|I|||II.|
CIScCo.

SECURITY

Cisco ASA, PIX, and FWSM
Firewall Handbook

Second Edition

The complete guide to the mest popular Cisco
ASA B0 and FWSM 3.2 firewall security features

e R David Hucaby, CCIE* No. 4554

Copyright

Cisco ASA, PIX, and FWSM Firewall Handbook
David Hucaby

Copyright© 2008 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:

Cisco Press

800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without written permission from the publisher, except for the
inclusion of brief quotations in a review.

Printed in the United States of America
First Printing August 2007
Library of Congress Cataloging-in-Publication Data

Hucaby, David.
Cisco ASA, PIX, and FWSM firewall handbook / Dave Hucaby. --2nd ed.
p. cm.
Earlier ed. published under title: Cisco ASA and PIX firewall handbook.
ISBN 978-1-58705-457-0 (pbk.)
1. Computer networks--Security measures. 2. Firewalls (Computer
security) I. Hucaby, Dave. Cisco ASA and PIX firewall handbook. II.
Cisco Systems, Inc. I1I. Title.

TK5105.59.H83 2007
005.8--dc22

ISBN-13: 978-1-58705-457-0

Warning and Disclaimer

This book is designed to provide information about configuring and using the Cisco Adaptive
Security Algorithm (ASA) series and the Cisco Catalyst Firewall Services Module (FWSM).

Every effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems,
Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book or from the use of the discs or
programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact: U.S. Corporate and Government Sales 1-800-382-3419
corpsales@pearsontechgroup.com. For sales outside the United States please contact:
International Sales international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value.
Each book is crafted with care and precision, undergoing rigorous development that involves the
unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding
how we could improve the quality of this book, or otherwise alter it to better suit your needs, you
can contact us through email at feedback@ciscopress.com. Please make sure to include the book
title and ISBN in your message.

We greatly appreciate your assistance.

Publisher Paul Boger
Associate Publisher Dave Dusthimer
Cisco Representative Anthony Wolfenden

Cisco Press Program Manager Jeff Brady
Executive Editor Brett Bartow

Managing Editor Patrick Kanouse

Publisher

Senior Development Editor
Project Editor

Copy Editor

Technical Editors

Editorial Assistant
Designer

Composition

Indexer

Proofreader

o]
CISCO.

Americas Headquarters
Cisco Systems, Inc.

170 West Tasman Drive
San Jose, CA 95134-1706
USA

WWW.CiSC0.com

Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

Asia Pacific Headquarters
Cisco Systems, Inc.

168 Robinson Road
#28-01 Capital Tower
Singapore 068912
WWW.CiSC0.com

Tel: +65 6317 7777

Fax: +65 6317 7799

Europe Headquarters

Paul Boger

Christopher Cleveland

Mandie Frank

Kevin Kent

Greg Abelar, Mark Macumber
Vanessa Evans

Louisa Adair

S4 Carlisle Publishing Services
Tim Wright

Kathy Bidmen

Cisco Systems International BV

Haarlerbergpark
Haarlerbergweg 13-19
1101 CH Amsterdam
The Netherlands
WWW-europe.cisco.com

Tel: +31 0 800 020 0791
Fax: +31 0 20 357 1100

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are
listed on the Cisco Website at www.cisco.com/go/offices.

©2007 Cisco Systems, Inc. All rights reserved. CCVP, the Cisco logo, and the Cisco Square
Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and
Learn is a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst,
CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork
Expert logo, Cisco 10S, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems
logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow
Me Browsing, FormShare, GigaDrive, GigaStack, HomeL.ink, Internet Quotient, IOS, IP/TV, iQ
Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys,
MeetingPlace, MGX, Networking Academy, Network Registrar, Packet, PIXX, ProConnect,
RateMUX, ScriptShare, SlideCast, SMARTnet, StackWise, The Fastest Way to Increase Your
Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective
owners. The use of the word partner does not imply a partnership relationship between Cisco and
any other company. (0609R)

Dedications
As always, this book is dedicated to the most important people in my life—my wife, Marci, and
my two little daughters, Lauren and Kara. | would also like to dedicate the book to my parents,

Reid and Doris Hucaby.

God has blessed me with a very wonderful and supportive family.

About the Author

David Hucaby, CCIE No. 4594, is a lead network engineer for the University of Kentucky,
where he works with health-care networks based on the Cisco Catalyst, ASA, FWSM, and VPN
product lines. He was one of the beta reviewers of the ASA 8.0 operating system software. He
has a B.S. and M.S. in electrical engineering from the University of Kentucky. He is the author
of three other books from Cisco Press: CCNP BCMSN Official Exam Certification Guide, Cisco
Field Manual: Router Configuration, and Cisco Field Manual: Catalyst Switch Configuration.

He lives in Kentucky with his wife, Marci, and two daughters.

About the Technical Reviewers

Greg Abelar has been an employee of Cisco since December 1996. He was an original member
of the Cisco Technical Assistance Security team, helping to hire and train many of the engineers.
He has held various positions in both the Security Architecture and Security Technical
Marketing Engineering teams at Cisco. Greg is the primary founder and project manager of the
Cisco written CCIE Security exam. Greg is the author of the Cisco Press title Securing Your
Business with Cisco ASA and PIX Firewalls and coauthor of Security Threat Mitigation and
Response: Understanding Cisco Security MARS, and has been a technical editor for various
Cisco Press security books.

Visit Greg's blogs:

Internet Security for the Home—nhttp://securityla.blogspot.com/

Enterprise Internet Security—nhttp://security2b.blogspot.com/

Mark Macumber is a systems engineer in the field sales organization for Cisco. Mark joined
Cisco in 1999 working in the Network Service Provider Sales Division on Internet Service
Provider networks and with telco DSL network designs. Since 2002, Mark has served in the
large enterprise customer space working through customer designs for campus switching, WAN
routing, unified communications, wireless, and security. Security products and architecture are
Mark's current technical focus within the enterprise space. The Enterprise Security SE team
learns and delivers content on Cisco security products such as firewalls, host/network based
intrusion detection/prevention systems, AAA, security information management, network
admission control, and SSL/IPSec VVPN.

Acknowledgments

It is my pleasure to be involved in writing another Cisco Press book. Technical writing, for me,
is great fun, although writing large books is hard work. The good folks at Cisco Press provided a
wealth of help during the writing process. In particular, I'm very grateful to have worked with
my friends Brett Bartow and Chris Cleveland yet again. They are amazing at what they do, and
I'm very appreciative! I'm also grateful to Mandie Frank for managing many of the production
pieces for the final product.

I would like to acknowledge the hard work and good perspective of the technical reviewers for
this edition: Greg Abelar and Mark Macumber. | respect these two fellows' abilities very much,
and I'm glad they agreed to wade through the book with me.

Several people have gone out of their way to help me, whether they realize it or not. Hopefully |
have listed them all here.

Mark Macumber remains a valuable resource and friend on many fronts. Surely he cringes when
he sees the word "favor" in the subject line of my emails!

I would also like to thank the many people on the ASA 8.0 beta team who have offered me their
help and knowledge: Madhusudan Challa, Pete Davis, Matt Greene, Iglas Ottamalika, Jeff

Parker, Priyan Pathirana, Dan Qu, Nelson Rodrigues, Nancy Schmitt, Vincent Shan, Andy Teng,
Mark Terrel, and Nagaraj VVaradharajan.

Several people involved in the FWSM 3.2 development have been very patient and helpful, even
though I arrived too late to get in on the beta program: Anne Dalecki Greene, Munawar Hossain,
and Reza Saadat.

Two TAC engineers who have helped answer my questions along the way should also be
acknowledged: Kureli Sankar and Kevin Tremblay.

Finally, revising this book has been an unusually difficult project for me. As always, God has
given me encouragement and endurance at just the right times. | have come to appreciate the
little signs that Kara makes and sticks up around the house. Two signs in particular have been
right on the mark:

"Out of Time"

and

"Be Thankful"

Icons Used in This Book

Throughout this book, you will see a number of icons used to designate Cisco and general
networking devices, peripherals, and other items. The following icon legend explains what these
icons represent.

—) [Ei]
T i
T T |]
I 1
T 1| H
Cisco ASA PIX Firewall Firewall Sarvices Firewall
Module
- N,
=T Mg,
N
Router Multilayer Switch Firewall Load

Web Server

= EI

Sniffer Server

-

[E—
PC Serial Line
Connection

Ethernet Connection

Balancer

—
Syslog Server

C o

MNetwork Cloud

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in
the I0S Command Reference. The Command Reference describes these conventions as follows:

« Boldface indicates commands and keywords that are entered literally as shown. In actual
configuration examples and output (not general command syntax), boldface indicates
commands manually by the user (such as a show command).

« ltalics indicates arguments for which you supply actual values.

o Vertical bars | separate alternative, mutually exclusive elements.

e Square brackets [] indicate optional elements.

o Braces { } indicate a required choice.

o Braces within brackets [{ }] indicate a required choice within an optional element.

Foreword

Today's networks are called upon to securely deliver data, voice, videoconferencing, wireless
communication, and much more to a wide variety of users, such as employees, suppliers,
partners, and customers. Securing the network has become a vital task to ensure this ubiquitous
connectivity is delivered without risking unauthorized access, misuse, or attacks on the network.

While a vast number of different security technologies are now being applied to the problem of
securing networks and endpoints, the long-proven and trusted firewall remains the central
component to any security deployment. It is the firewall that continues to act as the primary
gatekeeper, ensuring that all network traffic, from Layer 2 to Layer 7, is authorized and verified
as legitimate before it transits the network.

Many books on network security and firewalls settle for a discussion focused primarily on
concepts and theory. This book, however, goes well beyond these topics. It covers, in
tremendous detail, the information every network and security administrator needs to know when
configuring and managing market-leading firewall products from Cisco, including the PI1X and
ASA Security Appliances and Catalyst Firewall Services Module. As the title suggests, this book
is really a handbook that provides in-depth explanations of the initial configuration and, perhaps
more importantly, the ongoing management of Cisco firewalls. It provides practical, day-to-day
guidance for how to successfully configure all aspects of the firewall, including topics such as
establishing access control policies, authorizing end users, leveraging high availability
deployments, and monitoring firewall health through a variety of management interfaces.

In addition to his role managing Cisco firewalls as a lead network engineer for the University of
Kentucky, the author, David Hucaby, CCIE, spent considerable time collaborating directly with
the Cisco engineering teams responsible for these products to ensure this book contains the most
in-depth, useful, and up-to-date information available anywhere. Keep this book handy—you
will find yourself referencing it often!

Jason W. Nolet

Vice President of Engineering
Security Technology Group
Cisco

June 2007

Introduction

This book focuses on the complete product line of Cisco firewall hardware: the PIX and ASA
Security Appliance families and the Catalyst Firewall Services Module (FWSM). Of the many
sources of information and documentation about Cisco firewalls, very few provide a quick and
portable solution for networking professionals.

This book is designed to provide a quick and easy reference guide for all the features that can be
configured on any Cisco firewall. In essence, an entire bookshelf of firewall documentation,
along with other networking reference material, has been "squashed" into one handy volume.

This book covers only the features that can be used for stateful traffic inspection and overall
network security. Although Cisco firewalls can also support VPN functions, those subjects are
not covered here.

This book is based on the most current Cisco firewall software releases available at press time—
ASA release 8.0(1) and FWSM release 3.2(1).

In the book, you will find ASA, PIX, and FWSM commands presented side-by-side for any
specific task. The command syntax is shown with a label indicating the type of software that is
running, according to the following convention:

o ASA— Refers to any platform that can run ASA release 7.0(1) or later. This can include
the ASA 5500 family, as well as the P1X 500 family. For example, even though a PIX
535 can run a specific build of the ASA 8.0(1) code, the commands are still labeled
"ASA" to follow the operating system being used.

e PIX— Refers to a PIX release 6.3.

e FWSM— Refers to FWSM release 3.1(1) or later.

If you are using an earlier version of software, you might find that the configuration commands
differ slightly.

With the advent of the ASA platform, Cisco began using different terminology: firewalls became
known as security appliances because of the rich security features within the software and
because of the modular nature of the ASA chassis. This new terminology has been incorporated
in this book where appropriate. However, the term firewall is still most applicable here because
this book deals with both security appliances and firewalls embedded within Catalyst switch
chassis. As you read this book, keep in mind that the terms firewall and security appliance are
used interchangeably.

How This Book Is Organized

This book is meant to be used as a tool in your day-to-day tasks as a network or security
administrator, engineer, consultant, or student. | have attempted to provide a thorough
explanation of many of the more complex firewall features. When you better understand how a
firewall works, you will find it much easier to configure and troubleshoot.

This book is divided into chapters that present quick facts, configuration steps, and explanations
of configuration options for each Cisco firewall feature. The chapters and appendixes are as
follows:

Chapter 1, "Firewall Overview"— Describes how a Cisco firewall inspects traffic. It also
offers concise information about the various firewall models and their performance.
Chapter 2, "Configuration Fundamentals"— Discusses the Cisco firewall user interfaces,
feature sets, and configuration methods.

Chapter 3, "Building Connectivity"— Explains how to configure firewall interfaces,
routing, IP addressing services, and IP multicast support.

Chapter 4, "Firewall Management"— Explains how to configure and maintain security
contexts, flash files, and configuration files; how to manage users; and how to monitor
firewalls with SNMP.

Chapter 5, "Managing Firewall Users"— Covers the methods you can use to authenticate,
authorize, and maintain accounting records for a firewall's administrative and end users.
Chapter 6, "Controlling Access Through the Firewall"— Describes the operation and
configuration of the transparent and routed firewall modes, as well as address translation.
Other topics include traffic shunning and threat detection.

Chapter 7, "Inspecting Traffic"— Covers the Modular Policy Framework, which is used
to define security policies that identify and act on various types of traffic. The chapter
also discusses the application layer inspection engines that are used within security
policies, as well as content filtering.

Chapter 8, "Increasing Firewall Availability with Failover"— Explains firewall failover
operation and configuration, offering high availability with a pair of firewalls operating
in tandem.

Chapter 9, "Firewall Load Balancing"— Discusses how firewall load balancing works
and how it can be implemented in a production network to distribute traffic across many
firewalls in a firewall farm.

Chapter 10, "Firewall Logging"— Explains how to configure a firewall to generate an
activity log, as well as how to analyze the log's contents.

Chapter 11, "Verifying Firewall Operation"— Covers how to check a firewall's vital
signs to determine its health, how to verify its connectivity, and how to observe data that
IS passing through it.

Chapter 12, "ASA Modules"— Discusses the Security Services Modules (SSMs) that can
be added into an ASA chassis, along with their basic configuration and use.

Appendix A, "Well-Known Protocol and Port Numbers"— Presents lists of well-known
IP protocol numbers, ICMP message types, and IP port numbers that are supported in
firewall configuration commands.

o Appendix B, "Security Appliance Logging Messages"— Provides a quick reference to
the many logging messages that can be generated from an ASA, P1X, or FWSM firewall.

How to Use This Book

The information in this book follows a quick-reference format. If you know what firewall feature
or technology you want to use, you can turn right to the section that deals with it. The main
sections are numbered with a quick-reference index that shows both the chapter and the section
(for example, 3-3 is Chapter 3, section 3). You'll also find shaded index tabs on each page, listing
the section number.

Feature Description

Each major section begins with a detailed explanation of or a bulleted list of quick facts about
the feature. Refer to this information to quickly learn or review how the feature works.

Configuration Steps

Each feature that is covered in a section includes the required and optional commands used for
common configuration. The difference is that the configuration steps are presented in an outline
format. If you follow the outline, you can configure a complex feature or technology. If you find
that you do not need a certain feature option, skip over that level in the outline.

In some sections, you will also find that each step in a configuration outline presents the
commands from multiple firewall platforms side-by-side in a concise manner. You can stay in
the same configuration section no matter what type or model of firewall you are dealing with.

Sample Configurations

Each section includes an example of how to implement the commands and their options.
Examples occur within the configuration steps, as well as at the end of a main section. | have
tried to present the examples with the commands listed in the order you would actually enter
them to follow the outline.

Many times, it is more difficult to study and understand a configuration example from an actual
firewall because the commands are displayed in a predefined order—not in the order you entered
them. Where possible, the examples have also been trimmed to show only the commands
presented in the section.

Displaying Information About a Feature
Each section includes plenty of information about the commands you can use to show

information about that firewall feature. I have tried to provide examples of this output to help
you interpret the same results on your firewall.

Chapter 1. Firewall Overview

Refer to the following sections for information about these topics:

e 1-1: Overview of Firewall Operation— Discusses the mechanisms a Cisco firewall uses
to inspect and control traffic passing through it. The firewall inspection engines and
algorithms are responsible for enforcing any security policies configured into the firewall.

e 1-2: Inspection Engines for ICMP, UDP, and TCP— Describes how a firewall reacts to
traffic of different IP protocols. The inspection mechanisms for the ICMP, UDP, and
TCP protocols are covered.

e 1-3: Hardware and Performance— Provides an overview and comparison of the various
Cisco firewall platforms and their specifications. This information can help you decide
which firewall model is best suited for your application.

e 1-4: Basic Security Policy Guidelines— Presents a list of suggestions for configuring and
maintaining firewalls in a corporate network.

A firewall has multiple interfaces, but it isolates traffic between each one. The simplest firewall
configuration has one outside and one inside interface, as shown in Figure 1-1.

Figure 1-1. Basic Firewall with Two Interfaces

Public h Quiside | |_"'"J Inside I Protected
Nﬁ‘hﬂ'h"ﬂrk_/ Security =0 { ' Sacurity = 100 I MNetwork

Firewaill

Outbound Connections
(Allowed But Inspected)

____________ ‘ Inbound Connections
(Blocked Unless Explicitly Allowed)

Each interface is assigned a security level from 0 (lowest) to 100 (highest). Multiple interfaces
are each assigned an arbitrary security level, as shown in Figure 1-2.

Figure 1-2. Basic Firewall with Several Interfaces

[View full size image]

DMZ3

Security = 60
DMZ4
Security = 80
_ SR Firewall L:ur ty = 100
Public L Outside | [| Protected
Network J Security = 0 ¢ ‘: | Network
-
DMZ2
Security = 40
DMZ1
Security =20

A firewall is usually represented by the symbol of a diode, an electronic component that allows
current to pass in only one direction. Flow in the direction of the arrow is allowed, whereas flow
against the arrow is blocked. Other symbols also are commonly used to represent firewalls. Most
of those involve a brick wall with or without flames.

Likewise, a firewall has the following default behavior:

e Ingeneral, outbound connections from a higher security interface to a lower one are
allowed, provided that they are permitted by any access lists that are applied to the
firewall interfaces.

e All inbound connections from a lower security interface to a higher one are blocked.

The default policies can be changed so that some outbound connections can be blocked and some
inbound connections can be allowed. Also, firewall interfaces can be assigned identical security
levels so that traffic is allowed to pass between them.

All traffic is inspected according to a suite of stateful firewall inspection processes and
algorithms. These are commonly called inspection engines or application layer protocol
inspection.

Note

Inbound and outbound connections refer to the direction in which a connection is initiated. For
example, if a host on the outside tries to initiate a connection with an inside host, that is an
inbound connection.

Keep in mind that an inbound connection is entirely different from traffic that returns in the
inbound direction. Return traffic is allowed inbound through the firewall only if it is in response
to a previously established outbound connection. The same is true for connections and return
traffic in the opposite direction.

1-1. Overview of Firewall Operation

A firewall's essential function is to isolate its interfaces from each other and to carefully control
how packets are forwarded from one interface to another. In its default state, a firewall does not
allow any packets to pass through it until some security policies are configured.

Before connections can form between firewall interfaces, two conditions must be met:

e An address translation policy must be configured between a pair of interfaces. (This
requirement can be disabled with the no-nat-control command or Cisco firewall.)

e A security policy must be configured to allow the connection to initiate toward the
destination. This is usually in the form of an access list applied to a firewall interface.

A Cisco firewall inspects traffic through a progression of functions. Figure 1-3 shows the order
of these functions as a packet arrives at interface X (the left side of the figure) and exits at
interface Y (the right side of the figure). The following sections describe each firewall function.

Figure 1-3. A Cisco Firewall's Sequence of Packet Inspection Functions

[View full size image]

|
' % Indtial ¥late Conn AL Xlate Lauth Inspaction)' Ty
Packel [l mal - - | Packat
I\ "m:} Chacking Lookup ‘[Lookup -| Lookup Lookup Lookup Engine :.If,__ s /I
Imeriace X (Oulbound Cinly) {Inbaund Orily)) erace ¥

il

Initial Checking

As packets arrive at a firewall interface, they are checked for basic integrity. One of the most
important things that can be checked is the integrity of a packet's source address. When a host
sends a packet through a firewall, the firewall normally is concerned with finding a route for the
destination address so that the correct egress interface can be used. The source address usually is
ignored until the destination host needs to send a reply.

A malicious host can insert a bogus source IP address into the packets it sends. This is called
address spoofing, and it is used to impersonate another host. When the malicious traffic is
received, it looks like someone else sent it.

RFC 2827, "Network Ingress Filtering: Defeating Denial of Service Attacks which Employ IP
Source Address Spoofing," describes a method that a firewall can use to detect when a source
address is being spoofed.

Note

You can find all RFCs online at http://www.ietf.org/rfc/rfcxxxx.txt, where xxxx is the number of
the RFC. If you do not know the RFC's number, you can try searching by topic at
http://www.rfc-editor.org/cqi-bin/rfcsearch.pl.

A Cisco firewall uses this technique in its Unicast Reverse Path Forwarding (RPF) feature. When
this feature is enabled on an interface, the source address in each incoming packet is inspected.
The source address must be found in the firewall's table of known routes, which in turn must
reference the interface on which the packet arrived. In other words, the firewall just verifies that
the packet would take the same path in reverse to reach the source.

The firewall drops any packets that do not meet the RPF test, and the action is logged. If the RPF
feature is enabled, you should make sure any IP subnets that can be reached on a firewall
interface are also identified with a route command on the firewall. That way, the firewall can
find those source addresses for the RPF test (as well as send packets toward those destination
networks).

The outside firewall interface is a special case, however. Usually, the firewall has a default route
associated with the outside interface, because most of the public network or Internet can be
found on the outside. How can a firewall check for address spoofing on packets arriving at the
outside interface?

If a source address cannot be found in the table of known routes, the default route is assumed to
match. Therefore, packets arriving from the outside pass the RPF test as long as the source
subnet or a default route exists. If an outside host uses a spoofed source address that belongs to a
host or subnet on another firewall interface, however, the firewall finds that the reverse path does
not match.

In other words, RPF can detect spoofed addresses only when they are spoofed between
interfaces. To do this, the firewall has to know that a spoofed address on one interface actually
exists on another interface. Only those packets are dropped. However, if a host on the outside
interface spoofs the address of another outside host, the firewall cannot detect it, because the
spoofing occurs on a single interface.

Xlate Lookup

A Cisco firewall maintains a translation or xlate table for each protected host that can participate
in connections. A host's xlate entry can be statically defined before any active connections form.
However, the static xlate entry is not actually created and used until the relevant traffic passes
through the firewall. The host's xlate entry can also be created dynamically as a new connection
IS initiated.

Figure 1-4 illustrates the concept behind xlate operation. A host outside the firewall (Host A) has
a registered public IP address, called a foreign address. A host on the inside of the firewall (Host
B) has an internal IP address, called the real or local address. The internal host's address is
translated through an xlate entry so that the local address appears on the outside of the firewall as
a mapped or global address. Address translation is covered in greater detail in Chapter 6,
"Controlling Access Through the Firewall."

Figure 1-4. The Basic Concept Behind Xlate

[View full size image]

Public
Network Protected
x""f = , Ditside nside Network
P |_‘ '.\\ Sacurity =0 A |_f"'i Security = 100 |
L -) | ‘ | /

. Host B

Host A

Firewall

Foreign Address Mapped Address -€ - - » Real Address
MNAT or PAT

Each entry in the xlate table is maintained with the following parameters:

e Protocol used (ICMP, UDP, or TCP)

o Local and global interfaces

e Local and global IP addresses

e Local and global port numbers (if applicable; UDP and TCP only)

o Flags (type of xlate)

« Idle timer (incremented if no packets have used the xlate)

o Absolute timer (incremented since the xlate entry was created)

« Uauth bindings (originating user if user authentication or cut-through proxy is used)
o Connections using the xlate entry:

- Number of connections
- Number of embryonic (not yet fully established) connections
- A list of the active connections

Xlate table lookups occur at different points in the inspection process, depending on the direction
of the connection. For an outbound connection (initiated from the inside), the xlate entry must be
created early in the sequence of events. This is because the translated (global) address is used to
build the actual connection entry and is used as the reference point for any access control list
(ACL) operations. For inbound connections, the opposite is true—any connections and ACL
operations must look at the untranslated (global) addresses, so xlate lookup must occur late in the
game.

A firewall controls several aspects of each xlate entry:

e The number of active connections allowed to use an entry can be held to a maximum
limit or can be unlimited (the default).

e The number of embryonic connections attempting to use an entry can be held to a
maximum limit or can be unlimited (the default).

e Anentry is aged out of the table if it has been idle for a timeout period.

Conn Lookup

A Cisco firewall examines and keeps track of the state of each connection attempting to go
through it. This is often called stateful inspection. If a connection is allowed to form (the access
list permits the traffic flow), each state change is updated in the firewall's connection or conn
table. As soon as a connection initiates and a conn table entry is created, traffic from the source
to the destination is allowed to pass. As well, the return traffic for that connection is allowed
back through the firewall toward the source.

The connection state and the behavior of packets from the source and destination must follow the
rules of the IP protocol being used. Any deviation from the accepted behavior causes the
connection to be dropped and logged.

Each entry in the conn table is maintained with the following parameters:

e Protocol used (ICMP, UDP, or TCP)

e Local and foreign IP addresses (note that local addresses are used here, after the xlate
lookup)

e Local and foreign port numbers (if applicable; UDP and TCP only)

o Flags for fixup type and connection state

« Idle timer (incremented if no packets have used the connection)

o Byte counter (total traffic volume using the connection)

o Local and foreign TCP sequence numbers

Conn entries are aged out of the table if they have been idle (no data passing through) for a
timeout period. Conn entries can also age out after a short period if the connections are not fully
established.

When Transmission Control Protocol (TCP) is used for a connection, a Cisco firewall can
generate a random initial sequence number (ISN) toward the foreign host. Some hosts do not
generate a truly random ISN, resulting in predictable values that can be exploited. The firewall
can substitute a truly random ISN into the TCP packets when the connection is negotiated. This
reduces the risk of session hijacking and is totally transparent to the local and foreign hosts.

ACL Lookup

Before a connection can be completed or actually allowed to form, its traffic must be permitted
by an ACL. You can configure any number of ACLs in a firewall, but only one ACL can be
applied to a firewall interface in a specific direction.

Note

Before ASA 7.0(1), ACLs could be applied in only the inbound direction, to inspect traffic as it
enters the interface. In later releases, ACLs can be applied in the inbound or outbound direction.
All releases of FWSM support ACLs in both directions.

ACLs are not used to inspect a connection's state. Rather, they are used only to permit or deny
packets in a single direction, only as connections are being initiated. For connectionless
protocols such as Internet Control Message Protocol (ICMP), ACLs permit or deny all packets in
the direction in which they are applied.

By default, no ACLs are configured or applied to any of a firewall's interfaces. Connections are
permitted to initiate from a higher-security interface to a lower one—even with no ACL applied
to the higher-security interface. One exception is the Catalyst 6500 Firewall Services Module
(FWSM), which requires an ACL on any interface before permitting traffic to pass. However, no
connections are allowed to initiate from a lower-security interface to a higher one until an ACL
is applied to the lower-security interface.

ACL configuration and use are covered in greater detail in Section "6-3: Controlling Access with
Access Lists," in Chapter 6.

Uauth Lookup

A Cisco firewall can authenticate users as they pass through to initiate connections. After a user
is successfully authenticated, the firewall keeps the user credentials cached so that additional
connections can be quickly approved. In other words, the firewall acts as a cut-through
authentication proxy so that no further authentication is needed.

User authentication occurs by a request-reply exchange between the firewall and an
authentication, authorization, and accounting (AAA) server, such as Remote Authentication
Dial-In User Service (RADIUS) or Terminal Access Controller Access Control System Plus
(TACACSH).

After a user is authenticated, the firewall can also request authorization information from the
server. This information is used to limit users to reaching only specific resources through the
firewall. The firewall can authorize users through one of the following methods:

o Retrieving a AAA attribute for the user
o Controlling the user's connections with an ACL referenced by the AAA server

e Controlling the user's connections with an ACL that has been downloaded from the AAA
server

The firewall performs these functions by keeping a table of authenticated users and their user
authentication (uauth) attributes. The uauth table records each authenticated user, along with his
or her source IP address, the authorization ACL name (if any), and session timer values. In
Chapter 5, "Managing Firewall Users," Section "5-5: Configuring AAA for End-User Cut-
Through Proxy," covers AAA functions in greater detail.

After a user authenticates with the firewall, he can use and create new connections until his
absolute uauth timer expires. As well, the firewall tracks to see if the user has not sent or
received data on any of his connections for an idle uauth timer period. If the idle timer expires,
that user is deleted from the uauth table, and all current connections are closed. That user is
required to reauthenticate when he attempts a new connection. If the absolute timer expires, all
the user's existing connections are allowed to remain open. However, the user is prompted to
reauthenticate when a new connection is initiated.

Inspection Engine

The firewall inspects each connection and applies rules according to the protocol being used.
This process has traditionally been called fixup, and more recently an inspection engine or
application layer protocol inspection.

Some protocols are simple and have very loose guidelines about the traffic between source and
destination. These are called connectionless protocols, and they include ICMP and UDP. Other
protocols are very strict about the handshaking and packet exchange between source and
destination. These are called connection-oriented protocols, and they include TCP.

1-2. Inspection Engines for ICMP, UDP, and TCP
The following sections outline the basic stateful inspection of each type of applicable protocol.
ICMP Inspection

ICMP is a connectionless protocol, because it allows one host to send another host a message
without expecting a reply. Because of this, a firewall cannot examine or track the state of ICMP
traffic between two machines. However, beginning with ASA 7.0(1) and FWSM 3.1(1), a
firewall can track the state of ICMP packet exchanges, offering an approximation of a stateful
inspection.

A firewall must rely on some of its basic mechanisms for inspecting ICMP traffic—the xlate
table and ACLs. Note that no connections are used with ICMP, so no conn entries are created for
ICMP traffic. Figure 1-5 shows how a Cisco firewall reacts when it needs to handle ICMP traffic
between two hosts on different interfaces.

Figure 1-5. How a Firewall Handles ICMP Traffic

[View full size image]

; Firewall
] 7 J
Fi I
— | —
F A ‘ F .-"
PC-1 PC-2 PC-2
Foreign: 172.16.1.100 Global: 172.18.1.200 Local; 192.168.199.100
Priar to
PIXT.0 PIX7.0+ PIX7.04 ICMP Packet 81 Senl

* Xlae Created e
L]
; |CMP Reply Sent
-
E - 7

One Reply Recelved;
- Mo Other Replies Are Accepted
ICMP Idle Timeout
{Fixed 2 Seconds)

* Xlate Torm Down
h—

ICMP Idle TimeoLt
(Fixed 30 Seconds)

E

Host PC-1 sends an ICMP packet to host PC-2. The firewall needs an xlate entry for one or both
of the hosts. This is created from either a static xlate or a dynamic assignment, depending on the
configuration. The ICMP packet must also be permitted by any ACL that is applied to the
firewall interface toward PC-1.

As an example of this process, PC-1 (foreign address 172.16.1.100) tries to ping host PC-2
(global address 172.18.1.200). PC-2 has a static xlate entry that translates global address
172.18.1.200 on the outside to local address 192.168.199.100 on the inside.

The debug icmp trace command reveals debugging information for all ICMP traffic passing
through the firewall. Similar information could be gathered from Syslog messages generated by
the firewall. In this case, message 1Ds 305009, "Built static translation,” and 609001, "Built
local-host," might be seen. The debug icmp trace command output for this scenario is as follows:

Code View: Scroll / Show All
Firewall# debug icmp trace
ICMP trace on
Warning: this may cause problems on busy networks
1: ICMP echo-request from outside:z172.16.1.100 to 172.18.1.200 1D=768
seq=3328

length=40
2: ICMP echo-request: untranslating outside:172.18.1.200 to
inside:192.168.199.100
3: ICMP echo-reply from inside:192.168.199.100 to 172.16.1.100 1D=768
seq=3328

length=40
4: ICMP echo-reply: translating inside:192.168.199.100 to
outside:172.18.1.200

On line 1, the echo request ICMP packet is received on the outside interface. Line 2 shows the
xlate entry being used which is an "untranslation” toward the inside host PC-2. Line 3 records

the echo reply returning toward PC-1. Line 4 shows that the xlate entry has been used again, in
the forward direction toward PC-1.

As soon as the xlate entries are in place and the ACLs permit the traffic, the two hosts are free to
send ICMP packets to each other. In fact, other hosts might also be able to send ICMP packets to
them too, if the xlate entry exists for the destination host and the ACL permits it.

If NAT is used, the xlate entries remain in effect for the duration of a connection or until the
static NAT entry is removed from the configuration. For dynamic Port Address Translation
(PAT), however, the firewall simply allows the ICMP packets to continue until a fixed 30-second
idle time has expired. The following output demonstrates this scenario.

Note

As a part of the ICMP inspection engine, ASA releases 7.0(1) and later, as well as FWSM 3.1(1)
and later, have much tighter control over ICMP activity. The firewall permits only a single reply
to any ICMP request that passes through it. Although the ICMP xlate entry might remain active
until the 30-second idle timer expires, any actual ICMP return traffic after the first reply packet
is dropped.

If NAT is used for the xlate entry, the firewall allows the ICMP connection to remain open for 2
seconds after the one ICMP reply packet is seen. Dynamic PAT is slightly different; the ICMP
connection is closed immediately after the first reply packet.

Code View: Scroll / Show All

Firewall# show xlate local 172.21.4.2 debug

14340 in use, 34527 most used

Flags: D - DNS, d - dump, 1 - identity, i - inside, n - no random,
0 - outside, r - portmap, s - static

ICMP PAT from inside:172.21.4.2/1024 to outside:10.10.10.10/62204 flags r

idle 0:00:29 timeout 0:00:30

Firewall # show xlate local 172.21.4.2 debug

14360 in use, 34527 most used

Flags: D - DNS, d - dump, 1 - identity, i - inside, n - no random,
0 - outside, r - portmap, s - static

Firewall #

A ping has created a dynamic xlate entry, and that entry has been idle for 29 seconds. Notice that
the timeout value is 30 seconds, which is a fixed value for ICMP entries. One second later, the
xlate entry has been deleted from the table.

A Case Study in ICMP Inspection

Without the stateful inspection of ICMP traffic, the decision to allow ICMP traffic does have its
shortcomings. This is because of the nature of the ICMP protocol.

For example, it might seem natural to always expect an ICMP echo request to come first and an
echo reply to be returned. After all, that is how the whole ping process works and how the ICMP
inspection engine operates. Suppose ICMP inspection is disabled, as it is in releases before ASA
7.0(1) and FWSM 3.1(1), and ICMP echo packets are permitted to pass through a firewall.

You might be surprised to learn that a host on the outside can then send something odd to an
inside host—unsolicited ICMP echo reply packets without any echo requests! This can happen
even if the firewall is using dynamic PAT of the inside host addresses. It is all possible because
ICMP has no inherent connection or state information.

The following configuration displays a capture on the firewall to briefly show that only ICMP
echo reply packets are being sent toward the inside host 192.168.199.100. Chapter 11,
"Verifying Firewall Operation,” explains captures in more detail.

Firewall# show capture test
6 packets captured

23:09:21.471090 172.16.1.100 > 192.168.199.100: icmp: echo reply
23:11:01.497212 172.16.1.100 > 192.168.199.100: icmp: echo reply
23:11:01.498112 172.16.1.100 > 192.168.199.100: icmp: echo reply
23:11:01.498951 172.16.1.100 > 192.168.199.100: icmp: echo reply
23:11:01.499791 172.16.1.100 > 192.168.199.100: icmp: echo reply
23:11:01.500828 172.16.1.100 > 192.168.199.100: icmp: echo reply

6 packets shown
Firewal 1#

Now look at the following xlate and ICMP debug activity to see how the firewall reacts to the
unsolicited echo replies:

Code View: Scroll / Show All

Firewal 1#

67:- ICMP echo-reply from outside:172.16.1.100 to 172.18.1.200 ID=0 seq=3369
length=80

68: ICMP echo-reply: untranslating outside: 172.18.1.200 to

inside:192.168.199.100

69: ICMP echo-reply from outside: 172.16.1.100 to 172.18.1.200 1D=1 seq=3369
length=80

70: ICMP echo-reply: untranslating outside: 172.18.1.200 to

inside:192.168.199.100

71: ICMP echo-reply from outside: 172.16.1.100 to 172.18.1.200 ID=2 seqg=3369
length=80

72: 1CMP echo-reply: untranslating outside: 172.18.1.200 to

inside:192.168.199.100

73: ICMP echo-reply from outside: 172.16.1.100 to 172.18.1.200 ID=3 seq=3369
length=80

74: ICMP echo-reply: untranslating outside: 172.18.1.200 to

inside:192.168.199.100

75: ICMP echo-reply from outside: 172.16.1.100 to 172.18.1.200 1D=4 seq=3369
length=80

76: ICMP echo-reply: untranslating outside: 172.18.1.200 to

inside:192.168.199.100

The reply packets are sent to the inside host, and the xlate entry is used to do it. Now imagine
other possibilities in which an outside host could use various ICMP message types to annoy an
inside host or communicate with a backdoor Trojan horse that has been installed. At the very
least, the outside host could keep the xlate entry from ever idling out just by sending bogus
ICMP packets toward the inside.

With ICMP inspection enabled, the same test case is performed. A ping is sent from an inside
host toward an outside target, and the firewall creates a dynamic PAT ICMP xlate entry. The
firewall accepts only a single echo reply packet and closes the ICMP connection.

The xlate entry stays active for a full 30 seconds until it idles out. During that time, an outside
host attempts to send ICMP traffic to the PAT address. The firewall immediately rejects the
traffic because it does not match any of the ICMP state information that was originally recorded.
As well, the ICMP connection has already been closed, and a new inbound connection is not
created, even though the inbound access list has an entry that permits any ICMP traffic to any
inside host.

The following Syslog information demonstrates this rejection and the follow-up by the firewall.

Code View: Scroll / Show All

Feb 22 2007 00:52:15 : %ASA-6-305011: Built dynamic ICMP translation from
inside:192.168.198.4/33 to outside:128.163.93.131/0

Feb 22 2007 00:52:15 : %ASA-6-302020: Built ICMP connection for faddr
128.163.93.129/0 gaddr 128.163.93.131/0 laddr 192.168.198.4/33

Feb 22 2007 00:52:15 : %ASA-6-302021: Teardown ICMP connection for faddr
128.163.93.129/0 gaddr 128.163.93.131/0 laddr 192.168.198.4/33

Feb 22 2007 00:52:21 : %ASA-3-106014: Deny inbound icmp src

outside:128.163.93.129
dst outside:128.163.93.131 (type 8, code 0)

Feb 22 2007 00:52:45 : %ASA-6-305012: Teardown dynamic ICMP translation from
inside:192.168.198.4/33 to outside:128.163.93.131/0 duration 0:00:30

Notice that the ICMP connection was built and torn down within the same second of time,
immediately after the echo reply was received. The last line shows that the xlate entry stayed
active until the 30-second idle timer expired.

UDP Inspection

User Datagram Protocol (UDP) is also a connectionless protocol. A host might send unsolicited
UDP packets to another without expecting any reply in return. This can occur with protocols
such as Real-Time Transport Protocol (RTP) for voice traffic. However, some protocols such as
DNS use UDP for a two-way exchange, but no actual connection is established.

For most UDP traffic, a firewall cannot examine or track the state of the information exchange.
UDRP is inspected only through the use of the xlate table, ACLs, and conn table entries. Even
though UDP is connectionless, a Cisco firewall creates conn entries as pairs of hosts
communicate with UDP packets. Figure 1-6 shows how a firewall reacts to handle UDP traffic
between two hosts on different interfaces.

Figure 1-6. How a Firewall Handles UDP Traffic

[View full size image]

- l

[
=4 L —/
/ /
PC-1 Firewall PC-2
UDP Connaction .
Beqgins = ¥late Created T
= Conn Entry Crealed | UDP Reply Sent
&
e -
s
[}
Ll
* L
- .-""' T

= Xlate Tern Down I

* Conn Entry Torn Down

(f i
|‘)7

In Figure 1-6, the hosts pass messages back and forth, as if there is a connection between them.
Host PC-1 begins the session by sending a UDP packet to PC-2. If the ACLs applied to the
firewall interfaces permit this traffic, the firewall proceeds to define a UDP connection. To
forward the traffic, the firewall needs an existing xlate table entry or needs to create one.

LUDP |dle Timeout
(Default 2 Minutes)

With the first packet in the session, the firewall creates a new connection entry in the conn table.
This entry identifies the source and destination addresses and UDP ports so that all packets that
pass between the pair of hosts can be identified with this specific connection.

UDP packets can now be passed back and forth between PC-1 and PC-2. The firewall allows the
connection to continue as long as packets pass through that connection. If no packets have passed
through the connection before the UDP idle connection timer expires, the UDP connection is

closed by being deleted from the conn table. By default, a UDP connection idles out after 2
minutes.

This means that UDP connections never close by themselves, because they have no mechanism
to do so. Instead, any UDP connections that are created by a firewall must just wait to idle out
and close.

You should be aware of one exception a Cisco firewall makes in how it handles UDP
connections: DNS traffic usually occurs as one request from a host for a name resolution and one
valid response from a DNS server. Naturally, a host might send several duplicate requests to
several different DNS servers, and it might get back several responses. In the end, only one reply
really matters to the requesting host.

Suppose a DNS server is on the inside of a firewall, and all DNS traffic (UDP port 53) is
permitted to reach it from the outside. If an outside host sends a legitimate DNS request, the
firewall creates a UDP connection entry. While that connection is open to the outside host, that
host might have free access to begin pestering the DNS server with bogus requests until the
server becomes overwhelmed. This activity could go on and on, as long as the UDP connection
never becomes idle.

Likewise, a client on the inside might send a DNS request to a DNS server on the outside. The
firewall would create a UDP connection between the client and server, permitting the legitimate
DNS reply. While the connection is "open,"” other malicious hosts on the outside could spoof the
source address of the DNS server, targeting the inside client as the destination. Any number of
bogus DNS replies could be sent inward, bombarding the unsuspecting client.

A Cisco firewall implements a feature called DNS Guard that prevents this from happening. The
firewall observes DNS requests that pass through it over UDP connections. After a request is
forwarded, the firewall allows only the first DNS reply to return to the requesting host. All
replies after that are dropped, and the UDP connection triggered by the DNS request is
immediately closed or deleted.

As a part of the UDP fixup process, a firewall also inspects and reacts differently to certain
predefined UDP protocols. Individual application inspection engines are available, providing
additional security over that of the generic UDP inspection engine. Section "7-3: Application
Inspection,” in Chapter 7, "Inspecting Traffic,” describes this in further detail.

TCP Inspection

TCP is a connection-oriented protocol. Before two hosts can exchange TCP traffic, they must
perform a three-way handshake to establish a TCP connection. Then, as packets are exchanged,
the connection state is always updated with parameters that tell the far-end host what data to
expect and how much data can be returned. To close a TCP connection, the two hosts must
perform a modified three-way handshake.

Because TCP is connection-oriented, a firewall can track the exact state of the information
exchange at any given time. For each TCP connection, the firewall examines source and
destination address and port pairs, along with the TCP sequence number, the acknowledgment
value, and the TCP flags. Packets that have unexpected values cannot be part of an existing
connection, so the firewall drops them.

TCP connections are inspected through the use of the xlate table, ACLs, and conn table entries.
The conn entries also have flags that reflect the current state of the TCP connections. For
example, the state of the three-way handshake to initiate a connection is marked by flags that
indicate which end sent the first SYN bit and which host is expecting the next SYN or SYN-
ACK bit handshake. Likewise, the handshake to close a TCP connection is tracked by the state of
FIN bit exchanges.

Figure 1-7 shows how a firewall handles TCP traffic between two hosts on different interfaces.
Here, the packet exchange between hosts PC-1 and PC-2 is a bit more complex than ICMP or
UDP because of the orderly fashion in which TCP connections must progress to maintain their
states.

Figure 1-7. How a Firewall Handles TCP Traffic

[View full size image]

= NP S |

R . —_—"
- PC-1 Firewall PC.2
=,
o W
@ 'E SYM
E5 _— - tes Cira i
——] CP Conneclion = ¥late Created N
% {ﬂd Begins = Conn Endry Created | TGP Reply Sent
2 g SYN-ACK .
2o R <-
= !
=8 '
= '
E O Moo ACH
w > > -
TCP Sequence, Ack, and Window Valuss \,L
are Tracked as the Connection Progresses "
#
-
— - =% -« -
] r
3 < j
@& 2 I"
A
i
o3 .
2= '
= 5
':D-) "E \L (}{} h‘_ =
= =} ™~
i - :
.-ir’
.- -
i
i
|
- . t > FiM Begin Closing the TGP Connection »
: O - -
2w AGK, Iy
E 2 - <-
= E 3 (¢
o = - ==
23 >)] oo
e %
g=2]
2= N .
= I -
SE - <~
o E v > ACK = Xlate Torn Down
T 4 = Conm Entry Torn Down

PC-1 initiates the TCP connection by sending a SYN bit in its packet to PC-2. The firewall
creates a dynamic xlate entry if one does not already exist. As well, a new conn entry is created
for the TCP connection between this pair of hosts. The firewall expects PC-2 to reply with a
packet that has the SYN and ACK bits set.

At this point, the connection is only half-open, and it is considered an embryonic connection (not
fully formed). If the SYN bit reply is not received within 30 seconds, the embryonic idle timer
expires, and the connection is closed. Before ASA 7.0(1), the embryonic idle time was fixed at
30 seconds; in later releases, it defaults to 30 seconds but can be configured.

Finally, PC-1 must also complete the three-way handshake by sending a packet with the ACK bit
set. If this handshake is properly followed, the firewall begins allowing TCP packets to flow
through the connection. Each of these packets is examined to see if the TCP sequence number,
acknowledgment number, and flags are being updated with the expected values.

Note

When a TCP connection is initiated, a host sends the first SYN packet, along with an ISN so that
the far-end host knows how to respond. The ISN value is sometimes predictable, giving
malicious users on the outside the ability to hijack a connection by masquerading as the actual
initiating host.

A Cisco firewall intercedes on behalf of the inside host when a TCP connection is initiated.
When the first TCP packet is forwarded on the outside network, the firewall generates a random
ISN value. For each connection, the firewall maintains a translation between the inside sequence
number and the outside sequence number. This adds a level of security, because outside hosts
can never guess the true TCP ISN values that the inside hosts are using.

TCP connections can close in several ways:

e The two hosts can send FIN bits to each other in a two-way handshake. The firewall
tracks this exchange to be sure that the connection is behaving correctly.

e One host can send a reset (RST) bit, requesting that the far-end host close and delete the
connection immediately.

e The firewall also maintains an idle timer for each connection. If no packets have been
sent through the connection before the idle timer expires, the firewall immediately closes
the connection and deletes it from its conn table. By default, the idle timeout is 60
minutes.

Additional TCP Connection Controls

One host begins a TCP connection with another host by sending it a TCP packet with the SYN
flag. A malicious host can begin so many TCP connections with another host that the target host
can run out of memory or resources—even though none of the connections are actually
established or completed. Each of the connections begins by having the SYN flag set, as if it
were legitimate.

While an initial SYN packet goes unanswered with a SYN packet reply, the TCP connection is
not yet established. As previously discussed, this condition is called an embryonic, or half-open,
connection.

A Cisco firewall can monitor and control the number or volume of embryonic connections by
watching the initial SYN packets that arrive on one interface, destined for a host on a different
interface.

When the embryonic connection limit is exceeded, the firewall performs TCP intercept and acts
as a proxy. The firewall intercepts the incoming SYN packet, and the connection state
information is recorded in memory. The SYN is not actually sent to the target host; instead, the
firewall answers with a SYN packet reply on the target's behalf. If the source responds with a

SYN-ACK packet, indicating that the connection is legitimate, the firewall sends a copy of the
original SYN packet to the target. In effect, this delays the connection's formation but allows the
target to become aware of a true connection request. The TCP three-way handshake can proceed
to establish the connection.

Note

For inbound connections (from a lower-security interface to a higher-security interface), the
embryonic connection limit is defined, along with the static xlate entry (the static configuration
command). This can prevent a denial-of-service attack coming from the outside.

For outbound connections, the limit is defined along with the dynamic NAT or PAT xlate entry
(the nat configuration command). This can prevent an attack coming from the inside, targeting
hosts on the outside.

Finally, TCP connections that are established normally stay open until the two hosts exchange a
two-way handshake of packets with the FIN flag set. If a FIN packet is sent but is not answered
with another FIN packet, the TCP connection is in the half-closed state. A firewall can allow
connections to remain in this state until the half-closed timer expires (the default is 10 minutes).
After that occurs, the connection is deleted from the conn table without waiting for the
handshake to complete.

TCP Normalization

Beginning with ASA 7.0(1) and FWSM 3.1(1), the TCP inspection engine can be configured to
inspect and operate on several additional TCP parameters. TCP normalization is a feature that
allows packet inspection based on configurable options defined in a modular service policy. This
feature is covered in detail in Section "7-2: Defining Security Policies in a Modular Policy
Framework," of Chapter 7.

You can enable the following types of TCP normalization inspection:

Consistent retransmissions of TCP packets

TCP checksum verification

TCP maximum segment size (MSS) exceeded

Misuse of TCP header reserved bits

Packets with the SYN bit set while containing data

Spoofed retransmission of packets dropped after time-to-live (TTL) expiration
Handling of the TCP urgent flag

Unexpected changes in TCP window values

Handling of various TCP options

Other Firewall Operations

Cisco firewalls can also perform other functions while traffic is being inspected:

o Content filtering— A firewall can work with external servers to permit or deny users'
access to web content. Section "7-1: Filtering Content,” in Chapter 7 discusses this in
further detail.

