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FOREWORD

A funny thing happened on the way to my Ph.D. in philosophy. I went
broke! I suppose that that’s a sad cliché, but that’s the way of it. To earn
enough money to continue going to school, I took a job at a helpdesk,

answering installation and configuration questions for the then-new Metro-
politan Regional Information System for regional realtors. I worked there for
about three months, and decided that I’d rather stick a needle in my eye than
continue working at a help desk. I hadn’t any notion of where to go to next, so
I went where all good wannabe techies go—to a recruiter.

Having led seminar groups and given talks and such in grad school, and
also having had some personal experience troubleshooting my personal
Windows PC, I was obviously qualified for teaching Windows NT. So, I be-
gan my first training experience, traveling countrywide, teaching the same
two-day Windows seminar in two cities a week, every week, for nine
months. At the end of that job, I was so desperately bored that I started go-
ing out of my way to do what I could to make the trips more fun. Just to keep
from going nuts, I ended up spending more than I was earning. My next
jobs were consulting-oriented and educational, if slow. While working as a
consultant and waiting for something to happen, I started technical writing
and wrote a column for Windows NT Magazine called “Ask the Answer
Desk” in a feature called “Inside Active Directory”. Shortly thereafter, I
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got the opportunity to go back to training, so I jumped at it. I got my MCSE while teaching
others to do the same, and had a lot of fun. From the LAN, I branched out into
internetworking and security, and got my CCNP, CCDP, and CCSE.

I went to Alteon with the hope of trying to catch the caboose of the IPO train, and with
the Nortel Networks acquisition, things were looking up. I was learning a lot about CDN
technology, as well as designing and implementing CDNs. Then the market went south,
and all my daydreams of early retirement with untold wealth died an unpleasant death. It’s
sad, really. But then I got the opportunity to go to AOL to design and implement all sorts of
fantastic technologies I had toyed with for previous six years, and to explore even more.

Currently, my job responsibilities include network design, review, and implementa-
tion as well as new technology vetting and implementation. In addition to technical writ-
ing, I have presented seminars on Internet technologies, Content Delivery Networking,
and network design issues. I can be reached by email, at <sthull01@aol.com>.
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INTRODUCTION

This book is about Content Delivery Networks (CDN), how to build
them, why and when it’s worth it (or not), and what you’re doing to
yourself when/if you do decide to build one. This book isn’t a cook-

book, it isn’t a design guide, it isn’t a technology review, but it’s really all
three. It’s targeted at the technical manager, who has to make the decisions
surrounding network design and optimization. It’s targeted at the network
engineer, who needs to implement the decisions that a manager will make.
It’s targeted at the curious, who are learning these problems and their tech-
nology solutions for the first time.

The technologies discussed here are both new and not so new. DNS,
well, that’s not new, but GSLB is. Since the beginning of this project, what
has changed most isn’t the solutions, it’s number of players providing them.
A year or so ago, very few vendors were aggressively marketing CDN solu-
tions. Now, quite a few are, Array Networks and Extreme Networks being
two of the newest entrants into the CDN market. On the other hand, the two
largest internetworking equipment providers acquired two of the leading
CDN vendors: Nortel Networks acquired Alteon and Cisco Systems got
Arrowpoint. And in the last year, all of these vendors have seen their stock
do something unexpected: collapse.
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Perhaps as a direct result of the latter, a shift has emerged from the outsourcing model
to the do-it-yourself model. Companies like Akamai and Digital Island have steadily lost
ground to the corporate network architects who are willing to take on the design com-
plexities themselves, with the vendors supplying them solutions. This book is especially
for those architects, and the focus is on how to “do-it-yourself,” as opposed to how to
outsource it.

This is an interesting time, and these market changes mean crucial things for those in-
terested in deploying Content Networking services to design and optimize their network
infrastructures. First, with a sharp decline in investments following the stock market col-
lapse in late 2000, very little truly new and innovative technologies have been created in
the last year, making this book and the solutions herein still very timely. Second, Content
Networking as a field, as well as the solutions that vendors are providing, have had an-
other year to mature and stabilize, even if little in the way of advances has been in the off-
ing. This means that current implementation decisions are still going to be relevant and
sound, and will have significant beneficial technical impact. Finally, when the inevitable
turnaround comes, corporations will look to start spending capital on infrastructure
again, investments that have been forestalled by the slowing economy. Historically, the
first types of investments made by such companies will not be in old technologies, but
rather in the new, and nothing is newer than CDNs. The time for Content Networking is
on the horizon, and the best solutions have yet to be invented.

This book is a discussion of solutions and the technologies that go into them and un-
derlie them. The solutions vary across platforms, and this was partially deliberate and
partially accidental. In relevant chapters, there are Case Studies that help illustrate some
of the topics raised within the chapter. The hardware platforms vary and include Cisco,
Alteon, Juniper, and others. As these design guides are included for illustrative purposes,
the platforms mentioned are both relevant and convenient; no particular vendor bias is
intended. When vendors are discussed in the text, the intention is to explore the best of
breed solutions, knowing full well that as the state of the art changes, so too do the best
possible targets for discussion. The intent was not to focus too deliberately on any one
vendor’s solution.

This book is a technology review and is an attempt to cover the breadth of the new and
emerging field of Content Networking. The background technologies, such as Ethernet,
HTTP, and SSL, are included for the sake of completeness and for those lacking such back-
ground. Some chapters, such as Chapters 6–8, cover material not likely to be well covered
elsewhere, such as a discussion of DNS function (not just configuration), the impact of Net-
work Access Point on network backbone design, and the latest solutions in web caching.
The last five chapters focus specifically on how these underlying technologies are com-
bined to create the old/new solutions that are Content Networking. Topics include Server
Load Balancing, advanced SLB protocols, filtering and Firewall Load Balancing, Applica-
tion Redirection, Bandwidth Management, and Global Server Load Balancing.

For those interested in exploring CDN technology, this book is a great first step. For
those interested in taking it beyond that level, this book will be an invaluable resource.
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CHAPTER 1

Introduction to Content
Networking
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OBJECTIVES
� Identify customer expectations for Content Networking

� Define Content Networking

� Describe the evolution to Content Networking

� Explain the technology fundamentals of Content Networking

In the old days, before the Internet revolution, companies ran their businesses on
large, powerful, centralized systems, such as mini- and mainframe computers—AS/400,
RS/6000, HP3000, HP9000, and many others. Intelligence and content were both con-
tained within these systems. As the old economy grew at its stable rate, these systems
would be expanded and upgraded to meet the slowly changing needs of its users.

In the mid-1990s everything changed. Internet-based infrastructures were expected
to meet many different—and often conflicting—requirements, from both end users and
content providers. From this radical change came many of the new concepts and technol-
ogies that make up Content Networking today. To understand how this technology
works and where this industry is going, you need to understand where it came from and
what’s expected/required from it.

First, the players. Users can be defined as those clients who retrieve a given piece of con-
tent. That content could be an article from an online newspaper or a piece of financial infor-
mation from an online banking institution, or receiving confirmation about a placed order
for a selected item. Content providers can be divided into two categories: content owners and
content delivery agents. As you might expect, the content owners own and control the con-
tent itself, whether that content is an audio file, a transaction providing a piece of inven-
tory, or the latest election results. Content delivery agents, on the other hand, are those
companies that provide the content owners with mechanisms to deliver their content more
successfully to users around the globe at higher speeds and/or lower costs than they could
otherwise do. These are traditionally the xSPs—service providers of various flavors.

Now that you know the who, it’s important to understand the what—specifically,
what these different parties expect from one another to address the issues properly that
Content Networking infrastructures are built to handle.

USER EXPECTATIONS
When the new Internet economy was born in the 1990s, few people realized it would have
so much impact on our culture, our economy, and our lives. The expectations by users of
technology-based systems changed radically from what they’d been in the past. Seven ma-
jor areas of user expectations shifted during this period and directly relate to the discussion
of Content Delivery Networking (CDN). This isn’t to say that the items on the following list
weren’t expected or required by users prior to the 1990s, of course. Instead, it’s important to
understand these expectations and requirements became pervasive throughout most

2 Content Del ivery Networks



demographics and user types in the 1990s, while they hadn’t been present in a significant
portion of the community a decade earlier. The list comprises the expectations and/or re-
quirements users have of their computing- and content-based systems:

� Performance

� Availability

� Security

� Anonymity

� Ubiquity/Accessibility

� Personalization/Relevancy

� Privacy

Each of these is addressed in turn.

Performance
No one ever enjoyed a slow computer system. Whether it’s the user or the customer waiting
on the phone for the rep to pull up the necessary data out of the computer, no one likes to
wait. But, as the economy shifted to allow more direct access to computer systems by end
customers, speed became an incredibly powerful tool because it directly related to cus-
tomer satisfaction and retention—the so-called seven-second rule.1 In this new economy,
customer loyalty to a corporate web site isn’t strong because switching to another site is
easy. Suddenly, customers were demanding their vendors give them what they want—
and it had better be quick.

Availability
Nothing better exemplifies the demand for availability than a television advertisement
run by Internet pioneer Amazon.com in late 2000 and early 2001. The commercial shows
a group of would-be shoppers at the locked entrance to their favorite shopping mall, at-
tempting to do some late night shopping. The customers, staring blankly, appear to be
baffled because the mall isn’t open. This commercial underscores how Amazon.com and
others changed the way customers shop. Just as customer expectations began to shift in
the 1980s with 24-hour gas stations and super markets, in the 1990s customers began to
expect high availability of their computer-based content—including all types of information
and transaction data.

Security
Security is one of the most prevalent expectations in the user’s conscious mind. Most
studies indicate users continue to feel unsafe making purchases online because of fraud
and theft. Unlike most of the other expectations, users currently have no way to evaluate
a company’s web security policy effectively and easily. The use of SSL is the only method
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to provide some hint of protection. But SSL only protects the data while in transit from client
to server. Once the data is in the possession of the server or database, what assurances
does a user have that their data will be secure?

Anonymity
Another huge distinction that can be made regarding customer expectations in the 1990s
is the anonymity many people now take for granted. In the past, a computer/network client
was part of a specific and well-defined community, such as a corporation, division, de-
partment, group, and so forth. Use could be controlled and monitored, if desired. Access
to computer-based content could be restricted or delayed with relative ease because the
impact of that restriction could be ascertained. As the Internet economy grew, and more
unknown and undefined users began to access content, however, the impact of access (or
lack thereof) to the content became much more complex and nearly impossible to measure
accurately. Because many users of content aren’t in a defined or subscribed grouping, it
can be difficult, if not impossible, to notify them of downtime, slowdowns, or any type of
change (even an improvement) that will affect their ability to access their desired content
from where and when they want. Working hours and office location cannot be controlled
by the content owners, unlike in the past when users were part of a corporation that could
(and did) control time and location access to its content.

Personalization/Relevancy
Most users don’t scream “I want more personalization!” Yet, personalization is a key factor
to a user’s satisfaction (or lack thereof) with a content site. Companies such as Yahoo! and
Amazon.com have created powerful examples of this concept. Yahoo! created My.Yahoo.
com as a user-configurable personalized content portal. By letting the user customize the
content displayed to precisely represent their interests, users have strong encouragement
to return to that site over and over again. Amazon uses a slightly different approach, by
personalizing the content for the user, rather than making the user decide what content
she wants to see. Amazon’s system learns a user’s interest by watching her shopping (and
buying) patterns. This is akin to having a personal shopper at the local department store
to help you find new and interesting items that match your personal taste. The simplest
explanation is users require and respond to relevant content—and nothing is more rele-
vant than content that’s personalized for us.

Privacy
Telemarketers, junk mail, and door-to-door salesmen are only three prominent examples
of why many users are outraged by the lack of solid privacy policies at many web sites.
Users have learned the hard way that with only a little bit of information given out, the
phone rings, the mailbox overflows, and the door is knocked on without their advance
consent. Users want to be notified if their information will be shared with others. They
want to be able to stop a transaction if this means someone will be tracking exactly what
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they buy and what they like. Whether it’s to protect dirty little secrets or simply to guard
one’s right to privacy, users don’t want their data indiscriminately used or distributed.

CONTENT PROVIDER EXPECTATIONS
Content and service providers also have certain expectations from the dramatic shift in
computing paradigms over the past decade. These expectations include

� Security

� Control

� Manageability

� Scalability

� Flexibility

� Diversity (devices and users)

� Customer demographics/data

� Differentiation

� Profitability

Security
Just as users expect their data to be protected by the content providers, the owners of the
content want to keep data secure and inaccessible to unauthorized eyes. What good
would it do to charge $4.95 per month for a subscription to a web site if any user could
easily access the same content free? In addition, content providers owe their users secure
systems that protect users’ information, such as address, phone, social security, and
credit cards.

True security is based on a multilayer approach, often given the analogy of peeling an
onion. Layer after layer should be protected so, if one layer is comprised, the next layer
still remains. Content networking doesn’t address all layers of the onion—such as security
policies and procedures—but it does address tools such as firewalls, virtual private net-
works (VPNs), intrusion detection systems, access control lists, filtering, and other such
aspects of controlling unauthorized access.

Control
Content providers have only one true value on the Internet—the content they provide. So
the capability to control that content becomes increasingly important. Whether it’s controls
that create different classes of service for different types of users (that is, bandwidth man-
agement) or the capability to select what types of content users access, content providers
demand greater levels of control over their content to create a competitive advantage.
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Manageability
As the complexity of Content Networking infrastructures increases, the capability to
monitor and manage all the components becomes ever more crucial. Content providers
need to have visibility into the performance of their systems to know if they’re meeting
the users’ expectations of performance and availability. Even redundant systems are only
truly useful if adequate monitoring and management is in place. If not, a redundant system
might fail but go unnoticed, thus dramatically increasing the likelihood that a second fail-
ure might occur and cause an outage felt by users.

Scalability
Content providers must aim for the stars, yet keep a realistic perspective on their infra-
structures. Because Internet-based infrastructures have the potential to reach the entire
world (or at least the entire worldwide Internet community), a popular site can require
incredible expansion over a short period of time. Yet, if a content provider intends to run
a successful business, they must not overarchitect their infrastructure, lest the costs bank-
rupt them before ever seeing the dramatic expansion. So, content providers require the
capability to expand their infrastructure easily, with minimal effort or disruption. This is
the essence of scalability.

Flexibility
The entire Internet economy is a new, and essentially unknown, beast. Business models
and fads rise and fall on a regular basis. It’s critical for content providers to have flexibility
in their infrastructures to adapt quickly to changing requirements from users and the
Internet community. It might be years until a clearly successful approach exists to provid-
ing content on the Internet. Until that time, content providers need an infrastructure that
enables them to take advantage of changing conditions and technologies easily without
significant cost or disruption.

Diversity (Users and Devices)
With the expansion of Internet-enabled devices to include PDAs, wireless phones, and,
eventually, our home appliances, it’s critical that content and service providers are able to
address the widest, most diverse groups of users to be successful. The delivery of content
cannot be aimed at only one type of user. It needs to take into account the variety of users
and devices that might request that content from anywhere at anytime.

Customer Demographics/Data
Content providers have a variety of different business value models to operate within.
However, most models are most effective when the provider has accurate, detailed infor-
mation about its users. Whether that data is used to target ads (that provide the revenue
that pays for the content provided) or if the data is used to help target products to users
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based on their personal buying habits and interests, content providers must be able to
make technical, networking decisions based on this type of information.

Differentiation
Although differentiation isn’t something that can be specifically provided by technology,
it’s an important factor for service and content providers. Every company wants to be dif-
ferent. While a content networking solution provides serious differentiation if adopted
earlier than competing firms, those competitors will likely adopt similar technology to
survive. All significant differentiators are diminished and standardized over time. The
most successful companies are constant innovators and always looking for a way to dif-
ferentiate themselves for the 9 to 12 months that a new technology can exist without seri-
ous competition or emulation. Beyond that amount of time, companies would expect
their competitors to copy their success and adopt similar technologies. The key factor for
both content owners and service providers is to build infrastructures that are robust
enough and scalable enough to allow them to innovate and differentiate themselves con-
stantly as Content Networking systems continue to explode with new features and concepts.
Companies that only implement the minimum structure to take advantage of today’s
technology might not have the right tools in place to take advantage of exciting new,
incremental advancements of tomorrow.

Profitability
An old concept has reemerged in the new economy—profit. For many years in the late
1990s, Internet-based firms operated primarily on the basis of increasing revenue, market
share, or mind share. Profitability was a long-term issue of little concern in the short run.
As the new millennium got under way with recessionary tendencies, the frivolousness of
the new economy quickly dissipated. Profitability once again is the key goal for all orga-
nizations. Content Networking solutions need to give content and service providers the
capability to develop truly profitable businesses.

CONFLICTING EXPECTATIONS
The obvious challenge is how to provide users and content providers with tools, services,
and infrastructures that meet or exceed their expectations. The even more devious chal-
lenge is how to do it simultaneously for both users and content providers because some
of the expectations are in direct conflict with one another.

The most obvious conflict is between the user’s expectation of privacy and the content
provider’s expectation of customer data. Users want to remain completely anonymous,
while content providers want to know as much as possible about the users. Understand-
ing the user is key to personalizing content. The situation surrounding the paranoia of
privacy on the Internet is quite ironic. The irony is because many users and public user
groups express serious concern over the protection of their privacy online, yet they com-
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pletely ignore the reality of the non-Internet portion of their lives. Little has been done to
control telemarketing, junk mail, and door-to-door salesmen that thrive on the demo-
graphic data gathered from many sources. The Internet is no different than any other me-
dium: it can be most successful and provide useful content if it’s allowed to understand
its customers. The good news is, unlike those other intrusive methods of using (and
sometimes abusing) collected data, the Internet allows for nonintrusive and constructive
methods to personalize content for users. The amount of data that can be collected, ana-
lyzed, and used is far superior to the methods used with telemarketing or junk mail
schemes. So users can get information relevant to them (and, thus, often desirable), while
content providers can reach the most likely and relevant customer segments for their
given product or service.

STRUCTURE OF THE INTERNET
While the design of the Internet was created to address one of the major expectations pre-
viously listed in terms of the network—availability—it does little to address other items,
such as performance, security, and so forth. And, even with a highly available network,
users aren’t necessarily satisfied. Just as the Amazon.com commercial mall-goers are able
to use the network of streets to reach the proper destination, if that destination is unavailable,
a highly available network of streets and highways is wasted.

Problems of IP
Internet Protocol (IP) has won the protocol war against such rivals as Netbeui, IPX,
DECnet, and many others. Yet IP isn’t a perfect protocol. Because of the widespread
adoption of the current version of IP, deficiencies, even if corrected, cannot be imple-
mented easily or quickly.

The problem with IP is the simple fact that it’s a nonintelligent delivery mechanism.
The decisions it makes are based on a simple set of criteria to find the path to a given location.
Using a delivery example, IP can find its way through multiple paths to get to a destination.
Yet, when it arrives and rings the doorbell, if no one is home, it simply gives up. It doesn’t
peer through the window, it doesn’t go through the gate and knock on the back door, and
it doesn’t go to the neighbor’s house and try to deliver the package. It simply throws
away the package. If someone is home, but tells the delivery person to go to another
house, there’s no problem. The problem arises only when no one answers the door—or at
least the door isn’t answered fast enough for the delivery person’s patience.

The Internet is made up of thousands of different interconnected networks. Those
connection points where a given network intersects another are usually referred to as
peering points, which, public or private, can easily become congested and are often the
cause of the many Internet traffic delays. In fact, three primary causes exist for poor
Internet performance: peering point congestion, last-mile bottlenecks, and server con-
straints. These congestion points account for nearly all the delays users experience. In the
future, congestion might also occur in the backbone network itself. But, today, so much
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overbuilt network backbone capacity exists that congestion is rarely an issue, except for a
small number of older service providers. The last-mile bottleneck is an issue that can best be
solved by enhanced access speeds using newer access topologies such as DSL, cable,
two-way satellite, fixed wireless, and optical Ethernet. However, enterprises can remove
some of the problem by implementing caching solutions. Consumers, for the most part,
must rely on the service providers to offer high-speed access solutions to avoid the
bottleneck.

Content Networking can alleviate many of the congestion problems caused by the
other two common elements: peering points (by using caching and global load balancing)
and server constraints (by using caching and local load balancing). Most of the following
Content Networking discussions are aimed at solving these congestion dilemmas, while
also trying to provide the many requirements discussed earlier. But it’s important to
remember that performance was the initial driving factor.

WHAT IS CONTENT NETWORKING?
To answer this question, another question must first be answered: What is content? Con-
tent can be any object that can be viewed, heard, purchased, sold, transmitted, or created.
It can be a music file or video. It can be a piece of inventory—book, CD, flowers—or a
used piece of equipment—computer, couch, or unfinished manuscript. It can be the latest
news or the oldest novel.

Once you understand that content can be almost anything that’s accessible via the
Internet, you can begin to learn exactly what Content Networking is all about. Net-
working is quite well understood in its most basic concepts: it is the technical infrastructure
that provides the conduit—the pathways—to interconnect different systems, so they can
communicate with one another. Most people think of networking in terms of the 7-layer
OSI model—focusing primarily on layer 2 (such as Ethernet switching) and layer 3 (such
as IP routing). But content networking expands on this concept of a set of communication
pathways. It creates powerful, yet complex, mechanisms to make communication path
decisions based on more than simple technical labels (such as an IP address). Content
Networking, as the name implies, makes networking decisions based on the content con-
tained within the communication stream of help users and content providers to achieve
their various expectations.

Living on the Edge
For today and the foreseeable future, content networking lives on the edges of the
Internet—both edges. In user-initiated Internet networking (as opposed to system-to-system
communication), the network traffic begins its life in some sort of Internet service pro-
vider (ISP) access point or point of presence (POP). This is the first edge of the Internet,
called the Subscriber Edge. The traffic is most commonly directed across a network back-
bone (possibly multiple backbones through peering connections) and, eventually, ends at
the other edge, in an Internet Data Center (IDC)—the Content Edge. Content networking
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has existed in the IDC for quite some time, while its prevalence in POPs is a relatively re-
cent foray. Tremendous opportunities exist to use technology at both edges to meet user
and content provider expectations.

CONTENT EDGE NETWORKING
(CEN)—THE DATA CENTER

As previously mentioned, Content Networking has existed in the data center for quite
some time. But its maturity and value-add have only recently become hot topics. We’ll
discuss some of the evolution that led us to where we are today, plus we’ll look at some of
the most fundamental technological concepts related to Content Networking in the data
center, also referred to as Content Edge Networking.

CEN Evolution
As the Internet economy expanded rapidly in the mid-1990s, and as the list of expectations
for both users and content providers began to grow into the long list mentioned previously,
new approaches and technologies evolved to add new intelligence and value to traditional
networking. The Internet economy required the capability to build a web infrastructure
quickly, easily, and inexpensively yet, paradoxically, it also required the capability to grow
massively without interrupting service. The first approach developed to address these con-
flicting requirements included two new concepts called server farms and round robin DNS.

Server Farms, RAIS, and DNS
The concept is fairly simple: create a set of similar servers with identical content to act as a
unified and single entity. Similar to Redundant Array of Inexpensive Disks (RAID), the
concept of low-cost, high-availability infrastructure expanded to the server farm or Re-
dundant Array of Inexpensive Servers (RAIS). The initial challenge was how to make the
servers appear as a single entity to the world. Because the Internet revolution, by its very
nature, made client software and client configuration a thing of the past, the solution
must be transparent to users. The existing Domain Name System (DNS) was a unique
mechanism to mold this server farm into a single virtual system. By entering each IP address
of the servers into the DNS records, clients would cycle through the various IP addresses
and be evenly (roughly) spread across all the servers listed in the DNS records. These dis-
parate servers could suddenly act as a single entity, without any client knowledge or
need for reconfiguration.

Load Balancing Is Born
With this unique method of creating server farms, the concept of server load balancing
(SLB) was born. Inexpensive servers can be added with relative ease. Traffic will spread
among the various servers on a relatively equal basis, thus balancing the traffic among



Chapter 1: Introduction to Content Networking 11

the servers. Although the term “load balancing” has always been used, this initial method
(and a few other methods used later as well) was traffic balancing or session balancing.
Load, which can be defined as not only the number of sessions but also the impact of those
sessions on the servers, wasn’t considered in the original equation. The term load balanc-
ing has been used consistently to describe all types of network traffic balancing whether
or not true server “load” is ever considered.

DNS Is a Temporary Solution
As with many unique approaches and technologies, problems quickly arise that make old
methods obsolete and create new opportunities for enhanced technology solutions. A
group of engineers at Cisco Systems spearheaded an effort to overcome some serious limi-
tations of the DNS-based load balancing solution. Cisco’s Local Director was one of the first
devices created for the explicit purpose of load balancing network traffic to a server farm.

The concept was simple: create a virtual IP address (VIP), which the DNS will point
to. When traffic arrives at this VIP (which is contained on the load balancing device), the
load balancer decides which of the servers in the server farm to send the traffic to. The Local
Director product and the many products that quickly followed it—such as Alteon Net-
works, F5, and Arrowpoint—vastly improved on the DNS-based solution by enhancing two
important areas of functionality: health checks and SLB Metrics.

Health Checks
The concept of the health check was quite possibly the single most important idea that
allowed load balancing and content networking to be born. The fundamental flaw with
round robin DNS-based load balancing was that it had no way of knowing whether the
server to which it was directing traffic was functional. The foundational attribute of load
balancers was that these devices could check to see if the server was, indeed, functioning
properly. Health checks started out quite simple, at first testing only to see if ICMP packets
could be received and responded to. This ensured the network, network interface card,
operating system, and IP stack were functioning properly. Yet testing only those items
still left a tremendous margin of error. Servers can be running, yet have the TCP stack no
longer functioning properly. To address this, a TCP health check was soon added. This
test attempts to open a TCP session to each server in the farm, and then close that session
successfully. But, again, even with TCP running successfully, the specific application re-
quired by the user could be malfunctioning. So specific application-level health checks
were developed, including POP, RADIUS, SMTP, and, of course, HTTP, where the device
sends out a get request to a specific URL and checks to see if a 200 OK response is received.

Each type of health check follows the same process, regardless of type. At a set interval,
the checks are sent out. If a check fails, the corresponding service on that server will be re-
moved from rotation within the server farm. The health checks will continue to poll and,
once they successfully achieve their results (usually three or four times in a row), the service
on that server will be reengaged into the load balancing group.



Server Load Balancing Metrics
The concept of sending traffic to various servers in a farm might seem simple at first.
And, in the beginning it was. The early load balancers provided a round robin approach
to load balancing, similar to the original DNS method. This meant traffic would be sent
equally to each server, one at a time. To this day, this method provides the most equal bal-
ancing of sessions between servers. The problem with this method is simple: not all servers
are created equal!

One of the primary purposes and expectations of content providers from load balancing
solutions is the capability to scale easily as traffic increases. The capability to start small,
with minimal investment, and grow the infrastructure exponentially is a key reason why
content networking solutions first evolved. Take the example of a web infrastructure that
starts with only two servers but, a year and a half later, as demand and traffic have sub-
stantially increased, the site has expanded to 20 servers. If round robin is used to spread
traffic among the servers, it’s likely the load will be balanced, but far from optimized.
This dilemma relates indirectly to Moore’s Law, which says processing power doubles
every 18 months. So, the servers purchased toward the end of the 18-month period are
likely to have more memory, faster processors, faster disk drives, and many other im-
proved efficiencies. Thus, server number 18 can probably handle many more sessions
than server number 1. To address this dilemma, new metrics were created.

Weighted Round Robin The first and most obvious solution to the problem of round
robin’s inefficient load balancing was simply to create a “weighting” per server. If a
server were estimated to handle fives times as much traffic as another server, then a
weight of 5 would be applied. Unfortunately, this approach is limited and impractical in
most situations. First, it’s difficult for most content providers to estimate accurately how
much traffic a given server can handle in comparison to another server. Second, a server’s
capability to handle more or less traffic can change over time. As disk space fills or addi-
tional services are added, the system may slow down. Plus, certain servers might have
routines that run at certain times (such as a backup routine), which would alter that ma-
chine’s capability to handle as much traffic as normal; thus, the weight would be inaccurate
for that period of time.

Dynamic Weighting—Least Connections To compensate for the deficiencies of manually
weighting servers during the load balancing process, a new method was developed. Be-
cause the load balancing device sees all traffic going to and from the servers, it has significant
insight into how sessions are being handled. The Least Connections, or LeastConns, met-
ric was developed based on the principle that, at any given moment, whichever server
has the fewest connections should receive the next session. TCP sessions have a distinct
start and finish. A device that sees these sessions open, and then close, can use this infor-
mation to interpret server capability. At the beginning of the LeastConns process, ses-
sions are balanced evenly to all servers in the farm. But immediately thereafter, the load
balancing device watches to see which server has the fewest open sessions and directs the
next request to that server. Each new session that arrives at the load balancing device is
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put through the same process. Interestingly, this provides a realistic and effective dynamic
weighting for the servers.

The reason such a simple process works so effectively is quite basic. The purpose of a
TCP session, in many cases, an HTTP session riding on top of TCP, is to open, pass data,
and close. The faster those three steps can take place, the faster the end user can accom-
plish whatever she has set out to do. As servers become busy, their capability to pass data
and close the session diminishes. The time from open to close begins to increase. Thus, the
number of open sessions on a given server over a fixed period of time will be greater than
on a similar, but faster, server. A faster server processes more open/close sequences than
slower servers and, thus, receives a larger portion of the overall load from the load bal-
ancing device. LeastConns can be thought of as a dynamic weighting metric because it
constantly adjusts itself based on the server’s capability to open and close sessions, as
compared to the other servers in the group. Take an example where server number two
begins to run a backup routine late at night. Because of the extra workload on the CPU
and disk subsystem while the backup program is executing, the server opens and closes
sessions at a slower rate than an equivalent server that isn’t running the extra routine. Be-
cause the other servers open and close sessions more rapidly, thus reducing the number
of sessions currently open, they get proportionally more sessions. When the backup routing
finishes, the server once again opens and closes sessions at a rate equal to that of the other
servers, and receives equal traffic accordingly. More details are discussed about this and
other metrics in later chapters.

Server Agents—the Myth
Many people—both content providers and equipment vendors—believed that by incor-
porating the use of software agents located on servers, load balancing could be vastly im-
proved over the simple, yet effective, LeastConns metric. Most analysis of this approach
has, instead, proven it to be only a myth—simply a high-tech urban legend. While on the
surface this sounds feasible, some serious drawbacks reduce—if not totally eliminate—any
possible benefits. The primary problem is attempting to define “load” for a given server.
Each type of application has a different use, different traffic pattern, and different impact
on server resources. Some types of transactions are processor-intensive; others are hard
disk– or memory-intensive. Different brands of hardware and different types of operat-
ing systems react differently under the same set of load criteria. Determining whether 85
percent processor usage is good or bad on a Compaq or an IBM or a Sun machine, run-
ning Solaris or Linux or NT, with different amounts of memory and different speed of
motherboard, becomes almost impossible. To determine the appropriate metrics proactively
in advance and program them into the load-balancing device would truly be a marvel.
Without a mathematical correlation that’s the same for all servers and applications, the
load-balancing device cannot consistently use those metrics in any meaningful way.
Most vendors that have done so run the risk of hurting their customers by giving a false
sense of load balancing that might not hold up under increased traffic. And, in many
cases, server agents can cause performance degradation and even site failure if the metrics
aren’t tuned precisely to the specific server farm’s environment. For content providers
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that have enough time and money to analyze their infrastructure accurately to determine
relevant and consistent server data that correlates to end user performance, some im-
provement over LeastConns is definitely possible. But the benefit is small for most com-
panies, compared to the cost involved with the type of detailed analysis and management
required.

An additional problem with server agents is the simple fact that the agent program it-
self—because it runs on the target server—can interfere with the very results it’s attempting
to assess. LeastConns, on the other hand, doesn’t require any type of agent running on the
server. It simply measures the metric that’s most important and most representative of an
end user’s requirements—the time it takes for a given server to open a session from a client,
send or receive data, and close down that session.

In a perfect world, load balancing would incorporate all types of input to make the
most intelligent load balancing decisions. Agents would be collected into a central reposi-
tory that’s cross-referenced against network-based metrics, such as LeastConns. Newer
metrics have also been developed recently that perform tests for fastest response time
and use that metric in a similar manner to LeastConns by tracking how quickly (not
merely how many) packets are responded to.

Persistence
Although LeastConns made significant progress toward achieving Performance, Avail-
ability, Scalability, Manageability, and Flexibility for content providers and end users,
new challenges arose to push the envelope much further. E-commerce became the buzz-
word of the mid- to late-1990s. As more and more people started making purchases over
the web, site traffic for shopping began to accelerate quickly. Because all web-based
Internet purchases are transacted using HTTP (or HTTPS) and because HTTP is a state-
less protocol, the concept of the shopping cart became the load balancer’s greatest puzzle.
In an HTTP transaction, each web page is a distinct and separate TCP session. This con-
cept works fine if each session reaches the same server every time, which was the “old”
way of doing things before the invention of the server farm. But with the invention of the
farm and load balancing, each subsequent web page might be served from a different
server than the previous page—thus losing the knowledge of what was placed in that
user’s shopping cart.

Common Misunderstandings About Shopping Carts
Many people assume shopping cart persistence is a minor problem because they don’t re-
alize where or how transient data on web servers is stored. Three common misunder-
standings exist regarding this subject:

� Shopping cart information is stored in the cookie. Fortunately, this isn’t true.
Cookies, as the analogy aptly describes, are small items that can be passed
easily around and consumed quickly. If cookies were used to hold a user’s
shopping cart data, the cookie would continue to grow and grow, eventually
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becoming huge and too unwieldy to pass back and forth between client and
server with each new TCP session (or every page).

� Shopping cart information is replicated to all the servers in the farm. This, too,
fortunately, is untrue. The easiest way to see the illogic in that approach would
be not to look at the young, immature web site that only contains two or three
servers but, instead, imagine that web site after a year of tremendous growth
and expansion. Imagine 100 servers contained within the load-balanced farm.
Each time a user places an item in her shopping cart, that server would need to
communicate this information (along with a unique piece of data to be used as
an identifier for that user) to 99 other servers. And each of the other 99 servers
would communicate with each other whenever they have new shopping cart
data to update. And each entry would need to be removed at some point in
time when it was no longer deemed necessary. So, each of the 100 servers would
need to constantly age out this data. It’s easy to see how this doesn’t scale.

� Shopping cart data stored in a backend database for all e-commerce web sites.
This is, in fact, true for some of the larger sites, but it isn’t at all assured for
most sites. To use a database to store this transient data, many things must
be considered. First, the data must be worthwhile to justify the cost. Because
database write transactions impact server performance at 200 to 500 percent of
a “read” transaction, architecting a site to handle a large amount of database
writing can be costly for storing transient data such as shopping cart lists.
Depending on the type of clientele, and the likelihood of purchase and the
average value of each purchased item, different cost/benefit scenarios arise.
Second, some way must exist to identify the user uniquely and to develop a
plan to age out data from the database. Without an identifier and a plan to
remove old data from the database, the database eventually becomes bloated
and ineffective.

To combat this breakdown of shopping cart functionality, manufacturers of load bal-
ancing devices began to find new and unique ways to determine how to easily send a user
back to the same server where he began his shopping cart session, thus preserving his
information in the server’s memory. To do this, load balancers began to go where net-
work devices in the past had feared to tread: into the packet payload. By reading deep inside
the packets, into the actual data payload of the session, the network device can use that
information to identify and understand its user better. This formed the beginning of a
whole new breed of network devices—Content Networking devices.

Firewall and VPN Load Balancing
Although not directly part of the technological evolution that created layer-seven persis-
tence functions and other high-level functions, firewall and VPN load balancing gained
substantial popularity around the same time—in the year 2000. Security is one of the
few—if not the only—requirement end users have in common with content providers.
Ironically, although security is such an important topic, it’s one of the least understood
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and most improperly implemented aspects in most technology infrastructures. Remem-
ber the onion approach? Many individual security layers get wrapped together, so if one
is peeled away, the next layer still exists. Many technologists who are new to security of-
ten assume one device or one tool will provide them with absolute security without any
risk to their business. This is an obviously ignorant and dangerous way of thinking. A
truly effective security program consists of many aspects: physical security combined
with detailed policies and procedures, combined with proper user/staff education, com-
bined with an array of tools and techniques to defend, combined with an array of tools
and techniques to monitor.

With this in mind, firewalls, intrusion detection systems (IDSs), and virtual private
networks (VPNs) are, indeed, important and common tools for providing part of a com-
pany’s security program. Yet new problems are introduced when firewalls and VPNs are
part of a company’s infrastructure. Firewalls, by their very nature, usually are required to
analyze all the traffic that passes through them to ensure the correct packets are being
allowed, while the “bad” packets are being refused or dropped. But that analysis is a
computing-intensive process that, at medium to high speeds, can dramatically affect a
network’s throughput and performance. Firewalls are one of the most likely performance
bottlenecks and single points of failure in most infrastructures, especially web data center
infrastructures. Similarly, VPNs have a relatively high incidence of failure. To address
these issues of availability and performance for firewalls and VPNs, two basic approaches
exist: built-in high availability (HA) versus load balancing (LB). Most firewalls and VPN
solutions offer an HA option. They usually consist of a second identical platform that sits
next to the original platform waiting for a failure. Normally, this second platform doesn’t
perform any functions until failure of the first unit—thus, it adds no performance benefit.
The only way to get improved performance along with availability is to continually up-
grade the hardware and software platforms to be optimized for the amount of peak traffic
required. That process can be costly—in both time and money—as well as operationally
difficult to maintain.

The other alternative is load balancing. This provides the same benefits discussed with
server load balancing—the capability to maintain equipment easily (pulling it in and out
of service), easy expansion for performance by adding additional boxes (even if only tem-
porarily), and maximization of investment because all the units can be used to perform
functions actively, rather than sitting idly by, waiting for a failure.

Of course, some downsides exist to using load balancing. First, the LB solution might
be more costly at first, especially if the LB device is performing only that function. But as a
company scales larger and peak traffic grows, that investment can easily be recouped.
And, if the LB device is performing other functions at the same time, such as server load
balancing, bandwidth management, or any number of other commonly used features of
this class of devices, the price for adding FWLB or VPNLB is quite minimal. The type of
FWLB/VPNLB solution chosen also affects the cost breakdown. Many vendors offer only
a “sandwich” approach that requires two devices—one on either side of the FW or VPN.
While this approach is widely accepted as the preferred security approach for FWLB, it
adds significant cost. A single device approach for FWLB does run the risk of being
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misconfigured to allow unauthorized traffic to pass directly through the device acciden-
tally, without being analyzed by the firewall. But this decision must be made by each
company, based on its specific situation and risk factors including likelihood of breach,
potential damage from breach, cost of protecting against breach, and staff capabilities
and responsibilities for maintaining the equipment.

The one additional downside to an FWLB is complexity. An FWLB tends to be more
complex to set up and maintain than built-in HA solutions. If properly set up, though, an
FWLB can function without significant change or redesign for many years, even as new
devices are added to be load balanced. And this extra complexity is normally far out-
weighed by the operational benefits of load balancing because individual devices can be
removed for upgrading or repair, without impacting the ongoing traffic flows at all.

FWLB and VPNLB became immensely popular in web infrastructures before beginning
their adoption in enterprise network infrastructures and elsewhere. This early adoption
inside the data center probably came from the technical awareness of load balancing in
that area, while enterprise networks had little or no knowledge of load balancing until
much more recently. In any case, FWLB and VPNLB are rapidly becoming popular
within enterprise networks today.

Bandwidth Management
The concept of managing and altering network traffic (often called traffic shaping in the past)
has been a popular concept in many customers’ and vendors’ minds for years. Yet few
companies have deployed bandwidth management (BWM) solutions. Part of the reason
revolves around the knowledge that the benefits aren’t as easily defined as other technology
solutions. Quite simply, BWM allows a company to provide differing levels of services
within its infrastructure. An easy example is using BWM in a web infrastructure to pro-
vide differing levels of network bandwidth to different customers. Assuming a standard
100 Mbps connection, the company might want to guarantee that the high-profile cus-
tomers who access the financial section of the web site receive higher priority for band-
width than do other customers. A BWM policy could be set to give 80 Mbps allocation for
these high profile customers, while only 15 Mbps is guaranteed for all the other custom-
ers. And, an additional 5 Mbps could be reserved for VPN traffic into the web infrastruc-
ture to ensure the remote operational teams can always access the backend databases,
servers, and devices—even during peak traffic times.

Bandwidth management is a tool to create effective Classes of Services (CoS). CoS is a
component of Quality of Service (QoS). Typically, QoS refers to the entire life of a given
data stream. Quality is assured at the required level based on the data type from end to
end. CoS, on the other hand, only focuses on creating the various levels or classifications
within the immediate environment, not necessarily covering the end-to-end path. Thus,
if each segment of the data path had effective and equivalent CoS in place, it would effec-
tively provide QoS for the entire path. CoS would be unnecessary in an unlimited band-
width environment, but it becomes important in the reality of limited bandwidth and
network bottlenecks we have today.
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But placing a device in the path of traffic is a scary and costly proposition. BWM has
received its biggest boost from vendors that have incorporated the functionality into
existing devices already in the path of user traffic—such as load balancing devices. Per-
forming BWM functions at close to wire speed, while also performing other functions
such as LB, is a difficult challenge for vendors of these devices, and the impact of enabling
the various services shouldn’t be taken lightly.

Web Accelerators—Caching, SSL Acceleration,
TCP Offload, and so forth
Web acceleration devices are an interesting new breed of technology solutions. They rep-
resent the epitome of what many feel will become the standard in the future—technology
specialization. These devices don’t technically do anything that isn’t already done within
the network—yet they provide tremendous improvement in common Internet traffic.
The purpose of these devices is to remove as much processor burden from the servers as
possible and handle that burden on the specialized (and optimized) device.

Secure Socket Layer (SSL) acceleration devices, as the name implies, remove the SSL
process from web servers that need to provide secure HTTP (HTTPS) traffic to users. SSL
is an encryption mechanism used to tunnel data back and forth between client and server,
thus avoiding snooping on that data by others. However, the encryption and decryption
function is processor-intensive—requiring significant mathematical calculations per-
formed rapidly. By many estimates, a web server providing HTTPS was 70 to 90 percent
less effective at delivering content compared to the same type of server providing stan-
dard nonencrypted HTTP traffic. In the beginning of the development of this technology,
SSL was offloaded from the processor of the server to a specialized card inserted into the
server. Because a web infrastructure scales beyond one or two servers, however, this ap-
proach rapidly becomes less desirable: it consumes valuable server space, provides more
pieces of equipment to maintain and upgrade, and can be costly because a new card is
needed in every server with an expensive certificate required for each one. And thus en-
ters the SSL acceleration device. This device contains technology almost identical to the
cards placed in the servers—they perform the encrypt and decrypt functions of SSL, thus
passing only HTTP traffic to the server. With an SSL offload device, however, no server
maintenance is required and, thus, it can be much more easily and cost-effectively scaled
to handle increasing HTTPS traffic. The only significant downside of using this type of
device is security. A security purist could argue that because this device decrypts the traf-
fic from the client to the server, and then passes it to the server in clear, unencrypted for-
mat, the link between the SSL acceleration device and the server could be compromised
and, thus, all user data would be visible. While the argument is technically valid, in prac-
tice it’s of little concern. In almost all cases, the SSL acceleration devices coexist in the
same cabinet or cage as the web servers. The only method that can be used to view the
unencrypted data easily would require physical access to the wire connecting the servers
and/or SSL devices to the switch. And, if physical access to the servers is possible, much
larger and more significant security breaches need to be protected against. In the near future,
SSL acceleration devices will solve this problem by creating a single encrypted tunnel
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between the device and the server. This reduces the burden on the server, by requiring it
to maintain and encrypt/decrypt only one session (instead of hundreds), and it increases
security by maintaining an encryption data stream all the way to the server.

Another type of acceleration device, although less common, is a TCP offload device,
such as NetScaler’s WebScaler product. This product is one of the only devices that seeks
to relieve the burden of TCP from the web servers, much as SSL acceleration devices remove
the HTTPS burden. The logic is simple: each TCP session has an inherent burden because
it must negotiate a handshake between the client and server before passing any relevant
data. Yet HTTP sessions (that ride on top of TCP) are usually brief, thus the burden of the
handshake has a disproportional impact on web server performance. To combat this situ-
ation, the WebScaler device negotiates the TCP handshake directly with each individual cli-
ent. Instead of passing each TCP session to the web server, the device creates only a few
TCP sessions with each web server and makes all requests for data over those few, perpet-
ual TCP connections. It then takes the data and parses it into the established client sessions,
thus serving the required data without burdening the server with excessive TCP requests.
This functionality is technically similar to how some load balancing devices provide a
function called delayed bindings, which is discussed in Chapter 9. Thus, it’s likely that
many standard LB-type devices will adopt this TCP offload approach. In addition, prod-
ucts that provide TCP offload will rapidly add the entire set of standard load balancing
features. Even without all the load balancing features, TCP offload devices are shown to
have a positive return on investment (ROI). For a growing web site, the cost of the product
is quickly covered by the reduced number of the servers needed. Typically, these products
cost about as much as two or three well-equipped web servers. And it’s not unreasonable
to assume a company could avoid the purchase of dozens of servers if web site traffic is
significant enough. TCP offload is definitely a complimentary function to standard load
balancing.

Caching, which is also discussed in greater depth in relation to the topic of Content
Distribution Networks, can also provide excellent web acceleration in the data center. By
using caches in reverse proxy mode in front of the server farm, web traffic performance
can be improved. Caches are optimized to serve large quantities of data quickly. They
typically run on optimized hardware and operating systems as compared to web servers
that use standard hardware and generic operating systems. Content Networking devices
can point user traffic to web caches as part of the server farm to enhance the overall web
experience.

Global Server Load Balancing
SLB is an effective and efficient way to increase performance and availability, while also
improving operational and administrative control over the infrastructure. But limitations
exist to the benefits that SLB (or, more specifically, “local” SLB) can provide. The most
obvious limitation is the lack of guaranteed high availability with local SLB. Many events
can occur to cause a loss of availability, such as core router failure, data center loss of net-
work connectivity with the Internet, data center catastrophe (fire, power failure, and so
forth) or even geographic catastrophes such as floods, earthquakes, and so forth. These
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events cannot always be predicted or protected against at a single location. Thus, the concept
of globally distributing server farms is important.

Determining Site Location—Let’s Race Many large web sites have longed for the Holy
Grail of always providing their users with the best path at each given moment from the
users’ location to the content they want to retrieve. The first part of the problem is that
content is typically located in only one place. So, if a user requesting that content is lo-
cated halfway around the world, the delays could be significant. Distributing data to var-
ious locations around the world is the first step to overcoming the problem. But, even as
companies began to distribute their content to various web data centers around the
world, it was still difficult to ensure the best path between that client and the content
server. Why is this difficult, especially with so many ISPs offering service-level guaran-
tees on both bandwidth and servers? The problem is caused by the very nature of how the
Internet is constructed.

The Internet, as we all know, is constructed of many disparate networks connected to
each other through peering and transit agreements. Many of these ISPs have invested tre-
mendous amounts of money creating fast, enormous, backbone networks. Yet, when a
web-hosting data center delivers content back to the user, it normally does so using a
technique called hot potato routing, which simply means the web-hosting network will de-
liver the network traffic to the destination network (or the first hop in the path to get
there) as quickly as possible. Even if the network of the web-hosting provider is vast and
has plenty of available bandwidth, the traffic might be passed over a congested peering
connection to a network with little available bandwidth.

Genuity’s Hopscotch™ technology was one of the first attempts to solve the problem of
finding a user’s best path. From various collectors across Genuity’s network, pings would
be sent out and the round-trip time from various points would be gathered. Once the data
was gathered (usually no more than two seconds), a decision on site selection was made
and the user was redirected to the appropriate data center. Although not perfect, this was a
valiant attempt to provide users with the best site selection for their request. More recently,
Nortel Networks has developed a process called Footrace™ that seems to provide the best
possible approach of any solution today. By simultaneously sending a response from all
sites for a given piece of content, the first packet that arrives at the user determines the site
to be used. This method provides a realistic view of the path between user and content,
while requiring minimal overhead for the connection process.

In the future, better metrics might be available to enable you to determine not only
which location but, specifically, which path is most efficient for the specific type of con-
tent and user combination at a given moment. As Content Networking technology works
in conjunction with other emerging technologies, such as Multi-Protocol Label Switching
(MPLS), the Holy Grail of best path might, indeed, come within your grasp.

Database Replication—The Ultimate Challenge Because almost all robust web infrastruc-
tures rely on databases to some extent, they must be seriously considered when developing
an effective infrastructure that meets all the previously mentioned requirements. The



Chapter 1: Introduction to Content Networking 21

challenge can be described simply: databases cannot effectively do peer-to-peer transactions
(also known as bidirectional replication) over slow or unreliable links, such as long distance
Internet connections. But what does that really mean? And how does it affect the average
web infrastructure?

Through load balancing, we discussed how many different types of systems such as
servers, firewalls, routers, and other devices can be highly available, high performing, eas-
ily manageable, and extremely scalable. And global server load balancing extends those
capabilities across multiple sites around the world. But databases don’t fall into the same
category. And, although database load balancing is just around the corner for many of the
content networking vendors, limits exist to what load balancing can do. The problem is
centered around the fact that databases often have their data changed. Typically, the reason
for using a database is to easily store, organize, access, and update vast quantities of data.
The last item—update—causes so many challenges. For the sake of this discussion, server
clustering isn’t mentioned because it only addresses a local site and doesn’t provide geo-
graphic fault tolerance or location-based high performance. Essentially, two main types of
database structures exist for highly available, distributed databases.

� Master/Slave replication This is where a master database server and other
“slave” database servers occur with identical information. The key is all changes
are made to the master database, and then automatically pushed or replicated to
the slave servers. This works well with web sites that use databases to generate
pages dynamically, but the web site company controls all the data within the
database. Most all of the major database vendors support this type of basic
replication, which can work over fast, medium, or slow links.

� Peer-to-peer replication This is where two or more database servers have
identical information to start, but changes can be made to any of the databases
and are then replicated to all the others. Most of the major database vendors
support this type of replication with the following caveats: small number of
replicated database servers and extremely fast links between databases. The
problem arises when one (or both) of those conditions aren’t met. To understand
the problem, imagine a global server load-balancing example with three sites,
all containing database servers that can be updated. A client could connect to
one site and make a transaction that updates the database (let’s say a password
change or an e-commerce shipping terms modification). That database must
replicate that change (along with all the other changes) to all the other
databases around the world. The client then reconnects to a different site (per
global server load balancing) and attempts to change the same item (password,
shipping terms, and so forth). A high probability exists that the replication
might not have taken place yet and the client might alter the same data on a
different database server. Now, when the DB servers try to replicate, they’ll
have a replication conflict that can usually only be resolved by human
intervention. On a small site, this isn’t a huge problem. But, as you scale
it up, the conflicts could become overwhelming.
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Another common example of the problem is selling products with limited inventories.
When you get down to the last “one” item in stock, many different people could potentially
purchase the same “last” item because the database servers weren’t synchronized quickly
enough after the first person pressed the buy button. Many people will be falsely led to
believe they purchased the last one when, in reality, a database conflict exists and the in-
ventory isn’t there.

There are good, though not widely used, hybrid approaches to deal with these issues.
Of course, as with all technology designs, the right design approach varies substantially,
depending on the business and technical objectives.

The following questionnaire can help to determine the better approach to take:

Data Distribution Questionnaire

1. Do you plan to have only a single DB server? If yes, no problem; stop here.
If no, go to 1a.

1a. Are you using multiple database servers to increase availability or to increase
performance, or both? (This answer might be used later.)

2. Will these database servers be connected by a high-speed network connection/
link such as ATM or fast Ethernet?

2a. Will only two database servers replicate to each other?

If the answers to 2 & 2a are yes, stop here, no problem (though extremely high
transaction systems still could have problems peer-to-peer replicating fast
enough—but only a small number of companies would generate this much
traffic). If the answer to either 2 or 2a is no, go to 3.

3. Will all data entry/modifications take place on a single database server? If yes,
no problem, use master/slave replication with all the other nonprimary servers
acting as slaves. If the answer is no, go to 4.

4. Will only add functions be performed on the distributed database servers
(that is, no edit or modify to existing records)? If the answer is yes, replication
should work okay, but go to question 4a, just in case. If the answer is no,
definitely go to 5.

4a. Will all the added database records be completely independent of any database
information that changes based on those additions (that is, the client can place
an order for a product, regardless of whether it’s in stock in the computer and
that entry won’t decrement the inventory in real time)?

If the answer is yes, with proper programming and database development, it
should work fine. If the answer is no, go to 5.

5. The customer will probably need to weigh a number of different options:
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Option A For many web infrastructures, designing a peer-to-peer style architecture on
top of a master/slave architecture makes sense. This is done by allowing the slave data-
bases to accept updates, which aren’t applied directly in the slave database tables. Instead,
the changes are stored in special tables for replication, which are sent back to the master
and applied there first. If a conflict arises, this is known immediately and is communi-
cated back to the slave, so it can communicate the information to the user. If no conflict
exists at the master, the change is made to the master records, and then the master pushes
the changes out to all slaves. This allows a peer-to-peer style architecture to help avoid
problems in case the master fails and a new master must be elected, while controlling the
conflict resolution in a central site. The drawback, of course, is extra latency involved for
write transactions that require conflict validation. The bonus of this architecture is no ex-
tra latency exists for read transactions (obviously) or for write transactions that don’t
pose a conflict potential. Every transaction that requires conflict validation is run through
a consistent process, so the outcome is repeatable and consistent. No two clients ever
receive false success status.2

Option B They could consider getting high-speed links (ATM, and so forth) between the
database servers, hopefully, to overcome the replication limitations. Again, high-speed
doesn’t guarantee no conflicts will occur, but it makes conflicts much less likely than if they
were traveling over the Internet. This option is very expensive, however, and can only be
considered for those customers with plenty of cash to burn.
Option C If question 1a was answered as “increase performance,” the customer should
consider simply buying faster hardware, building a cluster in one location, or looking at
ways to optimize their database schema and programming. They should also consider
factors such as reducing the number of database transactions (especially write transac-
tions) done on the database per client visit. Write transactions have a much greater im-
pact on performance than do read transactions.
Option D If question 1a was answered as “increase availability” or “both,” the cus-
tomer needs to do a failure analysis and determine the likelihood of database failure and
the impact to their business. Having a single point of failure for a DB server isn’t necessar-
ily the end of the world, if many other conditions are met. For example, if they have spare
systems and components, 24/7 monitoring and management, and they have good static
content distributed to multiple sites, they won’t have as adverse an impact if their data-
base fails. For example, for many years Cisco had a single point of failure with its backend
database for its online ordering. Cisco sells billions of dollars of equipment online each
year, yet realized it had no realistic, cost-effective mechanism to distribute its databases
completely in a peer-to-peer manner. So, Cisco distributed its web servers and application
servers all over the world. And Cisco built a bulletproof NOC in San Jose to protect its
database—with a huge cluster, 24/7 monitoring, spare parts, great security, and so forth.
If California falls into the ocean, however, Cisco online ordering will be offline. But users
will still be able to access all the other features of Cisco’s web site (without real-time order
information). Cisco saw this as an unfortunate, but acceptable, business risk.



SUBSCRIBER EDGE NETWORKING— NETWORKING
ON THE EDGE

Subscriber Edge Networking (SEN) is a relatively new term used to define the unique ca-
pabilities that can be used at the point the user first enters the Internet. In the past, the
subscriber edge provided the least intelligent control over, or value-added service to,
Internet traffic. In most cases, the decision was simply an allow/deny with bandwidth
control based primarily on the size of the access pipe. Today, technology is rapidly
changing the way traffic is managed at the subscriber edge.

This change is significant because the subscriber edge is where the most value can be
discerned regarding the users. Access providers have the most accurate and robust set of
data regarding the subscribers, their demographics, their location, and their preferences.
Access providers know who we are, where we live, and even have some information
about our credit worthiness (based on signing a service contract). If these pieces of data
can be used to personalize the content provided to these users, the full benefits can only
be imagined. In addition, the great potential exists to provide value-added services at the
edge, such as personal firewall services, VPNs, and locally stored and streamed content.

SEN IP Services
Just as server load balancing devices, typically used in the data center, have evolved into
multifunctional devices capable of load balancing many different devices and providing
value-added features, such as bandwidth management, subscriber edge devices are also
evolving. Shasta was a pioneer in developing a subscriber-aggregation platform that did
more than simply authenticate users and aggregate them on to the provider’s backbone.
Universal aggregation is important for service providers to manage their subscribers eas-
ily. PPP, PPPoE, L2TP, and many other technologies are required at the aggregation point.
Many of these technologies require some type of network authentication, such as via a
RADIUS server. SEN IP services grew out of the foundation of subscriber aggregation.

Shasta engineers built a box capable of providing network-based services that tradi-
tionally required equipment located at the customer premises. By offering firewall, VPN,
traffic steering, and many other functions in a device that also provides routing and sub-
scriber aggregation, a whole new genre of products was born. SEN IP services are a boon
to service providers—enabling them to offer valuable services, such as firewall and VPN,
to their customers at a much lower cost than customer premise equipment (CPE)-based
services. With a push of a button, a client can be configured for a personal firewall without
the need of extra hardware, installation, or separate management. And, as devices such
as this become MPLS-capable, they will be able to offer a quality of service never before
thought possible.

Quality of service (QoS) can also be implemented.
Traffic steering is a relatively new concept that can be best applied at the subscriber

edge. Traffic steering enables a service provider to control where users are directed when
they access the Internet. Traffic steering could point them to a service provider portal web
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site, or it could simply provide relevant ad insertion in the delivered web pages. Because
these decisions are controlled at the subscriber edge, much more user information is
known and, thus, true personalization (and relevancy) is possible. Web traffic steering
becomes important as service providers begin to incorporate it into Subscriber CDNs,
discussed in the section “Subscriber CDN” later in this chapter. The subscriber edge
holds tremendous potential that hasn’t yet been completely harnessed.

CDNs and “Overlay” Networks
Content Distribution Networks (CDNs) are often confused with the concept of Content
Networking, but the two terms are not interchangeable. CDNs are a subset of Content Net-
working. The purpose of a CDN is to distribute content across the vast Internet, so it’s closer
to the user, thus achieving two important user expectations—performance and availabil-
ity—while also helping to achieve the content provider’s expectations of scalability and
flexibility. Companies such as Akamai and Digital Island first popularized the concept of
CDNs. These companies created extensive networks of servers scattered across the Internet
storing commonly used content for businesses that paid for the service. CDNs provide a
service that’s difficult for the average company to duplicate because they offer content distri-
bution and storage across thousands of servers in hundreds of different locations.

Need for CDNs
The need for CDNs arises because the Internet is inherently latent and has no guarantees of
service quality. The very nature of what made the Internet into the great enabling technol-
ogy of our lifetime is the same thing that make it flawed in its capability to deliver content.
Because the Internet is a collection of disparate networks linked together through public
and private peering relationships, it has latency because of slow links, slow backbones,
many network hops, and even distance (the speed of light is not really all that fast when
you need a packet to travel around the globe and back).

Out of these challenges rose the CDN, but CDN is a new term. Only a few years ago,
ISPs were deploying Web Cache Redirection systems, the precursor to today’s CDN concept.
In the late 1990s, many ISPs were coming to realize that providing Internet access was a
low-margin commodity business. The costs to maintain access POPs and long-haul net-
work backbones to carry the traffic across the country or around the world were increasing
(or at least staying constant), while the cost of Internet subscriber access was declining.
So, with costs increasing and margins decreasing, providers looked for ways to reduce
their ongoing costs. While a significant portion of the cost was created by maintaining a
high turnover (churn) subscriber service, a lot of money was being spent on network con-
nectivity. Service providers wanted to reduce three main cost points:

� Network capacity from POP to backbone

� Backbone network capacity itself

� Interconnection network capacity (peering points) with other networks
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Understanding these three pieces of the service provider’s network is important to
understand fully the importance and impact of Content Networking for them. The POP is
the location that people consider the entry to the service provider’s network. This is the
point at which the user (whether a consumer or business) is connected to the network
over the last mile. The last mile is normally defined as the network connection between the
user’s premises and the POP. This last-mile connection could be copper, fiber, cable, or a
variety of other physical media. The connection type could be a switched service, such as
a telephone line, or a fixed service, such as DSL, cable, or even a T1. At the POP, the traffic
needs to be routed or directed to its proper destination. The POPs are connected to each
other via some sort of backbone network. This could be a dedicated fiber-optic network
owned by the service provider or it could be a virtual network of ATM or frame-relay
links purchased from a larger carrier. Either way, the backbone costs money to build (or
lease) and to manage. In many cases, the backbone (at its full capacity) doesn’t reach
every POP. Thus, some POPs must be connected in the local metro area to a larger aggre-
gation POP, sometimes called a Super POP. This Super POP would then be connected
directly to the backbone network.

In most cases, the traffic is destined for somewhere on a completely different net-
work. How does it get there? This is where peering points come into play. Peering points
were developed in the earliest days of the Internet as a way to connect disparate networks
together. The concept of the peering point is the foundation for the growth of the Internet
as we know it today. Without peering, no interconnection and, thus, no Internet would
exist—there would only be a large number of distinct networks that couldn’t interact or
communicate with each other. The earliest service providers such as CompuServe and
Prodigy are excellent examples of this. So, to connect these various networks together,
providers are needed to exchange traffic. Similar to the fence separating neighbors from
one another, it begs the question of who owns and maintains this interconnection—and
most importantly, who pays for it. The costs include the actual physical link, the equip-
ment (such as routers), and the time to manage and monitor the connection. Peering
points were originally intended as links between similar size networks—peers. With a
roughly equal exchange of traffic, each party could pay for their half of the peering
point and everything would be equitable. An extra challenge that arose (not discussed
here) is the dilemma when one network doesn’t consider the other an equal.

These costs could grow quite high, considering each network often had multiple
peering points throughout a region or country and would connect to many peers at all
these multiple locations.

Service providers realized if they could simply keep their users from leaving their net-
work—or better yet, keep them from leaving the POP—costs could be significantly reduced.
But, few, if any, service providers were in the content game. They didn’t have the content
people wanted to see. By using caches, though, service providers could bring the content
users want closer. Caches were deployed in the POPs to force all cacheable traffic to stay
within the POP. If a user requested data already stored in the cache, it would be served
locally and would contribute to 30 to 40 percent reductions in traffic passing over the
three points mentioned earlier. This significant reduction in traffic provided tremendous
cost savings, even after factoring in the cost of the caching equipment.
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An interesting by-product of these cache deployments was the user performance in-
creased. So, service providers unknowingly increased customer satisfaction while achiev-
ing their initial goal to reduce costs. This concept soon spread. Innovative new companies,
such as Akamai, realized many companies would be willing to pay a large amount of
money to have their content locally accessible to users, thus providing their users with a
better web experience. Taking the same concept of distributed caching, Akamai and others
deployed servers around the world to store content of companies that paid for such a service,
and the CDN was born.

Goals of a CDN
The purpose of a CDN service is to increase performance and availability. With distrib-
uted content around the world at hundreds of servers, failures would be less common
and far less damaging than in a centralized content environment. The bandwidth fees
charged for this content distribution service are two to three times (or more) the standard
rate companies pay for Internet connectivity. But this is a small price to pay for better user
performance and availability. This also provided the content providers with much
greater scalability, and flexibility to grow and change over time. An additional benefit of
CDN services is a reduction in infrastructure costs to the company purchasing the CDN
service. The company simply pays for the ongoing service that offloads much of the traf-
fic from its servers, thus reducing the amount of investment required in the related infra-
structure. The infrastructure investment is made, instead, by the CDN provider and is
shared among the many CDN customers.

While Akamai pioneered this type of service, by the end of 2000 dozens, if not hundreds,
of companies were trying to get into the area. With the knowledge that both businesses and
end users benefited from content distribution, many companies felt the opportunity for reve-
nue generation was endless. Akamai’s competitive advantage and long-term viability soon
became suspect, as many new players attempted to build their own CDN.

Types of CDNs
While the basic concept and service provided by a CDN are essentially the same, regard-
less of type, a variety of different CDN types is discussed in the industry, relative to the
way they’re implemented. Three basic types of CDN implementations are Internet, Sub-
scriber, and Enterprise.

Internet CDN Internet CDN is the generic name for the most commonly thought of Content
Distribution Network scheme. It functions as described earlier, using a distribution of servers
or caches at various points close to users. The service itself is sold to the content providers for
them to ensure their web site and content will be readily accessible and perform well.

Three commonly discussed subtypes of Internet CDN also exist that, while serving
identical purposes, differ slightly in their implementation and approach: Overlay CDN,
Peering CDN, and Hosting CDN. Each one is briefly described here.



Overlay CDN The term “overlay” network is commonly used to describe many of today’s
CDNs. Akamai is a prime example of an overlay network because it neither builds nor
maintains layer 3 networks or data centers of its own. Instead, it has created a virtual net-
work of servers scattered across many other providers’ layer 3 network POPs and data
centers. By overlaying this network of servers on top of the backbones of other companies,
Akamai was able to create a new niche for CDN services without the extra expense of
building networks or data centers. This can allow for an extensive network of servers and
caches around the world.

Some downsides occur with this approach, however. First, as with any solution cre-
ated through partnerships or outsourcing, overlay CDN providers must be cautious of
the quality of the facilities they use. Because they don’t control the networks, POPs, or
data centers that house their equipment, they must be diligent in evaluating the quality
and effectiveness. If they are unable to negotiate their requirements, they’ll need to move
elsewhere, which can be difficult and costly. In addition, overlay CDNs are narrowly
focused. The breadth of services to offer customers isn’t available because all services are
CDN-based. Other implementations of CDNs allow service providers to create suites of
services for their customers that can be useful in finding and keeping customers. Because
CDNs are so new, this problem hasn’t yet arisen. But, over time, pure play CDN providers,
such as Akamai, will likely be acquired by a larger service provider that wants to enhance
its services suite. Digital Island, another CDN pioneer, was acquired by Cable & Wireless
in 2001 for that exact purpose.

Peering CDN Peering CDNs provide the same service but, instead of positioning content
at POPs or data centers, equipment is placed at the peering points between the service
provider’s network and its peers. This approach works well for service providers that
have excess backbone speed and capacity, as well as substantial peering connections with
other networks. Because backbone capacity isn’t an issue, locating content at peering
points is a more economical way to distribute content, as opposed to placing equipment
in every POP. An obvious downside is content is only positioned on that provider’s net-
work and, thus, isn’t as close to the user in all cases, as it would be in an extensive overlay
network (which locates content on many different networks).

This approach could also be used by hosting service providers that don’t have a sub-
stantial backbone. Thus, they want to offload content requests as soon as they enter the
network at the peering points.

Hosting CDN Another approach common for hosting service providers is to use their
existing multiple data centers to house content for the CDN service. Although this won’t
have the reach of an overlay CDN, it will be much less expensive to build and maintain by
using the existing investment in data center facilities. In many cases, hosting service pro-
viders will use a hybrid approach of both peering and hosting.

Subscriber CDN Although technically similar to Internet CDNs, subscriber CDNs are tar-
geted at a different market. An Internet access service provider can deploy content delivery
infrastructure at POPs all over the network. Then, with that equipment in place, it can
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offer an enhanced service to access customers. Imagine being offered a service for five or
ten dollars a month that would promise to improve your web surfing and content retrieval
activities dramatically. Instead of simply offering it as a free piece of standard Internet ac-
cess (as with the original caching deployments implemented as a cost-savings mecha-
nism by service providers), providers can market this capability to their customers and
reap more revenue. The primary target customers for a subscriber CDN are consumers
and even some businesses. This CDN approach will commonly be coupled with the various
enhanced IP-based subscriber services pioneered by Shasta, mentioned earlier in this
chapter.

Enterprise CDN The final type of CDN approach is the enterprise CDN (see Table 1–1).
The obvious target customers are enterprises with distributed campuses in many differ-
ent locations. The enterprise CDN places caching infrastructure in each major enterprise
location and positions content for commonly used items such as files, training presenta-
tions, corporate audio or video announcements, and any other commonly used content
objects. By implementing an enterprise CDN, companies can use more robust media, pro-
vide faster access to common files, and reduce wide area network (WAN) transport costs.
Some service providers might offer a managed enterprise CDN that’s essentially the
same approach, but implemented and managed by the provider. This removes from the
corporation the burden of learning the new technology and managing it appropriately
and puts that burden on the service provider.

Elements of a CDN
Conceptually, a CDN isn’t difficult to understand. Most CDNs don’t rely on overly complex
or intricate technology. Akamai’s service was primarily based on homegrown applications
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CDN Type Paying Customer Cache Locations

Internet—Overlay Content Owners
and Providers

Multiple data centers, POPs,
peering points of various partners

Internet—Peering Content Owners
and Providers

Network provider’s multiple
peering points

Internet—Hosting Content Owners
and Providers

Hosting provider’s multiple
data centers

Subscriber End Users ISP’s multiple POPs

Enterprise Corporations Corporation’s central and branch
offices, and possibly any of the
previously mentioned locations

Table 1-1. CDN Types
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and technologies, while other providers’ services were built using many standard products
from companies such as Nortel, Cisco, and Inktomi.

A CDN has five essential elements. Some items overlap, depending on the specific
technology selected. But, conceptually, these five elements are required to provide CDN
services effectively. The elements are origin servers, caches, load balancers/redirectors,
management, and accounting/billing.

Origin Servers Quite obviously, content must originate from somewhere. A server, or set
of servers, will contain the “master” content for that site. Copies of that content are then
either pushed or pulled to the various locations around the globe. Changes to content are
only made on the origin servers. In most cases, the origin server resides in a data center
and, thus, won’t be managed directly by the CDN service provider. The exception, of
course, is in the case of a hosting CDN.

Caches Caches act as the nonorigin content servers. These machines hold the content
locally, waiting for users to request it. Essentially, two different models exist for distribu-
tion of content into caches: pull and push. In a pull model, caches start out empty and only
store data as users request it. The benefits of a pull model are ease of deployment and
management because, once the cache is configured, the service can begin functioning al-
most immediately. The primary disadvantage to the pull model is the first local user still
must wait for the content to transfer across the public Internet in the normal manner. All
local users after that point (within a given timeframe) benefit from the caching of that
content because it’s located locally for them to download. This first-user delay problem is
quite significant for paid content services, such as video on demand or music downloads.
Pull models are user-dependent and controlled. The content that’s pulled is controlled al-
most totally by requests made from users. And users are all considered equal, in terms of
retrieving and storing content. Of course, caches can be configured with many complex
criteria to favor certain types of content over others and to have various expiration policies.

The push mechanism involves the selection of types of content or specific content pre-
defined as desirable for users. That specific content is then pushed out from the origin
servers and populated on the cache servers. The advantage to this approach is it avoids
the first-user dilemma because the content is available even before the first user requests
it. The downside to this approach is the complexity of identifying and managing content,
so only the most useful is replicated to the caches. Determining, in advance, what users
will want to access next is challenging, to say the least. The push style of content distribution
is also referred to as prepositioning content.

Finally, there’s a hybrid of both the pull and push models. This is becoming the most
common method because it enables content owners to preposition selected items that are
likely to be in high demand, while allowing the remaining items to be pulled when needed.

Load Balancers/Redirectors A Content Distribution Network is only a viable solution if
it’s both scalable and available. In other words, if the service becomes less reliable or less
able to grow and expand because content has been distributed, it defeats the purpose of
the CDN in the first place. Load balancers and web cache redirection switches and appli-
ances were created to address these issues.



Caches were originally built as regular computer systems running a special program
to provide caching services. Because computers by their very nature aren’t accessible 100
percent of time because of crashes, reboots, maintenance, and so forth, having a piece of
equipment that would be highly available to direct traffic to those servers when they’re
available and to bypass those servers when they’re down made sense. The WCCP specifi-
cation was developed by Cisco to allow routers to use a pool of caches intelligently, thus
allowing scalability. Unfortunately, as is discussed in Chapter 13, many flaws exist to this
approach. And, instead, the more robust mechanism is a dedicated load balancer or cache
redirection system. These systems perform continual health checks on the cache systems
to ensure they’re functioning, plus they offload a processing from the caches by sending
noncacheable content directly to the Internet, rather than to the caches. By allowing the
capability to add, remove, and maintain caches in a production environment, these sys-
tems provide the critical requirements of scalability and availability. As an added bonus,
they might also help improve user performance.

Accounting and Billing The most complex and least-developed aspect of a successful
CDN is the accounting and billing piece. For the original purposes of distributing content
(caching to save bandwidth costs), little or no accounting is necessary. Because the purpose
of the original WCR concept was simply to save money on the reduction of bandwidth
costs, the savings should become apparent in a short period of time.

As today’s CDN services are built for the content owners, however, and not merely as
a cost-saving mechanism for the service providers, accounting and billing become criti-
cally important. Remember, the direct customer of a CDN service is a corporation (big or
small), while the direct benefits of the CDN are received by the individual web user
(whether for business or personal use). The direct customer must be charged for the ser-
vice provided. And that price can depend on various factors, including how many different
distribution points were used, how much bandwidth was consumed at those different
points, how much content was prepositioned, what class of service the customer chooses
for users of its content, and over what period of time all these factors occurred. The sys-
tems to answer these questions easily for CDN service providers and their customers are
still being integrated into CDN suites of tools. Many application providers have pieces
that can be customized to address these needs, including companies such as HP (Smart
Internet Usage) and Nortel Networks (Preside), to name two.

Management As with many of today’s technologies, to function effectively CDNs must
be carefully managed and monitored. And, also like many of today’s technologies, pieces
of Content Distribution management are still in their infancy. Two important, yet distinct,
types of management are involved with CDNs: operational and content.

Operational Management Any piece of equipment, whether highly technical or not, must
be properly monitored and managed proactively. CDNs are no exception. Management
includes monitoring link saturation and cache server hit ratios, and expanding or con-
densing the cache server farm and network connections based on findings. Good man-
agement also includes verifying that the related equipment such as switches, routers,
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peering connections, and appliances are all working properly. This type of operation is
quite standard for any piece of networking infrastructure. Tools for this type of manage-
ment can range from homegrown SNMP-based tools to large-scale management tools
such as OpenView, Tivoli, and UniCenter. In addition, standard network management
tools are often incorporated into the suite of tools used for operational management, in-
cluding RMON probes, distributed network analysis devices, and product specific man-
agement tools, such as Cisco’s CiscoWorks and Nortel’s Optivity and Preside tools.

Content Management Managing content can be a troublesome and complex task. This in-
volves making many of the decisions discussed earlier regarding pulling content or
prepositioning it. Determining what types of content should be kept for long periods and
what types shouldn’t be cached at all is a perpetual question for the CDN provider. Con-
tent management decisions can change dramatically, depending on targeted user types
and/or subscribing content owners. Tools for content management are being rapidly
developed and released. Many traditional content management tools are designed for
managing the content of the origin web infrastructure, but these aren’t the same tools that
provide for CDN content management. Tools are being developed by companies such as
Volera, Nortel, Cisco, F5, and others. This area of the industry is still too new to say which
products will truly meet the needs of tomorrow’s CDNs.

WHO NEEDS A CONTENT NETWORKING SOLUTION?
Content Networking isn’t yet seen as the air and water of technology infrastructures. But
this is quickly changing. In a few years, people will look back and wonder how they ever
functioned without load balancing, bandwidth management, caching, and all the other
features of Content Networking solutions. Understanding who can benefit from Content
Networking is the first step in the process of designing these solutions.

Enterprises
Enterprises do, indeed, have many uses for Content Networking solutions. In some cases,
those benefits might come from services purchased from a provider that uses Content
Networking technology. In other cases, certain companies will implement these technologies
themselves. Load balancing for servers, gateways, firewalls, VPNs, IDSs, and caches is a
definite “must have” technology for enterprises. The only way to achieve the necessary
performance, scalability, operational effectiveness, and availability is through these
advanced Content Networking functions. Enterprise CDNs will also be of interest to
many companies as more and more content is required, and as multimedia becomes even
more commonplace in the corporate setting.

Bandwidth management is still a long way off from being the killer app, but when it is
an option on a required piece of infrastructure—such as a load balancer—BWM can provide
great benefits to corporations in creating classes of service.
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Obviously, any enterprises with a significant Internet web presence—whether e-com-
merce or content publishing—need to implement Content Networking immediately to
use load balancing of web servers, SSL acceleration, and even reverse proxy caching.
And, as the web presence becomes more business-critical, global load balancing and
CDNs become crucial.

Service Providers
As many service providers struggle for their lives in the midst of the 2001 economic
downturn, they need to continue offering more valuable services to their customers to
move toward profitability. Basic services, such as data center collocation and Internet
access, are commodity services with low (or even negative) margins. Content Networking
solutions enable service providers to offer valuable new capabilities and functions to the
services they sell today.

Data Center and Application Service Providers
The data center is the heart of Content Networking because this is where it all began.
Service providers can offer services such as load balancing, bandwidth management, SSL
acceleration, reverse proxy caching, high-availability firewalls and VPNs, and content
delivery services to their customers, who currently only buy pipe, power, and ping in
their data centers. These value-added services not only have the potential to bring in
profitable revenue, they also create a much stronger hold on the customer. This is because
the more complex and valuable the service, the more locked in the customers are. Appli-
cation service providers might not sell these services directly to their customers, but they
need to implement them just as much. The results from those services—availability, security,
performance—are essential for the ASP model to succeed.

Managed Security Service Providers
A new breed of service provider is emerging to handle all things security-related. Offering
highly available and manageable security services is essential when developing a business
in this new area. Firewall, VPN, and IDS load balancing are far superior to built-in high
availability solutions, especially for a provider focused on giving the best in security services.

Internet Service Providers
ISPs have been searching for value-added services for years. And, although a few of the
largest ISPs have proven that Internet access can be profitable, much more profit can be
gained. CDNs and SEN IP services are the two key areas on which ISPs should focus. ISPs
must remember they control one of the most critical resources on the Internet—the user.
As Subscriber Edge Networking begins to blossom, services and capabilities will expand
at an incredible pace. ISPs also need to remember, though, that they—the ISPs—are easily
replaced. Access isn’t valuable. Content is. The easier, faster, and more secure ISPs can
make it for users to access the content they desire, the sooner those ISPs will have in-
creased revenues and profit margins—not to mention happy subscribers.
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THE FUTURE OF CONTENT NETWORKING
As both edges of the network become more and more intelligent, the next logical step is to
combine the intelligence from both edges simultaneously to make networking decisions.
Decision factors could include location of user, location of content, type of content, prior-
ity of user, service level purchased, and many others. Also possible is that the backbones
themselves will become more intelligent, but it’s debatable whether there’s significant
value to that as long as decisions are made at both edges.

The challenge will be to find the way to communicate between the edges where dispa-
rate systems are used. Various attempts to create standards for content networking com-
munication have already begun. The Content Alliance and Content Bridge groups have
been formed by various vendors of products and services to attempt to create standards.
In reality, these groups have only been used as marketing hype generators. As the content
networking devices evolve and begin to talk from edge to edge, we will see more serious
discussions about cross-platform communication and vendor interoperability.

REVIEW QUESTIONS
1. What are the seven requirements of end users that relate to Content

Networking?

The seven requirements of end users that relate to Content Networking are
performance, availability, anonymity, ubiquity/accessibility, security,
privacy, and personalization/relevancy.

2. What are the nine requirements of service providers that relate to
Content Networking?

The nine requirements of service providers that relate to Content
Networking are security, control, manageability, scalability, flexibility,
diversity, customer demographics/data, differentiation, and profitability.

3. What was the original driving factor that led to today’s concept of
Content Networking?

The original driving factor that led to today’s concept of Content Networking
was performance requirements and to void peering congestion and server
constraints.

4. What is a “health check?”

A health check is a test connection of some type sent to a system—often
a server, but not always—to ascertain if that service on that system is
functioning as expected. A failure means that service on that system
won’t be used and a different healthy system must be used instead.



5. What was the original load balancing metric used?

The original load balancing metric used was round robin.

6. What is the most prevalent load balancing metric used?

The most prevalent load balancing metric used is Least
Connections–LeastConns.

7. Are server agents an effective tool to improve load balancing metrics?

Server agents are not an effective tool to improve load balancing metrics. The
benefit is small for most companies, compared to the cost involved with the
type of detailed analysis and management required to make them beneficial
rather than useless or even detrimental.

8. What are the most common functions performed by Content
Networking devices?

The most common functions performed by Content Networking devices
are load balancing, bandwidth management, caching, offload, redirection,
and filtering.

9. What is the best data replication method?

The best data replication method depends on the environment and the
needs of the business. Many factors must be considered such as data
update frequency, purpose of replication (performance vs. availability),
and content types.

10. What are the three major types of CDN service?

The three major types of CDN service are Internet CDN, subscriber CDN,
and enterprise CDN.

11. What are the three major types of Internet CDN implementation styles?

The three major types of Internet CDN implementation styles are overlay,
peering, and hosting.

12. What are the two main purposes of CDNs?

The two main purposes of CDNs are higher performance and availability.
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END NOTES
1. Zona Research concluded that after seven seconds of waiting for a Web page, customer
defection from the site rises rapidly from a 10 percent defection to a 30 percent abandon-
ment rate.
2. Thanks to David Blessing for his input.
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OBJECTIVES
� Review basic Ethernet concepts

� Differentiate the various Ethernet classes of service

� Present Ethernet terminology

� Review some design guidelines for Ethernet networks

One of the keys to understanding and implementing a Content Networking solution
successfully is to fully understand the elements that compose such a solution. In this
chapter, we examine one of the most fundamental, and most generally ignored, technolo-
gies in Content Networks. Ethernet is the de facto standard for all local area network
(LAN) implementations—hence, provider edge networking is forced to rely on the
strengths and weaknesses of Ethernet. This chapter examines Ethernet and explores its
origins, as well as its current common forms. The approach is to illuminate some of the
more common and assumed technical specifications, and to attempt to address and clarify
some of the more commonly misunderstood notions that attach to the technology.

Arguably, Ethernet isn’t the ideal choice for implementation in a LAN. Some claim its
survival is solely because of its flexibility and its simplicity to implement and under-
stand. Others argue that success of Ethernet relies on one thing alone—its comparatively
low cost. The point is somewhat moot: Ethernet is here, and it’s here to stay.

Over the last few decades, Ethernet has evolved, with the technology supporting
larger and faster connections. The term Ethernet refers to the family of LAN implementa-
tions that cover three primary categories: Ethernet, Fast Ethernet, and Gigabit Ethernet.
This chapter provides an overview of each technology variant.

DIX AND IEEE 802.3
Ethernet is a base-band LAN specification invented by Xerox Corporation in the 1970s.
Ethernet operates at 10 Mbps over coaxial cable with unshielded twisted-pair cable, a
specification defined later. DEC, Intel, and Xerox jointly developed Ethernet Version 2.0,
commonly called DIX. In 1980, the Institute of Electrical and Electronics Engineers (IEEE)
802.3 specification was adopted, based on the original Ethernet and, later DIX, technology.

DIX required the use of an outboard transceiver to attach a cable to the physical net-
work medium. These transceivers performed many of the physical-layer functions, in-
cluding media access and collision detection, and were physically separated from the
interface itself. A transceiver cable would connect the end station to the transceiver. 802.3
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provides for a variety of cabling options, one of which is a specification referred to as
10Base5, and this specification is the most similar to DIX. The connecting cable array was
referred to as an attachment unit interface (AUI), and the network attachment device, the
transceiver, was called a media attachment unit (MAU).

The various IEEE specifications were labeled as follows. The first element was a
number, such as 10, which referred to the transmission speed—in this case, 10 Mbps.
The next element was either BASE or BROAD to differentiate narrow from wide spec-
trum technologies. Finally, a letter or number would follow, to signify either the con-
nection type or connection length. The letter T would represent twisted-pair cable, an F
would represent fiber optics, and a 2 would refer to the coaxial cable segment length of
200 meters (actually it’s 185 meters, but that doesn’t round up well). See Table 2-1 for a
break out of the various specifications.

Frame Formats
In Ethernet, data was packaged for delivery as a frame. Frames range in size from 64 to
1,518 bytes. Each frame contains a variety of information, including who sent it, where it’s
going, what protocol could read it once it arrives, and more. The elements were broken up
into a header field, which carried the administrative information relevant to the frame,
the actual data payload, and then a trailer, which usually included some simple method
for verifying the frame didn’t get garbled along the way.

The DIX and IEEE 802.3 frame fields are described here (see Figure 2-1).

Characteristic DIX 10BASE-5 10BASE-2 10BASE-T 10ASE-FL

Data Rate
(Mbps)

10 10 10 10 10

Signaling
Method

Baseband Baseband Baseband Baseband Baseband

Maximum
Segment
length (m)

500 500 185 100 2,000

Cable Type Copper
coaxial

Copper
coaxial

Copper
coaxial

Unshielded
twisted-pair

Fiber-optic

Table 2-1. Differences Between Ethernet Version 2 and the Various IEEE 802.3 Physical-Layer
Specifications



� Preamble An alternating pattern of ones and zeros that indicate a frame
is inbound to receiving stations. For DIX, the preamble was 64 bits in length
and ended in a pair of ones, which indicated the frame was about to begin.
802.3 specified the length to be 56 bits and allowed for an additional Start-
of-Frame delimiter.

� Start-of-Frame (SOF) The 802.3 delimiter byte ends with two consecutive 1
bits, exactly like the DIX frame. In fact, the two frame types are indistinguishable
at this point! The difference is this byte is called SOF by the IEEE and the end of
the preamble by DIX.

� Destination Addresses This is a 48-bit field. In DIX, the first bit of this address
indicates whether the recipient is a multicast address. If it’s set to 1, then the
recipient isn’t a single station, but rather a multicast group. The next bit, for
either DIX or 802.3, will indicate a broadcast address if it’s set to 1. Regardless,
the IEEE will fix the first three bytes of the addresses to guarantee address
uniqueness and the actual interface manufacturer will specify the last 3 bytes.

� Source Addresses Another 48-bit field, with the address derived from the
hardware generating the frame.

� Type/Length This 16-bit field has two different meanings. For DIX, this field
represents type, which specifies the upper-layer protocol to receive the data
after Ethernet processing is completed. For example, IP would be indicated by
a value of 2048. For a DIX frame, this value is always greater than 1536. On the
other hand, for an 802.3 frame, this field can be less than that and, when the
field is less, it indicates the length of the frame. What this field is used for is to
discriminate actual data from padding. This is because minimum frame sizes
exist and, occasionally, frames won’t have sufficient data contained in them to
meet the minimum requirements (64 bytes), so the interface needs to add junk
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Type
2 Bytes

Data Payload
46 1,500 Bytes−

Destination
Address
6 Bytes

Destination
Address
6 Bytes

Source Address
6 Bytes

Source Address
6 Bytes

Logical Link Control + Data Payload
46 1,500 Bytes−

Frame Check
Sequence
4 Bytes

Frame Check
Sequence
4 Bytes

Type/
Length
2 Bytes

Preamble
7 Bytes

SOF
1

Byte

IEEE 802.3

DIX

Preamble
8 Bytes

Figure 2-1. Frame fields associated with both DIX and IEEE 802.3 frames



data to pad out the frame to meet the minimum length requirements. The
length field indicates where actual data ends and pad begins, so it can be
discarded. When used this way, the duty of specifying the receiving higher-
layer protocol falls to the IEEE 802.2 subheader that must be included in the
data payload. More on this in the following.

� VLAN Tag Header This is part of a later standard called 802.1q, but we’ll
deal with this and Virtual LANs (VLAN) in the next chapter. (This is included
here only for the sake of completeness and because a protocol trace using a
sniffer program could turn up frames with these headers.) Unless the sniffer
was sniffing a connection between two switches, these elements shouldn’t
appear. If they do, you have a problem directly tied to a misconfigured switch.
Briefly, VLANs differentiate traffic based on some administrative criteria. The
tag in the Ethernet header is simply a label and is one standardized way of
identifying frames that belong on a particular VLAN. These tags are used only
by and between switches, which commonly insert and remove them to keep
their traffic flows straight. Standard end-stations have no idea what to do with
this field, however. Further, because the tag, which is 4 bytes long, isn’t part of
the standard for either 802.3 or DIX, the tag is simply inserted into the frame
and can cause the frame to exceed the max frame size of 1,518 bytes, and then
cause the frame to be discarded as an error. Even if the frame isn’t discarded,
all data after the tag is pushed back 4 bytes. The end station, not expecting this,
won’t be able to make sense of the data in the field or any data that follows it.
The data is also registered as an error, and then dropped.

� Data After header processing is complete, the data contained in the frame is
sent to a higher-layer protocol, which for DIX is identified in the type field. In
802.3, this field can contain additional Logical Link Control (LLC) information
in the 802.2 subheader, and this information can be used to drive the data to a
particular higher-layer protocol. Data payloads will be from 46 to 1,500 bytes of
information. If the amount of data the frame was formed to carry falls below the
minimum threshold, 802.3 will pad the frame to fit the minimum. DIX relies on
the network protocols to supply at least 46 bytes of information.

� 802.2 LLC PDU (802.3 Only) Four fields are in the IEEE 802.2 subheader. The
first is a 1-byte Destination Service Access Point (DSAP). This field provides
the identification of the receiving higher-layer protocol. The next 1-byte field
is the Source Service Access Point (SSAP), which identifies the sending higher-
layer protocol. These two are generally the same. One to two bytes of control
data follow this, with the rest of the data payload following that.

� Frame Check Sequence (FCS) This 32-bit sequence is the method by which a
receiving station verifies the data contained within the frame has arrived intact.
Also called the cyclic redundancy check (CRC), the FCS is generated by the
sending device by running the values in the header and data fields, and then
computing an original result. The receiving station recomputes the FCS on
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arrival and compares it to the FCS that arrived with the frame. If the two values
were equal, the receiving station has a reasonable degree of confidence the data
received was the data sent and nothing got lost or garbled along the way.

Inter-Frame Gap
The inter-frame gap (IFG) is a 96-bit time delay inserted between frames, where a bit time is
equal to 100 nanoseconds (ns) for Ethernet, 10 ns for Fast Ethernet and 1 ns for Gig Ethernet.
This delay has three functions. First, it allows end stations an opportunity to detect the car-
rier in an attempt to ensure that two or more stations don’t transmit simultaneously. Sec-
ond, it gives an Ethernet system time to prepare for the receipt of the next frame and time to
move the current frame into a buffer or discard it. Third, it also provides a guaranteed dead
period in which a station can determine whether a frame has ended. 96-bit times equals 9.6 µs
for 10 megabits per second Ethernet. Fast Ethernet, being ten times faster, has a corre-
spondingly shorter IFG, equal to 960 ns, and Gigabit Ethernet shortens this still further by
a factor of 10, to 96 ns. In a CSMA/CD network, an end station will hesitate, listening to
the carrier, for a period of time equal to the IFG before beginning to transmit.

