, 34
Pohlig-Hellman algorithm, 121
point (in projective plane), 295
point at infinity, 213
Pollard p-1 method for factoring integers, 158

method for factoring integers, 161
method for taking discrete logarithms, 131

polyalphabetic substitution, 15
polynomial, 395

characteristic, 35
cyclotomic, 420
minimal, 413
minimal characteristic, 51
monic, 401
primitive, 414

486

reciprocal, 35
positive definite, 393
power series, 35
prefix code, 88
prime, 343

number theorem, 344
safe, 161

primality test
Cohen and Lenstra (deterministic; version 1), 193
Miller-Rabin (probabilistic test), 188
Solovay and Strassen (probabilistic), 187

primitive
element, 405
n-th root of unity, 405
polynomial, 414

principal ideal ring, 398
Principle of inclusion and exclusion, 381
privacy, 1
privileged subset of an access structure, 322
product cipher, 21
projective plane, 295

authentication code, 303
protocol, 315

Diffie-Hellman key exchange, 115
Diffie-Hellman key exchange over elliptic curves, 232
identity verification (based on a block cipher), 67
Fiat-Shamir identity verification, 316
Schnorr's identification, 319
zero-knowledge, 315

pseudo-random, 28
public key cryptosystem, 105

Q

QR, 364
quadratic

congruence relation, 364
non-residue, 364
reciprocity law of Gauss, 368
residue, 364
sieve factoring algorithm, 167

Index 487

R

Rabin cryptosystem, 197
randomness postulates of Golomb, 29
random squares method for factoring, 162
RC5, 72
reciprocal polynomial, 35
reduced

basis (of a lattice), 274
residue system, 355

reducible (polynomial), 396
reduction process (in Huffman's algorithm), 93
redundancy (in plaintext), 79
reflexivity (of a relation), 387
relation, 387

equivalence, 387
residue

class ring, 388
complete, 353
quadratic, 364
quadratic non, 364

response in, 355
Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

ring, (in general), 386
principal ideal, 398
residue class, 388
sub-, 386

root of unity
RSA, 405

privacy, 150
signature, 153
signature and privacy, 155

run, 28

488

S

safe prime, 161
scalar multiple of point on an elliptic curve, 229
scheme

secrecy, 106
ElGamal, 116
McEliece, 243
RSA, 150

secret sharing, 322
signature (ElGamal), 118
threshold, 323

Schnorr's identification protocol, 319
search buffer, 98
secret sharing scheme, 322

ideal, 329
visual, 333

secure channel, 3
Secure Hash Algorithm, 119
security

computational, 287
unconditional, 287

self-orthogonal (basis), 394
self-orthonormal (basis), 394
Schnorr signature scheme, 120
Schnorr's Idenitification Protocol, 319
SHA (Secure Hash Algorithm), 119
share, 322
signature equation, 119
signature scheme, 108

Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

simple substitution, 10
singular

curve, 235
point, 235

sliding window, 98
smooth number, 135

Index 489

Solovay and Strassen probabilistic primality test, 187
source (of plaintext), 4
source coding, 87
space

linear sub-, 391
trivial, 391
vector, 391

span, 392
splitting process (in Huffman's algorithm), 93
square root (taking them modulo a prime number), 199
square root bound, 294
standard basis, 393
standard inner product, 393
state, 31
stationary, 7
stream cipher, 21
strong

collision resistant, 288
liar (for primality), 188
witness (for compositeness), 188

subfield, 387
subgroup, 385
subring, 386
subspace (linear), 391
substitution

attack, 292
polyalphabetic, 15
simple, 10

superincreasing (sequence), 263
supersingular curve, 235
symbol

Jacobi, 364
Legendre, 364

symmetric cryptosystem, 3
symmetry (of a relation), 387
syndrome (of a received vector), 241

T

table
log, 414
Vigenère, 14

490

tangent, 221
text, 2
theorem

Chinese Remainder, 361
Euclid, 344
Euler, 356

Fermat, 357
fundamental (in number theory), 347
Wedderburn, 387

threshold scheme, 323
timing attack (physical attack of RSA), 180
trace, 424
transitivity (of a relation), 387
transposition cipher, 21
trapdoor function, 107
tri-gram, 2
Triple DES, 69
trivial vectorspace, 391

U

U.D. code, 87
unconditionally secure

cryptosystem, 84
signature scheme, 287

unicity distance, 80
unique factorization theorem, 396
uniquely decodable code, 87
unit-element, 384
universal data compression, 97

V

vector, 391
space, 391

Vernarn cipher, 20
Vigenère

cryptosystem, 13
table, 14

visual
secret sharing scheme, 333
threshold value, 333

Index 491

W

weak collision resistant, 288
Wedderburn

person, 451
theorem, 387

Weierstrass equation, 213
weight, 242
Wiener attack, 176
witness (in Fiat-Shamir protocol), 316

X

Xedni (method to solve the elliptic curve discrete logarithm problem), 234

Y

y-reduced basis (of a lattice), 274

Z

zero element of
additive group, 385
vector space, 391

zero-divisors, 387
zero-knowledge protocol, 315

This page intentionally left blank.

DISCLAIMER

Copyright© 2000, Kluwer Academic Publishers
All Rights Reserved

This DISK (CD ROM) is distributed by Kluwer Academic Publishers with
ABSOLUTELY NO SUPPORT and *NO WARRANTY* from Kluwer
Academic Publishers.

Use or reproduction of the information provided on this DISK (CD ROM)
for commercial gain is strictly prohibited. Explicit permission is given for
the reproduction and use of this information in an instructional setting
provided proper reference is given to the original source.

Kluwer Academic Publishers shall not be liable for damage in connection
with, or arising out of, the furnishing, performance or use of this DISK
(CD ROM).