« Failover— Two physical firewalls can operate as a failover pair, in which one of the two
is always active. This provides greater availability in case one of the firewalls fails.
Chapter 8, "Increasing Firewall Availability with Failover," covers failover in greater
detail.

e DHCP— A firewall can act as a DHCP client to receive dynamic IP addressing
information from a service provider. It also can act as a DHCP server to provide dynamic
information to a set of clients on a protected network. Section "3-3: DHCP Server
Functions," in Chapter 3, "Building Connectivity," covers this topic in further detail.

o Syslog— A firewall can generate logging information about a wide variety of activity, to
be collected by a logging server. Chapter 10, "Firewall Logging," covers Syslog
functionality in greater detail.

e Management— You can manage a Cisco firewall in a variety of ways. You can use
Simple Network Management Protocol (SNMP) to query some firewall parameters and
receive notifications. Also, several GUI front-end applications are available to help you
configure and monitor firewalls. Chapter 4, "Firewall Management,” covers these
features in further detail.

o Packet capture— A Cisco firewall can be configured to capture packets passing through
an interface. This can be a useful troubleshooting tool or a way to examine specific traffic
that is present in a network. Chapter 11 covers this and other troubleshooting tools in
greater detail.

« Emulation of multiple firewalls— Beginning with ASA 7.0(1) and FWSM 2.2, a Cisco
firewall can be configured to run multiple security contexts. Each context is an
independent virtual firewall emulated on a single hardware platform. Section "4-1: Using
Security Contexts to Make Virtual Firewalls," in Chapter 4 discusses multiple-context
mode in detail.

o 1-3. Hardware and Performance

« Cisco offers firewall functionality in a variety of hardware platforms, many of which are
network appliances, where the firewall is contained in a standalone chassis. These include
the Cisco PIX Security Appliance and Cisco Adaptive Security Appliance (ASA)
platforms.

e The FWSM is a "blade" or module that can be used in a Catalyst 6500 switch chassis.
This moves the firewall presence into an infrastructure switch itself rather than an
external appliance.

o Cisco also offers a firewall function as part of the Cisco 10S Software, which can be run
on many router platforms. This function allows an existing router to become a firewall,
too.

o Table 1-1 lists the various firewall models, along with many of their specifications. This
table provides a quick reference if you need to compare the capabilities or performance
ratings of different models.

Table 1-1. Cisco Firewall Specifications

Catalys
t 6500
ASA 5505 ASA 5510 ASA 5520 ASA 5540 ASA 5550 FWSM

Operating ASA7.x,8x ASA7x,8x ASA7Xx, ASA7X, ASAT7X 8x FWSM

System 8.X 8. 2.X, 3.X
Memory 256 MB 256 MB 512 MB 1GB 4 GB 1GB
Flash 64 MB 64 MB 64 MB 64 MB 64 GB 128 MB
(minimum)
Throughput 150 Mbps 300 Mbps 450 Mbps 650 Mbps 1.2 Gbps 5 Gbps
Concurrent (10,000/25,000t 50,000/130,000! 280,000 400,000 600,000 1
Connection ¥ 4 million
S
Physical Eight 10/100 Five 10/100 Four Four Eight 10/100 0
Interfaces switch; two 10/100/1000 10/100/1000 plus 12 10/100

Power over , one 10/100 |, one 10/100 or nine

Ethernet (PoE) GigabitEthern

et

Logical Three (no 50/100%) 150 200 250 100
Interfaces trunking)/20

(trunking)
Failover No/ Stateless No/ A/A and A/A and A/Aand A/S A/IA

Active/Standby Active/Active A/S A/S and

(AIS)H (A/A) and A/S A/sH
AAAand Yes Yes Yes Yes Yes Yes
Cut-
Through
Proxy
Command- Console, Console, Telnet, Console, Console, Console, Telnet,
Line Telnet, Secure SSH Telnet, SSH Telnet, SSH Telnet, SSH SSH
Interface |Shell (SSH)
GUI ASDM ASDM ASDM ASDM ASDM ASDM

Routing Static, RIP, Static, RIP, Static, RIP, |Static, RIP, Static, RIP, Static,
EIGRP, OSPF EIGRP, OSPF EIGRP, EIGRP, EIGRP, OSPF RIP,

OSPF OSPF OSPF
Security 0 0/2, 5l 2,20 2,50 2,50 100
Contexts
VPN- Yes Yes Yes Yes Yes Not!
Capable

(] Base license/Security Plus license
21 The FWSM supports only LAN-based failover, because it has no physical
failover cable connector.

« BIThe FWSM does not support any IPSec VPN features except for a 3DES tunnel
that is used for management purposes.

1-4. Basic Security Policy Guidelines

As you plan your security policies and configure your firewall, you should keep several things in
mind. Rather than presenting a long treatise on security policies and how to protect against
vulnerabilities and attacks, this small section provides a short list of rules of thumb. If you follow
these suggestions, you should be able to configure a firewall to provide the best possible
protection.

o Gather and review firewall logs regularly.

After a firewall is configured, you can easily test to see if it is blocking or permitting
access to secured resources according to the correct security policies. However, there is
no easy way to watch a denial-of-service or worm attack without seeing a record of
traffic being permitted or denied.

A firewall can generate a wealth (and a deluge) of logging information. This data should
be collected by a Syslog server that is properly sized for the task. You should also review
the Syslog data on a regular basis so that you can spot new malicious activity or expose
the use of a vulnerable port you forgot to close.

The most important reason to keep firewall logs is to keep an audit trail of network
activity. If you experience an attack or a misuse of network resources, you can rely on the
Syslog record as evidence.

e Make inbound ACLs very specific.

You should tightly control traffic coming into your secured network from the public or
unsecured side. If you offer public access to a corporate web or e-mail server, for
example, be sure to permit only those specific protocols and ports. Otherwise, if you
leave the inbound access too broad or open, you increase the chances that someone will
find a way to exploit an unexpected protocol or service. In addition, best practices
suggest that any inbound access should terminate only on hosts that are located on a
demilitarized zone (DMZ) firewall interface—not on the inside network.

As for outbound traffic control, the internal (protected) users are usually well-known and
trusted. You can leave the outbound access open, but best practices suggest that you
configure outbound access lists to prevent hosts on the inside network from participating
in worms or attacks aimed at DMZ or outside networks.

You might also use outbound access lists to enforce corporate policies to limit or prohibit
certain activity or to control the access of unauthorized services. The firewall can also
authenticate outbound users before giving them access and can work with external
servers to control web content.

Protect the DMZ in several directions.

If corporate resources are offered to the public network, it is usually best to place them in
a DMZ. This is a small network on a firewall interface that has a medium level of
security. Users on the outside or public network are allowed to reach the servers on the
DMZ using specific protocols and ports.

Be careful how you configure the security policies on the DMZ interface. Make sure that
outside users are allowed access only to the specific protocols needed. Then make sure
that machines on the DMZ interface are allowed access to other inside (secured) hosts
using only the protocols needed for data transfer.

For example, suppose you have a public web server that offers information using HTTP.
That web server populates its web pages by sending SQL requests to other data center
servers on the inside network. For the DMZ, you should configure the firewall to allow
outside access to the web server using only TCP port 80 (HTTP). In addition, the DMZ
server should be allowed to send only SQL packets toward the inside data center, and
nothing else. If you leave open access (any protocol or port number) between the DMZ
server and the inside, the DMZ can become a "springboard™ so that malicious users on
the outside can compromise the DMZ server and use it to compromise others on the
inside.

Be overly cautious about ICMP traffic.

ICMP packets are very useful when you need to troubleshoot access or network response
time to a host. Ping (ICMP echo) packets are well known for this. However, configuring
a firewall to allow open access for the ICMP protocol usually is not wise.

Malicious users on the outside can use ICMP to detect or attack live hosts on a DMZ or
inside network. Typically, best practice is to use a firewall to hide as much information as
possible about the internal secured network. Outbound pings might be allowed so that
your internal users can test to see if a service is alive on the public Internet. Inbound
pings (echo requests) should be denied altogether, because you don't want outside users
to know if your internal services are alive. The only exception might be to allow pings to
reach your hosts that offer public services, but nothing else.

Best practices suggest that you allow only specific types of ICMP packets to enter your
network from the outside. These include echo-reply, unreachable, and time-exceeded
ICMP messages. In any event, you should configure ICMP inspection if at all possible, so
that the firewall can make a best effort at tracking and controlling ICMP message
exchanges.

Keep all firewall management traffic secured.

You can manage or maintain a firewall in many ways:

- Open a management session using Telnet, SSH, ASDM, or Cisco Security Manager
(CSM)

- Copy a new operating system image or configuration file into the firewall

- Collect Syslog information from the firewall

- Poll firewall parameters through SNMP

- Authenticate users through TACACS+ and RADIUS servers

Clearly, any of these methods can drastically change the firewall's behavior or operation.
You should always make every effort to keep all types of management access limited to
an inside or secured network. If you open any management access toward the outside,
you stand a chance of letting a malicious user manage your firewall for you. At the least,
someone might intercept your Syslog or SNMP traffic and learn something important
about your internal network.

If you absolutely need some management access from the outside, only do so through a
secure means like a virtual private network (VPN) connection or SSH with a strong
authentication method. This allows management traffic to be extended only to someone
who can verify his or her identity over an encrypted path.

Periodically review the firewall rules.

Cisco uses a model called the security wheel. The process of providing network security
begins with developing a strong corporate security policy. This includes the following
tasks:

- Identifying the resources that will be secured

- Identifying the "inside™ users and hosts that will need access to other, less-secure
network resources

- Identifying corporate services that will be protected but will be accessible from the
unsecured networks

- Developing an authentication scheme, if needed, that can identify and grant permission
for corporate and outside users

- Developing a plan for auditing the security activities

Actually implementing and refining the policies becomes a continual process of four
steps:

a. Secure the network (configure firewalls, routers, intrusion protection systems, and
S0 on)

b. Monitor and respond to malicious activity

c. Test existing security policies and components

d. Manage and improve network security
Further Reading

Refer to the following recommended sources for further technical information about firewall
functionality and securing a network:

Cisco's SAFE Blueprint documents at http://www.cisco.com/go/safe

Cisco ASA: All-in-One Firewall, IPS, and VPN Adaptive Security Appliance by Omar Santos
and Jazib Frahim, Cisco Press, ISBN 1-58705-209-1 (978-1-58705-209-5)

Securing Your Business with Cisco ASA and PIX Firewalls by Greg Abelar, Cisco Press, ISBN
1-58705-214-8 (978-1-58705-214-9)

Firewall Fundamentals by Wes Noonan and Ido Dubrawsky, Cisco Press, ISBN 1-58705-221-0
(978-1-58705-221-7)

Network Security Principles and Practices by Saadat Malik, Cisco Press, ISBN 1-58705-025-0
(978-1-58705-025-1)

Designing Network Security, Second Edition by Merike Kaeo, Cisco Press, ISBN 1-58705-117-6
(978-1-58705-117-3)

Cisco Access Control Security: AAA Administration Services by Brandon Carroll, Cisco Press,
ISBN 1-58705-124-9 (978-1-58705-124-1)

Network Security Architectures by Sean Convery, Cisco Press, ISBN 1-58705-115-X (978-1-
58705-115-9)

Chapter 2. Configuration Fundamentals

Refer to the following sections for information about these topics:

e 2-1: User Interface— Discusses the command-line interface (CLI) methods that an
administrative user can use to connect to and interact with a firewall.

o 2-2: Firewall Features and Licenses— Covers the license activation keys that can be used
to unlock firewall functions.

o 2-3: Initial Firewall Configuration— Presents a brief overview of the methods that can be
used to start configuring a firewall.

2-1. User Interface

A Cisco firewall, like any other networking device, offers several ways for the administrative
user to connect to and interact with the firewall. Users usually need to make changes to the
firewall's security policies and configuration, monitor firewall activity, and troubleshoot traffic
handling. All interaction with a firewall is based on a common user interface, which can be
described as follows:

e A Cisco firewall supports user access by these methods:
- Command-line interface (CLI) by an asynchronous console connection
- CLI by a Telnet session

- CLI by Secure Shell (SSH) version 1.x or 2 (Adaptive Security Appliance [ASA] and
Firewall Services Module [FWSM])

- Adaptive Security Device Manager (ASDM) through a web browser for ASA and
FWSM platforms, and PIX Device Manager (PDM) for PIX platforms running 6.3 or
earlier releases

- Cisco Security Manager (CSM)
- VPN/Security Management Solution (VMS) Firewall Management Center

o Afirewall also provides a user interface to the ROM monitor bootstrap code when the
operating system is not running.

o Users can execute commands from the user level or from the privileged level. The user
level offers basic system information commands. The privileged level offers complete
access to all firewall information, configuration editing, and debugging commands.

e A help system offers command syntax and command choices at any user prompt.

e A history of executed firewall commands can be kept. As well, command lines can be
edited and reused.

e The output from a command can be searched and filtered so that useful information can
be found quickly.

Note

Only the CLI itself is covered in this section. The mechanisms to reach it (Telnet, SSH, and so
on) are covered in Chapter 4, "Firewall Management,” Section 4-4, "Managing Administrative
Sessions."

Tip

The Catalyst 6500 Firewall Services Module (FWSM) does not have an accessible console
connection or other physical interface. However, you can still access an FWSM from the
Catalyst 6500 native 10S CL, as if you were connected to its console. Use the following
Catalyst EXEC command to connect to the FWSM in chassis slot number slot:

Switch# session slot slot processor 1

User Interface Modes

The user interface of a Cisco firewall consists of several modes, each providing a different level
of administrative capability and a different function. The user interface modes are as follows:

e User EXEC mode

Administrative users can connect to a firewall via the console port, Telnet session,
or SSH session. By default, the initial access to a firewall places the user in user
EXEC mode and offers a limited set of commands. When you connect to the
firewall, a user-level password is required. A firewall designates user EXEC
mode with a prompt of this form:

Firewall>
Note

User-level authentication and passwords are covered in Chapter 5, "Managing Firewall
Users."

e Privileged EXEC mode

As soon as a user gains access to user EXEC mode, the enable command can be
used to enter privileged EXEC or enable mode. Full access to all the executable

commands is available. To leave privileged EXEC mode, use the disable, quit, or
exit command. The syntax for entering privileged EXEC mode is as follows:

Firewall> enable
password: password
Firewal 1#

Notice that the pound, or number, sign (#) is used to designate privileged EXEC
mode.

e Configuration mode

From privileged EXEC mode, you can enter configuration mode. From this mode,
you can issue firewall commands to configure any feature that is available in the
operating system. In P1X 6.x, all configuration is performed in one global
configuration mode. Later releases, however, offer a global configuration mode
and many submodes, much like the Cisco 10S software. To leave configuration
mode and return to EXEC mode, enter exit or press Ctrl-z. You can also use the
exit command to exit a submode and return to global configuration mode.

The syntax for entering global configuration mode is as follows:

Firewall# configure terminal
Firewall(config)#

User Interface Features

Within an administrative session, you can enter commands and get helpful information about
entering commands. As well, you can filter the information that a firewall displays in a session as
a result of a command. These mechanisms are discussed in the following sections.

Entering Commands

To enable a feature or parameter, enter the command and its options normally. To disable a
command that is in effect, begin the command with no, followed by the command. You need to
include enough options to identify the command uniquely, as it exists in the firewall session or
configuration. For example, the following configuration commands enable and then disable the
embedded HTTP server:

Firewall(config)# http server enable

Firewall(config)# no http server enable

You can see the configuration commands that are in effect by using one of the following
commands:

ASA, FWSM Firewall# write terminal

or

Firewall# show running-config [command]

PIX 6.3 Firewall# write terminal

or

Firewall# show running-config

or

Firewall# show command

Notice that the ASA and FWSM platforms allow you to specify a command keyword in the show
running-config command. If it is included, only the related configuration commands are shown,
rather than the entire configuration. PIX 6.3 shows specific configuration commands by omitting
the running-config keyword with the show command syntax.

Tip

Some ASA and FWSM configuration commands and their options are not shown if they use their
default values. To see every configuration command that is enabled or active, even if it is a
default, you can use the show running-config all [command] syntax.

Commands and their options can be abbreviated with as few letters as possible without becoming
ambiguous. For example, to enter configuration mode, the command configure terminal can be
abbreviated as conf t.

ASA and FWSM platforms also offer a keyword completion function. If you enter a shortened or
truncated keyword, you can press the Tab key to make the firewall complete the keyword for
you. Keyword completion can be useful when you are entering keywords that are very long and
hyphenated. For example, pressing the Tab key after entering show ru produces the completed
command show running-config:

Firewall# show ru[Tab]
Firewall# show running-config

This works only if the truncated keyword is unambiguous; otherwise, the firewall cannot decide
which one of several similar keywords you want. If you press Tab and the keyword stays the
same, you know you have not entered enough characters to make it unambiguous.

You can edit a command line as you enter it by using the left and right arrow keys to move
within the line. If you enter additional characters, the remainder of the line to the right is spaced
over. You can use the Backspace and Delete keys to make corrections.

Tip

Sometimes the firewall might display an informational or error message while you are entering a
command line. To see what you've entered so far, you can press Ctrl-1 (lowercase L) to redisplay
the line and continue editing.

For example, suppose an administrator is trying to enter the hostname configuration command to
set the firewall's host name. Before he or she can enter the command, the firewall displays a
logging message that interrupts the command line:

pix-c# config t
pix-c(config)# hostnNov 15 2004 00:34:08 single vf : %PIX-7-111009:

User "enable 15" executed cmd: show interface [user presses Ctrl-1 here]
pix-c(config)# hostn

Pressing ctri-1 displays the line again without all the clutter.

Command Help

You can enter a question mark (?) after any keyword in a command line to get additional
information from the firewall. Entering the question mark alone on a command line displays all
available commands for that mode (configuration or EXEC).

You can also follow a command keyword with a question mark to get more information about

the command syntax. Doing this in P1X 6.3 displays the command syntax of all commands that
use that keyword. For example, entering arp ? causes the firewall to show the syntax of the arp
command, as well as the show arp and clear arp commands.

ASA and FWSM platforms offer context-based help, much like the Cisco 10S software. Entering
a question mark after a keyword causes the firewall to list only the possible keywords or options.
For example, entering show arp ? results in the following output:

Firewall# show arp ?

statistics Show arp statistics
| Output modifiers
<Cr>

Firewall# show arp

Here, show arp can be followed by statistics, a pipe symbol (]), or the Enter key (<cr>).

With an ASA platform, you can also use the question mark with a partially completed command
keyword if you do not know the exact spelling or form. The firewall displays all possible
keywords that can be formed from the truncated word. For example, suppose you do not
remember what commands can be used to configure access lists. Entering access? in
configuration mode reveals the possibilities:

Firewall(config)# access?
access-group access-list
Firewall(config)# access

Notice that the truncated command keyword is displayed again, ready to be completed with more
typing.

If you enter a command but use the wrong syntax, you see the following error:

Type help or "*?" for a list of available commands

ASA and FWSM platforms also display a carat (*) symbol below the command line location to
point out the error. For example, suppose a user forgets and enters the command config type
rather than config term:

Firewall# config type
N

ERROR: % Invalid input detected at "~" marker.
Firewal 1#
The carat points to the keyword type, starting at the y, where the syntax error begins.

Command History

The firewall keeps a history of the last 19 commands that were issued in each interactive session.
You can see the entire history list for your current session with the show history command.

You can use the command history to recall a previous command that you want to use again. This
can save you time in entering repetitive commands while allowing you to make edits or changes
after you recall them.

Each press of the up arrow key (1) or Ctrl-p recalls the next older or previous command. Each

press of the down arrow key (l) or Ctrl-n recalls the next most recent command. When you
reach either end of the history cache, the firewall displays a blank command line.

When commands are recalled from the history, they can be edited as if you just entered them.
You can use the left arrow key (+) or right arrow key (=) to move within the command line
and begin typing to insert new characters. You can also use the Backspace or Delete key to
delete characters.

Note

The arrow keys require the use of an American National Standards Institute (ANSI)-compatible
terminal emulator (such as the VT100).

Searching and Filtering Command Output

A show command can generate a long output listing. If the listing contains more lines than the
terminal session can display (set using the pager command, whose default is 24 lines), the listing
is displayed a screenful at a time, with the following prompt at the bottom:

<---More--->

To see the next screen, press the spacebar. To advance one line, press the Enter key. To exit to
the command line, press the g key.

You can use a regular expression (reg-expression) to match against lines of output. Regular
expressions are made up of patterns—either simple text strings (such as permit or route) or more
complex matching patterns. Typically, regular expressions are regular text words that offer a hint
to a location in the output of a show command. You can use the following command structure to
perform a regular-expression search:

Code View: Scroll / Show All
Firewall# show command ... | {begin | include | exclude | grep [-V]} reg-
expression

To search for a specific regular expression and start the output listing there, use the begin
keyword. This can be useful if your firewall has a large configuration. Rather than using the
spacebar to eventually find a certain configuration line, you can use begin to jump right to the
desired line.

To display only the lines that include a regular expression, use the include (or grep) keyword. To
display all lines that do not include a regular expression, use the exclude (or grep -v) keyword.

A more complex regular expression can be made up of patterns and operators. Table 2-1 lists and
defines the characters that are used as operators.

Table 2-1. Regular-Expression Operators
Character Description
Matches a single character.
Matches zero or more sequences of the preceding pattern.
Matches one or more sequences of the preceding pattern.
Matches zero or one occurrences of the preceding pattern.
Matches at the beginning of the string.
Matches at the end of the string.
Matches a comma, braces, parentheses, the beginning or end of a string, or a space.
[Defines a range of characters as a pattern.

@) Groups characters as a pattern. If it is used around a pattern, the pattern can be
recalled later in the expression using the backslash (\) and the pattern occurrence
number.

%

A > o +

For example, the following command can be used to display all the logging messages with
message 1D 302013 currently stored in the logging buffer:

Code View: Scroll / Show All

Firewall# show log | include 302013

302013: Built outbound TCP connection 1788652405 for outside:69.25.38.107/80
(69.25.38.107/80) to inside:10.1.198.156/1667 (207.246.96.46/52531)

302013: Built outbound TCP connection 1788652406 for outside:218.5.80.219/21
(218.5.80.219/21) to inside:10.1.100.61/3528 (207.246.96.46/52532)

[output truncated]

Message 302013 records TCP connections built in either the inbound or outbound direction. To
display only the inbound TCP connections recorded, the regular expression could be changed to
include 302013, any number of other characters (.*), and the string inbound:

Code View: Scroll / Show All
Firewall# show log | include 302013.*inbound
302013: Built inbound TCP connection 1788639636 for
outside:216.117.177.135/54780

(216.117.177.135/54780) to inside:10.1.3.16/25 (207.246.96.46/25)
Firewal 1#

You might also use a regular expression to display command output that contains IP addresses
within a range. For example, the following command filters the output to contain only IP
addresses that begin with 10.10.5, 10.10.6, and 10.10.7:

Firewall# show log | include 10.10.[5-7]-*

Terminal Screen Format

By default, all output from the firewall is displayed for a terminal session screen that is 80
characters wide by 24 lines long. To change the terminal screen width, you can use the following
configuration command:

Firewall(config)# terminal width characters

Here, characters is a value from 40 to 511. You can also specify 0, meaning the full 511-
character width.

To change the screen length (the number of lines displayed when paging through a large amount
of output), you can use the following configuration command:

Firewall(config)# pager [lines number]

Here, number can be any positive value starting at 1. If you use only the pager keyword, the page
length returns to its default of 24 lines.

You can also disable screen paging completely by using pager lines 0. This action might be
useful if you are capturing a large configuration or logging message output with a terminal
emulator. A more efficient practice would be to let all the output scroll by into the emulator's
capture buffer; otherwise, you would have to use the spacebar to page through the output and
then later remove all the <--- More ---> prompts that were captured too.

2-2. Firewall Features and Licenses
When a Cisco firewall runs an image of the operating system, it must have the proper license

activation keys to unlock the required features. To see a list of features and their current
availability on a firewall, you can use the following EXEC command:

Firewall# show version

Example 2-1 shows some sample output from a PIX Firewall. The show version command
displays the current version of the firewall operating system (6.3(4) in this case), the firewall's
elapsed uptime, and some information about the hardware. You can find the amount of RAM
memory, Flash memory, and the MAC addresses of the physical interfaces here too. In this
example, the firewall is a model P1X-525 and has 256 MB of RAM, 16 MB of Flash, two
ethernet interfaces, and two gb-ethernet interfaces. (Here, ethernet implies a 10/100BASE-TX
interface; Gigabit Ethernet interfaces are called gb-ethernet.)

Example 2-1. Sample Output from the P1X 6.3 show version Command

Code View: Scroll / Show All
Firewall# show version

Cisco PIX Firewall Version 6.3(4)
Cisco PIX Device Manager Version 3.0(1)

Compiled on Wed 13-Aug-03 13:55 by morlee
Firewall up 252 days 7 hours

Hardware: PI1X-525, 256 MB RAM, CPU Pentium 111 600 MHz
Flash E28F128J3 @ 0x300, 16MB
BI10S Flash AM29F400B @ Oxfffd8000, 32KB

Encryption hardware device : 1RE2141 with 2048KB, HW:1.0, CGXROM:1.9, FW:6.5
0: ethernetO: address is 0030.8587.446e, irqg 10

1: ethernetl: address is 0030.8587.446f, irq 11

2: gb-ethernetO: address is 0003.4725.1f97, irqg 5

3: gb-ethernetl: address is 0003.4725.1e32, irqg 11

Licensed Features:

Failover: Enabled
VPN-DES: Enabled
VPN-3DES-AES: Enabled
Maximum Physical Interfaces: 8

Maximum Interfaces: 12
Cut-through Proxy: Enabled
Guards: Enabled
URL-filtering: Enabled
Inside Hosts: Unlimited
Throughput: Unlimited
IKE peers: Unlimited

This PIX has an Unrestricted (UR) license.

Serial Number: 431030631 (0x19b10167)

Running Activation Key: 0xb0751733 0xd6201f9f 0x135el5a6 Oxef5elf26
Configuration last modified by enable 15 at 22:00:46.880 EST Thu Feb 24 2005
Firewal 1#

The shaded text lists all the firewall features. This sample firewall has a valid license to operate
as one of two firewalls in a failover pair. The firewall can use the DES, 3DES, and AES
encryption methods and has four physical interfaces, with the capability to add more if needed.

However, notice that the firewall has a limit of 8 physical interfaces and a maximum of 12
interfaces. How is it possible to have up to 12 interfaces? Cisco firewalls can also support logical
interfaces, in the form of virtual LANs (VLANS). A total of 12 interfaces, either physical or
logical, can be configured for use.

For comparison, Example 2-2 shows the show version output from an ASA 5510 running release
8.0 of the operating system. The output format is only slightly different.

Example 2-2. Sample Output from the ASA 8.0 show version Command

Code View: Scroll / Show All
Firewall# show version

Cisco Adaptive Security Appliance Software Version 8.0(0)235
Device Manager Version 6.0(0)97

Compiled on Wed 07-Mar-07 14:37 by builders
System image file is "disk0:/asa800-235-k8.bin"
Config file at boot was "'startup-config"

Firewall up 3 days 23 hours

Hardware: ASA5510, 256 MB RAM, CPU Pentium 4 Celeron 1600 MHz
Internal ATA Compact Flash, 64MB

BI0S Flash AT49LW080 @ Oxffe00000, 1024KB

Encryption hardware device : Cisco ASA-55x0 on-board accelerator (revision

0x0)
Boot microcode - CN1000-MC-BOOT-2.00
SSL/IKE microcode: CNLite-MC-SSLm-PLUS-2.01
IPSec microcode : CNlite-MC-IPSECm-MAIN-2.04

0: Ext: Ethernet0/0 : address is 0016.c789.c8a4, irq 9

1: Ext: EthernetO/1 : address is 0016.c789.c8a5, irq 9

2: Ext: Ethernet0/2 : address is 0016.c789.c8a6, irq 9

3: Ext: Ethernet0/3 : address is 0016.c789.c8a7, irqgq 9

4: Ext: Management0/0 : address is 0016.c789.c8a8, irq 11

5: Int: Internal-Data0/0 : address is 0000.0001.0002, irq 11

6: Int: Internal-Control0/0 : address is 0000.0001.0001, irqg 5

Licensed features for this platform:

Maximum Physical Interfaces : Unlimited
Maximum VLANs : 50

Inside Hosts : Unlimited
Failover : Disabled
VPN-DES : Enabled
VPN-3DES-AES : Enabled
Security Contexts : 0
GTP/GPRS : Disabled
VPN Peers - 250

WebVPN Peers 12

Advanced Endpoint Assessment : Disabled
This platform has a Base license.

Serial Number: JMX1014K070

Running Activation Key: 0x70092ed4e 0x507e4e04 Oxa8flfl6c 0x85c41864
0x4917ef91

Configuration register is 0x1

Configuration last modified by enable 15 at 00:06:07.574 EDT Thu Mar 22 2007
Firewal 1#

Notice that several of the licensed features are disabled, because this firewall has a Base license.

The show version output from a FWSM platform is similar, listing its licensed features. Example
2-3 shows the command output.

Example 2-3. Sample Output from the FWSM 3.2 show version Command

Code View: Scroll / Show All

Firewall# show version

FWSM Firewall Version 3.1(4) <system>
Compiled on Fri 08-Dec-06 16:55 by dalecki

Firewall up 16 days 14 hours
failover cluster up 40 days 20 hours

Hardware: WS-SVC-FWM-1, 1024 MB RAM, CPU Pentium 111 1000 MHz
Flash TOSHIBA THNCF128MBA @ O0xc321, 20MB
0: Int: Not licensed irg 5
1: Int: Not licensed irq 7
2: Int: Not licensed :irg 11

Licensed features for this platform:

Maximum Interfaces - 1000
Inside Hosts : Unlimited
Failover : Active/Active
VPN-DES : Enabled
VPN-3DES-AES : Enabled
Cut-through Proxy : Enabled
Guards : Enabled
URL Filtering : Enabled
Security Contexts : 20
GTP/GPRS : Disabled
VPN Peers > Unlimited

Serial Number: SAD0912013X

Running Activation Key: 0x2d5557af 0x85b15342 0x5cced864 0Oxa4e560f8
Configuration last modified by enable 1 at 04:38:10.700 EST Sun Feb 11 2007
Firewal 1#

Notice that the FWSM has a maximum of 1,000 interfaces. Because the FWSM has no physical
interfaces to connect, all of the 1,000 interfaces are logical VLAN interfaces.

The maximum supported memory, number of interfaces, and number of concurrent connections
vary across the family of Cisco firewalls. Table 2-2 shows how the models and their resources
break down.

Table 2-2. Firewall Models, Licenses, and Supported Resources

Security
Memory Physical Virtual VPN Concurrent Contexts
Model (MB) Interfaces Interfaces Peers Connections (Max)
FWSM 1024 - 1,000 - 1,000,000 250
ASA 1024 Four 200 5,000 400,000 50
5540 10/100/1000, one
10/100
ASA5520 512 Four 150 750 280,000 20
10/100/1000, one
10/100
ASA 256 Five 10/100 50l 250 50,0001 ot
5510
100 130,000 512
ASA 256 Eight 10/100, two 3 (non- 10 10,000 ot
5505 PoE trunking)™! 25,0004
252 o2
20
(trunking)2
PIX 535 10248 10 150 2,000 500,000 50
51204
PIX 525 25683 8 100 2,000 280,000 50
128%
PIX 515E 645! 6 25 2,000 130,000 5
321
PIX 506E 328! 2 2 25 25,000 -
0[41

PIX 501 16" 2 - 10 7,500 -

Table 2-2. Firewall Models, Licenses, and Supported Resources

Security
Memory Physical Virtual VPN Concurrent Contexts
Model (MB) Interfaces Interfaces Peers Connections (Max)

0[41

[Base license

2 Security Plus license

B3I PIX Unrestricted license
[pIX Restricted license

Some firewall platforms can support high availability by operating in failover pairs. One firewall
can run in an active mode, while the other can run in a standby mode or an active mode. The
failover pair capabilities of the FWSM, ASA, and P1X are as follows:

e The FWSM platform always allows an active/active or active/standby failover pair to be
configured.

o All models of ASA allow active/active or active/standby, except for the ASA 5510 and
ASA 5505. Failover is not supported with the Base license. With the Security Plus
license, the ASA 5510 can run in either active/active or active/standby, while the ASA
5505 can run in active/standby without keeping state information.

e PIX firewalls can operate in a failover pair with the Unrestricted (UR) license, but not
with the Restricted (R) license. The PIX can also have a Failover (FO) license, allowing
it to run in an active/standby pair, but not as a standalone firewall. The Failover-
Active/Active (FO-AA) license allows a PIX to run in an active/active pair, but not as a
standalone firewall.

Firewall features are unlocked by a license activation key. Beginning with ASA 7.0, the
activation key is a 20-byte string consisting of five groups of eight hexadecimal digits each. Prior
releases use a 16-byte string consisting of four groups of eight hexadecimal digits each.

Tip

The Catalyst 6500 FWSM comes standard with an Unrestricted license. Because of this, it does
not use an activation key.

If your ASA or PIX firewall does not have the 56-bit Data Encryption Standard (DES), 168-bit
Triple DES (3DES), or 256-bit Advanced Encryption Standard (AES) encryption methods
enabled, you can obtain a free license activation key from Cisco.com. You need an active

Cisco.com user ID to access the license request pages at http://www.cisco.com/go/license. Under
the Licenses Not Requiring a PAK section, click on the click here for available licenses link.

Find the Cisco ASA or PIX listing under Security Products and click on the license link. You
have to fill out an Encryption Software Export Distribution Authorization Form to get
permission to legally download and use strong encryption technology from Cisco.

You can also register your firewall license and request an activation key to upgrade any of the
other features. To do this, go to http://www.cisco.com/go/license and enter the Product
Authorization Key (PAK).

When you request any type of license upgrade on Cisco.com, you must also enter your firewall
serial number. You can find the serial number, programmed into the firewall hardware or the
Flash memory at the factory, by issuing the show version command. The serial number is used to
calculate a license activation key; therefore, the activation key works only with the firewall it
was intended to support.

Upgrading a License Activation Key

A firewall keeps its activation key stored in nonvolatile Flash memory, along with an image of
its operating system. The key and image are read, copied into RAM, and used when the firewall
boots up.

You also can download a new key and a new operating system image to a running firewall. The
new key and operating system image are immediately stored in Flash memory, because the
firewall is already running from its RAM resources.

You can see the current activation key (the one copied into RAM) by issuing the following
EXEC command:

Firewall# show activation-key

Example 2-4 shows a sample of the output from an ASA command. Notice that this firewall has
the same key in both Flash and running (RAM) memory. This only means that the key has not
been updated or changed since the firewall was booted up.

Example 2-4. Sample Output from the show activation-key Command

Code View: Scroll / Show All

Firewall# show activation-key

Serial Number: 807243559

Running Activation Key: 0xc422440Ff Ox2ebl445a 0x46fb4413 0x74a344ee
0x4b33d295

Licensed features for this platform:

Maximum Physical Interfaces : 10

Maximum VLANs : 100

Inside Hosts : Unlimited

Failover : Active/Active
VPN-DES : Enabled
VPN-3DES-AES : Enabled
Cut-through Proxy : Enabled
Guards : Enabled

URL Filtering : Enabled
Security Contexts : 5

GTP/GPRS : Enabled

VPN Peers > Unlimited

This platform has an Unrestricted (UR) license.

The flash activation key is the SAME as the running key.
Firewal 1#

Before you can enter a new activation key, the firewall must be running the exact same operating
system image as the one stored in Flash memory. This ensures that the features unlocked by the
activation key are applicable to the most recent image present on the firewall. If the images
differ, you see the following message from the show activation-key command:

Code View: Scroll / Show All
The flash image is DIFFERENT from the running image.
The two iImages must be the same in order to examine the flash activation key.

In this case, the firewall must be reloaded so that the image in Flash is the one being run.
You can enter a new license activation key in one of two ways:
e ROM monitor mode
After an image of the firewall operating system has been downloaded via TFTP
from monitor mode, the firewall asks if a new activation key is needed. The new
key is added before the image is run.
e Configuration mode
Firewall# activation-key activation-key-tuples
activation-key-tuples is a string of four groups (P1X 6.3 or FWSM) or five groups
(ASA) of eight hexadecimal digits each, provided by Cisco. Each tuple or group

of eight digits can begin with Ox to designate hexadecimal notation, but this is not
necessary.

For example, a new activation key is entered on an ASA platform as follows:

Code View: Scroll / Show All
Firewal lI#activation-key 0xcc055f66 0xd4c45b68 0x98505048 0x8a8c5890
0x4b35d295

License Features for this Platform:
Maximum Physical Interfaces : 10

Maximum VLANs : 100
Inside Hosts > Unlimited
Failover : Active/Active
VPN-DES : Enabled
VPN-3DES-AES : Enabled
Cut-through Proxy : Enabled
Guards : Enabled
URL Filtering : Enabled
Security Contexts -5
GTP/GPRS : Enabled
VPN Peers : Unlimited

This machine has an Unrestricted (UR) license.
Both running and flash activation keys were updated with the requested key
Firewal 1#

2-3. Initial Firewall Configuration

A Cisco firewall can be configured through the CLI on the console port. You can enter
configuration mode with the following privileged EXEC command:

Firewall# configure terminal

Commands can then be entered one at a time. To end configuration mode and return to EXEC
mode, you can press Ctrl-z or enter exit. Chapters 3 through 10 cover all the firewall features and
configuration commands.

Tip

Whenever you make configuration changes to a firewall, you should always make sure the
running configuration is saved to a nonvolatile location. Otherwise, if the firewall is rebooted or
if power is lost, your configuration changes also are lost.

You can save the running configuration to the firewall's nonvolatile Flash memory with the write
mem command. Chapter 4 in Section 4-3, "Managing Configuration Files," discusses this
procedure in more detail.

You can use a firewall management application such as ASDM, PDM, or Firewall Management
Center (Firewall MC, a part of the VMS software) to make configuration changes on a firewall.
If you intend to do this, you need to give the firewall a minimal "bootstrap” configuration so that
the management application can communicate with and manage it.

You can use the setup EXEC command to start the bootstrap procedure. The firewall then
prompts you for the necessary values. At a minimum, the firewall needs the following
parameters that are collected by the setup command:

e Enable password

e Current time (Coordinated Universal Time [UTC] or Greenwich Mean Time [GMT])

o Current date

o IP address of the firewall's inside interface (where it reaches the management application)
o Firewall's host name

o Firewall's domain name (used to generate an SSL certificate for web management access)
e Management station's IP address

Chapter 3. Building Connectivity
Refer to the following sections for information about these topics:

e 3-1: Configuring Interfaces— Discusses how you can configure firewall interfaces to join
and communicate on a network. Physical, trunk, and logical interfaces are covered, as
well as priority queue operation.

o 3-2: Configuring Routing— Explains the configuration steps needed to define static
routes on a firewall, as well as the RIP, OSPF, and EIGRP dynamic routing protocols.

e 3-3: DHCP Server Functions— Provides information about how a firewall can operate as
a DHCP server and a DHCP client. These functions support dynamic addressing for the
firewall and for internal hosts, without the use of a dedicated DHCP server.

e 3-4: Multicast Support— Presents the configuration steps needed to allow a firewall to
forward multicast traffic in a secure manner and to participate in multicast routing.

A firewall must be configured with enough information to begin accepting and forwarding traffic
before it can begin doing its job of securing networks. Each of its interfaces must be configured
to interoperate with other network equipment and to participate in the Internet Protocol (IP)
suite.

A firewall must also know how to reach other subnets and networks located outside its
immediate surroundings. You can configure a firewall to use static routing information or
information exchanged dynamically with other routers. You can even configure a firewall to
handle IP multicast traffic, either as a proxy or as a multicast router.

You can also configure a firewall to provide various Dynamic Host Control Protocol (DHCP)
services so that hosts connected to its interfaces can get their IP addresses dynamically.

This chapter discusses each of these topics in detail.
3-1. Configuring Interfaces

Every firewall has one or more interfaces that can be used to connect to a network. To pass and
inspect traffic, each firewall interface must be configured with the following attributes:

e Name.

e [P address and subnet mask (IPv4; beginning with Adaptive Security Appliance (ASA)
7.0 and Firewall Services Module (FWSM) 3.1(1), IPv6 is also supported).

o Security level (a higher level is considered more secure).

By default, traffic is allowed to flow from a higher-security interface to a lower-security
interface ("inside" to "outside,” for example) as soon as access list, stateful inspection, and
address translation requirements are met. Traffic from a lower-security interface to a higher one
must pass additional inspection and filtering checks.

Firewall interfaces can be physical, where actual network media cables connect, or logical,
where the interface exists internally to the firewall and is passed to a physical trunk link. Each
Cisco firewall platform supports a maximum number of physical and logical interfaces. Starting
with PI1X OS release 6.3, trunk links are also supported. The trunk itself is a physical interface,
and the Virtual LANs (VLAN) carried over the trunk are logical VLAN interfaces. A trunk link
has the following attributes:

« Firewall trunk links support only the IEEE 802.1Q trunk encapsulation method.

e As each packet is sent to a trunk link, it is tagged with its source VLAN number. As
packets are removed from the trunk, the tag is examined and removed so that the packets
can be forwarded to their appropriate VLANS.

o 802.1Q trunks support a native VLAN associated with the trunk link. Packets from the
native VLAN are sent across the trunk untagged.

o Afirewall does not negotiate trunk status or encapsulation with Dynamic Trunking
Protocol (DTP); the trunk is either "on" or "off."

Figure 3-1 shows how a trunk link between a firewall and a switch can encapsulate or carry
frames from multiple VLANS. Notice that frames from the native VLAN are sent without a tag,
and frames from other VLANS have a tag added while in the trunk.

Figure 3-1. How an IEEE 802.1Q Trunk Works on a Firewall

[View full size image]

Firenwall Switch

> Truni Link \,t’
‘B

Frame from Mative VILAN |:|— —————— :l— ------ = |:| To Native VLAN
Frame from Other VLAN [F------»=[] F------ » [|TovLan

{+4 bytes)

I
Dest addr —+ | |]| |+ FCs
Data Payload

Sre Addr
TypedLength

Surveying Firewall Interfaces

You can see a list of the physical firewall interfaces that are available by using the following
command:

Firewal l# show version

Firewall interfaces are referenced by their hardware index and their physical interface names. For
example, the show version command on a PIX 525 running PIX release 6.3 produces the
following output:

Firewall# show version

0: ethernetO: address is 0030.8587.546e, irq 10

1: ethernetl: address is 0030.8587.546f, irq 11

2: gb-ethernetO: address is 0003.4725.2f97, irq 5
3: gb-ethernetl: address is 0003.4725.2e32, irqgq 11

The first number is the hardware index, which indicates the order in which the interfaces were
placed in the firewall backplane. Each physical interface has a hardware 1D name that indicates
its medium; ethernetO is a 10/100BASE-TX port, and gb-ethernet0 is a Gigabit Ethernet port.

With ASA 7.0 and later, the output is slightly different:

Firewal l# show version

0: Ext: EthernetO : media index O0: irq 10
1: Ext: Ethernetl : media index 1: irq 11
2: Ext: GigabitEthernetO : media index O0: irq 5
3: Ext: GigabitEthernetl : media index 1: irq 11
Tip

On an FWSM, all interfaces are logical and have names beginning with vlan followed by the
VLAN number. With a default configuration, the only VLAN interfaces available are the ones
that have been configured from the Catalyst switch Supervisor module. These are created with
the following Catalyst 10S configuration commands:

Switch(config)# firewall vlan-group group vlan-list
Switch(config)# firewall module mod vlan-group group

In the first command, an arbitrary VLAN group number, group, is defined to contain a list of one
or more VLANS that will be internally connected to the FWSM. The second command associates
the FWSM located in switch chassis slot mod with the VLAN group vlan-group. For example,
the following commands can be used to provide VLANSs 10, 20, and 30 to the FWSM located in
slot 4:

Switch(config)# firewall vlan-group 1 10,20,30
Switch(config)# firewall module 4 vlan-group 1

Logical interfaces have a hardware ID in the form vlanl, vlan55, and so on. These interfaces are
not available until you define them with configuration commands, so they are not shown in the
show version output.

At this point, you should identify each of the interfaces you will use. At a minimum, you need
one interface as the "inside" of the firewall and one as the "outside.” By default, the firewall
chooses two interfaces for the inside and outside. You can view the interface mappings with the
show nameif EXEC command. You also can change the interface-name mappings as needed.

Tip

The show interface command lists each interface along with its state, MAC and IP addresses, and
many counters. You can use the output to verify an interface's activity and current settings.

The interface state is shown by two values: The configured administrative state (up or
administratively down) and the line protocol state (up or down). The line protocol state indicates
whether the interface is connected to a live network device.

Configuring Interface Redundancy

By default, each physical firewall interface operates independently of any other interface. The
interface can be in one of two operating states: up or down. When an interface is down for some
reason, the firewall cannot send or receive any data through it. The switch port where a firewall
interface connects might fail, causing the interface to go down, too.

Naturally, you might want to find a way to keep a firewall interface up and active all the time.
Beginning with ASA 7.3(1), you can configure physical firewall interfaces as redundant pairs.

As a redundant pair, two interfaces are set aside for the same firewall function (inside, outside,
and so on) and connect to the same network. Only one of the interfaces is active; the other
interface stays in a standby state. As soon as the active interface loses its link status and goes
down, the standby interface becomes active and takes over passing traffic.

Both physical interfaces in a redundant pair are configured as members of a single logical
"redundant” interface. In order to join two interfaces as a redundant pair, the interfaces must be
of the same type (10, 100, 1000BASE-TX GigabitEthernet, for example).

The redundant interface is configured with a unique interface name, security level, and IP
address—the parameters used in firewall operations.

You can use the following configuration steps to define a redundant interface:

1. Define the logical redundant interface:

Firewall(config)# interface redundant number

You can define up to eight redundant interfaces on an ASA. Therefore, the interface number

can be 1 through 8.

2. Add physical interfaces as members:

Firewall(config-int)# member-interface physical_interface

The physical interface named physical_interface (gigabitethernet0/1, for example) becomes
a member of the logical redundant interface. Be aware that the member interface cannot have
a security level or IP address configured. In fact, as soon as you enter the member-interface
command, the firewall automatically clears those parameters from the interface
configuration.

You can repeat this command to add a second physical interface to the redundant pair. Keep
in mind that the order in which you configure the interfaces is important.

The first physical interface added to a logical redundant interface becomes the active
interface. That interface stays active until it loses its link status, causing the second or
standby interface to take over. The standby interface can also take over when the active
interface is administratively shut down with the shutdown interface configuration command.

However, the active status does not revert back to the failed interface, even when it comes
back up. The two interfaces trade the active role back and forth only when one of them fails.

The redundant interface also takes on the MAC address of the first member interface that
you configure. Regardless of which physical interface is active, that same MAC address is
used.

As an example, interfaces ethernet0/1 and ethernet0/2 are configured to be used as logical
interface redundant 1:

Firewall(config)# interface redundant 1

Firewall(config-if)# member-interface ethernet0/1

INFO: security-level and IP address are cleared on EthernetO/1.
Firewall(config-if)# member-interface ethernet0/2

INFO: security-level and IP address are cleared on Ethernet0/2.
Firewall(config-if)# no shutdown

The redundant interface is now ready to be configured as a normal firewall. From this point
on, you should not configure anything on the two physical interfaces other than the port
speed and duplex.

Tip
Make sure the logical redundant interface and the two physical interfaces are enabled with the no

shutdown command. Even though they are all logically associated, they can be manually shut
down or brought up independently.

You can monitor the redundant interface status with the following command:

Firewall# show interface redundant number [ip [brief] | stats | detail]

The ip brief keywords provide a short summary of the redundant interface, its IP address, and its
status. All of the other keyword combinations give identical output—a verbose listing of
interface parameters and counters, as well as a brief redundancy status. The following example
shows the status of interface redundant 1:

Code View: Scroll / Show All
Firewall# show interface redundant 1
Interface Redundantl "inside', is up, line protocol is up
Hardware is 182546GB rev03, BW 100 Mbps, DLY 1000 usec
Auto-Duplex(Full-duplex), Auto-Speed(100 Mbps)
MAC address 0016.c789.c8a5, MTU 1500
IP address 192.168.100.1, subnet mask 255.255.255.0
1 packets input, 64 bytes, 0 no buffer
Received 1 broadcasts, 0 runts, 0 giants
O input errors, 0 CRC, O frame, 0 overrun, 0 ignored, O abort
0 L2 decode drops
1 packets output, 64 bytes, 0 underruns
0 output errors, 0 collisions, O interface resets
0 babbles, 0 late collisions, 0 deferred
0 lost carrier, 0 no carrier
input queue (curr/max blocks): hardware (5/0) software (0/0)
output queue (curr/max blocks): hardware (0/8) software (0/0)
Traffic Statistics for "inside':
0 packets input, O bytes
1 packets output, 28 bytes
0 packets dropped
minute input rate O pkts/sec, O bytes/sec
minute output rate 0 pkts/sec, 0 bytes/sec
minute drop rate, O pkts/sec
minute input rate 0 pkts/sec, 0 bytes/sec
minute output rate 0 pkts/sec, 0 bytes/sec
minute drop rate, O pkts/sec
Redundancy Information:
Member Ethernet0/1(Active), Ethernet0/2
Last switchover at 10:32:27 EDT Mar 14 2007
Firewal 1#

agoaogrreE

Notice that physical interface Ethernet0/1 is currently the active interface, while Ethernet0/2 is
not. The output also reveals the date and time of the last switchover.

When the active interface goes down, the standby interface takes over immediately. That whole
process is subsecond and happens rather silently. The only record of the redundant switchover
can be found in the syslog output, as in the following example:

Code View: Scroll / Show All

Mar 14 2007 10:41:54: %ASA-4-411002: Line protocol on Interface Ethernet0/1,
changed state

to down

Mar 14 2007 10:41:54: %ASA-5-425005: Interface Ethernet0/2 become active in
redundant

interface Redundantl

You can also use the debug redundant {event | error} command to see redundant failover
information in real time.

Basic Interface Configuration

You should follow the configuration steps in this section for each firewall interface that you
intend to use. By default, interfaces are in the shutdown state and have no IP address assigned.

1. Define the interface as physical (Step a) or logical (Step b):

a. Define a physical interface:

FWSM —

PIX 6.3/Firewall(config)# interface hardware-id
[hardware-speed]
[shutdown]

ASA |[Firewall(config)# interface hardware-id
Firewall(config-if)# speed {auto | 10 | 100 | nonegotiate}
Firewall(config-if)# duplex {auto | full | half}
Firewall(config-if)# [no] shutdown

The interface is referenced by its hardware-id. For example, this could be gb-
ethernetl in P1X 6.3 or GigabitEthernetl on an ASA.