Carrier Sense Multiple Access with Collision
Detection (CSMA/CD)
In Ethernet’s broadcast-based environment, all stations see all frames placed on the net-
work. Following any transmission, each station must examine every frame to determine
whether that station is a destination. Frames identified as intended for a given station
are passed to a higher-layer protocol. Carrier Sense Multiple Access with Collision De-
tection (CSMA/CD) describes how the Ethernet protocol regulates communication
among nodes. While the term might seem intimidating, if we break CSMA/CD apart
into its component concepts, we’ll see it describes rules similar to those people use in po-
lite conversation.

When one Ethernet station transmits, all the stations on the medium receive and
“hear” the transmission, just as when one person at the table talks, everyone present
hears. CSMA/CD takes this a bit further and dictates that for anyone to hear, only one
station can “talk” at a time. This is called half-duplex communication.

Things get more interesting when two stations try to transmit at the same time. If one
station is already transmitting, another won’t, provided it can detect the carrier, in other
words, that a transmission is currently in progress. If it can detect data being transmitted on
the line, the would-be transmitter will wait until a quiet moment occurs, and then transmit.
If no data is currently being transmitted, however, or if it can’t detect that data is currently
being transmitted, two end-stations could end up transmitting across the same wires at the
same time, and with considerably less success than the old party-line telephone systems.
The sending station will continually monitor the data channel, even while transmitting.
Manchester encoding specifies a regular voltage pattern for valid communication, but
when two stations transmit simultaneously, the voltages can either cancel or add them-
selves together, resulting in invalid voltage fluctuations. Such irregularities indicate to the
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sender that a collision has occurred. On detection of a collision, the sending station (or sta-
tions) do one of two things. If the sender is tripped up early in the transmission—before the
8-byte preamble is completed—the sender will complete it. If the sender is tripped up at
any point after the preamble is completed, the sender will simply stop at this point. Which-
ever happens, the sender then immediately follows with a 32-bit collision enforcement
“jam” signal to indicate to all sending stations that an error has occurred.

The Truncated Binary Exponential Back-Off Algorithm governs retransmission after a
collision has been detected. The rule specifies that stations interested in transmitting after
a collision must wait a random period of time before trying again. Two stations can quite
possibly be involved in multiple, successive collisions. After each successive collision, the
delays double. After 16 consecutive attempts to transmit result in collisions, the would-be
sender gives up and an error is sent up the protocol stack.

A collision on the wire can be an ugly thing. Data bits get concatenated on to other,
perhaps unrelated, data bits, and this occurs randomly. So, not only does a line violation
occur, but the resulting data frames can also be, well, garbled. The maximum frame size
in Ethernet is fixed at 1,518 bytes, but frames much larger than this can result from colli-
sions—these errors are called giants.

After a sender has successfully managed to transmit 512 bits of data (excluding a pre-
amble) without a collision, a sender has successfully “acquired” the channel. This 512-bit
time value is called the Ethernet slot time and, in 10 Mbps Ethernet, is equal to 51.2 µs. Any
collisions that do occur, whenever they occur, must be communicated to every other end
station within the slot time and, all things being equal, no collisions should occur in a col-
lision domain after channel acquisition. This type of event is called a late collision and is
usually an indication of a network diameter violation.

In Ethernet, a network diameter was defined by how long it took a signal to travel to
one end of the network and back again. Intervening equipment, such as a bridge or re-
peating hub, adds a small amount of delay into the round-trip times. A 10BASE-5 Ether-
net system could send a clear, 512-bit signal, round-trip, in approximately 2,800 meters.
For 10BASE-T systems, this length was significantly shorter (100 meters), but had nothing
to do with round-trip times. Instead, noncoaxial networks used lower-quality cabling
than coaxial, and this led to severe signal attenuation problems. The round-trip times
were more or less equal; however, the actual amount of signal that arrived was drastically
reduced. Using twisted-pair cable with increasingly high numbers of twists per foot alle-
viated much of the noise issue, which contributed greatly to the signal attenuation prob-
lem. To further this, most twisted-pair circuitry implemented a squelch feature that
simply eliminated signals below a certain level as noise or cross talk. Cable quality and
noise reduction were the two primary factors in deciding the 100-meter segment length
for 10BASE-T.

Collision Domains and Broadcast Domains
A collision domain is roughly defined as the area in which two transmitting stations are ca-
pable of having collisions. Intervening equipment, such as bridges and routers, can act to
shorten a particular broadcast domain. A repeater or hub can act to lengthen one. Limits
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exist on how far a single collision domain can be extended, however, before it must be ter-
minated. Typically, this has to do with the allowable length of a given network segment.
If the segment is too long, round-trip times might exceed the slot time and, therefore, allow
late collisions to occur. As mentioned, this would be bad. See the previous Table 2-1 for a
list of segment length limitations by Ethernet type.

A broadcast domain is similar to a collision domain, but defined by the boundaries at
which a single broadcast will be heard. Hubs, repeaters, bridges, and switches tend to ex-
tend broadcast boundaries because they operate at OSI layer 2 or lower. To terminate a
broadcast domain, some layer 3 functionality must exist and, typically, this is defined at a
router. The common wisdom is that routers don’t forward broadcasts—and this is largely
true, unless they’re configured to do so. A typical instance of this is an IP Helper address
configured to let DHCP clients reach a DHCP server that happens to reside on the far side
of a router (or three). But again, this is neither common nor recommended.

Collision domains can be equal to broadcast domains in many simple LAN configura-
tions. When a workgroup of computers is connected into a hub for basic connectivity to
each other and, say, a printer, all the computers (and the printer) are said to be in the same
broadcast domain. Hubs, being effectively layer 1 devices, don’t do anything special to
Ethernet communications—all they do is terminate cable runs. All devices communicat-
ing through a hub are communicating via CSMA/CD and, hence, all are in the same colli-
sion domain and in the same broadcast domain. In fact, any communication, broadcast or
not, on hitting the hub, will be treated as a broadcast—the hub doesn’t keep track of de-
vices, all communications are flooded out of all active ports. The responsibility of the device
is to drop and ignore information not expressly addressed to it. As you can see, this isn’t
the most secure approach to communications.

Replacing the hub with a simple layer 2 switch changes this picture considerably.
Again, all devices are within the same broadcast domain (only layer 3 functionality
serves to bound a broadcast) but, now, because of the characteristics of the switch, the col-
lision domain becomes point to point—the only two devices in a given collision domain
will be the end station and the switch itself. So, if five computers and one printer were all
connected to a single switch, there would be one broadcast domain and six collision do-
mains. Contrast this with the hub, which had one of each. Now, note that broadcasts are
just as pervasive in a layer 2 switching solution as they were in a layer 1 hub solution.
Communications between two stations on the same switch might well flood out all active
ports on the switch, hence, swamping anyone connected. With a switch, however, this
will only happen with broadcasts. Unlike hubs, switches do keep track of who is where
and internally make temporary connections between ports to pass information—irrele-
vant ports aren’t sent any data, unless it’s a broadcast.

Replacing the switch with a router takes things a step further. Recall that broadcast do-
mains are bounded by routers; with a router interconnecting all six devices, there would be
six broadcast domains, and six collision domains. Because routers don’t forward broad-
casts (unless told to do so), any information that needs to traverse a router needs to have
specific address information in it. Data is never flooded out the ports of a router.
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As a rule of thumb, hubs are cheap, switches are fast, and routers are expensive. In
Content Networking, a switch will typically be used to interconnect all the content serv-
ers in a data center for speed. Because most installations will use Full Duplex configura-
tions to capitalize on the full-wire speed bidirectional flows, collision domains will be
irrelevant because CSMA/CD won’t be used. Virtual LANs (VLAN), covered in the next
chapter, should be used to minimize the impact of broadcast domains.

Duplexing
Full-duplex communication provides the means of transmitting and receiving simulta-
neously on a single connection, instead of the party-line approach for which the half-du-
plex CSMA/CD provides. A full-duplex connection has only two endpoints and could be
configured between two switches, between a switch and a server, between a switch and a
router, and so on. Each transmitting station has its own transmission channel that isn’t
shared but, instead, is wired directly into the receiving channel on the other end of the
connection. Because the connections are all point-to-point in this manner, collision detec-
tion is no longer an issue, so CSMA/CD isn’t used. The standard that defines duplexing
is IEEE 802.3x.

An interesting corollary to duplexing is a station can simultaneously transmit and re-
ceive at wire speed, so a 10 Mbps station could theoretically send a 10 Mbps data stream
at the same time it receives one. Remember, the transmit and receive channels are com-
pletely separate in a full-duplex configuration. This has caused many to somewhat inac-
curately ascribe an instant speed doubling effect to implementing a duplex connection, so
a 10 Mbps Ethernet connection now is 20 Mbps or a Fast Ethernet link is now 200 Mbps.
This is misleading to the point of being marketing propaganda because the station can’t
send or receive at twice the wire speed. It can simply send and receive at wire speed, a sub-
tle but important distinction and good to remember when provisioning access. Finally,
note, even in full-duplex operation, where carrier sense is ignored, the transmitting sta-
tion will still insert a delay equal to the IFG between frames because this is what each
Ethernet interface is designed to expect.

When the desired outcome is for two ends in a point-to-point connection to be in
full-duplex, the two must agree on what the settings are. A great way to get mismatched
errors is to have one end of a link set manually in full-duplex, while the other is set in
half-duplex. Fast Ethernet provides an automatic method for handling this problem (see
the following “Auto-Negotiation” section). For 10 Mbps Ethernet, this setting is usually
handled manually, in the driver software itself. The options for managing the duplex set-
ting are usually found under the configuration options for the adapter. Troubleshooting
this problem is tricky because you may or may not see an error. Attach a sniffer on the
line. If you see a significant number of FCS errors and/or an increasing number of runts,
this could be an indication of a duplex mismatch. If the connection is between a pair of
Cisco devices, an error could be reported to the console by the Cisco Discovery Protocol
(CDP), which looks something like this:

%CDP-4-DUPLEXMISMATCH:Full/half duplex mismatch detected o1
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Unfortunately, CDP only reports, it doesn’t fix. You need to go to the line interface
and reset the duplex setting to either half or full,

Switch-A> (enable) set port duplex 1/1 {half | full}

which should take care of the problem.

Flow Control
With a full-duplex connection, receiving traffic can quickly approach wire speed. At a
network congestion point, such as a switch or a multi-interface router, where multiple
streams of full-speed traffic intersect, oversubscribing a particularly desirable transit
link is quite possible. Some servers being asked to perform intensive computations,
such as those for SSL encryption (see Chapter 5 for a full description), could fall behind
the upstream switch hurriedly, slamming traffic at it. For cases like these, IEEE 802.3x
specifies an optional flow-control mechanism for use between the two stations on a
point-to-point link.

If a receiving station becomes congested, it can send a MAC Control frame to the sender
at the opposite end of the connection. MAC Control frames have a type code of 0x8808; any
802.3x-compliant device will single out these frames and scan the first two bytes of the data
payload for an operational code. Otherwise, the frame will be standard, if fixed at the mini-
mum frame size allowed. An operational code of 0x0001 indicates the frame is to be inter-
preted as a pause command. Pause frames can be singled out in sniffer traces by means of
the destination MAC address—all pause frames are sent to a reserved local-only Ethernet
multicast address of 01-80-C2-00-00-01 to facilitate processing. Following the operational
code will be a 2-byte field, indicating the length of the pause requested. The actual period of
the pause is calculated by multiplying this integer with 512-bit times.

Please note, flow control is only an option when coupled with a full-duplex connection.

Link Integrity Test and the Ethernet Heartbeat
In most Ethernet interfaces, there’s at least one glowing LED, most probably green. Some
will also have a red and/or an orange LED. Green LEDs on Ethernet interfaces are good
things, they indicate “all is well” and traffic should be able to proceed—the interface is
“up.” Red, when found and lit, is an indication of a problem. Whatever the problem, the
interface is “down” when this LED is lit. Orange indicates traffic, and this is the only one
(if present) that should flicker, indicating traffic is being passed. Most manufacturers typ-
ically only implement a single LED and, again, that LED is typically green. This isn’t to
say it couldn’t be, say, yellow. Whatever—when a single LED is found, it typically has to do
with link; for the sake of argument, let’s assume it’s green.

Green LED = Good. This is pretty much the standard by which an operator will judge
the connection between two Ethernet stations or between a station and its hub. The ques-
tion of why and under what circumstances it would turn on is mostly ignored, which is
bad. The green LED is tied to the Link Integrity Test, an unobtrusive background process
designed into the interface, and starts operating almost as soon as the interface has
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power. What happens is an Ethernet transceiver transmits a normal link pulse (NLP)
periodically to test the transmit path. All Ethernet devices transmit such NLPs during
network idle times and do so 60 times a second. If the station receives NLPs, it turns on its
green LED. Note, the receipt of inbound traffic also indicates to the receiver that the link is
still up so, in the case of fiber systems where data is being continually transmitted in some
form or other, this will suffice for link integrity tests. Also note, successfully lit link-light
LEDs won’t necessarily indicate data will successfully traverse the link or even that green
LEDs on both sides indicate a good link. All this means is each station has received an
NLP on its receive channel. Typically, a failure to communicate successfully over a con-
nection that has a positive link-light on both ends indicates a wiring problem—most
likely the cable isn’t capable of discriminating signal from cross talk. It might be worth
checking to see if you’re using satin instead of a good Category 5 patch-cable.

The Ethernet Heartbeat is not another name for the link integrity test. This is a com-
mon error, and not sufficiently documented in introductory texts, so the mistake seems to
refuse to die. While the term “heartbeat” seems to confuse the issue, it has less to do with
simple link integrity than with CSMA/CD.

The Signal Quality Error (SQE) Test indicates that the collision detection circuits are
working correctly. Implemented primarily in coaxial Ethernet systems where the trans-
ceiver is external to the interface, the SQE was first implemented in DIX as the Collision
Presence Test (CPT). At this point, the unfortunate nickname of Heartbeat got attached.
After each data transmission sent up the transceiver cable by the interface, the outboard
transceiver sent a signal back down to the interface, testing the local circuit to verify the
integrity of the collision detection circuitry. The test would never be sent out on the net-
work proper, but only between the transceiver and the interface. The test would occur
during the IFG, so the test accrued no overhead and was out of band. Successful receipt of
the test indicated to the interface that the collision detection mechanism worked and, in
the event of a collision, would be notified.

SQE is the IEEE 802.3 standardized version of the CPT, so while some minor differ-
ences exist in the timing and signal patterns, the functionality remains the same: an SQE
Test after each transmission and, in the event of a collision, an SQE notification. Most
modern systems have transceiver circuitry now integrated directly into the interface with
the SQE Test disabled.

FAST ETHERNET
“Bigger, better, faster” applies equally well to the Six Million Dollar Man and to computer
networking. New applications lead to higher resource demands and Fast Ethernet is one
of the first attempts at taking the aging Ethernet technology to the next logical step. Fast
Ethernet operates at 100 Mbps, ten times faster than Slow Ethernet. IEEE 802.3u defines
the implementation of 100 Mbps Ethernet. The standard uses the existing IEEE 802.3
CSMA/CD specification for media access; therefore, Fast Ethernet retains the IEEE 802.3
frame format, size, and error-detection mechanism. Fast Ethernet supports both 10 and
100 Mbps using a sophisticated auto-negotiation protocol, described in the following, as
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well as full-duplex operation and flow control. One difference between 10BASE-T and
100BASE-T systems is that the IFG has been decreased tenfold, to 960 ns.

The other differences between the types of Fast Ethernet are due primarily to the different
physical layer standards. 100BASE-TX specifies twisted-pair cabling, and 100BASE-FX speci-
fies fiber-optic cabling. Note, other varieties exist, such as 100BASE-T2 and 100BASE-T4, but
because these are effectively extinct, they won’t be addressed here.

100BASE-FX is based on the Fiber Distributed Data Interface (FDDI) LAN specification.
The media type specified is multimode fiber (MMF), where the cable that runs between
nodes can be approximately 400 meters in length and, if full duplex is used, this can in-
crease to 2 kilometers (km). Single-mode fiber (SMF), a far superior grade of fiber that
also uses lasers instead of LEDs, wasn’t included in the specification. Some vendors have
designed SMF interfaces, however, and the cable runs between SMF nodes that can be up to
20km in length.

100BASE-TX is based on the copper derivation of the FDDI standard called, straight-
forwardly enough, the Copper Distributed Data Interface (CDDI), for physical layer control
and access. 100BASE-TX supports shielded and unshielded twisted-pair (STP and UTP)
cabling. Distance limitations between two nodes is still 100 meters, but the maximum size
of a given collision domain shouldn’t exceed 200 meters. This is because of the shortening
of the bit-time interval to 10 ns. With data hitting the wire ten times faster than with its
predecessor, the slot time also is shortened by a factor of 10. This means the network di-
ameter is ten times shorter, or about 200 meters in total. To make a long story short, con-
necting two Fast Ethernet segments together via a hub is about all you can do: adding two
hubs with a full 100 meters between them still only leaves 100 meters to get to both end
stations. This doesn’t leave much in the way of room for growth, but many ways exist
around this. The most obvious is to use a full-duplex configuration and then break up a
collision domain with an Ethernet switch or router.

Auto-Negotiation
Auto-negotiation enables devices to exchange Ethernet configuration information auto-
matically. A connected device sends out periodic control messages on to the Ethernet seg-
ment. This information is interpreted by the peer at the other end of the link, and then is
either used to help determine what settings would be required to communicate with the
sender or to begin a negotiation process, whereby the two involved stations could settle
on the most optimal configuration.

The requirements for auto-negotiation to succeed are relatively simple: both stations
must have the auto-negotiation logic integrated into their Ethernet adapters. The standard
that defines auto-negotiation is IEEE 802.3u and all adapters manufactured after 1996 will
include this feature set. Most Fast Ethernet adapters will have dual-speed logic, enabling
them to communicate at either 10 or 100 Mbps. These sophisticated adapters will have the
settings for speed, flow control, and duplexing set to automatic, implying they’ll use
auto-negotiation to determine their settings on being introduced to the network.

Auto-Negotiation operates by a local device transmitting Fast Link Pulses (FLP) onto
the network segment its directly connected link partner. A variation of the NLPs used in
link integrity, FLPs are generated automatically at system startup, generated out of band,



and don’t interfere with normal traffic. FLPs will perform the link integrity function,
replacing the NLPs, and so are transmitted 60 times per second (16 ms, with a jitter of +/
-8 ms), with an additional pulse every 62.5 (+/- 7) µs. Each pulse contains a link code word,
a 16-bit field that carries the system synchronization data.

The first five bits of the FLP is called the selector field, which identifies the IEEE 802.3 as
the standard being used. The next eight bits is called the technology ability field, and de-
fines the supported technologies relevant to the standard specified in the selector field.
Following this is a single bit, the remote fault field, which indicates just that. Another sin-
gle-bit field follows, the acknowledgement bit, which indicates to a local device that its
link-partner has received its link code word. The last bit is the next page bit and, if set, indi-
cates the link-partner has more link code words to exchange. This could occur if multiple
messages don’t fit into a single technology ability field. See Figure 2-2 for details.

These pulses work like advertisements, indicating which protocols their adapters
support, at which speed, and whether full duplex is an option. A priority scheme is em-
bedded into the advertisement, so 100BASE-TX full-duplex is preferred before half-duplex
100BASE-TX, which is then preferred before 10BASE-TX full-duplex, which is preferred
before half-duplex 10BASE-TX. The two end stations, transmitting and acknowledging
FLP information, match the highest priority setting received with the highest priority set-
ting they can support. If no common technology is shared between the two partners, then
the connection won’t be made, and the LED won’t light. If a link partner fails to receive
any FLP information, but does detect the presence of NLPs, the connection will be made
as half-duplex 10 Mbps Ethernet.

Note, auto-negotiation is primarily used in copper implementations of Fast Ethernet.
This does not mean network devices linked over fiber segments cannot participate in
auto-negotiation, but it does mean that if implemented, auto-negotiation simply decides
parameters such as full-duplex or flow control, not rate of speed. The reasons for this
are more pragmatic than anything else: fiber interfaces are built to support only 10 or
100 Mbps Ethernet.

The auto-negotiation feature is optional, and can be disabled. An entire school of
thought adheres pretty rigidly to Murphy’s Law—anything that can go wrong, will. With
this in mind, the advice is, invariably, leave nothing to chance. If you want a particular
connection to be 100 Mbps and full-duplex, configure it that way. Because auto-negotia-
tion is always on by default and because the link will need to be renegotiated every time
an interface goes down, plenty of opportunities occur for something to go awry in normal
operations. So why take chances? This might be unnecessary, but you never know.
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GIGABIT ETHERNET
Gigabit Ethernet (GigE) is an extension of the IEEE 802.3 Ethernet standard, and is be-
coming a dominant player in high-speed LAN backbones and server connectivity.
Standardized in 1998 as IEEE 802.3z, GigE operates at ten times the speed of Fast
Ethernet. The actual differences between GigE and Fast Ethernet are pretty much re-
duced to multiplying or dividing by a factor of 10.

GigE seems a bit different at a physical layer perspective, at least on paper. The physical
layer was entirely borrowed from the existing ANSI Fibre Channel standard and in-
creased the speed to 1.25 Gbaud. Using a serial line-encoding scheme that inserts 25 percent
overhead, the actual data throughput on the line is 1 Gbps, up from the 800 Mbps sup-
ported by Fibre Channel. 802.3z supports four different physical layer implementations,
1000BASE-LX, 1000BASE-SX, 1000BASE-CX, and later (with IEEE 802.3ad) 1000BASE-T.

1000BASE-SX specifies MMF as its medium, where the S specifies “short” as in
“short wavelength” or “short run,” and is intended for cable runs between 200 and 500
meters. 1000BASE-LX specifies either MMF or SMF as its medium, and—you guessed
it—the L specifies “long wavelength” or “long run.” The former spec is great for run-
ning fiber to the desktop, if you can get the cash to do this, or for wiring up a server
farm, particularly useful in our current Content Networking context. The latter spec, as
its name suggests, is better suited to long-haul backbone connections, as might be found
in a campus or metropolitan area network (CAN or MAN, respectively). The benefit of
using SMF on the long haul (for GigE, that is about 5km) is the theoretical bandwidth
for SMF is pretty much infinite with respect to the current state of the art, so upgrading
to a new technology later, such as 10 or 100 Gbps Ethernet (whenever those technolo-
gies become available) will simply require replacing nodes/interfaces instead of relay-
ing fiber. 1000BASE-CX uses copper twinax cabling and is only implemented as a cheap
method of providing interswitch cross connects, as might be found in a wiring closet.
The maximum cable length supported for the CX specification is 25 meters for either
full- or half-duplex configurations. Connectors are either High Speed Serial Data Con-
nector (HSSC), also called the Fibre Channel Style 2 connector, or the 9-pin D-connector
identical to that used in STP and Token Ring.

1000BASE-T is relatively new and, as previously mentioned, was codified in 802.3ad
and introduced at the turn of the century. Like its slower speed 10- and 100BASE-T breth-
ren, this physical layer spec allows for gigabit speeds over existing Category 5 twisted
pairs. 1000BASE-T has a couple of interesting deviations from its predecessors, however.
First is that it uses all four wires in the Cat 5 cable. What this means is 1000BASE-T simulta-
neously transmits and receives on all four wires. At the same time! This configuration is
called dual duplex and, combined with a sophisticated signaling scheme and high-fre-
quency transmission, will require heavy-duty digital signaling processors (DSP) to pull it
all off. This variety of GigE is extremely intolerant of poor cable quality, and Cat 5 is the
minimum recommended, with twists right up to the 8-pin RJ45 connector. Auto-Negotiation
is included in the spec, allowing manufacturers to build 10/100/1000 Mbps interfaces and
have the interface self-select the optimal connection type. Again, this is probably not so
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optimal in the sense that paying for a GigE interface isn’t trivial. Paying for it and not using
it seems criminal.

Worth noting is the MAC layer of Gigabit Ethernet is the same as that of Ethernet and
Fast Ethernet, and exactly the same frame format as well as support for both full- and
half-duplex transmission. In half-duplex mode, CSMA/CD presents some problems for
straightforward acceleration to gigabit speeds. At speeds greater than 100 Mbps, packet
sizes are smaller than the length of the slot-time in bits. To remedy the slot-time problem,
the IEEE incorporated carrier extension into the Ethernet specification. Carrier extension
adds nondata symbol bits to the frame until the frame meets the minimum slot-time re-
quired. In this way, the smaller packet sizes can coincide with the minimum slot-time and
allow seamless operation with current Ethernet CSMA/CD. Specifically, the new slot
time for GigE is 4,096 bit-times, up from 512 bit-times for Ethernet and Fast Ethernet (a
factor of 8, for those of you keeping track). Carrier extension adds at most 448 extension
bytes to the end of a frame, to increase the minimum frame size to 512 bytes and, there-
fore, equal to the new slot time. This extension adds a tremendous amount of overhead to
the performance of GigE when using small frames, up to 88 percent! To get around this
problem, the IEEE added another new feature to GigE, frame bursting.

Frame bursting allows an end station to transmit a series of frames over the wire with-
out having to pause between frames, perhaps losing the carrier. The initial frame is sent
normally, with carrier extension as needed. Then, the bursting station sends out the
bursting stream, filling the interframe interval with carrier extension bits, so the wire
never appears free to any other end station. Other stations on the wire then defer to the
burst transmission because no idle time occurs on the wire. Frame bursts are limited in
size to 65,536 bit times, plus the final frame. This burst mechanism is important for the use
of small frame traffic and can improve efficiency significantly, potentially reducing the
overhead to a much more acceptable 10 percent. Worth pointing out, however, is the is-
sues and solutions just outlined are specific to a half-duplex implementation of Gigabit
Ethernet, which isn’t recommended.

DEPLOYING ETHERNET
We’ve spent the chapter examining Ethernet technologies, with an eye toward what a
network administrator concerned about Content Networking should know. A preliminary
examination of how these technologies fit together is something that should be explored
before we can go farther. When you are deploying Ethernet, many concerns need to be
addressed, including network segment diameters, maximum size of a collision or broad-
cast domain, what types of equipment are best used and where, and how to design a scal-
able system. Some of these concerns are relatively simple to address or even sidestep.
Some require trial and error. For some, we can only point you in the correct direction and
hope for the best.

Regarding network diameters and collision/broadcast domain sizes, this issue is best
sidestepped completely. What you need to remember is copper implementations of
Ethernet over twisted-pair cabling—far and away the most common and least expensive
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implementation—has a limit of 100 meters per segment. That’s a lot, just over 320 feet. If
your cable runs are longer than this, you have problems with your network design, not
with Ethernet.

Ethernet switches are sufficiently inexpensive and available, so no good reason exists
any more for not implementing them throughout a network. Repeating hubs, wherever
they’re found, should be removed and sold in some online auction posthaste. The com-
ment that it’s difficult to use a protocol analyzer with an Ethernet switch (but easy with
an Ethernet hub) should be largely ignored. If sniffing is a requirement, most switches
from reliable vendors, such as Nortel Networks and Cisco Systems, do incorporate some
sort of port-snooping operation, so that objection should be easy to put to rest. The bene-
fits of full-duplex connections (particularly the elimination of CSMA/CD) more than
warrant the purchase of Ethernet switches. And, incidentally, the use of switches in a hi-
erarchical manner enables the network planner to ignore some of the more inconvenient
aspects of network diameters and collision/broadcast domains.

Cisco promotes an interesting three-layer network design model, where each layer
has a specific goal and is physically separated from the other two in the ideal instance.
The first layer, called the access layer, is where your clients and servers plug into the net-
work. A distribution layer buffers one or many access layer devices from the core layer, and
the primary responsibility for the distribution layer is policy enforcement. Core layer
functions are entirely related to moving data and doing so fast. Access and distribution
devices act as aggregation points in the network, with each providing successively higher
bandwidth to the core, which is the fast, fat backbone to a network. This design lends it-
self most straightforwardly to the service provider network, where there are large net-
works to consider but, in a fractal sense, the design is also useful in smaller scales.

It works like this: in the Computer Science building at Miskatonic University, each
floor’s network needs are served by two or three Cisco Catalyst 2948XL Ethernet switches.
Each has 48 10 Mbps Ethernet ports that are used to populate the drops in the offices on that
floor. These switches would be considered the access layer. Each has a Fast Ethernet uplink
that feeds into a single Cisco 3600 series router sitting in the wiring closet on that floor. All
the other floors in the building have a similar configuration: Ethernet switch with 10 Mbps
fan-outs to the offices and a Fast Ethernet uplink to the 3600. Each of these 3600s would be
considered a distribution layer device. Each 3600 in each wiring closet has a Fast Ethernet
run down to a wiring closet on the first floor, which terminates at a Cisco Catalyst 5000,
which, in turn, has a connection to a fiber ring that runs throughout the campus. Every
building on campus has a similar arrangement. These devices would be the core layer de-
vices. See Figure 2-3 for an illustration. This design is flexible and easy to extend. Need
more drops? No problem! Simply add another access layer device. Need to add another
building? No problem! Run the fiber ring to the building and build out as described.

To some extent, this model applies to the data center, where we’ll locate our Content
Networking services. One element must be addressed before successfully designing any
network, however, which is proper use and planning for bandwidth.
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The problem to avoid is called over-subscription; this occurs when more bandwidth
is promised than is actually provided. We’ll see how this works in a moment. While
over-subscription is unavoidable to some extent, that is, unavoidable, without spending
hideous amounts of money, it helps to remember it when you’re trying to plan where to
deploy Fast Ethernet and GigE. It works like this. If you have a farm of about ten servers
providing the content for a web site and the farm is fed by a dual 10 Mbps feed, then
equipping the servers with GigE adapters is probably a waste of money. 20 Gbps is never
going to come out of a 20 Mbps feed. Upgrading everything to gigabit is a possibility, but
not necessarily a cheap one, and now you’ve probably wandered well outside of your
original project scope. Some caveats do need to be addressed. In many simple web server

Figure 2-3. Three-Layer Network design model



farms, the web servers themselves are the only element in the data center (aside from var-
ious pieces of networking hardware). As the complexity of a site grows, more elements
can be introduced. It’s becoming increasingly common for web sites to implement some
sort of SQL database for storing complex, dynamic, or financial content. Application
servers can be added to the repertoire of the site, such as streaming media servers, au-
thentication servers, or online transaction servers, dedicated to the processing of orders
and/or data. As these services are added, the bandwidth demand increases, but the traf-
fic flows aren’t always outwardly directed. Web servers might access database servers for
content, application servers for specific applications, security servers for authentication
information—none of which traverses the WAN link toward the client. In such cases,
building out the bandwidth on the server farm might be wise, even though the ingressing
feed might be significantly smaller, so there will be plenty of available bandwidth, and
client requests won’t have to compete with intrafarm traffic for service fulfillment.

You can design a complex data farm in several ways All are specific to the web tech-
nologies and applications that are being deployed. Security concerns also permeate such
discussions, so a detailed examination of how to design such networks must wait until later.

Avoiding oversubscription in the network, at least to the extent possible, is still a de-
sign goal, however. In most circumstances, it makes little sense for each layer in a net-
work to be successively slower than the layer below it. Access layer devices, generally
speaking, are the slowest elements on the design, with the core at the highest speeds. The
old 80/20 rule no longer applies, where 80 percent of all network traffic should be local
and only 20 percent remote. With the rise of the Internet, that traffic pattern has reversed
itself, where only 20 percent of traffic is local and 80 percent is remote. This isn’t good
news for network designers because this implies the majority of network traffic is bound
for the WAN, the most expensive set of connections in any given network. Following the
design goal of avoiding oversubscription and following the 20/80 rule, however, leads
directly into the unfeasible solution of purchasing multigigabit WAN uplinks! Obvi-
ously, something has gone wrong here and, as to the state-of-the-art solution, that is, of
course, Content Networking. Later chapters discuss the role and importance of caching to
provide a way out of this mess.

Know that it will be almost impossible to design away both oversubscription and the
20/80 rule affordably. Still, steps exist that make good business sense. The first step is to
estimate what levels of traffic will be needed at the edge of the network where the con-
sumer is located. The next step is to determine where groups of these consumers will be
aggregated together. The goal will be to provide enough access at this level to serve the
majority of the consumers, the majority of the time. Think of it as an airline that continu-
ally oversells the seats on its planes, knowing not everyone booked will appear to claim a
seat. The phone company does the same thing. If every single person in a single subdivi-
sion simultaneously picks up their telephone and attempts to place a call, quite a few will
be mightily disappointed. The notion is somewhat simple—not everyone will need full
access 100 percent of the time. What these approaches have done is to say that instead of
simply avoiding oversubscription outright, some level of service below the optimal must
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be acceptable. Of course, no consensus exists as to what “acceptable” means, but in terms
of a mission-critical web server/data farm, you can be reasonably certain this might
mean something radically different from allowing corporate users to browse the Internet
with impunity.

Oversimplifying, if the web servers are connected at 10 Mbps Ethernet, something
faster should aggregate a set of them. Fast Ethernet is a likely choice, but saturation could
occur at ten clients and, beyond that, oversubscription issues could occur. Biting the bullet,
this is as good as it’s going to get. Of course, you could use GigE, which would enable you
to aggregate 100 clients before worrying about saturation. This doesn’t leave much room to
aggregate the aggregation, though. Remember, access feeds into distribution, which
feeds into core. It might make more sense to leave GigE to the core instead. See Figure 2-4
for an illustration.

10 Mbps Ethernet
Access Layer

Fast Ethernet
Distribution Layer

Gigabit Ethernet
Core Layer

Figure 2-4. Ethernet bandwidth aggregation
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SUMMARY
Ethernet is the primary networking technology found in the Content Network provider
edge. It’s fast, cheap, reliable, and ubiquitous. Ethernet is also taken pretty much for
granted. However, Content Networking, in its currently implemented form, relies on
Ethernet almost exclusively in the web data center and NOC. Most commercially avail-
able caches come with Ethernet interfaces of some sort and number, as do all web servers,
switches and local area routers. The provisioning of an Ethernet link (or pair, for redun-
dancy) is what most customers are paying for when they buy a network drop in an
Internet Data Center or colocation facility. Ethernet is like American Express—it’s every-
where you want to be (in Content Networking).

Further investigations into the technologies underlying Ethernet can be readily pur-
sued by acquiring any one of a number of excellent books on the subject. The goal of this
chapter was to provide a tour of the basics of Ethernet, and to familiarize the reader with
some of the more interesting and pertinent Ethernet flora and fauna.

REVIEW QUESTIONS
1. What is the IFG and what does it do?

The IFG provides a recognizable buffer between frames.

2. What is the line encoding used in Fast Ethernet? In Ethernet? In Gigabit
Ethernet?

The line encoding used in Fast Ethernet is 4B5B. In Ethernet, it’s Manchester,
and in Gigabit Ethernet, it’s 8B10B.

3. Where is the truncated exponential backoff algorithm used?

The truncated exponential backoff algorithm is used in CSMA/CD networks
to define the amount of time an end station must wait after a collision has
been detected before being able to retransmit.

4. Which Ethernet technology uses Carrier Detection?

All Ethernet technology uses Carrier Detection!

5. Which Ethernet technology uses Carrier Extension?

Gigabit Ethernet uses Carrier Extension.

6. What technology is used to light up the green LED on a Fast Ethernet
interface?

Fast Link Pulses (FLP) is used to light up the green LED on a Fast Ethernet
interface.
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OBJECTIVES
� Define Spanning-Tree Protocol

� Describe the benefits and shortcomings of STP

� Discuss what VLANs are and how they’re used

� Compare the differences between ISL and 802.1q trunking protocols

� Define and describe EtherChannel

Ethernet has come a long way since its inception in the early 1970s as a LAN protocol
used to interconnect local PCs and printers. In 1979, Digital Equipment Corporation
(DEC), Intel, and Xerox formed a committee for the purpose of standardizing an Ethernet
system that any company could use. In September 1980, the three companies released
Version 1.0 of the first Ethernet specification called the Ethernet Blue Book, or DIX standard
(DIX stands for DEC, Intel, and Xerox).

Since then, Ethernet has enjoyed acceptance and much popularity because of its
easy-to-understand technology. Because this technology is quite scalable and easy to
work with, its widespread acceptance was inevitable. With such a large market share
over other LAN technologies, Ethernet was able to use its clout in the market, and to
evolve and improve over the years.

With any technology that has spanned three decades, shortcomings must be over-
come with newer technology. One of the major stumbling blocks for Ethernet technology
in terms of scalability comes in the form of loops in the network infrastructure. Because
Ethernet doesn’t incorporate any intelligence and, unlike Token Ring, no controlling
workstation exists, a loop in the network can be rather catastrophic. Hence, STP was de-
veloped to eliminate such loops in the network.

The next challenge encountered by Ethernet was more of a metamorphosis of the
existing specifications. People outgrew the expectation for this technology to move
data between users and devices within the same building. Users soon wanted the ca-
pability to segment, privatize, and span segments over the WAN, as well as to do
moves/adds/changes more easily and cost effectively. VLANs subsequently devel-
oped to address all these issues and more.

With ever-rising demands for additional bandwidth by new and larger applications,
the Ethernet pipeline seemed more and more restricting. Even as Ethernet speeds in-
creased by an order of magnitude each time, bandwidth always seemed to be at a pre-
mium for users. Perhaps this is a classic case of giving the users bandwidth and they’ll
find a way to use it all.

Over the years, Ethernet technology had to overcome many challenges and thrive in
an environment that’s both fast and furious. Ethernet has proven in the past to be fast, ef-
ficient, and flexible. With its massive market share, Ethernet can be found in most wiring
closets and data centers worldwide. This investment by organizations on Ethernet infra-
structure will ensure its existence for some time to come, much like the IBM mainframe.
Inevitably, as long as the technology is used, enhancements and innovations will con-
tinue to be worked on and introduced.



SPANNING-TREE PROTOCOL
Spanning-Tree Protocol (STP) is a data-link layer protocol designed to run on 802.1d-com-
pliant bridges and switches. STP was designed to eliminate loops in networks with redun-
dant paths. Although you might question the need to have redundant links in a network in
the first place, it’s often important to maintain them as backups in case of a failover in the
network. For an Ethernet network to function properly, however, only one active path can
exist between any two nodes. Hence, STP was designed to manage the forwarding and
blocking of passages in a redundant Ethernet infrastructure.

Currently, two forms of Spanning Tree formats exist in the networking world. The
802.1d flavor of Spanning Tree is the most popular and widely implemented, so we con-
centrate on it in this book. Although different in packet format, both types of Spanning
Tree strive to achieve the same goal: to provide a loop-free environment. To provide
nonlooping path redundancy, STP must first build a tree that spans all switches in an ex-
tended network. Once a topological tree has been established for the entire network,
Spanning Tree will force certain redundant paths into standby (blocking) state. If a net-
work segment with STP enabled becomes unreachable or if STP costs change, the
Spanning-Tree algorithm recalculates the topology and reestablishes network connectiv-
ity by activating standby paths. This operation is totally transparent to end stations.

Spanning-Tree Protocol Port States
Switch ports running STP are always in one of the following five defined states at any
given time:

� Blocking

� Listening

� Learning

� Forwarding

� Disabled

A port can move from state to state as follows:

� From initialization to blocking

� From blocking to listening or to disabled

� From listening to learning or to disabled

� From learning to forwarding or to disabled

� From forwarding to disabled

Figure 3-1 illustrates how a port moves through the five states.
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Election of the Root Switch
All switches in a LAN environment with STP enabled communicate with one another
though an exchange of messages. These messages are called bridge protocol data units
(BPDUs). The switches need to maintain constant communication with each other to
achieve the following:

� Elect a unique root switch from which a hierarchy can be established for the
spanning-tree

� Elect a designated switch for every LAN segment within the STP jurisdiction

� Eliminate loops in the LAN environment by placing ports in the path of a loop
in standby state

The root switch in a Spanning-Tree topology is the highest node within the tree, with
all other nodes being either a child or a descendent of its children. Only one possible path
exists to the root switch from any node in the tree, and this path is generally the shortest
path to the root switch. All other paths will be blocked. Hence, all possible loops are elim-
inated from the topology. A detailed description of how the root node is elected and the
metrics used in the election process is discussed later in the chapter.

A need exists to present the metrics and key indicators that will be used in the election
process of the root port switch.

Bridge Protocol Data Units
The Spanning-Tree topology works on BPDU message exchanges between participating
switches, as you can see in Figure 3-2. BPDUs carry information about the transmitting switch,

Figure 3-1. Spanning-Tree Protocol port states
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including switch and port Media Access Control (MAC) addresses, switch priority, port prior-
ity, and port cost. Using this BPDU information exchange, STP running collectively on all the
switches elects the root switch and root port for that switched network, as well as the root port
and designated port for each switched segment. Initial BPDU messages sent between partici-
pating switches are called configuration BPDUs. Once a Spanning-Tree topology has been de-
fined, then “topology-change” BPDUs are sent after a topology change has been detected to
indicate that the spanning-tree algorithm should be initiated.

Configuration BPDU Fields
The following are fields that comprise an IEEE 802.1d Spanning-Tree BPDU packet.

� Protocol Identifier Contains the value zero

� Version Contains the value zero

� Message Type Contains the value zero

� Flag A 1-byte field, in which only the first 2 bits are used. The first bit
represents the Topology Change (TC) bit and is used to signal a topology
change. The second bit represents the Topology Change Acknowledgement
(TCA) bit and is used to acknowledge the receipt of a configuration message
with the TC bit set.

� Topology Change Message Fields

� Protocol Identifier Contains the value zero

� Version Contains the value zero

� Message Type Contains the value 128

� Root ID Identifies the root bridge by listing its 2-byte priority followed by
its unique 6-byte ID

� Root Path Cost Contains the cost of the path from the bridge sending the
configuration message to the root bridge

� Bridge ID Identifies the ID and bridge priority of the bridge sending
the message

Figure 3-2. IEEE 802.1d Spanning-Tree Protocol BPDU



� Port ID Identifies the port from which the configuration message was sent.
This field allows loops created by multiple attached bridges to be detected
and handled

� Message Age Specifies the amount of time elapsed since the root sent the
configuration message on which the current configuration message is based

� Maximum Age Indicates when the current configuration message should
be deleted

� Hello Time Indicates the time period between root bridge configuration
messages

� Forward Delay Indicates the length of time participating switches should
wait before transitioning to a new state after a topology change. If a switch
transitions too soon, then not all network links will be ready to change state,
and loops can result.

HOW THE STP ALGORITHM WORKS
The following is a breakdown of the Spanning-Tree Algorithm into individual steps
taken by the switch when the algorithm is run.

1. Each participating switch is assigned an 8-byte unique switch identifier. The first
two bytes of the address are derived from the priority given to the switch. The
last six bytes are derived from a MAC address found on one of the switch ports.
The lowest MAC address is usually chosen for this purpose; however, different
manufacturers tend to have proprietary ways of choosing the MAC address.

2. After the configuration BPDUs are exchanged among all switches within
the segment, the switch with the lowest switch identifier becomes the root
bridge. The network administrator can control which bridge becomes the root
bridge by assigning a lower priority value to the bridge desired to become the
root bridge.

3. Each switch port is associated with a path cost. The path cost represents the
cost of transmitting a frame out onto that switched segment though the port.
The network administrator typically assigns a cost for each port based on the
speed of the link (for example, the cost of a port connected to a 100-Mbps LAN
would be lower than a port connected to a 10-Mbps LAN).

4. Each switch determines its root port and root path cost. The root path is the port
that represents the shortest path from itself to the root switch. The root path
cost is the total cost to the root switch.

5. For every LAN segment, all participating switches elect a designated switch
from among the switches on that LAN segment. A designated switch is the
switch on each LAN segment that provides the minimum root path cost. Only

62 Content Del ivery Networks



Chapter 3: Advanced Ethernet Topics 63

the designated switch has a path to forward frames to and from that LAN
segment toward the root switch.

6. All participating switches select ports for inclusion in the spanning tree. The
selected ports will be the root port, as well as the designated ports for the
designated switch. Designated ports are those where the designated bridge has
the best path to reach the root. If two or more switches have the same root path
cost, the switch with the lowest switch identifier becomes the designated switch.

7. By recursively following the previous steps for all switches from the root on
down, all the switches directly connected to each LAN segment become
blocked, thereby removing any loops in the topology.

Implications of STP in a LAN Environment
When a switch or a single port in a switch is brought online, there’s an invocation of the
STP calculation on the port(s). The result of the calculation will be the transition of the
port into forwarding or blocking state, depending on the position of the port in the net-
work and applicable STP parameters. The calculation and transition period typically
takes 30–50 seconds (depending on the manufacturer). At this time, no user data is passed
out of that port. This delay in allowing traffic to traverse the port can have an adverse ef-
fect on some applications. For example, clients using DHCP to obtain IP address informa-
tion will time out during this delay.

Once a topology running STP is established and all elections have been completed for
each segment, the frequency of STP recalculation is minimal. The STP algorithm should
only be invoked if either a root switch or a designated switch is down. With this in mind,
administrators should be aware that a constantly changing STP topology triggering fre-
quent STP recalculations is an indication of a problematic network.

Note, the changes or frequent recalculation of STP is indicative of a problem on the
network. Administrators should pay close attention to this value in their troubleshooting
process.

The solution to this dilemma can be solved using a Cisco feature called portfast. Once
portfast is enabled on a port, that port will always begin in the forwarding state. The port
still participates in STP. If the port should be part of a loop, it will eventually transition into
STP blocking state. Note, portfast should never be enabled on a port directly connected to
another STP participating switch. Although portfast is a useful feature when used cor-
rectly, its incorrect use can mean almost certain disaster for any functional network.

The portfast option is dangerous if used improperly. LAN Administrators should be
careful when implementing this option.

Although the STP is excellent at preventing loops, it has left the network exposed to
malicious attacks. When a port is participating in STP on any given LAN segment, it’s
susceptible to other devices impersonating a switch, joining the same segment using a
lower switch priority, and becoming the designated or root switch. This false device can
wreak havoc by changing the STP topology, thus rendering the network suboptimal. At-
tackers can cause recalculations of the STP algorithm by the temporary introduction and
subsequent removal of STP devices with low (zero) bridge priority. This can be consid-
ered a simple form of Denial of Service (DoS) attack on the network.
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VIRTUAL LOCAL AREA NETWORKS—VLANS
Virtual Local Area Networks (VLANs) are essentially switched networks that are logi-
cally segmented-based on an organizational or functional grouping, instead of the tradi-
tional physical or geographical groupings. For example, all clients and servers belonging
to the accounting department can be connected to the same VLAN, regardless of their
physical connections to the network or because they might be intermingled with other
departments. Reassignment of users from one VLAN segment to another can be done
through software configuration instead of the physical unplugging and moving of de-
vices or wires.

Benefits of VLANs
VLANs provide the following benefits:

� Reduced administration costs for moves, adds, and changes

� Controlled broadcast activity

� Workgroup and network security

� Leveraging of existing hub investment

Reduced Administration Costs
Almost as certain as taxes and death, organizations will reorganize. Management and ad-
ministrators knew this from the onset; however, they never had a choice but to set up
costly infrastructure that was, at best, a sunk cost. Each year, 20 to 40 percent of the
workforce is physically moved. Not surprisingly, the greatest expense in managing a net-
work is directly attributed to these moves, adds, and changes. Most changes require
recabling, new station addressing, and hub or router configuration. Invariably, as soon as
administrators stabilize the network, more changes are implemented and the network
once again becomes unstable.

VLANs were introduced to address this cost and efficiency issue. VLANs provide an
effective mechanism to control changes and to eliminate the cost of hub and router recon-
figuration. This lack for a need to reconfigure network hardware is because VLANs allow
network addresses to be free of geographical location restrictions. For example, users
moving from one building to another building can assume their existing IP address at the
new location with only minimal or no reconfiguration necessary.

InterVLAN communication always requires a layer 3 function, such as a router.
This isn’t a true statement because routing can be done without a router. What I mean

is this: a router would be needed for the first packet but, after that, the packets are
switched and bypass the router. This is what’s called layer 3 switching. Both routing and
layer 3 switching are beyond the scope of this book.

Controlling Broadcast Activity
Broadcast traffic occurs in almost all networks, independent of how large or small and
how busy or idle the network can be. Although this type of traffic is essential in the normal



operation of a network, too much of it can be a hazard to the overall performance of infra-
structure. Broadcast traffic can be attributed to one of the following factors:

� Types of applications running over network

� Types of network protocols running over network

� Types of servers residing on segment

� Amount of logical segmentation within network

� Use of network resources

Although many applications are becoming more network-friendly and have made ef-
forts to reduce broadcasts over the network, an increasing number of multimedia applica-
tions are both broadcast- and multicast-intensive. Apart from applications that broadcast
traffic onto the network, faulty network devices, such as network interface cards, can also
cause extensive broadcast errors. If these defective devices aren’t found and removed from
the network, serious degradation of network performance, as well as complete network
outages, can result.

Fortunately, measures can be taken to prevent broadcast-related problems. One of the
most effective measures is to use a router to segment the network properly into different
broadcast domains. Routers isolate between different segments, so a problem in one area
cannot damage other parts of the network. Thus, while one segment might experience a
broadcast storm because of a faulty network device, the rest of the network is protected
from this disaster because the router will never forward broadcasts. Routers provide a
network with greater reliability, safeguard the network from inefficient bandwidth use,
minimize broadcast traffic overhead, and enable greater application traffic throughput.

As network engineers migrate their existing networks to switched architectures, the
functionality of the router is forgotten and, in turn, is used solely for the purpose of rout-
ing data. By not placing routers between switches, broadcasts have a larger domain to
wreak havoc. This new type of architecture is called a flat network—one broadcast domain
across the entire network. The advantage of a flat network is it can provide both low la-
tency and high throughput performance because all data is switched by hardware and
never needs to be routed in layer 3. The disadvantage is that a flat network increases the
network’s vulnerability to broadcast storms.

One major advantage of a VLAN is its capability to create different broadcast do-
mains effectively, without the use of a costly router. Segmentation can be achieved by as-
signing ports or users to specific VLANs on a single switch or over multiple connected
switches. Broadcast traffic in one VLAN is never transmitted outside that VLAN. This so-
lution substantially reduces overall broadcast traffic, frees bandwidth for user traffic, and
lowers the overall vulnerability of the network to broadcast storms. In essence, VLANs
afford the network higher throughput by freeing up overhead otherwise used by broad-
cast traffic. The result of this reduction in overhead, in turn, greatly increases the perfor-
mance of the network.

The assumption is valid only if the LAN segmentation is implemented with the inten-
tion that no interVLAN communication is required. Otherwise, layer 3 devices, such as a
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router, are needed to perform this task. One major benefit of creating a different broad-
cast domain is performance enhancement. This happens by gaining bandwidth that
would normally be consumed by the broadcast packets, which is directly dependent on
the number of devices and the type application running.

Better Network Security
The dependency of companies on conducting business over the Internet and intranet has
grown exponentially in the last three years. As a result, network infrastructures are carry-
ing an increasing volume of confidential mission-critical data. This data requires security
through restricted access. An inherent flaw in current LAN technology is it’s difficult to
restrict access to the media. By plugging a simple monitoring tool into a live port on a
shared LAN, an unauthorized user has access to all media traversing the LAN.

The introduction of VLANs solved many security issues without compromising func-
tionality. VLANs, however, weren’t intended as a security measure. A VLAN must be
implemented with security in mind to make it an effective security tool. To take full ad-
vantage of VLAN security, add the following procedures to the network policy:

� Restrict the number of users on any VLAN to only those who are authorized

� Prevent users from joining a VLAN without first receiving approval from the
network management

� Configure all unused ports to a default low-service VLAN

VLANs can, therefore, be used to provide segmentation, restrict individual user ac-
cess, flag unwanted intrusion into the network, and control the size and reach of the
broadcast domain. Segmentation can be achieved by grouping switch ports based on the
type of applications and access privilege, or by placing restricted applications and re-
sources on a secured VLAN.

Further security measures can be added by the use of router access lists. Access lists
are effective in restricting communication between VLANs. These restrictions can be
placed on criteria such as station addresses, application types, protocol types, and even
time of day.

Another added security feature is dependent on the switch hardware in use, for ex-
ample, using Cisco switch 4000,5000,6000. Administrators can restrict the switch port to
be used with a certain unique MAC address programmed into the switch. Thus, they can
prevent access to the network even when physical access to the switch is breached.

Leveraging Existing LAN Hub Investments
Hub devices are considered the most common networking device and can be found in al-
most any wiring closet. Because the initial investment for hubs is rather high, many busi-
nesses are reluctant to replace them with even more costly switches. By leveraging the
existing infrastructure of the hubs, a significant cost reduction can be obtained and a way to
ease in the technology can be provided. A common method of leveraging this investment
involves cascading existing hubs from newly installed switches, as shown in Figure 3-3.
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In the previous diagram, all users connected to each hub belong to the same VLAN.
The VLANs in this configuration are defined at the switch port level, so the hub con-
nected to the port will inherit the same VLAN. All the stations that share a hub segment
are assigned to the same VLAN. If an individual station must be reassigned to another
VLAN, that station must relocate to the appropriate hub module. As more users and de-
vices are moved off the shared hubs and onto switch ports, the architecture is slowly mi-
grated to a high-performance platform.

VLAN TRUNK PROTOCOL
The VLAN Trunk Protocol (VTP) is a Cisco proprietary management protocol that helps
to reduce the administration in a multiswitch LAN environment. The first step in setting
up VTP is to choose a VTP server and define a VTP domain on that server. Second, set all
other switches as client or transparent switches. Third, and last, define a VTP domain for
all server and transparent switches to be interconnected. Once this is done, all new
VLANs created on the VTP server will be distributed to all switches in the same domain.
The recommendation is that more than one switch should not be configured in server
mode for any given VTP domain. This is to ensure that control is centralized and that con-
flicting changes cannot be made on both switches at the same time.

Each switch running VTP advertises its management domain, a configuration revi-
sion number, and its known VLANs and their specific parameter on its trunk ports. A
VTP domain is made up of one or more interconnected devices that share the same VTP
domain name. Each switch can be configured in one VTP domain only.

VTP servers and clients maintain all VLANs everywhere within the VTP domain. The
VTP domain is used to define the boundary for a specific VLAN. VTP servers maintain
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configuration information either in nonvolatile random access memory (RAM) or acquire
it via the Trivial File Transfer Protocol (TFTP).

The VTP server can be used to modify global VLAN information using the VTP Man-
agement Information Base (MIB) or the command-line interface (CLI). When VLANs are
added, an advertisement is sent out to all servers and clients in the domain. This adver-
tisement essentially updates all switches with information on the newly added VLAN.
The VTP server can also be used to instruct all switches in the domain to delete a VLAN
and disable all ports assigned to it.

The advertisement updates sent out by VTP servers are sent to a multicast address, so
all neighboring devices will receive it. These advertisements aren’t forwarded by normal
bridging processes, however, so they’ll never be propagated past the neighboring device.
All devices on the same management domain will learn of any new VLANs configured on
the VTP server. Hence, this feature allows centralized access and configuration capabilities.

In a campus or enterprise environment, it’s important to note that the configuration of
the VTP domain on the switch is well planned. You need to configure two modes: The
first is server mode, which maintains the overall VLAN information across the network,
and the second is transparent mode, which, can only learn about other VLANs advertised
by the VTP domain server. If you have two switches configured as a VTP server mode,
any changes on one or the other could easily propagate across the network and could cre-
ate a problem.

How VTP Works
When a new VLAN is added to a VTP server, an advertisement is sent out as a broadcast.
Neighboring devices running VTP receive the advertisement. If the advertisement is in-
tended for the domain on the switch, then the switch accepts the traffic of the new VLAN.
It then propagates the advertisement to all its trunks after adding the VTP-learned
VLANs to their trunks. The VTP-pruning protocol limits the reach of this forwarding to
the boundary of the network where the VLAN extends, based on VLAN membership res-
ident within the switch.

Periodic advertisements are used to track configuration changes and communicate
them among all participating switches in the network. When a new switch is added to the
network, the new device receives a series of updates and information from the VTP.
Using that information, it automatically configures itself with all existing VLANs and be-
gins to participate as an active member of the network.

VLAN Trunking
A trunk is a point-to-point link carrying several VLANs. The purpose of a trunk is to
save ports when creating a link between two devices that implement more than one
VLAN, typically two switches. Trunks also allows the extension of those VLANs across
the entire network.

68 Content Del ivery Networks



To send the traffic of multiple VLANs over a single link, the switch must first encap-
sulate all data to be sent out. Two trunking encapsulations available for the Ethernet
trunk ports are

� Inter-Switch Link (ISL) A Cisco proprietary trunking encapsulation

� IEEE 802.1q An industry standard trunking encapsulation recognized by
multivendors. One of the reasons this standard is often favored over the ISL
flavor is because it isn’t vendor-dependent and is, therefore, more scalable and
flexible to implement.

The benefit of using 802.1q as a trunking mode is the elimination of proprietary proto-
col that’s vendor-dependent.

INTER-SWITCH LINK (ISL) ENCAPSULATION
Inter-Switch Link (ISL) encapsulation was developed and patented by Cisco Systems to
deliver interconnection between two proprietary Cisco VLAN-capable Ethernet devices
using the Ethernet MAC and Ethernet Media. The packets on the ISL link contain a stan-
dard Ethernet, FDDI, or Token Ring frame, and the VLAN information associated with
that frame.

The ISL frame contains three primary fields: the header, the original packet, and the
FCS at the end. The ISL frame is displayed in Figure 3-4.
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The following describes fields found in a Cisco Inter-Switch Link (ISL) encapsu-
lated frame.

� Destination Address The Destination Address or DA field is a 40-bit field
that is set to 0x01-00-0c-00-00. This address is a multicast address destined for
all ISL listeners.

� TYPE The TYPE field indicates the type of frame encapsulated and could be
used in the future to indicate alternative encapsulations. The following TYPES
have been defined.

Value TYPE

0000 Ethernet

0001 Token-Ring

0010 FDDI

0011 ATM

� USER This field is used as an extension of the TYPE field.

� Source Address The Source Address or SA field is a 48-bit field that includes
the source address of the ISL packet. The format of the address should be the
802.3 MAC address of the switch port transmitting the frame.

� LEN The LEN field is a 16-bit field that describes the length of the packet in
bytes excluding the DA, T, U, SA, LEN, and CRC fields. The total length of all
excluded fields is 18-bits long, so the LEN field is always the total length of the
ISL packet minus 18 bytes.

� AAAA03 The AAAA03 field is an 18-bit constant value of 0xAAAA03.

� HSA The High Bits of Source Address is the upper 3 bytes or the
manufacturer’s ID portion of the Source Address field. Because ISL is Cisco
proprietary, this field must read 0x00-00-0c for ISL to work.

� VLAN The VLAN field is the virtual LAN ID of the packet. The field is a
15-bit value used to distinguish frames from different VLANs. This field is
often referred to as the color of the packet.

� BPDU The BPDU field is a 1-bit flag that indicates if the packet contains a
BPDU. BPDUs are used by the STP to create and maintain the Spanning Tree.

� INDX The INDX field indicates the port index of the source of the packet as it
exits the switch. This is used for diagnostic purposes only and is often discarded
by the receiving switch.

� RES The RES field is used only when the Token Ring or FDDI packets are
encapsulated within the ISL packet. When a Token Ring frame is encapsulated,
the AC and FC fields are placed here. If an FDDI frame is encapsulated within
the ISL packet, the FC field is placed in the least significant byte of this field. For
any other frame types, such as Ethernet, the RES field should be set to all zeros.



� ENCAP Frame This field contains the encapsulated frame, including its own
CRC value. The CRC included within this field must be valid once the ISL header
and CRC fields have been removed. The length of the field can vary from 1 to
24,575 bytes long to accommodate Ethernet, Token Ring, and FDDI frames.

� CRC This field contains a standard 32-bit CRC value calculated on the entire
encapsulated frame from the DA field to the ENCAP Frame field. The destination
port will check this CRC and can discard packets that don’t have a valid CRC.
Note, this CRC is an additional CRC to the one inside the ENCAP Frame field.

IEEE 802.1q TRUNKING
The IEEE 802.1q standard specifies that an internal mechanism is used when trunking
VLANs. This essentially means a tag is inserted within the frame, instead of encapsulat-
ing the entire frame, as in ISL.

Trunks that comply to 802.1q standards contain a unique VLAN called the native
VLAN, which is never tagged. The native VLAN is configured to be the same on each side
of a link, so network devices on either side can deduce to which VLAN a frame belongs if
it receives a frame without tagging. The tagging process is simply a modification to an ex-
isting frame. The trunking device inserts a 4-byte tag, discards the existing FCS, and re-
computes a new FCS, as shown in Figure 3-5.

The following describes the fields found in an IEEE 802.1q frame and fields that are
carried forward from a transition from an IEEE 802.3 frame.

� Destination Address Destination MAC address of the packet.

� Source Address Source MAC address of the packet.

� Etype The EtherType field identifies the frame as a compliant 802.1q frame
and is equal to the value 0x8100.

� Pri This is a 3-bit field that specifies 802.1q priority tagging.

� VLAN-ID This is a 12-bit VLAN-ID field that’s used to distinguish frames
from different VLANs.

� Len/Etype This is a 16-bit field that’s carried forward from the original frame and
is used to identify the upper-layer protocol to receive the data (Ethernet). This field
indicates the number of bytes of data to follow it in an IEEE 802.3 frame.

� Data After physical-layer and link-layer processing is complete, the data
contained in the frame is sent to an upper-layer protocol, which is identified in
the Type field for Ethernet frames. Although Ethernet Version 2 doesn’t specify
any padding, it expects at least 46 bytes of data, and IEEE 802.3 frames require
a minimum 64 bytes of data (this can be achieved through padding).

� FCS This sequence includes a 32-bit field cyclic redundancy check (CRC)
value, which is recalculated after the VLAN tag has been added.
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THE ROLE OF VLANS IN MODERN DATA CENTERS
The role that VLANs play in today’s data centers is far more significant than those in the
past. This is mainly due to its ability to become so flexible and scalable all at the same
time. A large part of this scalability and flexibility comes from an emerging technology
called EtherChannel.

EtherChannel
EtherChannel is a complementary technology to Fast Ethernet and Gigabit Ethernet that en-
ables the combination of multiple Fast or Gigabit Ethernet lines into an extended trunk.
Speeds of up to 800 Mbps or up to 8 Gbps are achieved when combining multiple Fast Ether-
net or Gigabit Ethernet, respectively. For the purpose of simplicity, EtherChannel can be
thought of as a sophisticated way of port grouping that enables more functionality and effi-
ciency. EtherChannel technology provides fault-tolerant, high-speed links among switches,
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routers, and servers. By building on the existing IEEE 802.3 Ethernet standard, EtherChannel
has the benefits of being highly scalable, transparent to networked applications, and capable
of load balancing over multiple links with redundancy.

Scalable
EtherChannel allows bundled segments to be associated in groups of two or four. Groups
of two links provide twice the aggregate bandwidth of a single link, while bundles of four
links provide four times the aggregate bandwidth. These combinations provide aggre-
gate bandwidth rates between Fast Ethernet and Gigabit Ethernet.

EtherChannels scalability allows the technology to be deployed across a broad spec-
trum of network infrastructures. For example, EtherChannel can be deployed between
the wiring closet and the data center using a pair of full-duplex Fast Ethernet links pro-
viding 400+ Mbps. In the data centers, EtherChannel can be used to link up to four pairs
of Fast Ethernet to provide 800 Mbps of bandwidth between high-speed servers and the
backbone. Last, up to 8 Gbps of total bandwidth can be achieved with the aggregation of
multiple Gigabit Ethernet links to provide a backbone network infrastructure capable of
handling the most demanding traffic loads.

Transparent to Network Applications
Because EtherChannel is a complementary technology to Fast Ethernet and Gigabit Ether-
net, its deployment is transparent to networked applications. Each Fast Ethernet or Gigabit
Ethernet link in the EtherChannel bundle is IEEE 802.3- (802.3z for Gigabit Ethernet) com-
pliant and is clocked at 100 Mbps or 1,000 Mbps (200 Mbps and 2,000 Mbps full-duplex), re-
spectively. A standard is being developed by various vendors to bundle Ethernet to
provide the benefits of this technology on a smaller scale. This technology is currently de-
ployed among switches, routers, and servers with minimal overhead on the hardware.

Load Sharing and Redundancy
In addition to providing scalable bandwidth and seamless integration, EtherChannel
also provides load sharing and redundancy. The technology provides load-balancing ca-
pabilities and management of links in a bundle by distributing traffic across the multiple
links in the channel and monitoring the performance of these links. Redundancy is incor-
porated into the technology by automatically rerouting traffic onto an alternative link if
any given link is cut. This rerouting of traffic is done in a matter of milliseconds and is
transparent to the end user.

Currently, two load-sharing algorithms are being implemented by vendors: desti-
nation MAC address-based, and round robin-based. Using the destination MAC ad-
dress-based method, the transmission port selected is determined by the one or two
low-order bits of the destination MAC address. This method ensures all packets arrive
in order, but doesn’t always result in equal loading. This is because an uneven distribu-
tion of MAC addresses would result in an unbalanced distribution over the links. The
round-robin method of load sharing provides a better spread of bandwidth across all
links in the EtherChannel; however, this method is prone to out-of-order packets. The
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implications of out-of-order packets are great in a network where timing is critical, so
this method is slowly being phased out by vendors.

EtherChannel and VLANs
EtherChannel’s high-bandwidth output can be leveraged in the implementation of VLANs
to yield a scalable solution that has excellent management capabilities. EtherChannel bun-
dles can be configured to function as either ISL or IEEE 802.1q trunks to carry multiple
VLANs from point-to-point devices across a high-speed medium. The only restriction
placed on this implementation is that all VLAN trunks belonging to an EtherChannel must
be in the same mode (either ISL or IEEE 802.1q).

SUMMARY
The evolution of Ethernet technology has been a rapid and innovative endeavor since its
inception more than two decades ago. Over the years, many individuals and conglomer-
ates have invested time, energy, and resources into the research and development of this
technology. In return, the users of this media have gained a reliable and versatile infra-
structure that continues to evolve as business and technological needs change.

What we see for this technology in the future is continued scalable bandwidth inte-
grated into flexible and secure media. As more applications are developed and deployed
over networks, demand for bandwidth will naturally grow proportionally. At the same
time, security must be heightened to keep up with demands for secure transactions over
shared media, such as Ethernet.

With the recent boom in wireless technology, traditional Ethernet has to contend with
competition in a whole new arena. Currently, wireless technology is still in its infancy
stages. Once the technology matures and the costs begin to fall, however, Ethernet will
have to stop resting on its laurels and begin to defend its territory. Either way, Ethernet
will continue to be deployed and maintained for years to come.

REVIEW QUESTIONS
1. What IEEE standard covers the specifications for the Spanning-Tree

Algorithm?

IEEE 802.1d

2. Name the five states that a port can be in when participating in
Spanning Tree?

Blocking, Listening, Learning, Forwarding, and Disabled
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3. What packets are used in a LAN environment by participating Spanning-
Tree devices to communicate?

Bridge Protocol Data Units (BPDU) messages

4. What Cisco proprietary management protocol is used to manage VLANs in a
multi-switch LAN environment?

Cisco VLAN Trunk Protocol (VTP)

5. Name the two trunking encapsulations available for encapsulating traffic
over a VLAN trunk.

Inter-Switch Link (ISL) encapsulation and IEEE 802.1Q

6. What is the fundamental technology behind EtherChannel?

EtherChannel is essentially a high-speed bundled version of Ethernet or
IEEE 802.3.
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OBJECTIVES
� Review the history and evolution of HTTP

� Discriminate among various versions of HTTP

� Become familiar with the operation of HTTP

� Discuss packet-level dynamics of HTTP

� Review basic HTTP security

Imagine a little schoolgirl in a remote town in Alaska is doing research for a school
project. This child is sitting in front of a computer at her school, surfing the Web. She is
able to find extensive information with one simple search and she works to complete her
project on time. The information she retrieves is intact and arranged “just so.” And that
information carries with it links to other sets of related information. The information
includes text she can study and pictures she can embed in her reports, and, perhaps, a
short movie clip or clever animation. Given the structure of the information she retrieves,
she can spend her time productively, while she chases down facts and clues to other
information she can use on her report.

Content Networking is entirely consumed with this entire process—from creating
and formatting information to the successful delivery of that information. As you learned
in the last chapter, many components make this kind of communication possible. In this
chapter, two of the primary vehicles underlying Content Networking on the World Wide
Web are discussed: HTML and HTTP. Hypertext Markup Language (HTML) is the stan-
dard programming language used on the Web for formatting text and images so they’re
readable by a user application, typically a browser. Hypertext Transfer Protocol (HTTP)
is used to transfer the HTML pages from a server down to a client, so the client can view
the document. This chapter outlines the history of HTTP and the functionality of HTTP.
The focus here is on HTTP, but for more information on HTML, see the reference section
at the end of this chapter.

HISTORY
The World Wide Web (WWW) was created in the early 1990s by researchers at Conseil
Européen pour la Recherche Nucléaire (CERN)—specifically Tim Berners-Lee—all of
whom were interested in sharing information. The information needed to be in a format
that enabled each researcher to view the document and make additions or corrections, if
necessary. The system also needed to have hyperlinks, or embedded objects, within the
document, which took you to a new document when the object was accessed. Tim
Berners-Lee wrote the first browser and server software, and he needed a protocol that
would facilitate connections from the browser to the server.

The original design requirements for HTTP were simple: the protocol needed to be
able to issue a request and have the server generate a response. Thus, the protocol was
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operating in a client/server environment and needed to use the existing infrastructure.
The client and the server needed to use a common language for this request/response
sequence, so HTTP was developed.

The first release of HTTP—HTTP 0.9—was released in 1991. Since then, two other
versions have been released: version 1.0 in 1996 and version 1.1 in 1998. Each version has
included major enhancements from the previous version. These versions are outlined in
the following sections, and further reading can be found in the suggested reading section
at the end of this chapter.

How It Works
HTTP is built on the client/server model, where the client makes a request of the server.
The server processes that request and sends a response back to the client. HTTP was de-
signed to take advantage of the existing Internet infrastructure, and it uses Transmission
Control Protocol (TCP) as its transport mechanism. HTTP is built on top of TCP, which
means HTTP is a connection-oriented protocol, but that’s the extent of our discussion
about it. A discussion of TCP/IP is outside the scope of this book, and we assume the
reader already has this knowledge.

The HTTP client request contains a method, a version, and a set of headers. A given
HTTP response contains a status code, response headers, and the content requested. The
following contains an in-depth look at these methods, headers, and status codes.

The Uniform Resource Locator (URL) gives a lot of information about resources. The
URL specifies the name of the resource (perhaps a document of some kind), it defines the
location of the resource (usually a server located on an intranet or, perhaps, on the
Internet) and what protocol to use to access that resource successfully. The following
URL specifies that the resource is located at www.alteonwebsystems.com and is a docu-
ment called index.html. The URL further specifies that HTTP should be used to retrieve
this document:

http://www.alteonwebsystems.com/index.html

The port hasn’t been defined, so a default TCP port of 80 is assumed. To specify a dif-
ferent port, the port number would follow immediately after the domain name.

http://www.alteonwebsystems.com:8080/index.html

The Uniform Resource Identifier (URI) refers to the location and resource within
the URL. In the previous example, the URI would be www.alteonwebsystems.com
/index.html.

HTML
HTML is the standard programming language for the WWW. HTML is comprised of a
set of tags, which define how the document should be formatted by the client application.
These tags also define the start and the end of the document. In the following example,
you can see the use of tags (brackets surround them) and the preceding forward slash that
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denotes the end of a particular tag. The document is transferred from the server to the cli-
ent in ASCII format. The client is responsible both for parsing the document and format-
ting it for the user application. The browser parses the documents and, in turn, requests
any imbedded objects indicated by the HTML code.

<HTML>

<title>Hello World</title>

<a href="http://www.alteonwebsytems/hello.html"> Hello World!</a>

</HTML>

HTTP/0.9
The functionality of the first release of HTTP was limited; the protocol was designed for
simplicity. In its original form, the protocol didn’t have provisions for status messages,
different types of headers, or embedded graphics (the actual specification itself only
filled a single page!). A description of its functionality follows:

� Connection The client attempts a TCP/IP-based connection to the server
using the fully qualified name or the IP address and the TCP port number. if
the client doesn’t request a specific TCP port, port 80 is assumed. The server
either accepts or denies the connection. If the server accepts the connection,
then the request is parsed.

� Request The request contains a single request method: GET. The GET request
contains the document address.

� Response The server processes the request and responds to the client with a
byte stream of ASCII text. No way exists to send status messages on whether
the transaction was successful.

� Disconnect Once the response is complete, the server issues a disconnect
request to terminate the TCP/IP session. (Note: some servers may impose a
timeout period before closing the connection, such as 30 seconds.)

The goal was to get a functional protocol that allowed a simple request to be fulfilled.
This design was flexible and allowed for enhancements in the next version.

HTTP/1.0
HTTP/1.0 implemented large-scale improvements over HTTP/0.9, and it addressed the
need to be backward-compatible. The revised protocol, which was worked on by several
people, was the first actual standard. Its features were significantly more refined than its
immediate predecessor and included a variety of different header types, including those
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error codes we know and love, as well as the capability to post data and not simply get
data. HTTP/1.0 also includes the capability to authenticate a client using basic, or
clear-text, authentication. HTTP/1.0 added more methods, listed in Table 4-1, as well as
status codes, shown in Table 4-2, and headers, listed in Table 4-3. All of these are defined
in the following.

HTTP/1.1
As in HTTP/1.0, HTTP/1.1 had to be backward-compatible with previous versions of HTTP.
The rapid growth of the Internet stipulated robust requirements for HTTP/1.1—more so
than previous versions—and also added various new functions.

Perhaps the most important enhancement was the use of persistent connections.
Persistent connections were important because they enabled the client to submit multi-
ple requests over a single TCP/IP connection using the Keep-Alive value in the con-
nection header. Prior to this, HTTP had to open a separate TCP/IP connection for each
new request. This meant each embedded object would require a separate request and,
therefore, a distinct and separate TCP/IP connection. In addition, a new session
couldn’t be initiated until and unless the prior session had either completed or timed
out. As you can see, having to open multiple TCP sessions to transfer a relatively small
amount of data was extremely cumbersome, and the network overhead associated
with all these sessions could well exceed the actual data attempting to be transferred.
Persistent connections were, therefore, a vast improvement and dramatically in-
creased the performance of the protocol. HTTP/1.1 made persistent connections the de-
fault. In HTTP/1.0, the Keep-Alive had to be specified to keep the connection persistent.

Another major improvement from HTTP/1.0 is the use of request pipelining, which en-
ables the client to perform multiple requests before it receives a response from a previous
request. Coupling this feature with multiple persistent connections dramatically in-
creased the potential speed and efficiency of any given data transfer.

Let’s see how these two features work together. A client opens a persistent connection
to a resource and issues a request. When the document is received, the connection is
closed and the client starts to parse the document for embedded objects. If the client finds
any embedded objects, it opens another persistent connection and issues multiple re-
quests over this connection. The client then receives the embedded objects and displays
them in the application. The net result is the application is able to load data into the
browser-displayed document at a greater rate than ever before.

HTTP/1.1 also provided several other benefits, including the following: a method of de-
bugging HTTP requests by using the TRACE method; the addition of cache control mecha-
nisms, whereby HTTP/1.1 could include information to tell proxy servers and clients what
data can be or shouldn’t be cached, thus increasing the efficiency of data retrieval; authentica-
tion could be performed using the message digest format; and HTTP/1.1 included increased
methods, headers, and status messages (displayed in Tables 4-1 through 4-3).
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Method HTTP/0.9 HTTP/1.0 HTTP/1.1

GET * * *

HEAD * *

POST * *

PUT *

DELETE *

TRACE *

Table 4-1. HTTP Methods

Status Code HTTP/0.9 HTTP/1.0 HTTP/1.1

100 *

101 *

200 * *

201 * *

202 * *

203 *

204 * *

205 *

206 *

300 *

301 * *

302 * *

303 *

304 * *

Table 4-2. Status Codes
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Status Code HTTP/0.9 HTTP/1.0 HTTP/1.1

305 *

306 *

307 *

400 * *

401 * *

402 *

403 * *

404 * *

405 *

406 *

407 *

408 *

409 *

410 *

411 *

412 *

413 *

414 *

415 *

416 *

417 *

500 * *

501 * *

502 * *

503 * *

504 *

505 *

Table 4-2. Status Codes (continued)
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Header HTTP/0.9 HTTP/1.0 HTTP/1.1

Accept *

Accept-Charset *

Accept-Encoding *

Accept-Language *

Accept-Ranges *

Age *

Allow * *

Authorization * *

Cache-Control *

Connection *

Content-Encoding * *

Content-Language *

Content-Length * *

Content-Location *

Content-MD5 *

Content-Range *

Content-Type * *

Date * *

ETag *

Expect *

Expires * *

From * *

Host *

If-Match *

If-Modified-Since * *

If-None-Match *

If-Range *

If-Unmodified-Since *

Last-Modified * *

Location * *

Max-Forwards *

Table 4-3. Headers
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Request Methods
Request methods are used in the initial client communication. The client makes a request to the
server for a specified resource. The following is a discussion of the various request methods.

GET
The GET method is the basis for most client requests. The GET method specifies the re-
source to request and the HTTP version to use in the session. The GET method can be con-
ditional when combined with the appropriate headers. In the following example, the client
requests the / resource and tells the server to use HTTP 1.1. The / resource is the default re-
source for the server, and the server should respond with the default document. Example:

GET: / HTTP/1.1

HEAD
The HEAD method is identical to the GET method, except the entity body isn’t returned
with the response. The HEAD method can be used to test the validity of hypertext links.

Header HTTP/0.9 HTTP/1.0 HTTP/1.1

Pragma * *

Proxy-Authenticate *

Proxy-Authorization *

Range *

Referer * *

Retry-After *

Server * *

TE *

Trailer *

Transfer-Encoding *

Upgrade *

User-Agent * *

Vary *

Via *

Warning *

WWW-Authenticate * *

Table 4-3. Headers (continued)



POST
The POST method is used to provide the client with the capability to update an existing
resource. The update won’t change the existing resource, but it does add content to sup-
port the resource. A common use of the POST header is a newsgroup. The resource—the
newsgroup—already exists. The information posted becomes a subset of the resource.

PUT
The PUT method either creates a new entity or updates the existing entity. If the entity
exists and new information is PUT, it overwrites the existing data. The difference in the
PUT and POST methods deals with the Request-URI. The URI in the POST method
specifies the resource, while the user agent in the PUT method specifies the resource.

DELETE
The DELETE method specifies the resource to be deleted. The server must reply with a
status message, but doesn’t necessarily have to complete the operation.

TRACE
The TRACE method is generally used for troubleshooting purposes. This method is usu-
ally combined with the Via header and the Max-Forwards header to see the path the re-
quest/response traversed. The response won’t include an entity.

OPTIONS
The OPTIONS method is used to gather communication options about a particular re-
source or server. An example would be a request to see if the server supports HTTP/1.1
without making a request to a specific resource.

Response Status Code Definitions
The Response status code messages act as a kind of acknowledgement to the user agent
that they can continue or that some action needs to be taken to fulfill their request.

1xx Informational
The Informational status codes were introduced in HTTP 1.1 and won’t be sent to a client
using HTTP 1.0. The following is a list of informational messages and what they mean.

� 100 Continue This status message tells the client to continue sending its
request. If the client has finished sending the request, this status message
should be ignored.

� 101 Switching protocols This message is a reply to the UPGRADE header
received from the client. The server switches to the appropriate protocol after
the termination of the 101 response.
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2xx Successful
The server responds with this type of status message when the request has been received
and accepted.

� 200 OK This status message is the most common Successful message. The
data returned with the message depends on the method that submitted it.

� 201 Created This status message indicates the request has been accepted and
a new resource is being created. The newly created URI is returned to the client
for further action.

� 202 Accepted This status message indicates the request has been accepted,
but the processing hasn’t yet taken place.

� 203 Non-Authoritative Information This status message indicates the
information returned isn’t the definitive set. This may be a subset or a
superset of the original information.

� 204 No Content This status message indicates the request has been fulfilled,
but no information needs to be returned to the client.

� 205 Reset Content This status message indicates the user agent should reset
the content. This is usually used when the user agent needs to enter data.

� 206 Partial Content This status message indicates the request included a
Range header and it has been fulfilled.

3xx Redirection
This type of status code indicates to the client that something else must be done to fulfill
the request. The message could indicate that the content has been moved, and to get to the
new location, the user agent will need to take further action.

� 300 Multiple Choices This status message indicates the user agent needs to
choose from a set of available resources.

� 301 Moved Permanently This status message indicates the URI has
permanently moved to another location. The user agent should see the message
and automatically move to that location.

� 302 Found This status message indicates the requested URI has temporarily
been moved to another location. The user agent should continue to use the
original URI unless otherwise specified.

� 303 See Other This status message indicates the requested information can be
found at another location. This is different than the 302 message, which is a
temporary move, and the 303 message is usually used as a response to POST script.

� 304 Not Modified This status message indicates the content hasn’t changed
and the user agent should use the existing content.
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� 305 Use Proxy This status message indicates the request should be submitted
to the proxy instead of the actual server.

� 306 Unused This status message is reserved.

� 307 Temporary Redirect This status message indicates the requested URI has
temporarily been moved to another location. The user agent should continue to
use the original URI unless otherwise specified.

4xx Client Error
This type of status message indicates a problem exists on the client side of the connection.

� 400 Bad Request This status message indicates the server received the
request, but the request was malformed. The client shouldn’t resend
the request unless modifications to the request are made.

� 401 Unauthorized This status message indicates authentication is needed for
the particular request. The server will return a WWW-Authenticate header
field to initiate the challenge/response authentication sequence.

� 402 Payment Required This status message is reserved for future use.

� 403 Forbidden This status message indicates the request was received, but the
request won’t be fulfilled. Authentication won’t help the request and the
request shouldn’t be resubmitted.

� 404 Not Found This status message indicates the server couldn’t find the
requested resource.

� 405 Method Not Allowed This status message indicates the client would like
a list of valid methods for the requested resource.

� 406 Not Acceptable This status message indicates the requested resource isn’t
capable of responding with the information specified in the request header.

� 407 Proxy Authentication Required This status message indicates the client
must first authenticate to the proxy before the request can be fulfilled.

� 408 Request Timeout This status message indicates the server reached its
timeout period before the client produced its request.

� 409 Conflict This status message indicates the resource in its current state had
a conflict with the request. The request should be reformed and resubmitted.

� 410 Gone This status message indicates the requested resource is no longer
available at the location specified in the header. This is a permanent condition,
and future requests shouldn’t be made to this resource at the specified location.

� 411 Length Required This status message indicates the server requires a Content-
Length header in the request. The client may resubmit the request if it includes the
Content-Length header.
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� 412 Precondition Failed This status message indicates the precondition
specified in the request failed and, therefore, the request wasn’t processed.

� 413 Request Entity Too Large This status message indicates the server refuses to
process the request because the request entity is larger than the server can handle.

� 414 Request-URI Too Long This status message indicates the server won’t
process the request because the Request-URI is too long.

� 415 Unsupported Media Type This status message indicates the server won’t
service this request because the requested resource isn’t in a format supported
by the client request.

� 416 Requested Range Not Satisfiable This status message indicates the
requested range doesn’t fall within the current resource entity.

� 417 Expectation Failed This status message indicates the server couldn’t meet
the Expect header information.

5xx Server Error
These status messages indicate the server has erred and might not be capable of performing
the request.

� 500 Internal Server Error This status message indicates the server couldn’t
fulfill the request because of an unexpected error.

� 501 Not Implemented This status message indicates the server doesn’t
support the requested method and, therefore, the server cannot fulfill
the request.

� 502 Bad Gateway This status message indicates the server received an invalid
response from an upstream server while it was acting as a gateway.

� 503 Service Unavailable This status message indicates the requested resource
is temporarily unavailable. This error usually occurs when the Web server is
offline or overloaded.

� 504 Gateway Timeout This status message indicates that while acting as a
gateway, the server didn’t receive a response from the request upstream
resource.

� 505 HTTP Version Not Supported This status message indicates the server
doesn’t support the version of HTTP the client is trying to use.

Message Headers
The following is a brief description of the message headers. The goal here is to simply intro-
duce some of the common elements and their roles. For a painfully complete discussion,
don’t forget to see the RFC.
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General-header Fields
The following are a list of the fields that could be found in the general-header. The exam-
ples used are illustrative, but certainly not exhaustive. Again, refer to the RFC if you seek
a more complete review.

Cache-Control This header specifies directives in the request/response sequence, which
must be followed by all caching mechanisms. Example:

Cache-Control: private

If a cache mechanism is in the path, this particular directive tells the cache mechanism
it cannot cache this content in a general pool. This content is intended for a particular cli-
ent. The example directive used—private—could be used when setting a cookie or when
communicating sensitive information to a particular client.

Connection This header enables the client to specify options that should be used for this
session. Example:

Connection: Keep-Alive

Date This header specifies the date and time at which the response was sent. Example:

Date: Mon, 12 Mar 2001 18:13:18 GMT

Pragma This header specifies directives that must be followed along the session path.
Example:

Pragma: no-cache

Transfer-Encoding This header indicates whether anything has been done to the packet
to change the encoding. Example:

Transfer-Encoding: chunked

Upgrade This header indicates the client also supports other protocols and the server
can switch to one of these if it chooses. Example:

Upgrade – HTTP/2.0

Via This header indicates the connection has been formed through a proxy or gateway.
The proxy or gateway adds the header to indicate it exists along the path. Example:

Via: 1.1 kader

1.1 is the HTTP version and kader is the name of the proxy.
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Request-Header Fields
The following list are fields.

Accept This header indicates the client will accept certain media types in the response.
Example:

Accept: images/jpeg, images/gif, */*

The */* is the wildcard expression to accept any media type.

Accept-Charset This header defines the character set valid for the response. Example:

Accept-Charset: iso-8859-5, *

The * is a wildcard and is viewed as accepting any character set.

Accept-Encoding This header defines what type of encoding the client will expect in the
response from the server. If the server cannot support the encoding, it should send a
status message indicating this condition. Example:

Accept-Encoding: gzip, compress

Accept-Language This header defines what type of language the client will expect in the
response from the server. Example:

Accept-Language: en-us, *

The * is used for wildcard cases and accepts any language.

Authorization This header indicates the user-agent wants to authenticate to the server,
usually after receiving a 401 status message. Example:

Authorization: credentials

From This header indicates the user-agent has included an e-mail address in the request.
Example:

From: someuser@alteon.com

Host This header defines the host and the port number of the requested resource.
Example:

Host: www.alteonwebsystems.com

If-Modified-Since This header indicates that if the entity hasn’t been modified since the
date given, the entity shouldn’t be returned. If the entity isn’t returned, a status message
304 should be returned. Example:

If-Modified-Since: Tue, 30 Jan 2001 06:56:43 GMT



If-Match This header is used with a method to make it conditional, to determine if the en-
tity the user-agent has already obtained is current. Example:

If-Match: “test”

If-None-Match This header is used with a method to make it conditional, to determine if
none of the entities the user-agent has already obtained is current. Example:

If-None-Match: *

If-Range This header indicates the client may have a partial copy of an entity, and this
request is asking for the remaining portion of the entity. If the entity has changed, the
server should send the entire entity. This header must be used in conjunction with the
Range header. Example:

If-Range: entity-tag or date

If-Unmodified-Since This header is used with a method to make it conditional, to deter-
mine if the entity has been modified since the date provided. If the entity hasn’t been
modified, the server should continue with the request as if the If-Unmodified-Since
header didn’t exist. If the entity has been modified, the server should return the 412-sta-
tus message. Example:

If-Unmodified-Since: Tue, 30 Jan 2001 06:56:43 GMT

Max-Forwards This header is used with the Trace and Options methods to provide a
mechanism to set a limit on the number of proxies that can forward this request. This is
useful for troubleshooting a connection that appears to be failing somewhere in the path.
Example:

Max-Forwards: 5

Proxy-Authorization This header indicates the client is attempting to identify itself to a
proxy that requires authentication. This header will be in response to a Proxy-Authenticate
header received from the proxy. Example:

Proxy-Authorization: credentials

Range This header specifies a byte range in the entity-body, which the client would like
to request, instead of requesting the entire entity. This header can request a single byte
range or a set of ranges. Example:

Range: range-specifier
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Referer This header defines the address obtained from the URI-Request. This header is
included for the server's benefit only. The client doesn’t make use of it. (Yes, this is spelled
incorrectly, but that’s the way it’s defined.) Example:

Referer: http://www.alteonwebsystems.com

TE This header indicates what extension transfer headings it’s willing to accept and if it
will accept trailer fields in chunked encoding. Example:

TE: deflate

Trailer This header indicates header fields are contained in chunked transfer-encoding.
Example:

Trailer: fieldname

User-Agent This header defines the user-agent making the request. The server can use
this for statistical analysis or it can tailor responses based on the information contained in
the header. Example:

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)

Response-Header Fields
What the server sends back will of course depend on the specific request that was made.
Here follows a list of valid responses, with some brief examples.

Accept-Ranges This header indicates to the client that the server will accept ranges for a
request. Example:

Accept-Ranges: bytes

Age This header is used with cache servers to represent the amount of time since the origin
server responded. Example:

Age: A non-negative number

Location This header indicates the server would like to redirect the client to a different
location, so the request for the resource can be completed. For 201 status messages, the lo-
cation contains the newly created location. For 3xx status messages, the server indicates
the preferred URI for the requested resource. Example:

Location: http://www.alteonwebsystems.com/document.html

Proxy-Authenticate This header must be included when the server responds with a 407
status message, indicating a proxy server in the path requires authentication. Example:

Proxy-Authentication: challenge



Retry-After This header indicates how long the requested service is predicted to be un-
available. When used with a 503 status message, this header indicates how long the re-
quested service predicted to be unavailable. When used with a 3xx status message, it
indicates how long the client should wait before issuing the redirected request. Example:

Retry-After: Tue, 30 Jan 2001 06:56:43 GMT

Server This header defines the type of software running on the server. Example:

Server: Microsoft-IIS/5.0

Vary This header indicates whether the cache server may use the content when replying
to subsequent requests for the same content. Example:

Vary: field name

Warning This header is used to carry additional information about a status message.
Example:

Warning: [value]

WWW-Authenticate This header is used in conjunction with the 401 status message to
indicate authentication is needed. The response will contain a challenge. Example:

WWW-Authenticate: challenge

Entity-Header Fields
Entity-header fields are a specification of the type and formatting of data being requested.
The following is a list of the headers that might be good to keep track of.

