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Chapter 5: Answers 

Task 1 

A fashion student was interested in factors that predicted the salaries of catwalk models. She 
collected data from 231 models. For each model she asked them their salary per day on days 
when they were working (salary), their age (age), how many years they had worked as a 
model (years), and then got a panel of experts from modelling agencies to rate the 
attractiveness of each model as a percentage with 100% being perfectly attractive (beauty). 
The data are on the CD-ROM in the file Supermodel.sav. Unfortunately, this fashion student 
bought some substandard statistics text and so doesn’t know how to analyse her data☺ Can 
you help her out by conducting a multiple regression to see which factor predict a model’s 
salary? How valid is the regression model? 
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To begin with a sample size of 231, with 3 predictors seems reasonable because this would 
easily detect medium to large effects (see the diagram in the Chapter). 

Overall, the model accounts for 18.4% of the variance in salaries and is a significant fit of the 
data (F(3, 227) = 17.07, p < .001). The adjusted R2 (.17) shows some shrinkage from the 
unadjusted value (.184) indicating that the model may not generalises well. We can also use 
Stein’s formula: 
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This also shows that the model may not cross generalise well. 
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Coefficientsa

-60.890 16.497 -3.691 .000 -93.396 -28.384
6.234 1.411 .942 4.418 .000 3.454 9.015 .079 12.653

-5.561 2.122 -.548 -2.621 .009 -9.743 -1.380 .082 12.157

-.196 .152 -.083 -1.289 .199 -.497 .104 .867 1.153
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Dependent Variable: Salary per Day (£)a. 

 

In terms of the individual predictors we could report: 

  B SE B β 

    

 Constant –60.89 16.50  

 Age 6.23 1.41 .94** 

 Years as a Model –5.56 2.12 –.55* 

 Attractiveness –0.20 0.15 –.08 

Note. R2  = .18 (p < .001). * p < .01, ** p < .001. 

It seems as though salaries are significantly predicted by the age of the model. This is a 
positive relationship (look at the sign of the beta), indicating that as age increases, salaries 
increase too. The number of years spent as a model also seems to significantly predict 
salaries, but this is a negative relationship indicating that the more years you’ve spent as a 
model, the lower your salary. This finding seems very counter-intuitive, but we’ll come back to 
it later. Finally, the attractiveness of the model doesn’t seem to predict salaries. 

If we wanted to write the regression model, we could write it as: 
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The next part of the question asks whether this model is valid. 

 

Collinearity Diagnosticsa

3.925 1.000 .00 .00 .00 .00
.070 7.479 .01 .00 .08 .02
.004 30.758 .30 .02 .01 .94
.001 63.344 .69 .98 .91 .04

Dimension
1
2
3
4

Model
1

Eigenvalue
Condition

Index (Constant) Age (Years)

Number of
Years as a

Model
Attractiveness

(%)

Variance Proportions

Dependent Variable: Salary per Day (£)a. 

Casewise Diagnosticsa
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Dependent Variable: Salary per Day (£)a. 
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Regression Standardized Residual
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Normal P-P Plot of Regression Standardize

Dependent Variable: Salary per Day (£)
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Scatterplot

Dependent Variable: Salary per Day (£)

Regression Standardized Predicted Value
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Partial Regression Plot

Dependent Variable: Salary per Day (£)
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Partial Regression Plot

Dependent Variable: Salary per Day (£)
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Partial Regression Plot

Dependent Variable: Salary per Day (£)
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¾ Residuals: there 6 cases that has a standardized residual greater than 3, and two of these 
are fairly substantial (case 5 and 135). We have 5.19% of cases with standardized 
residuals above 2, so that’s as we expect, but 3% of cases with residuals above 2.5 (we’d 
expect only 1%), which indicates possible outliers.  

¾ Normality of errors: The histogram reveals a skewed distribution indicating that the 
normality of errors assumption has been broken. The normal P-P plot verifies this because 
the dotted line deviates considerably from the straight line (which indicates what you’d get 
from normally distributed errors). 
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¾  Homoscedasticity and Independence of Errors: The scatterplot of ZPRED vs. ZRESID does 
not show a random pattern. There is a distinct funnelling indicating heteroscedasticity. 
However, the Durbin-Watson statistic does fall within Field’s recommended boundaries of 
1-3, which suggests that errors are reasonably independent.  

¾ Multicollinearity: for the age and experience variables in the model, VIF values are above 
10 (or alternatively Tolerance values are all well below 0.2) indicating multicollinearity in 
the data. In fact, if you look at the correlation between these two variables it is around .9! 
So, these two variables are measuring very similar things. Of course, this makes perfect 
sense because the older a model is, the more years she would’ve spent modelling! So, it 
was fairly stupid to measure both of these things! This also explains the weird result that 
the number of years spent modelling negatively predicted salary (i.e. more experience = 
less salary!): in fact if you do a simple regression with experience as the only predictor of 
salary you’ll find it has the expected positive relationship. This hopefully demonstrates why  
multicollinearity can bias the regression model. 

All in all, several assumptions have not been met and so this model is probably fairly 
unreliable. 

Task 2 

Using the Glastonbury data from this chapter (with the dummy coding in 
GlastonburyDummy.sav), which you should’ve already analysed, comment on whether you 
think the model is reliable and generalizable? 

 

This question asks whether this model is valid. 

Model Summaryb
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Collinearity Diagnosticsa
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Casewise Diagnosticsa
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Dependent Variable: Change in Hygiene Over The Festivala. 
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Regression Standardized Residual
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Normal P-P Plot of Regression Standard
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Scatterplot

Dependent Variable: Change in Hygiene Over The
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Partial Regression Plot

Dependent Variable: Change in Hygiene Over The
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Partial Regression Plot

Dependent Variable: Change in Hygiene Over Th
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Partial Regression Plot

Dependent Variable: Change in Hygiene Over Th
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¾ Residuals: there are no cases that have a standardized residual greater than 3. We have 
4.07% of cases with standardized residuals above 2, so that’s as we expect, and .81% of 
cases with residuals above 2.5 (and we’d expect 1%), which indicates the data are 
consistent with what we’d expect.  

¾ Normality of errors: The histogram looks reasonably normally distributed indicating that 
the normality of errors assumption has probably been met. The normal P-P plot verifies this 
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because the dotted line doesn’t deviates much from the straight line (which indicates what 
you’d get from normally distributed errors). 

¾  Homoscedasticity and Independence of Errors: The scatterplot of ZPRED vs. ZRESID does 
look a bit odd with categorical predictors, but essentially we’re looking for the height of the 
lines to be about the same (indicating the variability at each of the three levels is the 
same). This is true indicating homoscedasticity. The Durbin-Watson statistic also falls 
within Field’s recommended boundaries of 1-3, which suggests that errors are reasonably 
independent.  

¾ Multicollinearity: all variables in the model, VIF values are below 10 (or alternatively 
Tolerance values are all well above 0.2) indicating no multicollinearity in the data.  

All in all, the model looks fairly reliable (but you should check for influential cases!). 