In PIX 6.3, the interface medium's speed and duplex mode are given by one of the
following hardware-speed values:

1000full Gigabit Ethernet autonegotiation, advertising full duplex
1000full nonegotiate Gigabit Ethernet full duplex with no autonegotiation
1000auto Gigabit Ethernet autonegotiation

100full 100-Mbps full duplex

auto Intel 10/100 autonegotiation
100basetx 100-Mbps half duplex

10full 10-Mbps full duplex

10baset 10-Mbps half duplex

bnc 10-Mbps half duplex with BNC
aui 10-Mbps half duplex with AUI

Beginning with ASA 7.0, the interface speed and duplex are configured with separate
interface configuration commands. By default, an interface uses autodetected speed
and autonegotiated duplex mode.

Tip

By default, interfaces are administratively shut down. To enable an interface in PIX
6.3, use the interface configuration command without the shutdown keyword. For
P1X 7.3, use the no shutdown interface configuration command.

To disable or administratively shut down an interface, add the shutdown keyword.

b. (Optional) Define a logical VLAN interface:

FWSM Firewall(config)# interface vlan vlan_id

PIX Firewall(config)# interface hardware_id vlan_id
6.3 logical

ASA Code View: Scroll / Show All
Firewall(config)# interface
hardware_id[.subinterface]Firewall(config-subif)# vlan
vlan_id

Logical VLAN interfaces must be carried over a physical trunk interface, identified
as hardware_id (gb-ethernetO or GigabitEthernet0, for example). In PIX 6.3, the
VLAN interface itself is identified by vlan_id, a name of the form vlanN (where N is
the VLAN number, 1 to 4095). The logical keyword makes the VLAN interface a
logical one.

On an ASA, a subinterface number is added to the physical interface name to create
the logical interface. This is an arbitrary number that must be unique for each logical
interface. The VLAN number is specified as vlan_id in a separate vlan subinterface
configuration command.

Packets being sent out a logical VLAN interface are tagged with the VLAN number
as they enter the physical trunk link. The VLAN number tag is stripped off at the far
end of the trunk, and the packets are placed on the corresponding VLAN. The same

process occurs when packets are sent toward the firewall on a VLAN.

The trunk encapsulation used is always IEEE 802.1Q, and the tagging encapsulation
and unencapsulation are automatically handled at each end of the trunk. Make sure
the far-end switch is configured to trunk unconditionally. For example, the following
Catalyst 10S switch configuration commands could be used:

Switch(config)# interface gigabitethernet 0/1
Switch(config-if)# switchport

Switch(config-if)# switchport trunk encapsulation dotlq
Switch(config-if)# switchport mode trunk

By default, any packets that are sent out the firewall's physical interface itself are not
tagged, and they appear to use the trunk's native VLAN. These packets are placed on
the native VLAN number of the far-end switch port.

If you intend to use logical VLAN interfaces on a physical firewall interface that is
trunking, you should never allow the trunk's native VLAN to be used. You can do
this by configuring a VLAN number on the physical interface, too. After this is done,
the firewall cannot send packets across the trunk untagged.

By default, Cisco switches use VLAN 1 as the native (untagged) VLAN on all trunk
links. Be aware that the native VLAN can be set to any arbitrary VLAN number on a
switch. Find out what native VLAN is being used, and choose a different VLAN
number on the firewall's physical interface.

Also make sure that the switch is using something other than the native VLAN to
send packets to and from the firewall. The idea is to use only VLANS that are defined
specifically to pass data to and from the firewall while eliminating the possibility that
an unexpected VLAN appears on the trunk. For example, you could use the
following commands on a Catalyst switch to set a trunk's native VLAN to VLAN 7
and to allow only VLANSs 100 through 105 to pass over the trunk to the firewall:

Switchlconfig)# interface gigabitethernet 1/1
Switch(config-if)# switchport

Switch(config-if)# switchport trunk native vlan 7
Switch(config-if)# switchport trunk allowed vlan 100-105
Switch(config-if)# switchport mode trunk

You can use the following configuration command to force the firewall to tag packets
on the physical firewall trunk interface, too:

FWSM —
PI1X 6.3 Firewall(config)# interface hardware_id vlan_id

2.

physical
ASA —

Again, the VLAN is identified by vlan_id, a name of the form vlanN (where N is the
VLAN number, 1 to 4095). The physical keyword makes the logical VLAN interface
overlay with the physical interface so that any packets passing over the interface
receive a VLAN ID tag.

After a VLAN has been assigned to the physical interface, the firewall drops any
untagged packets that are received over the trunk interface's native VLAN.

This step is unnecessary beginning with an ASA, because the physical interface is
configured with the no nameif command by default, which forces all traffic to pass
through one or more subinterfaces that are configured with a VLAN number,
requiring a VLAN tag.

Tip

After a VLAN number has been assigned to a logical interface, it is possible to
change the VLAN number. You can use this P1X 6.3 configuration command to
change from the old VLAN name to a new one:

Firewall(config)# interface hardware_id change-vlan old-vlan-id
new-vlan-id

(Optional) Name the interface:

FWSM [Firewall(config)# nameif vlan-id if_name securitylevel

PIX
6.3

ASA

Firewall(config)# nameif {hardware-id | vlan-id} if_name
securitylevel

Firewall(config)# interface hardware_id[.subinterface]
Firewall(config-if)# nameif if_name
Firewall(config-if)# security-level level

Here, the physical interface is identified by its hardware-id (gbh-ethernet0, for example) or
vlan-id (vlan5, for example; the word vlan is always present). If multiple-security context
mode is being used, the vlan-id or hardware-id could be an arbitrary name that has been
mapped to the context by the allocate-interface command in the system execution space.

The interface is given the arbitrary name if_name (1 to 48 characters) that other firewall
commands can use to refer to it. By default, the "inside™ and "outside” names are predefined
to two interfaces. You can change those assignments, and you can use entirely different

names if you want.

A security level is also assigned to the interface as securitylevel (where level is a number 0
to 100, from lowest to highest). PIX 7.3 is the exception, where the security level is given
with the keyword security-level, followed by the level number (0 to 100). Security levels 0
and 100 are reserved for the "outside" and "inside" interfaces, respectively. Other perimeter
interfaces should have levels between 1 and 99.

For example, the outside interface could be configured as follows:

FWSM Firewall(config)# nameif vlanlO outside securityO
P1X 6.3 Firewall(config)#nameif gb-ethernetO outside security0

ASA [Firewall(config)# interface gigabitethernetO
Firewall(config-if)# nameif outside
Firewall(config-if)# security-level 0O

Note

Security levels are used only to determine how the firewall inspects and handles traffic. For
example, traffic passing from a higher-security interface toward a lower one is assumed to be
going toward a less-secure area. Therefore, it is forwarded with less-stringent policies than
traffic coming in toward a higher-security area.

In addition, firewall interfaces must have different security levels. The only exceptions are
with ASA and FWSM 2.2+, which allow interfaces to have the same security level only if
the same-security-traffic permit inter-interface global configuration command has been used.
In that case, traffic is forwarded according to policies set by access lists, with no regard to
higher or lower security levels.

Assign an IP address.

You can assign a static IP address if one is known and available for the firewall. Otherwise,
you can configure the firewall to request an address from either a DHCP server or through
PPPOE. (Your ISP should provide details about obtaining an address.) Choose one of the
following steps:

a. (Optional) Assign a static address:

Firewall(config)# ip address if _name ip_address [netmask]

If you have a static IP address that the firewall can use, you can assign it here. The
interface named if_name (inside or outside, for example) uses the IP address and
subnet mask given.

If you omit the netmask parameter, the firewall assumes that a classful network
(Class A, B, or C) is being used.

For example, if the first octet of the IP address is 1 through 126 (1.0.0.0 through
126.255.255.255), a Class A netmask (255.0.0.0) is assumed.

If the first octet is 128 through 191 (128.0.0.0 through 191.255.255.255), a Class B
netmask (255.255.0.0) is assumed.

If the first octet is 192 through 223 (192.0.0.0 through 223.255.255.255), a Class C
netmask (255.255.255.0) is assumed.

If you use subnetting in your network, be sure to specify the correct netmask rather
than the classful mask (255.0.0.0, 255.255.0.0, or 255.255.255.0) that the firewall
derives from the IP address.

b. (Optional) Obtain an address via DHCP:

Firewall(config)# ip address outside dhcp [setroute] [retry
retry_cnt]

Generally, the outside interface points toward an ISP. Therefore, the firewall can
generate DHCP requests from that interface. If no reply is received, the firewall
retries the request up to retry_cnt times (4 to 16; the default is 4).

You can also set the firewall's default route from the default gateway parameter
returned in the DHCP reply. To do this, use the setroute keyword; otherwise, you
have to explicitly configure a default route.

Tip

You can release and renew the DHCP lease for the outside interface by entering this
configuration command again.

c. (Optional) Obtain an address through PPPoE.

A PIX or an ASA (beginning with release 8.0) platform can use a PPPoE client to
make a broadband connection to an ISP. Point-to-Point Protocol over Ethernet
(PPPOE) is a practical way of using the firewall's physical Ethernet interface to
communicate with an ISP over traditional PPP infrastructure. PPPOE is supported
only when the firewall is configured for single context, routed mode, without
failover.

Like PPP, PPPoE requires the remote access client (the ASA, in this case) to
authenticate and obtain network parameters before it can begin communicating over
the link. To do this, the firewall uses a Virtual Private Dialup Network (VPDN)

group. The group specifies the authentication method and the username and
password credentials assigned by the ISP. You can use the following steps to
configure the PPPOE client:

- Define a username for PPPoE authentication:

FWSM —

PI1X 6.3 Firewall(config)# vpdn username username password passwd
[store-local]

ASA |[Firewall(config)# vpdn username username password
passwd
[store-local]

The firewall authenticates itself with an ISP using a username username (a text
string) and password passwd (an unencrypted text string). You can repeat this
command to define multiple usernames and passwords if several ISPs are possible.

By default, the username and password are entered into the firewall configuration as
a part of this command. If you use a management tool such as Cisco Security
Manager (CSM) or CiscoWorks Firewall Management Center to deploy the firewall,
a template configuration might overwrite a valid username and password. You can
choose to store the username and password locally in the firewall's Flash memory by
adding the store-local keyword.

- (Optional) Define a VPDN group to contain PPPoE parameters:

FWSM —
PI1X 6.3 Firewall(config)# vpdn group group_name localname username

ASA |[Firewall(config)# vpdn group group_name localname
username

The firewall can associate PPPoE parameters into groups such that one group is used
to negotiate with one ISP. Here, the group_name is an arbitrary name (up to 63
characters) that points to a locally defined username username and password pair.
This pair should already be configured with the vpdn username username command.

- Set the PPPoE authentication method:

FWSM —
PIX Firewall(config)# vpdn group group_name ppp authentication
6.3 {pap

| chap | mschap}

ASA |[Firewall(config)# vpdn group group_name ppp authentication
{pap

| chap | mschap}

For the VPDN group, you should use the same authentication method that your ISP
uses: pap (Password Authentication Protocol, with cleartext exchange of credentials),
chap (Challenge Handshake Authentication Protocol, with encrypted exchange), or
mschap (Microsoft CHAP, version 1 only).

- Enable PPPOE requests using a VPDN group:

FWSM —
PIX 6.3/Firewall(config)# vpdn group group_name request dialout pppoe

ASA [Firewall(config)# vpdn group group_name request dialout pppoe

The firewall builds PPPoE requests using the parameters defined in VPDN group
group_name.

- Request IP address information on the outside interface:

FWSM —
PIX 6.3/Firewall(config)# ip address outside pppoe [setroute]

ASA [Firewall(config)# interface if_name
Firewall(config-if)# ip address pppoe [setroute]

The firewall sends PPPOE requests on its outside interface to authenticate and obtain
an IP address and subnet mask from the ISP. If the default gateway that is returned
should be used as the firewall's default route, add the setroute keyword. Otherwise, a
default route must be configured manually on the firewall.

You can renegotiate the address parameters with the ISP by entering this
configuration command again.

Tip

If you already have a static IP address assigned by the ISP, you can use an alternative
command:

Firewall(config)# ip address outside ip-address netmask pppoe
[setroute]

Here, the IP address and netmask are already known. The firewall still authenticates
with the ISP through PPPOE, but it uses these values rather than negotiating them.

As an example of PPPoE interface configuration, the following commands can be
used to define a VPDN group for one ISP that can be used by the firewall:

Firewall(config)# vpdn username JohnDoe password JDsecret
Firewall(config)# vpdn group ISP1 localname JohnDoe
Firewall(config)# vpdn group ISP1 ppp authentication chap
Firewall(config)# vpdn group ISP1 request dialout pppoe
Firewall(config)# ip address outside pppoe setroute

4. Test the interface:

a. Verify the IP address:

Firewall# show ip

or

Firewall# show ip if_name {dhcp | pppoe}

b. Ping the next-hop gateway address:

Firewall# ping [if_name] ip_address

You can send ICMP echo requests to the next-hop gateway or a host located on the
same subnet as the firewall interface. You can specify which firewall interface name
to use with if_name, but this is not required. The target is at ip_address.

If ICMP replies are received, they are reported along with the round-trip time, as in
this example:

Firewall# ping 192.168.199.4
192.168.199.4 response received -- Oms
192.168.199.4 response received -- 30ms
192.168.199.4 response received -- Oms
Firewal 1#

c. Verify PPPOE operation:

As soon as the PPPoE client is configured and the interface is connected and is
operational, the firewall automatically attempts to bring up the PPPoE connection.
You can see the status with the following command:

Firewall# show vpdn session

For example, if the PPPOE client has negotiated its connection, you might see the
following output:

Firewall# show vpdn session

PPPoE Session Information (Total tunnels=1 sessions=1)
Remote Internet Address is 192.168.11.1

Session state is SESSION_UP

Time since event change 10002 secs, interface outside

PPP interface i1d is 1

36 packets sent, 36 received, 1412 bytes sent, O received

Firewal 1#

If the PPPOE connection does not come up normally, you can use the debug pppoe
event command to see PPPOE negotiation events as they occur.

Interface Configuration Examples
A firewall has three interfaces:
« inside (gb-ethernet0)

e outside (gb-ethernetl)
e dmz (gb-ethernet2)

These interfaces have IP addresses 172.16.1.1, 172.17.1.1, and 172.18.1.1, respectively. The
configuration commands needed are as follows, for both P1X 6.3 and ASA releases:

PIX 6.3

Firewall(config)# interface gb-
ethernetO
1000auto
Firewall(config)# interface gb-
ethernetl
1000auto
Firewall(config)# interface gb-
ethernet2
1000auto
Firewall(config)# nameif gb-ethernetO
inside security 100
Firewall(config)# nameif gb-ethernetl
outside security 0
Firewall(config)# nameif gb-ethernet2
dmz
security 50
Firewall(config)# ip address inside
172.16.1.1 255.255.0.0
Firewall(config)# ip address outside
172.17.1.1 255.255.0.0
Firewall(config)# ip address dmz
172.18.1.1 255.255.0.0

ASA

Code View: Scroll / Show All
Firewall(config)# interface
gigabitethernetO
Firewall(config-if)# speed auto
Firewall(config-if)# duplex auto
Firewall(config-if)# nameif inside
Firewall(config-if)# security-level
100
Firewall(config-if)# ip address
172.16.1.1
255.255.0.0
Firewall(config)# interface
gigabitethernetl
Firewall(config-if)# speed auto
Firewall(config-if)# duplex auto
Firewall(config-if)# nameif outside
Firewall(config-if)# security-level 0
Firewall(config-if)# ip address
172.17.1.1
255.255.0.0
Firewall(config)# interface
gigabitethernet2
Firewall (config-if)# speed auto
Firewall(config-if)# duplex auto
Firewall(config-if)# nameif dmz
Firewall(config-if)# security-level
50
Firewall(config-if)# ip address
172.18.1.1
255.255.0.0

PIX 6.3

ASA

Now consider the same scenario with an FWSM in slot 3 of a Catalyst 6500 switch. The inside,
outside, and dmz interfaces are all logical, as VLANSs 100, 200, and 300, respectively:

Switch(config)# firewall vlan-group 1 100,200,300
Switch(config)# firewall module 3 vlan-group 1
Switch(config)# exit

Switch# session slot 3 processor 1

Firewall# configure terminal
nameif vlanl00 inside securityl00

nameif vlan200 outside securityO

nameif vlan300 dmz security50

ip address inside 172.16.1.1 255.255.0.0
ip address outside 172.17.1.1 255.255.0.0
ip address dmz 172.18.1.1 255.255.0.0

Firewall(config)#
Firewall(config)#
Firewall(config)#
Firewall(config)#
Firewall(config)#
Firewall(config)#

As a final example, consider an ASA or PIX Firewall in a similar scenario. Here, a single
physical interface (gb-ethernetO) is configured as a trunk. The inside, outside, and dmz interfaces
are all logical, as VLANSs 100, 200, and 300, respectively. The configuration commands needed

are shown as follows for both the PIX 6.3 and ASA releases:

PIX 6.3

Firewall(config)#

1000auto
Firewall(config)#
100

physical
Firewall(config)#
200

logical
Firewall(config)#
300

logical
Firewall(config)#

securityl00
Firewall(config)#

security0
Firewall(config)#

security50
Firewall(config)#

interface

interface

interface

interface

nameif vlanl00 inside

nameif vlan200 outside

nameif vlan300 dmz

ip address inside

172.16.1.1 255.255.0.0

Firewall(config)#

ip address outside

172.17.1.1 255.255.0.0

Firewall(config)#
172.18.1.1
255.255.0.0

ip address dmz

gb-ethernetO

gb-ethernetO

gb-ethernetO

gb-ethernetO

ASA

Code View: Scroll / Show All
Firewall(config)# interface

gigabitethernetO
Firewall(config-if)#
Firewall(config-if)#
Firewall(config-if)#
Firewall(config-if)#

gigabitethernet0.1
Firewall(config-if)#
Firewall(config-if)#
Firewall(config-if)#
100
Firewall(config-if)#

172.16.1.1 255.255.

Firewall(config-if)#
gigabitethernet0.2
Firewall(config-if)#
Firewall(config-if)#
Firewall(config-if)#
0
Firewall(config-if)#
172.17.1.1 255.255

speed auto
duplex auto
no nameif
interface

vlan 100
nameif inside
security-level

ip address
0.0
interface

vlan 200
nameif outside
security-level

ip address
.0.0

Firewall(config)# interface

gigabitethernet0.3

PIX 6.3 ASA

Firewall(config-if)# vlan 300

Firewall(config-if)# nameif dmz

Firewall(config-if)# security-level

50

Firewall(config-if)# ip address
172.18.1.1 255.255.0.0

In the PIX 6.3 configuration, notice that VLAN 100 has been configured on the "physical”
portion of the gb-ethernetO interface. This ensures that VLAN 100 is tagged on the trunk, along
with VLANSs 200 and 300. In fact, nothing is sent or received untagged on the firewall's trunk.

To configure similar behavior on an ASA, the no nameif command is added to the physical
interface (gigabitethernetO) configuration. In effect, this prevents the physical interface from
becoming active, other than carrying VLAN traffic as a trunk link.

Configuring IPv6 on an Interface

Beginning with ASA 7.0, firewall interfaces can be configured with an IPv6 address in addition
to a traditional 1Pv4 address. IPv6 addresses are 128 bits long—much longer than a 32-bit IPv4
address! As well, the IPv6 address format is very different and can be written in the following
ways:

o In full hexadecimal format, the address is written as eight groups of four hexadecimal
digits, with colons separating the groups. For example,
1111:2222:3333:4444:5555:6666:7777:8888 represents a single IPv6 host.

e Leading Os can be omitted in any group. For example,
1111:0200:0030:0004:5555:6666:7777:8888 can also be written as
1111:200:30:4:5555:6666:7777:8888.

o Because IPv6 addresses are so long and the address space is so large, addresses with
many embedded Os are common. Therefore, you can abbreviate any number of
contiguous 0s as a double colon (::), even if the Os cross a digit group boundary. For
example, 1111:0:0:0:0:0:0:8888 could also be written as 1111::8888. This abbreviation
can be used only once in an address, however.

o |Pv6 addresses can also be shown with a network prefix. This specifies how many most-
significant bits are used to represent a network address. This is very similar to IPv4
addresses, where the address and prefix values are separated by a slash (/). For IPv6, this
format is also ipv6_address/prefix_length, where the prefix length is a value from 1 to
128 bits.

Each firewall interface can potentially have three different IPv6 addresses configured:

Link-local address— An address that is unique on a network connection to other devices.
This is used only for IPv6 neighbor discovery, address autoconfiguration, and
administrative uses. A firewall cannot forward packets that have link-local addresses as
the destination. The address format consists of the following components:

- FE8O0 in the 10 most-significant bits

- 54 bits of 0s

- 64 bits of host addressing in the modified EUI-64 format

Site-local address— A unique address within the site network that cannot be routed
outside the site. The address consists of the following components:

- FECO in the 10 most-significant bits
- 38 bits of 0s

- 16 bits of subnet ID addressing

- 64 bits of host addressing

Global address— A globally unique address that can be routed outside the local link and
local network. The address consists of the following components:

- 001 in the 3 most-significant bit positions
- 45 bits of provider addressing (unique to each service provider)
- 16 bits of site or subnet addressing (unique only within the local site network)

- 64 bits of host addressing (48 bits usually come from the MAC address)

After you configure IPv6 addresses and routing information, the firewall can begin to statefully
inspect traffic using IPv6. The following inspection engines are equipped to inspect either IP
version:

ICMP

UDP

TCP

FTP

SMTP

HTTP

SIP (beginning with ASA 8.0)

You can follow these steps to configure IPv6 on your firewall:

1. Select a firewall interface:

Firewall(config)# interface hardware-id

The interface is identified by its hardware-id, which is the full interface type and number or
an abbreviated version. For example, GigabitEthernet 0, GigabitEthernet0, and gigO0 all refer
to the same interface.

2. Assign an IPv6 address to an interface.

a. (Optional) Use autoconfiguration to derive interface addresses.

A firewall can use stateless autoconfiguration to derive link-local and global
addresses for an interface. Use the following commands to enable autoconfiguration:

Firewall(config-if)# ipv6 address autoconfig
Firewall(config-if)# ipv6 enable

The firewall first creates a link-local address for the interface. This can be done
without any knowledge of surrounding networks or neighboring devices. The link-
local address is formed as follows, building digits from least- to most-significant
(right to left):

- The three least-significant octets are the three least-significant octets of the MAC
address.

- The three most-significant octets of the MAC address become the three next-most-
significant octets of the link-local address.

In addition, the next-to-least-significant bit of the most-significant MAC address byte
is set to 1. For example, 0003.47 would become 0203.47.

The most-significant address digits always begin with FE80.

For example, consider the following firewall interface. You can use the show
interface command to display the interface’s MAC address, which is 0003.4708.ec54.
When the autoconfiguration is complete, the IPv6 link-local address can be seen with
the show ipv6 interface command. Here, the link-local address has become
fe80::203:47ff:fe08:ec54:

Firewall# show interface gigabitethernet 1.2

Interface GigabitEthernetl.2 "inside™, is up, line protocol is up
VLAN identifier 2
MAC address 0003.4708.ec54, MTU 1500
IP address 192.168.198.1, subnet mask 255.255.255.0
Received 1482892 packets, 81328736 bytes
Transmitted 311834 packets, 24639862 bytes
Dropped 1060893 packets

Firewal 1#

Firewall# show ipv6 iInterface inside
inside i1s up, line protocol i1s up
IPv6 is enabled, link-local address is fe80::203:47ff:fe08:ec54
No global unicast address is configured
Joined group address(es):
ff02::1
f02::2
ff02::1:ffF08:ech54
[output omitted]

The global interface address has a similar form, but it begins with the prefix learned
from a neighboring router. A modified EUI-64 address is used, which includes the
ff:fe and MAC address portions.

After a prefix has been learned from router advertisements, you can display the
global address with the show ipv6 interface command, as in the following example:

Firewall# show ipv6 interface inside
inside i1s up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:47ffF:fe08:ec54
Global unicast address(es):
1999::203:47FfF:fe08:ec54, subnet is 1999::/64 [AUTOCONFIG]
valid lifetime 2591959 preferred lifetime 604759
Joined group address(es):
ff02::1
ff02::2
ff02::1:ff08:ech4
[output omitted]

b. (Optional) Specify a link-local address:

Firewall(config-if)# ipv6 address ipv6_address link-local

You can assign a specific link-local address as ipv6_address if autoconfiguration is
not wanted.

c. (Optional) Specify a complete global IPv6 address:

Firewall(config-if)# ipv6 address ipv6 _address/prefix_length [eui-
64]

You can specify the complete global address as ipv6_address. The prefix_length (1 to
128) specifies the number of most-significant address bits reserved for the network
address. The global address must be unique within the IPv6 network.

You can also use the eui-64 keyword to let the firewall build a unique modified EUI-
64 address format. The ipv6_address value is used for the upper 64 bits. The lower
64 bits of the address are the upper three octets of the interface MAC address, ff:fe,
and the lower three MAC address octets.

3. Use IPv6 neighbor discovery to learn about neighboring devices.

A firewall can participate in IPv6 neighbor discovery to learn about other directly connected
devices. Neighbor discovery is always enabled. You can follow these steps to adjust the
neighbor discovery operation:

a. (Optional) Set the neighbor solicitation interval:

Firewall(config-if)# ipv6 nd ns-interval value

The firewall sends neighbor solicitation messages at the interval value (1000 to
3,600,000 milliseconds [ms]; the default is 1000 ms or 1 second).

b. (Optional) Set the neighbor reachability time:

Firewall(config-if)# ipv6 nd reachable-time value

If the neighboring device becomes unreachable, the firewall can send neighbor
solicitation messages in an attempt to get a response. The firewall waits for value
milliseconds (0 to 3,600,000; the default is 0) before declaring the neighbor
unreachable. A value of 0 means that the firewall advertises an unspecified
reachability time to its neighbors and does not measure this time itself.

c. (Optional) Adjust duplicate address detection (DAD):

Firewall(config-if)# ipv6 nd dad attempts value

A firewall attempts to check to see if another device is using its own interface link-
local address. If a duplication is detected, no IPv6 data is processed on the interface.

If the link-local address is not duplicated, the firewall checks for a duplicate of its
interface global IPv6 address.

The firewall sends value (0 to 600; the default is 1) neighbor solicitation messages to
detect a duplicate address. If value is set to 0, no DAD is performed.

Tip

If a directly connected IPv6 neighbor cannot be discovered automatically, you can
define it as a static entry. Use the following global configuration command to define
and locate the neighboring device:

Firewall(config)# ipv6 neighbor ipv6 address if name mac_address

The neighbor uses the local data-link address ipv6_address and MAC address
mac_address (XXxX.Xxxx.xxxx hex format). As well, the neighbor can be found on
the firewall interface named if_name (outside, for example).

Suppose a neighboring device connected to the inside interface uses IPv6 local data-
link address fe80::206:5bff:fe02:a841 and MAC address 0006.5b02.a841. You could
use the following command to define a static neighbor entry:

Firewall(config)# ipv6 neighbor fe80::206:5bff:fe02:a841 inside
0006 .5b02.a841

4. Configure IPv6 router advertisements on the interface.

5.

As a Layer 3 IPv6 device, a firewall can participate in router advertisements so that
neighboring devices can dynamically learn a default router address. You can follow these
steps to configure how the firewall carries out its router advertisement process:

a. (Optional) Stop sending router advertisements:

Firewall(config-if)# ipv6 nd suppress-ra

By default, a firewall acts as an IPv6 router if IPv6 is enabled and the interface has
an IPv6 address. The firewall sends periodic router advertisements to neighboring
IPv6 devices, announcing itself as a router.

You can use the ipv6 nd suppress-ra command to stop sending router advertisements.
In this case, the firewall appears as a regular IPv6 neighbor or node. Neighbor
discovery is active even when router advertisements are suppressed.

b. (Optional) Set the router advertisement interval:

Firewall(config-if)# ipv6 nd ra-interval [msec] value

By default, a firewall sends router advertisements out an IPv6 interface every 200
seconds. You can adjust the interval to value (3 to 1800 seconds, or 500 to 1,800,000
ms if the msec keyword is given).

c. (Optional) Adjust the lifetime of router advertisements:

Firewall(config-if)# ipv6 nd ra-lifetime seconds

By default, router advertisements are sent with a valid lifetime of 1800 seconds.
Neighboring devices can expect the firewall to be a default router for the duration of
the lifetime value.

You can adjust the lifetime to seconds (0 to 9000 seconds). A value of 0 indicates

that the firewall should not be considered a default router on the advertising
interface.

(Optional) Configure IPv6 prefixes to advertise.

By default, a firewall advertises the prefix from any IPv6 address that is configured on an
interface. The prefix advertisement can be used by neighboring devices to autoconfigure
their interface addresses.

In the commands covered in Steps 5a through 5d, you can use the default keyword to define
lifetimes for all prefixes that are advertised. Otherwise, you can specify an IPv6 prefix as
ipv6_address/prefix_length. The prefix_length is the number of the most-significant bits
used as a network prefix, from 1 to 128.

You can also add the no-autoconfig keyword to advertise that the prefix should not be used
for autoconfiguration. By default, any prefix that is advertised is assumed to be "on link,"
meaning that it is used on the advertising interface. You can add the off-link keyword to
specify a prefix that is not configured on the firewall interface.

a. (Optional) Advertise a prefix with default lifetime values:

Firewall(config-if)# ipv6 nd prefix {default |
ipv6_address/prefix_length} [no-autoconfig] [off-link]

By default, the prefix is advertised with a valid lifetime of 30 days (2,592,000
seconds) and a preferred lifetime of 7 days (604,800 seconds).

For example, the following command causes the IPv6 prefix 1999::/64 to be
advertised with the default values:

Firewall(config)# ipv6 nd prefix 1999::/64

b. (Optional) Advertise a prefix with predefined lifetime values:

Firewall(config-if)# ipv6 nd prefix {default |
ipv6_address/prefix_length} valid_lifetime preferred_lifetime
[no-autoconfig] [off-l1ink]

The prefix is advertised with a valid lifetime of valid_lifetime (0 to 4,294,967,295 or
infinite seconds). The prefix also is advertised as a preferred prefix lasting
preferred_lifetime (0 to 4,294,967,295 or infinite seconds).

To advertise the prefix 1999::/64 with a valid lifetime of 5 days (432,000 seconds)
and a preferred lifetime of 1 day (86,400 seconds), you could use the following
command:

Firewall(config)# ipv6 nd prefix 1999::/64 432000 86400

c. (Optional) Advertise a prefix with an expiration date:

Firewall(config-if)# ipv6 nd prefix {default |
ipv6_address/prefix_length} at valid _date time preferred_date_ time
[no-autoconfig] [off-1ink]

The prefix is advertised to remain valid until the specific date and time are reached.
The valid lifetime is given as valid_date_time, and the prefix is preferred until
preferred_date_time is reached.

Each date and time value is given in this form:

{month day | day month} hh:mm

The month is the month name, given as at least three characters. The day is 1 to 31.
The time is always given in 24-hour format.

For example, suppose the prefix 1999::/64 is advertised to expire at 23:59 on
December 31 for the valid and preferred lifetimes. You could use the following
command to accomplish this:

Firewall(config)# ipv6 nd prefix 1999::/64 dec 31 23:59 dec 31 23:59

d. (Optional) Do not advertise a prefix:

Firewall(config-if)# ipv6 nd prefix {default |
ipv6_address/prefix_length} no-advertise

The prefix given is not advertised.

Testing IPv6 Connectivity

As soon as you configure IPv6 operation on a firewall, make sure each of the respective
interfaces has an IPv6 address. An interface must have a link-local address to communicate with
its neighbors. An interface must also have a global address to be able to forward packets to other
IPv6 destination addresses. You can display these addresses with the show ipv6 interface
command.

You can display any other IPv6 routers that the firewall has discovered from router
advertisements it has received. Confirm any entries seen with the show ipv6 routers command, as
in the following example:

Firewall# show ipv6 routers
Router fe80::260:70FF:fed7:8800 on inside, last update 1 min
Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500
Reachable time 0 msec, Retransmit time 0 msec
Prefix 1999::/64 onlink autoconfig
Valid lifetime 2592000, preferred lifetime 604800
Firewal 1#

From the fe80 digits in the most-significant IPv6 address positions, you can distinguish the
router address shown as a link-local address.

You can also use a form of the ping command to send IPv6 ICMP echo packets to a neighboring
device with the following simplified syntax:

Firewall# ping [if_name] ipv6_address

With the preceding router example, you could ping the router's IPv6 link-local address to
determine good connectivity and a working IPv6 configuration. The following example shows an
attempted ping:

Code View: Scroll / Show All

Firewall# ping fe80::260:70Fff:fed7:8800

Sending 5, 100-byte ICMP Echos to fe80::260:70Ff:fed7:8800, timeout is 2
seconds:

Interface must be specified for link-local or multicast address

Success rate is 0 percent (0/1)

Firewal 1#

Because a link-local address is being used as the ping target, the firewall cannot determine which
of its interfaces to use. This is because link-local addresses do not include any network or route
information that could be used to find a destination interface. The example is repeated with the
interface information as follows, showing a series of successful ICMP echo and reply packets:

Code View: Scroll / Show All

Firewall# ping inside fe80::260:70Ff:fed7:8800

Sending 5, 100-byte ICMP Echos to fe80::260:70fFf:fed7:8800, timeout is 2
seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
Firewal 1#

Configuring the ARP Cache

A firewall maintains a cache of Address Resolution Protocol (ARP) entries that are learned when
it overhears ARP requests or ARP reply packets on its interfaces. ARP is used to resolve a host's
MAC address based on its IP address, and vice versa.

You can use the following commands to configure ARP operations:

1. Define a static ARP entry:

Firewall(config)# arp if _name ip_address mac_address [alias]

ARP entries normally are created as the firewall hears responses to ARP requests on each
interface. There might be times when you need to configure a static entry for hosts that do
not answer ARP requests on their interfaces. Static ARP entries do not age out over time.

Specify the firewall interface name if _name (inside or outside, for example) where the host
can be found. The host's IP address and MAC address (in dotted-triplet format) must also be
given.

Use the alias keyword to create a static proxy ARP entry, where the firewall responds to
ARP requests on behalf of the configured host IP address—whether or not it actually exists.

For example, you can use the following command to configure a static ARP entry for a
machine that can be found on the inside interface. Its MAC address and IP address are
0006.5b02.a841 and 192.168.1.199, respectively:

Firewall(config)# arp inside 0006.5b02.a841 192.168.1.199

Set the ARP persistence timer:

Firewall(config)# arp timeout seconds

ARP entries dynamically collected are held in the firewall's cache for a fixed length of time.
During this time, no new ARP information is added or changed for a specific cached host
address. By default, ARP entries are held for 14,400 seconds (4 hours). You can set the
persistence timer to seconds (1 to 1,215,752 seconds for P1X 6.3 or 60 to 4,294,967 seconds
for ASA and FWSM).

You can display the current ARP cache contents with the following command:

Firewall# show arp [statistics]

For example, the following ARP entries have been created on a firewall:

Firewall# show arp
stateful 192.168.199.1 0030.8587.546e
lan-fo 192.168.198.2 0030.8587.5433
outside 12.16.11.1 0003.4725.2f97
outside 12.16.11.2 0005.5¥93.37fc
outside 12.16.11.3 00d0.0l1le6.6ffc
inside 192.168.1.1 0003.4725.2e32
inside 192.168.1.4 00d0.0457.3bfc
inside 192.168.1.3 0007.0d55.a80a

Firewal 1#

Be aware that the firewall maintains ARP entries for its own interfaces too, as indicated by
the gray shaded entries.

You can add the statistics keyword to display counters for various ARP activities. Consider

the following output:

Firewall# show arp statistics
Number of ARP entries:
PIX - 11
Dropped blocks in ARP: 10
Maximum Queued blocks: 17
Queued blocks: 0
Interface collision ARPs Received: 0
ARP-defense Gratuitous ARPS sent: O
Total ARP retries: 70
Unresolved hosts: O
Maximum Unresolved hosts: 2
Firewal l#

Tip

If a host's IP address changes or its network interface is replaced, an existing ARP entry can
become stale and will be stuck in the firewall's ARP table until it expires. If this happens, you
can clear the entire ARP cache contents by using the clear arp EXEC command.

If you decide to clear the ARP cache, you should do so only during a maintenance time when the
network is not busy; otherwise, there might be a pause in network traffic passing through the
firewall while the ARP cache is being rebuilt.

Although you cannot clear individual ARP cache entries, you can configure a static ARP entry
for the IP address in question so that it is paired with a bogus MAC address. After that is done,
remove the command that was just used. The bogus static ARP entry is removed, and the firewall
relearns an ARP entry based on dynamic information from the host.

Configuring Interface MTU and Fragmentation

By default, any Ethernet interface has its maximum transmission unit (MTU) size set to 1500,
which is the maximum and expected value for Ethernet frames. If a packet is larger than the
MTU, it must be fragmented before being transmitted. You can use the following command to
adjust an interface MTU:

Firewall(config)# mtu if_name bytes

If you need to, you can adjust the MTU of the interface named if_name to the size bytes (64 to
65,535 bytes). In some cases, you might need to reduce the MTU to avoid having to fragment
encrypted packets where the encryption protocols add too much overhead to an already
maximum-sized packet.

Cisco firewalls can participate in MTU discovery along an end-to-end IP routing path. This
process follows RFC 1191, where the MTU is set to the smallest allowed MTU along the
complete path.

You can display the current MTU configuration for all firewall interfaces by using the show mtu
(P1X 6.3) or show running-config mtu (ASA and FWSM) command. Interface MTU settings are
also displayed as a part of the show interface EXEC command output.

For example, the following output represents the MTU settings on a firewall's outside interface:

Code View: Scroll / Show All
Firewall# show running-config mtu
mtu outside 1500
mtu inside 1500
mtu dmz 1500
Firewal 1#
Firewall# show interface
Interface GigabitEthernetO "', is up, line protocol is up
Hardware is 182542 rev03, BW 1000 Mbps
(Full-duplex), Auto-Speed(1000 Mbps)
Available but not configured via nameif
MAC address 0003.4708.ec54, MTU not set
IP address unassigned
17786900 packets input, 21111200936 bytes, 0 no buffer
Received 171 broadcasts, 0 runts, 0 giants
O input errors, 0 CRC, O frame, O overrun, O ignored, O abort
131444 packets output, 89823504 bytes, O underruns
0 output errors, 0 collisions
0 late collisions, 191 deferred
input queue (curr/max blocks): hardware (0/25) software (0/0)
output queue (curr/max blocks): hardware (0/5) software (0/0)
Interface GigabitEthernetl.2 "outside", is up, line protocol is up
VLAN identifier 2
MAC address 0003.4708.ec54, MTU 1500
IP address 10.1.1.1, subnet mask 255.0.0.0
Received 17683308 packets, 20714401393 bytes
Transmitted 119650 packets, 86481250 bytes
Dropped 95017 packets
[output for other interfaces omitted]

Notice that the outside interface is actually a logical interface (GigabitEthernetl.2) representing a
VLAN on a physical trunk interface (GigabitEthernetl). An MTU is set only when the nameif
command has been configured for an interface, as in the case of the logical interface named
outside.

Tip

Hosts using TCP connections can also negotiate the maximum segment size (MSS) that is used.
This is done as a TCP connection is initiated, and it occurs on a per-connection basis. As a result,

an MSS value can sometimes be chosen that is larger than the MTU being used along the path.
This also results in TCP packets being fragmented so that they can be forwarded.

You can configure the firewall to govern the maximum MSS value negotiated on connections
passing through it. The firewall overrides any request for an MSS value larger than its limit, and
it replaces the MSS value in the TCP packet so that the negotiation is transparent to the end
hosts.

You can use the following command to limit the TCP MSS size in all TCP connections:

Firewall(config)# sysopt connection tcpmss [minimum] bytes

By default, the TCP MSS must be between 48 and 1380 bytes. You can adjust the maximum
MSS limit to bytes or the minimum MSS to minimum bytes.

When a firewall receives packets that have been fragmented, it stores each fragment in a cache
and virtually reassembles the fragments so that the original packet can be inspected. This allows
the firewall to verify the order and integrity of each fragment and to discover malicious exploits
that use fragmentation. This process is part of the FragGuard firewall feature.

You can configure how the firewall handles the packet fragments it receives with the following
steps:

1. Limit the number of fragments awaiting reassembly:

Firewall(config)# fragment size database-limit [if_name]

By default, a firewall reserves space for 200 fragmented packets in memory per interface,
where they are stored temporarily while awaiting reassembly. You can change this to
database-limit packets (up to 1,000,000 or the maximum number of free 1550-byte or
16,384-byte blocks). If an interface name is not specified, the limit applies to all interfaces.

For example, the following command could be used to reserve space for 500 fragments
arriving on the outside interface, awaiting virtual reassembly:

Firewall(config)# fragment size 500 outside

Tip

You can display the current status of memory blocks with the show block EXEC command.
Look for the LOW value for size 1550 and 16,384 to see the fewest free blocks that have
been available in the past. In most cases, however, you should keep the reassembly database
size set to a low or default value to prevent fragmentation DoS attacks from using large

amounts of firewall memory.
Limit the number of fragments per packet:

Firewall(config)# fragment chain chain-limit [if_name]

By default, a firewall accepts up to 24 fragments of a single packet before they are
discarded. You can change this limit to chain-limit (up to 8200 fragments per packet) on a
global or per-interface basis. If you do not specify an interface, the chain-limit value is
applied to all interfaces.

Tip

You might want to consider limiting the fragment space to 1, allowing only a single
fragment to be stored—the whole packet itself. Most often, legitimate applications do not
fragment packets in the first place, so the firewall should not receive any fragments. Some
denial-of-service attacks, on the other hand, exploit the use of fragments. You can use the
following command to minimize the fragment cache for all firewall interfaces:

Firewall(config)# fragment chain 1

Be aware that such a strict limit causes the firewall to drop packet fragments from legitimate
(or desired) traffic too. You should consider increasing the fragment space if you have
known applications (Network File System [NFS], for example) or tunneling protocols (GRE,
L2TP, or IPSec) that could require the use of fragmentation.

Limit the time for all parts of a packet to arrive:

Firewall(config)# fragment timeout seconds [if_name]

By default, a firewall collects fragments as they arrive for 5 seconds. If the final fragment
does not arrive by then, all the fragments are discarded, and the packet is never reassembled.
You can adjust the collection time to seconds (up to 30 seconds) on a global or per-interface
basis. If an interface name if_name is not specified, the limit applies to all interfaces.

You can monitor a firewall's fragmentation activity with the show fragment EXEC
command. For example, the firewall interface shown in the following output has the default
fragment settings (database size 200 packets, chain limit 24 fragments, and timeout limit 5
seconds). The firewall has reassembled 534 packets, and two packets are awaiting
reassembly:

Firewall# show fragment outside
Interface: outside
Size: 200, Chain: 24, Timeout: 5, Threshold: 133
Queue: 2, Assemble: 534, Fail: 1097, Overflow: 12401
Firewal l#

You can also see that the reassembly process has failed 1097 times. This is because the

timeout limit expired while waiting for all fragments to arrive. The process has also had
overflow conditions, indicating that more than 24 fragments arrived on 12,401 different
packets.

Configuring an Interface Priority Queue

In Cisco firewall releases before ASA 7.0, packets are inspected and forwarded in a best-effort
fashion. Firewall interfaces have input and output queues or buffers that store inbound or
outbound packets temporarily as they arrive at or leave an interface. Sometimes, packets cannot
be processed quickly enough to keep up with the flow, so they are buffered until they can be
serviced.

A simple queue structure like this makes for simple interface operation. For example, consider
the output queue. The first packet put into the queue is the first one that is taken out and
transmitted. There is no differentiation between types of traffic or any quality of service (QoS)
requirements. Regardless of the packet contents, packets leave the queue in the same order they
went into it.

This presents a problem for time-critical data that might pass through a firewall. For example,
any type of streaming audio or video must be forwarded in a predictable manner so that packets
are not delayed too much before they reach their destination. Those packets also need to be
forwarded at a fairly regular rate; too much variation in packet-to-packet delay (jitter) results in
poor-quality audio or video at the destination.

When streaming data is mixed with other types of high-volume data passing through a firewall,
the nonstreaming data can starve the streaming data flow. This can happen simply because the
streaming packets get lost in a sea of other packets competing for transmission time.

A Cisco ASA can support two types of output interface queues:

o Best-Effort Queue (BEQ)— Packets are placed in this queue in an arbitrary order and are
transmitted whenever possible.

o Low-Latency Queue (LLQ)— Packets are placed in this queue only when they match
specific criteria. Any packets in the LLQ are transmitted ahead of any packets in the
BEQ, providing priority service.

In addition, the firewall uses a hardware queue to buffer packets that will be copied directly to
the physical interface hardware for transmission. Packets are pulled from the LLQ first, and then
the BEQ, and then they are placed in the hardware queue. As soon as the hardware queue is full,
those packets are moved into the interface's own buffer for the actual transmission.

Figure 3-2 illustrates the interface queues available at each firewall interface, although only the
outside interface is shown. Packets that will be sent out an interface are put in the BEQ by
default. If a service policy has been configured for the interface, packets that match specific

conditions in a class map can be marked for priority service. Only those packets are put into the
LLQ.

Figure 3-2. Firewall Interface Queue Structure

[View full size image]

If either the BEQ or LLQ fills during a time of interface congestion, any other packets destined
for the queue are simply dropped. In addition, there is no crossover or fallback between queues.
If the LLQ is full, subsequent priority packets are not placed in the BEQ; they are dropped
instead.

You can use the following sequence of steps to configure priority queuing:

1.

3.

Enable the priority queue on an interface:

FWSM —

PIX 6.3 —
ASA |[Firewall(config)# priority-queue if_name

By default, only a BEQ is enabled and used on each interface. You must specifically enable
a priority queue with this command for the interface named if_name (outside, for example).

Note

Priority queues are supported only on physical interfaces that have been configured with the
nameif command. Trunk interfaces and other logical interfaces are not permitted to have a
priority queue. Also, priority queues are not supported in multiple-security context mode.

(Optional) Set the queue limit:

FWSM —

PIX6.3—
ASA [Firewall(priority-queue)# queue-limit packets

You can use this command to set the depth of both the BEQ and LLQ. The depth value
packets (1 to 2048) varies according to the firewall memory and interface speed. In addition,
packets can vary in size, but the queue is always measured in generic packets, which can be
up to the interface MTU (1500 bytes) bytes long.

As soon as the priority queue is enabled for the first time, the queue limit is set to a
calculated default value. The limit is the number of 256-byte packets that can be transmitted
on the interface over a 500-ms period. Naturally, the default value varies according to the
interface speed, but it always has a maximum value of 2048 packets.

For example, the default queue-limit values shown in Table 3-1 are calculated for different
interface speeds.

Table 3-1. Default queue-limit Values by Interface Speed
Interface queue-limit in Packets
10-Mbps full duplex 488

100-Mbps full duplex 2048

1000-Mbps full duplex 2048

(Optional) Set the transmit queue size:

FWSM —

PIX 6.3 —
ASA [Firewall(config)# tx-ring-limit packets

The transmit ring (tx-ring) is a virtual queue that represents a portion of the output hardware
queue that is available to the Ethernet interface drivers. The transmit ring is measured in
packets. It varies according to the efficiency and speed of the interface hardware.

As soon as the interface priority queue is enabled for the first time, the transmit ring limit is
set to a calculated default value. The limit is the number of 1550-byte packets that can be
transmitted on the interface in a 10-ms period. The packets limit has a minimum of 3 and a
maximum that varies according to the interface and available memory. You can display the
current maximum value through context-based help, as in the following example:

Firewall(config)# priority-queue outside
Firewall(priority-queue)# tx-ring-limit ?
priority-queue mode commands/options:
<3-128> Number of packets
Firewall(priority-queue)#

The default tx-ring-limit values shown in Table 3-2 are automatically calculated for different
interface speeds.

Table 3-2. Default tx-ring-limit Values by Interface Speed
Interface tx-ring-limit in Packets
10-Mbps full duplex 8

100-Mbps full duplex 80

1000-Mbps full duplex 256

Tip

By default, all packets are sent to the best-effort queue, whether or not a priority queue has been
configured and enabled. To send packets to the priority queue, you must configure a service
policy that matches specific traffic with a class map and then assigns that traffic to the priority
queue. Section "7-2: Defining Security Policies in a Modular Policy Framework," in Chapter 7,
"Inspecting Traffic," covers the configuration commands needed for this task.

For example, you should configure a modular policy that has this structure:

Firewall(config)# class-map class_map_name
Firewall(config-cmap)# match condition
Firewall(config-cmap)# exit
Firewall(config)# policy-map policy_map_name
Firewall(config-pmap)# class class_map_name
Firewall(config-pmap-c)# priority
Firewall(config-pmap-c)# exit

Firewall(config-pmap)# exit
Firewall(config)# service-policy policy_map name interface if_name

Packets are only marked to be destined for a generic priority queue. When they are actually
placed in an output queue, the firewall chooses the priority queue on the appropriate interface.

Displaying Information About the Priority Queue

You can display the current priority-queue limits with the following command:

Firewall# show running-config all priority-queue if_name

If you configure specific queue-limit or tx-ring-limit values, those are shown as part of the
running configuration. However, if the priority queue uses the default values, you can see them
only by displaying the default commands and parameters in the running configuration with the
show running-config all keywords.

For example, the following output shows the outside interface queue limit values:

Firewall# show running-config all priority-queue outside
priority-queue outside

queue-limit 2048

tx-ring-limit 256
Firewal 1#

You can also get an idea about the priority queue operation on an interface with the following
command:

Firewall# show service-policy interface if _name priority

You can display overall statistics for both BEQ and LLQ interface queues with the following
command:

Firewall# show priority-queue statistics [if_name]

These commands are covered in more detail in "Packet Queue Status," as covered in Section "11-
1: Packet Queue Status," as covered in Section "Checking Firewall Vital Signs," in Chapter 11,
"Verifying Firewall Operation."

Firewall Topology Considerations

The basic principle behind using a firewall is to isolate the inside (secure) network from the
outside (unsecure) network. Only through careful inspection and tightly controlled security
policies are packets allowed to pass through a firewall.

Ideally, a firewall should be located between physically separate, isolated networking equipment.
For example, if a firewall is used in a switched environment, its inside and outside interfaces
should connect to two different switches—the inside interface to one switch and the outside
interface to a different switch, as illustrated in Figure 3-3. Notice that the inside and outside
interfaces are connected to two different VLANSs and that it is impossible for outside traffic to
pass to the inside without proper inspection by the firewall.