Allow This header indicates the supported methods. Example:

Allow: GET, HEAD

Content-Encoding This header indicates the media-type applied to the entity-body.
Example:

Content-Encoding: gzip

Content-Language This header indicates the language used within the entity. Example:

Content-Language: en-us

Content-Length This header indicates the size of the entity-body in octets. Example:

Content-Length: 15736
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Content-Location This header indicates the entity may also be available from the speci-
fied location. Example:

Content-Location: http://www.alteonwebsystems.com/test.html

Content-MD5 This header indicates an enclosed MD5 digest exists of the entity. Example:

Content-MD5: md5-digest

Content-Range This header indicates the location in the entity body where this range fits.
Example:

Content-Range: bytes 2100-4532

Content-Type This header indicates the media type the server is using for the entity-
body. Example:

Content-Type: text/html

ETag This header indicates a unique value derived by the Web server for this specific
entity. Example:

Etag: “2043d8cd898ac01:8ef”

This ETag is associated with a specific graphics file.

Expires This header defines when the content in the response becomes stale. This doesn’t
mean the content isn’t good if it expired. This header works in conjunction with the
Cache-Control header to deliver the most current content. Example:

Expires: Tue, 30 Jan 2001 06:56:43 GMT

Last-Modified This header indicates when the entity was last modified. If the entity is a
file, it could be the operating system’s last modified date and time. Example:

Last-Modified: Tue, 30 Jan 2001 06:56:43 GMT

HTTP SECURITY
The need for secure transactions has been around since the inception of computing. Many
ways exist to handle that security: authentication, encryption, private communication
lines—and the list goes on. The challenge faced by HTTP is it would have to cross a public
infrastructure to complete any transaction. Protecting data that traverses a public infra-
structure has many pitfalls: you not only have to protect the data itself, you have to protect
the session. To protect the data and the session, the Internet community has implemented
encryption methods and data authentication. By encrypting the data, capturing packets and
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deciphering what they say is nearly impossible. This is because doing so would require a
hacker to break the encryption algorithm. Even if hackers managed to break the encryption
algorithm, however, they would still need more than one packet to learn something about
the data. The hacker can attempt to hijack a user’s connection by capturing the packet,
changing the source address, and then sending it to the target destination, and hope that
the target will simply send all further data to the new source; however, this is where
data/session authentication comes in. One interesting method of authentication uses digi-
tal signatures. Before the client sends the packet, it is digitally signed. This signing process
uniquely identifies the contents of the packet. If any data is altered in transit, say, a new
source IP address embedded, the signature will no longer correspond exactly to the data.
When the packet reaches its destination, the server simply compares the digital signature
that came with the data with a recomputation of what that signature should have been if it
were derived from the current data. If they match, the data is accepted as genuine. So, if a
hacker were to intercept this packet and substitute an address, the server would know im-
mediately upon verification of the signature that the data had been compromised.

Three security methods can be used with HTTP: authentication, HTTPS, and S-HTTP.
These are all described in the following sections. Another widely deployed method, Se-
cure Sockets Layer (SSL), is discussed in the next chapter.

Authentication
Authentication in HTTP can happen in two different ways. The first method, Basic, uses
clear text to exchange the user name and password. There isn’t anything else to this. The
server sends an authentication challenge to the client and a little box opens in the cli-
ent’s browser. The user enters the user name and password, and off they go—as plain
old text. This isn’t terribly secure. If the session was authenticated using Basic authenti-
cation, the user name and password are easily obtained by using a protocol analyzer to
capture the packet flow. Once someone has captured this information, that person has
access to resource.

Message Digest is a second, more rigorous, method of HTTP. This method uses a
one-way hashing algorithm to mask the data you want hidden. RSA Data Security mar-
kets a series of message digest algorithms, the most popular because of its strength, be-
ing Message Digest #5 (MD5). The way MD5 works is like a paper shredder: data goes
in, a hash comes out. The interesting thing with a one-way hash is a password so hashed
produces a unique result, that is, no matter who hashes it or when, the hash is always
the same. With a hash, however, reversing it is virtually impossible. Even with the hash
and the algorithm, reverse engineering to try to get the original password is, for all in-
tents and purposes, impossible. In authentication schemes, this hash is then sent off to
the server, along with the user name, which is typically not hashed. The server then re-
ceives this hash and matches it against the hashes stored in its security database. If they
match, access is granted. If not, the session is killed, and an error message is sent back to
the client. (The server doesn’t actually have the password—all it has is the hash, so
someone snooping around won’t actually see the passwords themselves, just the hash.)
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Remember, a Message Digest algorithm is used to protect the password, but all the
other information is unprotected.

While Message Digest offers a more secure authentication method than Basic, it isn’t
enough by itself. Recall that if the session was authenticated using MD5, the user name
would still be sniffable. Even though the password may be unreadable to the person who
intercepts it; that person still has the user name and can now start guessing passwords.

Another flaw with the HTTP authentication method is it requires the client to request
a resource. If that resource requires authentication, the server sends a status message in-
dicating this and the client then sends its credentials in the next message. This makes
things even easier for the person who is capturing the session. That person knows exactly
when to expect the user name and password.

Also, note that in using either of these methods, the data is still transmitted in its raw,
unencrypted format. If the session is meant to be secure, encryption should always be
used. By default, all HTTP sessions transfer data in clear text format.

More information about authentication can be found in RFC 2617.

HTTPS
HTTPS, which is HTTP traffic encrypted by an SSL session, is detailed in the following
chapter. HTTPS can provide encryption, digital signatures, and secure authentication. It
uses the authentication mechanisms already built into HTTP and encrypts the traffic for
safe transport across the Internet. HTTPS and S-HTTP (see the following) take two differ-
ent approaches to solve the same problem. They both use encryption and digital signa-
tures, but they work at different layers in the OSI model. S-HTTP is used to encrypt only
HTTP traffic. HTTPS can be used to encrypt other applications, such as S/MIME, for se-
cure mail transactions.

S-HTTP
Secure-HTTP (S-HTTP) hasn’t been extensively deployed. By the time it was developed,
HTTPS had made significant inroads into becoming the de facto standard for securing
HTTP traffic.

S-HTTP is an add-on to HTTP and is designed to provide much-needed security.
Much like HTTPS, S-HTTP can be used to encrypt, digitally sign, and authenticate ses-
sions. S-HTTP works by encrypting the HTTP session information only, unlike HTTPS,
which encrypts more layers of the OSI model.

As previously mentioned, to use HTTP authentication, the client has to request a re-
source. Then, the user is prompted for credentials. S-HTTP makes provisions so the client
resource request and authentication will be encrypted. More information about S-HTTP
can be found in RFC 2660.
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HTTP PROTOCOL ANALYSIS
This section looks at the HTTP protocol through the eyes of a protocol analyzer. The pro-
tocol analyzer, or sniffer, has the capability to look at all layers of the OSI model and can
look at the entire session. This section focuses on the HTTP session, but not at the TCP/IP
sessions surrounding the HTTP session.

The first analysis performed is a look at an HTTP 1.1 session. The format for this section is
an image of the capture screen, followed by a description. The session information presented
is a capture of a client making a request to the URL http://www.alteonwebsystems.com.

The client submits a HTTP 1.1 request to the server in Figure 4-1. The initial request
specifies what the client expects from this transaction.

� Line 1 The client tells the server it wants to use protocol HTTP 1.1 during
this session. The GET method describes the content the client is requesting.
In this case, the client is requesting this document /. This tells the server it
should send the default document back to the client.

� Line 2 Defines what types of media the client will Accept. In this request, the
client is specifying several media types, images, applications, and a wildcard
media type.

� Line 3 Defines the language the client will accept in the response from
the server.

� Line 4 Defines the encoding the client will accept in the response from
the server.

� Line 5 Defines what type of user-agent is making the request. This should
be present in all requests. This header can be used by the server to tailor
responses to the specific user-agent.

Figure 4-1. Client request
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� Line 6 Specifies where the requested resource can be found. This header may
be used if multiple web sites are running on a web server.

� Line 7 The Connection header specifies that Keep-Alive should be used for
this session. If Keep-Alive isn’t specified, the server closes the TCP/IP
connection after it finishes with the response.

� Line 8 The empty line with the CRLF at the end signifies the request has
completed.

In Figure 4-2, the server responds to the client with a series of headers and the
HTML data.

� Line 1 The server responds with a status message that indicates the server
has accepted the connection and agrees to the parameters specified in the
client request.

� Line 2 The server indicates the type of software running this particular web site.

� Line 3 Specifies the date and time at which the response was sent.

� Line 4 The Set-Cookie header specifies the cookie that should be written to
the client. In this case, the server is writing several pieces of information to the
client: SITESERVER ID, expiration date, the path, and the domain.

� Line 5 The Expires header is used in conjunction with the Cache-Control
header to let the cache server know when the data will become stale. The date
in this capture is in the past, but this doesn’t mean the date isn’t good. It tells
the cache server to see if this is the most current data.

� Line 6 The Content-Length header indicates the size of the entity-body,
indicated in octets.

� Line 7 The Content-Type header specifies the media type in which the server
is transmitting the entity-body. In this example, the server is responding with
text/html.

� Line 8 This line specifies more information that should be written to the cookie.

� Line 9 The Cache-Control is set to use private. This indicates the content
must be destined for a single client, not a cache server. The private directive
is used in this case because the response also contains a cookie destined for
this particular client.

� Line 10 This line tells the client the header information has concluded.

� Lines 11–34 These lines are the actual HTML data the server is sending the client.

� Line 35 This line specifies the end of this packet, but the HTML data
continues in the next packet.

In Figure 4-3, the packet uses the header information transferred in the previous packet.
This packet contains all HTML data. Figure 4-4 shows the HTML data download has con-
cluded. Please note, only a subset of all the HTML data download screens were captured.
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Figure 4-2. Server response
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Figure 4-3. Server response with no header information and HTML data



Figure 4-5 shows that once the client has the HTML data, it parses this data looking
for embedded objects. The client also formats this data for presentation in the appropriate
application. This image shows the client has made a request for an image embedded in
the HTML data.

� Line 1 The first line uses the GET header to request /images/clear.gif using
HTTP/1.1.

� Line 2 The Accept header tells the server it will accept any media types.

� Line 3 The Referer header lets the client tell the server where it received
this Request-URI. This particular Request-URI came from the original request
submitted to http://www.alteonwebsystems.com.
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Figure 4-4. Continuation of the server response with HTML data



� Lines 4–8 These lines are the same as the original request. Please refer to the
first figure/description for further information.

� Line 9 This line sends the cookie that was originally written by the server
back to the server.

� Line 10 The empty line indicates the request has concluded.

In Figure 4-6, the server responds to the GET for the image file in the last figure with
some response headers and the graphics data. Notice at the bottom of this figure, the
graphics data is denoted without any headers.

� Lines 1–3 These lines are the same as the response for the HTML data.

� Line 4 The Content-Type is marked as image/gif. The client should expect to
see graphics data following the header information.

� Line 5 Indicates to the client that the server will accept a request for ranges of
data represented in bytes.

� Line 6 The Last-Modified header indicates the item was last modified on this
date and time.

� Line 7 The ETag header is a unique value derived by the Web server for this
specific entity. This ETag represents the graphics file requested by the client.

� Line 8 The Content-Length header indicates the size of the entity-body,
indicated in octets. The 45 represents the amount of data the client should
expect to see.

� Line 9 The empty line indicates the response has concluded.
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Figure 4-5. Client request for embedded objects
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Figure 4-7 shows a request for another graphics file. The difference is in the response
because the graphics file is larger than a single packet, multiple packets will be sent from
the server. In Figure 4-8, the server replies with the next image. This image is too large to
fit in one packet, so it sends the maximum data that it can fit in this packet. Figure 4-9
shows the rest of the graphics data will be transmitted to the client in a separate packet
without headers.

Figure 4-6. Server response to the GET

Figure 4-7. Client request for embedded objects
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Now, let’s compare the HTTP 1.0 and the HTTP 1.1 request and response headers.
Figure 4-10 shows only two differences occur in this HTTP 1.0 request and the HTTP 1.1

request. The first difference is in Line 1: the GET specifies the HTTP version to use. The sec-
ond difference is the Accept-Encoding header: this header wasn’t available in HTTP 1.0.

Figure 4-11 shows the HTTP 1.1 client request. The differences between this and the
HTTP 1.0 client request are listed in Figure 4-10.

Figures 4-12 and 4-13 compare an HTTP 1.0 server response to an HTTP 1.1 sever re-
sponse. The only difference in the response is the Connection: Keep-Alive. This is present
in the HTTP 1.0 response because Keep-Alive isn’t the default state for connections. No-
tice the server uses HTTP 1.1 in the response.

Figure 4-8. Server response with the graphics data

Figure 4-9. Server response with the remaining graphics data
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Note, in Figure 4-13, a Connection header isn’t present because the Keep-Alive con-
nection state is the default in HTTP 1.1.

The analysis presented here is only a small part of the actual capture. To look at the
entire capture, use a network analyzer and capture an HTTP session.

Figure 4-10. Client request using HTTP 1.0

Figure 4-11. Client request using HTTP 1.1
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Figure 4-12. HTTP 1.0 server response to the HTTP 1.1 client request
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Figure 4-13. HTTP 1.1 server response to the HTTP 1.1 client request
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SUMMARY
HTTP has evolved from a way to share information by scientists to a way of life for most
people. People are now using HTTP—and the World Wide Web it is built on—to shop, to
communicate, and, perhaps, most important, to be part of an online community. As
HTTP has continued to evolve, a multitude of features have been added, including secu-
rity and the addition of many new types of applications that run on top of HTTP.

This chapter provided an overview of HTTP and how it works. HTTP versions .9
through 1.1 were discussed, and the functional differences, such as persistency and re-
quest pipelining between the protocols were illuminated. This chapter also looked at
HTTP security issues, and discussed and took a prolonged look at a protocol analysis of
an HTTP communication. As previously mentioned, please see the Suggested Reading
for further discussion.

REVIEW QUESTIONS
1. Name one primary advantage of HTTP/1.1 over HTTP 1.0.

Request pipelining or persistent connections, among others.

2. Name two types of authentication mechanisms for HTTP.

Basic or clear text, and message digest.

3. Are all the versions of HTTP backward-compatible?

Yes. All versions are designed to be backward-compatible.

4. What is the difference between S-HTTP and HTTPS?

HTTPS can be used to encrypt applications other than HTTP.

SUGGESTED READING
RFC1945, Hypertext Transfer Protocol—HTTP/1.0
RFC 2616, Hypertext Transfer Protocol—HTTP/1.1
RFC 2617, HTTP Authentication: Basic and Digest Access Authentication
RFC 2660, The Secure Hypertext Transfer Protocol
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OBJECTIVES
� Understand the fundamental concepts behind the cryptography of SSL

� Become familiar with the SSL protocol itself

� See the SSL protocol in action on a Web server

� Understand the role of SSL accelerators

Nicely compartmentalized, protocol independent, and widely supported by both
commercial and free implementations, the Secure Sockets Layer (SSL) has become the de
facto standard for cryptography over the Internet. And rightfully so.

To see why you need SSL, you only have to look at the path of a packet scurrying across
the Internet. A simple traceroute from a server I manage in San Jose, California to
www.amazon.com shows my packets start in downtown San Jose, go across the street, pop
out of Sacramento, California, turn north to Portland, Oregon, and, finally, end up at Ama-
zon headquarters in Seattle, Washington. Over 14 hops are visible along the path—each
one potentially watching and reading the contents of my packets, each one marking a point
along the way where some evildoer could change the contents of my packets, adding items,
changing delivery addresses, or what have you.

Realizing the need for secure transactions across the Internet, the folks at Netscape
back in 1994 released the specifications to SSL 1.0. Despite having a patent on the technol-
ogy, Netscape welcomed feedback from the Web community and encouraged the devel-
opment of SSL as a joint project. By the end of 1995, SSL 3.0 was published. During its
early days, it competed with Secure-HTTP, another solution to the security problem
posed by the Internet. The key difference between Secure-HTTP and SSL, however, is SSL
remained protocol-independent. In essence, any TCP-based protocol could use SSL as its
underlying security mechanism without a lot of extra work. With flexibility and corpo-
rate sponsorship, SSL won the battle and became the cryptographic tool of choice for
e-commerce on the Internet.
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With all the feedback, help, and insight from the Internet community, Netscape felt
SSL should belong to the community rather than to them. So, in May 1996, Netscape
passed the control and responsibility for the upkeep of SSL to the Internet Engi-
neering Task Force (IETF). The IETF is essentially responsible for the development
of protocols and standards for the Internet, and all its work is shared with the public.
In an effort to demonstrate the protocol was unbiased in any way, the name of SSL
was changed to Transport Layer Security (TLS). The first official TLS specification
was released in 1999.

TLS 1.0 has few differences from SSL 3.0. This is a testament to the solid work done
on SSL from the start. Unless you’re interested in implementing the protocol itself (or
you’re simply curious), you needn’t worry about their differences. Most protocol im-
plementations (such as that from the OpenSSL group, http://www.openssl.org)
group SSL 3.0 with TLS 1.0 and can properly support both.



In this chapter, you begin by stepping back and getting a lesson on basic cryptogra-
phy. Armed with the fundamentals, you tackle the SSL protocol itself, followed by a de-
scription of SSL’s application in Web infrastructure.

CRYPTO 101
Let me begin by saying cryptography is hard. Don’t expect to learn and become a cryptog-
raphy expert quickly and most definitely don’t expect to become an expert after reading
this section. The purpose of this section is to provide a gentle introduction to the basics of
cryptography (often referred to as simply crypto), the terms, and the basic ideas behind
how they work. These nuggets of information should be enough for you to use an imple-
mentation of SSL to secure your network.

Let’s start with the simplest form of crypto: secret key cryptography.

SECRET KEY CRYPTOGRAPHY
The idea behind secret key cryptography (more formally called symmetric key cryptogra-
phy) is that both the sender and the receiver of a message have a preagreed on a “key” that
can be used to “unlock” a message. In its simplest forms, a key can be as simple as a table
of character mappings such as b means a, and c means b, and so forth. The recipient can
then use the same table to decode a message.

To see this in action, let’s go back to a simpler problem: passing a note in class. The
goal: to send a message to your friend without getting caught. The method: tightly fold-
ing of paper. The problem: this is security through obscurity. You’re relying on no one
else bothering to unwrap the paper and peek inside at the message. Worse, if the teacher
sees the note being passed, it could quite possibly be read aloud to the class.

Solving this problem requires some planning on both the sender and the receiver’s
part. Let’s assume you plan in advance to use the Caesar’s Algorithm for encoding. The
algorithm is your cipher. In the case of the Caesar Algorithm, the cipher works by adding
some constant value to each character being encoded. The value chosen for a particular
message is the key.

For two friends to exchange an encoded message, they must first agree on using
Caesar’s Algorithm as the cipher. Then they must agree on using a particular value as a
key. For this example, let’s assume they pick a key of 5. With the agreement in place, one
of them can encode the message “coffee” as “htkkjj.” (The letter h is five letters after c, the
letter t is five letters after o, and so forth.) One friend can then send the paper to the other
friend without even having to worry about folding it. If others see it, all they’ll see is gar-
bage. When the intended recipient sees the message, he can use the preagreed upon ci-
pher and key to decrypt it back into the original message.

Common symmetric key ciphers are 3DES (pronounced “triple-des”) and RC4. 3DES is
a block cipher, meaning the algorithm encrypts and decrypts data in equal-sized blocks. If
you want to send a message that’s less than the size of a block, padding must be added to
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the end, so the block is filled out. 3DES is considered among the most secure symmetric
ciphers, but this comes at the expense of requiring more computational power to work with.

In contrast to 3DES, RC4 is a stream cipher, meaning it works with one character at a
time when it performs its work. In addition to working with smaller units of data, RC4 is
also a much simpler and, thus, faster algorithm. Some folks have made it a competition of
sorts to come up with the smallest implementation!

Key Size
In the previous example, you saw how a student could use Caesar’s algorithm with a key
set to 5 to pass a note in class. In this case, the key size is short, making it potentially easier
to decode the message without necessarily having the key.

By the very nature of Caesar’s algorithm, the key must be small. To understand how
key size can affect the quality of the encryption, let’s extend Caesar’s algorithm a bit. In-
stead of a single number affecting every number, you want a series of numbers to affect a
string of input. For example, if you take 1, 3, and 7, and then apply Caesar’s algorithm to
one letter at a time rotating around those three numbers, you would see

String: H E L L O W O R L D

Key: 1 3 7 1 3 7 1 3 7 1

Result: I H S M R D P U S E

Because a single letter can be encoded up to three different ways (the letter A could be
B, D, or H), it will take someone doing cryptanalysis a lot longer to break this code. In es-
sence, you have a key length of 3.

This is where the strength of computers comes into play. Instead of small key sizes
like 3, you could apply key sizes of 25 to Caesar’s algorithm, thereby making it possible
for every letter and symbol potentially to map to every other letter or symbol. The result
would be an even more difficult code to break.

As you can see in this example, key size has a great influence in the ability for someone to
break a scheme. The larger the key length, the more possibilities exist, and the more difficult
it becomes to break a scheme by brute force, exhaustively testing every possible key until a
match is found. The goal is to have so many possibilities that it would take years to iterate
through all of them, at which point the information is unlikely to need securing anymore.

For a sense of perspective, 32 bits gives you 4,294,967,296 possible keys. 56 bits gives
you 72,057,594,037,927,936 possible keys. As it turns out, a key length of 56 bits can be
broken by a couple of Pentium class PCs in real time, that is, fast enough to make a differ-
ence. Each added bit doubles the number of possibilities, so 64 bits in the key means it’s
256 times more difficult to crack, which might translate into a few months using those
Pentiums. The current choice for key size in symmetric ciphers is 128 bits. For those of
you curious types, 128 bits gives you 340,282,366,920,938,463,463,374,607,431,768,211,456
possible keys. If you could iterate through 100 trillion keys a second, you would need
something like 100 million billion years to iterate through all the key combinations. By
way of comparison, the Sun will burn out in 8 billion years.
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Public Key Cryptography
Symmetric key cryptography works great when an opportunity exists for two parties to
meet in advance, so they can agree on a key. In applications slightly more serious than
that of passing notes in school, however, being able to meet in advance to exchange key
information presents a Catch-22: if the two parties could meet in a secure place to ex-
change their keys, why can’t they use that opportunity to exchange the secret information
as well? This problem is especially apparent in e-commerce situations where the two par-
ties are the customer with a credit card and a web server hiding in a server room thou-
sands of miles away.

To solve this problem, asymmetric cryptography was created. The underlying princi-
ple of asymmetric cryptography is this: in mathematics, creating problems is much easier
than solving them. Take, for instance, a simple math problem of multiplying two num-
bers: 374 and 874. A few clicks of the mouse button and you know their product is
326,876. However, factoring 326,876 to find the two numbers it took to create it is a much
more difficult and time-consuming problem. This is the essence of asymmetric cryptog-
raphy, better known as public key cryptography.

Two keys are created. The first key is the public key that can be shared with anyone by
any means. You could even go so far as to publish this key on a billboard in the busiest
part of town. The second key is the private key. This component must be kept secret from
everyone else.

Once the keys are created, anyone can encrypt a message with the public key. Once en-
crypted, however, the only way to decrypt the message is with the private key. This ensures
that messages destined for the owner of the private key cannot be read by anyone else.

Several public key encryption algorithms exist, but the one you want to focus on for
SSL is the Rivest Shamir Adleman (RSA) algorithm. The RSA algorithm is particularly in-
teresting because it can work in both directions, that is, what is encrypted with the private
key can be decrypted with the public key and vice versa. This feature of the algorithm
makes it useful in validating identity, as well as providing a method of secure informa-
tion transport.

For example: Heidi wants to send a message to Steve. Heidi creates a public/private
key pair and encrypts a message using her private key. She then advertises her public key
and sends a message encrypted by her private key to Steve. By using the public key, Steve
can validate that the encrypted message was, in fact, from Heidi because no other public
key could decrypt it. Remember this example because proof of identity is important to
certificates, which you learn about later in this chapter.

Putting It Together: Hybrid Encryption Schemes
Public key cryptography is an incredibly powerful way to provide encryption and decryp-
tion services but, unfortunately, it has a down side: from a computational standpoint,
generating keys, as well as processing the encryption and decryption, takes a lot of work.
Furthermore, because one of the keys is public, larger key sizes must be used to ensure
the security of the messages being encrypted. Translated into CPU cycles, this means
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even the fastest of servers in 2001 can only handle 50–70 RSA exchanges a second. Unfor-
tunately, this isn’t as much progress as you might hope for. Taking a step back to
1994—the year SSL was created—Pentium-class machines from Intel were just becoming
available. This meant the fastest PC class machine you could get was a Pentium running
at 100 MHz. They could perform approximately ten 1,024-bit RSA operations per second.
This isn’t very many, especially for a server that might need to accept a lot of transactions.

To deal with this performance limitation, hybrid encryption schemes were developed
to take advantage of the performance benefit offered by symmetric key encryption and
the security offered by public key encryption.

Let’s get back to Heidi and Steve. Heidi wants to send Steve a message over a public
network, like the Internet, so Steve starts by generating a public/private key pair that are
each 1,024 bits in length. Steve keeps his private key to himself, but advertises the public
key on a billboard in Los Angeles where anyone interested in reading it, can. Heidi then
takes the public key and uses it to encrypt a randomly generated 128-bit number for use
as the symmetric key. She can now send this encrypted 128-bit number back to Steve be-
cause he’s the only one who can decrypt it.

Once Steve receives the random number, he decrypts it with his private key. Now both
Heidi and Steve have the same 128-bit random number. They can use this in conjunction
with a symmetric cipher to start communicating with one another in a secure manner.

So how exactly did Heidi and Steve manage to secure a connection? They did so by
not sending any private information over the network that could be used by a third party
intercepting traffic. Looking at Figure 5-1, you see only two pieces of information cross-
ing the network before the encrypted session begins: the public key and the encrypted
random number. Anyone can have the public key, and the encrypted number is useless
without the private key (which was never sent ov,er the network).

This is the cryptographic foundation necessary for SSL to work.

Certificates
When Heidi wanted to send a message to Steve, she looked for his public key to encrypt a
random number. However, nothing prevents malcontents from intercepting or replacing
Steve’s public key with their own. When Heidi sends back the encrypted random num-
ber, it could be intercepted, the random number decrypted, and secured communication
begun. Meanwhile, Heidi would think she was talking to Steve.

To keep this type of identity theft from occurring, public key certificates were created.
Public key certificates serve as a form of identification for the holder of a public/private key
pair and are issued by a trusted third party. These IDs vouch for the party identified, sim-
ilar to the way a driver’s license identifies a driver. Supposedly, to get a driver’s license, a
prospective driver needs to prove his identity. A Social Security card, credit cards, bills,
another photo ID—something is required to identify the driver to the agency. Once proof
of identity is confirmed (or confirmed enough), the agency will issue a license. This li-
cense is then good throughout the state and can be used to confirm the identity of the
driver beyond his word that he is who he says he is. The guarantee that the ID is accurate
is only as good as the check performed by the issuing agency, of course, but something is
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better than nothing. In the case of Heidi and Steve, Heidi doesn’t have much in the way of
verifying Steve is Steve and not some doppelganger.

Certificates work the same way. In the context of Content Networking, a web-based
vendor might want to acquire a certificate issued by some credible agency, called a Certif-
icate of Authority (CA), such as VeriSign. VeriSign is a real company, with a real web site,
a physical office, and real employees, which offers real services. All of this can be verified.
The goal is for customers to know and trust VeriSign, because VeriSign can verify that a
company exists, is a business, has a real web site, and, perhaps, has a physical office, real
employees, and offers real services—all before issuing that business a certificate. Cus-
tomers, either knowing or at least intuiting this level of service, could then look for
VeriSign’s signature on a certificate, and then know VeriSign believes the company hold-
ing that certificate is who it says it is. If the signature is there, the customer knows she is
truly connecting with the web site she intended to. In the earlier example, Heidi could use
the certificate to verify further that she was talking to Steve—before she exchanges any
messages with him.

Certificates contain all sorts of information, including the organization that issued the
certificate, how long the certificate is good, what person or organization the certificate is be-
ing issued to, and the subject’s public key. Also included is the issuer’s digital signature.

Figure 5-1. Using hybrid cryptography to send messages
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Creating a digital signature takes two steps. The first step is to generate a hash of the
certificate. Hash functions are mathematical meat grinders, which take some body of input
(in this case, the certificate) and run it through some algorithmic functions. The output of
a hash function is a small, fixed-sized number. Because the input is exactly the same, the
output is also always be the same, and any changes to the input string results in a demon-
strably different hash. The second step is to take the hash and encrypt it using the private
key of the issuing company. The only way to decrypt this hash is by using the associated
public key.

The result is a certificate, identifying the company, signed by another company that
vouchsafes for the integrity of that company. Embedded in the certificate is a method for
anyone to verify the contents are accurate—simply decrypt the signature using the public
key of the issuer, run your own hash on the contents of the certificate, and compare it to
the decrypted hash. If a perfect match occurs and you trust the issuer, then you can be rea-
sonably confident the certificate user is who she says she is.

Of course, for this to work, the issuer must share its public key with everyone. This is
done in licensing agreements with the makers of Web browsers, ensuring every browser
ships with a copy of public keys from the major certificate authorities (such as VeriSign).

As a result, when a Web server sends its certificate to a browser, the browser does
three things: first, it computes the hash of the certificate itself. Next, it decrypts the hash
that came with the certificate—because only the certificate authority’s public key can de-
crypt the hash, the browser is certain the issuer did issue the certificate, and, finally, it
compares the two hashes. If they are the same, the Web browser knows the certificate is
from the site it claims to be and the certificate authority has validated the site.

Who Watches the Watchmen: The CA’s Certificates
So far, you have seen that browsers can trust certificates signed by CAs, but how do we
know we can trust the CA?

It turns out that CAs also use certificates to identify themselves. These certificates are
formatted in the same way any other certificate is, but the important part is the issuer and
the subject are one and the same. Even the public keys in the certificate are identical. But,
just because the issuer and subject are identical doesn’t mean a browser should instantly
trust the certificate! Instead, the browser checks its own list of trusted CAs and compares
the public keys in the certificate with what it knows. If the two public keys (the browser’s
local copy and the certificate’s) are identical, then the certificate is okay. The browser gets
its list of public keys from the browser maker. The browser maker gets those public keys
directly from the CAs.

Certificate Hierarchies
Anyone with a public/private key pair can sign a certificate. That’s the easy part. The
hard part is getting everyone else to trust you! To deal with this, certificate hierarchies ex-
ist. A certificate hierarchy is a chain of certificates with each certificate signing the next one



Chapter 5: SSL 119

down. The client asking for the certificate can walk this chain of certificates until it finds a
certificate signed by someone known and trusted.

For example, assume a large, multinational company wants to set up its own CA.
Every browser in the company knows about the root authority, that is, the certificate that
signs all other certificates. As a result, every browser knows the root authority’s public
key. The problem with this company is so many departments exist, it’s simply too cum-
bersome for the central systems administration group to provide certificates to everyone.
Thus, departments are delegated the task of issuing their own certificates. Because all de-
partments don’t know about all other departments, it’s important for each department to
be issued a certificate signed by the root certificate. From this departmental certificate,
other certificates are signed.

When a client in one department contacts a server in another department and asks for
its certificate, it is given a chain of certificates. This chain of certificates starts with the certif-
icate of the server itself as signed by the department certificate. The chain then also con-
tains the certificate issued to the department as signed by the root authority. Walking up
the chain, the browser can compute the hashes and validate that each certificate was in
fact signed by the next certificate up the chain. When the browser finds the department
certificate was signed by the root authority, the browser can stop checking because it
knows about the root authority and already trusts it.

With web sites now needing hundreds of certificates for all their servers, CAs like
Verisign have started issuing a single signed certificate for use by the site. The site can
then sign all the certificates for their individual servers themselves. Each server then
sends the chain of certificates to any requesting browser.

Certificate Signing Requests
The process of getting a certificate is relatively easy. You must begin by generating a cer-
tificate signing request (CSR). How the CSR is generated varies from web server to web
server. In the following “Configuring Your Own SSL Sever” section, you step through
the process of generating a CSR as an example.

A CSR embeds some basic information about you, your company, and contact infor-
mation. It also embeds into it a public key. The Web server, when generating the CSR, will
have also generated a private key to go along with the public key. Be sure the private key
stays in a safe place.

Once you have the CSR in hand, you need to contact a CA such as Verisign
(http://www.verisign.com) so it can sign the certificate. Typically, a minimal charge is
involved for signing a certificate, and the resulting signed certificate is only valid for a
fixed time (usually one year).

With a signed certificate in hand, you then need to install it on your Web server, making
sure the server correctly associates the signed certificate with the appropriate private key.

Figure 5-2 shows the steps taken by CAs, web site owners, and browser makers, so us-
ers can easily validate whether a site’s certificate is authentic and signed by a trusted CA.



CONFIGURING AND INSTALLING YOUR
OWN SSL SERVER

Of course, no better way exists to understand SSL than to install your own server and
play with it. In this section, you step through the process of setting up the Apache web
server with the mod_ssl toolkit and OpenSSL library. Please note, this process assumes
you’re using a Unix-based system (such as Linux, FreeBSD, or Solaris) and are comfort-
able with compiling/installing software on it. As with anything you do for the first time,
avoid production servers during your initial experiments with SSL servers.

NOTE: Apache and OpenSSL prefer being compiled with the GNU C compiler (gcc). If your operat-
ing system doesn’t ship with it (for example, Solaris), you might find it prudent to download and install it.
Solaris users can find precompiled packages at http://www.sunfreeware.com.

Begin by downloading the following packages:

� Apache 1.3.20 (http://httpd.apache.org/dist/httpd)

� OpenSSL 0.9.6b (http://www.openssl.org/source)

� mod_ssl-2.8.4-1.3.20 (http://www.modssl.org/source)

For this discussion, I assume you downloaded them to the /usr/local/src directory.
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Unpacking the Packages
Begin by unpacking the tarballs like so:

[root@ford src]# tar –xvzf openssl-0.9.6b.tar.gz

[root@ford src]# tar –xvzf mod_ssl-2.8.4-1.3.20.tar.gz

This leaves you with three subdirectories: apache_1.3.20, openssl-0.9.6b, and
mod_ssl-2.8.4-1.3.20. Let’s begin with compiling OpenSSL.

Compiling OpenSSL
The folks who developed OpenSSL made it easy to configure. Begin by going into the di-
rectory where the source code is unpacked:

[root@ford src]# cd openssl-0.9.6b

Now, go through the configuration process. This has been completely automated via
a shell script appropriately called config. To run this script, simply type

[root@ford openssl-0.9.6b]# ./config

You’ll see a great deal of output stream by your screen. This is normal. At the end of
the process, you should see a line stating “Configured for system” where system is the
name of the operating system on which you’re performing the configuration. If you get
an error at this point, check to see if your development environment is properly config-
ured and you have the necessary permissions to get to it. For additional information on
handling errors, read the INSTALL file that comes with OpenSSL.

Now, you build OpenSSL with the make tool like so:

[root@ford openssl-0.9.6b]# make

This takes a few minutes to run, depending on the performance of your system and
how busy it is. An unloaded Pentium III at 800 MHz running FreeBSD can compile
OpenSSL in about two minutes.

With OpenSSL built, you’ll want to test it before installing it. To test OpenSSL, simply run

[root@ford openssl-0.9.6b]# make test

This validates that your build is, in fact, working correctly. If any of the tests fail, do a
make distclean, and then try configuring and compiling again. Make sure that, along
each step of the way, you didn’t miss any errors that occurred. You shouldn’t use a build
of OpenSSL if it can’t pass its own tests.

The last step is to install OpenSSL. If you’ve been performing these steps as yourself,
you must su to root at this time. By default, OpenSSL installs itself in /usr/local/ssl. You
don’t have to install OpenSSL, but it’s recommended. The tools that come with OpenSSL
are likely to be handy in the future because many other tools can be SSL-enabled with the
OpenSSL package.
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To install OpenSSL, type

[root@ford openssl-0.9.6b]# make install

Again, a great deal of output will be on the screen as OpenSSL is copied into the right
place. Once this is done, back out of the current directory before you move on to the next step:

[root@ford openssl-0.9.6b]# cd ..

Configuring and Compiling Apache with mod_ssl
The mod_ssl package is a series of patches applied to the Apache web server source code.
Thus, you don’t compile mod_ssl directly. Instead, you apply the patch to Apache, and
then compile Apache.

Thankfully, the developer of mod_ssl has done a terrific job of making this a painless
task. Let’s start with configuring mod_ssl. Begin by moving into the mod_ssl directory.

[root@ford src]# cd mod_ssl-2.8.4-1.3.20

Once there, you configure mod_ssl by telling it where the Apache source code is and
where the OpenSSL libraries are, like so:

–with-apache=../apache_1.3.20 –with-ssl=../openssl-0.9.6b

This not only configures mod_ssl, it also goes on to apply the necessary patches to the
Apache source code. With the patches in place, you can go to the Apache directory and
compile it.

[root@ford mod_ssl-2.8.4-1.3.20]# cd ..

[root@ford src]# cd apache_1.3.20

[root@ford apache_1.3.20]# make

This step might take a few minutes. As with OpenSSL, you see a lot of output fly by
your screen. Unless the procedure errors out (in which case you see a clearly marked er-
ror message indicating what went wrong), don’t worry about the messages.

Creating the Certificate and Installing Apache
At this point, Apache is compiled and ready to be installed. But before you do the actual
installation, you should create a dummy certificate with which you can test your installa-
tion. The mod_ssl folks have also made this a snap—simply type in the following:

[root@ford apache_1.3.20]# make certificate

This will begin a series of prompts regarding your locale, your business, and your
identification. Because this is only a test certificate, don’t worry about being specific at
this point. Let’s step through this one question at a time.

122 Content Del ivery Networks



make[1]: Entering directory '/usr/local/src/apache_1.3.20/src'

SSL Certificate Generation Utility (mkcert.sh)

Copyright (c) 1998-2000 Ralf S. Engelschall, All Rights Reserved.

Generating test certificate signed by Snake Oil CA [TEST]

WARNING: Do not use this for real-life/production systems

The first question (Step 0) asks if you want to use RSA or DSA. For this example, use RSA.

STEP 0: Decide the signature algorithm used for certificate

The generated X.509 CA certificate can contain either

RSA or DSA based ingredients. Select the one you want to use.

Signature Algorithm ((R)SA or (D)SA) [R]: r

The next step generates a private key based on various sources of randomness in
your system.

STEP 1: Generating RSA private key (1024 bit) [server.key]

68731 semi-random bytes loaded

Generating RSA private key, 1024 bit long modulus

.................++++++

.......++++++

e is 65537 (0x10001)

The system is ready to generate a certificate signing request (CSR) based on informa-
tion regarding your contact information. For this, you simply fill out the form with the
prompts you’re given:

STEP 2: Generating X.509 certificate signing request [server.csr]

Using configuration from .mkcert.cfg

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

-----

1. Country Name (2 letter code) [XY]: US

2. State or Province Name (full name) [Snake Desert]:California

3. Locality Name (eg, city) [Snake Town]:San Jose

4. Organization Name (eg, company) [Snake Oil, Ltd]:TestCompany

5. Organizational Unit Name(eg, section) [Webserver Team]:Systems Group

6. Common Name (eg, FQDN) www.snakeoil.dom]:www.xyz.com

7. Email Address (eg, name@FQDN) www@snakeoil.dom]:abc@xyz.com

8. Certificate Validity (days) [365]:365
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In Step 3, Apache automatically signs the certificate signing request using a sample
certificate it shipped with. Note, this certificate isn’t issued by any certificate of authority;
thus, client browsers will be warned they cannot authenticate your identity if you use this
certificate. However, if all you’re looking for is security and you aren’t concerned with
identity (often the case when performing tests), this certificate will do just fine.

STEP 3: Generating X.509 certificate signed by Snake Oil CA [server.crt]

Certificate Version (1 or 3) [3]:3

Signature ok

subject=/C=US/ST=California/L=San Jose/O=TestCompany/OU=Systems

roup/CN=www.xyz.com/Email=abc@xyz.com

Getting CA Private Key

Verify: matching certificate & key modulus

read RSA key

Verify: matching certificate signature

../conf/ssl.crt/server.crt: OK

The final step asks if you want to encrypt your private key with a pass phrase. In an
ideal world, everyone would want to do this. However, doing so requires a human to en-
ter the passphrase every time the Apache web server is started. In the automated world of
Web servers working in colocated data centers, this often isn’t possible. So, for this exam-
ple, don’t encrypt the private key. Note, though, this leaves you somewhat vulnerable. If
someone could break into your sever, they could steal your private key and your server’s
identity with it.

STEP 4: Enrypting RSA private key with a pass phrase for security

in the file [server.key]

The contents of the server.key file (the generated private key) has to be

kept secret. So we strongly recommend you to encrypt the server.key file

with a Triple-DES cipher and a Pass Phrase.

Encrypt the private key now? [Y/n]: n

Warning, you're using an unencrypted RSA private key.

Please notice this fact and do this on your own risk.

Now that you have a certificate, you can install Apache with the command:

[root@ford apache_1.3.20]# make install

This places the installed web server with SSL support in the /usr/local/apache direc-
tory. You can also find your certificates and keys in the /usr/local/apache/conf direc-
tory. The certificates are organized as follows:

/usr/local/apache/conf/ssl.key/server.key This is the PEM-encoded RSA private
key that was created in Step 1 of make
certificate.
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/usr/local/apache/conf/ssl.crt/server.crt This is the PEM-encoded certificate file
sent during the certificate message of an
SSL transaction. It includes your public
key and the information you provided
during Step 2.

/usr/local/apache/conf/ssl.csr/server.csr This is the certificate signing request
(CSR) with the information you filled
out during Step 2. If you decide you want
a real certificate signed by a CA, you can
send in this file.

Using Apache with SSL Support
To start Apache with SSL support, you simply need to run

[root@ford apache_1.3.20]# /usr/local/apache/bin/apachectl startssl

And, shazaam! You have a running SSL-enabled web server! You might want to place
the startup information in your appropriate startup script, so it can automatically start at
boot time.

To stop the server, simply type

[root@ford apache_1.3.20]# /usr/local/apache/bin/apachectl stop

You can place content in the /usr/local/apache/htdocs directory to make it accessi-
ble via Apache.

For additional detail regarding the configuration of the Apache web server, visit its
Web site at http://www.apache.org. Apache has a complete manual online that you can
browse through. Many great books are also available on Apache, such as the Apache Web
Server Administration and e-Commerce Handbook, by Scott Hawkins (Prentice Hall, 2000).
As with any book that deals with practical issues, I recommend a visit to your local book-
store, where you can page through the selections yourself and pick the book that best
speaks to you.

Generating New CSRs
If you’re like me, you probably blew through the make certificate section, filling in bogus
information, just so you could get to the point where you could verify that the installation
worked. So, now you’re stuck: you have a web site with a bogus server key that was used
to sign a bogus certificate-signing request and, thus, you ended up with a bogus certifi-
cate. Oops.

What you probably want to do is create a CSR that can be sent to a CA, like Verisign,
so real clients on the Internet can validate your identity. Well, have no fear, for that sec-
tion is here! Let’s start by moving into the Apache directory:

[root@ford apache_1.3.20]# cd /usr/local/apache
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Knowing Who You Are You must begin by knowing your Fully Qualified Domain Name
(FQDN) to be used for accessing your Web site. This is crucial for the CSR to work cor-
rectly. Assume for this example you want to use www.site.com.

Generating the Key Select five large and relatively random files on your hard disk. These
will be used to seed the random number generator. Let’s refer to them as file1:file2:…:file5,
in the following command.

Generate the key with the following command:

–rand file1:file2:file3:file4:file5 \

–out conf/ssl.key/www.site.com.key

Remember, the private key is the heart of your site’s security. Protect it!

Generating the CSR You can now generate the CSR with the following command:

req –new –key conf/ssl.key/www.site.com.key \

–out conf/ssl.csr/www.site.com.csr

You will be prompted for the attributes of your certificate.

The Follow-Up You’ll find a CSR in the /usr/local/apache/conf/ssl.csr/www.site.com.csr
file that you can submit to Verisign. Visit Verisign’s site for further details on processing the
CSR, payment, and so forth.

Once you receive a signed certificate from Verisign, place it in /usr/local/apache/conf/
ssl.crt/www.site.com.crt. You can then edit the /usr/local/apache/conf/httpd.conf file,
so Apache knows to use these certificates by changing the line that starts with
SSLCertificateFile to read

SSLCertificateFile /usr/local/apache/conf/ssl.crt/www.site.com.crt

You also need to change the key file so Apache uses the correct private/public key
pair. Edit the same httpd.conf file, so the SSLCertificateKeyFile line reads as follows:

SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/www.site.com.key

Restart Apache by running:

[root@ford apache]# /usr/local/apache/bin/apachectl restart

And, now you have your new and shiny Verisign-blessed certificate on your Web server.

SSL: THE PROTOCOL
What is arguably the key aspect to SSL’s success is that it isn’t tied in with any other pro-
tocol. SSL, by design, was meant to be a layer in itself, so any TCP-based protocol could
use it. In essence, this is what is shown in Figure 5-3.
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The most popular application used with SSL is HTT; however, nothing is stopping
anyone from using other applications. Indeed, many protocols have taken to using the
additional security offered by SSL without the difficulty traditionally tied to adding an
encryption to the application protocol itself. Users of Outlook might be pleasantly sur-
prised to see they can even do Post Office Protocol (POP) over SSL, Internet Message Ac-
cess Protocol (IMAP) over SSL, and Simple Mail Transfer Protocol (SMTP) over SSL.

Another key feature of SSL is its cryptographic independence. The protocol itself is
merely a framework for allowing arbitrary hybrid public key/private key and symmet-
ric key cryptosystems to work with one another. Thus, as cryptosystems evolve and im-
prove, SSLs can continue providing the framework necessary, so they can be easily and
widely used.

For the full discussion on the SSL protocol, look at RFC 2246, which can be found at
http://www.rfc-editor.org/rfc/rfc2246.txt.

The remainder of this section uses the output of the ssldump and OpenSSL programs
to help visualize the steps taken by an SSL client and server. If you’re interested in using
these tools, visit http://www.rtfm.com/ssldump and http://www.openssl.org, respec-
tively, to fetch these tools. Note, ssldump and OpenSSL are available in source code form
only. Expect to compile ssldump yourself. Precompiled versions of OpenSSL are gener-
ally findable for most Unix operating systems: most Linux distributions ship with it
precompiled, FreeBSD offers it in the /usr/ports collection, and Solaris versions are
available from the http://www.sunfreeware.com site. The ssldump program also re-
quires the libpcap library to do packet sniffing. The libpcap library comes with most
open-source Unix operating systems as part of the base package. For other operating sys-
tems, visit http://www.tcpdump.org.

SSL Messages
SSL uses a series of messages to communicate state changes, certificates, encrypted keys,
and, of course, data. Each message contains a little information regarding the type of
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Figure 5-3. Relationship among the application, the SSL, and the TCP/IP
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message, and then the content of the message itself. This section begins by examining the
messages and the information contained within them. Once you understand the message
types, you’ll see how they come together to form a complete SSL transaction.

Client Hello
The client hello message is the first message to be sent after a TCP connection establish-
ment. The message is an indicator to the server that it is to begin its negotiation phase.
Within the message, you find the following:

Field Description

Version What is the highest version of SSL the client can support?

Random Number A 256-bit random number the server uses for seeding its
random-number generator.

Session Identifier A 128-bit value representing this session. Subsequent
connections can use the same Session-ID, so the key
exchange doesn’t need to take place.

Cipher Suite A list of what symmetric ciphers can be supported.

Compression Method A list of what compression formats (if any) the client can
support. If enabled, the SSL layer automatically performs
inline compression of the application data.

The version, cipher suite, and compression methods are, in a sense, asking the server
“which of these do you support?” The server hello message sent from the server contains
the answers.

Server Hello
The server hello message is the first message sent from the server to the client. This is an an-
swer to the client hello message that also includes within it:

Field Definition

Version What version of SSL the server agrees to use for
communication. This value is less than or equal to the
version number specified in the client hello message.

Random Number A 256-bit random number sent to the client to seed its
random-number generator.

Session Identifier If the client-specified session identifier is known to the
server, the server responds with the same session identifier.
This confirms both the client and server have communicated
before and performed a key exchange. Because the key
exchange is already done, it needn’t be repeated.



Field Definition

Cipher Suite The client hello message contains a list of possible cipher
suites. From that list, the server picks one and returns it.
The selected suite is used for the asymmetric key
exchange, the cipher, and the hash function type.

Compression Method If the client specified in the client hello that it could do
compression, the server picks one method and returns it.
Note, returning a null method (meaning no compression)
is valid as well.

Server Key Exchange
The server key exchange is the message used for the server to send its public key to the cli-
ent. The format of this message is dictated by the cipher suite selected during the client
hello and server hello messages. Server key exchange doesn’t authenticate the server,
meaning the client can only be certain the communication with the server is secure, but it
cannot validate its identity.
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Generating Random Numbers
Randomness is a tricky thing for computers to do. After all, computers are, by defi-
nition, deterministic in their behavior—if we always know the next thing the com-
puter is going to do, how do we generate a random number?

The answer is we make a best effort by way of pseudo-random numbers, that is,
numbers that simply appear random. In truth, the numbers are numerical series that
eventually begin repeating themselves. To ensure the series never repeats itself, it
takes a seed, a value that can define the behavior of the random-number generator.
The trick is to get a good seed, a value that is truly random itself. If the seed is ran-
dom, then the number generator also shows randomness.

Carefully picking the seed is a much easier task than trying to make a true ran-
dom-number generator. Seeds can be derived from all sorts of analog events that
show randomness. What’s important, however, is that the seed isn’t predictable. As
a result, developers go through great pains to pick good seeds.

The designers of SSL, recognizing this problem, came up with a good idea: have
the peer generate a seed for you. This way, the little random details in a system (such
as the speed at which the disk spins, the duration the system has been running, the
next available process ID, and so forth) can be spread around to others. This keeps
the servers and the clients from picking predictable seeds.
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Server Hello Done
The server hello done message is a simple information message that tells the client the
server is done sending the certificate. Aside from the message type information, the mes-
sage contains no additional information.

Client Key Exchange
After the server sends its public key to the client, the client uses it to encrypt a 128-bit ran-
dom number destined to be used as the symmetric key. The client sends this key in the cli-
ent key exchange message. No additional information is included in the message.

Change Cipher Spec
The change cipher spec message is a statement sent by both the client and the server. The mes-
sage is an indicator to the recipient that all subsequent messages will be encrypted using the
symmetric key. Aside from the message header (indicating it is a ChangeCipherSpec), the
message has no additional data.

Finished
Once the Change Cipher Spec is sent, the sender (whether it be the server or the client)
sends a finished message. The purpose of this message is to verify that the agreed on ci-
pher and keys are correct. The message has three parts: the first is 12 bytes of opaque data,
that is, data sent in clear text. The second part is the same data, except it’s encrypted. The
last part is the hash for the encrypted data. The receiver of the message can then decrypt
the data and compare it to the opaque data sent. If the two data sets match, the client and
server are in agreement over the cipher and keys.

Both the client and the server must send this message, so both sides can validate the
handshake has, in fact, been executed correctly.

Certificate
The certificate message contains only one thing: the certificate of the server. If the certifi-
cate is in a chain, the entire chain of certificates is sent to the client. This message is sent af-
ter the server hello message by the server to enable the client to authenticate the identity
of the server.

Hello Request
After the client and server have negotiated a session, the server may send a hello request
message to ask the client to restart the key negotiation process. The client has the option
to refuse doing the negotiation by returning an alert message. Note, the server might not
send a hello request message if it’s in the middle of a key negotiation.

A server might want to use a hello request message if it suspects the symmetric key
has been compromised or a session has lasted too long using the same key.
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Like the ChangeCipherSpec message, hello request doesn’t have any data in addition
to the message header.

Certificate Request
Sent by the server, the certificate request message is used to request the client-side certificate.
This allows the server to validate the identity of the client. The message contains the certifi-
cate types the server is requesting, the distinguished name of the server (in cleartext), and a
list of acceptable certificate authorities.

Certificate Verify
The certificate verify message is used by the client to respond to the certificate request mes-
sage. Within the verification message, the client includes a hash of the client’s keys, which
the server can use to validate whether the client is who he says he is.

Alert
The alert message is an informational message sent by either the client or the server at any
time to indicate a warning or fatal error. Within the message is a single byte indicating the
type of alert (warning or fatal error) and the alert code that matches a predefined set of
descriptions.

Application Data
The application data message simply indicates that the data within it is destined to the ap-
plication itself and isn’t to be interpreted by the SSL level. The application data is always
encrypted using the agreed on cipher and symmetric key.

An SSL Transaction
Figure 5-4 visualizes the exchange of messages between an SSL client and an SSL server.
Drilling deeper down into the transaction requires the use of the ssldump command.
Similar to the tcpdump command, the ssldump command can understand the SSL mes-
sages that are sent back and forth, and it can display them on your screen. In this section,
you examine an SSL transaction from a web browser to a secure web server.

Let’s begin by running the ssldump command, like so:

[root@ford /root]# ssldump –An port 443 and host 10.2.2.1

The –A parameter tells ssldump to display all the packets, no matter how unimpor-
tant they may be, and the –n parameter tells ssldump not to do DNS resolution. Because
ssldump uses the libpcap library like tcpdump, it can take similar expressions for select-
ing which packets to watch. In this case, we ask it only to monitor those packets on port
443 and where the source or destination IP address is 10.2.2.1. (For more details on the ex-
pressions you can use, visit the tcpdump Web site at http://www.tcpdump.org.)

For readability purposes, I made some minor changes to ssldump’s output.
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Connecting to the server, you see the first packet:

C>S SSLv2 compatible client hello

Version 3.0

cipher suites

SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL2_CK_RC4_EXPORT40

SSL2_CK_RC2_EXPORT40

SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

The first line tells you this is a message from the client to the server (C>S) and that the
message type is a client hello. The version field of the client hello states that the client can
handle up to SSLv3. Finally, you see the list of cipher suites the client can support. Note,
the client doesn’t specify a Session-ID. This is because it doesn’t have one and it wants to
negotiate a new key. Also, note, the client doesn’t specify a compression method. This is
because it doesn’t support any compression methods.

The second packet comes from the server:

S>CV3.0(74)  ServerHello

Version 3.0

random[32]=

3b 89 7d 4d 36 6a c0 d9 ce e9 43 1c b1 b3 f9 f8

b6 b4 77 9f 87 31 80 34 5d 01 cf b2 75 ff b7 05

session_id[32]=

5f e5 52 7a ad 22 17 dc f8 f9 d4 a1 f8 6b 00 90

f2 ea 2b 44 f7 b5 15 8f ea 9a ae 4c 8b 38 c1 ff

cipherSuite         SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

compressionMethod                   NULL

Figure 5-4. The exchange of messages between an SSL client and an SSL server



This packet is the server hello message that must always come after a client hello mes-
sage. The server hello message begins by stating that it, too, can speak SSLv3, meaning
subsequent messages will follow that protocol. If the server could only speak SSLv2, it
would have answered with 2.0 instead. The next piece of information is the 32 bytes (256
bits) of randomness sent to the client. This number is returned to the server later in the
session (during the finish message) in encrypted form, so the server can verify the client
has the correct symmetric key. The next number is the Session-ID assigned to this session.
Subsequent sessions with this server from the same client can use this Session-ID to skip
the key exchange component of this handshake. The server hello ends with the server se-
lecting the cipher suite it wants (SSL_RSA_EXPORT1024_WITH_RC4_56_SHA) and ex-
plicitly saying it won’t use any compression (NULL).

The next step comes from the server. Because this is a web transaction that requires
the server to identify itself, it must send a certificate message and not just a server key ex-
change message. The certificate message looks like this:

S>CV3.0(868) Certificate

certificate[858]=

30 82 03 56 30 82 02 bf a0 03 02 01 02 02 01 02

<842 more bytes snipped for brevity>

As you can see, the only thing in the message is the certificate. Coming in at 858 bytes,
the certificate message is among the larger of the messages that must be sent. The server
finishes up the certificate exchange with a server hello message done like so:

S>CV3.0(4)  ServerHelloDone

With the certificate in hand, the client can verify the server is who it claims to be and
pull out the server’s public key (located in the certificate). Using the public key, the client
sends a client key exchange message containing a random number encrypted using the
server’s public key to be used for the RC4 cipher agreed on in the server hello message.
The client key exchange method looks like this:

C>SV3.0(132) ClientKeyExchange

EncryptedPreMasterSecret[128]=

1b 4c 73 28 6e 33 ce cd 37 b6 81 12 bc 4f 61 0b

<112 bytes snipped for brevity>

As you can see, the only piece of information contained within the client key ex-
change message is the encrypted key.

The client now sends its last unencrypted message: change cipher spec. The message
contains no information within it and looks like this:

C>SV3.0(1)  ChangeCipherSpec

To verify the encryption is working correctly, the client sends the last packet of the ne-
gotiation encrypted: the finished message. Because this message is encrypted, ssldump
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cannot look inside it to see what’s there, so it prints “Handshake” instead. In other words,
the encryption is doing what it’s supposed to do: keeping packet sniffers from being able
to see the contents of messages.

The last handshake message from the client looks like this:

C>SV3.0(60)  Handshake

Within these finished messages are encrypted values of the random number sent by
the server during the server hello phase. Because both sides should have the correct sym-
metric key at this time, they should both be able to decrypt the information and validate
that they do, in fact, have the correct key.

The sever now does exactly the same thing: it sends a change cipher spec message to
the client to tell it that it’s ready to start sending data encrypted using the agreed on key.
The change cipher spec message looks like:

S>CV3.0(1)  ChangeCipherSpec

The server then tests this with its own finished message, which it sends encrypted
with the agreed on key; thus, ssldump only sees a handshake message, like so:

S>CV3.0(60)  Handshake

From here on, the client and server send encrypted data destined to the application layer.

Ending SSL Communications
No required process exists for ending an SSL transaction other than simply closing the
TCP connection. The client and server can explicitly send a message indicating it’s done
before closing the TCP connection via an alert message. This method is used to protect
truncation attacks, in which an attacker forces a connection to close prematurely. One can
visualize the significance of this by imagining what the ramifications would be if a sender
couldn’t send the second phrase: “Please sell my stock if, and only if, it’s trading above
$70.” The sender of the message would be one grumpy fellow if the stock were trading at
$5 and the second part of the message didn’t make it through.

In HTTP, this is rarely a concern because HTTP explicitly states the size of the mes-
sage being sent before sending it in the case of static content, and uses chunking in the
case of dynamic content. Thus, in the example session documented in the previous sec-
tion, you only see the server send an alert message like so:

C>S  TCP FIN

S>CV3.0(22)  Alert

S>C  TCP FIN

The Second SSL Session
As mentioned earlier, SSL doesn’t need to go through a key exchange if the server and cli-
ent already have the shared secret (the symmetric key) in their local caches. Let’s step
through a connection where this is the case.



The SSL session begins with the client hello message, like so:

C>SV3.0(85)  ClientHello

Version 3.0

random[32]=

6f d1 e9 dc a7 06 db f9 ed c0 cc 70 b3 bd e0 df

37 19 cd 22 00 57 da e5 3a 3a ee f7 7c 32 a7 96

Session-ID [32]=

5f e5 52 7a ad 22 17 dc f8 f9 d4 a1 f8 6b 00 90

f2 ea 2b 44 f7 b5 15 8f ea 9a ae 4c 8b 38 c1 ff

cipher suites

SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

compression methods

NULL

Notice, this time you see some information that wasn’t seen the first time the client
spoke with the server. First, you see the client wants to share some randomness with the
server. This randomness is similar to the server-side randomness sent during the first ses-
sion—it’s encrypted and sent back during the finish message, so the client can verify that
the server does, in fact, have the correct symmetric key in its cache and isn’t an imposter.
The next tidbit you see is the Session-ID. This is the number the server sent back during
the server hello during the first transaction to indicate it was caching the symmetric key.
By sending this Session-ID back, the client is asking the server to recall this piece of infor-
mation, so they don’t have to do a certificate or client key exchange again.

Similar to the first client hello, the cipher suites available to the server to pick from are
listed, as are the available compression methods.

The next packet is the server hello, as you see here:

S>CV3.0(74) ServerHello

Version 3.0

random[32]=

3b 89 7d 4f a1 5d ec ee be b9 ec 05 e1 0d e2 45

66 4a d4 61 c7 b9 5c f2 68 ec d0 fd 2e a0 5b f9

session_id[32]=

5f e5 52 7a ad 22 17 dc f8 f9 d4 a1 f8 6b 00 90

f2 ea 2b 44 f7 b5 15 8f ea 9a ae 4c 8b 38 c1 ff

cipherSuite         SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

compressionMethod                   NULL

The server hello includes with it a random number to be used for verification of the cli-
ent’s cached symmetric key, the same Session-ID the client sent, thus telling the client it
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does have the symmetric key cached, the cipher suite it wants to use (as selected from the
list provided by the client), and the compression method for that session (no compression).

So far, the client has told the server it has a cached symmetric key, and the server has
responded with the statement of “yes, so do I.” This means the server doesn’t need to send
a certificate again and the client doesn’t need to send a random number encrypted with
the server’s public key. Because all these message can be skipped, the next message you
see during the second SSL connection is the change cipher spec message from the server,
also followed by a finished message from the server.

S>CV3.0(1)  ChangeCipherSpec

S>CV3.0(60)  Handshake

The change cipher spec message tells the client that, from now on, all the packets from
the server will be encrypted. To validate that the encryption is working as expected, the
random number in the client hello is hashed, encrypted using the symmetric key, and
sent back to the client in the finished message (shown only as a handshake because
ssldump cannot decrypt it).

The client, having validated that the server does have the correct symmetric cipher,
does the same thing back:

C>SV3.0(1)  ChangeCipherSpec

C>SV3.0(60)  Handshake

Both the client and the server are now agreed on two things: they are done with the
SSL handshake, and they both have the correct symmetric key. With this agreement in
hand, application data can begin to flow between them, and it can be correctly en-
crypted/decrypted.

Once the session is done, they can close their sessions using the same method as de-
scribed in the “Ending SSL Communications” section earlier in this chapter.

ACCELERATING SSL
As noted several times in this chapter, cryptographic calculations are slow. The reasons
are somewhat obvious: the mathematics is complex and the raw size of the numbers to be
computed are large. To solve this problem, specialized hardware capable of performing
cryptographic functions (such as 1,024-bit RSA) much faster than traditional CPUs have
become increasingly present.

This section examines how they work and where they fit into the scheme of your
Web servers.

How SSL Acceleration Works
When engineers noticed that 32-bit (and even 64-bit) CPUs were woefully slow at pro-
cessing the math required to perform cryptographic functions, they solved the problem
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by creating specialized processors that did nothing but cryptographic functions. Capable
of both asymmetric and symmetric cryptographic functions, these chips could offload a
significant amount of work placed on the main CPU. The result is a server that can keep
up with the secure load demanded of it, while it can still effectively run the applications
necessary to make it useful.

Turning these chips into usable features for Web servers required they be presented
in a more friendly form factor. This has led to the development of PCI cards, which can be
placed directly into Web servers and into proxies that take care of the encryption and de-
cryption of packets before they even arrive at the server.

PCI Cryptographic Cards
PCI cryptographic cards, such as those that come from iVea (aka Rainbow Technologies,
http://www.ivea.com), nCipher (http://www.ncipher.com), and Broadcom (http://
www.broadcom.com) are designed to plug directly into web servers. They require the
server software be able to communicate directly with them, so they can offload the cryp-
tographic work to them.

From a systems administrator point of view, this implies needing to shut down your
server, perform the install, and reconfigure the server. Although the engineers at these
companies have made an effort to simplify the process as much as possible, it still re-
quires work.

On the plus side, most of the common web servers have support for these cards. IIS
under Windows is supported by all of the previously mentioned cards, as is Apache un-
der Unix. If you’re using a different web server, check with the manufacturer before com-
mitting to the purchase. Figure 5-5 shows what your network topology would look like
with PCI-based SSL accelerators in place.

Watching an HTTPS request in progress enables us to see how the web server can use
the card effectively. Immediately following the client key exchange, the Web server must
decrypt the symmetric key using the private key. In a traditional server, the decryption is
done in software. With a PCI card, however, the web server sends a message to the card
with the symmetric key to be deciphered and the private key to decipher it with. The PCI
card performs the computation and sends an interrupt back to the system indicating its
completion. While the PCI card churns through the math, the web server is free to handle
other outstanding tasks, including processing other connections. The result of this will be
the web server being able to accept an SSL connection substantially faster than without
the PCI card.

But wait, there’s more! Along with being able to do the asymmetric cryptographic func-
tions, these cards can also perform symmetric key cryptography. Thus, as the web server
receives encrypted packets from the client, it’s possible for the PCI card to be handed the
encrypted packet for decryption. Most web servers handle the bulk encryption and de-
cryption themselves, however, because it’s often faster for them to do the work than it is to
wait for the packet to be transferred to the PCI card and then brought back.
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Here are some PCI cards to look for:

� Compaq Computer, AXL300 Accelerator PCI Card
http://www.compaq.com

� iVea Technologies, CryptoSwift 600
http://www.ivea.com

� nCipher, nForce 300 Secure e-Commerce Accelerator
http://www.ncipher.com

Proxy-Based SSL Accelerators
Proxy-based SSL accelerators work as a point network device that resides in front of your
Web server. Typically used in conjunction with server load balancers, the accelerators are
configured so they only receive port 443 (SSL) traffic, while port 80 (non-SSL) traffic is
passed directly to the Web servers.

The SSL accelerators accept connections from the client and use the special crypto-
graphic accelerating hardware within them to speed up the process. With the session
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Figure 5-5. A Web site’s network topology when PCI-based SSL accelerators are deployed



accepted, incoming HTTP requests are decrypted, and then passed on in cleartext to the
Web server. The Web server seeing the request originate from the SSL accelerator, and
not the actual client, sends its HTTP response back to the accelerator, which then per-
forms encryption before passing the packet back to the client. Figure 5-6 shows the re-
sulting network topology when using proxy-based SSL accelerators.

A significant benefit to proxy-based SSL accelerators is they are a much more plug-
and-play solution for your network than are PCI-based solutions. Web servers need mini-
mal, if any, reconfiguration, and the SSL accelerator can be dropped inline the packet
path with minimal to no interruption in service.

Another significant win with the proxy architecture is that HTTP requests can be de-
crypted and funneled back into the load balancer, so layer 7 load balancing (such as URL-
and cookie-based) can be done. This is in sharp contrast to only layer 4 load balancing
that must be used for sites wanting the servers to perform SSL on the server itself. Some
server load balancers have even taken to integrating SSL accelerators, thus offering tight
integration. Figure 5-7 shows what a network topology would look like with such a de-
vice. SSL acceleration and offloading is discussed in more depth in Chapter 13.
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Figure 5-6. A Web site’s network topology when using a proxy-based SSL accelerator



Here are some proxy-based SSL accelerators to look for:

� ClickArray Networks, Array 1000. Integrated N+1 clustering, Web security,
server load balancing, global-server load balancing, reverse proxy cache, SSL
acceleration, CDN content rewriter
http://www.clickarray.com

� Nortel Networks (formally Alteon Web Systems), iSD-SSL 2.0. SSL acceleration
http://www.alteonwebsystems.com

� CacheFlow, Server Accelerator 7000. Integrated 1+1 clustering, reverse proxy
cache, SSL accelerator, Akamaizer
http://www.cacheflow.com

� Intel, NetStructure 7115 e-Commerece Accelerator. SSL accelerator
http://www.intel.com

� SonicWall, SSL Accelerator, SSL accelerator
http://www.sonicwall.com
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Figure 5-7. A Web site’s network topology when using an integrated server load balancer and SSL
accelerator



SUMMARY
In this chapter you learned the concepts behind cryptography, the Secure Sockets Layer
(SSL) framework, and how SSL applies into real networks. Specifically, you learned:

� Symmetric key cryptography has limitations; however, it is very fast for bulk
data encryption.

� Public key cryptography is secure, but it requires a great deal of CPU power.

� Hybrid solutions that use public key cryptography to exchange the key used
in symmetric key cryptography appear the most effective way of providing
high security.

� Certificates are public keys plus identification information that have a hash
encrypted with the Certificate Authority’s (CA) private key. Clients can
validate a server by decrypting the hash using the CA’s public key, and then
comparing the hash against a hash computed on the server’s public key and
identification information.

� SSL itself is only a framework for other cryptographic functions.

� Setting up an SSL session requires a complex handshake where public keys are
exchanged and encrypted symmetric keys are exchanged.

� Resuming an SSL session requires much less computational work because the
server can use Session ID caching.

� SSL acceleration works by offloading the intense mathematics onto a special
chip dedicated to performing these equations quickly.

� SSL accelerators come in two form factors: PCI cards and proxy-based SSL
accelerators.

As mentioned at the beginning of the chapter, reading this won’t make you a cryptog-
raphy expert. If you’re interested in becoming one, check out the following:

� SSL and TLS Essentials: Securing the Web, by Stephen A. Thomas (John Wiley &
Sons, 2000).

� The TLS Protocol Version 1.0 [RFC 2246], by T. Dierks and C. Allen (The Internet
Engineering Task Force, January 1999, http://www.ietf.org).

� Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd Edition, by
Bruce Schneier (John Wiley & Sons, 1995).

For the truly curious, you can examine the source code of a complete implementation
of the SSL protocol at the OpenSSL project at http://www.openssl.org.
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REVIEW QUESTIONS
1. What are the differences between asymmetric key cryptography and

symmetric key cryptography?

Asymmetric key cryptography does not require a shared secret between
those communicating, whereas symmetric does. Asymmetric is also much
more difficult to break than symmetric; however, this comes at the expense
of being much more complex and thus slower. In SSL, asymmetric key
cryptography is used for the sole purpose of sending a symmetric key in
a secure manner.

2. How does key size affect the quality of encryption? Give an example.

As key size grows, it becomes much more difficult to break a message.
For example, in the case where numbers are used as keys, the addition
of an additional bit (in the binary representation of the number) doubles
the number of possible keys that exist.

3. Explain the relationship among a Web site, a certificate of authority, a
browser vendor, and a browser user. Why does this relationship work?

A Web site delivers the content. In SSL, it sends the site certificate to the
client. The certificate of authority is the person who has signed the Web
site’s certificate using his or her private key. The certificate of authority then
gives that public key to the browser vendor (such as Microsoft or Netscape)
for inclusion in his own Web browser (such as Internet Explorer or Mozilla).
When the browser user receives the certificate from the Web site, he can
decrypt the certificate using the public key issued by the certificate of
authority. If the resulting key certificate is valid, the decryption will work
and the user will be able to use asymmetric key cryptography to send a
shared secret for symmetric key cryptography. This relationship works
because the user trusts the browser vendor and the browser vendor trusts
the certificate of authority. The certificate of authority validates a Web site’s
authenticity and thus extends the trust to the Web site. A user is then able to
validate whether the Web site is trusted by the certificate of authority, and if
it is, the user can then trust the Web site.

4. What is the purpose of the random number in the client hello and server
hello messages? If SSL didn’t use these random numbers, explain how a
client could be tricked into communicating with an imposter.

The random number is used to validate that both sides have the correct
symmetric cipher. When each side sends a random number, they know what
the encrypted form should look like. Later in the SSL handshake, the number
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is sent back in encrypted form. Each side is able to then validate that the number
was encrypted with the key they believe is shared. If SSL does not use these
random numbers, it may fall prey to a man-in-the-middle attack, where
someone is pretending to be a server. This happens when the client hello
message has a session-id value indicating that it believes it has a cached copy of
the shared symmetric key. If an imposter (posing as the server) were in place
who does not really have the symmetric key but is looking to steal information,
it would return the same session-id that the client sent to it. Because the client
requires that the server then return the random number sent in encrypted form,
the client can immediately validate whether the imposter has the shared secret
or doesn’t. Thus, an imposter wouldn’t make it past the SSL handshake, let alone
get to the point where the client may send valuable data!

5. Explain the differences in the server key exchange message and the
certificate message. Where would each be used and why?

The server key message is used for SSL communication where the client is
looking for secure communication but does not need to validate the person it
is talking to. A certificate message passes along a complete certificate proving
identity as well, a feature that is necessary in e-commerce so that the client
can validate whether the server is who it claims to be.
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OBJECTIVES
� Discuss the history and function of DNS

� Become familiar with the operation of DNS

� Identify specific Content Networking uses for DNS

� Understand Name management and how DNS uses it

� Identify problems with DNS network design

In terms of the importance of current technologies, the Domain Name System (DNS)
is one of the most important and useful subjects to know with respect to Content Net-
working. DNS can either be your friend, to be used to allow flexible and scaleable content
deployment growth, or your enemy, causing nearly untraceable performance slow-
downs and outages. As such, knowing at least the basics of DNS and being able to trace
the critical components to evaluate any performance problems is important.

DNS, in its most common use, is used to resolve a name to some IP address. Given a
name, say, www.brandsberg.net, DNS is used to resolve that to, say, 216.169.108.50. In
more general terms, DNS is a distributed database that stores records of various types. The
type of record that would allow the correlation from www.brandsberg.net to 216.169.108.50
would be an A or address record. Other types of records used are nameserver (NS) records,
mail exchange (MX) records, and canonical name (CNAME) records. An SOA record indi-
cates, among other things, this server is authoritative for a domain (more on this later). Also,
other types of resource records exist (in general, known as RRs) although, in general practice,
these other record types are only used in situations that don’t generally impact a web site or
Content Networking.

HISTORY
To understand why DNS works the way it currently does, you need to understand the
history of how and why it was deployed. The original ARPAnet was conceived as a dis-
tributed network that made use of numeric addresses to label nodes. Initially, few
enough nodes were in the network that a simple text-based host configuration file was
useable to match each number with some memorable name. While this worked well with
a smaller network, as nodes were added, maintaining it became an administrative night-
mare. In addition, at the time, no standard way existed to handle mailboxes or other net-
work configuration information, so a standard system was needed for querying various
pieces of information. On top of this, each piece of information needed to be managed by
different individuals. The goal wasn’t to manage a single central store of information but,
instead, to distribute the storage and management of the data into various domains.
Thus, DNS was born.

The initial formal description of how DNS works was prepared as RFC 882 and, while
out of date technically, is an interesting reference to read to understand how and why
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DNS works as it does, and to understand the legacy aspects of supporting DNS. The current
standard for the operation of DNS is STD 13, “Domain Names - Concepts And Facilities,”
prepared in 1987. While this standard has been updated by many Request for Comments
(RFC), Best Current Practices (BCP), and other documents, STD 13 is still considered the
“standard” for DNS operation and lays the groundwork for DNS as we know it. Table 6-1
lists all the current RFCs that update STD 13 and their titles. In most cases, these updates
provide for additional resources records, clarifications needed for interoperability, or minor
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RFC Number RFC Title Description

RFC1101 DNS encoding of
network names and
other types

Describes address to name
encoding for reverse DNS queries

RFC1183 New DNS RR Definitions Experimental resource record
(RR) definitions

RFC1348 DNS NSAP RRs Experimental resource record
definitions

RFC1876 A Means for Expressing
Location Information
in the Domain Name
System

Experimental RR definitions

RFC1982 Serial Number
Arithmetic

Defining how to compare DNS SOA
serial numbers for versioning

RFC1995 Incremental Zone
Transfer in DNS

Describes IXFRs implemented in
modern DNS servers

RFC1996 A Mechanism for Prompt
Notification of Zone
Changes (DNS NOTIFY)

Describes the Notify command,
in general use

RFC2136 Dynamic Updates in the
Domain Name System
(DNS UPDATE)

Describes dynamic updating of
DNS information from external
sources, such as a server assigned
its IP address via DHCP

RFC2181 Clarifications to the
DNS Specification

Updates STD 13 and others with
important clarifications for
compatibility and security
considerations

Table 6-1. Revisions, Updates, and Extensions to STD 13
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modifications needed for security purposes. Also included in the table is a brief note
describing what is contained in the RFC and any important details. RFCs that impact the
functions of DNS that are in widespread use or implementation are boldfaced.

HOW DNS WORKS
For the purposes of this discussion, only the basics of DNS are covered to the extent they
are needed for general content networking tasks. For an administrator who needs to
manage a large number of domains, more extensive training and DNS-oriented texts
should be considered. This tutorial on DNS is by no means exhaustive, but does cover
some subtle points whose importance can’t be underestimated for Content Networking.

General Operational Overview
Consider a person typing http://www.brandsberg.net in a web browser. (Note, terms in
italics are defined in the section following the overview.) The first thing that occurs is the
web browser realizes it needs to know the IP address of the host attempting to be accessed

RFC Number RFC Title Description

RFC2308 Negative Caching of
DNS Queries (DNS
NCACHE)

Modifies STD 13 to require negative
caching, clarifies how such caching
is to be performed, and under what
situations

RFC2535 Domain Name System
Security Extensions

Security for DNS, supported in
most DNS implementations, but not
generally used at this time

RFC2845 Secret Key Transaction
Authentication for DNS
(TSIG)

Update on secure DNS, although
not currently in wide use

RFC3007 Secure Domain Name
System (DNS) Dynamic
Update

Updates to Dynamic updates to
provide enhanced security

RFC3008 Domain Name System
Security (DNSSEC)
Signing Authority

Table 6-1. Revisions, Updates, and Extensions to STD 13 (continued)



to know who to send the request to, so it generates a request to the system’s resolver library.
The resolver library then takes the request, generates a DNS request, and forwards it to its
configured resolving nameserver. This nameserver is responsible for then performing all
further DNS requests to honor the client’s request. In the case of brandsberg.net, assuming
it has never resolved the address before, it uses its configuration files to determine what
root nameserver to forward the request to first. This nameserver won’t know the address of
www.brandsberg.net, but it does know a list of servers that are authoritative for the domain
net. These servers are known as the Top Level Domain (TLD) nameservers. The list of TLDs
is returned to the resolving nameserver, which then uses the list for the next query. The
request is then sent to one of the TLD nameservers, which again won’t know the IP ad-
dress of www.brandsberg.net, but does know of a server that knows the answer. This final
server is appropriately known as an authoritative nameserver. The resolving nameserver
receives this information back from the TLD nameserver and generates a third request to
the authoritative nameserver for the “final” answer. The authoritative nameserver re-
sponds with this final answer, which is then forwarded to the resolver library on the client’s
computer, which, in turn, forwards the requested information to the original web browser.
Once the web browser has the IP address for www.brandsberg.net, it is then able to estab-
lish a TCP connection with that address and retrieve the appropriate content.

Detailed Operational Overview
First in line from the application is the resolver library. On every client that uses DNS is a
piece of code that could tentatively be called part of the operating system (OS), called the
resolver library, which links applications to the global Internet nameserver network. An
application calls on the library to resolve a name for the application and the library then
makes use of whatever resources are available to it to perform that task. In some OSes, the
resolver library makes use of resources outside DNS, such as host files or, optionally, NIS.
Usually, however, DNS is the sole resource the resolver uses. In environments that make
use of other resources, these other mechanisms are generally configured in a file called
/etc/nsswitch.conf. In UNIX, the resolver library uses a configuration file of /etc/resolv.conf
to determine how to perform DNS lookups. Here’s a simple resolv.conf file:

search brandsberg.net

nameserver  216.169.97.10

nameserver 216.169.96.10

What this says is first, if necessary, append the name brandsberg.net behind any
name that needs resolution if the name given didn’t resolve exactly as is. Second, make
use of the DNS server at 216.169.97.10 for any resolution requests and, if that server fails
to respond, use 216.169.96.10. Usually, any given network or ISP has one or more
nameservers that act as a resolving nameserver for any number of clients. Any number of
nameserver lines in the resolution file can be used to provide redundancy for resolution
requests. If the first one fails, however, it tends to slow down all the requests as they’re
tried in order on every request.
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Next in line is the resolving nameserver. In any given resolution request, the resolving
nameserver manages the request and has the most real work to do, while the resolver li-
brary simply waits for an answer (until it times out) before trying to do anything else. In an
ideal situation, the resolving nameserver is connected as closely as possible to the client re-
questing the information to minimize the response time, as well as to allow DNS-based
geographic load balancing to operate (to be described in Chapter 11). In reality, the re-
solving nameserver could be (and many times is) across the country from the client.

The resolving nameserver performs what’s known as a recursive request, meaning it
requests information from other servers (the root servers in general) and if that targeted
server doesn’t have the exact answer, it uses what information can be gained to continue
the process until the request from the client can be resolved. In a typical scenario, this ac-
counts for about two requests: one to a TLD nameserver and one to an authoritative
nameserver. In complex configurations, though, the resolving nameserver could be
forced to perform four or more resolution requests, although this tends to be rare and
configurations that require this are discouraged.

Typically, next in line from the resolving nameserver are root nameservers. These
servers act as the root of the DNS database tree and are all considered equal in their capa-
bility to perform a task. The list of root nameservers is hard-coded in the configuration of
each resolving nameserver performing recursive requests and tends to get updated only
rarely on individual servers. While this could cause a problem over time, it doesn’t, be-
cause this list is used strictly to download a new list of root nameservers, so only one
needs to be accurate for the system to function. Furthermore, the code used in resolving
nameservers tends to avoid bad root nameservers if they have a bad list and uses only
good nameservers once up and running.

A root nameserver acts as the server in charge of delegating requests to the TLD
nameservers. As an example, if you type in the command nslookup -type=ns. on a UNIX
machine (or any computer with nslookup installed), you’ll probably get back an answer
that looks like this:

Non-authoritative answer:

(root)  nameserver = C.ROOT-SERVERS.NET

(root)  nameserver = H.ROOT-SERVERS.NET

(root)  nameserver = A.ROOT-SERVERS.NET

(root)  nameserver = D.ROOT-SERVERS.NET

(root)  nameserver = E.ROOT-SERVERS.NET

(root)  nameserver = I.ROOT-SERVERS.NET

(root)  nameserver = M.ROOT-SERVERS.NET

(root)  nameserver = L.ROOT-SERVERS.NET

(root)  nameserver = K.ROOT-SERVERS.NET

(root)  nameserver = J.ROOT-SERVERS.NET

(root)  nameserver = B.ROOT-SERVERS.NET

(root)  nameserver = F.ROOT-SERVERS.NET

(root)  nameserver = G.ROOT-SERVERS.NET
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Authoritative answers can be found from:

C.ROOT-SERVERS.NET      internet address = 192.33.4.12

H.ROOT-SERVERS.NET      internet address = 128.63.2.53

A.ROOT-SERVERS.NET      internet address = 198.41.0.4

D.ROOT-SERVERS.NET      internet address = 128.8.10.90

E.ROOT-SERVERS.NET      internet address = 192.203.230.10

I.ROOT-SERVERS.NET      internet address = 192.36.148.17

M.ROOT-SERVERS.NET      internet address = 202.12.27.33

L.ROOT-SERVERS.NET      internet address = 198.32.64.12

K.ROOT-SERVERS.NET      internet address = 193.0.14.129

J.ROOT-SERVERS.NET      internet address = 198.41.0.10

B.ROOT-SERVERS.NET      internet address = 128.9.0.107

F.ROOT-SERVERS.NET      internet address = 192.5.5.241

G.ROOT-SERVERS.NET      internet address = 192.112.36.4

Each of these servers can answer requests for any domain; however, the resulting an-
swer will simply be an answer that directs you to a different server, based on how it’s con-
figured. As an example, directing a request to the previous E.ROOT-SERVERS.NET
address for www.brandsberg.net results in the following:

$ nslookup www.brandsberg.net. e.root-servers.net

Server:  E.ROOT-SERVERS.NET

Address:  192.203.230.10

Name:    www.brandsberg.net

Served by:

- A.GTLD-SERVERS.NET

192.5.6.30

com

- G.GTLD-SERVERS.NET

198.41.3.101

com

- C.GTLD-SERVERS.NET

192.26.92.30

com

- I.GTLD-SERVERS.NET

192.36.144.133

com

- B.GTLD-SERVERS.NET

203.181.106.5

com

- D.GTLD-SERVERS.NET

192.31.80.30

com
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- L.GTLD-SERVERS.NET

192.41.162.30

com

- F.GTLD-SERVERS.NET

192.35.51.30

com

- J.GTLD-SERVERS.NET

210.132.100.101

com

- K.GTLD-SERVERS.NET

213.177.194.5

com

This is a list of pointers to the TLD servers that are authoritative for the domain net.
Any further information needs to be obtained from them for any net domain. Normally,
the resolving nameserver already has this information, so this set of steps only happens
occasionally when the data times out.

Next, the resolving nameserver queries one of the TLD nameservers provided by the
root nameservers. For the purposes of this example, let’s assume A.GTLD-SERVERS.NET
is used. A query to that server returns the following:

> nslookup www.brandsberg.net a.gtld-servers.net

Server:  A.GTLD-SERVERS.net

Address:  192.5.6.30

Name:    www.brandsberg.net

Served by:

- UDNS1.ULTRADNS.NET

204.69.234.1

BRANDSBERG.NET

- UDNS2.ULTRADNS.NET

204.74.101.1

BRANDSBERG.NET

This means the two servers are authoritative for the domain brandsberg.net and, as
such, the resolving nameserver now needs to ask them for information about any names
within the domain, such as www. Such a query results in the following:

> nslookup www.brandsberg.net. Udns1.ultradns.net

Server:  udns1.ultradns.net

Address:  204.69.234.1

Name:    www.brandsberg.net

Address:  216.169.108.50
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The address listed (216.169.108.50) is returned by the resolving nameserver to the cli-
ent computer and the resolver library returns the address to the application, which then
initiates a system call to make a TCP connection to that address. To determine the impact
of a DNS setup on performance, consider how fast a packet can traverse the Internet. As a
general rule of thumb, consider that Internet traffic can make it from the East Coast to the
West Coast and back in about 90–110 ms, from the East Coast to the United Kingdom in
about 80–90ms, and from the East Coast to Japan in about 185–220 ms. As a comparison, it
isn’t unusual for a 56K modem to introduce about 110–150ms round-trip times, and satel-
lite Internet access to introduce about 700–1500ms round-trip times. As a good rule of
thumb, if most of the users are coming in from the United States, you can use about
40–50ms round-trip times to the DNS server as a good start. Now, with this, let’s analyze
the time it should take to resolve www.brandsberg.net, assuming nameservers were at
only one location to resolve the name:

1. The request has to travel from the client to the resolving nameserver. Assuming
they’re on a modem dial-up, add 55ms for the modem and 25ms to get to the
resolving nameserver (half the round-trip time of each).

2. The root nameservers are configured on the resolving nameserver so,
effectively, the lookup of the root nameservers is free.

3. The TLD nameservers are used frequently enough that, in general, the
information is cached in each resolving nameserver so, again, this request is
effectively free on any given request.

4. The nameservers to resolve individual domains in general aren’t cached except
for some popular domains, so the round-trip time between any given resolving
nameserver and the domain’s authoritative nameserver must be considered.
Let’s add 50ms for this request (full round trip).

5. The answer has to be sent back to the client, for another 55ms+25ms.

The total of this is about 210ms or 1/5th of a second, which isn’t bad, although means
exist by which this number can be reduced with proper planning and network organiza-
tion. To demonstrate the impact of DNS further, consider how long it takes for the typical
initial HTML page load to occur, assuming 14K of data with fully acknowledged TCP
packets. The initial TCP handshake would take about 240ms, and then 10 data packets at
160ms each, and a FIN/RST (not counted). For this transaction, the total would be about
1840ms. The DNS lookup would add a little over 10 percent to this, which is dead time be-
fore anything showed up on the page. This might not seem like a significant amount, but
it’s also the best case. Consider what happens if a single packet gets dropped in this trans-
action: disaster, from a performance point of view. If the packet from the authoritative
DNS server is dropped going to the resolving DNS server, a time-out generally occurs,
and any additional nameservers are queried, extending the resolution time significantly
at best or resulting in an error on the user’s browser at worst.
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Later in this chapter, optimization techniques are presented that demonstrate some of
the aspects of the common DNS resolvers that aren’t documented in RFCs, but can be ex-
ploited to design a good content network more efficiently.

BASIC DNS CONFIGURATION
Before getting into some of the advanced tricks you can play with DNS, an overview of
how to configure a DNS server to handle a basic domain is probably a good idea. In this
first example, consider that the domain somedomain.com needs to be set up. Within the
domain, they’ll have the following: a mail server (mail.somedomain.com) that should re-
ceive all the mail destined for anything in somedomain.com, two servers that act as
nameservers (running BIND 8.2.3, a DNS server software package), a web server, and
three machines, named pc1, pc2, and pc3.

The first configuration file is the named.conf, which provides the basic configuration
for named (pronounced: name-d, where the d stands for daemon, which is UNIX for “server
software”) or the Berkley Internet Name Daemon (BIND), which is the software used for
all configuration examples. Here’s a basic named.conf for the domain somedomain.com:

options {

directory "/var/named";

listen-on { 192.168.0.10; 127.0.0.1; };

query-source address 192.168.0.10 port 53;

pid-file "/var/run/named.pid";

};

zone "." {

type hint;

file "named.ca";

};

zone "somedomain.com" {

type master;

file "somedomain.com";

};

The options section allows settings that operate daemon-wide to be set, such as the
default directory it will use to search for additional configuration files (the directory di-
rective), what IP addresses to listen on (the listen-on directive), and what IP address to
use as its primary source IP (the query-source directive). Many other options are avail-
able, most of which aren’t discussed, although several are detailed later in this chapter as
appropriate to document how the code works.

For each domain (and additional subdomains) for which a nameserver is authoritative,
a zone statement is configured, as shown previously. The zone “.” is special, and is listed as
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a type hint, meaning it’s used only to anchor the nameserver into the root nameserver
mesh. The type master specifies the nameserver is truly authoritative for that domain and
the configuration file specified contains all the records for that particular domain.

The second configuration file for this example would be named.ca, which can be re-
trieved from ftp://rs.intnernic.net/domain/named.ca. This file contains a list of the cur-
rent root nameservers. If a bad or outdated entry is within this list, then it’s effectively
ignored because all it takes is one good root nameserver to ensure proper operation of a
nameserver. The list will be searched and, once one good root nameserver is found,
BIND uses that nameserver to retrieve a list of current root nameservers to update its in-
ternal information, as shown in the following tcpdump trace of a DNS server startup:

# tcpdump -n -vv port 53 &

# named

20:18:12.188444 216.169.108.50.53 > 202.12.27.33.53: 50843 NS? .

(17) (DF) (ttl 64, id 0)

20:18:12.388444 202.12.27.33.53 > 216.169.108.50.53: 50843*- q: .

13/0/13 . (436) (ttl 52, id 38624)

This output shows how the local server is querying one of the root nameservers for
the NS records that should be used for the “.” or root domain, thus overriding what’s in
the named.ca file.

Finally, the third configuration file, somedomain.com, is used to define the information
for the actual somedomain.com domain. This file includes all the information needed to re-
solve any request to that domain, including those for addresses (the most common) or for
mail exchangers (MX records). Here’s a simple example of such a file for this domain:

@     SOA    ns1  hostmaster (

2001020600 ; serial

3600 ; refresh (1H)

900 ; retry (15M)

1209600 ; expire (2W)

43200 ; default_ttl (12H)

)

@     MX          5     mail

@     NS          ns1

@     NS          ns2

@     A           192.168.0.10

www   CNAME       @

ns1   A           192.168.0.11

ns2   A           192.168.0.12

mail  A           192.168.0.13

pc1   A           192.168.0.21

pc2   A           192.168.0.22

pc3   A           192.168.0.23
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This configuration file is made purposely generic to allow adoption to any domain.
The @ symbol represents the domain name itself (based on the named.conf file). Trans-
lated to fully qualified domain names, the file would look like this:

somedomain.com.  SOA  ns1.somedomain.com. hostmaster.somedomain.com. (

2001020600 ; serial

3600 ; refresh (1H)

900 ; retry (15M)

1209600 ; expire (2W)

43200 ; default_ttl (12H)

)

somedomain.com.      MX      5    mail.somedomain.com.

somedomain.com.      NS      ns1.somedomain.com.

somedomain.com.      NS      ns2.somedomain.com.

Somedomain.com.      A       192.168.0.10

www.somedomain.com.  CNAME   somedomain.com.

ns1.somedomain.com.  A       192.168.0.11

ns2.somedomain.com.  A       192.168.0.12

mail.somedomain.com. A       192.168.0.13

pc1.somedomain.com.  A       192.168.0.21

pc2.somedomain.com.  A       192.168.0.22

pc3.somedomain.com.  A       192.168.0.23

Obviously, the first file is simpler and easier to adapt between different domains be-
cause there’s less to edit. Many times when you’re working with several domains, a general
template can be used that’s the same for all the domains, and then you simply copy the file
and modify what’s being used. In Content Networking, if you’re virtually hosting several
domains, many times you can even get away with using the exact same file for all the do-
mains, if the template is designed to be generic enough. The first configuration example
was pulled from such a file that has been used for several domains for about two years.

The format of a BIND zone configuration file line is

<domain> <opt_ttl> <opt_class> <type> <resource_record_data>

The domain is just that, the domain being referenced. It can be either fully qualified
(with a “.” at the end) or relative to the current domain (no period at the end). The opt_ttl
is an optional value that, in general, isn’t used (but its applications are described later).
An optional directive $TTL can be used at the top of a zone file that allows the default to
be set; otherwise, the SOA minimum (described in Table 6-2) is used. The opt_class value,
if used, 99.95 percent of the time is the value IN, which is now the default. In older ver-
sions of BIND, this field wasn’t optional and, as such, will be included in most documen-
tation examples found elsewhere. For historical and legacy reasons, this field is still
available, but it can be safely ignored. The type represents the type of record information
following and, as such, the format of that information. Table 6-2 shows the generally used
types and their format.
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The most common and fundamental record is the A record, which provides a strict
mapping of a domain name to an address. When a web browser (or most any program)
requests a record from DNS, it’s most likely requesting an A record. NS records are used in
the DNS resolution process and are rarely used by end-user programs themselves. They
provide the maps that point from one nameserver to another, allowing delegation of
maintenance responsibilities between different servers and, thus, the server maintainers.
Please note: NS records should make use of names provided in A records, not CNAME
records. Failure to do this results in configuration files not loading properly and strange
errors in some instances, depending on the nameserver code version used.

MX records operate differently than most others and include two fields following the
MX record type. The first field is a priority, indicating which MX record should be used in
preference for others. When mail is being sent to the domain that has an MX record, the
sending mail server will attempt to transmit the mail to the server listed in the lowest-
numbered MX record. If it times out or cannot otherwise connect to that mail server, it
will go to the next lowest address, and so forth. Usually, the way receiving mail servers
are configured is that a single mailserver will maintain mailboxes for users, and the oth-
ers act as backup relay for a given domain. An example of this is detailed later in this
chapter. Important to note is the domain referenced should resolve to A records, not to
CNAME records, just like NS records.

CNAME records act as aliases for another name and are generally used for the sake of
convenience. They allow one name to be translated to another, either within the same do-
main or to a totally different domain. This is usually done completely transparently to the
querying application. If several names are being so mapped to the same IP address, for
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A A host address (dotted-quad IP address, e.g., 192.168.0.1).

NS An authoritative name server. Use a name as specified in an A
record, not in a CNAME record.

MX A mail exchanger (domain), formatted as “priority [0-32767]
domain”. Use a name as specified in an A record, not in a
CNAME record.

CNAME The canonical name for an alias (domain), used often when a name
changes, or used to provide a unique name on a service by service
basis (that is, WWW vs. FTP).

SOA Marks the start of a zone of authority (domain of originating host,
domain address of maintainer, a serial number, and the following
parameters in seconds: refresh, retry, expire, and minimum TTL.

PTR A domain name pointer for reverse DNS configuration.

Table 6-2. DNS Record Types



management purposes, it’s usually best to make use of CNAME entries for all but one re-
cord and simply point to that one entry for all other names. This allows one record to be
changed for DNS updates, easing management during IP address transitions.

PTR records are used when setting up reverse DNS or the mapping of IP addresses to
domain names (remember, DNS maps names to IP addresses). In general, these will be
configured in the DNS servers of the IP provider, not in local DNS servers, so they won’t
be discussed further in any detail here. You should remember them, though, because sit
uations exist (particularly with secure communications) that require proper configuration
of these records.

Start of Authority (SOA) records provide information about the zone and settings used
for updates and control. As a general rule, these records are extended across several lines
for readability, although they follow the same format as other records. The first field past
the type field is the originating host of the SOA record. This value should be the name of the
most authoritative server or the one considered the final authority on a given domain. The
next field is the maintainer of the domain, usually hostmaster, which should be aliased to a
real mailbox within the mail system. Note, if any “.” symbols are in this address, the first
one should be construed to mean @ for the purposes of e-mail. This is a result of the special
meaning of the @ symbol in DNS configuration files. This requirement rules out some legal
e-mail names for this field, such as firstname.lastname@somedomain.com. After the e-mail
contact is a set of numeric parameters, surrounded by a set of ()s.

The first of the numerical parameters is the serial number. This serial number is gener-
ally presented in the format YYYYMMDDXX, where YYYY is the current year, MM, is the
current month, DD, is the day, and XX is the daily revision if more than one revision is cre-
ated in a day. Strictly speaking, the only requirement for the serial number is that if you up-
date the zone, you increase the serial number. Following the format given here guarantees
this, though, and it’s also considered the best practice for manageability. The second pa-
rameter is the refresh interval parameter, which is used when secondary nameservers are
configured. This value is the amount of time in seconds (unless a qualifier of (d)ay, (h)our,
or (m)inute is specified) between zone transfer attempts from secondary servers. De-
pending on how DNS is managed, this parameter may or may not matter. The third param-
eter, the retry parameter, is the amount of time a secondary nameserver waits before
retrying to perform a zone transfer after it fails on its first attempt. The refresh parameter
should be at least twice as long as the retry parameter, or BIND will generate warning mes-
sages on loading the zone. The fourth parameter is the expiration parameter, which again
impacts secondary nameservers. This specifies the amount of time the secondary will con-
tinue to use nonupdated information before it considers the information to be completely
out-of-date.

Last is the minimum parameter, or the minimum TTL for any resource records within
the zone. The minimum parameter is used as the TTL if no other default TTL is specified
(using a parameter of $TTL before the SOA record) and is used as a sanity check on any
TTLs entered individually within the zone. If any TTL is lower than the minimum, it’s
changed to equal the minimum. Current BIND code allows for a TTL of 0; however, older
code might not. In addition, many services might override such low values because they
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increase network traffic. In these cases, a service-dependent minimum might be imposed
that overrides what is configured in DNS.

With these examples, it should be simple enough to set up a basic domain and to track
down errors. One of the most common errors is not placing a ‘.’ on the end of a domain
where it’s needed. If a domain doesn’t have a ‘.’ on the end of it, such as in a CNAME, NS,
or MX record, then the zone domain is implicitly and silently added. Because of such
errors, it’s extremely important to understand how to use two tools that come with BIND
to ensure a configuration is correct: NSLOOKUP and DIG.

BASIC DNS AUDITING
Domain Information Groper (DIG) is a simple tool that can be used to retrieve records
from a nameserver. As an example, the following could be executed:

# dig brandsberg.net any

; <<>> DiG 8.3 <<>> brandsberg.net any

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 2, ADDITIONAL: 3

;; QUERY SECTION:

;;      brandsberg.net, type = ANY, class = IN

;; ANSWER SECTION:

brandsberg.net.         12H IN A        216.169.108.50

brandsberg.net.         12H IN NS       udns1.ultradns.net.

brandsberg.net.         12H IN NS       udns2.ultradns.net.

brandsberg.net.         12H IN MX     5 mail.brandsberg.net.

brandsberg.net.         12H IN SOA      udns1.ultradns.net.

hostmaster.brandsberg.net. (

2001040102      ; serial

1H              ; refresh

15M             ; retry

2W              ; expiry

12H )           ; minimum

;; AUTHORITY SECTION:

brandsberg.net.         12H IN NS       udns1.ultradns.net.

brandsberg.net.         12H IN NS       udns2.ultradns.net.

;; ADDITIONAL SECTION:

udns1.ultradns.net.     1d14h17m34s IN A  204.69.234.1

udns2.ultradns.net.     1d12h19m35s IN A  204.74.101.1

mail.brandsberg.net.    12H IN A        216.169.108.50

;; Total query time: 14 msec
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;; FROM: ebrandsberg.skyport.net to SERVER: default -- 127.0.0.1

;; WHEN: Tue Apr  3 02:06:12 2001

;; MSG SIZE  sent: 32  rcvd: 241

The first line displays the options that were sent, most importantly, the option recurs,
which tells the remote nameserver to do “whatever it needs to” to get a complete answer.
After that, the response is displayed, parsed out into readable form. While listing the full
details of every parameter is beyond the scope of this book, important to note is that all
uncommented lines (without a ; symbol in front) are syntactically legal to place into a
zone file and display everything including defaults. This is important to see, as hidden
defaults can end up causing problems if they’re hidden all the time. In addition, the op-
tion only prints out records that match to exactly the same domain as the name given,
nothing more. As such, if you request a domain that has subdomains underneath it,
you’ll see no information about those subdomains, only the strict domain provided.

The command line syntax for DIG is

dig [@server] [domain] [q-type] [q-class] {q-opt} {d-opt} [%comment]

Options past the q-type generally aren’t used. The first optional argument enables the
user to specify the IP address of a particular nameserver to send the query to. This is an
important option and should be used to verify that all authoritative nameservers are re-
porting the same information when given a particular query. Nothing causes strange
problems more than when authoritative nameservers are delivering different results for
the same query.

The second argument to DIG is the domain being queried; the third argument is the
type being queried against. This matches the record-types described previously, but also
includes the option of querying for ‘any’, for any type of record. This is the most useful
option when debugging because it might show something that wasn’t expected, allowing
quicker problem resolution. The default type to query for is A, so you can miss information
unless you explicitly request the any type.

The second tool, NSLOOKUP, is more commonly used, although it’s not quite as
friendly to decipher and use for problem resolution as DIG. NSLOOKUP can be run in
two modes: one interactive and one on the command line. The command line mode has
one major flaw that causes a significant amount of headaches, however, in that it attempts
to perform a reverse DNS lookup on the resolving DNS server it’s using and fails if it
receives no response. This causes many people to believe the query they wanted failed,
when in fact it had nothing to do with what they were trying to diagnose. Here’s an exam-
ple of this, where the DNS configured in the /etc/resolv.conf doesn’t properly reply to a
reverse for its own IP address:

# nslookup www.cnn.com

*** Can't find server name for address 192.168.0.254: No response from

server

*** Default servers are not available
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Compare this with a nameserver that has a proper reverse resolution configured:

# nslookup www.cnn.com

Server:  solar.skyport.net

Address:  216.169.97.10

Non-authoritative answer:

Name:    cnn.com

Addresses:  207.25.71.30, 207.25.71.29, 207.25.71.28, 207.25.71.27

207.25.71.26, 207.25.71.25, 207.25.71.24, 207.25.71.23,

207.25.71.22

207.25.71.20, 207.25.71.6, 207.25.71.5

Aliases:  www.cnn.com

Obviously, this can cause some confusion. The key point is, in the first example, the
error was for address 192.168.0.254 vs. for address www.cnn.com. The dig command
with the bad nameserver address would have returned with:

# dig www.cnn.com

; <<>> DiG 8.2 <<>> www.cnn.com

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4

;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 4, ADDITIONAL: 4

;; QUERY SECTION:

;;      www.cnn.com, type = A, class = IN

;; ANSWER SECTION:

www.cnn.com.            2h53m1s IN CNAME  cnn.com.

cnn.com.                15M IN A        207.25.71.5

cnn.com.                15M IN A        207.25.71.6

cnn.com.                15M IN A        207.25.71.20

cnn.com.                15M IN A        207.25.71.22

cnn.com.                15M IN A        207.25.71.23

cnn.com.                15M IN A        207.25.71.24

cnn.com.                15M IN A        207.25.71.25

cnn.com.                15M IN A        207.25.71.26

cnn.com.                15M IN A        207.25.71.27

cnn.com.                15M IN A        207.25.71.28

cnn.com.                15M IN A        207.25.71.29

cnn.com.                15M IN A        207.25.71.30

;; AUTHORITY SECTION:
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cnn.com.                1d23h59m38s IN NS  NS-01A.ANS.NET.

cnn.com.                1d23h59m38s IN NS  NS-01B.ANS.NET.

cnn.com.                1d23h59m38s IN NS  NS-02A.ANS.NET.

cnn.com.                1d23h59m38s IN NS  NS-02B.ANS.NET.

;; ADDITIONAL SECTION:

NS-01A.ANS.NET.         1d23h59m39s IN A  199.221.47.7

NS-01B.ANS.NET.         1d23h59m39s IN A  199.221.47.8

NS-02A.ANS.NET.         1d23h59m39s IN A  207.24.245.179

NS-02B.ANS.NET.         1d23h59m39s IN A  207.24.245.178

;; Total query time: 3187 msec

;; FROM: host.domain.com to SERVER: default -- 127.0.0.1

;; WHEN: Wed Mar 21 17:16:40 2001

;; MSG SIZE  sent: 29  rcvd: 401

DIG returned with what it could (and answered the desired question), while NSLOOKUP
returned an error when it should have continued processing. For NSLOOKUP to function
properly, the nameserver it uses must have properly configured PTR records for its IP ad-
dress, which many nameservers don’t have.

NSLOOKUP does have its place, however, which is when interactive processing is
needed, even if reverse resolutions aren’t configured properly. If you type in the com-
mand nslookup with no parameters, it goes into interactive mode, enabling you to
change the server you’re querying interactively and setting what type of queries you
want to send on its own command line. In this mode, the reverse error previously shown
isn’t an issue, as long as you start the session with one that does respond correctly. This
capture shows how this can work:

# nslookup

Default Server:  solar.skyport.net

Address:  216.169.97.10

> server 127.0.0.1

Default Server:  [127.0.0.1]

Address:  127.0.0.1

> www.cnn.com

Server:  [127.0.0.1]

Address:  127.0.0.1

Non-authoritative answer:

Name:    cnn.com

Addresses:  207.25.71.30, 207.25.71.5, 207.25.71.6, 207.25.71.20

207.25.71.22, 207.25.71.23, 207.25.71.24, 207.25.71.25,
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07.25.71.26

207.25.71.27, 207.25.71.28, 207.25.71.29

Aliases:  www.cnn.com

> set type=any

> www.cnn.com

Server:  [127.0.0.1]

Address:  127.0.0.1

Non-authoritative answer:

www.cnn.com     canonical name = cnn.com

Authoritative answers can be found from:

cnn.com nameserver = NS-01A.ANS.NET

cnn.com nameserver = NS-01B.ANS.NET

cnn.com nameserver = NS-02A.ANS.NET

cnn.com nameserver = NS-02B.ANS.NET

NS-01A.ANS.NET  internet address = 199.221.47.7

NS-01B.ANS.NET  internet address = 199.221.47.8

NS-02A.ANS.NET  internet address = 207.24.245.179

NS-02B.ANS.NET  internet address = 207.24.245.178

One other advantage of NSLOOKUP is it’s offered on more platforms by default than
DIG. As such, NSLOOKUP is the only tool that comes standard for many people to diag-
nose and audit their configurations. As such, anybody doing any advanced configuration
of DNS should learn NSLOOKUP, no matter what’s available to them.

ADVANCED DNS CONFIGURATION
Many times, Content Networking makes use of advanced DNS functions to perform vari-
ous redirection and content management tasks. These functions can be for reasons as
diverse as cost reduction and management simplification. By using DNS to its fullest, a
better infrastructure can be implemented that allows business targets to be met more easily
and with the lowest cost. In this section, several techniques for using DNS are discussed
that can be used to meet such targets.

RTT Measurements
One feature of BIND that many people don’t know about is that it keeps track of RTT
(Round Trip Timer) measurements when there are several NS records that BIND could
use for DNS resolution requests. In Bind 4.x–8.x, though, BIND rounds to the nearest
value of a constant defined in the code called noise. In Bind 4.x, this value is defined as
128ms, while in Bind 8.x, it’s defined as a value of 64ms. When a new set of NS records is
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retrieved, internally BIND defines the RTT measurement for each entry to be the value 0.
It then uses one (effectively at random) of the entries to query against, resulting in a mea-
surement being recorded when the response is received. It then rounds to the nearest
value of 64, using the following equation (for both 4.x and 8.x code):

#define RTTROUND(rtt) (((rtt) + (NOISE >> 1)) & ~(NOISE - 1))

What this means is if a noise value of 64 is present (which it is almost universally), then
any RTT measurements from 0–31 are rounded to 0, from 32–95, rounded to 64, 96–159 to
128, and so forth. With a value of 128 as it is in 4.x, the granularity is even worse, with 0–63
rounded to 0, 64–191 to 128, and so forth. Obviously, this doesn’t help choose the closest
nameserver effectively. The intention of this code is to allow rough selection of the best
performing nameserver (and, we hope, the closest). The choice of the values allows site
selection to work roughly on a continental basis (that is, between Europe and North
America, and so forth).

The way the code is written opens quite a few exploitable opportunities for optimiza-
tion. The first, which generally would benefit people operating resolving nameservers for
clients, is to change the noise constant from 64 or 128 to some lower value, which would
allow more efficient selection of the fastest nameserver. This also ties in with making
global load balancing more efficient, as described in Chapter 11. As the value of noise
must be a power of 2 to work properly, a value of 8 or 16 would provide a much more
granular level of control. To find the appropriate place to change this value, within the
source code for Bind, use the command:

find ./ -exec grep -l NOISE {} \;

If you don’t have a copy of the BIND code that came with your system, the newest
BIND code can be downloaded from ftp://ftp.isc.org/isc/bind/. Unless you’re familiar
with upgrading from one revision of BIND to another, find the most current release
within the same major revision you’re currently using, as configuration files have
changed between major revisions.

Another method that can be used to take advantage of how BIND works is to make
sure that whenever DNS servers are needed, they’re distributed in an optimal fashion to
ensure requests are handled in a reasonable amount of time. Many domains are hosted
from two nameservers located in the same location on the same network. While this ensures
that if one server goes down the site stays online, it doesn’t in any way help to improve
the performance of the site. Because both have roughly the same round-trip time, the traffic
is distributed at random between the two boxes. If, however, the two nameservers are on
the East Coast and the West Coast of the United States, then, as a general rule, the resolv-
ing nameservers on the East Coast will use the East Coast server, and the nameservers on
the West Coast will use the authoritative nameservers on the West Coast. As a result, the
average response time of the DNS servers for clients will roughly be improved by about
30–60 percent, depending on where the servers are located. By adding in more
nameservers in Europe and Asia, the overall global response time improves significantly,
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without using any expensive software additions. It’s all about intelligently using the fea-
tures already present in Bind.

Following this is the rather counterintuitive point that using more nameservers may
cause overall DNS performance to decrease. More nameservers isn’t always better for
performance. To demonstrate this, consider a site that has two nameservers on the East
Coast vs. the West Coast. Because the RTT between the east and west is more than 32, a
good division will exist between the two servers based on geography and, after at least
two requests, the better of the two will be used until the data expires out. Add in a server
in Nebraska or Texas and the division becomes a bit sketchier. Now, three requests
would have to be made to determine the best location, and two might show up as “best”
based on the logic presented earlier. In the cases where two nameservers are considered
equal, some users will experience a slowdown compared with if only one nameserver
was used and some would be improved. If the population distribution was even across
the country, everything would probably average out, but it isn’t. Because the coasts have
a higher population density, placing a nameserver in the middle of the country benefits
fewer people than would be benefited if it wasn’t there.

One approach to provide the highest level of redundancy is to plot out the expected
round-trip time windows equal to 32ms of any given nameserver based on geography
and place the nameservers accordingly. Based on empirical data at press time, across
long-haul data circuits, for a packet to travel about 65 miles takes about 1ms. This de-
pends on the efficiency of the network, although the packet may travel about 90 miles in
the same amount of time. As such, ensuring that each DNS server is distinctly serving a
large population cluster with a radius of about 1,000–1,500 miles tends to ensure that op-
timal performance will be delivered. As the furthest distance in the United States be-
tween major Internet Centers is roughly 3,000 miles, this tends to support the idea of two
locations in the United States for DNS servers, both roughly in the middle of each coast.

Interestingly enough, this analysis supports a different way to look at how DNS serv-
ers should be placed, in that the Internet centers of the United States are just outside
Washington, D.C. and in the San Francisco Bay Area. Most, if not all, large network pro-
viders have direct connections between these two locations, and they tend to make use of
these locations as the general hubs of network operations. This points to another conclu-
sion: the network connectivity in these locations will tend to be faster and more reliable.
These are key attributes in placing DNS servers for large groups of Internet users. This in-
formation should make it apparent that the optimal locations in the United States for
DNS servers are in the area of Washington, D.C. and the San Francisco Bay Area, and are
connected to major backbone networks. In Europe, the ideal location would be in central
Europe, such as in Germany. Because of network connectivity, Frankfurt would tend to
be a logical location for a European server. In the Pacific region, there are two potential
logical places to place DNS servers: Australia and Japan. Because of the distances be-
tween the two, placing a DNS server in each of the regions could make sense, assuming
enough demand exists to warrant the expense for each. In Japan, Tokyo is a logical choice.
In Australia, Sydney is both a major Internet hub and has one of the largest population
centers in the region.

Chapter 6: DNS and Content Networking 165



In South America and Africa, the decision is a little trickier because these areas are sig-
nificantly less developed than the rest of the world. As such, the distances become less of a
factor compared with the locations that are wired well and can act as hubs for the rest of the
area. In South America, much of the connectivity to the rest of the world goes through Sao
Paulo or Rio de Janeiro, and both are close together geographically. Either would be suit-
able for a DNS server. In Africa, little connectivity exists outside South Africa so, as such,
Johannesburg would be the logical choice if a DNS server were placed anywhere in Africa.
The next most developed country in Africa, Egypt, can easily be serviced from Europe.

Obviously, the locations listed previously assume one thing: it’s worth putting a DNS
server in the locations given in the first place. The vast majority of content is produced and
consumed in North America, Europe, and Asia, so most efforts would be to make these lo-
cations perform the best. The other locations—South America, Africa, and Australia—war-
rant the effort only if enough reward exists in doing so. This is more of a business case than
a technical decision so, as such, it must be handled this way. One additional note in making
the decision to add DNS servers: unless more advanced techniques are used for DNS
server selection, every DNS server you add potentially will force users to query every one
of the worldwide DNS servers to determine which is the best for future queries. Adding a
server in South Africa might seem to make sense, but not when put into the context that it
will slow down North American users to some degree. Ways around this problem do exist,
though, and getting around this problem solves the 64ms window problems inherent in
BIND, although they aren’t terribly simple to implement.

To get around the issues with BIND’s base implementation of RTT measurement, a
technique that takes advantage of the inherent routing policies that govern how the
Internet works has been developed and used by several companies. This technique in-
volves using the same IP address block in several global locations on distinct servers, and
then advertising this IP block via BGP into the Internet from these several locations. The
net result is that one IP address (or more) is advertised out as NS records, and the packets
traverse the shortest path to reach a server. This technique relies on the capability to make
use of BGP4 peering with several providers and can be considered an advanced method
to improve DNS performance.

As an alternative to making use of BGP peering to achieve the faster performance, it’s
possible to make use of one of several services to achieve the same goal. Companies such
as Akamai (www.akamai.com) and UltraDNS (www.ultradns.com) are using techniques
such as these (among others) to deliver faster responses for DNS than can be reasonably
achieved with network deployments engineered for a single content provider. Because
these companies are engineering solutions to work with many customers, they can afford
to configure and manage server resources that otherwise would be impractical for other
companies.

UltraDNS’s primary service is to provide DNS resolution services for domains. As
part of this service, it has installed authoritative DNS servers in several different data cen-
ters and used the BGP peering mechanism previously described to direct the requests to
the nearest nameserver. As a result, there’s a significantly lower latency, on average, using
their resolution service than compared with the standard mechanism of simply listing
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several nameservers in the NS records in the TLD servers. Another advantage of using
services such as theirs is the reduced maintenance headache of maintaining BIND code.
Companies that specialize in this type of service generally provide users with friendly
web-based tools for managing domains, making the learning curve much shorter for
managing domains. They also automatically scan for common errors in configuring do-
mains, resulting in less downtime as a result of human error. In short, unless you have
specific needs, it’s generally worthwhile to use services such as these for domains.

Akamai makes use of some advanced techniques to reduce the DNS resolution time,
and it also provides other optimization services for customers. Akamai uses various
methods of network monitoring and peering to map the overall structure of the Internet,
and it makes use of this information within the DNS query level to speed the content de-
livery. While problems exist with the accuracy of the methods used, overall the perfor-
mance gain can be considerable, although the gain focuses on the nature of the customer.
This topic is explained further in the Chapter 11.

Wildcard DNS
When managing several different types of content, sometimes you need to provide sev-
eral names for various reasons but, for all of these names, you want to provide the same
information. To do this, the mechanism of wildcard DNS is used. In this mechanism, you
make use of a * to represent any name not specifically defined in the configuration files
and to define a record to be returned for it. This is useful to handle the situation where
people type in ww instead of www or, if as part of the service being provided, a different
hostname exists for each user of the service. For the configuration previously detailed
(the generic one), one additional line could be added, such as the following:

*               IN      CNAME   @

This can also be used if, for instance, you’re making use of virtual hosting on the
web server side to provide a unique domain name for different users, such as joe
.somedomain.com. This allows a single configuration to handle any number of names
and the web server configuration performs the rest of the work. Each name would re-
solve to the same IP address, but the host header in the HTTP request would result in
different content being served. On the web server, it’s possible, depending on the server
software, to parse the domain programmatically and to make use of a different set of
content for each domain automatically without any web server configuration. Through
this configuration, using both wildcard DNS and proper web server configuration,
you can create domains simply by adding a directory on a server or set of servers, re-
moving much of the complexity of DNS and web server administration.

One other use of wildcard DNS entries is to isolate what resolving DNS servers’ differ-
ent clients are coming from. This is demonstrated using the following logging configura-



tion for the named.conf file, in conjunction with two simple CGI scripts, as follows. Please
note, these haven’t been tested for security and are used only to illustrate the technique.

named.conf logging configuration:

logging {

channel queries {

file "/var/log/named.queries";

};

category queries { queries; };

};

test.cgi:

#!/bin/bash

hname=`echo $REMOTE_ADDR|tr '.' 'x'`

echo "Content-type: text/html"

echo "Location: http://$hname.domain.com/cgi-bin/test2.cgi"

echo

test2.cgi:

#!/bin/bash

hname=`echo $REMOTE_ADDR|tr '.' 'x'`

echo Content-type: text/html

echo

server=`grep "$hname" /var/log/named.queries|cut -f2 \ -d'/'|cut -f2

-d' '|tail -1`

echo "<html>"

echo "Your DNS server is $server<br>"

echo "</html>"

This type of information can be useful in any situation where DNS doesn’t seem to be
working properly. Because DNS can be redirected and manipulated in several ways, this
allows analytical determination of the actual path the DNS query is traversing. This is espe-
cially true when a possibility exists that a DNS forwarder might be in use. A DNS forwarder
is a resolving DNS server that forwards all requests to yet another resolving DNS server.

RR Sets
Another way to make use of DNS for content networking is to make use of RR sets, which
is when more than one answer exists for a given request. The most common case of this is
the use of several NS records to be authoritative for a given domain. It’s generally as-
sumed for any given domain that at least two DNS servers can answer any given request.
In a less common situation, you can answer with two (or more) A records. Most RR types
can be used in RR sets, with CNAMES being (of sort) an exception. Older BIND code al-
lowed CNAME RR sets to be created, although it’s technically against the DNS RFCs to
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do this. In newer BIND code, there’s an option to allow multiple CNAME records, aptly
called multiple-cnames. If given in the options section of named.conf, then BIND keeps track
of the CNAMES and delivers one (and only one) at a time, but delivers the different records
to different individual requests. No such limitations exist for A, NS, and MX records,
though.

To use RR sets, simply provide several records with the same domain, either by forc-
ing the field to the default (of the last line’s domain field) or by specifying the same name
again. As an example, consider the following two examples. This

www   A     192.168.0.10

A     192.168.0.100

A     192.168.0.101

is the same as

www   A     192.168.0.10

www   A     192.168.0.100

www   A     192.168.0.101

While the first form is used, though, it can distract from the meaning, as well as possi-
bly confuse some DNS management tools as to the meaning (the same could be said of
leaving out any optional field, however, such as the class and TTL).

What would happen for either of these two previous examples is all three IP ad-
dresses would be returned to any requesting DNS server, who would pass that on to any
application. Depending on how the application was written, it might simply use the first
one in the list or it might keep track of the fact that three different IP addresses are avail-
able and use more advanced metrics to choose which one to use. In this scenario, the ben-
efits can be enormous when the different IPs reside in different locations on the Internet,
possibly in different countries. In general, though, the only applications that are intelli-
gent enough to perform intelligent analysis of several records would be dedicated proxy
servers, such as Squid.

To control the result of using several A records, various controls within are named
that allow the behavior to be modified. In the named.conf file, the command rrset-order is
used to determine the order of the returned responses in an RR set. Three options are
available: fixed, random, and cyclic. The fixed option returns the answers in exactly the
order they occur in the configuration file. In general, this would cause the first IP to be
used most often because many clients will strictly use the first one in the list. The random
option returns the responses in random order, allowing an even distribution of requests,
even when the client uses only the first in the list. The cyclic option performs a strict
round-robin order on the IPs.

One caveat to using RR sets is to make sure the reply packets aren’t too large. To pre-
vent the need to use TCP for DNS, as opposed to UDP, make sure no query response is
longer than 512 bytes. To check this, a command such as the following can be used

dig @servername domain.com any
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Check the last line with the reported size for the response. A value higher than 512
means, in some cases, the reply has to be fragmented, and DNS doesn’t like fragmented
UDP packets. As such, a TCP connection would be needed to send all the content. This
won’t work in many cases because of firewall rules. In an extreme case, it might be possi-
ble to reply with up to 30 A records within the response, although this can change based
on the additional information provided in the reply, the length of the domain and
hostnames, and so forth.

Subdomain Delegation
When a domain grows to a large size or otherwise needs to be managed in a distributed
manner, subdomain delegation becomes an easy way to handle things. To do this, a line
could be entered such as the following:

ca   NS     ns-ca.foo.com.

va   NS     ns-va.foo.com.

This would create a domain by the name of www that would reside on the nameservers
NS-CA.FOO.COM and NS-VA.FOO.COM. On each of these servers, they would manage
the IPs for the computers in each location (CA and VA, respectively), allowing the adminis-
trator of the overall domain to free himself from the responsibilities of tracking the local
machines. Or, you could register domains in the various country domains, such as .jp and
.uk, and have all of them point to the same resource file. As an example, the named.conf
could contain

zone "domain.uk" {

type master;

file "generic";

};

zone "domain.jp" {

type master;

file "generic";

};

By doing this, the various machines and IP addresses are all managed in one file, yet
virtual hosting can take advantage of the different locals in the names to default to differ-
ent languages and such. This is a much more generic and easily manageable technique
than trying to use configured languages on individual browsers, and it can still be used in
conjunction with such configurations when available. Another reason to do this is if sev-
eral domains were registered, to account for people misspelling a domain name. All the
misspelled domains can be directed to one file that contains a wildcard CNAME entry to
direct users to the real domain or to force an HTTP redirect to the proper domain.

Using delegation also makes sense when different companies are working as partners to
provide a service to a customer. Consider the situation where a content provider wants to
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offload some content that’s become popular enough that its local Internet connections can’t
handle it. Instead of using a URL for a third-party hosting company, the content provider can
delegate a name such as www2.domain.com instead of www.someotherdomain.com to en-
sure brand recognition stays with the originating company. The domain www2 can be dele-
gated to the nameservers of the third-party company, so it can maintain control of what final
IPs are delivered to the customer, but the original company keeps control over the name.

Remember this one key point: any single name can be considered a domain and it can
be delegated as such. In the previous example of using www as a subdomain, there’s no
requirement that any other hostnames be within that subdomain. Further tricks you can
play with subdomains are discussed in Chapter 11.

DNS Thrashing
One of the problems in using delegated domains and multiple domain names in a web
page is DNS Thrashing, or the overuse and dependence on DNS to deliver content to a
user. On a recent visit to the CNN homepage, a prime example of this was found. Follow-
ing is a tcpdump trace of DNS requests from a client requesting the CNN homepage, re-
sulting in no less than five DNS requests. If the user had been on a satellite connection (as
this one was), this would force a minimum of about four seconds extra time to download
this web page and many times, depending on the service, much longer than that.

Here’s an example using WWW.CNN.COM:

17:59:21.521211 148.71.62.138.34580 > 216.169.96.10.53: 20201+ A?

www.cnn.com. (29) (DF) (ttl 64, id 0)

17:59:25.697666 148.71.62.138.34580 > 216.169.96.10.53: 8962+ A?

i.cnn.net. (27) (DF) (ttl 64, id 0)

17:59:37.513220 148.71.62.138.34580 > 216.169.96.10.53: 27815+ A?

toolbar.netscape.com. (38) (DF) (ttl 64, id 0)

17:59:53.965228 148.71.62.138.34580 > 216.169.96.10.53: 14125+ A?

a388.g.akamai.net. (35) (DF) (ttl 64, id 0)

18:00:06.105980 148.71.62.138.34581 > 216.169.96.10.53: 8855+ A?

a18.g.akamai.net. (34) (DF) (ttl 64, id 0)

A similar trace to Yahoo!’s homepage led to:

18:29:47.165370 148.71.62.138.35114 > 216.169.96.10.53: 52080+ A?

www.yahoo.com. (31) (DF) (ttl 64, id 0)

18:29:50.847895 148.71.62.138.35114 > 216.169.96.10.53: 25461+ A?

us.a1.yimg.com. (32) (DF) (ttl 64, id 0)

In Yahoo!’s example, us.a1.yimg.com is served by Akamai and is needed to serve dis-
tinct content from Akamai’s server network. The initial URL forces www.yahoo.com to
be requested, and all images use the same name for absolute references, resulting in a fast
download. The only way to get better performance would be to use a single name and rel-
ative references, although many times in today’s environment this lofty goal is only
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achievable with simple web sites. In the case of CNN, one way to reduce the resolution
time is to make sure Akamai is referenced with only one name, and all the content that isn’t
local to the origin server should be delivered through Akamai, as it is with Yahoo!.
Another example of thrashing comes from NBCI, also for seven DNS resolutions:

19:09:08.260180 148.71.62.138.35133 > 216.169.96.10.53: 11063+ A?

www.nbci.com.(30) (DF) (ttl 64, id 0)

19:09:13.445652 148.71.62.138.35133 > 216.169.96.10.53: 30729+ A?

a1356.g.ak.nbci.com. (37) (DF) (ttl 64, id 0)

19:09:13.780354 148.71.62.138.35136 > 216.169.96.10.53: 7039+ A?

ad.doubleclick.net. (36) (DF) (ttl 64, id 0)

19:09:16.836399 148.71.62.138.34592 > 216.169.96.10.53: 830+ A?

www.ibuyjunk.com. (34) (DF) (ttl 64, id 0)

19:09:16.899116 148.71.62.138.34592 > 216.169.96.10.53: 831+ A?

www.geocities.com. (35) (DF) (ttl 64, id 0)

19:09:18.165631 148.71.62.138.35136 > 216.169.96.10.53: 48327+ A?

m.doubleclick.net. (35) (DF) (ttl 64, id 0)

19:09:19.793025 148.71.62.138.35136 > 216.169.96.10.53: 51714+ A?

a1356.g.ak.snap.com. (37) (DF) (ttl 64, id 0)

Many of the DNS Thrashing sites are ones that have a wide variety of business arrange-
ments with different partners and direct traffic to different ad servers at different times,
which might end up redirecting traffic to yet another server elsewhere. While solving the
problems these arrangements cause is difficult, performance and the possibility of failure
in any one of these resolutions should be considered, and solutions that include caching
might be warranted. With caches, much of the redundant resolution requests can be re-
moved, while placing logs of all the transactions that have occurred in the content owners’
hands, even if the logs end up being retrieved from other locations for business reasons.

REGISTERING DOMAIN NAMES
To make use of a name for your company, the name must be purchased through any one
of several companies called registrars. These companies work together through a group
called the Internet Corporation for Assigned Names and Numbers (ICANN), which is re-
sponsible for managing the TLDs, as well as coordinating the management of the root
nameservers (although other organizations run the root nameservers themselves). In the
initial Internet boom, you had to go through one company to register domain names in
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the .com, .net, and .org TLDs and that company was Network Solutions. Any company
that advertised it could register domains for you was simply acting as a middleman for
the process and, while that company might make it simpler for you to register domains,
all it did was pass the information on to Network Solutions for registration.

Now, however, the list of “Registrars” has gotten significantly longer, and Network
Solutions no longer has a monopoly on the actual registration process. For a complete list
of all the TLD domains available, as well as a list of companies registering names within
each TLD, please check the web site http://www.icann.org/, the home page for ICANN.
As the exact process differs now for each registrar, the overall process of registering will
be discussed and, although the registrars now hide many of the pieces, the process on the
back end is still the same.

General Process
One of the largest benefits of having several registrars in place has been the simplification
of DNS registration and the enhanced ease of management once a domain is registered.
The process of registering a domain is roughly to

1. Find an available domain to register,

2. Provide contact information for the domain, and

3. Provide payment information.

By default, most registrars provide a DNS server and, many times, a base web page
with most packages. When you go through the initial registration process, the registrars
default the authoritative nameserver to their own nameservers, making it easier to get go-
ing. If the registrar requests a DNS server to point to, you should have the DNS server al-
ready configured and ready to serve the domain. One trick to this: the name the registrar
asks for is not explicitly the NS record for the domain in your zone file, although it should
match what’s in the zone file. Instead, this is a name registered specifically for resolution
at the TLD nameservers. Through your registrar, there should be a means to manage
nameservers or to register a nameserver. What happens is a record is created that can be
queried directly from the TLD nameservers. Remember how in the configuration of an
NS record, a name needs to be pointed to? At the TLD level, they need a name to point to
also, such as ns1.somedomain.com. If the information weren’t available at the TLD level,
no way would exist to obtain the information from the authoritative nameserver level be-
cause the IP addresses of the nameservers at that level aren’t available. The issue of regis-
tering such records simply won’t exist if you’re making use of a third-party nameservice
system, such as UltraDNS, because their records are already registered. As an example of
a zone file that would make use of their nameservers, the following could be used

@           SOA     udns1.ultradns.net.     hostmaster (

2001040102 ; serial

3600 ; refresh

900 ; retry
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1209600 ; expire

43200 ; default_ttl

)

@           MX      5       mail

@           NS      udns1.ultradns.net.

NS      udns2.ultradns.net.

@           A       192.168.0.1

www         A       192.168.0.1

mail        A       192.168.0.1

*           CNAME   www

One final note on this, you can’t have more than one NS record at the TLD nameservers
registered for a given IP. If you’re hosting several domains and want to have the names
NS.DOMAIN1.COM and NS.DOMAIN2.COM point to the same IP, you can’t do it. You
can, however, place two IPs on one server and register a different IP for each of the
nameserver entries.

Contacts
For any given DNS registration, up to five contacts are registered or associated with the
registration. These contacts are titled the organization contact, administrative contact,
technical contact, billing contact, and zone contact. One or more of these contacts might
be missing, and many registrars now default one or more of these on initial registration.
In general, at least the administrative and technical contacts are filled in.

The administrative contact is the contact information for the person responsible for sig-
nificant decisions about the domain. If all the other contacts are the same person, then
generally the administrative contact is the only one filled in. The technical contact is usu-
ally the contact info for the person or group managing the network resources (that is, the
DNS and web servers). The billing contact is for the group responsible to make sure the do-
main bills are paid. If this contact is missing, you can assume the administrative contact
carries out this responsibility. The organizational and zone contacts generally aren’t used,
but they can be used to list the formal corporate name of the owner of the domain and the
manager of the zone file, if this is different than the technical contact. Not all registrars
even offer the zone contact to be modified.

Properly configuring these contacts is very important, not only for any communication
between your registrar and yourself, but also because bills are sent via e-mail to the con-
tacts. These contacts also provide the means by which spam warnings and security notifi-
cations from third-party organizations can be sent to you, in case someone is making use of
resources they shouldn’t use. Unfortunately, the contact information is public information
to anyone who queries for it, so make certain the e-mail address is a “role” address, usually to
be forwarded to a person or group that takes care of the answering and reading the e-mail.
Never use a person’s personal e-mail address for this because it can cause a significant prob-
lem if that person leaves the company or otherwise is unavailable.
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WHOIS Databases
The information provided for each contact, as well as the information associated with the
domain itself, is stored in publicly accessible databases called WHOIS databases. To access
this information, either the whois command can be used from UNIX or you can use any one
of several windows or web-based WHOIS tools. Because these all access the same informa-
tion, the UNIX (Linux-specific) WHOIS tool will be described for the purpose of examples.

In its simplest use, the command whois [domain] will provide some sort of informa-
tion about a particular domain. For example, the command whois cnn.com returns the
following:

[whois.networksolutions.com]

Registrant:

Turner Broadcasting (CNN-DOM)

1 CNN Center

Atlanta, GA 30303

Domain Name: CNN.COM

Administrative Contact:

TBS Legal Department  (TL92-ORG)  TMGROUP@TURNER.COM

Turner Broadcasting System, Inc.

One CNN Center

Atlanta, GA 30348

US

404-827-3470

Fax- - - - 404-827-1995

Fax- - 404-827-1995

Technical Contact:

TBS Server Operations  (TS309-ORG)  hostmaster@TBSNAMES.TURNER.COM

Turner Broadcasting System, Inc.

One CNN Center

Atlanta, GA 30348

US

404-827-5000

Fax- 404-827-1593

Billing Contact:

idNames, Accounting  (IA90-ORG)  accounting@IDNAMES.COM

idNames from Network Solutions, Inc

440 Benmar

Suite #3325

Houston, TX 77060
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US

703-742-4777

Fax 281-447-1160

Record last updated on 03-Nov-2000.

Record expires on 23-Sep-2009.

Record created on 22-Sep-1993.

Database last updated on 27-Mar-2001 01:56:00 EST.

Domain servers in listed order:

NS-01A.ANS.NET               199.221.47.7

NS-01B.ANS.NET               199.221.47.8

NS-02A.ANS.NET               207.24.245.179

NS-02B.ANS.NET               207.24.245.178

As an alternative example, the command whois register.com returns

[whois.networksolutions.com]

Organization:

Register.Com

Domain Registrar

575 8th Avenue - 11th Floor

New York, NY 10018

US

Phone: 212-798-9200

Fax..: 212-629-9305

Email: domain-registrar@register.com

Registrar Name....: Register.com

Registrar Whois...: whois.register.com

Registrar Homepage: http://www.register.com

Domain Name: REGISTER.COM

Created on..............: Wed, Aug 04, 1999

Expires on..............: Tue, Aug 04, 2009

Record last updated on..: Thu, Jun 01, 2000

Administrative Contact, Technical Contact, Zone Contact:

Register.Com

Domain Registrar

575 8th Avenue - 11th Floor
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New York, NY 10018

US

Phone: 212-798-9200

Fax..: 212-629-9305

Email: domain-registrar@register.com

Domain servers in listed order:

DNS1.REGISTER.COM                                 209.67.50.220

DNS2.REGISTER.COM                                 209.67.50.241

DNS3.REGISTER.COM                                 209.67.50.253

DNS4.REGISTER.COM                                 209.67.50.254

Register your domain name at http://www.register.com

The previous information has been obtained either directly from the

registrant or a registrar of the domain name other than Network

Solutions. Network Solutions, therefore, does not guarantee its

accuracy or completeness.

In the first case, the WHOIS server that WHOIS contacts by default is run by Network
Solutions. In the second case, REGISTER.COM—a registrar in its own right—runs its
own WHOIS server and references what that server is. In any case, the TLD’s configura-
tions are generated from the same information displayed in the WHOIS queries, so if that
information isn’t correct, problems will exist. Take particular care in modifying this infor-
mation because it can take 24–48 hours to effect changes and make corrections.

PROBLEMS WITH DNS
Although DNS, as implemented in BIND (usually), has taken the Internet a long way
since it was conceived, issues revolve around it that any responsible administrator needs
to know. The first issue is the need to keep on top of updates to DNS software, particu-
larly BIND. Numerous holes have been found in BIND that make it vulnerable to serious
attacks. Some of these holes are simple denial of service attacks, causing BIND to crash
and resulting in the inability to resolve the names for which the server is responsible.
Other attacks cause corruption of the internal databases, allowing someone to take over
your web site by substituting his IP addresses for your names. When this happens, a dis-
tinct possibility exists that a user will be able to capture credit card numbers, and so forth.
As such, any administrator managing his own DNS servers should subscribe to any one
of several security mailing lists, such as CERT’s (http://www.cert.org) mailing list or
bugtrack (http://www.securityfocus.com). Failure to stay current on such matters can
inevitably lead to the nameserver being compromised or taken offline. This isn’t a matter
of if, but of when.
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Another problem with DNS is the tendency of ISPs to make use of centralized DNS
servers for their clients. This prevents optimizations, such as using DNS for global load
balancing, from working as effectively as it could, as well as significantly slowing the
overall resolution time for users. On average, each DNS resolution on such a central DNS
configuration can lose about 40–50ms because of the cross-country trip to its resolving
DNS server. On top of this, if enough users are using the same resolving DNS server, the
response times can go down, degrading performance further. If any packet loss occurs,
though, this can cause the most significant performance drop, resulting in pages that
might never come up.

THE FUTURE
While DNS has gotten the Internet as far as it has, the problems with its design have
started to weigh it down. Many site failures are DNS-related issues, preventing people
from accessing the content efficiently and effectively. While other major Internet proto-
cols are changing and morphing into forms that are more efficient, DNS as a protocol has
remained relatively unchanged for years. Some major areas of development are being
performed, though, some to improve DNS and others to replace it.

One of the more fundamental changes to the DNS protocol implemented in the new-
est versions of BIND is the support of IPv6, which is slowly gaining use in research envi-
ronments and wireless networks. Most of the resolver libraries now in use support
receiving IPv6 addresses, as do many of the nameservers. Currently, code exists for Win-
dows, Linux, Solaris, as well as the various flavors of BSD. Many router vendors support
IPv6, although most routers in use need to be upgraded to support these features. As IPv6
isn’t in widespread use, most content networks needn’t worry for a few years about con-
tent availability on the IPv6-enabled Internet; mechanisms are in place to bridge between
IPv6 and IPv4 as needed.

Another important change to DNS is the rapidly developing area of DNSSEC, or Se-
cure DNS. While Secure DNS is an evolving technology, keeping track of it is important
because this enhancement solves many of the security issues involved with DNS, primar-
ily with session hijacking. If a site is handling sensitive content, DNSSEC should certainly
be investigated, if only to give users the option of using the more secure mechanisms.
Further references to DNSSEC and documentation on its installation can be found within
the BIND 9.x code releases. Note, if you plan on installing and working with DNSSEC, the
implementations are still rapidly changing and might not work together between different
versions (for example, between versions 9.1.1 and 9.1.2 of BIND).

Another change to the Internet that impacts the functionality of DNS is a technology
called Internet Keywords. Internet Keywords enable a user to interact with the web browser
using natural language words, as opposed to strict DNS syntax. While the goal of using
Internet Keywords is good, the technologies are driven more by marketing than anything
else. While both Netscape and Internet Explorer provide a default service to manage
Internet keywords, competing solutions operate as plug-ins that users can install. The main
players in this area are RealNames (www.realnames.com), Netword (www.netword.com),
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and Netscape (keyword.netscape.com). By far, RealNames has the lead in this technology
because of the built-in functions in MSIE to support RealNames, as well as many partner
sites that make use of the technology when performing general searches. While wide sup-
port exists for this type of technology, whether the public will take to it over using general
search engines is still uncertain, so relying on this technology to develop for content net-
working is a fairly limited prospect.

SUMMARY
While DNS is an important technology for content networking, it isn’t a utopia. Many of
the performance improvements that can be gained with DNS over normal configurations
are statistical improvements, whereas misconfigurations can be devastating in their im-
pact. More than one company has seen its sites totally removed from the Internet for days
simply because of misconfigurations or failure to pay bills for domain names. Under-
standing the subtle interactions that impact DNS performance is critical to ensure a
well-performing site, as is how delegation can occur and how subdomains can be used to
group and manage content. DNS configurations should also allow flexibility where
needed, and they should be instituted to allow different types of content to be distributed
in more efficient manners. By remembering the future, as well as other content networking
technology, redundancies and inefficiencies can be reduced, creating a fast, efficient, and
profitable site configuration.

REVIEW QUESTIONS
1. Under what conditions would it make sense to use an image’s name distinct

from a www name for content distribution?

The conditions under which using an image’s name distinct from a www
name for content distribution would make sense are when the image’s name
can be handled more efficiently using a different set of servers, through a
content distribution network for improved client access, or if a possibility
exists of using such techniques later with site growth.

2. Why would the following be considered invalid in a zone configuration file?

@   CNAME   www

Aliasing a domain to a subdomain within the same domain can cause
recursive errors and lead to other names and information that might reside
in the primary domain becoming inaccessible. If cached, such an entry can
cause the wrong servers to be queried for any future domain records from
the main domain.
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3. If you had a satellite link to the Internet, would you want your clients to
make use of a local resolving nameserver or a nameserver on the other side
of the satellite link, and why? For a local nameserver, assume no DNS
forwarding is active.

You would want to make use of a remote nameserver if possible. This is as
a result of resolving nameservers having to make several DNS requests for
many locations, as opposed to a resolving library making a single request
for a given domain to its resolving nameservers. The number of satellite
traversals should be kept to a minimum to improve performance. If a DNS
forwarder were used, then a local nameserver would be preferred because it
would cache answers for local clients and only issue one request for unknown
names to its resolving nameserver.

4. Why would adding more authoritative DNS servers in remote areas slow
down a majority of clients?

Adding more authoritative DNS servers into remote locations forces many
resolving DNS servers outside the 64ms RTT window to resolve at least once
against every DNS server listed as being authoritative before choosing the
best one. If many remote DNS servers exist, this slows the average DNS
resolution time and results in slower performance for clients.

5. What techniques can be used to avoid excessive DNS queries when
partnering with other sites?

Using caches and content distribution networks can allow the content
delivered by several companies to be accessible via one name, allowing for
faster resolutions and improving overall content delivery time. This also
enables better logging of activity, allowing for better statistics and control
of content.

6. On a frequently used site, how could delegating a holder subdomain be used
to improve performance to groups of customers? Does this mean using an
extra domain, such as www.a.domain.com instead of www.domain.com?

When several names are within a domain, using a holder domain allows
for interesting tricks to be played. When the subdomain a.domain.com is
resolved, a small set of DNS servers can be used in distinct geographical
locations, which the clients’ resolving nameserver can choose the best of,
without many iterations. Based on the choice, the second level of delegated
domains can deliver a different set of NS records based on the local chosen.
As an example, consider the following set of configurations excerpts.



For domain.com:

a     NS   new_york.americas

a     NS   munich.europe_africa

a     NS   tokyo.pacific_rim

In europe.domain.com:

www   NS   munich.europe_africa

www   NS   johannesburg.europ_africa

In americas.domain.com:

www   NS   new_york.americas

www   NS   san_jose.americas

www   NS   rio.americas

In pacific_rim.domain.com:

www   NS   sydney.pacific_rim

www   NS   tokyo.pacific_rim

With this configuration, the overall choice of what main nameserver for
a.domain.com will be done in three resolution attempts and, at the second
level, it also will take no more than three attempts. In addition, by using
the same nameserver name at both the a.domain.com level and the
region.a.domain.com level, a round-trip time will also already be entered
for the name in the second request. This further reduces the number of
resolutions that need to be done to narrow the choice of the best nameserver.
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OBJECTIVES
� Discuss the general Internet hierarchy

� Describe the role of the POP

� Differentiate between various types of service providers

� Discuss the importance of NAPs and Peering

� Provide an overview of BGP

The Internet is the global arena in which Content Delivery Networking (CDN) occurs,
by and large. Discussing CDNs by ignoring their context seems a bit backward, so it’s
worth taking a few moments to discuss it. This chapter is intended to provide a basic intro-
duction to high-level Internet organization, such as it is. To optimize a thing, understand-
ing a bit about what it is can help. The Internet is a complex place, and that complexity
seems to be accelerating at a nonlinear pace. Unfortunately, that complexity isn’t readily
amenable to interpretation, characterization, or anything approaching a complete descrip-
tion. Much like that monolith in 2001, it simply is. This wasn’t always so. Back in the day,
the Internet was a simple interconnection of networks—it wasn’t until somebody realized
money was to be made that its organization got completely out of hand.

For many, the Internet is AOL, Yahoo!, or until recently, Excite@Home—confusing
content providers and web portals with the structure of the Internet. This is an important,
if somewhat obvious, point: the Internet is a physical thing. Cyberspace is an abstraction,
the Internet isn’t. Unfortunately, the Internet is also commonly abstracted. While the
physicality of the Internet is a sea of cables and landlines, linking users in a specific man-
ner at regional point of presence (POP), it could be (and frequently is) diagrammed as a
cloud into and out of which frame-relay connections, serial links, and virtual private net-
works (VPNs) disappear and reappear. The Internet as a black box is not terribly helpful
when trying to understand its organization, however.

In its simplest form, the Internet is a network of networks. It’s a mesh of many thou-
sands of interconnected public and private computer networks that interoperate without
any central governing authority. The physical infrastructure is composed of copper wire,
wireless RF, and fiber-optic cables connected to computers, routers, and switches, all of
which operate a variety of OSI Layer-2 data-link protocols, including PPP, ISDN, X.25,
SONET ATM, frame-relay, and point-to-point serial links. Data movement within a net-
work is made possible by layer-3 protocols, such as any number of Interior Gateway Proto-
cols (IGP). More relevant to our Internet-structure discussion is the protocol responsible for
moving data from one network to another: Border Gateway Protocol (BGP). These media
and protocols are all embedded into the basic building blocks of the Internet: the POPs,
Network Access Points (NAP), and backbones.

This information is provided with the intent of equipping a CDN designer with some
of the tools and lingo required to understand some of the issues surrounding the Internet
as a whole.
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GLOBAL STRUCTURE
“There is no architecture, but only a tradition, which was not written down for the first 25
years.” (RFC, 1958).

In this section, we’re going to look at two things. First and foremost is a description of
how the parts of the Internet are put together. There are problems with such a proposal,
however. The Internet was, about 20 years ago, relatively simple and easy to document.
That was 20 years ago, and things have changed somewhat. Now, the actual structure of
the Internet, that is, the physical layout of cables and fiber, changes on a daily basis.
Any description of such a seething mass of metal and glass is bound to be fundamentally
inadequate.

An approach more useful and applicable might be to look at the Internet in a func-
tional manner, instead of a physical one. The problems with functional descriptions are
they’re only approximations and tend to be oversimplified for any particular case. How-
ever, while not literally accurate, functional descriptions can be quite instructive. At a
rough gloss, the structure of the Internet yields itself to three functional levels of analysis,
which are discussed in turn.

Functional descriptions of network topologies need to include the ingress and egress
points. All network connections not directly pointing at a user base are described as peer-
ing, which is the next topic. Peering is how service providers connect to each other, how
traffic gets exchanged between carriers. These relationships are often complex and politi-
cal, but critical for Internet function. Peering occurs at specific points, NAPs, and these
can be public or private, free or fee-based. A basic requirement for routing across NAPs is
BGP, and this is discussed in the section “Internet Routing with BGP.”

Hierarchical Organization
The difference between a hierarchy and a heterarchy is deciding who’s the boss. In a hi-
erarchy, that’s easy, the one on top is the boss. In a heterarchy, this is a bit more problem-
atic. Heterarchies are unusual, and authority tends to depend on circumstance, function,
and domain. Depending on the glasses you’re wearing, the Internet could be described
either way.

In a heterarchical sense, the cellular unit of life in the Internet is a single network
segment. The Internet is simply composed of lots and lots of such cells. When looked at
too closely, this is all there is to see. No structure, no semantic patterns, just fractals
from here on up.

Switching glasses, some artificial intervening stages lend themselves to an alternative
view. If the networks are grouped into organizations and companies, all is no longer cre-
ated equal on the Internet. Some networks are obviously larger than others. Some are
more critical to the functioning of the whole. Some carry more traffic; some lease band-
width on their networks to others. At this point, useful distinctions within such networks
can be made. We turn to this first.
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POP
The first layer is the one most ISP users are familiar with, the point of presence. ISPs cre-
ate POPs in the markets they’re attempting to serve, providing a local access ramp onto
their network. A POP (see Figure 7-1) can be quite complex, involving an entire Internet
Data Center, or relatively simple, such as a rack in a colocation facility with a modem
bank set up behind a hunt group.

The vast majority of POPs will be small-scale for reasons of economy. To become a
world-class Internet service provider (ISP), local POPs are the keys to success. A POP in
every city will provide a marketing edge over the competition, as well as provide access
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to a larger potential client base. ISPs that provide hosting, colocation or application ser-
vices—application service provider (ASP)—will require something more robust than a
rented rack in someone else’s facility. In addition to power, air, and security concerns,
these services require space and the infrastructure to support these designs. Such data
centers are expensive, so their numbers tend to be few and strategically placed geograph-
ically to provide services to the largest number of clients possible.

Three primary technologies are used to ramp into a POP: Point-to-Point Protocol
(PPP) over a modem dial-up, DSL, and cable. Of the other two (un)common technologies,
ISDN tends to be out of favor because of cost and relatively slow access speeds, and most
satellite implementation still requires a modem uplink. Most ISPs will provide some
combination of service, for example, DSL and dial-up. Whichever technologies are cho-
sen will dictate the hardware required in the POP, for example, a DSLAM for DSL, an ac-
cess server for dial-up, and so forth.

Subscriber-edge CDNs could focus at this level to provide service. Some managed
services, such as those provided by Akamai Technologies (http://www.akamai.com/),
will install content distribution servers at the major ISP POPs worldwide, in an attempt to
put content delivery mechanisms as close to the potential client as possible.

The types of CND appliances that might be fitted here depend on who’s building the
CDN. If it’s the ISP itself, then there’s no better place to install web caches than here in the
POP. The more traffic off the WAN links the better, and caching can eliminate a lot of
HTTP traffic overhead. Chapter 13 deals with this issue at some length.

Another service commonly deployed here is some kind of bandwidth management
(BWM). Usually bundled into the access device, what this service does is ensure Service
Level Agreements (SLA) are met satisfactorily. BWM is dealt with in Chapter 14.

ISP
A company that provides Internet access to end users is called an Internet service provider
(ISP). This definition, like most, is somewhat oversimplified. ISPs generally come in one of
two flavors: those that provide access to end users and those that provide access to those
that provide access to end users. Both are helpfully called ISPs (though the latter are some-
times called network service providers, or NSPs). InterNAP, AboveNet, and Savvis are all
examples of NSPs: Earthlink (http://www.earthlink.com), AOL (http://www.aol.com),
and MSN (http://www.msn.com) are all examples of “traditional” ISPs. For the sake
of ease, we’ll recognize the distinction here and ignore it because it isn’t relevant to our
discussion.

A distinction that is useful to our discussion has to do with reach of service, that is,
between regional and national/international service providers. The distinction has a lot to
do with infrastructure; regional carriers needn’t have it, national carriers ought to. National
carriers, in large part, have their own backbone or, more likely, lease a lambda off a DWDM
circuit operated by a backbone provider, like Qwest, AT&T, or Sprint. Three of the major
national carriers have already been mentioned: AOL, Earthlink, and MSN. Thousands of
regional carriers exist. Here are a few: Excel (http://www.excel.net), which serves South-
eastern Wisconsin; Drizzle (http://www.drizzle.net), which serves the Puget Sound; and
Catskill On Line (http://www.catskill.net), which serves (strangely enough) the Catskill



Mountains area. The boundary between regional and national is pretty thin, and quite a
few national carriers began as regional success stories, such as Annapolis’ own Toad
(http://www.toad.net).

ISPs, at the very least, own or maintain a POP to provide access to their end users. The
more POPs, the more users the ISP can support and give simultaneous access to, and the
more revenue the ISP can generate.

Another lucrative trend among ISPs, both regional and not, is to offer hosting or
colocation to their business customers. These services allow a company that needs or
wants a web presence to have someone else manage the general operating facility and,
optionally, the hardware, software, access, bandwidth, and security of that web site.

Backbone Providers
Compared to ISPs, few backbone providers exist. These companies have a tendency to be
telco companies as well, for example, AT&T, SBC, and Sprint (see Figures 7-2 through
7-4). Their backbones were installed for handling long-haul voice traffic and, as data net-
work became more and more popular, were upgraded to keep pace. One of these compa-
nies’ primary revenue streams derives from leasing space on their networks to other,
national ISPs.

What differentiates backbone providers from national ISPs is that one provides ser-
vice to the other. National ISPs lease lines from Sprint and WorldCom, not the other way
around. But, to make matters more confusing, almost all of the backbone providers have
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Figure 7-3. Genuity backbone

Figure 7-4. Sprint backbone



entered the national ISP market, providing access to end users and establishing hosting
and colocation facilities throughout their networks. AT&T, Qwest, Metromedia Fiber,
and Cable & Wireless all offer ISP services, at least down to the level of small businesses,
if not individual subscribers.

The benefits of using backbone providers as your ISP are obvious—better reach,
better network, better range of services. The caveat is that most backbone providers tend
to run their ISP businesses as separate and distinct from their backbone business units, so
the benefits might not be all that great.

Backbone providers, to be considered such, will have a significantly large bandwidth
connection across most of the regions they serve. These days, that means somewhere
between OC-3 (155 Mbps) and OC-192 (10 Gbps). Often, these high-capacity pipes criss-
cross the country, and maps of these networks tend to be colorful affairs.

The thing to notice in most of the backbone topology maps is that most providers
serve the same cities, that is, their circuits all seem to terminate in the same cities across
the countries they serve. There are several potential reasons for this. One, they’re using
each other’s lines, that is, one is leasing from the other, perhaps different lambdas off the
same DWDM circuit. Or, the fiber between those two cities was laid more or less around
the same time and runs through the same conduits with the other carrier’s fiber strands.
Or, most probably, these metro areas have large potential customer bases that need to be
served, and the provider needs to terminate there to dump off local traffic. How this is
done is covered in the next two sections.

NAP
A subscriber attempting to access a provider’s web site has no way of knowing where his
requests are going to or coming from. At its heart, CDNs are an attempt to ensure the sub-
scriber never has to sit there, drumming his fingers, thinking about it.

In the ideal circumstance, the distance from subscriber to provider is short. More real-
istically, this would mean the provider is located in the subscriber’s network or, at the
very most, somewhere in the same ISP. Most large ISPs have numerous content providers
as customers, so this isn’t as unusual as it might appear. The problem is that if the tar-
geted site were off the ISP’s network, getting to it might not be as straightforward as you
would hope. If an ISP is a city-state of the Internet and backbone providers are the roads,
then NAPs are the places those roads cross. Without NAPs, there is no way to get from
one ISP to another.

This is a two-edged sword. With only a couple of public NAPs, this could lead to odd
traffic patterns. As we just discussed, if the provider and the subscriber are on the same
ISP, there are few architectural reasons why content couldn’t be retrieved. When the net-
works are different, the NAP will be the bridge between them, even if the NAP happens
to be significantly far away from the two endpoints. A subscriber in Toledo, connected to
ISP #1 attempting to get to a web site located in a co-lo facility also in Toledo, but con-
nected to ISP #2, might have get there by way of Chicago. Not ideal, but without the NAP,
the connection might not have been possible at all.
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Originally, there were four public NAPs, or exchange points (EP). MCI WorldCom
operates the NAP in Washington, D.C. (http://www.mae.net), Sprint the NAP in New Jer-
sey, and SBC the NAPs in San Francisco (http://www.pacbell.com/Products_Services/
Business/ProdInfo_1/1,1973,146-1-,00.html) and Chicago (http://nap.aads.net/ main.html).
WorldCom added another in San Jose (MAE-West) and many more have sprung up world-
wide. Backbone providers and National ISPs would connect to these facilities and arrange
to connect to each other in some sort of peering agreement (discussed in the next section).
Places where these sorts of arrangements are made available to one and all are called public
peering points. Alternatively, ISPs have of late begun to adopt a more restricted approach,
private peering, so the ISPs can restrict who it connects to and attempt to gain further control
over its internetwork routes.

The physical layout of NAPs can vary from NAP to NAP. It can be as interesting as a
provider hotel, where several dozen backbone providers are present in a single facility
with a variety of high-speed and very-high-speed connections pumping into a single or
small set of high port density switches or routers, such as a big Juniper M160. On the
other hand, NAPs can be simple, existing within one of a backbone provider’s POPs, and
consist of a Fast Ethernet run into a common layer-2 switch. The types of allowable con-
nections also vary from NAP to NAP, but public NAPs tend to require fast, high-capacity
links. The connection technologies are a mix of LAN and WAN standards, including
FDDI, Fast Ethernet, Packet-Over-SONET (POS), Frame Relay and ATM. While ATM
and POS over OC-48 (and OC-192) have a higher bandwidth, Gigabit Ethernet (GigE)
interfaces are much cheaper, so GigE is slowly phasing out these other technologies.

The problem with NAPs is a function of the success of the Internet itself. Given only a
relative handful of NAPs, and thousands of backbone and access providers, the specter of
a problem arises. All these ISPs require interconnection to serve their customer bases; this
requires a NAP. The possibility of overcrowding the NAP becomes a real problem, and
the sheer volume of traffic forced through these exchange points becomes truly stagger-
ing. Traffic delays become inevitable as the NAPs become the biggest bottleneck on
the Internet.

The proliferation of private NAPs (PNAP) has been in response to some of these prob-
lems (see Figure 7-5). Instead of dragging a long-haul circuit to a public NAP and routing
all off-net traffic through it, it might make more sense to find local places to offload local
traffic. This would allow more direct routing and more efficient network traffic handling,
instead of dumping more and more traffic on the increasingly congested NAP. Carriers
arrange for EPs whenever a direct financial and engineering benefit exists (cheaper than
long-hauling to a public NAP; fewer hops to a local destination). PNAPs, typically being
by-invite-only, can be implemented anywhere there’s equipment for the crossover, so
quite a few of these peer-to-peer EPs occur within the already-built POPs of one of the
carriers. Conversely, locating a POP wherever there’s a PNAP makes good sense. Sub-
scribers of ISP #1 can get shunted off to their destinations in ISP #2 almost immediately if
they connect through a POP at a PNAP for ISP #1 and ISP #2.

Note, some confusion exists as to the difference between a public exchange and a pri-
vate one. For marketing reasons, then, many public exchanges are called private, and
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some private exchanges, public. The primary distinction is there are only a few NAPs—
everything else is a PNAP. PNAPs are, numerically, exchanges between local carriers for
the purpose of optimizing local traffic flows. NAPs are, by tradition and design, the only
other place where traffic is exchanged between providers.

However, several other interesting approaches to PNAPs have been implemented,
both for fee and for free, completely blurring the lines between public and private. All are
public in the sense that if you can afford to, you are welcome to connect. All are private in
the sense that they aren’t a traditional NAP. Some require openness in business dealings,
discouraging or even forbidding nondisclosures with respect to the peering arrange-
ments made there. Some are more hands-off, having no stance whatsoever to the dealings
among the actual providers connecting there.

Cooperative PNAPs, such as BNAP (http://www.Baltimore-nap.net), and SIX
(http://www.altopia.com/six) are fee-free, though costs might be associated with
racking a router in the former, and running cable in the latter, and possibly a nominal
“donation” for upkeep. These PNAPs were created with the express purpose of enabling
intelligent routing in the Internet and avoiding the remote-NAP problem. Handoffs are
accomplished via 10/100 Ethernet through relatively simple, low-end Cisco layer-2
switches. These cooperatives are basically NAPs, but suited to metropolitan areas in-
stead of regional ones. A partial list of the public exchange points is maintained at the
Exchange Point web site (http://www.ep.net).

Figure 7-5. Sample PNAP layout



Commercial PNAPs are a bit more robust, as they must be, and survive by throwing
quite a few value-added features on top of the basic promise of potential connectivity.
These for-profit EPs claim their architectures provide access to many top-level backbones
and ISPs; by connecting at their PNAP, the customer can gain one-hop routing to nearly
any network one could want to get to. In addition, rack space, emergency tech support,
physical security, and ease of use are touted as invaluable add-ons that should be part of
any NAP—but, because they aren’t, wouldn’t you like to interconnect at a facility where
they are?

InterNAP (http://www.internap.com) is a commercial PNAP provider that special-
izes in colocation and hosting. The idea is, connect to/host with InterNAP because
InterNAP is connected to everybody else, a sort of one-to-many relationship. Hence, no
matter what network you want to get to, you are only one hop away. InterNAP has a sig-
nificant client list, so now has the clout necessary to get special treatment from the other
backbone providers and can pass that on to its customers. InterNAP advertises that each
of its connection points is fully redundant (including hot-spares) and practically guaran-
tees connectivity, regardless of the problems any single backbone provider might experi-
ence. Its offering rounds out with dedicated, on-site tech support 24×7. InterNAP has
service points all across the United States, Europe, and Japan.

ICS Network Systems (http://www.bigeast.net) is another PNAP provider, located on
Long Island, New York. ICS’s claim to fame is its proximity to one of the largest backbone
providers in the United States, AT&T. ICS advertises that its PNAP is zero hops away
from AT&T’s backbone—that is, its EP is within that backbone. Diverse connectivity
options are available from Sprint and Digex. Colocation services are available, as are vari-
ous network security options. More interestingly, ICS offers caching and server load bal-
ancing as options for its colocation service.

Metromedia Fiber Network (http://www.mfn.com/) is the parent company of both
AboveNet and PAIX. AboveNet, before the acquisition, offered services similar to
InterNAP, including colocation/hosting and one-to-many network connectivity. As part
of MFN, its services now include the capability to lease space on or transit the MFN back-
bone, which has OC-48 connections within and throughout the United States and OC-192
connections overseas. MFN is also one of the largest metro fiber providers, with fiber
rings in many major metropolitan areas. PAIX, which touts itself as “The Original Neu-
tral Internet Exchange,” is more along the lines of a cooperative PNAP in that PAIX isn’t
placing itself in a position to bias or leverage the peering connections one way or
another—it is, in fact, “neutral” to such arrangements and simply provides the facility
and 24×7 support for doing so.

In terms of congestion, there’s significant value to PNAPs over the traditional public
NAPs. Somewhere north of 80 percent of the traffic on the Internet travels through one or
more of the WorldCom Metropolitan Area Ethernet (MAE) facilities. PNAPs help to alle-
viate some of that stress.

The EP, being the natural crossroads in the Internet, is a natural point for injecting
CDN technologies. Even without a POP, an EP might offer the basic CDN services such as
SLB (Chapter 9) and GSLB (Chapter 11), web caching (Chapter 8), application redirection
(Chapter 13) and Bandwidth Management (Chapter 14). Again, remember, the idea is to
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get content and content services as close to the subscriber as possible; penetration into the
EP is only one logical step removed from the POP. For the service provider, an EP is a traf-
fic ingress point. Deploying web caching services at the EP adds yet another tool for elim-
inating traffic from the backbone.

Another driving factor behind adopting CDN technologies at the EP has to do with
the way Internet routing works. Shortest-exit routing, as is used with BGP, requires that
traffic egress the network to the target network at the earliest possible point. Even if stay-
ing on the network will provide significantly better performance. For example, both a
backbone provider and a national ISP have a connection to a single POP off an EP. The
backbone provider will most likely have a significantly higher bandwidth connection to
that EP, for example, an OC-12, whereas the national carrier only has a T-3. If the two net-
works cross at an EP nearer to the source, the traffic will leave the backbone in favor of the
national carrier’s network because that network is the destination network, and short-
est-exit routing will force the switchover (see Figure 7-6).

In such cases, deploying CDN technology in the EPs will be even more critical to
decrease transit distances and optimize traffic flows.
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Peering
Peering is the term used to describe the relationship that providers negotiate to determine
how traffic will be exchanged at an EP, but there isn’t any formal, codified definition of
what is and isn’t peering. However, what seems to be common across usage is that this re-
lationship is formal, and may or may not involve fees. There are three primary models for
peering. The first is a bilateral settlement, where each provider bills the other based on use,
and actual payments are determined based on the imbalance of traffic. A variation of this
is a multilateral agreement, where each ISP executes a single agreement with a PNAP, and
gains access to the other networks via the PNAP operator. The second model involves
transit, where one provider pays another to carry its traffic, usually across a backbone.
The third is called Sender Keep All (SKA), where no billing occurs for the exchange of
traffic. This last is more properly called peering in the more general sense of the term peer
and, for the sake of clarity, we’ll use the term in that sense here. The actual benefits of
peering are technical and are discussed in some detail in the previous section. From a
technical standpoint, peering is accomplished via some physical connection and setting
up BGP. The requirements for peering typically include some hardware connection spec-
ification, BGP-4, and an ARIN-assigned ASN.

The parties that generally engage in any of these arrangements are of three not terri-
bly distinct types: Tier-1 ISPs, or backbone providers; Tier-2 ISPs, or national providers;
and Tier-3, which are the regional ISPs. The requirements for peering generally depend
on which of the three, in combination, are involved. Tier-1 providers generally peer freely
with each other, as do Tier-2 providers. The relationship between Tier-2 and Tier-3 is
almost invariably one of transit, where the regional carrier pays the national. The rela-
tionship between Tier-1 and Tier-2 is more complex.

Peering has become something of a snobby Internet club. Large-scale backbone pro-
viders such as WorldCom, Cable & Wireless, and Genuity have all become less and less
willing to peer freely with smaller service providers. Their reasoning is more business
oriented than engineering driven, namely, their infrastructure costs are considerable and
required for sustained growth. Providing free access across that infrastructure, then, is
unsound business practice. However, there are exceptions. When a Tier-2 or Tier-3 pro-
vider has infrastructure in a region desirable to the Tier-1 provider, peering might be im-
plemented to off-load off-net traffic in an expeditious manner. Or, when the provider
finds it exchanges significant (that is, roughly equivalent) amounts of traffic with another
particular ISP, it will make sense for those two networks to peer.

“Roughly equivalent” traffic exchange is another tricky concept to pin down, but
roughly what is meant is the following. Each network, if it has users, generates traffic.
These user requests are then sent out to some destination. The destination then, in turn,
sends back whatever is requested. The requests themselves are more or less inconsequen-
tial, as, typically, they are only a few, small packets. The return traffic is the problem. One
little request can start a flood for a response. The flood adds up in terms of sourcing traffic.
If two Tier-1 or Tier-2, or a Tier-1 and Tier-2 provider discover there’s an equal amount of
responses going to each other’s networks, then peering will most likely be implemented.
Local ISPs tend to accept more traffic than they generate. Co-lo providers tend to generate

Chapter 7: Internet Structure and Function 195



��� ������� 	�
 ���� �������

more than they accept. ISPs that are both, which is the current trend, can both send and
receive prodigious amounts of traffic.

Backbone providers have come up with a variety of minimum infrastructure require-
ments for a given provider to be eligible for a SKA-style peering relationship (see Table 7-1).
The most interesting requirement is the number of public NAPs at which the candidate
has already established a peering connection. With this one requirement, the backbone
provider is attempting to ensure that the regional carrier isn’t simply getting a free (or at
least, dramatically cheaper) ride across its expensive backbone.

The problem with peering and, more specifically, the withholding or conversion of a
peering relationship into one with more of a client feel, is the criteria for the decision.
Notably, there don’t seem to be any hard-and-fast rules. Prima facie, this isn’t a big deal,
until you consider who the players are. When in the context of a relationship between a
Tier-1 and a Tier-2 provider, this becomes a big deal. Tier-2 providers have nationwide
networks and, in some cases, a backbone of their own. However, if cut off from their
Tier-1 provider, the Tier-2 provider then becomes an island outside of the Internet as a
whole. More subtly, if the relationship becomes bilateral or transit-oriented, the client
then could pay enormous sums just to provide access. If that same Tier-1 provider then
chooses to peer with a competitor, the advantage goes to that competitor for not having to
pay the interconnection fees. The power, then, is in the hands of the Tier-1 provider and,
with no standards to require a Tier-1 network to peer with a Tier-2 network, the possibil-
ity arises for anticompetitive and possible monopolistic practices. This is a worry, espe-
cially because all those that peer with Tier-1 providers are required to sign a nondisclosure
agreement. Even worse, the ISPs that peer with Tier-1 providers aren’t disclosed and nei-
ther are the terms for any peering arrangement made with a Tier-1 provider. In the last
five years, there has been a tremendous amount of ISP consolidation; the number of
Tier-1 providers has shrunk dramatically. These factors, and others, have led many to
start discussing intervention by federal regulators.

Into the Looking Glass
While not terribly relevant, a looking glass is relatively interesting. Essentially, what a
looking glass enables you to do is access a web-based interface to the user EXEC mode on a
router running Cisco IOS. What makes it interesting is these are core Internet routers,
running in various backbones and EPs worldwide.

The common commands allowable are

access-list bgp bgp summary environmental

flap-statistics mroute summary ping trace

This enables a network administrator to run trace routes and pings to a particular
network or network device (for example, the one they’re administering) from just about
anywhere in the world. Further, the looking glass can be used to see if the network they
want advertised actually is advertised. This is an amazing troubleshooting tool.

The web site is called Traceroute (http://www.traceroute.org). One of the sites listed
therein (http://nitrous.digex.net) is a looking glass into the MAE-East and MAE-West

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Chapter
7:

Internet
Structure

and
Function

197

Backbone Provider Web Address ASN Reqs

Min Vol Max. Traffic
Ratio

Peer BW Backbone Min NAPs

Genuity http://www.genuity.com 1 1 Mbps ~1:1 ? 155 Mbps 3

UUNet/WorldCom http://www.uu.net 701 150 Mbps 1.5:1 OC-12 OC-12 4

Cable & Wireless http://www.cw.com 3561 45 Mbps 2:1 OC-3 OC-48 4

Table 7-1. Backbone Peering Requirements



facilities itself. While the looking glass won’t let you do a full show bgp (it gives the fol-
lowing error: “A full BGP table dump would cause too much stress on the router and this
machine”), a summary is also quite interesting and tells you how many routes the router
knows (over 100,000 networks), how many AS paths it knows (over half a million), how
much memory it takes to hold it all (over 30MB), and how many peers it has (almost 300!).
It’s pretty neato.

Internet Routing with BGP
The BGP defined in RFC 1771, allows for the creation of loop-free interdomain routing
between autonomous systems, where an AS is simply some group of routers that happen
to fall under a single technical administration. ASNs are 16-bit numbers, with the result-
ing range from 0–65535. The range 32768–64511 is reserved by the IANA, and 64512–
65534 are designated for private use, much as RFC 1918 sets out private IP address
ranges. The basic topology is shown in Figure 7-7.

Routers within an AS can and do use one or more interior gateway protocols (RIP,
OSPF, EIGRP) to exchange routing information inside the AS and an exterior gateway
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Figure 7-7. Basic BGP network topology



protocol, such as BGP, to route packets outside the AS. Like some other routing protocols,
BGP uses TCP as its transport protocol, with its own connection to TCP port 179. Two
BGP routers form a TCP connection between one another and exchange messages to open
and confirm the parameters governing the connection. Any two routers that have formed
a TCP connection to exchange BGP routing information are considered peers or neigh-
bors. Within an AS, routers running BGP processes are required to peer with each other
(this is called internal BGP, or IBGP), but peering with external BGP routers is strictly
optional (keeping the distinction, this is called EBGP). BGP peers initially exchange their
full BGP routing tables. After this exchange, incremental updates are sent only as the
routing table changes.

How BGP Works
When a router configured for BGP comes online in a network, either for the first time or
after it has been power cycled, it tries to establish connections with any other BGP routers
that might be adjacent to it. Once a connection has been established with neighboring rout-
ers, the initial router begins to download the entire routing table of each neighboring
router. After this initial update, BGP routers needn’t exchange the entire routing table
unless a new BGP router joins and requests a full routing update. Subsequent updates will
be much shorter and will be triggered by changes in the topology and periodic updates.

Updates in BGP are typically messages that indicate a change in the preferred path to
reach a given IP segment. Once a router receives this update from a neighbor on a pre-
ferred path, it has a choice to update its own routing tables if it sees this new path is more
efficient. If a BGP router makes any changes to its routing tables, it must subsequently
propagate this information to all other neighboring routers to which it’s connected. In
turn, these neighboring routers must follow the same rule and decide on taking the
update and, if they do, must propagate the changes, and so on and so forth.

As part of an exchange between BGP routers, a unique digital signature is attached to
every packet exchanged between the routers. This signature is used for security purposes
and makes it extremely difficult for intruders to masquerade as another BGP router and
propagate false routing information. The BGP packet header is shown in Figure 7-8.
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Figure 7-8. BGP packet header



BGP routers exchange information using four types of messages (see Figure 7-9
above). These are as follows:

� Open Used to establish the initial connection with a participating BGP
neighboring router.

� Update Contains updates and changes to existing preferred paths. Update
messages are sent out to neighboring BGP routers only and are sent when a
change in topology occurs. The two types of updates are as follows:

� Withdrawn Routes This message is sent out when a route no longer
exists and needs to be deleted from the routing table.

� Paths This message is sent out to indicate a new preferred route. This
path consists of two pieces of information—the IP segment and the address
of the next router in the path that’s used to route messages destined for
that address.
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Figure 7-9. BGP open, update, and notification messages
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� Notification Used to indicate BGP errors, such as an incorrect or unreadable
message received. Immediately following a notification message, the connection
between the sender and receiver is closed.

� Keepalive Sent out to each neighboring router every 30 seconds by every
BGP router to let them know it’s still active. The 19-byte Keepalive messages
sent can be configured to exchange at different intervals, however, as long as
both routers are configured with the same interval. If a router doesn’t receive a
Keepalive message from an adjacent router within a set amount of time, it
closes the BGP connection with that router and removes it from its Routing
Information Base, repairing what it perceives as damage to the network.

BGP routing messages carry the highest precedence of any traffic over the Internet,
and each router that receives a BGP routing message gives it first priority over all other
traffic. This is done to ensure that routing can take place under any circumstances. With-
out BGP fully operational, it would be difficult to get all nonlocal traffic off-Net, and
could well result in isolating the AS from the rest of the Internet.

As part of every BGP router, a detailed database of information used is maintained to
derive the routing table. This router database is called a Routing Information Base (RIB),
and it contains three types of information:

� Adj-RIBs-In This is the raw routing information received from neighboring
BGP routers.

� Loc-RIB This is a processed version of the routing information derived from
the Adj-RIB-In and is the routing table used by the router.

� Adj-RIBs-Out This information is information the router chooses to send to
neighboring routers in the form of updates.

The BGP algorithm, run after the router receives an update message from a neighbor-
ing router, consists of the following three steps for each IP address sent from the neighbor:

� Update If the path information for an IP address in the update message is
different from the information previously received from that router, then the
Adj-RIBs-In database is updated with the newest information.

� Decision If it was new information, then a decision process is run that
determines which router, of all those presently recorded in the Adj-RIBs-In
database, has the best routing path for the IP address given in the update
message. The algorithm for the decision process isn’t mandated, and
administrators can set local policy criteria, such as how long it takes to
communicate with each neighboring router and how long each neighboring
router takes to communicate with the next router in the path. If the best path
chosen as a result of this decision process is different from the one currently
recorded in the Loc-RIB database, then the database is updated.

� Propagation If the decision process found a better path, then the
Adj-RIBs-Out database is updated as well, and the router sends out update
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messages to all its neighboring routers to tell them about the better path. Each
neighboring router then runs its own BGP algorithm and decides whether to
update its routing databases, and then propagates any new and improved
paths to its neighboring routers in turn.

One of the other important functions performed by the BGP process is to eliminate
loops from its routing information. A routing loop occurs when a packet sent out by a
router returns to the same router without ever reaching its destination. BGP addresses
this problem in a simple way. Each routing entry in BGP contains a list of ASes that must
be traversed to reach the specific destination. This list of ASes acts as an audit string of the
path that must be taken to arrive at the destination. If a list ever contains an AS number
twice, the BGP process knows immediately that a loop exists in the path and that entry is
subsequently discarded.

The BGP protocol has been periodically revised and is now at version 4. Each version
can support all earlier versions. Different routers can run different versions of BGP, so the
protocol includes an interesting method for ensuring that different versions can commu-
nicate. When one BGP router tries to communicate for the first time with a second BGP
router, the first router sends the second router an Open message, including the highest
version of BGP it supports. If the second router can’t support that version, it sends back a
Notification message with the highest version it can support. The first router then opens a
connection using that version, so the two routers can then communicate at the highest
version of BGP they both support.

Some BGP Manipulation
To move packets efficiently across the Internet, a routing protocol must take into consid-
eration the AS paths that must be traversed. As some ASes are larger than others and,
therefore, require more time to traverse, charting an optimal path can be somewhat of a
challenge. Although it can be impractical to implement, the path of packets as they transit
peering points can sometimes be adjusted. Once manual intervention is placed into the
routing decisions, however, optimization is often forsaken.

You can manipulate several attributes within BGP, aside from simply creating route-
maps and filters to shunt traffic. Depending on the network topology configuration, the
following attributes can be particularly useful AS_PATH, MULTI_EXIT_DISC, and
LOCAL_PREF.

By itself, AS_PATH isn’t terribly interesting (see Figure 7-10). A mandatory attribute
in BGP routing updates, it includes the string of ASNs that represent a route to a particu-
lar destination. As routes are exchanged between BGP routers, the routers prepend their
ASNs to the AS_PATH, to indicate they’re a transit area to reach the destination.
AS_PATH attributes can be manipulated manually, especially by the router injecting the
route in the first place. By prepending its own ASN to the AS_PATH before advertising it,
the router effectively discourages that path, provided another path exists to that AS with a
shorter AS_PATH. Remember, with BGP, it’s all about the shortest AS_PATH; the shorter
the path, the more preferred the route. In the case of a large corporation with multiple
egress points onto the Internet (or at least, onto an upstream ISP), prepending one of the
two paths will bias the incoming traffic toward the path not prepended. To make this
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even more explicit, network administrators will bias against one path by prepending the
ASN multiple times. These prepended ASNs will be embedded into the AS_PATH attrib-
ute and sent out into the Internet, available for any and all to use.

MULTI_EXIT_DISC (MED) is an optional attribute that happens to be nontransitive,
that is, if set, the attribute won’t be passed along beyond the neighbor it’s advertised to
(see Figure 7-11). Essentially, MED works the same as AS prepending in that it tells the

Figure 7-10. BGP AS_PATH prepending
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neighbor which of two or more paths is preferred back into the AS that advertised it.
Lower values are more preferred, where 0 (zero) means no-value or null, and not always.
MED values are compared within an AS when deciding which route to take into an AS,
when more than one choice occurs. MED, then, can be used to keep traffic from a
hot-standby link or a link being used for specific application traffic, or to point traffic to a
particularly fast/higher bandwidth link. MED values for routes to the same destination
via different ASes aren’t compared, by default, as they’re meant only to be a hint from one
single AS to another single AS as to how to get to it. If reasons exist to violate this rule, for
example, the directly connected path is, in fact, a backup-only path, and then, in a Cisco
router, the bgp always-compare-med command will enable this functionality. MED is
important because by using MED, you can avoid shortest-exit routing (see the previous)
but, note, not all providers support MED, or derive or interpret the MED values in a sys-
tematic way. Your provider can help you with this.

LOCAL_PREF, like MED, is another optional attribute included in BGP updates for a
particular route (see Figure 7-12). Unlike MED, LOCAL_PREF doesn’t get communicated be-
yond the AS. As its name implies, LOCAL_PREF is relevant only to routing decisions within
the AS itself. LOCAL_PREF is intended to help discriminate between multiple paths to the
same destination and bias in favor of the one with the highest LOCAL_PREF value. In other

Figure 7-11. BGP MULTI_EXIT_DISC
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words, LOCAL_PREF defines the egress from the AS to some destination, when multiple
egresses can be chosen. Again, this can help defeat shortest-exit routing behaviors.