Figure 3-3. A Simple Example of a Best-Practice Firewall Topology

Public
Network

Switch 1 4_\"_.
1™\

VLAN A

Unsecure
Network QOutside

————— .
._D

Secure i

Firewall Inside

Network

VLAN B

. '\I/'
Switch 2 Pesgi e
/1\

In some environments, the use of separate switches on each side of a firewall might be too
expensive. A single switch can carry multiple VLANS, each logically isolated from the others.
Why not connect several of a firewall's interfaces to just one switch, each interface assigned to a

different VLAN? Along the same lines, a firewall could connect to a switch using only a single
physical interface. Each logical interface could be carried over that interface as a trunk, where
the VLANS are naturally isolated in the switch, as illustrated in Figure 3-4.

Figure 3-4. Using a Single Switch to Support a Firewall

Public
Network

Noseoure Firewall
etwaor)
Switch 1 VLANA Pr Qutside
. 1 Inside
Secure VLANE
Network
BO21Q
Trunk
A— (Guidelings to Secure the Inside Trunk:
1. FPruna VLAM & from the Trunk
2. Set the Trunk's Mative VLAN to Something
Switch 2 \I] Other than VLAMN A and VLAN B
-

71N

You can use a single switch to support multiple firewall interfaces. The inherent VLAN isolation
works well with the inherent security isolation. However, you should carefully consider a few
issues if you decide to connect a firewall in this fashion.

First, you should always be sure to prune any unused VLANSs from trunk links that connect the
firewall/switch combination to other networks. The basic idea is that no VLAN is allowed to
extend from the outside, unsecure network into the inside, secure network without passing
through the firewall first. If a VLAN does extend on in, there will always be the possibility that it
can be exploited for a malicious attack or a compromise.

In Figure 3-4, VLAN A carries traffic to the firewall's outside interface. VLAN A should be
pruned from the trunk link between Switch 1 and Switch 2 so that it is contained outside the
secure internal network.

Securing Trunk Links Connected to Firewalls

Another thing to consider is the potential for an exploit called VLAN hopping. When a VLAN
on the public side of a boundary switch extends on into the internal side as a trunk’s native
VLAN, it can be used to carry unexpected traffic that can "hop™ over to a different VLAN. This
can occur even if the native VLAN is not intended to carry any traffic into the inside network.

VLAN hopping occurs when someone can send packets on the outside VLAN as if they are
encapsulated for an 802.1Q trunk. The boundary switch accepts the packets and then forwards
them on the native VLAN of the inside trunk. Now, the spoofed encapsulation becomes relevant,
causing other inside switches to unencapsulate the packets and send the malicious contents onto
other secured VLANS. In effect, an outside user can inject packets onto VLANS that are not even
visible or accessible on the outside.

Consider the network shown in Figure 3-5, where a firewall separates inside and outside
networks but both networks pass through the same switch. VLAN 100 is the only VLAN allowed
to extend to the outside public network. Switch 1, at the network's secure boundary, brings the
inside network in over an 802.1Q trunk link. A trunk link is used because the firewall might be
configured to use additional logical interfaces in the future, and those VLANS can be carried
over the trunk as well.

Figure 3-5. Example of a VLAN Hopping Exploit

[View full size image]

— T T
Public L,
., Netwerk
DL
I o __/H-._F“'I
|
(Mo Tags)
|
b i
™. Denied
1 kT
e B8 }-»> X
UNSBcure 1 packat with Embadded l Firewall
|

Matwark Faks Tag Enters VLAN Switch 1 p
100 on the 802,10 Tunk W VLAN 100 Outside o8 [™f
- — . —— — N — N — N — — — r—r—r—r—r—r‘hri_
Secure WLAN 200 Inglce
Ll

Metwork 2, WLAN 100 ig the

i

]

i

I
Mative WLAN, 8o : WLAN 100

I

I

tha Ermbadded Tag [No Tags}

la Mow Interpratad

. 802.10 Trunk
Matve VLAM: 100

4 Tha Fake Embeddad v s
Tag Iz Usad; Malcious
Packat Mow Balongs WLAM 200

in WLAN 200!

Switch 2

N/
Y

The trunk link has been configured with VLAN 100 as its native VLAN. This might have been
done as an oversight, with the assumption that no other switch or host would ever connect to

VLAN 100 on the inside network. However, that native VLAN is used as the springboard to get
inside the secure network.

A malicious user on the outside (VLAN 100) sends a packet toward the inside. The packet is
carefully crafted such that it contains an 802.1Q VLAN tag for VLAN 200—even though it is
being sent over a nontrunking link that supports only a single VLAN. If the packet is a broadcast,
it might be sent toward the firewall's outside interface (also on VLAN 100) when it reaches
Switch 1. The firewall examines the packet and denies it entry into the inside network, as
expected.

Most likely, the packet is sent as a unicast destined for an address on the internal network. When
the packet reaches Switch 1, a curious thing happens. The packet originated on VLAN 100, so
the switch can forward it onto VLAN 100 of the 802.1Q trunk link. VLAN 100 is the trunk'’s
native VLAN, so the switch transmits the packet without adding its own VLAN tag. Now when
the packet appears on the trunk link, the embedded fake tag is interpreted as an actual 802.1Q
tag!

Downstream switches forward the packet based on its newly exposed VLAN 200 tag. Suddenly,
the packet has "hopped" from VLAN 100 on the outside to VLAN 200 on the inside network.

To thwart VLAN hopping, you should always carefully configure trunk links so that the native
VLANS are never used to carry legitimate traffic. In other words, set a trunk’s native VLAN to an
unused VLAN. In Figure 3-5, the native VLAN of the inside trunk should be set to an unused
VLAN other than VLAN A, which is present on the outside, and other than VLAN B, which is
present on the inside.

Trunks on opposite sides of a boundary switch should have different unused native VLANS so
that the native VLAN of one side does not pass through to the native VLAN of the other side.
Figure 3-6 shows this scenario. Notice that the native VLANS on the inside and outside are set to
different but unused VLAN numbers.

Figure 3-6. Securing Trunk Links on a Firewall Boundary Switch

[View full size image]

Public

Metwork Guidelines:

1. VLAN B {Inside VLAN) Must Be Pruned;
Ctherwise B Might Bypass the Firewall
Through Switch 1

2. Set Native VLAMN = VLAN x; Otherwise,

a02.10 Mative VLAM Would Bypass Firewall Through

Trunk Switch 1 and Could Possibly Be Exploited
Unsecure Firewall
Network Switch 1 VLAN A ,

[\ I- Dutside
v B . Inside

Secure HAN
Network

802100 | «—— Guidelines:

Trunik 1. VLAN A (Dutside VLAN) Must Be Pruned:

Otherwise A Might Bypass the Firewall

Through Switch 1

2. Set Mative WLAN = VLAN y; Otherwise,
.\] y Native VLAN Would Bypass Firewall Through

Switch 2 Piugu N Switch 1 and Could Possibly Be Exploited

P 4 1\

Caution

Whenever possible, you should keep the trusted and untrusted networks physically separate,
carried over separate switches. Do not depend on the logical separation of VLANS within a
single switch to provide inherent security. There is always a risk of misconfiguration or an
exploit that would allow untrusted traffic to enter the trusted network.

Bypass Links

One last thing you should consider is the use of links to bypass a firewall. It might seem odd to
secure a network with a firewall, only to open a path for traffic to go around it. Some
environments must still connect other non-IP protocols between inside and outside networks,
simply because a firewall can inspect only IP traffic. Still others might bypass IP multicast traffic
to keep the firewall configuration simple.

The idea behind a bypass path is that any traffic using the path is either isolated from or
incompatible with traffic passing through the firewall. In fact, you might pass some IP traffic
around a firewall on a VLAN that never connects to another inside network. You might support
something like a wireless LAN in your network, carried over the same switches as your secured
VLANS, but where wireless users are considered "outsiders.” Then, you might pass a wireless

VLAN around the firewall, with the intention that it connects only to networks outside the
firewall.

Figure 3-7 shows a basic network that allows some traffic to bypass a firewall. In the left portion
of the figure, IP traffic passes through the firewall while Novell IPX traffic passes around it over
VLAN C. This is allowed only because some users on the outside map drives on IPX file servers
on the inside.

Figure 3-7. Example of Risk When Bypassing a Firewall

[View full size image]

I N

Public L,
Metwork /‘
Aﬁam. AEMM

|
I
|
o
] nva "
v VLAN & | Mappad N VLAN &
! : _
Tratfic |PCinky (Cutsids) : M—:--IF' Trafis |P-Ciniby (Cutsids)
Dulside Unsecure I . Unsecure
Lp Firewall Network ! Lo Firewall Matwork
Y 1 ! N >
L an ! -
Inzide Secure : Ineiclia Sacure
Metwork : Meatwork
VLAN B
WLAN B i)
I1P-Only (Inskis) : IP-0niby [Inshse)
 J
Switch 2 Switch 2

Tip

At the very least, you should configure very strict IPX access lists on the Layer 3 switches at
each end of the VLAN C link. If IPX traffic must be bypassed around the firewall, it should still
be governed by whatever means you have available.

You should also consider using a transparent (Layer 2) firewall to handle the traffic that would
otherwise flow over a link bypassing a Layer 3 firewall. For non-IP protocols, a transparent
firewall can filter only according to EtherType values. However, no stateful inspection of
protocols such as IPX is possible.

From a routing standpoint, IP and IPX are "ships in the night,” coexisting on switches but not
intermingling. However, consider the right portion of Figure 3-7. An outside user has managed
to compromise a PC that is also on the outside. This PC has a drive mapped over IPX to a secure
file server. Without passing through the firewall, the outside user has managed to gain access to
data on a ""secure™ server on the internal network.

The solution here is to be very critical of bypassing any sort of traffic around a firewall. Even if
you think you have thought of every possible angle to keep internal resources isolated, there still
might be a way for someone to gain access.

3-2. Configuring Routing

A firewall is a Layer 3 device, even though it inspects packets at many layers. Packets are
forwarded based on their Layer 3 destination IP addresses, so the firewall must know how to
reach the various destination IP networks. (This is true unless a firewall is configured for
transparent firewall mode, where it operates only on Layer 2 information.)

A firewall knows about the subnets directly connected to each of its interfaces. These are shown
as routes with a CONNECT (P1X 6.3) or directly connected (ASA or FWSM) identifier in output
from the show route command.

To exchange packets with subnets not directly connected, a firewall needs additional routing
information from one of the sources listed in Table 3-3.

Table 3-3. Routing Information Sources

Route Type Administrative Distance Learning Method

Static 1 Manually configured

EIGRP summary route 5 Dynamically learned or advertised
RIP 120 Dynamically learned or advertised
EIGRP 90 (internal) Dynamically learned or advertised

170 (external)
OSPF 110 Dynamically learned or advertised

The various routing protocols go about learning and advertising route information with different
techniques. Because of this, some routing protocols are generally considered more trustworthy
than others. The degree of trustworthiness is given by the administrative distance, an arbitrary
value from 0 to 255. Routes with a distance of 0 are the most trusted, while those with a distance
of 255 are the least trusted. The default values are generally accepted and are the same as those
used on routers.

Administrative distance comes in handy when the same route has been learned in multiple ways.
For example, suppose the route 10.10.0.0/16 has been learned by RIP (administrative distance of
120) and OSPF (administrative distance of 110). Each of the routing protocols might come up

with different next-hop addresses for the route, so which one should the firewall trust? The
protocol with the lowest distance value—OSPF.

Notice from Table 3-3 that static routes have a distance of 1, which makes them more trusted
than any other routing protocol. If you configure a static route, chances are you are defining the
most trusted information about that route. Only directly connected routes with a distance of 0,
containing the subnets configured on the firewall interfaces, are more trusted.

As soon as routes are known, packets can be forwarded to other routers or gateways that in turn
forward the packets toward their destinations.

A default route is useful on the firewall's outside interface, where the most general subnets and
destination networks are located. Usually, the networks located on the inside and other higher-
security interfaces are specific and well-known. Remember that the firewall has to learn about
the inside networks through some means.

Using Routing Information to Prevent IP Address Spoofing

A packet's destination address normally is used to determine how it gets forwarded. If the
destination address can be found in the routing table, the firewall can forward the packet out the
appropriate interface to the destination or to a next-hop router.

Packet forwarding seems straightforward, but it makes certain assumptions about a packet and its
sender. For example, the address or location of a packet's source normally is not part of the
forwarding decision. That might be fine if all senders and the packets they send can be trusted
implicitly. When your network is connected to a public network, full of untrusted and unknown
users, however, there should be no trust at all.

A common exploit used in a denial-of-service attack involves spoofed IP addresses. A malicious
user sends packets toward a target host to initiate connections or use up a resource on the target.
However, the sender disguises itself by inserting a bogus source address into the packets. Either
the source address does not exist, or it might be a legitimate address of some other host on some
other network. The idea is to prevent any return traffic from reaching the malicious user,
protecting his identity and location.

Cisco firewalls can use Reverse Path Forwarding (RPF) to detect spoofed source addresses in
most cases. As soon as RPF is enabled, a firewall examines the source address of each packet
arriving on an interface. It tries to find the reverse path, or the path back toward the source, in its
routing table. In other words, the firewall acts as if it will send something back to the source to
verify its location. If a route to the source address or network can be found, the outbound
interface must match the interface where the packet originally arrived.

If a route cannot be found, or the reverse-path interface does not match the arriving interface, the
packet is simply dropped, and a logging message is generated.

Normally, a firewall has specific routing information about all the IP networks on the inside or
protected (nonpublic) interfaces, because those networks are known to exist and are controlled.
Therefore, RPF checks to see whether packets sourced from a protected network are easily and
accurately performed.

The outside or public network is a different story. The firewall usually cannot know about every
IP network that exists in the outside world, so it makes do with a default route. The same is true
of RPF on the outside interface. When a packet arrives on the outside interface, if the specific

route to the source cannot be found, the firewall uses the default route to verify the reverse path.

You can enable RPF with the following configuration command:

Firewall(config)# ip verify reverse-path interface i1f_name

Notice that RPF is configured on a per-interface basis, only on the interface named if _name
(inside, for example). You can repeat this command to enable RPF on multiple interfaces.
Remember that RPF works by checking packets that arrive on an interface—not packets that are
leaving.

Note

It might seem odd or inadvisable that the default route is used for RPF tests on the outside
interface. After all, the majority of source address spoofing would probably be found on the
outside public network. Unfortunately, this is mostly true, because a firewall cannot know
everything about the outside network. The vast majority of IP addresses are found "somewhere
out there™ on the public Internet, on the outside interface.

However, RPF can detect when source addresses from the outside are spoofed with addresses
that are used on an inside or protected interface. In other words, if someone tries to masquerade
as a trusted user, using a trusted IP address, the firewall recognizes that the address is appearing
on the wrong interface, and it drops the packet. This happens before a connection is formed and
before any further access lists or stateful inspection are performed, preserving the firewall
resources.

Figure 3-8 illustrates the RPF process. RPF has been enabled on the outside interface, to check
packets arriving from the outside. The firewall's routing table is shown, providing information
that RPF can use about the known inside networks. The only thing known about the outside
network is the default route.

Figure 3-8. Unicast RPF Operation

[View full size image]

12152101

255 255 2550
Firewall r‘_“‘f_-\"
Fouter - traise 8] 5] Py Outside A Public
l 192,188.1.7 19218811] 01,4,1 'kl Matwark
268,255 2550 2BB.255 2550 204 265.0.0 R
192 168,201 |
250255 25,0
Inbraund Packet

S 182168107

(Outside Scarce Addness Dst: 182.188.10.55
1R VA0, 10T bs: Fanaeed in

the Houting Tabke o thae

Firemaliconligle ip venty revemse-path imstace culs ids Trssichs ity

Dwop The Facket!
Firemalls show moule
O 1A 182 168.10.0 25525535650 [110/11) via 192 168.1.2, £:32:35, inskde Inkound Packet
O 1A 102 TR0 0 255, 355 2550 [11011] vis TE2 1S 12 A6, nsids
O 102 168 1.0 955,955 355 0 i disdly connacdad, insida - S 102 168 220 2
O ML 256 285.0.0 s direcy connedbed, outside: - Chnside Soure Address Dst: 182.188.10.65
EY 000 0000 [100] wka 400113, culsida 192,160,222 2 ks Mol Faoursd
Firmmaii in fhs Fouing Table; Cufside

Drafiaiih Rouke b Malched
Permil tha Inbored Packel

When an outside host tries to masquerade as the address 192.168.10.7, the firewall finds a
matching route located on the inside network. Clearly, the outside host is spoofing that address,
so the packet is dropped.

During the RPF process, each ICMP packet is examined individually. UDP and TCP packets are
examined too, but only the first packet in a connection. All subsequent packets in the connection
receive a quick check for the correct source interface; the route lookup and reverse path check
are skipped.

You can use the following command to display RPF counters related to one or all firewall
interfaces:

Firewall# show ip verify statistics [interface if_name]

For example, in the following firewall output, 3312 packets were dropped as they arrived on the
inside interface because of spoofed source addresses:

Firewall# show ip verify statistics
interface outside: 170 unicast rpf drops
interface inside: 3312 unicast rpf drops
interface dmz: 3 unicast rpf drops
Firewal 1#

To reset the statistics counters, you can use the clear ip verify statistics command.
Configuring Static Routes
Static routes can be manually configured on a firewall. These routes are not learned or

advertised; the routes you configure are the only routes the firewall knows unless a routing
protocol is also being used.

The firewall uses static routing information, as shown in Figure 3-9.

Figure 3-9. Static Routes Used by a Firewall

Public
Network

Default Route to
Public Network

Outside

g

Firewall .

Static Routes to
Internal Networks

Inside

You can define static routes by following these configuration steps:

1. Define a static route to a specific subnet:

Firewall(config)# route if _name ip_address netmask gateway ip [distance]
The IP subnet defined by ip_address and netmask (a standard dotted-decimal subnet mask)
can be reached by forwarding packets out the firewall interface named if_name (inside or

outside, for example). The packets are forwarded to the next-hop gateway at IP address
gateway_ip.

By default, a static route receives an administrative distance of 1. You can override this
behavior by specifying a distance value (1 to 255).

Tip

You can also define the static route with the firewall's own interface IP address as the

gateway address. If the next-hop gateway address is not known or if it is subject to change,
you can simply have the firewall use the interface where the gateway is connected.

When packets are forwarded toward the gateway, the firewall sends ARP requests for the
destination address. The next-hop router must be configured to use proxy ARP so that it
responds with its own MAC address as the destination.

This is not a recommended approach, however. You should use it only in cases where the
next-hop router is subject to change or is unknown. Proxy ARP is generally considered a
risk, because it exposes a firewall to memory exhaustion during certain types of denial-of-
service attacks.

If you have configured IPv6 operation on a firewall, you can also configure static IPv6
routes. The command syntax is very similar to the IPv4 form:

Firewall(config)# ipv6 route if_name ipv6_prefix/prefix_length
ipv6_gateway [distance]

2. Define a default static route:

Firewall(config)# route if _name 0.0.0.0 0.0.0.0 gateway ip [distance]

You can define a default route so that the firewall knows how to reach any network other
than those specifically defined or learned. The default network and subnet mask are written
as 0.0.0.0 0.0.0.0 to represent any address. They can also be given more simply as 0 0 to
save typing.

The firewall assumes that the next-hop router or gateway at IP address gateway_ip knows
how to reach the destination. You can configure up to three different default routes on a
firewall. If more than one default route exists, the firewall distributes outbound traffic across
the default route gateways to load balance the traffic.

You can remove a static route by repeating this command beginning with the no keyword.

Tip

You can verify a firewall's routing information by using the show route EXEC command. The
output shows routes learned by any possible means, whether directly connected, static, or
through a dynamic routing protocol.

Static routes are shown as routes with an OTHER static identifier in output from the P1X 6.3
show route command, or with an S identifier in the ASA or FWSM show route command. For
example, the default route in the following output has been configured as a static route:

Firewall# show route
O IA 192.168.167.1 255.255.255.255

[110/11] via 192.168.198.4, 82:39:36, inside
C 192.168.198.0 255.255.255.0 is directly connected, inside
C 128.163.93.128 255.255.255.128 is directly connected, outside
S* 0.0.0.0 0.0.0.0 [1/0] via 128.163.93.129, outside
Firewal 1#

Static routes and routes learned from a routing protocol are shown with square brackets
containing two values. The first value is the administrative distance, and the second value is the
metric derived or used by the routing protocol. For example, the OSPF route to 192.168.167.1
has [110/11]—OSPF uses administrative distance 110, while this specific route has an OSPF
metric of 11.

Static Route Example
The following static routes are to be configured on a firewall:

e A default route points to gateway 192.168.1.1 on the outside interface.

e Network 172.21.0.0/16 can be found through gateway 192.168.254.2 on the inside
interface.

e Network 172.30.146.0/24 can be found through gateway 192.168.254.10, also on the
inside interface.

The static route configurations are as follows:

0 192.168.1.1 1
255.0.0 192.168.254.2 1
5.255.255.0 192.168.254.10 1

Firewall(config)# route outside 0.0.0.0 0.0.0
Firewall(config)# route inside 172.21.0.0 255
Firewall(config)# route inside 172.30.146.0 2

5

Favoring Static Routes Based on Reachability

Normally, if a static route is configured, it stays active until it is manually removed. A static
route is simply an unchanging definition of a next-hop destination—regardless of whether that
destination is reachable. If a single ISP is the sole means of reaching the outside world, a static
default route works nicely to point all outbound traffic to the ISP's gateway address.

Suppose you had connections to two ISPs; one might be favored over the other, but the default
routes to each ISP are equally weighted. In other words, the firewall tries to balance the
outbound traffic equally across the connections. Even if the connection to one ISP goes down,
the firewall still uses the static route that points to that ISP—effectively sending some outbound
traffic into a black hole.

Beginning with ASA 7.2(1), a static route can be conditional. So, if a target address is reachable,
the static route remains active; if the target is not reachable, the static route becomes inactive.
This allows you to configure multiple static or default routes without worrying about whether
one ISP connection is working or not.

To do this, you configure a service level agreement (SLA) monitor process that monitors an
arbitrary target address. That process is associated with a static route so that the route tracks the
reachability of the target. Use the following steps to configure static address tracking:

1.

Define the SLA monitor process:

Firewall(config)# sla monitor sla-id

The process is known by its sla-id, an arbitrary number from 1 to 2,147,483,647.

Define the reachability test:

Code View: Scroll / Show All
Firewall(config-sla-monitor)# type echo protocol iplcmpEcho target
interface if-name

The only test type is echo, which sends ICMP echo request packets to the target IP address
found on firewall interface if-name.

You should select a target address that is a reliable indicator of a route's reachability. For
example, you could use an ISP's next-hop gateway address as a target to test the ISP
connection's reachability. The target address can be another router, firewall, host, and so on.

Tip

Before you configure the ICMP echo target address, you might want to manually test the
target's reachability with the ping target command.

a. (Optional) Set the test frequency:

Firewall(config-sla-monitor-echo)# frequency seconds

By default, echo tests are run every 60 seconds. You can set a different time interval
as seconds (1 to 604,800 seconds or 7 days).

b. (Optional) Set the number of ICMP echo packets to send:

Firewall(config-sla-monitor-echo)# num-packets number

By default, only one ICMP request packet is sent during an echo test. You can define

a different number of packets as number (1 to 100).

c. (Optional) Set the payload size of the ICMP request:

Firewall(config-sla-monitor-echo)# request-data-size bytes

By default, each ICMP echo request packet has a payload of 28 bytes. You can set
the payload size as bytes (0 to 16,384 bytes), although you cannot use a value less
than 28. As well, you should not choose a payload size that makes the ICMP echo
request packet larger than the path MTU.

d. (Optional) Set the type of service (TOS) value:

Firewall(config-sla-monitor-echo)# tos number

By default, each ICMP echo request packet sent has an IP TOS value of 0. You can
choose a different value as number (0 to 255). This option can be handy if other
routers along the path to the target are configured to enforce quality of service (QoS)
policies based on the TOS byte in the IP packet headers.

e. (Optional) Set the timeout interval:

Firewall(config-sla-monitor-echo)# timeout milliseconds

By default, the firewall waits 5000 ms (5 seconds) to receive an ICMP echo reply
packet in response to its echo test. If a reply packet is received within the timeout
interval, the target is reachable. If not, the target is assumed to be unreachable, and
the echo test fails.

You can choose a different timeout interval as milliseconds (0 to 604,000,000
milliseconds, or 7 days). The timeout interval must be longer than the frequency
defined with the frequency command.

f. (Optional) Set the test threshold:

Firewall(config-sla-monitor-echo)# threshold milliseconds

The firewall also keeps track of a test threshold, which is used as an indicator that the
target is getting increasingly hard to reach. The threshold is not used to decide
whether the target is reachable. Instead, it can give you an idea of how realistic your
choice of the timeout interval is.

By default, the threshold interval is set to 5000 ms (5 seconds). You can set a
different threshold value as milliseconds (0 to 2,147,483,647 ms). Keep in mind that
the threshold value must always be less than or equal to the timeout interval value.

For example, suppose you choose a timeout interval of 10,000 ms (10 seconds) and a
threshold value of 5000 ms. After many echo tests are run, you can look at the test

statistics to see how often the threshold is exceeded. If it is rarely exceeded, you
might decide to reduce the timeout value to something at or below the current
threshold value. If you decide to reduce the timeout value, you should also reduce the
threshold value.

3. Schedule the SLA monitor test:

Code View: Scroll / Show All

Firewall(config)# sla monitor schedule sla-id [life {forever | seconds}]
[start-time

{hh:mm[:ss] [month day | day month] | pending | now | after hh:mm:ss}]
[ageout seconds]

[recurring]

The test can begin in one of the following ways:

Starting Time Keyword

Wait indefinitely pending (the default)

At a specific time start-time with time and day

Start immediately now

Wait until after with a time interval

Recur daily recurring every day at the time given

You can specify the lifetime of the test with the life keyword, followed by forever (infinite
lifetime) or seconds. By default, a test runs for 3600 seconds or 1 hour.

For continuing reachability tests, you should use the following command syntax:

Firewall(config)# sla monitor sla-id life forever now

The test continues to run until you manually remove it from the firewall configuration with
the no sla monitor sla-id command.

4. Enable reachability tracking:

Firewall(config)# track track-id rtr sla-id reachability

The SLA monitor test identified by sla-id is used to track reachability information. Each
track process is known by its track-id index, an arbitrary value from 1 to 500. You should
define a unique track index for each SLA monitor test that you configure, so that each test
can be tracked independently.

5. Apply tracking to a static route:

Code View: Scroll / Show All

Firewall(config)# route if name ip_address netmask gateway ip [distance]
track
track-id

The normal static route command syntax is used, along with the track keyword. Track
process number track-id is used to provide reachability information for the static route. If the
test target is reachable (it returns ICMP echo replies as expected), the static route remains
active in the routing table.

If the target is not reachable (ICMP echo replies are not received as expected), the static
route remains in the running configuration, but is not active in the routing table.

6. Monitor static route tracking:

You can monitor the status of a tracking process with any of the following EXEC
commands:

Firewall# show track

Firewall# show route

Firewall# debug track

Firewall# debug sla monitor trace

Reachable Static Route Example

A firewall has two paths to the outside Internet, using two independent ISPs, as shown in Figure
3-10. The firewall can be configured with two default routes that point to the two ISP routers,
10.1.1.100 and 10.1.1.200. Outbound traffic toward the Internet is balanced across the two
default routes, and across the two ISPs.

Figure 3-10. An Example Network Using Reachability Information

[View full size image]

-------------- = |SP1 Router
I 10.1.1.100

| -
&

y

Firewall

inside rh |' outside
| 192.158_1!3!3.1'
I -
I i*Z}'*“
| O
irack 2 ISP2 Router
sla-id 2 10.1.1.200

The firewall is also configured to track the reachability of each ISP, so that the appropriate static
route can be deactivated if an ISP connection is down. SLA monitor test 1 is configured to
perform echo tests on the ISP1 router at 10.1.1.100, while SLA test 2 checks the ISP2 router at
10.1.1.200. The following commands can be used to configure the reachability tests and static
routes:

Code View: Scroll / Show All

Firewall(config)# sla monitor 1
Firewall(config-sla-monitor)# type echo protocol iplcmpEcho 10.1.1.100
interface outside

Firewall(config-sla-monitor-echo)# frequency 30
Firewall(config-sla-monitor-echo)# threshold 1000
Firewall(config-sla-monitor-echo)# timeout 3000
Firewall(config-sla-monitor-echo)# exit
Firewall(config-sla-monitor)# exit

Firewall(config)# sla monitor schedule 1 life forever now
I

ﬁirewall(config)# track 1 rtr 1 reachability
1

Firewall(config)# sla monitor 2

Firewall(config-sla-monitor)# type echo protocol iplcmpEcho 10.1.1.200
interface outside

Firewall(config-sla-monitor-echo)# frequency 30
Firewall(config-sla-monitor-echo)# threshold 1000
Firewall(config-sla-monitor-echo)# timeout 3000
Firewall(config-sla-monitor-echo)# exit

Firewall(config-sla-monitor)# exit

Firewall(config)# sla monitor schedule 2 life forever now

1

Firewall(config)# track 2 rtr 2 reachability
1

ﬁirewall(config)# route 0.0.0.0 0.0.0.0 10.1.1.100 track 1
Firewall(config)# route 0.0.0.0 0.0.0.0 10.1.1.

0.
0. 200 track 2

Notice that each static route uses a different tracking process. That means either static route can
be deactivated depending on the status of its respective next-hop router. Static route tracking is a
rather silent process, and the firewall will not give you any obvious signs that it is actually
testing the reachability.

To see this in action, you can use the show route command to display the current routing table
contents. If both ISP router targets are reachable, then both static routes are shown, as in the
following output:

Code View: Scroll / Show All
Firewall# show route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1l - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-1S, L1 - IS-IS level-1, L2 - 1S-1S level-2, ia - IS-IS inter
area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is 10.1.1.100 to network 0.0.0.0

C 127.0.0.0 255.255.0.0 is directly connected, cplane
C 192.168.100.0 255.255.255.0 is directly connected, inside
S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.1.100, outside

[1/0] via 10.1.1.200, outside

Here, both static routes are listed, although no indication that they are conditional is listed. You
can always confirm the static route configuration with the show run route command:

Firewall# show run route
route outside 0.0.0.0 0.0.0.0 10.1.1.100 track 1
route outside 0.0.0.0 0.0.0.0 10.1.1.200 track 2

Firewal l#

You can also see the current status of a track process with the show track [track-id] command:

Firewall# show track 1

Track 1
Response Time Reporter 1 reachability
Reachability is Up
1 change, last change 00:01:03
Latest operation return code: OK
Latest RTT (millisecs) 1
Tracked by:

STATIC-1P-ROUTING O
Firewal 1#

You can also enable debugging output for the tracking process. Use the debug sla monitor trace
command to get some real-time indication of SLA probes as they are sent. However, to see
messages indicating a change in reachability, you can use the debug track command, as in the
example that follows. After each reachability change is announced, the routing table is shown for
clarity. Notice how the static route to ISP2 is missing after track process 2 announces that the
target is unreachable, and how the static route returns when the target comes up again.

Code View: Scroll / Show All
Firewal l# debug track
Firewal 1#
Firewal 1#
Firewall# Track: 2 Change #1 rtr 2, reachability Up->Down
Firewall# show route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1l - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-1S, L1 - IS-IS level-1, L2 - 1S-1IS level-2, ia - IS-IS inter
area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 10.1.1.100 to network 0.0.0.0

C 127.0.0.0 255.255.0.0 is directly connected, cplane
C 192.168.100.0 255.255.255.0 is directly connected, iInside
S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.1.100, outside
Firewal 1#
Firewal 1#
Firewall# Track: 2 Change #2 rtr 2, reachability Down->Up
Firewal 1#
Firewall# show route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1l - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-1S, L1 - IS-IS level-1, L2 - 1S-1IS level-2, ia - IS-IS inter
area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 10.1.1.100 to network 0.0.0.0

C 127.0.0.0 255.255.0.0 is directly connected, cplane
C 192.168.100.0 255.255.255.0 is directly connected, inside
S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.1.100, outside
[1/0] via 10.1.1.200, outside
Firewal 1#

Configuring RIP to Exchange Routing Information

Cisco firewalls can passively listen to RIP updates (either version 1 or 2) to learn routing
information. Routing advertisements from the firewall are limited to one type—a firewall
interface as a default route. RIP can be used in either of the following versions:

e RIP version 1, which supports only classful networks. Advertisements are broadcast
unencrypted.

e RIP version 2, which supports classless networks. Advertisements can be authenticated
by a cryptographic function for security purposes.

RIP routing information is used by the firewall as shown in Figure 3-11.

Figure 3-11. Firewall Using RIP for Routing Information

Default Route to

Outsids Public Network
: [=
Firewall . ' - - - - - -
Inside RIP: Learn |
Routes to :
Internal Metworks *

RIP: Advertise
Firewall Interface
as Default Route
to Public Network

You can configure RIP on a firewall by following these configuration steps:

1. Passively listen to RIP updates from other routers.

a. Listen to RIP version 1 updates:

Firewall(config)# rip if_name passive [version 1]

Any networks advertised in RIPv1 updates received on the firewall interface named
if_name are added to the routing table. To protect information about the internal
networks, the firewall does not advertise any routes to its internal or protected
networks.

b. Listen to RIP version 2 updates:

Firewall(config)# rip if_name passive version 2 [authentication
[text | md5 key (key_id)]]

Any networks advertised in RIPv2 updates received on the firewall interface named
if_name are added to the routing table.

If RIPv2 authentication is being used by other routers, the firewall must use the same
method. Advertisements can be authenticated with a cleartext text key (up to a 16-
character text string) that is passed within the routing update. Naturally, having the
authentication key pass across the network in the clear (unencrypted) is not very
secure.

You can also use message digest 5 (MD5) authentication. An md5 key (up to a 16-
character text string) can be defined on each router. The key is not sent as a part of
the routing updates. Instead, it is kept hidden and is used only to validate the MD5
hash value that is computed on each routing advertisement and the key. MD5 also
supports multiple keys, referenced by a key _id (1 to 255). Both the key ID and the
key itself must match between neighboring RIPv2 routers.

2. Advertise a firewall interface as a default route:

Firewall(config)# rip if_name default version [1 | 2] [authentication
[text | md5 key key id]]

The only route that a firewall can advertise is a default route, with its own interface named
if_name as the gateway address. The default route is advertised using RIP version 1 or 2. An
optional authentication can be used with RIPv2, as a cleartext text key or an md5 key.

Tip

You can verify the RIP configuration commands that have been entered with the show rip
[if_name] (PIX 6.3) or show running-config rip (ASA or FWSM) EXEC command.

To see RIP update activity, you can also use the debug rip command. In the following example,
the firewall has received one route advertisement:

%PIX-7-711001: RIP: received packet from interface inside [pif=2]
(192.168.198.4:520)

%PIX-7-711001: RIP: interface inside received v2 update from 192.168.198.4

%PIX-7-711001: RIP: update contains 1 routes

%PIX-7-711001: RIP: Advertise network 192.168.167.0 mask 255.255.255.0
gateway 192.168.198.4 metric 1

If RIP routes do not appear in the routing table as expected, there could be a misconfiguration
involving RIPv2 authentication. In this case, the debug output would show a message like this:

%PIX-1-107001: RIP auth failed from 192.168.198.4: version=2, type=ffff,
mode=3, sequence=13 on interface inside

You can also display the current routing table to see routes that RIP has learned. Those entries
are marked with an R indicator, as in the following example:

Firewall# show route

S 0.0.0.0 0.0.0.0 [1/0] via 128.163.93.129, outside

C 128.163.93.128 255.255.255.128 is directly connected, outside
R 192.168.167.0 255.255.255.0 [1/0] via 192.168.198.4, inside

C 192.168.198.0 255.255.255.0 is directly connected, inside
Firewal 1#

RIP Example

A firewall is to use RIP version 2 to learn routing information on its inside interface. The firewall
also advertises its inside interface as the default gateway. MD5 authentication is being used on
other internal RIPv2 routers, using key number 1, mysecretkey. The configuration is as follows:

Code View: Scroll / Show All

Firewall(config)# rip inside passive version 2 authentication md5 mysecretkey
1

Firewall(config)# rip inside default version 2 authentication md5 mysecretkey
1

Configuring EIGRP to Exchange Routing Information

The Enhanced Interior Gateway Routing Protocol (EIGRP) is new to ASA 8.0. As its name
implies, EIGRP is based on Interior Gateway Routing Protocol (IGRP), but with many
enhancements. EIGRP is a distance vector routing protocol, and its routing metrics are based on
a combination of delay, bandwidth, reliability, load, and MTU.

EIGRP uses a neighbor discovery mechanism that works by sending "hello™ messages to directly
connected neighboring routers. Neighbors can be dynamically discovered or statically
configured. All EIGRP messages, including the hello protocol, are sent as multicast packets to
address 224.0.0.10, the all EIGRP routers address, using IP protocol 88.

EIGRP supports variable-length subnet masks (VLSM) and route summarization, providing
plenty of flexibility in its routing information. It also uses the Diffusing Update Algorithm
(DUAL) to compute and maintain routing information from all of its neighbors. The ASA (or
any other EIGRP router) always uses a feasible successor, or a neighboring router with the
lowest cost path to a destination.

EIGRP routers do not send periodic routing updates. Rather, routing information is exchanged
only when a route's metric changes, based on information from neighboring routers. If you have
routers running EIGRP in your network, you might want to run EIGRP on your ASA, too, so that
the ASA can benefit from dynamic routing information. You can use the following steps to
configure EIGRP; if you are familiar with configuring EIGRP on a Cisco router, you should find
that the ASA commands are identical.

1. Enable an EIGRP process:

Firewall(config)# router eigrp as-num

EIGRP routers can exchange routing information if they each belong to the same
autonomous system. You can define the autonomous system number as as-num, a number
from 1 to 65535. Make sure the autonomous system number matches that of other EIGRP
routers in your network.

2. Associate a network with the EIGRP process:

asa(config-router)# network ip-addr [mask]

EIGRP must know which interfaces are to participate in routing updates and which interface
subnets to advertise. If an interface address falls within the subnet ip-addr and mask, then
EIGRP uses it in its operation.

If you want the interface subnet to be advertised, but you do not want the interface to
participate in EIGRP routing exchanges, you can use the following command:

asa(config-router)# passive-interface if_name

3. (Optional) Use stub routing for a firewall with a single exit point:

Code View: Scroll / Show All

asa(config-router)# eigrp stub {receive-only | [connected] [redistributed]
[static]

[summary]}

If the firewall has a single connection to the outside world through a distribution router, it
can become an EIGRP stub router. As a stub, it can receive routes (usually a default route)
from its neighbor, but advertises only specific routes of its own.

With the receive-only keyword, the firewall receives updates but does not advertise
anything. Otherwise, you can specify one or more route types to advertise. Use the
connected keyword to advertise routes that are directly connected to the firewall, the
redistributed keyword to advertise any routes that the firewall has redistributed into its
EIGRP process, the static keyword to advertise static routes defined on the firewall, or the
summary keyword to advertise summary addresses defined on the firewall.

(Optional) Define a specific EIGRP neighbor:

Normally, the firewall discovers other EIGRP neighbors by exchanging multicast hello
messages. If a neighbor is located across a network that does not support multicast traffic,
you can statically define the neighbor. At that point, the firewall communicates with the
neighbor via unicast traffic. Use the following EIGRP configuration command to define a
neighbor:

asa(config-router)# neighbor ip-addr interface if _name

The neighbor is located at ip-addr over the specified interface.

(Optional) Filter EIGRP updates to suppress specific networks:

asa(config-router)# distribute-list acl {in | out} [interface if_name]

Routes or subnets that are permitted by access list acl are filtered from EIGRP updates. The
in keyword filters the routes as they are received from other EIGRP routers, while the out
keyword filters the routes in EIGRP advertisements from the firewall.

You can use the interface keyword to filter routes on a specific interface.
(Optional) Control route summarization:

By default, EIGRP automatically summarizes subnet routes into classful network routes
when they are advertised. If you have contiguous subnets that are separated among firewall
interfaces or across EIGRP routers, you should disable route summarization with the
following EIGRP configuration command:

asa(config-router)# no auto-summary

Otherwise, you can configure a summary address that is advertised on an interface. This can
be handy if you need a summary address that does not fall cleanly within a network
boundary. In addition, if you have already disabled automatic summarization, the firewall
can still advertise a summary address that is manually configured. You can configure a
summary address with the following commands:

asa(config)# interface if_name
asa(config-if)# summary-address eigrp as-num address mask [distance]

The summary address given by address mask is advertised by EIGRP autonomous system
number as-num. You can specify an administrative distance to override the default value of 5
for summary addresses.

(Optional) Redistribute routing information from other sources:

If the firewall is running other routing protocols like RIP or OSPF, you can redistribute
routes learned from those methods into EIGRP. First, you should configure a route map to
filter routing information from one routing protocol into EIGRP.

You can define a default metric for all routes that are redistributed into EIGRP, because
metrics from the different route sources are not equivalent. Use the following EIGRP
configuration command:

asa(config-router)# default-metric bandwidth delay reliability loading mtu

Specify the composite default metric as the combination of bandwidth (1 to 4294967295
kbps), delay (1 to 4294967295 in tens of microseconds), reliability (0 to 255, ranging from
low to high), loading (1 to 255, ranging from low to high link usage), and mtu (1 to 65535
bytes).

If a default metric is not defined, you can configure a metric as a part of route redistribution.

To redistribute routes that were learned by RIP, were statically defined, or are directly
connected, use the following EIGRP configuration command:

Code View: Scroll / Show All

asa(config-router)# redistribute {rip | static | connected} [metric
bandwidth delay

reliability load mtu] [route-map map_name]

To redistribute routes learned from OSPF, use the following EIGRP configuration
command:

Code View: Scroll / Show All
asa(config-router)# redistribute ospf pid [match {internal | external [1 |

2] | nssa-
external [1 | 2]}] [metric bandwidth delay reliability load mtu] [route-
map map_name]

Identify the OSPF process as pid. You can match against OSPF internal, type 1 or 2 OSPF
external, or external type 1 or 2 Not So Stubby Area (nssa-external) routes.

(Optional) Secure EIGRP updates with neighbor authentication:

asa(config)# interface if_name
asa(config-if)# authentication mode eigrp as-num md5
asa(config-if)# authentication key eigrp as-num key-string key-id key-id

The ASA can use the MD5 hash algorithm to verify a neighbor router's authentication key.
Define the ASA's key as the text string key-string, also known as key number key-id (a
number from 1 to 255). As soon as authentication is enabled, any EIGRP neighbors that fail
to present the correct key are ignored.

(Optional) Adjust EIGRP timers:

By default, the firewall sends hello messages every 5 seconds and expects neighbors to hold
its neighbor state if they do not receive its hello messages for 15 seconds before they
consider it to be unreachable. You should adjust these timers to match the values used by
neighboring routers, only if those routers are not using the default values. You can use the
following interface configuration commands to adjust the timers for EIGRP autonomous
system number as-num:

asa(config)# interface if_name
asa(config-if)# hello-interval eilgrp as-num seconds
asa(config-if)# hold-time eigrp as-num seconds

. (Optional) Adjust the interface delay used in EIGRP metric calculations:

Each firewall interface has a delay value that is used in EIGRP metric calculations. By
default, the delay is set to a value that is inversely proportional to the bandwidth of the
interface. You can display the current delay value with the show interface command, as in
the following example:

Firewall# show interface

Interface GigabitEthernet0/0 "outside"™, is up, line protocol is up
Hardware is 182546GB rev03, BW 1000 Mbps, DLY 1000 usec
Auto-Duplex(Full-duplex), Auto-Speed(100 Mbps)

You can adjust the delay value with the following interface configuration command:

asa(config)# interface if_name
asa(config-if)# delay value

An EIGRP Configuration Example

A firewall is positioned so that its interface ethernet0/1 faces the outside public network, while
ethernet0/0 faces the inside protected network. EIGRP is being used on the internal network,
because of the network's size. The firewall participates in EIGRP so that it can receive dynamic
updates about internal IP subnets.

Because the firewall has only a single path to the outside world, it can become an EIGRP stub
router. Also, the outside interface does not need to participate in routing updates because no
trusted EIGRP neighbor exists there.

You can use the following configuration commands to set up EIGRP on the firewall:

Firewall(config)# router eigrp 101
Firewall(config-router)# network 10.0.0.0
Firewall(config-router)# network 192.168.1.0
Firewall(config-router)# eigrp stub
Firewall(config-router)# passive-interface ethernet0/1
Firewall(config-router)# exit

Firewall(config)# route outside 0.0.0.0 0.0.0.0 10.0.1.2 1
1

Firewall(config)# interface ethernet 0/1
Firewall(config-if)# nameif outside
Firewall(config-if)# security-level 0O
Firewall(config-if)# ip address 10.0.1.1 255.255.255.0
Firewall(config-if)# exit

1

Firewall(config)# interface ethernet 0/0

Firewall(config-if)# nameif inside

Firewall(config-if)# security-level 100

Firewall(config-if)# ip address 192.168.1.1 255.255.255.0
Firewall(config-if)# authentication mode eigrp 101 md5
Firewall(config-if)# authentication key eigrp 101 secretl23 key-id 1
Firewall(config-if)# exit

Configuring OSPF to Exchange Routing Information

OSPF is a link-state routing protocol. The routing domain is partitioned into areas. Area 0 is
always considered the backbone area of the OSPF domain or autonomous system.

When an OSPF router connects to two or more different areas, it is called an Area Border Router
(ABR). When an OSPF router connects an area to a non-OSPF domain and it imports routing
information from other sources into OSPF, it is called an Autonomous System Boundary Router
(ASBR).

OSPF routers build a common database of the status of all links in the area by exchanging link-
state advertisements (LSA). The routers build their routing tables by computing the shortest path
first (SPF) algorithm based on that database.

OSPF Routing Scenarios with a Firewall

When a firewall is configured to use OSPF, consider its role in the scenarios described in the
following sections.

OSPF Used Only on the Inside

The firewall becomes an ASBR, bordering an OSPF area with a non-OSPF public network.
Figure 3-12 shows this topology.

Figure 3-12. Using OSPF Only on the Inside of the Firewall

Public
Network

Default Route to
Public Network

Firewall __I__r‘_—__- -—

Outside

’E;SPF Inside N
Area 0 OSPF ASBR;:

LSAs Exchanged
with Inside Neighbors

= Default Route Can Be Advertised

» Qutside Static Routes Can Be
Hedistributed

On the outside, only static routes can be configured. On the inside, OSPF LSAs are exchanged
with other neighboring routers. The static routes to outside destinations can be redistributed into
OSPF so that they are advertised within the inside area. There is no danger or possibility that the
firewall will advertise inside to the outside (unsecure) world.

OSPF Used Only on the Outside

The firewall is an ASBR, bordering an OSPF area on the outside with a non-OSPF inside
network. Figure 3-13 shows this topology.

Figure 3-13. Using OSPF Only on the Outside of the Firewall

[View full size image]
{__/"’_'““\,_

FPublic \

OSPF ASBR:
LSAs Exchanged
OSPF with Outside Neighbors
Area 5
"'--_______h*-m.__l- _____ - Inside Static Routes Can
i ——— Be Redistributed into the
Firewall . ' Cutside OSPF Area

I nside Use a Reute Map to:

: + Filter Out {Deary] Any Inside
Sl'El.th_ Routes Matworks with Private Addresses
to Inside Networks « Permit Any Inside Metworks
With Global Addresses

S~ Outside - A
|
|
|
|
|
|
|
|
|

On the inside, only static routes can be configured. On the outside, OSPF LSAs are exchanged
with other neighboring routers. The static routes to inside networks can be redistributed to the
outside area. If you need to do that, you should carefully consider filtering the information so
that no inside network details are revealed to the outside. As well, if NAT is being used at the
outside firewall interface, it does not make sense to advertise inside private IP subnets.

To filter redistributed routes toward the outside, you should configure a route map on the
firewall. Be sure to deny any internal network addresses and permit any global or public network
addresses.

OSPF Used on Both Sides of the Firewall (Same Autonomous System)

Here, the firewall is an ABR because it borders an OSPF area with the OSPF backbone area.
Because both areas are within the same autonomous system (AS), the firewall is positioned more
like a traditional ABR. This situation might be needed if your organization maintains the inside
and outside networks (except for the public Internet) and the firewall protects only a subset of the
whole AS. Figure 3-14 shows this topology.

Figure 3-14. Using OSPF on Both Sides of the Firewall (ABR)

[View full size image]

{,.-.f T
[.f' Public
.. Network
p— - _)/
&5
OSPF
Area 0
S~ Outsids _-~ OSPF ABR: A
Tem—— T I Inside Metworks Are
= I . "I_-— — L_SA'S Egchanged 1 ﬂeﬂis:d??o:arcr
I_I‘.Ej"-'aé_i__ l - = —'— —_— with Inside and : Area 0 (Outsida)!
T] Insida T - Outside Neighbors : Use a Profix List
te Filter (Dany) Inside
OSPF : Meatworks with Privats
Area 1G-{].Grﬁ | Addresses
|
I

On the inside, the firewall exchanges OSPF LSAs with other inside routers in that area. On the
outside, the firewall exchanges LSAs with other corporate routers in the OSPF backbone area.
This topology makes it easy to maintain dynamic routing information on the routers and the
firewall for a large network.

Routes from the OSPF backbone (outside) are advertised toward the inside area. This poses no
real problem, because the outside networks are less secure and are expected to be known. The
firewall also advertises inside routes toward the backbone area (outside).

To filter routes that are advertised toward the backbone area, you should configure a prefix list

on the firewall. Be sure to deny any internal networks with private IP addresses and permit any
others that should be known to the outside. (A prefix list is needed because the inside routes are
not redistributed to the outside; rather, they are simply advertised within OSPF.)

OSPF Used on Both Sides of the Firewall (Different Autonomous Systems)

This is a unique case, because the firewall separates two distinct autonomous systems, each with
its own OSPF backbone area. Now the firewall must become an ASBR for both the inside and
the outside. In other words, two separate OSPF processes must run, each supporting a different
AS (inside and outside). Figure 3-15 shows this topology.