Simple BGP Load Balancing
BGP will install only the best route to a destination into its routing table, even though it
maintains up to six alternatives in its database. These EBGP alternatives won’t be commu-
nicated to IBGP peers, however. In these cases, the router replaces the list of alternatives
with itself as the next hop, and then advertises that route instead. Exceptions do exist. If a
router learns of the same route via two different routers, for example, the routers in AS

Figure 7-12. BGP LOCAL_PREF



65108 in learning about network 192.168.0.0/16, then the router will maintain two routes to
that network, one via each viable path. These two routes are automatically load balanced,
all else being equal (that is, no MED or prepending was set). This is done by round robin on
a per host basis, so 192.168.1.1 will go across link 1, 192.168.1.2 will go across link 2,
192.168.1.3 will go across link 1, and so forth. This automatic load balancing is a feature of
Cisco routers.

Cisco offers another option to attempt load balancing across BGP. If multiple routes
are learned from the same neighboring AS, then the router can be configured to load bal-
ance across them. By default in such circumstances, the router will select the path with
the lowest router-ID (usually, the configured loopback address) and install that as the
preferred route. With maximum-paths configured, however, the router can maintain up to
six alternative paths to a single destination.

Neither of these options is terribly sophisticated, and the use of both is somewhat
restricted (namely, to Cisco routers). Chapter 9 deals with Load Balancing in more detail
and Chapter 10 covers some High Availability protocols. For a deeper look into BGP, its
use and configuration, you can’t do better than Sam Halabi’s Internet Routing Architec-
tures, now in its second edition. Available from Cisco Press, this book is still the be-all,
end-all BGP reference.

SUMMARY
This chapter has been an attempt to do the nearly impossible—put structure where none
exists. The Internet is a hodge-podge of networks, some big, some small, some providing
access, some transit, all connected together at innocuous but all-important transit points.

POPs are the quintessential on-ramp to the Information Superhighway. Most provid-
ers will have them all over the place, with the idea that more is, indeed, merrier. The more
POPs, the more reach, the more reach, the more revenue. POPs are used by both regional
and (inter)national ISPs, and, currently, no farther away than a local call to nearly every
area code in the United States. Regional ISPs connect to their larger brethren, and the
larger carriers connect to the backbone providers. These backbone providers are the ones
with all the glass under the concrete of the major metro areas, across the long empty
spaces in the nation’s interior, and lying at the bottom of the oceans. These long-haul pro-
viders are largely the same ones that provide long-distance telephone service, which
makes sense, because in many cases, voice traffic is going across the same strands! Re-
gardless of the kind of service provider, all exchange their data with the others in some
way or another. The primary method for doing so is via a NAP. These NAPs are increas-
ingly and incredibly oversubscribed, which has led to private peering as the new model
for connectivity, for good or for ill.

Even with this simple set of characters, the reality of the physical infrastructure that
is the Internet is awesome to behold. The sheer number of cables and fibers intercon-
necting the world is easily beyond counting. All the backbone and metro topology
maps combine with the LAN and WAN maps, to create something almost meaningless
to the eye. Some interesting attempts have been made to try to make sense of it all,
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however. Caida (http://www.caida.org) has some of the most startlingly beautiful
maps of the Internet ever created—and some are even available for sale! Another
site with quite a few mind-bending maps is the Geography of Cyberspaces site
(http://www.cybergeography.org).

Moving data across the Internet is no simple task. Moving data across the Internet well
is even trickier. BGP is the de facto standard for interconnecting networks, and you’ve
seen briefly what it is and does, and some of the things that might be done with it. While
not intended to be definitive by any means, this chapter has put some of the basic con-
cepts at your disposal.

REVIEW QUESTIONS
1. What is the difference between an ISP and a backbone provider?

The difference between an ISP and a backbone provider is what they sell.
ISPs sell access, backbone providers sell transit. Of course, backbone
providers, in most cases, do both!

2. Why are NAPs important?

NAPs are important because, without them, networks will be unable to
exchange traffic, and all networks would become isolated from each other.

3. What are the three types of arrangements network providers make to
exchange data at NAPs?

The three types of arrangements network providers make to exchange data
at NAPs are bilateral/multilateral, transit, and peering.

4. What are two mechanisms administrators can configure in BGP to avoid
shortest-exit routing?

In BGP, administrators can configure AS_PATH prepending, MED,
LOCAL_PREF, route maps, and filters to avoid shortest-exit routing.
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OBJECTIVES
� Understand the relationship between HTTP requests and responses, and how

web caches fit into that model

� Learn about the HTTP headers that control the cache’s behavior

� Discover how the various components of caching fit into web infrastructure

� Understand cache-related protocols

� Learn how HTTP cookies work

In a land long, long ago, in a server farm far, far away, the world was introduced to
web servers. The intent: make the sharing and referencing of physics papers a lot easier.
But, then, two seemingly insignificant things happened. The fine people at the National
Science Foundation decided it was time to open up the doors to commercial use of the
Internet and this guy named Marc, who was working on a graphical web browser,
decided to help start a company called Netscape.

The world flocked to the Web, as it was called by those who used it, because a few cre-
ative types realized that along with sharing physics papers, you could share all sorts of
other (usually useless) information. As this happened, two interesting events occurred. The
first was the desire for content providers to customize information on a per-user basis. And
the second was legacy applications that called for centralized management could use the
web browser, which has a cross-platform, highly available application interface.

The desire to use applications on web servers left us with some interesting problems:

� What is the interaction between web servers and their applications?

� How do applications retain the user’s state using a protocol (HTTP) that is, by
design, stateless?

� How does a web site effectively deliver content when the servers are pulled
between the task of running applications and serving static content?

In this chapter, we examine all three problems and their corresponding solutions.

THE PROCESS OF FETCHING CONTENT
The Hypertext Transfer Protocol (HTTP) is a simple request/response system meant to
solve two key problems inherent in other file transfer protocols, such as FTP. First, HTTP
uses a simple text-based request format. This makes writing clients and proxies much
easier, and it makes the protocol easy to expand on. Second, HTTP removes unnecessary
state information between the server and client. The web server has no concept of a user
session from click to click, thereby making HTTP easier to write. In fact, a simple web
server could take only a few dozen lines of C code.
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From a caching point of view, content comes in two flavors: dynamic and static. The
important difference between the two is that static content can usually be cached, whereas
dynamic content cannot be cached. The following section explores the difference between
the two types.

Requesting Static Content
Let’s examine a simple HTTP request from a web browser to a web server. Figure 8-1
visualizes the process for you. Stepping through the process, you see

1. The client begins by opening a TCP connection to the server. The server accepts
the connection and waits for a request.

2. The client sends the following HTTP request:

GET /sample.html HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Host: www.planetoid.org

Connection: Keep-Alive

The request ends with the sending of a blank line.

3. The server then processes the request and gets the /sample.html file off the disk.

4. The server sends an HTTP response header that looks like this:

HTTP/1.1 200 OK

Date: Mon, 03 Sep 2001 22:08:05 GMT

Server: Apache/1.3.14 (Unix) PHP/4.0.4

Last-Modified: Mon, 03 Sep 2001 22:05:22 GMT

ETag: “8b84c-1c-3b93fea2”

Accept-Ranges: bytes

Content-Length: 28

Keep-Alive: timeout=15, max=100

Connection: Close

Content-Type: text/html

A blank line then ends the response header.

5. The content itself is sent from the server.

6. The server closes the TCP connection, thereby ending the transaction.

And that’s it. Not terribly complex, is it?
For additional detail on what the headers mean, see Chapter 4 or RFC 2616

(http://www.rfc-editor.org/rfc/rfc2616.txt).
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Web pages are a series of independent objects that are requested separately. The first
page that comes down is the HTML code itself, which tells the browser what text
will be on the page and how it will be laid out. Part of this page description includes
references to images and their location on the page. Each image referenced in the
HTML code is requested from the web server using separate HTTP requests. Thus, a
single web page might incur many HTTP requests.

Figure 8-1. Visualization of an HTTP request for static content



Requesting Dynamic Content
Dynamic content is simply those web pages generated on-the-fly for a specific user, for a
specific instance. An excellent example of this is the My Yahoo! service at http://
my.yahoo.com. Every page generated requires that the server check its database, deter-
mine the format in which users want to see their content (for example do users want to see
headline news before seeing their stock ticker?), and then generate the HTML necessary
to render that page.

Because every page requires that the server execute a program, check a database, or
otherwise do more work than simply reading a file from disk, dynamic content requires
much more horsepower from your servers than static content does.

While the server handles dynamic content differently than a client does, a client does-
n’t see any difference between static and dynamic content. The HTTP requests generated
are the same and the handling of the responses are the same.

Let’s step through a dynamic request and see what the server is doing to process it.
Looking at Figure 8-2, you can see the inside of a web server handling dynamic requests.
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Figure 8-2. The web server generating dynamic content



1. The server receives an HTTP request from a client.

2a. The server calls on the custom application.

2b. The web server waits for the custom application to finish.

3. The application (optionally) requests information from a database.

4. The application generates HTML code and returns it to the web server.

5. The web server forwards the resulting HTML to the client.

Pretty straightforward, isn’t it?

CACHING
Another key design improvement HTTP made over protocols like FTP is it was designed
to allow for the easy use of proxy servers and for proxy servers to be able to cache content.
This has led to a proliferation of caching servers that fit in many places and can improve
system performance in various ways.

In this section, two types of caching are discussed: client-side caching and edge cach-
ing. Fundamentally, both types of caching do the same work; however, they accomplish
different things and, thus, have differing features that make them special from one ven-
dor to another.

The Basics
For content to be cached, it must go through a proxy server. A caching proxy has the task
of receiving a new HTTP request, checking to see if it’s available in the cache, and, if it
isn’t, contacting the origin server and getting the content.

With respect to the transaction, proxy servers act a lot more like web servers than they
do web clients. In that respect, the client-side behavior when using a cache doesn’t
change, but server-side responses and actions based on responses do change.

Let’s begin by examining how proxies determine whether an object can be kept
in cache.

Can an Object Be Cached?
HTTP headers have the option of including in them a special line that specifies whether
the object being sent can be cached and, if so, what parameters should affect the cache’s
treatment of that object.

In their simplest form, there exists the Pragma: no-cache header. This header is com-
patible with the HTTP 1.0 spec and simply tells the proxy the content isn’t to be cached.
This is typically applied to dynamically generated content. To make the caching options
more flexible, the HTTP 1.1 spec introduced the Cache-Control header. This header can
be used by both requests and responses to dictate the behavior of caches.

HTTP requests can use the following values for Cache-Control:
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Cache-Control Directive Meaning

no-cache Cache must refetch object from origin server.
no-store Cache cannot save a copy of the response.
max-age=delta seconds Client will only accept cached object if it’s less than delta

seconds old.
max-stale=delta seconds Client will accept a cached object even if it has expired,

but only if it’s not more than delta seconds older than the
expiration date.

min-fresh=delta seconds Client will only accept cached object if the object has at
least delta seconds remaining before it expires.

no-transform Cache cannot alter the object in any way. This is most
significant to proxies that perform some type of service,
e.g., lowering the resolution of images for slow link
downloads. Few proxies do this type of transform
anymore.

only-if-cached Cache should return the object if it’s cached; however, it
shouldn’t contact the origin server if the object doesn’t
exist in the cache. If a cache receives this message and
doesn’t have the object, it should return with a 504
message (Gateway Timeout).

HTTP responses can use the following responses for the Cache-Control header:

Cache-Control Directive Meaning

Public Object can be cached.
Private Object cannot be cached by any shared cache (browser

caching is okay).
no-cache Object cannot be cached by anyone.
no-store Object cannot be put on to any permanent store by

the cache.
no-transform Object cannot be altered in any way by a proxy, e.g., the

reduction of image quality for low bandwidth users is
an example of a transform.

must-revalidate Object cannot be sent after the expiration date, even if
the client specifies a max-stale control. Object must be
refetched from the origin server.

proxy-revalidate Same thing as must-revalidate, except this applies only
to proxy-based caches, not to browser-based caches.

s-maxage=delta seconds Maximum object life as defined in delta seconds. This
value can override the Expires header.
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Expiring Content
Caches must have a mechanism for knowing when content has become stale. This is
accomplished by using four tags: Cache-Control, ETag, Last-Modified, and Expires.

In the previous section, we explored the use of the Cache-Control header to force
expiration or revalidation. For instance, a client could force the reload of a file by includ-
ing within its request the header Cache-Control: no-cache. The server can control how (or
even if) an object is cached by means of the same header, but with different values. For
details, see the previous section that discussed all the values and their meanings.

When an object sent by a server can be cached, it sends along with the object an ETag
header. The format of the header is

ETag: “hash-value”

where “hash-value” is the computed hash of the object being sent. This hash is like a
checksum: if the object changes in any way, the hash value also changes.

The first time a client requests a static object from a server using the GET method, it
receives an ETag for the object. The client can then keep this object and associated ETag in
its local cache. If the user calls on a page that has the same object, the client can then send a
HEAD method to request only the header of the object. The server’s response will contain
the most recent ETag value for the object, which the client can compare to its cached
value. If the two values are the same, then the client knows the object hasn’t changed, and
it can safely use the cached object instead of having to fetch it from the server again.

Proxy caches can also use the ETag to determine if an object in its cache is current and
whether it needs to fetch a specific object from the server again.

Another header used for content expiration is the Last-Modified header. The format of
this header is as follows:

Last-Modified: Date

where Date is the full POSIX-compliant date and time the object was last modified. Simi-
lar to the ETag, the first request from a client to fetch a static object will include
the Last-Modified header. The client can then use the HEAD method to get an object’s
Last-Modified date, so it can decide whether an object has changed. If the object has
changed, the client can use the GET method to fetch the revised object from the server
again.

Finally, the Expires header explicitly defines the time and date at which a cached
object should be considered stale. The format of this header is as follows:

Expires: Date

where Date is the full POSIX-compliant date and time the object should be considered
stale. If an object in a cache isn’t stale, the cache needn’t contact the origin server to vali-
date whether the object has changed yet. Thus, if your web server has static objects that
don’t change often (such as company logos, and so forth), be sure to configure your web
server to generate Expires headers for these objects. This is so both browser caches and
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any proxy caches along the path can cache the object and avoid the bandwidth incurred
with validation processes.

Invalidating Content
Some HTTP methods exist for which caching simply doesn’t make sense. Specifically,
these methods are PUT, DELETE, and POST. In each of these methods, the cache must
pass the request to the origin server because it will cause the origin server to perform
some content-changing action.

Should a proxy cache have the URI that’s being acted on by these content-changing
methods, the cache should immediately invalidate the content if it has a local copy. For
example, if a server-side CGI script generates content that can be cached, a proxy cache
can keep a local copy of its output. If a client sends a POST method to that CGI script, the
result of the script might change and, thus, the cache must invalidate its copy as it for-
wards the POST to the origin server.

Transparent vs. Nontransparent Caching
Proxy caches require the TCP connection to be terminated at the cache. This means the
cache will accept the TCP connection on behalf of the server, and then, if necessary, gen-
erate a new TCP connection to the server. The server will see the connection as having
originated from the cache’s IP address.

In nontransparent caching, the client explicitly addresses the proxy cache as the desti-
nation IP. If the cache doesn’t have the content, the cache must know the IP address of the
origin server from which it can get the content. Depending on whether the cache is a for-
ward or reverse proxy cache, the configuration for this is different. (See the following sec-
tion titled “Forward vs. Reverse Proxy Caching”). Figure 8-3 shows this relationship.

In transparent caching, the client addresses the destination server. The proxy cache is
configured to accept connections for any destination IP, thus the client thinks it’s talking
to the server. If the proxy cache doesn’t have the necessary content, it fetches that content
from the origin server automatically to fulfill the client request. Figure 8-4 shows this
relationship.
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Figure 8-3. Nontransparent caching



Forward vs. Reverse Proxy Caching
Caches currently come in two flavors: forward caches and reverse proxy caches. Each of
these uses the same fundamental technology; however, each cache differs in the details in
its deployment and the types of requests for which it optimizes itself. This section covers
what each of these technologies is and how each differs from the other.

Forward Proxy Caching
The original intent with proxy cache was to make client-side content delivery faster. The
assumption was that latency on the Internet was significant enough to justify the use of
caches, and the bandwidth savings for ISPs could be enormous. This method of caching is
called forward proxy caching, or simply forward caching.

Figure 8-5 shows forward caching in action.
Let’s go through the steps:

1. The client makes the first request for the object. The cache receives the request.

2. The cache finds it doesn’t have the content requested and forwards a request to
the origin server.

3. The origin server returns the content back to the cache. If possible, the cache
stores the object.

4. The cache returns the object to the client.

5. At some future time, the client requests the same object again. The cache
receives this request.

6. Seeing it has the object, the cache immediately returns the object to the client.

Forward proxy caches are typically configured to be transparent. This allows sites
such as ISPs not to have to make any changes on the customer PC. Nontransparent for-
ward caches require the client browser to be configured to use a proxy cache. In doing
this, the browser always contacts the proxy server directly; however, it changes the
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method, so instead of referring to a URI, it refers to the URL. This lets the proxy server
know what origin server it should contact. The following is an example of this.

GET http://www.clickarray.com/ HTTP/1.0

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Host: www.clickarray.com

Proxy-Connection: Keep-Alive

Reverse Proxy Caching
As servers moved to dishing out more dynamic content, administrators found a lot more
servers were needed to handle the same amount of traffic. Intermixed into that dynamic
traffic, however, is still a good deal of static traffic. Logos, icons, navigation maps, and so
forth still needed to be sent to clients.

To help deal with this, reverse proxy caching came into play. With reverse proxy
caches, HTTP requests from clients are sent to the server-side cache. The cache attempts to

Figure 8-5. Forward caching



service static requests out of its cache, thereby alleviating load from origin servers. Those
requests that call for dynamic content are automatically passed on to origin servers.

In Figure 8-6, you can see the path of an HTTP request from client to server with a
nontransparent cache in the middle.

Let’s go through the steps of an HTTP request:

1. The client makes a request to the web site. The reverse proxy cache receives the
request on behalf of the web server.

2. Seeing it doesn’t have the requested content, the reverse proxy cache forwards
the request to the server.

3. The server responds with the content. If the content can be cached, the reverse
proxy cache keeps a local copy.

4. The reverse proxy cache returns a copy of the content to the client.

5. Another client makes a request for the same object for which the first client
made a request.

6. Seeing it already has a copy of the object, the reverse proxy cache doesn’t bother
the origin server and automatically returns a copy of the content to the client.
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Figure 8-6. Reverse proxy caching



Depending on how a site is configured, reverse proxy caches can appear in both trans-
parent and nontransparent configurations. In transparent configurations, server load
balancers (SLBs) are used to do cache server redirection, that is, the SLB redirects the HTTP
request from the virtual IP to the cache that’s configured to work in transparent mode. If
the cache doesn’t have the content, it requests the content from the origin server via the
SLB, thereby allowing the request from the cache to be load balanced across the real
server pool. (For additional information on SLBs, see Chapter 9.) The SLB can also be con-
figured with content rules, so certain types of requests are never forwarded to the cache
(for example, anything with /cgi-bin in the URL should go always go directly to a real
server group).

In nontransparent configurations, the cache should be configured with a virtual IP of
its own and set up to terminate all incoming HTTP requests. The cache can then check to
see if it has the content and return it if possible. Otherwise, the cache should forward the
request to an SLB, so the real server pool can be properly load balanced.

Some reverse proxy caches, such as those from ClickArray Networks
(http://www.clickarray.com) and CacheFlow (http://www.cacheflow.com), now come
with SLBs as part of their standard offering and, thus, eliminate the need for a separate
load balancer in the network.

Edge Caching and Content Delivery Networks
As the Internet has grown, increased point-to-point latency has become an issue for sites
wanting to provide a higher quality of service to their users. To deal with this problem,
companies such as Akamai (http://www.akamai.com) and Speedera
(http://www.speedera.com) have started services that consist of thousands of forward
proxy caches that are topologically spread out across the Internet.

Subscribers to CDN services rewrite their content so references to static objects, such
as images, point to a CDN cache. When a client wants to fetch the image, a DNS query is
made to find the IP address of the CDN cache. The CDN’s DNS servers differ from stan-
dard DNS servers because, instead of blindly returning an IP, they examine the client’s IP
address and, using proprietary technologies, determine which CDN cache cluster is topo-
logically closest to it. The DNS server then returns the IP address of the appropriate CDN
cache cluster, and the client makes a request for the content from there.

Because the cache clusters are topologically closer, their respective latencies are much
lower. This results in the client having a better web experience, which can result in more
repeat visitors to a web site. A web operator’s dream. . . .

In addition to providing a better response time to a client, the distribution of web traf-
fic across thousands of forward proxy caches translates to reduced load on origin servers.
Depending on your site architecture, the reduced load and improved performance can
make the steep per-megabit price offered by CDNs worth the money.

The CDN DNS query doesn’t reply blindly with an IP address but, in fact, checks the
originating IP address and tries to locate the closest CDN Servers. The questions are what
method will it use and how does it work?
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The answers to the previous questions can help the intended audience understand
the benefit of using CDN over any other cache technology.

“Akamaizing Content”
In the way the term xeroxing became a synonym for photocopying, the term akamaizing has
become a synonym for automatically rewriting content so it’s CDN-aware. Typically, web
sites go through a manual akamaization process where they convert all their existing con-
tent, so it becomes CDN-aware. These web sites must also update their web applications,
so the applications generate CDN-aware HTML code, and the production of new HTML
must undergo an additional step of being made CDN-aware. When all is said and done, the
process of making content CDN-aware can be a time-consuming one, despite the automa-
tion tools offered by companies like Akamai and Speedera.

To assist with this problem, some reverse proxy caches now offer the capability to
rewrite content dynamically, so it becomes CDN-aware without any additional work.
The ClickArray Networks (http://www.clickarray.com) Array series sports a feature
that allows content to be rewritten for any CDN. The content can then be stored in its
internal cache for future delivery. Similar to the ClickArray solution, the CacheFlow
Server Accelerator series allows content to be dynamically rewritten; however, this only
works for the Akamai network. Both solutions are then able to deliver the rewritten con-
tent from their cache, thereby reducing even more load on origin servers.

Let’s look at a quick example for www.example.com. Assuming no CDN, a web page
might look something like this:

<html>

<center><h2>My Vacation<hr></h2></center>

<img src=”pic1.jpg”>

<img src=”pic2.jpg”>

</html>

Now, assume the content is rewritten for the Akamai network. The resulting content
would look like this:

<html>

<center><h2>My Vacation<hr></h2></center>

<img src=”http://a9.g.akamai.net/6/9/21/000/www.example.com/pic1.jpg”>

<img src=”http://a9.g.akamai.net/6/9/21/000/www.example.com/pic2.jpg”>

</html>

Speedera, on the other hand, uses a slightly different method of rewriting content.
A Speedera-ized site would look like this:

<html>

<center><h2>My Vacation<hr></h2></center>

<img src=”http://cdn.example.com/pic1.jpg”>

<img src=”http://cdn.example.com/pic2.jpg”>

</html>



������� �� �� !������" �����" ��# �� ��$��� 		%

Notice, in both cases, the resulting rewrite was essentially inserting a static string
before the pic1.jpg and pic2.jpg filenames. The specific prefix changed from CDN to CDN
(thus, making them incompatible) but the underlying principle remains: have the web
client do a DNS lookup against the CDN DNS server, so the CDN can redirect the client to
the closest cache cluster.

Cache Interception
Depending on your site architecture, web traffic can be a subset (albeit, a large one) of the
total traffic that’s going over your links. Thus, putting web caches off to the site is often
necessary, so non-web traffic can be forwarded correctly. To accommodate this, you can
use cache interception, which is a method of network design that allows a TCP-aware
router or switch to redirect traffic to a cache without disrupting normal traffic flow.

Cache interception can currently be done by two methods. The first is by port redirec-
tion on layer 4-aware switches or Unix-based routers. The second is via the Web Cache
Coordination Protocol. Both methods are examined in this section.

Port Redirection / L4 Switch Redirection
The concept behind port redirection is a simple one. Requests passed through a Unix
router or server load balancer can be redirected to a cache. If the cache cannot service the
request, the cache passes the connection back, so the request can be properly forwarded
to the origin server.

The key difference for requests forwarded through the cache is the source IP address
changes from the client to the cache’s, thus allowing the cache to see the content as it’s
returned from the server. The cache then keeps a copy of the content (if the HTTP headers
allow it to do so) and forwards the content back to the client.

Figure 8-7 visualizes this process.

1. The client sends the packet destined to the web server.

2a. The packet is not HTTP, the packet is directly forwarded.

2b. The packet is HTTP, the destination is changed to the cache.

3. On a cache-miss, a new HTTP request is made to vip1. Because the request
originates from the cache, the redirection doesn’t happen.

4. The request is load balanced and forwarded to a real server.

Using a Unix-based router (such as a PC running Linux) is often a good solution for a
small- to medium-sized business that wants to offer Network Address Translation
(NAT), firewalling, and transparent caching to its users. Placed in conjunction with a
Squid cache, you have a great solution for providing a forward cache solution for your
users. (Squid, placed on a beefy PC costing no more than $1,500, should give you enough
throughput to keep up with 3-4 T1 links.) For configuration details, visit the Squid
homepage at http://www.squid-cache.org. For specifics on cache redirection for multi-
ple operating systems (including Linux), read section 17 of Squid’s FAQ.
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Using an SLB to provide port redirection is a better choice in higher throughput envi-
ronments or in server environments where multiple web servers need to be load bal-
anced. Almost all SLBs provide this feature with the exception of those balancers that
integrate a reverse proxy caching solution (for example, ClickArray Networks). If you’re
in a forward caching environment (for example, an ISP), consider load balancers from
Nortel (previously Alteon) or Cisco (previously Arrowpoint). Both vendors provide web
cache redirection as part of their standard layer 4 server load-balancing solution.

Web Cache Coordination Protocol (WCCP)
The Web Cache Coordination Protocol (WCCP) came to life as a Cisco proprietary solu-
tion. Its intent was to allow its routers (normally layer 3 devices) the capability to redirect

Figure 8-7. Path of a packet during port redirection



web traffic to caches it also made. Unfortunately, some limitations existed to this proto-
col, namely:

� Redirection of TCP port 80 traffic only

� Support for up to 32 caches, but only one home router

� Support for only a single services group

In the second incarnation of the protocol, Cisco went the standards route, thus allow-
ing other caching and router vendors to interoperate with what became WCCPv2.

WCCPv2 expands on the idea behind port redirection in many ways. The first is the
option to encapsulate packets and ship them to web caches via GRE tunnels. This allows
web caches to exist outside the routers’ broadcast domain (read: another subnet) and still
properly handle redirected packets. All the web cache has to do is remove the encapsula-
tion and inject the packet into its TCP stack. The TCP stack, configured as a transparent
proxy, would properly terminate the connection and continue functioning like any trans-
parent proxy.

The second major difference is WCCPv2 allows web caches to work with more than one
router. Thus, in a network where many routers are connecting many networks, a cluster of
caches could work, in theory, with all possible ways into and out of the network.

The third major difference is WCCPv2 allows for the web caches to turn down a
request if it doesn’t want to (or is too busy to) handle it. The router can then simply con-
tinue forwarding the packet to the destination where the request can be serviced, albeit
with a greater latency. This is in sharp contrast to port redirection, which forces the web
cache to handle whatever load is thrown at it because the switch has no state information
regarding any one connection.

The last major difference is the capability for routers to specify web caches based on
some information in the packet. This method of web cache selection (also referred to as
the hash) can be used so the same cache is referenced when working with the same web
server. Doing this guarantees that if content gets cached once, subsequent requests from
different clients will get a cache hit because they’ll be directed to the same cache. The only
threat to this feature is similar to the megaproxy problem, where a given web site could
be large enough and busy enough that the traffic could overwhelm the web cache.

WCCPv2 Messages WCCPv2 is comprised of a series of messages serving specific
requirements that are sent via UDP on port 2048. Four messages exist.

� Here I AM

� I See You

� Redirect Assign

� Removal Query

Let’s step through what each of these messages means and what information it passes
between the router and the web cache.
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Here I AM
The Here I AM message is transmitted by a web cache to each router it wishes to work
with. The transmission of this message allows the web cache to join the service group, that
is, the group of web caches the routers can pass HTTP requests to. Each web cache must
send this message once every ten seconds.

Within the message is a series of submessages that specify the following:

� Are the remaining packets in this transaction password protected? If so, the
MD5 hash of the password is included.

� Is the service being redirected well known? At press time, the only well-known
service is HTTP. If the service isn’t well known, a list of which TCP and UDP
ports to redirect must be provided.

� Which parts of the headers (IP address and TCP/UDP ports) are to be hashed,
so packets either originating from or destined to the same place will always hit
the same cache.

� The identity of the web cache.

� A listing of what other routers and web caches are thought to be in the service
group.

I See You
The I See You message is the response sent by the router to a web cache on receipt of a
Here I AM message. If the Here I AM message was unicast, the corresponding I See You is
unicast as well. Ditto with multicast.

The purpose of the I See You message is to allow the router to pass some information
back to the web cache. The information within this packet is as follows:

� Are the remaining packets in this transaction password protected? If so, the
MD5 hash of the password is included

� A confirmation of services the router is passing to the web cache

� The router’s identity

� The router’s view of what web caches are in the service group

� The router’s view of how HTTP requests are spread to all the web caches in
the group

Redirect Assign
Once a web cache joins a service group, the group must elect a group leader. Although no
well-defined protocol exists for this, the recommended method is by the members getting
together and picking the web cache with the lowest IP address.

Once a web cache is elected, it must periodically send Redirect Assign messages to
confirm the distribution of redirected packets from routers to web caches. If a router
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doesn’t hear this message from a web cache for 50 seconds, the routers assume the net-
work topology has changed and that their table telling them what web caches to redirect
traffic to is invalid. This leads to the tables being flushed and forcing the web caches to
rejoin the service group for that particular router.

The contents of the Redirect Assign packet are a subset of the I See You packet. These
contents include

� The MD5 hash of the password (if one is being used)

� A confirmation of services the router is passing to web caches

� Assignment information regarding which caches are getting what traffic

Removal Query
Each web cache is required to send the Here I AM message to the router every ten sec-
onds. If a router doesn’t hear from a member cache within 25 seconds, the router sends
the offending web cache an explicit Removal Query packet, which, essentially, asks the
web cache whether it wants to continue being in the service group. If the web cache does
want to remain in the group, it must send back three Here I AM messages, each within
one second of each other. If the router doesn’t hear from the web cache within five sec-
onds, the router will remove the web cache and announce this change during the next set
of I See You packets it sends to the other web caches.

The contents of the Removal Query packet are as follows:

� The MD5 hash of the password (if one is being used)

� A confirmation of the services the router is passing to web caches

� The last IP address that sent a Here I AM message

� The IP address of the specific web cache being queried

WCCPv2 Forwarding Models During the I See You message, the router tells the web cache
what forwarding model it wants to use. A forwarding model is simply the method by
which the packets will be redirected from the router to the web cache. Two models are
available.

The first model comes from WCCPv1, which uses a GRE tunnel between the router
and the web cache. When a packet in the router is tagged for redirection, it’s encapsulated
in a GRE tunnel and passed to the web cache. The web cache then must remove the encap-
sulation and inject the packet into its TCP stack. The nice aspect of using this method of
forwarding is the web cache needn’t be directly accessible to the router in the same way
as the L4 redirection. The bad side to this model is overhead is incurred when encapsulat-
ing packets for transmission, which both the router and the web cache must deal with. On
an already congested router, this can easily lead to dropped packets.

The second method is to use L4 redirection. This is clearly a faster method of redirect-
ing packets, but comes at the expense of limiting what the network topology can look
like. With GRE tunnels, web caches could, in theory, exist anywhere on a network, thus
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enabling service providers to unify their caching structure. The reality is, however, that
most web caches end up adjacent to the router, thus eliminating the benefit from having
the GRE tunnel.

Which is better? This depends on your needs in the network. If performance is the
number one criterion for you, L4 redirection is a better choice. If flexibility is more impor-
tant, use the GRE tunnels.

A Sample WCCP Configuration Configuring WCCPv2 under IOS can be straightforward.
Begin by logging into the router and entering enable mode. Once you are in enable mode,
the following commands configure the router to redirect web-related packets without a
destination of 192.168.196.51 to a cache:

Router# configure terminal

Router(config)# access-list 100 deny ip any host 192.168.196.51

Router(config)# access-list 100 permit ip any any

Router(config)# ip wccp redirect-list 100

Router(config)# interface Ethernet0

Router(config-if)# ip web-cache redirect-list

Router(config-if)# end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Caching Products
Many caching products exist in the market today. Unfortunately, because of the rapid
rate at which their feature sets evolve and performance numbers change, this chapter
isn’t the ideal place to cover their specifics or discuss marketing buzzwords. The follow-
ing short list, however, should give you a starting point from which you can look into
caches. Note, this list is a far cry from an exhaustive list of available caches, and the author
highly recommends you do your homework before making any commitments. All of the
cited numbers are based on marketing literature found on their respective web sites.

ClickArray Networks
The Array 1000 from ClickArray Networks (http://www.clickarray.com) stands out
among the caches because it’s only meant as a reverse proxy-caching solution. Using only
RAM for storage, the cache trades capacity for performance, which as a server-side cache
only is something quite workable for most sites. Of course, this means it makes for a poor
choice as a forward proxy or edge cache solution but, then again, that’s not what its engi-
neers had in mind when it was developed. What’s unique about this cache is it’s
integrated with a sever load balancer, global SLB, SSL accelerator, content rewriter
(Akamaizer), and firewall.
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Peak Throughput 500 Mbps

Peak Requests/Sec 20,0000

Supports HTTP 1.1 Yes

Supports Streaming Media “Early 2002”

Appliance Yes

Cacheflow
Cacheflow (http://www.cacheflow.com) is a name well recognized in the world of cach-
ing, mostly for its work in forward proxy caches and edge caches. With the release of the
SA-7000, Cacheflow has designed a product that’s optimized for server-side reverse
proxy caching. The SA-7000 uses a disk for holding content and sports an optional SSL ac-
celerator and content rewriter (Akamaizer).

Peak Throughput 300 Mbps

Peak Requests/Sec “Thousands”

Supports HTTP 1.1 Yes

Supports Streaming Media Yes

Appliance Yes

Network Appliance
Network Appliance (http://www.netapp.com) is well known for its network attached
storage (NAS) devices, especially in the realm of corporate NFS servers. Network Appli-
ance has applied its underlying disk technologies to make the Netcache C6100, a web
cache that can be used as either a forward proxy cache or a reverse proxy cache.

Peak Throughput 155 Mbps

Peak Requests/Sec “Thousands”

Supports HTTP 1.1 Yes

Supports Streaming Media Yes

Appliance Yes

Cisco Systems
Cisco Systems (http://www.cisco.com) rolled out a complete CDN suite that included
the Cache Engine 590. The Cache Engine series from Cisco is designed to work in tight con-
junction with the Cisco router family (in the case of the 590, requiring a Cisco 7000 class



router). The cache uses a disk for storing content and has the unique feature of being part
of a complete “roll your own CDN” suite of products.

Peak Throughput 25–40 Mbps

Peak Requests/Sec Not stated

Supports HTTP 1.1 No

Supports Streaming Media No

Appliance Yes

Inktomi
Inktomi (http://www.inktomi.com) has been in the caching business for a long time and
is now entering the CDN marketing with its own suite of tools for allowing customers to
build their own CDNs. The Traffic Core cache can be used by its system as either a reverse
or forward proxy cache. The cache is a software solution available for Solaris, Linux, Win-
dows 2000, HPUX, and Irix. Because the cache is a software package, the system perfor-
mance is dependant on the hardware platform on which the user deploys it.

Peak Throughput Hardware-dependent

Peak Requests/Sec Hardware dependent

Supports HTTP 1.1 Yes

Supports Streaming Media Yes

Appliance No

Volera
Volera (http://www.volera.com) is the Novell spin-off dedicated toward Internet infra-
structure, specifically regarding caching. Like other caching vendors, Volera’s
Excelerator product is part of a larger CDN product offering. The cache can be configured
as either a forward or reverse proxy cache, and it uses disk to hold content.

Peak Throughput Not stated

Peak Requests/Sec 12,300

Supports HTTP 1.1 Yes

Supports Streaming Media Yes

Appliance Yes
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ADDING STATE: HTTP COOKIES
During the design of HTTP, other file transfer protocols, such as FTP, were examined and
compared. The decision was that one of the flaws of protocols like FTP is they require the
server to maintain state. That is, the server must track what each user was doing from
request to request. This requires a lot of server-side resources and brings the overall sys-
tem performance down measurably.

Seeing that maintaining server-side state wasn’t a good thing, HTTP was designed so
each request/response pair was independent of one another. This made the server side
much more streamlined, easier to implement, and able to handle greater loads than a sin-
gle FTP server.

But there was trouble in paradise. As people turned to adding applications to the
server side, the need for maintaining state became increasingly important. From the sim-
plest need for maintaining whether a client had authenticated themselves to more com-
plex features, such as shopping carts where the server had to remember what products
were in the customer’s cart, something was needed to maintain state.

Understanding “State”
Every application has a number of variables it must keep track of for what a user is doing
in the program at any given time. Those variables, collectively, form the application’s
state information. In the context of HTTP transactions, the intent of clearly defining an
application’s state is so the application can give the client a tidbit of information when
sending it back an HTML page. The client would then send this tidbit back to the server
during the next click, so the server application could plug that information back into its
variables and remember where it left off when dealing with the user.

The classic example of needing state information is with shopping cart applications.
When a user wants to purchase something, the application sees a request has been made
to put an item in the shopping basket. The system cannot uniquely identify the user at
this time, however, so the application sends a tidbit of information back to the client to
store. This tidbit of information is simply a list of those objects that have been added
to the shopping basket.

When the user is ready to check out and pay for those items in his shopping basket,
the system must be able to see what’s in the basket, and then associate those items with
the billing information provided by a user in a form. By having the client send the tidbit of
information back, listing what objects are in the basket, along with the form containing
the billing information, the shopping cart application can properly compute the total and
bill the credit card. If the client didn’t send the list of items in the cart back, the billing
application would have nothing to bill!



Cookies
In the previous section, we discussed “tidbits” of information that get placed on the cli-
ent’s browser for maintaining state information. In the world of HTTP, these tidbits are
called cookies. A cookie is simply some arbitrary information sent to the web browser
from the web server stored as a name/value pair. Along with the name and correspond-
ing value, a cookie includes information about which web sites can view the cookie and
how long the cookie is valid.

Cookies are sent by web servers to browsers in HTTP response headers. When a client
generates an HTTP request, the cookie information is placed in the HTTP request header
and sent back to the site.

The Set-Cookie: Header
The format of the cookie is as follows:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN

where NAME is the name of the cookie, VALUE is the value being stored in the cookie (up
to 4,000 bytes long). DATE is the date on which the cookie becomes invalid, stored in the
format Tue 19-Sep-2001 12:03:00 GMT. Note, GMT is the only valid time zone that can be
used in a cookie.

A cookie can be selectively sent to a web site. If the developer only wants to have a
cookie sent to the /cgi-bin directory, she can set PATH as /cgi-bin. Thus, visits to other
directories in the site won’t result in the cookie being sent. In most cases, the root is speci-
fied, thereby causing the cookie to be sent on every click in a web site. For modem users
on a web site, selectively sending cookies can make a great difference in the “user experi-
ence” arena.

To control which web sites can see a specific cookie, the developer setting the cookie
can specify which Internet domain can receive a copy of the cookie. This is done via the
DOMAIN setting. Browsers match DOMAIN to the tail end of the web site being browsed.
If a match occurs, the cookie is sent. For example, if DOMAIN is set to acme.com, a user
browsing www.acme.com, shopping.acme.com, and roadrunners.acme.com will transmit
the cookie. If no DOMAIN is specified, the cookie is transmitted to every web site the
user visits.

Optionally, the end of a Set-Cookie: header can include the phrase “; secure” to tell
the browser the cookie should only be sent if the page it is contacting has been connected
to via SSL.

The Cookie: Header
Once the cookie is sent by the server, the client keeps a local copy of it on disk. When the
user clicks the site again, the browser automatically sends the cookie back to the server as
part of the HTTP request. The cookie, as it’s sent to the server, is formatted as follows:

Cookie: NAME=VALUE; NAME=VALUE
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where the NAME and VALUE pairs are the same set in the Set-Cookie: header. Many
cookies that need to be sent back to the site are done so in a single line, however, with each
pair separated by a semicolon.

SUMMARY
In this chapter, you learned about the key issues in web cache deployment, web Cache
Control, and HTTP cookies. Specifically, you learned

� The path of an HTTP request differs only in server path when it comes to
dynamic versus static content. To a web cache, it’s all just another HTTP object.

� HTTP is a simple text-based stateless protocol.

� The behavior of HTTP objects in a web cache is controlled by the request and
response headers.

� Web caches can exist either in path proxy solutions or out of path redirection
solutions (L4 redirection, WCCPv2).

� HTTP cookies allow web applications to introduce state into what is otherwise
a stateless protocol.

If you’re interested in more details regarding the treatment of caching by the HTTP
protocol, visit http://www.rfc-editor.org and read up on the HTTP 1.1 specification in
RFC 2616. For more information regarding the WCCP protocol, read the WCCPv2 speci-
fication at http://www.ietf.org.

REVIEW QUESTIONS
1. How does the Cache-Control header alter the behavior of a web cache?

The Cache-Control header is used by web servers to inform web caches on
whether they should cache an object. The default behavior of a web cache (in
the absence of a Cache-Control header) is to cache the object.

2. When redirecting web cache requests, must the switch and/or router be
aware of Layer 4 (TCP) headers? If so, why?

The switch and/or router must be aware of layer 4 (TCP) headers so that the
TCP port field can be examined. Only if the TCP port field matches a
preconfigured value will the switch redirect the request to a web cache.

3. Under what condition will a WCCPv2-enabled router remove a web cache
from its list of web caches?

If the web cache does not respond to Here I AM messages for 25 seconds and
does not respond to Removal Query messages for an additional 5 seconds,
the web cache is removed from the list.



4. How does WCCPv2 redirect HTTP requests to web caches in other
broadcast domains?

The router and web cache must use GRE tunnels.

5. Should a Set-Cookie: header be cached by a web cache?

Yes. If the object was deemed cachable, the Set-Cookie: header should
remain; otherwise, the object would not have the same effect on future
receivers of the content. If the web site administrator wants unique
cookies to be sent to each user, he should make sure that the object
uses the Cache-Control header and mark the response as uncachable.
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OBJECTIVES
� Define the scope and role of server load balancing (SLB)

� Differentiate the technology applications for SLB

� Identify the two primary solutions from Cisco and Nortel Networks

� Examine what applications can be load balanced in Layer 3 - 7 of the OSI model

� Explore the concept of virtual server group and virtual IP

� Discuss the technical and business benefits of server load balancing

� Describe the enterprise and e-commerce environments that benefit from server
load balancing technology

� Explore some server load balancing scenarios and provide the step-by-step
configuration required

In the past few years, the World Wide Web has grown from a speculative medium to a
robust infrastructure that handles mission-critical business traffic. Industry pundits indi-
cate that the number of e-commerce users over the Web increased to 142 million in 1998
and is forecasted to surpass 500 million by 2003. This increase in use is expected to drive
commerce on the Internet to more that $1 trillion by 2003. To support this growth, Web
sites must be able to set up and maintain millions of connections every second. This re-
quires bandwidth, more powerful and scalable servers, high-speed access, high availabil-
ity of servers, and fault-tolerant links.

SCALING THE INTERNET
Quick response time and continuous availability have become mandatory requirements as
sites compete to offer users the best online experience. The utmost requirement in all mis-
sion-critical web-computing infrastructures is a solution that can scale server capacity dy-
namically to match aggregate client demand, while ensuring continuous service availability.

Single Server Approach
These requirements brought several challenges. Let’s examine some of the challenges
from the context of a single server web site.

� A single server no longer is able to provide services efficiently to meet the
growing demands of users, either in terms of load or availability. Quick
response time is a key factor for an online user to promote loyalty.

� A single server doesn’t offer any kind of redundancy or high availability. When
the server goes down, whether scheduled or unscheduled, the whole site is
down. The effect on business for an e-commerce site is severe, resulting in lost
loyalty of users.
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� Scalability is a critical factor for a web site to ensure growing demands are met.
In the case of a single server, however, any software or hardware upgrades
require the server and, in turn, the web site must be brought down indefinitely.

Server Farm Approach
From the limitations imposed by a single server web site emerged the concept of server
farm, where multiple servers catered to high volumes of user requests. This satisfies the
mandatory requirements of fast response time, high availability, and scalability.

Although the server farm provided solutions for many of the challenges presented for
a single-server web site, it imposed many new issues of its own, as follows.

� How is traffic directed to the appropriate server in a server farm?

� How is traffic distributed equitably among all the servers?

� How is traffic distributed so no servers are overloaded?

� If a server is overloaded, how do you resolve it?

WHAT IS SERVER LOAD BALANCING?
So, the question is, how do we resolve the previous challenges? One increasingly popular an-
swer is to deploy server load balancers that provide the infrastructure to scale applica-
tion-processing power, maximize server efficiency, and ensure high-application availability.

First-generation server load balancers are PC-based software products, and tend to
have limited performance and connectivity. New generations of server load balancers are
special-purpose devices, based on a switching platform that consolidates multiple web
infrastructure functions with server load balancing and multilayer switching. Examples
of these functions include redirecting traffic to caches, load balancing traffic across multi-
ple firewalls, packet filtering, and bandwidth management.

Load balancers are sophisticated, and use protocol information in OSI Layers 3, 4, and
7 to identify and manage application-layer sessions. For example, an advanced device
could use embedded URLs strings, TCP or UDP port numbers, the SYN/FIN bits that
mark the start and end of TCP application sessions, as well as the IP source and destina-
tion addresses to make their decisions. What is selected for parsing generally depends on
what application the load balancer is actually load balancing. Some examples include the
following:

� URLs for HTTP traffic

� UDP ports for DNS load balancing

� TCP ports for load balancing SMTP

� IP Destination Addresses for default gateway load balancing.
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Alteon Web Systems, the load balancer pioneer, coined the term Web switch to repre-
sent this new, more flexible class of device that front-ends server farms and provides
Internet traffic management. The terms “Web switch” and “load balancer” are used inter-
changeably in this chapter.

Virtual Server Group and Virtual IP
The key to load balancing is dynamically distributing the traffic load across a group of
servers running a common application (or set of applications), while making the group
appear as if it were a single device to the client.

For example, a number of Web servers with access to the same content can be logically
combined into an HTTP cluster or virtual server group (VSG). The VSG provides a “vir-
tual” HTTP service to clients in that the clients aren’t aware a number of “real” servers are
participating in providing this service. The clients access the service using a virtual IP
(VIP) address, which is configured in a Web switch that front-ends the real servers. As
connection requests arrive for the virtual service, the Web switch passes these requests on
to one of the real servers in the VSG based on knowledge of the servers’ availability,
load-handling capability, and present load. Once the Web switch assigns a session to a
real server, it must recognize all successive packets associated with that session. These
packets are processed and forwarded appropriately to make sure the client continues to
be associated with the same physical server for the duration of the session. See Figure 9-1
to illustrate server load balancing using the VIP and VSG server group.

Web switches also monitor the completion of sessions, at which time the binding of
the session to the physical server can be removed. This ensures that the next time the cli-
ent connects, he’ll be connected to the most available server at that time, providing the
best possible service to each client. The administrator can invoke special mechanisms if
the application requires persistent connections, such as with FTP control and data con-
nections from the same client, SSL, and some online shopping cart applications.

Technical Benefits
The benefits to an SLB configuration are fairly straightforward: reliability, scalability, in-
dependence, optimality, and simplicity. We’ll review each in turn.

� Reliability Web switches can be deployed to increase the availability of a
given application. This is done by removing the single point of failure, which
is a dependency on the availability of a single device in the web data center
infrastructure, whether that be a server or router, or some other device. The
switch is configured to monitor the availability of physical devices through a
process called health checking (described in the following) and, at the failure
of any one device, it automatically routes new incoming sessions to the other
remaining healthy devices. Also, by spreading the active sessions across
multiple devices, the number of sessions actually disrupted during a failure
of a single device decreases.
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More advanced load balancers allow for backup servers to be configured. These back-
ups come online if a single server, or even an entire VSG, fails. Some of the more ad-
vanced load balancers can support multisite load balancing to protect against failure of
the entire site. See Chapter 11, “Global Server Load Balancing,” for more details.

� Performance Scalability The implementation of Web switches can provide
the infrastructure to match resources with demand. During periods of peak
load, a Web switch can dynamically and gracefully increase the capacity of
the VSG by enlisting overflow servers into the load balancing process.
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Figure 9-1. Simple server load-balancing configuration



� Platform Independence Interestingly, a Web switch introduces server
agnosticism into the server farm, generating a kind of application server
platform independence. In a group or cluster, different types of servers—
Unix, Windows, Linux, Netware—can be combined to host the same
application, providing relatively painless build-outs of an undersized
web farm with maximum flexibility.

� Optimal Resource Use Web switches can dramatically improve server
resource use simply by distributing that traffic across multiple servers. Clients
can be dynamically directed to the least used server, servers best configured to
handle particular types of requests, and so forth. This decreases server costs
and improves site performance.

� Operational Simplicity When a VSG is configured, the load balancer detects
offline resources and reroutes accordingly. This allows devices to be removed
for maintenance purposes, without disruption of user services. This decreases
administration cost and total cost of ownership (TCO).

Business Benefits
From a business perspective, the benefits of using SLB technology are also fairly straight-
forward: satisfaction and utilization go up, TCO goes down.

� Increased Customer Satisfaction With Web switches, customers get faster,
more consistent response time, with the Web switch directing traffic to the
least loaded and most responsive web server. Web sites can consistently
deliver superior performance by managing the load on web servers and
preventing web servers from getting overloaded.

� Improved Resource Utilization Based on Business Policies Preferred
customers and mission-critical application traffic can be given higher priority
by the Web switch. Server and network resources can be allocated for high-
priority users and applications with the bandwidth management feature.
Mission-critical applications and users accessing these applications get
consistently good performance.

Most Web switches offer features that can differentiate users and guarantee a
superior level of service for preferred users. ISPs and corporate IT managers can
use these features to control their infrastructure resources to deliver negotiated
Service Level Agreements (SLA). Also, this gives them an opportunity to increase
profit margins by offering tiered service levels.

� Decreased TCO The Web switch helps in simplifying infrastructure
architecture and optimizing resource use. This decreases administration
and server cost.
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Applications
Environments that benefit from server load balancing include Web hosting services,
e-commerce services, online service providers and corporate data centers with high-avail-
ability requirements. Server load balancing supports many TCP-based or UDP-based ap-
plications where common content is available across a group of servers. Internet/intranet
applications, such as Web servers, FTP servers, DNS servers, and RADIUS servers have
been the first to take advantage of server load balancing to support the high growth and
unpredictable volume of web-oriented traffic.

Web-Hosting and Online Services
Web hosters and online service providers typically deploy multiple HTTP, FTP, and other ap-
plication servers today, with the load distributed across them via round-robin DNS. This
approach isn’t the most desirable because it isn’t fault-tolerant, requires a high degree of
administration, and is generally limited in the number of configurations available. Server
load balancing enables transparent use of multiple servers with built-in high-availability
support.

E-Commerce Web Sites
E-commerce sites are becoming mission critical for most businesses. For many new busi-
nesses, the Web is the only channel for generating revenue. These sites must have supe-
rior performance and high availability.

Online Retail Sites
Online retail sites experience sudden surges in user traffic because of a promotion cam-
paign, demand for a new product, and so forth. Web switches help manage the load on
the site, prevent servers from getting overloaded, and guarantee high-application avail-
ability. They also help in easily scaling the site to meet demand with minimal effort.

Online Trading Sites
Online trading sites have more dynamic content and experience sudden traffic surges. For
example, a change in political scenario or availability of new economic data could result
in large fluctuations in the financial market. This results in a sudden, multifold increase
in online trading activity. Also, when servers are overloaded, the performance degrades
and session completion rate rapidly degrades. Planning and overprovisioning to meet
these sudden traffic surges is expensive. Web switches help to optimize resource use and
dynamically control the load on servers to provide good performance.

Business to Business E-Commerce Sites
Enterprises are setting up extranets to automate sales, marketing, and procurement pro-
cesses. These extranets must be highly available and provide consistent performance.
Web switches enable enterprises to build reliable and scalable infrastructures that sup-
port mission critical solutions.



Application Hosting Services
Application service providers (ASPs) are using the Web to deliver applications on de-
mand. This enables enterprises to rent applications and decrease their IT expenses. To
meet the requirements of large enterprises, hosted solutions must be scalable and highly
available, and must deliver superior performance. A Web switch enables ASPs to build
an infrastructure that supports these business-critical solutions.

SERVER LOAD BALANCING OPERATIONS
Any TCP-, UDP-, or IP-based application can be load balanced as long as common con-
tent is made available across the VSG supporting the application.

Grouping Options
Servers can be grouped into VSGs based on administrative requirements. Common ways
to administer server content are duplicated content and centralized content back-end
data servers.

Duplicated Content
Servers with duplicated content on local disks can be grouped into a VSG. This approach is
low cost and ideal for applications with mostly static content requiring little replication.

Centralized Content on Back-End Data Server
Alternatively, data can be stored directly in a back-end database server. Application serv-
ers retrieve data from the back-end server in real time through file- or database-sharing
techniques, such as a Network File System (NFS). Each application server runs any or all
of the load-sharing applications, as long as it has access to the associated content on the
back-end server. Shared access to a single copy of data also enables server load balancing
for read/write applications.

To allow the data server to keep up with aggregate requests from multiple applica-
tion servers, a general recommendation is to connect back-end data servers with a
higher-speed switch port than the application servers. The same Web switch platform en-
ables clients to access the application servers via layer 4 switching and allows the applica-
tion servers to access the database server via layer 2 or layer 3 switching.

SOLUTIONS
Several solutions are presently available from various vendors for server load balancing
application. Certain solutions are designed around purpose-built appliances whose sole
application is server load balancing. Other solutions are integrated appliances providing
multipurpose applications, including server load balancing.
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The latest trend appears to be modularizing the server load balancer and inserting it
as a blade into a high-end L2/L3 switch, as is the case with both Cisco and Nortel.

Let’s examine several of these solutions presently available in the market.

The Cisco Solutions—Local Director
In discussing the Cisco solutions, we examine two distinct server load balancing plat-
forms. The Local Director was the premier load balancing solution from Cisco prior to the
ArrowPoint acquisition in June of 2000. Soon after, this became the foremost Cisco server
load balancing solution especially in the ISP, ASP, and dot-com companies. The Local Di-
rector continues to be a popular load balancing solution for Cisco customers, however,
both in the enterprise and ISP market space.

The Cisco Local Director is a network appliance with an embedded operating system
that intelligently load balances the requests of users across multiple cluster of low-cost
servers. It lets you build a highly redundant, fault-tolerant, and scaleable server farm sys-
tem, where servers are automatically and transparently placed in and out of service.

All physical servers appear as one virtual server in the view of the user, with only one
IP address and one URL address required for the server farm.

Hot-Standby Stateful Fail-Over Mechanism
To increase fault tolerance further, the Local Director architecture enables you to equip an
optional hot-standby stateful fail-over mechanism eliminating the Local Director as the
single point of failure in a Web infrastructure.

Stateful fail-over maintains the state of the user connections to servers, so that when a
Local Director fails, a second Local Director takes over the user’s sessions. Additionally,
the configuration of the active Local Director is automatically replicated to the standby
Local Director, reducing potential configuration errors.

See Figure 9-2 for a Hot-standby network configuration for Local Director.

Cisco Local Director
The Cisco Local Director 430 appliance is a high-end load balancing solution that sup-
ports the highest-traffic Internet sites, with up to 400 Mbps throughput and 30,000 con-
nections per second. This model also supports 10/100, FDDI, and Gigabit Ethernet
connectivity. It boasts a 384MB memory, 2MB of Flash memory, and supports 64,000 vir-
tual and real IP addresses.

The Cisco Local Director 416 appliance is a value-priced solution for TCP applica-
tions, such as database access or intranets. It delivers up to 80 Mbps throughput and 7,000
connections per second. This model also supports 10/100 Ethernet connectivity. It boasts
a 32MB memory, 2MB of Flash memory, and supports 8,000 virtual and real IP addresses.

Health-Checking Applications and Servers
The Local Director has the capability to place Web servers in and out of service automati-
cally and transparently, based on their dynamic availability. It applies a three-point system
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for detecting the health of applications resident in the Web servers and routing to new serv-
ers when necessary. This includes the following:

� Monitoring the TCP handshake between client and server
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Figure 9-2. Local Director in a hot-standby configuration



� Verifying active content

� Providing a Dynamic Feedback Protocol (DFP) for servers to communicate
directly to the Local Director.

Monitoring the TCP Handshake
To determine application availability, the Local Director snoops the TCP handshake be-
tween the user and the server to the port level. If an application or server isn’t responding
to the TCP handshake or is responding with TCP RSTs (resets), then the Local Director
fails the server immediately. This process is transparent; therefore, clients are rarely sent
to a dead application. In the case where the server issues TCP RSTs, this could be caused
by the server being too busy to accept more connections or the daemon servicing that
type of traffic has failed, that is, the HTTP daemon on port 80.

The administrator can also configure the RSTs threshold and, thus, can calibrate how
quickly the Local Director will pull a server out of service.

Local Director transparently can bring a failed server back in service if it responds
with data on an existing connection. The server is then put into testing or transmission
mode and, if it responds to a new live connection, then it’s put back in service.

Content Verification
The Content Verification System (CVS) enables the Local Director to use user-definable
and customizable HTTP requests to probe Web servers proactively to determine applica-
tion availability. These probes can be run for each real server associated with a virtual
server. The CVS probe monitors the health of Web servers, applications, and content.

A CVS probe, which can consist of numerous steps, makes a specific HTTP request to
the server, evaluates the response based on user-defined criteria, and, thus, determines
the health of the real server. You can also specify whether a probe failure will result in the
real server being taken out of service immediately or in a warning message being gener-
ated. These probes can run automatically on a user-specified schedule on all the real serv-
ers or they can run manually by the administrator on a particular Web server.

Some of the criteria used by the CVS probe to determine the health of the server and
application are the following:

� Response time of a real server when a request for a particular URL is made

� Response of a real server when cookies are present in the request

� Response of a real server to a particular browser agent

� Type of content returned by the real server

� Status code returned by the real server

� Presence and content of any cookies returned by the real server

As e-commerce sites become mission-critical assets of a business, the deployment of CVS
has also become more complex and multiple tiers have been a common implementation
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scenario, especially a three-tired e-commerce site that includes Web servers, applica-
tion servers, and data base servers. Proactive probing of these servers is, therefore, an
important requirement for any successful e-commerce site. Active content verification
is a powerful tool that can identify not only whether a Web server is up, but also
whether the application is up and the data base server is healthy. Likewise, active con-
tent verification can determine if the content is corrupt at any tier.

Dynamic Feedback Protocol (DFP)
The DFP protocol provides a mechanism for real servers to send feedback information in-
telligently to the Local Director, ensuring the Local Director doesn’t route traffic to
downed applications and that it’s sent instead to the correct real server.

Agents resident in the real server use DFP to communicate the real server’s health,
availability, and load condition to the Local Director. Cisco envisions DFP to be a widely
embraced standard for server feedback, and some current DFP providers that have
interoperated with Cisco on DFP are Hewlett-Packard, Platform Computing, Sterling
Software, and WebSpective Software.

DFP is the first protocol that allows servers to provide feedback and input into a load
balancing decision. It provides the following benefits to the customer:

� A server agent can inform a Cisco network of a server congestion

� A server agent can inform a Cisco network when a server is underused

� A server agent can inform a Cisco network when a server shouldn’t be used for
a certain period of time

� A server agent can prioritize a certain application (such as HTTP) over other
generic applications

� A server agent can perform content verification services

Cisco and its DFP partners are creating an environment of truly integrated networks
and server resources. The business benefits are lower costs and fully used investments in
a distributed computing infrastructure, good traits appealing to CIOs where ROI is al-
ways an appealing story.

Distributed Director and DFP
With DFP, the Local Director can also now communicate load and availability informa-
tion to Distributed Director, the multisite, load-balancing solution of Cisco. This is possible
because Distributed Director also supports DFP, and the Local Director acts as a DFP
server, communicating load and availability information of its web servers to Distributed
Director using the DFP protocol.

Distributed Director transparently redirects end users to the closest responsive server,
determined by such factors as client-server proximity and client-server link latency. As-
sume an organization has two sites: one in Paris and another one in San Jose. HTTP re-
quests of users based in the United States are redirected to the San Jose site, while European
users are redirected to the Paris site.
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With the DFP protocol, each site communicates its server’s health and availability to
Distributed Director, ensuring that users are sent to a site not only in close proximity to it,
but also with healthy and available servers.

The Cisco ArrowPoint Load Balancers
ArrowPoint Communications, based in Acton, Massachusetts, was founded in 1997 and,
with its 300-plus employees, was acquired by Cisco in June 2000. Its feature-rich and pop-
ular server load-balancing appliances soon became an integral part, together with the
Load Director of the Cisco content networking suite of products.

Several products are now part of the CSS family of Cisco load-balancing Web
switches. The high-end platform is the modular chassis-based CSS 11800, designed for
extremely large Internet sites. The CSS 11100 is a stand-alone appliance designed for
smaller sites.

Most recently, Cisco introduced two members of the CSS family: the CSS 11050 and
the CSS 11150. These superseded the original CSS 11100, which claimed to offer a three-
fold increased in performance over its predecessor.

In terms of market positioning—with the CSS 11800 being the top-line product for ex-
tremely large Internet sites and data centers—the CSS 11050 is now considered the en-
try-level load balancing solution, while the CSS 11150 is the medium solution designed
for moderate traffic Web sites and POPs.

A key point to remember is this: the full feature set of the high-end CSS 11800 is avail-
able to the other two products, except for their limited scalability.

Now let’s explore the CSS 11800 Web switch architecture and feature sets.

Cisco CSS 11800 Load Balancer
The CSS 11800 is a 15-slot chassis-based system, with a wide range of module combina-
tion options of 10/100 Ethernet, Gigabit Ethernet, and Management line cards. The
switching fabric module has a 20 Gbps back plane, and, for redundancy, the management
module can take up four slots. Eight slots are available for pure I/O modules.

The content policy engine resides in four MIPS RISC processors running a real-time
operating system with over 512MB of memory. These resources provide the flow setup
required by the users, capability to read full URLs, ability to dynamically locate cookies
anywhere in the HTTP header, and application of multiple policies to route the user to the
best site and server in real time.

After that, 16 distributed ASICs are then assigned to deliver the user content requests
at wire speed across the switch.

The CSS 11800 supports all TCP and UDP-based web protocols, wire-speed NAT, and
integrated IP routing. This is designed for optimized content requests and delivery of
HTTP, passive FTP, and streaming media protocols. The CSS 11800 has an integrated
firewall, called its FlowWall Security feature, providing wire speed per-flow filtering of
content requests. Its security policies can be based on a combination of source and desti-
nation IP addressees, protocol, type, or content URL. The CSS 11800 protects against De-
nial of Service (DoS) attacks, such as SYN flooding, ping flooding, and smurfs.
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The CSS11800 is also designed to redirect to and load balance cache engines, as well as
server farms. Cisco claims a performance of up to 400 percent in web cache efficiency for
transparent, proxy, and reverse proxy configurations.

The CSS 11800 can also be used to load balance external firewalls.
In the load-balancing functionality is the capability of the switch to provide high-speed

HTTP flow setup, dynamic and intelligent real-server selection criteria based on load and
content availability, and URL and cookie-based policy and traffic prioritization. It can dedi-
cate real servers based on a particular content type. For example, Real Player type video
feeds can be redirected to a server or server farm that has suitable bandwidth of CPU
power. It can also configure redundant fail-over, backup, and over-spill real servers.

Cisco Content Switching Module
Discussions on the Cisco load-balancing solutions isn’t complete without mentioning the
Content Switching Module (CSM), which is a load-balancer blade designed for integra-
tion into the Catalyst 6500 switch. The CSM can establish up to 200,000 layer 4 connec-
tions per second and provide high-speed content switching, while maintaining 1,000,000
concurrent connections. It supports the most common load-balancing algorithms, such as
round robin, least connection, and Client IP has. The CSM also supports URL and
cookie-based load balancing. It supports the use of DFP probes to monitor the health and
availability of web servers and interoperates with Distributed Director for use in global
content networks.

The Nortel Web Switch
Alteon Web Systems, acquired by Nortel Networks in October 2000, pioneered server load-
balancing integrated appliances. Founded in May 1996 and based in the heart of Silicon
Valley in San Jose, California, it quickly became the market leader with 50 percent market
share worldwide in the 1998 and 1999 time period. Here are the operational details on the
Alteon Web switch.

The Web switch, with server load balancing, acts as a virtual front-end processor to
clusters of real servers connected via direct attachment to switch ports or indirectly
through hubs and switches. A VIP address is configured for each VSG, presenting a sin-
gle address for the server group to the rest of the network. Domain Name Services (DNS)
must advertise this VIP address.

For example, if www.alteon.com were available on three servers and load-balanced
by the Web switch with a VIP of 215.176.12.3, DNS would advertise 215.176.12.3 as the
address of www.alteon.com, not the individual IP addresses of the real servers. Clients
who want to access the load-balanced application would be directed by DNS to send their
requests to the VSG hosting the application. The Web switch receives these packets and
uses the destination TCP port number to identify the application to be load balanced.

Packets addressed to anything other than the configured VIPs on the Web switch are
forwarded at layer 2 or layer 3, as appropriate. This allows real servers to be accessed
through the Web switch simultaneously via their real IP addresses. This also enables
nonload-balanced applications, such as system management and administration, to ac-
cess the servers directly through the switch.



TCP/IP Server Load-Balancing Operation
The Web switch recognizes when a client is requesting a new TCP session by identifying
the TCP SYN packet. The request is forwarded to the best available server, based on the
configured load-balancing policy. Once the switch determines the best server, it binds the
session to that server’s real IP address. The Web switch maintains a binding table that as-
sociates each active session with the real server to which it’s assigned. After the Web
switch binds a connection request to a real server, it performs address substitution, so the
real server will transparently receive packets for that session. The switch replaces the VIP
in the IP destination address with the server’s real IP address and replaces the switch’s
MAC address in the MAC destination address field with the server’s MAC address. See
Figure 9-3 to illustrate how IP addressing substitution takes place as traffic flows inbound
from the client to the real server.

After performing the necessary address substitution, the Web switch forwards the
connection request to the chosen server. All subsequent packets belonging to that session
undergo the same address substitution process and are forwarded to the same real server
until the switch sees a session termination packet (that is, a TCP FIN packet). Likewise,
the Web switch intercepts packets traveling from the real server to the client and per-
forms the reverse address substitution. It replaces the real server’s actual IP address in the
Network Layer source address field with the VIP and forwards each modified frame to
the client (see Figure 9-4).

On receipt of a TCP FIN packet, the Web switch performs the necessary address substi-
tution and forwards the FIN packet to the appropriate real server, causing the server to tear
down the connection. Then it removes the session-server binding from its binding table.
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Figure 9-3. Incoming session ID substitution
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UDP/IP Server Load-Balancing Operation
Because UDP is a connectionless protocol, it technically doesn’t support the concept of ses-
sion. Nevertheless, Alteon Web switches support server load balancing for UDP-based ap-
plications. If UDP load balancing is activated on the Web switch, the switch identifies UDP
packets arriving from clients addressed to a VIP. If an incoming packet destined for a VIP
has a source IP address not presently found in the Web switch’s binding table, the Web
switch uses the configured load-balancing algorithm to determine to which real server the
“new session” should be bound.

While this binding is in effect, all UDP packets from this source IP address are sent to
that same real server. When no UDP traffic from the source IP address is seen in a
user-specified period of time, the session is removed from the switch’s binding table. In
this context, session means the flow of packets during the time a specific Source IP address
is bound to a particular real server.

Performing Health Checks on Servers
The most important consideration when making load-balancing decisions is whether the
servers and their load-balanced applications are working properly. The Web switch uses
special mechanisms to monitor servers and ensure that connection requests are directed
to healthy servers. The different mechanisms available for health checking are

� Monitoring physical connections

� ICMP (PING) monitoring

Figure 9-4. Outgoing session ID substitution



� TCP connection monitoring

� Active content verification

� Dynamic application verification

Monitoring Physical Connections
The Web switch monitors the physical link status of switch ports connected to real serv-
ers. If the physical link to a real server goes down, the Web switch immediately places
that server in the Server Failed state and doesn’t forward new connection requests to that
server. In addition, the switch doesn’t forward any more traffic associated with existing
sessions to that real server and immediately removes all existing sessions bound to that
real server from its binding table. This ensures existing connections are closed quickly
with minimal impact to the user.

Monitoring Through ICMP Pings
At the most basic level, the Web switch can monitor server health by sending ICMP ping
requests to servers. Based on the servers, the switch can verify the health of the server’s
networking stack. This is recommended when all IP traffic, or a UDP-based application
other than DNS, is being load balanced.

The rate at which ICMP pings are sent is a user-configurable parameter. If a user-
configurable number of consecutive ping requests fail, the target server is placed in the
Server Failed state. While in this state, no new connection requests are sent to the real
server.

TCP Connection Monitoring
A more sophisticated health-checking mechanism is for the Web switch to send TCP con-
nection requests (that is, TCP SYN requests) to the real servers and determine that the
server responds. This is recommended when a TCP-based application for which the
switch doesn’t support content-based health checks is being load balanced.

A more sophisticated health-checking mechanism is for the Web switch to send TCP
connection requests (that is, TCP SYN requests) for each load-balanced application to
each real server and determine that the server responds. These connection requests iden-
tify both failed servers and failed services on a healthy server. The rate at which these
connection requests are sent is a user-configurable parameter. If a user-configurable
number of consecutive connection requests to an application fail, the application on the
target server is placed in the Service Failed state. While it is in this state, no new connec-
tion requests are sent to the application on that real server. Connection requests continue
to be sent to the other, however, with healthy applications running on the same server.

When an application on a real server is in the Service Failed state, the Web switch con-
tinues to perform health checks. When the Web switch has been successful in connecting
to a load-balanced service, the real server is slowly brought back into service, using mech-
anisms that don’t overwhelm the newly available server.
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Active Content Verification (ACV)
To verify the availability of a Web service and associated content, users can configure a
reference URL to instruct the Web switch to access the data represented by the URL dur-
ing its periodic server health checks.

To check HTTP service availability, the Web switch makes a request for the specific
content via an HTTP GET, and then verifies the received content and return code. This
test not only checks the TCP connection, but also checks the Web server and content
server. In the example in Figure 9-2, the HTTP request is sent through Web Server A and
File Server A. If the verification request is successful, it proves a path exists from the
switch to the data. If the verification request fails, the switch redirects the request through
another path.

The ACV feature supports not only HTTP but also other services, including NNTP,
FTP, SMTP, POP3, IMAP, DNS, and RADIUS.

Dynamic Application Verification (DAV)
Dynamic application verification (DAV) expands on active content verification. With
DAV, the Web switch can verify the availability of dynamic applications like .asp appli-
cations, GGI scripts, forms, and so forth on Web servers. This feature enables users to
write their own tests that emulate user actions and supply the switch with a URL of the
test script.

The DAV feature can also be used to monitor the health of other Internet services, like
mail service.

Backup Servers
A server or link failure, as well as administrative action, can cause a Web switch to re-
move a server from the load-balancing VSG. Users may configure the Web switch to in-
troduce a backup server into a VSG when any or all of the servers within the VSG fail.

A backup server introduced into the VSG after the removal of a single server pro-
cesses connections until the Web switch determines the removed server is once again op-
erational. At that point, the backup server is removed from the mix.

In the case where the switch introduces the backup server into the mix after the re-
moval of all servers in a VSG, the backup server is taken out of the VSG when the Web
switch determines all servers in the group are once again operational. Note, a backup
server being taken out of the mix means no new connections are made to it. Existing con-
nections remain operational until they’re terminated by normal mechanisms.

Load Balancing Policies
The Web switch makes decisions regarding which server within a VSG to assign a new
connection based on user configured load-balancing policies. The different policy op-
tions available in the Alteon Web switch are

� Least used or most available server selection

	'	 ������ ��� ����� �������



� Persistence-based server selection

� URL-based load balancing

Most Available Server Policies
Various policies can be used to drive the load-balancing decision. On the Web switch, the
load-balancing policy for each VSG is a user-configurable parameter. Most Available pol-
icies include the following:

� Simple Least Connections

� Weighted Least Connections

� Simple Round-Robin

� Weighted Round-Robin

In addition, a maximum-connections threshold can be configured for any or all real
servers in conjunction with any of the previous policies.

Simple Least Connections In the method of simple least connections, the number of active
connections being processed by each real server is tracked.

When a request for a new connection is received, it’s forwarded to the real server in
the VSG with the fewest active connections. This is often viewed as the fairest policy be-
cause servers that close connections faster get more connection requests forwarded to
them over time. Implicitly, this algorithm takes into account feedback from the real serv-
ers in that faster or less-loaded servers close connections more quickly, indicating they’re
available for more workload.

Weighted Least Connections In the solution of weighted least connections, a weighting func-
tion is added to the simple least-connections policy. The number of connections to each
server is normalized based on each server’s static weighting, and each connection request
is directed to the server with the fewest active normalized (as opposed to actual) connec-
tions. The idea is this: servers with greater inherent capacity should support a larger
number of active connections.

Simple Round Robin With the simple round-robin load balancing algorithm, new connection
requests are forwarded to the real servers in a round-robin fashion so that, over time,
each server in the application server group gets the same number of connections. This
doesn’t mean each server will have the same number of active connections because some
will close connections faster than others. Round robin is commonly used when the serv-
ers in a VSG are roughly equal in capacity.

Weighted Round Robin Weighted round-robin balancing is similar to round-robin load bal-
ancing, but each server in the application VSG is assigned a static weight based on some
view of the capacity of each server. Servers are presented connection requests in propor-
tion to their weighting.
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Configuring Basic Server Load Balancing on an Alteon Web Switch
Look at what’s involved in configuring an Alteon Web switch to perform server load bal-
ancing on a pair of web servers. Refer to Figure 9-5 for the network diagram showing a
web site with a server farm composed of two servers. The users from the Internet access a
virtual IP address by resolution from a DNS server. In this example, the web site
Alteon.com has a DNS entry of 170.20.1.100, which will be the VIP configured in the Web
switch. The Web switch will select either Real Server 1 or 2 to process that particular user
based on the configured metric. And Leastconns will be used as the metric, which over
time has proven to do the best job of load balancing among the servers in a server farm.
Leastconns is also the Web switch’s default metric. We configure health checking of the
real servers using the default TCP method.

Let’s examine the steps required to configure basic server load balancing on an Alteon
Web switch. The following are the required configurations tasks:

1. Define the IP interfaces on the switch.

2. Enable server load balancing and define each real server. Assign an IP address
to each real server.

3. Assign the real servers to a group.

4. Define a VIP (virtual IP address).

5. Configure the HTTP service for the virtual server.

6. Define the port configuration.

7. Apply and save the configuration

The following configuration exercise implements basic server load balancing based
on the network diagram in Figure 9-5. We configure the Web switch so all user requests
for VIP 170.20.1.100 will be load balanced between Real Servers 1 and 2.

Here is the step-by-step procedure:

1. Define the IP interfaces on the Web switch:

/cfg/ip/if 1

ena

addr 170.20.1.1

mask 255.255.255.0

/cfg/ip/if 2

ena

addr 10.1.1.1

mask 255.255.255.0

2. Enable server load balancing on the Web switch and assign real servers:

/cfg/slb/on

/cfg/slb/real 1/ena/rip 10.1.1.2

/cfg/slb/real 2/ena/rip 10.1.1.3
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3. Assign the real servers to a group:

/cfg/slb/group 1/add 1/add 2

4. Define a VIP (virtual IP):

/cfg/slb/virt 1/ena/vip 170.20.1.100

5. Configure the HTTP service for the virtual server:

/cfg/slb/virt 1/service http/group 1

Figure 9-5. Basic server load balancing
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6. Define the port configuration:

/cfg/slb/port 1/client ena

/cfg/slb/port 7/server ena

/cfg/slb/port 8/server ena

7. Apply and save the configuration:

apply

save

Persistence Policies
Many e-commerce sites maintain stateful information for each customer on web servers.
The Web switch must forward all incoming requests from a particular user to the same
server, until the completion of the transaction. Also, users returning to an e-commerce
session after a temporary disconnect should be redirected to the same server to avoid
having to restart their shopping activity.

The persistence policies supported on the Alteon Web switches are

� Hash

� Minimum Misses

� SSL Session ID Tracking

� Cookie-Based Tracking

Hash With the hash policy, the server is chosen based on source IP address. The IP ad-
dress is used to generate an index into a table that contains all servers in VSG. Because
server selection is based on source IP, all requests from a given user are sent to the same
server. This is particularly useful in e-commerce applications and firewall load balancing
where session state must be maintained.

With this policy, the server selection table is recomputed every time a server leaves or
enters the VSG. No existing connections are rehashed unless the server they go to has
gone down.

The hash policy is better than minimum misses (see the following) for most applica-
tions because it generally offers a more even distribution of connections across servers. If
server load-balancing statistics indicate that using hash causes one server to process
more requests over time than others, consider using minimum misses, SSL session ID
tracking, or cookie-based tracking. One of the biggest challenges with the hash algorithm
(as well as minimum misses) is that all clients coming from behind a proxy may use the
same source IP address and, therefore, cannot be differentiated. In this case, traffic from
all clients is sent to the same server, defeating load balancing.

Minimum Misses The minimum misses policy is similar to the hash policy in that the source
IP address is used to generate an index into a table that contains all servers in VSG. Unlike
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hash, however, when a server leaves the VSG, the server selection table is recomputed
only to reassign users associated with the failed server. This policy results in less pertur-
bation of server assignments when a server fails.

SSL Session Tracking Many e-commerce sites use secure connections for transporting
private information about clients. When a client connects to a server using an encrypted
SSL session, a unique SSL session ID is assigned. Using SSL session IDs to maintain server
persistence is the most accurate way to bind all a client’s connections during an SSL ses-
sion to the same server.

SSL session tracking is most useful in scenarios where other persistence policies cannot
be used because one source IP address (belonging to a proxy) is used to represent a large
number of clients. For example, in large networks, proxy firewalls typically change users’
IP addresses on outgoing packets for security reasons, overloading the source IP address.
If persistence is determined solely by source IP address, many users are redirected to the
same real server and load balancing in the VSG is ineffective. In these environments, us-
ing SSL Session ID persistence for load balancing is the best algorithm.

When SSL-session ID tracking is enabled, Alteon Web switches examine the TCP SYN
handshake and subsequent packets to examine the SSL session ID and determine if it be-
longs to an existing SSL session or a new one. If the session is new, the Web switch assigns
it to a real server, based on the configured load-balancing algorithm (least connections or
round robin). If the packets are associated with an existing session, the connection is as-
signed to the same server involved in previous portions of the SSL session.

Cookie-Based Session Tracking This algorithm uses HTTP cookie information to direct
the client connection to the appropriate server. This load-balancing mechanism offers
more granularity than IP address because the switch can now identify a specific user to
send to a server.

With cookie-based session tracking, the Web switch sends the first incoming request to the
most available server. The server modifies the cookie and inserts its IP address. Based on
this information, any subsequent request from this user is forwarded to the same server.

Maximum Connections Option
The maximum connections feature, configurable in conjunction with any of the load-bal-
ancing options described earlier, enables users to set the maximum number of active con-
nections to be assigned to a particular server.

When a server reaches its maximum connection limit, it receives no more connections
until it drops back below its maximum connections limit. If an overflow server has been
assigned, it is then brought into service. If all the servers in the VSG reach their maximum
connections limit and no overflow servers are available, no additional connection setup
requests are handled until at least one server drops below its limit.

The maximum connections option enables users to enforce service quality by pre-
venting key servers from being overloaded.



URL-Based Load Balancing
URL-based load balancing allows the Web switch to observe each client URL request and
forward the request to the appropriate server based on predefined rules. Typically, every
page download consists of multiple TCP requests. URL-based load balancing looks into
incoming HTTP requests and, based on the URL information, forwards the request to the
appropriate VSG. Server selection within a VSG is based on user-defined polices and dy-
namic load on the server.

The example in Figure 9-6 shows a large e-publishing site that has graphic images
(.gif and .jpg) and script files (.cgi, .bin, and .exe) on separate servers. Also, the static files
are stored on a separate server farm under the /product, /company, and /information
directories. The Web switch observes the incoming HTTP request and forwards it to the
appropriate server based on user-defined policies. I/O intensive requests like reading
image files, video files, and so forth, are sent to Web Servers 1 or 2 (call this VSG A), and
computer-intensive tasks like executing applications are sent to Web Servers 3 or 4 (call
this VSG B). Based on this configured policy, all requests for images (.gif) files or (.jpg)
files are sent to VSG A. The requests are also load balanced among servers in VSG A,
based on a user-configured Most Available server policy. All requests with .cgi, .bin, and
.exe in the URL are sent to VSG B. All other requests for static pages are sent to Web
Servers 5 and 6 (call this VSG C).

Configuring URL-Based Server Load Balancing
Let’s examine the steps required to configure URL-based server load balancing, one of
the most popular applications of the Alteon Web switch. The following are the required
configurations tasks:

1. Define an IP interface on the switch.

2. Define the URL strings to be used for server load balancing.

3. Enable server load balancing and define each real server. Assign an IP address
to each real server. Assign each real server to its designated string.

4. Assign the real servers to a group.

5. Define a VIP (virtual IP address).

6. Configure the HTTP service for the virtual server and enable urlslb.

7. Define the port configuration.

8. Apply and save the configuration.

That’s it. Now let’s perform the actual commands on the Alteon Web switch neces-
sary to implement URL-based server load balancing.

The following configuration exercise implements URL-based server load balancing
based on the network diagram in Figure 9-6. We configure the Web switch so all user re-
quests for .gif and .jpg files go to virtual server group VSG A; all user requests for .cgi,
.bin, and .exe files go to VSG B; and the rest go to VSG C.
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Here is the step-by-step procedure:

1. Define the IP interfaces on the Web switch:

/cfg/ip/if 1/ena/addr 10.1.1.1/mask 255.255.255.0/broad

10.1.1.255

Figure 9-6. URL-based server load-balancing configuration



2. Configure the URL strings to use to load balance the Web servers:

/cfg/slb/url/lb/add "any"/add ".gif"/add ".jpg”/add ".cgi"/

/cfg/slb/url/lb/add ".bin"/add “.exe”

3. Enable server load balancing on the Web switch and assign real servers:

/cfg/slb/on

/cfg/slb/real 1/ena/rip 10.1.1.2

/cfg/slb/real 1/layer7/addlb 2/addlb 3/

/cfg/slb/real 2/ena/rip 10.1.1.3

/cfg/slb/real 2/layer7/addlb 2/addlb 3

/cfg/slb/real 3/ena/rip 10.1.1.4

/cfg/slb/real 3/layer7/addlb 4/addlb 5/addlb 6

/cfg/slb/real 4/ena/rip 10.1.1.5

/cfg/slb/real 4/layer7/addlb 4/addlb 5/addlb 6

/cfg/slb/real 5/ena/rip 10.1.1.6

/cfg/slb/real 5/layer7/addlb 1

/cfg/slb/real 6/ena/rip 10.1.1.7

/cfg/slb/real 6/layer7/addlb 1

4. Assign the real servers to a group:

/cfg/slb/group 1/add 1/add 2/add 3/add 4/add 5/add 6

5. Define a VIP (virtual IP):

/cfg/slb/virt 1/ena/vip 10.1.1.100

6. Configure the HTTP service for the virtual server:

/cfg/slb/virt 1/service http/group 1/httpslb ena urlslb

7. Define the port configuration:

/cfg/slb/port 1/client ena

/cfg/slb/port 8/server ena

8. Apply and save the configuration:

apply

save

Here are some of the benefits of URL-based server load balancing.

Ease of Management Large Web sites have so much content associated with their domain
name that splitting this content up across multiple file systems on multiple servers not
only makes it easier to manage, it also improves site performance and availability. With
URL-based load balancing, incoming requests can be easily redirected to the server
group with the correct content.
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Resource Optimization Partitioning content across multiple servers enables web sites to
use servers optimized for a specific task. Servers optimized for computer-intensive func-
tions are better at serving web pages with dynamic content, while servers optimized for
disk I/O functions are better at delivering large static pages. With URL-based load bal-
ancing, the switch forwards dynamic requests to powerful server groups optimized to
handle computer-intensive requests and static requests to I/O optimized servers. This
improves performance and optimizes resource use.

User Differentiation and Service Level Provision Partitioning users among different virtual
server groups gives web site managers the ability to use different types of servers to ser-
vice different classes of users. URL parsing helps in forwarding incoming clients to differ-
ent servers based on user type, type of request, and so forth. This feature can be used to
give preferred customers a larger share of system resources and better response time than
best effort users.

Prioritization of Transactions URL-based load balancing can also be used to give certain
types of transactions higher priority, so a payment transaction or an order transaction can
be given a larger share of virtual server resources.

Parallel Execution Large web sites have their content partitioned across multiple servers.
With this feature, processing tasks for each session and page request can be split and dis-
tributed to multiple servers for parallel operations. For example, you can retrieve the im-
age and text portion simultaneously from different servers. Parallel processing improves
session performance and scalability.

Management of Traffic Surges (Flash Crowd)
A phenomenon known as Flash Crowd results when an unusual heavy surge of access de-
scends on a popular web site for a temporary period of time. An example would be a mu-
sic recording company’s web site introduction of hit music for download and purchase.
Deploying overflow servers would be one solution in this kind of scenario.

The Web switch can be configured to introduce overflow servers when any or all of
the servers in a VSG hit their maximum connections threshold. The Web switch can also
bring in backup servers when it detects that any or all of the servers in a VSG have suf-
fered from a service or physical link failure.

A server that normally performs another function can be configured with the load-bal-
anced application(s) and given access to the associated data. Under normal circumstances,
the Web switch won’t forward any connections for the load-balanced application to this
server.

If one or all of the real servers supporting the load-balanced application hit their max-
imum connections limits, however, the Web switch introduces the overflow server into
the load-balancing virtual service group. When the load on the real server(s) falls to an
appropriate level, the Web switch stops forwarding connection requests to the overflow
server, removing it from the load-balancing service group.
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High Availability Configuration
The Web switch monitors the real servers and the load-balanced applications to ensure
client requests are forwarded only to healthy servers. To improve fault tolerance further
for the entire system, Web switches can be put into Active-Active load-balancing configu-
rations to build topologies with no single point of failure.

Advantages of Active-Active Configuration
Active-Active configurations are always preferable to the alternatives, which incorpo-
rates some sort of standby device. Standby devices typically don’t do anything unless and
until something breaks. Definitely nice for peace of mind, but this can be brutal on the
checkbook. With Active-Active, the configuration allows for full utilization of the re-
sources you’ve implemented. As the name suggests, both (or all, depending on how
many we’re talking about here) devices fully participate in whatever activities are being
performed. The additional benefits of this are outlined below.

Improved Resource Utilization Both Web switches are actively performing load-balancing
activities for the same virtual service. This doubles the virtual service’s effective usable
performance and capacity.

Improved Session Availability Because both Web switches are active, if one fails, only half
the user sessions to the web server farm are affected. With traditional hot-standby config-
urations, only one of the switches is being used and, when it fails, all the user sessions to
the web server farm are lost.

Ease of Configuration Because both switches are active all the time, it’s much easier to
configure the switches in this mode.

Improved Performance During Traffic Surges Because both switches are being used, any
sudden surges in traffic load are handled more easily.

Switch Processing
Load balancing thousands or tens of thousands of connections per second over dozens of
real servers requires vast amounts of processing capacity and memory. Traditionally,
three types of processing take place in a server load-balancer: background processing,
per-session processing, and per-frame processing.

Background processing includes tasks such as server and service health checks, topol-
ogy communications, and statistics reporting. These tasks tend to be single-threaded, and
the load is light. A coprocessor inside a switch can do the job.

Per-session processing includes a variety of activities, such as identifying incoming session
requests, determining the best server for each session, creating a binding that recognizes
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session terminations and unbinds each session, and handling persistence and timing out idle
sessions. Session processing is CPU-intensive, particularly when traffic to be load balanced
arrives simultaneously from many 100 Mbps or 1 Gbps ports. Executing per-session process-
ing from a centralized processor limits the number of total session throughput of the load
balancer. In addition, routing each session packet to and from the centralized processor puts
an additional load on the back plane of any server load-balancing device.

Finally, per-frame processing includes session address substitution (IP, MAC, and
Layer 4 port number), recomputing checksums, and, in some cases, examining actual
frame data. For example, load-balancing FTP sessions requires the load balancer to exam-
ine every packet sent by an FTP server to the client over the control channel, so it can de-
rive the dynamic port number to be used for data transmission. Per-frame processing can
be extremely CPU-intensive and is best distributed to dedicated processors on each data
path. Executing per-frame processing from a centralized processor on traditional server
load balancers limits the total frame throughput of the device.

Many other applications have unique session establishment characteristics. This fur-
ther heightens the need to equip a load balancer with enough capacity and flexibility to
support future application load-balancing needs.

SUMMARY
In the past few years, the number of users accessing web sites has grown rapidly. Enter-
prises are also using their web sites to increase revenue, improve customer service, and
optimize business processes. Server load balancing enables IT managers to build an infra-
structure that can support mission-critical solutions. For web-based solutions, the switch
provides high availability, performance scalability, platform independence, resource op-
timization, and operational simplicity. The business benefits of a Web switch–based solu-
tion are increased customer satisfaction, improved resource use, and decreased total cost
of ownership.

The features of Web switches that are important for any web solution are layer 3 and 4
load balancing, URL-based load balancing, real server health monitoring, peak load or
traffic surge management, and policy-based service level management.

Several solutions based on purpose-built appliances, integrated switches, and blade
modules were discussed in this chapter. Clearly, the Cisco and Nortel solutions are pre-
mier implementation of server and global server-load balancing and will continue to
compete for market leadership in the months and years to come.

The real winner, however, is the user, whose Internet and web experience is richer
and more fulfilling as a result. The concept of 24 × 7 × 365 availability is finally here and
waiting for the comeback of the dot-coms.
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REVIEW QUESTIONS
1. What is the Flash Crowd phenomenon? Name one solution a web site uses to

protect itself from Flash Crowd.

A Flash Crowd phenomenon is a temporary surge of heavy user traffic
usually triggered by an event. An example would be the initial release
from a hot singer being introduced for sale for the first time at a music
store’s web site. To protect itself from the Flash Crowd and ensure that
Internet users don’t experience undue delays while browsing this web site,
the web administrator configures one or more overflow servers, which come
online when any regular server hits its maximum connections’ threshold.

2. Why is an Active-Active server load-balancing configuration a preferred
method when web administrators are concerned with getting full return
on investment (ROI) of their web infrastructure?

In an Active-Active server load-balancing configuration, two load balancers
are configured to process user traffic at the same time, both enhancing the
ROI potential of the load balancers and ensuring no single point of failure
is in the infrastructure.

3. What is health checking? Name some health-checking methods the Web
switch employs.

Health checking is a method used by the load balancer to determine the
health and availability of web servers. One method used is periodic ICMP
pings of the web servers. A better method is a periodic TCP handshake
with Web servers, which not only shows the web server is functional, but
also ensures the TCP/IP stack is likewise operational. More sophisticated
health-checking checks the contents of the web server ensuring the web
site is fully operational.

4. What is “persistence” or “stickiness,” and what are some persistence policies
deployed?

Persistence ensures every request from a user is handled by the same server,
until the completion of the user’s transaction. Additionally, when a user
suffers a temporary disconnect, persistence ensures the user is directed to
the same server. This is important if, for example, the user of an e-commerce
web site is engaged in a shopping activity and filling a shopping cart. Some
of the persistence policies supported by a load balancer are hash, SSL session
ID, and cookies.



5. Discuss some benefits of URL-based server load balancing.

URL-based server load balancing allows the Web switch to redirect a user’s
request to a web server based on the URL string present in the initial request.
Two of the benefits of URL-based server load balancing are ease of management,
which allows an administrator to split up the contents of its web site among
several servers for both ease of management and improved site performance;
and resource optimization, which allows the administrator to use more
powerful Web servers to serve CPU-intensive requests for dynamic contents
and less-powerful servers to serve static contents.

6. What function does a backup server perform?

When any server in a virtual server group fails or is taken out administratively
for maintenance, an administrator usually configures a backup server to take
the place of the functions of the downed server.

7. What is the Dynamic Feedback Protocol (DFP)?

The DFP is a proprietary Cisco protocol, providing a mechanism for real
servers to send feedback information intelligently to the Local Director—a
Cisco load-balancing appliance—ensuring that the Local Director doesn’t
route traffic to downed applications and that the traffic will be sent to the
correct real server.
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OBJECTIVES
� Understand the reasons and applications of protocol-based redundancy

� Understand the elements and operations of VRRP and HSRP

� Demonstrate real-world examples of successful protocol deployment

In the last chapter, you learned about the technology solutions used to add redun-
dancy into the server infrastructure. SLB techniques enable CDN designers to create bul-
letproof server farms and, further, to ensure that no matter what, requests for content can
get served.

That is, unless the SLB devices can’t get those requests. Or send them anywhere.
Designing for redundancy is like trying to remove a bottleneck. Every time you elimi-

nate one, another crops up in what seems to be the ultimate network-design whack-a-mole.
At every level, there seems to be something that can go belly-up and, thereby, cause

the complete and utter failure of the content delivery infrastructure. Starting at the bot-
tom, the servers connect into a single switch. What if a network card goes bad? No prob-
lem: dual-home the servers. What if the server goes bad? No problem: use SLB and create
a server group. What if the layer-2 switch goes bad? No problem: divide the servers into
groups and add each group to its own layer-2 switch. What if the router goes bad? What if
the site gets sponged off the face of the Earth? What if . . . !

The latter, we’ll address in Chapter 11, the former, now. The problem this chapter at-
tempts to address is redundancy at the gateway level. Every egress point off a network
goes through a gateway. That gateway, at least for servers, is the default gateway. Every-
thing in the Internet is typically reached by sending traffic to it. The default gateway gets
configured one of two ways: manually or dynamically. For client hosts, it tends to be dy-
namically, through the Dynamic Host Configuration Protocol (DHCP). Most network de-
sign guides direct designers to implement this service wherever and whenever possible.
For servers, configuration is statically configured, that is, configured by hand. Servers
have a nasty habit of being located by name through a service like the Domain Name Ser-
vice (DNS). DNS, a static database, will have one or more addresses for any given name.
DHCP can hand out any old address to any old server, and each handout could be differ-
ent—not a problem for clients, but for servers accessed by static name-IP address
mappings, it could get ugly. While Dynamic DNS (a DNS service that coordinates with
DHCP and possibly WINS) is on the way, it hasn’t arrived. The long and short of it is con-
tent servers get manually configured addresses, including their gateway of last resort.
And this isn’t a problem—until the gateway fails.

You can fix this in several ways. One way is to configure a routing protocol, like RIP,
on the servers in question. Each server can then snoop on local routing broadcasts and
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select its gateways accordingly. This tends not to be a popular solution, mainly because
no one seems to want to implement RIP on their server networks. There are too many
broadcasts, too many weird routing possibilities, and it takes too long to converge.

Another solution is to implement a protocol-based solution, such as VRRP or HSRP.
These two protocols are functionally identical, that is, they serve the same purpose and
are deployed in the same situations. Essentially, these protocols are used to provide
hot-standby gateway failover protection. If the primary gateway is going belly up, these
protocols ensure a backup can step in, take control, and continue service, all in seconds,
and completely transparent to the end users. The way this is accomplished is through
deploying dummy addresses that are assumable nearly instantaneously by any of the
devices participating in the protocol.

Both protocols enjoy a wide deployment currently. HSRP is a proprietary Cisco-
developed protocol, but is available for licensing to third parties for some fee. As such,
HSRP hasn’t enjoyed wide market acceptance. VRRP is the standards-based equivalent
and is, therefore, free of licensing issues It seems to be enjoying a wider market/platform
penetration because of it. High-end Cisco routers support both protocols, but for CDN
devices, VRRP seems to be the de facto standard. Cisco’s Arrowpoint product line, Nortel
Networks’ Alteon product line, Foundry Networks’ product line—all support VRRP (of
some variety—more in the following).

CDN designers need to be aware of these two protocols and how to deploy them. The
RFCs that cover these two protocols are still the single best reference available and can be
found at the IETF web site (http://www.ietf.org).

VIRTUAL ROUTER REDUNDANCY PROTOCOL
Virtual Router Redundancy Protocol (VRRP) is an Internet Engineering Task Force
(IETF) protocol, specified in RFC 2338. It fulfills a role similar to Cisco’s proprietary Hot
Standby Router Protocol (RFC 2281), where the goal is “to eliminate the single point of
failure inherent in the static default-routed environment (RFC 2338).”

VRRP is used when high availability is needed to access a gateway device where
redundancy is provided through a virtual router (VR), a logical object that acts as the
default gateway for a set of hosts on a given network. The VR is comprised of two routers
running a common VRRP process. When a packet is sent to the VR, either of the two rout-
ers can handle the request and forward it on to the appropriate next hop. Each router can
participate in one or more VRs, adopting the role as either master or backup router in each
relationship. In case of failure, the backup device takes over for the master. Figures 10-1
and 10-2 show the difference between a single and redundant gateway network.
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Figure 10-1. Single gateway network design

Figure 10-2. Redundant gateway network design



Operations
The way this works is as follows: the basic element in VRRP configurations is the router
running the VRRP process. Of course, one router alone won’t do much in the way of High
Availability! But when two or more routers, on the same layer-2 segment and running
VRRP processes, are then configured with the same 8-bit virtual router ID (VRID), these
devices are combined to create a single VR. Each router can (and often does) participate in
multiple VRs. More on this later.

In a given VR, unless a failure occurs, the master controls, or owns, the IP addresses
assigned to the VR, called the virtual IP (VIP). What this means is the device that has the
VIP as one of its own already configured interface addresses will be said to own that
address. The master handles all protocol requests for that VR address and does so at both
OSI layer 3 and layer 2. At layer 2, a VR also creates a virtual MAC (VMAC) address for
layer-2 handoffs. The VMAC has a standard format of 00-00-5E-00-01-xx, where the last
byte is the VRID for the VR. A downstream ARP request for the MAC of the VIP will yield
the VMAC.

The VMAC is important because MAC addresses are stored by network nodes, either
in the ARP cache (for end stations) or in the CAM tables (for switches). These stored entries
can remain in the tables from several minutes to over an hour. Upstream failures during
this period could result in errors, lost data, and broken connections. By using a fabricated,
logical MAC address, either of the two VRRP routers can assume control of it and continue
operations even in a failure, without the need for a possibly lengthy timeout period.

When configured and operational, the master sends out periodic advertisement mes-
sages, by default, once per second. A certain number of these advertisements must be
missed to have a backup initiate the takeover procedure, usually set to three, but this is
configurable. When a failure is detected, a backup initiates an election to see who becomes
the master for that segment. This election protocol is vendor-specific because it isn’t cov-
ered in the RFC, but it works something as follows. After three missed advertisements, the
first backup on a segment (and, remember, there could be several) to reach the timeout then
sends out an advertisement showing, with a special priority, a variable set from router to
router (and is part of the RFC spec).

This 8-bit field is included in the VRRP header of every advertisement and is set to 100
by default. All other backups on the segment will match that priority. If a given backup
can beat that value with a higher priority, it sends its advertisement out onto the network.
The router with the highest priority wins, becoming the master. The priorities can range
from 1–254, with higher being better. A value of 255 is reserved for the VIP owner, so the
owner always becomes the master during an election. A value of zero is special and
means an election must begin immediately. This is the priority value that the first backup
detecting the failure will most likely send to start the election process.

NOTE: This is dependent on implementation—not every vendor will, should, or must implement
elections this way.
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A corollary to the election process, however it’s implemented, is called preemption.
Each router has an option under the VRRP setting either to allow or deny the preemption
of the current master. When a router with this setting on sees an advertisement by a
router with a lower priority, the higher priority router gratuitously issues an election
challenge. This can be turned off for all cases except for the VIP owner. When the owner
comes back online, it will force (and win) an election.

VRRP is usable only on a single layer-2 segment. What keeps the packets isolated on
the segment they were generated on is the TTL, which is set to 255. By design, if a VRRP
Router receives a packet with at TTL value of anything other than 255, the router must
discard it. Because all routers decrement TTLs with every forward, the sending router
sets the TTL to 255, it reaches the next hop, and can go no farther.

Figure 10-2 shows an example of this VRRP configuration in operation. Each of the
physical routers is master in one virtual router and backup in the second. If Router 2 fails,
then Router 1 takes over the routing functionality of Router 2. It assumes control of the
MAC and IP address of Virtual Router 2, and then responds to all requests intended for
those addresses. This failover to the backup router is transparent to hosts sending traffic
across the network and should occur in less than five seconds.

Protocol
This section explores the VRRP header info and packet structure. The goal is to identify
the various fields, and their uses, meaningfully. This information will be useful in packet
traces.

VRRP is a layer-4 IP protocol, like UDP or TCP (its IANA-assigned protocol number
is 112), and is encapsulated in IP for transport. VRRP uses a variable-length header (48+
bytes), depending on the number of VIPs being advertised under the process. Also, VRRP
is multicast-based, so the destination address is always a Class-D address. VRRP has a
reserved IP, for advertisement, of 224.0.0.18.
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Figure 10-3. VRRP header
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Version Field The 8-bit version field specifies the VRRP protocol version of the packet.
The most common, standardized version is version 2. Version 3 is for IPv6.

Type Field The 8-bit type field specifies the VRRP type of this packet. Only one packet
type is defined in this version of the protocol, the advertisement packet type, identified
by a value of 1. Any packet received with a value other than 1 must be discarded by the
router.

Virtual Router ID (VRID) The 8-bit VRID field identifies which VR this packet belongs to.

Priority The 8-bit priority field contains a value from 0–255 that signifies what role a spe-
cific device holds. See the previous for a description.

Count IP Address The 8-bit count IP address field identifies the number of IP addresses
contained in the VRRP advertisement.

Authorization Type The 8-bit authorization type field identifies the authentication type
used, on a per interface basis. If no authentication is set, the value is 0. For simple
clear-text passwords, the value is set to 1 or, if IP header authentication is being used, the
value is set to 2.

Advertisement Interval The 8-bit advertisement interval field indicates how much time
should elapse before the next advertisement is sent. This value is in seconds, with the
default of one second.

Checksum The 16-bit checksum field is used to detect errors in the VRRP message.

IP Address Multiple 32-bit IP address fields are used, if necessary, to identify the IP
addresses associated with the VR.

Authentication Data The 64-bit authentication data field is used to pass simple text
authentication information. The value of the information passed is the binary representa-
tion of an eight-character string of plain text.

VRRP Router States
A VRRP Router can hold one of three states according to the protocol state machine. The
state machine is simply a functional description of how the VRRP router will behave and
what its duties are, depending on its role.

Initialize Before a Start command is given to the process, for example, enable, the pro-
cess will remain in the Initialize state. It doesn’t do much, except allow configuration of
the process. When a start command is given, the Initialize state has a couple of duties to
execute, depending on its priority.

If the priority is 1 and 254, the process will set both the Master-Down-Timer and the
Master-Down-Interval. The first indicates it hasn’t yet heard an advertisement; the second
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indicates how long it will wait for one before initiating an election. The default interval is
just over three and a half seconds.

If the priority is 255, which is automatically and only set if the device is the VIP owner,
then the Initializing device has some other duties. First, it sends an advertisement. Next,
it sends a gratuitous ARP request response to the network segment containing the VMAC
for the VIP. The device then assumes the role of master.

Master A VRRP Router in the Master state functions as a forwarding router for the IP
address associated with the Virtual Router. It must respond to ARP requests, forward
packets with a MAC address equal to the MAC Address of the VR, and manage and for-
ward IP packets meant for the VR. It also sends an advertisement message at the fre-
quency set by the Advertisement Interval, again, by default, once every second.

If the VRRP process on the master is given an administrative halt or stop command,
the master responds by sending out an advertisement message with the Priority set to 0 to
force an election, and then transitions to the Initialize state.

Backup A backup VR has only one job: to monitor the availability of the master router
by receiving and processing advertisement messages. It cannot respond to ARP requests
or forward packets. If the Master-Down-Interval expires, then the backup assumes the
role of the master by some election criteria and transitions to the master state.

Case Studies
VRRP configuration on each device is different. Each device has its own command
line and parameter formats. In this section, configurations for two product lines are pre-
sented.

Juniper
The following is an example of how to configure one VRRP Master Router and one VRRP
Backup Router to create a Virtual Router 1. Figure 10-4 illustrates this.

VRRP Master Router

[edit]

interfaces {

ge-0/0/0 {

unit 0 {

family inet {

address 10.10.10.100/101 {

vrrp-group 1 {



virtual-address 10.10.10.200;

priority 255;

advertise-interval 3;

preempt;

authentication-type simple;

authentication-key UnSeCR;

}

}

}

}

}

}
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Figure 10-4. Juniper VRRP network
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VRRP Backup Router

[edit]

interfaces {

ge-4/2/0 {

unit 0 {

family inet {

address 10.10.10.101/101 {

vrrp-group 1 {

virtual-address 10.10.10.200;

priority 200;

authentication-type simple;

authentication-key UnSeCR;

}

}

}

}

}

}

The following is an example on how to configure the MAC address on a Juniper Giga-
bit Ethernet interface.

[edit interfaces]

ge-0/0/0 {

gigether-options {

source-filtering;

source-address-filter {

00:00:5e:00:01:01;

}

}

unit 0 {

family inet {

address 10.10.10.100/101 {

vrrp-group 1 {

virtual-address 10.10.10.200;

priority 255;

preempt;

}

}

}

}

}
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Cisco
Cisco has supported VRRP since version 12.0 on its high-end platforms, and is supported
on their Ethernet interfaces, from 10/100 up to GE, as well as on MPLS VPNs and VLANs.
The following configuration is for a 3 VR implementation of VRRP (see Figure 10-5) on a
pair of Cisco routers. Each VR will have the following properties.

For Group 1, the VIP is 192.168.2.1, and NY-Localnet-DG-1 is the owner. As the
owner, NY-Localnet-DG-1 will become the master for this group. The advertising inter-
val is 2 seconds, preemption is enabled, and the password is ‘password’.

For Group 12, the VIP is 192.168.2.12, and NY-Localnet-DG-2 is the owner. As owner,
it will become master for this group. The advertising interval is 5 seconds, preemption is
enabled, and the password is ‘swordfsh’.

For the last, Group 100, the VIP is 192.168.2.100. However, there doesn’t appear to be
an owner (perhaps a router not yet online). With no clear priority, and assuming that both
routers start their processes simultaneously, NY-Localnet-DG-2 will become master for
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Figure 10-5. 3 VR Implementation of VRRP
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this group. Cisco implements a tiebreaker for VRRP elections by choosing the winner for
holding the highest manually configured IP address (192.168.2.13).

Here are the (partial) configurations:

hostname NY-Localnet-DG-1

!

interface ethernet 1/0.1

ip address 192.168.2.1 255.255.255.0

!

interface ethernet 1/0.2

ip address 192.168.2.2 255.255.255.0

!

interface ethernet 1/0.3

ip address 192.168.2.3 255.255.255.0

!

vrrp 1 priority 200

vrrp 1 authentication password

vrrp 1 timers advertise 2

vrrp 1 timers learn

vrrp 1 ip 192.168.2.1

vrrp 12 priority 100

vrrp 12 authentication swordfsh

vrrp 12 timers advertise 5

vrrp 12 timers learn

vrrp 12 ip 192.168.2.12

vrrp 100 timers learn

vrrp 100 preempt

vrrp 100 ip 192.168.2.100

And for the second router:

hostname NY-Localnet-DG-2

!

interface ethernet 1/0.1

ip address 192.168.2.11 255.255.255.0

!

interface ethernet 1/0.2

ip address 192.168.2.12 255.255.255.0

!

interface ethernet 1/0.3

ip address 192.168.2.13 255.255.255.0

!

vrrp 1 priority 100

vrrp 1 authentication password

vrrp 1 timers advertise 2



vrrp 1 timers learn

vrrp 1 ip 192.168.2.1

vrrp 12 priority 200

vrrp 12 authentication swordfsh

vrrp 12 timers advertise 5

vrrp 12 timers learn

vrrp 12 ip 192.168.2.12

vrrp 100 timers learn

vrrp 100 preempt

vrrp 100 ip 192.168.2.100

VRRPe
VRRPe (e for extensions) is a proprietary enhancement to VRRP, implemented by Foundry
Networks, HP, Nortel Networks, and others. VRRPe differs from VRRP primarily in that
there’s no owner for VIPs. That is, it’s no longer required to use an IP address already con-
figured on one of the switches as the VIP. The VIP, in this case, can be completely inde-
pendent of the IP interfaces configured in the layer-3 switches and, therefore, no
restriction exists on which router can be the default master router. This is in contrast with
VRRP, where the owner must be the default master.

VRRPe can differ architecturally from VRRP in minor ways. For example, the Foundry
implementation of VRRPe sends messages to destination MAC address 01-00-5E-00-00-02
and destination multicast address of 224.0.0.2—the multicast address for “all routers”. By
way of contrast, the Nortel Networks/Alteon implementation uses the standard VRRP
addresses. In what seems to be a standard characteristic, the VRRPe master and backups
are selected based on their priority, not ownership. You can configure any device as master
simply by giving it the highest priority.

Foundry, HP ProCurve, and the Alteon product line all support functionally identical
versions of VRRPe. However, it’s worth noting this isn’t a standard and, as such, it isn’t
surprising that intervendor VRRPe interoperation isn’t terribly reliable. Yet.

HSRP
The Hot Standby Router Protocol (HSRP) is specified in RFC 2281. According to the RFC,
“HSRP provides a mechanism which is designed to support non-disruptive failover of IP
traffic in certain circumstances. In particular, the protocol protects against the failure of
the first hop router when the source host cannot learn the IP address of the first hop
router dynamically.” Note how similar this is to the stated goal of VRRP!

In HSRP, VRs are implemented by a set of routers, called an HSRP Group or a standby
group. The active router in the HSRP Group assumes responsibility for forwarding the
packets sent to the VIP. The routers that are part of the standby group and not currently
active are considered standby and have the responsibility of taking over for the active
router if it fails.
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Like VRRP, the routers can be members of multiple standby groups simultaneously.
Similarly, a single group can implement multiple VRs. If the hosts that use the VR are
divided into separate groups—for example, along subnets, VLANs, or DHCP scopes—
the standby group can achieve some rudimentary load balancing. Remember, within a
standby group, the active router is the only one doing anything. By making one router in
an pair active for one VR and the second active for the other, then both routers will be
doing work at the same time.

Each device will have an IP and MAC address. When the device becomes part of the
HSRP Group, another IP and MAC address are assigned to the VR. In contrast to VRRP
(and more strongly than VRRPe), the VIP must be unique on the network.

Protocol
As you’ll see, HSRP and VRRP are functionally equivalent, but differences occur in the
way the two implement failover.

HSRP Header
HSRP is encapsulated in IP and uses UDP as its transport, using UDP port 1985. Packets
are sent to a multicast address of 224.0.0.2 with a TTL of 1. Recall that VRRP uses a TTL of
255, but adds this catch: if that TTL isn’t 255, it must be discarded. With HSRP implement-
ing a TTL of 1, the same is accomplished without having to add the additional injunction.

Figure 10-6 illustrates the HSRP Packet format for IPv4.
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Figure 10-6. HSRP Packet header



Version The 8-bit version field specifies the HSRP protocol version of the packet. The
current specified version is version 0. (Beta software? You be the judge!)

Op Code This field specifies the HSRP packet type operation. Three values are possible.
If the value is set to 0, then the message is a “Hello”, which is the standard keepalive, and
indicates the router is capable of being active or standby. If the value is set to 1, then the
message is a “Coup”. This is exactly what it means—revolution! Or, more precisely,
the Coup is an indication the sender wants to go active. When the value is set to 2, the
sender is indicating it wants to “Resign” from being active (and probably should have
been called “abdicate”).

State This 8-bit state field indicates the current state of the router sending the message.
The details are discussed in a later section, but six states are possible. The following table
shows them, with their codes.

Value State Value State Value State

0 Initial 2 Listen 8 Standby

1 Learn 4 Speak 16 Active

Hellotime This 8-bit field is used with Hello messages to indicate the number of seconds
between messages. The default is three seconds.

Holdtime This 8-bit field describes the amount of time, in seconds, before the current
active is considered AWOL, and is only included in Hello messages. The default is ten
seconds, or three times the hellotime, plus a bit for jitter.

Priority Identical to VRRP, this 8-bit field is used to determine the outcome of elections.
The router with the highest value wins and, in the case of a tie, the router with the highest
active IP address wins.

Group This is an 8-bit group field that indicates which routers belong to a given standby
group.

Reserved This 8-bit reserved field is reserved for future use.

Authentication Data This 64-bit field can contain an eight-character clear text password
for authentication.

Virtual IP Address The 32-bit virtual IP address field indicates the VIP used by this
group.

Operational Parameters
Certain information must be configured for each router in a standby group. This informa-
tion includes the following: group number, VMAC, router priority, any authentication
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password, hellotime, and holdtime. At least one router must be configured with the Vir-
tual IP address. The other routers in the group can learn it from that router.

Note, all routers in the standby group are transmitting periodic hello messages,
which is unlike VRRP, where only the master is sending out such advertisements. Elec-
tions occur, but more along the lines of selecting the vice president, not the president—in
a failure, the one that will take over has already been selected and can step in immedi-
ately. The elections are then held to see who will step into the VP/standby role.

Router States
The router states are similar to those used in VRRP, except HSRP identifies six distinct
states to VRRP’s three. These states are logical categories that identify the responsibilities
each of the roles must execute.

Initial As the name suggests, the initial state indicates the HSRP process is either not cur-
rently running or is just starting up on that router/interface.

Learn Before the router receives a hello message, it’s considered in the learn state.

Listen In the listen state, the HSRP process has received a hello message and might have
thereby learned the VIP, the hellotime, and the holdtime, but isn’t yet participating in the
standby group.

Speak In the speak state, the router definitely knows the VIP and is actively participating
in the election of the active and/or standby router by sending hello packets with its own
priority enclosed.

Standby The standby state indicates the HSRP router is fully functioning in the standby
group and has been recognized as being next in line to take over the responsibilities of the
active router. Only one router is in the standby state at any given time.

Active As the name implies, the active state indicates the router is the active router. The
active router forwards packets sent to the VIP. This router, like the others, sends Hello
messages periodically to indicate its status. Like the standby router, only one router is in
the group in this state.

HSRP Timers
Three timers are used to trigger events: the active timer, the standby timer, and the hello
timer. The active timer is used to monitor the hello messages of the active router, and it ex-
pires after the holdtime expires. The standby timer does exactly the same thing as the ac-
tive timer. Finally, the hello timer is used to trigger hello messages. If the router is in
speak, standby, or active status, it needs to send out a hello message.
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Case Studies
The following are a pair of configuration examples on how to configure HSRP in a Cisco
environment.

Simple HSRP
The goal is simple default gateway redundancy. Currently, network addressing is
assigned via DHCP, which includes the gateway address of 192.168.2.1. This address will
be the VIP handled by the standby group.

Two routers connect to a pair of layer-2 switches downstream and provide connectiv-
ity off-Net. The layer-2 switches are cross-connected to provide some downstream
redundancy and to enable the passing of HSRP hellos. See Figure 10-7 for a network
diagram.

Figure 10-7. Simple HSRP
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With the following configuration, NY-Localnet-DG-1 will be the active router for the
LAN (with priority 101) and NY-Localnet-DG-2 will be backup.

hostname NY-Localnet-DG-1

!

interface ethernet 0

ip address 192.168.2.2 255.255.255.0

standby 1 ip 192.168.2.1

standby 1 preempt

standby 1 priority 101

standby 1 authentication swordfsh

standby 1 timers 2 7

!

interface ethernet 1

ip address 192.168.1.2 255.255.255.0

!

hostname NY-Localnet-DG-2

!

interface ethernet 0

ip address 192.168.2.3 255.255.255.0

standby 1 ip 192.168.2.1

standby 1 preempt

standby 1 authentication swordfsh

standby 1 timers 2 7

!

interface ethernet 1

ip address 192.168.1.3 255.0.0.0

!

HSRP w/ 2 VIPs
The decision to migrate from a single HSRP group to a dual-group environment was made
to fully use the network devices and egress links. Again, a pair of layer-2 switches provide
host connectivity and allow for HSRP hello passage. Figure 10-8 shows the changes.

Additionally, a second DHCP server has been added to the network, so each layer-2
switch can have its own local DHCP server. Each server will hand out separate scopes,
and each scope will have a separate default gateway—both of which are VIPs—handled
by the standby group.



������� �	�  ��� ��! �"�� 
&

With the following reconfiguration, NY-Localnet-DG-1 will still be active for VIP
192.168.2.1 (priority 101), and NY-Localnet-DG-2 will be active for VIP 192.168.2.5 (also
priority 101).

hostname NY-Localnet-DG-1

!

interface ethernet 0

ip address 192.168.2.2 255.255.255.0

standby 1 ip 192.168.2.1

Figure 10-8. HSRP w/ 2 VRs
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standby 1 preempt

standby 1 priority 101

standby 1 authentication swordfsh

standby 1 timers 2 7

standby 2 ip 192.168.2.5

standby 2 preempt

standby 2 authentication password

standby 2 timers 2 7

hostname NY-Localnet-DG-2

!

interface ethernet 0

ip address 192.168.2.3 255.255.255.0

standby 1 ip 192.168.2.1

standby 1 preempt

standby 1 authentication swordfsh

standby 1 timers 2 7

standby 2 ip 1.0.0.4

standby 2 preempt

standby 2 priority 101

standby 2 authentication password

standby 2 timers 2 7

SUMMARY
The primary goal is to provide content services, “at all costs,” and gateway redundancy is
yet another step in that high-availability chain. CDN designers interested in providing
the highest level of service to and from their data centers should look closely at proto-
col-based solutions, such as those outlined in this chapter.

Whether a particular implementation settles on either VRRP or HSRP depends more
on the solution being implemented. More specifically, it depends on which of the two the
relevant vendors support! While functionally on par, the support base varies wildly, with
most CDN technology vendors providing support for the standards-based VRRP, and
Cisco, while holding out HSRP for licensing, still is the primary supporter of HSRP.

Remember, gateways can occur at nearly any level in any network—whenever traffic
needs to go off-Net, it will go through a gateway to do so. Any of these are possible points
of failure. With protocol solutions, they needn’t be single points of failure.
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REVIEW QUESTIONS
1. Which of the two protocols, VRRP or HSRP, fails over faster?

Both are user-configurable, and actual fail-over timers are set by vendor.
As such, neither will necessarily operate faster than the other.

2. Can I implement an HSRP solution on a pair of Foundry devices?

No. Foundry supports VRRP and VRRPe.

3. Can I implement a VRRP solution using both a Foundry switch/router and a
Cisco router?

Yes, VRRP is standards-based.

4. Can I implement a VRRPe solution using a Foundry switch/router and a
Nortel Networks Alteon web switch?

No, VRRPe is not a standard, and each vendor’s implementation is different.
In this case, the Foundry is using a different advertisement multicast address
than the Alteon.
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OBJECTIVES
� Describe purpose and use of Global Server Load Balancing (GSLB)

� Describe major technologies employed in site selection

� Discuss packet loss and its impact

� Discuss major problems with DNS-based solutions

� Compare/contrast Footraces with probing techniques

� Explore complex routing technology solutions

� Demonstrate technology solutions for GSLB

Global Server Load Balancing (GSLB) is an attempt to extend the concept of SLB by
an order of magnitude. Instead of providing load balancing services to a set of servers
in a single server farm, GSLB provides a mechanism whereby multiple, geographi-
cally diverse server farms can be deployed to provide a significantly enhanced level of
service. Most vendors will agree that the stated goal of GSLB is to improve the avail-
ability and performance of some set of web-enabled content. This chapter reviews the
various technologies and techniques for achieving this and analyzes some solutions
currently on the market.

Imagine that an online content provider, such as CNN, has a content server farm in
New York City. This server farm is where all its streaming media comes from, and that
media is comprised of local news bulletins, live broadcasts covering disasters and presi-
dential election debates, video journalism articles on biological warfare, weather and
market reports, and news from the war in the Middle East. And, of course, all their paid
advertising is disseminated from here as well. CNN is reliant on its web site to be accu-
rate, current, and, above all, useable.

Suppose the unthinkable happens. A nuclear bomb gets detonated in Los Angeles. A
meteor the size of a Volkswagen Bug strikes the Kremlin, leveling all of Moscow. Aliens
seize the Space Shuttle. Whatever. In such situations, three critical ways exist in which
GSLB can help content providers like news organizations stay plugged in and shoveling
content, regardless of the circumstance.

First, what can happen to news web sites in such events is a fairly common problem
and, in fact, happens to them every time some tremendous event occurs. It’s called flash
traffic, and is, simply, a massive traffic spike. Online news organizations use server farms
to serve their content and, depending on the amount of advertising dollars at risk, likely
use sophisticated SLB tools to ensure prompt, efficient delivery. Even with these tools,
however, the sheer volume of traffic for our hypothetical disaster might well be enough
to overwhelm them completely. With GSLB, multiple remote sites could have offloaded
the traffic, allowing users to be shunted to backup server farms.

No one can plan for a meteor taking out your server farm. Such site failures can be the
result of something so dramatic or as simple as a cleaning crew accidentally unplugging a
crucial switch. Things happen. The Internet itself was designed with this kind of extreme
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flexibility in mind. You can “lose” large hunks of the California coastline and still have
data moving from west to east. GSLB can work with the robust Internet routing protocols
and enable clients by dynamically rerouting to live content distribution sites if a large
failure at the primary site occurs.

Users come from all over the world to view CNN’s content. How efficient is it to have
those requests go hither and yon? How enjoyable is it for the user to sit at his desk, drum-
ming his fingers while some service provider routes his request to the Arctic Circle and
back again? With GSLB, it’s possible to discriminate some level of geographic relevance.
That is, send your clients in China to your server farm in Beijing, not London.

Many uses exist for GSLB. This chapter examines a few of them and discusses some of
the more subtle aspects to globalizing content.

SOLUTIONS
A natural question is whom this technology targets. The quick and dirty explanation
would be any company deriving a significant portion of its revenue from delivering
web-based content. Another less dramatic category will be any company trying to offer
services that require a global distribution mechanism, whether the clients for those ser-
vices are internal or external.

GSLB implementations have three primary categories. The first is a simple failover
technique, whereby GSLB technology can be used to provide site redundancy. The sec-
ond is a bit more robust, where GSLB acts in concert with DNS to load balance across
multiple, distinct sites. The final variation carries this last category a bit farther and uses
GSLB to determine client redirection to the best site, depending on the world location of
the client.

Simple Failover
A particular type of client, a news organization, was discussed previously. Extrapolating
a bit from here, a simple case could be made that any business relying on its content distri-
bution via the Web would be a potential beneficiary of such a technology solution. Online
retailers, in particular, should be and are looking closely at whether GSLB would make
sense for their enterprises.

Drilling down a bit deeper, GSLB can be implemented within a particular organization
as well, providing support for mission-critical applications and databases. Enterprises with
nationwide or international reach have problems particular to size—resources not local to
the end user tend to cause tremendous burdens on long-haul circuits.

For example, an LDAP database containing all the corporate user accounts, their
rights and privileges, as well as their contact info, can be fairly central to the way a large
corporation does business. Placing a local server at each of the remote offices is a great
way to remove LDAP traffic from the WAN and to increase user satisfaction. In the event
of a local LDAP server failure, however, the users will be forced to do without.
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That is, to do without unless some form of GSLB is deployed. With GSLB, a local fail-
ure can be translated into simply making a nonoptimal connection across the backbone
WAN to the next available site. Performance might not be fantastic, depending on the ro-
bustness of the WAN, but work will be able to continue.

High Availability
When designing a data center, a point in the design appears to exist where the Law of Di-
minishing Returns takes over. You can stuff only so many servers into a data center and
install only so many routers and switches. You can deploy only so many backup power
systems. After a certain point, all the server clustering solutions and SLB devices in the
world aren’t going to buy you any more redundancy or availability. If that site goes
down, that’s it. A major construction project in the area could generate a backhoe-in-
duced failure. It isn’t a stretch to imagine that even though separate circuits were pur-
chased from different providers—circuits that used different Lambdas on physically
separated fiber strands—the two strands of fiber run through the same conduit, lying
next to each other, and could get cut by the same backhoe.

The approach many large portal sites use is to create several smaller data centers. The
content-generating mechanisms are duplicated across the sites, as is the content itself.
GSLB mechanisms are then implemented to ensure that even if a failure at one data center
takes it entirely offline, another fully functional data center is already handling traffic. As
mentioned earlier, news organizations and online retailers greatly benefit from this dis-
tributed approach.

The way this works is by manipulating DNS. As discussed in Chapter 6, DNS is the
service by which clients retrieve IP information based on server name (and vice versa).
First, the GSLB device is configured to provide authoritative DNS responses for the
names of the sites being load balanced. Much like an SLB device, the GSLB device is also
configured with a list of sites being served, each hidden behind some unique VIP. The
VIPs are stored as A-records, and the GSLB device can use some sophisticated techniques
(described in the following) to determine which of them to hand out to any particular
DNS request.

Geographic Load Balancing
Taking the distributed approach a step farther, the data centers can be strategically lo-
cated to minimize the impact sheer distance can have. Obviously, the latency between a
user in New York City and a resource in Manhattan is going to be considerably less, all
things being equal, than the latency of a user in Madagascar attempting to connect to the
same resource. Now, if only that site were in Johannesburg. . . .

The design goal for geographic load balancing is closely in line with general Content
Networking design principles. Specifically, put the content as close to the consumers as
possible. The reach the content provider wants or needs should dictate the strategic loca-
tions where local sites should be deployed. Two primary sites, located on the East and West
Coasts of the United States, preferably near large Network Access Points (NAP) such as
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MAE-East and MAE-West, service most providers’ needs. The next staging areas are typi-
cally in Europe, Asia, Australia, South America, and South Africa, usually in that order.

The more sites, the better the reach, but the higher the cost. At some point, the Law of
Diminishing Returns kicks in again and the choice becomes more of a business decision
than a technical one.

Geographic Load Balancing works exactly the same as the High Availability solution
previously outlined. Through active site monitoring, the GSLB device can and will dictate
which sites remain active and available for use, as well as manipulating the DNS returns to
the requesting client, thereby deciding which of the sites is most relevant to that client.

HOW IT WORKS
How it all works is something of a tricky subject to set down. The problem isn’t technical but,
rather, is that of a moving target. GSLB is still in its infancy, technologically speaking, and
new and clever approaches to solving its problems are being invented daily. The approach
taken here is to outline some of the more clever approaches, describe the technology as
clearly as possible, and show some of the advantages and disadvantages with the approach.

Dynamic Site Selection
At its heart, GSLB is all about site selection. Which site should a particular client be sent to
and what criteria are used to make that choice? Painting with broad strokes, the two crite-
ria most relevant will be some measure of load and some measure of proximity. Load
should be able to dictate which site is most able to handle the request, proximity dictates
which site is most likely to introduce the least amount of latency.

Load algorithms will be the same as those used in SLB to determine which server to
route individual requests to. In GSLB, we’re looking at site load, not server load, so the
metrics will be more of an average instead of a specific. Metrics such as least connections
(leastconns) will be able to track the number of connections into a particular site, where
metrics such as hash will attempt to spread all connections evenly across the available
sites. More sophisticated polling techniques on the part of the GSLB device would allow
the tracking of numbers of servers up or down, the average response times of a site,
thresholds for the maximum connections and CPU utilization, network bandwidth load,
Quality of Service (QoS) metrics, and, perhaps, security concerns.

Proximity algorithms are where GSLB and SLB start to diverge. The notion of proxim-
ity incorporates an expectation of speed—it will be faster to get resources locally instead
of having to go far away. Basic latency bears this out—the more intervening steps, the
longer a response will take, period (all else being equal). Round-trip-timers (RTT) are im-
portant measures in this regard, as are average bandwidth along the path, the number of
hops, the number of ASes that need to be traversed, and so forth.

No protocol standards specify how to implement these functions as yet, so it’s a matter
of individual vendors exploring and creating what they need. As a result, the protocols
built for these functions are all proprietary to the solution vendor implementing them.



You can implement GSLB solutions in many ways, and some general categories im-
mediately follow. Whichever the implementation, some sort of proximity/load protocol
will be embedded in the solution proffered by the vendor.

Backup Servers
Purists say using GSLB technology for site failover or backups isn’t really GSLB at all.
Pooh on them. Any technology that takes the original client request and sends it to a
better site, whether that site is more geographically appropriate to that client or is simply
more able to handle their request, is GSLB, and the rest is simply nitpicking.

That said, using GSLB for site failover or backups isn’t really GSLB, at least in the
sense that it includes little or no necessary notion of proximity. Not that it can’t, but it
most likely won’t. What we’re doing with this type of solution is identifying a secondary
site that can handle traffic if and when the primary site goes kablooie, and not focusing on
making clever decisions on where to send traffic. The configurations are relatively simple
and look alarmingly like: “if there’s a failure, send all traffic here.” This backup site can be
a simple server or a load-balanced server farm, it doesn’t matter to the primary site. What
does matter to the primary site is what constitutes a failure.

There are failures and there are failures. Server seizing up? A failure. Unplugging a
server from the switch? A failure. Sudden power loss to the server? Also a failure. Power
loss to the entire building? Definitely a failure, but a bit more catastrophic than the others.
In the failover-GSLB scenario, the tolerated failures aren’t quite as robust as the other
two, described in the following.

The GSLB device, here probably just a layer-4 switch, holds the configuration infor-
mation on the failover site. If it’s unable to respond to client requests and send them the
failover information, then so much for failover. Hence, the other two solutions, while
more expensive, are preferred.

Before moving on, it’s worth noting that layer-4 switches typically have metrics that
can specify when a backup/overflow site should be activated, in addition to outright fail-
ure. Maxcons set a cap on the allowed incoming connections to a particular server in an
SLB group and, if all servers have exceeded their allowable number of connections,
maxcons send the new incoming connections to the backup until the local servers become
available.

This is typically implemented on layer-4 devices in two ways. The first is literally as a
backup server option, somewhere in the menus under the server group configuration.
The other likely approach is as a remote server option and is configured into the server
group as any other local server. When configured in this way, such as it is on Foundry’s
Server Iron series, the remote server won’t be used until the local servers are unusable.

DNS Based
When GSLB is discussed, as it usually is, over an expensive lunch paid for by an eager
vendor, the DNS-based approach is invariably implied. The main difference between this
approach and the one before it is the addition of a proper GSLB-based device. This device
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can, and will, in the case of the Alteon Web Switch and the Foundry Server Iron, act as a
layer-4 switch, as well as a GSLB device.

The way this works is by no means simple. Essentially, the GSLB device is going to
take over DNS name-resolution functions for the name that would resolve into the site
being served by GSLB. In other words, when a client wants to get to a GSLB resource, like
a web portal such as http://my.aol.com/ (not that AOL uses this, but you get the idea),
the client’s DNS server will get a request to turn this name—my.aol.com—into an IP ad-
dress. There’s no reason to expect the first DNS server will have this information. In this
case, what the DNS server will do is initiate a complicated lookup process to find out who
might have this information. What it’s looking for is the authoritative name server for the
name my.aol.com. Normally, that server would be one of the DNS servers serving the
aol.com domain, but when using the DNS-based version of GSLB, things are a bit differ-
ent. Instead of configuring those DNS servers with an A-record with the name-address
pair, the name my.aol.com is converted into a subdomain, and the request is then for-
warded to another DNS server that’s authoritative for that domain, specifically, the GSLB
device itself. Trust me, its complicated, but see Chapter 6 for a more robust discussion of
DNS and its vagaries.

The recommendation is not to implement this variety of GSLB in line with a server
group needing to be load balanced, however. More specifically, this works best if the
GSLB device isn’t also performing load balancing functions at one of the sites (even if it’s
the primary site) being serviced by the GSLB process. The reasons for this are straightfor-
ward. If that site fails, the GSLB device goes with it, which won’t help future clients much.

The recommended implementation is to locate the GSLB device close to the DNS
servers that serve the corporation using GSLB. In some cases, a decision to load balance
DNS might make sense. Couple this with a GSLB implementation and you’ll have a con-
figuration nightmare, but an interesting one. Just make sure the filters inbound into the
DNS server group don’t block DNS traffic to the GSLB process! See Chapter 13 for a dis-
cussion on DNS load balancing.

When the GSLB device is located here—away from the server segments hosting con-
tent—a failure on one of those segments isn’t also likely to take down the GSLB device.
Taking paranoia to a level of safe thinking, locate the GSLB device in a separate site en-
tirely to ensure full flexibility. Even better, using a colocation facility such as InterNAP,
AboveNet, or Exodus.net would be a great idea.

Anyway, once the DNS servers are configured to send the GSLB device DNS lookups,
the GSLB device can then be configured to keep track of as many sites as the individual
device-vendor allows. Some of the methods for tracking site availability and suitability
are described in the following section, “Globalization Techniques.”

Also, in passing, we should mention a “poor man’s GSLB” exists that relies entirely
on DNS. By default, DNS will round-robin responses based on configured addresses in
an A-Record. In other words, if you want a resource globally load-balanced, simply add-
ing a second or third IP address into the A-record will cause resolution requests to rotate
through the configured IPs. This isn’t recommended, of course, because if one site is
down, DNS could care less and will continue to send out bad IPs just as happily as it
sends out good IPs. Caveat emptor, you get what you pay for, and so forth.



Routing Protocol Based
Again, the purists will look askance at this being included here. The problem is this type
of solution focuses on the reachability decisions for content retrieval, and these aren’t
necessarily GSLB issues. To those who would so complain: point taken and conceded.

As the name suggests, with this approach, the routing protocol will be relied on to get
traffic to the content servers, regardless of where that content is. Through trickery and
sleight of hand, the clever network architect can engineer a situation where the VIP the con-
tent servers are hiding behind can be advertised throughout the network, and then local
routing decisions can decide which VIP is most suitable for use by each particular request.

Good reasons exist for not relying on the DNS-based solution for providing the only
avenue for GSLB. The problem is with DNS itself, and the way DNS information, once re-
trieved, is stored.

The process of a recursive DNS lookup is expensive. The originating DNS could have
to step through many levels of the DNS hierarchy to reach an authoritative nameserver,
and each of those levels requires its own lookup to take the next step. To prevent these
lookups from occurring each time a client makes a request of a resource for which the
DNS server is not authoritative, the DNS server will cache the responses it gets so it can
serve subsequent requests that much faster. Clients do the same thing, for the same rea-
sons. The problem arises when a failure happens after the DNS lookup has occurred. In
such cases, the client already has received the DNS information and has cached it. All its
requests will continue to go toward the downed site, regardless of the machinations of
the GSLB device—it has already been cut out of the loop, so to speak. Clients will get
nothing but timeouts. Restarting the browser, which one hopes will flush the cache, will
only cause another DNS lookup, will then retrieve outdated information from the DNS
server itself, and will then continue to fail to reach the downed site.

The configuration of name records in DNS servers has the option of setting a mini-
mum TTL value in the SOA record, which specifies how long requesting servers should
cache the DNS responses. By default, this is set to 3,600 seconds, or one hour. Note, this
applies to all records in the zone and not to any one record specifically, so making GSLB
services special in the sense that they’re treated differently from other records (that is,
have a short TTL) will be impossible. That is, impossible unless all that’s in the zone is the
GSLB service!

Microsoft DNS has a known bug affecting all versions of Windows 2000 Server/Ad-
vanced Server, Service Packs1 and 2. This bug causes the default TTL on resource records
to be extended to 24 hours, regardless of the minimum TTL assigned by appropriate SOA
record. 24 hours! And, most helpfully, this bug will disguise this fact from the adminis-
trator by not showing these cached responses in the management console or via the com-
mand line tool! The only way to detect this is what is happening will be through packet
traces (and the noncircumventable errors this causes). This, by and large, will completely
annihilate any chance of having GSLB function correctly for users resolving to GSLB re-
sources after a failure via a Microsoft DNS server. C’est la vie, Microsoft says—network
engineers will have to wait until Service Pack 3 for a fix. See Microsoft Knowledge Base
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article Q303964 (DNS Server Caches NS Records Longer Than the TTL) for a description
of the problem.

Microsoft’s Internet Explorer, until version 4.x, used to cache DNS responses in its
web cache for 24 hours! All later versions, up to and including Version 6, now default to
30 minutes, and Microsoft Knowledge Base article Q263558 (How Internet Explorer Uses
the Cache for DNS Host Entries) explains how and why adding a key to the registry of
Windows operating systems will lengthen this default setting, further “optimizing” the
user’s performance. This is madness, of course, and strongly discouraged. If anything,
this setting should be shortened, not lengthened, especially because this value will over-
ride the minimum TTL setting on any particular DNS response.

With these known problems with DNS implementations, some other mechanism for
ensuring a client gets to the appropriate resource in case of failure is warranted. Routing
protocols are designed with this sort of fast-failover in mind.

The most likely approach will be manipulating Border Gateway Patrol (BGP) because
this is the most commonly used protocol on a scale useful enough to have impact. BGP is
mostly used for exchanging reachability information with other, neighboring, large-scale
networks, but it can and does interact with Interior Gateway Protocols (IGPs), such as
IS-IS, RIP, and OSPF. The IGPs-EGPs (Exterior Gateway Protocols) interactions are com-
plicated. On a router running the Cisco IOS, the learned routes are given preferences
based on how they’re learned. These preferences are called administrative distances, and
they’re a measure of the reliability of the source protocol. For example, routes learned via
IS-IS are more trusted than RIP and are less trusted than those learned by OSPF. Further,
external routes learned by BGP (E-BGP) are much more trusted than internal routes
learned by BGP (I-BGP). More strongly, E-BGP is a source more trusted than any other
method or nonproprietary protocol, with the exception of directly connected networks
and manually configured static routes. E-BGP, then, is highly believable. Using BGP in
this way—that is, injecting BGP routes into another autonomous system—is, by default,
one of the best ways to be believed on the Internet.

If one can manipulate BGP in such a way that the same advertised GSLB address is
made to appear to come from separate locations, well, that might be worth looking at,
and it’s examined in the following “Hybrid DNS/Routing System” section.

Taking a step closer, it’s worth remembering that, at some point, the IGP takes over
the routing decisions for any particular packet. More to the point, it doesn’t make sense
for every router in a network to be asked to maintain the full (or even partial) Internet
routing database, as routers running BGP do. BGP is complex and most IGPs aren’t. The
average enterprise user will deploy BGP at the edges of the network, at autonomous sys-
tem boundaries and, typically, not at local segment boundaries—not even at content
server segment boundaries.

BGP will take the packets only so far, and then it’s up to the IGP to take it the last mile.
From the perspective of the IGP running in a single area, there might only be one way to
get to the resource in question, but there might be multiple areas. Each of these areas
might have the same notion: to get to x, send it to y. The trick is that physically different
xes exist, and each IGP will only know one. The skill is in getting BGP to announce all of
them to the rest of the world.



PACKET LOSS—AN ASIDE
Packet loss, usually measured as a percentage, represents the number of packets dropped
during transmission because of network congestion or data corruption. A simple method
of measuring packet loss is by use of ping, a tool that sends ICMP echo-request packets to
a specified destination and then waits for a corresponding echo-response packet. Ping
uses this data to determine two things: the latency of the link and the reliability of the
link. When ping fails to receive an echo-response packet for an echo-request packet it
sent, ping increments its packet loss counter and continues.

By dividing the total packets sent by the number of packets lost, ping can report the
packet loss as a percentage. When an Internet link is monitored over the course of time,
packet loss of less than 1 percent is normal. If the percentage grows higher, you’ll find the
quality and performance of TCP connections over this link will have degraded because of
their inherent retransmission mechanisms.

Exactly how poorly TCP performs during packet loss is largely a function of the win-
dow size and Maximum Transmission Units (MTU). When a larger packet is dropped, it
requires more effort and time on the sender’s part to retransmit the packet. As a result,
TCP performance tends to fall quickly during packet loss if large windows/MTUs are at
work. The trade-off is that when packet loss doesn’t occur, larger windows/MTUs usu-
ally give better throughput.

Packet loss usually occurs at one of three places on the Internet: 1) at the local ISP the
client is using, 2) within the content provider’s network itself, and 3) at the peering points
between two different network providers because of congestion.

Unfortunately, the first cause of packet loss (the local ISP) isn’t under the control of the
content provider in any way and, regardless of where the content is delivered from, results
in poor performance. While this might reflect poorly on the overall experience the client
has with the Internet, it’s usually an overall experience and not one that reflects specifically
on one site, although some content might be impacted more by this than other types.

The second cause of packet loss—the local content provider’s network—is obviously
under the control of the local network administrator and should be closely monitored to
ensure no particular degradation results in poor performance to the clients. In general,
the low cost and high quality of network equipment available these days permit and en-
courage tremendous overdesign on the local infrastructure, and this helps to ensure local
bottlenecks won’t result in future problems. Trying to match the network design closely
to the current demands of the content generation eventually results in wasted productiv-
ity and potentially lost revenue. A workable, if crude, rule of thumb is simply to estimate
how much traffic you think you currently need to pipe over your local network, and then
bump that up by a factor of ten, when it makes financial sense to do so.

So, if the estimated bandwidth is going to be 20 Mbps, then using a 100 Mbps Ethernet
data path in the server farm is probably a good idea. The Internet circuit might be another
matter and acquiring a 100 Mbps Fast Ethernet upstream connection (assuming the con-
tent is hosted in a data center, where such service is possible) or a 45 Mbps DS3 should be
sufficient, but expect it to be costly. Remember, in most cases today, billing is done on a
utilization basis, with a base charge derived from the capability of the media to burst. As
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an example, a 100 Mbps link might be used, with the utilization billed at the 95th percen-
tile of actual use on that. In general, actual use will be significantly lower than 100 Mbps,
even if the full capacity is used during peak times. Ensuring that adequate physical band-
width exists for growth is prudent. Paying for a dedicated, but underused, link might not
make good financial sense.

The third significant cause of packet loss is peering connections. In many cases, the
peering between two companies might be significantly less reliable than it should be be-
cause of political or financial issues. Sometimes, one company will deny an upgrade to
another company because of the lack of balanced traffic on the links. Many peering agree-
ments require “roughly equal” bandwidth on both the transmit side and the receive side
of the link. This forces companies that, in general, only transmit or receive traffic to or
from another network to pay for additional bandwidth, in effect, creating a more cus-
tomer-oriented relationship, instead of having a relationship of peers. This has been of
particular significance with the rise of companies that specialize in running data centers
such as Exodus and AboveNet because, in general, these companies generate traffic as
opposed to passing it. Many of the traditional backbone providers believe these compa-
nies are going after the revenue generators (the content providers) and are leaving the
costly job of providing the distribution network for users to them.

One last significant, but underappreciated, factor that plays a role in performance is
the consistency of the bandwidth as measured by standard deviation of the RTT or other,
similar, metrics. Standard deviation measures the variability of a set of data, in our case, the
RTT. A standard deviation of zero means the connection between the client and the server is
completely consistent and, in general, represents a lightly loaded set of connections be-
tween the two endpoints. The higher the standard deviation, the more traffic and, for the
most part, the more bottlenecks are occurring on the same paths between the two.

To imagine how this works, consider a trip on a major freeway. If little traffic were on
the road (say, at night), then the amount of time it would take between point A and point
B would tend to be constant and based on the distance between point A and B, as well as
the relevant speed limits. When more traffic is on the freeway, the chances of encounter-
ing a bottleneck and having congestion occur becomes higher, and results in more vari-
ability in the time between point A and B. Once a certain amount of traffic is reached, the
variability starts to skyrocket, which if measured at different times would result in a
rather high standard deviation. On the Internet, similar mechanisms of queuing exist: if
too much traffic is seeking to go through a particular pipe, the most recently received
packets would be queued while other packets are transmitted. The greater the traffic, the
more likely any given packet will need to be queued, thereby increasing the variance in
RTT calculations.

Irregular latency between two connected systems tends to reflect some intermediate
condition that can also result in packet loss and, in many cases, in certain types of data
flows becoming unstable, such as streaming media. For streaming media software to
properly estimate the amount of data needed before starting the playback of a particular
piece of content, the software must be able to estimate how fast the connection is and use
that information to determine how much of the clip to buffer before starting to play it. If
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this estimation is off because of fluctuations on the network, the result is the conclusion of
the buffered content being played to the user before the next piece of content is available
for playback. This is seen as a pause in the playback and, when it occurs frequently, re-
sults in erratic and unviewable content. Consistency at its most basic level can be mea-
sured by determining the standard deviation of the RTTs between a client and server. In
terms of a network, if the standard deviation of the RTTs is higher than half the average
RTT, the connection can be considered to be irregular; on the other hand, if it’s less than
1/10 of the average, then the link is considered extremely consistent.

CAVEATS
Before any administrator begins the selection process of how GSLB should be done and
with what products, many issues must be analyzed to ensure no problems occur in the
process. The first and most important issue to contend with is the issue of data replication.
In nearly every web site, some content is updated on a regular basis, be it inventory in the
case of e-commerce, or news and stock quotes for a news site. Failure to keep all the sites
current can result in the sale of an item that has already been sold to someone else from
another data center, misquoting of stock quotes, or other issues. As such, a detailed plan
must ensure the data used for operations at one site is available at another, and problem
resolution is handled in a clear and distinct manner. While the actual database synchroni-
zation issue is beyond the scope of this chapter, this issue is one that should be addressed
with the database vendor or developers to ensure a solution is either in the works or in
place. Otherwise, most globalization attempts are doomed to failure.

Another question that needs to be addressed is how to deploy content. We’ve already
discussed the role of backup/failover GSLB, but in an Active-Active scenario, more than
one site is handling the load and the sites are acting as relative peers. Normal requests
and site demand are handled by the GSLB metrics. With an Active-Active solution, syn-
chronization becomes something of a problem because transactions are occurring at both
sites in real time.

The alternative, and one that helps with the synchronization issue, is to work off an
Active-Standby model. In the Active-Standby model, only one location delivers the con-
tent to users, but another site is ready to assume the traffic load at any time, à la the
backup model previously described. In general, this type of solution is easier to imple-
ment on a back-end basis, and if used correctly, it can be a successful staging area for new
hardware, software, and services. When new stuff is being rolled out, the primary site is
cut over to the backup and, if a failure occurs, the old primary can be used as a fallback.
Cutovers of this sort can be rolled out via DNS and use zone propagation as the mecha-
nism for gracefully cutting over.

Of course, if DNS is being used as the cutover mechanism, then the problem of caches
and change propagation needs to be addressed. If the primary site fails after the address
record is cached, additional clients might end up being sent to the failed primary site any-
way. As such, a means of tunneling requests from the primary to the secondary site
should be put into place. With HTTP, this can be as simple as an HTTP redirect, although
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other protocols such as HTTPS, FTP, and POP3 aren’t handled so easily. Many times,
these protocols should be handled via some sort of Internet Protocol (IP) tunnel, such as
with Generic Routing Encapsulation (GRE)—see RFC 2784—to make the remote site ap-
pear as a local entity for backup purposes. Another solution is to change the source IP ad-
dress of packets destined for a failed server farm to a local IP, and then transmit them to
the remote site. When packets are returned to the failed site, the reverse process is done,
allowing the failure to appear seamless to clients—if the primary site has the capability to
do this. If a complete failure of the primary site occurs, in general, nothing can be done to
resolve this issue.

An alternate way to handle an Active-Standby setup is to make use of BGP peering.
While a bit more complex to implement, the advantage of BGP is it can avoid DNS prob-
lems entirely and allows routing to take care of the issue. This assumes both sites are set
up with ISPs that accept and will handle the BGP peering properly and equally, or that
both sites are connected to the same ISP, but at different locations. The disadvantage to
using BGP peering is it’s an all-or-nothing game: when you turn it on, all the traffic—even
from preexisting connections—is directed to the new sites, which could result in a period
of inaccessibility for those already using a site. While this is acceptable during a complete
or near-complete failure at one location, it isn’t acceptable if the failover was intended to
be graceful for maintenance purposes.

The third issue with an Active-Standby configuration is how to activate the switchover.
The issue, called the split-brain problem, is this: many failures that could possibly activate a
switch are only partial failures, in that each site can’t see the other, but half the Internet can
access one site, while the other half can see and access the other. If automated tools are set up
at the backup site that monitors the primary site and implements the failover via DNS or
BGP, unintended effects might occur. Both sites might now have active databases and active
e-commerce activities going on, resulting in an inconsistent and potentially fatal data corrup-
tion. This situation either needs to be addressed or a nonautomatic means of triggering the
failover should be used. Because of this issue and others surrounding Active-Standby solu-
tions, the recommendation is that Active-Active plans be implemented. Active-Active solu-
tions tend to scale better and the planning necessary for such an installation tends to help
ensure complete availability at all times.

GLOBALIZATION TECHNIQUES
Particular implementations of GSLB are many, varied, and probably proprietary. As
mentioned, the state of the art is a moving, evolving target. Discussions as to specifics are,
therefore, likely to be outdated quickly, but generalities are always useful. Several ap-
proaches are currently in use for implementing GSLB. The technology approaches dis-
cussed in the following involve three primary methods: passive, Footraces, and active
probing. Each is discussed in turn.

Worth noting is that any solution will probably combine the best of all these techno-
logical approaches. A blend of passive and active strategies, perhaps involving Footraces
of some sort, will generate the most flexible and interesting solutions.
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Passive Techniques
Passive globalization techniques rely on the fundamental nature of how the Internet
works to allow distribution of content to occur. Within this category are two commonly
used methods: the Berkeley Internet Name Domain (BIND) DNS RTT measurement and
BGP routing. Both these protocols are designed to help the Internet operate and, at a fun-
damental level, allow one computer to find and communicate with another. DNS oper-
ates at a textual name level to find an IP address, and BGP performs much the same task,
but at the IP level instead. Some techniques make use of both in combination, to allow for
the most flexible solution.

BIND DNS RTT
The simplest method to globalize content is to make use of BIND’s built-in RTT measure-
ment facility when using multiple NS records. As described in Chapter 6, BIND records
the RTT of a response for a given nameserver and uses this information in determining
where to send DNS queries in the future. This can be used to help optimize content distri-
bution better than pure DNS round-robin load balancing would allow and to help over-
come offline sites.

To use this feature, DNS servers need to be placed at each location serving content,
and the configuration of each DNS must return the addresses that exist within that local
site only. As an example, consider the domain domain.com, which has two sites: one in
Virginia and one in California. The following records could be the records in the TLD
name servers.

Domain.com NS 192.168.0.10 ;VA name server

NS 192.168.1.10 ;CA name server

Within the VA name server, the following records could exist:

www A 192.168.0.11

and in the CA name server:

www A 192.168.1.11

The net result of this configuration is this: if the VA name server is queried (which will
be the tendency for clients closer to that site), it will return the A-record for that content
server. If the CA name server is queried, it will return its A-record. This isn’t the same as
using both A-records for DNS round robin; when configured that way, the tendency is to
use either A-record indiscriminately.
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BGP VBI for DNS
Along the lines of the simple DNS RTT trick, a shared BGP space can be used to similar ef-
fect, although taking advantage of a different aspect of how the Internet works. With
BGP, you can inject a virtual network block (VBIVirtual Block Injection), say, a /24, from
several locations, and then advertise a DNS server within that shared IP block. From the
perspective of the Internet, several paths would appear to exist to the same DNS server.
Note, BGP enables you to source a route from only a single AS, so that places constraints
on how this will work. In Figure 11-1, you can see the solution uses a pair of ISPs, one for

Figure 11-1. Two sites, using VBI and BGP
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each region. Each ISP has its own unique AS number, and the content provider, in turn,
has one. The two sites are connected by a dedicated link, at the very least for synchroniza-
tion reasons.

BGP peers downstream from the DNS servers will see, and maintain, multiple paths
to the destination AS, which appears to be hosting a single DNS server: one route via AS
#1 and another via AS #2. As traffic traverses the Internet toward the sourcing AS, the
routing protocol will send traffic along the shortest path to the AS.

In point of fact, more than one DNS server will deliver information, information that
will be different depending on which path was chosen. To illustrate how this would
work, again refer to Figure 11-1. Both DNS servers would appear to have the same IP ad-
dress (standard VIP stuff here), so you would only have one IP address advertised at the
TLD server (or two IP addresses if you had two servers at each location). As an example,
you would have

Domain.com NS 192.168.0.10 ; DNS server #1

The trick is what the A-records within each DNS server say. For example, within the
California server, there could be the following:

www A 10.0.0.10

while in the Virginia server, there would be the following:

www A 10.0.1.10

Two distinct addresses! Each entry would refer to a local VIP. This would give the ap-
propriate VIP to the client, depending on what path that client took to get to the DNS
server. This is a bit crude, of course, and it relies on the fact (hope) that the client is located
proximally to its local DNS.

While this shared IP approach works with DNS, it isn’t necessarily recommended that
any TCP-based services (such as HTTP) use a shared IP block in this same way. The prob-
lems with this approach are twofold. First, BGP allows for equal-cost multipath routing.
What this means is any given router could have two or more equally good routes to a single
destination. The problem is, in this case, BGP could load balance across them. This could re-
sult in, for example, SYN packets going to one site, while ACK packets go to another site
entirely! Second, route fluctuations will occur over time, which could well disrupt and
change the path on the fly that a particular packet takes, especially at points with equal
chances to go in either direction. As a result, TCP connections could become scrambled, as
sequence numbers are all jumbled, and might be delivered to the wrong sites. Persistence,
sometimes useful to content providers, might be lost entirely (see Chapter 9 for a discus-
sion). By contrast, the single UDP packet that makes up DNS queries would either go one
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way or another in these border cases and, as a result, would simply pick one site or the
other, more like a random coin toss. In the cases where a favored path exists, in general, that
path would pick a better site, resulting in better performance overall.

Hybrid DNS/Routing System
Each of the two solutions so far has its limitations. Relying on DNS-based GSLB solutions
is fine, but works only insofar as DNS itself works. Solving problems inherent with DNS
is tricky, but using routing protocols to do so isn’t going to be fail-safe either. Routing cli-
ent requests to content servers still remains a problem.

It seems the appropriate solutions must include a two-tiered approach. The first tier
implements some DNS-based solution. The BGP VBI approach, just outlined, is viable if
complex. However the DNS is handled, the next tier will have the goal of handling the ac-
tual client requests. With a multitiered solution, addressing some of the issues raised in
the last section might be possible, with the unsuitability of BGP VBI for TCP-based ser-
vices like HTTP.

As mentioned previously, one of the problems with simply using DNS to select a site
is this: once the site is selected, no way exists to flush the caches located on the DNS server
and the client itself to force them to a new site on failure. The solution would then be one
to eliminate the need to do so.

One complex way to get around this is to share not only the virtual IP block the DNS
servers reside in, but also the IP blocks the HTTP servers reside in, but with different met-
rics to ensure that one site is primary for each shared virtual IP block. Configured correctly,
client requests could continue to be sent to out-of-date IP addresses and still get service.

The final element required would be some sort of mechanism that allows the sites to
sort out which connections belong to which site. The way this is usually done is with TCP
sequence numbers. If, during a given session, part of a session is mistakenly routed to the
wrong site, the TCP sequence numbers won’t match any given current sessions, so a
TCP-reset will most likely be sent to the client at this point, resulting in a failed session.
The solution would be to implement a method of handling the sequence numbers in such
a way that either site could readily identify which site ought to handle the traffic. Two dif-
ferent sets of sequence numbers, separated and reserved, could be implemented this
way. Couple this with a mechanism for redirecting these errant packets back to the ap-
propriate site, and you’re off to the races.

In Figure 11-2, you inject multiple virtual IP blocks: one for the DNS server segment (with
equal cost out of both sites) and one for each of the two server segments. The DNS servers at
each site are handing out VIP addresses of the server segments that are local, as in the last sec-
tion. This is fine, but now failover becomes a problem, again, as outlined in the last section. If
both sites are configured to respond to both VIPs, however, which site gets the requests no
longer matters—all the real servers are serving identical content. You can get this to work by
making the VIP blocks shared across both sites. Ideally, you’d still like to prefer the more lo-
cal site to the remote, so biasing one site over the other might be a good idea.



To make this work, each site advertises its own virtual IP block for its server segment.
In addition, each advertises the virtual IP block for the opposing server segment, but at a
dramatically reduced preference. On the load balancer, each of the local server groups is
configured with the same two VIPs in the range of the virtual IP blocks being advertised
by BGP.

In CA, inject the DNS block, the local server block, and the opposing server block with
heavy AS prepending, to significantly decrease the preference of that route. In VA, do the
same, but make sure you reverse the preferences. Depending on the arrangements with the
peering ASes, you could use MED instead of, or in conjunction with, massive prepending.

If the VA site falls off the map, the new traffic will be routed to CA dynamically via
BGP. Existing connections to the VA site will be lost regardless, unique TCP sequence
numbers notwithstanding. New connections would be then routed to the remaining site.
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Figure 11-2. BGP VBI GSLB
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This eliminates the problems with bad DNS caches, but requires three separate, pub-
licly routable IP blocks, and an inordinate amount of BGP expertise. This is a fairly expen-
sive solution, but the current state of the art.

Footrace Techniques
A Footrace, as the name implies, is a general technique where several packets race each
other to see who gets to the client first. More specifically, a Footrace can be performed any
time a client requests a piece of content that can be modified on transmission to deliver
several answers: the first answer that reaches the client is the one used, and the losers are
discarded as duplicates. A Footrace tends to add additional latency because all the sites
need to coordinate their information with the other sites and transmit their answers at
about the same time. In addition, most Footrace techniques require the spoofing of IP ad-
dresses at various sites to mimic the data being transmitted by other sites. While different
configurations might keep this from being a problem, most ISPs are now introducing fil-
ters into their networks to prevent spoofing. As a result, these techniques might not work
with particular ISPs.

DNS Footraces
One technique used is a DNS Footrace. This involves the following process: a client’s
DNS server requests an A-record for a particular resource, say, www.domain.com. The
authoritative nameserver for domain.com transmits this fact to other servers at each loca-
tion and, through constantly measured built-in delays, all the sites’ servers respond with
different information at the same time. One of the packets will be received by the client’s
DNS server first and will contain an A-record for the resource, as it exists at the site of the
“best performing” DNS server.

This technique is functionally measuring only the performance of the site to the cli-
ent’s DNS server, not the overall performance between the site and client, which is the
first weakness. The second weakness is that the client’s DNS server can be in a remote lo-
cation from the user itself, so the time needed to synchronize the site’s DNS servers to
provide a response is adding latency to a statistically marginal benefit. As such, the bene-
fit to the average user is even less, although in conditions where one site is having prob-
lems (such as during an ongoing DOS attack), the benefit can be immensely valuable.

HTTP-redirect Footraces
HTTP-redirect Footraces are another, although less-used, technique that’s similar to DNS
Footraces. In an HTTP- redirect Footrace, a single site receives an HTTP request. Instead of
responding directly, the site that received the request sends coordination messages to all
the other sites and waits based on the known delay it takes to transmit this message to the
remote sites. After the required delay, all the sites would then, in unison, send a data packet
for the HTTP response that includes an HTTP-redirect to a distinct address that resides at
each site, which then becomes the URL from which the subsequent content is retrieved.
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As an example of how this works, consider our sites in California and Virginia. A client
requests http://www.domain.com, and the request is sent to California. After the initial
TCP handshake, the GET request is sent to California. At the California site, a device that
monitors the Virginia site knows it takes about 30 ms for the request to be forwarded to Vir-
ginia, so it sends a copy of the request to Virginia and waits 30 ms. In Virginia, the request is
received and a response is sent to the client, containing a redirect to http://www-va.do-
main.com and, in California, at the same time, a response is sent that contains a redirect to
http://www-ca.domain.com. The user will be directed to one or the other site, depending
on which of the packets is received by the user first. The second packet—because it contains
the same sequence number and length—is considered a duplicate by the TCP stack on the
client and is discarded.

The benefits of this approach over DNS footraces are twofold. First, because the client is
directly interacting with the sites, this allows the client’s location to be accurately used for site
selection. Second, information such as can be contained in cookies can, in theory, be used to
direct users to specific sites. For example, the presence of a cookie specifies that the user
should be directed to one site or another because of prior shopping cart data, and so forth.

Four drawbacks still exist to this approach, though. First, if the redirect is done by
name instead of by IP, this will force another DNS lookup to be performed by the client,
increasing its latency over a simple request. Second, the drawback of having to synchro-
nize the responses is the same as with footraces in general. Third, the URL displayed in
the browser window will be different depending on the name, which can cause issues
with some clients. Fourth, the method is dependent strictly on HTTP and doesn’t support
other common protocols, such as HTTPS, FTP, and SMTP.

TCP Handshake Footraces
The final currently common mechanism for Footraces is to perform one at the TCP hand-
shake level. In the TCP handshake Footrace system, each site would have a range of TCP se-
quence numbers they’re allowed to use when establishing TCP connections with a client.
A client will transmit a SYN packet to a particular site, which will then coordinate with
the rest of the sites, much like the previous example. In this method, though, each site will
send back a SYN-ACK with a different sequence number set. The client will acknowledge
the SYN from the server site, and whichever ACK is received by the first site tells that site
who won the Footrace. At this point, one of two things could occur. One, either the con-
nection could operate in a tunnel mode, where the first site that received the SYN would
forward any packets to the proper site, and data is generated and transmitted from that
site. Two, this initial site can make use of protocol-supported redirection (in the case of
HTTP) to pin down the client to the proper site.

One final advantage of this approach needs to be explored, though. This method can
be used in conjunction with DNS footraces and/or BIND’s DNS RTT measurement and,
in conditions where the local site is the best site at the initial onset, no tunneling needs to
be done. This helps to prevent the additional overhead of tunneling many connections to
another site, yet allows tunneling to be done when this is logically the best solution.
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Again, though, drawbacks exist to this approach. First, in tunnel mode, two sites, in-
stead of one, are now involved in the transmission of traffic. This increases the chance of
problems occurring that can slow a client or cause errors. Second, if HTTP redirects are
used, the DNS lookup time and changed URL issues are the same as with HTTP
Footraces. Third, in tunnel mode, more latency is added when data is received from the
user over more direct methods, as well as increased traffic, which potentially adds addi-
tional cost to bandwidth.

Active Techniques
Probing is the process where each site determines how far away a particular address or
subnet is by some metric, and all the sites make use of that information to direct clients to
different sites. Active Probing can take the form of explicit probes directly against a client as
the client attempts to access the content, or it can be a mechanism that maps the Internet
constantly and uses whatever information is available at any given time to direct users to a
particular site. The goal is to elicit a response of some kind from the client, for example, an
RST, so data can be collected and an appropriate site selection calculated. Being able to cal-
culate RTTs would be most useful in this regard. Some specific probe methods that have
been used before include opening TCP port 53 against querying nameservers, sending a
TCP packet originating from port 80 (or other ports as desired) to the client’s IP and a ran-
dom high-order TCP port (resulting in an RST packet), and direct ICMP echo requests.

Many active probes are blocked by firewalls and can often irritate firewall adminis-
trators if the unexpected and unexplained packets keep bouncing off their firewall. While
not all firewalls are configured by default to simply discard these packets, as they’re dis-
guised as parts of legitimate sessions, most stateful firewalls might still eliminate them
and can certainly be configured to do so. The firewall itself might issue an RST packet,
however, and that would do fine for calculating an RTT. If the firewall does block the
packet, and then discards it and fails to send any notice back to the probing device, a
traceroute back to the client can be initiated, and the last responding hop could be used
on which to base site selection.

Note, probing and Footraces are rather similar in operation. The primary difference
between them is when they’re performed. Footraces are initiated on a client query and in-
troduce a lag into the initial service offering. Probing can be initiated as a Footrace, and
then continue in a periodic fashion for some interval of time. Dynamic tables can be built
and updated by the probing device, to be used as necessary and appropriate. The obvious
benefit of continuous polling is information can be disseminated immediately, and
changes can be detected and acted on quickly, instead of having to run a Footrace for each
client request. Probing can help determine the stability of a particular path, allowing con-
sistency to be measured, specifically by looking at statistical data on RTT and packet loss
information as well as standard deviation of the RTT.
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DNS Probes Measurement
DNS probes work by configuring the device performing the GSLB to answer DNS queries
for the web site. When a query arrives, the GSLB device solicits all the sites to send a DNS
query back to the originating DNS server. In this way, the closest site can be determined
based on the latency of the response, that is, whichever response was received first.

Probing will continue at configurable intervals for some configurable period of time, so
subsequent requests from that DNS server will be met with the most optimal information.

Tracking this information might seem unwieldy at first because potentially thou-
sands upon thousands of DNS servers are installed on the Internet. Keeping tabs on every
single one seems unnecessary, cumbersome, and resource prohibitive. Statistically, this
isn’t the case. True, thousands of DNS servers exist but, statistically averaging recursive
DNS lookups over time, it becomes readily apparent that certain DNS servers will re-
quest information much more frequently. Tracking those more thoroughly makes sense
and will decrease the number of DNS servers that must be tracked at least by an order of
magnitude. Most likely, DNS servers will be those serving large client bases, such as
AOL, MSN, Earthlink, and other large-scale ISPs. The odd corporate DNS server that ac-
cesses the GSLB site for authoritative information will also be tracked, of course, but the
bulk of Internet traffic doesn’t originate from these sites.

HTTP Probes
HTTP probes work in a manner similar to the DNS probes just outlined. When making
the GSLB decision for a particular client, the GSLB device will initiate a Footrace by for-
warding the HTTP GET messages to each of the sites in the GSLB site table. The requests
are then processed by the individual sites, and then returned to the original sender. The
first response reaching the client is the one that’s accepted, and then used throughout the
duration of the session. All late arriving responses are discarded as duplicated packets.

At this point, site selection is complete and active probing can begin. The individual
sites in the GSLB table will attempt to elicit a response from the client and use this infor-
mation to maintain a site preference table for that client. By itself, this isn’t all that useful;
the sheer number of potential clients far outstrips the number of potential DNS servers by
several orders of magnitude. By extrapolating from a single client, however, the GSLB de-
vice can start populating the site preference table based on the network mask to which the
client might belong.

This information is completely unknowable to the GSLB device, of course, but guess-
timates will serve just as well. The goal is to assign sites based on network address, the as-
sumption being that, at some point, it’s reasonable to assume clients coming in from the
same network will be somewhat proximal to each other.

One way this could work might be as follows: the first client arriving might have a
network mask assigned to it, starting at, say, a /8 CIDR block. The next client that re-
quests resources will either fit into that block or not and, if so, would get the same site se-
lection without having to run a Footrace, which results in a faster response for that client.
Now, a /8 isn’t even a remotely accurate mask but, at this point, that isn’t relevant.
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Probing works on statistical averages over time, and its results are applied to groups,
whereas Footraces are individual efforts.

The second client that hits from that network block will be assigned its own probe,
and another Footrace could be run so more accurate measurements are taken. If the same
site selection results are obtained, the two clients can be analyzed to see if a /16 netmask
would, perhaps, better fit them. If so, all subsequent clients would receive the same site
selection they did. If not, then the GSLB device can sort them into two different blocks, as-
signing them the same sites or not, as dictated by the GSLB site selection metrics. The
more users that come in from a particular network, the finer grained the probes can be
made, say, down to a /20 or /24. The broader the netmask is, the larger the groupings of
potential clients will be, generating fewer entries in the table. On the other hand, the
broader the netmask, the more likely it will be that the network subdivisions won’t all be
proximal. A /20 is about as large a mask as would be desired and will probably be about
as large a network as can be expected in a single geographic area. CIDR blocks this large
are usually cut up into smaller parts and used throughout an enterprise, where some ad-
dresses are for the local offices, others for the remotes, and still others are for the WAN
links between them. The larger the block, the more likely are remote offices and the more
likely that “remote” will mean “overseas.” Smaller blocks are more likely to be grouped
together, but this means more networks exist to probe and track, which might require sig-
nificantly more resources on the part of the tracking device.

The extreme end of this will be the mega-POP ISPs, such as AOL, MSN, Yahoo! and
others, which hide large sections of their user base behind proxies. A /24 would normally
be expected to cover only 200 or so clients, but with proxy-based ISPs, these 200 or so prox-
ies could hide millions of users, spread out worldwide. This is fine because the way the
proxies work is as a two-way funnel—all user traffic flows into and out of these proxies,
and the proxies serve specific geographic areas. Hence, all that’s needed is to map site selec-
tion to the proxy! Proxies should be relatively easy to spot in the site selection tables be-
cause the amount of content requests coming from them will be statistically anomalous.

HTTP Redirection
HTTP redirection begins with a simpler method of DNS-based load balancing. In the first
step, the server load balancer is configured to answer DNS queries for the web site. All
the sites are configured to answer such requests.

During its normal operation, each web site sends information according to a variety
of metrics, which allows every site to know how busy the other sites are. When a DNS
query is received, the client is given the IP address of the site with the least load, regard-
less of geographic locality. While this might seem simplistic, the method works well
enough for most people and is often the easiest deploy, especially compared to the com-
plexity involved with Footraces.

This isn’t to say this method can’t, shouldn’t, and isn’t coupled with Footrace tech-
niques to create more complex and flexible approaches. It’s simply that the primary im-
plementation has more to do with load than with proximity.
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Where HTTP redirection becomes useful is with DNS-based GSLB decisions. Remem-
ber, the problem with these methods is that DNS responses tend to get cached. As dis-
cussed earlier, this was at least 30 minutes with Internet Explorer and up to 24 hours if
using a Microsoft DNS server. During the period when the client is still making HTTP re-
quests, but isn’t making DNS requests, it’s reasonable to expect a specific site could be-
come overloaded. This is where HTTP redirection comes into play: the busy site can turn
users away from it and toward another less-loaded site by sending it an HTTP-redirect
response to any given query. Thus, web sites can continue offering load balanced sites
without needing to wait for the client to make another DNS query.

CASE STUDIES
In the following section, we try to bring it all together and discuss the technologies in spe-
cific contexts. The examples are all fictional, but should give you a flavor of how they
might be implemented.

Directory Services for J. Magellan and Sons
J. Magellan is one of the last great privately owned financial investment companies. With
over 100 branch offices across 48 continental U.S. states processing over $100 trillion dol-
lars in transactions in the last calendar year, J. Magellan is poised to go public in the next
nine months. To show serious value-add to its clientele and to Wall Street, the company
has decided to centralize its corporate resources and enable next generation technology
to do so.

GSLB has been selected as a technology to globalize these corporate resources. Imple-
mentation will be staged, with the proof-of-concept being an initial rollout of the service for
an LDAP-based phone and user directory for use within the corporation. Successful imple-
mentation will lead to a rollout of other services within the same infrastructure designs.

Infrastructure and Goals
Los Angeles and New York City: GSLB services will be implemented in the data centers
in both LA and NYC. The goal is to provide proximity-based site selection and provide
HA for the three distributions centers. The solution proposed includes three GSLB-en-
abled load balancers, one per site. Each site will have the full complement of databases,
web servers, and application servers. A dedicated fractional T-3 is in place between NYC
and LA. Using bandwidth management techniques (see Chapter 14), 1 Mbps will be allo-
cated for the database software to synchronize content between the two sites.

Stage One
The first stage of the implementation is to ensure site redundancy. On the site in NYC,
the load balancers are configured with the local real server group for standard load bal-
ancing, at addresses 10.5.100.0/26, and have a VIP of 192.168.10.100. The subdomain
www.yournewscorp.com is registered in DNS, and the local GSLB device is registered
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as the authoritative nameserver for this domain, at 192.168.50.1. In LA, the local server
group is on 10.120.100.32/27 with the VIP set to 192.168.20.100. The GSLB device is reg-
istered as the DNS secondary to the www.yournewscorp.com domain, at 192.168.50.2.
(See Figure 11-3.)

To the NYC local server group, 192.168.20.100 will be added as a remote/backup
server. To the LA local server group, 192.168.10.100 will be added as a remote/backup
server. At this point, the first stage is almost complete. Testing will be scheduled to en-
sure that failover occurs, and NYC’s local server group will be taken offline to test
failover; the same should be done in LA.

Stage Two
The second stage will be to implement GSLB. A DNS Footrace will be implemented to en-
sure some measure of proximity to the most appropriate site. The GSLB devices at each
site are already configured to respond to DNS requests. Now, when responding, which-
ever receives the request will forward it to the other site and synchronize its responses so
both are sent to the requesting DNS at the same time.

While this isn’t perfect, the solution is simple, relatively easy to implement, and meets
the design objectives.
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Your News Corp.
Your News Corp. (YNC) is a media organization that makes use of the Web to distribute
world-class, front-line news reporting by ordinary people. It’s a 24/7 news site, compet-
ing directly with CNN, and the Web is its only distribution outlet. As a multimillion dol-
lar advertising revenue media engine, YNC is interested in ensuring that its distribution
channel remains hiccup-free.

Infrastructure and Goals
YNC has chosen to upgrade its current network services portfolio to include GSLB. Cur-
rently, its primary distribution site is in an Exodus colocation facility in New Jersey, just
across the river from Manhattan. YNC has secured rack space in an AboveNet facility in
San Jose, California, and a third in the InterNAP facility in Amsterdam. Colocation facili-
ties were chosen for the quality and number of immediate upstream peers; Exodus has
excellent NAP connections to the major backbone providers. Multiple providers were
chosen for reasons of redundancy. Dedicated T-1 connections were provisioned to each
of the three sites, using the NYC site as the hub site. These connections are implemented
for back-end data synchronization.

The content provided by YNC is of two flavors: a large amount of static text supple-
mented with Real Audio audio/video streams. The goal is to provide a high-end HA so-
lution as impervious as possible to the localized Internet failures and to provide as high a
quality of service as possible to clients, so all users are directed to the most local site
and/or to the site most able to handle their requests.

A routing protocol-based solution has been chosen for implementation. BGP VBI will
be used to provide both site selection via DNS and dynamic routing to the content server
farms. The GSLB device will provide additional error-correction services in the event of a
misroute. (See Figure 11-4.)

Stage One
Stage One of the implementation will be to configure SLB in each of the three locations.
Each local load balancer will have five VIPs (on five different networks) configured: one
unique nonshared VIP for GSLB-based failover purposes and another four shared VIPs for
advertisement via DNS. The backup VIP will be separate from the virtual IP blocks—not a
member of any of the virtual blocks—and will be specific to the site.

Local server groups will be located on the following IP networks: 10.1.100.0/24 for
NYC, 10.15.22.0/24 for San Jose, and 10.193.9.0/24 for Amsterdam. A /24 network was
chosen because of the minimum CIDR block the upstream providers were willing to re-
advertise. Each server group will be configured so its members include the local servers
and the backup VIPs of each of the remote server groups. A maxconns setting will be im-
plemented at each of the sites to handle flash traffic and load measuring protocols imple-
mented to track site readiness. Note, site selection will be done by routing protocol, but
failover will be guided by load/availability metrics.
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All three sites will be configured with BGP, advertising a single AS (65200) into all
three co-location providers, each with its own AS numbers.

The primary YNC DNS server, located in NYC, will be located at 10.1.100.254, with the
secondary DNS located in San Jose at 10.15.22.254. These DNS servers will be configured
with the new subdomain, www.yournewscorp.com, and the authoritative nameservers
will be the GSLB devices, hiding behind the single VIP 192.168.23.100, but located sepa-
rately in NYC, San Jose, and Amsterdam. Each GSLB device will respond to client requests
with the VIP from its preferred segment (refer to Stage Three for these).
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Stage Two
Stage Two will implement the BGP VBI for the shared GSLB DNS server segment. One of
the virtual IP blocks, 192.168.23.0, has been reserved for the virtual GSLB DNS servers.
All three sites will advertise this route via BGP, all with equal cost (that is, no AS
prepending).

Stage Three
Stage Three will implement the BGP VBI for the three server segments. NYC will adver-
tise 192.168.20.0/24 as its preferred VIP block, San Jose will advertise 192.168.21.0/24 as
its preferred block, and Amsterdam will advertise 192.168.22.0/24 as its preferred block.
Each site will advertise the other two blocks, but will prepend the AS number multiple
times to bias toward the routes to the local site. MED won’t be used, as all three co-loca-
tion vendors don’t support it and a standardized configuration is required for company
IT troubleshooting and support policies.

Stage Four
Last, but not least, errant packets must be dealt with in Stage Four. On each of the GSLB
devices, TCP sequence number ranges will be reserved, so each site can immediately rec-
ognize sessions belonging to remote sites. Packets received by the GSLB devices will be
scanned for these sequence numbers, and all errant packets will be forwarded via the pri-
vate links to the appropriate sites.

PRODUCTS
Many choices are available for GSLB solutions in the marketplace. The following is a brief
discussion of some of the major vendors and their solutions.

ClickArray Networks (http://www.clickarray.com) produces the Array 500 and Ar-
ray 1000. Both devices include features such as a firewall, reverse proxy caching, server
load balancing, content rewriting, and SSL acceleration, in addition to Global Server Load
Balancing. Their GSLB features tie into their clustering solution to provide both site-to-site
load balancing and site-to-cluster load balancing, where multiple clusters might exist
within a single site. Available port interfaces include two 10/100/1000 TX/SX Ethernet,
and the GSLB features include proximity and overflow capabilities.

Radware (http://www.radware.com) Web Server Director (WSD) offers layer 4–7
server load balancing and GSLB. Two offerings exist, only one of which (WSD-NP) offers
proximity-based GSLB. The WSD-NP-enabling, GSLB-based solutions include HTTP re-
direction, Radware’s proprietary Triangulation™ technology (a Footrace mechanism),
and DNS redirection, all of which can be used in combination. Available ports are eight
10/100 TX, and two 1000 SX Ethernet.
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Nortel Networks’ (http://www.alteonwebsystems.com) AceDirector and 180 Series of-
fer layer 4–7 server load balancing and GSLB. Unlike most others, the implementation is
ASIC-based, instead of software-based, resulting in significant performance gains. The
AceDirector’s GSLB feature uses an easy to configure DNS-based load balancing option to al-
low web sites to be selected based on their availability. The Alteon Content Director is a dedi-
cated GSLB platform, offering more sophisticated technologies, including site selection
based on client-to-server Footraces, RTT, path reliability/packet loss, and latency. Available
ports include nine 10/100 TX, dual-PHY 10/100 TX/1000 SX ports on the 180 series.

F5 Networks’ (http://www.f5.com) 3DNS is part of the F5 Networks family of load
balancers. The 3DNS is offered as a separate product or as an integrated feature on its
Big-IP server load balancer and includes a fully compliant BIND 8.x DNS server. The
3DNS uses either DNS or network proximity to make global server load balancing deci-
sions. Proximity technologies are derived from ARIN lookups against assigned IP ad-
dresses to determine the client country-of-origin and matched against a most-local server
configuration. 3DNS also supports site persistency and QoS metrics. Available ports in-
clude a single 10/100 TX Ethernet, with Gigabit Ethernet as an upgradeable option. (See
Figure 11-5.)

Foundry Networks’ (http://www.foundrynet.com) Server Iron product is a layer 4–7
load balancer with built-in GSLB functionality. The Server Iron can employ DNS-based
Footraces to determine site selection, in addition to monitoring RTT and load metrics. Man-
ual configuration of site preferences for known IP blocks is possible and, with site monitor-
ing, failover options are viable. Available ports on the Server Iron include between 8 and 24
ports of 10/100 TX or 1000 SX Ethernet. (See Figure 11-6.)
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Figure 11-5. F5: 3DNS Controller



SUMMARY
In this chapter, you learned about many of the technologies hidden under the umbrella of
GSLB. As you discovered, quite a range of technologies comprise GSLB, from simple site
redundancy to full geographic site preferences. The ways to implement these technolo-
gies range from extensions of SLB to capitalizing on the way BGP works.

Important to remember is who and what GSLB is for. Essentially, the goal is to provide
optimized HA solutions. “Optimized” so clients are getting to the most proximal distribu-
tion sites and/or sites that will respond best to the client requests. “HA” so if something
goes wrong, clients can still access content in a straightforward, transparent fashion.