Figure 3-15. Using OSPF on Both Sides of the Firewall (ASBR)

[View full size image]

('(-_ Public H|
L MNetwork
— - A
g
OSPF pid 100
OSPF ASBR: A
Area D LSAs Exchanged | 1neido Natworks C
1 . . . ngide Matwarks Can
EGutSIde} Outside with Outside Neighbors | Be Redisiributed Toward the Outside
S " 1 [Filter with a Route Map!)
111111 = -]
Firewall ¥ e
L L o - 1
e Insids R | Outsicle Networks Can
QOSPF OSPF pid 200 1 Be Redistributed Toward the
Irvsid
Area 0 ASBR: ,'k o
(Inside) LSAs Exchanged

with Inside Meighbors

A Cisco firewall can run up to two unique OSPF processes, which makes this scenario possible.
Each one runs under a different process ID or number. On the outside, LSAs are exchanged with
other neighboring routers. On the inside, a different set of LSAs is exchanged with internal
neighbors. By default, no routing information is advertised from the inside to the outside, and
vice versa.

You can configure one OSPF process to redistribute routes from another OSPF process;
however, for example, the inside process can redistribute routes from the outside process. This is
usually acceptable because public routes can be freely advertised and used.

You can also redistribute routes from the inside process into the outside process. If that is
necessary, you should configure a route map to filter any internal routing information that should
not become public knowledge. Be sure to deny any internal networks with private IP addresses
and permit others that should be known to the outside.

Configuring OSPF

OSPF is a complex, robust routing protocol. This also means that it is very flexible but can be
tedious to configure. You should be well acquainted with OSPF as an advanced IP routing topic
before you attempt to configure and use it on a firewall; however, do not be overwhelmed by the
number of configuration command possibilities. Instead, try to configure OSPF according to
other existing routers in your network. Break it into these basic functions:

Configure the OSPF process. Define networks and areas.

Configure authentication if needed.

Configure a prefix list if the firewall will be an ABR.

Configure summary routes, and tune OSPF only if you feel comfortable doing this.
Configure route redistribution only if you need to inject routes from one side of the
firewall to another.

In very large or complex network topologies, the firewall might connect to an OSPF stub or Not
So Stubby Area (NSSA). The firewall might also be involved in a virtual link. If these situations
apply, you can work through those configuration steps, too.

The configuration commands needed for each of the OSPF functions are presented in the
following list. Follow them in order, skipping over the ones that are obviously not needed in your
network scenario.

1. Define an OSPF process:

Firewall(config)# router ospf pid

The OSPF process is identified by its process ID pid (an arbitrary number from 1 to 65535).
Up to two separate OSPF processes can be run on a firewall. This allows each process to
exchange routing information independently, although a single routing table is maintained in
the firewall. (The process ID is only locally significant; it is not passed or matched among
routers and firewalls.)

2. (Optional) Uniquely identify the OSPF router ID:

Firewall(config-router)# router-id ip_address

By default, OSPF uses the numerically highest IP address defined on any firewall interface
as the router ID. For example, an interface with IP address 192.168.1.2 is considered to be
higher than one that uses 10.1.1.1 or even 192.168.1.1. This value identifies the "router” in
any OSPF exchanges with its neighbors.

If the highest address on your firewall is a private address (172.28.4.1, for example), you
might not want to divulge the private network information to other parties. In this case, you
can configure the firewall to use an interface that has a global or public IP address
ip_address.

3. (Optional) Generate logging messages when OSPF neighbor states change:

Firewall(config-router)# log-adj-changes [detail]

By default, the firewall generates logging messages to indicate when an OSPF neighbor
adjacency goes up or down. In other words, the log-adj-changes command is present in the
configuration by default.

You can add the detail keyword to generate logging messages for each OSPF neighbor state
change, not just for neighbor up and down states. To disable adjacency logging, you can
precede the command with the no keyword.

For example, when adjacency logging is enabled, messages similar to the following are
generated:

%ASA-5-503001: Process 1, Nbr 192.168.167.1 on inside from FULL to DOWN,
Neighbor Down: Dead timer expired

Assign and activate a network to an OSPF area:

Firewall(config-router)# network ip_address netmask area area_id

The OSPF process exchanges routing information on any firewall interface that falls within
the address range specified here. As well, the network assigned to that interface is advertised
by OSPF.

The range of addresses is defined by ip_address and netmask (a normal dotted-decimal
subnet mask, not a wildcard mask as in 10S). If an interface subnet falls within that range, it
is also assigned to OSPF area area_id (a decimal number 0 to 4294967295, or an IP subnet
written in dotted-decimal format).

Tip

An OSPF area can be referred to by a decimal number or by a subnet notation. This is
possible because the area number is stored as one 32-bit number (0 to 4294967295). You
might also think of the area as always having a subnet notation—a decimal area number is
always preceded by three octets of 0s. For example, area 5 can also be written as 0.0.0.5,
area 100 is 0.0.0.100, and area 0 is 0.0.0.0. Using subnet notation for OSPF areas is handy
when you have a specific subnet by itself in one area.

Also remember that OSPF must have one backbone area, called area O or area 0.0.0.0.
(Optional) Authenticate OSPF exchanges with other neighbors in an area:

Firewall(config-router)# area area_id authentication [message-digest]

OSPF peers can authenticate information from each other using cleartext passwords (by
default) or MD5 (with the message-digest keyword). If authentication is enabled on one
device, it must be enabled on all the neighboring devices in the same area.

In addition, the actual authentication keys are defined on each OSPF interface. This is done
in Step 12b.

(Optional; ABR only) Keep the private network from being advertised to an outside area.

If a firewall is configured as an ABR, it sends type 3 LSAs between the areas it touches.
This means that the networks in each area are advertised into other areas. Naturally, you
would not want private networks to be advertised toward the outside for security and
network translation reasons.

a. Define a prefix list for filtering routes:

Firewall(config)# prefix-list list _name [seq seq_number] {permit |

deny}
prefix/len [ge min_value] [le max_value]

The prefix list named list_name (an arbitrary text string) is defined for filtering
routes. You can repeat this command to add more conditions to the list. By default,
prefix list entries are automatically numbered in increments of 5, beginning with
sequence number 5. Match entries are evaluated in sequence, starting with the lowest
defined sequence number. By giving the sequence number seq_number here, you can
wedge a new statement between two existing ones.

A prefix list entry can either permit or deny the advertisement of matching routes in
type 3 LSAs. A prefix list entry matches an IP route address against the prefix (a
valid IP network address) and len (the number of leftmost bits in the address) values.
The ge (greater than or equal to a number of bits) and le (less than or equal to a
number of bits) keywords can also be used to define a range of the number of prefix
bits to match. A range can provide a more specific matching condition than the
prefix/len values alone.

For example, to permit advertisements of routes with a prefix of 172.16.0.0/16 but
having any mask length between 16 and 24 bits, you could use the following
command:

Firewall(config)# prefix-list MyRoutes permit 172.16.0.0/16 ge 16 le
24

Note

Prefix lists are configured in regular configuration mode first. Then, they can be
applied to the OSPF process from within OSPF router configuration mode (after the
router ospf pid command is entered).

b. Use the prefix list to filter LSASs into or out of an area:

7.

8.

Firewall(config-router)# area area_id filter-list prefix
prefix_list _name [in | out]

If you want to suppress advertisement of an internal network, you can apply the
prefix list for LSAs going in or out of the area area_id. This means you can stop the
advertisements from leaving a private area by applying the prefix list to the private
area_id in the out direction. Or you can filter the advertisements on the public area
area_id side in the in direction.

(Optional) Advertise a default route:

Firewall(config-router)# default-information originate [always]
[metric value] [metric-type {1 | 2}] [route-map name]

The firewall can advertise a default route as an external route. If you use the always
keyword, a default route is advertised even if one has not been specifically configured. The
route is advertised with a metric of value (0 to 16777214; the default is 1). By default, the
route is advertised as an external type 2 route (metric-type 2). You can also configure a route
map separately and apply it with the route-map keyword to filter the default route that is
advertised.

(Optional) Define a special case area.

a. (Optional) Define a stub area:

Firewall(config-router)# area area_id stub [no-summary]

If a stub area is defined, all OSPF neighbors in that area must configure it as a stub.
You can include the no-summary keyword to create a totally stubby area; OSPF
prevents the introduction of any external or interarea routes into the stub area.

or

b. (Optional) Define an NSSA:

Firewall(config-router)# area area_id nssa [no-redistribution]
[default-information-originate [metric-type 1 | 2]
[metric metric_value]]

An NSSA is a stub area that allows external routes to be transported through. You
can use the no-redistribution keyword on an ABR firewall if you want external routes
to be redistributed only into normal areas, not into any NSSAs.

Use the default-information-originate keyword to generate a default route into the
NSSA. If that is used, you can define the default route as an external route type 1
(route cost plus the internal OSPF metric) or 2 (route cost without the internal OSPF
metric). You can also specify a default route metric as metric_value (0 to 16777214).

9.

10.

11.

c. (Optional) Set the default route cost:

Firewall(config-router)# area area_id default-cost cost

In a stub area or an NSSA, the firewall sends other area routers a default route in
place of any external or interarea routes. You can set the cost of this default route as
cost (0 to 65535; the default is 1).

(Optional) Restore backbone area connectivity with a virtual link:

Firewall(config-router)# area area_id virtual-link router_id
[authentication [message-digest | null]] [hello-interval seconds]
[retransmit-interval seconds] [transmit-delay seconds]
[dead-interval seconds] [authentication-key password]
[message-digest-key id md5 password]

If the backbone area becomes discontiguous during a router or link failure, OSPF routers can
use a virtual link to reconnect the backbone area. You can manually configure a virtual link
ahead of time so that it is used as a redundant connection in case an area loses connectivity
to the backbone.

Here, area_id is the transit area, or the area that must be crossed to reach the backbone from
the firewall. The router_id is the IP address of the far-end router that completes the virtual
link.

Because this is an extension of the backbone area, the virtual link must have many other
authentication and timer values defined. These values normally are defined for the OSPF
process and OSPF interfaces on the firewall. Use those values here as well as appropriate.

(Optional; ABR only) Summarize routes between areas:

Firewall(config-router)# area area_id range ip_address netmask
[advertise | not-advertise]

An ABR can reduce the number of routes it sends into an area (area_id) by sending a
summary address. The summary address is sent in place of any route that falls within the
range defined by ip_address and netmask, and the advertise keyword is assumed (the
default). If you do not want the summary address advertised, add the not-advertise keyword.

For example, you could use the following command to send a summary route into backbone
area 0 for all hosts and subnets within 172.18.0.0/16:

Firewall(config)# area 0 range 172.18.0.0 255.255.0.0

(Optional) Tune OSPF.

a. (Optional) Set the administrative distance for OSPF routes:

Firewall(config-router)# distance ospf [intra-area dl1]
[inter-area d2] [external d3]

By default, all OSPF routes have an administrative distance of 110. This is consistent
with Cisco routers. You can change the distance for intra-area routes (within an
OSPF area) to d1. You can change the distance for inter-area routes (from one area to
another) to d2. You can change the distance for external routes (from another routing
protocol into the OSPF area) to d3. If you set these distances differently, the firewall
can choose one type of route over another without comparing the OSPF metrics.

b. (Optional) Change the route calculation timers:

Firewall(config-router)# timers {spf spf_delay spf_holdtime |
Isa-group-pacing seconds}

You can configure the OSPF process to wait a delay time of spf_delay (0 to 65535
seconds; the default is 5) after receiving a topology change before starting the SPF
calculation. The firewall waits spf_holdtime (0 to 65535 seconds; the default is 10)
between two consecutive calculations.

You can also tune the calculation process with the Isa-group-pacing keyword. LSAS
are gathered and processed at intervals of seconds (10 to 1800 seconds; the default is
240).

12. (Optional) Configure an OSPF interface.
a. Select the OSPF interface to configure:

PIX 6.3 Firewall(config)# routing interface if_name

ASA, FWSM Firewall(config)# interface if_name

The firewall interface named if_name (inside or outside, for example) is configured
for OSPF parameters.

b. (Optional) Use authentication:

Firewall(config-if)# ospf authentication-key key

or

Firewall(config-if)# ospf message-digest-key key-id md5 key
Firewall(config-if)# ospf authentication message-digest

If authentication has been enabled for an OSPF area, you must also set up the
authentication key on each interface in that area. For simple cleartext authentication,
use the authentication-key keyword along with a preshared key (up to eight

characters with no white space). This key is sent in the clear within the OSPF LSAs.

You can use the more secure MD5 method instead by using the message-digest
keyword. MD5 keys are used to validate the MD5 hash value that is computed from
each OSPF LSA and the key itself. Only the MD5 hash value is sent in the OSPF
LSAs. You can define several keys by repeating the command. Each key is known by
a key-id index (1 to 255). The actual MDS5 key is a string of up to 16 text characters.

Tip

The key string found at index key-id on one router or firewall must match the same
key at key-id on all other neighboring routers or firewalls. You can change the keys
periodically by defining a new key at a new key-id index. The old key continues to
be used even though a new one has been defined. As soon as all neighboring routers
have the new key too, OSPF rolls over and uses the new authentication key. At that
time, you should remove the old MD5 keys with the no ospf message-digest key-id
routing interface configuration command.

c. (Optional) Set the OSPF interface priority:

Firewall(config-if)# ospf priority number

When multiple OSPF routers are connected to a single VLAN or broadcast domain,
one of them must be elected as the designated router (DR) and another as the backup
designated router (BDR). This is done by comparing the interface priority values; the
highest priority wins the election. By default, the priority is 1, but you can set it to
number (0 to 255; 0 prevents the router from becoming a DR or BDR).

d. (Optional) Adjust the OSPF timers:

- Set the hello interval:

Firewall(config-if)# ospf hello-interval seconds

The time between successive hello updates is set to seconds (1 to 65535; the default
is 10 seconds). If this is changed, the hello interval must be set identically on all
neighboring OSPF routers.

- Set the dead interval:

Firewall(config-if)# ospf dead-interval seconds

If no hello updates are received from a neighboring OSPF router in seconds (1 to
65535 seconds; the default is 4 times the hello interval, or 40 seconds), that neighbor
is declared to be down. If this is changed, the dead interval must be set identically on
all neighboring OSPF routers.

- Set the retransmit interval:

Firewall(config-if)# ospf retransmit-interval seconds

- If an LSA must be retransmitted to a neighbor, the firewall waits seconds (1 to
65535; the default is 5 seconds) before resending the LSA.

- Set the transmit delay time:

Firewall(config-if)# ospf transmit-delay seconds

- The firewall keeps an estimate of how long it takes to send an LSA on an interface.
The transmission delay is set to seconds (1 to 65535; the default is 1 second).

e. (Optional) Set the interface cost:

Firewall(config-if)# ospf cost interface cost

The unitless OSPF cost for the interface becomes interface_cost (0 to 65535; the
default is 10). The higher the interface bandwidth, the lower the cost value becomes.
A firewall has a default cost of 10 for all interfaces, regardless of their speeds. This
behavior is different from Cisco routers running Cisco 10S Software, where both
Fast Ethernet and Gigabit Ethernet have a cost of 1.

Redistributing Routes from Another Source into OSPF

When a firewall redistributes routes from any other source into OSPF, it automatically becomes
an ASBR by definition. You can (and should) use a route map to control which routes are
redistributed into OSPF. To configure a route map, follow these steps:

1. Use aroute map to filter redistributed routes.

a. Define the route map:

Firewall(config)# route-map map_tag [permit | deny] [seq_num]

The route map named map_tag (an arbitrary text string) either permits or denies a
certain action. You can repeat this command if you need to define several actions for
the same route map. In this case, you should assign a sequence number seq_num to
each one.

Use the permit keyword to define an action that redistributes routes into OSPF. The
deny keyword defines an action that is processed but does not redistribute routes.

b. Define one or more matching conditions.

If you configure multiple match statements, all of them must be met.

- Match against a firewall's next-hop outbound interface:

Firewall(config-route-map)# match interface interface_name

Routes with their next hop located out the specified firewall interface name are
matched.

- Match against a route's metric:

Firewall(config-route-map)# match metric metric_value
The metric_value is used to match the OSPF metric of each route.
- Match against the IP address of the route itself:
Firewall(config-route-map)# match ip address acl_id

An access list named acl_id is used to match each route's network address. The
access list must be configured separately and before this command is used. It should
contain permit entries for source addresses that represent the IP route.

- Match against the type of route:

Firewall(config-route-map)# match route-type {local | internal |
[external [type-1 | type-2]11%}

Routes are matched according to their type: local (locally generated), internal (OSPF

intra-area and interarea), external type-1 (OSPF Type 1 external), and external type-2
(OSPF Type 2 external).

- Match against external routes in an NSSA:
Firewall(config-route-map)# match nssa-external [type-1 | type-2]

For an NSSA, routes are matched according to OSPF external type 1 or type 2 (the
default).

- Match against the IP address of the next-hop router:
Firewall(config-route-map)# match ip next-hop acl_id [...acl_id]
Routes with the next-hop router addresses that are permitted by one or more access

lists are matched. If multiple access list names are listed, they are evaluated in the
order given.

- Match against the IP address of the advertising router:

Firewall(config-route-map)# match ip route-source acl_id
[---acl_id]

Routes that have been advertised by a router with IP addresses permitted by one or
more access lists are matched. If multiple access list names are listed, they are
evaluated in the order given.

c. (Optional) Define attributes to be set when matched:

- Set the next-hop IP address for a route:

Firewall(config-route-map)# set ip next-hop ip-address
[ip-address]

The next-hop router address for the matched route is replaced with the IP addresses
specified. These addresses correspond to adjacent or neighboring routers.

- Set the route metric:

Firewall(config-route-map)# set metric value

The redistributed route is assigned the specified metric value (0 to 4294967295). You
can also specify the metric value as a plus or minus sign with a number (-
2147483647 to +2147483647), causing the metric to be adjusted by that value.
Lower metric values signify preferred routes.

- Set the route metric type:

Firewall(config-route-map)# set metric-type {internal | external |
type-1 | type-2}

The metric type of the redistributed routes can be internal (internally generated),
external (the default is OSPF type 2), type-1 (OSPF type 1), or type-2 (OSPF type 2).

2. (Optional) Redistribute static routes into OSPF:

Firewall(config-router)# redistribute {static | connected} [metric
metric_value] [metric-type metric_type] [route-map map_name] [tag
tag_value] [subnets]

Either static routes (configured with the route command) or connected routes (subnets
directly connected to firewall interfaces) can be redistributed into the OSPF process. Use the
connected keyword only when you have firewall interfaces that are not configured to
participate in OSPF (as configured by the network OSPF command). Otherwise, OSPF
automatically learns directly connected interfaces and their subnets from the OSPF
configuration.

Routes that are redistributed can be matched and altered by the route-map named
map_name. If the route-map keyword is omitted, all routes are distributed.

You can also set fixed values for the metric_value (0 to 16777214), the metric_type
(internal, external, type-1, or type-2), and the route tag tag_value (an arbitrary number from
0 to 4294967295, used to match routes on other ASBRs) for all routes, not just ones matched
by a route map.

By default, only routes that are not subnetted (classful routes) are redistributed into OSPF
unless the subnets keyword is given.

3. Redistribute routes from one OSPF process into another:

Firewall(config-router)# redistribute ospf pid [match {internal | external
[1] 2] | nssa-external [1 | 2]}] [metric metric_value] [metric-type
metric_type] [route-map map_name] [tag tag_value] [subnets]

Routes from the other OSPF process ospf_pid can be redistributed into the OSPF process
being configured. You can conditionally redistribute routes by using a route-map named
map_name. If you omit the route-map keyword, all routes are redistributed.

If you do not use a route map, you can still redistribute only routes with specific metric types
by using the match keyword. The types include internal (internally generated), external
(OSPF type 1 or 2), and nssa-external (OSPF type 1 or 2 coming into an NSSA).

You can also set fixed values for the metric_value (0 to 16777214), metric_type (internal,
external, type-1, or type-2), and the route tag tag_value (an arbitrary number 0 to
4294967295, used to match routes on other ASBRs) for all routes, not just ones matched by
a route map.

By default, only routes that are not subnetted (classful routes) are redistributed into OSPF
unless the subnets keyword is given.

OSPF Example

A firewall is situated so that it connects to OSPF area 0 on its outside interface and to OSPF area
100 on its inside interface. Therefore, the firewall is an ABR. The outside interface is
172.19.200.2/24, and the inside interface is 192.168.1.1/24. One subnet on the inside has a public
IP address range 128.163.89.0/24, and all the other inside networks fall within 192.168.0.0.

Because the inside firewall interface has a higher IP address, OSPF uses that address as its router
ID by default. It might be better practice to use an outside address for exchanges with OSPF
neighbors on the outside backbone area. Therefore, the router ID is configured for the outside
interface address.

Network 172.19.200.0/24 falls in OSPF area 0, and 192.168.0.0/16 falls in OSPF area 100 on the
inside. MD5 authentication is used for both the inside and outside OSPF areas.

The internal network 192.168.0.0 has private IP addresses and probably should not be advertised
toward the outside. Therefore, a prefix list named InsideFilter is configured to allow only the
internal subnet 128.163.89.0/24 (a global or public address range) to be advertised. In this case,
the prefix list is applied to area 0 so that it filters routing information coming in to that area. The

configuration to accomplish this is as follows:

PIX 6.3

Code View: Scroll / Show All
Firewall(config)# ip address inside

192.168.1.1 255.255.255.0
Firewall(config)# ip address outside

172.19.200.2 255.255.255.0
Firewall(config)# prefix-list
InsideFilter

10 deny 192.168.0.0/16
Firewall(config)# prefix-list
InsideFilter

20 permit 128.163.89.0/24

Firewall(config)# router ospf 1
Firewall(config-router)# router-id
172.19.200.2
Firewall(config-router)# network
172.19.200.0 255.255.255.0 area O
Firewall(config-router)# network
192.168.0.0 255.255.0.0 area 100
Firewall(config-router)# area O
authentication message-digest

Firewall(config-router)# area 0 filter-

list prefix InsideFilter in
Firewall(config-router)# area 100

authentication message-digest
Firewall(config-router)# exit

Firewall(config)# routing interface
outside

Firewall (config-routing)#ospf message-
digest-key 1 md5 myoutsidekey

Firewall(config)# routing interface

inside

Firewall (config-routing)#ospf message-
digest-key 1 md5 myinsidekey

ASA

Code View: Scroll / Show All
Firewall(config)# interface
gigabitethernetl
Firewall(config-if)# nameilf inside
Firewall(config-if)# ip address
192.168.1.1 255.255.255.0
Firewall(config)# interface
gigabitethernetO
Firewall(config-if)# nameif outside
Firewall(config-if)# ip address
outside
172.19.200.2 255.255.255.0
Firewall(config-if)# exit
Firewall(config)# prefix-list
InsideFilter 10 deny 192.168.0.0/16
Firewall(config)# prefix-list
InsideFilter 20 permit
128.163.89.0/24

Firewall(config)# router ospf 1
Firewall(config-router)# router-id
172.19.200.2
Firewall(config-router)# network
172.19.200.0 255.255.255.0 area O
Firewall(config-router)# network
192.168.0.0 255.255.0.0 area 100
Firewall(config-router)# area O
authentication message-digest
Firewall(config-router)# area O
filter-
list prefix InsideFilter in
Firewall(config-router)# area 100
authentication message-digest
Firewall(config-router)# exit

Firewall(config)# interface
gigabitethernetl
Firewall(config-if)# ospf message-
digest-key 1 md5 myoutsidekey
Firewall(config-if)# interface
gigabitethernetO
Firewall(config-if)# ospf message-
digest-key 1 md5 myinsidekey
Firewall(config-if)# exit

PIX 6.3 ASA

3-3. DHCP Server Functions

A firewall can act as a DHCP server, assigning IP addresses dynamically to requesting clients. A
firewall DHCP server returns its own interface address as the client's default gateway. The
interface subnet mask is returned for the client to use as well.

Cisco firewalls support up to 256 active clients at any one time. (The Cisco PIX 501 supports
either 32, 128, or 256 clients, depending on the user license.)

No provisions are available for configuring static address assignments. A firewall can manage
only dynamic address assignments from a pool of contiguous IP addresses.

Beginning with ASA 7.2(1), a firewall can generate dynamic DNS information based on the
DHCP server. This allows DNS records to be updated dynamically, as hosts acquire an IP
address. The dynamic DNS feature is covered in detail in the "Updating Dynamic DNS from a
DHCP Server" section later in this chapter.

A firewall can also act as a DHCP relay, forwarding DHCP requests received on one interface to
DHCP servers found on another interface. DHCP relay is similar to the ip helper-address
command on routers and switches running Cisco 10S Software.

The DHCP relay service accepts DHCP request broadcast packets and converts them to DHCP
request unicast packets. The unicasts are forwarded to the DHCP servers. After DHCP replies are
received, they are relayed back to the requesting client.

Using the Firewall as a DHCP Server

Follow these steps to configure the DHCP server feature:

1. Define an address pool for host assignments:

Firewall(config)# dhcpd address ipl[-ip2] if_name

The pool of available client addresses on the firewall interface named if _name (inside, for
example) goes from a lower-limit address ip1 to an upper-limit address ip2. These two
addresses must be separated by a hyphen and must belong to the same subnet. In addition,
the pool of addresses must reside in the same IP subnet assigned to the firewall interface. In
releases before PIX 6.3, only non-outside interfaces were supported. After 6.3, the outside
interface can be used, too.

2. Supply clients with domain information.

a. (Optional) Hand out dynamic information obtained by the firewall:

Firewall(config)# dhcpd auto_config [outside]

You can use this command if your firewall is configured to obtain IP address
information for its interface from an independent DHCP server. After the DNS and
WINS server addresses and the domain name are learned from the DHCP server, the
firewall can push those same values out to its own DHCP clients. In this scenario, the
firewall usually acts as a DHCP client on its outside interface and as a DHCP server
on its inside interface.

or
b. (Optional) Hand out DNS server addresses:

Firewall(config)# dhcpd dns dnsl [dns2]

You can configure up to two DNS server addresses to hand out to DHCP clients. The
server IP addresses are given as dnsl and dns2.

c. (Optional) Hand out WINS server addresses:

Firewall(config)# dhcpd wins winsl [wins2]

WINS servers are used to resolve Microsoft NetBIOS names into IP addresses. You
can configure up to two WINS server addresses to hand out to DHCP clients. The
WINS IP addresses are given as winsl and wins2.

d. (Optional) Hand out the domain name:

Firewall(config)# dhcpd domain domain_name

You can configure the domain name that the client will learn and use as
domain_name (the fully qualified domain name, such as myexample.com).

3. Define the client lease time:

Firewall(config)# dhcpd lease lease length

By default, the firewall supplies DHCP replies with lease times of 3600 seconds (1 hour).
You can adjust the lease time to be lease_length seconds (300 to 2,147,483,647 seconds).

Tip
If your clients must compete for addresses in a relatively small pool, a shorter lease time is

better. After a client is turned off, its lease runs out soon, and another client can be assigned
that address.

If most of your clients are stable and stay in use most of the day, you can lengthen the lease
time. A longer lease time reserves an address for a client, even if that client turns off and
returns later.

Lease times also affect your ability to correlate workstations and their address assignments
with Syslog entries from the firewall. Sometimes, you might need to track down which
workstation was using a specific address on a certain day and time. The firewall logs only
DHCP assignments, so if the lease times are long, the DHCP log entries are sparse and more
difficult to find.

(Optional) Hand out options for Cisco IP Phones.

Cisco IP Phones must receive additional information about their environment through
DHCP. This information is sent as DHCP options.

a. ldentify the IP phone TFTP server:

Firewall(config)# dhcpd option 66 {ascii server_name | ip server_ip}
Firewall(config)# dhcpd option 150 ip server_ipl [server_ip2]

A Cisco IP Phone must find the TFTP server where it can download its
configuration. This information is provided as either DHCP option 66 (a single TFTP
server) or option 150 (up to two TFTP servers). You can define one or both of these
options; the IP phone accepts and tries them both.

If you use option 66, you can use the ascii keyword to define the TFTP server's host
name as server_name (a text string). Otherwise, you can use the ip keyword to define
the server's IP address as server_ip.

If you use option 150, you can define one or two TFTP server addresses.

b. (Optional) Identify the IP phone default routers:

Firewall(config)# dhcpd option 3 ip router_ipl [router_ip2]

By default, the firewall sends its own interface address as the client's default
gateway. In some cases, there might be two potential gateways or routers for Cisco
IP Phones to use. You can define these in DHCP option 3 as router_ipl and
router_ip2.

c. (Optional) Provide a generic DHCP option:

Firewall(config)# dhcpd option code {ascii string | ip ip_address
| hex hex_string}

If you need to provide an arbitrary DHCP option to clients, you can specify the
option number as code (0 to 255). The option value can be an ASCII character string,
an IP address, or a string of hexadecimal characters (pairs of hex digits with no white

space and no leading 0x).

5. (Optional) Adjust the preassignment ping timer:

Firewall(config)# dhcpd ping_timeout timeout

When the firewall receives a DHCP request from a potential client, it looks up the next
available IP address in the pool. Before a DHCP reply is returned, the firewall tests to make
sure that the IP address is not already in use by some other host. (This could occur if another
host had its IP address statically configured without the firewall's knowledge.)

The firewall sends an ICMP echo (ping) request and waits timeout milliseconds (100 to
10000 ms; the default is 750) for a reply. If no reply occurs in that time frame, it assumes
that the IP address is indeed available and assigns it to the client. If an ICMP reply is
received from that address, the firewall knows that the address is already taken.

6. Enable the DHCP server:

Firewall(config)# dhcpd enable if_name

The DHCP server starts listening for requests on the firewall interface named if_name
(inside, for example). You can define and enable DHCP servers on more than one interface
by repeating the sequence of DHCP configuration commands.

Tip

You can display the current DHCP server parameters with the show dhcpd EXEC command. To
see the current DHCP client-address bindings, use the show dhcpd bindings EXEC command. To
see the number of different DHCP message types received, use the show dhcpd statistics EXEC
command.

You can also see information about DHCP activity by using the debug dhcpd event command.
This can be useful if you think a client is requesting an address but is never receiving a reply.

DHCP Server Example

A PIX Firewall is configured as a DHCP server for clients on its inside interface. Clients are
assigned an address from the pool 192.168.200.10 through 192.168.200.200. They also receive
DNS addresses 192.168.100.5 and 192.168.100.6, WINS addresses 192.168.100.15 and
192.168.100.16, and a domain name of mywhatastrangeexample.com.

PIX 6.3 ASA or FWSM

PIX 6.3 ASA or FWSM

Firewall(config)# ip address inside Firewall(config)# interface
192.168.200.1 255.255.255.0 gigabitethernetl
Firewall(config)# dhcpd address Firewall(config-if)# description
192.168.200.10-192.168.200.200 inside |inside
Firewall(config)# dhcpd dns Firewall(config-if)# ip address
192.168.100.5 192.168.200.1 255.255.255.0
192.168.100.6 Firewall(config-if)# exit
Firewall(config)# dhcpd wins Firewall(config)# dhcpd address
192.168.100.15 192.168.100.16 192.168.200.10-192.168.200.200
Firewall(config)# dhcpd domain inside
mywhatastrangeexample.com Firewall(config)# dhcpd dns

Firewall(config)# dhcpd enable inside 192.168.100.5
192.168.100.6
Firewall(config)# dhcpd wins
192.168.100.15 192.168.100.16
Firewall(config)# dhcpd domain
mywhatastrangeexample.com
Firewall(config)# dhcpd enable inside

Updating Dynamic DNS from a DHCP Server

Traditionally, hostnames and IP addresses have been associated through the use of DNS,
requiring static configurations. While this might be practical for servers, which rarely change
their hostnames or addresses, it does not lend itself to timely updates for clients that frequently
change IP addresses.

Dynamic DNS (DDNS) solves this problem by keeping the DNS function, but allowing records
to be updated dynamically, as they change. DDNS is most useful when it is teamed with a DHCP
server; as the DHCP server hands out IP addresses to clients, it can send a DDNS update
immediately. This allows mobile or transient clients to keep a stable hostname and to always be
found through a DNS lookup.

On the ASA platform, the DDNS database can be updated from the following sources:

e The ASA DHCP server, as it provides IP addresses to PC clients

e The ASA DHCP client, as it requests an address from an ISP

e PCclients, as they send a DHCP request; the ASA can relay the DNS information
provided by the clients

On the ASA, DDNS uses the IETF standard method defined in RFC 2136. Through DDNS, the
following DNS resource records can be updated for a host:

e Aresource record— Contains the hostname-to-address mapping (for example,
WWW.Cisco.com resolves to 198.133.219.25)

e PTR resource record— Contains the address-to-hostname mapping (for example,
219.133.198.in-addr.arpa resolves to www.cisco.com)

To use DDNS, you must configure either a DHCP client, a DHCP server, or both on the ASA.
The DHCP mechanism is always used to send updates to a DNS server that is DDNS-capable.
You can use the following steps to configure DDNS support:

1. Identify DNS servers that support DDNS:

asa(config)# dns server-group DefaultDNS

asa(config-dns-server-group)# dns name-server ip_address
[ip_address?]...[1p_address6]

asa(config-dns-server-group)# exit

You can enter up to six IP addresses of DDNS servers where the ASA can send dynamic
updates.

2. Enable DNS use on an interface:

asa(config)# dns domain-lookup if _name

Identify the ASA interface that is closest to the DNS servers. The ASA sends DDNS updates
on that interface.

3. Define an update method:

asa(config)# ddns update method method name
The DDNS update method policy is known by the arbitrary method _name string.

4. Specify the update method:

asa(DDNS-update-method)# ddns [both]

By default, the ASA attempts to update only the A resource record. You can add the both
keyword to make it update both the A and PTR resource records.

5. (Optional) Set the maximum update period:

asa(DDNS-update-method)# interval maximum days hours minutes seconds

By default, the ASA sends DDNS updates only as they occur, based on the activity of DHCP
clients. You can also set a maximum update interval, so that the ASA does not wait more
than a defined time before sending another update. The interval is defined as days (0 to 364),
hours (0 to 23), minutes (0 to 59), and seconds (0 to 59) and should be chosen to match the
requirements of the DDNS servers.

(Optional) Send DDNS updates from the ASA DHCP client:

asa(config)# interface if_name
asa(config-if)# ddns update method_name
asa(config-if)# ddns update hostname hostname
asa(config-if)# Ip address dhcp [setroute]

The DDNS method named method_name (configured in Step 3) is used on the specified
ASA interface. When the ASA DHCP client sends a DDNS update, it needs to know its own
hostname. You can specify the hostname as hostname, as either a fully qualified domain
name (FQDN) or as a hostname that is prepended to the ASA's domain name (configured
with the domain-name command).

Finally, the ip address dhcp command starts the DHCP client and requests an IP address for
the interface. As soon as an address is obtained, the DHCP client attempts to send its DDNS
update to bind the IP address to the hostname.

You can also specify the DDNS policy for the ASA DHCP client with the following
interface configuration command:

asa(config-if)# dhcp client update dns [server {both | none}]

By default, the ASA DHCP client does not update its DNS record on its own. Issuing this
command enables the client to send DDNS updates through the ASA DHCP server, toward
the DNS. The client instructs the server to send only PTR updates, unless the server keyword
is added, along with either the both (send both A and PTR updates) or none (send no DDNS
updates) keyword.

This command can also be given as a global configuration command, to provide a global
policy for all interfaces. You can enter a global and an interface version of the same
command; the interface command always overrides the global settings. Be aware that the
global version of this command uses a hyphen (dhcp-client), while the interface version does
not (dhcp client).

(Optional) Send DDNS updates from the ASA DHCP server:

A DHCP server can be configured on an ASA, usually facing the inside or secure side where
client PCs are located. The ASA can send DDNS updates based on the requests made from
the clients to the DHCP server. You can configure the ASA DHCP server to send DDNS
updates with the following global configuration command:

asa(config)# dhcpd update dns [both] [override] [interface if_name]

As soon as this command is given, the ASA DHCP server sends updates for PTR resource
records only. You can add the both keyword to send both A and PTR records. If you add the
override keyword, the ASA DHCP server overrides the information contained in all DHCP
client requests—including the ASA DHCP client configuration. For example, a DHCP client

might try to send a PTR record, but the DHCP server can override that by sending both A
and PTR records.

If you want to enable DDNS on only a single ASA interface, you can add the interface
keyword. Otherwise, the ASA generates DDNS updates on any interface that has a DHCP
server configured.

Tip

The ASA DHCP server generates DDNS updates on any interface that has a DHCP server
configured. The ASA attempts a reverse DNS lookup on the DHCP client's IP address, to find
the authoritative DNS for the client's domain. The Start of Authority (SOA) entry is requested
for the client's IP address. If the DNS does not already have the client's domain configured, along
with the SOA information, the ASA cannot register DDNS updates successfully.

In the case of private or RFC 1918 addresses inside the firewall boundary, the DNS does not
return a valid SOA for the private subnet unless the DDNS-capable machines in your network
are already preconfigured with definitions for your local subnets, along with a correct SOA
entry.

Verifying DDNS Operation

Because you can configure both DHCP client and DHCP server on a single ASA, you might
become confused about what is actually configured and running on which interfaces. You can
use the show dhcpd state command to see where the client and server functions exist, as in the
following example.

Firewall# show dhcpd state

Context Configured as DHCP Server

Interface outside, Configured for DHCP CLIENT
Interface inside, Configured for DHCP SERVER
Interface dmz, Not Configured for DHCP
Interface management, Not Configured for DHCP
Firewal 1#

You can use the show ddns update method to see the configured method and the show ddns
update interface command to see the DDNS method that is applied to each ASA interface.
Finally, you can view debugging output by entering the debug ddns command.

As an example, suppose an ASA is to be configured to provide DDNS updates to a DNS server.
The ASA should have a policy to allow updates to both the A and PTR resource records, using
the update method called myddns. On the outside interface, the ASA uses its DHCP client to

obtain an address. The DHCP client also is allowed to send DDNS updates with its hostname
(asa.mycompany.com) and its newly obtained IP address.

On the inside interface, the ASA should be configured to run a DHCP server for inside clients.
As inside clients send DHCP requests, their hostname and assigned IP addresses are sent on as
DDNS updates. The following commands could be used to accomplish these example
requirements.

Code View: Scroll / Show All

Firewall(config)# hostname asa
Firewall(config)# domain-name mycompany.com
Firewall(config)# ddns update method myddns
Firewall(config)# ddns both

1

Firewall(config)# interface Ethernet0/0
Firewall(config-if)# nameif outside

Firewall(config-if)# security-level 0

Firewall(config-if)# ddns update hostname asa.mycompany.com
Firewall(config-if)# ddns update myddns
Firewall(config-if)# ip address dhcp setroute

1

Firewall(config-if)# interface Ethernet0/1
Firewall(config-if)# nameif inside

Firewall(config-if)# security-level 100
Firewall(config-if)# dhcp client update dns
Firewall(config-if)# ip address 192.168.100.1 255.255.255.0
Firewall(config-if)# exit

I

Firewall(config)# dns domain-lookup outside
Firewall(config)# dns server-group DefaultDNS
Firewall(config-dns-server-group)# name-server 128.163.111.7
Firewall(config-dns-server-group)# domain-name mycompany.com
Firewal I (config-dns-server-group)# exit

Firewall(config)# dhcp-client update dns

Firewall(config)# dhcpd dns 128.163.97.5 128.163.3.10
Firewall(config)# dhcpd update dns both

I

Firewall(config)# dhcpd address 192.168.100.10-192.168.100.254 inside
Firewall(config)# dhcpd enable inside

Relaying DHCP Requests to a DHCP Server

Follow these steps to configure a firewall to act as a DHCP relay:

1. Define a real DHCP server:

Firewall(config)# dhcprelay server dhcp_server_ip server_ifc

A real DHCP server can be found at IP address dhcp_server_ip on the firewall interface
named server_ifc (inside, for example). You can repeat this command to define up to four
real DHCP servers.

When DHCP requests (broadcasts) are received on one firewall interface, they are converted
to UDP port 67 unicasts destined for the real DHCP servers on another interface. If multiple
servers are defined, DHCP requests are relayed to all of them simultaneously.

2. (Optional) Adjust the DHCP reply timeout:

Firewall(config)# dhcprelay timeout seconds

By default, the firewall waits 60 seconds to receive a reply from a real DHCP server. If a
reply is returned within that time, it is relayed back toward the client. If a reply is not
returned within that time, nothing is relayed back to the client, and any overdue server reply
is simply dropped. You can adjust the timeout to seconds (1 to 3600 seconds).

3. (Optional) Inject the firewall interface as the default gateway:

Firewall(config)# dhcprelay setroute client_ifc

When DHCP replies are returned by a real DHCP server, a default gateway could be
specified in the reply packet. By default, this information is passed on through the firewall so
that the client receives it.

You can configure the firewall to replace any default gateway information with its own
interface address. This causes the DHCP reply packet to list the firewall interface closest to
the client, the interface named client_ifc, as the default gateway.

4. Enable the DHCP relay service:

Firewall(config)# dhcprelay enable client ifc

The DHCP relay service is started only on the firewall interface named client_ifc (inside, for
example). This is the interface where DHCP clients are located.

DHCP Relay Example

A DHCP relay is configured to accept DHCP requests from clients on the inside interface and
relay them to the DHCP server at 192.168.1.1 on the DMZ interface. The firewall waits 120
seconds for a reply from the DHCP server. The firewall's inside interface address is given to the
clients as a default gateway. You can use the following commands to accomplish this:

Firewall(config)# dhcprelay server 192.168.1.1 dmz
Firewall(config)# dhcprelay timeout 120
Firewall(config)# dhcprelay setroute inside
Firewall(config)# dhcprelay enable inside

Tip

You can monitor DHCP relay activity by looking at the output from the show dhcprelay statistics
EXEC command. The output shows the counters of the various DHCP operations relayed to and
from the real DHCP server, as in the following example:

Firewall# show dhcprelay statistics
Packets Relayed
BOOTREQUEST O
DHCPDISCOVER 7
DHCPREQUEST 3
DHCPDECLINE O
DHCPRELEASE 0
DHCPINFORM O
BOOTREPLY O
DHCPOFFER 7
DHCPACK 3
DHCPNAK O

3-4. Multicast Support

To participate in forwarding and inspecting IP multicast traffic, a firewall can coexist with
multicast routers running Protocol-Independent Multicast (PIM) sparse mode.

A firewall can operate as an IGMP proxy agent, also called a stub router. For all multicast-
related operations, the firewall acts on behalf of the recipients. IGMP requests from recipient
hosts on one firewall interface are intercepted, inspected, and relayed to multicast routers on
another firewall interface.

Beginning with ASA 7.0 and FWSM 3.1(1), a firewall can also be configured to act as a PIM
router so that it communicates with other PIM routers to build a complete multicast distribution
tree.

After recipients join multicast groups, the firewall can intercept, inspect, and relay multicast
traffic from the source on one interface to the recipients on another interface.

Multicast Overview
A network uses three basic types of IP traffic:

e Unicast— Packets that are sent from one source host address to a single destination host
address. Unicast packets are forwarded by finding the destination IP address in routing
tables.

o Broadcast— Packets that are sent from one source host address to a broadcast destination
address. The destination can be all hosts (255.255.255.255), a directed broadcast to a

subnet (that is, 192.168.10.255), or some portion of a subnet. A router or Layer 3 device
does not forward these by default unless some method of relaying has been configured.

e Multicast— Packets that are sent from one source host address to a special group-based
destination address. The destination represents only the hosts that are interested in
receiving the packets, and no others. A router or Layer 3 device does not forward these
packets by default unless some form of multicast routing is enabled.

Two extremes are covered here—a unicast, which travels from host to host, and a broadcast,
which travels from one host to everyone on a segment. Multicast falls somewhere in the middle,
where the intention is to send packets from one host to only the users who want to receive
them—namely, those in the designated multicast group. Ideally, the recipients of multicast
packets could be located anywhere, not just on the local segment.

Multicast traffic is generally unidirectional. Because many hosts receive the same data, it makes
little sense to allow one of the hosts to send packets back toward the source over the multicast
mechanism. Instead, a receiving host can send return traffic to the source as a unicast. Multicast
traffic is also sent in a best-effort connectionless format. UDP (connectionless) is the commonly
used format, whereas TCP (connection-oriented) is not.

Hosts that want to receive data from a multicast source can join or leave a multicast group
dynamically. In addition, a host can decide to become a member of more than one multicast
group at any time. The principal network task is then to figure out how to deliver multicast traffic
to the group members without disturbing other uninterested hosts.

Multicast Addressing

Routers and switches must have a way to distinguish multicast traffic from unicasts or
broadcasts. This is done through IP addressing by reserving the Class D IP address range,
224.0.0.0 through 239.255.255.255, for multicasting. Network devices can quickly pick out
multicast IP addresses by looking at the four most-significant bits, which are always 1110.

How does a router or switch relate a multicast IP address to a MAC address? There is no ARP
equivalent for multicast address mapping. Instead, a reserved Organizationally Unique Identifier
(OUI) value is set aside so that multicast MAC addresses always begin with 0100.5e (plus the
next-lower bit, which is 0). The lower 28 bits of the multicast IP address must also be mapped
into the lower 23 bits of the MAC address by a simple algorithm.

Some of the IP multicast address space has been reserved for a particular use:

o Complete multicast space (224.0.0.0 through 239.255.255.255)— The entire range of IP
addresses that can be used for multicast purposes.

e Link-local addresses (224.0.0.0 through 224.0.0.255)— Used by network protocols only
on the local network segment. Routers do not forward these packets.

This space includes the all-hosts address 224.0.0.1, all-routers 224.0.0.2, OSPF-routers
224.0.0.5, and so on. These are also known as fixed-group addresses because they are well-
known and predefined.

o Administratively scoped addresses (239.0.0.0 through 239.255.255.255)— Used in
private multicast domains, much like the private IP address ranges from RFC 1918.
These addresses are not routed between domains, so they can be reused.

e Globally scoped addresses (224.0.1.0 through 238.255.255.255)— Used by any entity.
These addresses can be routed across an organization or the Internet, so they must be
unique and globally significant. (Think of this range as neither local nor private; it is the
rest of the multicast range.)

Forwarding Multicast Traffic

IP multicast traffic must be forwarded from one network interface to another, just like any other
Layer 3 packets are handled. The difference is in knowing where to forward the packets. For
example, unicast IP packets have only one destination interface on a router or firewall (even if
multiple paths exist). Multicast IP packets, however, can have many destination interfaces,
depending on where the recipients are located.

Cisco firewalls running PIXX 6.2 or 6.3 have a limited multicast capability. They can act only as a
multicast forwarding proxy, also known as a stub multicast router (SMR), depending on other
routers in the network to actually route the multicast packets. The firewalls can determine where
the multicast recipients are located on their own interfaces. They must be statically configured to
forward the multicast traffic between a source and the recipients.

Beginning with ASA 7.0 and FWSM 3.1(1), Cisco firewalls can participate in multicast routing
by using the PIM routing protocol. This lets a firewall communicate with other PIM routers to
distribute multicast traffic dynamically and along the best paths.

Multicast Trees

The routers in a network must determine a forwarding path to get multicast packets from the
source (sender) to each of the recipients, regardless of where they are located. Think of the
network as a tree structure. At the root of the tree is the source, blindly sending IP packets to a
specific multicast address. Each router along the way sits at a branch or fork in the tree. If a
router knows where all the multicast group recipients are located, it also knows which branches
of the tree to replicate the multicast packets onto. Some routers have no downstream recipients,
so they do not need to forward the multicast traffic. Other routers might have many downstream
recipients.

This tree structure is somewhat similar to a spanning-tree topology because it has a root at one
end and leaf nodes (the recipients) at the other end. The tree is also loop-free so that none of the
multicast traffic gets fed back into the tree.

Tip

In multicast routing, the router nearest the multicast source is called the first-hop router. It is the
first hop that multicast packets reach when they leave the source. Routers at the tree's leaf nodes,
nearest the multicast receivers, are called last-hop routers. They are the last hop that multicast
packets reach at the end of their journey.

Reverse Path Forwarding

Multicast routers usually have one test to perform on every multicast packet they receive.
Reverse Path Forwarding (RPF) is a means to make sure packets are not being injected back into
the tree at an unexpected location.

As a packet is received on a router interface, the source IP address is inspected. The idea is to
verify that the packet arrived on the same interface where the source can be found. If this is true,
the packet is actually proceeding out the tree's branches, away from the source. If this is not true,
someone else has injected the packet on an unexpected interface, headed back down the tree's
branches toward the source.

To perform the RPF test, a PIM router looks up the source address in its unicast routing table. If
the next-hop interface used to reach the source address also matches the interface where the
packet was received, the packet can be forwarded or replicated toward the multicast recipients. If
not, the packet is quietly discarded.

IGMP: Finding Multicast Group Recipients

How does a router know of the recipients in a multicast group, much less their locations? To
receive multicast traffic from a source, both the source and every recipient must first join a
common multicast group, known by its multicast IP address.

A host can join a multicast group by sending a request to its local router. This is done through
Internet Group Management Protocol (IGMP). IGMPv1 is defined in RFC 1112, and its
successor, IGMPV2, is defined in RFC 2236. Think of IGMP as a means of maintaining group
membership only on the local router.

When several hosts join a group by contacting their local routers, it is the multicast routing
protocol (such as PIM) that "connects the dots™ and forms the multicast tree between routers.

Note

Keep in mind that IGMP is always used on multicast routers and Cisco firewalls to interact with
multicast hosts. In PIX 6.3 and earlier, Stub Multicast Routing offers IGMP for local group
membership and IGMP forwarding so that multicast routers can use the IGMP information on a
broader scale.

PIM is available only beginning with ASA 7.0 and FWSM 3.1(1). The firewall then becomes a
true multicast router, running both PIM and IGMP.

IGMPv1

To join a multicast group, a host can dynamically send a Membership Report IGMP message to
its local router (or firewall). This message tells the router what multicast address (group) the host
is joining. The multicast address is used as the IGMP packet's destination IP address, as well as
the group address requested in the message.

Every 60 seconds, one router on each network segment queries all the directly connected hosts to
see if they are interested in receiving multicast traffic. This router is known as the IGMPv1
Querier. It functions simply to invite hosts to join a group.

Queries are sent to the 224.0.0.1 all-hosts multicast address for quick distribution. (By definition,
every host must listen to the all-hosts address; no group membership is required.) If a host is
interested in joining a group, or if it wants to continue receiving a group that it has already
joined, it must respond to the router with a membership report.

Hosts can join multicast groups at any time. However, IGMPv1 does not have a mechanism to
allow a host to leave a group if it is no longer interested in the group’s content. Instead, routers
age a multicast group out of an interface (network segment) if no membership reports are
received for three consecutive query intervals. This means that, by default, multicast traffic is
still sent onto a segment for up to 3 minutes after all the group members have stopped listening.

Notice that a router does not need to keep a complete host membership list for each multicast
group that is active. Rather, it needs to record only which multicast groups are active on which
interfaces.