The solutions available so far are all first-generation and, as such, have significant short-
comings. DNS-based solutions are problematical at best because of caching problems, and
Footraces aren’t necessarily effective if the Footrace isn’t back to the original client. Footraces
to every client aren’t necessarily an effective use of resources, either—probing is better in that
it aggregates requests into a statistically meaningful set, but probing may or may not be pos-
sible because of security concerns. Relying on routing protocols is a second-generation ap-
proach, but such techniques are incredibly complex and difficult to troubleshoot.

The old adage “something is better than nothing” isn’t always true. In most cases,
GSLB won’t be a cost-effective route. Solutions that provide next-generation-like results
might require the purchase of a dedicated GSLB platform, a cost that can be significant,
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and not dual-purposed. Further, unless the content requires a global reach, the perfor-
mance gains might only be minimal outside of normal Internet operating parameters
and, where the gains could be dramatic, performance on the Internet might well obscure
them entirely.

This isn’t to say GSLB isn’t ready for prime time. It is. It just isn’t for everybody. But, for
those clients that are heavily invested in online content distribution, GSLB might not be an
option—it might be a requirement. The seven-second rule still applies: a significant chance
exists that, given viable alternatives, a client won’t wait longer than seven seconds for ac-
cessing a given resource. In that type of competitive arena, any advantage, no matter how
slight, is going to mean dollars going to the bottom line—yours, or your competition’s.

REVIEW QUESTIONS
1. What are the three places packet loss can occur?

Packet loss can occur in the ISP (client side), the content provider network
(the server side), and peering connections (links between service providers).

2. Why are DNS Footraces a poor strategy to pick the site best suited for
serving content to a particular user request?

DNS Footraces are a poor strategy to pick the site best suited for serving
content to a particular user request because measuring the latency between
the web sites and the DNS server might be a poor representative of the actual
user’s experience. This is because the DNS server is likely to be on another
network and, thus, to have differing latencies. This is also because the DNS
server might be located far away from the user. Take, for example, the AOL
network: many of its services are housed in the state of Virginia, but its users
are spread all over the globe.

3. Why would a site send an HTTP redirect to a user after telling the user to
come there in the first place?

On high-traffic sites, the moment-to-moment traffic patterns can vary
considerably. Thus, a site could believe it’s the ideal location to send a client,
and then experience a burst of traffic. During that burst, the site might find it
prudent to redirect some of the users to another mirror site in a transparent
manner, so no user receives an error page.
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OBJECTIVES
� Describe the threat to content providers

� Define filtering and describe what filtering contributes to content security

� Define what a firewall is and what it contributes to content security

� Review some basic High-Availability solutions for content security

� Define and describe Firewall Load Balancing

More and more organizations are placing an ever-increasing amount of systems and re-
sources on the Internet. This simple fact has, of course, created the field of Content Net-
working! But availability, obviously, isn’t without risk. Without a means of protection
between the systems and the Internet, these resources are potentially vulnerable to mali-
cious attacks. These attacks can cripple a site, as is the case in a Denial of Service (DoS)
attack, change the content of a web site, or even gain access to the systems and their data.

SECURITY
There’s an old saw about security, told to me by a friend who spent a summer working for
a towing company: “If a good thief really wants it, it’s gone.” Of course, this was in the
context of car theft, but the spirit applies to all security domains. There is only so much
you can do and, no matter what you do, someone really clever (and with way too much
time on their hands) can and will find a way around it. Now, this isn’t meant to make you
feel warm and fuzzy—remember, most software security patches are issued as a result of
someone reporting a hole. That is, someone actually diddled around enough to exploit
someone, somewhere, and out of the goodness of their heart, bothered to tell the manu-
facturer (or told someone else, who then told the manufacturer) about it. To make matters
much, much worse, the extremely accomplished “data terrorists” never let their pet hacks
out, so what the manufacturers patch may well be a small subset of what is vulnerable.

Of course, this doesn’t mean your IT security officer will or should simply bury his
head in the sand and keep it there until his next job. The whole point of security is to seri-
ously discourage the attempt. “The Club” is a perfect example. The Club is a bar of metal
that “locks” a car’s steering wheel in place and, thus, deters theft. The Club is worthless.
To steal a car with The Club, you saw through the steering wheel, and The Club slips off.
The whole point is this takes effort. The thief who really wants a “Clubbed” car simply
takes it, Club or no. But the thief who isn’t so committed to your car may well look else-
where in search of easier prey. This is the heart of a successful security plan. Deterrence. I
mean, why make it easy? In fact, studies show that even minimal security deflects the
vast majority of external attacks. The reasoning goes: the more security, the fewer attacks,
simply because it simply isn’t worth the bother. Not that the would-be attacker can’t get
through, good security requires an investment of time and energy that only the most
perverse are willing to generate.
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Be aware also that most external hacks are pretty generic, and they’re generated by
someone “just testing” a freeware application they downloaded from the Internet. By the
time such applications become readily available, manufacturers have already imple-
mented their patches. The upshot of this is twofold. First, most hackers are at least several
steps out-of-date and, therefore, are mostly harmless. Second, if you don’t stay current on
your patches, you can safely upgrade the aforementioned class of hackers to potentially
lethal. Also, as for the class of hackers that’s already potentially lethal, regardless of the
negligence on the part of the maintainer of the system being exploited, very, very few ex-
ist. So many web sites are currently in place on the Internet that, statistically speaking,
these folks are most likely focusing on someone else, so why worry? Yeah, right.

NOTE: I keep drawing the distinction between external and an implied internal attack. As most read-
ers are aware, common wisdom has it that over 80 percent of successful damaging attacks originate
from within the network, the disgruntled (soon-to-be-former) employee being the prime candidate.

In addition to the disgruntled employee, Kevin Mitnik made social hacking well
known. Many studies have shown that social hacking is one of the easiest and more prac-
ticed ways to obtain information, enabling a would-be hacker to penetrate and possibly
cause damage to network resources.

But moving on, what’s with all the worry, anyway?

Mitigating Denial of Service
The primary threat to data center and web site security is DoS. A DoS attack is the preven-
tion of normal service and an attempt to disrupt Web operations by overwhelming or inter-
rupting servers. Such attacks have gained notoriety in recent months as visible Internet
sites have fallen victim. These attacks are launched by new, more sophisticated software
that can solicit the assistance of innocent third parties whose computers are infected.

DoS attacks can have a crippling effect on business. They prevent legitimate users from
accessing the site and can degrade site performance substantially. In today’s point-and-
click economy, this means potential customers could end up looking elsewhere. Detecting
and correcting these attacks is also costly, involving close interaction between service pro-
viders and IT personnel, and perhaps disrupting normal business activities within the
company. Bad press resulting from successful attacks can have a negative effect on capital
markets and vice versa: buy.com sustained attacks in its first day of trading as a public
company. Finally, these attacks can render servers temporarily unavailable, causing crashes
that might destroy data and require downtime for corrective action.

How Can We Be So Vulnerable?
Why are attacks so hard to resist? In the rapid innovation of the Internet, why haven’t wily
engineers devised protection from these assaults? The answer comes down to four key fac-
tors: software bugs, anonymity, necessary weaknesses, and the involvement of innocent
third parties.

������ �	� ����� ��������� ��� �� !��� 
	




Software Bugs Today’s operating systems are complex and broadly available, often with
millions of lines of code. As Microsoft has repeatedly proven, such complex systems cannot
be perfectly tested for every possible condition and still get to market in a timely fashion.
This means hackers can find boundary conditions—unlikely or unanticipated circumstances
in which an operating system stops working or grants a hacker access—and then apply
these hacks to public systems. While vendors are constantly issuing patches and fixes to
software, many organizations lack the knowledge or personnel to maintain the latest code
on all their systems.

Standardization At the root of many vulnerabilities is standardization. Hackers thrive in
highly standardized environments. On the Web, a few protocols link a few varieties of
operating systems running a few types of web server software. Back-end infrastructures,
such as databases and application servers, are undergoing a similar standardization.
What this means, of course, is once a weakness is discovered in a particular system, it can
be exploited across a wide range of targets.

Anonymity The Internet lets hackers cover their tracks. Often, attacks come from staging
areas—servers to which hackers have gained access—so when the machine performing
the attack is finally tracked down, the hacker is not only long gone, but was never admin-
istratively connected with the machine in the first place. The Internet’s protocols also let
attackers hide. Every packet of data sent across the network carries a source and a desti-
nation address that uniquely defines a sender and receiver. But certain attacks enable the
hacker simply to make up source addresses, a process known as spoofing, and render the
attack nearly untraceable.

Underlying Weaknesses This lack of traceability is a function of some necessary weak-
nesses in the underlying protocols of the Internet. The Internet is a connectionless me-
dium in which packets are sent back and forth across many paths. This is in sharp
contrast to a connection-oriented system, such as the telephone network, where a link is
established to send data.

Because the Internet is connectionless, certain protocols, such as TCP, need to simu-
late a reliable, point-to-point link across it. Setting up this link happens in several stages,
known as the TCP synchronization process, during which the sender and the receiver agree
to talk. This process is called three-ways handshaking.

Because the Internet is an unreliable, best-effort medium, delays can occur in syn-
chronization. The receiver responds to a synchronization request from a sender, and then
waits patiently for the receiver to acknowledge the response. During this time, the TCP
session is embryonic: it hasn’t yet been established, but the receiver is keeping track of it.

By default, servers track embryonic TCP sessions for several minutes. This enables
clients and servers to establish sessions despite long network delays, and is necessary for
a ubiquitous, global Internet. But the patience of the receiver can be exploited. The default
value for max timeout is four minutes for most TCP stacks.

Attacking a server by establishing many embryonic TCP sessions is one example of
taking advantage of a necessary weakness in networking protocols. Many others exist.
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Innocent Third Parties The final reason attacks are hard to defend against is they often in-
volve innocent third parties. Today’s leading sites have huge amounts of capacity at their
disposal. To hurt such sites, hackers need to enlist the help of other networks and devices.
Some attacks trick other devices into responding to what appears a legitimate request
from the victim, and these responses overwhelm the victim. Others infect systems with
Trojans, attacking software that can later be used to target a victim. With the broad de-
ployment of DSL and “always online” local loop connections from cable providers, hack-
ers have an even broader base of unwitting third parties to exploit.

Types of Attack
Three basic forms of attack can bring down a site.

Poison Attacks A poison attack sends toxic information to a target. This can take the form
of a malformed packet the receiver doesn’t understand or an oversized packet that ex-
ceeds the buffers of the target system. In some cases, a properly constructed poison
packet can include code the receiver inadvertently executes when buffers are exceeded.

State Resource Attacks A state attack consumes resources on a destination server by forc-
ing the server to expend much more effort than the receiver in processing and tracking
state information. The TCP SYN attack is the best example of such an attack, although
other attacks include flooding a server with SSL session requests that force it to perform
heavy cryptographic computation.

Capacity Resource Attacks Even if a site is relatively well defended against poison and
state attacks, attackers can still overwhelm bandwidth into the site. In recent Internet at-
tacks, even when the target sites were aware of the problem, it was way too late: upstream
providers’ peering points were already handling more capacity than most countries gen-
erate all year. A capacity attack simply uses up more capacity than the victim owns.

General Prevention
Preventing attacks requires work at both ends of the network. Internet service providers
(ISPs) and system administrators can take steps to ensure that the devices under their
control don’t participate in an attack. This begins with a good security policy, but can also
include steps to cripple would-be attacks from infected machines.

Preventing Zombification Machines can’t participate in an attack if they aren’t infected in
the first place. Good security practices and clean servers are an essential preventative mea-
sure but, in today’s complex server environments, malicious code can masquerade as legit-
imate software and hide unnoticed in myriad subdirectories. Scanning tools can detect and
remove some malicious code, but scanner vendors are in a constant race with hackers.

Blocking Marching Orders Even if a system is infected, it still needs to get instructions so it
knows which systems to attack. These “marching orders” are stealthy, often encoded in
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seemingly innocuous traffic, such as ICMP response messages. Some firewalls can block
a portion of this traffic, but attack systems are surprisingly robust and hard to detect.

Ingress Filters Many of the most dangerous attacks involve spoofing the true source ad-
dress of the attacker and replacing it with either random addresses (to hide identity) or
the address of the victim (to trick devices into responding to the victim instead of the
attacker.) By filtering downstream traffic, an ISP can prevent attacking machines from
masquerading as another system. With the advent of “zombie” attacks, however, spoof-
ing is less and less an issue. Furthermore, inspecting traffic is costly in terms of processing
and can discourage some service providers from implementing such mechanisms.

Zombie attacks might be stopped through infection prevention, ingress filtering, or
blocking the “attack” signals hackers send to infected systems.

Don’t Bring a Knife to a Gunfight These preventative measures are all wise, responsible
steps to take. But they rely on altruism and assume that systems administrators have the
time and knowledge to implement them. To make matters worse, several of them will
simply be bypassed in later revisions of hacker code, with morphing Trojans or new at-
tack messages, for example. In other words, we can’t rely on preventative measures to
solve the problem.

The rest of this chapter deals with two of the most common approaches to dealing
with DoS attacks: filtering and firewalling. The chapter rounds out with a discussion on
how to make these solutions robust, by means of High-availability solutions.

FILTERS AND FIREWALLS
In security, nothing beats a lock and key. This method is tried and true, unless, of course,
someone happens to have a key or, perhaps, a lock pick. A padlock effectively blocks the
unprepared but, overall, the security is only as good as that surrounding the keys. Even
worse, it doesn’t do anything to stop the thief from getting to the lock in the first place. In
network security, the parallel to this approach is the password. Despite its inherent limita-
tions, this is still the primary method of providing network security. And, like the padlock,
passwords do nothing to prevent someone from whacking away with a password cracker.

In physical security, installing card readers is probably a good next step. In network-
ing, I generally equate this back to setting Access Control Lists (ACLs) on strategically
placed network devices, such as a router or a switch. By preventing access to all but a se-
lect few, you at least can restrict who gets to bang away at the lock. Installing card readers
throughout a secured area might not be as effective a deterrent as a pair of aspiring WWF
wrestlers, but the intention is the same. I tend to think of a good firewall as something
akin to a door guard because, hopefully, it has somewhat more intelligence than a pad-
lock or card reader. Using both ACLs and firewalls is bound to be much better than a sim-
ple lock and, when combined with one, are quite effective at reducing and eliminating
most external threats.
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With DoS firmly in mind, lots of things can be implemented to deter all but the most
foolhardy. Ask your average network engineer what can be done to protect a network
from an external attack. The first thing they’re liable to mention is the implementation of
a good firewall. Going back to my analogy, this is a bit out of order, but what it tells you is
firewalls are extremely high profile and are widely considered as the minimum require-
ment for security. Essentially, a firewall is a network appliance (or PC with specialized
software) that sits on the data path, inspecting packets as they pass. The rules that fire-
walls use to pass (or deny) packets are generally called filters. Filters that are applied by
anything other than a firewall we’ll call ACLs, so I expect I’ll use the two terms loosely
and interchangeably.

The benefit of firewalls is they can massively restrict access, and then maintain logs of
what data is accessed when and by whom. For example, a firewall can be configured to
allow access only to or from certain IP addresses and for specific ports. Firewalls can also
be used to log where packets originate, if they were allowed to enter the network or if
they were denied. These logs can then be used to show what systems might have been
improperly accessed, as well as provide a basis for possible litigation.

Advanced firewalls are also used to maintain session state information. What this
means is advanced firewalls examine the traffic flow for all sessions between systems
(across the firewall). If a given packet matches the rules database in the firewall or is part
of an exiting already-authenticated session, they can be passed through. This is a nice
way of neutralizing certain types of IP address spoofing and inserting specialized packets
into an existing traffic stream.

Function
Firewalls and ACLs function in much the same way and, of the two, ACLs are usually ac-
knowledged as inferior to firewalls. Generally configured and installed on network de-
vices, such as a router or switch, ACLs don’t do much more than deny traffic based on
certain packet parameters—source and/or destination IP, source and/or destination
port, source and/or destination MAC address, and so forth. Basically, they’re restricted
to whatever is found in the header of a particular packet and also are restricted to making
decisions on a packet-by-packet basis. As mentioned, think of these as the simple
passcard readers installed at doorways into secured areas—not a whole lot of intelligence
and as long as your card is cleared, you’re good to go.

Firewalls, on the other hand, tend to be a bit smarter than that. Using state information,
firewalls can track the progress of an actual conversation between two end stations and
allow or deny that traffic based on parameters a bit beyond what the individual packet
header may or may not contain. For example, most filters can be configured to allow a
normally denied packet, as long as the ACK-bit is set in the header field, implying this
packet is a valid response to a request. However, IP addresses can be spoofed and header
attributes changed—what guarantee could a filter provide that the packet just passed
isn’t, in fact, such a one? With stateful inspection (a term coined by Checkpoint Software
Technologies), a firewall can maintain a record of the context of a particular session. In effect,
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the firewall keeps a record of who sent what requests and, within a timeout period, will
match up “returning” packets with this original request. If a match is found, all is well; if
not, the packet can be dropped. This is significantly stronger than simply allowing traffic
by a static set of rules, such as what is accomplished typically by filtering. Again, think of
a firewall as an actual guard, controlling access into or out of a network.

Performance
Guard or card reader, firewall or ACL? You should probably use both, on the “better safe
than sorry” principle. But where do you use them? ACLs can be placed nearly anywhere
a router or switch exists. Firewalls can be placed similarly, but generally aren’t for two
good reasons. First, firewalls are expensive. A good licensed firewall package and associ-
ated hardware can run into the tens of thousands of dollars. A filter, on the other hand,
goes on the device you’ve already bought and so adds nothing new in the way of ex-
pense. Second, firewalls are slow. Despite the plethora of marketing propaganda by
firewall vendors, firewalls aren’t faster than routers, and they’re nowhere near as fast as
switches. A good rule of thumb is hardware is faster than software. No matter how opti-
mized a device, a firewall is almost invariably a software package installed on a PC.
Checkpoint and the Cisco PIX are, perhaps, despite their labeling, devices of this sort.
Routers and switches are hardware, and are designed to do nothing but move packets
and, invariably, they’ll be faster at doing so than any PC. Exceptions to both examples ex-
ist, of course. NetScreen Technologies manufactures a lightning quick firewall—its trick
is in using ASICs instead of a centralized CPU for processing, in effect moving filtering
decisions to the port instead of the queuing up to the CPU. At press time, NetScreen fire-
walls are generally considered the fastest firewalls on the market. Similarly, Nortel Net-
works builds network hardware using an ASIC over the centralized CPU design favored
by Cisco Systems in its networking hardware. As a result, its gear tends to be significantly
more adept at moving packets. Something that should also be noted is this: no matter
how fast a firewall or network device, adding filters or rules to a firewall database can tre-
mendously impact performance and invariably does so in a negative fashion. The larger
the rule set, the more pronounced this effect would be.

Logging
Occasionally, having a record of what was done, by whom, when, and for how long
proves useful. Such occasions might be immediately after all the web servers spontane-
ously began to display banners that say, “Kilroy was here,” even though the site hosted
had nothing to do with WWII. Or, perhaps, your online banking clients are reporting that
their balances were unexpectedly zeroed out—all of them. Or, maybe during a scheduled
update, you realize the reason your web server is so slow is simply because it’s busy. Very
busy. Any of these things might give rise to the desire to have reasonably accurate infor-
mation on the activities in question. When did it start? How long has it been going on?
Who is responsible? What in heaven’s name is going on?
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Logging is a good way to sort out some of these issues. Most network devices, includ-
ing routers and firewalls, include some sort of logging mechanism. So, if you’ve config-
ured a log event to track the number of ICMP Echoes that hit your firewall, each PING
will generate its own log message, which will either show up on the console, as on a Cisco
router, or be written to disk, as with a Checkpoint firewall. Firewalls, being essentially
special-purpose PCs, tend to be much better suited to tracking events as they occur and
logging them against future need, especially as they have some sort of storage ready to
hand. Depending on the firewall, these logs can be incredibly detailed, and, if needed, can
be configured to track and log every single decision made by the firewall. Note, this is an
excellent way to drive performance solidly into the ground, but it can be done if needed.
Remember that any CPU time devoted to logging isn’t devoted to moving and analyzing
packets, and performance will suffer.

Routers and switches, being designed along lines different from PCs, generally don’t
have a hard drive to use for storing log messages. Hence, their memory buffers tend to be
rather limited, and they tend to get overwhelmed quickly, so an off-loading mechanism
would be a better solution. A syslog server to which the router or switch can forward
such messages, as they occur, would be ideal. The same caveat about system performance
applies here as well: the more you log, the less time you spend processing packets.

To log or not to log, is it even a question? The tradeoffs are generally worth it, so long
as you’re smart about what you log. Again, just don’t go nuts. Log what you need or what
you’re concerned about. If you set up rules on a firewall to discourage DoS attacks, then
logging occurrences of such events will probably be in your best interest. If you’re inter-
ested in getting an idea of the total traffic flowing into your data center, well, logging all
incoming traffic probably isn’t a bright idea. In this case, statistical summaries might be
more useful. Most devices will track statistics automatically and, depending on the so-
phistication of the device, these statistics could be broken down in any which way. Check
with the manufacturer for specifics.

Generally, a good idea is for the network administrator to spend some regularly
scheduled time reviewing the logs. Logs can get quite unwieldy in size if left unread too
long, and what’s the purpose of logging if no one ever reads the logs? Most logs will
wrap, in that, over time, the log will begin to overwrite itself, instead of simply filling the
disk partition and crashing the server. How long you keep a log, and how often you check
it, will be part of any company’s security policy.

Basic Network Design
The placement of security devices throughout the network is something of an art. The
goal is to place them strategically enough so no resource is left unprotected, but also to
place them in such a way that irrelevant traffic is unimpeded. The idea is to avoid choke
points wherever possible or to minimize any choke point that isn’t avoidable. Network
devices are bottlenecks, congestion areas, and aggregation points. At this point in the net-
work path, a packet is likely to experience a delay of some sort. Filtering and firewalling
make this worse, not better. Indiscriminately numerous filtering agents can easily exacer-
bate an already bad situation, and improperly restrictive rules can reduce the functionality
of a network below required levels.



The trick is to place the right security at the right location. What this translates to is a
fairly simple rule of thumb: place the most restrictive policies closest to the resource it
protects. Be thoughtful and choosy.

Figure 12-1 illustrates a simple network with a firewall and several routers. The trick
is to place and configure the firewall to protect the network as a whole, but to allow neces-
sary traffic to pass to the network behind it. The question to ask is “What needs to go
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Figure 12-1. Basic network with filters and firewalls



through?” for each of the devices being configured, be it firewall or ACL on a router or
switch. In most cases, erring on the side of caution is a better approach than a laissez-faire
approach—having to endure the bother of opening yet another port on the firewall (or
router) is better than cleaning up after realizing too late that a port should have been
closed in the first place.

Figure 12-1 shows several devices where security could be applied. First and fore-
most is a firewall that sits astride the data path out to the Internet. This firewall has three
interfaces: one each for the routers to which it’s directly connected and one for the web
farm. Rules on the firewall will not only restrict data flow into the corporate network to
traffic types relevant for business, but will deny anything except FTP and WWW traffic to
the web farm. The Local Area Router might have ACLs that prevent traffic from the re-
mote offices from traveling to the workgroup switch below it. The other routers could
have similar rules.

Filters and Filtering
A filter is a rule with two parts. First, there’s an identification criterion: when will this rule
apply and to whom? The identification criterion can be so general as to specify anyone at
all or so specific as to pick out only certain packets generated by a certain application on a
specific workstation. Identifying the traffic is only the first step, of course. Now, some-
thing needs to get done—what’s supposed to happen and how should the packet be
treated? The range of specific actions depend on the capabilities of the device itself.

Important to note is not all devices perform filtering actions in the same manner. Ad-
ministrators tasked with designing any filter set are urged to become familiar with all the
ins and outs of that particular product’s filtering engine before getting started. Poorly
planned filtering can cause serious disruptions in network service. The following is a list
of typical filtering actions:

� Allow An allow action tells the filter engine to allow the packet to pass
through the device on its way to a destination.

� Deny A deny action tells the filter engine to drop the packet, thus prohibiting
it from moving on to its final destination. A typical deny action sends no
notification back to the sender to indicate the packet has been dropped.

� Reject Similar to a deny action, a reject action causes a data packet to be
dropped. Where it differs from a deny action is that a reject action initiates a
notification to the source informing it the packet has been rejected.

� Redirect On some devices, filters can be used to redirect packet traffic from
its intended destination to some other device or group of devices. Redirection
filtering is covered in greater detail in the next chapter.

� Network Address Translation Some devices use filters to determine where to
perform network address translation (NAT). NAT is used to “hide” a set of private
network addresses behind a valid one. A company can use a large private network
from a reserved IP address range, such as 192.168.0.0, and do so free of cost. To
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communicate with the rest of the Internet, however, that network must be
translated into a valid range, usually of a much smaller size (and, hence, lower
cost). NAT filters are typically found on routers or firewalls, and are processor-
and memory-intensive.

� Other Depending on the manufacturer, filters can be used for identification,
rather than initiating some action. Quality of Service (QoS) filters are used to
queue certain traffic more expeditiously than others. Dial-on-demand routing
(DDR) filters are used to identify “interesting” traffic. Then, if the filter fires
because the router sees specified traffic, it can generate a dial-up connection
into another network and, thus, minimize expensive connect-time charges.
Route filtering can be done with ACLs as well, so certain routes can be removed
or altered (summarized) in a routing update going from one network to another.
Other applications depend on the vendor.

Filter Use
Filters can be applied in various ways, so the next step is to determine when you want the
switch to apply the filter. While many devices give the administrator the capability to
choose when inspection occurs, such as IOS-driven Cisco devices, some don’t. Typically,
packets are inspected on ingress, egress, or both.

� Ingress The filter engine inspects traffic as it enters some port on the
device. The appropriate action is immediately applied before any route/switch
decisions are made. By applying filters on ingress, packets the filter engine has
been configured to drop or reject don’t get processed by other functions of the
device. For example, a filter designed to deny all private IP traffic would drop
that traffic before any route/switch calculations were performed, saving time
and resources on the device.

� Egress The device’s filter inspection engine fires after route/switch actions are
determined, as the packet is about to exit some port on the device. Filtering actions
might be more desirable on egress for two reasons. First, the administrator might
have other rules or route/switch actions that must be performed before filter
engine inspection. And, second, this might only apply to a particular egress
port (among several). Note, however, that by not filtering on egress, the device
itself could be more susceptible to attack.

� Both The device’s filter engine fires as the packet enters the device, and
then reinspects packets on egress, applying additional actions as necessary.
Separating ingress from egress rules might be a bit tricky, but this is usually
accomplished by source address ranges. Many firewall applications provide
inspection on both ingress and egress for increased security. This option allows
any packets generated at the firewall device to be filtered and provides ingress
filtering for traffic originating outside the device. While this provides the
highest level of security, it does have a negative impact on traffic flow.
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Filter Numbering
Filter numbering and how a device treats the order in which the rules are applied dictates
the actual behavior experienced by a filtering device. By way of a pair of examples, filters
on an Alteon Web switch are single-action rules and have a numbering scheme that
ranges from 1 to 224. Low-number rules are processed and applied before high-number
rules, and many rules can be applied a single interface. Cisco Systems, on the other hand,
has a slightly different filter procedure. A single ACL configured for a Cisco IOS device
can have multiple actions, but each interface can only have a single ACL (per direction).
Each rule within an ACL is still processed in terms of order: highest in the list is processed
first. Cisco’s ACL numbering has nothing to do with precedence of processing but,
rather, dictates the settings and options available through the command line for that par-
ticular ACL. For example, an IPX access list would need a different set of options than an
IP access list and, therefore, would get a number out of a different range to indicate to the
IOS the specifics relevant to that type of ACL.

ACLs are processed from the top down. Processing continues on a packet-by-packet
basis until a match is found. In most cases, as soon as a filter match occurs, the relevant ac-
tion is performed and no further filter processing is done on that packet. This simple fact
requires caution in filter creation—general rules that come before specific rules are
applied first, and this might mean the specific rule won’t get applied at all.

The following are some good rules to remember when designing filters:

� When using multiple rules, always place the most specific rules first. Because
most devices apply only one filter per packet, be sure to order very specific
filters before you order filters that are more global in scope. For example, is a
very specific filter

Filter 10

Source 10.1.1.50

destination 10.10.10.50

sport any/dport 69/action allow

allowing a particular IP host to TFTP to a specific IP host? This would
obviously need to come before the next filter:

Filter 200

source any/destination 10.10.10.50

sport any/dport 69/action deny

� This one denies all TFTP traffic to the same IP host. If the order of the two rules
were reversed, no one, including host 10.1.1.50, could send TFTP traffic to the
10.10.10.50 server, even though the next line would permit it—the second line
would be irrelevant in this case because it would never fire.

� Process high hit rate filters as close to the top of the list as possible. Remember,
filtering slows down the operation of the filtering device. The more filters that
need to be processed, the slower the performance will be. Therefore, filters
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designed to catch the majority of packet traffic should be placed as high up on
the chain as possible. This ensures that the appropriate actions are performed
quickly, minimizing any potential delay.

Default Filters
Many devices that perform filtering have default or implicit rules applied and, on many de-
vices, this is implemented as something called the implicit deny all rule. This rule states that
all traffic, regardless of source or destination, should be dropped. This rule is designed as a
catchall and is included for security purposes. The argument for the inclusion of the rule is
that if a packet enters the device and the administrator of the device hasn’t specifically cre-
ated a filter to handle that packet, then that packet is undesirable and should be dropped.
This is something of a mixed blessing: for security purposes, this is great and fills in when
an administrator gets a bit lazy. This is also bad because it can cause serious network dis-
ruption if manually configured filters aren’t created to allow all types of desirable traffic to
pass unhindered through the device. Unfamiliarity with this rule often leads to several
trouble tickets, generated from users wondering why their applications no longer function.
As such, it’s critical for the administrator to be aware of all the various default filters that
exist on a filtering device. Typically, Cisco IOS implements a default deny all rule and ap-
pends this to the bottom of all ACLs. This requires that the ACL include specific lines for al-
lowable traffic. Ideally, this is something other than the rule to allow any. However, in the
case where general security isn’t an issue and the entire goal is to block a single address
range, or traffic type, with a small set of deny rules, including an allow any at the end of the
ACL then allows all other traffic to pass unmolested.

Filter Placement
Figure 12-2 shows the network down to the relevant interfaces on each of the networks.
The goal for successful filter placement is to identify locations where filters could be
placed to increase the security of the network.

Router A is the first line of defense for traffic ingressing from the Internet. Also, this is
the sole connection to the Internet, so any security you implement here should be mini-
mal. This router should be left to route. Even so, an antispoofing filter on S0 would be
simple to implement—all nonlocal traffic (inbound from the Internet) cannot have a local
source address. If it does, dump it. This prevents these spoofed packets from penetrating
the network at all. Outbound, S0 can have a filter blocking or summarizing routing
updates heading to the Internet.

Likewise, Firewall A is going to be minimally configured to keep it functioning at a
high level. A rule that specifies that only traffic on ports 80 and 443 should be allowed to
pass when sourced from the Internet and destined for the DMZ would do. Firewall B will
be more complex and needs to have rules allowing all update traffic from the corporate
networks into the DMZ, but blocking any other traffic destined for the corporate net-
works that originate in the DMZ or the Internet. Also, any disallowed traffic destined for
the Internet from the corporate network (that is, streaming media, online gaming, adult
web site URLs, or Internet file sharing programs) needs to be blocked here. These rules
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Figure 12-2. Filter placement in a basic network



will all be interpreted as they ingress the firewall, regardless of the interface. The rule it-
self will dictate how it should be interpreted.

Router B functions both as a default gateway to the local corporate network and an
aggregation point for the remote sites. Primary responsibilities at this junction will be
moving packets, but some security is also due. An inbound filter on E2 can prevent traffic
from traveling to the remote sites and another inbound on E0 can prevent traffic from
traveling from the remote sites to the corporate network or limit it to a specific set of ad-
dresses, say, the corporate servers. Router C is another aggregation point for both of the
remote sites and, as such, might be performing NAT on both S1 and S2. Routers D and E
will have antispoofing filters as well as filters on their E0 interfaces preventing traffic to
the opposing remote site.

In short, there’s a cost for implementing firewalls and ACLs that doesn’t involve
money: that cost is latency and performance. Again, vendors such as NetScreen thrive on
making this limitation as transparent as possible by relying more and more on hardware-
and not software-based solutions.

Firewalls and Fire Walling
We’ve already described a firewall as akin to using a guard in the lobby of a building.
Most Content Networking implementations include at least this level of security and do
so in place of, or in conjunction with, ACLs. By no means is a good firewall the entire
scope of good security, however. Strong password policies, virtual private networks
(VPN), intrusion detection systems (IDS), and an ever-vigilant network administrator ap-
plying all the latest security patches—these elements will probably also be included in
any high-profile network. Remember, the more traffic your site is expected to attract and
carry, the higher the risk posed—high profile = high risk. However, whatever security is
implemented, a good firewall will likely be the cornerstone of the security effort.

Many firewall vendors exist in the world. Checkpoint Software Technologies manu-
factures the, arguably, most popular firewall today. Cisco Systems’ PIX Firewall product
line can accommodate data pipelines into the gigabit range, and it also produces an
IOS-based firewall that works with the majority of its router hardware. NetScreen fire-
walls have fewer features, but are comparatively cheap and are implemented as an
ASIC-based solution, and, hence, are blisteringly fast. Checkpoint’s rules are all applied
on ingress (or all on egress, or all on both directions). Both NetScreen and Cisco allow for
the specification of the direction for each rule.

Overall, firewalls vary wildly in performance, features, support, and cost. Factors
that weigh in on any purchasing decision also vary, and seem to have more to do with
name recognition and brand loyalty than anything the vendors build into their gear. To
be honest, which firewall you choose to implement is less important than the decision to
implement one at all.

SYN-ing and SYN-ers
The SYN-Attack, or SYN-Flood, is probably the most difficult DoS attack to deflect. IDS,
such as RealSecure from Checkpoint or Net Ranger from Cisco Systems, can be used to
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see this one coming but, by then, it’s probably too late. Defenses against this attack are
best implemented on a firewall or on another network appliance that sits between the
servers and the outside world. Because the firewall is a network appliance that’s likely to
be installed anyway, using it to watchdog a connection to ensure it’s legitimate makes
sense. Web switches (such as Nortel Networks’ Alteon Web Switches) typically have the
brains and brawn required to do the job, and are likewise situated atop the data path.

The attack unfolds by exploiting a weakness in TCP. A typical TCP session will al-
ways kick off with the TCP three-ways handshake. First, the client requesting the session
will indicate this desire with a packet with the SYN-bit set. The response from the server will
be a SYN-ACK, straightforwardly, an acknowledgement of the received SYN request.
Normally, a SYN-ACK-ACK, follows this and this is simply the client acknowledging
that the server acknowledged the initial request.

The problem arises when the server doesn’t receive this last packet. Until this last
packet is received, the session is considered half open or embryonic. The TCP standards in-
dicate that a server should wait several minutes before declaring this session dead and
timing it out. The problem is that the backlog queue on a given TCP/IP stack isn’t large.
Because all TCP sessions still in the embryonic state need to be tracked, memory re-
sources must be allocated to them. Piling enough half-open sessions on to a single server
that would overwhelm this backlog queue is relatively trivial. When that happens, the
machine can no longer accept new, legitimate sessions. For all intents and purposes, this
means the site is down. To make matters worse, this attack has a nasty tendency to induce
instability in the protocol stack and could cause the server to crash. Finally, the attack is
almost always spoofed—so who knows where it actually came from! There are no known
ways to neutralize the SYN Attack completely. Candidate solutions have been imple-
mented by Cisco, Checkpoint, and others.

TCP-Intercept Cisco implemented TCP-Intercept in the Enterprise IOS version 11.2. Two
implementations—intercept and watch modes—of this feature exist. In intercept mode, the
IOS device (usually a router) acts as a type of TCP proxy for a web server. As incoming
TCP connection requests are transiting the router, it holds the incoming request in mem-
ory and opens a TCP connection to the server. When the final ACK is received in the TCP
handshake, the router then merges the two sessions together, and all subsequent traffic
for this session is switched through. In watch mode, the router allows all TCP requests to
go through to the server. If the session request isn’t completed in a timely fashion, however,
the router sends a reset to the server, killing the embryonic session.

The simplest TCP-Intercept configuration has two steps. The first step is the creation
of the ACL that identifies the target servers that need protection. The second step is acti-
vating the TCP-Intercept function. The two commands are as follows:

Router(config)# ip tcp intercept list 111

Router(config)# access-list 111 permit tcp any 192.168.100.0 0.0.0.255
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This tells the router to use TCP-Intercept when transiting packets are destined for the
192.168.100.0/24 network. As the default implementation of TCP-Intercept is intercept
mode, the command to alter this would be

Router(config)# ip tcp intercept mode watch

As activity increases, so does the level of protection provided by TCP-Intercept. Two
thresholds are defined (and user configurable): total incomplete connections and re-
quests that have occurred in a one-minute interval. The default values for these are 1100.
If these values are exceeded, the router assumes an attack is underway and begins a more
aggressive approach to TCP filtering. After the threshold has been reached, any new re-
quests are permitted only at the expense of an existing connection—that is, a new connec-
tion is allowed as an older embryonic connection is deleted via a reset. Effectively, this
limits the number of half-open TCP sessions a server will have to deal with to some
nonfatal number. The commands for setting these thresholds follow: high indicates the
threshold at which this “aggressive” behavior begins, and low indicates the value at
which behavior returns to normal.

Router(config)# ip tcp intercept max-incomplete [high|low] [value]
Router(config)# ip tcp intercept one-minute [high|low] [value]

Monitoring the activity of the TCP-Intercept function is done by way of a pair of show
commands:

Router# show tcp intercept connections

Router# show tcp intercept statistics

SYNDefender Checkpoint Technologies incorporates the same functionality in its Firewall-1
product. Capable of operating in either the gateway or passive modes, the SYNDefender
functionality allows for a method of deflecting the SYN Flood before it reaches the vul-
nerable web servers. In gateway mode, the firewall will proxy TCP sessions for the web
server, allowing the connection to go through to the server only when the three-way
handshake has been completed. In passive mode, the firewall simply tracks the inbound
TCP SYN packets and keeps tabs on the session, waiting for the eventual ACK from the
requesting host that will complete the negotiation. If that ACK isn’t timely in its arrival,
the firewall sends the reset to the web server, killing that half-open session. Note, the
SYNDefender options are set for the firewall as a whole and apply to any inbound requests,
not to specific network addresses or ranges.

From the Firewall-1 Policy Editor GUI, select Policy | Properties | SYNDefender tab.
The three options are None, SYN Gateway, and Passive SYN Gateway. Selecting None
(the default) disables SYNDefender, selecting SYN Gateway enables the proxy mode,
and selecting Passive enables the Watch mode. You can choose two further options at this
point: Timeout and Maximum Sessions. Timeout specifies how long the firewall will wait
for the ACK before sending the reset to the server. The default value is ten seconds. Maximum
Sessions specifies the maximum number of pending sessions allowed from the external
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network. The default value is 5000. Remember, on a Solaris-based Firewall-1 installation,
changing these values requires manually stopping and restarting the firewall services for
the changes to take effect.

Firewall Network Designs
The need and benefits of implementing firewalls in the network should now be apparent.
Which firewall is chosen is almost irrelevant but, again, it will most likely be a function of
name recognition and corporate relationships. From an administrator’s point of view, the
functions of a firewall are more or less similar. The question now before us is “Where do
we put them, now that we have them?”

Answering this question definitively requires more information, of course. One of the
first follow-up questions should be “Well, how many do we have?”

Figures 12-1 and 12-2 give some idea of where and how to use a firewall. The use of
two firewalls in Figure 12-2 is a matter of taste and isn’t really necessary, but the level of
security added by a second firewall is significant. Many government organizations use
similar arrangements, with several layers of firewalls between the protected network and
the untrusted one. Note, classified networks aren’t protected in this way. Such networks
aren’t connected to public networks at all! Some facilities will simply have two desktop
machines on the desk with two separate wall plates connecting the two machines to two
completely separate networks. A bit extreme, perhaps, but certainly more secure.

In less-critical environments, firewalls can be used wherever a significant change ex-
ists in the security policy. Such resources as satellite offices, corporate HR, R&D net-
works—all these things could well require having their own firewalls to separate them
from the other networks that surround them. Another element common to the two fig-
ures is a Demilitarized Zone (DMZ). What a DMZ allows for is a region of lowered secu-
rity where certain resources are made available to the public. The DMZ usually separates
the corporate network from the Internet, and web servers, FTP servers, and the like are
generally placed there. Security policies usually allow web and application traffic to pass
through to the DMZ, and, depending on the level of security, perhaps only that traffic
would be allowed in. Note, the DMZ is a dead end, with only one way in and one way
out, ideally. Many configurations employ dual-homed servers in the DMZ, with the pub-
lic NIC for traffic ingressing from the Internet, and a private NIC for communicating with
back-end database servers. As with any security configuration, added complexity isn’t
necessarily a good thing—compromising a dual-homed server could give a would-be
hacker much greater access than a simple one-NIC box. In dual-home environments, a
second firewall should be considered, placed between the web servers and the database
servers to restrict, log, and control traffic between the DMZ and a protected network.

A honey pot is an area, usually distinct from a server farm or DMZ, where “dummy”
machines are placed in hopes of inviting attack. While the hacker mucks about with the
honey pot, sophisticated logging and tracking systems record all the activity systemati-
cally, and, in conjunction with an IDS, could be used to identify and isolate threats, and to
track attack patterns. The data collected could perhaps track, identify, and prosecute of-
fenders. A good honey pot is a completely configured box and will be, for all intents and
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purposes, a fully functioning system. The choice of creating a honey pot from a worksta-
tion or server is a matter of choice. The more “life-like” the honey pot, the more likely a
hacker will delay over it, enabling the tracking and logging software sufficient time to
gather required information. Whether honey pots are a good idea is still up in the air.
Some believe creating such traps is a great way to invite attacks—especially when the
ruse is revealed. Retributive attacks have been known to occur in response to honey pot
installations.

Figure 12-3 shows overindulgence in the use of firewalls throughout a network. The
purpose of this, of course, is to be illustrative rather than prescriptive. Firewall 1 is the
standard implementation of a firewall. With three interfaces, it allows access from the
Internet to both the DMZ and the corporate network. Firewall 2 could be used in imple-
mentations where the network off Firewall 1 is, in fact, a honey pot. In cases like this, a
secondary firewall could be used to add a further layer of protection behind the relatively
exposed honey pot—a layer that could provide a further high level of security for the web
server farm and the corporate intranet that lies behind it. Additionally, Firewall 2 could be
used to terminate VPN sessions with clients located outside the corporate network entirely.

Implementing a firewall at Firewall 3 would be useful in situations where an access
router is aggregating several remote sites. A firewall here can provide security if the re-
mote sites are less than fully trusted. Further, it could also be used to provide security on
the backup path to the remote sites but, perhaps, this only makes sense during a failure of
the primary and secondary links. Such an implementation could be configured so it only
takes effect with respect to traffic transiting the backup interface heading to or from the
Internet. This firewall’s rules could and probably should be ignored when that link is
down. Firewalls implemented in the operating systems of the routers for Firewall 6 and 7
would be along these lines. A firewall at Firewall 4 is relatively common where access to
the server farm needs to be heavily controlled. High-speed firewalls can be implemented
to alleviate the potential bottleneck that introducing a firewall might cause. Remember,
vendors such as Cisco and NetScreen both offer gigabit throughput solutions, and Check-
point isn’t far behind in having such an offering. Firewall 5 is a more common implemen-
tation of an internal firewall—this is used when, for whatever reason, some segment of
the internal network needs a separate security policy. R&D networks might be such be-
cause the materials being developed there might not be for the consumption of the gen-
eral corporate staff. Implementing password access on the firewall might be a good way
to keep illicit users from getting at the valuable stuff that lies within. Or, a firewall could
be used simply to limit the exposure of the corporate network to whatever toxic experi-
mentation might be occurring.

HIGH-AVAILABILITY CONTENT SECURITY SOLUTIONS
Implementing firewalls and ACLs in the network is definitely a good idea. Common wis-
dom has it, though, that as security increases, usability decreases. That is, the more secure
your network, the less can be done on it, which makes sense. The most secure network of
all is the one that’s “off”—and you can’t do much with that.
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Figure 12-3. Firewall placement



Unfortunately, rendering a network off can usually be accomplished through the fail-
ure of a single key piece of hardware. A router or firewall failure can take the corporate
network completely offline—or bring down a revenue-generating web site. Either way,
failure is bad. Infrastructure gets interesting in trying to minimize, if not outright elimi-
nate, this vulnerability.

High-availability (HA) solutions target the single point of failure in networks. In
Figure 12-1, the failure of the Local Area Router will take the entirety of the corporate net-
work offline. Moving up a level, the failure of the firewall or the Internet Router could do
that as well, plus take down the web site. All three are classifiable as single points of failure.

The goal of an HA solution is to provide reliability and redundancy, so the failure of
any single device no longer becomes fatal to the operation of the network. As you might
expect, these solutions aren’t exactly inexpensive (peace of mind never comes cheap) and
can be quite complex. HA solutions can be implemented to cover nearly any kind of fail-
ure, including the loss of a router, firewall, Internet uplink, server (addressed in Chapter 10),
or even power. While providing facilities redundancy, such as those for power or air con-
ditioning, is probably best dealt with elsewhere, HA solutions for the Internet uplink are
best dealt with now.

In most networks, connectivity to and from the web server farm is provided through
the primary corporate network link, provisioned from a service provider like one of the
Regional Bell Operating Companies (RBOC). More often than not, this is a T-carrier link,
ranging in bandwidth from 128 Kbps up to 45 Mbps. More is obviously better, but more
will certainly cost more. This is the heart of the argument against HA solutions—it’s ex-
pensive, like I said. Most service providers will provide a Service Level Agreement (SLA)
with their service, guaranteeing service to some absurd level of availability, usually
somewhere north of 99 percent uptime. Of course, 1 percent downtime could be quite sig-
nificant. A 30-day month has 720 hours. With 99 percent uptime, that gives you at least
712.8 hours of service during that month. That’s 7.2 hours a month downtime allowed by
that SLA—almost an entire business day. Good SLAs take this a step farther, to 99.9 per-
cent uptime, and that’s a world of difference—expect no more than about a half hour of
downtime per month.

All this is great—except when the unexpected occurs. At the end of July 2001, Balti-
more had a train derail in a tunnel downtown. The crash and resulting fire caused net-
work outages and disruptions for several days for many of the companies in and around
the area. Wouldn’t you know it, the fiber carrying aggregated traffic up and down the
East Coast all ran parallel to the track on which train derailed. The heat from the chemical
fire melted the transit fiber and, while this isn’t exactly an everyday occurrence, failures
of this sort are distressingly common. Engineers with facilities in major cities can cite any
number of city construction projects that have backhoed an uplink: leaky air condition-
ers, overflowing toilets, water main breaks—all network water hazards, any of which
could be sufficient to bring down all or part of a network.

“So what?” I hear you saying. “Happens all the time, part of the job.” True enough, but
for companies relying on Internet connectivity for all, or at least a large part, of their reve-
nue, temporary signal loss could mean thousands or millions of dollars in missed opportu-
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nities. Retail sites like Amazon.com and Buy.com, news sites like CNN.com and
MSNBC.com, web portals Netscape.com and Yahoo.com, web search engines like
Northernlight.com, Lycos.com, and Altavista.com—all these (and many, many more) are
candidates for some sort of solution that eliminates or at least minimizes the capability
for a random chance to ruin business for an hour, a day, or a week.

At a minimum, a network design that incorporates some kind of backup path for
Internet traffic is going to be required. Depending on the level of business need, this can
be as simple as an ISDN link configured to activate only on the loss of the default route
through the primary link. Cable and DSL also fit this sort of emergency-link niche. As
business needs dictate, more robust solutions can be implemented, perhaps something
along the lines of a hot-standby T-1. Companies that have made investments in hosted so-
lutions typically contract with the provider to provision a redundant link. A pair of fully
redundant 10 Mbps Ethernet drops into the customer cage is possible and, with sophisti-
cated protocols such as VRRP and HSRP, the failover can be made utterly transparent to
the end user (see Chapter 10 for a more detailed discussion).

Figure 12-3 shows a potential solution that offers primary site backup via a secondary
Internet feed and backup Internet access to the remote sites via an independent dial-up
link. This type of solution provides some redundancy and promises continued Internet
access for large portions of the network if anything goes awry in any one place.

Figure 12-4 shows a somewhat better solution, providing redundant routing options
at the primary Internet access points. Using VRRP or HSRP, as discussed in Chapter 10,
this type of solution provides protection if a connection to the Internet is lost or an
Internet router itself is down. Often, a secondary link is unused and only becomes avail-
able during a failure; this scenario is known as hot standby. Some providers allow fully ac-
tive “redundant” feeds, in which traffic is load balanced across the two active circuits.
The purpose of the redundancy is that if a single link goes away, the load balancer (what-
ever it is) simply shunts all traffic to the live link.

Ideally, Internet connections of this sort will be provisioned through separate and dis-
tinct ISPs, that is, each link should be provided by different vendors. Reasoning for this
type of redundancy follows the same lines as the arguments already raised—failures at a
single ISP can be circumvented by a connection to a secondary ISP. At least, that’s the
hope. Of course, if the secondary ISP rents bandwidth from the primary and the primary
is down . . . well, the secondary could be down as well, and so much for all that redun-
dancy. So, caveat emptor, ensure your secondary connection is truly distinct.

The primary flaw in Figure 12-4 would be revealed with the loss of the firewall itself,
of course. When that firewall goes down, all access to the DMZ and the corporate net-
work could be lost. Figure 12-5 takes the redundancy down a level. By adding two fire-
walls, say, in a hot-standby situation where a single firewall stands idle unless an error
occurs in the primary, the loss of a single firewall no longer becomes catastrophic. This
also requires a modification to dual-home the web farm to support this configuration
fully and the addition of a VLAN somewhere in the top part of the network to break a
Layer 2 bridge loop. By doing these things, the HA solution now provides protection all
the way through to the revenue-generating content servers. Figure 12-5 doesn’t take this
down to the corporate level, but doing so would follow the same sort of principles.



Figure 12-6 makes this a bit more interesting. A set of four Alteon Web switches has
been added to provide more functionality. What these devices do is permit firewall load
balancing, discussed in detail in the following. This allows not only for a redundant path
if a firewall fails, but also for both (or more) firewalls to be used in parallel, simulta-
neously, and at full speed. The type of solution in Figure 12-6 is called a Bücher Box, after
Eric Bücher, the Alteon Web Systems sales engineer who pioneered the design. Do you
have a firewall that’s acting as a bottleneck? A Bücher Box lets you continually add fire-
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Figure 12-4. Redundant Internet routing



walls until demand is again exceeded by availability. This network design, at least as
deep as the web farm, is pretty much as bulletproof as it gets. Any single device can fail,
and all traffic then flips to the opposite side and proceeds as normal. Any single device
can be removed for upgrade, replacement, or repair, and network connectivity will be
maintained. Multiple failures can occur, so long as they don’t occur on opposing legs.
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Figure 12-5. Redundant firewalls



For even more flexibility, get a firewall solution that supports at least five interfaces (and
can dynamically route between them) and a load balancer that can handle weighted path
metrics. Then, cross-connect each firewall to each of the load balancers above and below.
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Finally, configure as normal, but add a step where the cross-connected paths are given
high-cost metrics so they’ll only be used during a failure. That done, you should be able to
take out any two devices, even if they’re on opposing paths! Sadly, most vendors can’t
support this because it would require support for a routing protocol on the firewall. Cur-
rently, only Nokia-based Checkpoint firewalls seem to be supporting this, though such
super-HA solutions should be common soon.

State Updates and Clustering
Stateful firewalls maintain tables for tracking the communications passing through them
to identify them better and match up legitimate responses with legitimate requests. Im-
plementing more than one firewall in the same network, as in Figures 12-5 and 12-6,
poses some difficulties. Two firewalls were installed for HA reasons—the trick now is to
get the design to work that way. Specifically, traffic flowing through Firewall-Left must
be shunted through Firewall-Right if a failure occurs on any of the following: Router 1,
Alteon A, or Alteon C. Assuming the failover mechanism works, no problem should oc-
cur, except sessions currently in progress will most likely be lost. Firewall-Right might
not have seen or authenticated the traffic from a host that had been serviced by
Firewall-Left and, hence, might simply drop the next mid-session packet it sees.

Most firewalls now incorporate some sort of state update feature, also called firewall
clustering or synchronization. This feature allows the communication of the session tables be-
tween two or more firewalls. These updates occur frequently and are very fast, kicking off
somewhere in the neighborhood of 100 msec after a new session is established in the state
table of the firewall. On a busy firewall, these updates could be quite a bit of traffic, so hard-
ware vendors supporting this feature usually incorporate or require a dedicated port for a
direct firewall-to-firewall connection, which is then dedicated to update traffic. In the case
of a failure, transit traffic can then be instantly rerouted through to the remaining
firewall(s), ideally, with no session loss, making the failure utterly transparent to the user.
In practice, whatever delay is involved is still non-zero, so the potential for session loss is
real. In a high-volume system, sessions could be established before an update is sent, which
would then be lost in a failure. The counter argument is, of course, that the number of these
dropped sessions will at least be minimal. Another side benefit is it’s even easier to
load-balance across an HA firewall pair that are exchanging these updates. In a typical sce-
nario, load balancers take great pains to ensure that traffic flows are routed through only
one of the firewalls in any set. This is done in both directions to maintain the state table in
the firewall and to ensure that a particular traffic flow, already authenticated on one
firewall, isn’t then sent to another with no authentication records for that flow, where the
flow will be killed. When state updates are added to the mix, the failover is much more
graceful because the firewalls have information on all but the last session or two.

HA Firewalls and Firewall Clusters
Implementing the HA solution at the firewall level requires some commitment in equip-
ment. Both the Cisco PIX firewall and the Checkpoint Firewall-1 High Availability Module
require the specification of a standby device that sits idle, waiting for a failure on the primary
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device. As you can see, this can be quite expensive, requiring not only firewall technology
but also twice as much hardware and software, with the inability to use them both at the
same time!

The way this all works is as follows: for a Cisco PIX HA solution, you need to buy a
standby PIX with the same software version, RAM, and Flash memory. Ensuring that the
unit being used as backup is, in fact, a backup unit is important. Cisco sells devices that
fill this particular role exclusively. Failing to get a failover unit, or using a failover unit as
a standalone, won’t work. Failover units deployed this way have a nasty tendency to re-
boot themselves once a day, spitting out a complaint to the console on reboot. Anyway, to
enable the Stateful Failover option previously discussed, you also need a full duplex Fast
Ethernet or Gigabit Ethernet port free for the dedicated failover connection (FDDI won’t
work), in addition to the standard ingress and egress ports. Configuration will be performed
only on the primary. The secondary will be synchronized with the primary at reboot, and
thereafter as commands are entered on the primary.

Failover information, including status and power information, is exchanged between
the two PIX devices via a special serial cable available from Cisco. By default, the two PIXes
send out a special HA “hello” packet every 15 seconds (this is configurable, with the range
being 3–15 seconds), and this will be sent out every interface, including the two direct con-
nections (serial and Fast Ethernet). Missing two consecutive hellos will initiate the failover
to the standby machine. Note, the total failover time could be almost 45 seconds before full
functionality is restored. Of course, some interruption will occur to service.

On a Checkpoint Firewall-1, the operation is pretty much the same. A dedicated connec-
tion carries the failover information, as well as the state-table synchronization data. One de-
vice acts as a primary, with the secondary standing by in a hot-standby configuration, not
passing data. Health checks are passed between the two devices, similar to the hellos sent by
the PIXes and, when a fault is detected, the secondary will assume the role of the primary.

Configuration on the Checkpoint is done via the Properties option under the Policy
tab in the Policy Editor. Once the window opens, click the High Availability tab. You
need to specify the primary and secondary firewalls, and specify the IP address and MAC
address the firewalls will share.

On failure, the secondary firewall (whether Cisco PIX or Checkpoint Firewall-1) as-
sumes control of the shared IP address, as in the case of the Checkpoint, or that’s config-
ured on the primary, as in the case of the PIX. The MAC address will also get borrowed.
The reason for this is simple transparency. As the primary fails, the secondary needs to step
in as seamlessly as possible. Stateful updates are great and provide the promise that at least
some sessions might not get broken. But, if the routers on either side don’t know how to get
through the firewall because they can’t find it, then no amount of state updates are going to
help. By preserving the IP and MAC of the primary, the secondary can step in and assume
control, with no configuration changes necessary on upstream or downstream devices.

The trick is getting those devices to pay attention to the secondary at all. With an HA
firewall solution, the firewalls need to be connected to a hub, both upstream and down.
As packets come through the hub destined for the firewall, they’re flooded out of every
port on the hub. That two of these ports are connected to the firewall means both firewalls
see all traffic destined for the firewall interfaces. If the primary goes down, no harm, no
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foul, the secondary simply starts accepting the packets. Of course, using a hub in a net-
work infrastructure of any kind tends to be frowned on and, because we’re working on a
security solution, having every packet blasted every which way like a hub is required to
do, well, that’s somewhat frowned on. Replacing the hubs with routers won’t necessarily
work. Plugging each firewall into a different router interface requires each firewall to
have separate network addresses, say, Net A and Net B. In the event of failure, we want
traffic to go from one firewall to another—and the upstream and downstream devices
only have the primary’s IP address, on Net A, configured. So, if a failure occurs, the sec-
ondary assumes the IP of the primary, which is on a different network. In other words, a
Net A address is now on Net B. The router won’t handle this well, and the secondary
won’t ever see transit firewall traffic, because the router won’t send Net A traffic out of its
Net B interface.

So, replacing the hubs with switches seems like a great idea. The problem here is that
switches tend to store MAC addresses and port numbers in memory for some period of
time, usually upwards of five minutes. Switches do this so they can forward traffic to the
appropriate MAC address without flooding it out of any port except the correct one.
What this means is port 5 will get all the traffic destined for the MAC address of Firewall
A, the primary firewall. In a failure, the secondary is standing by on port 6. The way ei-
ther a Checkpoint or PIX device tells the switch that the failed-over IP address/MAC
combo is to be found on a new port is relatively elegant—the backup sends a gratuitous
ARP message from the directly connected interfaces. This is then recorded in the memory
of the upstream and downstream switches, and all subsequent traffic to the firewall ad-
dress will flow down port 6. Again, this is done to facilitate the failover from primary to
secondary—without the gratuitous ARP message, the switch might wait several minutes
(or longer) before flushing its ARP table and re-ARPing for the now-failed-over MAC.

This brings me to the point of this long-winded discussion: port security. Cisco
switches support a feature that allows a network administrator to specify which devices
are allowed to speak on specific switch-ports. This is done, of course, to prevent just any
old device from being plugged in just any old place on the network. This is a good secu-
rity measure but, in this circumstance, ensure that this feature is off.

Firewall Load Balancing
Firewall Load Balancing (FWLB) is a means to provide redundancy in the network to en-
sure that if one firewall or component goes down, you still have paths to allow for data to
flow from the dirty side of the network to the clean side. In this respect, FWLB is similar to
the previously discussed firewall clustering. The primary limitation of clustering is sur-
mounted with FWLB, however. Recall that with clustered solutions, even ones with
state-table updates, a significant investment in infrastructure exists in that not one, but
two devices must be implemented to ensure redundancy. The problem is half your solu-
tion is idle at any given time—only one firewall is active. With FWLB, this need no longer
be the case. A further side benefit of moving the HA up to the load balancer is alleviating
latency because of an overloaded firewall. Using FWLB to load balance multiple firewalls
allows for greater throughput and optimizing data flows to ensure that each session is
treated optimally from a performance standpoint.



Hardware
To load balance the firewalls, at a minimum, a pair of load balancing devices are needed.
This at least ensures redundancy on the firewalls, but creates a single point of failure in
the load balancing devices themselves, which are implemented in such a way as to “sand-
wich” the firewalls—that is, one is upstream from the firewalls and another is downstream.
What this means, of course, is if one of the load balancing devices is lost, all traffic will be
blocked (see Figure 12-7).
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Figure 12-7. FWLB with two switches



Now, if full redundancy is the requirement, then two pairs of load balancing devices
must be used. Two devices would be placed on the dirty side of the firewalls and two de-
vices would be placed on the clean side. This is illustrated in Figure 12-6. This network
design allows for the highest degree of flexibility for failure; however, it’s also the most
expensive to implement.

Another benefit when using FWLB is different types of firewalls can be used. For exam-
ple, firewalls from Checkpoint and NetScreen can be load balanced in the same network.
While this isn’t common or recommended, the reasons for avoiding it are more support-
related than technological difficulties. Supporting multiple firewall technologies tends to
get expensive in terms of the skill set required to support them all. On a side note, an SE
once explained to me that implementing two different firewall types can be a good
thing—the tricks for hacking a firewall tend to be specific to the vendor implementation.
Throw two different firewalls into an FWLB mix and the would-be hacker could be get-
ting one or the other firewall, session by session. Interesting thought, but this does tend to
double the amount of potential security holes, not lessen them, because you now have
two sets of flaws that need to be watchdogged, not just one.

Getting back to the subject, different versions of the same type of firewall can be load
balanced or even different size firewalls can be load balanced. Again, this isn’t recom-
mended because it adds another layer of complexity to already complex technology but,
if needed, it’s there.

The primary benefit with FWLB, however, is you can move away from Active-Standby
configurations when implementing firewall redundancy. With FWLB, an Active-Active
solution is possible, where all load-balanced firewalls are fully functioning. In case of a fail-
ure, traffic will simply be shunted away from the failed device toward the remaining
devices and will typically do so much faster than a firewall cluster failover.

Firewall Load Balancing Basics
Once the decision has been made to implement Firewall Load Balancing, several items
must be addressed for a successful implementation. This is aside from the basic choices,
such as the type of firewalls and the FWLB devices.

We need to investigate three steps in executing FWLB: health checking, persistency,
and network design.

Health Checking
Health checking is used to ensure the entire data path is functioning. The entire data path is
from the dirty side switch, all the way through a firewall, to the clean side switch. It’s possible
to health check to the firewall; however, this only indicates that the data path from the
switch to the firewall is operating. It doesn’t guarantee that the path from the firewall to
the opposite switch is up and running or that the firewall or other switch is processing
traffic. In Figure 12-7, we have a simple network with a “Dirty” switch, a firewall, and a
“Clean” switch. The Dirty switch will perform a health check to the Clean switch and,
likewise, the Clean switch will health check to the Dirty switch.

������ �	� ����� ��������� ��� �� !��� 
#�



Chapter 9 discusses load balancing and health checks in more detail.

Persistency
Typically, FWLB doesn’t have the firewalls synchronizing their session tables because
this wouldn’t increase the total amount of sessions that can be used at any one time. In
fact, this requires the firewalls to be implemented in an Active-Standby mode. Because no
state-updates are being transmitted between the firewalls, the switches on the dirty and
clean sides must send all the packets from a specific session through the same firewall. If
they don’t, the firewall receiving mid-session traffic will probably drop it. Alteon Web
Switches can handle this in one of three ways: via hash, hash with NATing, or maintain-
ing session information on the switch.

The first is by using an algorithm called hash. The switch looks at the Source IP (SIP)
address and the Destination IP (DIP) address, and comes up with an index number that
points to a specific firewall.

When the traffic returns, it would have the same information, order-reversed. The
switch now runs the same calculation on the same information (the same SIP/DIP pair,
order is ignored), and comes up with the same index number. Because the index numbers
match, the packet will be sent through the same firewall.

If the firewall is NATing the packet, this wouldn’t work. An incoming packet would
have a different DIP prior to hitting the firewall than after the firewall. For example, a
packet with SIP 42.180.100.15 and DIP of 200.10.134.88 hits a NATing firewall. When
NATed, the DIP is replaced with a private address of 192.168.100.91. The problem lies in
that the first hash was done on the SIP and DIP, where the SIP/DIP pair was
42.180.100.15/200.10.134.88, and the second hash was performed when the SIP/DIP pair
was 42.180.100.15/192.168.100.91. These two pairs aren’t identical, so they might not get
the same indexes. Therefore, they might end up coming and going through different fire-
walls, and (deep breath) get dropped by the firewalls.

You can avoid this problem in three ways. One is to simply eliminate NAT on the
firewall. Suggesting this to a firewall administrator is a great way to get incredulous
stares. For most folks, NAT goes hand in hand with security. This is bunk.

The reason for using NAT is to extend the allotment of addresses beyond what is cur-
rently bought, rented, or borrowed from the pool an ISP doles out. This is all it does: extend
an IP addressing scheme. That’s it. If you’re an enterprise, it lets you design and grow your
network without having to lease large blocks of addresses, which can get expensive. If
you’re an ISP, NAT enables you to deal with overlapping addresses in your clients’ net-
works. The argument that NAT “hides” machines from malicious activity is usually one
proffered by someone who believes in security through obscurity. Don’t buy into it.

So, if you want, you can choose not to NAT. Or, at least, not to NAT on the firewall.
For those wedded to the technology, NAT can be performed on the dirty side switch,
which is the second way to avoid the problem. Because NAT functions occur before load
balancing functions, the SIP/DIP pairs will be identical on either side of the firewall and,
therefore, pose no difficulties to load balancing.
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The third method is to maintain a session table on the switch. If a packet is sent
through Firewall Left from Switch A (referring to Figure 12-6), Switch A maintains that
session information and updates Switch B with it over its dedicated HA link. On the clean
side of the network, Switches C and D will track sessions similarly. Any subsequent packets
associated with the tracked session are then sent to the correct firewall, regardless of who
gets the packet first. Recall the previous discussion of firewall clustering. To get that to
work, you needed some extra cabling on the firewalls to support a dedicated
failover/state-update link. The same design should be followed here and should build on
a VRRP-based solution, as discussed in Chapter 10.

To enable load balancer-based state update sharing between peer Alteon Web
Switches (the two either above or below a firewall set), use the following commands.
Note, this is a four-switch, firewall load-balanced design (see Figure 12-6).

>> Main# /cfg/slb/sync

------------------------------------------------------------

[Config Synchronization Menu]

peer    - Synch Peer Switch Menu

filt    - Enable/disable syncing filter configuration

ports   - Enable/disable syncing port configuration

prios   - Enable/disable syncing VRRP priorities

pips    - Enable/disable syncing proxy IP addresses

bwm     - Enable/disable syncing BWM configuration

state   - Enable/disable syncing persistent session state

update  - Set stateful failover update period

cur     - Display current Layer 4 sync configuration

>> Config Synchronization# state

Current synching stateful failover: disabled

Enter new synching stateful failover [d/e]: e

>> Config Synchronization# update

Current update period in seconds: 30

Enter new update period in seconds: 1

>> Config Synchronization# peer

Enter peer switch number: (1-2) 1

------------------------------------------------------------

[Peer Switch 1 Menu]

addr    - Set peer switch IP address

ena     - Enable peer switch

dis     - Disable peer switch

del     - Delete peer switch

cur     - Display current peer switch configuration

>> Peer Switch 1# addr

Current IP address: 0.0.0.0

Enter new IP address: 10.1.1.1

>> Peer Switch 1# en
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Current status: disabled

New status:     enabled

>> Config Synchronization# apply

------------------------------------------------------------

Apply complete; don't forget to "save" updated configuration.

FWLB Network Design
The basic design to load balance two firewalls is to sandwich them between a pair of
switches. The design discussed will be an internal network connecting to the Internet.
Routable addresses on the internal network will be used to simplify the design.

Static Routes The basic design is shown in Figure 12-8. A total of six networks are de-
fined, four of which are used for FWLB. The other two are for ingress from the Internet
and for egress into the local network. The networks used for FWLB can be used elsewhere
in the network. They needn’t be unique because they’re used solely for health checking
and won’t appear in any router’s routing tables anywhere in the network.

Two basic paths are being used. The first path is from Alteon Clean, to Firewall Left,
to Alteon Dirty. The data path is from 192.168.1.0 to 192.168.3.0. The second data path is
from Alteon Clean, to Firewall B, to Alteon Dirty. The data path is from 192.168.2.0 to
192.168.4.0.

Static Routes are defined on each switch. Static routes needn’t be defined on the fire-
walls because the Clean switch is aware of the 192.168.1.0 and 192.168.2.0 networks
(they’re directly connected). The Clean switch doesn’t know about the 192.168.3.0 and
192.168.4.0 networks. Firewall Left must only be aware of its directly connected net-
works: 192.168.1.0 and 192.168.3.0. Similarly, Firewall Right needs to be aware of the
192.168.2.0 and 192.168.4.0 networks. The firewalls needn’t be aware of the networks
connected to the other firewall.

The static routes on the Clean Alteon are defined as such: network 192.168.3.0 via
192.168.1.2 and network 192.168.4.0 via 192.168.2.2. On the switch, this might look like the
following:

>> Main# /cfg/ip/route/add 192.168.3.0 255.255.255.0 192.168.1.2

>> Main# /cfg/ip/route/add 192.168.4.0 255.255.255.0 192.168.2.2

The static routes on the Dirty Alteon are defined as such: network 192.168.1.0 via
192.168.3.2 and network 192.168.2.0 via 192.168.4.2. On the switch, this might look like the
following:

>> Main# /cfg/ip/route/add 192.168.1.0 255.255.255.0 192.168.3.2

>> Main# /cfg/ip/route/add 192.168.2.0 255.255.255.0 192.168.4.2

Notice the Clean switch doesn’t have any routes to the Internet and the Dirty switch
doesn’t have any routes to the internal network. These routes simply aren’t needed because



of the filters, discussed later. The Dirty Alteon does need to know how to send outbound
packets to the Internet, so a default gateway must be defined.

>> Main# /cfg/ip/route/add 0.0.0.0 0.0.0.0 212.65.99.6
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Figure 12-8. FWLB case study



Real Servers Once the data paths are specified, health checking needs to be defined. The
Clean and Dirty switches will point to each other for the health checks. Starting with
the Clean Alteon, two Real Servers are defined, and are used only for health checking and
to set the next hop for transit traffic. The two Real Servers will be 192.168.3.1, set to Real
Server 1, and 192.168.4.1, set to Real Server 2, which are the network interfaces on the
Clean switch. On the Clean Alteon, we define the two interfaces on the Dirty Alteon. They
are 192.168.1.1, set to Real 1, and 192.168.2.1, set to Real 2.

When the real servers are defined, it’s important they’re ordered so Real Servers on
each side point to the same firewall. In the network described in Figure 12-8, the first Real
Servers both go through the same firewall. If Real 1 on the Clean Alteon went through
Firewall A, and Real 1 on the Dirty Alteon went through Firewall B, then the persistency
could be lost and packets dropped.

Real Server Groups Once the Real Servers have been defined, they need to be placed into
a group, which is used in conjunction with the filters. The number of real servers in a
group, which translates into the number of firewalls being load balanced, is only limited
by the capacity of the switch.

Two types of health checks can be defined, ICMP and HTTP. ICMP is more than suffi-
cient to test the data path. The health check sends a ping from the Clean switch to Real
Server 1, and uses the data path that goes through Firewall A. A second ping is sent to
Real Server 2, using the data path that goes through Firewall B. By sending these ICMP
messages, both switches and firewalls are checked.

The next option that needs to be set is persistency. Configuring the load balancing
metric on the two switches as the hash algorithm does this. This ensures packets are sent
to the correct firewall.

Filters The key to FWLB is the filtering. On routers, the normal operation of a filter is either
to allow or deny packets. For FWLB, filters are used to redirect packets, with the destination
of the redirection being a real server group.

The filters can be written as specific or broad. They can be based on source IP addresses,
destination IP addresses, source ports, destination ports, packet type, or any combination
of the previous. The filters we’re going to deploy will be broad in scope, so any packets
not destined for the local network will be redirected.

The first filter on each switch needs to be a local allow filter. This way, devices on the
local segment can communicate with the switch. For the Dirty switch, the local allow filter
would be configured in this manner:

SIP ANY

SMASK 0.0.0.0

DIP 212.65.99.7

DMASK 255.255.255.255

ACTION Allow
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This allows external networks the capability to hit the Dirty switch. So long as packets
are destined for this device, the switch can see them. If nothing else, this is nice to have if
you need to test connectivity from the outside.

The next filter is the redirection filter for FWLB. It’s configured as such:

SIP ANY

SMASK 0.0.0.0

DIP ANY

DMASK 0.0.0.0

ACTION Redirect

GROUP 1

This filter would send all traffic—other than local traffic—through the firewalls. The
settings under the group option then are used to make the determination as to which
firewall to send the traffic to. As mentioned earlier, hash should be set at that point, to ensure
persistency.

For the Clean switch, the local allow filter would look something like the following:

SIP ANY

SMASK 0.0.0.0

DIP 10.100.50.1

DMASK 255.255.255.255

ACTION Allow

The next filter is the redirection filter for FWLB. It should have the following charac-
teristics:

SIP ANY

SMASK 0.0.0.0

DIP ANY

DMASK 0.0.0.0

ACTION Redirect

GROUP 1

As before, this filter would send all traffic other than local traffic to the firewalls.
To complete this, the filters must be applied to the appropriate ports, so they’ll be

placed to fire on the appropriate traffic. On the Dirty switch, port 1 will have both the local
allow and the redirection filters applied. On the Clean switch, ports 4–9 are used to connect
the servers in the server farm directly, so all six ports would have both filters applied.

Notice how both filters have the same options. As you can see, this is a broad redirection
filter. The switches could have been configured with more restrictive filters that would
only pass certain traffic, such as port 80 or HTTP traffic. However, the logging features on
the switches won’t provide the same richness of detail on passed or dropped packets as the
firewall software could generate.
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Also note, no traffic generated from outside the “firewall sandwich” can reach the
firewalls directly. The only devices that accept traffic from the outsides are the edge de-
vices, the two switches themselves. From the point of the view of the Internet, or of clients
on the local network, the pair of firewalls aren’t present, aren’t reachable, and, unless
they kill some illicit traffic stream, aren’t visible.

With the routes, Real Servers, Groups, and filters defined, FWLB has now been con-
figured.

Scalability
With the increase of Internet traffic, the capability to scale the number of firewalls be-
comes more important. With one of the basic designs provided, it’s easy to scale this design
to implement additional firewalls.

To add additional firewalls, the following items will be added or changed in the config:

� New networks for each firewall. One new network per interface, per firewall.

� New static routes for the opposite network segments.

� Interfaces on each of the switches need to be added, one for each firewall.

� New Real Servers of the opposite Alteon’s interfaces are configured.

� The new Real Servers are added to the group.

In Figure 12-9, two new firewalls had been added. Notice the four new network seg-
ments added, two on the Clean switch and two on the Dirty switch. On the Clean switch,
filtering is now being moved to port 1, to free up more ports on the switch for firewall
connections. Server connections must be served by some other layer 2 fan out switch.

SUMMARY
Content Networking solutions should and will incorporate some degree of security. The
sophistication of that security is a matter of need and a certain willingness to exercise the
company checkbook. One of the goals of this chapter was to provide an introduction to a
large and thorny field, and to keep an eye on what will be useful to the providers as they
try to keep tabs on who gets to get to what. No matter what security solution is eventually
employed, the lesson is that something ought to be implemented.

This chapter has reviewed some of the basics of security, as they apply to Content De-
livery Networks. We’ve looked at filters and firewalls, primarily, and ended on a pro-
longed discussion of HA security solutions. For most networks, filters and firewalls cover
the entirety of security needs. Virtual Private Networks are great, but are only relevant to
remote access issues. In terms of Content Networking, this relegates to how you accesses
the content you’re managing. For the top-tier networks that require no downtime avail-
ability, some form of HA is a must. Companies such as CNN, Staples, Microsoft, Amazon,
Buy.com—any Internet retailer that relies on the Internet for revenues—will need to look
closely at an HA solution such as a FWLB configuration.
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Figure 12-9. Scaling FWLB



Security is now a fixture in most networks. Content Networks are no different in this
regard. As more companies are making or breaking themselves on the Internet, more
technologies will be developed to create, manage, and meet their needs. This chapter illu-
minates a few.

REVIEW QUESTIONS
1. Can you completely eliminate the DoS threat to a web site?

No. The best you can do is deal with the attack closer to the source and
“stop” the attack close to the ingress of the network.

2. Are firewalls always necessary security devices?

No, firewalls aren’t necessary for small, SOHO-type networks. Filtering
would do fine to protect most smaller networks.

3. Are filter sets on a router stateful?

No.

4. What do SYNDefender and TCP Intercept prevent?

SYNDefender and TCP Intercept prevent excessive embryonic sessions
with a server.

5. Where would you place a firewall?

You would place a firewall at the ingress to a web server farm, a local area
network, and/or network segments with heightened security needs, between
two networks where one is untrusted by the other.

6. What is the primary disadvantage to firewall clustering?

The primary disadvantage to firewall clustering is twice the hardware for no
gain in throughput.

7. When would NAT not be implemented on a firewall?

NAT won’t be implemented on a firewall when those firewalls are being
load balanced.

8. Given an FWLB installation with two Checkpoint firewalls, can two
NetScreen firewalls be added to increase throughput further?

Yes.
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OBJECTIVES
� Discuss the differences between redirection and routing

� Draw a distinction between forward and reverse, and transparent and proxy
caching

� Identify cases where Application Redirection would be appropriate

� Define and discuss WCR, DNS redirection, and SSL offloading

If nothing else, Content Networking is about intelligent traffic management. The goal
is to increase use and availability, while minimizing delays and overhead. Application
Redirection uniquely fits this role. Network designers often find it useful to redirect cer-
tain types of traffic or simply to route traffic differently, depending on its type. The em-
phasis is important to note: We’re discussing routing traffic, not only by the protocol
type, but also by the application type. A common example of where this is used is with
transparent web cache servers, where HTTP packets are simply diverted to cleverly
placed cache servers while other, noncached or noncacheable traffic is passed through to
its destination, unmolested.

Redirection shouldn’t be confused with server load balancing (SLB). While SLB can,
and often does, play a role in Application Redirection, the difference is quite simple to
state. With SLB, functionality is accomplished by means of implementing a virtual IP
(VIP) address as the target a client hits to achieve load balancing. With Application Redi-
rection, the IP address of the target is irrelevant—all traffic meeting certain requirements
will be intercepted and acted on.

Redirection is also frequently confused with routing; however, the criteria used for
redirection decisions come from higher layers in the OSI model than the layer used for
routing decisions. The information used can be source and destination ports, HTTP
header, or URI information. It requires devices that can make routing or switching deci-
sions based on the application type indicated in the packet’s protocol header—usually
the type field in the TCP or the UDP header. This is a layer beyond the capability of most
routers or layer 3 switches, and delves into areas of technology not as thoroughly stan-
dardized in RFCs as are the first three layers. While most would agree this functionality
could be defined as layer 4 switching (layer 7, if URI information is used), disagreement
still exists about what a layer 4 switch is or what it should do. Nevertheless, a number of
vendors provide this functionality. Alteon Web Systems is commonly given credit for
coining the term “Layer 4 Switching” and pioneering the technology. Manufacturers
such as Foundry and Cisco are also heavy hitters in this market. Also, some multiprotocol
routers could have layer 4 capability simply added to their feature set via a software up-
grade. An example would be Cisco’s Web Cache Communication Protocol (WCCP,
which is a Web cache redirection application that can run on many of their routers (and
some of their switches). As always, you get what you pay for. Hardware-based solutions,
such as those you get from Nortel Networks, will generally and routinely outperform
software-based solutions.
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A number of uses exist for Application Redirection functionality:

� E-mail traffic could be diverted to different routes or for scanning

� HTTP and HTTPS traffic could be sent to low-latency routes for faster response

� FTP traffic could be sent to caching servers

� DNS traffic could be captured and served regardless of how clients were
configured

� Caching of various types of traffic could be enhanced to boost performance

� SSL encryption/decryption processing could be offloaded from the servers

All these points relate to improving Content Delivery on the Internet but, clearly, the
most widely used form of application redirection is in support of content caching and
cache servers, via a process called Web cache redirection (WCR). To illustrate application
redirection, we’ll go into WCR at some length. This is partially because WCR is a common
use of the technology, and also because it’s possibly the most involved application.
Therefore, WCR gives us the opportunity to explain many nuances not used in other ap-
plications. Other applications, such as DNS redirection and SSL offloading, are interest-
ing in their own right and are dealt with separately.

WEB CACHING
When a Web page is sent to an Internet client browser, much of the data in the page prob-
ably doesn’t change from one request to the next, or even from the previous day or previ-
ous month. Most World Wide Web traffic traversing an ISP’s backbone (some estimates
place that figure at upwards of 90 percent) is data that’s both relatively unchanging and
accessed repetitively by a lot of people. As an example, think about most WWW home
pages you’ve seen. They contain company names, logos, and text information about the
company, as well as its history, primary clients, and products. These parts of the page’s
information don’t change often (or so we hope). On other pages, dated material might ex-
ist that does change periodically—hourly, daily, weekly, or monthly. A mixture of these
elements is on typical Web pages, some of which might be static (unchanging) or dy-
namic (changing), and that might originate on different servers. Even the relatively static
elements might have differing expirations: web authors can set expiration dates in HTML
tags to determine how frequently particular elements must be refreshed by the origin
server. On highly interactive pages, such as shopping cart applications, are data elements
unique to that single client at that particular time, along with a mixture of more static
items. So much of the data is relatively static (logos, advertisement banners, news articles,
or movie times for a particular theater) that the operation of the network can be made
much more efficient by storing that content at the edges of the network, rather than re-
quiring that all requests go back to the originating servers. In many cases, this might be
many thousands of miles away from the client initiating the request. Ideally, these caches
would be placed at obvious aggregation points, such as POPs maintained by an ISP, a
colocation facility, or something similar. Such Web caching can dramatically reduce
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backbone traffic, improve response times, and alleviate congestion, all of which helps
speed network operations and reduce costs.

HTTP, HTTPS, FTP, and audio and video streaming traffic can all be delivered more
quickly and more effectively when cached throughout the Internet, rather than always
being served by the origin server. A vendor whose business involves software distribu-
tion over the Internet can vastly improve customer service by distributing that software
on cache servers in various locations. Various companies, such as Akamai, make their
money providing and managing just such a service.

Web Caching Applications
Web Caching can be found in two different flavors and in three different environments,
though combinations are common and strongly encouraged. The first flavor is sub-
scriber-edge caching. In an enterprise network, local caching of remote Internet content for
local internal clients produces much faster response time for cacheable content, and re-
duces backbone congestion and WAN access costs. For an ISP, caching has the same goals
of reducing backbone access costs and improving service. Caches would be located in a
point of presence (POP) or super-POP (large-scale interconnection point), would likely
serve many more clients than an enterprise system, and probably would be a larger sys-
tem for that reason. The Content Distribution business, such as those exemplified by ser-
vices provided by Akami, involves content generators paying carriers and/or ISPs to
cache their content in various locations to better serve their geographically diverse cus-
tomers. Another factor driving ISPs and carriers to update and add to their caching facili-
ties is that an ISP is even more likely than an enterprise network to be sensitive to
use-based costs, and many have, thus, enthusiastically embraced caching. Almost every
ISP is either already currently using or planning to install web caching systems at its ma-
jor POPs. Many are anticipating upgrading their caching facilities to enhance their reve-
nue opportunities for Content Distribution revenue.

The second flavor of Web Caching is called provider-edge caching. Here, caching can
be set up locally to a hosted Web site, whether that’s in a colocation center (Integrated
Data Center), in a POP, or at some enterprise’s server farm. The most extreme form of this
is what’s done by default by a web browser. Provider edge caching is typically consid-
ered to begin at one level of abstraction from the single user. In any case, the goal is to re-
duce the load—in provider edge caching, the focus is on the Web servers. Because cache
servers tend to be faster than Web servers, and are typically less expensive and harder to
break, this can be effectively used to increase performance and further reduce the costs of
delivering static content. For networks with both internal users and web servers, such as
enterprise networks or POPs, cache servers could do caching for both directions.

By definition, most caching applications are considered forward-caching. This implies
an application where a set of users (whether one or many) is accessing the Web—the con-
tent can come from anywhere in the world, from any web site. Caching for a web site is
considered reverse-caching, where the users can be anywhere in the world, but the data
source is specific and finite. For some networks with both internal users and web servers,
such as enterprise networks or POPs, cache servers could do caching for both directions.
Chapter 8 covers this in more detail.



Web Cache Redirection (WCR)
Web cache redirection (WCR) makes transparent cache servers more efficient by reliev-
ing them of the burden of handling all the noncacheable traffic on a network path. A
router or switch, with layer 4 Application Redirection capability, could be inserted in the
network between a fairly large group of users and the Internet backbone, and in the place
where a transparent cache server would be most useful. One or more cache servers
would, of course, be located nearby. The switch would be configured to redirect appro-
priate Web traffic (HTTP and/or HTTPS) to the set of cache servers while passing other
traffic through. Besides efficiency, another goal realized is reliability—the switches or
routers that perform the WCR function are generally more reliable devices than servers.
Even better, with a switch or router in the data path rather than a server, the caching will
automatically be bypassed if the cache servers go down. Additionally, a WCR device can
support load balancing to multiple cache servers for added capacity and redun-
dancy—more on that later. Ideally, a WCR device would perform multiple functions:

� Redirect only HTTP Get Requests for cacheable content to the cache servers

� Pass all other traffic directly to the Internet, relieving the cache servers from
having to forward other traffic to the Internet

� Intelligently load balance across multiple cache servers, as necessary

� Perform health checks on the cache server(s), bypass individual caches if
they’re nonresponsive, and bypass the entire group if they’re all nonresponsive

Infrastructure Requirements
A WCR switch should be inserted in the network between a fairly large group of users
and the Internet backbone. Installations need to be well planned and coordinated. One
or more transparent Web cache servers will be required, either dedicated hard-
ware/software systems or general-purpose hardware running Web cache application
software. With most layer 3–4 switches doing WCR, it’s unnecessary to have routing
functionality in the cache server, although this is a fairly common capability in trans-
parent cache servers. Depending on the size of the system and number of connections,
separate layer 2 switches might be required for extending port density.

Most switches can provide some traffic filtering, but cannot provide firewall-level
protection to the cache servers. If the facility is vulnerable to attack, adding a firewall to
the design might be desirable. Other than performance statistics, however, cache servers
contain no content that isn’t readily available from the origin servers, so they don’t make
likely targets for hackers. If filters have been added to this configuration to control traffic
ingress from the Internet, HTTP traffic from the Internet must be permitted to get to the
cache servers, so they can update pages. In some designs, the cache servers can access the
Internet through a second port and network adapter, using the routing or bridging capa-
bility of the cache server, essentially going around the WCR device to access the Internet.
With most WCR switches, this isn’t necessary—client and Internet traffic can pass to and
from the cache server on the same port.
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Cache Redirection Traffic Flow
Figure 13-1 is a diagram of a simple, flat network with WCR. At the top is the router that
serves as an Internet gateway for a small enterprise network—a firewall would probably
also be there. The internal network uses the private address range 10.1.1.1/24. The cache
servers are also connected to the WCR switch, through a layer 2 switch that might be
needed if there were more servers—it’s here only to show how the number of ports could
be expanded. The WCR switch is connected between the client network and the clients. It
functions as a simple layer 2 switch, except packets coming from the client network are
subjected to a filtering process that redirects certain packets to the cache servers instead
of passing them directly to the Internet. The following describes that filtering process in
detail. No other ports need be subjected to any filtering, and no routing is turned on in the
WCR switch.
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Figure 13-1. Web cache redirection
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As mentioned, the WCR switch is typically inserted in the network between a fairly
large group of users and the Internet backbone. One or more transparent Web cache serv-
ers would be located nearby. Traffic from the cache servers to the Internet or to the clients
is unimpeded, but the WCR switch filters incoming traffic from clients for the following
parameters:

� Protocol Anything but TCP would be passed through to the Internet unmolested
(unless the switch is also doing routing or NATing).

� Application The switch would examine the TCP destination port number in
the TCP header. Anything but Port 80 (or 443, if HTTPS is being cached) in the
destination port field would cause the packet to be again passed though to the
Internet. Traffic not passed to the Internet would be redirected to the port or
ports where the cache servers were connected. This would be the end of the
redirection process for some WCR products, as it is for Cisco WCCP. Some
switches, such as Alteon’s, however, can examine the packet more deeply:

� HTTP/HTTPS Packet Type Is it a GET request? No need exists to send
any HTTP or HTTPS traffic other than a GET request to a cache server, so
other packet types, such as HTTP Posts, are passed on to the Internet.

� Cookie If the HTTP/HTTPS header contains a cookie, this implies a client
is continuing a persistent connection to a specific server. This is required for
applications like Shopping Cart. The client must connect to the same origin
server again or the client data is lost—so don’t send this to the cache server.

� Non-Cacheable File Type Is this a file type that’s unlikely to be cached?
If so, pass the packet on to the Internet. File types such as .cgi, .exe, and .asp
indicate the client is requesting an application-generated dynamic page that
won’t be cached, so why send the request to cache? URLs can be examined
up to 4,500 bytes deep for an expression that would indicate noncacheable
content. These include, but aren’t limited to: cgi, bin, shtml, cgi-bin, .asp, .cfm,
.htx, and .exe, as well as the following symbols: !, =, %, &, and +. Any of these
would indicate the probability of noncacheable content and cause the packet
to be sent to the origin server. This expression list could be edited if, for
example, a customer specifically wanted to cache .exe files for downloading.
This intelligent redirection is only one of the advantages over other kinds
of products.

Did you catch the subtle difference in that last requirement? The last feature is a bit be-
yond the layer 4 switching discussed earlier—it requires looking into the content of the
GET request, and that would be called layer 7 switching. This trick requires a new layer of
complexity in the switch called delayed binding. To look that far into the packet to make a
switching decision, the switch itself acts as a proxy for the server by binding the client ses-
sion to itself. When the client sends a SYN packet that meets the other requirements, the
switch itself sends a SYN-ACK to the client and begins parsing the content. Alteon Web
Switches have sophisticated L7 logic. The switches can look up to ten packets, or 4,500
bytes (whichever comes first), into the client’s GET request to find the URL’s file type and
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make a switching decision based on that. At this point, the switch then creates a session to
the cache or the origin server and fetches the page for the client. After serving up the page,
the switch breaks the session to the server. In HTTP 1.1, the client can request another page
in the same client session. Otherwise, the client will reset the session to the switch.

Delayed Binding enables URL Parsing and is available on the newer Alteon Ace Director
product line, where these models have sufficient memory that allows the implementation of
delayed binding. Any switching device that supports layer 7 decisions must perform some
similar process. Once the switch creates the second connection to the server chosen, it then
acts as an intermediary, adjusting packet sequence numbers, and maintaining and tearing
down the connections as required.

Cache Server Load Balancing
Load balancing for cache servers has both similarities to and differences from server load
balancing (SLB). Server health checking is just as desirable with cache servers as it is in
SLB, except finding a file to check might be more difficult (see the following). But there’s a
major difference in the purpose of the load balancing: web server load balancing is done
primarily to improve the load capability, that is, to increase the number of sessions han-
dled. As a result, the load-balancing metric most often recommended by those that sup-
port it is the Least Connections metric. This does require a layer 4 device, as layer 3
devices have no idea how many connections they carry to any given server. Cache servers
tend to be quite a bit faster than web servers. One reason is cache servers don’t have to
run applications to generate dynamic content. As a result, the usual purpose of load-bal-
ancing cache servers isn’t to expand the session capability, but to expand and accelerate
the content being served. Adding redundancy in case of a server failure is a secondary,
but usually a supported, feature. Cache server load-balancing metrics, for forward cach-
ing, are usually chosen to allow multiple cache servers to store different content on differ-
ent servers—in other words, to avoid duplication of content on multiple servers. You can
do this in two ways with Alteon Web switches.

Generally, all load-balancing switches support the address-hashing load-balancing
metric. On a web server, clients can be all over the world, with widely varying IP ad-
dresses, but the server address usually remains constant, so web server load-balancing
does address hashing on the source IP address. With forward cache servers, the target IP
address might be any web server in the world, while the source IP address might be a nar-
row range—maybe a single subnet—on an enterprise network. For this reason, when do-
ing WCR, WCR switches usually use the destination IP address for hashing. Cisco’s
WCCP also adopts this method. This results in the storing of different web site content on
different servers, depending on the targeted origin server’s IP address, irrespective of the
client’s address. This provides the best guarantee that content duplication on multiple
servers will be minimized and, hence, that the caches will be used optimally.

Along these lines, the Alteon Web switch allows the WCR load-balancing metric to be
set, alternatively, to URL hashing. In this approach, the URL itself is hashed into a num-
ber that represents one of the servers. This, again, tends to avoid content duplication, but
now the cache server selection is based on the URL, not the IP address. Because this is a
layer 7 function, only L7 switches can offer this function.
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Note, should a cache server go down, it’s dropped from the rotation in any event and
the requests are then sent to another cache server in the rotation. Because this new server
won’t originally have the requested content (it was storing for a different destination), it
must then retrieve all of it from the origin server. However, the system soon catches up.
When a server is added to the rotation, a similar thing happens—it must retrieve content
until it catches up. The content now assigned to it, which was on other servers, is no lon-
ger accessed and will soon be overwritten with active content. Either metric provides for
redundancy, maximum distribution of content, and routine maintenance of servers. If all
cache servers go down, all traffic is passed directly to the Internet.

Server Health Checking
Before beginning to configure a WCR device, some network issues need to be studied in
some detail. One important issue is the server health-checking strategy to be used. While
Web servers usually contain some kind of default file that can be checked with HTTP re-
quests (often named default.htm), cache servers are designed to hold content that’s ob-
tained elsewhere, and some don’t have a resident default file that can be accessed with
HTTP requests. As a result, the health-checking strategy is highly dependent on the par-
ticular server type and the customer needs. Several alternative approaches will be dis-
cussed here. Getting clear information from the server vendor is critical.

� Default HTTP file The simplest choice of all is on those servers with a file
that’s resident from installation, which is accessible from the HTTP request and
not overly large. Often these are named default.htm, default.html, default.txt, or
something similar. HTTP health checks that reference this filename are generally
the best strategy and are simple to implement.

� Outside-sourced HTTP file Another strategy is to source a small static file from
a Web server that’s reliable and not expected to change. It could be a small text file
on the customer’s own Web server, it could be the .gif file that contains Yahoo!’s
trademarked logo on the Yahoo! homepage—whatever, so long as it’s a file
unlikely to go away. If you select HTTP health checks and give the full URL for this
file as the “content” for the health check, it will be sourced from the origin server
once, and then health checked on the cache server afterwards. Drawbacks exist: if
the selected origin server is down or the selected filename disappears from that
server, the health checks will appear to fail for all the caches. Similarly, if the file
chosen has an expiration date and the server goes down or the file disappears,
your cache server will probably fail the first health check after the expiration.

� “No content” HTTP health check This is the next best strategy because it still
tests the same server software entry point the client will expect to access. But, by
configuring for HTTP health checks and setting content to “none”, only the status
response is generated and checked. The drawback to this is that it only checks the
status response, rather than checking to see that a file can be retrieved, which can
be considered an error on some servers. For example, this approach using Inktomi
cache servers gives a correct status response and, hence, will be “up” from the
perspective of the WCR switch, but it will flood the error log.
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� Retrieving a file on another port Often servers will have a file that can be used,
but it can only be accessed from another port. For example, Inktomi cache servers
have a file named synthetic.txt, which is accessible only from the management
port, 8083. To health check this file, you would set health checks to HTTP, content
to synthetic.txt, and set the remote port to 8083 in the redirection filter. The
drawback to this strategy is it doesn’t check the same server software used by
the clients.

� TCP and ICMP These can also be used as a health-checking method. However,
they check only that the protocol stack in the cache server is functioning instead
of the web server software, and so are less than ideal for testing the integrity of a
web server.

High Availability Switching
Another important issue is whether the customer needs or wants high availability (HA)
switching for caching. While the loss of the origin server or the server caching content
from that origin server can be catastrophic, it tends to be so only to a small segment of the
transiting traffic. A Web switch, by contrast, is in the direct path to the Internet for all traf-
fic and, as a single point of failure, its loss could be quite dramatic because all service
might come to a halt. In such cases, prudence dictates a need to have a redundant switch
configuration. To that end, using switches with Virtual Router Redundancy Protocol
(VRRP) to achieve HA is advisable.

In a VRRP redundant switch configuration, there are two Alteon WCR switches. The
clients are connected to both switches via a layer 2 switch. The key to understanding this
topology is in the Alteon Hot-Standby VRRP option—except for switch updates on the
interswitch link, only one switch at a time will be processing packets to or from the
Internet, or to or from the cache servers.

Two virtual routers are configured: one is for the client subnet and the other is for the
cache server subnet. Because they’re grouped, these two virtual routers (VR) always switch
together, so only one will be handling traffic among the Internet, the clients, and the cache
servers. Each device is either master or backup for both VRs, and the master controls the IP ad-
dress of each of the them. In VRRP, the MAC address given in response to an ARP to the VR’s
IP address isn’t the MAC address of the particular switch, but a specific, special VRRP MAC
address that contains the ID number of the VR. When the VRRP pair fails over, neither the IP
address nor the MAC address of the Virtual Router changes, so the surrounding devices
needn’t learn any new address, and no learning delay occurs in the switching process. The
master constantly reports the status of each active port to the backup. If the backup detects a
failure, it assumes the role of master and forces the other to backup mode (if it is still online).
In case of a failure of the interswitch link, the switches open other ports to interswitch com-
munication and, if the backup does hear the updates, it will not then become master. If the
backup fails to hear them through other ports, however, the backup becomes master. VRRP
is covered in more detail in Chapter 10 and in RFC 2338.

All client traffic not sent to the cache servers is sent to the top layer 2 switch and to the
Internet. The port where the clients are connected has the same cache redirection filters
described previously. Note, the interswitch link and the two L2 switches could form
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loops in this network. Using VLANs is intended to avoid that, allowing this configuration
to use the VRRP Active-Standby mode of operation. If a flat network is required, Alteon’s
VRRP extension of hot-standby mode—where the standby switch passes nothing except
interswitch control packets—could be used with all the addresses in one subnet. VRRP is
flexible, and other ways exist to architect a redundant switch topology. This one is given
only as an example.

WCCP and WCR
Web Cache Communications Protocol (WCCP) is Cisco’s answer to caching. WCCP con-
sists of a software feature-set/upgrade that runs on many of its routers and switches, as
well as on the cache server itself. In addition to Cisco’s Cache Engine product line, some
independent brand cache servers support WCCP. WCCP defines a protocol by which the
cache servers and the switches or routers communicate the configuration and operational
information necessary to support caching clusters. This protocol requires the cache serv-
ers to support WCCP, as well as the routers.

The original version of WCCP had some shortcomings, but the current Version 2 is
much improved. It now does active server health checking, supports more applications
(not only HTTP), provides multirouter support for fault tolerance, and more. Compared
to using an L4 switch for WCR, Version 2 has both benefits and drawbacks, as might be
expected. One major benefit is that Version 2 is somewhat self-configuring. Once a router
or switch has been configured with WCCP, adding servers is fairly easy. The servers
must also have WCCP software and be configured with the router/switch addresses, and
they will self-register with the routers or switches in the WCCP cluster. There’s no need
to add them manually to the configuration on the routers or switches. However, Cisco
does recommend creating a cache server access list for the routers/switches to limit the
possibility of a hacker acting as a WCCP cache engine and grabbing some of the traffic.

The multirouter support could allow the cache engine cluster to provide caching for
more than one subnet, where there are parallel routes to the Internet in forward caching.
In reverse caching, this could also allow the same cache cluster to serve multiple web sites
on different subnets. But the big advantage seems that it allows fault tolerance because
multiple routers, say, in an HSRP/VRRP group, could access the same cache cluster. Of
course, you’d also want multiple cache engines in the cluster. Layer 4 switches that sup-
port VRRP (RFC 2338) or HSRP (Cisco’s proprietary Hot Standby Routing Protocol)
could also provide fault-tolerant redundancy.

In terms of load balancing the cache servers, WCCP offers destination IP or source IP
hashing, hashing all 32 bits into a number that represents one of the available servers.
Destination IP address hashing is good for forward caching because it puts content from
different web sites in different caches, based on the web site’s IP address. This is intended
to minimize content duplication and maximize content space. Only sites using
round-robin DNS to load share, or some other DNS-based global load-balancing scheme,
will have duplicated content in the cache. Source IP address hashing is offered for reverse
caching, where only one DIP address, but many source addresses, might exist. While
source IP address hashing causes distribution of content across the cache servers, it won’t
avoid content duplication because identical content requested by different sources will



go to different cache servers. Some layer 4 switches, such as those from Nortel Networks,
offer a modified DIP hashing, where the hash table isn’t recomputed if a server is lost.
Instead, added load is given to one of the remaining servers. This keeps the algorithm
running, instead of risking lost packets during recomputation of the hash table.

Comparatively speaking, a switch designed for server load balancing can offer some
advantages over WCCP in handling web caching. Server load balancing layer 4 and layer 4–7
switches are likely to offer a wider variety of health-checking choices, a wider variety of
load-balancing choices, and, perhaps, more flexibility of configuration and operation. For
example, a layer 4 switch can track connections, so it can distribute load based on the Least
Connections method, which generally enhances response times, an important goal in re-
verse caching. WCCP does some layer 4 functions, but it doesn’t do this because WCCP is-
n’t truly a layer 4 device. Where maximizing content space is a goal, URL hashing, as
offered only on L7 capable switches, works better than destination IP hashing in forward
caching where sites have multiple IP addresses. URL hashing is the only practical way to
avoid content duplication in reverse caching with multiple cache servers. Last, when Cisco
mentions Reverse Proxy Caching, what it describes is reverse transparent caching. Sup-
porting forward or reverse Proxy caching, where the packets are addressed to the cache in-
stead of the web server, cannot be handled by redirection—packets not redirected to the
cache servers have nowhere to go! Server Load Balancing must be used to support Proxy
mode cache servers, and WCCP simply doesn’t offer that capability.

The primary benefit to WCCP is platform ubiquity—you may well already have the
gear in place (Cisco routers and switches), all you need is the software! WCR requires an-
other piece of hardware, hence, might be significantly more costly. Still, you get what you
pay for.

DNS REDIRECTION
Help desk costs for Internet service providers (ISPs) are skyrocketing. In fact, for many
ISPs help desk costs rival, or even exceed, WAN bandwidth costs as the single biggest
expense item.

As ISPs consolidate, larger numbers of subscribers come online, and the profile of the
typical subscriber changes from technologically sophisticated to the technologically chal-
lenged. ISPs are faced with an uphill battle. This battle consists of automating end-user
connectivity, regardless of geographic location, optimizing infrastructure performance,
as well as the management and configuration of end user systems.

Many calls to ISP help desks have their roots in domain name services (DNS) problems.
DNS is a distributed database service that provides the mapping between IP addresses and
hostnames.

Proper network operation requires that subscribers’ computers be configured with
the correct DNS server address. A DNS server address that’s misconfigured because the
subscriber made a mistake entering it, the entry was accidentally changed, or any other
reason results in the subscriber’s losing Internet connectivity and, moments later, a call to
the ISP’s help desk.
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Further, the need to configure subscribers’ computers with the correct DNS server ad-
dress can hamper an ISP’s capability to implement DNS changes needed to keep up with
subscriber demand. For example, an ISP might want to move from a centralized DNS
server to a number of decentralized DNS servers to meet the needs of a growing user base.

Ideally, with decentralized DNS servers, subscribers would access the closest DNS
server. Because DNS servers in a decentralized architecture have unique IP addresses,
however, this isn't possible unless each subscriber reconfigures the DNS server address
on their computer.

For any ISP, getting users to change the DNS server address on their computers can be
an arduous and time-consuming task, fraught with potential problems. Still more difficult
is dealing with the ensuing help desk calls that result from subscribers misconfiguring their
DNS server addresses during such a change.

Although the Dynamic Host Control Protocol (DHCP) might alleviate some of these
problems, ISPs would have to convert all their users to this automatic addressing solution.

DNS redirection, implemented on Web switches, can eliminate these problems. Web
switches are a new and special class of LAN switch that front-ends individual servers or
server farms, providing customized services that allow for increased scalability, availabil-
ity, and better server efficiency. The capability to load balance or redirect server-bound
traffic is one such value-added service.

By redirecting DNS traffic, all DNS requests are directed to the DNS server of the
ISP’s choosing, regardless of where the requests are addressed. If a subscriber’s computer
uses an erroneous DNS server address for any reason, it doesn’t matter. DNS requests are
still directed to the DNS server chosen by the ISP, and the subscriber’s network connec-
tivity is maintained—with no calls to the ISP’s help desk.

Additionally, an ISP might want a subscriber to use a DNS server other than the
one for which the subscriber’s computer is configured, even if the configured address
is correct for their local POP. A good example of this situation is mobile subscribers
who have ventured beyond their home area when their ISP has implemented a distrib-
uted DNS architecture.

Without DNS redirection, DNS requests are sent to the user’s home POP’s DNS server,
instead of to the DNS server for the POP into which they’ve dialed. Again, DNS redirection
comes to the rescue because the DNS server address used by the subscriber is ignored, and
DNS requests are directed to the DNS server designated by the ISP.

Finally, DNS redirection allows DNS requests to be dynamically spread over multiple
DNS servers in a server farm. This scales processing power, reduces response time, and
increases DNS availability.

Operation and Benefits
As shown in Figure 13-2, the Web switch sits in the data path between subscribers’ com-
puters and the Internet, generally in the POP of an ISP. The Web switch examines each
packet, determining which are DNS requests. Using layer 2 or layer 3 switching, packets
not identified as DNS requests are subsequently forwarded to their ultimate destination.
DNS packets are intercepted and automatically redirected. For redirected packets, Web

������� �	� ���������� ���������� 	"	



switches perform the required network address translations, and then send them to the
DNS server specified by the ISP. This DNS server might be located locally, in the POP of
the ISP, or at a remote location. The DNS server can also be a single device or a virtual
DNS server created by a DNS server farm.

When multiple DNS servers are used in conjunction with DNS redirection, Web
switches distribute DNS requests across the servers in the server farm based on a
preconfigured algorithm. Choices for this algorithm are round-robin, least connections,
hashing, and minimum misses.

The Web switch performs health checks on configured DNS servers, sending DNS re-
quests only to DNS servers that have passed these health checks. Redundant Web
switches can also be deployed to eliminate any single point of failure in the system, yield-
ing the ultimate in uptime.

When deploying DNS redirection, a Web switch must be topologically situated so
subscribers’ DNS requests pass through it before going to the Internet. This allows for the
interception and redirection of all DNS requests. If the network topology permits DNS re-
quests to bypass the Web switch, they can be switched or routed around it, and won’t be
redirected to the desired DNS server.
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Figure 13-2. DNS redirector deployment



Fixing Misconfigured DNS Clients
When subscribers misconfigure the DNS server address in their computers, their DNS
requests will either be sent to a system that isn’t a DNS server or dropped. In either case,
subscribers won’t receive any responses to their DNS requests, and they’ll be unable to
obtain IP addresses for Internet hostnames, thereby losing Internet connectivity (see
Figure 13-3).

With DNS redirection, the DNS server address configured in the subscriber’s computer
doesn’t matter. The Web switch intercepts all DNS requests, regardless of the destination
IP address, and sends these requests to the DNS server designated by the ISP.

The Web switch also manipulates the DNS responses, so they appear as though they
came from the address configured for the subscriber’s DNS server. Doing this, users’
Internet connectivity is maintained, no matter how DNS server addresses have been con-
figured on their computers.

Implementing a Distributed DNS Architecture
As subscriber bases grow, many ISPs that have implemented a centralized DNS server ar-
chitecture see advantages in distributing the DNS function.

For a large subscriber base, a distributed architecture with many DNS servers—each
located close to part of the subscriber population—offers faster, more efficient response
than having a single centralized DNS server. Fast DNS responses are key to maintaining
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Figure 13-3. Misconfigured subscriber DNS address



high-application performance and subscriber satisfaction. Until the DNS function is com-
pleted, connectivity to the end system housing the application cannot take place. As a re-
sult, users must wait for DNS transactions to be completed until applications can be
accessed.

Further, a distributed DNS architecture allows ISPs to manage their Internet traffic
better. For example, many portals support mirror sites across the country or world. ISPs
using distributed DNS servers can configure those servers to direct traffic to specific mir-
ror sites located nearby.

But moving to a distributed DNS server architecture brings the ISP face-to-face with
some harsh realities. If it cannot get subscribers to reconfigure the DNS server address on
their computers, the move to a distributed DNS server architecture offers no benefits be-
cause subscribers will continue to send requests to the original, central DNS server (see
Figure 13-4). Conversely, if the ISP gets its subscribers to change the DNS server address
on their computers, a significant percentage of them will make mistakes, and the ISP is
then faced with the misconfigured DNS server address problems previously described.

DNS redirection resolves this dilemma because the DNS server address configured in
subscribers’ computers doesn’t matter. All DNS requests are intercepted by the Web
switch and sent to the desired DNS server.
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Figure 13-4. Change in DNS server architecture
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In fact, with DNS redirection, subscribers retain the benefit of keeping the address of
the original, central DNS server configured in their computers.

If the DNS server, or all servers in the DNS server farm to which the Web switch sends
DNS requests fail, the Web switch sends DNS requests to the host identified in the desti-
nation IP address specified by the subscriber’s computer.

If this address is the original, central DNS server, then the DNS request will be directed
to that server, providing a backup to the failed server or server farm.

Coping with Mobile Subscribers
In distributed DNS server environments where all subscribers have their local DNS
server address properly configured on their computers, mobile subscribers present a
significant challenge. For a mobile subscriber, the DNS server that is local to their home
POP may not be local to the POP they dial into away from home. While it’s desirable for
a mobile subscriber to use the DNS server local to the POP into which they dial, that’s
not where their requests will go.

Instead, DNS requests will go to the subscriber’s home POP’s DNS server, slowing
responses (see Figure 13-5). As previously noted, fast DNS responses are key to main-
taining high-application performance and subscriber satisfaction.
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Figure 13-5. Mobile subscriber



With DNS redirection, this problem is solved. A mobile subscriber’s DNS requests are
intercepted by a Web switch at each POP and can be automatically redirected to the clos-
est DNS server. When subscribers uses a different POP, they’ll use a different DNS server,
if that’s how the ISP has configured the DNS service.

What’s at stake here isn’t simply where DNS requests go, but also how other traffic is
handled. As previously noted, portals can support mirror sites, and ISPs can configure dis-
tributed DNS servers to direct traffic to local mirror sites. Mobile subscribers away from
their home POP, but using their home POP’s DNS server, won’t send traffic to the best mir-
ror site for their current location. If this happens, application performance will suffer.

Using DNS redirection to send the subscriber’s requests to the DNS server for the
POP they’re currently using eliminates this problem.

Increasing DNS Availability
Subscribers must be able to access a DNS server to resolve Internet hostnames to IP ad-
dresses. If subscribers can’t access a DNS server, they can’t access the Internet. Because
of this, maintaining high-DNS server availability is key to maintaining high-subscriber
satisfaction (see Figure 13-6).
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Figure 13-6. Increasing DNS availability
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DNS redirection can increase DNS server availability. An ISP can deploy multiple
DNS servers and configure Web switches to distribute DNS requests across the servers in
the server farm.

The Web switch performs health checks on the DNS servers and sends DNS requests
only to DNS servers that pass the health checks. For example, in Figure 5, if the DNS
server with IP address C fails, as represented by the black X, all DNS requests go to the
DNS server with IP address B.

The ISP can, optionally, configure the Web switch to send DNS requests to a backup
server if any server in the server farm fails or if all the servers in the server farm fail. For
example, in a distributed DNS architecture, one POP’s DNS server(s) can both support
local subscribers and act as backup for other POPs.

As a last resort, if the configured DNS server or all configured DNS servers in a server
farm fail and no backup server is available or configured, the Web switch sends the DNS
request to the specified host using the destination IP address used by the subscriber’s
computer. ISPs who want maximum availability should have their subscriber’s comput-
ers to use the address of a central DNS server that can be used as a fail-safe if all other
DNS servers fail. If they do fail, then the Web switch’s last resort will result in subscribers’
DNS requests being directed to the fail-safe DNS server.

This is shown in Figure 13-6, where both DNS servers in the local POP have failed (as
represented by the black X and the gray X). In this case, DNS requests will be sent to the
central server with IP address A.

DNS Server Health Monitoring
As earlier noted, DNS server availability is crucial to ensuring ISP subscribers have con-
tinuous network connectivity. To facilitate this goal, Web switches monitor the health of
DNS servers and direct packets only to healthy DNS servers.

Request-Based Monitoring
Web switches monitor the health of DNS servers by sending requests to each DNS server
in the server farm on a regular basis. These requests identify both failed servers and failed
DNS services on a healthy server.

If DNS request-based testing indicates a failure, the Web switch places the DNS
server in the Server Failed state. At this time, the Web switch stops redirecting DNS re-
quests to the server, distributing them across the remaining healthy servers in the DNS
server farm. If all servers in the DNS server farm are unavailable, and no backup server is
configured and available, the Web switch sends DNS requests to the server to which the
requests are addressed.

When a DNS server is no longer in the Server Failed state, the Web switch begins
sending DNS requests to it. Once the Web switch receives a DNS response from server, it
brings the previously failed DNS server back into service.

Physical Connectivity Monitoring
Web switches also monitor the physical link status of switch ports connected to DNS
servers. If the physical link to a server goes down, the switch immediately places that



server in the Server Failed state, taking the same actions as if the DNS server had failed re-
quest-based monitoring. When the Web switch detects that a failed physical link to a DNS
server has been restored, it brings the server back into action in the same manner de-
scribed earlier.

Overflow and Backup DNS
Web switches can also be configured to introduce overflow servers when any or all of the
servers in a server farm hit their maximum connections threshold. They can also bring in
backup servers when they detect that any or all of the servers in a server farm have suf-
fered from a service or physical link failure.

Overflow Servers
As discussed previously, a maximum connections limit can be configured for a DNS
server. When the number of active connections to a DNS server reaches the maximum
connections limit, the Web switch won’t send any additional connection requests to that
server until its number of active connections falls below its maximum connections limit.
Overflow servers can take over temporarily.

The idea behind overflow servers is a server that doesn’t normally supply DNS to a
particular POP can be configured to do so under special circumstances. Under normal
circumstances, the Web switch won’t forward any DNS requests to this server. If one or
all of the DNS servers in the server farm hit their maximum connections limits, however,
the Web switch introduces the overflow server into the load-balancing mix. When the
load on the DNS server(s) falls to an appropriate level, the Web switch removes the over-
flow server from the load-balancing mix by ceasing to direct DNS requests to it.

Overflow servers can be configured to become active when an individual DNS server,
or when all the DNS servers in the server farm, exceed their maximum connections’
thresholds.

As it’s called on to process connections from the Web switch, the overflow server con-
tinues to support its normal functions. The intent is to have the overflow server tempo-
rarily add capacity to the hunt group.

If an overflow server is recruited into service too frequently and for prolonged peri-
ods of time, it might signal a need to increase the permanent capacity of the server farm
by adding more servers.

Backup Servers
Application, server, or link failure can cause Web switches to remove a server from the
load-balancing mix.

Users can configure the Web switch to introduce a backup server into the load-bal-
ancing mix when any or all of the servers within a server farm fail.

In the case where the switch introduces the backup server into the load-balancing mix
after the removal of a single server, the backup server is taken out of the mix when the
Web switch determines the server is again operational.
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In the case where the Web switch introduces the backup server into the mix after the
removal of all servers in a server farm, the backup server is taken out of the load-balanc-
ing mix when the Web switch determines all servers in the server farm are once again
operational.

As with overflow servers, taking a backup server out of the mix means the Web
switch stops directing DNS requests to it.

High Availability DNS
Beyond DNS server health monitoring, even higher levels of application availability can
be achieved by using hot standby Web switches.

Web switches can be used in pairs—with one active and the other in hot standby
mode—to build network topologies with no system-wide single point of failure.

This means the Web switches aren’t single points of failure and their use doesn’t force
a single point of failure at some other point in the network. Eliminating single points of
failure increases application availability.

An example of a hot standby configuration is shown in Figure 13-7.
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Figure 13-7. Hot standby configuration



This topology supports use of active and standby Web switches, redundant network
devices, and redundant, load-balancing DNS servers. Note, no traffic flows through the
standby Web switch. For example, all traffic from client 1 to DNS server A flows through
the active Web switch only, as shown by the arrows.

When implementing a hot standby configuration, one of the Web switches is desig-
nated as the active switch and the other as the standby switch.

A direct link, known as the failover link, is configured between the active Web switch
and the standby Web switch. The failover link is used to send keep-alive messages be-
tween the active and standby Web switches. Data traffic crosses the failover link only if a
port on the active switch has failed.

If the active Web switch detects a link failure, it communicates that information to the
standby Web switch via the failover link. If the corresponding port on the standby Web
switch is healthy, that port is activated.

For example, Figure 13-8 shows the case where the link from the active Web switch to
DNS server A has failed. In this case, the port on the standby ACEDirector that connects
to DNS server A becomes active. All traffic between client 1 and DNS server A now passes
through the active Web switch, crosses the failover link, goes through the standby Web
switch, and traverses the newly activated link, as shown in the figure.
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Figure 13-8. Single link failure



Where an entire active Web switch fails, the standby Web switch becomes active, as
shown in Figure 13-9. After the router on the upper left determines (using OSPF, for ex-
ample) the originally active Web switch has failed and the standby has become active,
traffic will again flow from client 1 to DNS server A, as the following shows.

As noted earlier, the failover link is used to send keep-alive messages between the ac-
tive and standby Web switches. If a Web switch fails to receive keep-alive messages from
its counterpart, this might be an indication the failover link has failed or its counterpart
has failed.

Distinguishing between these two cases is important. If the failover link has failed,
but both Web switches are healthy, this must be determined to avoid the “split brain”
problem, where the original standby Web switch attempts to become active, while the
original active Web switch is still active—a situation that could disrupt communications.

Conversely, if the standby Web switch stops receiving keep-alive messages be-
cause the original active Web switch has failed, it must determine this so it can become
active. Distinguishing between the two cases is accomplished by combining physical
layer and data-link layer health checks used on all Web switch ports along with spe-
cialized messaging.
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Figure 13-9. Switch failure
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SSL OFFLOADING
Offloading SSL encryption and decryption from the content servers is another important
area for application redirection that works a little differently from the prior examples
mentioned earlier in this chapter. In SSL, content must be encrypted before being sent to
the client. Traffic from the client must be decrypted before it can be understood. Because
web servers aren’t optimized for the heavy number crunching involved in this process,
this can severely impact the server’s operating capacity. Web servers running industry
standard software—Apache, Microsoft IIS, and Netscape/SmartPlanet are among the
most common—typically suffer performance degradation of up to 80 percent when han-
dling SSL traffic. This is largely because of the processor intensive tasks of key exchange
and bulk decryption/encryption. Key exchange, as described in Chapter 5, typically
relies on the multiplication of large numbers, especially with larger key sizes (that is,
1,024 bits and larger).

Special processors have been developed and put on to circuit cards that can be
plugged into existing network servers to increase SSL performance. These generally use
specialized chipsets to perform these processor-intensive tasks in hardware for efficiency
and speed. Some drawbacks exist, though, to using this type of solution.

� Scalability Most servers have limited space in their motherboards to
accommodate additional cards, making it difficult for the solution to scale by
adding more cards as traffic needs increase.

� Performance Even though a hardware accelerator card assists the web server
in the key exchange process, bulk decryption still relies on the central CPU of
the server. This creates a diminishing returns scenario in terms of performance.

� Loss of intelligent web-switching decisions Termination of SSL sessions
directly on the server prevents the load balancer from accessing information in
the TCP session, including URL, cookie, and host header information as all of
that information is encrypted.

Intelligent web switching is particularly critical in e-commerce applications, where
it’s important for a user’s session to be temporarily “bound” to a single server for the du-
ration of a session. This technique, called persistence, enables a user to fill up a virtual
shopping cart with items and proceed to a checkout or continue to browse the site with-
out losing items stored in the cart during a given session. Currently, three ways exist of
achieving persistence that the majority of load balancers support: Source IP, SSL session
ID, and cookie. Cookie persistence is the best, for reasons described in the following.

Source IP persistence is easy to use; the source IP address is unencrypted. However,
megaproxies on the Internet hide large numbers of users behind a few IP addresses.
America Online users are the predominant example of this issue, although the same situ-
ation happens on a smaller scale with large corporations or smaller ISPs using NAT on
their outbound firewalls. Using persistence based on the source IP addresses under these
circumstances results in a domino effect—traffic gets directed to one server until it is sat-
urated, and then proceeds to the next server until it, too, is overloaded.
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SSL session ID persistence was popular for some time, but newer versions of many
web browsers will time out the SSL session ID at fixed intervals or if the connection is
idle. For example, Microsoft’s Internet Explorer will time out an SSL session ID every two
minutes. This makes the persistence last only as long as the browser doesn’t time out the
session ID, which, in the majority of cases, in a bit shorter than is ideal. If users take a short
break, they lose their shopping carts!

Of the three techniques for achieving persistence, cookie-based persistence is by far
the most effective. Cookie persistence works by having the web server insert a
preconfigured cookie into the response to the client. Most load balancers can check for the
presence of this cookie and either act on the value the server inserts or rewrite the cookie
(or some part of it) with a value that identifies which server initiated the session. Subse-
quent requests from the same client will have the cookie in them, allowing the load balan-
cer to send the request back to the same server. The one drawback to cookie persistence,
however, is the information is inaccessible to the load balancer when SSL is used because
that portion of the packet is encrypted. Therefore, it’s beneficial from a persistence stand-
point to offload the SSL traffic for decryption prior to making load-balancing decisions.

SSL redirection consists of two main networking components—a server load balancer
that can do application redirection and an SSL offload appliance. Some manufacturers
have incorporated both functions into a single device, but most of the industry hasn’t
adopted this approach. A purpose-built load balancer and separate SSL offload device of-
fer more scalability because more SSL devices can be added as the need for SSL capacity
grows in an application. In addition, combination devices usually use a centralized CPU
approach, which hinders the performance of both the load balancing and SSL bulk de-
cryption functions, each of which rely heavily on the central CPU.

The Alteon iSD-SSL is just such a device. This is a small, rack-mounted, high-perfor-
mance SSL offload device occupying only a single rack mount slot (1U). An Alteon
load-balancing switch, when configured with an iSD-SSL, will redirect all SSL client traf-
fic to the iSD-SSL, which decrypts it and returns it to the switch, which then routes it to
the server chosen by the load-balancing algorithm. Likewise, when the server sends SSL
traffic, the switch redirects it to the iSD-SSL for encryption, and then routes the encrypted
traffic to the user. Other vendors, such as Pivotal, also make SSL offload devices.

Figure 13-10 shows a simplified diagram of how such a device would connect.
Through application redirection, the switch directs all incoming SSL traffic (TCP Port
443) to the iSD-SSL SSL Offload device (or bank of offload devices). The SSL device is con-
figured with the certificate and private key of the corresponding virtual IP address of the
load balancer, and completes the SSL transaction with the client. The SSL device then is-
sues an HTTP request on a nonstandard TCP port that isn’t encrypted back to the web
server farm. The web servers themselves need to be configured to “listen” on an addi-
tional TCP port that’s used strictly for communication between the SSL device and the
web server farm.

This handles the decryption of incoming SSL traffic, but the traffic returning to the cli-
ent must be reencrypted or the session will fail. An additional filter is configured on the
load balancer to intercept traffic on the preconfigured TCP port and redirect it back to the
SSL device for reencryption back to the client. HTTP traffic sent to the web site would
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bypass the SSL processing and go to the server load-balancing mechanism for that ser-
vice. Traffic from the servers to the clients is handled the same way—redirected to the
SSL offload device if SSL, sent straight out if HTTP.

With the server load-balancing mechanism now able to deal with unencrypted pack-
ets, cookie persistence can be used. Shopping carts can last as long as the web site admin-
istrator wants—he gets to set the cookie timeout period. While two minutes was the limit
using SSLID with Microsoft Internet Explorer, now the time can be much longer. The
popular web site eBay.com uses a 40-minute cookie timeout. Other shopping sites might
use an hour, two hours, or more.

Caveats to SSL Redirection / Offload
When implementing SSL offloading, certain security issues must be noted. The following
discusses the most common issues.

Figure 13-10. SSL Offload redirection
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Unsecured Traffic Segments
The most common concern of most network architects is the presence of unsecured traffic
segments in their network—primarily the segment from the SSL offload device to the
web servers. This would never occur when the SSL session terminated on the servers
themselves. This concern is usually addressed by implementing network security on the
segments above the load balancer, providing protection to the unsecured segments. A
hidden benefit to having these segments is the capability to install an intrusion-detection
system onto the segment. Because a potential attack could be hidden in an SSL session, an
additional level of intrusion detection can now be implemented in the network.

HIPAA Requirements
In 1996, the federal government approved the Health Insurance Portability and Account-
ability Act. Portions of this act regulate, in detail, the transfer over networks (as well as
other media) of sensitive patient information. Any sensitive medical information must
conform to these guidelines, or the responsible provider could be subject to severe penal-
ties. As SSL transactions are implemented in the medical billing and service provider
field, HIPAA requirements must be taken into account in the final solution. In almost all
cases, as long as the unsecured segments of the network are properly protected from pub-
lic networks, SSL offloading solutions are still valid.

Managing Certificates and Keys
In all current implementations of SSL offload devices, the certificate and private key must
be obtained in a nonencrypted format and installed on the device. Care must be taken to
safeguard this information because the private key would allow a hacker to decipher
messages intended for the secure site. In those applications where the client is also au-
thenticated in the SSL transaction (as discussed in Chapter 5 under client certificates),
care must be taken with the client’s certificates and privates keys, which must reside on
the SSL offload device. The public/private key pair involved in this transaction should be
limited to the specifically intended business-to-business service. This issue would arise if
a company tried to keep the number of private keys small for its internal clients and used
the same certificate for several applications, including the business-to-business applica-
tion. If the private key for that particular client were ever compromised, then security
could be breached at any site where that client used that certificate/key.

High Availability and Failover Scenarios
An important consideration when implementing SSL offloading is that of high avail-
ability. Depending on the manufacturer, some SSL offload devices allow the SSL traffic
to failover to the server, allowing secure traffic to continue to the server, albeit more
slowly, using the server for SSL tasks. The web and application servers must be config-
ured to handle this traffic prior to SSL offload deployment. Another approach to
high-SSL availability is to use several SSL offload devices in a pool and load balance
them, using the methods outlined in Chapter 9. This allows for high site availability, as
well as scalability.
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OTHER APPLICATIONS
Another application that will likely become more important in the near future is the redi-
rection and caching of streaming content. This would involve redirecting Real-Time
Transport Protocol (RTP) and other protocols used for streaming audio/video content.
HTTP encapsulation of streaming traffic is currently common and makes passing fire-
walls easier, but it limits the caching possibilities to being cached (or not cached, depend-
ing on the header information) with the other HTTP traffic on the Web cache. Separating
out streaming traffic for special handling requires the use of the real streaming protocols,
instead of HTTP encapsulation. And network managers will have to open their firewalls
for these newer protocols for their customers to use them.

Application redirection capable switches can be used for FTP redirection to redirect
FTP requests to servers where downloadable files are stored or cached. FTP redirection
works much like web traffic redirection. Traffic types other than HTTP, HTTPS, FTP,
RTSP, and SSL can also be redirected, but they’re largely similar to, and often simpler
than, WCR, so a detailed discussion of each probably wouldn’t be useful. Basically, any
TCP/IP application type (Destination Port Number) can be checked in the header and
used to redirect the packet to a different location. WCR devices can typically support port
mapping and/or address translation in this process.

Combinations
Application Redirection can be combined with other switching applications. One exam-
ple would be to use the same switch to perform web server load balancing and WCR. An-
other combination might be Firewall Load Balancing combined with WCR. Or, even
combining all three: Firewall Load Balancing, WCR, and Web Server Load Balancing.
Such a combination would probably use different algorithms for load balancing the cache
servers and the web servers: maximize content capacity for the cache servers and maxi-
mize performance for the web servers. However, when combining WCR and firewall
load balancing, you must decide on which side of the firewalls to place the caches. Do you
want, say, for a web server farm, to put your reverse cache servers outside the firewall or
inside? Outside, the user traffic doesn’t all have to pass through the firewall, but they are
less secure and traffic is more difficult to monitor. Architectural limitations of one or the
other location might exist, depending on the particular vendor’s implementation, or even
with product revisions. These tradeoffs are another subject altogether.

SUMMARY
Application Redirection is like the Swiss Army™ knife of network tools—it has a thou-
sand uses. One of the most widely adopted is WCR, but many other, new uses exist, as
has been outlined here. The capability to insert a device transparently into a network and
split off—at wire speed—traffic flows based on layer 4–7 information will only become
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more useful as network applications become more and more creative—and more and
more bandwidth-intensive.

WCR is a tool whose value cuts across the distinctions of enterprise and service pro-
vider. Subscriber edge caching, with WCR that supports it, will be useful to the enter-
prise client attempting to alleviate congestion on expensive WAN transit links, as well
as to the service provider seeking to do the same. Provider edge caching will be useful
to any service provider (especially the ASP) that is seeking to streamline the operations
of its network operation centers (NOCs) or simply to optimize traffic flows feeding into
a web site. Deciding between transparent versus proxy caching is usually a matter of
taste—and it depends largely on the desire of the implementer either to stay out of cli-
ent configurations or to become immersed in them. Either way, the level of service
should be dramatically improved; however, WCR only makes sense for the transparent
sort. The distinction between forward caches and reverse caches is somewhat novel.
Forward caches are considered the norm, but experts are predicting this might well
swing the other way as providers investigate more clever arrangements for content
serving from their NOCs.

As an aside, it’s worth noting that caching isn’t Content Networking, even though
Cacheflow, Inktomi, and Akamai might disagree with this, and given the sheer
amount of marketing material they and other cache manufacturers generate along
these lines, it’s small wonder many buyers miss the forest for this one, particularly
leafy, tree. Caveat emptor. One particularly high-profile element in a successful Con-
tent Networking solution is most definitely the cache, but the best way to use and ex-
pand a network with a cache is via a WCR device. This entire book is devoted to
illuminating some of the other important, if not so . . . colorful . . . trees in that forest.
Application Redirection is one such tree.

REVIEW QUESTIONS

1. Name three uses for Application Redirection.

Three uses for Application Redirection are DNS, WCR, and SSL.

2. Which would benefit the most from WCR: an ISP, an enterprise WAN, or a
server data center?

All three (an ISP, an enterprise WAN, or a server data center) might benefit
from WCR.

3. What is the primary advantage of WCCP over WCR?

Ubiquity is the primary advantage of WCCP over WCR. You probably already
have the hardware in place to implement WCCP.



4. What is the difference between an overflow server and a backup server?

The difference between an overflow server and a backup server is an overflow
server will offload processing for busy or overloaded servers, whereas a backup
server is used if a failure occurs.

5. What is the primary advantage to SSL offloading?

Speed is the primary advantage to SSL offloading. Web servers can process
thousands of times more unencrypted sessions than encrypted sessions.
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OBJECTIVES
� Provide an appropriate definition of bandwidth as it relates to computer

networks

� Discuss the era of “push” technology and early solutions to contain and control
bandwidth utilization

� Discuss and explore the business drivers, such as SLAs, behind the need for
bandwidth management

� Provide some practical applications for bandwidth management in e-commerce
for both the ISP and ASP environments

� Discuss the various techniques and methods presently deployed for bandwidth
management

� Explore the different vendors’ approaches and solutions for bandwidth
management

� Present a case study of one vendor’s implementation of bandwidth
management, including configuration details

� Discuss standardization initiatives with IETF to promote vendor
interoperability (Diffserv)

� Summarize the different methods and vendor implementations of bandwidth
management

Bandwidth, defined as the width of a band of electromagnetic frequencies, is used as
an expression of how fast data flows through a given transmission path. Bandwidth is di-
rectly proportional to the amount of data transmitted or received per unit time. In com-
puter networks, bandwidth is often measured in bits/second. A modem rated at 57,600
bits/sec has twice the bandwidth of a modem rated at 28,800 bits/sec. T1, which is a
bandwidth of 1,536,000 bits/sec, is a common bandwidth base for connections to corpo-
rate data centers.

Corporations globally, in support of mission-critical applications on both the Internet
and dedicated wide area networks (WAN) links, are increasingly using IP-based technol-
ogies. VPN (virtual private networks) technology has become popular within the last two
years and has allowed corporations to gain competitive advantage while connecting
branch offices, employees, business partners, and customers securely via the Internet.
The onslaught of traffic can and has caused severe congestion and choke points on the
more limited WAN-to-Internet connections. Bandwidth-hungry discretionary traffic of-
ten overwhelms business and mission-critical traffic on these links.
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SLA AND THE BUSINESS CASE FOR
MANAGING BANDWIDTH

Corporations today are increasingly reliant on WANs to deliver critical business infor-
mation, so it’s no wonder the WAN has developed into a key corporate asset. The
performance of the WAN can positively or negatively impact a wide range of key
mission-critical corporate processes for inventory, accounting, and sales information.
As a result, corporations are demanding that carriers enable a process for WAN ser-
vice-level management and, further, to enter into a service level agreement (SLA) with
corporations that want to ensure their critical traffic is accorded a negotiated quality of
access. Service-level guarantees also require carriers and service providers to provide
some type of financial penalties if they fail to meet their contractual obligations. This
has spurred carriers and service providers to design and engineer their networks to
meet parameters that exceed SLAs offered to their customers. The following lists some
of the parameters that are components of the SLA:

� Network availability Percent uptime, i.e., 99.5 percent

� Average round-trip network delay Typically ranges from 100 to
300 milliseconds

� Effective throughput Typically 99 to 99.9999 of frames delivered

� Mean Time to Respond Typically four hours to respond to a trouble ticket

� Mean Time to Repair Typically four hours to repair a problem

Managing bandwidth, therefore, is crucial to enable the carrier or service provider to
meet or exceed the average round-trip delay and effective throughput parameters.

BEFORE THE BANDWIDTH MANAGEMENT ERA
The technology term push came from the notion that the server pushes content to the user,
instead of the traditional method of the user visiting the server and requesting (pulling)
information. In early 1997, push technology became popular because it enabled people to
have news and information delivered directly to their desktops, instead of them having
to go out to the Web and dig for it. Content aggregators, such as PointCast and Desktop
Data, became a one-stop source of news and information. They would gather the content,
format it, and push it to your desktop at scheduled times. These services were offered
free, earning revenues by sneaking in advertisements with the content.

PointCast Floods Networks
Due to its popularity in the 1997 timeframe, PointCast became synonymous with push
technology, although the company is now trying to shed that image. PointCast falls into a
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category of content aggregator. It gathers news and information from hundred of
sources, formats it for consistent look and feel, and delivers it to the desktop. Unfortu-
nately, PointCast also delivers news and information simultaneously to your co-workers
who may be on the same local area network (LAN). The predictable result is congestion
on a network. A single 30K news story sent to 100 people might mean 3MB of bandwidth
is consumed. Sending hundreds of these news stories to subscribing desktops quickly be-
came a source of congestion to the local networks.

Push Technology Solutions
As “push” technology vendors like Pointcast struggle to gain acceptance, they must
address the bandwidth congestion problem quickly and decisively. Here are some of the
solutions that were deployed by these vendors to improve access and reduce delays for
the users.

Cache Managers
PointCast sells advertising piggybacked on top of the content it pushes to the desktops. It
would have to transmit massive amounts of data to give advertisers a fair return on their
investments and, as such, the company quickly knew this revenue model was reliant on a
large, continuous data flow. One solution was to develop a Cache Manager, a system that
would receive the content once, and then distribute it to subscriber desktops. The invest-
ment of a single PC, plus some IT configuration time, was worth the effort to preserve the
precious WAN bandwidth. Of course, desktop PCs would need to be reconfigured so
they were automatically directed to the Cache Manager.

Compression Tools
To contain the massive inflow of push data, a useful tool was to turn on the compression
feature on the routers on the boundary of the WAN. This could effectively cut the band-
width utilization to one-half or even one-fourth, depending on the compression algo-
rithm in use. Compression can take place on the entire packet, header only, or payload
only. While compression may be a viable bandwidth optimization feature, disadvantages
exist. One obvious disadvantage of compression is that it is CPU-intensive and, thus, im-
pacts the routing capability of the boundary routers. In addition, the lack of compression
standards among vendors, requires deployment of the same vendor’s equipment for
both end routers or switches, to ensure interoperability and proper functionality.

Optimize Download Criteria
To conserve precious bandwidth, push companies are using filtering, or end-user selec-
tion of content. One company, Tibco, lets end-users pick which information they want
to get from a single multicast. For example, users could set up their environments to re-
ceive entertainment news once a day, but receive their stock quotes in continuous
streaming feeds.
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PRACTICAL APPLICATIONS OF BANDWIDTH
MANAGEMENT IN E-COMMERCE

Discussed next are some of the environments that have turned bandwidth management
into both technical and competitive business advantages. It is worthwhile noting that
measurable SLA (service level agreement) has now become a reality due to bandwidth
management.

ISP Environment
The Internet Service Provider (ISP) is constantly challenged by a number of factors that
make bandwidth a very scarce commodity indeed. An upgrade at the local loop, such as
DSL, certainly creates a bandwidth disparity at the expense of the slower dial-up user.
New Internet services such as Napster cause utilization, which was usually sporadic, to
become constant, impacting everybody else. The promise of live Internet broadcasts of
flashy shows like rock concerts or somewhat more sedate presidential debates adds even
more demand on a dwindling supply. Bandwidth management allows the ISP to provide
virtual pipes—to each of which is applied a bandwidth contract—for each of these types of
users to distribute bandwidth fairly to all their users.

ASP Environment
The Application Service Provider (ASP) typically serves clients with a wide variety of
bandwidth requirements. ASP operators need to offer their clients SLAs to ensure the
best performance for their money or to avoid paying over-subscription penalties. A pop-
ular bandwidth management solution is to offer tiered service, that is, bronze, gold, and
platinum, with platinum configured for the fastest, most reliable access. Tiering enables
clients to start off by purchasing the bronze service and to scale up as their businesses in-
crease and consume more bandwidth.

Enabling Service Providers to Aggregate Profitably
In a traditional access ISP point-of-presence infrastructure, different types of remote ac-
cess servers share a single connection to the Internet. The ISP depends on the law of aver-
ages in provisioning shared resources to maximize their profit while trying to maintain
customer satisfaction. But bandwidth isn’t shared equitably. Fast DSL modem users can
and do impact slower dial-up connections. On the Web server end of the infrastructure, a
Web site experiencing congestion because of flash-crowd traffic can quickly and easily
overwhelm other Web sites co-located in the same infrastructure. Bandwidth manage-
ment lets providers enforce fairness, and, at the same time, offer flexible, usage-based ser-
vices to increase revenue.
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Increasing Security and Preventing DoS Attacks
Denial of Service (DoS) attacks can occur suddenly and cripple a Web infrastructure by
swamping it with more requests than it could ever hope to fulfill. A sophisticated DoS at-
tack is difficult to prevent and can appear as legal, legitimate traffic. Bandwidth manage-
ment can diffuse DoS attacks by setting rate limits at traffic ingress points for such traffic
as TCP SYN packets, PING packets, and so forth. Imposing limits also for traffic at egress
ports destined for unknown ports is another way of thwarting, or at least ameliorating
the effects of, attacks.

SOLUTIONS
Let’s explore several different vendor implementations of bandwidth management. The
following list shows those that are available as of this writing.

� Dedicated bandwidth management appliances

� Bandwidth management integrated with routers and switches

� Bandwidth management integrated with Web switches

� Bandwidth management integrated with firewalls

Dedicated Bandwidth Management Appliances
Purpose-built bandwidth management appliances were the first solutions to hit the mar-
ket. Among the pioneers of this technology were Packeteer and Xedia. Here are the details
of their implementations.

Packeteer PacketShaper
PacketShaper is an application-based bandwidth management solution from Packeteer. It
automatically classifies network traffic based on application, protocol, subnet, URL, and
other criteria. This allows the product to look at OSI model Layer 7 information in the
packet to identify applications such as SAP, Oracle, Napster, Pointcast, and others. It allo-
cates bandwidth based on policy, where an administrator can specify minimum and
maximum bandwidth parameters on a per-session or per-application basis.
PacketShaper allows partitioning of bandwidth into separate virtual channels, and then
enforce policies on those partitions. The package provides detailed information on appli-
cation performance and network efficiency, such as peak and average bandwidth utiliza-
tion, response time divided into network and server delays, top web pages visited, top
users, and top applications. PacketShaper also has excellent reporting capabilities, pro-
viding graphs, statistics, and SNMP MIBs. This enables the client to compare actual per-
formance versus SLA agreements, to define performance standards, and to generate
report on compliance.
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Four models are available. The 1500 series platform is targeted for small sites, while
the 2500 series platform handles large branch offices or midsize data centers. The 4500
and 6500 series platforms are targeted towards large data centers or ISPs.

TCP Rate Control The TCP Rate Control feature of PacketShaper paces packets on both
the inbound and outbound flows to prevent congestion. At the same time, this feature
eliminates unnecessary packet discards and retransmission, and promotes a smooth,
even flow rate to maximize throughput. It applies explicit rate-based flow control to both
individual and classes of traffic flows. The TCP Rate Control feature doesn’t rely on a
queue and provides bidirectional bandwidth management for both inbound and out-
bound traffic.

Control of TCP Traffic at Transmitter TCP Rate Control evenly distributes packet transmis-
sions by controlling TCP acknowledgements to the transmitter, causing the sender to
throttle back, avoiding packet discards when insufficient bandwidth exists. This, in ef-
fect, prevents congestion even before it occurs. TCP rate control yields evenly spaced
packet transmissions and can increase network utilization up to 80 percent.

To illustrate how the TCP Rate Control feature of PacketShaper controls the
end-to-end connection, Figure 14-1 shows the flow of traffic from transmitter to receiver
with PacketShaper in the middle.
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Figure 14-1. TCP rate control
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PacketShaper intervenes and paces the data transmission flows to deliver predictable
service. Let’s analyze how it accomplishes this step by step:

1. Data is sent from the transmitter to the receiver.

2. Receiver acknowledges receipt of the data and, at the same time, advertises
a window size of 8,000 bytes.

3. PacketShaper intercepts and holds the ACK from the receiver and determines
the data must be more evenly transmitted.

4. After the calculated delay, the ACK and the window size information (note,
PacketShaper determines it must be 2,000, not 8,000 as originally instructed
from the receiver) is sent to the transmitter, calculated to arrive at the transmitter,
so it will send the next data immediately.

As previously demonstrated, PacketShaper changes the end-to-end TCP semantics
from the middle of the connection. PacketShaper does a calculation of the round-trip
timer (RTT), and then intercepts and holds the acknowledgement for the time required to
smooth the traffic flow without incurring retransmission timeout (RTO). PacketShaper
also calculates a new window size, which it sends to the transmitter that helps it deter-
mine when to send the next packet.

The end result is evenly spaced transmissions when PacketShaper takes control.
Figure 14-2 shows the before-and-after result of this methodology.

Handling of Non-TCP Traffic Approximately 275 types of application layer traffic can be
identified or classified by PacketShaper. This powerful feature allows the product to pro-
vide granular bandwidth management capability. Once classified, Quality of Service
(QoS) and bandwidth-allocation policies can be set to protect and control each traffic
flow. The capability to set policies based on application is a big differentiator for
PacketShaper, and is particularly critical when setting different policies for items such as
Web browsing flows versus business-critical e-commerce transactions, such as SAP. The
flexible policies of PacketShaper enable you to tune bandwidth allocation and response
time. Bandwidth can be guaranteed or capped, protecting or restraining applications as
appropriate. If a “bursty” application swells, it does this on its own virtual partition with-
out infringing on other applications’ bandwidth.

Xedia CBQ (Class-Based Queuing)
Xedia, acquired by Lucent in 1999, incorporates class-based queuing (CBQ) in its Access
Point products for bandwidth management. CBQ is a traffic management algorithm usu-
ally deployed at the boundary of the WAN. CBQ was developed by the Network Re-
search Group at Lawrence Berkeley National Laboratory and is now in the public domain
as an open technology. Xedia offered one of the first commercial implementations of
CBQ, which is now implemented into the Access Point 450 and 1000 products.
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Traffic Identification and Classification The goal of CBQ is first to divide user traffic into a
hierarchy of classes based on any combination of IP addresses, protocols, and types of ap-
plications. Each class is then rate-shaped to meet a defined bandwidth rate. One rate
could be termed a “minimum commitment, best-effort” service level, while another
could be termed a “premium, fully committed” service level. High-priority applications
can then be given the premium rate that assigns an explicit amount of bandwidth to en-
sure their service requirements are met. Lowest priority applications can be given the
best-effort service level. This class can be given a zero committed bandwidth, but with the
capability to borrow from idle or unused bandwidth on a first-come, first-served basis.

Figure 14-2. Performance differences with PacketShaper



CBQ Borrowing Borrowing is a unique feature of CBQ, allowing traffic classes to utilize
bandwidth not used by other classes when they need to burst above their guaranteed
rate. Priority can be defined so those mission-critical applications get first access to un-
used bandwidth. On the other hand, low-priority applications or users can even be de-
nied access by setting a bandwidth rate of zero, but with no borrowing allowed.

Handling of TCP and Non-TCP Protocols CBQ operates at the IP network layer and pro-
vides the same benefits across any Layer 2 technologies. CBQ is equally effective with any
IP protocol, that is, TCP and UDP, including increasingly prominent UDP-based multi-
media applications, critical SNMP management traffic, and the often-undesirable band-
width-hungry news feeds. CBQ also takes advantage of standard TCP/IP flow control
mechanisms to control traffic on an end-to-end basis. It operates with any client or server
TCP/IP stack variation.

Integration with Routers and LAN Switches
Integration of bandwidth management into existing devices such as routers and LAN
switches provides a compelling argument for Web administrators in their pursuit of ease
of administration and higher ROI (return on investment) for their web infrastructures.
Here is the Cisco implementation of this design.

Cisco WRED
Congestion avoidance on routers is achieved mainly through dropping packets.
Among the most commonly used techniques is Random Early Detection (RED). To ac-
complish congestion avoidance, RED controls the average queue size by indicating to
the end hosts when they should temporarily slow down transmission of packets. RED
works by randomly dropping packets prior to periods of high congestion, which tells
the packet source to decrease its transmission rate. If TCP is the protocol in use, the
transmission rate is decreased until all packets have arrived at their destination, which
indicates the congestion is cleared. RED is used as a means of causing TCP to slow
down transmission of packets. When enabled on a router interface, RED begins to drop
packets when congestion occurs at a rate selected during the configuration process.

Weighted Random Early Detection (WRED), as the following explains, is the Cisco
Systems implementation of RED for standard Cisco IOS platforms.

Weighted Random Early Detection WRED combines the functionality and algorithm of
RED with IP precedence to give preferential treatment to higher priority traffic. WRED
selectively discards lower priority traffic when congestion is detected at the router inter-
face. IP precedence is the mechanism used, that is, traffic with a lower precedence has a
higher drop rate and is, therefore, more likely to be throttled back. On the other hand,
traffic with a higher precedence is less likely to be dropped and, therefore, has a higher
probability to be delivered. This causes differentiated performance characteristics for dif-
ferent classes of service. WRED begins to work when the router output interface begins to
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show signs of congestion. By dropping some packets early and not waiting until the
queue is full, WRED avoids dropping large amounts of traffic all at once.

WRED is only effective when the bulk of the traffic is TCP-based. In the TCP protocol,
dropped packets indicate congestion, so the packet source slows transmission. With
other protocols, when packets are dropped, the source may continue to re-transmit at the
same speed. Therefore, dropped packets don’t reduce congestion. WRED gives a prece-
dence value of 0, the lowest level of precedence, to non-IP traffic. This causes non-IP traf-
fic to be dropped more than IP traffic. The behavior of WRED is it drops more packets
from large users than small users. Packet sources generating the most traffic are more
likely to experience slowdowns than sources generating little traffic.

Cisco has a distributed WRED (DWRED) implementation that uses the Versatile Inter-
face Processor (VIP) to provide WRED functionality. This is in contrast to WRED, which
uses the route-switch processor (RSP) to implement the WRED functionality. DWRED
provides faster performance than the RSP-based WRED. DWRED, while providing faster
performance than WRED, has some restrictions. DWRED is only available on a per-inter-
face basis and cannot be configured on a sub-interface. In addition, DWRED is neither
supported on Fast EtherChannel nor does it support the multicast RSVP protocol.

Supported Cisco Routers WRED is supported on the following Cisco routers:

� Cisco 1600

� Cisco 2500

� Cisco 3600

� Cisco 4000 (includes 4500 and 4700)

� Cisco 7200

� Cisco 7500 with RSP

DWRED is supported on the following Cisco routers.

� Cisco 7000 series with RSP7000

� Cisco 7500 with VIP2-40 or greater

Please refer to the Cisco Web site (http://www.cisco.com) for the most current and
complete list of supported Cisco routers.

Configuration Tasks The configuration of WRED on a Cisco router involves the perfor-
mance of the following tasks:

1. Enable WRED—use the following command in interface configuration mode.

router(config-if)#random-detect

This enables WRED. If you configure this command on a VIP interface,
DWRED is enabled.
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2. Change WRED parameters—use one of the following commands in interface
configuration mode.

router(config-if)#random-detect exponential-weighting-constant

[exponent]

This specifies the weight factor used for calculating the average queue length.

router(config-if)#random-detect precedence [precedence]

[min-threshold]

[max-threshold] [mark-prob-denominator]

This sets the parameters for packets with a specific IP precedence. The minimum
threshold for IP Precedence 0 corresponds to half the maximum threshold for the inter-
face. Repeat this command for each level of precedence.

NOTE: When you enable WRED with only the random-detect command, the parameters are set to
their default values. The weight factor is 9. For all precedences, the mark probability denominator is 10,
and maximum threshold is based on the output buffering capacity and the transmission speed of the in-
terface. The default minimum threshold depends on the precedence. The minimum threshold for pre-
cedence 0 corresponds to half of the maximum threshold. The value for the remaining precedences
falls between half the maximum threshold and the maximum threshold at evenly spaced intervals. The
default WRED parameter values are based on best available data. Cisco recommends you don’t
change the parameters from their default values unless you’ve determined your applications will benefit
from the changed values.

Integration with Web Switches
“Web Switch” is the Alteon term for its server load balancing (SLB) appliance. Alteon pio-
neered server load balancing and at the height of its success garnered 50 percent world-
wide market share for this technology.

Nortel BWM
The Nortel bandwidth management (BWM) solution is based on integration of the band-
width management application in its Alteon Web switch platform.

Alteon Web Switch Bandwidth Management Integration Neither the bandwidth management
nor QoS solutions as previously described for routers and LAN switches offer the flexibil-
ity and precision necessary to manage the wide variety and combination of virtual services
housed in today’s Web data center infrastructure. At the same time, dedicated band-
width management appliances lack the performance and scalability to keep pace with the
growing traffic in today’s Web data centers.

To bridge the gap, Alteon has introduced a bandwidth management service that pro-
vides Web data center operators’ fine-grained control over bandwidth utilization. This
service is integrated on a scalable Web switch platform with server load balancing (SLB),
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traffic redirection, access control, and content processing. This service is completely com-
patible with existing QoS mechanisms on routers and LAN switches.

Product Highlights Alteon bandwidth management solution simulates multiple virtual
pipes within one or more real physical ports on the Web switch, up to either 256 or 1024
virtual pipes, depending on the switch model. Virtual pipes are synonymous with traf-
fic classes. Each traffic class is defined by a broad range of policies, which include the
following:

� Physical port

� VLAN

� Source/Destination IP address

� TCP/UDP port number

� URL

� HTTP cookie

� Access control filters

Complex classification can also be defined for such things as source-destination flow,
QoS class, HTTP cookie within a virtual service, and others.

Order of precedence can also be defined when handling packets that fit the criteria for
multiple virtual pipes. By default, the order of precedence is according to virtual service,
then filter, then VLAN, and finally, physical port.

Functional Description For each virtual pipe, the administrator applies a bandwidth pol-
icy that includes three data rates:

� Committed Information Rate (CIR) is the data rate the Web switch guarantees
the virtual pipe. For a given sample period, the data rate will never be lower
than this value.

� Soft Limit is the data rate the Web switch constantly works to move traffic
flow. The Web switch dynamically adjusts the frequency with which it
forwards traffic from the virtual pipe according to the volume of traffic
and the rate it’s trying to simulate.

� Hard Limit is the data rate the Web switch considers the “cut off” rate, over
which traffic is discarded. Set this rate to the maximum rate of the physical
port to avoid traffic from being discarded.

The availability of the soft limit allows Web administrators to regulate traffic flow to
the desired target rate, while allowing the system a degree of flexibility to respond to tem-
porary bursts and congestions.

For each virtual pipe, the Web switch simulates a physical link by pacing packet
transmission at a simulated rate, initially set to the soft limit. Packet buffers at each egress
port are divided into a queue per virtual pipe. Different queues can have a different
amount of buffer allocations (queue depth), as defined by the administrator.
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If a queue is approaching its queue depth over time, the Web switch increases its sim-
ulated rate, up to the hard limit, to allow for temporary bursting. When the hard limit is
reached, new packets won’t be queued until the simulated rate drops; however, the rate
won’t drop below the CIR rate.

Each queue’s transmission is regulated individually, until global congestion is experi-
enced. When the global queue depth reaches a congestion threshold, the simulated rate at
each queue is reduced according to its bandwidth policy. This scheduling scheme effec-
tively allows each virtual pipe to borrow bandwidth up to its hard limit, if bandwidth is
available.

Statistics are polled via SNMP interfaces or downloaded to a preconfigured e-mail
address for history and accounting records.

An optional feature, IP Type of Service (ToS) tagging, enables administrators to mark
the packets transmitted below and above the soft limit with different QoS settings. This
enables upstream, QoS-capable switches and routers to prioritize packet delivery accord-
ing to the target bandwidth rate set for each traffic class, without incurring additional
tasks of tagging traffic themselves.

Configuration Tasks Configure the Web switch first according to its server load balanc-
ing (SLB) requirements. Then configure the bandwidth management service parameters
and sequence as follows:

1. Configure the policies (CIR, soft, hard limits).

2. Configure the contracts (virtual pipes) and bind to the desired policy.

3. Apply contracts to appropriate egress ports of the Web switch.

4. Turn on or enable bandwidth management service.

Integration with Firewall
Checkpoint is the undisputed market leader for firewalls in Web infrastructure today. To
capitalize on its popularity, Checkpoint has been integrating additional functionality in
its firewall products.

Checkpoint Floodgate-1
Checkpoint’s bandwidth management solution is a product called Floodgate-1, a policy
based QoS solution for Internet and dedicated WAN links. This solution allows the ad-
ministrator to prioritize business critical traffic, such as ERP or e-commerce over less im-
portant or discretionary traffic, in effect aligning network resources with business goals.

Floodgate-1 is typically deployed as an integrated component of Checkpoint’s
Firewall-1 and VPN-1, running on the same hardware platform.

Policy-Based Bandwidth Management Floodgate-1 management of inbound and outbound
traffic flows at WAN and Internet access points is based on a bandwidth management
policy, which consists of rules that assign bandwidth privileges to certain classes of
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packets. Each rule uses two fundamental criteria required for bandwidth management. The
first of these is Traffic Classification, which sorts traffic according to the following criteria:

� Source

� Destination

� Application

� Internet Service

� Group of Internet Services

� Group of Users

� URL

� Time of Day

� Traffic Direction

The second is Bandwidth Control, which specifies the primary control criteria used to
assign privileges to more important traffic or limit less important traffic. The criteria are

� Weighted Priorities Allocate bandwidth by assigning weights configured as
an integer number. For example, HTTPS traffic might be given a weight of 20
and HTTP traffic a weight of 10. When congestion occurs, Floodgate-1 ensures
that the data ratio of HTTPS over HTTP is 2:1.

� Guarantees Allocate minimum bandwidth to certain traffic flows identified
as requiring specific service levels at all times. An example is video conferencing,
a streaming media format, which requires a minimum amount of bandwidth
to work.

� Limits Restricts bandwidth for noncritical applications. An example might be
to limit bandwidth allocation for certain push traffic such as Pointcast.

Core Elements: Stateful Inspection and IQ Engine Floodgate-1 incorporates the Intelligent
Queuing (IQ) Engine, an implementation of a hierarchical Weighted Fair Queuing (WFQ)
algorithm that works in concert with Checkpoint’s INSPECT Virtual Machine, which sits
between the data link and the network layer, and provides enforcement of user-defined
bandwidth management policies. The IQ Engine doesn’t modify TCP packets to control
transmission rate. Instead it controls bandwidth at the IP layer using precise per-flow
packet scheduling to achieve accurate bandwidth shaping.

The INPECT Virtual Machine provides detailed packet information to the IQ Engine
to classify incoming traffic properly. Then, each classified packet is placed into the correct
queue and scheduled for transmission based on the user-defined management policy.
The IQ Engine controls when the packet is put on the wire, thus precisely controlling the
overall mix of traffic. For example, if HTTPS traffic is given a weight of 20 and HTTP traf-
fic is given a weight of 10, this results in the IQ Engine, during a period of congestion,
transmitting two HTTPS packets for each HTTP packet to maintain the 2:1 ratio.
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Enterprise Traffic Management Checkpoint has a three-tier traffic management architec-
ture, which is designed to support scalability for an unlimited number of VPN links. A
single policy can be edited from a remote GUI, stored on a centrally located management
server, and then distributed to enforcement modules (firewalls) across the enterprise.

HOW BANDWIDTH MANAGEMENT WORKS—
CASE STUDY OF THE NORTEL SOLUTION

Let’s explore in detail the Nortel implementation of bandwidth management as inte-
grated into its Web Switch appliance. The case study will provide conceptual network
design drawing plus step-by-step configuration of the Web switch.

Overview
In Nortel’s implementation of bandwidth management, Web site administrators allocate
portions of available bandwidth for specific users or applications. Traffic is classified
based on either user or application information, and then policies are configured to set
lower and upper limits on the bandwidth allocation.

From a configuration standpoint, bandwidth contracts are created and used to limit
individual traffic flows, with a limit of up to a maximum of 256 per switch. A contract has
two components:

� Classification policy to group certain frames together

� Bandwidth policy to set usage limitations applied to those frames

Traffic Classification and Control
We need to identify and classify the traffic before we can set the bandwidth enforcement
policy. In its simplest form, this is the methodology of the Nortel bandwidth manage-
ment solution.

Traffic Classification at Ingress Port
Bandwidth classification is done on the ingress port ( port where frames enter the switch),
and is based on source port, VLAN, VIP (virtual IP address), service, filters, and so on.

Traffic Enforcement at Egress Port
Bandwidth management is done on the egress port (the port where frames exit the
switch). Each frame goes into a buffer and is placed in a contract queue. Then, a calcula-
tion is made based on the configured rate of the bandwidth contract, the current egress
rate of the port, and the buffer size set for the contract queue. This calculation is provided
to the scheduler, which then organizes all the frames to be sent according to their
time-based ordering and meters them out to the port.
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Bandwidth Policies
Before we can enforce a policy, first, let’s ask the fundamental question—what is a band-
width policy?

Rate Limits
A bandwidth policy defines three limits, which the following lists describe.

CIR or Reserved Limit This is the guaranteed rate bandwidth class. Ensure that when con-
figuring bandwidth management contracts, the sum of all Committed Information Rates
(CIRs) does not exceed the link speed of the egress port. Remember, this is networking,
not airline booking. In a case where the link speed is exceeded, the Web switch performs a
graceful degradation of all traffic on the associated port.

Soft Limit This is the desired bandwidth rate, the rate the client is paying for on a regular
basis. When output bandwidth is available, a bandwidth class is allowed to transmit at
this speed.

Hard Limit This is the never exceeded bandwidth rate. No bandwidth class is allowed to
transmit above this rate. Clients are normally charged for traffic bursts between the soft
and hard limits.

Bandwidth Policy Configuration
Here are the details for configuring bandwidth management on a Nortel Web switch.

Bandwidth Range/Interval Each bandwidth policy, comprised of the reserved soft and
hard limits, is assigned an index. Up to 64 policies can be defined. To allow for better
granularities at slower configured rate, any value can be entered in Kbps by appending a
k to the entered value. For example, 1 Mbps can be entered as 1 or 1, 024K.

The following table lists the granularity of policy limits:

Bandwidth Range Interval Bandwidth Range Interval

250 Kbps to 5,000 Kbps 250 Kbps 50 Mbps to 150 Mbps 10 Mbps

1 Mbps to 20 Mbps 1 Mbps 150 Mbps to 500 Mbps 25 Mbps

20 Mbps to 50 Mbps 5 Mbps 500 Mbps to 1,000 Mbps 50 Mbps

A queue size is also associated with each policy, and is measured in kilobytes.

Classification Policies
Classification policies falls into the following distinct groups:

� Classification aimed at limiting traffic outbound from the server farm

� Classification based on application or group of applications

� Combination of these two
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Server Output Bandwidth Control
Frames associated with a bandwidth contract are classified using the following parame-
ters. These classifications are aimed at limiting the traffic outbound from the server farm
for bandwidth measurement and control.

� Physical Port All frames from a specified physical port.

� VLAN All frames from a specified VLAN. Even if VLAN translation occurs,
the bandwidth policy is based on the ingress VLAN.

� IP Source Address All frames from a specified Source IP address with
subnet mask.

� IP Destination Address All frames from a specified Destination IP address
with subnet mask.

� Switch Virtual Services The following Layer 4 groupings are classified

� A single virtual server

� A group of virtual servers

� A virtual service for a particular virtual server

Select a particular port number, which specifies a virtual service, within a particular VIP.

Application Bandwidth Control
Through bandwidth classifications, you can limit the traffic based on particular applica-
tions or groups of applications. Classification can also be specified based on a filtering
rule, including those listed here.

� TCP Port Number All frames from a particular TCP port number (source
or destination).

� UDP All UDP frames can be specified.

� UDP Port Number All UDP frames from a particular UDP port number
(source or destination).

Combinations
When combining classifications, you’re limited to grouping them together into a contract.
As an example, you can classify three different virtual servers associated with a contract by
specifying the same contract index on each of the three VIP addresses. You can combine fil-
ters in this manner as well.

Precedence
If a frame qualifies for several classifications, you can specify the precedence for which
the frame will be associated. If you don’t configure precedence, the default ordering is
as follows:
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1. Virtual Server

2. Filter

3. VLAN

4. Source Port/Default Assignment

Restricting Bandwidth Usage
Data pacing is the mechanism for restricting bandwidth usage on the egress port. Here it
is in detail.

Data Pacing
The mechanism used to keep the individual traffic flow regulated is termed data pacing and
is based on the concept of a virtual clock and theoretical departure time (TDT). TDT is ini-
tially calculated based on the soft limit, which is the target rate. As long as bandwidth is
available and the queue isn’t filled up at a rate greater than the soft limit, the TDT for both
incoming and outgoing frames will be met, and no borrowing or limitation is necessary.

If frames are arriving more quickly than the soft limit rate, however, and sufficient
bandwidth still exists, then the rate is adjusted upwards based on the depth of the queue,
until either the hard limit is reached or the queue depth is reduced. If the frames cannot
be transmitted at the soft limit, the rate is adjusted downward until it can be transmitted
or the CIR is reached. If the CIR is overcommitted among all the contracts, a graceful deg-
radation occurs to reduce each CIR until the total bandwidth allocated fits within the total
bandwidth available.

Frame Discard
When the queue is already full, then any frames attempting to be placed in the queue are
discarded.

Bandwidth Statistics and History
To allow for accounting and billing, statistics regarding bandwidth management and uti-
lization are maintained in the Web switch. The administrator can configure both the fre-
quency and the count of the statistics. Statistics care kept in the individual Switch
Processors (SP) and collected every second by the Management Processor (MP).

The MP also collects some global statistics, such as total octets, and a window of his-
torical statistics. The historical statistics are kept at a configurable time per interval. When
the history buffer is ready to overflow, it can, optionally, be e-mailed to a user. SMTP is
used for this transfer.

Statistics Maintained
The total number of octets, octet discards, and times over the soft limit are kept for each
contract. The history buffer maintains the average queue size for the time interval and the
average rate per interval.
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Configuring the History Buffer
A total memory block of 128 Kbytes is kept available for the history buffer. This block is
specified in the /cfg/bwm/stats menu.

Statistics and MIBs
The MP maintains per-contract rate usage statistics. These can be obtained via a private MIB.

Third Party Bandwidth Management Billing Solution
Web administrators can now capture usage statistics into a third party software product
for billing purposes. One such product is Netcountant from Apogee Networks.

Here are some product features of Netcountant:

� Usage-based billing capability for content service types (hits, bytes, type of file,
type of server)

� Flexible new revenue models for content services

� Simple “plug and play” format enables Web hosters to offer differentiated
services they can bill for, based on:

� Type of Service
(such as secure e-commerce, streaming)

� Pre-specified content performance levels
(e.g., high availability servers vs. standard service)

� Class of User
(e.g., segment customers into service tiers)
Each service can be billable at distinct rates for each customer, in shared
server environments

� Pricing models for any service based on bandwidth, bytes transferred, objects
served (hits), with differentials for time-of-day

� Pricing models based on the response time or service level delivered by the
Web hoster

Packet Coloring
Packet coloring refers to the technique of modifying the bits of an IP header to induce other
devices such as routers to impose QoS policy on arriving packets.

ToS Bits and Burst Limit
Every time the soft limit rate is exceeded, packet coloring can optionally be accom-
plished that allows the writing of ToS bits in the IP header, so downstream routers can
use this information to delay or discard these “out of profile” frames. Frames that are



not out of profile can also be marked with a different, higher priority value. This feature
can be enabled or disabled on a per contract basis.

Configuring Bandwidth Management
Configuring bandwidth management on the Alteon switch is done right after the con-
figuration for Server Load Balancing (SLB). The following are SLB configuration tasks:

� Define an IP interface on the switch.

� Define each real server. Assign an IP address to each real server.

� Group the real servers.

� Define a Virtual IP Address (VIP).

� Define the port configuration (see Figure 14-3).

Complete Configuration Commands
The following configuration exercise creates two bandwidth management contracts.
Contract 1 uses Policy 1 and limits traffic egressing port 7 to 10 Mbps. Contract 2 uses Pol-
icy 2 and limits traffic egressing port 8 to 5 Mbps.
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Figure 14-3. Sample network diagram



The following are step-by-step procedures for configuring bandwidth management:

1. Configure a bandwidth management policy:

Main# /cfg/bwm/policy 1

This selects bandwidth management policy 1.

2. Set the hard (this is the never exceed rate), soft (this is the desired rate), and
reserved (this is the CIR or committed information rate) rate limits for the policy.
Value is in Mbps, and must be set between 256K–1,000M.

Policy 1# hard 10

This sets the hard limit to 10 Mbps.

Policy 1# soft 5

This sets the soft limit to 5 Mbps.

Policy 1# resv 3

This sets the CIR limit to 3 Mbps.

3. Configure a second bandwidth management policy:

/cfg/bwm/policy 2

This selects bandwidth management policy 2.

4. Set the hard, soft, and reserved rate limits for the policy:

Policy 2# hard 5

This sets the hard limit to 5 Mbps.

Policy 2# soft 2

This sets the soft limit to 2 Mbps.

Policy 2# resv 250k

This sets the CIR limit to 250 Kbps.

5. Configure a bandwidth management contract. Provide a name (optional):

/cfg/bwm/cont 1

This selects contract 1.

BW Contract 1# name gold_client

This sets a name for contract 1.
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BW Contract 1# policy 1

This sets policy 1 for contract 1.

BW Contract 1# ena

Don’t forget to enable contract 1.

6. Configure a second bandwidth management contract. Provide a name
(optional):

/cfg/bwm/cont 2

This selects contract 2.

BW Contract 2# name silver_client

This sets the name for contract 2.

BW Contract 2# policy 2

This sets policy 2 for contract 2.

BW Contract 2# ena

Don’t forget to enable contract 2.

7. Apply contracts to the appropriate ports:

/cfg/port 7

Select port 7.

Port 7# cont 1

Apply contract 1 to port 7.

/cfg/port 8

Select port 8.

Port 8# cont 2

Apply contract 2 to port 8.

8. Enforce and turn on the bandwidth management policy:

/cfg/bwm/force ena

This tells the switch to enforce the policy.

/cfg/bwm/on

This turns on bandwidth management processing.
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9. Apply and save the configuration:

apply

This applies all the changes, and

save

saves the configuration.

STANDARDS
This section provides some information on the standardization initiatives that are ongoing
with regards to bandwidth management as of this writing.

IETF Diff-Serv Working Group
The Diff-Serv Working Group is one group active in the pursuit of standardization with
respect to implementing a QoS mechanism through the use and interpretation of certain
bits in the IP header.

Differentiated Services Overview
A clear need exists for relatively simple and coarse methods for providing differentiated
classes of service to Internet traffic to support various types of applications and specific
business requirements. The differentiated-services approach to providing quality of ser-
vice in networks employs a small, well-defined set of building blocks from which a variety
of aggregate behaviors may be built.

The IETF Diff-Serv Working Group has standardized a small number of specific
per-hop behaviors (PHBs), which the following describes, and recommended a particular
bit pattern or code-point of the DS field (see the following) for each one, in RFC 2474,
RFC 2597, and RFC 2598. No more PHBs will be standardized until all the current mile-
stones of the Working Group have been satisfied and the existing standard PHBs have
been promoted at least to Draft Standard status.

The Working Group has investigated the additional components necessary to sup-
port differentiated services, including such traffic conditioners as traffic shapers and
packet markers, which could be used at the boundaries of networks. Many examples of
these are in the technical literature.

The Working Group will define a general conceptual model for boundary devices, in-
cluding traffic conditioning parameters, as well as configuration and monitoring data. A
subset of this is expected to apply to all diffserv nodes. The group will also define a MIB
and a PIB for diffserv nodes, and an encoding to identify PHBs in protocol messages. It
will document issues involving diffserv through tunnels.
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The Working Group will not work on the following:

� Mechanisms for the identification of individual traffic flows

� New signaling mechanisms to support the marking of packets

� End-to-end service definitions

� Service level agreements

IPV4 ToS Octet and IPV6 Traffic Class Octet
A small bit-pattern in each packet, in the IPv4 ToS octet or the IPv6 Traffic Class octet, is
used to signal that a packet is to receive a particular forwarding treatment, or per-hop be-
havior (PHB), at each network node. A common understanding about the use and inter-
pretation of this bit-pattern is required for interdomain use, multivendor inter-
operability, and consistent reasoning about expected aggregate behaviors in a network.

Standardized DS Field
The Working Group has standardized a common layout for a six-bit field of both octets,
called the DS field. RFC 2474 and RFC 2475 define the architecture, and the general use of
bits within the DS field (superseding theIPv4 ToS octet definitions of RFC 1349).

The PDB (per Domain Behavior) Format
The WG will develop a format for precisely describing various per-domain behaviors
(PDBs). A PDB is a collection of packets with the same codepoint, thus receiving the same
PHB, traversing from edge to edge of a single diffserv network or domain. Associated
with each PDB are measurable, quantifiable characteristics that can be used to describe
what happens to packets of that PDB as they cross the network, thus providing an exter-
nal description of the edge-to-edge quality of service to be expected by packets of that
PDB within that network. A PDB is formed at the edge of a network by selecting certain
packets through use of classifiers and by imposing rules on those packets via traffic con-
ditioners. The description of a PDB contains the specific edge rules and PHB type(s) and
configurations that should be used to achieve specified externally visible characteristics.

In addition to defining a format for PDB descriptions, specific descriptions of PDBs
that can be constructed using the standard PHBs will be developed and reviewed by a de-
sign team prior to informational or standards track publication.

Security Threats and Countermeasures
The group will continue to analyze related security threats, especially theft of service or
denial of service attacks, and suggest countermeasures.
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Goals and Milestones
Here are the current goals and milestones of the Working Group:

Done Publish draft of format for BA descriptions

Done Meet at Adelaide IETF to review tunnels draft, discuss initial
PDB descriptions

Done Solicit PDB descriptions

Jul 00 Finalize model and MIB drafts, submit to IESG

Done Finalize tunnels draft, submit to IESG

Aug 00 Finalize PIB draft, submit to IESG

Done Finalize PDB format draft, submit to IESG

Aug 00 Meet at Pittsburgh IETF to finalize initial PDB descriptions,
submit to IESG

Dec 00 Meet at San Diego IETF to close any open issues, make WG dormant

Internet Drafts
The following reference materials are available to further assist the reader to gain valu-
able information. All are available at http://www.ietf.org/internet-drafts/.

� An Informal Management Model for Diffserv Routers

� Management Information Base for the Differentiated Services Architecture

� New Terminology for Diffserv

� Differentiated Services Quality of Service Policy Information Base

� Definition of Differentiated Services Per-Domain Behaviors and Rules for
Their Specification

� The “Virtual Wire” Per-Domain Behavior

� A Bulk Handling Per-Domain Behavior for Differentiated Services

� A Revised Expression of the Expedited Forwarding PHB

� Per-Hop Behavior Identification Codes

� An Assured Rate Per-Domain Behavior for Differentiated Services
An Expedited Forwarding PHB

� Supplemental Information for the New Definition of the EF PHB

RFCs (Request for Comments)
Listed next are the relevant RFCs to date regarding Diff-Serv. All are available at
http://www.ietf.org/rfc/.

� Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
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� Headers (RFC 2474)

� An Architecture for Differentiated Services (RFC 2475)

� An Expedited Forwarding PHB (RFC 2598)

� Assured Forwarding PHB Group (RFC 2597)

� Per-Hop Behavior Identification Codes (RFC 2836)

� Differentiated Services and Tunnels (RFC 2983)

SUMMARY
Bandwidth management has evolved over the last few years into a critical technological
tool for enterprise and ISP/ASPs to gain maximum return on investment spent to build
Lan/WAN infrastructures at the data centers and service provider centers.

To summarize what has been described in this chapter, the existing bandwidth man-
agement methodologies employed to date are

� Class Based Queuing (CBQ)

� Weighted Random Early Detection (WRED)

� TCP Rate Control

� Policy-based BWM

� Contract-based BWM

� Filter-based BWM

Clearly no “one size fits all” solution exists for bandwidth management. Stand-alone
appliances are added into the infrastructure and into the path of traffic. Solutions are inte-
grated into existing routers and LAN switches, integrated into existing firewall modules,
and, finally, integrated into existing Web load-balancing switches.

Pros and Cons
TCP Rate Control can make a case that if the majority of traffic is TCP/IP, then this is the
best solution if the overall goal is to prevent dropped packets and retransmissions.
Standalone appliances are cost-effective and can be installed into the infrastructure with-
out having to reconfigure existing routers and LAN switches.

With infrastructures that are “Cisco shops,” the implementation of WRED on the ex-
isting routers is cost-effective and maximizes existing investment. Likewise, the same ar-
gument can be made on the integration of bandwidth management on existing firewall
devices.

Integration of bandwidth management on existing Web load balancing switches—
especially the Nortel solution where hardware ASICs on the ingress and egress ports are
utilized to achieve wire-speed bandwidth management—is a powerful argument for a
solution that is cost effective, scalable, and high performance.
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Standardization Roadmap
The author defers to the Differentiated Services (Diffserv) Working Group of IETF for
guidelines into the standardization roadmap for bandwidth management.

The premise of Diffserv networks is that routers within the core of the network handle
packets in different traffic streams by forwarding them using different per-hop behaviors
or PHBs. The capability of these routers from different vendors to determine the PHBs,
which is applied as indicated by a Diffserv code point (DSCP) in the IP header of the
packet and, thus, how to treat that packet, determines the degree of interoperability
among these vendors.

The desired implementation is that, as packets classified by means of IP-layer marking
using the DS Field enter into a differentiated services-capable network, routers within that
network can interpret and determine the per-hop forwarding behavior on nodes along the
path, and, thus, interoperate.

Future Applications
The ultimate goal of bandwidth management that differentiated services will allow us is
the creation of scalable end-to-end QoS in the Internet. This requires that we can identify
and quantify behavior for a group of packets preserved when they are aggregated with
other packets as they traverse the Internet. If this is a doable proposition, then enterprises
and service providers can offer meaningful SLAs to their internal and external customers and
enhance their profitability.

Applications can be written to track and measure SLAs, providing validation for in-
creased IT budgets, as well as to promote different service offerings from service providers.

REVIEW QUESTIONS
1. Define bandwidth.

Bandwidth, defined as the width of a band of electromagnetic frequencies,
is used as an expression of how fast data flows through a given transmission
path. In computer networks, bandwidth is often measured in bits/second.

2. What impact did “push” technology have on bandwidth management?

The “push” technology resulted in flooded networks and congestion in local
area networks as content aggregators such as Pointcast pushed massive
information to their users. Network administrators realized that to contain
and control this massive information deluge requires implementation of
some form of bandwidth management.



������� �	� ��� �� �� !���"�#��� 	��

3. Name the three solutions adapted to contain bandwidth consumption for
the push technology.

Cache Managers, Compression Tools, and Optimized download criteria.

4. Provide at least three components or criteria measured for Service Level
Agreement (SLA).

Any three of the following:
Network availability—percent uptime, Average round-trip network delay,
Effective throughput, Mean Time to Respond, Mean Time to Repair.

5. Describe TCP Rate Control.

TCP Rate Control is a technique of bandwidth management that paces
packets on both the inbound and outbound flows in a TCP session, and
results in a smooth, even flow rate to maximize throughput.

6. Is TCP Rate Control bidirectional or unidirectional bandwidth management?

TCP Rate Control provides bidirectional bandwidth management for both
inbound and outbound traffic.

7. Describe some benefits and features of TCP Rate Control.

Eliminates unnecessary packet discards and retransmission; promotes a
smooth, even flow rate to maximize throughput; provides bidirectional
bandwidth management.

8. What does CBQ stands for? Is CBQ a proprietary implementation of
bandwidth management?

CBQ is the acronym for Class-Based Queuing. No, CBQ is not a proprietary
implementation of bandwidth management. It was developed by the Network
Research Group at Lawrence Berkeley National Laboratory and is now in the
public domain as an open technology.

9. Describe some features and benefits of CBQ.

Opens technology, not proprietary; can classify traffic into a hierarchy of
classes based on any combination of IP addresses, protocols, and types of
applications; can configure different bandwidth rate, (premium rate, best-
effort rate), and each application or application type can then be given the
appropriate bandwidth rate; allows bandwidth borrowing, so traffic classes
can utilize bandwidth not used by other traffic classes when they need to
burst above their guaranteed rate.



10. What is the difference between WRED and DWRED?

WRED is Weighted Random Early Detection and is a Cisco implementation
for bandwidth management. It combines the functionality and algorithm
of RED with IP precedence to give preferential treatment to higher priority
traffic.

DWRED is Distributed Weighted Random Early Detection, which is also
a Cisco implementation for bandwidth management that uses the Versatile
Interface Processor (VIP) to provide WRED functionality. This is in contrast
to WRED, which uses the route-switch processor (RSP) to implement
the WRED functionality. DWRED provides faster performance than the
RSP-based WRED.
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auto-negotiation, 48–49
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authentication, 96–97
Cache-Control headers,

214–215
cookies, 231–233
DELETE method, 86
entity-header fields, 94–95
ETag headers, 216
Expires headers, 216–217
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load balancers, 30–31
load balancing, 10–11
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geographic, 292–293
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hot-standby stateful

fail-over, 243, 244
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96–97
message headers, 89–95

entity-header fields, 94–95
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response-header fields, 93–94
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minimum misses policy, 256–257
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multimode fiber, 48

� N
NAPs, 190–194

private, 191–193
NetCache C6100, 229
Network Appliance, 229
network diameters, 51–52
next page bit, 49
noise, 163
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port redirection, 223–224
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preambles, 40
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SEN IP services, 24
Quality of Service. See QoS

� R
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Secure Sockets Layer. See SSL
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server hello, 128–129, 133, 135
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server key exchange, 129
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certificate request
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ending communications, 134
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133–134
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protocol, 126–136
proxy-based SSL

accelerators, 138–140
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expectations, 2–5
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227–228
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management, 402–404
load balancing policies,

252–253
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surges, 261

maximum connections
option, 257

monitoring physical
connections, 251

monitoring through ICMP
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Xerox Corporation, 38

� Z
zombification, preventing, 325

446 Content Del ivery Networks

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright 2002 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.


	sample.pdf
	sterling.com
	Welcome to Sterling Software