IGMPV2

IGMP version 2 introduced several differences from the first version. Queries can be sent as
General Queries to the all-hosts address (as in IGMPv1). They also can be sent as Group-
Specific Queries, sent only to members of a specific group.

In addition, hosts are allowed to leave a group dynamically. When a host decides to leave a
group it has joined, it sends a Leave Group message to the all-routers address (224.0.0.2). All
routers on the local segment take note, and the Querier router decides to investigate further. It
responds with a Group-Specific Query message, asking if anyone is still interested in receiving
traffic for that group. Any other hosts must reply with a Membership Report. Otherwise, the
Querier router safely assumes that there is no need to continue forwarding the group traffic on
that segment.

Note

If any IGMPV1 routers are on a segment, all multicast routers on the segment must run IGMPVL1.
Otherwise, the IGMPvV1 routers cannot understand the IGMPv2 messages.

IGMPV2 is enabled by default on Cisco router and firewall interfaces.

PIM: Building a Multicast Distribution Tree

PIM is a routing protocol that can be used to forward multicast traffic. PIM operates
independently of any particular IP routing protocol. Therefore, PIM uses the IP unicast routing
table and does not keep a separate multicast routing table. (The unicast routing table is itself
routing protocol-independent because one or more routing protocols can be used to populate a
single table.)

PIM can operate in two modes, depending on the density of the recipients in a multicast group.
Cisco has developed a third hybrid mode as well. The PIM modes are as follows:

e PIM dense mode (PIM-DM)— Multicast routers assume that multicast recipients are
located everywhere, on every router and every router interface. After a tree is built, its
branches are pruned if a multicast group has no active recipients.

e PIM sparse mode (PIM-SM)— Multicast routers construct a distribution tree by adding
branches only as recipients join a multicast group.

e PIM sparse-dense mode— Multicast routers operate in dense or sparse mode, depending
on how the multicast group is configured.

In addition, two versions of the PIM protocol can be used in a network: PIM version 1 and PIM
version 2.

Cisco firewalls running ASA 7.0 or later, as well as FWSM 3.1(1) or later, can operate only in
PIM sparse mode, although they can coexist with other routers running PIM-SM or PIM sparse-
dense mode.

PIM Sparse Mode

PIM sparse mode takes a "bottom-up™ approach to constructing a multicast distribution tree. The
tree is built by beginning with the recipients or group members at the end leaf nodes and
extending back toward a central root point.

Sparse mode also works on the idea of a shared tree structure, where the root is not necessarily
the multicast source. Instead, the root is a PIM-SM router that is centrally located in the network.
This root router is called the rendezvous point (RP).

The tree from the RP to the group members is actually a subset of the tree that could be drawn
from the source to the group members. If a multicast source anywhere in the network can register
for group membership with the RP, the tree can be completed end-to-end. Because of this, the
sparse mode tree is called a shared tree.

Note

Sparse mode multicast flows are designated by a (source,destination) pair. The letters S and G
represent a specific source and group, respectively. An asterisk (*) can also be used to represent
any source or destination. For example, multicast flows over the shared tree are described as
(*,G) because the shared tree allows any source to send to a group G.

In PIM-SM, the shared tree is built using the following basic sequence of steps:
1. Avrecipient host joins a multicast group by sending an IGMP Membership Report to the local router.

2. The router adds an (*,G) entry in its own multicast routing table, where G represents the group IP
address. The router also maintains a list of outbound interfaces where group recipients are located.

3. The router sends a PIM Join request for (*,G) toward the RP at the tree's root.

4. The neighboring PIM router receives the Join request, adds a (*,G) entry in its own table, and adds
the arriving interface to its list of outbound interfaces for the group. The neighboring PIM router
then relays the Join request toward the RP.

5. When the RP finally receives the PIM Join request, it too adds a (*,G) entry and the arriving
interface to its own table. The shared tree has now been built from a recipient host to the RP.

For example, consider the network shown in Figure 3-16. A firewall separates a public and
private network and also acts as the RP for PIM multicast routing. Three receivers (end-user
hosts) in the network join a single multicast group in preparation to receive traffic from a
multicast source.

Figure 3-16. A Sample Network with PIM Multicast Routers

Router A Router B Receiver X

S5

Outside

Firewall . [\l"

Inside

|
Router C .h‘:”;:i
|

5 5

Receiver Y Heceiver Z

Figure 3-17 illustrates the group membership process. On the left side of the figure, the multicast
receivers X, Y, and Z each send an IGMP membership request to join group address 239.0.0.1.

Router B receives the request from Receiver X and also creates a multicast route entry

(*,239.0.0.1) that points back toward the receiver. Router B also sends a PIM Join message for
(*,239.0.0.1) toward the RP, which adds the link between it and the firewall to the multicast tree.

Figure 3-17. Building a Shared Multicast Tree with PIM

[View full size image]

Building the PIM Shared Tree

Router A Raceiver X
5 -
Router B — 7’
add (*, 2320.0.1) | WP Join
i | Group 239.0.0.1
- ;7 I
-‘ ------ 4
! Resulting PIM Shared Tree
| .
e) Firewall
Outsice \ ‘ @D
Firewall 1
. -(—.l'.'l) Inside Cutsioe
add {*, 239.0.0.1) I ‘ . 2330.0.1) . 23800.1]
[t] ¢ ¢
Pibd Jein 1 I 1EMAP Join
r2zmo0n) | Group239.0.0.1 I~ — L
connl M e e
[
: I Routar C Router B
Routar G o ", 239.0.0.1) . 239.0.0.1)
wid (7, 239.0.0.1) -

0
I

IGRP Jain

g9

Recaiver Y Raceiver £

Router C takes similar steps for the IGMP request it receives from Receiver Y. Receiver Z is a
slightly different case; the firewall receives its IGMP request directly because it is directly
connected. The firewall adds a (*,239.0.0.1) multicast route entry to its table, pointing back
toward the receiver on the inside interface.

Notice how all the IGMP membership reports terminate at the closest router (or firewall) while
PIM Join messages travel from router to router. After the RP receives all the Join messages, the
multicast tree is complete, as shown in the right portion of Figure 3-17. The network topology
has been redrawn slightly to show how the RP (firewall) is at the root of the tree. This is called a
PIM shared tree because it is used by all the devices participating in the multicast group. Routers
that have no active multicast group receivers (Router A, for example) do not send a PIM Join
message, so they do not become part of the tree.

A shared tree always begins with the RP at the root and progresses downward toward the leaf
nodes, where the receivers are located. Only the PIM routers are shown, because they actually
build and use the tree. PIM shared trees are always unidirectional. Multicast packets can only
start at the RP and be sent toward the receivers.

Finally, a multicast source must also join the group so that traffic can flow toward the receivers.
The left portion of Figure 3-18 illustrates this process, where the source is connected to Router
C.

Figure 3-18. Adding a Multicast Source to PIM Trees

[View full size image]

Adding a Multicast Source

Boutar A Receiver X

o ()
o L4
Reuter B

-
. -F"i Firewall
[

Insicke Ouside
. ; Ouside R T:R1] N FEETCT X
irewall gl i
«G ——— |
3. Bewrcs Packels & '___,-’r ! ' (5, 2380401
I)
Encugmeduted ard Sar -~ ruche .
oo e FIP s Lineant. ! a "':_;__’:-.._ "'r_;t__’.'-.._ a
Pl Asgister Messnges ¢ 13, P i outer O . I ‘ auter B
[

/ 15, 20 0.0
! ! A
i ‘ / rampany| | i EmAn)
1 # |
k e B
_ " 4. Sond PIM Sigp |

Aeuter C r}’:“ a7 Pegte Metsiga “

1. Source Begne *‘
Sending Mubicas === == “
Coata 1o Group I
2 0 :

D D e [P Sitgaree] Toms
- == B SPT {0 Bowce
Multicest

P Recaiver ¥ Raceiver Z

When a source joins a multicast group, the following steps take place:

1. Asource S begins sending traffic to the multicast group address (239.0.0.1 in the example). Up to
this point, the multicast tree has not been extended to the source. In fact, notice that the source is
sending traffic upstream toward the RP! In the unidirectional shared tree, this is not allowed. This
point is dealt with in the next few steps.

2. The nearest PIM router receives the traffic destined for the multicast group and realizes that it is
coming from a source. The router must register the source with the RP so that it can become a part
of the tree. The multicast packets are encapsulated in PIM Register messages that are sent to the
RP as unicasts.

3. The RP unencapsulates the Register messages and sends the original multicast packets down the
tree toward the receivers.

The RP also sends an (S,G) PIM Join message downstream toward the source address so that a tree
can be built from the source to the RP. In the example, this is a (5,239.0.0.1) multicast flow. The
idea is to construct a path to carry multicast data from the source to the tree's root (the RP) so that
it can flow downward toward the receivers.

Note

The tree built from the source to the RP is not a part of the PIM shared tree. Instead, it is
called a shortest path tree (SPT) because it follows a path from a router (the RP in this case)
directly to the source. Because the SPT is separate from the shared tree, multicast packets
can travel upward toward the RP without interfering with packets traveling downward from
the RP toward the receivers.

In effect, these are two unidirectional trees with the RP always serving as the root.

4. After the SPT has been built from the source to the RP, there is no need to keep encapsulating the
source data as Register messages. The RP sends a PIM Register Stop message toward the source.
When the leaf node router at the source receives this, it stops sending the Register messages and
begins using the new SPT path.

The right portion of Figure 3-18 illustrates the resulting tree structures. The solid arrows show
the PIM shared tree, from the RP down to the routers where receivers are located. The broken-
line arrows represent the SPT that is built from the source up to the RP.

Although it is not shown in this example, last-hop PIM routers are allowed to perform an SPT
switchover to attempt to build a more direct path to the multicast source. This process is very
similar to the steps described previously, where specific (S,G) flows are added to the PIM routers
along the path. After an SPT switchover occurs, the RP is no longer required to be at the root of
the tree if a better path can be found.

To simplify the tree structure and improve efficiency, PIM can also support a bidirectional mode.
If every PIM router supporting a multicast group is configured for bidirectional mode, a single
multicast tree is formed to connect the multicast source to all its receivers.

Multicast packets can flow up or down the tree as necessary to disperse in the network. The PIM
routers take on designated forwarder (DF) roles, deciding whether to forward multicast packets
onto a network segment in the appropriate direction. Because a single bidirectional tree is used,
the multicast source can join the group without the PIM source registration process.

PIM RP Designation

In PIM sparse mode, every PIM router must know the RP's identity (IP address). After all, each
router has to send PIM Join/Prune messages toward the RP by using its unicast routing table to
find the correct interface.

The simplest method of identifying the RP is to manually configure its address in each PIM
router. If there are not many PIM routers to configure, this method is very straightforward.
However, if there are many PIM routers or if the RP address is likely to change in the future,
manual configuration can be cumbersome.

Note

Beginning with ASA 7.0 and FWSM 3.1(1), static RP configuration is the only option available.
Other more dynamic RP discovery methods are described in this section because they might be
used on PIM routers in your network.

Cisco also provides a proprietary means to automatically inform PIM-SM routers of the
appropriate RP for a group. This is known as Auto-RP. Routers that can potentially become an
RP are configured as candidate RPs. These routers advertise their capability over the Cisco-RP-
Announce multicast address 224.0.1.39.

These announcements are picked up by one or more centrally located and well-connected routers
that have been configured to function as mapping agents. A mapping agent collects and sends
RP-to-group mapping information to all PIM routers over the Cisco-RP-Discovery multicast
address 224.0.1.40.

A mapping agent can limit the scope of its RP discovery information by setting the time-to-live
(TTL) value in its messages. This limits how many router hops away the information will still be
valid. Any PIM router within this space dynamically learns of the candidate RPs that are
available to use.

The second version of PIM also includes a dynamic RP-to-group mapping advertisement
mechanism. This is known as the bootstrap router method and is standards-based.

PIMv2 is similar to the Cisco Auto-RP method. First, a bootstrap router (BSR) is identified; this
router learns about RP candidates for a group and advertises them to PIM routers. Only the BSR
and candidate RPs have to be configured; all other PIM routers learn of the appropriate RP
dynamically from the BSR.

These bootstrap messages permeate the entire PIM domain. The scope of the advertisements can
be limited by defining PIMv2 border routers, which do not forward the bootstrap messages
further.

Note
If Auto-RP is being used in your network, be aware that an ASA or FWSM firewall cannot

participate in the Auto-RP process. The firewall must have the PIM RP address statically
configured.

However, the candidate RP announcements over 224.0.1.39 and the Router Discovery messages
over 224.0.1.40 can pass through the firewall to reach PIM routers on the other side. Therefore,
the Auto-RP mechanism can still work across the firewall, but the firewall cannot directly benefit
from the dynamic RP discovery itself.

Configuring PIM

Use the following steps to configure PIM multicast routing on a firewall running ASA 7.0 or
later, or a FWSM running 3.1(1) or later. Keep in mind that you have to configure explicit access
list rules to permit multicast host access through a firewall.

All multicast traffic is subject to normal firewall inspection, with the exception of IGMP, PIM,
OSPF, and RIPv2. You do not have to configure address translation for the multicast group

addresses, however. The firewall automatically creates an internal identity NAT for addresses
such as 239.0.0.1, 239.255.148.199, and so on.

1. Enable multicast routing:

PIX 6.3 —

ASA, FWSM Firewall(config)# multicast-routing

Enabling multicast routing brings up PIM and IGMP on every firewall interface.
Tip
You can verify the current PIM status on each interface by using the following command:

Firewall# show pim interface {state-on | state-off}

For example, a firewall with PIM enabled on its inside and outside interfaces produces the
following output:

Firewall# show pim interface state-on

Address Interface PIM Nbr Hello DR DR

Count Intvl Prior
192.168.198.1 inside on 1 30 1 192.168.198.4
192.168.93.135 outside on 1 30 1 this system
Firewall# show pim interface state-off
Address Interface PIM Nbr Hello DR DR

Count Intvl Prior

192.168.77.1 dmz off 0 30 1 not elected
Firewal 1#

Identify the RP:

PIX 6.3 —

ASA, FWSMm Firewall(config)# pim rp-address ip_address
[acl_name] [bidir]

The RP is located at ip_address. By default, it is used for all 224.0.0.0/4 multicast group addresses.
You can use the RP for specific multicast addresses by configuring a standard access list named
acl_name and applying it in this command.

For example, the following commands can be used to define an RP for group addresses 239.0.0.0
through 239.0.0.15:

Code View: Scroll / Show All

Firewall(config)# access-list MyGroups standard permit 239.0.0.0
255.255.255.240
Firewall(config)# pim rp-address 192.168.100.1 MyGroups

Tip

Because the firewall cannot participate in any dynamic RP discovery methods (Auto-RP or
BSR), the RP address must be statically configured. If the firewall will act as the RP itself,
use one of the firewall's own interface addresses as the RP address in this command. Then,
for other routers, configure a static RP address using the address of the nearest firewall
interface. Even though the firewall is configured with only one of its own interfaces as the
RP address, it automatically supports the RP function for neighboring PIM routers on all
other interfaces.

Tip

By default, the firewall operates in normal PIM sparse mode for the multicast groups and
RP. You can add the bidir keyword if the RP and its associated PIM routers are operating in
bidirectional mode. This allows multicast traffic to move toward and away from the RP in
the sparse mode tree.

Note

If you configure bidirectional mode on one PIM router (or firewall) in your network, you
must configure it on all of them. Otherwise, the bidirectional PIM routers introduce traffic.

(Optional) Adjust PIM parameters on a firewall interface.
a. Specify an interface:

PIX 6.3 —

ASA, FWsSm Firewall(config)# interface if_name

The interface named if name is selected.
b. (Optional) Disable multicast support on an interface:

PIX 6.3 —

ASA, FWSM Firewall(config-if)# no pim

If PIM is disabled on an interface and you need to reenable it, you can use the pim interface
configuration command.

c. (Optional) Set the PIM hello period:

PIX 6.3 —

ASA, FWsm Firewall(config-if)# pim hello-interval seconds

A firewall periodically sends PIM hello messages on each interface where PIM is enabled. By
default, hellos are sent every 30 seconds. You can set the interval to seconds (1 to 3600).

Note

The PIM hello interval does not have to be configured identically on neighboring
routers. This is because each router advertises its own holdtime, or the amount of
time a neighbor should wait to receive a hello message before expiring the neighbor
relationship. This is usually set to 3 times the hello interval, or a default value of 90

seconds.

The hello interval affects how quickly a PIM neighbor can be discovered and how
quickly it is declared unreachable if it becomes unresponsive.

d. (Optional) Set the designated router (DR) priority:

PIX6.3 —

ASA, FWSM Firewall(config-if)# pim dr-priority priority

PIM advertises an interface priority so that connected PIM routers can elect a designated
router. By default, a DR priority of 1 is used. You can set this to priority (0 to 4294967295).
A higher priority is more likely to win the election; in the case of a tie, the router interface
with the highest IP address wins.

e. (Optional) Adjust the Join/Prune message interval:

PIX 6.3 —

ASA, FWSM Firewall(config-if)# pim join-prune-interval seconds

Multicast routers must send periodic PIM Join/Prune messages to their upstream neighbors
to maintain their position in the multicast tree. The idea is to maintain the forwarding state
to a multicast router (or firewall) only if it still has active participants connected; otherwise,
the state might be stale and should be flushed.

By default, Join/Prune messages are sent every 60 seconds. You can set this interval to
seconds (10 to 600) if needed.

Tip

If you decide to change the time interval, be aware that it should be configured
identically on all multicast routers participating in PIM. If three Join/Prune messages
are missed (180 seconds with the default 60-second interval), the forwarding state is
removed. Therefore, all routers should agree on the basic Join/Prune time interval.

4. (Optional) Filter PIM Register messages:

PIM Register messages are sent by first-hop DRs to the RP to inform it that a multicast source exists.
The original multicast packets sent by the source are encapsulated and sent as unicast Register

messages.

You can filter the PIM Register messages so that you have better control over where legitimate
multicast sources or servers can be located and permitted to operate.

a. Define a filter:

PIX 6.3 —

ASA, FWsSm Firewall(config)# access-list acl_name extended
{permit |
deny} ip src_ip src_mask dest ip dest mask

or

Firewall(config)# route-map map_name permit [sequence]
Firewall(config-route-map)# match {interface
if _name | ip

address acl_name}

You can filter Register messages based on any combination of the source address (first-hop
DR address) and destination address (RP). Keep in mind that PIM Register messages are
unicast to the RP and are not sent to the multicast group address.

You can define the filter using an extended access list or route map. Only Register messages
that are permitted by the ACL or route map are allowed to reach their destination at the RP.

b. Apply the filter to PIM:

PIX 6.3 —

ASA, FWsm Firewall(config)# pim accept-register {list
acl_name | route-map
map_hame}

For example, you could use the following commands to allow the first-hop router
192.168.10.10 to register a directly connected multicast source with the RP located at
192.168.1.10:

Code View: Scroll / Show All
Firewall(config)# access-list RegFilter extended permit ip host

192.168.10.10
host 192.168.1.10
Firewall(config)# pim accept-register list RegFilter

(Optional) Prevent SPT switchover:

PIX 6.3 —

ASA, FWSsM Firewall (config)# pim spt-threshold infinity
[group-list acl_name]

Multicast routers normally form a shared tree structure with the RP as the root. Multicast traffic
must travel from the source through the RP and then on to the receivers.

By default, last-hop or leaf node routers with directly connected multicast receivers can (and do)
join an SPT by sending a Join message directly to the multicast source. In effect, the resulting SPT
has the fewest router hops from source to receiver and might not include the RP.

This can be useful if the RP is not located strategically or if the RP introduces latency with the
multicast traffic passing through it. However, you might not want the tree structure to be altered
for one or more multicast groups in your network. When the firewall is acting as a last-hop PIM
router, you can prevent it from switching over to an SPT by using this command.

If you use the infinity keyword with no other arguments, the firewall must stay with the shared tree
for all its groups. Otherwise, you can configure a standard access list that permits the specific
multicast group addresses that should be kept on the shared tree. Apply the access list with the
group-list acl_name keywords. The firewall is allowed to switch over to an SPT for all other groups.

(Optional) Define a static multicast route to a source:

In normal operation, a firewall running PIM dynamically builds a table of multicast "routes" based
on the PIM and IGMP membership requests it receives. Multicast routes (mroutes) represent how
multicast traffic is forwarded to group addresses—from a source address to a destination interface.

You can define static mroute entries to override or supplement the dynamic entries with the
following command:

PIX 6.3 Firewall(config)# mroute src smask in_if _name dst dmask
out_if _name

ASA, Firewall(config)# mroute src mask in_if_name out_if_name
FWSM [distance]

A static multicast route correlates a multicast source address with its Class D multicast group
address. The firewall can then inspect and forward traffic from the source on one interface to
recipients (and multicast routers) on another interface.

The multicast source is identified by its IP address src, subnet mask smask (usually
255.255.255.255), and the firewall interface named in_if_name where it connects. The multicast
destination is the actual Class D group IP address dst, subnet mask dmask, and the firewall interface
named out_if_name where recipients are located.

Beginning with ASA 7.0 and FWSM 3.1(1), only the out_if name is given. Notice that this form of
the command resembles a reverse path rather than a traditional unicast static route. In other

words, the mroute is defined by its source and not by a destination. Its only function is to define
how a multicast source can be reached, independent of the normal unicast routing information.

On an ASA or FWSM, you can also specify an administrative distance (0 to 255; the default is 0) to
influence how the firewall performs its RPF check. Normally, RPF involves checking the unicast
routing table on the firewall, but a static mroute configuration overrides that. You can prefer other
sources of routing information by adjusting the mroute distance, where a lower distance is more
trusted or preferable.

Table 3-4 lists the default administrative distance assigned to routes on a firewall.

Table 3-4. Default Administrative Distances by Route Type

Source Distance
mroute static route default 0
Directly connected interface 0
Static route entry 1
EIGRP summary route 5

EIGRP internal 90

OSPF 110
RIP 120

EIGRP external 170

For example, if the unicast routes learned through static route commands or directly connected
interface addresses should be trusted more than the mroute entry for RPF, you could use the
following command:

Firewall(config)# mroute 10.1.1.10 255.255.255.255 inside 10

Here, the multicast source is located on the inside interface at 10.1.1.10, and all multicast receivers
are located on the outside interface. The administrative distance of 10 still makes this entry more
preferable for RPF than unicast routes learned through RIP or OSPF.

Using a Multicast Boundary to Segregate Domains

IP Multicast address space is broken down into several ranges, each reserved for a different
function. Some ranges, such as link-local addresses and administratively scoped addresses, are
not meant to be routed across Layer 3 boundaries. Others, such as globally scoped addresses, are
free to be routed anywhere—across organizational boundaries and across the Internet.

Administratively scoped addresses (239.0.0.0 through 239.255.255.255) are analogous to the
private address ranges defined in RFC 1918. These addresses are locally significant, so it is not
unusual to find the same addresses appearing in many different locations or organizations. What
happens when RP routers, each supporting its own administratively scope address range, become
neighbors so that they begin sharing a multicast routing domain? Now multiple instances of the
239.0.0.0/8 multicast range exist, and the routing to that range becomes ambiguous.

If an ASA running 7.2(1) or later is located between multicast domains, you can configure it to
act as a multicast boundary. In this role, the ASA matches multicast group addresses against an
access list and blocks all multicast traffic in any direction except the addresses permitted by the
access list. You can use the following steps to configure a multicast boundary.

1. Block multicast traffic in a standard access list:

asa(config)# access-list acl _name deny mcast _addr mask

The range of multicast group addresses to be stopped at the boundary is defined by mcast_addr
and mask. The subnet mask should be given in the usual subnet mask format—not as an inverse
mask used in Cisco I0S platforms. For example, you can identify the entire administratively scoped

range by the following command:

asa(config)# access-list mcast_boundary deny 239.0.0.0 255.0.0.0

2. Permit other multicast traffic in the standard access list:

asa(config)# access-list acl_name permit mcast_addr mask

As soon as the administratively scoped range has been identified and denied in step 1, you can
identify any or all other multicast addresses to be permitted. For example, you can permit the full
range of multicast address space (224.0.0.0 through 239.255.255.255) with the following command:

asa(config)# access-list mcast_boundary permit 224.0.0.0 240.0.0.0

3. Apply the standard access list to the boundary interface:

asa(config)# interface if_name
asa(config-if)# multicast boundary acl _name [Ffilter-autorp]

You can add the filter-autorp keyword to have the ASA filter any Auto-RP discovery and
announcement messages that attempt to cross the multicast boundary, too. This prevents a PIM
router on one side of the boundary from becoming an RP on the other side for the denied multicast
address range.

As an example, an ASA's outside interface on ethernet0/0 could be made into a multicast boundary
with the following command:

asa(config)# interface ethernet0/0
asa(config-i1f)# multicast boundary mcast boundary filter-autorp

Filtering PIM Neighbors

An ASA can also be configured to prevent multicast routers on one interface from establishing a
PIM neighbor relationship with multicast routers on other interfaces. In this role, the ASA filters
PIM messages coming from source addresses identified by an access list. You might want to use
this feature to prevent rogue or unauthorized routers from becoming PIM neighbors with your
protected multicast routers.

You can use the following steps to configure PIM neighbor filtering:

1. Define an access list to filter PIM router source addresses:

asa(config)# access-list acl_name {permit | deny} ip_addr mask

Use the permit keyword to allow PIM messages to or from the IP addresses defined by ip_addr
mask. The deny keyword can be used to filter or block PIM messages to or from specific addresses.
For example, the following commands permit only outside multicast routers 10.10.1.10 and
10.10.1.20 to become PIM neighbors with inside routers. All other router addresses are filtered
automatically because of the implicit deny at the end of the access list.

asa(config)# access-list pimneighbors permit 10.10.1.10 255.255.255.255
asa(config)# access-list pimneighbors permit 10.10.1.20 255.255.255.255

Apply the access list to a PIM neighbor filter on an ASA interface:

asa(config)# interface if_name
asa(config-if)# pim neighbor-filter acl _name

As an example, the access list from Step 1 could be applied to the outside interface (ethernet0/0)
with the following commands:

asa(config)# interface ethernet0/0
asa(config-ifF)# pim neighbor-filter pimneighbors

Filtering Bidirectional PIM Neighbors

ASA 7.0 introduced the ability to enable PIM sparse mode neighbor relationships to form
through an ASA. Beginning with ASA 7.2(1), bidirectional PIM relationships can also form
through an ASA. In addition, you can configure an ASA to filter bidirectional neighbors so that
you can control which multicast routers can participate in a bidirectional tree and a DF election.

You can use the following steps to configure a bidirectional PIM neighbor filter:

1.

Define an access list to filter bidirectional PIM router source addresses:

asa(config)# access-list acl_name {permit | deny} ip_addr mask

Use the permit keyword to allow PIM messages to or from the IP addresses defined by ip_addr
mask. The deny keyword can be used to filter or block PIM messages to or from specific addresses.

Apply the access list to a PIM bidirectional neighbor filter on an interface:

asa(config)# interface if_name
asa(config-if)# pim bidir-neighbor-filter acl_name

Configuring Stub Multicast Routing (SMR)

A firewall can be configured to participate as a stub multicast router. In this case, it acts as a
proxy between fully functional PIM routers and multicast participants. Only IGMP messages are
relayed between firewall interfaces; PIM routing is not used. In fact, as soon as SMR is
configured, any existing pim rp-address commands for multicast routing are automatically
removed from the configuration.

This is the only multicast function available in P1X release 6.3. It is optional in ASA releases if
PIM is undesirable. The steps for configuring SMR are as follows:

1. Define the proxy agent (stub router).
a. Enable multicast support toward multicast routers:

ASA, FWSM |—

PIX 6.3 Firewall(config)# multicast interface if _name

The IGMP proxy agent becomes active on the firewall interface named if_name, where the
multicast routers can be found. If a multicast source is on the outside, the outside interface
should be used here. (This command is not necessary for IGMP proxy on an ASA platform.)

b. (Optional) Add static multicast routes if the multicast source is on the inside:

ASA, Firewall(config)# mroute src mask in_if_name dense
out_if _name

FWSM [distance]

PIX 6.3 Firewall(config-multicast)# mroute src smask in_if _name
dst

dmask out_if _name

Use this command when a multicast source is on an internal firewall interface sending
traffic to recipients on the outside. Because the firewall isolates any multicast routing
between the recipients and the internal source, static routes must be configured.

A static multicast route correlates a multicast source with its Class D multicast group
address. The firewall can then inspect and forward traffic from the source on one interface
to recipients (and multicast routers) on another interface.

The multicast source is identified by its IP address src, subnet mask smask (usually
255.255.255.255), and the firewall interface named in_if_name where it connects. The
multicast destination is the actual Class D group IP address dst, subnet mask dmask, and the
firewall interface named out_if name where recipients are located.

Beginning with ASA 7.0(1), you must provide the out_if name along with the dense
keyword. Notice that this form of the command resembles a reverse path rather than a
traditional unicast static route. In other words, the mroute is defined by its source and not
by a destination. In fact, the multicast destination address is not specified.

With ASA releases, you can also specify an administrative distance (0 to 255; the default is
0) to influence how the firewall performs its RPF check. Normally, RPF involves checking the
unicast routing table on the firewall, but a static mroute configuration overrides that. You
can prefer other sources of routing information by adjusting the mroute distance, where a
lower distance is more trusted or preferable.

Table 3-5 lists the default administrative distance assigned to routes on a firewall.

Table 3-5. Administrative Distance by Route Type

Source Distance
mroute static route default 0
Directly connected interface 0

Static route entry 1

OSPF 110

RIP 120

For example, if the unicast routes learned through static route commands or directly
connected interface addresses should be trusted more than the mroute entry for RPF, the
following command could be used:

Firewall(config)# mroute 10.1.1.10 255.255.255.255 inside dense
outside 10

Here, the multicast source is located on the inside interface at 10.1.1.10, and all multicast
receivers are located on the outside interface. The administrative distance of 10 still makes
this entry more preferable for RPF than unicast routes learned through RIP or OSPF.

2. (Optional) Configure multicast support for the recipients.
a. Enable multicast support on an interface where recipients are located:
ASA, FWSM —

PIX 6.3 Firewall(config)# multicast interface interface_name

The IGMP proxy agent becomes active on the firewall interface named interface_name. This
is usually the "inside" interface, closest to the multicast recipients. You can also use this
command to configure multicast support on other firewall interfaces. (This command is not
necessary for IGMP proxy on an ASA or FWSM platform.)

b. Enable the IGMP forwarding proxy:

ASA, FWsm Firewall(config)# interface in_if_name
Firewall(config-if)# igmp forward interface if_name

PIX 6.3 Firewall(config-multicast)# igmp forward interface
it _name

The proxy agent listens for IGMP join and leave requests on the multicast interface and
relays them to multicast routers on the interface named if_name. This is usually the outside
interface, although you can repeat the command if recipients are located on other
interfaces, too.

In ASA and FWSM releases, this command is used in interface configuration mode on the
interface (in_if_name, such as GigabitEthernet1) that will forward IGMP traffic to recipients
on interface if_name (inside, for example). For example, to forward IGMP from the inside
interface (GigabitEthernet1) to recipients located on the outside interface
(GigabitEthernet0), you would use the following commands:

Firewall(config)# interface GigabitEthernetl
Firewall(config-if)# description Inside
Firewall(config-if)# igmp forward interface outside

Configuring IGMP Operation

IGMP is used on firewall interfaces to handle multicast group membership for directly connected
hosts. You can use the following configuration steps to tune or change the IGMP operation:

1. Select an interface to tune:

ASA, FWSM Firewall(config)# interface if_name

PIX 6.3 Firewall(config)# multicast interface if_name

All subsequent IGMP configuration commands are applied to the interface you specify.

2. (Optional) Disable IGMP on the interface:

ASA, FWSM Firewall(config-if)# no igmp

PIX 6.3 —

On ASA and FWSM platforms, IGMP is enabled on all firewall interfaces as soon as the multicast-
routing command is used. You can use the no igmp command if you need to disable IGMP on the
interface because no multicast hosts are present or allowed.

3. (Optional) Set the IGMP version:

ASA, FWsm Firewall(config-if)# igmp version {1 | 2}

PIX 6.3 Firewall(config-multicast)# igmp version {1 | 2}

By default, a firewall communicates with hosts using IGMP version 2. You can change this to version
1 if needed. The IGMP version should match the capabilities of the recipient hosts.

4. (Optional) Tune IGMP query operation.
a. (Optional) Set the IGMP query interval:

ASA, FWSMm Firewall(config-if)# igmp query-interval seconds

PIX 6.3 Firewall(config-multicast)# igmp query-interval
seconds

This specifies how often, in seconds, the firewall sends IGMP query messages to the hosts
to determine group memberships. The seconds value can be 1 to 3600; the PIX 6.3 default is
60 seconds, and the ASA and FWSM defaults are 125 seconds.

b. (Optional) Set the maximum query response time:

ASA, FWsm Firewall(config-if)# igmp query-max-response-time
seconds

PIX 6.3 Firewall(config-multicast)#igmp query-max-response-time
seconds

This command is used to determine how long the router waits for a response from a host
about group membership. The default is 10 seconds. If a host does not respond quickly
enough, you can lengthen this time value to seconds (1 to 25).

c. (Optional) Set the querier response timer:

ASA, FWSM Firewall(config-if)# igmp query-timeout seconds

PIX 6.3 —

By default, the firewall waits 255 seconds to hear from the current IGMP querier before it
takes over that role. You can adjust the query timeout to seconds (60 to 300).

5. (Optional) Set limits on multicast group membership.

a. (Optional) Limit the number of hosts per multicast group:

ASA, FWsSm Firewall(config-if)# igmp limit number

PIX 6.3 —

By default, a firewall maintains the forwarding state of up to 500 multicast recipients per
interface. You can limit this further to number (1 to 500) hosts.

b. (Optional) Limit the number of multicast groups supported:

ASA, FWSM Firewall(config-if)# igmp max-groups number

PIX 6.3 Firewall(config-multicast)# igmp max-groups number

By default, up to 500 multicast groups can be supported on a firewall interface. You can
change this limit to number (0 to 2000) groups if needed.

c. (Optional) Control the groups that hosts can join:

ASA, FWSMm Firewall(config-if)# igmp access-group acl_name

PIX 6.3 Firewall(config-multicast)# igmp access-group acl_name

When client hosts or multicast recipients attempt to join a multicast group, the firewall can
filter the requests. If you place restrictions on groups, recipients can join only the group
addresses that are permitted by the access list named acl_name.

Tip

You need to configure an access list before using this command. The access list
should be of the following form:

ASA, Firewall(config)# access-list acl_name standard

{permit |
FWSM deny} group_address group_mask

or

Firewall(config)# access-list acl_name extended
{permit |
deny} ip any group_address group_mask

PIX 6.3 Firewall(config)# access-list acl_name {permit | deny} ip
any
group_address group_mask

Tip

Multicast groups are identified by their Class D multicast addresses, which can be
given as a network address and subnet mask. With ASA or FWSM, you can use
either a standard or extended access list. In either case, the group_address and
group_mask represent the multicast group.

For example, suppose multicast users on the inside interface should be allowed to join only
group addresses 239.0.0.0 through 239.0.0.255. You would use the following commands:

ASA, Firewall (config)#access-list AllowedGroups standard permit
ip

FWSM 239.0.0.0 255.255.255.0
Firewall(config)# interface GigabitEthernetl
Firewall(config)# description Inside
Firewall(config-if)# igmp access-group AllowedGroups

PIX 6.3 Firewall (config)#access-list AllowedGroups permit ip any
239.0.0.0 255.255.255.0
Firewall(config)# multicast interface inside
Firewall(config-multicast)# Igmp access-group
AllowedGroups

6. (Optional) Configure the firewall to become a member of a multicast group:

ASA, FWSMm Firewall(config-if)# igmp join-group group-address

or

Firewall(config-if)# igmp static-group group-address

PIX 6.3 Firewall(config-multicast)# igmp join-group
group-address

The igmp join-group command allows you to specify a multicast group-address (a Class D multicast
address) for the firewall interface to join. By joining a group, the firewall interface begins to accept
packets sent to the multicast address. Therefore, it becomes a pingable member of the multicast
group—something that can be a valuable testing tool.

As soon as the interface joins the group, the firewall also becomes a surrogate client so that
multicast traffic can be forwarded to recipients that do not support IGMP. The interface group
membership keeps the multicast path alive so that those hosts can continue to receive the traffic
from the multicast source.

With ASA or FWSM, you can use the igmp static-group command to cause the firewall interface to
join a group without actually accepting the multicast traffic itself. Instead, packets sent to the
multicast group-address are forwarded to any recipients on the interface.

Stub Multicast Routing Example

A firewall separates a multicast source from its recipients. The source is located on the outside
interface, and the recipients are on internal networks found on the inside interface. Recipients
can join multicast groups only in the 224.3.1.0/24 and 225.1.1.0/24 ranges. The PI1X 6.3
configuration commands needed are as follows:

Code View: Scroll / Show All

Firewall(config)# access-list mcastallowed permit ip any 224.3.1.0
255.255.255.0

Firewall(config)# access-list mcastallowed permit ip any 225.1.1.0
255.255.255.0

Firewall(config)# multicast interface outside
Firewall(config-multicast)# exit

Firewall(config)# multicast interface inside
Firewall(config-multicast)# igmp forward interface outside
Firewall(config-multicast)# igmp access-group mcastallowed

Now, consider the same example, where the source and recipients trade places. If the multicast
source (192.168.10.1) is located on the inside of the firewall, with recipients on the outside, the
configuration could look like the following:

Code View: Scroll / Show All

Firewall(config)# access-list mcastallowed permit ip any 224.3.1.0
255.255.255.0
Firewall(config)# access-list mcastallowed permit ip any 225.1.1.0
255.255.255.0

Firewall(config)# multicast interface inside
Firewall(config-multicast)# igmp forward interface outside
Firewall(config-multicast)# mroute 192.168.10.1 255.255.255.255 inside
224.3.1.0

255.255.255.0 outside
Firewall(config-multicast)# mroute 192.168.10.1 255.255.255.255 inside
225.1.1.0

255.255.255.0 outside
Firewall(config)# multicast interface outside
Firewall(config-multicast)# igmp access-group mcastallowed

PIM Multicast Routing Example

An ASA or FWSM is to be configured for PIM multicast routing between its inside and outside
interfaces. The firewall acts as the RP for any multicast group address beginning with 239.

You could use the following configuration commands:

Firewall(config)# multicast-routing

Firewall(config)# interface GigabitEthernetl

Firewall(config-if)# nameif iInside

Firewall(config-if)# security-level 100

Firewall(config-if)# ip address 192.168.198.1 255.255.255.0
Firewall(config-if)# exit

Firewall(config)# access-list PIMgroups standard permit 239.0.0.0 255.0.0.0
Firewall(config)# pim rp-address 192.168.198.1 PIMgroups

Verifying IGMP Multicast Operation

You can display the current multicast configuration on a firewall running PIX 6.3 with the show
multicast command, as shown in the following example:

Firewall# show multicast
multicast interface outside

igmp access-group mcastallowed
multicast interface inside

igmp forward interface outside

igmp access-group mcastallowed
Firewal I#

As soon as multicast is configured and IGMP becomes active on some firewall interfaces, you
can display IGMP activity with this EXEC command:

PIX 6.3 Firewall# show igmp [group] [detail]

ASA, FWSM Firewal 1# show igmp groups [group_address | if_name] [detail]

If you do not use any arguments, the output displays all firewall interfaces configured for
multicast. Otherwise, you can specify a multicast group or an interface.

In addition, the output displays any currently active multicast groups. For example, the following
multicast group addresses are shown to be active with receivers on the inside and outside
interfaces of an ASA or FWSM:

Firewall# show igmp groups
IGMP Connected Group Membership

Group Address Interface Uptime Expires Last Reporter
239.0.0.1 inside 1d01h 00:04:16 192.168.198.4
239.255.148.199 inside 1d01h 00:04:14 192.168.198.198
239.255.199.197 inside 1d01h 00:04:15 192.168.198.198
239.255.255.250 inside 1d01h 00:04:16 192.168.198.198
224.0.1.40 outside 1d01h 00:04:01 128.163.93.129
239.0.0.1 outside 1d01h 00:04:00 128.163.93.129
Firewal l#

You can display the current IGMP settings on a specific firewall interface with this command:

PIX 6.3 Firewall# show igmp interface interface name [detail]

ASA, FWSM Firewal 1# show igmp interface if_name

The following example provides some sample output from this command:

Firewall# show igmp interface inside
inside is up, line protocol is up
Internet address is 192.168.198.1/24
IGMP is enabled on interface
Current IGMP version is 2
IGMP query interval is 125 seconds
IGMP querier timeout is 255 seconds
IGMP max query response time is 10 seconds
Last member query response interval is 1 seconds
Inbound IGMP access group is:
IGMP limit is 500, currently active joins: 4
Cumulative IGMP activity: 4 joins, 0 leaves
IGMP querying router is 192.168.198.1 (this system)
Firewal 1#

Verifying PIM Multicast Routing Operation

After you enable multicast routing on an ASA or FWSM, you should verify that it is seeing hello
messages from its PIM router neighbors. You can do this with the following command:

PIX 6.3 —

ASA, FWSM Firewall1# show pim neighbor [count | detail] [if_name]

For example, the following output shows that a firewall is communicating with two PIM
neighbors located on two different interfaces:

Firewall# show pim neighbor

Neighbor Address Interface Uptime Expires DR pri Bidir
192.168.198.4 inside 1d02h 00:01:19 1 (DR)
10.1.93.1 outside 01:54:40 00:01:19 N/A
Firewal 1#

The Uptime column shows how long the firewall has been successfully receiving PIM hello
messages from the peer router. The firewall must receive the next hello before the time shown in
the Expires column reaches 0.

Tip

You can also verify that the firewall is sending its own PIM hellos by checking its neighbor
status from a directly connected PIM router. For example, the router located on the firewall's
outside interface shows the following information about the firewall as a PIM router:

Router# show ip pim neighbor
PIM Neighbor Table

Neighbor Address Interface Uptime Expires Ver Mode
10.1.93.2 Vlan4 01:59:15 00:01:34 v2 (DR)
Router#

You can display the current multicast routing table with the following command:

PIX 6.3 —

ASA, FWSM Firewal 1# show mroute [{group_address | active | count | pruned |
reserved | summary}]

Finally, a firewall maintains information about the PIM routing topology. This includes entries
for each multicast flow that the firewall has received a PIM Join/Prune message about, as well as
the flow uptime, RP for the group, firewall interfaces actively forwarding traffic for the flow, and
various flags about the flow state.

As a quick summary of multicast flows in the topology table, you can use the following
command:

Firewall# show pim topology route-count
PIM Topology Table Summary

No. of group ranges 6

No. of (*,G) routes 6

No. of (S,G) routes = 2

No. of (S,G)RPT routes = 2
Firewal 1#

The actual PIM topology information is displayed with the show pim topology command, as
shown in the following example. Here, the firewall is the RP (192.168.198.1) for several of the
multicast groups. A Cisco IP/TV multicast source is located at 192.168.198.198, using multicast
group 239.255.199.197 for streaming video and 239.255.148.199 for streaming audio.

Code View: Scroll / Show All

Firewall# show pim topology
IP PIM Multicast Topology Table

Entry state: (*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
RA - Really Alive, LH - Last Hop, DSS - Don"t Signal Sources,
RR - Register Received, SR
(*,224.0.1.40) DM Up: 1d13h RP: 0.0.0.0
JP: Null(never) RPF: ,0.0.0.0 Flags: LH DSS
outside 1d13h off LI LH
(*,239.0.0.1) SM Up: 1d13h RP: 192.168.198.1*
JP: Join(never) RPF: Tunnell,192.168.198.1* Flags: LH
inside 1d13h fwd Join(00:02:45) LI
outside 1d13h fwd LI LH

(*,239.255.148.199) SM Up: 1d13h RP: 192.168.198.1*
JP: Join(never) RPF: Tunnell,192.168.198.1* Flags: LH
outside 00:00:33 fwd LI LH
inside 1d13h fwd Join(00:03:14) LI

(192.168.198.198,239.255.148_199)RPT SM Up: 1d13h RP: 192.168.198.1*
JP: Prune(never) RPF: Tunnell,192.168.198.1* Flags: KAT(00:02:59) RA RR
inside 1d13h off Prune(00:03:14)

(192.168.198.198,239.255.148.199)SPT SM Up: 00:04:00
JP: Join(never) RPF: inside,192.168.198.198* Flags: KAT(00:02:59) RA RR
No interfaces In immediate olist

(*,239.255.199.197) SM Up: 1d13h RP: 192.168.198.1*
JP: Join(never) RPF: Tunnell,192.168.198.1* Flags: LH
outside 00:00:33 fwd LI LH
inside 1d13h fwd Join(00:03:20) LI

(192.168.198.198,239.255.199.197)RPT SM Up: 1d13h RP: 192.168.198.1*
JP: Prune(never) RPF: Tunnell,192.168.198.1* Flags: KAT(00:02:56) RA RR
inside 1d13h off Prune(00:03:20)

(192.168.198.198,239.255.199.197)SPT SM Up: 00:04:08
JP: Join(never) RPF: inside,192.168.198.198* Flags: KAT(00:02:56) RA RR
No interfaces in immediate olist

(*,239.255.255.250) SM Up: 1d13h RP: 192.168.198.1*
JP: Join(never) RPF: Tunnell,192.168.198.1* Flags: LH

outside 00:01:23 fwd LI LH
inside 1d13h fwd Join(00:02:59) LI
Firewal 1#

Each multicast flow is listed as (*,G), (S,G), or (S,G)RPT, where * means any source, S is a
specific source address, and G is the multicast group address. In addition, the following values
are shown:

e Multicast protocol— SM (sparse mode, used for most flows) or DM (dense mode).
e Flow uptime— The time elapsed since the flow was first created.
e RP— The address of the RP for the flow or group.

e JP— Join or Prune activity.
o RPF— Reverse path forwarding entry, or the interface where multicast data is expected
to arrive.

In the example, the RPF is often shown as Tunnell,192.168.198.1. In this case, the firewall acts
as the RP, and bidirectional mode is not used. Therefore, the multicast data must pass from the

source to the RP over an SPT to the RP before being forwarded down the shared PIM tree. The
"tunnel” is a logical interface within the firewall that points back to the source.

o Flags— Various flags representing the flow's state.
o Interface information— A list of interfaces involved in the flow, their current forwarding
state (fwd or off), and the most recent Join or Prune event with the elapsed time.

Note

The firewall automatically creates a multicast flow for (*,224.0.1.40), which is used for Cisco
Auto-RP Discovery messages. The flow is listed as DM because it is a hop-by-hop
announcement that does not depend on a sparse mode RP. To dynamically discover an RP, the
discovery protocol cannot rely on an RP.

In the example, two multicast flows of interest are shaded. The first, (*,239.255.199.197),
represents the multicast flow from any source to group 239.255.199.197. This is the video stream
of data being pushed down the shared multicast tree toward the receivers that have joined the

group.

Note that the RPF or the source of the data is listed as Tunnel1,192.168.198.1, which is the
firewall's inside interface. The firewall is acting as the RP, so it is receiving multicast data from
the source over a special internal "tunnel” interface.

The second flow, (192.168.198.198,239.255.199.197)SPT, represents the multicast flow from the
source (192.168.198.198) to the multicast group. This data is actually being fed to the RP over an
SPT built for this purpose—hence the SPT designation in the flow descriptor. The RPF points to
the inside interface, where the source is located.

Chapter 4. Firewall Management

Refer to the following sections for information about these topics:

e 4-1: Using Security Contexts to Make Virtual Firewalls— Presents the configuration
steps needed to make one physical firewall platform emulate multiple virtual firewalls.

e 4-2: Managing the Flash File System— Explains the types of images that are stored in
nonvolatile firewall memory and how to work with them.

e 4-3: Managing Configuration Files— Presents the methods you can use to configure
firewalls and manage their configuration files.

e 4-4: Automatic Updates with an Auto Update Server— Discusses a way to leverage a
central server to update image and configuration files on multiple firewalls automatically.

e 4-5: Managing Administrative Sessions— Presents the configuration steps necessary to
permit administrative users to access a firewall for configuration, monitoring, or
troubleshooting.

e 4-6: Firewall Reloads and Crashes— Discusses how to perform a controlled firewall
reload or reboot. After an unexpected firewall crash, you can also examine "post mortem"
information about the cause of the crash.

e 4-7: Monitoring a Firewall with SNMP— Explains Simple Network Management
Protocol (SNMP) and how it can be used to obtain system information from a firewall.

Any firewall that is deployed in a network must also be managed. Firewall administrators need to
be able to make configuration changes, define virtual firewall contexts for other entities,
maintain the firewall operating system and configuration files, and monitor firewall operation.

This chapter presents the configuration steps and background information you need to perform
these management functions.

4-1. Using Security Contexts to Make Virtual Firewalls

On Adaptive Security Applianace (ASA) and Firewall Services Module (FWSM) platforms, you
can configure one physical firewall chassis to act as multiple virtual firewalls. Each virtual
firewall is called a context because it is one partition or instance of a fully functional firewall.

Even though all the configured contexts are emulated by a single firewall CPU, the traffic
inspection and security policies of each are kept separate, as if they were being handled by a
dedicated physical firewall. Therefore, each context can be configured and managed by different
administrators, or they can all be managed by one administrator who has access to them.

Traditionally, one physical firewall would be added to a network every time a new firewall
function was needed. The cost of adding firewalls in this way is incremental. The ability to run
multiple security contexts on a single firewall provides a way to limit the cost of firewall
hardware. Firewall contexts can be added according to license limits. This capability does come
with a trade-off, however, because all contexts must share the resources available on the
hardware platform.

Security contexts can be useful in both service provider and enterprise environments. A service
provider can partition one physical firewall into multiple security contexts that can be assigned to
customers for a recurring cost. Each customer can configure and manage his or her respective
context.

In an enterprise setting, multiple contexts could be assigned to individual departments or
organizations where there is no overlap in security policies. Each department would operate its
own firewall context independently of others. On the "public" side of each firewall, each context
could connect to a shared or common Internet feed.

Security Context Organization

A Cisco firewall that can support security contexts can operate in only one of the following
modes:

o Single-context security mode— One context is configured on one physical firewall
platform. This is the traditional or default mode of operation.

e Multiple-context security mode— Two or more contexts can be configured on one
physical firewall.

In multiple-context security mode, a firewall is organized into the following functions, each
having its own user interface:

o System execution space— A special area where individual contexts are defined and
physical firewall resources are mapped to them. Because the system execution space does
not use security policies and cannot provide network connectivity, it cannot really
function as a true firewall context.

o Administrative context— A fully functional virtual firewall that is used mainly to manage
the physical firewall. You can configure security policies, network addressing and
routing, and any other firewall function needed for administrative use. This context
operates independently of any other context.

o User contexts— Fully functional virtual firewalls that can be configured and handed over
to a third party if needed. Each user context can have its own security policies, network
addressing, access control, and so on. Almost anything that can be configured on a
single-firewall platform can be configured on a user context.

Figure 4-1 shows how a single physical firewall can be organized to provide multiple security
contexts. Each context has its own set of virtual firewall interfaces that are mapped from the
physical or VLAN firewall interfaces.

Figure 4-1. Single- and Multiple-Context Security Modes

[View full size image]

Multiple-Context Security Mode
Single-Context

Security Mode y ;;—n:?f\ f__\ f” 'f_a_\ ff :1

\Oumlde er q\ﬂumlde ,r" Q\Gumlde ,r" \Eutsida
71? o

f 'éy-sfeF'n -- }
i Execution i
| Space j
[r==-=-=-=r---=-T==-=-7q~~TT- 77777777 == ",. I
»i w Ty » > »i R
v — U U9 Uy v
Fl'l'_l."ﬁl’[;a.l [Admin i Cioryhemt et Gonbaxt y !
Firewall g b, Comet] R S DU I
Physical | | | 7] o
Firawall
—T T g T
Sl £ Admin 7 L g L S
i\ \ Ins:da_/ (k Insma (k Inydaj ' Inside
.

In practice, the physical firewall platform might not have enough interfaces to be able to map
them one-to-one with context interfaces. In Figure 4-1, the firewall would need two unique
physical interfaces for each context! Even if there were enough interfaces to go around, you
might not want to use all of them in the first place when only a few could provide the necessary
connectivity.

Sharing Context Interfaces

Multiple-context mode allows some flexibility in mapping interfaces. You can map one physical
interface to one context interface when isolation from other firewalls is required.

You can also map one physical interface to several context interfaces so that the contexts share a
single connection. This might be practical in an enterprise setting, where each context is
designated for a different department. Most likely, an enterprise would have a single path toward
the public Internet. Every department would share that path, provided by one physical firewall
interface. As that interface is mapped to each context, the resulting logical or mapped interface
would become the context's outside interface. Figure 4-2 illustrates this concept.

Figure 4-2. Mapping Common Interfaces to Contexts

[View full size image]

{
: i
| Admin | A B n :
: Dutside : Dutside Dutside Quiside | Inbound
I -
| L ' > » > Trafic
I e I
Uy Uy Uy "
y Admin I Conlaxt Context Comlext :
1 Context : A B : |
Ve o . ——— Fp——
i . _ n _ . & N
¢ Admin L ! A L B L p n)
 Inside ' Inside / ' Inside ' Inside

- o S 4 Y 4 . 4
s N e e N

Physical interfaces can be shared in any configuration. For example, if two firewall contexts
need to provide access to some authentication servers that they share, one physical interface
could be mapped to those two contexts and no others.

Finally, consider that all contexts are really emulated by one firewall platform. As packets enter
a physical firewall interface, the firewall CPU must determine which context is the true
destination.

If one physical interface is mapped to one context interface, the firewall CPU simply takes
packets arriving on that interface and puts them in the queue for that context interface. The
mapped context must be the virtual firewall that will inspect and handle the inbound traffic.

Suppose one physical interface is mapped to interfaces in several contexts. Now when packets
arrive on that interface, the firewall CPU must decide which of the mapped contexts is the
correct destination firewall.

A firewall running in multiple-context mode uses a classifier function to sort out which context
should actually process each inbound packet. In effect, a classifier is positioned at each firewall
interface to decide which context should receive packets as they arrive. Figure 4-3 illustrates this
concept.

Figure 4-3. Using a Packet Classifier to Match Inbound Traffic to a Security Context

[View full size image]

Internet

g EEEEEEE Q=== ==="1 =Tr - === =========== L
] I Inbound "
I I Traffic I
] []
I I — i
: : Classifier 1

]

] 1]
I i ? Which Context Should i
: : Receive the Packets? :
I |]
: Admin | A B n !
I Outside | Outside Qutside Outside |
] . 1 — 9 i
| P | i | 1 - »i '
Uy Uy L vy
]]

I Admin i Context Context Context i
I Context I A B il i
]]]
' — I - — — i
: Classifier 1 | Classifier Classifier Classifier i
]]

I I]

s
& Ga

The classifier is simple; if it can find a unique source interface or destination address, it has
enough information to hand off a packet to a context. The classifiers shown at the bottom of
Figure 4-3 have an easy job because their source interfaces are mapped to a single unique
context. Packets arriving on the inside interfaces are passed directly to the respective context
inside interfaces to begin the normal firewall stateful inspection process.

B n
Inside Inside

However, if firewall interfaces are shared between contexts, as in the topmost interface shown in
Figure 4-3, the problem becomes a bit more difficult. The classifier at the top of the figure is
faced with the task of finding a unique destination context for each inbound packet.

A classifier does this by attempting to find the packet destination address defined in one of the
connected contexts. The destination address must be uniquely identified in one of the following
ways:

e A global address defined in a static NAT entry
e A gglobal address used in an xlate entry
o Afirewall interface address (used when packets are destined for the firewall itself)

A classifier also works in only one direction. Each packet that arrives on a shared interface is
examined so that it can be sent to a specific context. Because of this, you should work through
scenarios with a connection originating on each side of the firewall to make sure that the
classifier process will work properly. The classifier must find the destination address as a global
address entry in one (and only one) of the security contexts.

For example, Figure 4-4 shows a simple arrangement in which two security contexts are
configured to share their outside interfaces toward the public network. The left side of the figure
shows what happens when a connection is initiated from inside host 192.168.1.100 to outside
host 198.133.219.25. Because the inside context interfaces are not shared, the classifier nearest to
the inside host can simply send the packets to Context A, where the host is connected. At
Context A, the inside address is translated to global address 207.246.96.47, because of a static
NAT configuration.

Figure 4-4. Example of Sharing Outside Context Interfaces

[View full size image]

Traffic Originating Toward a Traffic Originating on a
Shared Interface Shared Interface
},_/" .y T ~
| Internat l\. | Internet
b _ A I"'-|
o\ b
" Dsk 207 246.96.47 |

iy S 13ATTE

'
1

| Global: a _

| 207 2480845 11 Global; '
L}
(]

207,246,906 46 ..J

(]
| Staic Global; Statie: !

| 20T 24508 47 : : TA0ETAT 4 33?.2-13.95.-1?:
"1 80,1100
1 IEa T :* Dutzida Oudsida 192'1%'1'1':0: Dutside Cubsida
Cﬁntaxt.ll' T ’ [T Context Conte:-tl.‘:["'f ' [Ty Context
A ! ' B A ' ' B

1 | Inside Inside :J ‘llnslde Inside

foa

i
’ I
K 1
1
1

e

T| Classifier | [Classifler |T

= = - ——

:IT| Clajpslher] | Classifier |T
1 I

v A i

_______ R R R l o e e

y Al |
Sre 102 168 1 100 7= %-Xi’ . ?« o o “‘»-\)
/ 5

k“—“ur*’ _ﬁ_ﬁ;—” \'“—r\ e
_J _J
q w—

192.168.1.100 192.168,1.100

For the return traffic from the outside host, the classifier examines arriving packets on the shared
outside interfaces. The destination address is 207.246.96.47, which is found as a global address
in the xlate table on Context A. Therefore, traffic originating on the inside network can make the
round trip successfully.

On the right side of Figure 4-4, a connection originates from the outside host, located on the
shared interfaces. Here, the destination address 207.246.96.47 is again found as a global address
in a static NAT xlate entry on Context A. This traffic too can make the round trip.

What if a dynamic NAT or PAT were used instead of a static NAT? In that case, the dynamic
NAT would be configured to use one or more global addresses during translation. In Figure 4-4,
the global address is 207.246.96.46, which could be found in xlate entries for connections
passing through Context A. The classifiers on either side of the firewall would have no problem
finding the global address on Context A.

Issues with Sharing Context Interfaces
If you decide to share the inside context interfaces, you should be aware of a classifier limitation.

Consider the arrangement shown in Figure 4-5, where Contexts A and B share their inside
interfaces.

Figure 4-5. Example of Sharing Inside Context Interfaces

Internet Internet

Global:
207.246.96.46

Static:
207.246.96.47
192.158.1.100

Outside Outside
Context { | [[~]" 3 Context
A . ‘ . ‘ B

Inside ‘ Inside

Mo Global or 279
Static Exists for *

198.133.219.250

P I e

Dsgl: 198.133.219.25
Src: 192.168.1.100 [1
1

192.168.1.100

The classifier must examine packets entering from the inside networks to decide which context
should receive them. A search is made to find the packet destination addresses in the context
xlate tables. In particular, the classifier can find only global addresses in the tables. This means

that there must already be a static NAT entry in place for the outside address to appear as a
global address.

In practice, this is seldom successful. The outside context interface usually points toward a
public network such as the Internet, where most or all of the addresses exist but are not
configured into the context. Usually, a default route points the way toward the public network
where a context can find every other host that is not explicitly configured. However, the
classifier must use actual global addresses, not routes, so it cannot determine which context to
use to reach outside hosts.

To remedy this situation, you would have to configure static NAT entries for each of the outside
host addresses that might be involved in connections from the inside hosts! That might result in
two extremes:

e The list of outside hosts would be too small to be practical for the inside users.
e The number of outside hosts would be much too great to try to configure.

In most cases, the inside context interfaces are not shared because inside networks tend to be
isolated and protected from every other network. However, another scenario deserves
consideration. With multiple security contexts at your disposal, you might consider nesting or
cascading contexts to provide layers or shells of security in an enterprise network.

Consider Figure 4-6, in which the left portion represents such a hierarchy of security contexts.
The topmost context might be used at the boundary with the Internet to provide common security
policies for the entire enterprise. Then other contexts might be nested below that to serve
individual departments or buildings within the enterprise.

Figure 4-6. Example of Nesting Security Contexts

[View full size image]

o ofile
i Intarnet\) Internet
S

——

Cla.ssilizl 4,

I 1]
| L |
I | !]
i | : i
1 | 1
! o |
Internet : o i
} - i - -
! Border J I" o L“;““'. I p |
Context i
: D;g: : ! Mo Global or Static z :
! 1 : Exists far 77 Insida !
\ I 19813321926 A '
! | Classifier |4 Lo $| Classifier || !
1 | ! 1
: o : :
1
: ' : 1 B '
i | : : Cutside 1
I r~r > [(. Context § [|
B I I IR A :
| Context Context Context Lo ' B .
i A B ' | : : Irigida i
' by 1 '
I i , '
| . .
I ']

[Class-f.er]T | Classifier |T | Classifier |T:
!

e e o o R — T g g — -

Dal: 183133 2168.25
Sirc: 192,168,1,100

|
i
- |
J . - I{ﬂ_f l(___,,--"’ 1“‘1 f-' _\
C Accounting KJ (Enginetzring [Data GEF‘I[EF) Engineering
A

e . L o ~

al
S,

192.168.1.100

To test this scenario, the structure has been reduced on the right portion of the figure to show a
cascade of just two security contexts. This turns out to be very similar to the previous example,
in which the inside context interfaces were shared. However, it might not be obvious that the
middle classifier is positioned where two context interfaces are shared. The Context A inside
interface is shared with the Context B outside interface to build the cascading structure.

Again, when packets originating from the inside hosts reach this classifier, chances are that no
static NAT or global address will be configured or found for outside Internet hosts. Therefore,
that classifier cannot decide whether to send the packets to Context A or back to Context B.

As a result, you should plan on nesting or cascading security contexts only if you can provide
static NAT entries for each outside host that inside hosts will be allowed to contact. Otherwise,
you can build a nested arrangement from separate physical security appliance platforms, where
classifiers are not needed between firewalls or contexts.

Solving Shared Context Interface Issues with Uniqgue MAC Addresses

By default, every physical ASA interface uses its burned-in address (BIA) as its Media Access
Control (MAC) address. Also, every subinterface of a physical interface uses the physical
interface's MAC address. After the ASA is configured for multiple context mode, system context
interfaces (both physical and subinterfaces) are allocated to other contexts. This means that the
MAC address of a system context interface is reused on each of its associated context interfaces.

For example, consider an ASA that has the following system context configuration. Physical
interface EthernetO is shared across all contexts as the single link to the outside world. Each
context has a unique subinterface of Ethernetl to use as its inside interface, as shown in the
following system context configuration:

admin-context admin

context admin
allocate-interface EthernetO
allocate-interface Ethernetl
config-url flash:/admin.cfg

1

context ContextA
allocate-interface EthernetO
allocate-interface Ethernetl.1
config-url flash:/ContextA.cfg

1

context ContextB
allocate-interface EthernetO
allocate-interface Ethernetl.2
config-url flash:/ContextB.cfg

Next, it is useful to see how the ASA allocates its MAC addresses. In the following example, the
system context interface MAC addresses are displayed with the show interface command. Notice
that each physical interface (EthernetO, Ethernetl, and so on) has a unique address. The MAC
addresses for subinterfaces (Ethernetl.1 and Ethernetl.2) are not shown; they simply inherit the
address of their parent physical interfaces.

asa-a# changeto system
asa-a# show interface | include (Interface | MAC)
Interface EthernetO ', 1is up, line protocol is up

MAC address

Interface Ethernetl "

MAC address

Interface Ethernetl.

Interface Ethernetl
Interface Ethernet2
MAC address

000e.d7e6.af77, MTU not set

, I1s up, line protocol is up
000e.d7e6.af78, MTU not set
1™, is up, line protocol is up

.2 "', is up, line protocol is up

“"Failover"™, is up, line protocol is up
0005.5d19.019c, MTU 1500

Interface Ethernet3 ', is administratively down, line protocol is down
MAC address 0005.5d19.019d, MTU not set

Interface Ethernet4 ', is administratively down, line protocol is down
MAC address 0005.5d19.019e, MTU not set

Interface Ethernet5 ™, is administratively down, line protocol is down
MAC address 0005.5d19.019f, MTU not set

asa-a#

Finally, each context is visited to display the MAC addresses of its own interfaces. Because
system context interface EthernetO is allocated to each of the other contexts as a shared outside
interface (also called Ethernet0), notice that the highlighted MAC addresses are identical:

asa-a# changeto context admin

asa-aZadmin# show interface | include (Interface | MAC)

Interface EthernetO "outside', is up, line protocol is up
MAC address 000e.d7e6.af77, MTU 1500

Interface Ethernetl "inside', is up, line protocol is up
MAC address 000e.d7e6.af78, MTU 1500

asa-a/admin#

asa-aZadmin# changeto context ContextA

asa-a/ContextA# show interface | include (Interface | MAC)

Interface EthernetO 'outside', is up, line protocol is up
MAC address 000e.d7e6.af77, MTU 1500

Interface Ethernetl.l "inside", is up, line protocol is up
MAC address 000e.d7e6.af78, MTU 1500

asa-a/ContextA#

asa-a/ContextA# changeto context ContextB

asa-a/ContextB# sh interface | include (Interface | MAC)

Interface EthernetO '"outside', is up, line protocol is up
MAC address 000e.d7e6.af77, MTU 1500

Interface Ethernetl.2 "inside"™, is up, line protocol is up
MAC address 000e.d7e6.af78, MTU 1500

asa-a/ContextB#

Reusing the MAC addresses does not usually pose a problem because neighboring devices can
still see a correspondence between a context interface's IP address and its MAC address. But
what about the example case where the same physical or subinterface is allocated to several
different firewall contexts? Each of the allocated context interfaces would have a unique IP
address from the same shared subnet, but would reuse the same MAC address.

Neighboring devices might not be able to distinguish one context from another because of the
shared MAC address. However, the ASA can usually accept traffic destined to the shared MAC
address and figure out which context interface is the real recipient. The ASA uses a classifier
function to examine incoming packets and pass them along to the correct context. The classifier
works through the following sequence of conditions to map a packet's destination address to a
context:

1. A unique interface— When one interface is allocated to only one context, the destination
context is obvious.

2. A unique MAC address— The destination MAC address is found on only one context
interface.

3. Aunique NAT entry— A unique destination Internet Protocol (IP) address is needed,
either through a global address configured in a static NAT entry or found in the xlate
table.

Beginning with ASA 7.2(1), you can configure the ASA to use unique MAC addresses on every
subinterface and context interface. Physical (system context) interfaces continue to use their
burned-in addresses, whereas context interfaces receive MAC addresses that are automatically
generated. You can use the following global configuration command to assign unique MAC
addresses:

asa(config)# mac-address auto

This command can be used only in the system execution space because that is the source of all
interface allocation. As soon as you enter the command, the interface MAC addresses is
changed. You can revert back to the original interface MAC addresses by using the no mac-
address auto command.

The MAC addresses are automatically generated according to the format spelled out in Table 4-
1

Table 4-1. ASA-Generated MAC Address Format
Failover Unit MAC Address Format Example
Active 12 slot . port_subid . contextid 1200.0000.0100
Standby 02_slot . port_subid . contextid 0200.0000.0100

The slot is the interface slot number, or 0 for platforms without slots. The port is the interface
port number, and subid is the ASA's internal subinterface number. The contextid field is the
context index, a number the ASA uses internally. You should not worry about what the internal
numbering schemes mean—just know that you can easily distinguish the active and standby
addresses by the leading 1 or 0 and that each context has a unique identifier.

Continuing the previous example, the mac-address auto command has been entered. The MAC
addresses for each of the ASA's contexts are shown in the following output.

Code View: Scroll / Show All
asa-a# changeto system
asa-a# show interface | include (Interface | MAC)
Interface EthernetO "', is up, line protocol is up
MAC address 000e.d7e6.af77, MTU not set
Interface Ethernetl ', is up, line protocol is up
MAC address 000e.d7e6.af78, MTU not set
asa-a# changeto context admin
asa-aZadmin# show interface | include (Interface | MAC)
Interface EthernetO '"outside', is up, line protocol is up
MAC address 1200.0000.0100, MTU 1500
Interface Ethernetl "inside", is up, line protocol is up
MAC address 1201.0000.0100, MTU 1500
asa-a/admin#
asa-aZadmin# changeto context ContextA
asa-a/ContextA# show interface | include (Interface | MAC)
Interface EthernetO "outside', is up, line protocol is up

MAC address 1200.0000.0200, MTU 1500

Interface Ethernetl.l "inside", is up, line protocol is up
MAC address 1201.0001.0200, MTU 1500

asa-a/ContextA#

asa-a/ContextA# changeto context ContextB

asa-a/ContextB# show interface | include (Interface 165168|] MAC)

Interface EthernetO "outside', is up, line protocol is up
MAC address 1200.0000.0300, MTU 1500

Interface Ethernetl.2 “inside"™, is up, line protocol is up
MAC address 1201.0002.0300, MTU 1500

asa-a/ContextB#

The ASA automatically generates its MAC addresses using carefully selected parameters. The
first six hex digits of the MAC address are referred to as the Organizational Unique Identifier
(OUI) or the vendor code. Cisco uses 02xxxx and 12xxxx, neither of which is registered to
another vendor. This should produce MAC addresses that are unique within your network,
without duplicating the addresses used by other devices.

Tip

If you are running ASA 7.2(1) or later in multiple context mode, you should always enable
unique interface MAC addresses with the mac-address auto command. You have no downside to
using this command; after it has been configured, your firewall is always ready for any type of
context arrangement, including shared interfaces and stacked or nested contexts.

In some rare cases, you could find that an automatically derived MAC address is conflicting with
that of another device. How would you know if that happens? You might find that an ASA
context is behaving erratically or you might see the following Syslog message in the ASA logs:

Code View: Scroll / Show All

%ASA-4-405001: Received ARP request collision from
192.168.1.177/0201.0001.0200 on

interface inside

To remedy this situation, you can use the following interface configuration command to
manually configure the ASA context interface MAC address to a different, unique value:

asa(config)# interface if_name
asa(config-if)# mac-address mac_address [standby mac_address]

The MAC address is entered in dotted triplet format (H.H.H), such as 0015.¢557.f9bd. If your
ASA is configured as part of a failover pair, remember to configure both the active and standby
unit interface MAC addresses.

Configuration Files and Security Contexts

The firewall's flash memory file system is accessible only from the system execution space. This
is because Flash is considered a controlled resource, available only to the physical firewall's
administrators. If an individual user context is given over to be managed by a third party, it
would not make sense to allow that third party to make changes to or allocate all of the firewall
flash for his or her own use.

Where, then, are the firewall image and configuration files stored for a user context? None of the
contexts runs its own firewall operating system image. Only one image is run in multiple-context
mode, and that image is managed only by the system execution space. All other contexts appear
to run the same image, as shown by the output generated by the show version command.

Configuration files, however, are used and maintained by each context. They have the following
characteristics:

e The system execution space has both startup and running configuration files that are
stored in the flash memory. The startup configuration file can be read, written, and
copied, but it is kept in a hidden flash file system.

« Admin and user contexts have both startup and running configuration files. The startup
configuration files can be stored in the flash file system or on an external TFTP, FTP, or
HTTP server. When an external server is used, the user context administrators can have
complete autonomy over the configuration and use of their firewall context.

e The system execution space configuration defines where each context's startup
configuration file will be located.

Guidelines for Multiple-Context Configuration

You can configure and use several different types of contexts on a physical firewall or security
appliance:

o The system execution space— Although this is not a true context itself, it is the
foundation for all other contexts.

e The admin context— A fully functional virtual firewall that can be used to administer the
physical firewall platform.

e One or more arbitrarily named user contexts— Each context operates as an independent
virtual firewall.

Each has a specific role within the firewall platform, making configuration somewhat confusing.

The system execution space handles context definition, overall firewall modes of operation, and
the physical firewall resources. Therefore, it should be configured before resources and features
become available to other contexts.

You can configure the following types of features in the system execution space:

o Physical firewall interfaces (speed, duplex, negotiation, descriptions, VLAN associations,
and operational status)

o System images (firewall operating system and P1X Device Manager/Adaptive Security
Device Manager [PDM/ASDM] management application)

o Firewall startup configuration file

o Context mode (single or multiple)

o Firewall mode (routing or transparent)

« Context definitions (configuration files, interface allocation, or mapping)

o Firewall failover

e Saving crash information

o Firewall system clock

You must enter firewall license activation keys from the system execution space. In addition, the
system execution space provides all access to the firewall's flash file system.

However, the system execution space has no networking capability of its own. To access external
network resources, such as a TFTP server containing the firewall image, the system execution
space must work in conjunction with the admin context, where normal IP addressing and address
translation are configured.

You should consider each nonsystem context to be a fully functional standalone firewall.
Therefore, you can configure the admin and user contexts with all the firewall features presented
in this book.

Initiating Multiple-Context Mode

Follow these steps to prepare a firewall for multiple-security context support:

1. Verify multiple-context licensing:

Firewall# show activation-key

A firewall can run in multiple-context mode only if it has been licensed to do so. As well,
the maximum number of security contexts is set by the license. You can display the number
of contexts supported by the current license, as shown in the following output:

Firewall# show activation-key

Serial Number: 401262144

Running Activation Key: 0xcc05f166 0xd4cl7b68 0x98501048 0x818cf190
0x4133d195

License Features for this Platform:

Maximum Physical Interfaces : 10

4.

Maximum VLANs : 100

Inside Hosts > Unlimited
Failover : Active/Active
VPN-DES : Enabled
VPN-3DES-AES : Enabled
Cut-through Proxy : Enabled
Guards : Enabled
URL-filtering : Enabled
Security Contexts : 5

GTP/GPRS : Enabled

VPN Peers > Unlimited

This machine has an Unrestriéted (UR) license.
The flash activation key is the SAME as the running key.
(Optional) Install a new license activation key:

Firewall# activation-key key

You might need to install a new activation key if multiple-context mode is disabled or if you
need to increase the number of supported contexts.

The key given here is a string of five groups of characters, each consisting of four pairs of
hexadecimal digits. You can add a Ox prefix to each group of hex digits to denote the hex
format, but this is not necessary. For example, you could use the following command:

Firewal I# activation-key 59381b44 a46717cc a43114a8 8cell438 862113ba

Refer to Section "2-2: Firewall Features and Licenses," in Chapter 2, "Configuration
Fundamentals,"” for more information about configuring license activation keys.

Verify the security context mode:

Firewal l# show mode

By default, a firewall operates in single-context mode. You can display the current mode
with this command. If the firewall is currently running in single-context mode, you see the
following output:

Firewal 1# show mode

Running Firewall mode: single
Firewal I#

If the firewall is already running in multiple-context mode, you see the following output:

Firewal lI# show mode
Running Firewall mode: multiple
Firewall#

Initiate multiple-context mode:

Firewall(config)# mode [noconfirm] multiple

In single-context mode, all the firewall's configuration commands are contained in the
startup configuration. Multiple-context mode changes this concept, because the initial startup
configuration must contain commands that define the individual contexts. Each context has
its own startup configuration file that configures features used only by that context.

If single-context mode already has some configuration when this command is used, an
admin context is automatically created, and the appropriate commands are imported into it.
Any interfaces that were configured and enabled are automatically mapped into the admin
context, too. Otherwise, the admin context begins with no mapped interfaces.

The end result is that the firewall automatically generates the startup configuration for the
system execution space, which is stored in a hidden flash file system. A startup configuration
for the admin context is automatically generated and stored as the flash:/admin.cfg file.

Initiating multiple-context mode triggers the display of several prompts for you to confirm
each action before it is carried out. You can use the noconfirm keyword to force the firewall
to initiate multiple-context mode without any confirmation prompts.

Note

After it is entered, the mode command does not appear in any firewall configuration. This is
because it changes the firewall's behavior. The firewall still can remember which mode to
use after booting up.

For example, a firewall running in single-context mode is configured to begin running in
multiple-context mode. The mode multiple command produces the following output:

Code View: Scroll / Show All

Firewall(config)# mode multiple

WARNING: This command will change the behavior of the device
WARNING: This command will initiate a Reboot

Proceed with change mode? [confirm]

Convert the system configuration? [confirm]

1

The old running configuration file will be written to flash
The admin context configuration will be written to flash
The new running configuration file was written

E

*** ——— SHUTDOWN NOW ---

E =

*** Message to all terminals:

**kx

Fxk change mode to flash

Flash Firewall mode: multiple

[output omitted]

Creating context "system”... Done. (0)
Creating context "null®... Done. (257)
Creating context “admin®... Done. (1)

INFO: Context admin was created with URL flash:/admin.cfg

INFO: Admin context will take some time to come up please wait.
*** Qutput from config line 32, " config-url flash:/admi..."
[output omitted]

Firewal I# show mode

Running Firewall mode: multiple

Firewal 1#

Notice that several contexts are automatically created during this process: The system
context is actually the system execution space, the null context serves as a placeholder or a
system resource, and the admin context becomes the configuration for the administrative
side of the firewall.

The number in parentheses after each context, such as (0), indicates the context number or
index. The null context is always defined with the topmost index.

After you initiate multiple-context mode, the firewall also leaves hooks for a backout plan
should you ever need to revert to single-context mode. The previous running configuration is
automatically saved as the flash:/old_running.cfg file. If the mode single command is used in
the future, the firewall attempts to use that file to re-create a single-context mode
configuration. Therefore, you should consider leaving that file intact in the flash file system
for future use.

Navigating Multiple Security Contexts

In multiple-context mode, it is possible to open an administrative session (console, Telnet, or
Secure Shell [SSH]) to the firewall and then move around between security contexts. This allows
you to configure and monitor any of the contexts as necessary without opening sessions to the
individual virtual firewalls.

You can navigate between contexts only if you successfully connect and authenticate to the
admin context or the system execution space first. At that point, you are considered an
administrator of the physical firewall platform and any contexts that are configured.

If you connect to a user context first, the firewall limits your administrative session to only that
context. This restricts the administrators of a user context from gaining access to any other
context on the firewall. Each context is then independently managed from within that context.

Context Prompts

Moving between contexts can get confusing. During one administrative session, you might have
to keep track of which physical firewall platform and which context (virtual firewall) you are
connected to. Fortunately, the firewall gives you a landmark each time you move your session.

The firewall always updates its prompt to indicate which context you are currently accessing.
The traditional prompt, Firewall#, represents the system context; Firewall represents the
firewall's host name. Any other context is indicated by a prompt such as Firewall/context#,
where context is the name of the context.

Tip

As you move into various contexts, keep in mind that each context has its own startup and
running configuration. Therefore, the running configuration must be saved on each context
independently.

Think of each context as an independent firewall. The admin context represents the firewall that
is used by the platform administrators. The system execution space, although not a true context,
provides the functions necessary to extend the physical firewall resources (interfaces, flash
memory, context definitions, and so on) to any admin and user contexts.

Changing a Session to a Different Context

You can move your terminal session from one context to another, as long as you have the
administrative rights to do so, by entering the following command:

Firewal l# changeto {system | context name}

For example, suppose your firewall has the host name MyPix. It also has a system execution
space (always created by default), an admin context, and a user context called CustomerA. You
can use the following commands to navigate between contexts:

MyP i x#

MyPix# changeto context admin
MyPix/admin#

MyPix/admin# changeto context CustomerA
MyPix/CustomerA#

MyPix/CustomerA# changeto system

MyP I x#

Notice how the session prompt automatically changes to indicate the firewall and context name
each time the session is moved. Keep in mind that the system execution space is always called
system and not context system. Therefore, it does not really have a context name to be displayed
in the prompt.

Configuring a New Context

All contexts must be defined from a firewall's system execution space. Make sure you position
your session in the system space with the following command before continuing:

Firewal l# changeto system

The firewall also needs an admin context to be able to communicate beyond itself. The admin
context is usually built automatically when the firewall is configured for multiple-context mode.
As well, each time the firewall boots up, you should see console messages indicating that the
admin context has been rebuilt.

To see a list of the contexts that have been configured, you can use the following command:

Firewal l# show context

In the following example, only the admin context has been built:

Firewal l# show context

Context Name Interfaces URL

*admin flash:/admin.cfg
Total active Security Contexts: 1

Firewal 1#

To configure a new context, follow these steps:

1 Name the context:

Firewall(config)# context name

Every context must have a name that is unique on the physical firewall platform. This name is
used in the context definition, in commands used to change sessions over to the context, in the
user interface prompt, and in some forms of logging messages.

Tip

You must add an admin context to every firewall so that it can communicate with the outside
world. Therefore, the first context you should create is the admin context.

By default, the admin context is named "admin" and is created by using the context admin
command. If you decide to give it some other arbitrary name, you will identify it as the admin
context in a later configuration step.

2 (Optional) Label the context:

Firewall(config-ctx)# description text

You can define an arbitrary string of descriptive text (up to 200 characters) if you need to label
a context with more information than just its name. For example, you might want to add a
responsible person's name and contact information, or some specific information about the
purpose of the context, such as the following:

Firewall(config)# context BuildingC DataCenter
Firewall(config-ctx)# description Contact John Doe, jdoe@mycompany.com,
(859)555-1234; schedule any context downtime one week ahead of time.

Map existing firewall interfaces into the context.

Firewall interfaces (physical or logical) are always created and tuned from within the system
execution space. All user contexts (including the admin context) begin with no interfaces
when they are first defined. As well, no interfaces can be created from a user context.

Instead, you must map specific interfaces from the system execution space into a user context.
After an interface has been mapped, it can be configured with a name, a security level, and an
IP address from that context's configuration mode.

a. (ASA only) Map a physical interface:

Firewall(config-ctx)# allocate-interface physical-interface [map-
name]
[visible | invisible]

The physical firewall interface named physical-interface ("GigabitEthernet0," for
example) is mapped into the current context.

By default, the mapped interface appears with the same physical-interface hardware
name in the context. If you would rather keep the interface hardware name hidden
from the context users, you can specify an arbitrary interface name such as map-name.
The context users then use that name to configure the interface.

By default, mapped interface hardware names are also kept invisible to context users
who use the show interface command. This is identical to including the invisible
keyword. If you want to provide a clue as to the context interface's position in the
firewall platform, use the visible keyword. When a mapped interface is made visible,
context users can see its "system name" in the show interface output, as in the
following example:

Firewall(config)# context NewContext
Firewall(config-ctx)# allocate-interface ethernetl test visible
Firewall(config-ctx)# exit
Firewal l# changeto context NewContext
Firewal I/NewContext# show interface test
Interface test """, is down, line protocol is down
System name Ethernetl
Available but not configured via nameif
Firewal I/NewContext#

Tip

When you map an interface into a user context, you are actually creating a "hardware"
name for that interface. You still have to configure the user context so that the new
interface has a name, using the nameif interface configuration command. In the
preceding example, context NewContext considers the new mapped interface name
"test" to be the hardware device. Interface "test" does not have a name and a security
level for firewall use until it is configured further. You could use the following
commands to complete the interface configuration:

Firewal I/NewContext# show running-config interface test
1

interface test

no nameif

no security-level

no ip address

Firewal I/NewContext# configure terminal

Firewal I/NewContext(config)# interface test

Firewal I/NewContext(config-if)# nameif outside

INFO: Security level for "outside™ set to 0 by default.
Firewal I/NewContext(config-if)# no shutdown

Now the show interface command shows the mapped interface "hardware™ name (test),
the logical name (outside), and the system platform name (Ethernetl), as shown in the
following output:

Firewal I/NewContext# show interface outside
Interface test "outside', is down, line protocol is down
System name Ethernetl
MAC address 00a0.c901.0201, MTU 1500
IP address unassigned
Received 0 packets, 0 bytes
Transmitted O packets, 0 bytes
Dropped 0 packets
Firewal 1/NewContext#

b. Map a physical subinterface or VLAN interface.

In an ASA, a physical interface can operate as a trunk, transporting traffic over
multiple VLANS, where each VLAN is mapped to a unique subinterface number. For
example, in the system execution space, interface gigabitethernetl operates as a trunk.
VLAN 5 might be mapped to subinterface gigabitethernetl.5, and VLAN 7 might be
mapped to gigabitethernetl.7. (The subinterface numbers are arbitrary and do not have
to match the VLAN number.)

On an FWSM platform, only VLAN interfaces are supported as if they are physical
interfaces.

You can map a subinterface or a VLAN interface from the system execution space to a
user context, as if it were a physical interface. Use the following command to define a
single mapping:

FWSM Firewall(config-ctx)#allocate-interface vlannumber [map_name]

ASA [Firewall(config-ctx)# allocate-interface
physical-interface.subinterface [map_name]
[visible | invisible]

The physical subinterface named physical-interface.subinterface (ASA) or the Virtual
LAN (VLAN) interface (FWSM) is mapped to the current context as an interface by
the same name. You can include an arbitrary logical map_name if you want to keep the
actual interface name hidden from the context users. In that case, the context users use
map_name to further configure the interface.

You can also map a range of subinterfaces or VLAN interfaces, as long as their
subinterface or VLAN numbers are contiguous. Use the following command to
accomplish this mapping:

FWSM Code View: Scroll / Show All
Firewall(config-ctx)#allocate-interface vlannumber-vlannumber
[map_name-map_name]

ASA Code View: Scroll / Show All
Firewall(config-ctx)# allocate-interface
physical-interface.subinterface-
physical.interface.subinterface [map_name-map_name] [visible
| invisible]

Specify the range of interfaces with the starting subinterface and the ending
subinterface, separated by a hyphen. The physical interface name (physical-interface)
must be identical in the range definition, with only the subinterface numbers changing.
For example, the following command maps subinterface numbers 1 through 5:

Firewall(config-ctx)# allocate-interface
gigabitethernetO.1-gigabitethernet0.5

For the FWSM platform, the range is given with the starting and ending VLAN
interfaces, each beginning with the keyword vlan followed by the VLAN number. For
example, the following command maps interfaces for VLANSs 1 through 5:

Firewall(config-ctx)# allocate-interface vlanl-vlan5

Naturally, you can also map a range of subinterfaces or VLAN interfaces to a range of
logical interface names. To do so, specify the range of map names from starting to
ending, separated by a hyphen. The map_name is an arbitrary name ending with a
number. Both the starting and ending map_name must be identical, except for the
number. The starting and ending number must define a range of the same size as the
physical or VLAN interface range.

For example, you can allocate a range of five physical subinterfaces to a range of five
logical names with the following ASA command:

Firewall(config-ctx)# allocate-interface
gigabitethernetO.1l-gigabitethernet0.5 Intl-Int5

Similarly, you could use the following command on an FWSM platform:

Firewall(config-ctx)# allocate-interface vlanl-vlan5 Intl-Int5

Note

Although an interface can be mapped to other contexts, each context maintains its own
interface state. For example, suppose physical interface GigabitEthernetO has been
mapped to interface0 in context admin. Context admin can shut down its interfaceO
while the physical interface GigabitEthernetO is still up and functioning in the system
execution space.

Naturally, the reverse is not true; the system execution space controls the interface
state for all other contexts. If the system space has a physical interface administratively
shut down (with the shutdown command), all other contexts with that interface mapped
show it as simply "down" and not "administratively down."

Also notice that, in the system space, interfaces are strictly physical and do not have
logical names or security levels. You can see this in the following example:

Firewal l# show interface
Interface GigabitEthernetO "', is up, line protocol is up
Hardware is 182543 rev02, BW 1000 Mbps, Full-duplex

Description: Outside public network (non-trunk)
Available for allocation to a context
MAC address 0003.479a.b395, MTU not set
IP address unassigned

[output omitted]

Interface GigabitEthernet0.2 "', is up, line protocol is up
VLAN identifier 2
Description: VLAN 2 - inside private network
Available for allocation to a context

Interface GigabitEthernet0.3 "', is up, line protocol is up
VLAN identifier 3
Description: VLAN 3 - stateful failover

Available for allocation to a context

4 Define the context startup configuration location:

Firewall(config-ctx)# config-url url

The startup configuration can be located at a URL defined by url at any of the locations listed
in Table 4-2.

Table 4-2. Context Startup Configuration Locations

Locatio
n url Syntax
Flash flash:/[path/]filename

memory
(P1X)
Flash disk:/[path/]filename

memory

(FWSM)

TETP tftp://[user[:password]@]server|[:port]/[path/]filename[;int=if_name
1

server

FTP ftp://[user] :password]@]server[:port]/[path/]filename[;type=xy]
server

where x denotes ASCII1 mode (a) or binary mode (i)

and y denotes passive mode (p) or normal mode (n)
HTTP http[s]://[user[:password]@]server[:port]/[path/]Ffilename

server

Caution

As soon as you enter the config-url command, the system execution space attempts to load that
configuration file immediately. This is done so that the new context can be built with a
working configuration. If the URL points to a location external to the firewall, the IP
connectivity configured on the admin context is used to reach the URL server.

However, be aware that if you reenter the config-url command to point to a new configuration
file location, the configuration commands in that file are immediately merged with the
context's running configuration. This could result in an undesirable configuration.

Within the new context, the URL pointing to the configuration file is used in place of a startup
configuration file in flash memory. If the configuration file does not yet exist, the firewall
creates the file with a minimal or blank context configuration.

Any commands that involve the startup configuration use the URL instead. For example, the
copy running-config startup-config and write memory commands copy the current running
configuration to a file defined by the URL.

In this fashion, the startup configuration can be uploaded to or downloaded from the URL
location. The only exception is a URL that points to an HTTP or HTTPS server; then the file
can only be downloaded to the firewall context.

For example, the following commands configure the CustomerA context to download its
startup configuration from a TFTP server:

Firewall(config)# context CustomerA
Firewall(config-ctx)# config-url tftp://192.168.200.10/pixconfigs/
CustomerA.cfg

Tip

You can name the configuration file with any arbitrary name, with or without a dotted suffix.
Usually, it is a good idea to develop some sort of naming standard. For example, the filename
might indicate the context name and a suffix of .cfg could be added to indicate that the file is a
context configuration.

5 (Optional) Designate the admin context:

Firewall(config)# admin-context name

By default, the admin context is named "admin," and the following command is automatically
added to the system execution space configuration:

Firewall(config)# admin-context admin

If you would rather use the context you have just created as the admin context, you can use the
preceding command to assign its new role. The previous admin context still exists in the
system execution space configuration and as a working context.

Tip

You must store the admin context startup configuration file in the internal flash memory so that it
is always accessible. Make sure you have defined the configuration file location as such:

Firewall(config-ctx)# admin-context admin
Firewall(config-ctx)# config-url flash:/admin.cfg

If a context other than one called "admin™ is configured as the admin context, the commands
might appear as follows:

Firewall(config-ctx)# admin-context Main
Firewall(config-ctx)# config-url flash:/Main.cfg

Context Definition Example

Consider a physical firewall that is configured with three separate contexts for the enterprise:
e One for firewall administration
e One for Department A
e One for Department B

Figure 4-7 shows a network diagram of the multiple-context arrangement.

Figure 4-7. Network Diagram of the Multiple-Context Example

[View full size image]

Internet
GigabitEtharnsiio
162, 168.4 024

ST T ST T L \
1 Admin ! DepartmentA ! DepartmentB I
1 I
! | : !
| GigahitEthematiio ! ! :
!) ; 1
1 : Intfd : Itice 1
1 |
i Cutside | Outside | Cutside |
. 192168110 192 168.1.11 192.168.1.12 :
1 |'- |’ | |- |- I l- |— .
. ! ' ‘

. L i L ! ' :
1 Insids i Inside i Insida 1
: 192188.21 19216831 192.1608.4.1 :

I |
! i Intf1 i Inti1 |
I A [A [-
GigabitEtharnat 01 .2 GigabitEthernat (1.3 GigabitEthermet 0/1.4

VLAN 2
192.168.2.0/24

VLAN 3
192.168.3.0/24

VLAN 4
192.168.4.0/24

For the purposes of this example, each context is defined and configured with only basic
interface parameters. The idea is to become familiar with context creation and configuration and

interface allocation. You perform the configuration steps by connecting to the physical firewall
console to gain access to the system execution space.

First, get a sampling of the physical interfaces that are available on the system execution space.
These interfaces are available to be mapped into user contexts. The following command and
output are used:

Firewall# show running-config
: Saved

ASA Version 8.0(1) <system>

1

interface GigabitEthernet0/0
description Public interface
!

interface GigabitEthernet0/1
description Trunk for private context interfaces
1

interface GigabitEthernet0/1.2
vlan 2

!

interface GigabitEthernet0/1.3
vlan 3

1

interface GigabitEthernet0/1.4
vlan 4

[output omitted]

Next, the admin context is used for firewall management, so it must be defined in the system
execution space configuration. The admin startup configuration is stored in flash as the file
admin.cfg. Two firewall interfaces are allocated to the context. Because it is the admin context,
the interface names cannot be mapped to other arbitrary names. Use the following commands to
configure the admin context:

Firewall# configure terminal

Firewall(config)# context admin

Firewall(config-ctx)# config-url flash:/admin.cfg
Cryptochecksum(unchanged) : 352c788c 39cd2793 66c6ef98 c6bc632e
INFO: Context admin was created with URL flash:/admin.cfg
INFO: Admin context will take some time to come up please wait.
Firewall(config-ctx)#

Firewall(config-ctx)# allocate-interface GigabitEthernet0/0
Firewall(config-ctx)# allocate-interface GigabitEthernet0/1.2
Firewall(config-ctx)# exit

Firewall(config-ctx)# admin-context admin

Firewall(config)#

Now you can define a user context called DepartmentA. This is also done from the system
execution space. Two firewall interfaces are allocated to the context, and the names are mapped
to the generic values intfO and intf1. For the present time, the context startup configuration is

stored as a file named DepartmentA.cfg in flash memory. You can manage this file from the
system execution space only, but context users can read or write to it using the startup-config
command keyword. Later, the context users can arrange to store the file on an external server.
When that happens, the following config-url command needs to be updated:

Firewall(config)# context DepartmentA

Firewall(config-ctx)# config-url flash:/DepartmentA.cfg

WARNING: Could not fetch the URL flash:/DepartmentA.cfg

INFO: Creating context with default config

Firewall(config-ctx)# description Virtual Firewall for Department A
Firewall(config-ctx)# allocate-interface GigabitEthernet0/0 intf0
Firewall(config-ctx)# allocate-interface GigabitEthernet0/1.3 intfl
Firewall(config-ctx)# exit

Define the user context DepartmentB with the following commands on the system execution
space. This context is structured similarly to the DepartmentA context. The startup configuration
also is stored on the firewall flash until it is moved later.

Firewall(config)# context DepartmentB

Firewall(config-ctx)# description Virtual firewall for Department B
Firewall(config-ctx)# config-url flash:/DepartmentB.cfg

WARNING: Could not fetch the URL flash:/DepartmentB.cfg

INFO: Creating context with default config

Firewall(config-ctx)# allocate-interface GigabitEthernet0/0 intf0
Firewall(config-ctx)# allocate-interface GigabitEthernet0/1.4 intfl
Firewall(config-ctx)# exit

Firewall(config)# exit

Firewal 1#

After all the contexts are defined, do not forget to save the system execution space configuration
to flash memory using the following command:

Firewall# copy running-config startup-config

At this point, the firewall flash memory contains the startup configuration files for every user
context. (The system execution space startup configuration file is always stored in a hidden flash
file system.) The firewall flash memory looks something like this:

Firewall# dir flash:/
Directory of flash:/

3 -rw- 4958208 06:41:52 Nov 30 2004 image.bin

4 -rw- 8596996 10:12:38 Nov 12 2004 asdm.bin

10 -rw- 1591 16:45:18 Dec 03 2004 old_running.cfg
12 -rw- 1853 09:47:02 Dec 30 2004 admin.cfg

14 -rw- 2119 14:16:56 Dec 07 2004 CustomerA.cfg
16 -rw- 2002 14:19:44 Dec 07 2004 CustomerB.cfg

16128000 bytes total (2565231 bytes free)
Firewal 1#

Note

Notice that the system execution space contains an Adaptive Security Device Manager (ASDM)
image file (asdm.bin). Users in other contexts cannot directly access the flash file system, so
those contexts cannot use the image file. However, users in each context can run ASDM sessions
to manage the context. The firewall coordinates all this from the system execution space from a
single ASDM image. As expected, context users can see and manage only their own context.

Now, each user context can be configured as an independent firewall. Each one starts with an
empty configuration, except for the mapped interface definitions, so the initial session must be
opened from the system execution space. As soon as a context is configured with enough
information to have network connectivity, users can connect through any other means (Telnet,
SSH, ASDM, and so on).

First, change the session to the admin context and have a look at the available interfaces. Notice
that each one is present but has no usable configuration.

Firewall# changeto context admin
FirewallZadmin# show running-config

PIX Version 8.0(1) <context>
names
I
interface GigabitEthernet0/0
no nameif
no security-level
no ip address
I
interface GigabitEthernet0/1.2
no nameif
no security-level
no ip address
[output omitted]

At a minimum, name the inside and outside interfaces, and configure them with IP addresses and
security levels. You can do this with the following configuration commands (described in more
detail in Chapter 3, "Building Connectivity"):

Firewall/admin# configure terminal

FirewallZadmin(config)# interface GigabitEthernet0/0
FirewallZadmin(config-if)# nameif outside
FirewallZadmin(config-if)# security-level 0
FirewallZadmin(config-if)# ip address 192.168.1.10 255.255.255.0
Firewall/admin(config-if)# no shutdown

FirewallZadmin(config)# interface GigabitEthernet0/1.2
FirewallZadmin(config-if)# nameif inside
FirewallZadmin(config-if)# security-level 100
FirewallZadmin(config-if)# ip address 192.168.2.1 255.255.255.0

FirewallZadmin(config-if)# no shutdown

You can configure the DepartmentA and DepartmentB user contexts in a similar manner. Use the
changeto context DepartmentA and changeto context DepartmentB commands to move the
session to each context.

In this example, firewall interfaces are allocated to the user contexts with the mapped names
intfO and intf1. After you connect to a user context session, the only clue you have about a
mapped interface is its generic or mapped name. After all, the idea behind mapping interfaces is
to present context users with arbitrary interface names that do not represent physical hardware.

Therefore, you might have to return to the system execution space configuration to remember
which physical firewall interface is mapped to which context interface and which context
interface should be configured as inside and outside.

To continue the example, the DepartmentA user context is configured next. Notice the initial
interface definitions:

FirewallZadmin# changeto context DepartmentA
Firewal l/DepartmentA# show running-config
= Saved

PIX Version 8.0(1) <context>
names

I

interface iIntf0
no nameif

no security-level
no ip address

I

interface intfl
no nameif

no security-level
no ip address
[output omitted]

Now you can configure the context interfaces with the following commands:

Firewal l/DepartmentA# configure terminal

Firewal l/DepartmentA(config)# interface intf0

Firewal 1/DepartmentA(config-if)# nameif outside

Firewal l/DepartmentA(config-if)# security-level 0

Firewal l/DepartmentA(config-if)# ip address 192.168.1.11 255.255.255.0
Firewal l/DepartmentA(config-if)# no shutdown

Firewal l/DepartmentA(config)# interface intfl

Firewal 1/DepartmentA(config-if)# nameif inside

Firewal l/DepartmentA(config-if)# security-level 100

Firewal l/DepartmentA(config-if)# ip address 192.168.3.1 255.255.255.0
Firewal l/DepartmentA(config-if)# no shutdown

Tip

After you move your session to a different user context, it might be tempting to use the exit
command to return to the previously visited context or the system execution space. Entering exit
only terminates your session with the current context, requiring you to authenticate with it again
so that you can use the changeto command.

Think of each context as having its own virtual console connection. By using the changeto
command, you move the console connection from one context to another.

Allocating Firewall Resources to Contexts

When a firewall platform is running in single-context security mode, you can configure and use
only one operational firewall. Therefore, that firewall can use any or all of the available traffic
inspection and session resources on that hardware platform. In other words, if the firewall uses
most of its own resources while it does its job, its own performance is not affected.

In multiple-context security mode, however, all the configured contexts must share the available
resources on their physical firewall platform. If one context becomes heavily loaded or highly
utilized, it can use a majority of the traffic inspection resources. This can affect the other
contexts by leaving them starved for the same resources.

Multiple-context mode can support resource allocation by imposing limits on how specific
resources are used. You can configure resource limits in classes according to the resource type
and assign memberships in the classes to contexts. Resource allocation has the following
characteristics:

e Resource allocation is available on the FWSM, starting with release 2.2(1). Resource
allocation is also available starting with ASA 7.2(1).
o Firewall resources that can be limited fall into several categories:

- Stateful inspection— The number of hosts, connections, address translations, and
application inspections

- MAC addresses— The number of MAC addresses learned in transparent firewall mode

- Syslog message generation rate— The number of logging messages sent per second to
Syslog servers

- Administrative sessions— The number of ASDM, Telnet, SSH, and IPSec connections
to the firewall

e The default class permits unlimited use of most resources for all contexts by default. You
can configure the default class and adjust specific resource limits in it, if needed.

e You can define and configure new classes with resource limits tailored for a certain level
of service.

e You can impose specific limits on a context by assigning it membership in a class.
Otherwise, every context that is not a class member belongs to the default class.

o Limits are set per class, not per context. Therefore, all contexts that are assigned to a
class share various resources up to the limits of that class. To configure limits on a per-
context basis, define one class per context and assign each context to its respective class.

e To exercise thorough control over system resources, you should define classes with
specific limits. Then make sure every context is assigned to a class. After that is done, no
context can inherit the unlimited resources of the default class.

You can use the following steps to define and apply classes of resource limits to security
contexts:

1. Define a class of service.

a. ldentify the class:

Firewall(config)# class name
The class is named name (an arbitrary string up to 20 characters).
Tip

You can adjust the resource limits that are defined in the default class by using the
class name default in this configuration step. The command syntax then becomes
class default. By default, all the default class limits are set to unlimited (0), except for
the following:

e ASDM sessions (the default is 5)

o Telnet sessions (the default is 5)

e SSH sessions (the default is 5)

o IPSec sessions (the default is 5)

e MAC addresses (the default is 65,535 entries)

b. (Optional) Define a limit for all resources:

Firewall(config-class)# limit-resource all number%

All resource types are limited to number (1 to 100) percent of the maximum available
on the physical firewall platform. This limit overrides any resource types that are set
in the class. After tnumber is set to 0, all resources are allowed to be unlimited. The
value number must be followed by a percent character.

For example, to limit all resources to 50 percent of their possible values, you would
use the following command:

Firewall(config-class)# limit-resource all 50%

c. (Optional) Define a limit for a single resource:

Firewall(config-class)# limit-resource [rate] resource_name
number [%]

You can limit a specific firewall resource within the class. If you set a limit with this
command, it overrides any limit set by the limit-resource all command or by the cific
firewall.

You can limit the resource named resource_name to an actual value as number or to a
percentage of the maximum possible value as number%. You can also add the rate
keyword to indicate that number should be interpreted in units per second.

Use Table 4-3 to find resource names and their maximum values.

Table 4-3. Resource Names and Maximum Values

Resource_name Resource Type Platform Maximum
hosts Number of concurrent hosts having FWSM: 256,000
connections
ASA: No limit
conns Total UDP and TCP connections FWSM: 999,900
between any hosts concurrent

FWSM: 102,400 per
second

ASA: Limited by
platform

xlates Address translations FWSM: 256,000
concurrent
ASA: No limit

fixups (FWSM) | Application inspections FWSM: 10,000 per
second

inspects (ASA)
ASA: No limit

Mac-addresses | Transparent firewall MAC address table 65,535 concurrent

syslogs Syslog messages generated FWSM: 30,000 per
second™!

ASA: No limit

[The FWSM can generate a sustained rate of 30,000 logging messages per
second to a terminal session or the internal logging buffer. Sending messages
to a Syslog server imposes additional packet overhead, reducing the actual
rate to 25,000 messages per second.

Firewalls also support resource limits on various types of sessions that terminate on
the firewall. Use Table 4-4 to find those resource names and maximum values.

Table 4-4. Resource Names and Maximum Values for Terminating Session Types

Resource_name Resource Type Platform Maximum
Asdm Concurrent ASDM sessions 32 for ASA

80 for FWSM 3.1(1)
telnet Concurrent Telnet sessions 100H
ssh Concurrent SSH sessions 100H
ipsec Concurrent IPSec connections 101

[The FWSM can support up to 100 concurrent Telnet and SSH sessions
over all contexts. It imposes a limit of five concurrent Telnet and five
concurrent SSH sessions per context.

2J The FWSM can support up to ten concurrent IPSec connections over all
contexts, or up to five concurrent connections per context.

You can repeat the limit-resource command to define other resource limits for the
class. For example, a class called Silver is configured to limit all firewall resources to
25 percent of the maximum available resources. In addition, the number of xlates is
limited to 50,000, and the number of conns is limited to 100,000. The number of
Syslog messages is limited to 4000 per second. You can use the following commands
to define these limits:

Firewall(config)# class Silver
Firewall(config-class)# limit-resource all 25%
Firewall(config-class)# limit-resource xlates 50000

Firewall(config-class)# limit-resource conns 100000
Firewall(config-class)# limit-resource rate syslogs 4000

d. Exit the resource class submode:

Firewall(config-class)# exit

2. Assign a context to a class.

a. Select a context:

Firewall(config)# context name

The context name should already be defined in the system execution space
configuration.

b. Assign it to a resource class:

Firewall(config-ctx)# member class

The context becomes a member of the resource allocation class named "class," as
defined in Step 1. You can assign membership in only one user-defined class per
context. Keep in mind that every context also belongs to the default class. Any
resource limit that is not defined in "class" is then inherited from the default class.

3. Monitor resource allocation.

a. Display class membership:

Firewall# show class

Each of the configured classes is shown with its member contexts. In the following
example, all contexts are members of the "default” class, and only context 1 is a
member of the "silver" class:

Firewall# show class

Class Name Members ID Flags
default All 1 0001
silver 1 2 0000
Firewal 1#

b. Review resource allocation:

Firewall# show resource allocation [detail]

You can use this command to display the current breakdown of resource limits as
percentages of the total available. Add the detail keyword to see a more detailed
breakdown by resource and context, as in the following example:

Code View: Scroll / Show All
Firewall# show resource allocation

Resource Total % of Avail
Conns [rate] 85000 50.00%
Fixups [rate] 50000 50.00%
Syslogs [rate] 15000 50.00%
Conns 500000 50.05%
Hosts 131072 50.00%
IPSec 5 50.00%

Mac-addresses 32767 49.99%

ASDM 5 6.25%

SSH 50 50.00%
Telnet 50 50.00%
Xlates 131072 50.00%

Firewall# show resource allocation detail
Resource Origin:

A Value was derived from the resource %and
C Value set in the definition of this class
D Value set in default class
Resource Class Mmbrs Origin Limit Total
Total %
Conns [rate] default all CA unlimited
silver 1 CA 85000 85000
50.00%
All Contexts: 1 85000
50.00%
Fixups [rate] default all CA unlimited
silver 1 CA 50000 50000
50.00%
All Contexts: 1 50000
50.00%
Syslogs [rate] default all CA unlimited
silver 1 CA 15000 15000
50.00%
All Contexts: 1 15000
50.00%
Conns default all CA unlimited
silver 1 CA 500000 500000
50.05%
All Contexts: 1 500000
50.05%

[output truncated]

c. Display the current resource usage:

Code View: Scroll / Show All
Firewall# show resource usage [context context name | top n | all |
summary | system] [resource {[rate] resource name | all} | detail]
[counter counter_name
[count_threshold]]

You can use this command to display the actual resources being used, as described in
Table 4-5.

Table 4-5. Options for Displaying Resources Being Used
Keyword Description
context context_name Resources in use by the context named context_name
top n resource resource_name Displays the n greatest users of a specific resource
all Displays all resource usage information

summary Displays a summary by resource type
system Resources in use by the system execution space

You can also display the results for a specific resource by giving the resource
keyword along with a resource_name.

Normally, each resource usage line is shown with the fields listed in Table 4-6.

Table 4-6. Resource Usage Line Fields
Label |Description
Current The number of resources currently in use
Peak The highest amount since counters were cleared
Limit The limit imposed on a resource
Denied How many times a resource use has been denied because of a limit
Context The context using the resource

If you enter the counter keyword, you can display results based one of the following
specific counter_name values: current, peak, denied, or all.

You can also get a feel for the complete variety and number of firewall resources
used by a context. By adding the detail keyword, you can see all resources being
used, whether or not the resources can be limited.

Verifying Multiple-Context Operation

To see the current admin context name and configuration URL, you can use the show admin-
context command, as in the following example from an ASA platform:

Firewall# show admin-context
Admin: admin flash:/admin.cfg
Firewal 1#

To see information about the configured contexts, you can use the following command:

Firewall# show context [[detail] [name] | count]

You can specify a context name to see information about only that context. Otherwise, all the
contexts are shown. Include the detail keyword to see a breakdown of each context resource,
including the configuration URL and interface mappings.

The following example shows the output from an ASA that has three configured contexts:
admin, CustomerA, and CustomerB.

Code View: Scroll / Show All
Firewal l# show context

Context Name Interfaces URL
*admin GigabitEthernetO flash:/admin.cfg
GigabitEthernetl.1l
CustomerA GigabitEthernetO,

tftp://172.30.1.10/customerA._cfg
GigabitEthernetl.3
CustomerB GigabitEthernetl.2,3
tftp://172.16.0.20/customerB.cfg
Total active Security Contexts: 3
Firewal l#

On an FWSM platform, the same command produces slightly different output:

Code View: Scroll / Show All
Firewal l# show context

Context Name Class Interfaces URL

*admin silver Vlan10,100 disk:/admin.cfg
CustomerA silver V1an20,100
tftp://172.30.1.10/customerA.cfg

CustomerB default V1an30,100

tftp://172.16.0.20/customerB.cfg

You can add the detail keyword to see a breakdown of the context configuration. The following
example shows the detailed configuration for a context named CustomerA:

FirewallI# show context detail CustomerA
Context '"CustomerA™, has been created
Desc: Virtual firewall for CustomerA"s headquarters location
Config URL: tftp://172.30.1.10/customerA.cfg
Real Interfaces: GigabitEthernetO, GigabitEthernetl.3
Mapped Interfaces: IntfO, intfl
Flags: 0x00000011, ID: 2
Failover group: 1
Firewal 1#

Finally, although the firewall cannot limit CPU load as a resource that is shared across contexts,
the firewall does keep CPU load statistics. You can see a breakdown of the CPU usage as it is
distributed across all the configured contexts. Use the following command from the system
execution space:

Firewall# show cpu usage context {name | all}

The following example shows CPU usage on a firewall configured with three contexts:

Firewall# show cpu usage context all
5 sec 1 min 5 min Context Name
7.1% 8.0% 7.1% system

12.0% 12.0% 10.0% admin

27.7% 28.5% 27.0% CustomerA
4_.0% 4 _.0% 4.0% CustomerB

Firewal 1#

4-2. Managing the Flash File System

Every Cisco firewall has a flash (nonvolatile) memory file system. Files such as the firewall
operating system image, a firewall management application image, and the firewall configuration
can be stored for use. This section discusses the various types of files and how to navigate and
use the flash file system. The flash file system can be characterized by the following features:

The operating system for Cisco firewalls is stored in flash memory in a compressed
format. In P1X 6.3 or earlier, only one image can be stored in flash at any time. FWSM
allows one image to be stored in each of two flash memory partitions, although only one
image can be run at any time.

The ASA release loosens this restriction, allowing multiple images; however, only one of
those images can run actively at any time.

In ASA and FWSM multiple-context modes, only the system execution space can
directly access and manage the flash file system. All other contexts have no knowledge of
a flash file system and no means to manage one.

When a firewall boots, it uncompresses and copies an executable image from flash to
RAM. The image is actually run from RAM.

While an image is being run, a different image can be copied or written into flash
memory. In fact, the running image can be safely overwritten in flash, because it is run
from RAM. The new image is not run until the next time the firewall reloads.

The various Cisco firewall platforms have different flash memory organization and
storage capabilities. Generally, flash memory is divided into partitions, each having its
own restrictions on the types of files that can be stored there. Table 4-7 summarizes the
flash memory differences:

Table 4-7. Flash Memory Organization/Storage by Platform

PIX 6.3 ASA FWSM
Flash 1 2 6
partitions
File types One OS 1: Open partition flash:/—QOS 1: Maintenance image
allowed on image images, ASDM images,
partitions configuration files, logging files, 2: Network configuration

One arbitrary files

Table 4-7. Flash Memory Organization/Storage by Platform
PIX 6.3 ASA FWSM

PDM for maintenance image
image 2: Hidden partition—system
startup configuration file, crash 3: Crash dump
One dump file
crash 4: flash:/—images (OS,
dump ASDM, system startup
configuration)

5: Alternative images

6: disk:/—security context
configurations, RSA keys,
arbitrary files

e The operating system and ASDM or PDM images must be compatible before
ASDM/PDM can be used. An ASDM/PDM image can be loaded into flash at any time
without requiring a firewall reload.

e Animage (operating system or ASDM/PDM) can be transferred into a firewall by any of
the following methods:

- TFTP at the monitor prompt
- TFTP from an administrative session (firewall console, Telnet, or SSH)
-HTTP or HTTPS from a web server

- The firewall polls an Auto Update Server (AUS) device periodically to see if a new
image is available for it. If so, the image is downloaded using HTTPS (TCP port 443).

Tip

After an ASDM or PDM image is downloaded into the firewall flash memory, it can be used
immediately. After an operating system image is downloaded, however, the firewall must be
rebooted to run the new image. You have to manually force a reboot by using the reload EXEC
command. Obviously, you can download a new OS image at any time—even while the firewall
is in production. To run the new image, firewall service has to be interrupted during downtime or
a maintenance window.

Navigating an ASA or FWSM Flash File System

ASA and FWSM platforms organize their flash file systems much like a traditional 10S file
system, which must be formatted, and can contain a tree of directories, each containing arbitrary
files. You can navigate the flash file system and manage any of its contents, as described in the
following sections.

Tip
In ASA, you can use flash:/ to reference the entire flash file system.

FWSM, however, uses flash:/ to reference the flash partition that contains operating system and
PDM images. You can use disk:/ to reference the flash partition that contains configuration files
and other arbitrary files.

Each administrative session maintains a current placeholder or current directory where the user is
positioned within the firewall file system. This is very similar to navigating a file system from
within a shell on a Windows or UNIX machine.

In an administrative session, you can take the following actions:
o List the files stored in a directory:

FWSM Firewall# dir [/all] [/recursive] [disk:[path]]
ASA Firewall# dir [/all] [/recursive] [flash:[path]]

o By default, an administrative session begins in the flash:/ or disk:/ root directory, for
ASA or FWSM, respectively. You can specify the flash: or disk: keyword and a path to
view the contents of a different directory. The path also can contain regular expressions
to match specific patterns within filenames.

o For example, you can use the following command on an ASA to see a list of all
configuration files (having a .cfg suffix) in flash:

e Firewall# dir flash:*_cfg

e Directory of flash:/*.cfg

e 10 -rw- 1575 23:05:09 Sep 30 2004 old_running.cfg
o 12 -rw- 3134 23:30:24 Nov 08 2004 admin.cfg

o 13 -rw- 1401 14:12:31 Oct 20 2004 CustomerA.cfg

o 14 -rw- 2515 23:29:28 Nov 08 2004 border.cfg

o 17 -rw- 1961 13:52:22 Oct 25 2004 datacenter.cfg

You can use the /all keyword to list all the files in the directory and the /recursive
keyword to recursively look in all nested directories and list the files found.
« Display the current directory name:

FWSM Firewal 1# pwd
ASA Firewall# pwd

Tip

Because you can "move around" within the flash file system hierarchy, it is easy to forget
where the current directory is pointed. In the following example, the user has moved into
the Syslog directory in flash:

Firewall# pwd

flash:/syslog/

Change to a different directory:

FWSM Firewall# cd [disk:][path]
ASA Firewall# cd [flash:][path]

You can specify a directory name as path relative to the file system's root. The keyword
flash: or disk: is optional but is the default. If the cd command is used alone, the pointer
is changed to the root directory in flash.

For example, the following commands move the user into the Syslog directory in flash:
Firewall# cd

Firewall# cd syslog

or

Firewall# cd flash:/syslog

Display a file's contents:

FWSM Firewall# more [/asc nary] [disk:]path

ii | /Dbi
ii | /binary] [flash:]path

ASA Firewall# more [/asc

The file found at filesystem:path is displayed, one page at a time, in the current
administrative session. By default, the flash: or disk: file system is assumed, and the file
contents are shown as plain text. For example, the following command displays the
flash:/mytest text file:

Firewall# more mytest

hello this is a test

the end

Firewal 1#

You can also display a file to see both the hex and ASCII representations of its contents.
The file can contain either ASCII text or binary data. You can use either the /binary or
/ascii keyword, because they produce identical results. The following example shows the
same small text file in the dual format:

Firewall# more /ascii mytest

00000000: 68656c6¢c 6F207468 69732069 73206120 hell o th is i s a
00000010: 74657374 0d0aOdOa 74686520 656e64XX test the endX
Firewal 1#

Be careful when you use the more command. If you attempt to view the contents of a large
binary file, such as by using more image.bin to view the PIX image file, you could be stuck
waiting a very long time while every byte is shown as a literal (and often cryptic) character to
your terminal session. If you want to look at the contents of a binary file, always use the more
/binary or more /ascii forms of the command.

Administering an ASA or FWSM Flash File System

An ASA platform offers two file systems—a flash file system that is accessible to administrative
users, and a hidden file system that contains system-related resources that are inaccessible. On an
FWSM platform, both file systems are accessible. The flash file system can contain files and
directories, each under user control.

In an administrative session, you can take the following management actions on the flash file
system and its contents:

e Copy afile to or from flash.

You can copy files according to the basic syntax copy from to, as in the following
commands:

FWSM Firewal1# copy disk:path/filename url
ASA Firewall# copy flash:path/filename url

or

FWSM Firewall# copy url disk:path/filename
ASA Firewall# copy url flash:path/filename

In the flash file system, files are identified by their path, relative to the flash root
directory, and their filename. You can use regular expressions in the filename to select
specific files if needed.

Files can be copied to or from a URL, which can be an FTP server, a TFTP server, or
another location in flash. The respective URL formats are as follows:

ftp://[user[:password]@]server[:port]/[path/]filename[;type=xy]
tftp://[user[:password]@]server[:port]/[path/]filename
flash:path/filename

If a server requires user authentication, you can specify the user ID and password in the
user:password@ format.

Tip

Prior to ASA 7.2(1), the URL required an IP address; the firewall could not resolve fully
qualified domain names (FQDN). If you are running ASA 7.2(1) or later, the firewall can
use DNS to resolve the IP address in a URL.

Make sure you use the following commands to configure DNS resolution on a specific
firewall interface, the firewall's default domain name, and one or more DNS addresses:

Firewall(config)# dns domain-lookup if _name

Firewall(config)# dns server-group name

Firewal l(config-dns-server-group)# domain-name name

Firewall(config-dns-server-group)# name-server ip_addr [ip_addr2] [---]
[ip_addré]

Firewall(config-dns-server-group)# retries number

Firewall(config-dns-server-group)# timeout seconds

Firewal I (config-dns-server-group)# exit

Delete a file from flash:

FWSM Firewal1# delete [/noconfirm] [/recursive] disk:][/path]filename

ASA [Firewall# delete [/noconfirm] [/recursive]
[flash:][/path]filename

The file named filename is deleted from flash. You can specify the flash: or disk:
keyword, as well as a path, if needed. If those are omitted, the flash file system is
assumed, and the path is assumed to be the current working directory (as shown by the
pwd command).

You can use the /noconfirm keyword to delete the file without being asked to confirm the
action. Without this keyword, you must press the Enter key each time the firewall
prompts you for confirmation. You can delete an entire directory and its contents
recursively by using the /recursive keyword.

For example, suppose an old configuration file oldconfig.cfg exists in flash. First, a
directory is shown to find the correct filename, and then the file is deleted using the
following commands:

Firewall# dir flash:

Directory of flash:/

6 -rw- 4902912 17:11:35 Nov 22 2004 image.bin
10 -rw- 1575 23:05:09 Sep 30 2004 oldconfig.cfg
23 -rw- 8596996 10:12:38 Nov 12 2004 asdm.bin

Firewall# delete flash:oldconfig.cfg
Delete filename [oldconfig.cfg]

Delete flash:/oldconfig.cfg? [confirm]
Firewal l#
Rename a file:

FWSM Firewal1# rename [/noconfirm] [disk:] [source-path] [disk:]
[destination-path]

ASA Firewall# rename [/noconfirm] [flash:] [source-path] [flash:]
[destination-path]

You can rename an existing file named source-path (a filename with an optional path) to
destination-path. You can add the flash: or disk: file system keyword, but the flash
memory is used by default. If you provide no other path information, the path is assumed
to be the current working directory (as seen with the pwd command).

By default, the firewall prompts you for each argument as a confirmation. You can use
the /noconfirm keyword to skip all the confirmation steps.

For example, the file flash:/capturel is renamed flash:/capture2 using the following
commands:

Firewall# rename flash:/capturel flash:/capture2

Source Filename [capturel]?

Destination filename [capture2]?

Firewal 1#

Make a new directory:

FWSM Firewal1# mkdir [/noconfirm] [disk:]path
ASA Firewall# mkdir [/noconfirm] [flash:]path

A new empty directory is created at path, which can contain a path and filename. You can
add the flash: or disk: keyword, but it is assumed by default. The firewall prompts you for
confirmation before creating the directory. You can use the /noconfirm keyword to skip
the confirmation prompts.

For example, to create a new directory called MyStuff in the flash file system, you would
use the following command sequence:

Firewall# mkdir flash:/MyStuff

Create directory filename [MyStuff]?

Created dir flash:/MyStuff

Firewall# dir flash:

Directory of flash:/

[output omitted]

64 drw- O 16:02:57 Nov 23 2006 MyStuff
16128000 bytes total (2419712 bytes free)
Firewal l#

Remove a directory:

FWSM Firewall# rmdir [/noconfirm] [disk:]path

FWSM Firewall# rmdir [/noconfirm] [disk:]path
ASA Firewall# rmdir [/noconfirm] [flash:]path

A directory named path is removed or deleted from flash. The path can contain a
directory path and filename if needed. The firewall prompts you for confirmation before
removing the directory. You can use the /noconfirm keyword to skip the confirmation
prompts.

A directory must be empty of files and other directories before it can be removed.
Check the flash file system's integrity.

If you suspect that the flash file system might be corrupted, you can use the following
command to check it:

FWSM Firewal1# fsck disk:
ASA Firewall# fsck flash:

The ASA flash file system has been checked in the following example. The output shows
the number of orphaned files and directories that are found. These files and directories
have been created but can no longer be reached in the file system because the mechanism
to index or point to them is corrupt.

Firewall# fsck flash:

Fsck operation may take a while. Continue? [confirm]
flashfs[7]: 32 files, 6 directories

Fflashfs[7]: O orphaned files, 0 orphaned directories
flashfs[7]: Total bytes: 16128000

flashfs[7]: Bytes used: 13607936

flashfs[7]: Bytes available: 2520064

flashfs[7]: flashfs fsck took 23 seconds.

Fsck of flash:: complete

Firewal 1#

Destroy the entire flash file system:

FWSM Firewall# format disk:
ASA Firewall# format flash:

or

FWSM —
ASA Firewall# erase flash:

You should use the format and erase commands only in special cases, where the entire contents
of flash memory (both accessible and hidden flash file systems) need to be erased. This might be
desirable if a firewall is to be turned over or transferred to a different owner and the flash
contents need to remain confidential.

Every file, including image files, configuration files, and licensing files, is overwritten with a
OxFF data pattern so that it is completely removed. A generic flash file system is then rebuilt.

Using the PI1X 6.3 Flash File System

In PIX 6.3, the flash memory is organized as a "closed,” flat file system. Only six different files
can be stored in flash. These files are not directly accessible or readable, and there is no
hierarchical structure (folders or directories) to navigate. In fact, the files do not even have
filenames. Instead, the firewall displays only the file index numbers it assigns automatically:

e 0— The operating system binary image.

e 1— The startup configuration commands; these are copied into the running configuration
(RAM) and are executed when the firewall boots.

e 2— VPN and other keys and certificates.

e 3— The PDM image (if present).

e 4— A memory image saved after a firewall crash (if enabled).

o 5— The file size of the compressed operating system image (file 0).

In PIX 6.3, you can display the flash files with the show flashfs command, as in the following
example:

Firewall# show flashfs
flash file system: version:3 magic:0x12345679
file 0: origin: 0 length:1949752
file 1: origin: 2097152 length:6080
file 2: origin: 2228224 length:1504
file 3: origin: 2359296 length:3126944

file 4: origin: 0 length:0
file 5: origin: 8257536 length:308
Firewal 1#

Identifying the Operating System Image

In PIX 6.3 and FWSM, only one operating system image file can be stored in flash at any time.
The firewall automatically allocates storage for the image and handles its creation. In P1X 6.3,
the image file is always indexed as file number 0 in the flash file system, as displayed by the
show flashfs command. Therefore, when the firewall boots up, that image is always loaded into
RAM and executed. In an FWSM, you can see a list of files in the image or application partition
with the dir flash:/ command.

The ASA code platform relaxes this restriction, allowing one or more operating system images to
be stored in flash, as long as there is sufficient space to store them. Naturally, only one of the
image files can run on the firewall at any time, so you must select one file for use. Use the
following command to select the bootable image:

Firewall(config)# boot system flash:filename

Naturally, this command is stored in the running configuration after it is entered. It should also
be written into the startup configuration so that the image can be identified during the next reload
or bootup. The firewall searches for the specified file as soon as the command is entered. If the
file cannot be found in flash, the command is accepted but a warning message is displayed.

You can also enter this command more than once to configure a list of image files that can be
executed. The list of filenames is tried in sequence so that if one file is not found in flash, the
next file is tried, and so on.

The firewall also maintains this value as an environment variable BOOT while it is running. If
multiple boot system commands have been configured, the BOOT variable contains the entire
sequence of values. You can display the current boot image setting with the following command:

Firewal l# show bootvar

For example, two image files are stored in flash: flash:/image.bin and flash:/image-beta.bin. You
can run either image on the firewall. For normal production use, image.bin is used, whereas
image-beta.bin is occasionally run to test new firewall features. The following commands show
the available images and then specify image.bin and image-beta.bin as the bootable image
sequence:

Firewall# dir flash:

Directory of flash:/

4 -rw- 4976640 10:23:28 Apr 1 2007 1image.bin

9 -rw- 5261204 4:10:17 May 6 2007 image-beta.bin
[output omitted]

Firewall# configure terminal

Firewall(config)# boot system flash:/image.bin
Firewall(config)# boot system flash:/image-beta.bin
Firewall(config)# exit

Firewall# copy running-config startup-config

Firewal 1#

Firewal l# show bootvar

BOOT variable = flash:/image.bin

Current BOOT variable = flash:/image.bin;flash:/image-beta.bin
CONFIG_FILE variable =

Current CONFIG_FILE variable =

Firewal 1#

Notice that the BOOT variable has two different lines of output. The first, BOOT variable, shows
the value obtained from the boot system commands at bootup time. The Current BOOT variable
line shows the current value obtained by any additional boot system commands entered since
bootup.

Upgrading an Image from the Monitor Prompt
If the firewall has no operating system image, you can still download one via TFTP from the

monitor prompt. At this point, the firewall is not inspecting any traffic and has no running
configuration. Follow these steps to download a firewall operating system image via TFTP:

1. Make sure a TFTP server is available.
The TFTP server should have the firewall image available for downloading.
Tip
You can obtain TFTP server software from a variety of sources:
o Solarwinds.net TFTP server (http://www.solarwinds.net; free)
o Kiwi CatTools 2.x, Kiwi Enterprises (http://www.kiwisyslog.com; commercial
package)

e Tftpd32 (http://tftpd32.jounin.net; free)
o tftpd, standard on UNIX systems (free)

At one time, Cisco offered a free TFTP server on Cisco.com. However, this was limited to
Windows 95 installations, so it has since been dropped from support.

2. Boot the firewall to the monitor prompt.

Just after booting the firewall, you can press the Esc or Break key to break the normal
bootup sequence. Be sure to do this when the following output and prompt are displayed:

Cisco Systems ROMMON Version (1.0(10)0) #0: Fri Mar 25 23:02:10 PST 2005
Platform ASA5510

Use BREAK or ESC to interrupt boot.

Use SPACE to begin boot immediately.

[The ESC key was pressed here]

Boot interrupted.

Management0/0

Ethernet auto negotiation timed out.

Interface-4 Link Not Established (check cable).

Default Interface number-4 Not Up

Use ? for help.
rommon #0>

3.

Identify the TFTP server.
Note

The parameters you assign here are used only temporarily until the firewall can download
and run the new image. None of these commands is stored in a configuration; as soon as the
firewall boots, they are lost.

a. ldentify the firewall interface where the TFTP server is located:

ASA |monitor> interface name

PIX 6.3 monitor> interface number

On an ASA platform, you identify the interface by its physical interface name. For
example, you could use ethernet0/0, ethernet0/1, ethernet0/2, ethernet0/3, or
management0/0 on an ASA 5510.

TFTP on a PIX 6.3 platform uses the interface with index number (0 to n — 1, where
n is the number of interfaces installed). During the bootup sequence, the firewall lists
the physical interfaces that are installed. Some models also list their MAC addresses
but do not number the interfaces. Therefore, it might not be clear how they
correspond to the actual connections on the firewall. In any case, the first interface
shown is always index 0.

Tip

On a PIX platform, when the installed interfaces are listed during bootup, only the
interfaces that are not Gigabit Ethernet are shown. This is because you cannot use a
Gigabit Ethernet interface to download a software image from the monitor prompt.

If you are stuck trying to figure out what interface names are available on an ASA,
you can enter a bogus value for the interface name to get the valid names listed. For
example, try something like interface 0 to get the following list:

rommon #1> interface 0
Invalid interface name argument, Valid arguments are:
Ethernet0/0
Ethernet0/1
Ethernet0/2
Ethernet0/3
Management0/0

interface <name> ethernet interface port
rommon #1>

b. Assign an IP address to the interface:

monitor> address ip-address

Here, the firewall needs just enough information to be able to contact the TFTP
server. Only one physical interface can be used, so this IP address is applied to it.
Because a subnet mask cannot be given, the firewall assumes a regular classful
network mask (172.17.69.41 yields a Class B mask of 255.255.0.0, for example).

If your TFTP server is located on a different classful subnet, you can also specify a
gateway address that can route between the firewall and the server. Use the following
monitor command:

monitor> gateway ip-address
c. Make sure that the firewall can reach the TFTP server.

The firewall must be able to reach the server with a minimal amount of routing. You
can use the following monitor command to test reachability:

monitor> ping ip-address
d. Define the TFTP server's IP address:

monitor> server ip-address

e. Define the image filename to fetch:

monitor> file filename

The image file named filename is located in the TFTP server's root directory. This is
often called the /tftpboot directory, but it depends on how your TFTP server is
configured. As long as the file can be found in the TFTP server's root directory, you
do not have to specify the directory name or path.

4. Copy the image from the TFTP server:

ASA monitor> tftpdnld

PIX 6.3 monitor> tftp

On an ASA, you should see exclamation points as the TFTP download is progressing. A
successful TFTP download should look something like the following:

Code View: Scroll / Show All
Cisco Systems ROMMON Version (1.0(10)0) #0: Fri Mar 25 23:02:10 PST 2005

Platform ASA5510

Use BREAK or ESC to interrupt boot.
Use SPACE to begin boot immediately.
Boot interrupted.

Management0/0

Ethernet auto negotiation timed out.
Interface-4 Link Not Established (check cable).
Default Interface number-4 Not Up
Use ? for help.

rommon #0> interface etherenet0/0
Ethernet0/0

Link is UP

MAC Address: 0016.c789.c8a4

rommon #1> address 172.17.69.1
rommon #2> server 172.17.69.49
rommon #3> ping 172.17.69.49

Sending 20, 100-byte ICMP Echoes to 172.17.69.49, timeout is 4 seconds:
rrnrrnnnpnnnnnnnnnnnl

Success rate is 100 percent (20/20)
rommon #4> file image.bin
rommon #5> tftpdnld
ROMMON Variable Settings:
ADDRESS=172.17.69.1
SERVER=172.17.69.49
GATEWAY=0.0.0.0
PORT=Ethernet0/0
VLAN=untagged
IMAGE=image.bin
CONFIG=
LINKTIMEOUT=20
PKTTIMEOUT=4
RETRY=20

tftp image.bin@172.17.69.49 via 0.0.0.0
rrrrnnrnnpnnpnnnnnnnnnRRRRLRRLLIRLLIRLInRLRInILIIInLLLn]

[output omitted]
rrrrnnpnnnnnnnnnnl

Received 14487552 bytes
Launching TFTP Image. ..

Cisco Security Appliance admin loader (3.0) #0: Thu Mar 29 01:42:31 MDT
2007
Loading. - .

A PIX 6.3 platform will show periods or dots as the TFTP download is progressing. After
the download completes, the firewall needs confirmation before it actually writes the new
image into its flash memory. You can also enter a new license activation key at the end of
this process, if needed.

A successful TFTP download looks something like this:

Code View: Scroll / Show All

Cisco Secure PIX Firewall BIOS (4.0) #39: Tue Nov 28 18:44:51 PST 2000

Platform PIX-525

System Flash=E28F128J3 @ OxFFfO0000

Use BREAK or ESC to interrupt flash boot.

Use SPACE to begin flash boot immediately.

Flash boot In 8 seconds.

[ESC key pressed here]

Flash boot interrupted.

0: 18255X @ PCI(bus:0 dev:14 irqg:10)

1: 18255X @ PCl(bus:0 dev:13 irq:11)

Use ? for help.

monitor>

monitor> interface O

Using 0: i8255X @ PCl(bus:0 dev:14 irq:10), MAC: 0090.2744_.5e66

monitor> address 172.17.69.1

monitor> ping 172.17.69.49

Sending 5, 100-byte 0x5b8d ICMP Echoes to 172.17.69.49, timeout is 4
seconds:

Success rate is 100 percent (5/5)

monitor> server 172.17.69.41

monitor> file image.bin

monitor> tftp

tFtp Image.-bin@1l72. 17 .69.40 . e e e e e e e

Received 2064384 bytes.

Flash version 6.3(4), Install version 6.3(4)

Do you wish to copy the install image into flash? [n] vy
Installing to flash

Serial Number: 807443449 (0x30209b¥9)

Activation Key: c422440f 2ebl445a 46Fb4413 74a344ee

Do you want to enter a new activation key? [n]

Writing 1941560 bytes image into flash...

5. Reload the firewall to run the new image:

monitor> reload

The firewall performs a reload immediately. You should see the usual bootup output on the
console, followed by information about the new running image.

An ASA platform automatically reloads as soon as the code image TFTP download is
finished.

Upgrading an Image from an Administrative Session

1.

Make sure an image server is available.

The server should have the firewall image available for downloading, either by TFTP, FTP,
HTTP, or HTTPS.

Make sure you have sufficient space on the flash file system.

An ASA allows one or more image files as well as other files to be stored in flash, as long as
you have sufficient space to contain them all. When a new image or file is downloaded, it is
stored in flash with a specific filename. A file is overwritten only if an existing file in flash
has an identical filename.

You can use the following command to check the available (free) space in the flash memory:

Firewall# dir flash:/

For example, suppose a new firewall image is available on a server. The image file size is
4,995,512 bytes. First, the amount of free flash memory is checked, giving the following
output:

Firewall# dir flash:/
Directory of flash:/

6 -rw- 4976640 10:04:50 Nov 12 2004 image.bin

10 -rw- 1575 23:05:09 Sep 30 2004 old_running.cfg
12 -rw- 3134 23:30:24 Nov 08 2004 admin.cfg

13 -rw- 1401 14:12:31 Oct 20 2004 CustomerA.cfg
14 -rw- 2515 23:29:28 Nov 08 2004 border.cfg

17 -rw- 1961 13:52:22 Oct 25 2004 datacenter.cfg
23 -rw- 8596996 10:12:38 Nov 12 2004 asdm.bin

21 drw- 704 15:06:09 Nov 22 2004 syslog

32 -rw- 205 15:06:08 Nov 22 2004 stuff

16128000 bytes total (2466816 bytes free)

Firewal 1#

Clearly, 2,466,816 bytes free is insufficient to store the new image unless the existing image
(image.bin) is overwritten.

On an FWSM or a PIX 6.3 platform, only one operating system image and one PDM image
can be stored in the flash file system at any time. If a new image is downloaded, it
automatically overwrites an existing image in flash.

Make sure the firewall can reach the server:

Firewall# ping [interface] ip-address

The server has IP address ip-address. The firewall should already have the necessary routing
information to reach the server. You can specify the firewall interface where the server is
located ("outside,” for example) if the firewall cannot determine that directly. For example,

this firewall can reach the server at 192.168.254.2:

Firewall# ping 192.168.254.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.254.2, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
Firewal I#

(TFTP only) Identify a possible TFTP server:

Firewall(config)# tftp-server interface ip-address path

The TFTP server can be found at ip-address on the firewall interface named interface
(outside), for example. As of FWSM 3.1(1) and ASA 7.0(1), the interface parameter is
required. For prior releases, the firewall always assumes the inside interface is used for
TFTP. The only way to override this assumption is by specifying a firewall interface in the
tftp-server command. This interface is always used whenever files are copied to and from a
TFTP server, even if the server address is different from the one configured with this
command.

The image files are stored in the path directory on the TFTP server. This path is relative only
to the TFTP process itself. For example, if the image files are stored in the topmost TFTP
directory (/tftpboot within the server's file system, for example), the path would be /, or the
root of the TFTP directory tree.

Tip

The tftp-server command is optional because most of the TFTP parameters can be given
with the copy EXEC command when the image is downloaded.

Copy the image file from the server.

With any download method, the basic command syntax is:

Firewall# copy source flash:[image | pdm | Ffilename]

The image is downloaded and copied into flash memory as either an operating system image
or a pdm image. Only one of either image type can be stored in the firewall flash, and their
locations are automatically determined. In fact, PIX 6.3 restricts the image transfer to these
two file types.

ASA and FWSM platforms make use of their more flexible flash file systems. From the
system execution space, you can copy one or more image files into flash and then specify
which image the firewall should use. You can give the destination filename as an arbitrary
filename. You also can use the image or asdm keywords for backward compatibility. In that
case, the firewall uses the image filename configured with the boot system or asdm image
commands, respectively.

Also, you can choose TFTP, FTP, or HTTP as the copy method, as discussed in the
following steps.

a. Use a TFTP server:

Firewall# copy tftp:[:[[//1ocation][/pathname]] flash:[image | pdm |
filename]

The image file is located on the TFTP server at location, which can be either a
hostname (already defined with a name command) or an IP address. The image file is
referenced by pathname, which can include any directory structure needed within
TFTP, along with the filename. (If the actual path name of the TFTP directory
contains spaces, you should first define the whole path name using the tftp-server
command. Spaces are not allowed in the pathname here.)

If the location or pathname parameters are left out of this command, the firewall
prompts you for those values.

If you add a colon after the tftp keyword, the firewall picks up the remaining
parameters configured with the tftp-server command.

For example, suppose a new operating system image named newimage.bin is located
on TFTP server 192.168.254.2. Recall that the firewall assumes that the TFTP server
is located on the inside interface by default. In this case, it is located on the outside
interface. You can download the new firewall image into flash memory using the
following commands:

Firewall# configure terminal

Firewall(config)# tftp-server outside 192.168.254.2 /
Firewall(config)# exit

Firewall# copy tftp://192.168.254_2/newimage.bin flash:image
Address or name of remote host [192.168.254.2]7

Source filename [newimage.bin]?

Destination filename [image.bin]?

%Warning:There is a file already existing with this name
Do you want to over write? [confirm]

Accessing tftp://192.168.254_2/newimage.bin_._t11rnrprannnni
[output omitted]

Writing file flash:/image.bin...

4976640 bytes copied in 143.380 secs (34801 bytes/sec)
Firewal 1#

b. Use an FTP server:

Firewall# copy ftp://[user[:password]@]server|[:port]/[path/]filename
[;type=xy] flash:[image | pdm | Filename]

The FTP server is known as server by either an IP address or a hostname (the host

name must be preconfigured with the name configuration command). If the server
requires user authentication, the username and password are given as
user:password@. By default, TCP port 21 is used; you can override this by

specifying port.

The image file is found on the server with pathname path (relative to the user's home
directory) and filename filename. By default, the firewall uses an FTP session in
binary passive mode. You can use a different FTP mode by appending the ;type=xy
keyword, where x is a single letter a (ASCII) or i (image or binary) and y is a single
letter p (passive) or n (normal). For example, ;type=ip is the default binary passive
mode.

As an example, suppose an image named newimage.bin is located on an FTP server
at 192.168.254.2. The server requires authentication using username myuserid and
password mypassword, and the image is stored in the Images directory. You can
download the new firewall image into flash memory using the following command:

Firewall# copy ftp://myuserid:mypassword@®192.168.254.2/1Images/
newimage.bin flash:image

Address or name of remote host [192.168.254._2]7

Source filename [newimage.bin]?

Destination filename [image.bin]?

%Warning:There is a file already existing with this name

Do you want to over write? [confirm]

Accessing

ftp://myuserid:mypassword@192.168.254.2/1Images/newimage.bin. ..
rrrrnnnnnnnnl

[output omitted]
Writing file flash:/image.bin...

4976640 bytes copied in 149.110 secs (33375 bytes/sec)
Firewal 1#

c. Usean HTTP or HTTPS server:

Firewall# copy http[s]://[user:password@]location[:port]/
http_pathname flash[:[image | pdm | Ffilename]

You can use either http (HTTP, port 80) or https (HTTPS or SSL, port 443),
depending on how the web server is configured.

If user authentication is required, it can be given as user:password@. The web server
has a name or IP address given by location. (If a host name is used, it must also be
defined in the firewall with the name command.) By default, the port number is
either TCP 80 or TCP 443, according to the http or https keyword. You can override
the TCP port number by giving it as port.

The image file can be found on the server at the path http_pathname. The directory
hierarchy is relative to the web server's file structure.

For example, a P1X operating system image named newimage.bin is stored on the
web server at http://192.168.254.2 in the default directory. The server requires
authentication using username myuserid and password mypassword. You can
download the new firewall image into flash memory using the following command:

Code View: Scroll / Show All

Firewall# copy http://myuserid:mypassword@192.168.254.2/newimage.bin
flash:image.bin

Address or name of remote host [192.168.254.2]7

Source filename [newimage.bin]?

Destination filename [image.bin]?

%Warning:There is a file already existing with this name

Do you want to over write? [confirm]

Accessing http://192.168.254.2/newimage.bin._ _111rrrnrnrnnnnnnl
[output omitted]

Writing file flash:/image.bin...
frprnnnpnnnnnnpRnnRRnRnnnnLnnInInnnlI

[output omitted]
4902912 bytes copied in 137.730 secs (35787 bytes/sec)
Firewal 1#

Upgrading an Image Automatically

You can also configure a firewall to automatically poll a central server to see if a new image file
exists. If a newer image is available, the firewall downloads it without any intervention on your

part. This functionality is available with an Auto Update Server (AUS) and is discussed in detail
in Section "4-4: Automatic Updates with an Auto Update Server."

4-3. Managing Configuration Files

A firewall keeps a "startup” configuration file in flash memory. These configuration commands
are not lost after a reload or power failure.

As soon as a firewall boots up, the startup configuration commands are copied to the "running"
configuration file in RAM (volatile) memory. Any command that is entered or copied into the
running configuration is also executed at that time.

As you enter configuration commands, be aware that they are present only in the temporary
running configuration. After you have verified the operation of the new configuration
commands, you should be sure to save the running configuration into flash memory. This
preserves the configuration in case the firewall reloads later.

You can enter configuration commands into the firewall using the following methods:

o Command-line interface (CLI), where commands are entered through a console, Telnet,
or SSH session on the firewall. The configure terminal command is used for this.

e A management application such as PDM or Firewall Management Center (within VMS).

e Imported by a TFTP file transfer.

e Imported by a web server.

e An automated or forced update from an AUS.

Managing the Startup Configuration

In PIX releases 6.3 and earlier, as well as FWSM releases, a firewall has one startup
configuration that is stored in flash memory. This configuration file is read upon bootup and is
copied into the running configuration.

ASA platforms running 7.0 or later have the capability to maintain one or more startup
configuration files in flash, provided that you have sufficient space to store them. Only one of
these can be used at boot time.

This section discusses the tasks that can be used to maintain and display the startup configuration
file.

Selecting a Startup Configuration File

In ASA platforms, having multiple startup configurations makes configuration rollback easy.
The startup configuration contents can be saved in one file during the time that the firewall
configuration is stable. If major configuration changes need to be made, the new updated running
configuration can be saved to a new startup configuration file. The next time the firewall is
booted, it can use this new file.

If you encounter problems with the new configuration, you can make one configuration change
to force the firewall to roll back or use a previous version of the startup configuration.

By default, a firewall stores its startup configuration in a hidden partition of flash memory. That
file has no usable name and can be viewed only through the show startup-configuration
command.

To force the firewall to use a different startup configuration filename, you can use the following
command:

Firewall(config)# boot config url

url represents the location of the startup configuration file. It can be flash:/path, disk0:/path, or
disk1:/path, depending on which flash file systems the firewall platform supports. PIX models
have only a flash:/ file system, whereas the ASA platforms can support flash or disk flash file

systems.

Be aware that the boot config url command effectively changes an environment variable used
only by the running configuration. When you use this command, be sure to save the running
configuration with the copy running-config startup-config or write memory command.

At this point, the firewall uses the new url and saves the startup configuration in that file, not in
the default location. If the file does not exist, a new file is created; if it does exist, the running
configuration is merged with that file's contents. The environment variable is also updated and is
used during the next boot cycle to find the new startup configuration file.

You can see the startup configuration environment variable with the show bootvar command.
The following example begins with the default location, signified by the empty Current CONFIG
FILE variable value. When the boot config command is used, the current value is updated to
show the new file location.

However, until the running configuration is saved to the new startup configuration location, the
new file is not present in flash. As well, the startup configuration file used at boot time is still the
default (shown by an empty CONFIG FILE variable line). After the configuration is saved, the
new file is used during the next firewall boot.

Code View: Scroll / Show All

Firewall# show bootvar

BOOT variable = flash:/image.bin

Current BOOT variable = flash:/image.bin
CONFIG_FILE variable =

Current CONFIG_FILE variable =

Firewall# configure terminal

Firewall(config)# boot config flash:/startup-1.cfg
INFO: Converting myconfig.cfg to flash:/startup-1.cfg
Firewall(config)# exit

Firewal l1# show bootvar

BOOT variable = flash:/image.bin

Current BOOT variable = flash:/image.bin
CONFIG_FILE variable =

Current CONFIG_FILE variable = flash:/startup-1.cfg
Firewall# dir flash:/

Directory of flash:/

6 -rw- 5031936 10:21:11 Dec 21 2006 image.bin
23 -rw- 8596996 10:12:38 Nov 12 2006 asdm.bin
16128000 bytes total (2450944 bytes free)

Firewal 1#

Firewall# copy running-config startup-config

Source filename [running-config]?

Cryptochecksum: a8885ca7 9782e279 c6794487 6480e76a
3861 bytes copied in 0.900 secs

Firewal 1# show bootvar

BOOT variable = flash:/image.bin

Current BOOT variable = flash:/image.bin
CONFIG_FILE variable = flash:/startup-1.cfg

Current CONFIG_FILE variable = flash:/startup-1.cfg
Firewall# dir flash:/

Directory of flash:/

6 -rw- 5031936 10:21:11 Dec 21 2006 image.bin

23 -rw- 8596996 10:12:38 Nov 12 2006 asdm.bin
20 -rw- 3861 23:12:20 Dec 30 2006 startup-1l.cfg

Finally, notice that even though a new location and a new filename are used for the startup
configuration, you do not have to specify those when you save the running configuration later.
The firewall continues to work with the startup-config keyword, but it uses the new url to
reference the actual file. In other words, copy running-config startup-config always uses the
current and correct location.

Displaying the Startup Configuration

You can display the contents of the startup configuration with either of these commands:

Firewall# show startup-config

or

Firewal l# show configuration

In PIX 6.3, the latter command is actually show configure.

In the first line of the startup configuration, you can find its time stamp. This shows when the
running configuration was saved to flash the last time and who saved it. For example, the generic
user enable_15 (someone in privileged EXEC or enable mode) saved this configuration:

Firewall# show startup-config

: Saved

> Written by enable_15 at 17:41:51.013 EST Mon Nov 22 2006
PIX Version 8.0(1)

names
I

interface EthernetO
shutdown
[output omitted]

Saving a Running Configuration

You can view or save a firewall's running configuration with one of the methods described in the
following sections.

Viewing the Running Configuration

You can use the following commands to display the current running configuration:

Firewall# write terminal

or

Firewall# show running-config

The running configuration is displayed to the current terminal session. If the configuration is
longer than your current session page length (24 lines by default), you have to press the spacebar
to page through it.

However, in ASA, FWSM, and P1X 6.3 platforms, you can filter the output by using one of the
following keywords at the end of the command:

Code View: Scroll / Show All
Firewall# show running-config | {begin | include | exclude | grep [-V]} reg-
exp

You can start the first line of output at the line where the regular expression reg-exp appears in
the configuration with the begin keyword.

If you are looking for lines that contain only the regular expression reg-exp, use the include or
grep keyword. You can also display only the lines that do not contain the reg-exp with the
exclude or grep -v keyword.

The regular expression can be a simple text fragment or a more complex form containing
wildcard and pattern-matching characters. For example, include int finds any line that contains
"int" (including words such as "interface") located anywhere in the text.

These options are very handy if you have a firewall with a large configuration. Rather than
paging through large amounts of configuration output, you can instantly find what you are
looking for.

Saving the Running Configuration to Flash Memory
After you make configuration changes to a firewall and they are satisfactory, you should make
them permanent by saving the running configuration to flash memory. You can use the following

command to accomplish this:

Firewall# write memory

All the current configuration commands are stored in the startup configuration area in flash
memory. You should always run this command after making configuration changes. Otherwise,
you might forget to save them later when the firewall is reloaded.

In ASA and FWSM, the write memory command is supported for backward compatibility. A
new form of the copy command is also provided, using the following syntax:

Firewall# copy running-config startup-config

Tip

In multiple context mode, each context's running configuration must be saved individually. This
usually means you have to move into each context with the changeto command and then use the
write memory or copy running-config startup-config command.

Beginning with ASA 7.2(1) and FWSM 3.1(1), you can save all context configurations with a
single command. In the system execution space, use the following command:

Firewall# write memory all

The copy command does not have the same capability.

When the configuration is saved or displayed, the firewall also displays a cryptochecksum, or a
message digest 5 (MD5) hash of the configuration file contents. This value serves as a type of
fingerprint that can be used to evaluate the configuration file's integrity. The configuration file's
size is also shown, as in the following example:

Firewall# copy running-config startup-config

Source Filename [running-config]?

Cryptochecksum: 7lad4cecb 97baf374 10757e38 a320cc43